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Abstract
Oscillatory Integrals, Spectral Mutiplier

Operators, Semilinear Elliptic Equations,
and Pseudodifferential Calculus on Carnot

Manifolds
Woocheol Choi

Department of Mathematical Sciences
The Graduate School

Seoul National University

This thesis consists of the following three parts; sharp estimates of linear operators, semiinear
elliptic equations, and pseudodifferential calculus on Carnot manfiolds. These subjects are related
to each other in direct and implicit ways.

The first part is based the three papers [Ch1, Ch2, Ch3] whose object are to obtain sharp
estimates of some linear operators related to oscillatory integration and spectral multipliers. More
precisely, in the first paper [Ch1], we obtain sharp L2 and Hp boundedness of strongly singular
operators and oscillating operators on Heisenberg groups by applying the oscillatory integral
estimates for degenerate phases and the molecular decomposition for Hardy spaces. In the second
paper [Ch2] we obtain a refined Lp bound for maximal functions of the multiplier operators on
stratified groups and maximal functions of the multi-parameter multipliers on product spaces of
stratified groups. As an application we find a refined Lp bound for maximal functions of joint
spectral multipliers on Heisenberg group. In the third paper [Ch3], for a self-adjoint positive
elliptic (-pseudo) differential operator P on a compact manifold M without boundary, we obtain
a refined Lp bound of the maximal function of the multiplier operators associated to P satisfying
the Hörmander-Mikhlin condition.

The second part is concerned with semilinear elliptic equations. It is based on the paper [Ch4]
and the joint works [CKL, CKL2, ChS].

In [Ch4] we study strongly indefinite systems involving the fractional Laplacian on bounded
domains. Explicitly, we obtain existence and non-existence results, a priori estimates of Gidas-
Spruck type, and a symmetry result. In addition, we give a different proof for the a priori estimate
for nonlinear elliptic problems with the fractional Laplacian obtained in [CT, T2].

In the paper [CKL] with S. Kim and K. Lee, we study the asymptotic behavior of least energy
solutions and the existence of multiple bubbling solutions of nonlinear elliptic equations involv-
ing the fractional Laplacians and the critical exponents. This work can be seen as a nonlocal
analog of the results of Han (1991) [H] and Rey (1990) [R].
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In the paper [ChS] with J. Seok, we study a class of semilinear nonlocal elliptic equations
posed on settings without compact Sobolev embedding. More precisely, we prove the existence
of infinitely many solutions to the fractional Brezis-Nirenberg problems on bounded domain.

The last chapter of this part is based on the paper [CKL2] with S. Kim and K. Lee, The
objective of this paper is to obtain qualitative characteristics of multi-bubble solutions to the
Lane-Emden-Fowler equations with slightly subcritical exponents given any dimension n ≥ 3.
By examining the linearized problem at each m-bubble solution, we provide a number of esti-
mates on the first (n + 2)m-eigenvalues and their corresponding eigenfunctions. Specifically, we
present a new proof of the classical theorem due to Bahri-Li-Rey (1995) [BLR] which states that
if n ≥ 4, then the Morse index of a multi-bubble solution is governed by a certain symmetric
matrix whose component consists of a combination of Green’s function, the Robin function, and
their first and second derivatives. Our proof also allows us to handle the intricate case n = 3.

The third part is based on the joint works [CP1, CP2] with R. Ponge. In [CP1] we construct
the tangent groupoid of a Carnot manifolds, i.e., a manifold equipped with a flag of sub-bundles
{0} = H0 ⊂ H1 ⊂ · · · ⊂ Hr = T M of the tangent bundle. Based on the geometric study, we estab-
lish the calculus of Pseudo-differential operators on Carnot manifolds in the forthcoming paper
[CP2]. We define the classes of ΨHDOs which are suitable for studying hypoelliptic operators
and show that the class is invariant under the change of coordinates. Then, we obtain asymptotic
symbolic calculus in the composition of ΨHDOs. As applications we can obtain the asymptotic
expansion of kernels of Hörmander’s sum of squares and the heat kernel asymptotics on Carnot
manifolds.

Key words: semilinear elliptic equations, fractional Laplacians, oscillatory integrals, maximal
multipliers, Carnot manifolds, pseudodifferential calculus
Student Number: 2009-20283
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Chapter 1

Introduction

During the last decades, the linear theoy in classical analysis has been largely developed and
it also provided important tools for geometric problems and partial differential equations. This
research flow motivated the works in this thesis. We shall rely on various techniques in mathe-
matical analysis to study oscillatroy integral and spectral operators, semilinear elliptic equations,
differential operators on Carnot Caratheorody spaces.

This thesis is written by collecting the following listed works of the author and the coworks
with my advisor Prof. Raphaël Ponge, Dr. Seunghyeok Kim, Prof. Ki-Ahm Lee, and Prof. Jin-
myoung Seok.

1. L2 and Hp boundedness of strongly singular operators and oscillating operators on Heisen-
berg groups, to appear in Forum math (Online published).

2. Maximal multiplier on Stratified groups, to appear in Math. Nachr.

3. Maximal functions of multipliers on compact manifolds without boundary, arXiv:1207.0201,
submitted.

4. On strongly indefinite systems involving the fractional Laplacian, to appear in Nonlinear
Anal.

5. (with Raphaël Ponge) Privileged coordinates and Tangent groupoid for Carnot manifolds,
in preparation.

6. (with Raphaël Ponge) Pseudodifferential calculus on Carnot manifolds, in preparation.

7. (with Seunghyeok Kim and Ki-Ahm Lee) Asymptotic behavior of solutions for nonlin-
ear elliptic problems with the fractional Laplacian, J. Funct. Anal. 266 (2014), no. 11,
6531–6598.
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CHAPTER 1. INTRODUCTION

8. (with Jinmyoung Seok) Infinitely many solutions for semilinear nonlocal elliptic equations
under noncompact settings, arXiv:1404.1132, submitted.

9. (with Seunghyeok Kim and Ki-Ahm Lee) Qualitative properties of multi-bubble solutions
for nonlinear elliptic equations involving critical exponents, arXiv:1408.2384, submitted.

In the following three sections, we shall explain the results and motivations of the above works.
In Section 1 we introduce the linear estimates results of [Ch1, Ch2, Ch3]. Section 2 is devoted
to introduce the results of [Ch4, CKL, CKL2, ChS] on semilinear elliptic equations. In Section
3 we introduce the results of [CP1, CP2] on groupoids and pseudodifferential caclulus on Carnot
manifolds.

1.1 Oscillatory Integrals and Spectral Mutiplier Operators

This part is based on the papers [Ch1, Ch2, Ch3]. Oscillatory integral and Spectral multiplier
operators are fundamental subjects in the linear theory and they also appear abundantly in ge-
ometry and partial differential equations. To handle those kind of operators, the theory has been
established well for singular integral operators, oscillatory integral estimates, and interpolation
method. In the same time, the theory has been extended to the geometric settings like the Rieman-
nian manifolds and Carnot-Caratheodory spaces. In the first part of this thesis, we are concerned
with two kind of problems of the linear estimates given on the geometric settings.

1.1.1 L2 and Hp boundedness of strongly singular operators and oscillating
operators on Heisenberg groups

In [Ch1] we study strongly singular operators on the Heisenberg group, which are convolution
operators with kernels

Kα,β(x, t) = ρ(x, t)−(2n+2+α)eiρ(x,t)−βχ(ρ(x, t)), α > 0, β > 0,

where χ is a smooth bump function in a small neighborhood of the origin. These operators were
first introduced by Laghi [Ly] and the result on L2 boundedness was obtained in [Ly, LL], which
was sharp only for some restricted cases. In [Ch1] the author obtained the sharp results on L2

boundedness for any case using the oscillatory integral estimates for degenerated phases obtained
by Pan-Sogge [PS] and Greenleaf-Seeger [GR]. In addition we obtain the sharp L2 result in
almost cases for oscillating convolution operators with the kernels

Lα,β(x, t) = ρ(x, t)−(2n+2−α)eiρ(x,t)βχ(ρ(x, t)−1), β > 0.

We also provide the boundedness result on the Hardy space using the molecular decomposition
of the Hardy space.

2



CHAPTER 1. INTRODUCTION

1.1.2 Maximal multiplier on Stratified groups and compact manifolds with-
out boundary

In [Ch2, Ch3] we study the maximal functions of spectral multiplier operators. This work was
motivated by the work of Grafakos-Honzik-Seeger [GHS] who obtained the sharp result on the
maximal multipliers on the Euclidean spcae. They exploited the interaction of multiplier oper-
ators and martingale operators so that a good λ inequality of Chang-Wilson-Woff [CWW] for
martingale operators can be applied. On the other hand, the multiplier theory has been extended
to the various settings such as nilpotent Lie groups and Riemannian manifolds by many authors
(see. e.g. [C1, MaM, SS]. We make use of the approach of [GHS] to obtain a refined estimate
for the maximal multipliers on nilpotent Lie groups. This improves the previous result on the
maximal multipliers on nilpotent Lie groups obtained in [MaM]. We also consider maximal mul-
tipliers on product spaces of nilpotent Lie groups and apply it to find a refined estimate for the
maximal function of joint spectral multipliers on the Heisenberg group. A similar result was
obtained in [Ch3] for multipliers on compact manifolds without boundary.

1.2 Semilinear Elliptic Equations and Fractional Laplacians

This part is based on the papers [Ch4, CKL, CKL2, ChS]. As we mentioned, the classical analysis
provides various essential tools for studying partial differential equations, containing various time
evolution equations like nonlinear Schrödinger equations and Gross-Pitaevskii equations. On the
other hand, many properties of those equations are governed by travelling waves and stationary
solutions which can be described by time independent semilinear elliptic equations. The second
part of the thesis deals with this kind of equations. There are various topics in the theory of
semilinear elliptic equations, and among those we first concentrate on problems involiving the
fractional Laplacian. The study of this topic has been boosted since the work of Caffarelli and
Silvestre [CaS] where the authors developed a local interpretation of the fractional Laplacian
given in Rn by considering a Neumann type operator in the extended domain Rn+1

+ := {(x, t) ∈
Rn+1 : t > 0}. This observation made a significant influence on the study of related nonlocal
problems. A similar extension was devised by Cabré and Tan [CT] on bounded domains and
they studied the following type problem

(−∆)su = f (u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where 0 < s < 1, Ω is a smooth bounded domain of Rn and (−∆)s denotes the fractional Laplace
operator (−∆)s in Ω with zero Dirichlet boundary values on ∂Ω, defined in terms of the spectra
of the Dirichlet Laplacian −∆ on Ω, and f : Rn → R is a certain function.
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CHAPTER 1. INTRODUCTION

1.2.1 On strongly indefinite systems involving the fractional Laplacian,

Motivated by the work of [CT], the author [Ch1] studied the following nonlinear system
(−∆)su = vp in Ω,

(−∆)sv = uq in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on ∂Ω,

(1.2)

where 0 < s < 1, p > 1, and q > 1. This is a nonlocal version of the strongly indefinite system
which has been studied during the last decades (see [FF, HV] and references therein). When
Ω = Rn the problem (1.1) was studied already by many authors (see e.g. [CLO, CLO2]). Let us
define that a pair of exponents (p, q) is sub-critical if 1

p+1 + 1
q+1 >

n−2s
n , critical if 1

p+1 + 1
q+1 = n−2s

n ,
and super-critical if 1

p+1 + 1
q+1 <

n−2s
n . Then we obtain existence result for the sub-critical case and

nonexistence result for the critical and super-critical case. We establish a moving plane argument
and a maximum principle for the extended problem, to prove the following symmetry result. In
addition a priori estimate of Gidas-Spruck type is obtained.

1.2.2 behavior of solutions for nonlinear elliptic problems with the frac-
tional Laplacian

The collaboration works [CKL] with S. Kim and K. Lee and [CaS] with J. Seok are concerned
with the Brezis-Nirenberg type problem

(−∆)su = |u|2
∗(s)−2−εu + λu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where 0 < s < 1, 2∗(s) := 2n
n−2s , λ > 0.

In [CKL] we study the behavior of positive solutions as the parameter λ = ε goes to zero. We
show that the least energy solution of (1.3) concentrates at a critical point of the Robin function
of the fractional Laplacian (−∆)s. Moreover, we construct multi-peak solutions by employing the
Lyapunov-Schmidt reduction method. These two results are motivated by the work of Han [H]
and Rey [R] on the classical local Brezis-Nirenberg problem, which dates back to Brezis and
Peletier [BP], 

−∆u = u
n+2
n−2 + εu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.4)

In the latter part of his paper, Rey [R] constructed a family of solutions for (1.4) which asymptot-

ically blow up at a nondegenerate critical point of the Robin function. This result was extended
in [MP], where Musso and Pistoia obtained the existence of multi-peak solutions for certain
domains.
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CHAPTER 1. INTRODUCTION

1.2.3 Infinitely many solutions for semilinear nonlocal elliptic equations
under noncompact settings

In [CaS] we prove the existence of infinitely many solutions of the problem (1.3) for each fixed
λ > 0. Due to the loss of compactness of critical Sobolev embedding H1

0(Ω) ↪→ L
2n

n−2 (Ω) and
H s

0(Ω) ↪→ L
2n

n−2s (Ω), more careful analysis is required to construct nontrivial solutions to the
equation (1.3) than equation with sub-critical nonlinearities. We employ Devillanova and Soli-
mini’s ideas in [DS]. The main strategy in these ideas is to consider approximating subcritical
problems, In other words, we consider subcritical problems{

(−∆)su = |u|2
∗(s)−2−εu + µu in Ω,

u = 0 on ∂Ω,
(1.5)

for small ε > 0. From the sub-criticality of the problems, one can verify by using standard
variational methods that for every small ε > 0, (1.5) admits infinitely many nontrivial solutions
in a fractional Sobolev space H s

0(Ω). By this reason we obtained the following compactness result
to obtain nontrivial solutions to our original equation (1.3).

Theorem 1.2.1. Assume N > 6s. Let {um} be a sequence of solutions to (1.5) with ε = εn → 0 as
n→ ∞ and supm∈N ‖um‖Hs

0(Ω) < ∞. Then {um} converges strongly in H s
0(Ω) up to a subsequence.

1.2.4 Qualitative properties of multi-bubble solutions for nonlinear elliptic
equations involving critical exponents

In paper [CKL2], we come back to study the local problem
−∆u = u

n+2
n−2−ε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1ε)

where p denotes the critical exponent n+2
n−2 here. We assume that {uε}ε>0 is a family of solutions to

the problem (1.1ε) which blows up at m points in Ω. Our objective is to compute the Morse index
of the blow up solutions. For this aim, we consider the linearized problem{

−∆v = µ(p − ε)up−1−ε
ε v in Ω,

v = 0 on ∂Ω.
(1.6)

Let µ`ε be the `-th eigenvalue of (1.6) provided that the sequence of eigenvalues is arranged in
nondecreasing order permitting duplication, and v`ε the corresponding L∞(Ω)-normalized eigen-
function (namely, ‖v`ε‖L∞(Ω) = 1). We shall examine the behavior of eigenpairs (µ`ε , v`ε) to the
linearized problem (1.6) at uε for 1 ≤ ` ≤ (n + 2)m. This extends the result of Grossi and Pacella
[GP] for one-peak solutions.
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1.3 Pseudodifferential Calculus on Carnot Manifolds

This part is based on the papers [CP1, CP2]. Among the topics of mathematical analysis related
to geometry, an important one is the theory of pseudo-differential calculus. This theory is applied
to obtain the inverse parametrix and heat kernel asymptotic expansion of elliptic operators on
manifolds. These calculations provide important tools for the index theory of and the spectral
asymptotics of elliptic operators on compact manifolds. For this reason, there has been lots of
interest to extend the thoery for more general geometric settings which are not conatined the
category of the Riemannian manifolds. One important setting is Carnot-Caratheodory spaces
where the elliptic operators are replaced by hypoelliptic operators. An important example is the
Heisenberg manifolds which contains CR manifolds and contact manifolds. Beals-Greiner [BG]
and Taylor [Tay] established the pseudodifferential calculus on the Heisenberg manifolds. Ponge
[P2] developed an intrinsic approach and extension to complex powers with presenting various
applications. The last part of this thesis is aimed to establish the pseudodifferential calculus on
Carnot manifolds, which stand for equi-regular Carnot-Caratheodory spaces. It is based on the
joint works [CP1, CP2] with R. Ponge.

1.3.1 Privileged coordinates and Tangent groupoid for Carnot manifolds

In paper [CP1] we construct the tangent groupoid of a Carnot manifolds, i.e., a manifold equipped
with a flag of sub-bundles {0} = H0 ⊂ H1 ⊂ · · · ⊂ Hr = T M of the tangent bundle. We find
an intrinsic notion of tangent Lie group bundles of Carnot manifold and construct the tangent
groupoid following the approach presented in [P1]. This was achieved with finding some intrinsic
privileged coordinates and studying their properties.

1.3.2 Pseudodifferential calculus on Carnot manifolds

In the subsequent work [CP2], we define suitable classes of pseudodifferential operators on
Carnot manifolds and establish the calculus containing the composition formula. Based on the
calculus, we can discuss on the relation between the invertibility and the Rockland condition. As
an application, we obtain the heat kernel asymptotic expansion and the spectral asymptotic for
hypoelliptic operators.
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Chapter 2

L2 and Hp boundedness of strongly
singular operators and oscillating
operators on Heisenberg groups [Ch1]

2.1 Introduction

The setting of this paper is the Heisenberg group Hn
a, a ∈ R∗, realized as R2n+1 equipped with the

group law,

(x, t) · (y, s) = (x + y, s + t − 2axT Jy), J =

(
0 In

−In 0

)
.

For K ∈ D′(Ha) we denote by TK the convolution operator defined by K, i.e,

TK f (x, t) := K ∗ f (x, t) =

∫
Hn

K
(
(x, t) · (y, s)−1

)
f (y, s)dydx, f ∈ C∞0 (Hn

a).

We say that the operator TK is bounded on Lp(Hn) if there exist a C > 0 such that

‖TK f ‖p ≤ C‖ f ‖p, for all f ∈ C∞0 (Hn).

A natural quasi-norm on the Heisenberg group is given by

ρ(x, t) = (|x|4 + t2)1/4, (x, t) ∈ Ha.

This quasi-norm satisfies ρ(λ · (x, t)) = λρ(x, t). For this quasi-norm, we define the strongly
singular kernels,

Kα,β(x, t) = ρ(x, t)−(2n+2+α)eiρ(x,t)−βχ(ρ(x, t)), α > 0, β > 0,

8
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AND OSCILLATING OPERATORS ON HEISENBERG GROUPS [Ch1]

where χ is a smooth bump function in a small neighborhood of the origin. This operator was
introduced by Lyall [Ly] who showed that TKα,β

is bounded when α ≤ nβ. This result was obtained
by using the Fourier transform on the Heisenberg group in combination with involved estimates
on oscillatory integrals. Subsequently, Laghi-Lyall [LL] obtained sharp results in the special
case a2 < Cβ (where Cβ is given by (2.1)) by using a version for the Heisenberg group of the
L2-boundedness theorem for non-degenerate oscillatory integral operators of Hörmander [Ho2].
In this paper, we shall consider the cases a2 ≥ Cβ and obtain sharp conditions using the theory
for oscillatory integral operators with degenerate phases (see Section 2). Recall that the theory of
the degenerate oscillatory integral operators was developed in depth to study X-ray transforms
(see, e.g., Greenleaf-Seeger [GR2]).

Strongly singular convolution operators were originally considered on Rn. Such operators
correspond to suitable oscillating multipliers. They were first studied, by Fourier transform tech-
niques, in the Euclidean setting with ρ(x) = |x| by Hirschman [Hi] in the case d = 1, and in higher
dimensions by Wainger [W], Fefferman [Fe], and Fefferman-Stein [FeS2].

Similar kind of convolution operators with kernels of the form 1
|x|n−α ei|x|β , α, β > 0, were intro-

duced by Sjólin [Sj1, Sj2, Sj3]. Such kernels have no singularity near the origin, but they assume
relatively small decaying property at infinity. Notice that the case β = 1 corresponds to the kernel
of Bochner-Riesz means. For β , 1, the (Lp, Lq) estimates and Hardy space estimates hold (see
Miyachi [Mi], Pan-Sampson [PSa] and Sjólin [Sj1, Sj2, Sj3]). The difference between the two
cases comes from the fact that the phase kernel |x − y|β is degenerate only if β = 1. In this paper,
we also consider the analogous problem on the Heisenberg groups for the following kernels,

Lα,β(x, t) = ρ(x, t)−(2n+2−α)eiρ(x,t)βχ(ρ(x, t)−1), β > 0.

We denote by TLα,β the group convolution operators with the kernel Lα,β. In the literature, the
operators TKα,β

(resp., TLα,β) are called strongly singular operators (resp., oscillating convolution
operators).

In the first part of this paper, we shall find the optimal ranges of α and βwhere the convolution
operators associated with Kα,β and Lα,β are bounded on L2(Hn).

For a2 ≥ Cβ, the phase doesn’t satisfy the non-degeneracy condition anymore. Therefore,
we need to deal with oscillatory integral operators with degenerate phases. A theory for this
kind of operators has been developped by considering various conditions on phase functions
to give different decaying properties (see [GR2]). We shall rely on the results of Greenleaf-
Seeger [GR] and Pan-Sogge [PS]. To use such theory we shall carefully investigate the folding
type for our phases. Interestingly enough, we have different folding types according to the values
of the parameters a and β. Before stating our results, we recall the previous results of Laghi-
Lyall [LL] and Lyall [Ly]. Set

Cβ =
β + 2

2
(2β + 5 +

√
(2β + 5)2 − 9). (2.1)

Then we have

9



CHAPTER 2. L2 AND HP BOUNDEDNESS OF STRONGLY SINGULAR OPERATORS
AND OSCILLATING OPERATORS ON HEISENBERG GROUPS [Ch1]

Theorem (Laghi-Lyall [LL], Lyall [Ly]).

1. TKα,β
is bounded on L2(Hn) if α ≤ nβ.

2. If 0 < a2 < Cβ, then TKα,β
is bounded on L2(Hn) if and only if α ≤ (n + 1/2)β.

The first main result of this paper gives sharp L2 boundedness results for TKα,β
when a2 ≥ Cβ.

Theorem 2.1.1.

1. If a2 > Cβ, then TKα,β
is bounded on L2(Hn

a) if and only if α ≤ (n + 1
3 )β.

2. If a2 = Cβ, then TKα,β
is bounded on L2(Hn

a) if and only if α ≤ (n + 1
4 )β.

For the operators TLα,β , we also have the sharp L2 boundedness results except when β = 1 and
β = 2.

Theorem 2.1.2.

1. 0 < β < 1, then TLα,β is bounded on L2 if and only if one of the following condition holds.

(i) a2 < Cβ and α ≤ (n + 1
2 )β,

(ii) a2 = Cβ and α ≤ (n + 1
4 )β,

(iii) a2 > Cβ and α ≤ (n + 1
3 )β.

2. If 1 < β < 2, then TLα,β is bounded on L2 if and only if α ≤ (n + 1
3 )β.

3. If 2 < β, then TLα,β is bounded on L2 if and only if α ≤ (n + 1
2 )β.

In [LL] Laghi-Lyall reduced the boundedness problem for operators on the Heisenberg group
to that for the local operators and used a version of Hömander’s L2-boundedness theorem on the
Heisenberg group. However, as we shall show, we may view the operators on the Heisenberg
group as operators on Euclidean space R2n+1. This will enable us to use the oscillatory integral
estimates of Greenleaf-Seeger [GR] and Pan-Sogge [PS] on Euclidean space.

For the cases β = 1 or β = 2, we also can obtain the sharp results for some value a where the
phase becomes non-degenerate or has folds of type 2. However, in these cases, higher order types
of folds than 3 appear for some values of a and the degenerate oscillatory integral estimates have
not been obtained optimally yet for these cases. The theory have been established optimally only
for phases with one or two types of folds (see Greenleaf-Seeger [GR] and Pan-Sogge [PS]).

For p > 1, Lp boundedness can be obtained by interpolation between the L2 boundedness
estimates and some L1 boundedness estimates for dyadic-piece operator. We refer to Laghi [LL,
Theorem 5] for the case a2 < Cβ except the endpoint. Using this typical interpolation technique,
it is also possible to obtain the Lp boundedness in the case a2 ≥ Cβ.

10
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In the second part of this paper, we turn our attention to the boundedness on Hardy spaces
Hp (p ≤ 1) of the operators TKα,β

and TLα,β .
For the analogous operators on Rn, the boundedness on Hardy spaces was proved up to the

endpoint cases by Sjólin [Sj1, Sj3]. In this case, the operator can be thought as a multiplier oper-
ator T f = (m f̂ )

∨

and we have the relation cp
∑n

j=1 ‖R j f ‖Lp ≤ ‖ f ‖Hp ≤ Cp
∑n

j=1 ‖R j f ‖Lp and we see
that derivatives of the symbol ξ j

|ξ|
m(ξ) of the multiplier R jm(D) are pointwisely bounded by the

derivatives of the symbol m(ξ). These things make it possible to calculate the Hp norm accurately
to obtain the sharp boundedness result including for the endpoint cases (see Miyachi [Mi]).

The above outline seems difficult to adapt to the Heisenberg group. Instead we shall rely on
the molecular decomposition for Hardy spaces. This approach can be adapted to similar oscillat-
ing convolution operators on (stratified) nilpotent Lie groups.

Theorem 2.1.3. Let p ∈ (0, 1) and let α and β be real numbers such that ( 1
p −1)(2n+2)β+α < 0.

Then

1. The operator TKα,β
is bounded on Hp space.

2. For β , 1, the operator TLα,β is bounded on Hp space.

These conditions are optimal except for the endpoint case ( 1
p − 1)(2n + 2)β + α = 0.

This paper is organized as follows. In Section 2, we reduce our problem on the Heisenberg
group to a local oscillatory integral estimates on Euclidean space. In Section 3, we recall some
essential results for the oscillatory integral operators with degenerate phase functions and study
geometry of the canonical relation and projection maps associated with the phase functions of
the reduced operators, which will complete the proof of Theorem 2.1.1 and Theorem 2.1.2. In
section 4, we recall some background on hardy spaces on the Heisenberg group and its basic
properties. In section 5, we prove Theorem 2.1.3. In Section 6, we show that the conditions of
Theorem 2.1.3 are sharp except the endpoint cases.

Notation

We will use the notation . instead of ≤ C when the constant C depends only on the fixed param-
eters such as a, α, β and n. In addition, we will use the notation A ∼ B when both inequalities
A . B and A & B hold.

2.2 Dyadic decomposition and Localization

In this section we reduce our problems to some oscillatory integral estimates problem on Eu-
clidean space R2n+1. This reduction is well-known for operators on Euclidean space (see [St]).
The issue of this reduction on the Heisenberg group is to control the localized operators T̃ k,l

j in

11
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(2.5) uniformly for (gk, gl) such that ρ(gk · g−1
l ) ≤ 2. Note that the cut-off functions η(ρ((x, t) ·

g−1
k )) η(ρ((y, s) · g−1

l )) have no uniform bound for their derivatives. Nevertheless we get the uni-
formity after a value-preserving change of coordinates (see (2.7)).

We decompose the kernels Kα,β and Lα,β as

Kα,β(x, t) =

∞∑
j=1

K j
α,β, K j

α,β := η(2 jρ(x, t))Kα,β(x, t), (2.1)

and

Lα,β(x, t) =

∞∑
j=1

L j
α,β, L j

α,β := η(2− jρ(x, t))Lα,β(x, t), (2.2)

where η ∈ C∞0 (R) is a bump function supported in [ 1
2 , 2] such that

∑∞
j=0 η(2 jr) = 1 for all 0 < r ≤

1. For notational convenience, we omit the index α and β from now on.
Set T j f = K j

α,β ∗ f and S j f = L j
α,β ∗ f . Then we have

Lemma 2.2.1. For each N ∈ N, there exist constants CN > 0 and cβ > 0 such that

‖T ∗j T j′‖L2→L2 + ‖T jT ∗j′‖L2→L2 ≤ CN2−max{ j, j′}N

‖S ∗jS j′‖L2→L2 + ‖S jS ∗j′‖L2→L2 ≤ CN2−max{ j, j′}N

holds for all j and j′ satisfying | j − j′| ≥ cβ.

Proof. The proof follows from the integration parts technique in the typical way, so we omit the
details. See [Ly] where the proof for T j is given. �

By Cotlar-Stein Lemma, we only need to show that there is a constant C > 0 such that

‖T j‖L2→L2 + ‖S j‖L2→L2 ≤ C ∀ j ∈ N.

We consider the dilated kernels

K̃ j
α,β(x, t) =K j

α,β(2
− j · (x, t)) = η(ρ(x, t))2 j(Q+α)ρ(x, t)−Q−αei2 jβρ(x,t)−β ,

L̃ j
α,β(x, t) =L j

α,β(2
− j · (x, t)) = η(ρ(x, t))2− j(Q−α)ρ(x, t)−Q+αei2 jβρ(x,t)β .

(2.3)

We define T̃ j and S̃ j to be the convolution operators with kernels given by K̃ j
α,β and L̃ j

α,β. Set
f j(x, t) = f (2− j · (x, t)). Then K j

α,β ∗ f (2− j · (x, t)) = 2− jQ(K̃ j
α,β ∗ f j)(x, t), and we have

‖T j f ‖L2 = ‖K j
α,β ∗ f (x, t)‖L2 =2− jQ/2‖Kα,β ∗ f (2− j · (x, t))‖L2

≤2− jQ/2 · 2− jQ‖K̃ j
α,β ∗ f j(x, t)‖L2

≤2− jQ/2 · 2− jQ‖T̃ j‖L2→L2‖ f j‖L2

≤2− jQ‖T̃ j‖L2→L2‖ f ‖L2 .

(2.4)
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Similarly, we have ‖S j f ‖L2 ≤ 2 jQ‖S̃ j‖L2→L2‖ f ‖L2 . It follows that it is enough to prove that
‖T̃ j‖L2→L2 . 2 jQ and ‖S̃ j‖L2→L2 . 2− jQ.

Now, we further modify our operators to some operators defined locally using the fact that
the kernels of T̃ j and S̃ j are supported in {(x, t) : ρ(x, t) ≤ 2}. To do this we find a set of point
G = {gk : k ∈ N} such that

⋃
k∈N B(gk, 2) = Hn

a and each B(gk, 4) contains only dn’s other gl

members in G.
We can split f =

∑∞
k=1 fk with each fk supported in B(gk, 2). Define

T̃ k,l
j f (x, t) =

∫
K̃ j
α,β

(
(x, t) · (y, s)−1

)
· η

(
ρ
(
(x, t) · g−1

k

))
η
(
ρ
(
(y, s) · g−1

l

))
f (y, s)dyds. (2.5)

Then,

‖T̃ j ∗ f ‖2L2(Hn
a) ≤

∞∑
k=1

‖T̃ j ∗ f ‖2L2(B(gk ,2))

≤

∞∑
k=1

‖T̃ j ∗

∞∑
l=1

fl‖
2
L2(B(gk ,2))

≤

∞∑
k=1

‖T̃ j ∗
∑

{l:ρ(gl·g−1
k )≤2}

fl‖
2
L2((B(gk ,2)))

.
∞∑

k=1

∑
l:ρ(gl·g−1

k )≤2

‖T̃ k,l
j ‖L2→L2‖ fl‖

2
L2

. sup
ρ(gl·g−1

k )≤2
‖T̃ k,l

j ‖L2→L2‖ f ‖2L2 .

(2.6)

We note that

det
(
Dx,t ((x, t) · g)

)
= 1 for all g ∈ Hn

a. (2.7)

Then, using the coordinate change (y, s) → ((y, s) · gk) and substituting (x, t) → ((x, t) · gk) in
(2.5), we get

T̃ k,l
j f ((x, t) · gk)

=

∫
K̃ j
α,β

(
(x, t) · (y, s)−1

)
η(ρ(x, t))η(ρ((y, s) · (gk · g−1

l ))) f ((y, s) · gk)dyds.
(2.8)

Notice that ρ(gk · g−1
l ) . 1. Set ψ ((x, t), (y, s)) = η(ρ(x, t))η(ρ((y, s) · (gk · g−1

l ))) and write f just
for f (() · gk). Then supρ(gl·g−1

k )≤2 ‖T̃
k,l
j ‖ will be achieved if we prove ‖T j‖L2→L2 . 2 jQ for

T j f (x, t) =

∫
K̃ j
α,β

(
(x, t) · (y, s)−1

)
ψ ((x, t), (y, s)) f (y, s)dyds (2.9)
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with a compactly supported smooth function ψ. Finally we set

A j(x, t) =2 jαµ(x, t)ei2 jβρ(x,t)−β ,

B j(x, t) =2− jαµ(x, t)ei2 jβρ(x,t)β ,
(2.10)

where µ is a smooth function supported on the set {(x, t) ∈ R2n+1 : 1
10 ≤ ρ(x, t) ≤ 10}. We define

the operators LA j and LB j by

LA j f (x, t) =

∫
A j

(
(x, t) · (y, s)−1

)
ψ ((x, t), (y, s)) f (y, s)dyds,

LB j f (x, t) =

∫
B j

(
(x, t) · (y, s)−1

)
ψ ((x, t), (y, s)) f (y, s)dyds.

We shall deduce Theorem 2.1.1 and Theorem 2.1.2 from the following propositions.

Proposition 2.2.2.

1. If a2 > Cβ, then
‖LA j‖L2→L2 . 2 j(α−(n+ 1

3 )β), ∀ j ∈ N.

2. If a2 = Cβ, then
‖LA j‖L2→L2 . 2 j(α−(n+ 1

4 )β), ∀ j ∈ N.

Proposition 2.2.3.

1. If 0 < β < 1, then,

(i) For a2 < Cβ,
‖LB j‖L2→L2 . 2 j(α−(n+ 1

2 )β) ∀ j ∈ N.

(ii) For a2 = Cβ,
‖LB j‖L2→L2 . 2 j(α−(n+ 1

4 )β) ∀ j ∈ N.

(iii) For a2 > Cβ,
‖LB j‖L2→L2 . 2 j(α−(n+ 1

3 )β) ∀ j ∈ N.

2. If 1 < β < 2, then
‖LB j‖L2→L2 . 2 j(α−(n+ 1

3 )β) ∀ j ∈ N.

3. If 2 < β, then
‖LB j‖L2→L2 . 2 j(α−(n+ 1

2 )β) ∀ j ∈ N.

We get the first main result of this paper assuming these propositions:

14
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Proof of Theorem 2.1.1 and Theorem 2.1.2. From the reductions (2.4), (2.6) and (2.8), in order
to prove Theorem 2.1.1 it is enough to prove that ‖T j‖L2→L2 . 2 jQ for the operators T j given in
(2.9). From (2.3) and (2.10) we have T j = 2 jQLA j with a suitable function µ, and so ‖T j‖L2→L2 =

2 jQ‖LA j‖L2→L2 . Therefore, the estimates of Proposition 2.2.2 yield Theorem 2.1.1. In the same
way, Proposition 2.2.3 establishes Theorem 2.1.2. �

In the next section, we shall briefly review on the theory related to the operators LA j and LB j .
We will make use of geometric properties of the phase function ρ(x, t)β to prove Proposition 2.2.2
and Proposition 2.2.3.

2.3 L2 estimates

We begin with the L2 → L2 theory for oscillatory integral operators. The operators we are con-
cern with are of the form

T φ
λ f (x) =

∫
Rn

eiλφ(x,y)a(x, y) f (y)dy,

where φ ∈ C∞(Rn × Rn) and a ∈ C∞c (Rn × Rn). Suppose that the phase function φ satisfies
det

(
∂2φ

∂xi∂y j

)
, 0 on the support of a, we say that φ is non-degenerate. We say that φ is degenerate

if there is some point (x0, y0) where det
(

∂2

∂xi∂y j

)∣∣∣∣
(x0,y0)

equals to zero. For non-degenerate phases,

we have the fundamental theorem of Hörmander.

Theorem 2.3.1 ([Ho2]). Suppose that the phase function φ is non-degenerate. Then we have

‖T φ
λ ‖L2→L2 . λ−

n
2 ∀λ ∈ [1,∞).

This theorem gives sharp decaying rate of the norm ‖T φ
λ ‖L2→L2 in terms of λ. However, the

phase functions of our operators LA j and LB j can become degenerate according to the values of
a and β (see Lemma 2.3.4 and Lemma 2.3.5). For a degenerate phase function φ, the optimal
number κφ for which the inequality ‖Tλ‖L2→L2 . λ−κφ holds would be less than n

2 . The number
κφ’s are related to the type of fold of the phase φ (see Definition 2.3.2). For phases whose types
of folds are ≤ 3, the sharp numbers κφ were obtained by Greenleaf-Seeger [GR] and Pan-Sogge
[PS]. We shall use the results. The sharp results for folding types ≤ 3 in [GR] are the best known
results and there are no optimal results for folding types > 3 except some special cases (see
[Cm]).

It is well-known that the decaying property is strongly related to the geometry of the canoni-
cal relation,

Cφ = {(x, ∂xφ(x, y), y,−∂yφ(x, y)) ; x, y ∈ Rn} ⊂ T ∗(Rn
x) × T ∗(Rn

y). (2.1)

15
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Definition 2.3.2. Let M1 and M2 be smooth manifolds of dimension n, and let f : M1 → M2 be
a smooth map of corank ≤ 1. Let S = {P ∈ M1 : rank(D f ) < n at P} be the singular set of f .
Then we say that f has a k−type fold at a point P0 ∈ S if

1. rank(D f )|P0 = n − 1,

2. det(D f ) vanishes of k order in the null direction at P0.

Here, the null direction is the unique direction vector v such that (Dv f )|P0 = 0.

Now we consider the two projection maps

πL : CΦ → T ∗(Rn
x) and πR : CΦ → T ∗(Rn

y). (2.2)

Proposition 2.3.3 ([GR],[PS]). Suppose that the projection maps πL and πR have 1-type folds
(Whitney folds) singularities, then

‖Tλ f ‖L2(Rn) . λ
−

(n−1)
2 −

1
3 ‖ f ‖L2(Rn) ∀λ ∈ [1,∞).

If the projection maps πL and πR have 2-type folds singularities, then

‖Tλ f ‖L2(Rn) . λ
−

(n−1)
2 −

1
4 ‖ f ‖L2(Rn) ∀λ ∈ [1,∞).

In order to use Proposition 2.3.3, we shall study the projection maps (2.2) associated to the
phase function of the operators LA j and LB j . Recall that ρ(x, t) = (|x|4 + t2)1/4 and the phase
function φ of the integral operators LA j and LB j is

φ(x, t, y, s) = ρ−β
(
(x, t) · (y, s)−1

)
.

To write the group law explicitly, we write x = (x1, x2) and y = (y1, y2) with x j, y j ∈ Rn. Set
Φ(x, t) = ρ(x, t)−β. Then

φ(x, t, y, s) = Φ
(
x1 − y1, x2 − y2, t − s − 2a(x1y2 − x2y1)

)
. (2.3)

For notational purpose set t = x2n+1 and s = y2n+1. To determine whether the phase function Φ is
non-degenerate, we need to calculate the determinant of the matrix,

H =

(
∂2φ(x, t, y, s)

∂yi∂x j

)
.

The determinant is calculated in [LL]. However we give a somewhat simpler computation by
considering the matrix L associated naturally with the matrix H (see below), which will also be
useful in Lemma 2.3.6 and the proof of Proposition 2.2.2 and Proposition 2.2.3.
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For simplicity, we write (x, t) = (x, t) · (y, s)−1. By the Chain Rule, for 1 ≤ i, j ≤ n, we have

∂

∂x j
φ(x, t, y, s) =

[
∂ j + 2ayn+ j∂2n+1

]
Φ(x, t),

∂

∂x j+n
φ(x, t, y, s) =

[
∂ j+n − 2ay j∂2n+1

]
Φ(x, t).

Using the Chain Rule once more, we get

∂

∂yi

∂

∂x j
φ(x, t, y, s) =

[
(∂i + 2axn+i∂t)(∂ j + 2ayn+ j∂2n+1)

]
Φ(x, t),

∂

∂yn+i

∂

∂x j
φ(x, t, y, s) =

[
(∂n+i − 2axi∂2n+1)(∂ j + 2ayn+ j∂2n+1)

]
Φ(x, t) +

[
2aδi j∂2n+1

]
Φ(x, t),

∂

∂yi

∂

n + j
φ(x, t, y, s) =

[
(∂i + 2axn+i∂2n+1)(∂n+ j − 2ay j∂2n+1)

]
Φ(x, t) −

[
2aδi j∂2n+1

]
Φ(x, t),

∂

∂yn+i

∂

∂xn+ j
φ(x, t, y, s) =

[
(∂n+i − 2axi∂2n+1)(∂n+ j − 2ay j∂2n+1)

]
Φ(x, t).

(2.4)

Define

Aa(y) =

(
I 2aJy
0 1

)
, J =

(
0 In

−In 0

)
.

Then we have

H(x, t, y, s) =Aa(x)
(
∂i∂ jΦ

)
(x, t) Aa(y)T + 2a(∂2n+1Φ)(x, t)

(
J 0
0 0

)
=Aa(x)

[
(∂i∂ jΦ) + 2a(∂2n+1Φ)

(
J 0
0 0

)]
(x, t) Aa(y)T ,

(2.5)

where the second equality holds because Aa(x)
(
J 0
0 0

)
Aa(y)T =

(
J 0
0 0

)
. Set

L(x, t, y, s) =

[
(∂i∂ jΦ) + 2a(∂2n+1Φ)

(
J 0
0 0

)]
(x, t). (2.6)

Thus, to study the matrix H, it is enough to analyze the matrix L. Moreover we have det(Aa(x)) =

det(Aa(y)) = 1 and it implies that det(H(x, t, y, s)) = det(L(x, t, y, s)). Therefore it is enough to
calculate the determinant of L.

To find (2.6) we calculate the Hessian matrix of Φ. For 1 ≤ i, j ≤ 2n,

∂ jΦ(x, t) = −
β

4
(|x|4 + t2)−

β
4−1(4x j|x|2),

∂2n+1Φ(x, t) = −
β

4
(|x|4 + t2)−

β
4−1(2t),
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and

∂i∂ jΦ(x, t) = β(|x|4 + t2)−
β
4−2

[
(β + 4)|x|4 − 2(|x|4 + t2)

]
xix j − β(|x|4 + t2)−

β
4−1δi j|x|2,

∂i∂2n+1Φ(x, t) = β(β + 4)(|x|4 + t2)−
β
4−2|x|2xi ·

t
2
,

∂2
2n+1Φ(x, t) = β(β + 4)(|x|4 + t2)−

β
4−2 t

2
·

t
2
− β(|x|4 + t2)−

β
4−1 1

2
.

Set D = (|x|2x, t
2 )T . Then the above computations show that[

(∂i∂ jΦ) + 2a(∂2n+1Φ)
(
J 0
0 0

)]
(x, t)

=β(β + 4)(|x|4 + t2)−
β
4−2D · DT − β(|x|4 + t2)−

β
4−1

(
|x|2I + atJ + 2x · xT 0

0 1
2

)
= − β(|x|4 + t2)−

β
4−1(E + R),

(2.7)

where we set

B = |x|2I + atJ, K = x · xT , E =

(
B + 2K 0

0 1
2

)
and R = −

(β + 4)
|x|4 + t2 D · DT . (2.8)

Then, from (2.6) and (9.87) we get

L(x, t, y, s) = [−β(|x|4 + t2)−
β
4−1(E + R)] (x, t). (2.9)

Lemma 2.3.4. We have

det H(x, t, y, s) = F((x, t) · (y, s)−1),

where F(x, t) = ca,β(|x|4 + a2t2)m1(|x|4 + t2)m2 f (x, t) for some m1,m2, ca,β ∈ R and f (x, t) = 2(β +

1)|x|8 + (3(β + 2) − 2a2)|x|4t2 + (β + 2)a2t4.

Proof. We write (x, t) = (x, t) · (y, s)−1 again. In view of (2.5), (2.6) and (2.9), it is enough to
show that

det[−β(|x|4 + t2)−
β
4−1(E + R)] = F(x, t).

Considering the form of the function F given, we only need to compute det(E + R). From (2.8)
we have

E + R =

(
B + 2K 0

0 1
2

)
−

(β + 4)
|x|4 + t2 D · DT .
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For notational convenience, we shall use lower-case letters f1, . . . , fm to denote the rows of a
given m × m matrix F. Notice that DDT is of rank 1 and we have the following equality

det(P + Q) = det(P) +

m∑
j=1

det(pT
1 , . . . , pT

j−1, q
T
j , pT

j+1, . . . , pT
m), (2.10)

for any m×m matrices P and Q with rank Q = 1. Recall that B = |x|2I + atJ and K = x · xT , then
direct calculations show that

det(B) = (|x|4 + a2t2)n (2.11)

and
n∑

j=1

x j det
(
bT

1 , · · · , b
T
j−1, k

T
j , b

T
j+1, · · · , b

T
2n

)
+

n∑
j=1

x j+n det
(
bT

1 , · · · , b
T
j+n−1, k

T
j+n, b

T
j+n+1, · · · , b

T
2n

)
=

n∑
j=1

x j(|x|2x j + xn+ jat)(|x|4 + a2t2)n−1 +

n∑
j=1

x j+n(|x|2x j+n − x jat)(|x|4 + a2t2)n−1

=(|x|4 + a2t2)n−1|x|4.
(2.12)

Thus, from (2.10), (2.11) and (2.12), we get

det(B + 2K) =(|x|4 + a2t2)n + 2|x|4(|x|4 + a2t2)n−1

=(|x|4 + a2t2)n−1(3|x|4 + a2t2).
(2.13)

Using (2.10) once again, we obtain

det(E + R) = det(E) +
1
2

2n∑
j=1

det



e1
...

e j−1

r j

e j+1
...

e2n


+ det


e1
...

e2n

r2n+1


=: S 1 + S 2 + S 3.

From (2.13) we have

S 1 = det
(
B + 2K 0

0 1
2

)
=

1
2

det(B + 2K) =
1
2

(|x|4 + a2t2)n−1(3|x|4 + a2t2).
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Using rank K = 1 we get

det



e1
...

e j−1

r j

e j+1
...

e2n


= det



b1 + 2k1
...

b j−1 + 2k j−1
−(β+4)|x|4

|x|4+t2 k j

b j+1 + 2k j+1
...

b2n + 2k2n


= −

(β + 4)|x|4

|x|4 + t2 det



b1
...

b j−1

k j

b j+1
...

b2n


.

Therefore,

S 2 = −
1
2

(
(β + 4)|x|4

|x|4 + t2

)
|x|4(|x|4 + a2t2)n−1.

Finally,

S 3 = det
B + 2K 0
∗ −

β+4
|x|4+t2

t2

4

 = −
β + 4
|x|4 + t2

t2

4
det(B + 2K)

= −
β + 4
|x|4 + t2

t2

4
(|x|4 + a2t2)n−1(3|x|4 + a2t2).

Adding all these terms together, we get

det(E + R) = p(|x|4 + a2t2) q(|x|4 + t2) f (x, t),

where p(r) = cprm1 , q(r) = rm2 for some m1,m2, cp ∈ R and

f (x, t) = 2(β + 1)|x|8 + (3(β + 2) − 2a2)|x|4t2 + (β + 2)a2t4.

The proof is complete. �

Now, we should determine when the determinant of H(x, t, y, s) can be zero for some values
(x, t, y, s) with ρ

(
(x, t) · (y, s)−1

)
∼ 1. Furthermore, to determine the type of folds in the degener-

ate cases, it is crucial to know the shape of the factorization.

Lemma 2.3.5. There are nonzero constants γ, c, c1, c2, c3 with c1 , c2 and c3 > 0 that are
determined by β and a such that:

• Case 1:

· If β ∈ (−1, 0) ∪ (0,∞) and a2 < Cβ, then f (x, t) > 0.

· If β ∈ (−1, 0) ∪ (0,∞) and a2 = Cβ, then f (x, t) = γ(|x|2 − ct2)2.
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· If β ∈ (−1, 0)∪(0,∞) and a2 > Cβ, then f (x, t) = γ(|x|2−c1t)(|x|2 +c1t)(|x|2−c2t)(|x|2 +

c2t).

• Case 2:

· If β ∈ (−2,−1), then f (x, t) = γ(|x|2 − c1t)(|x|2 + c1t)(|x|4 + c3t2).

• Case 3:

· If β ∈ (∞,−2), then f (x, t) < 0.

Proof. Let g(y, s) = 2(β+1)y2 +(3(β+2)−2a2)ys+(β+2)a2s2. Then f (x, t) = g(|x|4, t2). Suppose
β ∈ (−1, 0) ∪ (0,∞). First, we see that f (x, t) > 0 for 3(β + 2) − 2a2 > 0. Secondly, we have
f (x, t) > 0 if

∆ := 4a4 − 4(β + 2)(2β + 5)a2 + 9(β + 2)2 < 0.

This holds if and only if

C−β < a2 < C+
β ,

where

C±β =
β + 2

2

(
2β + 5 ±

√
(2β + 5)2 − 9

)
.

Observe that

C−β =
(β + 2)

2
(2β + 5 −

√
(2β + 5)2 − 9) =

(β + 2)
2

(2β + 5 −
√

(2β + 2)(2β + 8)

<
(β + 2)

2
(2β + 5 −

√
(2β + 2)2) =

3(β + 2)
2

.

We can combine the above two conditions as g(y, s) > 0 for a2 < C+
β . For a2 = Cβ, we have

g(y, s) = γ(y − cs)2 for some c > 0. For a2 > Cβ, we have g(y, s) = γ(y − c1s)(y − c2s) for some
c1, c2 > 0 since 2(β + 1) · (β + 2)a2 > 0.

Finally, if β ∈ (−2,−1), then 2(β + 1)(β + 2)a2 < 0, and so g(y, s) = γ(y − c1s)(y + c2s). If
β ∈ (−∞,−2), then 2(β + 1) < 0, 3(β + 2) − 2a2 < 0 and β + 2 < 0. Thus g(y, s) < 0. This
completes the proof. �

Lemma 2.3.6. Let L1(x, t, y, s) be the upper left (2n)×(2n) block matrix of L(x, t, y, s) and suppose
that (x, t, y, s) is contained in S . If β , −4, then

det L1(x, t, y, s) , 0.
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Proof. For simplicity, set (z,w) := (x, t) · (y, s)−1. In view of (2.8) and (2.9), except the nonzero
common facts, we only need to check that the determinant of

M(z,w) =
(
|z|2I + awJ + 2z · zT − (β + 4) |z|4

|z|4+w2 x · zT
)
,

is nonzero for (z,w) , (0, 0). This determinant can be calculated in the same way as the determi-
nant of L by using (2.11) and (2.13). We find

det(M(z,w)) =(|z|4 + a2w2)n + (|z|4 + a2w2)n−1|z|4
(
2 − (β + 4)

|z|4

|z|4 + w2

)
=

(|z|4 + a2w2)n−1

|z|4 + w2

[
−(β + 1)|z|8 + (a2 + 3)|z|4w2 + a2w4

]
.

(2.14)

Notice that (z,w) is in S and satisfies

2(β + 1)|z|8 + (3(β + 2) − 2a2)|z|4w2 + (β + 2)a2w4 = 0. (2.15)

From (2.14) and (2.15) we get

det(M(z,w)) =
(|z|4 + a2w2)n−1

|z|4 + w2

w2

2
(β + 4)

[
3|z|4 + a2w2

]
.

If w = 0, then z becomes zero in (2.15). Because (z,w) , (0, 0), w should be nonzero. Thus
det(M(z,w)) , 0. The Lemma is proved. �

We are now ready to prove our first main theorems by studying the canonical relation (2.1)
associated to the phase Φ,

CΦ = {
(
(x, t),Φ(x,t), (y, s),−Φ(y,s)

)
} ⊂ T ∗(R2n+1) × T ∗(R2n+1),

and the associated projection maps πL : CΦ → T ∗(R2n+1) and πR : CΦ → T ∗(R2n+1).

Proof of Proposition 2.2.2 Proposition 2.2.3. Let

S = {(x, t, y, s) : det H(x, t, y, s) = 0}.

In view of Proposition 2.3.3, it is enough to show that on the hypersurface S ,

1. If β ∈ (−2,−1) or β ∈ (−1, 0) ∪ (0,∞) and a2 > Cβ, then both projections πL and πR have
1-type folds singularities.

2. If β ∈ (−1, 0) ∪ (0,∞) and a2 = Cβ, then both πL and πR have 2-type folds singularities.
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We will only prove (1). The second case can be proved in the same way, the only difference is
the form of factorizations in Lemma 2.3.5 which determine the order of types. We need to show
that on the hypersurface S , both πL and πR have 1-type folds singularities. Rcall from Lemma
2.3.4 that S is a subset of R2n+1 consisting of (x, t, y, s) ∈ R2(2n+1) such that

F
(
(x, t) · (y, s)−1

)
= F

(
x − y, s − t + 2axT Jy

)
= 0 and ρ

(
(x, t) · (y, s)−1

)
∼ 1.

From the form of F and the fact that ((x, t) · (y, s)−1) , 0, we have

S = {(x, t, y, s) ∈ R2(2n+1) | f
(
x − y, s − t + 2axT Jy

)
= 0, ρ

(
(x, t) · (y, s)−1

)
∼ 1}.

From Theorem 2.3.5, we have

f (x, t) = γ(|x|2 − c1t)(|x|2 + c1t)(|x|2 − c2t)(|x|2 + c2t).

for some two different constants c1, c2 > 0.
Note that Lemma 2.3.6 implies the condition (1) of Definition 2.3.2 is satisfied. Therefore, it

is enough to show the second condition, i.e., at each point P0 ∈ S the determinant of D f vanishes
with order 1 in each null direction of dπL and dπR at P0. Fix a point P0 = (x, t, y, s) ∈ R2n+1×R2n+1

and assume that P0 is contained in

S 1 =: {(x, t, y, s) ∈ R2(2n+1) | |x − y|2 − c1(s − t + 2axT Jy) = 0}.

We may identify CΦ = {
(
(x, t),Φ(x,t), (y, s),−Φ(y,s)

)
} with an open set in R(2n+1) × R(2n+1) by the

diffeomorphsim ψ : R(2n+1) × R(2n+1) → S given by

ψ(x, t, y, s) =
(
(x, t),Φ(x,t), (y, s),−Φ(y,s)

)
.

Let vL ∈ R
2(2n+1) be a null direction of dπL at P0. i.e., I 0

∂2Φ
∂(x,t)∂(x,t)

∂2Φ
∂(y,s)∂(x,t)

 vT
L = 0.

Thus, vL is of the form vL = (0, 0, z,w) with w ∈ R2n and s ∈ R such that

∂2Φ

∂(y,s)∂(x,t)

(
zT

w

)
= 0. (2.16)

To check that det H(x, t, y, s) vanishes of order 1 in the direction vL, it is enough to show that vL

is not orthogonal to the gradient vector vg of det H(x, t, y, s) at P0. By a direct calculation we see
that the gradient vector vg is equal to

D(x,t),(y,s)Φ
(
(x, t) · (y, s)−1

)∣∣∣∣
p

=
(
2(x − y) − 2ac1aJy, −c1, −2(x − y) − 2ac1xT J, c1

)
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Suppose with a view to contradiction that vL and vg are orthogonal. It means that

−2(x − y) · z − 2ac1xT J · z + c1w = 0. (2.17)

From (2.5), we have

∂2Φ

∂(y,s)∂(x,t)

(
zT

w

)
= Aa(y)

[
(∂i∂ jΦ) − 2a(∂2n+1Φ)

(
J 0
0 0

)]
(x, t) Aa(x)T ·

(
zT

w

)
. (2.18)

A simple calculation shows that

Aa(x)T ·

(
zT

w

)
=



1 0 0 · · · 0 0

0 . . . 0 · · · 0 0

0 0 1 · · · 0
...

0 0 0 . . . 1 0
2axn+1 · · · −2ax1 · · · −2axn 1





z1

z2
...

z2n

w


=

(
z1, z2, · · · , z2n, 2a(xn+1z1 + · · · + x2nzn − x1zn+1 − · · · − xnz2n) + w

)T
.

On the other hand, from the orthogonal assumption (2.17) we get

2a(xn+1z1 + · · · − xnz2n) + w =
2(x − y) · z

c1
.

Thus,

Aa(x)T ·

(
zT

w

)
=

(
z1, z2, · · · , z2n,

2(x−y)·z
c1

)T
.

Recall that

[
(∂i∂ jΦ) − 2a(∂2n+1Φ)

(
J 0
0 0

)]
(x, t) = (β + 4)


|x|4x2

1 · · · |x|4x1xn |x|2x1
t
2

...
. . .

...
...

|x|4xnx1 · · · |x|4x2
n |x|2xn

t
2

|x|2 t
2 x1 · · · |x|2 t

2 xn
t2
4

 − (|x|4 + t2)
(
J 0
0 1

2

)
.

Substituting x − y for x and t − s + 2axT Jy =
|x−y|2

c1
for t, where the equality holds since the point

P0 is on the surface S 1. Then, from (2n + 1)-th equality in (2.16) with (2.18), we have

(β + 4)

|x − y|2 ·
1
2
|x − y|2

cβ,1
(x − y) · z +

|x − y|4

c2
β,1

·
2

cβ,1
(x − y) · z

 − 1
2

(|x − y|4 +
|x − y|4

c2
β,1

)
2

cβ,1
(x − y) · z = 0.

Rearranging it, we obtain β + 2
2cβ,1

+
1

c3
β,1

 |x − y|4 (x − y) · z = 0.
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Thus (x − y) · z = 0, and hence

Aa(x)T ·

(
z
w

)
=

(
z1, z2, · · · , z2n, 0

)T
and L1(x, t, y, s) ·

(
(z1, z2, · · · , z2n)

)T
= 0.

Now from det L1 , 0 in Lemma 2.3.6 we have z = 0 and so w = 0 from (2.17). This is a
contradiction since vL should be a nonzero direction vector. Therefore vL and vR can not be
orthogonal.

Now we shall prove the same conclusion for dπR without repeating the calculations. Note
that the above argument for dπL is exactly to show that there is no nontrivial solution (z,w) of
the system of equation S (a, x, y):

(
∂2

∂xi∂y j
Φ)

(
zT

w

)
= Aa(y)

[
(∂i∂ jΦ) − 2a(∂2n+1Φ)

(
J 0
0 0

)]
Aa(x)T ·

(
zT

w

)
= 0,

and

(−2(x − y) − 2acβ,1xT J, cβ,1) · (z,w) = 0.

On the other hand, to show the folding type condition for the projection πR, it is enough to show
that there is no nontrivial solution vR = (z0,w0, 0, 0) which satisfies the system of equations :

(
∂2

∂yi∂x j
Φ)

(
zT

0

w0

)
= Aa(x)

[
(∂i∂ jΦ) + 2a(∂2n+1Φ)

(
J 0
0 0

)]
Aa(y)T ·

(
zT

0

w0

)
= 0,

and (
2(x − y) + 2acβ,1yT J, −cβ,1

)
· (z0,w0) = 0.

Because A−a(−x) = Aa(x) and A−a(−y) = Aa(y), the above system can be written as follows.

(
∂2

∂yi∂x j
Φ)

(
zT

0

w0

)
= A−a(−x)

[
(∂i∂ jΦ) − 2(−a)(∂2n+1Φ)

(
J 0
0 0

)]
A−a(−y)T ·

(
zT

0

w0

)
= 0,

and (
−2((−y) − (−x)) − 2(−a)cβ,1(−y)T J, cβ,1

)
· (z0,w0) = 0.

We now see that (z0,w0) satisfies the system S (−a,−y,−x). Since the above argument for proving
nonexistence of nontrivial solution of S (a, x, y) does not depend on specific values of a, x and y,
the same conclusion holds for the system S (−a,−y,−x). This completes the proof. �
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Remark 2.3.7. On Rn, the oscillating kernel is of the form |x|−γei|x|β with β , 0. The behavior
for the phases |x|β depends only on whether β , 1 or β = 1. Precisely, for β , 1, we have
det

(
∂2

∂x∂y |x − y|β
)
, 0 for any (x, y) with x , y, but det

(
∂2

∂x∂y |x − y|
)

= 0 for any (x, y) with x , y
and this case correspond to Bochner-Riesz means operators, which still remains as a conjecture.
On hand, the phase ρ((x, t) · (y, s)−1)β has fold of the highest order type when β = 1 or β = 2,
which also remains open in this paper. In order to establish the sharp L2 estimate for these cases,
we would need to improve the current theory of oscillatory integral estimates for degenerate
phases to higher orders (see [Cm, GR, GR2]).

Remark 2.3.8. We note that from Lemma 2.3.6 and the case 3 in Lemma 2.3.5,

‖LA j‖L2→L2 + ‖LB j‖L2→L2 . 2 j(α−nβ) (2.19)

holds for all cases. It will be sufficient to use this weaker bound for the Hardy spaces estimates
in Section 5.

2.4 Hardy spaces on the Heisenberg groups

In this section we recall some properties of Hardy spaces on the Heisenberg group. We refer
[CW2, ?] for the details. From now on, we shall write ρ(x) (resp., x · y) just as |x| (resp., xy) for
the notational convenience. It is known that |x · y| ≤ |x| + |y| holds for all x, y ∈ Ha (see [Lin]).

The left-invariant vector fields on Hn
a is spanned by T = ∂

∂t and X j = ∂
∂x j

+ 2axn+ j
∂
∂t , X j+n =

∂
∂x j+n
−2axn

∂
∂t , 1 ≤ j ≤ n. Let Y j = X j for 1 ≤ j ≤ 2n and Y2n+1 = T . We say that the right-invariant

differential operator Y I = Y i1
1 · · · Y

i2n+1
2n+1 has homogeneous degree d(I) = i1 + i2 + · · · + i2n + 2i2n+1.

For a ∈ N̄, we define Pa to be the set of all homogeneous polynomials of degree a.
Suppose that x ∈ Hn, a ∈ N̄, and f is a function whose distributional derivatives Y I f are

continuous in a neighborhood of x for d(I) ≤ a. The homogeneous right Taylor polynomial of f
at x of degree a is the unique P f ,x ∈ Pa such that Y IP f ,x(0) = Y I f (x) for d(I) ≤ a.

Proposition 2.4.1 ([FoS]). Suppose that f ∈ Ck+1, T ∈ S′, and P f ,x(y) =
∑

d(I)≤k aI(x)ηI(y) is the
right Taylor polynomial of f at x of homogeneous degree k. Then aI is a linear combination of
the Y J f for d(J) ≤ k,

| f (yx) − P f ,x(y)| ≤ Ck|y|k+1 sup
d(I)=k+1
|z|≤bk+1 |y|

|Y I f (zx)|. (2.1)

We will use some properties for Hp functions including the atomic decomposition and the
molecular characterization. For 0 < p ≤ 1 ≤ q ≤ ∞, p , q, s ∈ Z and s ≥ [(2n + 2)(1/p− 1)], we
say that the triple (p, q, s) is admissible.
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Definition 2.4.2. For an admissible triple (p, q, s), we define (p, q, s)-atom centered at x0 as a
function a ∈ Lq(Hn) supported on a ball B ⊂ Hn with center x0 in such way that

(i) ‖a‖q ≤ |B|1/q−1/p.

(ii)
∫
Hn a(x)P(x)dx = 0 for all P ∈ Ps.

Later, we will choose q = 2 to use the L2 boundedness (2.19) obtained in Section 3.

Proposition 2.4.3 (Atomic decomposition in Hp; see [CW2]). Let (p, q, s) be an admissible
triple. Then any f in Hp can be represented as a linear combination of (p, q, s)-atoms,

f =

∞∑
i=1

λi fi, λi ∈ C,

where the fi are (p, q, s)-atoms and the sum converges in Hp. Moreover, ‖ f ‖p
Hp ∼ inf{

∑∞
i=1 |λi|

p :∑
λi fi is a decomposition of f into (p,q,s)-atoms}.

For an admissible triple (p, q, s), we choose an arbitrary real number ε > max{s/(2n+2), 1/p−
1}. Then we call (p, q, s, ε) an admissible quadruple. Now we introduce the molecules.

Definition 2.4.4. Let (p, q, s, ε) be an admissible quadruple. We set

a = 1 − 1/p + ε, b = 1 − 1/q + ε. (2.2)

A (p, q, s, ε)-molecule centered at x0 is a function M ∈ Lq(Hn) such that

1. M(x) · |x−1
0 x|(2n+2)b ∈ Lq(Hn).

2. ‖M‖a/bq · ‖M(x) · |x−1
0 x|(2n+2)b‖

1−a/b
q ≡ N(M) < ∞.

3.
∫
Hn M(x)P(x)dx = 0 for every P ∈ Ps.

Theorem 2.4.5.

1. Every (p, q, s′)-atom f is a (p, q, s, ε)-molecule for any ε > max{s/(2n+2), 1/p−1}, s ≤ s′

and N( f ) ≤ C1, where the constant C1 is independent of the atom.

2. Every (p, q, s, ε)-molecule M is in Hp and ‖M‖Hp ≤ C2N(M), where the constant C2 is
independent of the molecule.

Thanks to this Theorem, in order to verify that T is bounded on Hp it is enough to show
that, for all p-atoms f , the function T f is a p-molecule and N(T f ) ≤ C for some constant C
independent of f .
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2.5 Hp estimates

We start with a lemma which will be useful in the proofs of the sequel.

Lemma 2.5.1.

1. Suppose that d < 0, c + d < 0 and B > 1. Then

∞∑
j=1

2c j min{1, B2d j} . 1 + (log B)B−
c
d .

2. Suppose that c < 0, d > 0 and B < 1. Then

∞∑
j=1

2c j min{1, B2d j} . B + | log B|B−
c
d .

Proof. Set K =
∑∞

j=1 2c j min{1, B2d j}. Then,

K =
∑

B2d j≤1

2(c+d) j +
∑

B2d j>1

2c j.

A straighforward calculation gives the bound for K. Suppose that d < 0, c + d > 0 and B > 1.
Then

- K . 1 for c < 0,

- K . log B for c = 0,

- K . B−
c
d for c > 0.

In any case we see that K . 1 + (log B)B−
c
d . Suppose now that c < 0, d > 0 and B < 1. Then

- K . B for c + d < 0,

- K . log B · B for c + d = 0,

- K . B−
c
d for c + d > 0.

In any case we have K . B + | log B|B−
c
d . The Lemma is proved. �

Theorem 2.5.2. Assume p ≤ 1 and ( 1
p − 1)(2n + 2)β + α < 0. Then TKα,β

is bounded on Hp.
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Proof. From the decompostion of kernel (2.1), we have

‖Kα,β ∗ f ‖p
Hp ≤

∑
j≥1

‖K j
α,β ∗ f ‖p

Hp .

We shall bound the norm ‖K j
α,β ∗ f ‖Hp for each j ∈ N by some constant multiple of ‖ f ‖Hp . Notice

that K j(x, t) = ρ(x, t)−(2n+2+α)eiρ(x,t)−βχ(2 jρ(x, t)). From the atomic decomposition for Hp space, it
is enough to establish the estimate for any atom f supported on B(0,R) with some R > 0 such
that

- ‖ f ‖L2 ≤ R(2n+2)( 1
2−

1
p ),

-
∫

f (x)xαdx = 0, for all |α| ≤ s = [(2n + 2)(
1
p
− 1)].

(2.1)

In view of part (2) of Theorem 2.4.5 it suffices to boundN(K j ∗ f ). For an admissible quadruple,
we choose an ε > max{ s

2n+2 ,
1
p − 1} = 1

p − 1 and set ε = 1
p − 1 + δ with some δ > 0. Then we

have a = δ and b = 1
p −

1
2 + δ in (2.2). We will choose δ sufficiently small later. Recall that

N(K j ∗ f ) = ‖K j ∗ f ‖a/b2 · ‖K j ∗ f (x) · |x|(2n+2)b‖
1−a/b
2 . From the L2 estimate (2.19) we get

‖K j ∗ f ‖2 . 2 j(α−nβ)‖ f ‖2. (2.2)

We have

‖K j ∗ f (x) · |x|(2n+2)b‖22 =

∫
Hn
|K j ∗ f (x)|2 · |x|2(2n+2)b dx = I1 + I2,

where

I1 =

∫
|x|≤2R

|K j ∗ f (x)|2 · |x|2(2n+2)b dx and I2 =

∫
|x|>2R

|K j ∗ f (x)|2 · |x|2(2n+2)b dx.

Then ∑
j≥1

‖K j ∗ f ‖p
Hp .

∑
j≥1

N(K j ∗ f )p

.
∑
j≥1

(
‖K j ∗ f ‖a/b2 · (I

1/2(1−a/b)
1 + I1/2(1−a/b)

2 )
)p

.
∑
j≥1

‖K j ∗ f ‖pa/b
2 · I p/2(1−a/b)

1 +
∑
j≥1

‖K j ∗ f ‖pa/b
2 · I p/2(1−a/b)

2

(2.3)

Set S 1 =
∑

j≥1 ‖K j ∗ f ‖pa/b
2 · I p/2(1−a/b)

1 and S 2 =
∑

j≥1 ‖K j ∗ f ‖pa/b
2 · I p/2(1−a/b)

2 . Then it is enough to
show that S 1 . 1 and S 2 . 1. We use (2.19) and (2.1) to bound I1 as follows.

I1 .

∫
Hn
| f ∗ K j(x)|2dx · R2(2n+2)b . 22 j(α−nβ)‖ f ‖22 · R

2(2n+2)b

. 22 j(α−nβ)R2(2n+2)b · R(2n+2)(1−2/p)

. 22 j(α−(n+1/2)β)R2(2n+2)δ,

(2.4)
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where the last inequality comes from (2.1). From (2.2) and (2.4) we have

‖K j ∗ f ‖a/b2 · I
1/2(1−a/b)
1 .

{
2 j(α−nβ)R(2n+2)(1/2−1/p)

}a/b
·
{
2 j(α−nβ) · R(2n+2)δ

}(1−a/b)
.

= 2 j(α−nβ),

where the equality comes from the calculation ( 1
2−

1
p )a

b +a(1− a
b ) = a

b (1
2−

1
p−a)+a = a

b (−b)+a = 0.
Thus we have S 1 .

∑
j≥1 2 j(α−nβ)p . 1.

Now we consider I2 and S 2. We have I2 = 0 for R > 1 since the support of K j ∗ f is contained
in the subset {x : |x| ≤ 1 + R} which is a subset of {x : |x| < 2R} for R > 1. Thus we may only
consider the case R ≤ 1. In the following integral expression

(K j ∗ f )(x) =

∫
K j(xy−1) f (y)dy,

We have |xy−1| ≤ 2− j and |y| ≤ R. These imply |x| ≤ |xy−1| + |y| ≤ 2− j + R. It means that I2 = 0 for
2− j < R. Thus we only need to consider j ∈ N such that 2− j ≥ R, for which we have |x| ≤ 2− j+1

for x ∈ Supp(K j ∗ f ). Then we get

I2 =

∫
|x|>2R

| f ∗ K j(x)|2 · |x|2(2n+2)bdx .
∫
|x|>2R

| f ∗ K j(x)|2dx · 2−2(2n+2)b j. (2.5)

From Proposition 2.4.1, for any I ∈ N0, there is a polynomial Px
j of degree ≤ I such that

|K j(xy−1) − Px
j(y)| .|y|I+1 sup

|α|≤I+1
|XαK j(xy−1)|

.|y|I+12 j(2n+2+α)2 j(β+1)(I+1).
(2.6)

From (2.1) we get the identity for 0 ≤ I ≤ s,

K j ∗ f (x) =

∫
(K j(xy−1) − Px

j(y)) f (y)dy.

Note that f (y) has support in |y| ≤ R, then from (2.1) and (2.6) we get

|K j ∗ f (x)| . RI+12 j(2n+2+α)2 j(β+1)(I+1)
∫
|y|≤R
| f (y)|dy

. RI+12 j(2n+2+α)2 j(β+1)(I+1)R
1
2 (2n+2)‖ f ‖2

. 2 j(2n+2+α)(R2 j(β+1))(I+1)R(2n+2)(1− 1
p ).

Now we can estimate (2.5) as

I2 . 2−2(2n+2)b j2− j(2n+2)
{
2 j(2n+2+α)(R2 j(β+1))(I+1)R(2n+2)(1− 1

p )
}2
.

= 22 j{(2n+2)(1− 1
p−δ)+α}(R2 j(β+1))2(I+1)R2(2n+2)(1− 1

p ).
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Here we may choose I = 0 or I = s, which gives

I2 . 22 j{(2n+2)(1− 1
p−δ)+α}R2(2n+2)(1− 1

p ) min{1, (R2 j(β+1))2(s+1)}.

Now we have

‖K j ∗ f ‖a/b2 · I
1
2 (1−a/b)
2 . {2 j(α−nβ)R(2n+2)(1/2−1/p)}a/b

·{2 j{(2n+2)(1− 1
p−δ)+α}R(2n+2)(1− 1

p ) min
(
1, (R2 j(β+1))(s+1)

)
}(1−a/b).

(2.7)

From p ≤ 1 and α < 0 we have (2n + 2)(1 − 1
p − δ) + α < 0. Thus, if min(1, (R2 j(β+1))s+1) = 1 the

exponent of 2 j is smaller than zero provided a is small enough. Recall that R ≤ 1. Then, using
(2) in Lemma 2.5.1 we get∑

j≥1

‖K j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . Rpµδ + | log R| · Rpκδ ,

where

Rpµδ = (R(2n+2)(1/2−1/p))pa/b · (R(2n+2)(1− 1
p )+(s+1))p(1−a/b),

Rpκδ =
[
R−

1
β+1 [α−(n+1/2)β]R(2n+2)(1/2−1/p)

]pδ/b
·
[
R−

1
β+1 [(2n+2)(1−1/p−δ)+α]R(2n+2)(1−1/p)

]p(1−δ/b)
.

Observe that
µ0 = {(2n + 2)(1 −

1
p

) + (s + 1)} > 0,

and
κ0 = −

1
β + 1

[(2n + 2)β(
1
p
− 1) + α] > 0.

Thus, for δ small enough, we have µδ, κδ > 0 and since R ≤ 1,∑
j≥1

‖K j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . Rpµδ + | log R| · Rpκδ ≤ 1. (2.8)

We then conclude that S 2 . 1. The proof is complete. �

We now consider TLα,β . Observe that the oscillating term eiρ(x,t)β exhibits different behavior
whether 0 < β < 1 or β > 1. As ρ goes to infinity, the oscillation becomes faint if for the case
0 < β < 1. In contrary, the oscillation grows to infinity for β > 1. Hence we deal with the two
cases seperately.

Theorem 2.5.3. Assume 0 < β < 1 and p ≤ 1 and ( 1
p − 1)(2n + 2)β + α < 0. Then the operator

TLα,β is bounded on Hp space.
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Proof. From (2.2) we have

‖Lα,β ∗ f ‖p
Hp ≤

∑
j≥1

‖L j
α,β ∗ f ‖p

Hp . (2.9)

We now estimate each norm ‖L j
α,β ∗ f ‖Hp by ‖ f ‖Hp . From the atomic decomposition for Hp space,

we may choose f as an atom supported on B(0,R) with some R > 0, which satisfies

- ‖ f ‖L2 ≤ R(2n+2)( 1
2−

1
p ),

-
∫

f (x)xαdx = 0, for all |α| ≤ s = [(2n + 2)(
1
p
− 1)].

(2.10)

From (b) in Theorem 2.4.5, it suffices to estimate N(L j ∗ f ). For an admissible quadruple
(p, q, s, ε) we may choose any ε > max{ s

2n+2 ,
1
p − 1} = 1

p − 1. Simply we let ε = 1
p − 1 + δ

with some δ > 0. Then we have a = δ and b = 1
p −

1
2 + δ. for (2.2). We will choose δ sufficiently

small later.
From (2.19) we have

‖L j ∗ f ‖2 . 2 j(α−nβ)‖ f ‖2.

We have

‖L j ∗ f (x) · |x|(2n+2)b‖22 =

∫
Hn
|L j ∗ f (x)|2 · |x|2(2n+2)bdx = I1 + I2, (2.11)

where

I1 =

∫
|x|≤2R

|L j ∗ f (x)|2 · |x|2(2n+2)b dx and I2 =

∫
|x|>2R

|L j ∗ f (x)|2 · |x|2(2n+2)b dx.

Then, ∑
j≥1

‖L j ∗ f ‖p
Hp .

∑
j≥1

N(L j ∗ f )p

.
∑
j≥1

(
‖L j ∗ f ‖a/b2 · (I

1/2(1−a/b)
1 + I1/2(1−a/b)

2 )
)p

.
∑
j≥1

‖L j ∗ f ‖pa/b
2 · I p/2(1−a/b)

1 +
∑
j≥1

‖L j ∗ f ‖pa/b
2 · I p/2(1−a/b)

2

(2.12)

Set S 1 =
∑

j≥1 ‖L j ∗ f ‖pa/b
2 · I p/2(1−a/b)

1 and S 2 =
∑

j≥1 ‖L j ∗ f ‖pa/b
2 · I p/2(1−a/b)

2 . Then it is enough to
show that S 1 . 1 and S 2 . 1. First we estimate I1 with L2estimates (2.19) as follows

I1 .

∫
Hn
| f ∗ L j(x)|2dx · R2(2n+2)b . 22 j(α−nβ)‖ f ‖22 · R

2(2n+2)b

≤ 22 j(α−nβ)R2(2n+2)b · R(2n+2)(1−2/p) = 22 j(α−(n+1/2)β)R2(2n+2)δ.
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Thus we can bound ‖L j ∗ f ‖a/b2 · I
1
2 (1−a/b)
1 as

‖L j ∗ f ‖a/b2 · I
1/2(1−a/b)
1 .

{
2 j(α−nβ)R(2n+2)(1/2−1/p)

}a/b
·
{
2 j(α−nβ) · R(2n+2)δ

}(1−a/b)

= 2 j(α−nβ),

and we have S 1 .
∑

j≥1 2 j(α−nβ)p . 1.
For I2 we consider the two cases R > 1 and R ≤ 1.

Case (i): Suppose R > 1. In the integral

(L j ∗ f )(x) =

∫
L j(xy−1) f (y)dy,

we have |xy−1| ≤ 2 j and |y| ≤ R, which imply |x| ≤ |xy−1| + |y| ≤ 2 j + R. Therefore, in (2.11), we
have that I2 = 0 for 2 j < R. Thus we only need to consider j with 2 j ≥ R. Then we have |x| ≤ 2 j+1

for x in the support of L j ∗ f , and so

I2 .

∫
|x|>2R

| f ∗ L j(x)|2dx · 22(2n+2)b j. (2.13)

By (2.1) we have

|L j(xy−1) − Px
j(y)| . |y|I+1 sup

|α|≤I+1
|XαL j(xy−1)|

. |y|I+12− j(2n+2−α)2 j(β−1)(I+1).

Since f (y) has support in |y| ≤ R and (2.10), we have

|L j ∗ f (x)| . RI+12− j(2n+2−α)2 j(β−1)(I+1)
∫
|y|≤R
| f (y)|dy

. RI+12− j(2n+2−α)2− j(β−1)(I+1)R
1
2 (2n+2)‖ f ‖2.

. 2− j(2n+2−α)(R2− j(β−1))(I+1)R(2n+2)(1− 1
p ).

Thus we can estimate (2.13) as

I2 . 22(2n+2)b j2 j(2n+2)
{
2− j(2n+2−α)(R2− j(β−1))(I+1)R(2n+2)(1− 1

p )
}2
.

= 22 j{(2n+2)(1/p+1+δ)+α}(R2 j(β−1))2(I+1)R2(2n+2)(1− 1
p ).

Here we may choose I = 0 and I = s, which gives

I2 . 22 j{(2n+2)(1/p−1+δ)+α}R2(2n+2)(1− 1
p ) min{1, (R2 j(β−1))2(s+1)}.

Thus,

‖L j ∗ f ‖a/b2 · I
1
2 (1−a/b)
2 . {2 j(α−nβ)R(2n+2)(1/2−1/p)}a/b

·{2 j{(2n+2)(1/p−1+δ)+α}R(2n+2)(1− 1
p ) min

(
1, (R2 j(β−1))(s+1)

)
}(1−a/b).

(2.14)
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Provided δ is small enough, we have

(2n + 2)(
1
p
− 1 + δ) + α + (β − 1)(s + 1) = (2n + 2)(

1
p
− 1 + δ) + α + (β − 1)([(2n + 2)(

1
p
− 1)] + 1)

< (2n + 2)(
1
p
− 1 + δ) + α + (β − 1)(2n + 2)(

1
p
− 1)

= (2n + 2)(
1
p
− 1)β + α + (2n + 2)δ < 0.

Therefore the index of 2 j in (2.14) with (R2 j(β−1))s+1 is negative for small δ > 0. Remind that
R > 1. Then, from (1) in Lemma 2.5.1 we have∑

j≥1

‖L j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . Rpµδ + log(R + 1)Rpκδ ,

where

Rpµδ = R(2n+2)(1/2−1/p) pa
b +(2n+2)(1−1/p)p(1−a/b),

Rpκδ = [R−
1

1−β [α−nβ]R(2n+2)(1/2−1/p)]pδ/b · [R
1

1−β {(2n+2)(1/p−1+δ)+2α}
· R(2n+2)(1−1/p)]p(1−a/b).

Because p ≤ 1, we easily see that µδ ≤ 0. Moreover,

κ0 =
1

1 − β
{β(2n + 2)(

1
p
− 1) + α} < 0.

From this, we get κδ < 0 for δ small enough. Therefore we have

S 2 . Rµδ + log(R + 1)Rκδ . 1.

Case (ii): Suppose R ≤ 1. We see that min(1, (R2 j(β−1)(s+1))) = R2 j(β−1)(s+1)and (2.14) becomes∑
j≥1

‖L j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . {2 j(α−nβ)R(2n+2)(1/2−1/p)}pa/b

{2 j(2n+2)(1/p−1+δ)+αR(2n+2)(1− 1
p )
· (R2 j(β−1))(s+1)}p(1−a/b).

Because the power of 2 j is negative, provided δ is small enough, we get∑
j≥1

‖L j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . R(2n+2)(1/2−1/p) pa
b · R{(2n+2)(1− 1

p )+(s+1)}p(1− a
b )

=: Rpµδ .

Observe that

µ0 = (2n + 2)(1 −
1
p

) + (s + 1) = (2n + 2)(1 −
1
p

) + ([(2n + 2)(
1
p
− 1)] + 1) > 0.

Thus we have µδ > 0 for δ small enough. Now we get∑
j≥1

‖L j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . Rpµδ ≤ 1.

We then conclude that S 2 . 1. The proof is complete. �
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We now establish the same result for the case β > 1.

Theorem 2.5.4. For 1 < β, p ≤ 1, if ( 1
p − 1)(2n + 2)β + α < 0, the operator TLα,β is bounded on

Hp space.

Proof. By arguing as in (2.9)–(2.12) in the proof of Theorem 2.5.3 to obtain the following∑
j≥1

‖L j ∗ f ‖p
Hp .

∑
j≥1

‖L j ∗ f ‖pa/b
2 · I p/2(1−a/b)

1 +
∑
j≥1

‖L j ∗ f ‖pa/b
2 · I p/2(1−a/b)

2 , (2.15)

where I1 and I2 are defined as in (2.11). Because the estimate for I1 is exactly same with the proof
of Theorem 2.5.3, we only deal with I2. As before, we have

‖L j ∗ f ‖a/b2 · I
1
2 (1−a/b)
2 . {2 j(α−nβ)R(2n+2)(1/2−1/p)}a/b

·{2 j{(2n+2)(1/p−1+δ)+α}R(2n+2)(1− 1
p ) min

(
1, (R2 j(β−1))(s+1)

)
}(1−a/b)

(2.16)

Case (i): Suppose R > 1. As for the case β < 1, we have I2 = 0 if 2 j < R and we only need
consider j with 2 j ≥ R. Since R2 j(β−1) ≥ 1, we estimate I2 as

I2 . 2 j{2(2n+2)[1/p−1+δ]+2α}R2(2n+2)(1−1/p).

Note that

(2n + 2)(
1
p
− 1) + α < (2n + 2)(

1
p
− 1)β + α < 0. (2.17)

Thus, if δ is sufficiently small, we have (2n + 2)(1/p − 1 + δ) + α < 0 and we can sum (2.16) as∑
j≥1

‖L j ∗ f ‖pa/b
2 · I

p
2 (1−a/b)

2 . R(2n+2)(1/2−1/p) pa
b · R{(2n+2)(1− 1

p )}p(1− a
b )
≤ 1, (2.18)

where the last inequality holds because p ≤ 1 and R > 1.
Case (ii): Suppose R ≤ 1. From (2.17), using (1) in Lemma 2.5.1 we have∑

j≥1

‖L j ∗ f ‖pa/b
2 · I

1
2 p(1−a/b)
2 . Rpµδ + | log R| Rpκδ ,

where

Rµδ = R(2n+2)(1/2−1/p) a
b · R{(2n+2)(1−1/p)+(s+1)}(1− a

b ),

Rκδ = R(2n+2)(1/2−1/p) a
b · {R

1
1−β {(2n+2)(1/p−1+δ)+α}R(2n+2)(1−1/p)}1−a/b.

Observe that

µ0 = (2n + 2)(1 −
1
p

) + (s + 1) = (2n + 2)(1 −
1
p

) + [(2n + 2)(
1
p
− 1)] + 1 > 0
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and

κ0 =
1

1 − β
{(2n + 2)(1/p − 1) + α} + (2n + 2)(1 − 1/p) =

1
1 − β

{β(2n + 2)(
1
p
− 1) + α} > 0.

Therefore we have µδ, κδ > 0 for δ small enough, and so∑
j≥1

‖L j ∗ f ‖a/b2 · I
1
2 (1−a/b)
2 . Rµδ + | log R| · Rκδ ≤ 1. (2.19)

Now we conclude that S 2 . 1 from (2.18) and (2.19). The proof is complete. �

2.6 Necessary conditions

In this section we show that the Hardy space boundedness obtained in the previous section is
sharp except for the endpoint cases. We only give an example for Theorem 2.5.2. Examples for
the other theorems can be found similarly. We refer to [Sj3] for the Euclidean case.
We let g(x) a function such that∫

R

xαg(x)dx = 0 for 0 ≤ α ≤ k and
∫
R

xk+1g(x)dx , 0.

Let h(x2, . . . , x2n, x2n+1) a function supported on the ball B(0, 1) such that
∫
R2n h , 0 and let f be

the function on R2n+1 defined by f (x1, . . . , x2n+1) = g(x1)h(x2, . . . , x2n+1)∀(x1, · · · , x2n+1) ∈ R2n+1.
Then ∫

Hn
xα f (x) = 0, if |α| ≤ k.

For ε > 0 set fε(x) = ε−(2n+2)/p f ( x
ε
). We note that ‖ fε‖Hp = C for all ε > 0. Assume that TKα,β

is
bounded on Hp. Then ‖TKα,β

( fε)‖Hp . 1. Note that |y| ≤ ε for y ∈ supp( fε). Then, for |x| ≥ Cε
with a large constant C > 0, we have

K ∗ f (x) =

∫
K(xy−1) fε(y)dy

=

∫ K(xy−1) −
∑
|α|≤k+1

1
α!

DαK(x)yα
 fε(y)dy +

∫  ∑
|α|≤k+1

1
α!

DαK(x)yα
 fε(y)dy

=

∫
Dk+2K(xy−1

∗ )O(yk+2) fε(y)dy + C∂k+1
x1

K(x)
∫
R

yk+1
1 fε(y1)dy1, |y∗| ≤ |y| ≤ ε

= O(ε(2n+2)+k+2− (2n+2)
p |x|−(n+α+(k+2)(β+1))) + εk+1+(2n+2)− (2n+2)

p ∂k+1
x1

K(x).

Take K(x) = |x|−2n−2−αei|x|−βχ(x). We see that |∂k+1
x1

K(x)| ∼ |x|−(2n+2)−α−(k+1)(β+1) for small x. For
ε . |x|β+1 we have

ε(2n+2)+k+2− 2n+2
p |x|−(2n+2+α+(k+2)(β+1)) . ε(2n+2)+(k+1)− (2n+2)

p |x|−(2n+2)−α−(k+1)(β+1).
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Therefore we get

Kα,β ∗ fε(x) ∼ ε(2n+2)+k+1− (2n+2)
p |x|−(2n+2)−α−(k+1)(β+1) for |x| & ε1/(β+1).

Then,

1 &
∫
Hn
|Kα,β ∗ fε(x)|pdx & ε p(2n+2)+kp+p−(2n+2)

∫
c≥|x|&ε1/(β+1)

|x|−(2n+2)p−αp−(k+1)(β+1)pdx

& ε p(2n+2)+kp+p−(2n+2)ε−
(2n+2)p−(2n+2)+αp

β+1 −(k+1)p

= ε
−p
β+1

[
( 1

p−1)(2n+2)β+α
]
.

This implies that (1− 1
p )(2n+2)β+α must be ≤ 0. This shows that Theorem 2.5.2 is sharp except

the endpoint case (1 − 1
p )(2n + 2)β + α = 0.
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Chapter 3

Maximal functions for multipliers on
stratified groups [Ch2]

3.1 Introduction

Consider a stratified group G with homogeneous dimension Q and let L be a left invariant sub-
Laplacian on G. Denote by {E(λ) : λ ≥ 0} the spectral resolution of L. Then, for a bounded
function m : [0,∞)→ R, we can define the multiplier operator

m(L) =

∫ ∞

0
m(λ)dE(λ).

A sufficient conditions on a function m for ‖m(L) f ‖p . ‖ f ‖p was obtained by Christ [C1] and
Mauceri-Meda [MaM] independently. They proved that if the function m satisfies the following
condition

sup
λ∈R+

‖φ(·)m(λ·)‖Hα(R) < ∞ for some α >
Q
2
,

then m(L) is bounded on Lp(G) for any 1 < p < ∞. Here φ is any nonzero function in C∞([1, 2])
and Hα(R) denotes the Sobolev space endowed with the norm ‖g‖2Hα(R) :=

∫
R
(1 + |ξ|)α|ĝ(ξ)|2dξ.

The index Q
2 is sharp when G is a Euclidean space, whereas Martini-Müller [MM] improved the

condition to α > d
2 for a class of 2-step stratified groups, where d is the topological dimension of

G. We also refer to the related works [MRS, MRS2, MS]. In addition, multiplier theorems of this
kind have been extended to various spaces. For example, Alexopoulos [Al] studied the multipliers
on Lie groups of polynomial growth and Seeger-Sogge [SS] studied the multipliers on compact
manifolds. Duong-Ouhabaz-Sikora [DOS] obtained a general result that the multiplier theorems
follow from the appropriate estimates of the L2-norm of the kernel of the multipliers and the
Gaussian bounds for the corresponding heat kernel.
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In this paper we are concerned with the maximal multiplier

Mm f (x) := sup
t>0
|m(tL) f (x)|.

It is a challenging problem to find conditions that ensure thatMm is bounded on Lp(G). Mauceri-
Meda [MaM] proved thatMm is bounded on Lp(G) if the condition∑

k∈Z

‖φ(·)m(2k·)‖Hs(R) < ∞ (3.1)

holds for some s > Q( 1
p −

1
2 ) + 1

2 when p ∈ (1, 2], or for some s > (Q − 1)(1
2 −

1
p ) + 1

2 when
p ∈ [2,∞].

We aim to improve the summability condition (3.1). As a preliminary step we shall prove the
following result on the maximal function of the multipliers satisfying a uniform bound.

Theorem 3.1.1. For 1 ≤ r < 2, suppose that there is α > Q/r such that m1, . . . ,mN satisfy the
condition

sup
λ∈R

‖φ(·)mi(λ·)‖Hα ≤ B for i = 1, · · · ,N.

Then, for all p ∈ (r,∞), we have

‖ sup
i=1,...,N

|mi(L) f |‖p ≤ Cp,rB
√

log(N + 1)‖ f ‖p.

This result is a generalization of the result Grafakos-Honzik-Seeger [GHS] for the multipliers
on the Euclidean space. The growth rate

√
log(N + 1) was shown to be sharp in [CGHS] in the

case of the Euclidean space.
Using Theorem 3.1.1 we will prove the following result on the maximal multipliers.

Theorem 3.1.2. Suppose that

‖φ(·)m(2k·)‖Hα ≤ ω(k), k ∈ Z,

holds for some α and suppose that the non-increasing rearrangement ω∗ satisfies

ω∗(0) +

∞∑
l=1

ω∗(l)

l/
√

log l
< ∞.

If α > Q/r + 1 for some 1 ≤ r < 2, thenMm is bounded on Lp(G) for p ∈ (r,∞).

We remark that this result improves the summability condition (3.1) of the result obtained by
Mauceri-Meda [MaM]. However we note that their result requires less number of derivatives in
(3.1) than our result.
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The second aim of this paper is to consider maximal functions of the multi-parameter multi-
pliers on the product spaces of stratified groups. Let G be the product space of n-stratified groups
G1, · · · ,Gn. Consider sub-Laplcians L j, 1 ≤ j ≤ n and their lifting to G denoted by L]j. We recall
that, under the following assumption on m:

sup
ξ∈Rn
|(ξ1∂ξ1)

α1 · · · (ξn∂ξn)
αnm(ξ1, · · · , ξn)| ≤ B (3.2)

for all α j ≤ M, with M large enough, Müller-Ricci-Stein [MRS] proved the Lp boundedness
property of the multiplier m(L]1, · · · , L

]
s). For maximal functions of these multipliers, we shall

obtain the following boundedness result.

Theorem 3.1.3. Suppose that functions m1, . . . ,mN on (R+)n satisfy the condition (3.2) uniformly,
i.e., for some M ∈ N large enough, there exists a positive number B such that

sup
1≤k≤N

sup
ξ∈Rn
|(ξ1∂ξ1)

α1 · · · (ξn∂ξn)
αnmk(ξ1, · · · , ξn)| ≤ B for all α j ≤ M. (3.3)

Then, for all p ∈ (1,∞), we have the inequality∥∥∥∥∥∥ sup
1≤i≤N

|mi(L
]
1, · · · , L

]
n) f |

∥∥∥∥∥∥
p

≤ CpB(log(N + 1))n/2 ‖ f ‖p .

As an application of this theorem we also obtain a similar result for the joint spectral multi-
pliers on the Heisenberg group Hn which is endowed with the sub-Laplacian ∆ and the derivative
T = ∂

∂t . The Lp boundedness of the joint spectral multiplier m(∆, iT ) was obtained by Müller-
Ricci-Stein [MRS]. Using Theorem 3.1.3 and the transference method of [CWW] we will prove
the following theorem.

Theorem 3.1.4. Suppose that functions m1, . . . ,mN on (R+)2 satisfy the condition (3.2) uniformly,
i.e., for some M ∈ N large enough, there exists a positive number B such that

sup
1≤k≤N

sup
ξ∈R2
|(ξ1∂ξ1)

α1(ξ2∂ξ2)
α2mk(ξ1, ξ2)| ≤ B for all α j ≤ M. (3.4)

Then, for all p ∈ (1,∞), we have∥∥∥∥∥∥ sup
1≤i≤N

|mi(∆, iT ) f |

∥∥∥∥∥∥
p

≤ CpB(log(N + 1)) ‖ f ‖p .

In order to prove Theorem 1.1 we shall use the argument of Grafakos-Honzik-Seeger [GHS]
who make use of a good λ inequality for martingale operators due to Chang-Wilson-Wolff
[CWW](see Lemma 3.3.2 below). We shall use the martingales constructed by Christ [C2] on the
setting of homogeneous space. For applying the martingale theory to study multipliers, a basic
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but necessary step in [GHS] is to find cancellation property arising when we compose martingale
operators and Littlewood-Paley projections. Due to the technical difficulties of the Fourier trans-
form on stratified groups, we will show it in a different way by suitable partitioning the kernels
of projections (see Lemma 3.3.3).

In stratified groups, it is also not as easy as on Euclidean space to know exaclty the kernels of
multipliers. Nevertheless, a technique was developed by Folland and Stein [FoS] using the kernel
of the heat semi-group e−tL, t > 0. In addition, Christ [C1] and Mauceri-Meda [MaM] obtained
a sharp estimate on the Lq norm (1 < q ≤ 2) of the kernels by using the Plancherel formula on
stratified groups (see Lemma 3.2.2). For our purpose we will extend it to the range q > 2. It
will enable us to bound a multiplier operator with localized multiplier function pointwise by the
Hardy-Littlewood maximal function (see Lemma 3.2.4).

For proving Theorem 3.1.3 we shall use an idea of Honzik [Ho1] who obtained a sharp
boundedness result for maximal functions of Marcinkiewicz multipliers on Rn which correspond
to the multi-parameter multipliers on the product space G = R × · · · × R. However, it is difficult
to follow his approach in a direct way because the approach uses crucially the Lp (1 < p < ∞)
boundedness property of fourier multipliers whose multiplier functions are 1Q for rectangles Q
in Rn meanwhile this fact does not hold for mulitplier functions 1Q when Q is a sphere. This is
due to the well-known result of Fefferman [Fe2] that the ball multipliers on Rn for n ≥ 2 are not
bounded in Lp space when p , 2. For this reason, we will generalize the argument in [GHS] in a
different way.

This paper is organized as follows. In section 2, we study kernels of the multiplier oper-
ators on homogeneous spaces. In section 3, we exploit the cancellation property between the
martingales and the Littlewood-Paley operators. Then we will prove Theorem 3.1.1 and Theo-
rem 3.1.2. In Section 4 we study the maximal multipliers on the product spaces. We shall study
multi-expectation operators on prouduct spaces. Applying it to the multi-parameter multipliers
we will prove Theorem 3.1.3. Then we will use a transference argument to complete the proof
of Theorem 3.1.4. In Section 5, we discuss how one can apply Theorem 3.1.3 to study the multi-
parameter maximal multipliers.

We denote by C a generic constant depending only on the background spaces and the index
p of the space Lp used in the inequality. Also, we shall use the notation A . B to denote an
inequality A ≤ CB.

3.2 Kernels of multipliers on Stratified groups

In this section we shall begin with a brief review on the stratified groups spectral multipliers de-
fined on those groups. Then we shall study integration property of kernels of multiplier operators
in terms of smoothness of multiplier functions. In the last part, we shall estimate multipliers by
the Hardy-Littlewood maximal functions.
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We denote by g a finite-dimensional nilpotent Lie algebra of the form

g =

s⊕
i=1

gi

such that [gi, g j] ⊂ gi+ j for all i, j, and by G the associated simply connected Lie group. Then, its
homogeneous dimension is Q =

∑
j j · dim(gj). We call it a stratified group when g1 generates g

as a Lie algebra. Throughout the paper, G stands for a stratified group.
We denote by {δr : r > 0} a family of dilations of the Lie algebra g which satisfy δrX = r jX

for X ∈ g j, and is extended by linearity. We shall also denote by {δr : r > 0} the induced family
of dilations of G. They are group automorphisms. We define a homogeneous norm of G to be a
continuous function | · | : G −→ [0,∞) which is, C∞ away from 0, and satisfies |x| = 0 ⇔ x = 0
and |δr x| = r|x| for all r ∈ R+, x ∈ G.

We denote by S (G) the space of Schwartz functions in G. Now we choose any finite subset
{Xk} of g1 which spans g1. We may identify each Xk with a unique left-invariant vector field on G.
We also denote it by Xk. Then we define a sub-Laplacian as L = −

∑
X2

k , which is a left-invariant
second-order differential operator. Lp(G) is defined with respect to a bi-invariant Haar measure.
As an operator on { f ∈ L2(G) : L f ∈ L2(G)}, L is self-adjoint. Therefore it admits a spectral
resolution L =

∫ ∞
0
λdPλ. For a bounded Borel function m on [0,∞), we define the bounded

operator m(L) on L2 by

m(L) =

∫ ∞

0
m(λ)dPλ.

By the Schwartz kernel theorem, there exists a tempered distribution km on G satisfying m(L) f =

f ∗ km for all functions in G. For a tempered distribution k on G, we always denote by k(t) for
t > 0 the distribution satisfying

〈k(t), f 〉 = 〈k, f ◦ δt〉

for all f ∈ S (G). If k is a measurable function on G, then k(t)(x) = 1
tQ f ( x

t ).
The heat semigroup {e−tL}t>0 on G can be defined as

e−tL =

∫ ∞

0
e−λtdPλ

and we set ht(x) be the heat kernel satisfying e−tL f = f ∗ ht for all f ∈ L2. Simply we write h(x)
for h1(x). Then we have ht(x) = h(

√
t)(x) and it was proved in [JS] that there exist c0,C ∈ R+ such

that
|h(x)| ≤ Ce−c0 |x|2 . (3.1)

The next lemma is from [FoS, Lemma 6.29].
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Lemma 3.2.1. If M is a bounded Borel function on (0,∞), let K be the distribution kernel of
M(L). Then for any t > 0, if M(t)(λ) = M(tλ), the distribution kernel of M(t)(L) is K√t.

We recall Lemma 1.2 in [MaM] on boundedness of the kernels of multipliers.

Lemma 3.2.2. Let α ≥ 0 and 1 ≤ p ≤ 2. Suppose that s > 0 satisfies s > α/p + Q(1/p − 1/2).
Then, for each multi-index I there exists a constant CI > 0 such that any function m ∈ H s

2(R+)
with its support in (1/2, 2) and the distribution kernel k of m(L) satisfy∫

G
|x|α|XIk(x)|pdx ≤ CI‖m‖

p
Hs . (3.2)

For each s > α
2 , taking p = 2 in the previous lemma, we see that for any multi-index I there

is a positive constant CI > 0 such that∫
G
|x|α|XIk(x)|2dx ≤ C‖m‖Hs , ∀ m ∈ H s(R+) such that supp(m) ⊂ (1/2, 2). (3.3)

Employing this estimate, we shall prove the following lemma.

Lemma 3.2.3. Suppose that m is a function in H s(R+) supported in (1/2, 2) with s > α/2. Let k
be the distribution kernel of m(L). Then, for any multi-index I we have

sup
x∈G

(1 + |x|)
α
2 |XIk(x)| . ‖m‖Hs . (3.4)

and ∫
G
|x|α

q
2 |XIk(x)|qdx . ‖m‖qHs . (3.5)

for each q > 2.

Proof. Set m1(λ) = eλm(λ) and K1 be the distribution kernel of m1(L). Note that H s
2 norms

of M and M1 are comparable because the support of m is contained in (1/2, 2). Since m(L) =

e−Lm1(L) = m1(L)e−L we have K = h ∗ K1 = K1 ∗ h. Hence K is C∞ and XIK = K1 ∗ XIh for any
multi-index I. Since h ∈ S (G) we have ‖|x|N XIh(x)‖L2 . 1 for any N > 0. Thus using (3.3) and
the triangle inequality we get

(1 + |x|)α/2|XIK(x)| .
∫

(1 + |y|)α/2|K1(y)|(1 + |y−1x|)α/2|XIh(y−1x, 1)|dy

.

(∫
(1 + |y|)α|K1(y)|2dy

)1/2 (
‖|x|α/2XIh(x)‖L2

)
. ‖m‖Hs ,

which proves (3.4). Next, for q > 2 we combine (3.3) and (3.4) using Hölder’s inequality to get∫
G
|x|α

q
2 |XIk(x)|qdx . sup

x∈G
|x|α

q−2
2 |XIk(x)|q−2

∫
G
|x|α|XIk(x)|2dx.

. ‖m‖q−2
Hs ‖m‖2Hs = ‖m‖qHs ,

which is the desired estimate (3.5). The proof is finished. �
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Next we split the support of multipliers into dyadic pieces. For this aim, we take a bump
function φ ∈ C∞(0,∞) supported on [1

2 , 2] satisfying
∑

j∈Z φ(2− jξ) = 1 for all ξ ∈ R+ and then

m(L) =
∑
j∈Z

m j(L), (3.6)

where m j(ξ) = φ(2− jξ)m(ξ).
We also define m̃ j(ξ) := m j(2 jξ) and denote by Mr f (x) = (M(| f |r)(x))1/r the higher order

maximal functions for each r > 1. In the following lemma, we state the main result of this
section.

Lemma 3.2.4. |mk(L) f (x)| . Mr f (x) · ‖m̃k‖Hs , s > Q/r, r ≤ 2.

Proof. In the proof, we denote by Kk (resp. K̃k) the kernel of the operator mk(L)(resp. m̃k(L)).
Then, we see from Lemma 3.2.1 that

K̃k(x) = Kk(
√

2k)(x) = 2−kQ/2Kk(
x

2k/2 ).

Observing r′ > 2, we apply Lemma 3.2.3 to get∫
G
|x|α

r′
2 |K̃k(x)|r

′

dx . ‖m̃k‖
r′
Hs , for all 0 ≤ α < 2s. (3.7)

Letting further K̃k,l(x) = K̃k(x) · 1{2l−1≤|x|<2l} for l ∈ N and K̃k,0(x) = K̃k(x) · 1{|x|<1}, we see directly
from (3.7) that

sup
l≥0

2lα r′
2

∫
|K̃k,l(x)|r

′

dx . ‖m̃k‖
r′
Hs for 0 ≤ α < 2s. (3.8)

Since 2Q
r < 2s we can find a small ε > 0 such that α0 =

2Q
r + ε < 2s. In particular, we will use

estimate (3.8) with this α0.
Let us rewrite mk(L) as

mk(L) f (x) =

∫
G

2kQ/2K̃k(2k/2y) f (xy−1)dy =

∞∑
l=0

∫
G

2kQ/2K̃k,l(2k/2y) f (xy−1)dy,

and apply Hölder’s ineqaulity to obtain

|mk(L) f (x)| .
∞∑

l=0

(∫
G

2kQ/2|K̃k,l(2k/2(y))|r
′

dy
)1/r′ (

2kQ/2
∫
|y|≤2l−k/2

| f (xy−1)|rdy
)1/r

.
∞∑

l=0

2lQ/r(M(| f |r)(x))1/r
(∫

G
|K̃k,l(y)|r

′

dy
)1/r′

.

In the right hand side, we use estimate (3.8) with α = α0 to get

|mk(L) f (x)| . ‖m̃k‖Hs

∞∑
l=0

2lQ/r2−lα0/2(M(| f |r)(x))1/r = ‖m̃k‖Hs

∞∑
l=0

2−
lε
2 (M(| f |r)(x))1/r

. ‖m̃k‖Hs(M(| f |r)(x))1/r.

It proves the lemma. �
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3.3 Martingales on homogeneous space and its application to
maximal multipliers

In this section, we first recall the martingales on homogeneous space from [C2]. Then we shall
study some cancellation property arising when the martingale operators are composed with
Littlewood-Paley projections. In the last part, the proof of Theorem 3.1.1 and Theorem 3.1.2
will be given.

In what follows, open set Qk
α will role as dyadic cubes of side-lengths 2−k (or more precisely,

δk) with the two conventions: 1. For each k, the index α will run over some unspecified index set
dependent on k. 2. For two sets with Qk+1

α ⊂ Qk
β, we say that Qk

β is a parent of Qk+1
α , and Qk+1

α a
child of Qk

β.

Theorem 3.3.1 (Theorem 14 in [C2]). Let X be a space of homogeneous type. Then there exists
a family of subset Qk

α ⊂ X, defined for all integers k, and constants δ, ρ > 0,C < ∞ such that

- µ(X \ ∪αQk
α) = 0 ∀k

- for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = Ø

- each Qk
α has exactly one parent for all k ≥ 1

- each Qk
α has at least one child

- if Qk+1
α ⊂ Qk

β then µ(Qk+1
α ) ≥ ρµ(Qk

β)

- for each (α, k) there exists xα,k ∈ X such that B(xα,k, δk) ⊂ Qk
α ⊂ B(xα,k,Cδk).

Moreover,

µ{y ∈ Qk
α : ρ(y, X \ Qk

α) ≤ tδk} ≤ Ctεµ(Qk
α) f or 0 < t ≤ 1, f or all α, k. (3.1)

Now we define the expectation operator

Ek f (x) = µ(Qk
α)−1

∫
Qk
α

f dµ for x ∈ Qk
α,

the martingale operator Dk f (x) = Ek+1 f (x) − Ek f (x) and set the square function

S ( f ) = (
∑
k≥1

|Dk f (x)|2)1/2.

Next we state the following good λ inequality.
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Lemma 3.3.2 ([CWW]). There are constants C > 0 and C1 > 0 such that for all λ > 0, 0 < ε <
1
2 , the following inequality holds.

meas({x : sup
k≥1
|Ekg(x) − Eg(x)| > 2λ, S (g) < ελ}) (3.2)

≤ C exp(−
C1

ε2 )meas({x : sup
k≥1
|Ekg(x)| > λ}). (3.3)

Although this lemma was proved in [CWW] for the Euclidean setting, the proof is applicable
for the homogeneous group setting as well.

Recall the functions φ j and m j defined in (3.6). We choose a bump function ψ ∈ C∞0 which
is supported on [1

4 , 4] and equal to 1 on [ 1
2 , 2], and let ψ j(ξ) = ψ(2− jξ). Then, since m j(ξ) =

φ(2− jξ)m(ξ) is supported on [ 1
2 , 2], it holds that m j(ξ) = ψ2

j(ξ)m j(ξ), which leads to the identity

m j(L) = ψ j(L)m j(L)ψ j(L).

Consequently,

Dk(m(L) f ) = Dk

(∑
j∈Z

m j(L) f
)

=
∑
j∈Z

Dk(ψ j(L)m j(L)ψ j(L) f ). (3.4)

For n ∈ Z we denote by Kn : G → R the kernel of ψn(L), i.e.,

ψn(L) f = Kn ∗ f ∀ f ∈ S (G),

and denote K1 by K for notational simplicity. By Lemma 3.2.1, we have Kn(x) = 2Qn/2K(2n/2x).
Also it holds that

∫
G

K(x)dx = 0 since the support of ψ is away from the zero. In addition, we
know from Lemma 6.36 in [FoS] that

K(x) . (1 + |x|)−N for any N > 0. (3.5)

In the next lemma we exploit certain cancellation property arising in composition of the projec-
tions and the martingale operators.

Lemma 3.3.3.

(i) There exists a constant γ > 0 such that |Ek(ψn(L) f )(x)| . 2(−(log2 δ)k−n/2)γMq f (x) holds
uniformly for n/2 > (− log2 δ)k + 10.

(ii) There exists a constant γ > 0 such that |Dk(ψn(L) f )(x)| . 2((log2 δ)k+n/2)γMq f (x) holds uni-
formly for n/2 < (− log2 δ)k − 10.

In particular, these two estimates imply

|Dk(ψn(L) f )(x)| . 2−|(log2 δ)k+n/2|Mq f (x), ∀(n, k) ∈ Z2.
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Proof. For each x ∈ G we find a unique Qk
α such that x ∈ Qk

α and then,

Ek(ψn(L) f )(x) =
1

µ(Qk
α)

∫
Qk
α

(ψn(L) f )(y)dy

=
1

µ(Qk
α)

∫
Qk
α

[∫
G

2Qn/2K(2n/2(y · z−1)) f (z)dz
]

dy

=
1

µ(Qk
α)

∫
G

[∫
Qk
α

2Qn/2K(2n/2(y · z−1))dy
]

f (z)dz.

(3.6)

For simplicity, we let d(k, n) := n
2 + (log2 δ)k.

(i) Case d(k, n) > 10.
In order to estimate (3.6) we partition the domain of the variable z, the whole space G, into

the following disjoint subsets:

- B = {z : dist(z, ∂Qk
α) ≤ 2−[(− log2 δ)k+

d(k,n)
2 ]}

- A1 = Qk
α ∩ Bc

- A2 = (Qk
α)c ∩ Bc,

which satisfy G = B∪A1∪A2. Then we have f = fA1 + fA2 + fB := fχA1 + fχA2 + fχB, and hence

Ek(ψn(L) f )(x) = Ek(ψn(L) fA1)(x) + Ek(ψn(L) fA2)(x) + Ek(ψn(L) fB)(x).

In order to estimate Ek(ψn(L) f )(x), we are going to estimate each of the above three terms seper-
ately.
· Estimate f or fA1 .
We begin with the formula (3.6) with replacing f by fA1 ,

Ek(ψn(L) fA1(x)) =
1

µ(Qk
α)

∫
Qk
α

[∫
G

2Qn/2K(2n/2(y · z−1))1A2(z) f (z)dz
]

dy

=
1

µ(Qk
α)

∫
G

[∫
Qk
α

2Qn/2K(2n/2(y · z−1))dy
]
χA1(z) f (z)dz.

(3.7)

Using
∫

G
K = 0 and observing that |y · z−1| ≥ 2−[(− log2 δ)k+

d(k,n)
2 ] holds for any z ∈ A1 = Qk

α ∩ Bc and
y ∈ (Qk

α)c, we deduce∣∣∣∣∣∣
∫

Qk
α

2Qn/2K(2n/2(y · z−1))dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

(Qk
α)c

2Qn/2K(2n/2(y · z−1)) dy

∣∣∣∣∣∣
≤

∫
(Qk

α)c
2Qn/2|K(2n/2(y · z−1))| dy

≤

∫
|w|≥2−[(− log2 δ)k+

d(k,n)
2 ]

2Qn/2|K(2n/2w)| dw

≤

∫
|w|≥2m/2

|K(w)| dw ≤ 2−m/2c,

(3.8)
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where the last inequality follows from (3.5). Plugging this estimate into (3.7), we obtain

|Ek(ψn(L) f (x))| ≤
1

µ(Qk
α)

∫
G

2−mc/21A1(z) f (z)dz ≤ 2−mc/2M f (x). (3.9)

· Estimate f or fA2 .
Like (3.7) we have

Ek(ψn(L) fA2(x)) =
1

µ(Qk
α)

∫
Qk
α

[∫
G

2Qn/2K(2n/2(y · z−1))1A2(z) f (z)dz
]

dy. (3.10)

By definition it holds that |(y · z−1)| ≥ 2−[(− log2 δ)k+
d(n,k)

2 ] for any z ∈ A2 = (Qk
α)c ∩ Bc and y ∈ Qk

α,
which leads to |2n/2(y · z−1)| ≥ 2n/2+(log2 δ)k−

d(n,k)
2 = 2

d(n,k)
2 . Combining this and (3.5) we find

sup
y∈Qk

α

∫
A2

2Qn/2
∣∣∣K(2n/2(y · z−1)

∣∣∣ dz .
∫
|x|≥2d(n,k)/2

(1 + |x|)−3Ndx . 2−d(n,k)N ,

and in fact, we can also deduce

sup
y∈Qk

α

∫
G

∣∣∣2Qn/2K(2n/2(y · z−1))1A2 f (z)
∣∣∣ dz . M f (x) · 2−d(n,k)N ,

for any large N > 0. Applying this estimate in (3.10) we obtain

Ek(ψn(L) fK2(x)) .
2−d(n,k)N

µ(Qk
α)

∫
Qk
α

M f (x)dy = M f (x) · 2−d(n,k)N . (3.11)

· Estimate f or fB.
Having the formula like (3.7) again, we use elementary estimates to get

|Ek(φn(L) fB)(x)| =
1

µ(Qk
α)

∣∣∣∣∣∣
∫

B

[∫
Qk
α

2Qn/2K(2n/2(y · z−1)dy
]

f (z)dz

∣∣∣∣∣∣
≤

1
µ(Qk

α)

∫
B

(∫
Qk
α

2Qn/2|K(2n/2(yz−1))|dy
)

f (z)dz

≤
1

µ(Qk
α)

∫
B

(∫
G

2Qn/2|K(2n/2(y))|dy
)
| f (z)|dz

=
C

µ(Qk
α)

∫
B
| f (z)|dz.

(3.12)

By the property (3.1) we have µ(B) . µ(Qk
α)2−

d(n,k)
2 ρ. Using this and Hölder’s inequality we esti-

mate (3.12) as

|Ek(φn(L) fB)(x)| .
1

µ(Qk
α)

∫
B
| f (z)|dz .

µ(B)
1
q′

µ(Qk
α)

(∫
B
| f (z)|qdz

)1/q

. 2−
ρ

2q′ d(n,k)
(

1
µ(Qα

k )

∫
B
| f (z)|qdx

)1/q

. 2−
ρ

2q′ d(n,k)Mq f (x).

(3.13)
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Combining (3.9), (3.11) and (3.13) we get the desired estimate

|Ek(φn(L) f )| = |Ek(φn(L)( fA1 + fA2 + fB))(x)|

. 2−d(n,k)γMq f (x),

where γ = min( c
2 ,

ρ

2q′ ). It proves the lemma in the case d(k, n) > 10.
(ii) Case d(k, n) < 10.

By the definitions of Dk and Ek we have

Dk(ψn(L) f )(x) = Ek+1(ψn(L) f ) − Ek(ψn(L) f )

=
1

µ(Qk+1
α )

∫
Qk+1
α

(ψn(L) f )(y)dy −
1

µ(Qk
α)

∫
Qk
α

(ψn(L) f )(y)dy

=

∫
G

f (z)
[

1
µ(Qk+1

α )

∫
Qk+1
α

2Qn/2K(2n/2(y · z−1))dy −
1

µ(Qk
α)

∫
Qk
α

2Qn/2K(2n/2(y · z−1))dy
]

dz.

Here, adding the integration of the identity 2Qn/2K(2n/2(x · z−1)) − 2Qn/2K(2n/2(x · z−1)) = 0 over
G, we get

Dk(ψn(L) f )(x)

=

∫
G

f (z)
[

1
µ(Qk+1

α )

∫
Qk+1
α

2Qn/2
[
K(2n/2(y · z−1)) − K(2n/2(x · z−1))

]
dy

]
dz

−

∫
G

f (z)
[

1
µ(Qk

α)

∫
Qk
α

2Qn/2
[
K(2n/2(y · z−1)) − K(2n/2(x · z−1))

]
dy

]
dz

:= A1 + A2.

(3.14)

By the mean value theorem for stratified groups (see [?, Theorem 1.33]) there is a constant
β = β(G) > 0 such that∣∣∣K((2n/2(yx−1) · 2n/2(xz−1)) − K(2n/2(xz−1))

∣∣∣
.

d∑
j=1

|2n/2(yx−1)|d j sup
|w|≤|β2n/2(yx−1)|

∣∣∣X jK(w2n/2(xz−1)
∣∣∣ . (3.15)

For x, y ∈ Qk
α we have |(yx−1)| ≤ δk, and so |2n/2(yx−1)| ≤ 2n/22(log2 δ)k ≤ 2−10 by the assumption.

Using this we deduce that

d∑
j=1

|2n/2(yx−1)|d j sup
|w|≤|β2n/2(yx−1)|

∣∣∣X jK(w2n/2(xz−1)
∣∣∣

.
d∑

j=1

(2n/2δk)d j sup
|w|≤β2−10

(
1 + |w2n/2(xz−1)|

)−N
. (2n/2δk)

(
1 + |2n/2(xz−1)|

)−N
.

(3.16)
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Combining (3.14), (3.15) and (3.16) we get

|A1| . (2n/2δk)
∫

G
2Qn/2

(
1 + |2n/2(xz−1)|

)−N
f (z)dz

. (2n/2δk)M f (x),

and the same argument shows that |A2| . (2n/2δk)M f (x). Consequently, we can bound (3.14) as

|Dk(ψn(L) f )(x)| . (2n/2δk)M f (x) = 2−|(log2 δ)k+n/2|M f (x),

which finishes the proof. �

We setM = M ◦ M ◦ M and

Gr( f ) = (
∑
k∈Z

(M(|Lk f |r))2/r)1/2. (3.17)

Let us recall the inequality of Fefferman-Stein [FeS]:

‖Gr( f )‖p ≤ Cp,r‖ f ‖p, 1 < r < 2, r < p < ∞. (3.18)

Now we apply Lemma 3.3.3 to prove the following lemma.

Lemma 3.3.4. If 1 < r ≤ ∞ and α > Q
r , then we have

S (m(L) f )(x) . ‖m‖Lα2 Gr( f )(x) ∀x ∈ G. (3.19)

If we further assume that m(ξ) = 0 for |ξ| ≤ N, then we have

E0(m(L) f )(x) . 2−N‖m‖Lα2 Gr( f )(x). (3.20)

Proof. Using Lemma 3.3.3 we get

|Bk(m(L) f )(x)| =

∣∣∣∣∣∣∣∑n∈Z Bk(ψn(L)mn(L)ψn(L) f )(x)

∣∣∣∣∣∣∣
.‖m‖Lα2

∑
n∈Z

2−|k| log2 δ|−n|γMr(ψn(L) f ).

Apply the Cauchy-Schwartz inequality to get

|Bk(m(L) f )(x)|2 .

∑
n∈Z

2−|k| log2 δ|−n|γ

∑
n∈Z

2−||k log2 δ|−n|γ(Mr(ψn(L) f ))2

.
∑
n∈Z

2−||k log2 δ|−n|γ(Mr(ψn(L) f ))2.
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Summing this over k ∈ N we get

S (m(L) f )(x)2 =

∞∑
k=1

|Bk(m(L) f )(x)|2

.
∞∑

k=1

∑
n∈Z

2−||k log2 δ|−n|γ|Mr(ψn(L) f )(x)|2

.
∑
n∈Z

|Mr(ψn(L) f )(x)|2.

It proves the first inequality of the lemma.
Next we consider the case m(ξ) = 0 for |ξ| ≤ N. By this assumption and Lemma 3.3.3, we

find

|E0(m(L) f )(x)| =

∣∣∣∣∣∣∣ ∑
n≥N−1

E0(ψn(L)mn(L)ψn(L) f )(x)

∣∣∣∣∣∣∣
. ‖m‖Lα2

∑
n≥N−1

2−nMr(ψn(L) f )(x)

. ‖m‖Lα2 2−N Mr(ψn(L) f )(x),

which completes the proof of the lemma. �

We are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. For the proof, we combine Lemma 3.3.4 with the argument of Grafakos-
Honzik-Seeger [GHS]. First we write∥∥∥∥∥∥ sup

1≤i≤N
|Ti f |

∥∥∥∥∥∥
p

=

(
p4p

∫ ∞

0
λp−1meas

({
x : sup

i
|Ti f (x)| > 4λ

})
dλ

)1/p

, (3.21)

and we note that ∣∣∣∣∣∣
{

x : sup
1≤i≤N

|Ti f (x)| > 4λ
}∣∣∣∣∣∣ ≤ |Eλ| + |Fλ|,

where Eλ = {x : sup1≤i≤N |Ti f (x) − E0Ti f (x)| > 2λ} and Fλ = {x : sup1≤i≤N |E0Ti f (x)| > 2λ}.
Concerning Fλ, we use estimate (3.20) to get the estimate(

p2p
∫ ∞

0
λp−1meas(Fλ)dλ

)1/p

=

∥∥∥∥∥∥ sup
1≤i≤N

|E0Ti f (x)|

∥∥∥∥∥∥
p

≤
∑

1≤i≤N

‖E0Ti f (x)‖p . N2−N ‖M(| f |r)‖p .

(3.22)
Next, we bound |Eλ| once more by |Eλ| ≤ |Eλ,1| + |Eλ,2| where we set

Eλ,1 =

{
x : sup

1≤i≤N
|Ti f (x) − E0Ti f (x)| > 2λ,Gr( f )(x) ≤ εNλ

}
,

Eλ,2 = {x : Gr( f )(x) > εNλ} ,
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and

εN :=
(

C1

log(N + 1)

)1/2

.

It holds that S (Ti f ) ≤ ArBGr( f ) by Lemma 3.3.4, and so we have

Eλ,1 ⊂

N⋃
i=1

{x : |Ti f (x) − E0Ti f (x)| > 2λ, S (Ti f ) . εNλ} .

By using inequality (3.2) we deduce that

meas(Eλ,1) ≤
N∑

i=1

meas({x : |Ti f (x) − E0Ti f (x)| > 2λ, S (Ti f ) ≤ εNλ})

≤

N∑
i=1

C exp
(
−

C1

ε2
N

)
meas

({
x : sup

k
|Ek(Ti f )| > λ

})
.

Therefore(
p
∫ ∞

0
λp−1meas(Eλ,1)dλ

)1/p

.

 N∑
i=1

exp
(
−

C1

ε2
N

)
‖ sup

k
|Ek(Ti f )‖p

p

1/p

.

 N∑
i=1

exp
(
−

C1

ε2
N

)
‖Ti f ‖p

p

1/p

. B
(
N exp

(
−

C1

ε2
N

))1/p

‖ f ‖p . ‖ f ‖p.

(3.23)

Performing a change of variables and using (3.18), we obtain(
p
∫ ∞

0
λp−1meas(Eλ,2)dλ

)1/p

=
B
εN
‖Gr( f )‖p

.B
√

log(N + 1)‖ f ‖p.

(3.24)

From (3.22), (3.23) and (3.24) we get the desired estimate for (3.21). The proof is completed. �

Now we shall prove Theorem 3.1.2.

Proof of Theorem 3.1.2. First we consider the dyadic maximal multiplier

M
dyad
m f (x) = sup

k∈Z
|m(2kL) f (x)|,

where m is a function such that for some α > Q/p we have ‖φ(·)m(2k·)‖Hα ≤ ω(k) for each k ∈ Z
where the non-increasing rearrangement ω∗ satisfies ω∗(0) +

∑∞
l=1

ω∗(l)

l/
√

log l
< ∞. We set

I j = {k ∈ Z : w∗(22 j
) < |ω(k)| ≤ ω∗(22 j−1

)} j ∈ N,
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and split m =
∑∞

j=1 m j so that m j has support in the union of dyadic interval ∪k∈I j{ξ : 2k−1 <

|ξ| < 2k+1}. For any k ∈ Z and 1 ≤ j < ∞, we define T j
k f = m j(2kL) f . Note that we have

supk∈Z ‖φ(·)m j(2k·)‖Hα ≤ w(k) ≤ w∗(22 j−1
) for each 1 ≤ j < ∞.

Lemma 3.1 in [CGHS] guarantees that there exists a set of integers B = {bi}i∈N ⊂ Z such that
Z = ∪42 j+1

n=−42 j+1
(n + B) and elements of {bi + I j}i∈Z are pairwise disjoint for each 1 ≤ j < ∞. Next

we write ∥∥∥Mdyad
m j f (x)

∥∥∥
p

=

∥∥∥∥∥∥sup
k
|T j

k f |

∥∥∥∥∥∥
p

=

∥∥∥∥∥ sup
|n|≤42 j+1

sup
i∈Z
|T j

bi+n f |
∥∥∥∥∥

p
. (3.25)

To estimate the right hand side, we shall use the Lp norm equivalence of Rademacher functions
{ri}
∞
i=1

cp

∑
i

a2
i

1/2

≤

∫ 1

0

∣∣∣∣∣∣∣
∞∑

i=1

ri(s)ai

∣∣∣∣∣∣∣
2

ds


1/p

≤ Cp

∑
i

a2
i

1/2

,

where {ai}i∈Z is any set of real numbers (see e.g. [Su, p. 276]). Then∥∥∥∥∥∥∥ sup
|n|≤42 j+1

sup
i>0
|T j

bi+n f |

∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥ sup
|n|≤42 j+1

∑
i>0

|T j
bi+n f |2

1/2∥∥∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥∥∥∥ sup
|n|≤42 j+1

∫ 1

0

∣∣∣∣∣∣∣
∞∑

i=1

ri(s)T j
bi+n f

∣∣∣∣∣∣∣
p

ds

1/p
∥∥∥∥∥∥∥∥

p

≤ Cp

∥∥∥∥∥∥∥∥
∫ 1

0
sup
|n|≤42 j+1

∣∣∣∣∣∣∣
∞∑

i=1

ri(s)T j
bi+n f

∣∣∣∣∣∣∣
p

dx

1/p
∥∥∥∥∥∥∥∥

p

= Cp

∫ 1

0

∥∥∥∥∥∥∥ sup
|n|≤42 j

∣∣∣∣∣∣∣
∞∑

i=1

ri(s)T j
bi+n f

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

p

p

ds


1/p

.

(3.26)

Applying Theorem 3.1.1 we have∥∥∥∥∥∥∥ sup
|n|≤42 j

∣∣∣∣∣∣∣
∞∑

i=1

ri(s)T j
bi+n f

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

p

≤ C
√

log(42 j)‖ f ‖p. (3.27)

Combining (3.25),(3.26), and (3.27) we obtain

‖M
dyad
m j ‖Lp→Lp . 2 j/2ω∗(22 j−1

),

which yields that ‖Mdyad
m ‖Lp→Lp .

∑∞
j=1 2 j/2ω∗(22 j−1

) . 1.
In order to obtain the bound ofMm using the property ofMdyad

m , we use a standard argument
to see that

sup
2k≤t<2k+1

|m j(tL) f (x)| = sup
1≤t<2
|m j(t2kL) f (x)|

≤ |m(2kL) f (x)| +
∫ 2

1

∣∣∣∣∣ ∂∂t
m j(t2kL) f (x)

∣∣∣∣∣ dt,
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and we note that ∥∥∥φ(s)(∂/∂t)m j(t2ks)
∥∥∥

Hα .
k+1∑

l=k−1

‖φ(s)m j(2ls)‖Hα+1

holds uniformly for 1 ≤ t ≤ 2. Hence the boundedness of Mm follows from the boundedness
property ofMdyad

m obtained in the above. The proof is finished. �

3.4 Maximal multipliers on product spaces

In this section we study the maximal functions of multi-parameter multipliers on product spaces
of stratified groups, which leads to the proof of Theorem 3.1.3 for maximal multipliers on the
product spaces. As a byproduct, we obtain result of Theorem 3.1.4 for maximal functions of
the joint spectral multipliers on the Heisenberg group. The main tools of this section are multi-
expectation operators on product spaces and the maximal intermediate square functions intro-
duced by Pipher [Ph] and Honzik [Ho1].

Let G be the direct product of n stratified groups G1, · · · ,Gn endowed with sub-Laplacians
L1, · · · , Ln. We naturally lift the sub-Laplacians to the operators L]1, · · · , L

]
n defined on the product

space G. Then L]1, · · · , L
]
n mutually commute and so their spectral measures dE1(ξ), · · · , dEn(η)

also mutually commute. Thus, for a bounded function m onRn
+, we can define the multi-parameter

multiplier

m(L]1, · · · , L
]
n) =

∫
Rn

+

m(ξ1, · · · , ξn) dE1(ξ) · · · dEn(ξ).

In some cases we shall denote m(L]1, · · · , L
]
n) by m(L) for notational simplicity. Under the as-

sumption

|(ξ1∂ξ1)
α1 · · · (ξn∂ξn)

αnm(ξ1, · · · , ξn)| ≤ Cα (3.1)

for all α j ≤ N with N large enough, Müller-Ricci-Stein [MRS] proved that m(L]1, · · · , L
]
n) is

bounded on Lp(G).
By Theorem 3.3.1, for each group Gk we can find a martingales {Qk, j

α : j ∈ N0, α ∈ I j} with
index sets I j, satisfying the conditions of Theorem 3.3.1. For 1 ≤ j ≤ n and k ∈ N0 we define the
j−th variable expectation E j

k : S (G)→ S (G) by

E
j
k f (x1, · · · , xn) =

1

|Qk, j
α |

∫
Qk, j
α

f (x1, · · · , xn)dx j,

where α ∈ I j is a unique index such that x j ∈ Qk, j
α . We shall simply denote E j

0 by E j. For
1 ≤ s ≤ n, 1 ≤ n1 < n2 · · · < ns ≤ n and (k1, · · · , ks) ∈ Ns

0, we define

E
n1,··· ,ns
k1,··· ,ks

:= En1
k1
· · · E

ns
ks
.
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Also it is convenient to set
E

n1,··· ,ns
k1,··· ,ks

= 0, (3.2)

for any (k1, · · · , ks) ∈ (N0 ∪ {−1})s such that kt = −1 for some t ∈ {1, · · · , s}. Then we can define
martingales by

Dn1,··· ,ns
k1,··· ,ks

g =
∑

a j∈{0,1}
1≤ j≤s

(−1)a1+···+as E
n1,··· ,ns
k1−a1,··· ,ks−as

g.

For each 1 ≤ t ≤ s we have

Dn1,··· ,ns
k1,··· ,ks

g =
∑

a j∈{0,1}
1≤ j≤s, j,t

∑
at∈{0,1}

(−1)a1+···+as E
n1,··· ,ns
k1−a1,··· ,ks−as

g

=
∑

a j∈{0,1}
1≤ j≤s, j,t

(−1)a1+···+̂at+···+as
[
E

n1,··· ,ns
k1−a1,··· ,kt ,··· ,ks−as

g − En1,··· ,ns
k1−a1,··· ,kt−1,··· ,ks−as

g
]
,

where we use the notation a1 + · · · + ât + · · · + as = a1 + · · · + at−1 + at+1 + · · · + as. Using this
we can see that

Dn1,··· ,ns
k1,··· ,kt+1,··· ,ks

g + Dn1,··· ,ns
k1,··· ,k j,··· ,ks

g

=
∑

a j∈{0,1}
1≤ j≤s, j,t

(−1)a1+···+̂at+···+as
{(
E

n1,··· ,ns
k1−a1,··· ,kt+1,··· ,ks−as

g + E
n1,··· ,ns
k1−a1,··· ,kt ,···ks−as

g
)

+ (−1)
(
E

n1,··· ,ns
k1−a1,··· ,kt ,··· ,ks−as

g + E
n1,··· ,ns
k1−a1,··· ,kt−1,···ks−as

g
)}
.

=
∑

a j∈{0,1}
1≤ j≤s, j,t

(−1)a1+···+̂at+···+as
(
E

n1,··· ,ns
k1−a1,··· ,kt+1,··· ,ks−as

g − En1,··· ,ns
k1−a1,··· ,kt−1,··· ,ks−as

g
)
.

Using this summation rule iteratively, we find

∞∑
kt=0

Dn1,··· ,ns
k1,··· ,ks

g(x) = Dn1,··· ,̂nt ,··· ,ns

k1,··· ,̂kt ,··· ,ks
g(x), (3.3)

where â denotes the absence of a, i.e.,

(n1, · · · , n̂ j, · · · , ns) = (n1, · · · , n j−1, n j+1, · · · , ns) ∈ Ns−1.

In what follows, we shall use the notation that∑
k j1 ,··· ,k jm

:=
∞∑

k j1 =0

· · ·

∞∑
k jm =0

.
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For 1 ≤ m ≤ n, we will simply denote D1,2,··· ,m
k1,··· ,km

by Dk1,··· ,km . Then, using (3.3) repeatedly we have∑
k1,··· ,kn

Dk1,··· ,kn f (x) = f (x).

Set

A f := (1 − E1) · · · (1 − En) f .

Denote by A(S (G)) the image of S (G) under the operator A and denote by A j(S (G)) := (1 −
E j)(S (G)) be the image of S (G) under the operator 1−E j. Note that, for each 1 ≤ j ≤ N we have

E jg = 0 ∀g ∈ A j(S (G)).

For 2 ≤ m ≤ n + 1 we introduce the intermediate square functions S m and the maximal inter-
mediate square function S ∗m defined by Honzik [Ho1] generalizing the double square functions
defined by Pipher [Ph],

S m f =

( ∑
k1,··· ,km−1

( ∑
km,··· ,kn

Dk1,··· ,kn f (x)
)2)1/2

, (3.4)

S ∗m f = sup
r

( ∑
k1,··· ,km−1

( ∑
km<r,km+1,··· ,kn

Dk1,··· ,kn f (x)
)2)1/2

. (3.5)

For m = 1 we define the following maximal function

S 1 f (x) = sup
r

∣∣∣∣∣∣∣ ∑
m1≤r,m2,··· ,mn

Dm1,··· ,mn f (x)

∣∣∣∣∣∣∣ .
We then have the following lemma.

Lemma 3.4.1 ([Ph]). Suppose X j
N =

∑N
q=0 d j

q, j = 1, · · · ,M is a sequence of dyadic martingales
and set

S X j
N =

( N∑
q

(d j
q)2

)1/2

be the square function of X j
N . Then

∫
exp

(√√√
1 +

M∑
j=1

(X j
N)2 −

M∑
j=1

(S X j
N)2

)
dx ≤ e.
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Based on this lemma, Pipher [Ph] obtained a good λ inequality for product of two spaces and
Honzik generalized it to product of n spaces with arbitrary n ∈ N. Here we state and prove a
variant version of it.

Lemma 3.4.2. Let 2 ≤ m ≤ n and x1, · · · , x̂m, · · · , xn ∈ G1× · · · Ĝm · · · ×Gn, there exist constants
C > 0 and c > 0 such that

|{xm ∈ Gm : S ∗m(g(x1, · · · , xn)) > 2λ; S m+1g(x1, · · · , xn) < ελ}|

≤ Ce−c/ε2
|{xm : S ∗mg(x1, · · · , xn) > λ}|

holds for any 0 < ε < 1/10, 0 < λ < ∞ and g ∈ Am(S (G)). The constants C and c are
independent of (x1, · · · , x̂m, · · · , xn).

Proof. Since g ∈ Am(S (G)) we have Emg = 0. Thus, for any (k1, · · · , k̂m, · · · , kn) ∈ Nn−1
0 we get

Dk1,··· ,km−1,0,km+1,··· ,kng(x) =

(
D1,···m̂,··· ,n

k1,··· ,̂km,··· ,kn
◦ Em

)
g(x) = 0,

which leads to the equality( ∑
k1,··· ,km−1

( ∑
km<1,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

=

( ∑
k1,··· ,km−1

( ∑
km=0,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

= 0.

By this and definition (3.5), for each xm ∈ {xm ∈ Gm : S ∗mg(x) > λ}, we can find a minimal integer
r ≥ 2 such that ( ∑

k1,··· ,km−1

( ∑
km<r,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

> λ. (3.6)

By the property of martingales there exists a unique index α such that xm ∈ Qm
r,α. Then (3.6) can

be written as follows ( ∑
k1,··· ,km−1

(
Dk1,··· ,km−1 inf

Qm
r,α

g
)2)1/2

> λ,

where infQ dx denote the average integral 1
|Q|

∫
Q

dx. As a result, the set {xm ∈ Gm : S ∗mg(x) > λ}

consists of such maximal martingales {Qm
r j,α j
} j∈I with r j ≥ 2, where I is an index set and Qm

r j,α j
’s

are mutually disjoint.
Choose a set Qm

r,α ⊂ {Q
m
r j,α j
} j∈I such that Qm

r,α ∩ {xm ∈ Gm : S m+1g(x) ≤ ελ} , 0. Then, we
claim that, for any xm ∈ Qm

r,α ∩ {xm ∈ Gm : S m+1g(x) ≤ ελ}, the following holds true.( ∑
k1,··· ,km−1

( ∑
km<r,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

≤ (1 + ε)λ. (3.7)
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With a view to a contradiction, we suppose that (3.7) does not holds, i.e.,( ∑
k1,··· ,km−1

( ∑
km<r,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

> (1 + ε)λ.

Since S m+1g(x) ≤ ελ, we have( ∑
k1,··· ,km−1

( ∑
km=r,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

<

( ∑
k1,··· ,km

( ∑
km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

< ελ.

Using this we get( ∑
k1,··· ,km−1

( ∑
km<r−1,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

>

( ∑
k1,··· ,km−1

( ∑
km<r,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

−

( ∑
k1,··· ,km−1

( ∑
km=r,km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

> (1 + ε)λ − ελ = λ.

However, this means that integer r − 1 also satisfies the condition (3.6), which contradicts to the
minimality of r. Hence the inequality (3.7) should hold.

Now, we define the subset qm
r,α ⊂ Qm

r,α by

qm
r,α = {xm ∈ Qm

r,α : S m+1g(x) ≤ ελ and S ∗mg(x) > 2λ }. (3.8)

For each xm ∈ qm
r,α we take a minimal number tx such that( ∑

k1,··· ,km−1

( ∑
km<tx,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

> 2λ. (3.9)

We then make a new martingale on Qm
r,α as follows.

gnew(x) =

{
E

tx
mg(x) − Er

mg(x) if xm ∈ qm
r,α,

g(x) − Er
mg(x) if xm < qm

r,α.
(3.10)

Then, Er
mgnew = 0, and so we can use a local version of Lemma 3.4.1 to get∫

Qm
r,α

exp
[
α

( ∑
k1,··· ,km−1

( ∑
km,km+1,··· ,kn

Dk1,··· ,kngnew

)2)1/2

−α2
∑

k1,··· ,km−1

(∑
km

( ∑
km+1,··· ,kn

Dk1,··· ,kngnew

)2)]
≤ e|Qm

r,α|.

(3.11)
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From the construction of gnew we get Dk1,··· ,kngnew = 0 if km ≥ tx or km < r, which implies∑∞
km=1 Dk1,··· ,kngnew =

∑
r≤km<t Dk1,··· ,kng and (3.11) equals to the following inequality∫

Qm
r,α

exp
[
α

( ∑
k1,··· ,km−1

( ∑
r≤km<tx,km+1,··· ,kn

Dk1,··· ,kngnew(x)
)2)1/2

−α2
∑

k1,··· ,km−1,r≤km<tx

( ∑
km+1,··· ,kn

Dk1,··· ,kngnew(x)
)2]
≤ e|Qm

r,α|.

(3.12)

In order to bound qm
r,α via this inequality, we are going to find a lower bound of the function in

the integration when x ∈ qm
r,α. To this aim, we note from the definitions (3.8) and (3.4) that( ∑

k1,··· ,km−1,r≤km<tx

( ∑
km+1,··· ,kn

Dk1,··· ,kng(x)
)2)1/2

≤ S m+1g(x) ≤ ελ.

On the other hand, combining (3.7) and (3.9) yields that( ∑
k1,··· ,km−1

( ∑
r≤km<tx,··· ,kn

Dk1,··· ,kngnew(x)
)2)1/2

≥

( ∑
k1,··· ,km−1

( ∑
km<tx,km+1,··· ,kn

Dk1,··· ,kngnew(x)
)2)1/2

−

( ∑
k1,··· ,kn−1

( ∑
km<r,km+1,··· ,kn

Dk1,··· ,kngnew(x)
)2)1/2

≥ 2λ − (1+ε)λ = (1 − ε)λ.

Therefore, for any xm ∈ qm
r,α ⊂ Qm

r,α we have

α

( ∑
k1,··· ,km−1

( ∑
r≤km<tx,··· ,kn

Dk1,··· ,kngnew(x)
)2)1/2

− α2
∑

k1,··· ,km−1,r≤km<t

( ∑
km+1,··· ,kn

Dk1,··· ,kngnew(x)
)2

≥ α(1 − ε)λ − α2ε2λ2.

Plugging this into (3.12) we get

|qm
r,α| exp(α(1 − ε)λ − α2ε2λ2) ≤ e|Qm

r,α|.

By taking α = 1
2ε2λ

here, we get

|qm
r,α| exp

(
(1 − ε)

2ε2 −
1

4ε2

)
= |qm

r,α| exp
(
1 − 2ε

4ε2

)
≤ e|Qm

r,α|.
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Note that we can attain this inequality of Qm
r j,α j

and qm
r j,α j

for each j ∈ Im. Summing those inequal-
ities over j ∈ Im, we obtain

|{xm ∈ G : S ∗mg(x) > 2λ, S m+1g(x) ≤ ελ}| =
∑
j∈I

|{xm ∈ Qm
r j,α j

: S ∗mg(x) > 2λ, S m+1g(x) ≤ ελ}|

≤
∑
j∈I

e−
1

4ε2 |Qm
r j,α j
|

= e−
1

4ε2 |{xm ∈ G : S ∗mg(x) > λ}|.

It completes the proof. �

For 1 ≤ j ≤ n we set M j be the Hardy-Littlewood maximal function with respect to the
variable of the space G j, which acts on functions defined on G = G1 × · · · × Gn, and define the
strongly maximal function by M = M1 ◦ · · · ◦ Mn.

For each q > 1, we let M j
q( f ) = (M j( f q))1/q and Mq( f ) := (M( f q))1/q. Next we define

Mq = Mq ◦ Mq ◦ Mq and the square function

Gr f (x) =

( ∑
k1,··· ,kn

∣∣∣∣Mq

(
ψk1,··· ,kn(L

]
1, · · · , L

]
n) f

)
(x)

∣∣∣∣2)1/2

.

Lemma 3.4.3. There exists a constant γ = γ(G) > 0 such that

Dk1,··· ,kn

(
ψl1,··· ,ln(L

]
1, · · · , L

]
s) f (x)

)
≤ 2

− 1
nq′

∑n
j=1

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣Mq f (x).

Proof. By Lemma 3.3, for each 1 ≤ j ≤ n, there exists γ j > 0 such that

D j
k j

(
ψl1,··· ,ln(L

]
1, · · · , L

]
n) f

)
(x) . 2

−

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣γ j M j
q f (x)

. 2
−

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣γ j Mq f (x),

where the second inequality holds from the trivial inequality M j
q f (x) ≤ Mq f (x). Therefore we

have

Dk1,··· ,kn

(
ψl1,··· ,ln(L

]
1, · · · , L

]
n) f

)
(x) . 2

−

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣γ j Mq f (x)

for all 1 ≤ j ≤ n. Set γ = 1
n min1≤ j≤n{γ j} and we product the above inequalities with respect to j

from 1 to n, which leads to

Dk1,··· ,kn

(
ψl1,··· ,ln(L

]
1, · · · , L

]
n) f

)
(x) . 2

−
∑n

j=1

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣·γMq f (x).

It proves the Lemma. �
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Lemma 3.4.4. We have

ψl1,··· ,ln(L)m(L) f (x) . M f (x).

Proof. If m(ξ1, · · · , ξn) = m1(ξ1) · · · ,mn(ξn), then the lemma follows by using Lemma 2.4 re-
peatedly.

In the general case, we write m in Fourier series,

m(ξ1, · · · , ξn) =
∑
ci∈Z

eic1ξ1 · · · eicnξnac1,··· ,cnψ(ξ1) · · ·ψ(ξn).

If we impose a sufficient regularity on m, the coefficients ac1,··· ,cn decrease rapidly. Then we can
use the above special case to finish the proof of the lemma. �

Lemma 3.4.5. There exists a constant C > 0 such that Gn( f )(x) ≥ CS n+1(m(L) f )(x).

Proof. We remind that

S n+1(m(L) f )(x) =

( ∑
k1,··· ,kn

(Dk1,··· ,kn(m(L) f ))(x)2
)1/2

.

Using Lemma 3.4.3 we may deduce

∣∣∣Dk1,··· ,kn(m(L) f )(x)
∣∣∣ =

∣∣∣∣∣∣Dk1,··· ,kn(
∑

l1,··· ,ln

ψl1,··· ,ln(L)3m(L) f )(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
l1,··· ,ln

Dk1,··· ,kn(ψl1,··· ,ln(L))2m(L)ψL1,··· ,ln(L) f )(x)

∣∣∣∣∣∣
.

∑
l1,··· ,ln

2−a
∑n

j=1 |
l j
2 +log(δ j)k j |Mq(Mq(ψl1,··· ,ln(L) f ))(x)

.

( ∑
l1,··· ,ln

2
−a

∑n
j=1

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣Mq(ψl1,··· ,ln(L) f )2(x)
)1/2

.

Summing this we get,

(S n+1(m(L) f )(x))2 =
∑

k1,··· ,kn

|Dk1,··· ,kn(m(L) f )(x)|2

.
∑

k1,··· ,kn

∑
l1,··· ,ln

2
−γ

∑n
j=1

∣∣∣∣∣ l j
2 +log(δ j)k j

∣∣∣∣∣Mq(ψl1,··· ,ln(L) f )2(x)

.
∑

l1,··· ,ln

Mq(ψl1,··· ,ln(L) f )2(x) . Gn( f )2(x),

which is the asserted estimate. �
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Proof of Theorem 3.1.3. Set

T 1
i ( f ) = A(mi(L) f )

and

T 2
i ( f ) = mi(L) f −A(mi(L) f ) = (1 − (1 − E1) · · · (1 − En)) (mi(L) f ).

Then mi( f ) = T 1
i ( f ) + T 2

i ( f ) and,

sup
1≤i≤N

|mi(L) f (x)| ≤ sup
1≤i≤N

|T 1
i ( f )(x)| + sup

1≤i≤N
|T 2

i ( f )(x)|.

Let us estimate the second term T 2
i ( f ) first. For this we employ Lemma 3.3 to get E j(mi( f ))(x) .

2−N M f (x). Using this and the trivial bound El( f )(x) ≤ M f (x) which holds for any 1 ≤ l ≤ n, we
may deduce that T 2

i ( f )(x) . 2−NM f (x), whereM = M ◦ · · · ◦ M. Thus we get

‖T 2
i ( f )(x)‖Lp . 2−N‖M f ‖Lp . 2−N‖ f ‖Lp ,

which leads to ∥∥∥∥∥∥ sup
1≤i≤N

|T 2
i ( f )(x)|

∥∥∥∥∥∥
Lp

≤

N∑
i=1

∥∥∥T 2
i ( f )

∥∥∥
Lp . N2−N ‖ f ‖Lp .

Next we focus on the main term T 1
i ( f ). Let us begin with the level set formula∥∥∥∥∥∥ sup

1≤i≤N
|T 1

i ( f )|

∥∥∥∥∥∥p

Lp

=

∫
pλp−1|Aλ|dλ,

where Aλ := {x ∈ G : sup1≤i≤n |T
1
i ( f )(x)| > λ}. Here, to obtain a sharp bound |Aλ|, we shall split

Aλ into many piecies in a suitable way. First, note that

Aλ ⊂ {x : sup
i
|T 1

i ( f )| > λ, Gr( f )(x) ≤ Cεnλ} ∪ {x : Gr( f )(x) > Cεnλ}.

Since Gn( f )(x) ≥ CS n+1(T 1
i f )(x) we have

{x : sup
i
|T 1

i ( f )(x)| > λ, Gr( f )(x) ≤ Cεnλ} ⊂

N⋃
i=1

Bi,λ

where Bi,λ = {x : |T 1
i ( f )(x)| > λ, S n+1(T 1

i f )(x) ≤ εnλ}. Then we get

|Aλ| ≤

∣∣∣∣∣∣∣
( N⋃

i=1

Bi,λ

)
∪ {x : Gr f (x) > Cεnλ}

∣∣∣∣∣∣∣ ≤
N∑

i=1

|Bi,λ| + |{x : Gr f (x) > Cεnλ}|,
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and hence∫
pλp−1|Aλ|dλ ≤

N∑
i=1

∫ ∞

0
pλp−1|Bi,λ|dλ +

∫ ∞

0
pλp−1|{x : Gr( f )(x) > Cεnλ}|dλ. (3.13)

For each 1 ≤ i ≤ n, we split the set Bi,λ further as follows

Bi,λ ⊂ {x : |T 1
i ( f )(x)| > λ, S 2(T 1

i f )(x) ≤ ελ} ∪ {S 2(T 1
i f )(x) > ελ, S n+1(T 1

i f )(x) ≤ εnλ}.

Similarly, for each 1 ≤ k ≤ n − 1 we have

{S k+1(T 1
i f )(x) > εkλ, S n+1(T 1

i f )(x) ≤ εnλ}

⊂ {S k+1(T 1
i f )(x) > εkλ, S k+2(T 1

i f )(x) < εk+1λ}

∪ {S k+2(T 1
i f )(x) > εk+1λ, S n+1(T 1

i f )(x) ≤ εnλ}.

Observing that the last set in the above sets is empty for k = n − 1, we finally have

Bi,λ ⊂ {x : |T 1
i ( f )(x)| > λ, S 2(T 1

i f )(x) < ελ} ∪
n⋃

i=2

{x : S k(T 1
i f )(x) > εk−1λ, S k+1(T 1

i f )(x) < εkλ}.

Using this and Lemma 3.4.2 we find

|Bi,λ| ≤ |{x : |T 1
i ( f )(x)| > λ, S 2(m1

i f )(x) < ελ}|

+

n∑
k=2

|{x : S k(T 1
i f )(x) > εk−1λ, S k+1(T 1

i f )(x) < εkλ}|

≤

n∑
k=1

e−
C
ε2

∣∣∣∣∣∣
{

x : |S ∗k(T 1
i f )(x) ≥

1
2
εk−1λ

}∣∣∣∣∣∣ .
Applying this inequality, we estimate (3.13) as follows.∥∥∥∥∥∥ sup

1≤i≤N
|T 1

i ( f )(x)|

∥∥∥∥∥∥p

Lp(G)

.
N∑

i=1

n∑
k=1

e−
C
ε2

∫
λp−1

∣∣∣∣∣{x : |S ∗k(T 1
i f )(x) ≥

1
2
εk−1λ

}∣∣∣∣∣dλ + ε−np‖Gr( f )(x)‖p
p

.
N∑

i=1

n∑
k=1

e−
C
ε2

∫
ε−(k−1)pλp−1

∣∣∣∣∣{x : |S ∗k(T 1
i f )(x) ≥

1
2
λ
}∣∣∣∣∣dλ + ε−np‖Gr( f )(x)‖p

p

. Ne−
C
ε2 ε−(n−1)p sup

k,i
‖S ∗k(T 1

i f )‖p
Lp + ε−np‖Gr( f )(x)‖p

p

.
(
Ne−C/ε2

ε−(n−1)p + ε−np
)
‖ f ‖p

p.
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By taking ε = (log N + 1)−1/2 here, we get∥∥∥∥∥∥ sup
1≤i≤N

|T 1
i ( f )(x)|

∥∥∥∥∥∥
Lp

. (log N + 1)n/2‖ f ‖Lp .

This yields the desired inequality. �

The Lp boundedness of the joint spectral multipliers on the Heisenberg group was proved
by Müller-Ricci-Stein (see [MRS, Lemma 2.1]). In order to get the desired bound for maximal
functions of those mulitpliers, we shall use the transference argument of Coifmann-Weiss [CW].

Proof of Theorem 3.1.4. Let G = Hn × R. For f ∈ D(G) define a related function f b defined on
Hn by

f b(z, t) =

∫ ∞

−∞

f (z, t − u, u)du.

For m ∈ L∞(R2) we consider the multiplier m(L], iT ) and denote its kernel by K ∈ D(G). Then,
Kb ∈ D(Hn) equals to the kernel of m(L, iT ) (see [MRS, p. 207]). Thus,

m(L, iT )φ(z, t) = φ ∗ Kb(z, t)

=

∫
Hn

φ((z, t) · (z′,w)−1)
[∫
R

K(z′,w − u′, u′)du′
]

dz′dw

=

∫
G

K(z,′ , t′, u′)φ((z, t) · (z′, t′ + u′)−1)dz′dt′du′

Now we consider multipliers {m j(L, iT )}Nj=1 with functions {m j}
N
j=1 satisfying the condition 3.2

uniformly. We shall suppose that the support of K j(z′, t′, u′) in u′ variable is in [−M,M] for a
fixed M > 0 for any j ∈ N, and obtain a bound independent of M > 0. Then, the proof will be
completed as a standard approximation argument can removes the restriction on supports.

For each R ∈ N, we set χR be the characteristic function on [−2R, 2R]. If R ≥ 10M, then for
each u ∈ (−R,R), we have∫

G
K j(z′, t′, u′)χR(u − u′)φ

(
(z, t + u) · (−z′,−(t′ + u′))

)
dz′dt′du′

=

∫
G

K j(z′, t′, u′)φ
(
(z, t + u) · (−z′,−(t′ + u′))

)
dz′dt′du′.
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Using this we deduce that∥∥∥ sup
1≤ j≤N

m j(L, iT )φ(z, t)
∥∥∥

Lp(z,t)

=
∥∥∥∥ sup

1≤ j≤N

∣∣∣∣∫
G

K j(z′, t′, u′)(φ((z, t) · (−z′,−(t′ + u′))dz′dt′du′
∣∣∣∣∥∥∥∥

Lp(z,t)

≤
1

R1/p

∥∥∥∥ sup
1≤ j≤N

∣∣∣∣∣∫
G

(K j(z,′ , t′, u′))(χR(u − u′)φ((z, t + u) · (−z′,−(t′ + u′)))dz′dt′du′)
∣∣∣∣∥∥∥∥∥

Lp(z,t,u)

≤
1

R1/p

∥∥∥∥ sup
1≤ j≤N

|m j(L], iT )|
∥∥∥∥

Lp→Lp
‖χR(u)φ(z, t + u)‖Lp(z,t,u)

≤ 10
∥∥∥∥ sup

1≤ j≤N
|m j(L], iT )|

∥∥∥∥
Lp→Lp

‖φ‖Lp(Hn).

Hence the desired bound of maximal functions of m j(L, iT ) follows from the bound property of
maximal functions of m j(L], iT ) which is obtained in Theorem 3.1.1. �

3.5 Bound of maximal multiplier on product spaces

In this section we briefly discuss how one can apply Theorem 3.1.3 to find a criterion that

Mm f (x) := sup
t1>0,··· ,tn>0

|m(t1L1, · · · , tnLn) f (x)|

is bounded on Lp(G), where G = G1 × · · · ×Gn. First, we consider the dyadic maximal operator

M
dyad
m f (x) := sup

k1∈Z,··· ,kn∈Z

∣∣∣m(2k1 L1, · · · , 2kn Ln) f (x)
∣∣∣

For this we consider some constant α0 > 0 such that: For any A ⊂ Zn there exists a finite set
F ⊂ Zn and an infinite set B ⊂ Zn satisfying

- Zn = ∪d∈F(d + B),

- |F| ≤ |A|α0 ,

- For any b1 ∈ B and b2 ∈ B such that b1 , b2, two sets b1 + A and b2 + A are disjoint.

For each 1 ≤ j < ∞, we set I j ⊂ Z
n by

I j =
{
(k1, · · · , kn) ∈ Zn : w∗(22 j

) ≤ |w(k1, · · · , kn)| ≤ w∗(22 j+1
)
}
.

We split m =
∑∞

j=1 m j so that m j is supported in⋃
(k1,··· ,kn)∈I j

{(ξ1, · · · , ξn) ∈ Rn : 2k1−1 < |ξ1| < 2k1+1, · · · , 2kn−1 < |ξn| < 2kn+1}.
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We note that 22 j+1−1 ≤ |I j| ≤ 22 j+1
. By the definition of α0, for each j find F j ⊂ Z

n and B j ⊂ Z
n

such that |F| ≤ 2(2 j+1α0), Zn = ∪d∈F(d + B), and for any b1 ∈ B j and b2 ∈ B j with b1 , b2, two sets
b1 + I j and b2 + I j are disjoint. Then, as in the proof of Theorem 3.1.2, we can deduce

∥∥∥Mdyad
m j f (x)

∥∥∥
p

=

∥∥∥∥∥∥sup
K∈Zn
|T j

K f |

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥sup
d∈F

sup
bi∈B
|T j

d+b f |

∥∥∥∥∥∥
p

≤

∥∥∥∥∥sup
d∈F

∑
bi∈B

|T j
d+b f |2


1/2∥∥∥∥∥

p

≤ Cp

(∫ 1

0

∥∥∥∥∥∥∥sup
d∈F

∣∣∣∣∣∣∣
∞∑

i=1

ri(s)Tbi f

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥

p

p

ds
)1/p

≤ Cp(log |F|)n/2ω∗(22 j+1
)‖ f ‖p

≤ Cp2(2 j−1nα0)ω∗(22 j+1
)‖ f ‖p,

(3.1)

where the result of Theorem 3.1.3 is applied. Here assuming that

∞∑
j=1

[log(w∗( j))]
nα0

2

j
ω∗( j) < ∞, (3.2)

we easily see that
∑∞

j=1 2(2 j−1nα0)ω∗(22 j+1
) < ∞, and (8.15) yields that∥∥∥Mdyad

m j f (x)
∥∥∥

p
≤ C‖ f ‖p.

To apply the bound ofMdyad
m to obtain a bound property ofMm, one may use the formula

sup
2ki≤ti<2ki+1

1≤i≤n

|m j(t1L1, · · · , tnLn) f (x)| = sup
1≤t j<2
1≤ j≤n

|m j(t12k1 L1, · · · , tn2kn Ln) f (x)|

≤ |m j(2k1 L1, · · · , 2kn Ln) f (x)| +
∫ 2

1
· · ·

∫ 2

1

∣∣∣∣∣ ∂n

∂t1 · · · ∂tn
m j(t12k1 L1, · · · , tn2kn Ln) f (x)

∣∣∣∣∣ dt1 · · · dtn.

In the above argument, it is important to find the minimum value of α0. Note that α0 = 2 and
n = 1 in the case of Theorem 3.1.2. It would be interesting to find the minimum value of α0 for
product spaces.
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Maximal functions of multipliers on
compact manifolds without boundary
[Ch3]

4.1 Introduction

Let M be a compact manifold of dimension n ≥ 2 without boundary. Consider a first order
elliptic pseudo-differential operator P, which is is positive and self-adjoint with respect to a C∞

density dx on M. By the spectral theorem, we have L2(M) =
∑∞

j=1 E j, where E j is an eigenspace
of dimension one of the operator P with an eigenvalue λ j such that 0 < λ1 ≤ λ2 ≤ · · · . Denoting
by e j the projection operator onto the eigenspace E j, we have for any f ∈ L2(M) that

f =

∞∑
j=1

e j( f ),

and

‖ f ‖2L2(M) =

∞∑
j

‖e j( f )‖2L2(M). (4.1)

For a function m ∈ L∞([0,∞)) the multiplier operator m(P) : L2(M)→ L2(M) is defined by

m(P) f =

∞∑
j=1

m(λ j)e j( f ), f ∈ L2(M). (4.2)

From (4.1) we see that m(P) is bounded on L2(M) for any m ∈ L∞([0,∞)). On the other hand,
more difficult is to say that m(P) is bounded on Lp with p , 2. Under a condition on m involving
that m is a C∞ function, we have the Lp-bound of m(P) for 1 < p < ∞ (see [Tay2]). Later, Seeger
and Sogge [SS] established the Lp-bound result under the Hörmander-Mikhlin type condition.
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To state the result, we take a function β ∈ C∞0 ((1/2, 2)) such that
∑∞
−∞ β(2 js) = 1, s > 0, and

introduce the functional

[m]s = sup
0≤α≤s

[
sup
λ>0

λ−1
∫ ∞

−∞

|λαDα
s (β(s/λ)m(s))|2ds

]
. (4.3)

The following theorem is due to Seeger-Sogge [SS]:

Theorem 4.1.1 ([SS]). Let s ∈ R+ such that s > n
2 . Then for any m ∈ L∞([0,∞)) with finite [m]s,

we have
‖m(P) f ‖Lp(M) ≤ Cp [m]s ‖ f ‖p, 1 < p < ∞, ∀ f ∈ Lp(M). (4.4)

Here the constant Cp is independent of m and f .

In this paper we consider Lp-boundedness problem of maximal functions of multipliers on
compact manifolds. Namely we shall obtain the following result.

Theorem 4.1.2. Let p ∈ (1,∞). For s > max
(

n
p ,

2n−1
2

)
we have

‖ sup
1≤i≤N

|mi(P) f |‖Lp(M) ≤ Cp,s sup
1≤i≤N

[mi]s · (log(N + 1))1/2‖ f ‖p, ∀ f ∈ Lp(M),

where the constant Cp,s is independent of N.

Study of multipliers on manifolds has recieved a lot of interest from many authors as it is also
related to various partial differential equations on manifolds (see e.g. [BGT, BGT2]). Also many
researches have been done to determine the boundedness of multipliers on manifolds in the Lp

space of submanifolds (see e.g. [BGT3, HT, T1]). Our study of Theorem 4.1.2 was motivated
by the study of Grafakos-Honzik-Seeger [GHS] where the maximal function of multipliers was
studied on the Euclidean space.

Studying the multipliers on manifolds require some new analysis ans we need split the mulit-
plier m(P) into two parts by using the Schrödinger propergator eitP. One part will be handled by
modifying the argument of [GHS] and another part will be estimated using the Lp − Lq bound
results of the spectral projection operators.

We organized the paper as follows. In Section 2 we review breifly the multiplier on compact
manifolds. Then we split the multipliers into a main part and a remainder part by combining the
dyadic decomposition and the Schördinger propagator. In Section 3 we first study the remainder
part using the property of spectral projection operators. In Section 4 we shall further decompose
the main part into a local operator and remainder terms which are small enough. In Section 5 we
study the local operator. We shall complete the proof of Theorem 4.1.2 in Section 6.

Notations.

- We use C to denote generic constants that depend only on the manifold M.
- For given linear operators {T j}

∞
j=1 we shall use the notation T j = ON(2−N j) for N ∈ N when their

kernels KT j(x, y) satisfies supx,y |KT j(x, y)| = ON(2−N j).
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4.2 Preliminaries

In this section we review some basic results on the spectral decomposition associated to a self-
adjoint elliptic operator on a compact manifold, and the definition of the multiplier operators.
Then we recall the expression of multipliers in terms of the Schrödinger propagator and some
Lp − Lq boundedness of the spectral projection operators. For more details we refer to the book
[So2]. In the later part of this section, we shall decompose the multipliers into two parts which
will be handled in different ways.

Let M be a compact manifold with a density dx and P be a first-order self-adjoint positive
elliptic operator on L2(M, dx). Then, by spectral theory, the oprator P has positive eigenvalues
λ1 ≤ λ2 ≤ · · · associated to orthonormal eigenfunctions e1, e2, · · · . Let E j : L2 → L2 be the
projection maps onto the one-dimensional eigenspace ε j spanned by e j. Then we have P =∑∞

j=1 λ jE j and

E j f (x) = e j(x)
∫

M
f (y)e j(y)dy.

For a function m ∈ L∞([0,∞)) we define the multiplier m(P) : L2(M) → L2(M) in the following
way

m(P) f :=
∞∑
j=1

m(λ j)E j( f ) =

∞∑
j=1

m(λ j)
(∫

M
f (y)e j(y)dy

)
e j(x).

Let Km ∈ D(M × M) be the kernel of m(P). From the above we see that

Km(x, y) =

∞∑
j=1

m(λ j)e j(x)e j(y).

We also have the following forumula using the Schrodinger propagator

m(P) =

∫ ∞

−∞

eitPm̂(t) f dt, (4.1)

and the result on eitP;

Theorem 4.2.1 (see [So2, Theorem 3.2.1]). Let M be a compact C∞ manifold and let P ∈ φ1
cl(M)

be elliptic and self-adjoint with respect to a positive C∞ density dx. Then there is an ε > 0 such
that when |t| < ε,

eitP = Q(t) + R(t) (4.2)

where the remainder has kernel R(t, x, y) ∈ C∞([−ε, ε] × M × M) and the kernel Q(t, x, y) is
supported in a small neighborhood of the diagonal in M × M.
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We first perform a dyadic decomposition on multipliers. Let us take functions φ0 ∈ C∞0 ([0, 1))
and φ ∈ C∞0 (1/4, 1) such that

∑∞
j=0 φ

3
j(s) = 1 for all s ≥ 0 where φ j(s) := φ(s/2 j) for j ≥ 1. For

given m ∈ L∞([0,∞)) we set m j(·) := m(·)φ j(·). Then,

m(P) f =

∞∑
j=1

φ j(P)m j(P)φ j(P) f . (4.3)

Let us take a function ρ ∈ C∞(R) satisfying ρ(t) = 1, |t| ≤ ε
2 and ρ(t) = 0, |t| > ε, and we write

m j(P) = A j(m, P) + R j(m, P), (4.4)

where
A j(m, P) =

∫
eitPm̂ j(t)ρ(t)dt and R j(m, P) =

∫
eitPm̂ j(t)(1 − ρ(t))dt. (4.5)

Next we shall put m j(P) in a composition form to achieve a Lp bound for p > 2 and some
cancellation property of its kernel (see Lemma 4.5.1 and Corollary 4.5.3). Take a C∞ function φ̃
supported on ( 1

8 , 2) such that φ̃ = 1 on (1
4 , 1).

We set φ̃ j(·) = φ̃( ·2 j ), then φ̃ j · φ j = φ j and

m j(P) = m j(P)φ̃ j(P) = A j(m, P) ◦ φ̃ j(P) + R j(m, P) ◦ φ̃ j(P). (4.6)

Injecting this into (4.3) we have m(P) = A(m, P) + R(m, P), where

A(m, P) f :=
∞∑
j=1

φ j(P)
[
A j(m, P) ◦ φ̃ j(P)

]
φ j(P) f (4.7)

and

R(m, P) f :=
∞∑
j=1

φ j(P)
[
R j(m, P) ◦ φ̃ j(P)

]
φ j(P) f . (4.8)

We shall study these two operators in seperate ways. First we shall prove the following result.

Proposition 4.2.2. For s > 2n−1
2 and 1 ≤ p < ∞ we have∥∥∥ sup

1≤i≤N
|R(mi, P) f |

∥∥∥
L∞(M)

≤ Cp,s sup
1≤i≤N

[mi]s‖ f ‖Lp(M), ∀ f ∈ Lp(M). (4.9)

This result will be proved in Section 3 by using the Lp − Lq bound property of spectral
projection operators. In the remaining sections, we shall study the operator A(m, P) to prove the
following result.

Proposition 4.2.3. For 1 ≤ p < ∞ and s > n
p we have∥∥∥ sup

1≤i≤N
|A(mi, P) f |

∥∥∥
Lp(M)

≤ Cp,s sup
1≤i≤N

[mi]s · (log(N + 1))1/2 ‖ f ‖Lp(M) , ∀ f ∈ Lp(M). (4.10)
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To prove this result, we shall localize the operator A(m, P) in Section 4. Then we devote Sec-
tion 5 to exploit the property of the localized operator and bound it using the Hardy-Littlewood
maximal function. In Section 6 we relate the operators with the martingale operators and we
shall complete the proof of Proposition 4.2.3 using the exponential ineqaulity of the martingale
operators.

Now we prove the main theorem assuming the above results.

Proof of Theorem 4.1.2. Consider functions m1, · · · ,mN such that sup1≤i≤N[mi]s ≤ C for some
s > n

r . Let us write each multiplier m j(P) as m j(P) = A(m j, P) + R(m j, P) which are defined in
(4.7) and (4.8). By triangle inequality we have∥∥∥ sup

1≤i≤N
|m j(P) f |

∥∥∥
Lp(M)

≤
∥∥∥ sup

1≤i≤N

∣∣∣A(mi, P) f
∣∣∣∥∥∥

Lp(M)
+

∥∥∥ sup
1≤i≤N

|R(mi, P) f |
∥∥∥

Lp(M)

Using (4.9), (4.10) and Hölder’s ineqaulity, we get∥∥∥ sup
1≤i≤N

|m j(P) f |
∥∥∥

Lp(M)

≤ C sup
1≤i≤N

[mi]s

√
log(N + 1) ‖ f ‖Lp(M) + C sup

1≤i≤N
[mi]s|vol(M)|1/p′

∥∥∥ sup
1≤i≤N

|R(mi, P) f |
∥∥∥

L∞(M)

≤ C sup
1≤i≤N

[mi]s(
√

log(N + 1) + |vol(M)|1/p′) ‖ f ‖Lp(M) .

It completes the proof. �

4.3 The proof of Proposition 4.2.2

In this section we shall prove Proposition 4.2.2. We shall use the Lp − Lq boundedenss property
of the spectral projection operators

χλ f =
∑

λ j∈[λ,λ+1]

E j f , λ ∈ [0,∞).

We recall the following result.

Lemma 4.3.1 (see [So2, Lemma 4.2.4 and Lemma 5.1.1]). Then there exists a constant C > 0
such that

‖χλ f ‖L∞(M) ≤ C(1 + λ)(n−1)/2‖ f ‖L2(M), (4.1)

and
‖χλ f ‖L2(M) ≤ C(1 + λ)

n
2−1‖ f ‖L1(M), (4.2)

where the constant C is independent of λ.
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Proof of Proposition 4.2.2. By the decomposition (4.8), it is enough to prove that∥∥∥φ j(P)[R j(m, P) ◦ φ̃ j(P)]φ j(P) f
∥∥∥

L∞
≤ C2 j(n− 1

2−s) ‖ f ‖L1 . (4.3)

Applying (4.1) we have∥∥∥φ j(P)[R j(m, P) ◦ φ̃ j(P)]φ j(P) f
∥∥∥2

L∞
≤ C2 j(n−1)

∥∥∥φ j(P)[R j(m, P) ◦ φ̃ j(P)]φ j(P) f
∥∥∥2

L2 . (4.4)

Using the fact that |φ j|, |φ̃ j| ≤ 1 and the orthogonality, we have∥∥∥∥φ j(P)
[
R j(m, P) ◦ φ̃ j(P)

]
φ j(P) f

∥∥∥∥
L2
≤

∥∥∥∥[R j(m, P)
]

f
∥∥∥∥

L2
.

Let τ j(r) = [(1 − ρ(t))m̂ j]∨(r). Then by (4.5) we see

R j(m, P) =

∫
eitPτ̂ j(t)dt = τ j(P).

Using the orthogonality and (4.2) we deduce∥∥∥R j(m, P) f
∥∥∥2

L2 ≤

∞∑
k=0

sup
r∈[k,k+1)

|τ j(r)|2 ‖χk f ‖2L2

≤

∞∑
k=0

sup
r∈[k,k+1)

|τ j(r)|2(1 + k)n−1 ‖ f ‖2L1 .

(4.5)

Here we claim that ∑
k∈[2 j−2,2 j+2]

sup
r∈[k,k+1)

|τ j(r)|2 ≤ C2 j(1−2s). (4.6)

To show this, we apply the fundamental theorem of calculus and the Cauchy-Schwartz inequality,
then we get∑

k∈[2 j−2,2 j+2]

sup
r∈[k,k+1)

|τ j(r)|2 ≤
∫
|τ j(r)|2dr +

∫
|τ′j(r)|2dr

=
1

2π

∫
|m̂ j(t)(1 − ρ(t))|2dt +

1
2π

∫
|tm̂ j(t)|2|(1 − ρ(t))|2dt.

Note that ρ(t) = 1 for |t| < ε/2, so we can bound this by

1
2π

2− j(1+2s)
∫
|tsm̂ j(t/2 j)|2dt = 2− j(1+2s)

∫
|Ds

r(2
jm j(2 jr)|2dr

= 2 j(1−2s) ·

{
2− j

∫
|2− jsDs

r(φ(r/2 j)m(r))|2dr
}
≤ 2 j(1−2s)[m]s.

It proves (4.6).
We see that τ j(r) =

[
m̂ j(·)(1 − ρ(·))

]∧
(r) = O

(
(|r| + 2 j)−N

)
for any N ∈ N if τ <

[
2 j−2, 2 j+2

]
.

Combining this, (4.6) and (4.5) we obtain∥∥∥R j(m, P) f
∥∥∥2

L2 ≤ C2 j(n−2s)‖ f ‖2L1(M). (4.7)

Using this with (4.4) we get the estimate (4.3). It completes the proof. �
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For later use, we modify the above proof to obtain the following result.

Lemma 4.3.2. For m ∈ L∞([0,∞)) such that [m]s < ∞ for some s ≥ 0, we have

‖R j(m, P) f ‖L∞ ≤ C2 j( 2n−1
2 −s)[m]s‖ f ‖Lp , 1 < p < ∞.

Proof. We have R j(m, P) f = τ j(P) f =
∑∞

k=0 χkτ j(P) f where χk is the spectral projection opera-
tor. Using Lemma 4.3.1 we deduce that∥∥∥τ j(P) f

∥∥∥
L∞
≤

∞∑
k=0

∥∥∥χkτ j(P) f
∥∥∥

L∞(M)
≤ C

∞∑
k=0

2k( n−1
2 )

∥∥∥χkτ j(P) f
∥∥∥

L2(M)
. (4.8)

We have ∥∥∥χkτ j(P) f
∥∥∥2

L2(M)
≤

∑
2k≤r<2k+1

sup
m≤r<m+1

∣∣∣τ j(t)
∣∣∣2 ‖χk f ‖2L2

≤
∑

2k≤m<2k+1

sup
m≤r<m+1

∣∣∣τ j(t)
∣∣∣2 (1 + k)n−1 ‖ f ‖2L1 .

(4.9)

For j − 2 ≤ k ≤ j + 2, as in (4.6) we have∑
2k≤m<2k+1

sup
m≤t<m+1

|τ j(t)|2 ≤ 2 j(1−2s). (4.10)

On the other hand, when |r − 2 j| > 2 j we have τ j(r) = (m̂ j(·)(1 − ρ(·))∧(r) = O((|r| + 2 j)−N) for
any N ∈ N. These two estimates with (4.8) gives∥∥∥τ j(P) f

∥∥∥
L∞
≤ C

∞∑
k=0

2k(n− 1
2−s)‖ f ‖L1 . (4.11)

It proves the lemma. �

4.4 Localization of the operator A(m, P)

The aim of this section is to obtain the result of Proposition 4.4.7 where we split the operator
A(m, P) into a local operator and its remainder part. For this we shall localize first the operators
φ j(P) and A j(m, P) ◦ φ̃ j(P) and we shall control uniformly the L∞ norm of the remainder part.

We set
mloc

j (P) =

∫
Q(t)m̂ j(t)ρ(t)dt.

For a smooth function ψ ∈ C∞(1/2, 1), abusing a notation a bit, we set ψ j(·) := ψ(·/2 j) for j ∈ N
and

ψloc
j (P) =

∫
Q(s)ψ̂ j(s)ρ(s)ds.

We have
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Lemma 4.4.1. For any m ∈ L∞([0,∞)), we have

A j(m, P) = mloc
j (P) + ON(2− jN), j ≥ 1. (4.1)

Proof. We have from (4.2) that

A j(m, P) = mloc
j (P) +

∫
R(t, x, y)ρ(t)m̂ j(t)dt.

Note ∫
R(t, x, y)ρ(t)m̂ j(t)dt =

∫
[R(·, x, y)ρ(·)]∧(t)m(t)φ

( t
2 j

)
dt.

We recall that the support of φ( ·2 j ) is contained in {t ∈ R+|2 j−1 ≤ t ≤ 2 j+1}, and we have m ∈ L∞(R)
and R(t, x, y) ∈ C∞([−ε, ε] × M × M). Thus, for any N ∈ N, we have

[R(·, x, y)ρ(·)]∧(t)m(t)φ
( t
2 j

)
= ON(2− jN) j ≥ 1.

Hence we have ∫
R(t, x, y)ρ(t)m̂ j(t)dt = ON(2− jN) j ≥ 1. (4.2)

It completes the proof. �

We denote by K j(x, y) the kernel of mloc
j (P) =

∫
Q(t)m̂ j(t)ρ(t)dt. Then we have the following

result.

Lemma 4.4.2 (see [So2]). Suppose that m ∈ L∞[0,∞) satisfies the condtion (4.3) for a s > 0.
Then for j ∈ N we have K j(x, y) = 2n jK∗j (2

jx, 2 jy) for some function K∗j ∈ C1(Rn ×Rn) satisfying∫
|Dα

y K∗j (x, y)|2(1 + |x − y|)2sdy ≤ C, 0 ≤ |α| ≤ 1, (4.3)

where the constant C is independent of x and j ∈ N.

Remark 4.4.3. Applying Hölder’s inequality to (4.3) and a change of variables we can deduce∫
|K j(x, y)|dy =

∫
|K∗j (2

jx, y)|dy ≤ C for j ∈ N. (4.4)

Now we study the properties of the kernel of the projection operators given by a smooth
cut-off function.
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Lemma 4.4.4. For ψ ∈ C∞(1/2, 1), the operator ψ j(P) defined by (4.6) is of the form

ψ j(P) = ψloc
j (P) + O(2− jN), j ∈ N. (4.5)

Moreover, the kernel K(ψ j) of ψ j(P) satisfies uniformly for j ∈ N the estimate∫ ∣∣∣K(ψ j)(x, y)
∣∣∣ dy ≤ C. (4.6)

Proof. Recalling (4.2) and (4.4) we have

ψ j(P) =

∫
Q(s)ψ̂ j(s)ρ(s)ds +

∫
R(s)ψ̂ j(s)ρ(s)ds +

∫
eitPψ̂ j(s)(1 − ρ(s))ds.

By the same way for (4.2) we have
∫

R(s)ρ(s)ψ̂ j(s)ds = ON(2− jN). Since the smooth function
ψ ∈ C∞0 (1/8, 2) satisfies the condition (4.3) for any s = N > 0 with N ∈ N, we may apply Lemma
4.3.2 to deduce ∫

eitPψ̂ j(s)(1 − ρ(s))ds = ON(2− jN).

Thus (4.5) holds. To show (4.6) we let Ψ j be the kernel of ψloc
j (P). By (4.4) we have∫ ∣∣∣Ψ j(x, y)

∣∣∣ dy ≤ C. (4.7)

From this and using (4.5) we see that∫ ∣∣∣K(ψ j)(x, y)
∣∣∣ dy ≤

∫ ∣∣∣Ψ j(x, y)
∣∣∣ dy +

∫
O(2− jN)dy ≤ C, (4.8)

which gives (4.6). Thus the lemma is proved. �

Remark 4.4.5. We note that the functions φ and φ̃ defined in Section 2 satisfies the assumption
of the above lemma. Therefore the formula (4.5) and (4.6) hold for φ and φ̃.

We have the following result.

Lemma 4.4.6. For m ∈ L∞[0,∞) we have

A j(m, P) ◦ φ̃ j(P) = mloc
j (P) ◦ φ̃loc

j (P) + ON(2− jN) ∀ j ∈ N. (4.9)

Proof. Using (4.1) we have

A j(m, P) ◦ φ̃ j(P) = mloc
j (P) ◦ φ̃ j(P) + ON(2− jN)φ̃ j(P).

By (4.6) we see ON(2− jN) ◦ φ̃ j(P) = ON(2− jN).
Next we use (4.5) and (4.4) to get

mloc
j (P) ◦ φ̃ j(P) = mloc

j (P) ◦ φ̃loc
j (P) + mloc

j (P) ◦ ON(2− jN) = mloc
j (P) ◦ φ̃loc

j (P) + ON(2−N j).

Thus we have

A j(m, P) ◦ φ̃ j(m, P) = mloc
j (P) ◦ φ̃loc

j (P) + ON(2− jN).

It completes the proof. �
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We define the following local operator associated to m(P);

mloc(P) =

∞∑
j=1

φloc
j (P)

[
mloc

j (P) ◦ φ̃loc
j (P)

]
φloc

j (P). (4.10)

Then we have

Proposition 4.4.7. For m ∈ L∞[0,∞) we have

A(m, P) f = mloc(P) f + O(1) f . (4.11)

Proof. Recall that

A(m, P) =

∞∑
j=1

φ j(P)
[
A j(m, P) ◦ φ̃ j(P)

]
φ j(P) f .

Using (4.9), (4.4) and
∑∞

j=0 O(2− j) = O(1) we get

∞∑
j=1

φ j(P)
[
A j(m, P) ◦ φ̃ j(P)

]
φ j(P) f =

∞∑
j=1

φ j(P)
[
mloc

j (P) ◦ φ̃loc
j (P). + O(2− jN)

]
φ j(P) f

=

∞∑
j=1

φ j(P)
[
mloc

j (P) ◦ φ̃loc
j (P)

]
φ j(P) f + O(1) f .

Using Lemma 4.4.4, we have φ j(P) = φloc
j (P) + O(2− jN). In addition the L1-norms of the kernels

of φ j(P),mloc
j (P), and φ̃loc

j (P) with respect to the second variable are bounded unfiormly for j ∈ N.
Thus,

∞∑
j=1

φ j(P)
[
mloc

j (P) ◦ φ̃loc
j (P)

]
φ j(P) f =

∞∑
j=1

φloc
j (P)

[
mloc

j (P) ◦ φ̃loc
j (P)

]
φloc

j (P) f + O(1) f .

It completes the proof. �

4.5 Properties of the kernels and the Hardy-Littlewood max-
imal funtion

In this section we shall study mloc(P) given by (4.10) using the Hardy-Littlewood maximal fun-
tion. We denote by H j, K j, Φ j and Φ̃ j the kernels of the operators mloc

j (P) ◦ φ̃loc
j (P), mloc

j (P),
φloc

j (P), and φ̃loc
j (P). Then we see

H j(x, z) =

∫
K j(x, y)Φ̃ j(y, z)dy. (4.1)
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From Theorem 4.2.1 we see that the kernels H j,K j, Φ j and Φ̃ j are supported in a small
neighborhood of the diagonal in M × M. We also set

X∗j (x, y) = 2−n jX j(2− jx, 2− jy), For X = K,H,Φ, Φ̃. (4.2)

By Lemma 4.4.2, for any N ∈ N we have

sup
j≥1

∫ ∣∣∣Φ∗j(x, y)
∣∣∣2 (1 + |x − y|)2Ndx ≤ CN , (4.3)

and ∫
|Dα

y Φ̃∗j(x, y)|2(1 + |x − y|)2Ndx ≤ CN , 0 ≤ |α| ≤ 1.

We have the following result.

Lemma 4.5.1. Suppose that m ∈ L∞[0,∞) satisfies [m]s < ∞ for some s > 0. Then, for each
q ≥ 2 we have ∫

M
|H∗j (x, z)|q(1 + |x − z|)sqdz ≤ Cq · [m]s.

Proof. From (4.1) we see

2 jnH∗j (2
jx, 2 jz) =

∫
2 jnK∗j (2

jx, 2 jy)2 jnΦ̃∗j(2
jy, 2 jz)dy =

∫
2 jnK∗j (2

jx, y)Φ̃∗j(y, 2
jz)dy,

which shows

H∗j (x, z) =

∫
K∗j (x, y)Φ̃∗j(y, z)dy.

Using Lemma 4.4.2 and Hölder’s inequality, we have

(1 + |x − z|)s|H∗j (x, y)| = (1 + |x − z|)s
∫

K∗j (x, y)Φ̃∗j(y, z)dy

≤

∫
K∗j (x, y)(1 + |x − y|)s · Φ̃∗j(y, z)(1 + |y − z|)sdy

≤

(∫
|K∗j (x, y)|2(1 + |x − y|)2sdy

)1/2

·

(∫
|Φ̃∗j(y, z)|2(1 + |y − z|)2sdy

)1/2

≤ C[m]s.

On the other hand, we can use Lemma 4.4.2 to obtain(∫
M
|H∗j (x, y)|2(1 + |x − y|)2sdy

)1/2

≤ C[m]s. (4.4)

Combining the above two esimtaes, we get the desired result. �
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Lemma 4.5.2. Let ψ ∈ C∞(1/2, 1) and set ψ j(·) := ψ(·/2 j) for j ∈ N. Then we have∫
Ψ j(x, y)dx = ON(2− jN).

Proof. For each j ≥ 1 we have [ψ j(P)1](x) = 0 for all x ∈ M. Recall that ψ j(P) equals to

ψ j(P) =

∫
[Q(s) + R(s)]ψ̂ j(s)ρ(s)ds +

∫
eitPψ̂ j(s)[1 − ρ(s)]ds.

Thus we have[∫
[Q(s)]ψ̂ j(s)ρ(s)dx

]
1(x)

= −

[∫
R(s)ψ̂ j(s)ρ(s)ds

]
1(x) −

[∫
eitPψ̂ j(s)[1 − ρ(s)]dx

]
1(x).

(4.5)

Observing that R(s)ρ(s) is a smooth function and ψ j(s) is supported on [2 j−1, 2 j+1] we deduce∫
R(s)φ̃ j(s)ρ(s)ds =

∫ [
R(·)ρ(·)

]∧ (s)ψ j(s)dx = O(2− jN).

Next, we may apply Lemma 4.3.2 for ψ with any s > 0 since ψ is smooth. Then we have∫
eitPψ̂ j(s)[1 − ρ(s)]ds = ON(2− jN).

Injecting the above two estimates into (4.5) we get[∫
Q(s)ψ̂ j(s)ρ(s)ds

]
1(x) = ON(2− jN).

Combining this with the identity
∫

Ψ j(x, y)dy =
∫ [

Q(s)ψ̂ j(s)ρ(s)dx
]

1(x) we obtain the desired
result. �

Corollary 4.5.3. Suppose that m ∈ L∞[0,∞) satisfies the condition (4.3) for some s > 0. Then
we have ∫

H j(x, z)dz = ON(2− jN)

for any N ∈ N.

Proof. Let K j be the kernel of
∫

Q(t)m̂ j(t)ρ(t)dt. By (4.3) and Hölder’s inequality we have∫
M

∣∣∣K j(x, y)
∣∣∣ dx ≤ C. (4.6)
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Using (4.1) and Lemma 4.5.2, we may deduce that∣∣∣∣∣∫ H j(x, z)dz
∣∣∣∣∣ =

∣∣∣∣∣∣
∫ [∫

Φ̃ j(y, z)dz
]

K j(x, y)dy

∣∣∣∣∣∣
≤

∫
ON(2−N j)|K j(x, y)|dy = ON(2−N j).

It completes the proof. �

We set

Mp f (x) = sup
x∈Q

(
1
|Q|

∫
Q
| f (y)|pdy

)1/p

, (4.7)

where Q are qubes centered at x. Now we have the following result.

Lemma 4.5.4. Assume that s > n
p . We have∣∣∣∣[mloc

j (P) ◦ φ̃loc
j (P)

]
f (x)

∣∣∣∣ ≤ C[m]s · Mp f (x).

Proof. Let us take q > 2 such that 1
q + 1

r = 1. By Lemma 4.4.2 we have H∗j such that H j(x, z) =

2 jnH∗j (2
jx, 2 jz) and ∫

|x − y|αq|H∗j (x, y)|qdy ≤ C[m]q
s for 0 ≤ α < s. (4.8)

Set H∗k,l(x, y) = H∗k (x, y) ·1{2l−1≤|x−y|<2l} for l ∈ N and H∗k,0(x, y) = H∗k (x, y) ·1{|x−y|<1}. Then we deduce
from (4.8) that

sup
l≥0

2lαq
∫
|H∗k,l(x, y)|qdy ≤ C[m]q

s for 0 ≤ α < s. (4.9)

By a direct calculation we have∣∣∣∣[mloc
j (P) ◦ φ̃loc

j (P)
]

f (x)
∣∣∣∣ =

∣∣∣∣∣∫
G

2nkH∗k (2kx, 2ky) f (y)dy
∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑

l=0

∫
G

2nkH∗k,l(2
kx, 2ky) f (y)dy

∣∣∣∣∣∣∣
≤

∞∑
l=0

(∫
G

2nk|H∗k,l(2
kx, 2ky)|qdy

)1/q (
2nk

∫
|x−y|≤2l−k

| f (y)|rdy
)1/r

≤

∞∑
l=0

2(ln/r)l(M(| f |r)(x))1/r
(∫

G
|H∗k,l(y)|qdy

)1/q

.

Since n
r < s we can take an ε > 0 such that α := n

r + ε < s. Then we apply (4.9) to get∣∣∣∣[mloc
j (P) ◦ φ̃loc

j (P)
]

f (x)
∣∣∣∣ ≤ [m]s ·

∞∑
l=0

2ln/r2−lα(M(| f |r)(x))1/r = [m]s ·

∞∑
l=0

2−lε(M(| f |r)(x))1/r

≤ [m]s · (M(| f |r)(x))1/r.

(4.10)

It proves the lemma. �
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4.6 Martingale operators and the proof of Proposition 4.2.3

We introduce the following things on homogeneous space in [C2] which may be regarded as
dyadic cubes on Euclidean space. Open set Qk

α will role as dyadic cubes of sidelengths 2−k (or
more precisely, δk) with the two conventions : 1. For each k, the index α will run over some
unspecified index set dependent on k. 2. For two sets with Qk+1

α ⊂ Qk
β, we say that Qk

β is a parent
of Qk+1

α , and Qk+1
α a child of Qk

β.

Theorem 4.6.1 (Theorem 14, [C2]). Let X be a space of homogeneous type. Then there exists a
family of subset Qk

α ⊂ X, defined for all integers k, and constants δ, ε > 0,C < ∞ such that

• µ(X \ ∪αQk
α) = 0 ∀k

• for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = Ø

• each Qk
α has exactly one parent for all k ≥ 1

• each Qk
α has at least one child

• if Qk+1
α ⊂ Qk

β then µ(Qk+1
α ) ≥ εµ(Qk

β)

• for each (α, k) there exists xα,k ∈ X such that B(xα,k, δk) ⊂ Qk
α ⊂ B(xα,k,Cδk).

Moreover,

µ{y ∈ Qk
α : ρ(y, X \ Qk

α) ≤ tδk} ≤ Ctεµ(Qk
α) f or 0 < t ≤ 1, f or all α, k. (4.1)

We set Q0
1 = M, and for k ≥ 0 we define

Ek f (x) = µ(Qk
α)−1

∫
Qk
α

f dµ for x ∈ Qk
α.

Then we define the martingale by Dk f (x) = Ek+1 f (x) − Ek f (x). We also define the following
square function

S ( f ) =

∑
k≥0

|Dk f (x)|2
1/2

.

We have the following result on Ek and S ( f ).

Theorem 4.6.2 (see [CW, Corollary 3.1.]). There is a constant Cd > 0 such that, for any λ > 0,
and 0 < ε < 1

2 , the following inequality holds.

meas({x : sup
k≥0
|Ekg(x) − E0g(x)| > 2λ, S (g) < ελ})

≤ Cexp(−
CM

ε2 )meas({x : sup
k≥0
|Ekg(x)| > λ});

(4.2)
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Let us introduce the following functional

Gr( f ) = (
∑
k∈N

(M(|φloc
k (P) f |r))2/r)1/2,

whereM = M1 ◦ M1 ◦ M1. Then we have the Fefferman-Stein inequality [FeS];

‖Gr( f )‖p ≤ Cp,r‖ f ‖p, 1 < r < 2, r < p < ∞. (4.3)

We have the following result.

Lemma 4.6.3. Let s > d
r for some r > 1. Then, for m ∈ L∞[0,∞) such that [m]s < ∞, we have

S (mloc(P) f )(x) ≤ Ar[m]sGr( f )(x) ∀ f ∈ Lp(M). (4.4)

Proof. Given the result of Lemma 4.5.4 one may adapt the proof of [GHS, Lemma 3.1](see also
[?, Lemma 3.4]) to get the inequality (4.4), so let us omit the details. �

Now we are in a position to prove Proposition 4.2.3.

Proof of Proposition 4.2.3. We set Ti f = (mi)loc(P). By Proposition 4.4.7 we have A(m j, P) f =

Ti(P) f + O(1) f where ‖O(1) f ‖L∞(M) ≤ C[m]s‖ f ‖L1(M). Hence it is enough to bound

∥∥∥ sup
1≤i≤N

|Ti f |
∥∥∥

Lp(M)
=

(
p4p

∫ ∞

0
λp−1meas({x ∈ M : sup

i
|Ti f (x)| > 4λ})dλ

)1/p

by a constant time of [m]s ·
√

log(N + 1)‖ f ‖Lp(M). We have

{x ∈ M : sup
1≤i≤N

|Ti f (x)| > 4λ} ⊂ Eλ,1 ∪ Eλ,2 ∪ Eλ,3,

where

εN :=
(

cd

10 log(N + 1)

)1/2

and

Eλ,1 = {x ∈ M : sup
1≤i≤N

|Ti f (x) − E0Ti f (x)| > 2λ,Gr( f )(x) ≤
εNλ

Ar[m]s
},

Eλ,2 = {x ∈ M : Gr( f )(x) >
εNλ

Ar[m]s
},

Eλ,3 = {x ∈ M : sup
1≤i≤N

|E0Ti f (x)| > 2λ}.

By proposition 4.6.3 we have S (Ti f ) ≤ Ar[m]sGr( f ), and using this we obtain

Eλ,1 ⊂

N⋃
i=1

{x ∈ M : |Ti f (x) − E0Ti f (x)| > 2λ, S (Ti f ) ≤ εNλ}.
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Applying (4.2) we get

meas(Eλ,1) ≤
N∑

i=1

meas({x ∈ M : |Ti f (x) − E0Ti f (x)| > 2λ, S (Ti f ) ≤ εNλ})

≤

N∑
i=1

C exp(−
cd

ε2
N

)meas({x : sup
k≥0
|Ek(Ti f )| > λ}).

Using this we estimate(
p
∫ ∞

0
λp−1meas(Eλ,1)dλ

)1/p

≤ C

 N∑
i=1

exp(−
CM

ε2
N

)

∥∥∥∥∥∥sup
k≥0
|Ek(Ti f )|

∥∥∥∥∥∥p

Lp(M)

1/p

≤ C

 N∑
i=1

exp(−
CM

ε2
N

) ‖Ti f ‖p
Lp(M)

1/p

≤ C[m]s

(
N exp(−

CM

ε2
N

)
)1/p

‖ f ‖Lp(M)

≤ C[m]s · ‖ f ‖Lp(M).

(4.5)

By a change of variables and (4.3) we have(
p
∫ ∞

0
λp−1meas(Eλ,2)dλ

)1/p

=
Ar[m]s

εN
‖Gr( f )‖Lp(M) ≤ C[m]s

√
log(N + 1)‖ f ‖Lp(M). (4.6)

On the other hand, applying Corollary 4.5.3 we have E0(Ti f )(x) ≤ C[m]s‖ f ‖L1(M), and so(
p
∫ ∞

0
λp−1meas(Eλ,3)dλ

)1/p

= 2

∥∥∥∥∥∥ sup
i=1,...,N

|E0(Ti f )|

∥∥∥∥∥∥
Lp(M)

≤ C[m]s|vol(M)|1/p‖ f ‖L1(M) ≤ C[m]s‖ f ‖Lp(M).

(4.7)

Combining the estimates (4.5), (4.6), and (4.7) we have∥∥∥ sup
1≤i≤N

|Ti f |
∥∥∥

Lp(M)
≤ C[m]s

√
log(N + 1)‖ f ‖Lp(M). (4.8)

The proof is completed. �
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Chapter 5

On strongly indefinite systems involving
the fractional Laplacian [Ch4]

5.1 Introduction

In this paper we shall study the following nonlinear problem
Asu = vp in Ω,

Asv = uq in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on ∂Ω,

(5.1)

where 0 < s < 1, p > 1, q > 1, Ω is a smooth bounded domain of Rn and As denotes the
fractional Laplace operator (−∆)s in Ω with zero Dirichlet boundary values on ∂Ω, defined in
terms of the spectra of the Dirichlet Laplacian −∆ on Ω.

The problem (5.1) with Ω = Rn has been studied by many authors (see e.g. [CLO, CLO2, Y]).
The problem was handled as an integro-differential system by inverting the operator (−∆)s to
(−∆)−s. This intepretation is particularly convenient in the case Ω = Rn.

Recently, Caffarelli and Silvestre [CaS] developed a local interpretation of the fractional
Laplacian given in Rn by considering a Neumann type operator in the extended domain Rn+1

+ :=
{(x, t) ∈ Rn+1 : t > 0}. This observation made a significant influence on the study of related
nonlocal problems. A similar extension was devised by Cabré and Tan [CT] and Capella, Dávila,
Dupaigne, and Sire [CDDS] (see Brändle, Colorado, de Pablo, and Sánchez [BCPS2] and Tan
[T2] also). Based on this local interpretation, we shall derive many important properties of the
solutions to the nonlocal system (5.1).

The fractional Laplacian appears in diverse areas including physics, biological modeling and
mathematical finances and partial differential equations involving the fractional Laplacian have
attracted the attention of many researchers. Many authors studied nonlinear problems of the
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form Asu = f (u), where f : Rn → R is a certain function. When s = 1
2 , Cabré and Tan

[CT] established the existence of positive solutions for equations having nonlinearities with the
subcritical growth, their regularity, the symmetric property, and a priori estimates of the Gidas-
Spruck type by employing a blow-up argument along with a Liouville type result for the square
root of the Laplacian in the half-space. Brändle, Colorado, de Pablo, and Sánchez [BCPS2] dealt
with a subcritical concave-convex problem. For f (u) = uq with the critical and supercritical
exponents q ≥ n+2s

n−2s , the nonexistence of solutions was proved in [BCPS2, T1, T2] in which the
authors devised and used the Pohozaev type identities. The Brezis-Nirenberg type problem was
studied in [T1] for s = 1/2.

When s = 1 the nonlinear problem (5.1) corresponds the well-known Lane-Emden system,
−∆u = vp in Ω,

−∆v = uq in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on ∂Ω.

(5.2)

This system is a fundamental form among strongly coupled nonlinear systems and so it has re-
cieved a lot of interest from may authors.Generally, nonlinaer systems comes from mathematical
modelling such as Gierer-Meinhardt type system and solitary waves of coupled schrodinger sys-
tems. We refer to [CFM, FF, HV, FLN] and references therein, and the book [QS] for a survey
of this topic.

Before studying the problem (5.1) we shall establish a different proof for a priori estimate
for solutions to the problem 

Asu = f (u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(5.3)

Theorem 5.1.1. Let n ≥ 2 and 0 < s < 1. Assume that Ω ⊂ Rn is a smooth bounded domain and
f (u) = up, 1 < p < n+2s

n−2s .

Then, there exists a constant C(p,Ω) > 0 depending only on p and Ω such that every weak
solution of (1.1) satisfies

‖u‖L∞(Ω) ≤ C(p,Ω).

Moreover, the statement holds for any function f : R+ → R satisfying Condition A (see Section
4).

The result of Theorem 5.1.1 was proved by Cábre-Tan [CT] for s = 1/2 and Tan [?] for
1/2 < s < 1. They employed the blow-up argument with a combination of Liouville type results.
We carry out a different approach using Pohozaev identity. This can be seen as a the non-local
version of the argument in Figueiredo-Lions-Nussbaum [FLN] for the local case s = 1. In the
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non-local case, there arises some difficulty in using the Pohozaev identity which does not appear
in the local case s = 1 (see Remark 5.4.3). This difficulty will be overcomed by using the
estimates of Proposition 5.3.1.

As this approach does not require a Liouville-type result, the function f (u) is not required
to have a precise asymptocity as u → ∞. Moreover, this approach is easily modified to obtain
a priori estimates for the nonlinear system (5.1) (see Theorem 5.1.5 below).

Concerning the problem (5.1) we shall say that a pair of exponents (p, q) is sub-critical if
1

p+1 + 1
q+1 >

n−2s
n , critical if 1

p+1 + 1
q+1 = n−2s

n , and super-critical if 1
p+1 + 1

q+1 <
n−2s

n . Then we have
the following existence result.

Theorem 5.1.2. Suppose that (p, q) is sub-critical and choose α > 0 and β > 0 such that

1
2
−

1
q + 1

<
α

n
,

1
2
−

1
p + 1

<
β

n
, and α + β = 2s.

Then, the problem (5.1) has at least one positive solution (u, v) ∈ Hα
0 (Ω) × Hβ

0(Ω).

We refer to Section 2 for the definition of weak solution and the Sobolev space Hα
0 (Ω). This

existence theorem will follow easily by adapting the proof of the existence result for the problem
(5.1) with s = 1 established in [FF] and [HV] independently. For such weak solutions, we shall
prove an L∞ estimate of Brezis-Kato type and study the regularity property of the weak solutions
based on the results of Cabré-Sire [CaS].

For further properties of solutions to (5.1) we shall relying on studying the extension problem
of (5.1) in the sense of Caffarelli-Silvestre [CaS] and Cabré-Tan [CT], namely,

div(t1−2s∇U) = div(t1−2s∇V) = 0 in C := Ω × [0,∞),
U = V = 0 on ∂LC := ∂Ω × [0,∞),
∂s
νU = V p, ∂s

νV = Uq on Ω × {0},
U > 0, V > 0 in C.

(5.4)

Here U and V are called the s-harmonic extensions of u and v. We refer to Section 2, for the
details. By obtaining a Pohozaev type identity on C, we shall get the following non-existence
result.

Theorem 5.1.3. Assume that the domain Ω is bounded and starshaped. Suppose that (p, q) is
critical or sub-critical. Then the problem (5.1) has no bounded solution.

Next we shall establish a moving plane argument and a maximum principle for the extended
problem, to prove the following symmetry result.

Theorem 5.1.4. Suppose that a bounded smooth domain Ω ⊂ Rn is convex in the x1-direction
and symmetric with respect to the hyperplane {x1 = 0}. Let (u, v) be a C1(Ω̄) solution of (5.1).

Then, the functions u and v are symmetric in x1-direction, that is, u(−x1, x′) = u(x1, x′),
v(x1, x′) = v(−x1, x′) for all (x1, x′) ∈ Ω. Moreover we have ∂u

∂x1
< 0 and ∂v

∂x1
< 0 for x1 > 0.
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The moving plane argument will be also useful to obtain a uniform bound for solutions
near the boundary. Combining this uniform bound with the inequality of Proposition 5.3.1, and
Sobolev embeddings we shall establish the following a priori estimate of Gidas-Spruck type.

Theorem 5.1.5. Assume that Ω ⊂ Rn is a smooth convex bounded domain and p > 1 and q > 1
are such that (p, q) is sub-critical. Then, there exists a constant C(p, q,Ω) depeding only on p, q
and Ω such that every weak solution of (5.1) satisfies

‖u‖L∞(Ω) + ‖v‖L∞(Ω) ≤ C(p, q,Ω).

The rest of this paper is organized as follows. In Section 2 we briefly review the basic results
concerning the fractional Laplacian. In Section 3 we shall establish the integral estimate related to
the Pohozaev type identities for solutions to (5.1) and (5.3). Having this estimate, we shall prove
Theorem 5.1.1 in Section 4. The nonlinear system (5.1) will be studied throughout Section 5. We
obtain the existence and the non-existence results of Theorem 5.1.2 and Theorem 5.1.3. Then we
shall establish the Brezis-Kato type result and study the regularity of solutions to (5.1). Finally
we shall establish the moving plane argument, and we shall complete the proofs of Theorem
5.1.4 and Theorem 5.1.5.

Notations.

We shall use the following notations in this paper.
- The letter z represents a variable in the Rn+1. Also, it is written as z = (x, t) with x ∈ Rn and
t ∈ R.
- C > 0 is a generic constant that may vary from line to line. In particular, the generic constants
are independent of solutions to (5.1) and (5.3) in the proofs of Theorem 5.1.1 and Theorem 5.1.5.
- For each r > 0 we set I(Ω, r) = {x ∈ Ω : dist(x, ∂Ω) ≥ r} and O(Ω, r) = {x ∈ Ω : dist(x, ∂Ω) <
r}.

5.2 Preliminaries

In this section we first recall the backgrounds of the fractional Laplacian. We review the definition
of fractional Sobolev spaces, the local interpretation of fractional Laplacians, and an embedding
property.

5.2.1 Spectral definition of the fractional Sobolev spaces and fractional
Laplacians

Let Ω be a smooth bounded domain of Rn. Let also {λk, φk}
∞
k=1 be a sequence of the eigenval-

ues and corresponding eigenvectors of the Laplacian operator −∆ in Ω with the zero Dirichlet
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boundary condition on ∂Ω, {
−∆φk = λkφk in Ω,

φk = 0 on ∂Ω,

such that ‖φk‖L2(Ω) = 1 and λ1 < λ2 ≤ λ3 ≤ · · · . Then we set the fractional Sobolev space H s
0(Ω)

(0 < s < 1) by

H s
0(Ω) =

u =

∞∑
k=1

akφk ∈ L2(Ω) :
∞∑

k=1

a2
kλ

s
k < ∞

 , (5.1)

which is a Hilbert space whose inner product is given by〈 ∞∑
k=1

akφk,

∞∑
k=1

bkφk

〉
Hs

0(Ω)

=

∞∑
k=1

akbkλ
s
k if

∞∑
k=1

akφk,

∞∑
k=1

bkφk ∈ H s
0(Ω).

Moreover, for a function in H s
0(Ω), we define the fractional Laplacian As : H s

0(Ω) → H s
0(Ω) '

H−s
0 (Ω) as

As

 ∞∑
k=1

akφk

 =

∞∑
k=1

akλ
s
kφk. (5.2)

We also consider the square root A1/2
s : H s

0(Ω) → L2(Ω) of the positive operator As which is in
fact equal toAs/2. Note that by the above definitions, we have

〈u, v〉Hs
0(Ω) =

∫
Ω

A1/2
s u · A1/2

s v =

∫
Ω

Asu · v for u, v ∈ H s
0(Ω).

5.2.2 Extended problems of nonlinear systems

For functions f : [0,∞)→ R and g : [0,∞)→ R we consider the following extension problems
div(t1−2s∇U) = div(t1−2s∇V) = 0 in C,
U = V = 0 on ∂LC,

∂s
νU = f (V) on Ω × {0},
∂s
νV = g(U) on Ω × {0},

(5.3)

Then, (5.3) with f (x) = xp and g(x) = xq is the extended problem of (5.1), i.e., if (U,V) ∈
H s

0,L(Ω) × H s
0,L(Ω) is a solution of (5.3), then their traces u(x) := U(x, 0) and v(x) := V(x, 0)

becomes a solution of (5.1). Similarly the problem (5.3) is extended to the local-problem
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = f (U) on Ω × {0}.

(5.4)
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5.2.3 Definition of weak solutions

Let g ∈ L
2n

n+2s (Ω) and consider the problem{
Asu = g(x) in Ω,

u = 0 on ∂Ω,
(5.5)

For each 0 < α < 2s we say that a function u ∈ Hα
0 (Ω) is a weak solution of (5.5) provided∫

Ω

A α
2
u · A (2s−α)

2
φ dx =

∫
Ω

g(x)φ(x) dx (5.6)

for all φ ∈ H(2s−α)
0 (Ω).

As for the extended problem
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = g(x) on Ω × {0},

(5.7)

we say that a function U ∈ H s
0,L(C) is a weak solution of (5.7) provided∫

C

t1−2s∇U(x, t) · ∇Φ(x, t) dxdt = Cs

∫
Ω

g(x)Φ(x, 0) dx (5.8)

holds for all Φ ∈ H s
0,L(C).

5.2.4 The sobolev embedding

We recall the well-known weighted trace inequality (see [Lb]),(∫
Ω

|U(x, 0)|
2n

n−2s dx
) n−2s

2n

≤ C
(∫
C

t1−2s|∇U(x, t)|2dxdt
) 1

2

, U ∈ H1
0(t1−2s,C). (5.9)

As an application, we have the following embedding result.

Lemma 5.2.1. Let w ∈ Lp(Ω) for some p < n
2s .

1. Assume that U is a weak solution of the problem
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = w on Ω × {0}.

(5.10)

Then we have
‖U(·, 0)‖Lq(Ω) ≤ Cp,q ‖w‖Lp(Ω) , (5.11)

for any q such that n
q ≤

n
p − 2s.
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2. Assume that u is a weak solution of the problem{
Asu = w in Ω,

u = 0 on ∂Ω.
(5.12)

Then we have
‖u‖Lq(Ω) ≤ Cp,q‖w‖Lp(Ω), (5.13)

for any q such that n
q ≤

n
q − 2s.

Proof. We multiply (5.10) by |U |β−1U for some β > 1 to get∫
Ω

w(x)|U |β−1U(x, 0) dx = β

∫
C

t1−2s|U |β−1|∇U |2 dxdt. (5.14)

Then, applying the trace embedding (5.9) and Hölder’s inequality we can observe∥∥∥∥|U | β+1
2 (·, 0)

∥∥∥∥2

L
2n

n−2s (Ω)
≤ Cβ

∥∥∥|U |β(·, 0)
∥∥∥

L
β+1
2β ·

2n
n−2s
‖w‖p , (5.15)

where p satisfies 1
p +

(n−2s)β
n(β+1) = 1. Let q =

n(β+1)
n−2s , then (5.15) gives the desired inequality.

Let u be a weak solution of (5.12). We let U be the s-harmonic extension of u. Then, U is a
solution of (5.10), and so (5.11) yields

‖u‖Lq(Ω) = ‖U(·, 0)‖Lq(Ω) ≤ Cp,q‖w‖Lp(Ω). (5.16)

The proof is completed. �

5.2.5 Green’s functions and the Robin function

We have Green’s function GC = GC(z, x) (z ∈ C, x ∈ Ω) of the problem.
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = g on Ω × {0},

(5.17)

A function U in C solving the problem (5.17) for some function g on Ω × {0} is expressed as

U(z) =

∫
Ω

GC(z, y)g(y)dy, z ∈ C,

where u = tr|Ω×{0}U. We have the following formula (see [CKL] for more details)

GC((x, t), y) = GRn+1
+

((x, t), y) − HC((x, t), y), (5.18)

where
GRn+1

+
((x, t), y) :=

an,s

|(x − y, t)|n−2s , (5.19)
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and the regular part HC : C → R satisfies
div

(
t1−2s∇(x,t)HC((x, t), y)

)
= 0 in C,

HC(x, t, y) =
an,s

|(x−y,t)|n−2s on ∂LC,

∂s
νHC((x, 0), y) = 0 on Ω × {0}.

Here an,s is a positive constant determined by n and s. The existence of such a function HC was
obtained using a variational method in [CKL]. In addition, we have the followng boundedness
property ofHC.

Lemma 5.2.2 ([CKL]). For any setD ∈ C such that dist(D, ∂LC) > 0, we have

sup
y∈Ω

∫
D

t1−2s|∇zHC(z, y)|2dz < +∞. (5.20)

This lemma will be used to the integral estimate in the next section.

5.3 The integral estimates

In this section we establish useful integral estimates which hold for solutions to (5.1) and (5.3).
These will be crucially used in the proof of the a priori estimates of Theorem 5.1.1 and Theorem
5.1.5. For each r > 0 we set I(Ω, r) = {x ∈ Ω : dist(x, ∂Ω) ≥ r} and O(Ω, r) = {x ∈ Ω :
dist(x, ∂Ω) < r}. Then we have the following results.

Proposition 5.3.1.

1. Suppose that U ∈ H s
0,L(C) is a solution of the problem (5.4) with f such that f = F′ for a

function F ∈ C1(R). Then, for each δ > 0 and γ > n
s there is a constant C = C(δ, γ) > 0

such that

min
r∈[δ,2δ]

∣∣∣∣∣∣n
∫
I(Ω,r/2)×{0}

F(U)dx −
(
n − 2s

2

) ∫
I(Ω,r/2)×{0}

U f (U)dx

∣∣∣∣∣∣
≤ C

(∫
O(Ω,2δ)×{0}

| f (U)|γdx
) 2
γ

+

∫
O(Ω,2δ)×{0}

|F(U)|dx +

(∫
I(Ω,δ/2)×{0}

| f (U)|dx
)2
 . (5.1)

2. Suppose that (U,V) ∈ H s
0,L(C) × H s

0,L(C) is a solution of the problem (5.3) with ( f , g) such
that f = F′, g = G′ for some functions F,G ∈ C1(R). Then, for each δ > 0 and γ > n

s there
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is a constant C = C(δ, γ) > 0 such that

min
r∈[δ,2δ]

∣∣∣∣∣∣n
∫
I(Ω,r/2)×{0}

[F(U) + G(V)] dx −
∫
I(Ω,r/2)×{0}

[(
n − 2s

2
− θ

)
U f (U) + θVg(V)

]
dx

∣∣∣∣∣∣
≤ C

(∫
O(Ω,2δ)×{0}

(| f (U)| + |g(V)|)γdx
) 2
γ

+

∫
O(Ω,2δ)×{0}

|F(U)| + |G(V)|dx

+

(∫
I(Ω,δ/2)×{0}

| f (U)| + |g(V)|dx
)2

.

(5.2)

Remark 5.3.2. The statement (1) of Proposition 5.3.1 was proved in [CKL]. We note that if u is
a solution of (5.4), then (u, u) is a solution of (5.3) with g = f and q = p. Thus the statement (1)
follows directly from the statement (2) in Proposition 5.3.1.

Proof. As it explained above, it suffices to prove (5.2) only. Let (U,V) ∈ H s
0,L(C) × H s

0,L(C) are
solutions of (5.3). Then, by a direct computation, we have the following identity

(n − 2s)t1−2s∇U · ∇V + div[t1−2s(z,∇V)∇U + t1−2s(z,∇U)∇V] − div(t1−2sz(∇U · ∇V)) = 0. (5.3)

For a given set A ∈ C, we denote ∂+A = ∂A ∩ {(x, t) ∈ Rn+1, t > 0} and ∂bA = A ∩ {(x, t) ∈
Rn+1, t = 0}. Using integration by parts we have∫

A
t1−2s∇U · ∇V dxdt =

∫
∂+A

t1−2s(∇U, ν)v dS +

∫
∂bA

∂s
νU V(x, 0)dx

=

∫
∂+A

t1−2s(∇V, ν)U dS +

∫
∂bA

∂s
νU V(x, 0)dx.

(5.4)

We also have∫
A

div
[
t1−2s(z,∇V)∇U + t1−2s(z,∇U)∇V

]
dxdt

=

∫
∂+A

[
t1−2s(z,∇V)(∇U, ν) + t1−2s(z,∇U)(∇V, ν)

]
dS +

∫
∂bA

(x,∇xV)∂s
νU + (x,∇xU)∂s

νVdx,

(5.5)

and ∫
A

div(t1−2sz(∇U · ∇V))dxdt =

∫
∂+A

t1−2s(z, ν)(∇U · ∇V)dS . (5.6)

Now we define for each r > 0 the following sets:

Dr =
{
z ∈ Rn+1

+ : dist(z,I(Ω, r) × {0}) ≤ r/2
}
,

∂D+
r = ∂Dr ∩

{
(x, t) ∈ Rn+1 : t > 0

}
and Eδ =

2δ⋃
r=δ

∂D+
r .
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Note that ∂Dr = ∂D+
r ∪ (I(Ω, r/2) × {0}). Fix a small number δ > 0 and a value θ ∈ [0, n − 2s].

We integrate the identity (5.3) over Dr for each r ∈ (0, 2δ] to derive

θ

∫
I(Ω,r/2)×{0}

∂s
νU · V(x, 0)dx + (n − 2s − θ)

∫
I(Ω,r/2)×{0}

∂s
νV · U(x, 0)dx

+

∫
I(Ω,r/2)×{0}

[
(x,∇xV)∂s

νU + (x,∇xU)∂s
νV

]
(x, 0)dx

= −θ

∫
∂D+

r

t1−2s(∇U, ν)VdS − (n − 2s − θ)
∫
∂D+

r

t1−2s(∇V, ν)UdS

+

∫
∂D+

r

t1−2s(z, ν)(∇U · ∇V)dS −
∫
∂D+

r

[
t1−2s(z,∇V)(∇U, ν) + t1−2s(z,∇U)(∇V, ν)

]
dS ,

(5.7)

where (5.4), (5.5), and (5.6) are used. By using ∂s
νU = f (V), ∂s

νV = g(V) and performing inte-
gration by parts, we derive

θ

∫
I(Ω,r/2)×{0}

g(V) · Vdx + (n − 2s − θ)
∫
I(Ω,r/2)×{0}

f (U) · Udx −
∫
I(Ω,r/2)×{0}

[nF(U) + nG(V)] dx

= −θ

∫
∂D+

r

t1−2s(∇U, ν)VdS − (n − 2s − θ)
∫
∂D+

r

t1−2s(∇V, ν)UdS

+

∫
∂D+

r

t1−2s(z, ν)(∇U · ∇V)dS −
∫
∂D+

r

[
t1−2s(z,∇V)(∇U, ν) + t1−2s(z,∇U)(∇V, ν)

]
dS

+

∫
∂I(Ω,r/2)×{0}

(x, ν)(F(U) + G(V))(x, 0)dS x.

From this identity we get∣∣∣∣∣∣
∫
I(Ω,r/2)×{0}

[
θg(V) · V − nG(V)

]
dx +

∫
I(Ω,r/2)×{0}

[
(n − 2s − θ) f (U) · U − nF(U)

]
dx

∣∣∣∣∣∣
≤ C

∫
∂D+

r

t1−2s(|∇U |2 + U2 + |∇V |2 + V2)dS +

∫
∂I(Ω,r/2)×{0}

〈x, ν〉(F(U) + G(V))(x, 0)dS x.

We integrate this identity with respect to r over an interval [δ, 2δ] and then use the Poincaré
inequality. Then we observe

min
r∈[δ,2δ]

∣∣∣∣∣∣
∫
I(Ω,r/2)×{0}

[
θg(V) · V − nG(V)

]
dx +

∫
I(Ω,r/2)×{0}

[
(n − 2s − θ) f (U) · U − nF(U)

]
dx

∣∣∣∣∣∣
≤ C

∫
Eδ

t1−2s(|∇U |2 + U2 + |∇V |2 + V2)dz + C
∫
O(Ω,δ)

|F(U)(x, 0)| + |G(V)(x, 0)|dx.

We only need to estimate the first term of the right-hand side of the previous inequality since the
second term is already one of the terms which constitute the right-hand side of (5.2).
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We are going to estimate
∫

Eδ
t1−2s|∇U |2dz. Note that

∇zU(z) =

∫
Ω

∇zGRn+1
+

(z, y) f (V)(y, 0)dy −
∫

Ω

∇zHC(z, y) f (V)(y, 0)dy (5.8)

for z ∈ Eδ. Let us deal with the last term of (5.8) first. Using (5.20) and Hölder’s inequality, we
get ∫

Eδ
t1−2s

(∫
Ω

|∇zHC(z, y) f (V)(y, 0)|dy
)2

dz

≤

(
sup
y∈Ω

∫
Eδ

t1−2s|∇zHC(z, y)|2dz
) (∫

Ω

| f (V)(y, 0)|dy
)2

≤ C
(∫
I(Ω,δ)∪O(Ω,δ)

| f (V)(y, 0)|dy
)2

≤ C

(∫
O(Ω,2δ)

| f (V)(y, 0)|qdy
) 2

q

+

(∫
I(Ω,δ/2)

| f (V)(y, 0)|dy
)2
 ,

(5.9)

which is a part of the right-hand side of (5.2).
It remains to take into consideration of the first term of (5.8). We split the term as∫

Ω

∇zGRn+1
+

(z, y) f (V)(y, 0)dy

=

∫
O(Ω,2δ)

∇zGRn+1
+

(z, y) f (V)(y, 0)dy +

∫
I(Ω,2δ)

∇zGRn+1
+

(z, y) f (V)(y, 0)dy

:= A1(z) + A2(z).

Take q > n
s and r > 1 satisfying 1

q + 1
r = 1. Then

|A1(z)| ≤
(∫
O(Ω,2δ)

|∇zGRn+1
+

(z, y)|rdy
) 1

r

‖ f (V)(·, 0)‖Lq(O(Ω,2δ)).

In light of the definition of GRn+1
+

, it holds that(∫
O(Ω,2δ)

|∇zGRn+1
+

(z, y)|rdy
) 1

r

≤ C
(∫
O(Ω,2δ)

1
|(x − y, t)|(n−2s+1)r dy

) 1
r

≤ C max
{
t

n
r −(n−2s+1), 1

}
= C max

{
t−

n
q +2s−1, 1

}
.

Thus we have
|A1(z)| ≤ C max

{
t−

n
q +2s−1, 1

}
‖ f (V)(·, 0)‖Lq(O(Ω,2δ)).

Using this we see∫
Eδ

t1−2s|A1(z)|2dz ≤ C
∫ 1

0
max

{
t1−2st−

2n
q +4s−2, t1−2s

}
‖ f (V)(·, 0)‖2Lq(O(Ω,2δ))dt

=

∫ 1

0
max

{
t2s− 2n

q −1, t1−2s
}
‖ f (V)(·, 0)‖2Lq(O(Ω,2δ))dt.

≤ C‖ f (V)(·, 0)‖2Lq(O(Ω,2δ)).

(5.10)
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Concerning the term A2, we note that Eδ is away from I(Ω, 2δ) × {0}. Thus we have

sup
z∈Eδ,y∈I(Ω,2δ)

|∇zGRn+1
+

(z, y)| ≤ C.

Hence
|A2(z)| ≤ C

∫
I(Ω,2δ)

| f (V)(y, 0)|dy, z ∈ Eδ.

Using this we find ∫
Eδ

t1−2s|A2(z)|2dz ≤ C
(∫
I(Ω,2δ)

| f (V)(y, 0)|dy
)2

. (5.11)

We have obtained the desired bound of
∫

Eδ
t1−2s|∇U |2dz through the estimates (5.9), (5.10) and

(5.11). The estimates for
∫

Eδ
t1−2s|∇V |2dz,

∫
Eδ

t1−2s|U |2dz and
∫

Eδ
t1−2s|V |2dz can be obtained simi-

larly. The proof is finished. �

5.4 The proof of Theorem 5.1.1

In this section, we prove Theorem 5.1.1. Let us now state the general condition on f : [0,∞)→ R
for which Theorem 5.1.1 holds.
Condition A: The function f satisfies

lim inf
u→∞

f (u)
u

> λs
1, lim

u→∞

f (u)
u(n+2s)/(n−2s) = 0,

with one of the following assumptions

1. We have

lim sup
n→∞

u f (u) − θF(u)
u2 f (u)2s/n ≤ 0, for some θ ∈ [0,

2n
n − 2s

). (5.1)

2. Ω is convex or the function u→ f (u)u−
n+2s
n−2s is nonincreasing on (0,∞).

It is direct to check that f (u) = up with p ∈ (1, n+2s
n−2s ) satisfies Condition A for clearity.

The first step for the a priori estimates is to obtain a uniform L1 bound away from the bound-
ary and a uniform L∞ bound near the boundary for positive solutions.

Lemma 5.4.1. Suppose that Ω is a smooth bounded domain and f : [0,∞)→ R satisfies

lim inf
n→∞

f (u)
u

> λs
1. (5.2)

Then there exist a small number r > 0 and a constant C = C(r,Ω) > 0 such that for any solution
u of (5.3) we have ∫

I(Ω,r)
f (u)dx ≤ C, (5.3)
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and

sup
x∈O(Ω,r)

u(x) ≤ C. (5.4)

Proof. First we recall from (5.2) thatAsφ1(x) = λs
1φ1(x). Combining this and (5.3) we get∫

Ω

λs
1φ1u(x)dx =

∫
Ω

(Asφ1)u(x)dx =

∫
Ω

φ1(Asu)(x)dx =

∫
Ω

φ1 f (u)(x)dx. (5.5)

By the condtion (5.2) there are constants δ > 0 and C > 0 such that f (u) > (λs
1 + δ)u − C for all

u > 0. Combining this with (5.5) shows∫
Ω

λs
1φ1udx >

∫
Ω

(λs
1 + δ)uφ1dx −

∫
Ω

Cφ1dx,

which directly gives ∫
Ω

φ1u(x)dx ≤
1
δ

∫
Ω

Cφ1(x)dx ≤ C. (5.6)

It is well-known that there exists a constant C = C(Ω, r) such that φ1(x) ≥ C for all x ∈ I(Ω, r).
Hence (5.6) gives us that ∫

I(Ω,r)
udx ≤ C

∫
Ω

φ1udx ≤ C. (5.7)

Combining this with the identity (5.5), we get the estimate (5.3).
It remains to prove (5.4). It is standard to bound the value u(x) for x near the boundary by

a constant multiple of an integration of u over an inner subset of Ω. Consequently the bound
of (5.7) gives the desired bound (5.4)(see [QS, Lemma 13.2]). However we shall present the
argument here for the sake of completeness,

We first treat the case when Ω is strictly convex. In this case we can find constants α0 > 0 and
V0 > 0 such that for each point x ∈ ∂Ω there exists an open connected set Qx ⊂ S n−1 satisfying
|Qx| > V0 with the properties:

• Ax =: {x + tw | 0 ≤ t ≤ α0,w ∈ Qx} ⊂ Ω,

• Dividing Ω into two parts Ω1 and Ω2 by the plane Px = {x + tv | v ⊥ w} so that x ∈ Ω1 and
x < Ω2. Then, the reflection of Ω1 with respect to the plane Px is contained in Ω2.

Then the moving plane argument presented in [CT, T2] guarantees that the solution u satisfies

u(x + t1w) ≤ u(x + t2w), ∀ 0 ≤ t1 ≤ t2 ≤ α0 and w ∈ Qx. (5.8)
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Consequently, we can find constants α1 > 0 and V1 > 0 such that for any x ∈ O(Ω, α1) there exists
an open connected set Q̃x ⊂ S n−1 satisfying |Q̃x| > V1 and Ax = {x+tw | 0 ≤ t ≤ α1, w ∈ Q̃x} ⊂ Ω

and u(x) ≤ u(y) for any y ∈ Ax. As a result, we have

u(x) ≤
1
|Ax|

∫
Ax

u(y)dy ≤
C
V1

∫
I(Ω,α1)

u(y)dy, x ∈ O(Ω, α1). (5.9)

Then, the L1 bound of (5.3) gives the desired uniform bound of u(x) on O(Ω, α1).
In the case of general domains without the convexity assumption, it is difficult to adapt di-

rectly the moving plane argument to deduce the fact that u increases along any line starting from
a point on ∂Ω. Instead we shall argue a moving plane method after applying the Kelvin transform
to v in the space Rn+1, which will yield a weaker version of the increasing property.

Since Ω is smooth, for a point x0 we can find a ball which contact x0 from the exterior of Ω.
We may assume x0 = 1 and the ball is B(0, 1) without loss of generality. We denote by U the
s-harmonic extension of u and we set

w(z) = |z|2s−nU
(

z
|z|2

)
.

Then, w satisfies 
div(t1−2s∇w) = 0 in κ(C),
w > 0 in κ(C),
w = 0 on κ(∂Ω × [0,∞)),
∂s
νw = g(y,w) on κ(Ω × {0}),

where g(y,w) := f (|y|n−2sw)/|y|n+2s and κ(A) := { z
|z|2 : z ∈ A} for any set A ⊂ Rn+1. Here we note

that κ(C) ⊂ B(0, 1) because C ∩ B0(0, 1) = φ. Now, for each λ > 0 we set

• Dλ = κ(C) ∩ {z ∈ Rn+1
+ : |z| ≤ 1, z1 > 1 − λ},

• ∂bDλ = Dλ ∩ ∂R
n+1
+ ,

• Tλ(y) = (2 − 2λ − y1, y2, · · · , yn+1).

Let wλ(y) = w(Tλ(y)) and ζλ = wλ −w defined on Dλ. We claim that vλ ≥ 0 if λ > 0 is sufficiently
small. Set v−λ = max{0,−vλ}. Then,

0 =

∫
Dλ

ζ−λ div(t1−2s∇ζλ)dxdy

=

∫
∂bDλ

ζ−λ ∂
s
νζλdx +

∫
Dλ

t1−2s|∇ζ−λ |
2dxdy.

(5.10)
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We have ∫
∂bDλ

(−ζ−λ )∂s
νζλdx =

∫
∂bDλ

(−ζ−λ )(g(Tλx,wλ) − g(x,w))dx

=

∫
∂bDλ∩{wλ≤w}

(w − wλ)(g(x,w) − g(Tλx,wλ))dx
(5.11)

Since u → f (u)u−
n+2s
n−2s is nonincreasing, we see that g(x,w) ≤ g(Tλx,wλ) because |x| ≥ |Tλ(x)|.

Using this we deduce that∫
Dλ

t1−2s|∇ζ−λ |
2dxdy ≤

∫
∂bDλ∩{wλ≤w}

(w − wλ)(g(x,w) − g(x,wλ))dx

≤

∫
∂bDλ∩{wλ≤w}

(w − wλ)2h(x,w,wλ)dx

=

∫
∂bDλ∩{wλ≤w}

(ζ−λ )2h(x,w,wλ)dx,

(5.12)

where h(x,w,wλ) =
g(x,w)−g(x,wλ)

w−wλ
. Since f is locally Lipschitz the function h is bounded by a

constant multiple of sup∂bDλ
(|w| + |wλ|). By Hölder’s inequality we deduce that∫

Dλ

t1−2s|∇ζ−λ |
2dxdy ≤ C

∫
∂bDλ∩{wλ≤w}

(ζ−λ )2dx

≤ C1|∂bDλ ∩ {wλ ≤ w}|2s/n‖ζ−λ (·, 0)‖2L2n/(n−2s)(Ω).

(5.13)

Using the trace inequality, we get

‖ζ−λ (·, 0)‖2L2n/(n−2s)(Ω) ≤ C1|∂bDλ ∩ {wλ ≤ w}|2s/n‖ζ−λ (·, 0)‖2L2n/(n−2s)(Ω). (5.14)

If λ > 0 is sufficiently small so that λ < δ := C−
n
2s

1 , then we have

C1|∂bDλ ∩ {wλ ≤ w}|2s/n ≤ C1|∂bDλ| < 1. (5.15)

Combining this with (5.14) yields that ζ−λ ≡ 0 for such λ.
Now we set

η = sup{λ > 0 : Tλ(Dλ) ⊂ κ(C)},

and

S :=
{
0 < λ ≤

η

2
: ζλ ≥ 0 on Dλ

}
∪ {0}.

We shall prove that S = [0, η/2]. Since ζλ is a continuous function of λ, the set S is closed. Thus,
it is enough to show that S is also open in [0, η/2]. Note that the constant C1 in the inequality
(5.13) can be chosen uniformly for λ ∈ [0, η/2] since sup0<λ<η/2 sup∂bDλ

[|w| + |wλ|] is bounded.
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Choose any 0 < λ0 < η/2 contained in S . Then we have ζλ0 ≥ 0. Since ζλ0 > 0 on κ(∂Ω ×

[0,∞))∩Dλ0 and div(t1−2s∇ζλ0) ≡ 0 in Dλ0 , we see that ζλ0 > 0 in Dλ0 by the maximum principle
(see e.g. [CS]). Thus we can find c > 0 such that

|Dλ0,c| := {x ∈ Dλ0 : ζλ0 > c}| ≥ |Dλ0 | − δ/2.

By continuity, there is ε > 0 such that ζλ > c
2 on Dλ0,c and |Dλ \ Dλ0 | <

δ
2 for λ ∈ [λ0, λ0 + ε). For

such λ we then see that

|

{
x ∈ Dλ : ζλ >

c
2

}
| ≥ |Dλ0,c| ≥ |Dλ0 | −

δ

2

> |Dλ| −
δ

2
−
δ

2
= |Dλ| − δ.

This yields that

|{x ∈ Dλ : ζλ ≤ 0}| > δ.

Then the inequality (5.13) again implies that ζλ ≥ 0 for λ ∈ [λ0, λ0 + ε). Therefore we have that
w increases in any line in Ω starting from a boundary point. Then, by definition of w we deduce
a weaker version of (5.8):

u(x + t1w) ≤ Cu(x + t2w), ∀ 0 ≤ t1 ≤ t2 ≤ α0 and w ∈ Qx. (5.16)

Here C > 1 is a constant which is determined only by the domain Ω. Having this inequality,
we can argue similarly to derive the L∞ bound near the boundary ∂Ω as in the convex case. It
completes the proof. �

The next step is to derive a uniform bound of a higher order integration of u on the whole
domian Ω.

Proposition 5.4.2. Suppose that 1 < p < n+2s
n−2s and let u ∈ C2(C̄) be a solution of the equation

(5.3) with f (u) = up. Then there exists a constant C = C(p,Ω) > 0 such that∫
Ω

up+1(x)dx ≤ C. (5.17)

Generally, for any function f : [0,∞) → R satisfying Condition A, there exists a constant
C = C( f ,Ω) > 0 such that ∫

Ω×{0}

{
nF(u) −

n − 2s
2

u f (u)
}

dx ≤ C,

where F(v) :=
∫ v

0
f (s)ds.
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Proof. By Lemma 5.4.1 there are a number δ > 0 and a constant C = C(δ,Ω) > 0 so that

sup
O(Ω,2δ)

u(x) ≤ C, (5.18)

and ∫
I(Ω,δ)

f (u)(x)dx ≤ C. (5.19)

Then we apply these estimates to the inequality (5.20)

min
r∈[δ,2δ]

∣∣∣∣∣∣
∫
I(Ω,r)

nF(u) −
(
n − 2s

2

)
u f (u)dx

∣∣∣∣∣∣
≤ C

(∫
O(Ω,2δ)×{0}

| f (u)|γdx
) 2
γ

+

∫
O(Ω,2δ)×{0}

|F(u)|dx +

(∫
I(Ω,δ/2)×{0}

| f (u)|dx
)2
 . (5.20)

Then we obtain

min
r∈[δ,2δ]

∣∣∣∣∣∣
∫
I(Ω,r)

nF(u) −
(
n − 2s

2

)
u f (u)dx

∣∣∣∣∣∣ ≤ C. (5.21)

Combining this with (5.18) gives the estimate∣∣∣∣∣∣
∫

Ω×{0}
nF(u) −

(
n − 2s

2

)
u f (u)dx

∣∣∣∣∣∣ ≤ C. (5.22)

It proves the general case. Note that if f (u) = up with p < n+2s
n−2s we have

nF(u) −
(
n − 2s

2

)
u f (u) =

(
(n + 2s) − (n − 2s)p

2(p + 1)

)
u(p+1). (5.23)

Thus (5.22) gives the bound (5.17), and so the proof is completed. �

Remark 5.4.3. In the local problem −∆u = up in Ω, u = 0 on ∂Ω, with 1 < p < n+2
n−2 , given the

L∞ bound (5.4) of a solution unear the boundary, one can use W1,p regularity estimate on O(Ω, δ)
to get the L∞ estimates of |∇u| on the O(Ω, δ/2). Then, for f (u) = up and p < n+2

n−2 , the Pohozaev
identity ∫

∂Ω

∣∣∣∣∣∂u
∂n

∣∣∣∣∣2 (x, ν)dσ =

(
n

p + 1
−

n − 2
2

) ∫
Ω

up+1dx

gives a uniform bound of
∫

Ω
up+1dx. Having this bound, we can use the Sobolev embeddings iter-

atively to get the uniform bound of ‖u‖L∞(Ω). This is not applicable to our problem (5.3) because
the Pohozaev identity is given on the extended domain Ω × [0,∞) as follows (see [T1, Lemma
3.1])

1
2

∫
∂LC

t1−2s|∇U |2(z, ν)dσ =

(
n

p + 1
−

n − 2s
2

) ∫
Ω×{0}
|U |p+1dx, (5.24)
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where U is the harmonic extention of u. In this case the left-hand side would not be bounded by
using only the L∞ estimate of u(x) = U(x, 0) near ∂Ω since the harmonic extension U(z) is made
of all values of u(x) for x ∈ Ω. This is the reason that we need to rely on the integral estimates of
Proposition 5.3.1 in the above proof.

Given the higher order bound of Proposition 5.4.2, we shall use the Sobolev embedding
iteratively to obtain the L∞ estimate.

Proof of Theorem 5.1.1. For the sake of simplicity, first we prove the theorem for f (u) = up. Let
q1 be such that p

p+1 −
1
q1

= 2s
n . Since p < n+2s

n−2s we have q1 > p. Using Lemma 5.2.1 we get

‖u‖q1 ≤ C‖Asu‖ p+1
p
≤ C‖up‖ p+1

p
≤ C. (5.25)

Now we define the numbers qk for k ≥ 2 by the relation p
qk
− 1

qk+1
= 2s

n and stop the sequence
when we have p

qN
< 2s

n . Then, using Lemma 5.2.1, for k = 1, · · · ,N − 1, we deduce

‖u‖qk+1 ≤ C‖Asu‖ qk
p
≤ C‖up‖ qk

p
= C‖u‖p

qk .

Combining this with (5.25) we get ‖u‖qN ≤ C. Then, using Lemma 5.2.1 again we deduce that
‖u‖L∞ ≤ C. It completes the proof when the nonlinearity is given by f (u) = up, p < n+2s

n−2s .
Now we shall prove the theorem for general nonlinearity f satisfying Condition A. First we

see from Proposition 5.4.2 that∫
Ω×{0}

{
nF(v) −

n − 2s
2

v f (v)
}

dx ≤ C. (5.26)

From the condition (5.1), for any ε > 0, we can find C > 0 depending on ε such that

u f (u) ≤ θF(u) + εu2 f (u)2s/n + C. (5.27)

Using Hölder’s inequality and the Sobolev embedding we deduce that∫
Ω

u2| f (u)|
2s
n dx ≤ ‖u‖22n

n−2s (Ω)
‖ f (u)‖2s/n

L1(Ω) ≤ C‖A1/2
s u‖22, (5.28)

and we have ∫
Ω

u f (u)dx =

∫
Ω

uAsu dx =

∫
Ω

A1/2
s u · A1/2

s u dx = ‖A1/2
s u‖22. (5.29)

From (5.26) and (5.27), we can deduce that(
n
θ
−

n − 2s
2

) ∫
Ω

u f (u)dx ≤
ε

θ

∫
Ω

u2 f (u)
2s
n dx + C.
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Choose ε = ε(θ, n) > 0 small enough so that
(

n
θ
− n−2s

2

)
> ε

θ
. Then combining (5.28) and (5.29)

with the above inequality yields for a constant C = C(θ, n) > 0 we have(
n
θ
−

n − 2s
2

)
‖A1/2

s u‖22 ≤ C
ε

θ
‖A1/2

s u‖22 + C, (5.30)

which implies

‖A1/2
s u‖22 ≤ C. (5.31)

Let p > 1 and q = (p + 1) n
n−2s . Then(∫

Ω

uqdx
) n−2s

n

= ‖u(p+1)/2‖22n
n−2s

≤ C
∫

Ω×(0,∞)
|∇u

(p+1)
2 |2dx = Cp

∫
Ω×(0,∞)

∇u · ∇(up)dx

= Cp

∫
Ω

∂u
∂ν
· updx

≤ εCp

∫
Ω

u
n+2s
n−2s updx + C.

(5.32)

Since p + 1 = n−2s
n q we have∫

Ω

u
n+2s
n−2s updx =

∫
Ω

uq(n−2s)/nu
2

n−2s dx

≤

(∫
Ω

uq(n−2s)/n· n
n−2s dx

) n−2s
n

(∫
Ω

u
2

n−2s ·ndx
) 2s

n

≤ C
(∫

Ω

uq(n−2s)/n· n
n−2s dx

) n−2s
n

‖A1/2
s u‖

2
n−2s
2

≤ C
(∫

Ω

uqdx
) n−2s

n

,

(5.33)

where we used (5.31) in the last estimate. Combinig this with (5.32) yields that(∫
Ω

uqdx
)1/q

≤ C,

Since p is an arbitrary number, q may also become arbitrary large, and so we can use Lemma
5.2.1 again to deduce that

‖u‖L∞ ≤ C.

It completes the proof. �
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5.5 On the nonlinear system (5.1)

In this section, we study the nonlinear system (5.1) and its extension problem (5.4). First, the
existence of weak solution and Brezis-Kato type estimate will follow from the same proof of
[HV]. For these part, we do not need to consider the extended problem. But for further investi-
gation of the non-local problem (5.1) we shall heavily rely on studying the local interpretation
(5.4). We shall obtain a Pohozaev type identity on the cylinder C, which yields the nonexistence
of non-trivial solutions for the problem (5.1) in critical and supercritical cases. Next, a symmety
result will be obtained by a moving plane argument. Lastly, we shall obtain a priori estimates for
subcritical cases by applying the approach used for Theorem 5.1.1.

The existence result follows by applying the proof of [HV, Theorem 1] for the case s = 1
with only minor modifications. The idea is to consider the following sets

• Ea(Ω) = Ha(Ω) × H2s−a(Ω), 0 < a < 2s,

• E± = {(u,±(−∆)a−2su) : u ∈ Ha(Ω)},

and to find a solution (u, v) in the space Ea(Ω) for some 0 < a < 2s such that Ha(Ω) → Lq+1(Ω)
and H2s−a(Ω) → Lp+1(Ω) are compact embeddings. Such a choice of a is possible when (p, q) is
sub-critical. The spaces E± are aimed to turn Ea into a direct sum of two Hilbert spaces, namely,

Ea(Ω) = E+ ⊕ E− = {u = u+ + u−, u± ∈ E±}. (5.1)

We easily see that E± have their orthonormal basis{
1
√

2
(λ−a/2

k φk,±λ
a/2−s
k φk) : k = 1, 2, · · ·

}
. (5.2)

Let

L =

(
0 (−∆)2s−a

(−∆)a−2s 0

)
. (5.3)

Then,
1
2

(Lu,u)Ea =
1
2
〈(−∆)su+, u−〉. (5.4)

We set
H(u) =

1
q + 1

∫
Ω

|u+|q+1dx +
1

p + 1

∫
Ω

|u−1|p+1dx, (5.5)

and
L(u) =

1
2

(Lu,u)Ea −H(u). (5.6)

Then we see that a critical point (u+, u−) of the functional L(u) is a solution of the problem (5.1).
To find a critical point, we rely on the following result of Benci-Rabinowitz [BP].
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Theorem 5.5.1 (Indefinite Functional Theorem). Let H be a real Hilbert sapce with H = H1⊕H2.
Suppose L ∈ C1(H,R) satisfies the Palais-smale condition, and

1. L(u) = 1
2 (Lu,u)H −H(u), where L : H → H is bounded and self-adjoint, and L leaves H1

and H2 invariant;

2. H ′ is compact;

3. there exists a subspace H̄ ⊂ H and sets S ⊂ H, Q ⊂ H̄ and constants α > ω such that

(a) S ⊂ H1 and L |S≥ α,

(b) Q is bounded and L ≤ ω on the boundary ∂Q of Q in H̄,

(c) S and ∂Q link.

Then L possesses a critical value c ≥ α.

Proof of Theorem 5.1.2. Since (p, q) is sub-critical, we can find a value a ∈ (0, 2s) such that

1
2
−

1
q + 1

<
a
n

and
1
2
−

1
p + 1

<
2s − a

n
, (5.7)

which guarantees that Ha ↪→ Lq+1 and H2s−a ↪→ Lp+1 are compact embeddings. In order to find a
solution of the problem (5.1), we apply Theorem 5.5.1 for functional L defined by (5.6) with the
spaces H = Ea(Ω), H1 = E+, and H2 = E−. Then one can follow the proof of [HV, Theorem1]
with slight modification to check that the conditions (1)-(3) of Theorem 5.5.1 are satisfied, which
shows the existence of a weak solution (u, v). The only difference is the different ranges of index
in using the Sobolev embeddings. We refer to [HV] for the calculations. �

Next we shall prove an L∞ estimate of Brezis-Kato type L∞.

Proposition 5.5.2. Assume that (p, q) is critical or sub-critical. Let (u, v) be a weak solution of
(5.1). Then we have u ∈ L∞(Ω) and v ∈ L∞(Ω).

Proof. We consider the critical case only since the proof is applicable for sub-critical cases with
a minor modification.

Letting a = up−1 and b = vq−1, we have a ∈ L
p+1
p−1 (Ω) and b ∈ L

q+1
q−1 (Ω). Now we write (5.1) as{

Asv = a(x)u in Ω,

Asu = b(x)v in Ω.
(5.8)

Since a(x) ∈ L
p+1
p−1 (Ω), by considering u(x) = u(x)1u(x)>K + u(x)1u(x)≤K for a sufficiently large

K > 1, we may have
a(x)u(x) = qε(x)u(x) + fε(x), (5.9)
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where fε ∈ L∞(Ω) and ‖qε‖ p+1
p−1 (Ω) < ε, where ε > 0 is a small number to be determined below.

From (5.8) we have
u(x) = (As)−1(bv)(x), (5.10)

and
v(x) = (As)−1

[
qε(As)−1(bv)

]
(x) + (As)−1 fε(x). (5.11)

By letting an operatorD asDv = (As)−1
[
qε(As)−1(bv)

]
, we get from (5.11) that

(I −D)v = (As)−1 fε(x). (5.12)

As fε ∈ L∞(Ω) holds, we have (As)−1 fε ∈ L∞(Ω). Fix α > 1. Then, from Lemma 5.2.1 and
Hölder’s inequality, we have the following embedding properties

• w→ b(x)w is bounded form Lα(Ω) to Lα1(Ω) for

1
α1

=
q − 1
q + 1

+
1
α
. (5.13)

• w→ (As)−1w is bounded from Lα1(Ω) to Lα2(Ω) for

2s = n
(

1
α1
−

1
α2

)
. (5.14)

• w→ qε(x)w is bounded from Lα2 to Lα3 with the norm ‖qε‖
L

p+1
p−1 (Ω)

for

1
α3

=
p − 1
p + 1

+
1
α2
. (5.15)

• w→ (As)−1w is bounded from Lα4(Ω) to Lα3(Ω) for

2s = n
(

1
α3
−

1
α4

)
. (5.16)

We compute

n
α4

=
n
α3
− 2s = n

(
p − 1
p + 1

+
1
α2

)
− 2s = n

(
p − 1
p + 1

)
+

(
n
α1
− 2s

)
− 2s

= n
(

p − 1
p + 1

)
+ n

(
q − 1
q + 1

)
− 4s =

n
α

+ (2n − 4s) − 2n
(

1
p + 1

+
1

q + 1

)
=

n
α
,

(5.17)

which reveals that α4 = α. Therefore, by combining the above embedding properties, we see
that the map D : w → (As)−1

[
qε(As)−1(bw)

]
is bounded from Lα(Ω) to Lα(Ω) for any α > 1

with operator norm less than C‖qε‖
L

p+1
p−1 (Ω)

≤ Cε < 1
2 , which is guaranteed once we choose ε

sufficiently small. Combining this and the fact that (As)−1 fε ∈ Lα(Ω), we deduce from (5.12) that
v is bounded on Lα(Ω). Since α can be arbitrary large, we may use Lemma 5.2.1 to deduce that
u ∈ L∞(Ω). From this, and using Lemma 5.2.1 again, we deduce that v ∈ L∞(Ω). The lemma is
proved �
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Now we recall the regularity result from [CS]. Consider weak solution U ∈ H s
0,L(C) ∩ L∞(C)

to the problem 
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU(x, 0) = g(x) on Ω × {0}.

(5.18)

Then, for g ∈ Cα(Ω) with some α ≥ 0 we have
v ∈ Cα+2s(Ω) if α + 2s < 1,
v ∈ C1,α+2s−1(Ω) if 1 ≤ α + 2s < 2,
v ∈ C2,α+2s−2(Ω) if α + 2s > 2.

(5.19)

Here g ∈ C0(Ω) can be replaced by g ∈ L∞(Ω). Using this result iteratively, we can prove the
following result.

Proposition 5.5.3. Let (u, v) is a weak solution of (5.1) such that u ∈ H s1(Ω) ∩ L∞(Ω) and
v ∈ H s2(Ω) ∩ L∞(Ω) for some s1 > 0 and s2 > 0. Then it holds that u ∈ C1,α(Ω) and v ∈ C1,γ(Ω)
for some γ ∈ (0, 1).

Proof. Suppose that (u, v) is a weak solution of the problem (5.1). By Proposition 5.5.2, we have
that u ∈ L∞(Ω) and v ∈ L∞(Ω). Then, we can use (5.19) to deduce that u ∈ C2s(Ω) and v ∈ C2s(Ω).
Hence it holds that uq ∈ C2s(Ω) and vp ∈ C2s(Ω) because q > 1 and p > 1. Again, we can apply
(5.19) to deduce that u ∈ C4s(Ω). Iteratively, we can raise the regularity so that u ∈ C1,γ and
v ∈ C1,γ for some γ > 0. The proof is completed. �

We shall obtain a Pohozaev type identity for the system (5.4). It will gives the nonexistence
result for the critical and super-critical cases.

Theorem 5.5.4. Suppose that (U,V) ∈ H s
0,L(C) × H s

0,L(C) satisfies{
div(t1−2s∇U) = div(t1−2s∇V) = 0 in C,
U = V = 0 on ∂LC.

(5.20)

Then we have∫
∂LC

t1−2s(z · ν)
∂U
∂ν

∂V
∂ν

dσ

= −

∫
Ω×{y=0}

[(x,∇xV)∂s
νU + (x,∇xU)∂s

νV]dx − (n − 2s)
∫
C

t1−2s∇U · ∇Vdx.
(5.21)

Proof. Let (U,V) ∈ H s
0,L(C) × H s

0,L(C) be a solution of (5.20). Then, it follows from a direct
compuation that

div[t1−2sz · ∇V)∇U + t1−2sz · ∇U∇V]

= (z,∇V)div(t1−2s∇U) + (z,∇U)div(t1−2s∇V) + t1−2sz · ∇(∇U · ∇V) + 2t1−2s∇U · ∇V.
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Then, using (5.20) we have

div[t1−2s(z,∇V)∇U + t1−2s(z,∇U)∇V] = t1−2sz · ∇(∇U · ∇V) + 2t1−2s∇U · ∇V. (5.22)

We also have

div[t1−2s(z)(∇U · ∇V)] = (divt1−2sz)(∇U · ∇V) + t1−2sz · ∇(∇U · ∇V)

= (n + 2 − 2s)t1−2s(∇U · ∇V) + t1−2sz · ∇(∇U · ∇V).

Combining these two formulas we have

div[t1−2s(z,∇V)∇U + t1−2s(z,∇U)∇V] − div(t1−2sz(∇U · ∇V)) + (n − 2s)t1−2s∇U · ∇V = 0.(5.23)

Using the divergence theorem and the fact that U = V = 0 on ∂Ω × [0,R), we get∫
Ω×(0,R)

div[t1−2s(z,∇v)∇U + t1−2s(z,∇U)∇V]dx

=

∫
Ω×(0,R)

2t1−2s(z · ν)
∂U
∂ν
·
∂v
∂ν

dσ +

∫
Ω×{y=0}

[(x,∇xV)∂s
νU + (x,∇xU)∂s

νV]dx

+

∫
Ω×{y=R}

t1−2s[(x,∇xV)(∇U, ν) + (x,∇xU)(∇V, ν)]dx,

(5.24)

and∫
Ω×(0,R)

div(t1−2sz(∇U · ∇V))dx =

∫
∂Ω×(0,R)

t1−2s(z · ν)(
∂U
∂ν
·
∂V
∂ν

)dσ +

∫
Ω×{y=R}

R2−2s(∇U · ∇V)dx.

(5.25)
Letting R→ ∞ we obtain∫

C

div[t1−2s(z,∇V)∇U + t1−2s(z,∇U)∇V]dx

=

∫
C

2t1−2s(z · ν)
∂U
∂ν
·
∂V
∂ν

dσ +

∫
Ω×{y=0}

[(x,∇xV)∂s
νU + (x,∇xU)∂s

νV]dx,
(5.26)

and ∫
C

div(t1−2sz(∇U · ∇V))dx =

∫
C

t1−2s(z · ν)(
∂U
∂ν
·
∂V
∂ν

)dσ. (5.27)

Here the limit can be justified using that U,V ∈ H s
0,L(C). We refer [?] for a detail. Integrating

(5.23) over C and using the above two formulas we obtain∫
C

t1−2s(z · ν)
∂U
∂ν
·
∂V
∂ν

dσ +

∫
Ω×{y=0}

[(x,∇xv)∂s
νU + (x,∇xU)∂s

νV]dx = (n − 2s)
∫
C

t1−2s∇U∇Vdx,

which is the desired identity (5.21). �
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Proof of Theorem 5.1.3. We may assume that Ω is starshaped with respect to the origin, that is,
(x · ν) > 0 for any x ∈ ∂LΩ. It easily implies that (x · ν) > 0 holds also for x ∈ ∂LC.

Suppose that (u, v) is a solution of (5.1) and denote by U and V the s-harmonic extensions of
u and v, which are solutions of (5.4). Because U(x, 0) = 0 on ∂Ω × {0}, we get∫

Ω×{0}
(x,∇xV)∂s

νU(x, 0)dx =

∫
Ω×{0}

(x,∇xv)V pdx

=
1

p + 1

∫
Ω×{0}

(x,∇xV p+1)dx = −
n

p + 1

∫
Ω×{0}

V p+1dx.
(5.28)

Likewise, we have ∫
Ω×{0}

(x,∇xU)∂s
νV(x, 0)dx = −

n
q + 1

∫
Ω×{0}

G(u)dx.

Applying these equalities into (5.21), for any θ ∈ (0, 1) we get

1
2

∫
∂LC

t1−2s(x · ν)
∂U
∂ν

∂V
∂ν

dσ

=

∫
Ω×{y=0}

( n
p + 1

− (n − 2s)θ
)
V p+1 +

( n
q + 1

− (n − 2s)(1 − θ)
)
Uq+1dx.

(5.29)

Since U = V = 0 on ∂LC and U, V are nonnegative on C, it follows that ∂U
∂ν
≥ 0 and ∂V

∂ν
≥ 0 on

∂LC. If (p, q) is super-critical we can find a θ ∈ (0, 1) such that

n
p + 1

− (n − 2s)θ < 0 and
n

q + 1
− (n − 2s)(1 − θ) < 0.

Then, we can conclude from (5.29) that U ≡ V ≡ 0 on Ω × {0}.
In the critical case, we can find a θ ∈ (0, 1) such that

n
p + 1

− (n − 2s)θ = 0 and
n

q + 1
− (n − 2s)(1 − θ) = 0.

Then, we deduce from (5.29) that

1
2

∫
∂LC

t1−2s(x, ν)
∂U
∂ν

∂V
∂ν

dσ = 0,

which implies that ∂U
∂ν

(x0) = 0 or ∂V
∂ν

(x0) = 0 for a given point x0 ∈ ∂LC. Since div(t1−2s∇U) =

div(t1−2s∇V) = 0 and u and v are nonnegative on C, it follows from Hopf’s lemma that U ≡ 0 or
V ≡ 0, which yields that U ≡ V ≡ 0. The proof is complete. �

Next, we shall establish the moving plane argument, which will give a symmetry result and
the L∞ bound near the boundary of positive solutions to (5.1). As a preliminary step, we need the
following type of maximum principle.
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Lemma 5.5.5. Assume that c ≤ 0, d ≤ 0 and Ω is a bounded (not necessary smooth) domain of
Rn and set C = Ω × (0,∞). Suppose U,V ∈ C2(C̄) ∩ L∞(C) is a solution of the system

div(t1−2s∇U) = div(t1−2s∇V) = 0 in C,
U ≥ 0, V ≥ 0 on ∂LC,

∂s
νU + c(x)V ≥ 0 on Ω × {0},
∂s
νV + d(x)U ≥ 0 on Ω × {0},

(5.30)

and there is some point x0 ∈ C such that U(x0) = V(x0) = 0. Then, there exists δ > 0 depending
only on ‖c‖L∞(Ω), ‖d‖L∞ and n such that if

|Ω ∩ {U(·, 0) < 0}| · |Ω ∩ {V(·, 0) < 0}| ≤ δ,

then U ≥ 0 and V ≥ 0 in C.

Proof. Set U− = max{0,−U} and V− = max{0,−V}. As U− = V− = 0 on ∂Ω × [0,∞), we get

0 =

∫
C

U−div(t1−2s∇U)dxdy =

∫
Ω×{0}

U−∂s
νUdx +

∫
C

t1−2s|∇U−|2dxdy.

Using c ≤ 0, we deduce that∫
C

t1−2s|∇U−|2dxdy = −

∫
Ω×{0}

V−∂s
νUdx

=

∫
Ω×{0}

U−cVdx

≤

∫
Ω×{0}

U−(−c)V−dx

≤|Ω ∩ {U−(·, 0) > 0}|2s/n‖c‖L∞(Ω)‖U−‖L2n/(n−2s)(Ω) · ‖V−‖L2n/(n−2s)(Ω).

Similarly for V−, we get∫
C

t1−2s|∇V−|2dxdy ≤ |Ω ∩ {U−(·, 0) > 0}|2s/n‖d‖L∞(Ω)‖U−‖L2n/(n−2s)(Ω) · ‖V−‖L2n/(n−2s)(Ω). (5.31)

Multipliying the above two inequalities, we obtain(∫
C

t1−2s|∇U−|2dxdy
) (∫

C

t1−2s|∇V−|2dxdy
)

≤ |Ω ∩ {U−(·, 0) > 0}|1/n|Ω ∩ {V−(·, 0) > 0}|2s/n‖c‖L∞(Ω)‖d‖L∞(Ω)‖U−‖2L2n/(n−2s)(Ω)‖V
−‖2L2n/(n−2s)(Ω).

(5.32)

We now use the Sobolev trace inequality

S 0‖U−(·, 0)‖2L2n/(n−2s)(Ω) ≤

∫
C

|∇U−|2dxdy (5.33)
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and

S 0‖V−(·, 0)‖2L2n/(n−2s)(Ω) ≤

∫
C

|∇V−|2dxdy, (5.34)

where S 0 > 0 is a constant determined by only n and s. Combining (5.33), (5.34) and (5.32) we
get

S 2
0‖U

−(·, 0)‖2L2n/(n−2s)(Ω)‖V
−(·, 0)‖2L2n/(n−2s)(Ω)

≤ |Ω ∩ {U−(·, 0) > 0}|2s/n|Ω ∩ {V−(·, 0) > 0}|2s/n‖c‖L∞(Ω)‖d‖L∞(Ω)‖U−‖2L2n/(n−2s)(Ω)‖V
−‖2L2n/(n−2s)(Ω).

If we choose δ so that S 2
0 > δ1/n‖c‖L∞(Ω)‖d‖L∞(Ω), then the above inequality yields that U− ≡ 0 or

V− ≡ 0. Say U− ≡ 0, then we have
∫
C
|∇V−|2dxdy = 0 from (5.31). Thus we have ∇V− ≡ 0, and

since V(x0) = 0, we conclude that V− ≡ 0. The proof is complete. �

For y ∈ ∂Ω and λ > 0 we set

T (y, λ) := {x ∈ Rn : 〈y − x, ν(y)〉 = λ},

Σ(y, λ) := {x ∈ Ω : 〈y − x, ν(y)〉 ≤ λ},

and define R(y, λ) be the reflection with respect to the hyperplane T (y, λ). We also set Σ′(y, λ) :=
R(y, λ)Σ(y, λ) and

λy := sup{λ > 0 : Σ(y, λ) ⊂ Ω}. (5.35)

Lemma 5.5.6. Suppose that (u, v) ∈ C2(Ω) is a solution of (5.1). Then, for any y ∈ ∂Ω and
x ∈ Σ(y, λ), we have

u(R(y, λ)x) ≥ u(x) and v(R(y, λ)x) ≥ v(x)

for any λ ∈ (0, λy].

Proof. We may assume that 0 ∈ ∂Ω and ν = (1, 0) is a normal direction to ∂Ω at this point. It is
sufficient to prove the lemma at this point. For λ > 0 we set

Σλ = {(x1, x′) ∈ Ω : x1 > λ} and Tλ = {(x1, x′) ∈ Ω : x1 = λ}.

For x ∈ Σλ, define xλ = (2λ − x1, x′). From the defintion (5.35) we see

{xλ : x ∈ Σλ} ⊂ Ω ∀λ < λ0.

We denote by U and V the s-harmonic extension of u and v in C. Then, (U,V) ∈ C2(C̄) satisfies
div(t1−2s∇U) = div(t1−2s∇V) = 0 in C,
U = V = 0 on ∂LC,

∂s
νU = V p, ∂s

νV = Uq on Ω × {0},
U > 0, V > 0 in C.

(5.36)
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For (x, y) ∈ Σλ × [0,∞), we set

Uλ(x, y) = U(xλ, y) = U(2λ − x1, x′, y)

and

αλ(x, y) = (Uλ − U)(x, y), βλ(x, y) = (Vλ − V)(x, y).

Then we have Uλ = Vλ = 0 on Tλ × [0,∞) and obtain from (5.36) that Uλ > 0 and Vλ > 0 on
(∂Ω ∩ Σ̄λ) × [0,∞). Since ∂Σλ = Tλ ∪ (∂Ω ∩ Σ̄λ) we see that (αλ, βλ) satisfies

div(t1−2s∇αλ) = div(t1−2s∇∆βλ) = 0 in Σλ × (0,∞),
αλ ≥ 0, βλ ≥ 0 on (∂Σλ) × (0,∞),
∂s
ναλ + cλ(x)βλ = 0 on Σλ × {0},
∂s
νβλ + dλ(x)αλ = 0 on Σλ × {0},

where

cλ(x, 0) = −
V p
λ − V p

Vλ − V
and dλ(x, 0) = −

U p
λ − U p

Uλ − U
.

Note that cλ ≤ 0 and dλ ≤ 0. Now we choose a small number κ > 0 so that the set Σλ has small
measure for 0 < λ < κ. We then deduce from Lemma 5.30 that, for all λ ∈ (0, κ),

αλ ≥ 0 and βλ ≥ 0 on Σλ × (0,∞).

The strong maximum principle implies that αλ and βλ are identically equal to zero or strictly
positive in Σλ × (0,∞). Since λ > 0, we have αλ > 0 and βλ > 0 in (∂Ω ∩ ∂Σλ) × (0,∞), and so
we deduce that αλ > 0 and βλ > 0 in Σλ × (0,∞).

We let λ1 = sup{λ > 0|αλ ≥ 0 and βλ ≥ 0 in Σλ × (0,∞)}. We claim that λ1 = λ0. With a
view to contradiction, we suppose that λ1 < λ0. By continuity we have αλ1 ≥ 0 and βλ1 ≥ 0 in
Σλ1 × (0,∞). As before, by the strong maximum principle, we have that αλ1 > 0 and βλ1 > 0 in
Σλ1×(0,∞). Next, let δ > 0 be a constant and find a compact set K ⊂ Σλ1 such that |Σλ1 \K| ≤ δ/2.
We have αλ1 ≥ µ > 0 and βλ1 ≥ η > 0 in K for some constant η, since K is compact. Thus, we
obtain that αλ1+ε(·, 0) ≥ 0 and βλ1+ε(·, 0) ≥ 0 in K and that |Σλ1+ε \ K| ≤ δ for sufficiently small
ε > 0.

By applying Lemma 5.5.5 to the function (αλ1+ε , βλ1+ε), in Σλ1+ε × (0,∞), we deduce that
αλ1+ε ≥ 0 and βλ1+ε ≥ 0 in K. Thus {αλ1+ε < 0}, {βλ1+ε < 0} ⊂ Σλ1+ε \ K, which have measure at
most δ. We take δ to be the constant of Lemma 5.30. Then it follows that

αλ1+ε ≥ 0 and βλ1+ε ≥ 0 in Σλ1+ε × (0,∞).

This is a contradiction to the definition of λ1. Thus, it should hold that λ1 = λ0, which proves the
lemma. �
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Comsidering the s-harmonic extension, the above lemma gives directly the proof of the sym-
metry result of Theorem 5.1.4.

We are now ready to prove Theorem 5.1.5.

Proof of Theorem 5.1.5. Since (p, q) is sub-critical, we can choose θ ∈ (0, 1) such that

n
p + 1

− (n − 2s)θ > 0 and
n

q + 1
− (n − 2s)(1 − θ) > 0.

Take a small value δ > 0. Then, we deduce from Proposition 5.3.1 that for a fixed γ > n
2 , we have

min
r∈[δ,2δ]

∣∣∣∣∣∣
∫
I(Ω,r/2)

[
n

p + 1
− (n − 2s)θ

]
vp+1 dx −

∫
I(Ω,r/2)

[
n

q + 1
− (n − 2s)θ

]
uq+1 dx

∣∣∣∣∣∣
≤ C

(∫
O(Ω,2δ)

(uq + vp)γdx
) 2
γ

+

∫
O(Ω,2δ)

(
uq+1

q + 1
+

vp+1

p + 1

)
dx

+

(∫
I(Ω,δ/2)

(uq + vp)dx
)2

.

(5.37)

By definition 5.2 and using (5.1) we have

λ1
2s

∫
Ω

uφ1dx =

∫
Ω

vpφ1dx and λ1
2s

∫
Ω

vφ1dx =

∫
Ω

uqφ1dx. (5.38)

Using Jense’s inequality to the right hand sides, we get

λ1
2s

∫
Ω

uφ1dx ≥ C(
∫

Ω

vφ1dx)p and λ1
2s

∫
Ω

vφ1dx ≥ C(
∫

Ω

uφ1dx)q,

which easily yields that ∫
Ω

vφ1dx ≤ C and
∫

Ω

uφ1dx ≤ C. (5.39)

Combining this with (5.38) we also have∫
Ω

(vp + uq)φ1dx ≤ C. (5.40)

Given the result of Lemma 5.5.6, we can apply the argument used in Lemma 5.4.1 to get the L∞

uniform estimate of u on O(Ω, δ) for a fixed small value δ > 0. Applying this bound near the
boundary and (5.40) into the inequality (5.37) we obtain∫

Ω

(vp+1 + uq+1)dx ≤ C. (5.41)

112



CHAPTER 5. ON STRONGLY INDEFINITE SYSTEMS INVOLVING THE FRACTIONAL
LAPLACIAN [Ch4]

We now use a bootstrap argument to improve the integrability of u and v. Since (p, q) is sub-
critical, there is a positive number δ > 0 such that 1

p+1 + 1
q+1 = n−2s

n + δ, and so

max
[
(q + 1)

(
n − 2s

n
−

1
p + 1

)
, (p + 1)

(
n − 2s

n
−

1
q + 1

)]
= max

[
1 − (q + 1)δ, 1 − (p + 1)δ

]
< 1.

(5.42)

Hence we can find a value ρ > 1 such that

1
ρ
> max

[
(q + 1)

(
n − 2s

n
−

1
p + 1

)
, (p + 1)

(
n − 2s

n
−

1
q + 1

)]
. (5.43)

Now we set
pk = (p + 1)ρk and qk = (q + 1)ρk ∀k ≥ 0, (5.44)

Then we can check that for any k ≥ 0,

p
(p + 1)ρk −

1
(q + 1)ρk+1 <

2s
n

and
q

(q + 1)ρk −
1

(p + 1)ρk+1 <
2s
n
. (5.45)

Actually, it is enough to the examine the case k = 0,

p
p + 1

−
1

(q + 1)ρ
<

2s
n

and
q

q + 1
−

1
(p + 1)ρ

<
2s
n
,

which is equivalent to (5.43). Since (5.45) holds for each k ≥ 0, we can use the Sobolev embed-
ding of Lemma 5.2.1 to show that

‖u‖(q+1)ρk+1 ≤ C‖(−∆)u‖ (p+1)ρk
p

= C‖vp‖ (p+1)ρk
p

= C‖v‖p
(p+1)ρk , (5.46)

and
‖v‖(p+1)ρk+1 ≤ C‖(−∆)u‖ (p+1)ρk

p
= C‖vq‖ (q+1)ρk

q
= C‖v‖q(q+1)ρk . (5.47)

Hence we have that ‖u‖pk+1 ≤ C‖v‖p
pk and ‖v‖qk+1 ≤ C‖u‖qqk for each k ≥ 0. Combining this with

(5.41) gives a priori bounds of ‖u‖qk and ‖v‖pk for each k ≥ 0, i.e.,

‖u‖qk ≤ C and ‖v‖pk ≤ C. (5.48)

Since ρ > 1 we can find N ≥ 1 such that p
qN
< 2s

n and q
pN
< 2s

n . Then, combining the bound (5.48)
for k = N with Lemma 5.2.1, we can conclude that ‖u‖∞+‖v‖∞ < C. The proof is completed. �
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Chapter 6

Asymptotic behavior of solutions for
nonlinear elliptic problems with the
fractional Laplacian [CKL]

6.1 Introduction

The aim of this paper is to study the nonlocal equations:
Asu = up + εu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(6.1)

where 0 < s < 1, p := n+2s
n−2s , ε > 0 is a small parameter, Ω is a smooth bounded domain of Rn

and As denotes the fractional Laplace operator (−∆)s in Ω with zero Dirichlet boundary values
on ∂Ω, defined in terms of the spectra of the Dirichlet Laplacian −∆ on Ω. It can be understood
as the nonlocal version of the Brezis-Nirenberg problem [BN].

The aim of this paper is to study the problem (6.1) when p = n+2s
n−2s is the critical Sobolev

exponent and ε > 0 is close to zero. During this study we develop some nonlocal techniques
which also have their own interests.

The first part is devoted to study least energy solutions of (6.1). To state the result, we recall
from [CoT] that the sharp fractional Sobolev inequality for n > 2s and s > 0(∫

Rn
| f (x)|p+1dx

) 1
p+1

≤ Sn,s

(∫
Rn
|A1/2

s f (x)|2dx
) 1

2

for any f ∈ H s(Rn)

which holds with the constant

Sn,s = 2−sπ−s/2
[Γ

(
n−2s

2

)
Γ
(

n+2s
2

)] 1
2
[

Γ(n)
Γ(n/2)

] s
n

. (6.2)
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Our first result is the following.

Theorem 6.1.1. Assume 0 < s < 1 and n > 4s. For ε > 0, let uε be a solution of (6.1) such that

lim
ε→0

∫
Ω
|A

1/2
s uε |2dx(∫

Ω
|uε |p+1dx

)2/(p+1) = Sn,s. (6.3)

Then there exist a point x0 ∈ Ω and a constant bn,s > 0 such that

uε → 0 in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s − 1) if s ∈ (1/2, 1),

and

‖uε(x)‖L∞uε(x)→ bn,sG(x, x0) in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s − 1) if s ∈ (1/2, 1),

as ε goes to 0. The constant bn,s is explicitly computed in Section 6.3 (see (6.31)).

Here the function G = G(x, y) for x, y ∈ Ω is Green’s function ofAs with the Dirichlet boundary
condition, which solves the equation

AsG(·, y) = δy in Ω and G(·, y) = 0 on ∂Ω. (6.4)

The regular part of G is given by

H(x, y) =
an,s

|x − y|n−2s −G(x, y) where an,s =
1
|S n−1|

·
21−2sΓ(n−2s

2 )
Γ(n

2 )Γ(s)
. (6.5)

The diagonal part τ of the function H, namely, τ(x) := H(x, x) for x ∈ Ω is called the Robin
function and it plays a crucial role for our problem.

Theorem 6.1.2. Assume that 0 < s < 1 and n > 4s. Suppose x0 ∈ Ω is a point given by Theorem
6.1.1. Then
(1) x0 is a critical point of the function τ(x).
(2) It holds that

lim
ε→0

ε‖uε‖
2 n−4s

n−2s
L∞(Ω) = dn,s|τ(x0)|

where the constant dn,s is computed in Section 6.5 (see (6.2)).

These two results are motivated by the work of Han [H] and Rey [R] on the classical local
Brezis-Nirenberg problem, which dates back to Brezis and Peletier [BP],

−∆u = u
n+2
n−2 + εu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(6.6)
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On the other hand, in the latter part of his paper, Rey [R] constructed a family of solutions
for (6.6) which asymptotically blow up at a nondegenerate critical point of the Robin function.
Moreover, this result was extended in [MP], where Musso and Pistoia obtained the existence
of multi-peak solutions for certain domains. In the second part of our paper, by employing the
Lyapunov-Schmidt reduction method, we prove an analogous result to it for the nonlocal problem
(6.1).

Theorem 6.1.3. Suppose that 0 < s < 1 and n > 4s. Let Λ1 ⊂ Ω be a stable critical set of the
Robin function τ. Then, for small ε > 0, there exists a family of solutions of (6.1) which blow up
and concentrate at the point x0 ∈ Λ1 as ε → 0.

This result is an immediate consequence of the following result. Given any k ∈ N, set

Υk(λ,σ) = c2
1


k∑

i=1

H(σi, σi)λn−2s
i −

k∑
i,h=1
i,h

G(σi, σh)(λiλh)
n−2s

2

 − c2

k∑
i=1

λ2s
i (6.7)

for (λ,σ) = (λ1, · · · , λk, σ1, · · · , σk) ∈ (0,∞)k ×Ωk, where

c1 =

∫
Rn

wp
1,0(x)dx and c2 =

∫
Rn

w2
1,0(x)dx (6.8)

with w1,0 the function defined in (6.5) with (λ, ξ) = (1, 0). Then we have

Theorem 6.1.4. Assume 0 < s < 1 and n > 4s. Given k ∈ N, suppose that Υk has a stable
critical set Λk such that

Λk ⊂
{
((λ1, · · · , λk), (σ1, · · · , σk)) ∈ (0,∞)k ×Ωk : σi , σ j if i , j and i, j = 1, · · · , k

}
.

Then there exist a point ((λ0
1, · · · , λ

0
k), (σ0

1, · · · , σ
0
k)) ∈ Λk and a small number ε0 > 0 such that for

0 < ε < ε0, there is a family of solutions uε of (6.1) which concentrate at each point σ0
1, · · · , σ

0
k−1

and σ0
k as ε → 0.

For the precise description of the asymptotic behavior of uε , see the proof of Theorem 6.1.4 in
Subsection 6.6.3.

Here we borrowed the notion of stable critical sets from [Li2]. As in the case s = 1 (see
[MP, EGP] for instance), we can prove that if the domain Ω is a dumbbell-shaped domain which
consists of disjoint k-open sets and sufficiently narrow channels connecting them, then Υk has a
stable critical point for each k ∈ N, thereby obtaining the following result.

Theorem 6.1.5. There exist contractible domains Ω such that, for ε > 0 small enough, (6.1)
possesses a family of solutions which blow up at exactly k different points of each domain Ω as ε
converges to 0.
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For the detailed explanation, see Section 6.6.

In order to study the asymptotic behavior, we will use the fundamental observation of Caf-
farelli and Silvestre [CaS] and Cabré and Tan [CT] (see also [ST, CDDS, BCPS2, T2]). In par-
ticular, we study the local problem on a half-cylinder C := Ω × [0,∞),

div(t1−2s∇U) = 0 in C = Ω × (0,∞),
U > 0 in C,
U = 0 on ∂LC := ∂Ω × (0,∞),
∂s
νU = f (U) on Ω × {0},

(6.9)

where ν is the outward unit normal vector to C on Ω × {0} and

∂s
νU(x, 0) := −C−1

s

(
lim
t→0+

t1−2s∂U
∂t

(x, t)
)

for x ∈ Ω (6.10)

where

Cs :=
21−2sΓ(1 − s)

Γ(s)
(6.11)

Under appropriate regularity assumptions, the trace of a solution U of (6.9) on Ω× {0} solves the
nonlinear problem (6.1).

A key step of the proof for Theorem 6.1.1 is to get a sort of the uniform bound after rescaling
the solutions {uε : ε > 0}. For this purpose, we will establish a priori L∞-estimates by using the
Moser iteration argument. Recently, such type of estimates have been established in [GQ, TX,
XY]. However, they cannot be applied to our case directly, so we will derive a result which is
adequate in our setting (refer to Lemmas 6.4.2 and 6.4.5). We remark that a similar argument to
our proof appeared in [GQ]. One more thing which has to be stressed is that we need a bound of
‖uε‖L∞ in terms of a certain negative power of ε > 0 (Lemma 6.4.8) to apply the elliptic estimates
(Lemma 6.4.5). For this, we will use an inequality which comes from a local version of Pohozaev
identity on the extended domain (see Proposition 6.4.7). We refer to Section 6.3 for the details.

We also study problems having nonlinearities of slightly subcritical growth
Asu = up−ε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(6.12)

In particular, the following two theorems will be obtained.

Theorem 6.1.6. Assume that 0 < s < 1 and n > 2s. For ε > 0, let uε be a solution of (6.12)
satisfying (6.3). Then, there exist a point x0 ∈ Ω and a constant bn,s > 0 such that

uε → 0 in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s − 1) if s ∈ (1/2, 1),

117



CHAPTER 6. ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR NONLINEAR ELLIPTIC
PROBLEMS WITH THE FRACTIONAL LAPLACIAN [CKL]

and

‖uε(x)‖L∞uε(x)→ bn,sG(x, x0) in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s − 1) if s ∈ (1/2, 1),

as ε → 0. Moreover,
(1) x0 is a critical point of the function τ(x).
(2) We have

lim
ε→0

ε‖uε‖2L∞(Ω) = gn,s|τ(x0)|.

Here bn,s is the same constant to one given in Theorem 6.1.1 and gn,s is computed in Section 6.7
(see (6.7)).

Like (6.7), we define

Υ̃k(λ,σ) = c2
1


k∑

i=1

H(σi, σi)λn−2s
i −

k∑
i,h=1
i,h

G(σi, σh)(λiλh)
n−2s

2

 − c1(n − 2s)2

4n
log(λ1 · · · λk) (6.13)

for (λ,σ) = (λ1, · · · , λk, σ1, · · · , σk) ∈ (0,∞)k × Ωk, where c1 > 0 is defined in (6.8). Then we
have

Theorem 6.1.7. Assume 0 < s < 1 and n > 2s. Given k ∈ N, suppose that Υ̃k has a stable
critical set Λk such that

Λk ⊂
{
((λ1, · · · , λk), (σ1, · · · , σk)) ∈ (0,∞)k ×Ωk : σi , σ j if i , j and i, j = 1, · · · , k

}
.

Then there exist a point ((λ0
1, · · · , λ

0
k), (σ0

1, · · · , σ
0
k)) ∈ Λk and a small number ε0 > 0 such that

for 0 < ε < ε0, there is a family of solutions uε of (6.12) which concentrate at each point
σ0

1, · · · , σ
0
k−1 and σ0

k as ε → 0.

Most of the steps in the proof for Theorem 6.1.1 and Theorem 6.1.2 can be adapted in prov-
ing Theorem 6.1.6. However the order of the proof for Theorem 6.1.6 is different from that of
previous theorems and some new observations have to be made. We refer to Section 6.7 for the
details.

Regarding Theorem 6.1.6, it would be interesting to consider whether we can obtain a further
description on the asymptotic behavior of a least energy solution of (6.12) (i.e. a solution satis-
fying (6.3)) as in [FW], where Flucher and Wei found that a least energy solution concentrates at
a minimum of the Robin function in the local case (s = 1).

Moreover, we believe that even in the nonlocal case (s ∈ (0, 1)) there exist solutions of
(6.12) (with the nonlinearity changed into |u|p−1−εu) which can be characterized as sign-changing
towers of bubbles. See the papers e.g. [DDM, PW, MP2, GMP] which studied the existence of
bubble-towers for the related local problems.
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Before concluding this introduction, we would like to mention some related results to our
problem. In [DDW], the authors took into account the singularly perturbed nonlinear Schrödinger
equations 

ε2sAsu + Vu − up = 0 in Rn,

u > 0 in Rn,

u ∈ H2s(Rn)

(6.14)

where ε > 0 is sufficiently small, 0 < s < 1, p ∈ (1, n+2s
n−2s ) and V is a positive bounded C1,α

function whose value is away from 0. In particular, employing the nondegeneracy result of [FLS],
they deduced the existence of various types of spike solutions, like multiple spikes and clusters,
such that each of the local maxima concentrates on a critical point of V . See also the result of
[ChZ] in which a single peak solution is found under stronger assumptions on (6.14) than those
of [DDW] (in particular, it is assumed that s ∈ (max{ 12 ,

n
4 }, 1) in [ChZ]). As far as we know,

these works are the first results to investigate concentration phenomena for singularly perturbed
equations with the fractional operatorAs by utilizing the Lyapunov-Schmidt reduction method.

On the other hand, in [SV] and [SV2], the Brezis-Nirenberg problem is also considered when
the fractional Laplace operator is defined as in a different way:

(−∆)su(x) = cn,sP.V.
∫
Rn

u(x) − u(y)
|x − y|n+2s dy for x ∈ Ω

where Ω is bounded and cn,s is a normalization constant. (Here, we refer to an interesting paper
[MN] which compares two different notions of the fractional Laplacians.) It turns out that a
similar result can be deduced to one in [T1] and [BCPS], the papers aforementioned in this
introduction. In this point of view, it would be interesting to obtain results for this operator
corresponding to ours. As a matter of fact, we suspect that concentration points of solutions for
(6.1) and (6.12) are governed by Green’s function of the operator in this case too.

This paper is organized as follows. In section 6.2, we review certain notions related to the
fractional Laplacian and study the regularity of Green’s function of As. Section 6.3 is devoted
to prove Theorem 6.1.1. In section 6.5, we show Theorem 6.1.2 by finding some estimates for
Green’s function. In Section 6.6, multi-peak solutions is constructed by the Lyapunov-Schmidt
reduction method, giving the proof of Theorem 6.1.4 and Theorem 6.1.5. On the other hand,
the Lane-Emden equation (6.12) whose nonlinearity has slightly subcritical growth is considered
in Section 6.7, and the proof of Theorem 6.1.6 and Theorem 6.1.7 is presented there. In Ap-
pendix 6.A, we give the proof of Proposition 6.4.7 and (6.1), respectively, while we exhibit some
necessary computations for the construction of concentrating solutions in Appendix 6.B.

Notations.

Here we list some notations which will be used throughout the paper.
- The letter z represents a variable in the Rn+1. Also, it is written as z = (x, t) with x ∈ Rn and
t ∈ R.
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- Suppose that a domain D is given and T ⊂ ∂D. If f is a function on D, then the trace of f on
T is denoted by tr|T f whenever it is well-defined.
- For a domain D ⊂ Rn, the map ν = (ν1, · · · , νn) : ∂D → Rn denotes the outward pointing unit
normal vector on ∂D.
- dS stands for the surface measure. Also, a subscript attached to dS (such as dS x or dS z) denotes
the variable of the surface.
- |S n−1| = 2πn/2/Γ(n/2) denotes the Lebesgue measure of (n − 1)-dimensional unit sphere S n−1.
- For a function f , we set f+ = max{ f , 0} and f− = max{− f , 0}.
- Given a function f = f (x), ∇x f means the gradient of f with respect to the variable x.
- We will use big O and small o notations to describe the limit behavior of a certain quantity as
ε → 0.
- C > 0 is a generic constant that may vary from line to line.
- For k ∈ N, we denote by Bk(x0, r) the ball {x ∈ Rk : |x − x0| < r} for each x0 ∈ R

k and r > 0.

6.2 Preliminaries

In this section we first recall the backgrounds of the fractional Laplacian. We refer to [BCPS2,
CT, CaS, CDDS, T2, KL] for the details. In particular, the latter part of this section is devoted
to prove a C∞ regularity property of Green’s function for the fractional Laplacian with zero
Dirichlet boundary condition.

Fractional Sobolev spaces, fractional Laplacians and s-harmonic extensions

Let Ω be a smooth bounded domain of Rn. Let also {λk, φk}
∞
k=1 be a sequence of the eigenval-

ues and corresponding eigenvectors of the Laplacian operator −∆ in Ω with the zero Dirichlet
boundary condition on ∂Ω, {

−∆φk = λkφk in Ω,

φk = 0 on ∂Ω,

such that ‖φk‖L2(Ω) = 1 and λ1 < λ2 ≤ λ3 ≤ · · · . Then we set the fractional Sobolev space H s
0(Ω)

(0 < s < 1) by

H s
0(Ω) =

u =

∞∑
k=1

akφk ∈ L2(Ω) :
∞∑

k=1

a2
kλ

s
k < ∞

 , (6.1)

which is a Hilbert space whose inner product is given by〈 ∞∑
k=1

akφk,

∞∑
k=1

bkφk

〉
Hs

0(Ω)

=

∞∑
k=1

akbkλ
s
k if

∞∑
k=1

akφk,

∞∑
k=1

bkφk ∈ H s
0(Ω).
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Moreover, for a function in H s
0(Ω), we define the fractional Laplacian As : H s

0(Ω) → H s
0(Ω) '

H−s
0 (Ω) as

As

 ∞∑
k=1

akφk

 =

∞∑
k=1

akλ
s
kφk.

We also consider the square root A1/2
s : H s

0(Ω) → L2(Ω) of the positive operator As which is in
fact equal toAs/2. Note that by the above definitions, we have

〈u, v〉Hs
0(Ω) =

∫
Ω

A1/2
s u · A1/2

s v =

∫
Ω

Asu · v for u, v ∈ H s
0(Ω).

If the domain Ω is the whole space Rn, the space H s(Rn) (0 < s < 1) is given as

H s(Rn) =

u ∈ L2(Rn) : ‖u‖Hs(Rn) :=
(∫
Rn

(1 + |2πξ|2s)|û(ξ)|2dξ
) 1

2

< ∞


where û denotes the Fourier transform of u, and the fractional LaplacianAs : H s(Rn)→ H−s(Rn)
is defined to be

Âsu(ξ) = |2πξ|2sû(ξ) for any ξ ∈ Rn given u ∈ H s(Rn).

Regarding (6.9) (see also (6.4) below), we need to introduce some more function spaces on
C = Ω × (0,∞) where Ω is either a smooth bounded domain or Rn. If Ω is bounded, the function
space H s

0,L(C) is defined as the completion of

C∞c,L(C) :=
{
U ∈ C∞

(
C
)

: U = 0 on ∂LC = ∂Ω × (0,∞)
}

with respect to the norm

‖U‖C =

(∫
C

t1−2s|∇U |2
) 1

2

. (6.2)

Then it is a Hilbert space endowed with the inner product

(U,V)C =

∫
C

t1−2s∇U · ∇V for U, V ∈ H s
0,L(C).

In the same manner, we define the space H s
0,L(Cε) and C∞c,L(Cε) for the dilated problem (6.5).

Moreover, Ds(Rn+1
+ ) is defined as the completion of C∞c

(
Rn+1

+

)
with respect to the norm ‖U‖Rn+1

+

(defined by putting C = Rn+1
+ in (6.2) above). Recall that if Ω is a smooth bounded domain, it is

verified that
H s

0(Ω) = {u = tr|Ω×{0}U : U ∈ H s
0,L(C)} (6.3)
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in [CaS, Proposition 2.1] and [CDDS, Proposition 2.1] and [T2, Section 2]. Furthermore, it holds
that

‖U(·, 0)‖Hs(Rn) ≤ C‖U‖Rn+1
+

for some C > 0 independent of U ∈ Ds(Rn+1
+ ).

Now we may consider the fractional harmonic extension of a function u defined in Ω, where
Ω is Rn or a smooth bounded domain. By the celebrated results of Caffarelli-Silvestre [CaS] (for
Rn) and Cabré-Tan [CT] (for bounded domains, see also [ST, CDDS, BCPS2, T2]), if we set
U ∈ H s

0,L(C) (orDs(Rn+1
+ )) as a unique solution of the equation

div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

U(x, 0) = u(x) for x ∈ Ω,

(6.4)

for some fixed function u ∈ H s
0(Ω) (or H s(Rn)), then Asu = ∂s

νU |Ω×{0} where the operator u 7→
∂s
νU |Ω×{0} is defined in (6.10). (If Ω = Rn, we set ∂LC = ∅.) We call this U the s-harmonic

extension of u. We remark that an explicit description of U is obtained in [BCPS2, T2] if Ω is
bounded.

6.2.1 Sharp Sobolev and trace inequalities

Given any λ > 0 and ξ ∈ Rn, let

wλ,ξ(x) = cn,s

(
λ

λ2 + |x − ξ|2

) n−2s
2

for x ∈ Rn, (6.5)

where

cn,s = 2
n−2s

2

Γ
(

n+2s
2

)
Γ
(

n−2s
2

)
n−2s

4s

. (6.6)

Then the sharp Sobolev inequality(∫
Rn
|u|p+1dx

) 1
p+1

≤ Sn,s

(∫
Rn
|A1/2

s u|2dx
) 1

2

gets the equality if and only if u(x) = cwλ,ξ(x) for any c > 0, λ > 0 and ξ ∈ Rn, given Sn,s the
value defined in (6.2) (refer to [Lb, ChL, FL]). Furthermore, it was shown in [CLO, Li3, LiZ]
that if a suitable decay assumption is imposed, then {wλ,ξ(x) : λ > 0, ξ ∈ Rn} is the set of all
solutions for the problem

Asu = up, u > 0 in Rn and lim
|x|→∞

u(x) = 0. (6.7)
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We use Wλ,ξ ∈ D
s(Rn+1

+ ) to denote the (unique) s-harmonic extension of wλ,ξ so that Wλ,ξ solves{
div(t1−2sWλ,ξ(x, t)) = 0 in Rn+1

+ ,

Wλ,ξ(x, 0) = wλ,ξ(x) for x ∈ Rn.
(6.8)

It follows that for the Sobolev trace inequality(∫
Rn
|U(x, 0)|p+1dx

) 1
p+1

≤
Sn,s
√

Cs

(∫ ∞

0

∫
Rn

t1−2s|∇U(x, t)|2dxdt
) 1

2

, (6.9)

the equality is attained by some function U ∈ Ds(Rn+1
+ ) if and only if U(x, t) = cWλ,ξ(x, t) for

any c > 0, λ > 0 and ξ ∈ Rn, where Cs > 0 is the constant defined in (6.11) (see [X]). In what
follows, we simply denote w1,0 and W1,0 by w1 and W1, respectively.

6.2.2 Green’s functions and the Robin function

Let G be Green’s function of the fractional Laplacian As with the zero Dirichlet boundary con-
dition (see (6.4)). Then it can be regarded as the trace of Green’s function GC = GC(z, x) (z ∈ C,
x ∈ Ω) for the extended Dirichlet-Neumann problem which satisfies

div(t1−2s∇GC(·, x)) = 0 in C,
GC(·, x) = 0 on ∂LC,

∂s
νGC(·, x) = δx on Ω × {0}.

(6.10)

In fact, if a function U in C solves
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = g on Ω × {0},

for some function g on Ω × {0}, then we can see that U has the expression

U(z) =

∫
Ω

GC(z, y)g(y)dy =

∫
Ω

GC(z, y)Asu(y)dy, z ∈ C,

where u = tr|Ω×{0}U. Then, by plugging z = (x, 0) in the above equalities, we obtain

u(x) =

∫
Ω

GC((x, 0), y)Asu(y)dy,

which implies that GC((x, 0), y) = G(x, y) for any x, y ∈ Ω.
Green’s function GC on the half cylinder C can be partitioned to the singular part and the

regular part. The singular part is given by Green’s function

GRn+1
+

((x, t), y) :=
an,s

|(x − y, t)|n−2s (6.11)
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on the half space Rn+1
+ satisfying div

(
t1−2s∇(x,t)GRn+1

+
((x, t), y)

)
= 0 in Rn+1

+ ,

∂s
νGRn+1

+
((x, 0), y) = δy(x) on Ω × {0},

for each y ∈ Rn. Note that an,s is the constant defined in (6.5). The regular part is given by the
function HC : C → R which satisfies

div
(
t1−2s∇(x,t)HC((x, t), y)

)
= 0 in C,

HC(x, t, y) =
an,s

|(x−y,t)|n−2s on ∂LC,

∂s
νHC((x, 0), y) = 0 on Ω × {0}.

The existence of such a function HC can be proved using a variational method (see Lemma 6.2.2
below). We then have

GC((x, t), y) = GRn+1
+

((x, t), y) − HC((x, t), y). (6.12)

Accordingly, the Robin function τ which was defined in the paragraph after Theorem 6.1.1 can
be written as τ(x) := HC((x, 0), x). As we will see, the function τ and the relation (6.12) turn out
to be very important throughout the paper.

6.2.3 Maximum principle

Here we prove a maximum principle which serves as a valuable tool in studying properties of
Green’s function G ofAs.

Lemma 6.2.1. Suppose that V is a weak solution of the following problem
div(t1−2s∇V) = 0 in C,
V(x, t) = B(x, t) on ∂LC,

∂s
νV(x, 0) = 0 on Ω × {0}.

for some function B on ∂LC. Then we have

sup
(x,t)∈C

|V(x, t)| ≤ sup
(x,t)∈∂LC

|B(x, t)|.

Proof. Let S + = sup(x,t)∈∂LC
B(x, t). Consider the function Y(x, t) := S + − V(x, t), which satisfies

div(t1−2s∇Y) = 0 in C,
Y(x, t) ≥ 0 on ∂LC

∂s
νY(x, 0) = 0 on Ω × {0}.

Note that Y−(x, t) = 0 on ∂LC. Then we get

0 =

∫
C

t1−2s∇Y(x, t) · ∇Y−(x, t)dxdt = −

∫
C

t1−2s|∇Y−(x, t)|2dxdt.
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It proves that Y− ≡ 0. Thus we have S + ≥ V(x, t) for all (x, t) ∈ C.
Similarly, if we set S − = inf(x,t)∈∂LC B(x, t) and define the function Z(x, t) = V(x, t) − S −, we

may deduce that V(x, t) ≥ S − for all (x, t) ∈ C. Consequently, we have

S − ≤ V(x, t) ≤ S + for all (x, t) ∈ C.

It completes the proof. �

6.2.4 Properties of the Robin function

We study more on the property of the function HC by using the maximum principle obtained in
the previous subsection. We first prove the existence of the function HC.

Lemma 6.2.2. For each point y ∈ Ω the function HC((·, ·), y) is the minimizer of the problem

min
V∈S

∫
C

t1−2s|∇V(x, t)|2dxdt, (6.13)

where

S =

{
V :

∫
C

t1−2s|∇V(x, t)|2dxdt < ∞ and V(x, t) = GRn+1
+

(x, t, y) on ∂LC

}
.

Here the derivatives are defined in a weak sense.

Proof. Let η ∈ C∞(Rn+1) be a function such that η(z) = 0 for |z| ≤ 1 and η(z) = 1 for |z| ≥ 2.
Assuming without loss of any generality that Bn+1((y, 0), 2) ∩ Rn+1

+ ⊂ C, let V0 be the function
defined in C by

V0(x, t) = GRn+1
+

(x, t, y)η(x − y, t).

Then it is easy to check that ∫
C

t1−2s|∇V0(x, t)|2dxdt < ∞.

Thus S is nonempty and we can find a minimizing function V of the problem (6.13) in S . Then,
for any Φ ∈ C∞(C) such that Φ = 0 on ∂LC, we have∫

C

t1−2s∇V(x, t) · ∇Φ(x, t)dxdt = 0.

Hence it holds that 
div(t1−2s∇V(x, t)) = 0 for (x, t) ∈ C,
V(x, t) = GRn+1

+
(x, t, y) for (x, t) ∈ ∂LC,

∂s
νV(x, 0) = 0 for x ∈ Ω.

in a weak sense. This completes the proof. �
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In the same way, for a fixed point y = (y1, · · · , yn) ∈ Ω and any multi-index I = (i1, i2, · · · , in) ∈
(N ∪ {0})n, we find the functionH I

C
((·, ·), y) satisfying

div
(
t1−2s∇(x,t)H

I
C
(x, t, y)

)
= 0 in C,

H I
C
(x, t, y) = ∂I

yGRn+1
+

(x, t, y) on ∂LC,

∂s
νH

I
C
(·, ·, y) = 0 on Ω × {0},

(6.14)

where ∂I
y = ∂i1

y1 · · · ∂
in
yn . In the below we shall show that, for any (x, t) ∈ C, the function HC(x, t, y)

is C∞loc(Ω) and that ∂I
yHC(x, t, y) = H I

C
(x, t, y).

Lemma 6.2.3. For each (x, t) ∈ C the function HC(x, t, y) is continuous with respect to y. More-
over, such continuity is uniform on (x, t, y) ∈ C × K for any compact subset K of Ω.

Proof. Take points y1 and y2 in a compact subset K of Ω, sufficiently close to each other. If we
apply Lemma 6.2.1 to the function HC(x, t, y1) − HC(x, t, y2), then we get

sup
(x,t)∈C

|HC(x, t, y1) − HC(x, t, y2)| ≤ sup
(x,t)∈∂LC

|HC(x, t, y1) − HC(x, t, y2)|

= sup
(x,t)∈∂LC

∣∣∣∣∣ cn,s

|(x − y1, t)|n−2s −
cn,s

|(x − y2, t)|n−2s

∣∣∣∣∣
≤ C(K)|y1 − y2|,

where C(K) > 0 is constant relying only on K . It proves the lemma. �

The next lemma provides a regularity property of the function HC. We recall that the result
of Fabes, Kenig, and Serapioni [FKS] which gives that (x, t, y) 7→ HC(x, t, y) is Cα for some
0 < α < 1.

Lemma 6.2.4. (1) For each (x, t) ∈ C, the function y → HC(x, t, y) is a C∞ function. Moreover,
for each multi-index I ∈ (N ∪ {0})n, we have

∂I
yHC(x, t, y) = H I

C(x, t, y) (6.15)

and ∂I
yHC(x, t, y) is bounded on (x, t, y) ∈ C × K for any compact set K of Ω.

(2) For each y ∈ Ω, the function x ∈ Ω 7→ HC(x, 0, y) is a C∞ function. Moreover, for each multi-
index I ∈ (N ∪ {0})n, the derivative ∂I

xHC(x, 0, y) is bounded on (x, y) ∈ K × Ω for any compact
set K of Ω.

Proof. For two points y1 and y2 in a compact subset K of Ω chosen to be close enough to each
other, we apply Lemma 6.2.1 to the function

HC(x, t, y2) − HC(x, t, y1) − (y2 − y1) · (H I1
C
, · · · ,H In

C
)(x, t, y1)
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where I j is the multi-index in (N∪{0})n such that the j-th coordinate is 1 and the other coordinates
are 0 for 1 ≤ j ≤ n. Then we obtain

sup
(x,t)∈C

∣∣∣HC(x, t, y2) − HC(x, t, y1) − (y2 − y1) · (H I1
C
, · · · ,H In

C
)(x, t, y1)

∣∣∣
≤ sup

(x,t)∈∂LC

∣∣∣∣∣ cn,s

|(x − y2, t)|n−2s −
cn,s

|(x − y1, t)|n−2s − (y2 − y1) ·
cn,s(n − 2s)(x − y1)
|(x − y1, t)|n−2s+2

∣∣∣∣∣
≤ C(K)|y1 − y2|

2

for some C(K) > 0 independent of the choice of y1 and y2. This shows that ∇yHC(x, t, y) =

(H I1
C
, · · · ,H In

C
)(x, t, y) proving (6.15) for |I| = 1. We can adapt this argument inductively, which

proves the first statement of the lemma.
Since HC(x, 0, y) = HC(y, 0, x) holds for any (x, y) ∈ Ω × Ω, the second statement follows

directly from the first statement. �

Given the above results, we can prove a lemma which is essential when we deduce certain
regularity properties of a sequence uε in the statement of Theorems 6.1.1 and 6.1.6. See Section
6.3.

Lemma 6.2.5. Suppose that the functions ũε for ε > 0 defined in Ω are given by

ũε(x) =

∫
Ω

G(x, y)ṽε(y)dy,

where the set of functions {ṽε : ε > 0} satisfies supε>0 supx∈Ω |ṽε(x)| < ∞. Then {ũε : ε > 0} are
equicontinuous on any compact set.

Proof. Suppose that x1 and x2 are contained in a compact set K of Ω. We have

ũε(x) =

∫
Ω

GC(x, 0, y)ṽε(y)dy =

∫
Ω

GRn+1
+

(x, 0, y)ṽε(y)dy −
∫

Ω

HC(x, 0, y)ṽε(y)dy

for any x ∈ Ω. Take any number η > 0. It is well-known that the first term of the right-hand side
is Cα for any α < 2s if s ∈ (0, 1/2] and C1,α for any α < 2s − 1 if s ∈ (1/2, 1). Let us denote the
last term by Rε . Then we have

|Rε(x1) − Rε(x2)| ≤
∫

Ω

|HC(x1, 0, y) − HC(x2, 0, y)| |ṽε(y)|dy.

By Lemma 6.2.4 (2), we can find η > 0 such that if |x1 − x2| < η and (x1, x2) ∈ K × K , then

sup
y∈Ω
|HC(x1, 0, y) − HC(x2, 0, y)| ≤ Cη.

From this, we derive that
|Rε(x1) − Rε(x2)| ≤ Cη|Ω|.

It proves that {ũε : ε > 0} are equicontinuous on any compact set. �
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6.3 The asymptotic behavior

Here we prove Theorem 6.1.1 by studying the normalized functions Bε of the s-harmonic exten-
sion Uε of solutions uε for (6.1), given ε > 0 sufficiently small. We first find a pointwise conver-
gence of the functions Bε . Then we will prove that the functions Bε are uniformly bounded by a
certain function, which is more difficult part to handle. To obtain this result, we apply the Kelvin
transform in the extended problem (6.9), and then attain L∞-estimates for its solution. In addition
we also need an argument to get a bound of the supremum ‖uε‖L∞(Ω) in terms of ε > 0. It involves
a local version of the Pohozaev identity (see Proposition 6.4.7).

Pointwise convergence

Set Uε be the s-harmonic extension of uε to the half cylinder Ω × [0,∞), that is, Uε satisfies
tr|Ω×{0}Uε = uε and it is a solution to the problem

div(t1−2s∇Uε) = 0 in C = Ω × (0,∞),
Uε > 0 in C,
Uε = 0 on ∂LC = ∂Ω × [0,∞),
∂s
νUε = U p

ε + εUε in Ω × {0}.

(6.1)

First we note the following identity∫
C

t1−2s|∇Uε(x, t)|2dxdt = Cs

∫
Ω×{0}

∂s
νUε(x, 0)Uε(x, 0)dx

= Cs

∫
Ω×{0}
Asuε(x)uε(x)dx

= Cs

∫
Ω×{0}

∣∣∣A1/2
s uε(x)

∣∣∣2 dx.

Using this with (6.3), we have

(
∫

Ω
|Uε(x, 0)|p+1dx)1/(p+1)

(
∫
C

t1−2s|∇Uε(x, t)|2dxdt)1/2
=
Sn,s
√

Cs
+ o(1) as ε → 0.

Also, by (6.1), it holds that∫
C

t1−2s|∇Uε(x, t)|2dxdt = Cs

∫
Ω×{0}

∣∣∣A1/2
s uε(x)

∣∣∣2 dx = Cs

∫
Ω×{0}
Asuε(x)uε(x)dx

= Cs

∫
Ω×{0}

up+1
ε (x)dx + εCs

∫
Ω×{0}

u2
ε (x)dx.

The two equalities above give

(Sn,s + o(1))2
(
‖Uε(·, 0)‖p+1

Lp+1(Ω) + ε‖Uε(·, 0)‖2L2(Ω)

)
= ‖Uε(·, 0)‖2Lp+1(Ω).
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From ‖Uε(·, 0)‖L2(Ω) ≤ C(Ω)‖Uε(·, 0)‖Lp+1(Ω) we obtain

(Sn,s + o(1))2‖Uε(·, 0)‖p+1
Lp+1(Ω) = ‖Uε(·, 0)‖2Lp+1(Ω),

which turns to be
lim
ε→0

∫
Ω

Uε(x, 0)p+1dx = S
− n

s
n,s . (6.2)

We set
I(Ω, r) = {x ∈ Ω : dist(x, ∂Ω) ≥ r} for r > 0 (6.3)

and
O(Ω, r) = {x ∈ Ω : dist(x, ∂Ω) < r} for r > 0. (6.4)

The following lemma presents a uniform bound of the solutions near the boundary.

Lemma 6.3.1. Let u be a bounded solution of (6.1) with p > 1 and 0 < ε < λs
1, where λ1 is the

first eigenvalue of −∆ with the zero Dirichlet condition. Then, for any r > 0 there exists a number
C(r,Ω) > 0 such that ∫

I(Ω,r)
u dx ≤ C(r,Ω). (6.5)

Moreover, there is a constant C > 0 such that

sup
x∈O(Ω,r)

u(x) ≤ C. (6.6)

Proof. Let φ1 be a first eigenfunction of the Dirichlet Laplacian −∆ in Ω such that φ1 > 0 in Ω.
We have

λs
1

∫
Ω

φ1udx =

∫
Ω

(Asφ1)udx =

∫
Ω

φ1(Asu)dx =

∫
Ω

φ1updx + ε

∫
Ω

φ1udx.

Using the Jensen inequality we get the estimate

C
(∫

Ω

φ1udx
)p

≤

∫
Ω

φ1updx = (λs
1 − ε)

∫
Ω

φ1udx,

and hence ∫
Ω

φ1u dx ≤
(
λs

1 − ε

C

) 1
p−1

.

Because φ1 ≥ C on I(Ω, r), we have

C
∫
I(Ω,r)

u dx ≤
(
λs

1 − ε

C

) 1
p−1

. (6.7)

This completes the derivation of the estimate (6.5).
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If Ω is strictly convex, the moving plane argument, which is given in the proof of [CT, The-
orem 7.1] for s = 1/2 and can be extended to any s ∈ (0, 1) with [T2, Lemma 3.6] and [CS,
Corollary 4.12], yields the fact that the solution u increases along an arbitrary straight line to-
ward inside of Ω emanating from a point on ∂Ω. Then, by borrowing an averaging argument from
[QS, Lemma 13.2] or [H], which heavily depends on this fact, we can bound supx∈O(Ω,r) u(x) by
a constant multiple of

∫
I(Ω,r)

u(x)dx. In short, estimate (6.7) gives the uniform bound (6.6) near
the boundary. The general cases can be proved using the Kelvin transformation in the extended
domain (see [?]). �

Lemma 6.3.2. Let
µε = c−1

n,s sup
x∈Ω

uε(x) (6.8)

where the definition of cn,s is provided in (6.6). (Its finiteness comes from [BCPS, Proposition
5.2].) If a point xε ∈ Ω satisfies µε = c−1

n,suε(xε), then we have

lim
ε→0

µε = ∞,

and xε converges to an interior point x0 of Ω along a subsequence.

Proof. Suppose that uε has a bounded subsequence. As before, we let Uε be the extension of uε
(see (6.1)). By Lemma 6.2.5, uε are equicontinuous, and thus the Arzela-Ascoli theorem implies
that uε converges to a function v uniformly on any compact set. We denote by V the extension
of v. Then we see that limε→0 ∇Uε(x, t) = ∇V(x, t) for any (x, t) ∈ C from the Green’s function
representation. Thus we have∫

C

t1−2s|∇V |2dxdt =

∫
C

t1−2s lim inf
ε→0

|∇Uε |
2dxdt ≤ lim inf

ε→0

∫
C

t1−2s|∇Uε |
2dxdt

= lim inf
ε→0

Cs

∫
Ω

(up+1
ε + εu2

ε )dx

= Cs

∫
Ω

vp+1dx.

Meanwhile, using (6.2), we obtain(∫
C

t1−2s|∇V |2dxdt
) 1

2

≤
C1/2

s

Sn,s

(∫
Ω

V p+1(x, 0)dx
) 1

p+1

.

Hence the function V attains the equality in the sharp Sobolev trace inequality (6.9), so we can
deduce that V = cWλ,ξ for some c, λ > 0 and ξ ∈ Rn (see Subsection 6.2.1). However, the
support of V is C by its own definition. Consequently, a contradiction arises and the supremum
µε = c−1

n,suε(xε) diverges. Since Lemma 6.3.1 implies uε is uniformly bounded near the boundary
for all small ε > 0, the point xε converges to an interior point passing to a subsequence. �
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Now, we normalize the solutions uε and their extensions Uε , that is, we set

bε(x) := µ−1
ε uε

(
µ
− 2

n−2s
ε x + xε

)
, x ∈ Ωε := µ

2
n−2s
ε (Ω − xε), (6.9)

and
Bε(z) := µ−1

ε Uε

(
µ
− 2

n−2s
ε z + xε

)
, z ∈ Cε := µ

2
n−2s
ε (C − (xε , 0)) (6.10)

with the value µε defined in (6.8). It satisfies bε(0) = cn,s and 0 ≤ bε ≤ cn,s, and the domain Ωε

converges to Rn as ε goes to zero. The function Bε satisfies
div(t1−2s∇Bε) = 0 in Cε ,
Bε > 0 in Cε ,
Bε = 0 on ∂LCε ,

∂s
νBε = Bp

ε + εµ
−p+1
ε Bε in Ωε × {0}.

We have

Lemma 6.3.3. The function bε converges to the function w1 uniformly on any compact set in a
subsequence.

Proof. Let B be the weak limit of Bε in H s
0,L(C) and b = tr|Ω×{0}B. Then it satisfies b(0) =

maxx∈Rn b(x) = cn,s and 
div(t1−2s∇B) = 0 in Rn+1

+ ,

B > 0 in Rn+1
+ ,

∂s
νB = Bp in Rn × {0},

as well as B is an extremal function of the Sobolev trace inequality (6.9) (see Subsection 6.2.1).
Therefore B(x, t) = W1(x, t). By Lemma 6.2.5, the family of functions {bε(x) : ε > 0} are equicon-
tinuous on any compact set in Rn, so by the Arzela-Ascoli theorem bε converges to a function v
on any compact set. The function v should be equal to the weak limit function w1. It proves the
lemma. �

6.4 Uniform boundedness

The previous lemma tells that the dilated solution bε converges to the function w1 uniformly on
each compact set of Ωε . However it is insufficient for proving our main theorems and in fact we
need a refined uniform boundedness result.

Proposition 6.4.1. There exists a constant C > 0 independent of ε > 0 such that

bε(x) ≤ Cw1(x). (6.1)

By rescaling, it can be shown that it is equivalent to

uε(x) ≤ Cw
µ
− 2

n−2s
ε ,xε

(x). (6.2)
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The proof of this result follows as a combination of the Kelvin transformation, a priori L∞-
estimates, and an inequality which comes from a local Pohozaev identity for the solutions of
(6.9).

We set the Kelvin transformation

dε(x) = |x|−(n−2s)bε (κ(x)) for x ∈ Ωε , (6.3)

and
Dε(z) = |z|−(n−2s)Bε (κ(z)) for z ∈ Cε , (6.4)

where κ(x) = x
|x|2 is the inversion map. Then, inequality (6.1) is equivalent to that dε(x) ≤ C for

all x ∈ κ(Ωε). Because 0 < bε(x) ≤ cn,s for x ∈ Ωε , it is enough to find a constant C > 0 and a
radius r > 0 such that

dε(x) ≤ C for x ∈ Bn(0, r) ∩ κ(Ωε) for all ε > 0. (6.5)

After making elementary but tedious computations, we find that the function Dε satisfies

div(t1−2s∇Dε) = 0 in κ(Cε).

Also we have

∂s
νDε(x, 0) = lim

t→0
t1−2s ∂

∂ν

[
|z|−(n−2s)Bε

(
z
|z|2

)]
= lim

t→0
t1−2s|z|−(n−2s+2) ∂

∂ν
Bε

(
z
|z|2

)
= lim

t→0
|z|−n−2s lim

t→0

( t
|z|2

)1−2s
∂

∂ν
Bε

(
z
|z|2

)
= |x|−n−2sBp

ε

(
x
|x|2

)
+ εµ−p+1

ε |x|−n−2sBp
ε

(
x
|x|2

)
= Dp

ε (x, 0) + εµ−p+1
ε |x|−4sDε(x, 0) for x ∈ κ(Ωε).

Hence the function Dε satisfies
div(t1−2s∇Dε)(z) = 0 in κ(Cε),
Dε > 0 in κ(Cε),
Dε = 0 on κ(∂LCε),
∂s
νDε = Dp

ε + εµ
−p+1
ε |x|−4sDε on κ(Ωε × {0}).

(6.6)

Here we record that

‖µ−p+1
ε |x|−4s‖L

n
2s (Bn(0,1)∩κ(Ωε ))

≤

µ− 2n
n−2s

ε

∫{
|x|≥µ

−
p−1
2s

ε

} |x|−2ndx
 2s

n

= C. (6.7)
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In order to show (6.5), we shall prove two regularity results for the problem (6.6) in Lemma 6.4.2
and Lemma 6.4.5 below.

In fact, to make (6.6) satisfy the conditions that Lemma 6.4.5 can be applicable, we need a
higher order integrability of the term εµ

−p+1
ε |x|−4s than that in (6.7). Note that for δ > 0 we have

cεµ
8s2δ

n+2sδ
ε ≤ ‖εµ−p+1

ε |x|−4s‖L
n
2s +δ(Bn(0,1)∩κ(Ωε ))

≤ Cεµ
8s2δ

n+2sδ
ε , (6.8)

for some constants C > 0 and c > 0. Thus it is natural to find a bound of µε in terms of a certain
positive power of ε−1. It will be achieved later by using Lemma 6.4.6 and an inequality derived
from a local version of the Pohozaev identity (see Lemma 6.4.8).

In what follows, whenever we consider a family of functions whose domains of definition are
a set D ⊂ Rk, we will denote

∫
Bk(0,r)

f =
∫

Bk(0,r)∩D
f for any ball Bk(0, r) ⊂ Rk for each r > 0 and

k ∈ N.

Lemma 6.4.2. Let V be a bounded solution of the equations:
div(t1−2s∇V)(z) = 0 in κ(Cε),
V > 0 in κ(Cε),
V = 0 on κ(∂LCε),
∂s
νV(x, 0) = g(x)V(x, 0) on κ(Ωε × {0}).

Fix β ∈ (1,∞). Suppose that there is a constant r > 0 such that

‖g‖L n
2s (κ(Ωε×{0})∩Bn(0,2r)) ≤

β

2S2
n,s(β + 1)2 , (6.9)

and ∫
Bn+1(0,2r)

t1−2sV(x, t)β+1dxdt ≤ Q.

Then, there exists a constant C = C(β, r,Q) > 0 such that∫
Bn(0,r)

V(x, 0)
(β+1)(p+1)

2 dx ≤ C.

Remark 6.4.3. Here we imposed the condition that V is bounded for the simplicity of the proof.
This is a suitable assumption for our case, because we will apply it to the function Dε which is
already known to be bounded for each ε > 0. However, this lemma holds without the assumption
on the boundedness. To prove this, one may use a truncated function VL := V · 1{|v|≤L} with for
large L > 0 where the function 1D for any set D denotes the characteristic function on D. See the
proof of Lemma 6.6.1.
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Proof. Choose a smooth function η ∈ C∞c (Rn+1, [0, 1]) supported on Bn+1(0, 2r) ⊂ Rn+1 satisfying
η = 1 on Bn+1(0, r). Multiplying the both sides of

div(t1−2s∇V) = 0 in κ(Cε)

by η2Vβ and using that V = 0 on κ(∂LCε), we discover that

Cs

∫
κ(Ωε×{0})

g(x)Vβ+1(x, 0)η2(x, 0)dx =

∫
κ(Cε )

t1−2s(∇V) · ∇(η2Vβ)dz. (6.10)

Also, we can employ Young’s inequality to get∫
κ(Cε )

t1−2s(∇V) · ∇(η2Vβ)dz =

∫
κ(Cε )

βt1−2sη2Vβ−1|∇V |2 + 2t1−2sVβη(∇V) · (∇η)dz

=

∫
κ(Cε )

t1−2sβ|V
β−1

2 η(∇V)|2dz + 2
∫
κ(Cε )

t1−2sVβη(∇V) · (∇η)dz

≥
β

2

∫
κ(Cε )

t1−2s|V
β−1

2 η(∇V)|2dz −
2
β

∫
κ(Cε )

t1−2s|V
β+1

2 (∇η)|2dz.

(6.11)
On the other hand, applying the identity

∇(V
β+1

2 η) =
β + 1

2
V

β−1
2 η(∇V) + V

β+1
2 (∇η),

we obtain

2
(
β + 1

2

)2

|V
β−1

2 η(∇V)|2 + 2|V
β+1

2 (∇η)|2 ≥ |∇(V
β+1

2 η)|2.

This gives

|V
β−1

2 η(∇V)|2 ≥
2

(β + 1)2

{
|∇(V

β+1
2 η)|2 − 2|V

β+1
2 (∇η)|2

}
.

Combining this with (6.10) and (6.11), and using the Sobolev trace inequality, we deduce that

Cs

∫
κ(Ωε×{0})

g(x)Vβ+1(x, 0)η2(x, 0)dx

≥
β

2
2

(β + 1)2

∫
κ(Cε )

t1−2s|∇(V
β+1

2 η)|2dz −
(
2
β

+
2β

(β + 1)2

) ∫
κ(Cε )

t1−2s|V
β+1

2 (∇η)|2dz

≥
Csβ

S2
n,s(β + 1)2

(∫
κ(Ωε×{0})

(
V

β+1
2 η

)p+1
dx

) 2
p+1

−

(
2
β

+
2β

(β + 1)2

) ∫
κ(Cε )

t1−2s|V
β+1

2 (∇η)|2dz.

(6.12)
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Moreover, we use the assumption (6.9) to get

∫
κ(Ωε×{0})

g(x)Vβ+1(x, 0)η2(x, 0)dx ≤
(∫

κ(Ωε×{0})
(ηV

β+1
2 )p+1dx

) 2
p+1

‖g‖
L

p+1
p−1 (κ(Ωε×{0})∩Bn(0,2r))

≤
β

2S2
n,s(β + 1)2

(∫
κ(Ωε×{0})

(ηV
β+1

2 )p+1dx
) 2

p+1

. (6.13)

Using this estimate, we can derive from (6.12) that

Csβ

2S2
n,s(β + 1)2

(∫
κ(Ωε×{0})

(Vβ+1η2)
p+1

2 dx
) 2

p+1

≥
Csβ

S2
n,s(β + 1)2

(∫
κ(Ωε×{0})

(V
β+1

2 η)p+1dx
) 2

p+1

−

(
2
β

+
2β

(β + 1)2

) ∫
κ(Cε )

t1−2s|V
β+1

2 (∇η)|2dz.

We now have ∫
κ(Ωε )∩Bn(0,r)

(V
β+1

2 )p+1dx ≤ C
(∫

κ(Cε )
t1−2s|V

β+1
2 ∇η|2dz

) p+1
2

≤ C
(∫

κ(Cε )∩Bn+1(0,2r)
t1−2s|V |β+1dz

) p+1
2

≤ C.

This completes the proof. �

Next, we prove the L∞-estimate by applying the Moser iteration technique. For the proof of
Lemma 6.4.5, we utilize the Sobolev inequality on weighted spaces which appeared in Theorem
1.3 of [FKS] as well as the Sobolev trace inequality (6.9). Such an approach already appeared in
the proof of Theorem 3.4 in [GQ].

Proposition 6.4.4. [FKS, Theorem 1.3] Let Ω be an open bounded set in Rn+1. Then there exists
a constant C = C(n, s,Ω) > 0 such that(∫

Ω

|t|1−2s|U(x, t)|
2(n+1)

n dxdt
) n

2(n+1)

≤ C
(∫

Ω

|t|1−2s|∇U(x, t)|2dxdt
) 1

2

(6.14)

holds for any function U whose support is contained in Ω whenever the right-hand side is well-
defined.

Lemma 6.4.5. Let V be a bounded solution of the equations
div(t1−2s∇V) = 0 in κ(Cε),
V > 0 in κ(Cε),
V = 0 on κ(∂LCε),
∂s
νV(x, 0) = g(x)V(x, 0) on κ(Ωε × {0}).
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Fix β0 ∈ (1,∞). Suppose that∫
Bn+1(0,r)

t1−2sV(x, t)β0+1dxdt +

∫
Bn(0,r)

V(x, 0)β0+1dx ≤ Q1

and ∫
κ(Ωε×{0})∩Bn(0,r)

|g(x)|qdx ≤ Q2

for some r > 0 and q > n
2s . Then there exists a constant C = C(β0, r,Q1,Q2) > 0 such that

‖V(·, 0)‖L∞(Bn(0,r/2)) ≤ C.

Proof. Let η ∈ C∞c (Rn+1). Then the same argument as (6.10)-(6.12) in the proof of the previous
lemma gives

Cs

∫
κ(Ωε×{0})

gη2Vβ+1dx

≥
β

2
2

(β + 1)2

∫
κ(Cε )

t1−2s|∇(V
β+1

2 η)|2dz −
(
2
β

+
2β

(β + 1)2

) ∫
κ(Cε )

t1−2s|V
β+1

2 ∇η|2dz.
(6.15)

First, we use Hölder’s inequality to estimate the left-hand side by∫
κ(Ωε×{0})

gη2Vβ+1dx ≤
(∫

κ(Ωε×{0})
(Vβ+1η2)q′dx

) 1
q′

(∫
κ(Ωε×{0})

|g|qdx
) 1

q

≤ C
(∫

κ(Ωε×{0})
(Vβ+1η2)q′dx

) 1
q′

where q′ denotes the Hölder conjugate of q, i.e., q′ =
q

q−1 . Since q > p+1
p−1 , we have q′ < p+1

2 and
so the following interpolation inequality holds.(∫

κ(Ωε×{0})
(Vβ+1η2)q′dx

) 1
q′

≤

(∫
κ(Ωε×{0})

(Vβ+1η2)
p+1

2 dx
) 2θ

p+1
(∫

κ(Ωε×{0})
(Vβ+1η2)dx

)1−θ

≤ δ
1
θ θ

(∫
κ(Ωε×{0})

(Vβ+1η2)
p+1

2 dx
) 2

p+1

+ δ−
1

1−θ (1 − θ)
∫
κ(Ωε×{0})

(Vβ+1η2)dx,

where θ ∈ (0, 1) and δ > 0 satisfy respectively

2θ
p + 1

+ (1 − θ) =
1
q′

and δ =

(
1
θC
·

β

2(β + 1)2

)θ

136



CHAPTER 6. ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR NONLINEAR ELLIPTIC
PROBLEMS WITH THE FRACTIONAL LAPLACIAN [CKL]

for an appropriate number C > 0. Then (6.15) gives

β

2(β + 1)2

∫
κ(Cε )

t1−2s|∇(V
β+1

2 η)|2dz

≤ Cβ
θ

1−θ

∫
κ(Ωε×{0})

(Vβ+1η2)dx +

(
2
β

+
2β

(β + 1)2

) ∫
κ(Cε )

t1−2s|V
β+1

2 ∇η|2dz.
(6.16)

Consequently the weighted Sobolev inequality (6.14), the trace inequality (6.9) and (6.16) yield
that (∫

κ(Ωε×{0})
|V

β+1
2 η|p+1dx

) 2
p+1

+

(∫
κ(Cε )

t1−2s|V
β+1

2 η|
2(n+1)

n dxdt
) n

n+1

≤ C
∫
κ(Cε )

t1−2s|∇(V
β+1

2 η)|2dxdt

≤ Cβ
1

1−θ

[∫
κ(Cε )

t1−2s|V
β+1

2 ∇η|2dxdt +

∫
κ(Ωε×{0})

|Vβ+1η2|dx
]
.

(6.17)

Now, for each 0 < r1 < r2, we take a function η ∈ C∞c (Rn+1, [0, 1]) supported on Bn+1(0, r2) such
that η = 1 on Bn+1(0, r1). Then the above estimate (6.17) implies(∫

Bn(0,r1)
V (β+1) p+1

2 dx
) 2

p+1

+

(∫
Bn+1(0,r1)

t1−2sV (β+1) n+1
n dz

) n
n+1

≤
Cβ

1
1−θ

(r2 − r1)2

[(∫
Bn(0,r2)

Vβ+1dx
)

+

(∫
Bn+1(0,r2)

t1−2sVβ+1dz
)]
.

(6.18)

We will use this inequality iteratively. We denote θ0 = min{ p+1
2 , n+1

n } > 1 and set βk + 1 =

(β0 + 1)θk
0 and Rk = r/2 + r/2k for k ∈ N ∪ {0}. By applying the inequality aγ + bγ ≥ (a + b)γ for

any a, b > 0 and γ ∈ (0, 1] with Hölder’s inequality, and then taking β = βk in (6.18), we obtain(∫
Bn(0,Rk+1)

Vβk+1+1dx +

∫
Bn+1(0,Rk+1)

t1−2sVβk+1+1dz
) 1
βk+1+1

≤ C
1

(β0+1)θk0

[
θ

k
1−θ
0 22k

] 1
(β0+1)θk0

(∫
Bn(0,Rk)

Vβk+1dx +

∫
Bn+1(0,Rk)

t1−2sVβk+1dz
) 1
βk+1

.

Set

Ak(V) =

(∫
Bn(0,Rk)

Vβk+1dx +

∫
Bn+1(0,Rk)

t1−2sVβk+1dz
) 1
βk+1

.

Then, for D := (4θ
1

1−θ
0 )

1
β0+1 , we have

Ak+1 ≤ C
1
θk0 D

k
θk0 Ak.

Using this we get

Ak ≤ C
∑∞

j=1
1

θ
j
0 D

∑∞
j=1

j

θ
j
0 A0 ≤ CA0,
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from which we deduce that

sup
x∈Bn(0,r/2)

V(x, 0) = lim
k→∞

(∫
Bn+1(0,r/2)

Vβk+1(x, 0)dx
) 1
βk+1

≤ sup
k∈N

Ak ≤ C.

This concludes the proof. �

As we mentioned before, we cannot use the above result to the function Dε directly because
the estimate (6.7) is not enough to employ this result. To overcome this difficulty, we will seek a
refined estimation of the term εµ

−p+1
ε |x|−4s than (6.7), and in particular we will try to bound µε by

a constant multiple of ε−α having (6.8) in mind where α > 0 is a sufficiently small number. We
deduce the next result, which is a local invariant of the previous lemma, as the first step for this
objective.

Lemma 6.4.6. Let V be a bounded solution of the equations
div(t1−2s∇V) = 0 in κ(Cε),
V > 0 in κ(Cε),
V = 0 on κ(∂LCε),
∂s
νV(x, 0) = g(x)V(x, 0) + εϕ(x)V(x, 0) on κ(Ωε × {0}).

Fix β ∈ (1,∞). Suppose that ϕ satisfies ‖ϕ‖L n
2s (Rn) ≤ Q1,∫

Bn+1(0,r)
t1−2sV(x, t)β+1dxdt +

∫
Bn(0,r)

V(x, 0)β+1dx ≤ Q2

and ∫
Bn(0,r)

g(x)qdx ≤ Q3,

for some r > 0 and q > n
2s . Then, for any J > 1, there exist constants ε0 = ε0(Q1, J) > 0 and

C = C(r,Q1,Q2,Q3, J) > 0 depending on r, Q1, Q2, Q3 and J such that, if 0 < ε < ε0, then we
have

‖V(·, 0)‖LJ(Bn(0,r/2)) ≤ C.

Proof. Let η ∈ C∞c (Rn+1). Then the same argument for (6.12) gives

Cs

∫
κ(Ωε×{0})

g(x)η2Vβ+1(x, 0)dx + εCs

∫
κ(Ωε×{0})

ϕ(x)η2Vβ+1(x, 0)dx

≥
β

2
2

(β + 1)2

∫
κ(Cε )

t1−2s|∇(V
β+1

2 η)|2dz −
(
2
β

+
2β

(β + 1)2

) ∫
κ(Cε )

t1−2s|V
β+1

2 ∇η|2dz. (6.19)

Using Hölder’s inequality we get

ε

∫
κ(Ωε×{0})

ϕ(x)η2Vβ+1(x, 0)dx ≤ ε‖ϕ‖
L

p+1
p−1 (Rn)

‖η2Vβ+1(·, 0)‖
L

p+1
2 (Rn)

.
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If ε < β

4(β+1)2S2
n,sQ1

, from the trace inequality, we obtain

ε‖ϕ‖
L

p+1
p−1 (Rn)

‖η2Vβ+1(·, 0)‖
L

p+1
2 (Rn)

≤
β

4(β + 1)2

∫
κ(Cε )

t1−2s|∇(V
β+1

2 η)|2dz.

Now we can follow the steps (6.16)-(6.18) of the previous lemma. Moreover, we can iterate it
with respect to β as long as ε < β

4(β+1)2S2
n,sQ1

holds. Thus, for ε < J
4(J+1)2S2

n,sQ1
, we can find a constant

C = C(r,C1,C2,C3, J) such that

‖V(·, 0)‖LJ(Bn(0,r/2)) ≤ C.

It proves the lemma. �

To apply the previous lemma to get a bound of µε in terms of ε, we also need to make the use
of the Pohozaev identity of Uε:

1
2Cs

∫
∂LC

t1−2s|∇Uε(z)|2〈z, ν〉dS = εs
∫

Ω×{0}
Uε(x, 0)2dx.

As a matter of fact, we will not use this identity directly, but instead we will utilize its local
version to prove the following result.

Proposition 6.4.7. Suppose that U ∈ H s
0,L(C) is a solution of problem (6.9) with f such that f

has the critical growth and f = F′ for some function F ∈ C1(R). Then, for each δ > 0 and q > n
s

there is a constant C = C(δ, q) > 0 such that

min
r∈[δ,2δ]

∣∣∣∣∣∣n
∫
I(Ω,r/2)×{0}

F(U)dx −
(
n − 2s

2

) ∫
I(Ω,r/2)×{0}

U f (U)dx

∣∣∣∣∣∣
≤ C

(∫
O(Ω,2δ)×{0}

| f (U)|qdx
) 2

q

+

∫
O(Ω,2δ)×{0}

|F(U)|dx +

(∫
I(Ω,δ/2)×{0}

| f (U)|dx
)2
 (6.20)

where I and O is defined in (6.3) and (6.4).

We defer the proof of the proposition to Appendix 6.A. We remark that this kind of estimate was
used in [?] for s = 1/2.

Now we can prove the following result.

Lemma 6.4.8. There exist a constant C > 0 and α > 0 such that

µε ≤ Cε−α for all ε > 0.

Proof. We denote

f (u) = up + εu and F(u) =
1

p + 1
up+1 +

1
2
εu2 for u > 0 (6.21)
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and fix a small number δ > 0 so that I(Ω, δ) has the same topology as that of Ω. For r ∈ [δ, 2δ]
we see that

ε

∫
I(Ω,r)

uε(x)2dx = ε

∫
I(Ω,r)

µ2
εbε

(
µ

p−1
2s
ε (x − xε)

)2
dx = εµ2

εµ
−

p−1
2s n

ε

∫
µ

p−1
2s
ε (I(Ω,r)−xε )

bε(x)2dx

≥ εµ
− 4s

n−2s
ε

∫
Bn(0,1)

b2
ε (x)dx ≥ Cεµ−

4s
n−2s

ε ,

(6.22)

where we used the fact that bε converges to w1 uniformly on any compact set (see Lemma 6.3.3).
Since Uε is a solution of (6.9) with f given in (6.21), we have

min
r∈[δ,2δ]

∣∣∣∣∣∣n
∫
I(Ω,r)×{0}

F(Uε)dx −
(
n − 2s

2

) ∫
I(Ω,r)×{0}

Uε f (Uε)dx

∣∣∣∣∣∣
= min

r∈[δ,2δ]

∣∣∣∣∣∣εs
∫
I(Ω,r)

Uε(x, 0)2dx

∣∣∣∣∣∣ ≥ Cεµ−
4s

n−2s
ε .

This gives a lower bound of the left-hand side of (6.20).
Now we shall find an upper bound of the right-hand side of (6.20). By Lemma 6.4.6, for any

q < ∞, we get ‖dε‖Lq(Bn(0,1)) ≤ C with a constant C = C(q) > 0. Using this we have

C ≥
∫
{|x|≤1}

dq
ε (x)dx =

∫
{|x|≤1}

|x|−(n−2s)qbq
ε

(
x
|x|2

)
dx

=

∫
{|x|≥1}

|x|(n−2s)qbq
ε (x)|x|−2ndx

=

∫
{|x|≥1}

|x|(n−2s)q−2nµ−q
ε uq

ε

(
µ
−

p−1
2s

ε x + xε
)

dx

=

∫{
|x−xε |≥µ

−
p−1
2s

ε

} µ p−1
2s [(n−2s)q−2n]
ε µ−q

ε µ
p−1
2s n
ε |x − xε |(n−2s)q−2nuq

ε (x)dx

=

∫{
|x−xε |≥µ

−
p−1
2s

ε

} µq− 2n
n−2s

ε |x − xε |(n−2s)q−2nuq
ε (x)dx.

(6.23)

First of all, we find a bound of
∫

Ω
up
ε (x)dx. Using (6.23) and Hölder’s inequality we deduce that∫{

|x−xε |≥µ
−

p−1
2s

ε

} up
ε (x)dx

≤

∫{
|x−xε |≥µ

−
p−1
2s

ε

} uq
ε (x)|x − xε |(n−2s)q−2ndx

 p
q

×

∫{
|x−xε |≥µ

−
p−1
2s

ε

} |x − xε |−[(n−2s)q−2n] p
q−p dx

 q−p
q

≤ µ
−(q− n

n−2s ) p
q

ε µ
p−1
2s [((n−2s)q−2n) p

q−p−n] q−p
q

ε .
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Note that if q = ∞, then the last term is equal to µ−p
ε µ

p−1
2s [(n+2s)−n]
ε = µ−1

ε . Thus, for any κ > 0,
we can find q = q(κ) sufficiently large so that the last term of the above estimate is bounded by
µ−1+κ
ε . Then it follows that ∫{

|x−xε |≥µ
−

p−1
2s

ε

} up
ε (x)dx

2

≤ µ−2+2κ
ε . (6.24)

On the other hand, because uε(x) ≤ Cµε , we have∫{
|x−xε |≤µ

−
p−1
2s

ε

} up
ε (x)dx

2

≤ Cµ2p
ε µ

−
p−1
2s ·2n

ε = Cµ
4s−2n
n−2s
ε = Cµ−2

ε . (6.25)

These two estimates give us the bound of
∫

Ω
up
ε (x)dx.

Now we turn to bound ‖ f (Uε)(·, 0)‖Lq(O(Ω,2δ)). For this we again use inequality (6.23) to have∫
{|x−xε |≥dist(x0,∂Ω)/2}

upq
ε (x)dx ≤ Cµ−(pq− 2n

n−2s )
ε for any q > 1.

Using this inequality for a sufficiently large q and Hölder’s inequality we can deduce that(∫
{|x−xε |≥dist(x0,∂Ω)/2}

upq
ε (x)dx

) 2
q

≤ C
(
µ
−(pq− 2n

n−2s )
ε

) 2
q
≤ Cµ−2p+κ

ε . (6.26)

Similarly we have ∫
O(Ω,2δ)

|F(uε(x))|dx ≤ Cµ−(p+1)+κ
ε .

Combining this estimate with (6.24), (6.25) and (6.26) gives the bound(∫
O(Ω,2δ)

| f (Uε)(x, 0)|qdx
) 2

q

+

∫
O(Ω,2δ)

|F(Uε(x, 0)|dx +

(∫
Ω

f (Uε)(x, 0)dx
)2

≤ Cµ−2+2κ
ε .

We put this bound and (6.22) into (6.20) in the statement of Proposition 6.4.7. Then we finally
get

εµ
− 4s

n−2s
ε ≤ Cµ−2+2κ

ε (6.27)

which is equivalent to

µ
2n−8s
n−2s −2κ
ε ≤

C
ε
.

Choose κ > 0 such that α := 2n−8s
n−2s − 2κ is positive. Then the estimate (6.27) turns out to be

µε ≤ Cε−α,

which is the desired inequality. �
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Proof of Proposition 6.4.1. We know that

lim
ε→0

∫
Cε

t1−2s|∇(Bε −W1)|2dxdt = 0.

By employing the Sobolev trace embedding, we find that

lim
ε→0

[∫
Ωε

|bε(x) − w1(x)|p+1dx
]

= 0. (6.28)

Since p = n+2s
n−2s , we have the scaling invariance∫

Rn
|a(x)|p+1dx =

∫
Rn
|x|−2n|a(κ(x))|p+1dx,

and ∫
Rn+1

t1−2s|∇A(z)|2dz ≥ C
∫
Rn+1

t1−2s|∇[|z|−(n−2s)A(κ(z))]|2dz

for arbitrary functions a : Rn → R and A : Rn+1 → R which decay sufficiently fast. Using these
identities, we deduce from (6.28) that

lim
ε→0

[∫
κ(Ωε )
|dε(x) − w1(x)|p+1dx +

∫
κ(Cε )

t1−2s|∇(Dε −W1)(x, t)|2dxdt
]

= 0.

Using the Sobolev embedding theorem and Hölder’s inequality, for β0 = min{p, n+2
n } > 1, we get

lim
ε→0

∫
Bn+1(0,1)

t1−2s|Dε(x, t) −W1(x, t)|β0+1dxdt = 0. (6.29)

Finally, estimates (6.29) and (6.7) enable us to apply Lemma 6.4.2 so that we can find δ > 0
satisfying ∫

κ(Ωε×{0})∩Bn(0,δ)

(
dp−1
ε

) n
2s

β0+1
2 dx ≤ C for any ε > 0. (6.30)

Next, from Lemma 6.4.8 we may find α > 0 such that µε ≤ ε−α. Then, for ζ > 0 small
enough, we have

‖εµ−p+1
ε |x|−4s‖L

n
2s +ζ (κ(Ωε ))

≤ ε

∫{
|x|≥µ

−
p−1
2s

ε

} µ−(p−1)( n
2s +ζ)

ε |x|−2n−4sζdz
 1

n
2s +ζ

≤ ε
[
µ
−(p−1)( n

2s +ζ)
ε µ

p−1
2s (n+4sζ)
ε

] 1
n
2s +ζ

= εµ

ζ(p−1)
n
2s +ζ

ε ≤ ε · ε
−
αζ(p−1)

n
2s +ζ ≤ 1.

Given this estimate and (6.30), we can apply Lemma 6.4.5 to get

‖dε‖L∞(Bn(0,δ/2)) ≤ C.

The proof is concluded. �
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Proof of Theorem 6.1.1

We are now ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. By the definition of µε in (6.8), we have

As(‖uε‖L∞(Ω)uε)(x) = cn,s
[
µεup

ε (x) + εµεuε(x)
]
, x ∈ Ω.

Note from p = n+2s
n−2s that∫

Ω

(
µεup

ε (x) + εµεuε(x)
)

dx =

∫
Ω

µp+1
ε bp

ε

(
µ

p−1
2s
ε (x − xε)

)
dx + εµ2

ε

∫
Ω

bε
(
µ

p−1
2s
ε (x − xε)

)
dx

=

∫
Ωε

bp
ε (x)dx + εµ2

εµ
−

p−1
2s n

ε

∫
Ωε

bε(x)dx.

Note also that

µ2
εµ
−

p−1
2s n

ε

∫
Ωε

bε(x)dx ≤ µ2
εµ
−

p−1
2s n

ε

∫{
|x|≤µ

p−1
2s
ε

} C
(1 + |x|)n−2s dx

≤ Cµ2− p−1
2s n+

p−1
2s 2s

ε ≤ C.

Given the uniform bound (6.1), we use the Lebesgue dominated convergence theorem to obtain

lim
ε→0

∫
Ω

cn,sµεup
ε (x) =

∫
Rn
cn,sw

p
1(x)dx = bn,s,

where

bn,s :=
|S n−1|

2

Γ (s) Γ
(

n
2

)
Γ
(

n+2s
2

) cp+1
n,s . (6.31)

For x , x0, we have limε→0 µεu
p
ε (x) = 0 by (6.2). Therefore we may conclude that

lim
ε→0
As(‖uε‖L∞(Ω)uε)(x) = bn,sδx0(x) in C(Ω)′.

Set vε := As(‖uε‖L∞(Ω)uε). Then limε→0

∫
Ω

vεdx = bn,s and limε→0 vε(x) = 0 uniformly on any
compact set of Ω \ {x0}. We observe the formula

‖uε‖L∞(Ω)Uε(x, t) =

∫
Ω

[
an,s

|(x − y, t)|n−2s − HC(x, t, y)
]

vε(y)dy. (6.32)

On the other hand we have HC(x, t, ·) is in C∞loc(Ω) and ‖HC(x, t, ·)‖
L

2n
n−2s (Ω)

≤ C which holds
uniformly on any compact set of Ω \ {x0}. From this we conclude that

‖uε‖L∞(Ω)Uε(x, t)→ bn,sGC(x, t, x0) in C0
loc(C \ {(x0, 0)}).
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Also, pointwise convergence in C is valid for the derivatives of ‖uε‖L∞(Ω)Uε by elliptic regularity.
Especially, for t = 0, the regularity property of the function x ∈ Ω→ HC(x, 0, y) given in Lemma
6.2.4 proves that

‖uε‖L∞(Ω)uε(x)→ bn,sG(x, x0) in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s − 1) if s ∈ (1/2, 1).

This completes the proof. �

6.5 Location of the blowup point

The objective of this section is to prove Theorem 6.1.2. For this goal, we will derive several
identities related to Green’s function. Throughout this section, we keep using the notations: X0 =

(x0, 0), Br = Bn+1(X0, r)∩Rn+1
+ , ∂B+

r = ∂Br ∩R
n+1
+ and Γr = Bn(x0, r) for r > 0 small. We also use

G(z) (or H(z)) to denote GC(z, x0) (or HC(z, x0)) for brevity.

The first half of this section is devoted to proving the second statement of Theorem 6.1.2.

Proof of Theorem 6.1.2 (2). It holds

lim
ε→0

εsCsµ
2(n−4s)

n−2s
ε δ

∫
Rn

w2
1(x)dx

= b2n,s

∫ 2δ

δ

[∫
∂B+

r

t1−2s

〈
(z − X0,∇G(z))∇G(z) − (z − X0)

|∇G(z)|2

2
, ν

〉
dS

+

(
n − 2s

2

) ∫
∂B+

r

t1−2sG(z, x0)
∂G(z)
∂ν

dS
]

dr

(6.1)

for an each δ > 0 small enough. We will now take a limit δ→ 0. Putting

G(z) =
an,s

|z − X0|
n−2s − H(z) and ∇G(z) = −an,s(n − 2s)

z − X0

|z − X0|
n+2−2s − ∇H(z)

into the right-hand side of (6.1) and applying ν = z−X0
r on ∂B+

r , we can derive

2 lim
ε→0

εsCsµ
2(n−4s)

n−2s
ε

∫
Rn

w2
1(x)dx

= (n − 2s)2
an,sb

2
n,s lim

r→0

2 ∫
∂B+

2r

t1−2s

(2r)n+1−2s H(z)dS −
∫
∂B+

r

t1−2s

rn+1−2s H(z)dS


+ lim
δ→0

1
δ

∫ 2δ

δ

∫
∂B+

r

t1−2sO
(
〈ν,∇H(z)〉

(
1

rn−2s + H(z)
)

+ r|∇H(z)|2
)

dS dr.
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Since ∂iHC(·, x0) has a bounded Hölder norm over a small neighborhood of x0 for each i =

1, · · · , n (refer to [CDDS, Lemma 2.9]), the second term in the right-hand side tends to 0. As a
result,

2 lim
ε→0

εsCsµ
2(n−4s)

n−2s
ε

∫
Rn

w2
1(x)dx→ (n − 2s)2Dn,san,sb

2
n,sτ(x0)

as δ→ 0, where

Dn,s := lim
r→0

∫
∂Bn+1(0,r)∩Rn+1

+

t1−2s

rn+1−2s dS =

∫
Bn(0,1)

1
(1 − |x|2)s dx =

|S n−1|

2
B

(
1 − s,

n
2

)
,

B denoting the beta function. This proves Theorem 6.1.2 (2). We also know that the constant dn,s
in the statement of the theorem is given by

dn,s =
Γ(n − 2s)

πn/sΓ(n
2 − 2s)

(n − 2s)2

2sCs
Dn,san,sb

2
n,sc
− 4s

n−2s
n,s . (6.2)

�

Next, we prove the first statement of Theorem 6.1.2, that is, τ′(x0) = 0.

Proof of Theorem 6.1.2 (1). If U is a solution to (6.9), for each 1 ≤ k ≤ n, we have∫
∂B+

r

t1−2s|∇U |2νkdS =

∫
Br

t1−2s∂k|∇U |2dz = 2
∫

Br

t1−2s∇U · ∇∂kUdz

= 2
∫
∂B+

r

t1−2s〈∇U, ν〉∂kUdS + 2Cs

∫
∂Γr

F(U)νkdS x

where F(t) :=
∫ t

0
f (t)dt, νk is the k-th component of ν, ∂k is the partial derivative with re-

spect to the k-th variable and r > 0 small. For the last equality, we used
∫

Γr
f (U)∂kUdx =∫

Γr
(∂kF)(U)dx =

∫
∂Γr

F(U)νkdS x. Therefore putting ‖Uε(·, 0)‖L∞(Ω)Uε (see (6.1)) in the place of
U in the above identity, integrating the result from δ to 2δ in r and taking ε → 0, we obtain∫ 2δ

δ

∫
∂B+

r

t1−2s|∇G|2νkdS dr = 2
∫ 2δ

δ

∫
∂B+

r

t1−2s〈∇G, ν〉∂kGdS dr (6.3)
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(cf. Appendix ??). On the other hand, a direct calculation shows that

lim
δ→0

1
δ

∫ 2δ

δ

∫
∂B+

r

t1−2s〈∇G(z), ν(z)〉∂kG(z)dS dr

= lim
δ→0

1
δ

∫ 2δ

δ

∫
∂B+

r

t1−2s

[
an,s(n − 2s)

rn−2s+1 +

〈z − X0

r
,∇H(z)

〉]
×

[
(xk − x0,k)

an,s(n − 2s)
rn+2−2s + ∂kH(z)

]
dS dr

= lim
r→0

∫
∂B+

r

t1−2s an,s(n − 2s)
rn−2s+1 ∂kH(z)dS

+ lim
δ→0

1
δ

∫ 2δ

δ

∫
∂B+

r

t1−2s an,s(n − 2s)
rn−2s+3 (xk − x0,k)〈z − X0,∇H(z)〉dS dr

= (n − 2s + 3)(n − 2s)an,sEn,s∂kτ(x0),

(6.4)

where xk and x0,k mean the k-th component of x and x0, respectively, and

En,s := lim
r→0

∫
∂Bn+1(0,r)∩Rn+1

+

t1−2s

rn−2s+3 x2
kdS =

1
n

∫
Bn(0,1)

|x|2

(1 − |x|2)s dx =
|S n−1|

2n
B

(
1 − s,

n + 2
2

)
.

In particular,Dn,s = (n − 2s + 2)En,s. Moreover we observe

lim
δ→0

1
δ

∫ 2δ

δ

∫
∂B+

r

t1−2s|∇G(z)|2νk(z)dS dr

= 2 lim
r→0

∫
∂B+

r

t1−2s an,s(n − 2s)
rn−2s+3 (xk − x0,k)2∂kH(z)dS + lim

δ→0

1
δ

∫ 2δ

δ

∫
∂B+

r

t1−2s|∇H(z)|2νk(z)dS dr

= 2(n − 2s)an,sEn,s∂kτ(x0).
(6.5)

Taking δ→ 0 in (6.3) with (6.4) and (6.5) in hand gives our desired result. �

6.6 Construction of solutions for (6.1) concentrating at multi-
ple points

In this section we prove Theorem 6.1.4 by applying the Lyapunov-Schmidt reduction method to
the extended problem 

div
(
t1−2s∇U

)
= 0 in C = Ω × (0,∞),

U > 0 in C,
U = 0 on ∂LC = ∂Ω × (0,∞),
∂s
νU = U p + εU on Ω × {0},

(6.1)
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where 0 < s < 1 and p = n+2s
n−2s . We remind that the functions wλ,ξ and Wλ,ξ are defined in (6.5) and

(6.8). By the result of Dávila, del Pino and Sire [DDS], it is known that the space of the bounded
solutions for the linearized equation of (6.7) at wλ,ξ, namely,

Asφ = pwp−1
λ,ξ φ in Rn (6.2)

is spanned by
∂wλ,ξ

∂ξ1
, · · · ,

∂wλ,ξ

∂ξn
and

∂wλ,ξ

∂λ
(6.3)

where ξ = (ξ1, · · · , ξn) represents the variable in Rn. From this, it also follows that the solutions
of the extended problem of (6.2) div(t1−2s∇Φ) = 0 in Rn+1

+ = Rn × (0,∞),
∂s
νΦ = pwp−1

λ,ξ Φ on Rn × {0},
(6.4)

which are bounded on Ω × {0}, consist of the linear combinations of

∂Wλ,ξ

∂ξ1
, · · · ,

∂Wλ,ξ

∂ξn
and

∂Wλ,ξ

∂λ
.

In the proof of Theorem 6.1.4, we will often consider the dilated equation
div(t1−2s∇U) = 0 in Cε = Ωε × (0,∞),
U > 0 in Cε ,
U = 0 on ∂LCε = ∂Ωε × (0,∞),
∂s
νU = U p + ε1+2sα0U on Ωε × {0},

(6.5)

where

Cε =
C

εα0
=

{
(x, t)
εα0

: (x, t) ∈ C
}

and
Ωε =

Ω

εα0
=

{ x
εα0

: x ∈ Ω

}
for some α0 > 0 to be determined later. If U is a solution of (6.5), then Uε(z) := ε−

(n−2s)
2 α0U(ε−α0z)

for z ∈ Ω becomes a solution of problem (6.1).
Since we want solutions to be positive, we use a well-known trick that replaces the nonlinear

term U p in (6.1) with its positive part U p
+. Namely, we consider the following modified equation

of (6.5) 
div(t1−2s∇U) = 0 in Cε ,
U = 0 on ∂LCε ,

∂s
νU = fε(U) := U p

+ + ε1+2sα0U on Ωε × {0}.
(6.6)
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6.6.1 Finite dimensional reduction

In order to construct a k-peak solution of (6.1) (k ∈ N), we define the admissible set

Oδ0 =
{
(λ,σ) := ((λ1, · · · , λk), (σ1, · · · , σk)) ∈ (R+)k ×Ωk : σi = (σ1

i , · · · , σ
n
i ),

dist(σi, ∂Ω) > δ0, δ0 < λi <
1
δ0
, |σi − σ j| > δ0, i , j, i, j = 1, · · · , k

}
(6.7)

with some small δ0 > 0 fixed, which recodes the information of the concentration rate and the
locations of points of concentration.

Let the map
i∗ε : L

2n
n+2s (Ωε)→ H s

0,L(Cε)

be the adjoint operator of the Sobolev trace embedding

iε : H s
0,L(Cε)→ L

2n
n−2s (Ωε) defined by iε(U) := tr|Ωε×{0}(U) for U ∈ H s

0,L(Cε),

which comes from the inequality (6.9) (for the definition of H s
0,L(Cε), see Subsection 6.2). From

its definition, i∗ε(u) = V for some u ∈ L
2n

n+2s (Ωε) and V ∈ H s
0,L(Cε) if and only if

div(t1−2s∇V) = 0 in Cε ,
V = 0 on ∂LCε ,

∂s
νV = C−1

s u on Ωε × {0}.

where Cs > 0 is the constant defined in (6.11). Therefore finding a solution U ∈ H s
0,L(Cε) of (6.5)

is equivalent to solving the relation

i∗ε( fε(iε(U))) = C−1
s U. (6.8)

It is valuable to note that from (6.3) we have in fact iε : H s
0,L(Cε) → H s

0(Ωε) ⊂ L
2n

n−2s (Ωε) and so
As(iε(U)) makes sense. See also Sublemma 6.B.6.

We introduce the functions

Ψ0
λ,ξ =

∂Wλ,ξ

∂λ
, Ψ

j
λ,ξ =

∂Wλ,ξ

∂ξ j , ψ0
λ,ξ =

∂wλ,ξ

∂λ
, ψ

j
λ,ξ =

∂wλ,ξ

∂ξ j (6.9)

where ξ =
(
ξ1, · · · , ξn

)
∈ Rn and j = 1, · · · , n, and

PεWλ,ξ = i∗ε
(
wp
λ,ξ

)
, PεΨ

j
λ,ξ = i∗ε

(
pwp−1

λ,ξ ψ
j
λ,ξ

)
for j = 0, 1, · · · , n. (6.10)

Furthermore, we let the functions Pεwλ,ξ and Pεψ
j
λ,ξ be

Pεwλ,ξ = iε(PεWλ,ξ) and Pεψ
j
λ,ξ = iε

(
PεΨ

j
λ,ξ

)
for j = 0, · · · , n (6.11)
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which vanish on ∂Ωε and solve the equations Asu = wp
λ,ξ and Asu = pwp−1

λ,ξ ψ
j
λ,ξ in Ωε , respec-

tively. Also, whenever (λ,σ) ∈ Oδ0 is chosen, we denote

Wi = Wλi,σiε
−α0 , PεWi = PεWλi,σiε

−α0 and PεΨ
j
i = PεΨ

j
λi,σiε

−α0 (6.12)

and similarly define Pεwi and Pεψ
j
i (i = 1, · · · , k and j = 0, 1, · · · , n) for the sake of simplicity.

Set also

Kε
λ,σ =

{
u ∈ H1

0,L(Cε) :
(
u, PεΨ

j
i

)
Cε

= 0, i = 1, 2, · · · , k, j = 0, 1, · · · , n
}

(6.13)

for ε > 0 and (λ,σ) ∈ Oδ0 and define the orthogonal projection operator Πε
λ,σ : H s

0,L(Cε)→ Kε
λ,σ.

Now, if we set Lελ,σ : Kε
λ,σ → Kε

λ,σ by

Lελ,σ(Φ) = C−1
s Φ − Πε

λ,σi∗ε

 f ′ε

 k∑
i=1

Pεwi

 · iε(Φ)

 , (6.14)

then we can obtain the following lemma from the nondegeneracy result of [DDS].

Lemma 6.6.1. Suppose that (λ,σ) is contained in Oδ0 . Then there exists a positive constant
C = C(n, δ0) such that

‖Lελ,σ(Φ)‖Cε ≥ C‖Φ‖Cε for all Φ ∈ Kε
λ,σ and sufficiently small ε > 0.

Proof. Assume the contrary. Then there exist sequences εl > 0, Φl ∈ Kεl
λl,σl

, Hl = Lεl
λl,σl

(Φl) and
(λl,σl) = ((λ1l, · · · , λkl), (σ1l, · · · , σkl)) ∈ Oδ0 (l ∈ N) satisfying

lim
l→∞

εl = 0, ‖Φl‖Cεl = 1, lim
l→∞
‖Hl‖Cεl = 0, lim

l→∞
(λl,σl) = (λ∞,σ∞) ∈ Oδ0 . (6.15)

Set Cl = Cεl , Ωl = Ωεl , Plwil = Pεlwλil,σil and PlΨ
j
il = PεlΨ

j
λil,σil

for i = 1, · · · , k and j = 1, · · · , n.
If we further denote φl = iεl(Φl), then we have

C−1
s Φl − i∗εl

 f ′εl

 k∑
i=1

Plwil

 φl

 = Hl + Ql in H1
0,L(Cl) (6.16)

where Ql :=
∑k

i=1
∑n

j=1 cl
i jPlΨ

j
il for some constants cl

i j ∈ R. By our assumptions above and the
relation

lim
l→∞

(
PlΨ

j1
i1l, PlΨ

j2
i2l

)
Cl

= p ·Cs lim
l→∞

∫
Ωl

U p−1
i1
ψ

j1
i1lPlψ

j2
i2l = c j1δi1i2δ j1 j2 (6.17)

for some constant c j1 > 0 depending on j1 (i1, i2 = 1, · · · , k and j1, j2 = 0, · · · , n), it holds that
‖Ql‖Cl is bounded and so is

∣∣∣cl
i j

∣∣∣.
First we claim that

lim
l→∞
‖Ql‖Cl = 0.
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Indeed, testing (6.16) with Ql, and employing Lemmas 6.B.3, 6.B.4 and 6.B.5, the definition of
the operator i∗εl

, and the relation
(
Φl, PlΨ

j
il

)
Cl

= Cs

∫
Ωl

wp−1
il ψ

j
ilφl = 0 which comes from Φl ∈ Kεl

λl,σl

and (6.10), we can deduce

‖Ql‖
2
Cl

= −

∫
Ωl

f ′εl

 k∑
i=1

Plwil

 φlql − (Hl,Ql)Cl

≤


p

∥∥∥∥∥∥∥∥
 k∑

i=1

Plwil

p−1

−

k∑
i=1

wp−1
il

∥∥∥∥∥∥∥∥
L

n
2s (Ωl)

+ ε1+2sα0 |Ωl|
2s
n

 ‖Φl‖L
2n

n−2s (Ωl)
+ ‖Hl‖Cl

 ‖Ql‖Cl

+

 k∑
i=1

∥∥∥ f ′εl
(wil)

∥∥∥
L

n
2s (Ωl)

 ‖Φl‖L
2n

n−2s (Ωl)

∑
i, j

∣∣∣cl
i j

∣∣∣ ∥∥∥∥Plψ
j
il − ψ

j
il

∥∥∥∥
L

2n
n−2s (Ωl)


= o(1)‖Ql‖Cl + o(1) = o(1)

where ql := iεl(Ql).
Choose now a smooth function χ : R→ [0, 1] such that χ(x) = 1 if |x| ≤ δ0/2 and χ(x) = 0 if

|x| ≥ δ0 (where δ0 is the small number chosen in (6.7)), and set

χl(x) = χ(εα0
l x), Φhl(x, t) = Φl(x + ε−α0

l σhl, t)χl(x) for (x, t) ∈ Cl

and φhl := iεl(Φhl) for each h = 1, · · · , k. Since ‖Φhl‖Rn+1
+

is bounded for each h, Φhl converges
to Φh∞ weakly in Ds(Rn+1

+ ) up to a subsequence. Using the same arguments of [MP], we can
conclude that Φh∞ is a weak solution of (6.4) with (λ, ξ) = (λh∞, 0) and∫

Rn+1
+

t1−2s∇Φh∞ · ∇Ψ
j
λh∞,0

= 0 for all j = 0, 1, · · · , n.

In order to use the result of [DDS] to show Φh∞ = 0, we also need to know that φh∞ is bounded
where φh∞(x) := Φh∞(x, 0) for any x ∈ Rn, and it is the next step we will be concerned with.
Define Φ̃L = min{|Φh∞|, L} and φ̃L = tr|Rn+1Φ̃L for any L > 0, and select the test function Φ̃

β
L ∈

Ds(Rn+1) for (6.16) with any β > 1 to obtain

4β
(β + 1)2

∥∥∥∥Φ̃ β+1
2

L

∥∥∥∥2

Rn+1
+

= Cs

∫
Rn

f ′0(wλh∞)φ̃β+1
L dx.

Then by applying the Sobolev trace embedding and taking L→ ∞, we can get∥∥∥∥φ β+1
2

h∞

∥∥∥∥
L

2n
n−2s (Rn+1

+ )
≤ Cβ ‖φh∞‖

β+1
2

Lβ+1(Rn+1
+ )

(6.18)

with a constant Cβ > 0 which depends only on β. Since we already have that ‖φh∞‖L
2n

n−2s (Rn+1
+ )

is
finite, we may deduce from (6.18) that for any q > 1, there is a constant Cq > 0 which relies only
on the choice of q such that

‖φh∞‖Lq(Rn+1
+ ) ≤ Cq.
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Now we note the expression

φh∞(x)

=

∫
Rn

an,s

|x − y|n−2s f ′0(wλh∞)(y)φh∞(y)dy

=

∫
{|x−y|≤1}

an,s

|x − y|n−2s f ′0(wλh∞)(y)φh∞(y)dy +

∫
{|x−y|>1}

an,s

|x − y|n−2s f ′0(wλh∞)(y)φh∞(y)dy

:= I1(x) + I2(x) for x ∈ Rn.

As for I1, we take a very large number q so that r := q
q−1 is sufficiently close to 1. Then we get

I1 ≤ C
(∫
{|x−y|≤1}

1
|x − y|(n−2s)r dy

) 1
r
(∫
{|x−y|≤1}

∣∣∣ f ′0(wλh∞)(y)φh∞(y)
∣∣∣q dy

) 1
q

≤ C‖φh∞‖Lq(Rn+1) ≤ C.

(6.19)

Considering I2 we take r such that r = n
n−2s + ζ for a small number ζ > 0. Then q is close to n

2s .
We further find numbers q1 slightly less than n

2s and q2 such that 1
q = 1

q1
+ 1

q2
. Then we get

I2 ≤ C
(∫
{|x−y|>1}

1
|x − y|(n−2s)r dy

) 1
r ∥∥∥ f ′0(wλh∞)

∥∥∥
Lq1 (Rn+1) ‖φh∞‖Lq2 (Rn+1) ≤ C. (6.20)

The estimates (6.19) and (6.20) show that φh∞ is bounded. Now we may achieve that Φh∞ = 0
by the classification of the solutions for the linear problem (6.4) obtained in [DDS]. In summary,
we proved that

lim
l→∞

Φhl = 0 weakly inDs(Rn+1
+ ) and lim

l→∞
φhl = 0 strongly in Lq(Ω) for 1 ≤ q < p + 1

(6.21)
(h = 1, · · · , k).

Consequently, (6.21) yields

lim
l→∞

∫
Ωl

f ′ε

 k∑
i=1

Plwil

 φ2
l = 0.

Hence by testing Φl to (6.16) we may deduce that

lim
l→∞
‖Φl‖Cl = 0.

However it contradicts to (6.15). This proves the validity of the lemma. �

For each ε > 0 sufficiently small and (λ,σ) ∈ Oδ0 fixed, the linear operator Lελ,σ : Kε
λ,σ → Kε

λ,σ

has the form Id+K where Id is the identity operator andK is a compact operator on Kε
λ,σ, because

the trace operator iε : H s
0,L(Cε) → Lq(Ωε) ⊂ Lp+1(Ωε) is compact whenever q ∈ [1, p + 1).

Therefore, by the Fredholm alternative, it is a Fredholm operator of index 0. However Lemma
6.6.1 implies that it is also an injective operator. Consequently, we have the following result.
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Proposition 6.6.2. The inverse (Lελ,σ)−1 of Lελ,σ : Kε
λ,σ → Kε

λ,σ exists for any ε > 0 small and
(λ,σ) ∈ Oδ0 . Besides, its operator norm is uniformly bounded in ε and (λ,σ) ∈ Oδ0 , if ε is small
enough.

The previous proposition gives us that

Proposition 6.6.3. For any sufficiently small δ0 > 0 chosen fixed, we can select ε0 > 0 such that
for any ε ∈ (0, ε0) and (λ,σ) ∈ Oδ0 , there exists a unique Φε

λ,σ ∈ Kε
λ,σ satisfying

Πε
λ,σ

C−1
s

 k∑
i=1

PεWi + Φε
λ,σ

 − i∗ε

 fε

 k∑
i=1

Pεwi + iε
(
Φε
λ,σ

)
 = 0

and

‖Φε
λ,σ‖Cε ≤ Cεη0 with η0 :=

{ 1
2 + 2sα0 if n ≥ 6s,
1
2 + (1 + δ)sα0 if 4s < n < 6s,

(6.22)

where δ > 0 is chosen to satisfy (4 + 2δ)s < n. Furthermore, the map (λ,σ) 7→ Φε
λ,σ is C1(Oδ0).

Proof. Define

Nε(Φ) = Πε
λ,σ ◦ i∗ε

 fε

 k∑
i=1

Pεwi + iε(Φ)

 − fε

 k∑
i=1

Pεwi

 − f ′ε

 k∑
i=1

Pεwi

 iε(Φ)

 ,
Rε = Πε

λ,σ

i∗ε  fε

 k∑
i=1

Pεwi

 −C−1
s

k∑
i=1

PεWi


and

Tε(Φ) = (Lελ,σ)−1(Nε(Φ) + Rε) for Φ ∈ Kε
λ,σ,

where the set Kε
λ,σ and the operator Πε

λ,σ are defined in (6.13) and the sentence following it.
Also, the well-definedness of the inverse of the operator Lελ,σ is guaranteed by Proposition 6.6.2.
By Lemmas 6.B.1, 6.B.3 and 6.B.5, we have ‖Rε‖Cε = O (εη0) as ε → 0, and from this we can
conclude that Tε is a contraction mapping on K ε

λ,σ := {Φ ∈ Kε
λ,σ : ‖Φ‖Cε ≤ Cεη0} for some small

C > 0, which implies the existence of a unique fixed point of Tε on K ε
λ,σ. It is easy to check that

this fixed point is our desired function Φε
λ,σ. For the detailed treatment of the argument, we refer

to [MP, Proposition 1.8] (see also [DDM, Proposition 3]). �

6.6.2 The reduced problem

We set α0 = 1
n−4s . Notice that equation (6.5) for each fixed ε > 0 has the variational structure,

that is, U ∈ H s
0,L(Ω) is a weak solution of the equation if and only if it is a critical point of the

energy functional

Eε(U) :=
1

2Cs

∫
Cε

t1−2s|∇U |2 −
∫

Ωε×{0}
Fε(iε(U)) (6.23)
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where Fε(t) :=
∫ t

0
fε(t)dt. In fact, thanks to the Sobolev trace embedding iε : H s

0,L(Cε) →
Lp+1(Ωε), we can obtain that Eε : H s

0,L(Cε)→ R is a C1-functional and

E′ε(U)Φ =
1

Cs

∫
Cε

t1−2s∇U · ∇Φ −

∫
Ωε×{0}

fε(iε(U))iε(Φ) for any Φ ∈ H s
0,L(Cε).

Using Proposition 6.6.3, we can define a localized energy functional defined in the admissible
set Oδ0 in (6.7):

Ẽε(λ,σ) := Eε

 k∑
i=1

PεWλi,
σi
εα0

+ Φε
λ,σ

 (6.24)

for (λ,σ) = ((λ1, · · · , λk), (σ1, · · · , σk)) ∈ Oδ0 . Then we can obtain the following important
properties of Ẽε .

Proposition 6.6.4. Suppose ε > 0 is sufficiently small.
(1) If Ẽ′ε(λ

ε ,σε) = 0 for some (λε ,σε) ∈ Oδ0 , then the function Uε :=
∑k

i=1 PεW
λεi ,

σεi
εα0

+ Φε
λε ,σε

is a

solution of (6.6). Hence one concludes that a dilated function Vε(z) := ε−
n−2s

2(n−4s) Uε(ε−
1

n−4s z) defined
for z ∈ C is a solution of (6.1).
(2) Recall the number η0 chosen in (6.22). Then it holds that

Ẽε(λ,σ) =
ks
n

c0 +
1
2

Υk(λ,σ)ε
n−2s
n−4s + o(ε

n−2s
n−4s ) (6.25)

in C1-uniformly in (λ,σ) ∈ Oδ0 . Here Υk is the function introduced in (6.7) and

c0 =

∫
Rn

wp+1
1,0 (x)dx (6.26)

(recall that w1,0 is the function obtained by taking (λ, ξ) = (1, 0) in (6.5)).

We postpone its proof in Appendix 6.B.3.

6.6.3 Definition of stable critical sets and conclusion of the proofs of The-
orems

We recall the definition of stable critical sets which was introduced by Li [Li2].

Definition 6.6.5. Suppose that D ⊂ Rn is a domain and g is a C1 function in D. We say that a
bounded set Λ ⊂ D of critical points of f is a stable critical set if there is a number δ > 0 such
that ‖g−h‖L∞(Λ) + ‖∇(g−h)‖L∞(Λ) < δ for some h ∈ C1(D) implies the existence of a critical point
of h in Λ.

Now we are ready to prove Theorem 6.1.4.
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Proof of Theorem 6.1.4. By the virtue of Proposition 6.6.4 (2) and Definition 6.6.5, we can find a
pair (λε ,σε) ∈ Λk which is a critical point of the reduced energy functional Ẽε (defined in (6.23))
given 0 < ε < ε0 for some ε0 small enough. From this fact and Proposition 6.6.4 (1), we obtain a
solution vε := iε(Vε) of (6.1) for ε ∈ (0, ε0).

Also, by using the dilation invariance of (6.7) and the trace inequality (6.9), we see that vε =∑k
i=1 P1wεα0λεi ,σ

ε
i

+ φ̃ε
λε ,σε

in Ω where ‖φ̃ε
λε ,σε
‖

L
2n

n−2s (Ω)
≤ C‖Φε

λε ,σε
‖Cε = O(εη0) (η0 > 0 is chosen in

(6.22)). From this fact, if we test (6.1) with φ̃ελ,σ and use (6.11), we can deduce ‖φ̃ελ,σ‖Hs(Ω) = o(1).
Furthermore, it is obvious that there exists a point (λ0,σ0) ∈ Λk such that (λε ,σε) → (λ0,σ0) up
to a subsequence. This completes the proof of Theorem 6.1.4. �

Proof of Theorem 6.1.5. We recall that G and τ are Green’s function and the Robin function
of As in Ω with the zero Dirichlet boundary condition, respectively (see (6.4) and (6.5)). To
emphasize the dependence of G and τ on the domain Ω, we append the subscript Ω in G and τ
so that G = GΩ and τ = τΩ.

If a sequence of domains {Ωε : ε > 0} satisfies limε→0 Ωε = Ω and Ωε1 ⊂ Ωε2 for any
ε1 < ε2, then τΩε

converges to τΩ in C1
loc(Ω). In order to prove this statement, we first note that the

maximum principle (Lemma 6.2.1, cf. [T2, Lemma 3.3]) ensures that τΩε
is monotone increasing

as ε → 0 and tends to τΩ pointwise. Then we can deduce from Lemma 6.2.4 that it converges also
in C1 on any compact set of Ω. Similar arguments also apply to show that GΩε

(x, y) converges to
GΩ(x, y) in C1 locally on {(x, y) ∈ Ω2

ε : x , y}. The rest part of the proof goes along the same
way to [MP] or [EGP], where the authors considered domains Ωε consisting of k disjoint balls
and thin strips liking them whose widths are ε. �

6.7 The subcritical problem

We are now concerned in the proofs of Theorem 6.1.6 and Theorem 6.1.7. Since many steps of
the proofs for the previous theorems can be modified easily for problem (6.12), we only stress
the parts where some different arguments should be introduced.

Remind that µε = c−1
n,s supx∈Ω uε(x) and xε ∈ Ω is a point which satisfies µε = c−1

n,suε(xε). (See
Lemma 6.3.2.) We also define the functions bε and Bε with their domains Ωε and Cε as in (6.9)
and (6.10), replacing the scaling factor 2

n−2s =
p−1
2s by p−1−ε

2s . Then bε converges to w1 pointwisely.
In order to get the uniform boundedness result, we first need the following bound of µε .

Lemma 6.7.1. There exists a constant C > 0 such that

C ≤ µ−( n
2s−1)ε

ε for all ε > 0. (6.1)

Proof. Since bε converges to w1 pointwise, we have∫
Bn(0,1)

bp+1−ε
ε ≥ C
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by Fatou’s lemma. Note that∫
Bn(0,1)

bp+1−ε
ε (x)dx =

∫
Bn(0,1)

µ−(p+1−ε)
ε up+1−ε

ε

(
µ
−

p−1−ε
2s

ε x + xε
)

dx

≤

∫
Ω

µ−(p+1−ε)
ε µ

n
2s (p−1−ε)
ε up+1−ε

ε (x)dx

≤ Cµ−( n
2s−1)ε

ε .

Combining these two estimates completes the proof. �

Next, as before we denote by dε and Dε the Kelvin transforms of bε and Bε (see (6.3) and
(6.4)). Then the function Dε satisfies

div(t1−2s∇Dε)(z) = 0 in κ(Cε),
∂s
νDε = |x|−ε(n−2s)Dp−ε

ε in κ(Ωε × {0}),
Dε > 0 in κ(Cε),
Dε = 0 on κ(∂LCε).

From (6.9), we have |x| ≥ Cµ−
p−1−ε

2s
ε for x ∈ κ(Ωε), hence Lemma 6.7.1 yields

|x|−ε(n−2s) ≤ µ
(p−1−ε)

2s (n−2s)ε
ε ≤ C for all x ∈ κ(Ωε).

By this fact we may use Lemma 6.4.2 and Lemma 6.4.5 and the proof of Proposition 6.4.1 to
find C > 0 such that

uε(x) ≤ Cw
µ
− 2

n−2s
ε ,xε

(x) for all ε > 0 and x ∈ Ω. (6.2)

Now we need to get a sharpened bound of µε . Considering both (6.2) with Proposition 6.4.7
simultaneously, we can prove the following lemma.

Lemma 6.7.2. (1) There exists a constant C > 0 such that

ε ≤ Cµ−2−2ε
ε for ε > 0 small.

(2) We have
lim
ε→0

µεε = 1. (6.3)

Proof. As in the proof of Lemma 6.4.8, we take a small number δ > 0. Recall also the definition
of I(Ω, r) and O(Ω, r) (see (6.3) and (6.4)). Then we see that the left-hand side of (6.20) is
bounded below, i.e., (

n
p + 1 − ε

−
n − 2s

2

) ∫
I(Ω,δ)×{0}

|Uε(x, 0)|p+1−εdx ≥ Cε (6.4)
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for some constant C > 0.
On the other hand, using (6.2) we deduce(∫

Ω

up−ε
ε dx

)2

≤ C
(∫
Rn

wp−ε

µ
− 2

n−2s
ε ,xε

(x)dx
)2

≤ Cµ−2(p−ε)
ε

(∫
Rn

(
µ
− 4

n−2s
ε + |x|2

)− n−2s
2 (p−ε)

dx
)2

≤ Cµ−2−2ε
ε .

(6.5)

Since x0 < O(Ω, 2δ) we have wµε ,xε (x) ≤ Cµ−1
ε for x ∈ O(Ω, δ). It yields, for a fixed large number

q > 0, that (∫
O(Ω,δ)

u(p−ε)q
ε dx

)2/q

≤ Cµ−2(p−ε)
ε . (6.6)

Now we inject the estimates (6.4), (6.5) and (6.6) to the inequality in the statement of Proposition
6.4.7 to get

Cε ≤ C
[
µ−2−2ε
ε + µ−2(p−ε)

ε

]
≤ 2Cµ−2−2ε

ε ,

which proves the first statement of the lemma. Using Taylor’s theorem, we get

|µεε − 1| ≤ sup
0≤t≤1

εµtε
ε log(µε) = O(µ−1−2ε

ε log(µε)).

It proves limε→0 µ
ε
ε = 1 because µε goes to infinity. Now the proof is complete. �

We now prove Theorems 6.1.6 and 6.1.7.

Proof of Theorem 6.1.6. By definition we have

As(‖uε‖L∞(Ω)uε)(x) = cn,sµεup−ε
ε (x).

Note from p = n+2s
n−2s that∫

Ω

cn,sµεup−ε
ε (x)dx =

∫
Ω

cn,sµ
p+1−ε
ε bp−ε

ε

(
µ

p−1−ε
2s

ε (x − xε)
)

dx =

∫
Ωε

cn,sµ
( n

2s−1)ε
ε bp−ε

ε (x)dx.

Here, from Lemma 6.7.2 and the dominated convergence theorem with the fact that bε converges
to w1 pointwise, we conclude that

lim
ε→0

∫
Ω

cn,sµεup−ε
ε (x)dx =

∫
Rn
cn,sw

p
1(x)dx = bn,s

(see (6.31)). Now the first statement follows as in the proof of Theorem 6.1.1.
The proof of the second statement can be performed similarly to the proof of Theorem 6.1.2.

The constant gn,s is given by

gn,s =
4n

2Cs
Sn/s

n,sDn,san,sb
2
n,s. (6.7)

The proof is complete. �
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Proof of Theorem 6.1.7. This theorem can be proved in a similar way to the proof of Theorem
6.1.4. In this case, if we take α0 = 1

n−2s and fε(U) = U p−ε
+ , then an analogous result of Proposition

6.6.4 holds with Υ̃ (refer to (6.13)). Therefore there exists a family of solutions which concentrate
at a critical point of Υ̃. �
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Appendix

6.A Proof of Proposition 6.4.7

This section is devoted to present the proof of Proposition 6.4.7, namely, the following proposi-
tion.

Proposition 6.A.1. Suppose that U ∈ H s
0,L(C) is a solution of problem (6.9) with f such that f

has the critical growth and f = F′ for a function F ∈ C1(R). Then, for each δ > 0 and q > n
s

there is a constant C = C(δ, q) > 0 such that

min
r∈[δ,2δ]

∣∣∣∣∣∣n
∫
I(Ω,r/2)×{0}

F(U)dx −
(
n − 2s

2

) ∫
I(Ω,r/2)×{0}

U f (U)dx

∣∣∣∣∣∣
≤ C

(∫
O(Ω,2δ)×{0}

| f (U)|qdx
) 2

q

+

∫
O(Ω,2δ)×{0}

|F(U)|dx +

(∫
I(Ω,δ/2)×{0}

| f (U)|dx
)2
 (6.8)

where I and O is defined in (6.3) and (6.4).

Proof. Recall the local form of the Pohozaev identity

div
{
t1−2s〈z,∇U〉∇U − t1−2s |∇U |2

2
z
}

+

(n − 2s
2

)
t1−2s|∇U |2 = 0 (6.9)

and define the following sets:

Dr =
{
z ∈ Rn+1

+ : dist(z,I(Ω, r) × {0}) ≤ r/2
}
,

∂D+
r = ∂Dr ∩

{
(x, t) ∈ Rn+1 : t > 0

}
and Eδ =

2δ⋃
r=δ

∂D+
r .

Note that ∂Dr = ∂D+
r ∪ (I(Ω, r/2) × {0}). Fix a small number δ > 0. We integrate the identity

(6.9) over Dr for each r ∈ (0, 2δ] to derive∫
∂D+

r

t1−2s

〈
〈z,∇U〉∇U − z

|∇U |2

2
, ν

〉
dS + Cs

∫
I(Ω,r/2)×{0}

〈x,∇xU〉∂s
νUdx

= −

(
n − 2s

2

) ∫
Dr

t1−2s|∇U |2dxdt. (6.10)
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In view of Lemmas 4.4 and 4.5 of [CS], one can deduce that the i-th component ∂xiU of ∇xU
is Hölder continuous in Dr for each i = 1, · · · , n, which justifies the above formula. By using
∂s
νU = f (U) and performing integration by parts, we derive∫

I(Ω,r/2)×{0}
〈x,∇xU〉∂s

νUdx =

∫
I(Ω,r/2)×{0}

〈x,∇xF(U)〉dx

= −n
∫
I(Ω,r/2)×{0}

F(U)dx +

∫
∂I(Ω,r/2)×{0}

〈x, ν〉F(U)dS x

and ∫
Dr

t1−2s|∇U |2dxdt = Cs

∫
I(Ω,r/2)×{0}

U f (U)dx +

∫
∂D+

r

t1−2sU
∂U
∂ν

dS .

Then (6.10) is written as

Cs

{
n
∫
I(Ω,r/2)×{0}

F(U)dx −
(
n − 2s

2

) ∫
I(Ω,r/2)×{0}

U f (U)dx
}

=

∫
∂D+

r

t1−2s

[〈
〈z,∇U〉∇U − z

|∇U |2

2
, ν

〉
dS +

(
n − 2s

2

)
U
∂U
∂ν

]
dS

+

∫
∂I(Ω,r/2)×{0}

〈x, ν〉F(U)dS x.

(6.11)

From this identity we get∣∣∣∣∣∣n
∫
I(Ω,r/2)×{0}

F(U)dx −
(
n − 2s

2

) ∫
I(Ω,r/2)×{0}

U f (U)dx

∣∣∣∣∣∣
≤ C

∫
∂D+

r

t1−2s(|∇U |2 + U2)dS +

∫
∂I(Ω,r/2)×{0}

〈x, ν〉F(U)dS x.

We integrate this identity with respect to r over an interval [δ, 2δ] and then use the Poincaré
inequality. Then we observe

min
r∈[δ,2δ]

∣∣∣∣∣∣n
∫
I(Ω,r/2)×{0}

F(U)dx −
(
n − 2s

2

) ∫
I(Ω,r/2)×{0}

U f (U)dx

∣∣∣∣∣∣
≤ C

∫
Eδ

t1−2s|∇U |2dz + C
∫
O(Ω,δ)

|F(U)(x, 0)|dx.

We only need to estimate the first term of the right-hand side of the previous inequality since the
second term is already one of the terms which constitute the right-hand side of (6.8). Note that

∇zU(z) =

∫
Ω

∇zGRn+1
+

(z, y) f (U)(y, 0)dy −
∫

Ω

∇zHC(z, y) f (U)(y, 0)dy (6.12)

for z ∈ Eδ.
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Let us deal with the last term of (6.12) first. Admitting the estimation

sup
y∈Ω

∫
Eδ

t1−2s|∇zHC(z, y)|2dz ≤ C (6.13)

for a while and using Hölder’s inequality, we get∫
Eδ

t1−2s

(∫
Ω

|∇zHC(z, y) f (U)(y, 0)|dy
)2

dz

≤

(
sup
y∈Ω

∫
Eδ

t1−2s|∇zHC(z, y)|2dz
) (∫

Ω

| f (U)(y, 0)|dy
)2

≤ C
(∫
I(Ω,δ)∪O(Ω,δ)

| f (U)(y, 0)|dy
)2

≤ C

(∫
O(Ω,2δ)

| f (U)(y, 0)|qdy
) 2

q

+

(∫
I(Ω,δ/2)

| f (U)(y, 0)|dy
)2
 ,

(6.14)

which is a part of the right-hand side of (6.8).
The validity of (6.13) can be reasoned as follows. First of all, if y is a point in Ω such that

dist(y, Eδ) ≤ δ/2, then it automatically satisfies that dist(y, ∂Ω) ≥ δ/2 from which we know

sup
dist(y,∂Ω)≥δ/2

(∫
Eδ

t1−2s|∇zHC(z, y)|2dz
)
≤ sup

dist(y,∂Ω)≥δ/2

(∫
C

t1−2s|∇zHC(z, y)|2dz
)
≤ C.

See the proof of Lemma 6.2.2 for the second inequality. Meanwhile, in the complementary case
dist(y, Eδ) > δ/2, we can assert that∫

Eδ
t1−2s|∇zHC(z, y)|2dz ≤ C

(∫
N(Eδ,δ/4)

t1−2s|HC(z, y)|2dz
)

(6.15)

where N(Eδ, δ/4) := {z ∈ C : dist(z, Eδ) ≤ δ/4}. To show this, we recall that HC satisfies{
div(t1−2s∇HC(·, y)) = 0 in C,
∂s
νHC(·, y) = 0 on Ω × {0}.

(6.16)

Fix a smooth function φ ∈ C∞0 (N(Eδ, δ/4)) such that φ = 1 on Eδ and |∇φ|2 ≤ C0φ holds for some
C0 > 0, and multiply HC(·, y)φ(·) to (6.16). Then we have∫

C

t1−2s|∇HC(z, y)|2φ(z) +

∫
C

t1−2s[∇HC(z, y) · ∇φ(z)]HC(z, y)dz = 0.

From this we deduce that∫
C

t1−2s|∇HC(z, y)|2φ(z)dz

= −

∫
C

t1−2s[∇HC(z, y) · ∇φ(z)]HC(z, y)dz

≤
1

2C0

∫
C

t1−2s|∇HC(z, y)|2|∇φ(z)|2dz + 2C0

∫
N(Eδ,δ/4)

t1−2s|HC(z, y)|2dz.
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Using the property |∇φ|2 ≤ C0φ we derive that∫
C

t1−2s|∇HC(z, y)|2φ(z)dz ≤ 4C0

∫
N(Eδ,δ/4)

t1−2s|HC(z, y)|2dz.

It verifies inequality (6.15). Since the assumption dist(y, Eδ) > δ/2 implies dist(y,N(Eδ, δ/4)) >
δ/4, it holds

sup
dist(y,Eδ)>δ/2

sup
z∈N(Eδ,δ/4)

|HC(z, y)| ≤ sup
dist(y,Eδ)>δ/2

sup
z∈N(Eδ,δ/4)

|GRn+1
+

(z, y)| ≤ C.

Combination of this and (6.15) gives

sup
dist(y,Eδ)>δ/2

(∫
Eδ

t1−2s|∇zHC(z, y)|2dz
)
≤ C

(∫
N(Eδ,δ/4)

t1−2sdz
)
≤ C.

This concludes the derivation of the desired uniform bound (6.13).
It remains to take into consideration of the first term of (6.12). We split the term as∫

Ω

∇zGRn+1
+

(z, y) f (U)(y, 0)dy

=

∫
O(Ω,2δ)

∇zGRn+1
+

(z, y) f (U)(y, 0)dy +

∫
I(Ω,2δ)

∇zGRn+1
+

(z, y) f (U)(y, 0)dy

:= A1(z) + A2(z).

Take q > n
s and r > 1 satisfying 1

q + 1
r = 1. Then

|A1(z)| ≤
(∫
O(Ω,2δ)

|∇zGRn+1
+

(z, y)|rdy
) 1

r

‖ f (U)(·, 0)‖Lq(O(Ω,2δ)).

In light of the definition of GRn+1
+

, it holds that(∫
O(Ω,2δ)

|∇zGRn+1
+

(z, y)|rdy
) 1

r

≤ C
(∫
O(Ω,2δ)

1
|(x − y, t)|(n−2s+1)r dy

) 1
r

≤ C max
{
t

n
r −(n−2s+1), 1

}
= C max

{
t−

n
q +2s−1, 1

}
.

Thus we have
|A1(z)| ≤ C max

{
t−

n
q +2s−1, 1

}
‖ f (U)(·, 0)‖Lq(O(Ω,2δ)).

Using this we see∫
Eδ

t1−2s|A1(z)|2dz ≤ C
∫ 1

0
max

{
t1−2st−

2n
q +4s−2, t1−2s

}
‖ f (U)(·, 0)‖2Lq(O(Ω,2δ))dt

=

∫ 1

0
max

{
t2s− 2n

q −1, t1−2s
}
‖ f (U)(·, 0)‖2Lq(O(Ω,2δ))dt.

≤ C‖ f (U)(·, 0)‖2Lq(O(Ω,2δ)).

(6.17)
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Concerning the term A2, we note that Eδ is away from I(Ω, 2δ) × {0}. Thus we have

sup
z∈Eδ,y∈I(Ω,2δ)

|∇zGRn+1
+

(z, y)| ≤ C.

Hence
|A2(z)| ≤ C

∫
I(Ω,2δ)

| f (U)(y, 0)|dy, z ∈ Eδ.

Using this we find ∫
Eδ

t1−2s|A2(z)|2dz ≤ C
(∫
I(Ω,2δ)

| f (U)(y, 0)|dy
)2

. (6.18)

We have obtained the desired bound of
∫

Eδ
t1−2s|∇U |2dz through the estimates (6.14), (6.17) and

(6.18). The proof is complete. �

Remark 6.A.2. Estimate (6.13) can be generalized to

sup
y∈Ω

∫
Eδ

t1−2s|∇z∂
I
yHC(z, y)|2dz ≤ C, (6.19)

for any multi-index I ∈ (N∪{0})n. The proof of this fact follows in the same way as the derivation
of (6.13) with an observation that ∂I

yHC(·, y) satisfies equation (6.14).

6.B Technical computations in the proof of Theorem 6.1.4

In this section, we collect technical lemmas which are necessary during the proof of Theorem
6.1.4.

6.B.1 Estimation of the projected bubbles

We recall the functions wλ,ξ, ψ
j
λ,ξ, Pεwλ,ξ and Pεψ

j
λ,ξ defined in (6.5), (6.9) and (6.10) for any

λ > 0, ξ ∈ Rn and j = 0, · · · , n.

In the next two lemmas, we estimate the difference between wλ,ξ and Pεwλ,ξ (or ψ j
λ,ξ and

Pεψ
j
λ,ξ) in terms of Green’s function G and its regular part H of the fractional LaplacianAs (see

(6.4) and (6.5) for their definitions).

Lemma 6.B.1. Let λ > 0 and σ = (σ1, · · · , σn) ∈ Ω. Then we have

Pεwλ,σε−α0 (x) = wλ,σε−α0 (x) − c1λ
n−2s

2 H(εα0 x, σ)ε(n−2s)α0 + o(ε(n−2s)α0),

Pεψ
j
λ,σε−α0 (x) = ψ

j
λ,σε−α0 (x) − c1λ

n−2s
2
∂H
∂σ j (ε

α0 x, σ)ε(n−2s+1)α0 + o(ε(n−2s+1)α0),

Pεψ
0
λ,σε−α0 (x) = ψ0

λ,σε−α0 (x) −
(n − 2s)c1

2
λ

n−2s−2
2 H(εα0 x, σ)ε(n−2s)α0 + o(ε(n−2s)α0)

for all x ∈ Ωε where c1 > 0 is the constant defined in (6.8). Here the little o terms tend to zero as
ε → 0 uniformly in x ∈ Ωε and σ ∈ Ω provided dist(σ, ∂Ω) > C for some constant C > 0.
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Proof. For fixed λ > 0 and σ ∈ Ω, let Φλ,σε−α0 = Wλ,σε−α0 − PεWλ,σε−α0 . Then Φλ,σε−α0 satisfies
div

(
t1−2s∇Φλ,σε−α0

)
= 0 in Cε ,

Φλ,σε−α0 = Wλ,σε−α0 on ∂LCε ,

∂s
νΦλ,σε−α0 = 0 on Ωε × {0}.

On the other hand, the function F (z) := c1λ
n−2s

2 HC(εα0z, σ)ε(n−2s)α0 defined for z ∈ Cε solves
div(t1−2s∇F ) = 0 in Cε ,
F (z) = ε(n−2s)α0c1λ

n−2s
2 GRn+1

+
(εα0z, σ) on ∂LCε ,

∂s
νF = 0 on Ωε × {0}.

Note that

Wλ,σε−α0 (x, t) =

∫
Rn

GRn+1
+

(x, t, y)W p
λ,σε−α0 (y, 0)dy

= cpn,s

∫
Rn

GRn+1
+

(x, t, y)
λ

n+2s
2

|(y − σε−α0 , λ)|n+2s dy

= cpn,s

∫
Rn
λ

n−2s
2 GRn+1

+
(x, t, λy + σε−α0)

1
|(y, 1)|n+2s dy for (x, t) ∈ Rn+1

+ .

For (x, t) ∈ ∂LC, we calculate

Wλ,σε−α0 (xε−α0 , tε−α0) = cpn,s

∫
Rn
λ

n−2s
2 GRn+1

+
((x − σ)ε−α0 , tε−α0 , λy)

1
|(y, 1)|n+2s dy

= ε(n−2s)α0c
p
n,s

∫
Rn
λ

n−2s
2 GRn+1

+
(x − σ, t, λy)

ε−nα0

|(yε−α0 , 1)|n+2s dy

= ε(n−2s)α0c1λ
n−2s

2 GRn+1
+

(x − σ, t, 0) + o(ε(n−2s)α0).

As ε > 0 goes to 0, the term o(ε(n−2s)α0) above converges to 0 uniformly in (x, t) ∈ ∂LC and σ ∈ Ω

satisfying dist(σ, ∂Ω) > C.
On the other hand, we have

F (xε−α0 , tε−α0) = ε(n−2s)α0c1λ
n−2s

2 GRn+1
+

(x, t, σ) = ε(n−2s)α0c1λ
n−2s

2 GRn+1
+

(x − σ, t, 0).

Thus
sup

(xε−α0 ,tε−α0 )∈∂LC

|Ψλ,σε−α0 (xε−α0 , tε−α0) − F (xε−α0 , tε−α0 , σ)| = o(ε(n−2s)α0).

By the maximum principle (Lemma 6.2.1), we get

sup
z∈Cε
|Ψλ,σε−α0 (z) − F (z)| = o(ε(n−2s)α0).

By taking z = (x, 0) for x ∈ Ωε we obtain supx∈Ωε
|wλ,σε−α0 (x)−Pwλ,σε−α0 (x)−F (x, 0)| = o(ε(n−2s)α0).

Now the first identity follows from the definition of F .
The second and third estimation can be proved similarly. �
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From the above lemma, we immediately get the following lemma.

Lemma 6.B.2. For any λ > 0 and σ = (σ1, · · · , σn) ∈ Ω, we have

Pεwλ,σε−α0 (x) = c1λ
n−2s

2 G(εα0 x, σ)ε(n−2s)α0 + o(ε(n−2s)α0)

Pεψ
j
λ,σε−α0 (x) = c1λ

n−2s
2
∂G
∂σ j (ε

α0 x, σ)ε(n−2s+1)α0 + o(ε(n−2s+1)α0)

Pεψ
0
λ,σε−α0 (x) =

(
n − 2s

2

)
c1λ

n−2s−2
2 G(εα0 x, σ)ε(n−2s)α0 + o(ε(n−2s)α0),

where the little o terms tend to zero uniformly in x ∈ Ωε and σ ∈ Ω provided |εα0 x − σ| > C
and dist(εα0 x, ∂Ω) > C for a fixed constant C > 0. As the previous lemma, c1 > 0 is the constant
given in (6.8).

6.B.2 Basic estimates

Let wi and ψ j
i (for i = 1, · · · , k and j = 0, · · · , n) be the functions given in (6.12). Then applying

the definition of wλ,ξ in (6.5), Lemma 6.B.1 and the Sobolev trace inequality (6.9), we can deduce
the following estimates. For the details, we refer to [MP] in which the authors deal with the case
s = 1.

Lemma 6.B.3. It holds that

‖Pεwi‖L
2n

n−2s (Ωε )
≤ ‖wi‖L

2n
n−2s (Ωε )

≤ C.

Also we have

‖Pεwi‖L
2n

n+2s (Ωε )
≤

{
C if n > 6s,
Cε−(6s−n)α0/2| log ε | if n ≤ 6s.

Similarly, ∥∥∥Pεψ
j
i

∥∥∥
L

2n
n−2s (Ωε )

≤ C,
∥∥∥Pεψ

j
i

∥∥∥
L

2n
n+2s (Ωε )

≤ C if j = 1, · · · , n,

and ∥∥∥Pεψ
0
i

∥∥∥
L

2n
n+2s (Ωε )

≤

{
C if n > 6s,
Cε−(6s−n)α0/2| log ε | if n ≤ 6s.

Lemma 6.B.4. For i = 1, · · · , k, we have∥∥∥Pεψ
j
i − ψ

j
i

∥∥∥
L

2n
n−2s (Ωε )

≤ Cεα0( n
2−s+1) if j = 1, · · · , n

and ∥∥∥Pεψ
0
i − ψ

0
i

∥∥∥
L

2n
n−2s (Ωε )

≤ Cεα0
n−2s

2 .
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Lemma 6.B.5. It holds that∥∥∥∥∥∥∥
 k∑

i=1

Pεwi

p

−

k∑
i=1

wp
i

∥∥∥∥∥∥∥
L

2n
n+2s (Ωε )

≤

 Cε
n+2s

2 α0 if n > 6s,
Cε(n−2s)α0 | log ε | if n ≤ 6s.

Besides, ∥∥∥∥∥∥∥∥
 k∑

i=1

Pεwi

p−1

−

k∑
i=1

wp−1
i

∥∥∥∥∥∥∥∥
L

n
2s (Ωε )

≤ Cε2sα0 .

and ∥∥∥∥∥∥∥∥

 k∑

i=1

Pεwi

p−1

−

k∑
i=1

wp−1
i

 Pεψ
j
h

∥∥∥∥∥∥∥∥
L

2n
n+2s (Ωε )

≤ Cεα0
n+2s

2

for h = 1, · · · , k and j = 0, 1, · · · , n.

6.B.3 Proof of Proposition 6.6.4

This subsection is devoted to give a proof of Proposition 6.6.4.

Proof of Proposition 6.6.4. We first prove (1). Applying Ẽ′ε(λ
ε ,σε) = 0, we can obtain after some

computations that

∂

∂%
Ẽ′ε(λ

ε ,σε) =

k∑
h=1

n∑
j=0

ch j


PεΨ

j
h,

k∑
i=1

Pε

∂Wi

∂%


Cε

−

Pε

∂Ψ
j
h

∂%
,Φε
λε ,σε


Cε

 = 0

where % is one of λi or σ j
i with i = 1, · · · , k and j = 0, · · · , n (see (6.7)). Using (6.17) and (6.22),

we can conclude that ch j = 0 for all h and j, which implies that the function Uε defined in the
statement of the proposition is a solution of (6.6). The assertion that Vε is a solution of (6.1) is
justified by the following sublemma provided ε > 0 small.

Sublemma 6.B.6. Suppose that U ∈ H s
0,L(C) is a solution of problem (6.1) with U p substituted

by U p
+ (here, the condition U > 0 in C is ignored). If ε is small, then there is a constant C > 0

depending only on n and s, such that the function U is positive.

Proof. We multiply U− by equation (6.6) with ε = 1. Then we have∫
C

t1−2s|∇U−|2 = εCs

∫
Ω×{0}

U2
−

(refer to (6.11)). By utilizing the Sobolev trace inequality and Hölder’s inequality, we get

‖U−(·, 0)‖
L

2n
n−2s (Ω)

≤ εC‖U−(·, 0)‖
L

2n
n−2s (Ω)

for some C > 0 independent of U. Hence U− should be zero given that ε is sufficiently small.
The lemma is proved. �
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The first part (1) of Proposition 6.6.4 is proved.

We continue our proof by considering the second part (2). By (6.22), there holds

Ẽε(λ,σ) = Eε

 k∑
i=1

PεWλi,
σi
εα0

 + O
(
ε2η0

)
= Eε

 k∑
i=1

PεWi

 + o
(
ε(n−2s)α0

)
=

1
2Cs

∫
Cε

t1−2s

∣∣∣∣∣∣∣∇
 k∑

i=1

PεWi


∣∣∣∣∣∣∣
2

−

∫
Ωε

Fε

iε  k∑
i=1

PεWi

 + o
(
ε(n−2s)α0

)
(6.20)

so it suffices to estimate each of the two terms that appear in (6.20) above.
Setting Bi = Bn(σi, δ0/2) ⊂ Ω where δ0 is a small number chosen in the definition (6.7) of

Oδ0 , and applying Lemma 6.B.1 and Lemma 6.B.2, we find that∫
Ωε

wp
i Pεwi =

∫
Ωε

wp+1
1 +

∫
Ωε

wp
i (Pεwi − wi) = c0 − c2

1λ
n−2s
i H(σi, σi)ε(n−2s)α0 + o(ε(n−2s)α0),∫

Ωε

wp
h Pεwi =

∫
Bi
εα0

wp
h Pεwi + o(ε(n−2s)α0) = c2

1(λhλi)
n−2s

2 G(σh, σi)ε(n−2s)α0 + o(ε(n−2s)α0),∫
Ωε

wiPεwi =

∫
Ωε

w2
i + o(1) = c2λ

2s
i + o(1) (if n > 4s),∫

Ωε

whPεwi = o(1) (if n > 4s),

for i, h = 1, · · · , k and i , h, where G and H are the functions defined in (6.4) and (6.5), and c1

and c2 are positive constants given in (6.8) while c0 is defined in (6.26).
Then the estimates obtained in the previous paragraph yield that

1
2Cs

∫
Cε

t1−2s

∣∣∣∣∣∣∣∇
 k∑

i=1

PεWi


∣∣∣∣∣∣∣
2

=
1
2

k∑
i=1

∫
Ωε

wp
i Pεwi +

1
2

k∑
i,h=1
i,h

∫
Ωε

wp
h Pεwi

=
kc0

2
+

c2
1

2

∑
i,h

G(σi, σh)(λhλi)
n−2s

2 −

k∑
i=1

H(σi, σi)λn−2s
i

 + o(1)

 ε(n−2s)α0
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and ∫
Ωε

Fε

 k∑
i=1

Pεwi


=

k∑
h=1

[ ∫
Bh
εα0

Fε

(
wh + (Pεwh − wh) +

k∑
i,h=1
i,h

Pεwi

)
− Fε(wh)

]
+

k∑
h=1

∫
Bh
εα0

Fε(wh) + o(ε(n−2s)α0)

=

k∑
h=1

∫ Bh
εα0

Fε(wh) +

∫
Bh
εα0

fε(wh)(Pεwh − wh)

 +
∑
i,h

∫
Bh
εα0

fε(wh)Pεwi + o(ε(n−2s)α0)

=
kc0

p + 1
+

c2
1

∑
i,h

G(σi, σh)(λhλi)
n−2s

2 −

k∑
i=1

H(σi, σi)λn−2s
i

 +
c2

2

k∑
i=1

λ2s
i + o(1)

 ε(n−2s)α0

Note that here we also used that 1+2sα0 = (n−2s)α0 which holds owing to our choice α0 = 1
n−4s .

As a consequence, (6.25) holds C0-uniformly in Oδ0 . Similarly, with Lemmas 6.B.3, 6.B.4 and
6.B.5, one can conclude that (6.25) has its validity in C1-sense (see [GMP, Section 7] and [MP,
Proposition 2.2]). This completes the proof. �
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Chapter 7

Infinitely many solutions for semilinear
nonlocal elliptic equations under
noncompact settings [ChS]

7.1 Introduction

The aim of this paper is to prove the existence of infinitely many solutions to some kinds of
semilinear elliptic equations involving the fractional Laplace operator (−∆)s, which is nonlocal
in nature. The fractional Laplace operator arises when we consider the infinitesimal generator of
the Lévy stable diffusion process in probability theory or the fractional quantum mechanics for
particles on stochastic fields. For further motivations and backgrounds, we refer to [FQT] and
references therein.

Recently, the semilinear nonlocal elliptic equations, which are denoted by

(−∆)su = f (x, u) in Ω ⊂ RN , 0 < s < 1, (7.1)

have been widely studied under several contexts. In this paper, we are interested in equations
of the form (7.1), which are forced to be posed on function spaces with noncompact Sobolev
embedding. More precisely, we shall study the fractional Brezis-Nirenberg problems on bounded
domains.

We first introduce the Fractional Brezis-Nirenberg problems. Let Ω be a smooth bounded
domain in RN . For given s ∈ (0, 1) and µ > 0, the following problem{

(−∆)su = |u|2
∗(s)−2u + µu in Ω,

u = 0 on ∂Ω,
(7.2)

where 2∗(s) = 2N
N−2s , is called the fractional Brezis-Nirenberg problem since it is a fractional
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version of the classical Brezis-Nirenberg problem,{
−∆u = |u|2

∗−2u + µu in Ω,

u = 0 on Ω.
(7.3)

Due to the loss of compactness of critical Sobolev embedding H1
0(Ω) ↪→ L

2N
N−2 (Ω) and H s

0(Ω) ↪→
L

2N
N−2s (Ω), more careful analysis is required to construct nontrivial solutions to the equations (7.2)

and (7.3) than equations with sub-critical nonlinearities. In a celebrated paper [BN], Brezis and
Nirenberg first studied the existence of a positive solution to (7.3). Let λ1 and φ1 respectively de-
note the first eigenvalue of −∆ with zero Dirichlet boundary condition on Ω and a corresponding
positive eigenfunction. By testing φ1 to (7.3), it is easy to see that if µ ≥ λ1, there is no positive
solution to (7.3). Also, the well-known Pohozaev’s identity says that if µ ≤ 0 and Ω is star-shape,
there is no nontrivial solutions to (7.3). Thus, one can deduce that the condition µ ∈ (0, λ1) is
necessary for (7.3) to admit a positive solution for general smooth domains Ω. Brezis and Niren-
berg proved in [BN] that if N ≥ 4, the above condition is sufficient. In other words, there is a
positive least energy solution to (7.3) for all µ ∈ (0, λ1).

Since the work of Brezis and Nirenberg, many research papers have been devoted to study
the problem (7.3). One of most important works among them is due to Devillanova and Solimini
who proved in [DS] the existence of infinitely many solutions for the problem (7.3) when N > 7
and µ > 0. This work was extended to analogous problems involving p-Laplacian for 1 < p < ∞
by Cao-Peng-Yan [CPY]. They proved that if N > p2 + p, the following problem

−∆pu = |u|p
∗−2u + µ|u|p−2u in Ω, u = 0 on ∂Ω,

where µ > 0 and p∗ =
pN

n−p , has infinitely many nontrivial solutions.
As a first result of the paper, we prove a multiplicity result for (7.2) with s ∈ (0, 1), which

extends the Devillanova and Solimini’s result in [DS] to the fractional case.

Theorem 7.1.1. Let s ∈ (0, 1) and µ > 0 be given. Suppose N > 6s. Then the equation (7.2)
admits infinitely many nontrivial solutions.

We shall prove Theorem 7.1.1 by following Devillanova and Solimini’s ideas in [DS]. The main
strategy in these ideas is to consider approximating subcritical problems, which can be shown that
they admit infinitely many nontrivial solutions. In other words, we consider subcritical problems{

(−∆)su = |u|2
∗(s)−2−εu + µu in Ω,

u = 0 on ∂Ω,
(7.4)

for small ε > 0. From the sub-criticality of the problems, one can verify by using standard
variational methods that for every small ε > 0, (7.4) admits infinitely many nontrivial solutions
in a fractional Sobolev space H s

0(Ω). (We will define H s
0(Ω) precisely in Section 2.) This tells

us that the following compactness result plays a key role to obtain nontrivial solutions to our
original equation (7.2).
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Theorem 7.1.2. Assume N > 6s. Let {un} be a sequence of solutions to (7.4) with ε = εn → 0 as
n→ ∞ and supn∈N ‖un‖Hs

0(Ω) < ∞. Then {un} converges strongly in H s
0(Ω) up to a subsequence.

Combining Theorem 7.1.2 with the topological genus theory, we will see in Section 6 that there
are infinitely many nontrivial solutions to (7.2).

Proving Theorem 7.1.2 is the main task of this paper and requires a series of delicate analysis.
Moreover, it turns out from several technical reasons that studying our nonlocal equations (7.2)
and (7.4) directly is not suitable for establishing Theorem 7.1.2. Instead, it is better to consider
so-called s-harmonic extension problems (7.9) and (7.10), which are equivalent to (7.2) and (7.4)
respectively. As we will see in Section 2, the equations (7.9) and (7.10) are local so that they are
much easier to deal with than nonlocal ones, but the domain of problems are changed from Ω to
the half-infinite cylinder C := Ω × [0,∞). This kind of localization was initiated by Caffarelli-
Sylvestre [CaS] in which the domain under consideration is the whole space RN , and has been
made for bounded domains by many authors [BCPS2, CT, T2].

By virtue of considering localized equations, one can easily obtain the concentration com-
pactness principle of Struwe [Su] for a sequence of solutions to a local equation (7.10). This
principle says that a bounded sequence of solutions to (7.10) consists of a function that the
sequence weakly converges, finitely many bubbles that may possibly exist and a function that
strongly converges to zero. Thus, to get the compactness, we need to get rid of possibility that
bubbles appear. This will be achieved by arguing indirectly, i.e., we assume there exist bubbles
in the sequence and get a contradiction. For this, an important issue is to verify a sharp bound
of the solutions on some thin annuli near a bubbling point. We devote a large part of this paper
to obtain it. We give a full detail of ideas for the proof for Theorem 7.1.2 in Section 3. After
the proof of Theorem 7.1.2, we shall complete the proof of Theorem 7.1.1 by using a min-max
principle combined with the topological genus.

The rest of the paper is organized as follows. In Section 2, we review the fractional Laplacian,
s-harmonic extension and the extended local problems posed on half-infinite cylinders. We also
arrange some basic lemmas which will be used throughout the paper. In Section 3, we give basic
settings and ideas for the proof for Theorem 7.1.2. By following these ideas, we complete the
proof of Theorem 7.1.1 and Theorem 7.1.2 in subsequent sections 4, 5 and 6. In Appendix A we
prove a technical lemma which will be essentially used in Section 5. In Appendix B, we prove a
lemma which corresponds a non-local version of Moser’s iteration method. Finally in Appendix
C, we establish so-called local Pohozaev identity for solutions to (7.10), that is a main ingredient
for obtaining compactness of a sequence of solutions to (7.10).
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7.2 Mathematical frameworks and preliminaries

7.2.1 Fractional Sobolev spaces, fractional Laplacians and fractional har-
monic extensions

We first set Ω to be a smooth bounded domain of Rn. Let {λk, φk}
∞
k=1 be the sequence of eigenval-

ues and corresponding eigenvectors of a eigenvalue problem:{
−∆φk = λkφk in Ω,

φk = 0 on ∂Ω,

such that ‖φk‖L2(Ω) = 1 and λ1 < λ2 ≤ λ3 ≤ · · · . Then one can define a fractional Sobolev space
H s

0(Ω) for s ∈ (0, 1) by

H s
0(Ω) =

u =

∞∑
k=1

akφk ∈ L2(Ω) :
∞∑

k=1

λs
ka

2
k < ∞

 , (7.1)

which is a Hilbert space equipped with an inner product:〈 ∞∑
k=1

akφk,

∞∑
k=1

bkφk

〉
Hs

0(Ω)

=

∞∑
k=1

λs
kakbk if

∞∑
k=1

akφk,

∞∑
k=1

bkφk ∈ H s
0(Ω).

We define a fractional Laplace operator (−∆)s : H s
0(Ω)→ H−s

0 (Ω) by

〈(−∆)su, v〉H−s
0 (Ω) = 〈u, v〉Hs

0(Ω),

where H−s
0 (Ω) denotes the dual space of H s

0(Ω). Then, for any function u =
∑∞

k=1 akφk ∈ H2s
0 (Ω),

(−∆)su belongs L2(Ω) and is represented by

(−∆)su =

∞∑
k=1

akλ
s
kφk.

This implies that

〈u, v〉Hs
0(Ω) =

∫
Ω

(−∆)s/2u · (−∆)s/2v for u, v ∈ H s
0(Ω)

and if u ∈ H2s
0 (Ω) additionally, an integration by parts formula holds as follows:∫

Ω

(−∆)s/2u · (−∆)s/2v =

∫
Ω

(−∆)su · v.

Next, suppose that the domain Ω is the whole space Rn. Then, the homogeneous fractional
Sobolev space Ds(Rn) (0 < s < 1) is given by

Ds(Rn) =

u ∈ L
N+2s
N−2s (Rn) : ‖u‖Ds(Rn) :=

(∫
Rn
|ξ|2s|û(ξ)|2dξ

) 1
2

< ∞
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where û denotes the Fourier transform of u. Note that Ds(RN) is a Hilbert space equipped with
an inner product

〈u, v〉Ds(RN ) =

∫
Rn
|ξ|2sû(ξ)v̂(ξ) dξ.

We also define a fractional Laplace operator on the whole space, (−∆)s : Ds(RN)→ D−s(RN) by

〈(−∆)su, v〉D−s(RN ) = 〈u, v〉Ds(RN ) ,

where D−s(RN) is the dual of Ds(RN). Then, one can easily check that if u ∈ D2s(RN), we have
(−∆)su ∈ L2(RN) such that

(−∆)su = F−1[|ξ|2sû(ξ)]

where F−1 denotes the inverse Fourier transform so that we see for u, v ∈ Ds(RN)

〈u, v〉Ds(RN ) =

∫
RN

(−∆)s/2u · (−∆)s/2v

and assuming additionally u ∈ D2s(RN), v ∈ L2(RN), we can integrate by parts:∫
RN

(−∆)s/2u · (−∆)s/2v =

∫
RN

(−∆)su · v.

Finally, the notation H s(RN) denotes the standard fractional Sobolev space defined as

H s(RN) = Ds(RN) ∩ L2(RN).

Now we introduce the concept of s-harmonic extension of a function u defined in Ω, where
either Ω is Rn or a smooth bounded domain, which provides a way to representing fractional
Laplace operators as a form of Dirichlet-to-Neumann map. To do this, we need to define addi-
tional function spaces on the half infinite cylinder C = Ω × (0,∞).

Let the weighted Lebesgue space L2(t1−2s,C) be the set of measurable functions U : C → R
such that

‖U‖L2(t1−2s,C) :=
∫
C

t1−2sU2 dxdt < ∞.

Then, the weighted Sobolev space H1(t1−2s,C) defined by

H1(t1−2s,C) = {U ∈ L2(t1−2s,C) : ∇U ∈ L2(t1−2s,C)}

is a Hilbert space equipped with an inner product

〈U,V〉H1(t1−2s,C) =

∫
C

t1−2s(∇U · ∇V + UV) dxdt.

Suppose that Ω is smooth and bounded. We set the lateral boundary ∂LC of C by

∂LC := ∂Ω × [0,∞).
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Then the function space H1
0(t1−2s,C) defined by the completion of

C∞0,L(C) :=
{
U ∈ C∞

(
C
)

: U = 0 on ∂LC
}

with respect to the norm

‖U‖H1
0 (t1−2s,C) =

(∫
C

t1−2s|∇U |2 dxdt
)1/2

, (7.2)

is also a Hilbert space endowed with an inner product

(U,V)H1
0 (t1−2s,C) =

∫
C

t1−2s∇U · ∇V dxdt.

It is verified in [CaS, Proposition 2.1] and [T2, Section 2] that H s
0(Ω) is the continuous trace of

H1
0(t1−2s,C), i.e.,

H s
0(Ω) = {u = tr|Ω×{0}U : U ∈ H1

0(t1−2s,C)}. (7.3)

and
‖U(·, 0)‖Hs

0(Ω) ≤ C‖U‖H1
0 (t1−2s,C) (7.4)

for some C > 0, independent of U ∈ H1
0(t1−2s,C).

When Ω = RN(in this case C = RN+1
+ ), one can define the weighted homogeneous Sobolev

space D1(t1−2s,RN+1
+ ) as the completion of C∞c

(
RN+1

+

)
with respect to the norm

‖U‖D1(t1−2s,RN+1
+ ) :=

(∫
RN+1

+

t1−2s|∇U |2 dxdt
)1/2

.

Similarly, it holds by taking trace that

Ds(RN) = {u = tr|RN×{0}U : U ∈ D1(t1−2s,RN+1
+ )}

and
‖U(·, 0)‖Ds(RN ) ≤ C‖U‖D1(t1−2s,RN+1

+ ) (7.5)

for some C > 0 independent of U ∈ D1(t1−2s,RN+1
+ ).

Now, we are ready to introduce s-harmonic extensions of u ∈ H s
0(Ω) for bounded Ω or u ∈

Ds(RN), that can be thought as the inverses of the trace processes above. Let u ∈ H s
0(Ω) and v ∈

Ds(RN). By works of Caffarelli-Silvestre [CaS] (for Rn), Cabré-Tan [CT] (for bounded domains
Ω, see also [ST, BCPS2, T2]), it is known that there are unique functions U ∈ H1

0(t1−2s,C) and
V ∈ D1(t1−2s,RN) which satisfies the equation

div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

U(x, 0) = u(x) for x ∈ Ω,

(7.6)
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and {
div(t1−2s∇V) = 0 in RN+1

+ ,

V(x, 0) = v(x) for x ∈ RN (7.7)

respectively in distributional sense. Moreover, if u and v are compactly supported and smooth,
then the following limits

∂s
νW(x, 0) := −C−1

s

(
lim
t→0+

t1−2s∂W
∂t

(x, t)
)

with Cs :=
21−2sΓ(1 − s)

Γ(s)
, W = U or V,

are well defined and one must have

(−∆)sw = ∂s
νW(x, 0), w = u or v. (7.8)

We call these U and V the s-harmonic extensions of u and v. We point out that by a density
argument, the relation (7.8) is satisfied in weak sense for u ∈ H s

0(Ω) and v ∈ Ds(RN). In other
words, it holds that for every u and φ ∈ H s

0(Ω),

〈u, φ〉Hs
0(Ω) = C−1

s 〈U,Φ〉H1
0 (t1−2s,C) where U, Φ = s-harmonic extensions of u, φ

and the analogous statement holds for every v and φ ∈ Ds(RN). Thus the trace inequalities (7.4)
and (7.5) are improved as

‖U(·, 0)‖Hs
0(Ω) = C−1

s ‖U‖H1
0 (t1−2s,C), ‖U(·, 0)‖Ds(RN ) = C−1

s ‖U‖D1(t1−2s,RN+1
+ ).

By the above discussion, one can deduce that a function u ∈ H s
0(Ω) is a weak solution to the

nonlocal problem (7.2) if and only if its s-harmonic extension U ∈ H1
0(t1−2s,C) is a weak solution

to the local problem 
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = |U |2

∗(s)−2U(x, 0) + µU(x, 0) on Ω × {0},
(7.9)

and similarly the problem (7.4) corresponds to
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = |U |pU(x, 0) + µU(x, 0) on Ω × {0},

(7.10)

where 1 < p < 2∗(s)− 2. By weak solutions, we mean the following: Let g ∈ L
2N

N+2s (Ω). Given the
problem {

(−∆)su = g(x) in Ω,

u = 0 on ∂Ω,
(7.11)

174



CHAPTER 7. INFINITELY MANY SOLUTIONS FOR SEMILINEAR NONLOCAL
ELLIPTIC EQUATIONS UNDER NONCOMPACT SETTINGS [ChS]

we say that a function u ∈ H s
0(Ω) is a weak solution of (7.11) provided∫
Ω

(−∆)s/2u · (−∆)s/2φ dx =

∫
Ω

g(x)φ(x) dx (7.12)

for all φ ∈ H s
0(Ω). Also, given the problem

div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = g(x) on Ω × {0},

(7.13)

we say that a function U ∈ H1
0(t1−2s,C) is a weak solution of (7.13) provided∫

C

t1−2s∇U(x, t) · ∇Φ(x, t) dxdt = Cs

∫
Ω

g(x)Φ(x, 0) dx (7.14)

for all Φ ∈ H1
0(t1−2s,C).

7.2.2 Weighted Sobolev and Sobolev-trace inequalities

Given any λ > 0 and ξ ∈ RN , let

wλ,ξ(x) = cN,s

(
λ

λ2 + |x − ξ|2

) N−2s
2

for x ∈ RN , (7.15)

where

cN,s = 2
N−2s

2

Γ
(

N+2s
2

)
Γ
(

N−2s
2

)
N−2s

4s

. (7.16)

Then we have the following Sobolev inequality(∫
RN
|u|2

∗(s)dx
) 1

2∗(s)

≤ SN,s

(∫
RN
|(−∆)s/2u|2dx

) 1
2

, u ∈ H s
0(Ω),

which attains the equality exactly when u(x) = cwλ,ξ(x) for any c > 0, λ > 0 and ξ ∈ RN (we
refer to [Lb, ChL, FL]). Here,

SN,s = 2−2sπ−s
Γ
(

N−2s
2

)
Γ
(

N+2s
2

) [
Γ(N)

Γ(N/2)

]2s/N

. (7.17)

It follows that for the Sobolev trace inequality(∫
RN
|U(x, 0)|2

∗(s)dx
) 1

2∗(s)

≤
SN,s
√

Cs

(∫
RN+1

+

t1−2s|∇U(x, t)|2dxdt
) 1

2

, U ∈ D1(t1−2s,RN+1
+ ), (7.18)

175



CHAPTER 7. INFINITELY MANY SOLUTIONS FOR SEMILINEAR NONLOCAL
ELLIPTIC EQUATIONS UNDER NONCOMPACT SETTINGS [ChS]

the equality is attained exactly by U(x, t) = cWλ,ξ(x, t), where Wλ,ξ(x, t) is the s-harmonic exten-
sion of wλ,ξ. By zero extension, we also have(∫

Ω

|U(x, 0)|2
∗(s)dx

) 1
2∗(s)

≤
SN,s
√

Cs

(∫
C

t1−2s|∇U(x, t)|2dxdt
) 1

2

, U ∈ H1
0(t1−2s,C). (7.19)

As an application, we obtain the following estimate.

Lemma 7.2.1. Let w ∈ Lp(Ω) for some p < N
2s . Assume that U is a weak solution of the problem

div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = w on Ω × {0}.

(7.20)

Then we have
‖U(·, 0)‖Lq(Ω) ≤ Cp,q ‖w‖Lp(Ω) , (7.21)

for any q such that N
q ≤

N
p − 2s.

Proof. We multiply (7.20) by |U |β−1U for some β > 1 to get∫
Ω

w(x)|U |β−1U(x, 0) dx = β

∫
C

t1−2s|U |β−1|∇U |2 dxdt. (7.22)

Then, applying the trace embedding (7.19) and Hölder’s inequality we can observe∥∥∥∥|U | β+1
2 (·, 0)

∥∥∥∥2

L
2N

N−2s (Ω)
≤ Cβ

∥∥∥|U |β(·, 0)
∥∥∥

L
β+1
2β ·

2N
N−2s
‖w‖p , (7.23)

where p satisfies 1
p +

(N−2s)β
N(β+1) = 1. Let q =

N(β+1)
N−2s , then (7.23) gives the desired inequality. �

We will also make use of the following weighted Sobolev inequality.

Proposition 7.2.2. [FKS, Theorem 1.3] Let Ω be an open bounded set in RN+1. Then there exists
a constant C = C(N, s,Ω) > 0 such that(∫

Ω

|t|1−2s|U(x, t)|
2(N−2s+2)

N−2s dxdt
) N−2s

2(N−2s+2)

≤ C
(∫

Ω

|t|1−2s|∇U(x, t)|2dxdt
) 1

2

(7.24)

holds for any function U compactly supported in Ω whenever the right hand side is well-defined.
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7.2.3 Useful lemmas

Here we prepare some lemmas which will be used importantly throughout the paper.

Lemma 7.2.3. Suppose that V ∈ H1
0(t1−2s,C) is a weak solution of the following problem

div(t1−2s∇V) = 0 on C,
V(x, t) = 0 on ∂LC,

∂s
νV(x, 0) = g(x) on Ω × {0}

(7.25)

for some nonnegative g. Then V is nonnegative everywhere.

Proof. Let V− = max{0,−V}. By testing V−, the definition of weak formulation implies

−

∫
C

t1−2s|∇V−|2 dxdt = Cs

∫
Ω

g(x) · V−(x, 0) dx ≥ 0 (7.26)

and thus ∫
C

t1−2s|∇V−|2(x, t)dxdt = 0.

It proves that V− ≡ 0. The lemma is proved. �

Next we state a variant of the concentration compactness principle [Su] for the extended
problems.

Lemma 7.2.4. For n ∈ N let Un be a solution of (7.10) with p = pn → 2∗(s) − 2 such that
‖Un‖H1

0 (t1−2s,C) < C for some C independent of n ∈ N. Then, for some k ∈ N, there are k-
sequences {(λ j

n, x
j
n)}∞n=1 ∈ R+ × Ω, 1 ≤ j ≤ k, a function V0 ∈ H1

0(t1−2s,C) and k-functions
V j ∈ D1(t1−2s,RN+1

+ ), 1 ≤ j ≤ k satisfying

• Un ⇀ V0 weakly in H1
0(t1−2s,C);

• Un −
(
V0 +

∑k
j=1 ρ

j
n(V j)

)
→ 0 in H1

0(t1−2s,C) as n→ ∞, where

ρ j
n(V j) = (λ j

n)
N

2∗(s) V j(λ j
n(· − x j

n));

• V0 is a solution of (7.9), and V j are non-trivial solutions of{
div(t1−2s∇V) = 0 in RN+1

+ ,

∂s
νV = |V |2

∗(s)−2V on RN × {0}.
(7.27)

Moreover, we have

λi
n

λ
j
n

+
λ

j
n

λi
n

+ λi
nλ

j
n|x

i
n − x j

n|
2 → ∞ as n→ ∞ for all i , j. (7.28)
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Proof. The proof follows without difficulty by modifying the proof of the concentration com-
pactness result for (7.3)(see [Su, Su2]), and we omit the details for the sake of simplicity of the
paper. We refer to the paper [M] where S. Almaraz modified the argument in [Su] for studying
the boundary Yamabe flow. His setting corresponds to the case s = 1/2 of the extended problems
considered here. �

It is useful to know the decay rate of any entire solutions to (7.27).

Lemma 7.2.5. Suppose that V ∈ D1(t1−2s,RN+1
+ ) is a weak solution of (7.27). Then there exists a

constant C > 0 such that
|V(x, 0)| ≤

C
(1 + |x|)N−2s .

Proof. We first show that V is a bounded function. For a sake of convenience, we consider a
positive function U ∈ D1(t1−2s,RN+1

+ ) such that div(t1−2s∇U) = 0 in RN+1
+ ,

∂s
νU = |V |

N+2s
N−2s on RN × {0}.

(7.29)

Then, it is easy to see |V | ≤ U by Lemma 7.2.3 and∫
RN+1

+

t1−2s|∇U |2 dxdt ≤
∫
RN+1

+

t1−2s|∇V |2 dxdt.

For T > 0 let UT = min{U,T }. Multiplying (8.3) by U2β
T U for β > 1 we obtain∫

RN
|V |

N+2s
N−2s · U2β

T · U(x, 0)dx =

∫
RN+1

+

t1−2s2β|∇UT |
2U2β + t1−2s|∇U |2U2β

T dxdt.

On the other hand, a direct computation shows

|∇(UUβ
T )|2 = U2β

T |∇U |2 + (2β + β2)U2β
T |∇UT |

2. (7.30)

Thus we deduce ∫
RN+1

+

t1−2s|∇(UUβ
T )|2dxdt ≤ C

∫
|V |

N+2s
N−2s · U2β

T U(x, 0)dx,

and consequently, for K > 0 we have∫
RN+1

+

t1−2s|∇(UUβ
T )|2dxdt ≤ C

∫
U≤K
|V |

N+2s
N−2s · U2β

T Udx + C
∫

U>K
|V |

N+2s
N−2s · U2β

T Udx

≤ K2βC + C
(∫

U>K
|V |

2N
N−2s (x, 0)dx

) 2s
N
(∫
RN
|Uβ

T U(x, 0)|
2N

N−2s dx
) N−2s

N

≤ K2βC + C
(∫

U>K
|V |

2N
N−2s (x, 0)dx

) 2s
N
(∫
RN+1

+

t1−2s|∇(UUβ
T )|2dxdt

)
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Choosing a sufficiently large K > 0, we get∫
RN+1

+

t1−2s|∇(UUβ
T )|2dxdt ≤ 2K2βC.

From this, using the Sobolev-trace inequality and letting T → ∞, we obtain∫
RN
|V |2

∗(s)(β+1)(x, 0)dx ≤
∫
RN

U2∗(s)(β+1)(x, 0)dx ≤ C.

Here β > 1 can be chosen arbitrary. Now, we use the following kernel expression(See [CaS]),

U(x, t) =

∫
RN

CN,s

(|x − y|2 + t2)
N−2s

2

|V |2
∗(s)−1(y, 0) dy

and Hölder’s inequality to conclude that U is a bounded function. Therefore, V is a bounded
function.

Next we consider the following Kelvin transform with z = (x, t) ∈ RN+1
+ ,

W(z) = |z|−(N−2s)V
(

z
|z|2

)
. (7.31)

From a direct computation, we see that the function W satisfies div(t1−2s∇W) = 0 in RN+1
+ ,

∂s
νW = |W |

4s
N−2s W on RN × {0},

and ‖W‖D1(t1−2s,RN+1
+ ) ≤ C‖V‖D1(t1−2s,RN+1

+ ) ≤ C. Then, we may apply the same argument for V to
show that the function W is bounded on RN+1

+ . So, we can deduce from (8.5) that

|V(z)| ≤ C|z|−(N−2s).

This proves the lemma. �

7.3 Settings and Ideas for the proof of Theorem 7.1.2

Here we build basic settings and ideas for the proof of Theorem 7.1.2 for a clear exposition of
the paper. The arguments introduced in this section are originally developed by Devillanova and
Solimini in [DS] and also are inspired by a modified approach in the work of Cao, Peng and Yan
in [CPY]. From now on, we will denote the norm of the weighted Sobolev space H1

0(t1−2s,C) by
‖ · ‖ for simplicity.

Let {Un}n∈N ∈ H1
0(t1−2s,C) be a sequence of functions which are solutions of (7.10) with

p = pn → 2∗(s) − 2 such that ‖Un‖ is bounded uniformly for n ∈ N. What we want to prove is
the compactness of the sequence {Un}n∈N in H1

0(t1−2s,C). Arguing indirectly, suppose that {Un}n∈N
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is noncompact. Then Lemma 7.2.4 says that for some integer k ≥ 1, there exist k sequences
{(x j

n, λ
j
n)}n∈N ∈ Ω × R+ with limn→∞ λ

j
n = ∞ such that (7.28) holds and{

Un = V0 +
∑k

j=1 ρ
j
n(V j) + Rn,

limn→∞ ‖Rn‖ = 0,
(7.1)

where V0 is a solution to (7.9) and V j is an entire solution of (7.27) for 1 ≤ j ≤ k. By taking a
subsequence, we may assume without loss of generality

λ1
n ≤ λ

2
n ≤ · · · ≤ λ

k
n ∀n ∈ N.

We just denote λ1
n by λn and x1

n by xn throughout the paper. In other words, we mean xn by the
slowest bubbling point and λn by the corresponding rate of blowup.

We shall derive a contradiction by making use a local Pohozaev identity (7.23) on concen-
tric balls with center xn and radii comparable to λ−1/2

n . To do this, it is required to show that
average(and weighted average) integrals of |U |q on appropriate annuli around xn are uniform
bounded for n whenever q > 1. Then it follows a sharp weighted L2 estimates for ∇U. This will
be accomplished in Section 4 and 5.

More precisely, we introduce in Section 4 a norm which reflects the effect of bubbles in
sequence {Un}

∞
n=1 and show the uniform boundedness of {Un} with respect to this norm. Let q1

and q2 be real numbers such that N
N−2s < q2 <

2N
N−2s < q1 < ∞. For given two functions u1 ∈ Lp1(Ω)

and u2 ∈ Lq2(Ω), let α > 0 and λ > 0 be satisfy ‖u1‖q1 ≤ α,

‖u2‖q2 ≤ αλ
N

2∗(s)−
N
q2 .

(7.2)

We define for given q1, q2, λ, a norm as follows:

‖u‖λ,q1,q2 = inf{α > 0 : there exist u1 and u2 such that |u| ≤ u1 + u2 and (7.2) holds }. (7.3)

Then, we prove that
sup
n∈N
‖Un(·, 0)‖λn,q1,q2 < ∞.

In section 5, we establish the uniform boundedness of the average integrals of |U |q and a sharp
weighted L2 estimate for ∇U on suitable annuli around xn with widths comparable to λ−1/2

n . We
first show by combining the result in Section 4 and some delicate arguments in the work of
Cao-Peng-Yan [CPY] with a nonlocal version of a lemma by Kilpenläinen-Malý [KM] that the
desired average bounds are valid for at least relatively small range of q. Then a Moser’s iteration
type argument(Lemma 7.B.1) applies to widen the range of q to arbitrary q > 1.

With these estimates at hand, we make a contradiction from a local Pohozaev identity in
Section 6, which completes the proof of Theorem 7.1.2.
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7.4 A refined norm estimate

As explained in Section 3, we prove in this section the following result.

Proposition 7.4.1. For n ∈ N let Un be a solution of (7.10) with p = pn → 2∗(s) − 2 such
that ‖Un‖ < C for some C independent of n ∈ N. Consider any numbers q1 and q2 such that

N
N−2s < q2 <

2N
N−2s < q1 < ∞. Then we have

sup
n
‖Un(·, 0)‖λn,q1,q2 < ∞.

We will prove this result through the three lemmas below, proofs of which heavily rely on
Lemma 7.2.1, 7.2.3 and 7.2.5. Take a constant A > 0 such that xp + µx ≤ 2x2∗(s)−1 + A for all
x ≥ 0 and consider a solution {Dn}n∈N to the problem

div(t1−2s∇Dn) = 0 in C,
Dn = 0 on ∂LC,

∂s
νDn = 2|Un|

2∗(s)−1 + A on Ω × {0}.
(7.1)

Then, by Lemma 7.2.3, we see that Dn is positive and |Un| ≤ Dn. Moreover, by (7.1) for some
C1 > 0 we have

∂s
νDn ≤ C1

|V0|
2∗(s)−2 +

k∑
j=1

|ρ j
n(V j)|2

∗(s)−2 + |Rn|
2∗(s)−2

 |Un| + A on Ω × {0}. (7.2)

We prepare the first lemma to control the remainder term Rn, which is known to converge to
zero in H1

0(t1−2s,C).

Lemma 7.4.2. Let a ∈ L
N
2s (Ω) and v ∈ L∞(Ω). Suppose a function U ∈ H1

0(t1−2s,C) satisfies
div(t1−2s∇U) = 0 in C,
U = 0 on ∂LC,

∂s
νU = a(x)v on Ω × {0}.

Then, for any λ > 0 and N
N−2s < q1 <

2N
N−2s < q2 < ∞ we have

‖U(·, 0)‖λ,q1,q2 ≤ Cq1,q2‖a‖ N
2s
‖v‖λ,q1,q2 .

Proof. Choose arbitrary positive two functions v1 ∈ L∞(Ω) and v2 ∈ L∞(Ω) such that |v(x)| ≤
v1(x) + v2(x) for all x ∈ Ω. Then, there exist functions U1 ∈ H1

0(t1−2s,C) and U2 ∈ H1
0(t1−2s,C)

satisfying 
div(t1−2s∇Ui) = 0 in C,
Ui = 0 on ∂LC,

∂s
νUi = |a(x)|vi on Ω × {0},

i = 1, 2.
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We see from Lemma 7.2.3, the maximum principle that |U | ≤ U1 + U2 . For given β > 1, one has

0 =

∫
C

div(t1−2s∇Ui)U
β
i dz =

∫
Ω×{0}
|a(x)|vi(x)Uβ

i (x, 0)dx −
∫
C

t1−2s∇Ui∇Uβ
i dz,

which gives ∫
C

t1−2s|∇U
β+1

2
i |

2dz = Cβ

∫
Ω×{0}

a(x)vi(x)Uβ
i (x, 0)dx.

Applying the Sobolev-trace inequality (7.19) and Hölder’s inequality, we get

‖U
β+1

2
i (x, 0)‖2

L
2N

N−2s (Ω)
≤ C‖a‖ N

2s
‖vi‖ β+1

2
2N

N−2s
‖Uβ

i (x, 0)|‖
L
β+1
2β

2N
N−2s

. (7.3)

For each i ∈ {1, 2} we take the value of β such that qi =
β+1

2
2N

N−2s . Then (7.3) gives that

‖Ui(x, 0)‖Lqi ≤ C‖a‖ N
2s
‖vi‖Lqi ∀i = 1, 2.

This and the definition (7.3) of ‖ · ‖λ,q1,q2 yield

‖U(·, 0)‖ ≤ C‖a‖N/2s‖v‖λ,q1,q2 .

This proves the lemma. �

In the following lemma, we find a particular pair (q1, q2) such that ‖ ‖λn,q1,q2 is uniformly
bounded.

Lemma 7.4.3. For n ∈ N, let Un be a solution of (7.10) with p = pn → 2∗(s) − 2 such that
‖Un‖ < C for some C independent of n ∈ N. Consider the sequence {Dn}n∈N described in (7.1).
Then, there exists q1 ∈

(
2N

N−2s ,∞
)

and q2 ∈
(

N
N−2s ,

2N
N−2s

)
, and a constant C > 0 such that

sup
n∈N
‖Dn(·, 0)‖ρn,q1,q2 ≤ C.

Proof. For 1 ≤ i ≤ 3 we consider the functions Di
n ∈ H1

0(t1−2s,C) such that

div(t1−2s∇Di) = 0 in C, 1 ≤ i ≤ 3,

Di = 0 on ∂LC, 1 ≤ i ≤ 3,

∂s
νD

1
n = C1(|V0|

2∗(s)−2)|Un| + A,

∂s
νD

2
n = C1(

k∑
j=1

|ρ j
n(V j)|2

∗(s)−2)|Un|,

∂s
νD

3
n = C1(|Rn|

2∗(s)−2)|Un|,

Then, from (7.2) we have |Dn| ≤ D1
n + D2

n + D3
n by the maximum principle. Because ‖Un‖ is

uniformly bounded for n ∈ N, the Sobolev-trace inequality gives

sup
n
‖Un(·, 0)‖L2∗(s)(Ω) ≤ C sup

n
‖Un‖ ≤ C.
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Since V0 is a bounded, applying Lemma 7.2.1 we have

‖D1
n(·, 0)‖Lq2 ≤ C‖Un(·, 0)‖L2∗(s)(Ω), (7.4)

where q1 satisfies 1
2∗(s) −

1
q1

= 2s
N . For 1 ≤ j ≤ k we see from Lemma 7.2.5 that |V j(·, 0)|pn−1 ∈ Lr

for any fixed number r > N
4s . Moreover, a calculation shows that∥∥∥ρ j

n(V j)pn−1(·, 0)
∥∥∥

Lr ≤ λ
2s− N

r
n .

Thus,

‖D2
n(·, 0)‖Lq2 ≤ C

∥∥∥∥∥ k∑
j=1

|ρ j
n(V j)2∗(s)−2(·, 0)|

∥∥∥∥∥
Lr
‖Un(·, 0)‖L2∗(s)(Ω)

≤ Cλ2s− N
r

n ,

(7.5)

where q2 is such that N
(

1
r + N−2s

2N −
1
q2

)
= 2s. We note that 2s − N

r = N−2s
2 − N

q2
, and it is easy

to check that N
N−2s < q2 <

2N
N−2s for r sufficiently close to N

4s . In view of the definition (7.3), the
estimates (7.5) and (7.4) imply

‖D1
n(·, 0)‖λn,q1,q2 + ‖D2

n(·, 0)‖λn,q1,q2 ≤ C. (7.6)

On the other hand, since ‖Rn‖ = o(1) we have ‖R2∗(s)−2
n (·, 0)‖

L
N
2s (Ω)

= ‖Rn(·, 0)‖
4s

N−2s

L
2N

N−2s (Ω)
= o(1).

Thus, applying Lemma 7.4.2 we get

‖D3
n(·, 0)‖λn,q1,q2 ≤ o(1)‖Dn(·, 0)‖λn,q1,q2 . (7.7)

Combining (7.6) and (7.7) we have

‖Dn(·, 0)‖λn,q1,q2 ≤ ‖D
1
n(·, 0)‖λn,q1,q2 + ‖D2

n(·, 0)‖λn,q1,q2 + ‖D3
n(·, 0)‖λn,q1,q2

≤ C + o(1)‖Dn(·, 0)‖λn,q1,q2 ,

which gives ‖Dn(·, 0)‖λn,q1,q2 ≤ C for a constant C > 0 independent of n ∈ N. This completes the
proof. �

The next lemma is for a bootstrap argument.

Lemma 7.4.4. Consider two numbers q1 and q2 such that N+2s
N−2s < q2 <

2N
N−2s < q1 <

N
2s

N+2s
N−2s . Let

γ1 and γ2 satisfy
1
γi

=
N + 2s
N − 2s

1
qi
−

2s
N
, i = 1, 2.

Assume that for some v ∈ Lq2(Ω), U ∈ H1
0(t1−2s,C) solves

div(t1−2sU) = 0 in C,

U = 0 on ∂LC,

∂s
νU ≤ |v|

2∗(s)−1 + A on Ω × {0}.
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Then there is a constant C = C(q1, q2,Ω) such that

‖U(·, 0)‖λ,γ1,γ2 ≤ C
(
‖v‖2

∗(s)−1
λ,q1,q2

+ 1
)
.

Proof. Consider two positive functions v1 ∈ Lq1(Ω) and v2 ∈ Lq2(Ω) such that |v| ≤ v1 + v2. Then,

∂s
νU ≤ C

(
v2∗(s)−1

1 + v2∗(s)−1
2 + 1

)
.

Let U1 ∈ H1
0(t1−2s,C) and U2 ∈ H1

0(t1−2s,C) be solutions to{
div(t1−2s∇Ui) = 0 in C,
∂s
νUi = v2∗(s)−1

i on Ω × {0},
for i = 1, 2. (7.8)

We note that Ui is nonnegative. Multiplying (7.8) by Uβ
i for some β > 1, we have

4β
(β + 1)2

∫
C

t1−2s|∇(U (β+1)/2
i )|2 dxdt =

∫
Ω×{0}

v2∗(s)−1
i (x)Uβ

i (x, 0) dx.

Now we apply the Sobolev-trace inequality and Hölder’s inequality to get

‖U
β+1

2
i (x, 0)‖

L
2N

N−2s (Ω)
≤ C‖v2∗(s)−1‖Lr‖Uβ

i ‖L
β+1
2β

2N
N−2s

,

where r is chosen to be such that 1
r +

2β
β+1

N−2s
2N = 1. We take β satisfying γi =

β+1
2

2N
N−2s . Then one

has (2∗(s) − 1)r = qi so that the above inequality gives

‖Ui(·, 0)‖Lγi ≤ C‖v‖p
Lqi for i = 1, 2.

Thus we get

‖U(·, 0)‖λ,γ1,γ2 ≤ ‖U1(·, 0)‖Lγ1 + λ
N
γ2
− N

2∗(s) ‖Ui(·, 0)‖Lγ2 + C

≤ ‖v1‖
2∗(s)−1
Lq1 + λ

N
γ2
− N

2∗(s) ‖v2‖
2∗(s)−1
Lq2 + C.

(7.9)

From the fact that 1
2∗(s)−1

(
N
γ2
− N

2∗(s)

)
= N

q2
− N

2∗(s) , the estimate (7.9) implies

‖U(·, 0)‖λ,γ1,γ2
≤ C

(
‖v‖2

∗(s)−1
λ,q1,q2

+ 1
)
,

which shows the lemma. �

Proof of Proposition 7.4.1. By the result of Lemma 7.4.3, there exists two numbers q1 ∈
(

2N
N−2s ,∞

)
and q2 ∈

(
N

N−2s ,
2N

N−2s

)
satisfying

sup
n∈N
‖Dn(·, 0)‖ρn,q1,q2 ≤ C.

Then, by Lemma 7.4.4 we have

sup
n∈N
‖Dn(·, 0)‖ρn,γ1,γ2 ≤ C,

where γ1 and γ2 satisfy 1
γi

= N+2s
N−2s

1
qi
− 2s

N for i = 1, 2. Iteratively applying this process with Hölder’s
inequality, one can conclude the desired result. �
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7.5 Integral estimates

In this section we establish some sharp Lq estimates for solution sequence {Un} on some suitable
annuli around the slowest bubbling point xn, which play a fundamental role to prove our main
theorems. Let us define several domains:

• BN(x, r) = {y ∈ RN : |x − y| ≤ r} for x ∈ RN and r > 0.

• BN+1(x, r) = {z ∈ RN+1
+ : |z − (x, 0)| ≤ r} for x ∈ RN and r > 0.

• For d = N,N + 1, Ad(x, [r1, r2]) = Bd(x, r2) \ Bd(x, r1) for x ∈ Rd and r2 > r1 > 0.

• For a domain D ∈ RN+1
+

∂+D = {(x, t) ∈ ∂D : t > 0},
∂bD = {x ∈ RN : (x, 0) ∈ ∂D ∩ RN × {0}}.

Consider the annuli AN(xn, [5mλ−1/2
n , (5m + 5)λ−1/2

n ]), 1 ≤ m ≤ k + 1. By choosing a sub-
sequence, we may assume that for some m ∈ {1, · · · , k + 1}, the annuli AN(xn, [5mλ−1/2

n , 5(m +

1)λ−1/2
n ]) does not contain any other bubbling points. Let{
A1

n(d) = Ad(xn, [(5m + 1)λ−1/2
n , (5m + 4)λ−1/2

n ]) ∩ C or Ω,

A2
n(d) = Ad(xn, [(5m + 2)λ−1/2

n , (5m + 3)λ−1/2
n ]) ∩ C or Ω,

for n ∈ N, d = N,N + 1.

For a measurable set A ⊂ Rn+1
+ we define a weighted measure

ms(A) =

∫
A

t1−2sdxdt, (7.1)

and a weighted average

inf
A

f (x, t)t1−2sdxdt =

∫
A

f (x, t)t1−2sdxdt∫
A

t1−2sdxdt
. (7.2)

Now we state the result on the integral esimates of Un on the annuliA1
n(N) andA1

n(N + 1).

Proposition 7.5.1. Let {Un}
∞
n=1 be a sequence of solutions to (7.10) with p = pn → 2∗(s)− 2 such

that ‖Un‖ < C for some C > 0 independent of n ∈ N. Then, for any q > 1, there exists a constant
Cq > 0 such that

sup
n∈N

{
inf

A1
n(N+1)

|Un(x, t)|qt1−2sdxdt + inf
A1

n(N)
|Un(x, 0)|qdx

}
≤ Cq. (7.3)

To prove this proposition, we need the following lemma.
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Lemma 7.5.2. For f ≥ 0, assume that U ∈ H1
0(t1−2s,C) satisfies

div(t1−2s∇U) = 0 in C,
∂s
νU = f on Ω × {0},

U = 0 on ∂LC.

For γ ∈
(
1, N−2s+2

N−2s+1

)
, there exists a constant Cq > 0 such that(

inf
BN+1(x,r)

t1−2sUγdxdt
)1/γ

≤ inf
BN+1(x,1)

t1−2sUγdxdt + Cq

∫ 1

r

(
1

ρN−2s

∫
BN (x,ρ)

f (y)dy
)

dρ
ρ

holds for any x ∈ Ω and r ∈ (0, r0) where r0 = dist(x, ∂Ω).

This lemma is analogous to Proposition C.1 in [CPY]. We refer to Appendix A for a proof.

Proof of Proposition 7.5.1. We consider the function Dn such that
div(t1−2s∇Dn) = 0 in C,
Dn = 0 on ∂LC,

∂s
νDn = |Un|

2∗(s)−1 + C on Ω × {0}.
(7.4)

Then we have ‖Dn‖ ≤ C‖Un‖ + C, and also |Un| ≤ Dn by the maximum principle. Choose a point
y ∈ Ω. For γ ∈

(
1, N−2s+2

N−2s+1

)
we claim that

sup
r∈(λ−1/2

n ,1)

inf
BN+1(y,r)

t1−2s|Dn|
γ(x, t)dxdt ≤ C, (7.5)

with C > 0 independent of y ∈ Ω and n ∈ N. We first note that

sup
n∈N
‖Dn‖ ≤ C sup

n∈N
‖Un‖ + C ≤ C.

Thus, using the Sobolev embedding (7.24) and Hölder’s inequality we deduce

inf
BN+1(y,1)

t1−2s|Dn|
γ(x, t)dxdt ≤ C.

Combining this with Lemma 7.5.2, for each 0 < r < dist(y, ∂Ω) we get(
inf

BN+1(y,r)
t1−2sDγ

ndxdt
)1/γ

≤ C + C
∫ 1

r

[
1

ρN−2s

∫
BN (y,ρ)

(
|Un|

2∗(s)−1(x, 0) + C
)

dx
]

dρ
ρ
. (7.6)

In order to bound the last term on the right, we set q1 =
N(N+2s)
s(N−2s) and q2 = N+2s

N−2s , and apply
Proposition 7.4.1 to find functions w1

n ∈ Lq1(Ω) and w2
n ∈ Lq2(Ω) such that |Un| ≤ w1

n + w2
n and

‖w1
n‖Lq1 ≤ C and ‖w2

n‖Lq2 ≤ CλN/(p+1)−N/q2
n . (7.7)
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Then,∫ 1

σ−1/2
n

1
tN−2s+1

[∫
Bt(xn)

U p(y, 0)dy
]

dt

≤ C
∫ 1

r

1
tN−2s+1

[∫
BN (y,t)

(w1
n)p(x)dx

]
dt + C

∫ 1

r

1
tN−2s+1

[∫
BN (y,t)

(w2
n)p(x)dx

]
dt.

(7.8)

We use (7.7) to deduce∫ 1

r

1
tN−2s+1

[∫
BN (y,t)

(w1
n)p(x)dx

]
dt ≤ C

∫ 1

σ−1/2
n

1
tN−s (tN(N−2s+1)/N)‖(w1

n)p‖
L

N
s (Ω)
≤ C,

and ∫ 1

r

1
tN−2s+1

[∫
BN (y,t)

(w2
n)p(x, 0)dx

]
dt

≤

∫ 1

σ−1/2
n

1
tN−2s+1

[
Cσ

N−2s
2 −

N(N−2s)
N+2s

n

] N+2s
N−2s

dt = σ(N−2s)/2
n σ(N−2s)/2 ≤ C.

These two estimates (7.8) and (7.6) prove the claim (7.5). As a result we have

sup
n∈N

inf
AN+1

n

|Un(x, t)|γt1−2sdxdt ≤ C. (7.9)

To complete the proof, we only need to raise γ to higher orders in the above average estimate. In
this regard, we set

Ũn(z) = Un(λ−
1
2

n z + (xn, 0)).

Then it satisfies {
div(t1−2s∇Ũn) = 0, in BN+1(0, 5m + 5)
∂s
νŨn = λ−s(Ũ p−1

n + C)Ũn on BN(0, 5m + 5) × {0},

and for γ ∈
(
1, N−2s+2

N−2s+1

)
, the estimate (7.10) gives∫

AN+1(0,[5m,5m+5])
t1−2sŨγ

n dxdt ≤ C. (7.10)

Moreover, since AN(xn, [5mλ−1/2
n , 5(m + 1)λ−1/2

n ]) does not any bubbling point of Un, we easily
get

lim
n→∞

∫
AN+1(0,[5m+1,5m+4])

Ũn(x, 0)p+1dx = 0.

Given this and (7.10), we may apply Lemma 7.B.1 to deduce that for any q > 1,∫
AN+1(0,[5m+2,5m+3])

t1−2sŨq
ndxdt +

∫
AN (0,[5m+2,5m+3])

Ũq
ndx ≤ Cq.

By writing down this inequality in terms of Un on AN+1
n and AN

n , we get the desired inequality
(7.3). The proof is completed. �
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Proposition 7.5.3. Let {Un}n∈N be a sequence of solutions to (7.10) with p = pn → 2∗(s)−2 such
that ‖Un‖ is bounded uniformly for n ∈ N. Then there exists C > 0 independent of n such that∫

A2
n(N+1)

t1−2s|∇Un(x, t)|2 dxdt ≤ Cλ
2s−N

2
n

Proof. Let φn ∈ C∞0 (AN+1(xn, [(5m + 1)λ−1/2
n , (5m + 4)λ−1/2

n ])) be a sequence of cut-off functions
such that φn = 1 on AN+1(xn, [(5m + 2)λ−1/2

n , (5m + 3)λ−1/2
n ]) and 0 ≤ φn ≤ 1, |∇φn| ≤ Cλ1/2

n on
AN+1(xn, [(5m + 1)λ−1/2

n , (5m + 4)λ−1/2
n ]). Then we see from (7.10) that∫

A1
n(N+1)

t1−2s∇Un(x, t) · ∇
(
φ2

n(x, t)Un(x, t)
)

dxdt

≤ Cs

∫
A1

n(N)

(
|Un(x, 0)|pn+1 + µ|U(x, 0)|

)
|φ2

n(x, 0)Un(x, 0)| dx, (7.11)

which yields∫
A1

n(N+1)
t1−2sφ2

n(x, t)|∇Un(x, t)|2 dxdt

≤ C
∫
A1

n(N)
|Un(x, 0)|pn+2 + |Un(x, 0)|2 dx + C

∫
A1

n(N+1)
t1−2s|Un(x, t)∇φ(x, t)|2 dxdt

≤ C
∫
A1

n(N)

(
|Un(x, 0)|2

∗(s) + |Un(x, 0)|2 + 1
)

dx + Cλ1
n

∫
A1

n(N+1)
t1−2s|Un(x, t)|2 dxdt.

Then, this and Proposition 7.5.1 show that∫
A2

n(N+1)
t1−2s|∇U(x, t)|2 dxdt ≤ Cλ−

N
2

n + Cλ−
N+2−2s

2 +1
n ≤ Cλ

2s−N
2

n .

The proof is completed. �

7.6 End of proofs of main theorems

We shall complete in this section the proof of Theorems 7.1.1 and 7.1.2. As we explained
before, the strategy for the proof of Theorem 7.1.2 is to show there could be no bubbles in
the decomposition (7.1) for any uniformly norm bounded sequence of solutions to (7.10) with
p = pn → 2∗(s) − 2. Indeed, we will show a contradiction takes place if we assume that there
are bubbles. This will be accomplished by using a local Pohozaev identity on concentric balls
centered the bubbling point xn, the blow up rate of which is minimal among all bubbling points.

Proof of Theorem 7.1.2. We denote

En(N, l) = BN(xn, lλ−1/2
n ) ∩Ω, En(N + 1, l) = BN+1((xn, 0), lλ−1/2

n ) ∩ C
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where l ∈ (5m + 2, 5m + 3). By the local Pohozaev identity (7.23), we have

Cs

{(
N

pn + 2
−

N − 2s
2

) ∫
En(N,l)

|Un(x, 0)|pn+2dx + µs
∫
En(N,l)

|Un(x, 0)|2dx
}

=

∫
∂En(N,l)

(
µ

2
|Un(x, 0)|2 +

1
pn + 2

|Un(x, 0)|pn+2
)

(x − x0, νx) dS x

+

∫
∂+En(N+1,l)

t1−2s

(
(z − z0,∇Un(z))∇Un(z) − (z − z0)

|∇Un(z)|2

2
, νz

)
dS z

+

(
N − 2s

2

) ∫
∂+En(N+1,l)

t1−2sUn(z)
∂Un(z)
∂νz

dS z,

(7.1)

where x0 ∈ R
N is arbitrary, z0 = (x0, 0) and z = (x, t). We decompose ∂En(N, l) as

∂En(N, l) = ∂intEn(N, l) ∪ ∂extEn(N, l)

where ∂intEn(N, l) := ∂En(N, l) ∩Ω and ∂extEn(N, l) := ∂En(N, l) ∩ ∂Ω. Similarly,

∂+En(N + 1, l) = ∂intEn(N + 1, l) ∪ ∂extEn(N + 1, l)

where ∂intEn(N + 1, l) := ∂+En(N + 1, l)∩C and ∂extEn(N + 1, l) := ∂+En(N + 1, l)∩ ∂C. For each
xn and l, we have two cases:

(i) BN(xn, l) ⊂ Ω or (ii) BN(xn, l) 1 Ω.

For the case (i), we take x0 = xn. For the case (ii), we take x0 ∈ R
N \Ω such that |x0− xn| ≤ Cλ−1/2

n

and νx · (x − x0) ≤ 0 at all x ∈ ∂extEn(N, l). Then, we see from the fact νz = (νx, 0) that

νz · (z − z0) = (νx, 0) · (x − x0, t − 0) = νx · (x − x0) ≤ 0

for any z = (x, t) ∈ ∂extEn(N + 1, l). Then, the fact un = 0 on ∂extEn(N, l) ∪ ∂extEn(N + 1, l) yields∫
∂extEn(N,l)

(
µ

2
|Un(x, 0)|2 +

1
pn + 2

|Un(x, 0)|pn+2
)

(x − x0, νx) dS x = 0,∫
∂extEn(N+1,l)

t1−2sUn(z)
∂Un(z)
∂νz

dS z = 0.

Also, since ∇Un = ±|∇Un|νz on ∂extEn(N + 1, l), we see∫
∂extEn(N+1,l)

t1−2s

(
(z − z0,∇Un(z))∇Un(z) − (z − z0)

|∇Un(z)|2

2
, νz

)
dS z,

=

∫
∂extEn(N+1,l)

t1−2s |∇Un(z)|2

2
(z − z0, νz) dS z ≤ 0.
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Combining this with (7.1), we obtain∫
En(N,l)

|Un(x, 0)|2 dx ≤ Cλ−1/2
n

∫
∂intEn(N,l)

(
|Un(x, 0)|2 + |Un(x, 0)|pn+2

)
dS x

+ C
∫
∂intEn(N+1,l)

t1−2s|Un(z)||∇Un(z)| dS z

+ Cλ−1/2
n

∫
∂intEn(N+1,l)

t1−2s|∇Un(z)|2 dS z.

(7.2)

Extending Un to 0 on RN+1 \ C and integrating (7.2) with respect to l, we get∫ 5m+3

5m+2

∫
En(N,l)

|Un(x, 0)|2 dx dl ≤ C
∫
A2

n(N)

(
|Un(x, 0)|2 + |Un(x, 0)|pn+2

)
dx

+ Cλ1/2
n

∫
A2

n(N+1)
t1−2s|Un(z)||∇Un(z)| dz

+ C
∫
A2

n(N+1)
t1−2s|∇Un(z)|2 dz,

from which we deduce that∫
En(N,(5m+2)λ−1/2

n )
|U(x, 0)|2 dx ≤

∫ 5m+3

5m+2

∫
En(N,l)

|U(x, 0)|2 dx dl ≤ Cλ
2s−N

2
n , (7.3)

by applying Proposition 7.5.1, Proposition 7.5.3 and Hölder inequality.
Next, we recall Lemma 7.2.4 that we have a representation

Un = V0 +

k∑
j=1

ρ j
n(V j) + Rn

with some Rn → 0 in H1
0(t1−2s,C). We also may assume that our slowest bubbling point xn is x1

n.
Then, one can observe by extending Un = 0 on RN+1

+ \Ω that for large n∫
En(N,(5m+2)λ−1/2

n )
|Un(x, 0)|2 dx

=

∫
BN (xn,(5m+2)λ−1/2

n )
|Un(x, 0)|2 dx ≥

∫
BN (xn,λ

−1
n )
|Un(x, 0)|2 dx

≥ C
∫

BN (xn,λ
−1
n )
|ρ1

n(V1)(x, 0)|2 dx

−C
∫

BN (xn,λ
−1
n )

k∑
j=2

|ρ j
n(V j)(x, 0)|2 + |V0(x, 0)|2 + |Rn(x, 0)|2 dx.

One can compute ∫
BN (xn,λ

−1
n )
|ρ1

n(V1)(x, 0)|2 dx =

(∫
BN (0,1)

|V1(x, 0)|2 dx
)
λ−2s

n
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and ∫
BN (xn,λ

−1
n )
|ρ j

n(V j)(x, 0)|2 dx =

(∫
S j

n

|V j(x, 0)|2 dx
)

(λ j
n)−2s

=

(∫
S j

n

|V j(x, 0)|2 dx
) λ j

n

λn

−2s

λ−2s
n ,

where
S j

n := λ j
n(BN(xn, λ

−1
n ) − x j

n).

Then, the fact
λ

j
n

λn
+ λnλ

j
n|xn − x j

n|
2 → ∞ as n→ ∞ for all j , 1,

implies that (∫
S j

n

|V j(x, 0)|2 dx
) λ j

n

λn

−2s

= o(1).

Also, since V0 ∈ L∞(C) and Rn = o(1) in H1
0(t1−2s,C) as n→ ∞, we see∫

BN (xn,λ
−1
n )
|V0(x, 0)|2 dx ≤ Cλ−N

n ≤ o(1)λ−2s
n

and ∫
BN (xn,λ

−1
n )
|Rn(x, 0)|2 dx ≤ C

(∫
Ω

|Rn(x, 0)|2
∗(s) dx

) 2
2∗(s)

λn
−2s = o(1)λn

−2s

from the Sobolev-trace inequality (7.19). Thus we deduce∫
En(N,(5m+2)λ−1/2

n )
|Un(x, 0)|2 dx ≥ cλ−2s

n . (7.4)

Now, combining (7.3) with (7.4) we finally obtain

λ−2s
n ≤ Cλ

2s−N
2

n .

However, since limn→∞ λn = ∞, this contradicts with our assumption N > 6s. Thus, one can
conclude that there are no bubbles in Un so that Un → V0 in H1

0(t1−2s,C). This completes the
whole proof of Theorem 7.1.2.

�

Proof of Theorem 7.1.1. We use the variational methods and a topological index theory to con-
struct infinitely many solutions to (7.2). We have already seen that (7.2) is equivalent to (7.9). So
let us define

Iε(u) :=
1
2

∫
C

t1−2s|∇U |2dxdt −
µ

2

∫
Ω

|U(x, 0)|2dx −
1

2∗(s) − ε

∫
Ω

|U(x, 0)|2
∗(s)−εdx, (7.5)
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which is a variational functional for (7.10). Then, a variational functional for (7.9) corresponds
to (7.5) with ε = 0.

For a closed Z2 invariant set X ⊂ H1
0(t1−2s,C), we denote by γ(X) the topological genus of

X which stands for the smallest integer m such that there is an odd map φ ∈ C(X,Rm \ {0}). For
k ∈ N we define a family of sets Fk by

Fk = {X ⊂ H1
0(t1−2s,C) : X is compact, Z2-invariant, and γ(X) ≥ k}. (7.6)

Consider the minimax value ck,ε = infX∈Fk maxu∈X Iε(u). Then for any small ε > 0, ck,ε is a critical
value of Iε(u), i.e., there exists a solution uk,ε to (7.10) such that cε,k = Iε(uk,ε) (see e.g. [Gh,
Corollary 7.12]). It is also well known that ck,ε → ∞ as k → ∞.

We first show that for each fixed k ∈ N, ck,ε is uniformly bounded for ε > 0. For this we set

Ak := inf
X∈Fk

max
u∈X

[
1
2

∫
C

t1−2s|∇U |2dxdt −
µ

2

∫
Ω

|U(x, 0)|2dx −
1

2∗(s)

∫
Ω

|U(x, 0)|σdx
]
, (7.7)

where σ = 1
2 (2 + 2∗(s)) < 2∗(s). Take a constant C > 0 such that 1

2∗(s)−ε |u|
2∗(s)−ε + C ≥ 1

2∗(s) |u|
σ for

all 0 < ε < σ and u ∈ R. Then it follows that ck,ε ≤ Ak + C for ε ∈ (0, σ).
On the other hand, it is easily derived from the identity 〈I′ε(uk,ε), uk,ε〉 ≥ 0 that∫

C

t1−2s|∇Uk,ε |
2dxdt ≤ CIε(Uk,ε) = C · ck,ε , (7.8)

where C depends only on N and s. Then, we have from the uniform boundedness of cε,k that

sup
ε>0
‖Uk,ε‖ = sup

ε>0

∫
C

t1−2s|∇Uk,ε |
2 dxdt < ∞

and, consequently Theorem 7.1.2 implies that there is a subsequence of {Uk,εn}n≥1 such that Uk,εn

converges strongly to a function Uk in H1
0(t1−2s,C). It then easily follows that Uk solves the

problem (7.9) and satisfies I(Uk) = ck = limn→∞ ck,εn up to a subsequence. Moreover, a standard
argument (see e.g. [CSS]) applies to show that either {ck}k∈N has infinite number of elements or
there is m ∈ N such that ck = c for all k ≥ m and infinitely many critical points correspond to
the energy level c. Therefore the problem (7.2) is proved to have infinitely many solutions. This
completes the proof of Theorem 7.1.1. �
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Appendix

7.A Proof of Lemma 7.5.2

This section is devoted to prove Lemma 7.5.2. As a preliminary step, we first prove the following
result.

Lemma 7.A.1. For f ≥ 0 we suppose that U ∈ H1
0(t1−2s,C) ∩ L∞(C) is a weak solution of{

div(t1−2s∇U) = 0 in C,
∂s
νU(x, 0) = f (x) on Ω × {0}.

(7.9)

For γ ∈ (1, N−2s+2
N−2s+1 ) there exists a constant C = C(N, γ) such that, for any y ∈ Ω, d > 0 and

0 < r < 1
2dist(y, ∂Ω) we have(

d−γ inf
BN+1(y,r)

t1−2s(U − a)γ+(x, t)dxdt
)(2−γ)/γ

≤ Cd−γ inf
BN+1((y,0),2r)

t1−2s(U − a)γ+(x, t)dxdt + Cd−1r−N+2s
∫

BN (y,r)
f (x)dx

provided that

ms({(x, t) ∈ BN+1((y, 0), 2r) : a < U(x, t) < d}) ≤
d−γ

2

∫
BN+1(x,r)

t1−2s(U − a)γ+dxdt. (7.10)

Here the constant C is independent of a and d.

Proof. Without loss of generality, we may assume that a = 0. By assumption (7.10) we have∫
{z∈BN+1

x (r):U+(z)<d}
t1−2sUγ

+(z)dz ≤ dγms{x ∈ BN+1(x, r) : 0 < U < d}

≤
1
2

∫
BN+1(z,r)

t1−2sUγ
+(z)dz.

It gives ∫
{z∈BN+1(x,r):0<u(z)<d}

t1−2suγ+(z)dz ≤ 2
∫
{z∈BN+1(x,r):u>d}

t1−2suγ+(z)dz.
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Set q =
2γ

2−γ and

w =

(
1 +

u+

d

)γ/q
− 1.

We can find a constant C > 0 such that
(

u+

d

)γ
≤ Cwq when u+

d ≥ 1. Using this we have∫
{z∈BN+1(x,r):u>d}

t1−2suγ+(z)dz ≤ Cdγ
∫

BN+1(x,r)
t1−2swq(z)dz. (7.11)

Let η ∈ C∞(RN+1) be a cut-off function supported on BN+1(x, 2r) such that η(z) = 1 on BN+1(x, r)
and |∇η(z)| ≤ C/r. By the Sobolev inequality we have(

r−(N+2−2s)
∫

BN+1(x,r)
t1−2swqdz

)2/q

≤

(
r−(N+2−2s)

∫
BN+1(x,2r)

t1−2s(ηw)qdz
)2/q

≤ r−(N+2−2s)r2
∫

BN+1(x,2r)
t1−2s|∇(ηw)|2dz ≤ 2r−(N−2s)

∫
BN+1(x,2r)

t1−2s(|∇w · η|2 + |w∇η|2)dz.

(7.12)

We calculate

∇w =
γ

qd

(
1 +

u+

d

)γ/q−1
∇u+.

In order to get a bound of
∫

t1−2s|∇w · η|2dz we take V :=
(
1 −

(
1 + U+

d

)2 γ
q−1

)
η2 as a test function.

Multiplying (7.9) by V and using Young’s inequality we get∫
BN+1(x,2r)

t1−2s∇u+

(
1 +

u+

d

)2
(
γ
q

)
−2
∇u+η

2dz

=
2d

1 − γ

∫
BN+1(x,2r)

t1−2s∇u+∇η
(
1 − (1 +

u+

d
)2( γq )−1

)
ηdz +

Csd
1 − γ

∫
BN (x,2r)

f (y)v(y)η2(y)dy.

≤
1
2

∫
BN+1(x,2r)

t1−2s|∇u+η|
2
(
1 +

u+

d

)2( γq )−2
dz + Cd2

∫
BN+1(x,2r)

t1−2s
(
1 +

u+

d

)2−2
(
γ
q

)
|∇η|2dz

+ Cd
∫

BN (x,2r)
f vdx.

Using 2γ
q − 2 = −γ, we have∫

BN+1(x,2r)
t1−2s|∇u+|

2
(
1 +

u+

d

)−γ
η2dz ≤ Cd2

∫
BN+1(x,2r)

t1−2s
(
1 +

u+

d

)−γ
|∇η|2dz

+ Cd
∫

BN (x,2r)
f vdy.

(7.13)
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Applying |∇η| ≤ C/r and condition (7.10) once more, we deduce∫
BN+1(x,2r)

t1−2s
(
1 +

u+

d

)−γ
|∇η|2dz

≤
C
r2

∫
BN+1(x,2r)

t1−2s
(
1 +

u+

d

)γ
dx ≤

C d−γ

r2

∫
BN+1(x,2r)∩{u>0}

t1−2suγdz.

Combining this with (7.12) we get(∫
BN+1(x,r)

t1−2suγ+(z)dz
)2/q

≤ C r−(N−2s)
[
r−2

∫
BN+1(x,2r)

t1−2sw2dz + r−2d2−γ
∫

BN+1(x,r)
t1−2su+

γdz + d
∫

Bn(x,r)
f vdy

]
.

(7.14)

Using Hölder’s inequality, (7.10) gives∫
BN+1(x,2r)

t1−2sw2dz ≤
(∫

BN+1(x,2r)
t1−2swqdz

)2/q

(ms(B(x, 2r) ∩ {u > 0}))1−2/q

≤ d−γ
∫

BN+1(x,2r)∩{u>0}
t1−2suγdx.

Inserting this into (7.14) we have the desired inequality. The proof is completed. �

Proof of Lemma 7.5.2. We denote rk = 2−k for k ∈ N. Take δ > 0 such that δ ≤ 2ms |BN+1(x,rk)|
ms |BN+1(x,rk+1)|

whose value is independent of k ∈ N. We set

ak+1 = ak +

(
1
δ

inf
BN+1(x,rk+1)

t1−2s(u − ak)
γ
+dxdt

)1/γ

.

Let dk = ak+1 − ak. Then we have

1
dγk

∫
BN+1(x,rk+1)

t1−2s(u − ak)
γ
+dxdt = δ · ms|BN+1(x, rk+1)|

≥ 2ms|BN+1(x, rk)|

≥ 2ms

∣∣∣{(x, t) ∈ BN+1(x, rk) : u(x, t) > ak}
∣∣∣ .

By Lemma (7.A.1) we get(
d−γk r−(N+2−2s)

k

∫
BN+1(x,rk)

t1−2s(u − ak)
γ
+(x, t)dxdt

)2/q

≤ Cd−γk r−(n+2−2s)
k

∫
BN+1(x,2rk)

t1−2s(u − ak)
γ
+(x, t)dxdt + Cd−γk r−(N−2s)

k

∫
BN+1(x,rk)

f (y)dy

≤ Cd−γk r−(n+2−2s)
k

∫
BN+1(x,2rk)

t1−2s(u − ak−1)γ(x, t)dxdt + Cd−γk r−(N−2s)
k

∫
BN+1(x,rk)

f (y)dy

= Cδ
[
(ak − ak−1)
ak+1 − ak

]γ
+ Cd−1

k r−(N−2s)
k

∫
BN+1(x,rk)

f (y)dy.
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Using the definition of dk we obtain

δ2/q ≤ Cδ
[
(ak − ak−1)
ak+1 − ak

]γ
+ Cd−1

k r−(N−2s)
k

∫
BN+1(x,rk)

f (y)dy.

Note that 2/q =
2−γ
γ
< 1. We choose δ > 0 sufficiently small depending on C. Then it follows

that
ak+1 − ak ≤

1
2

(ak − ak−1) + Cr−(N−2s)
k

∫
BN+1(x,rk)

f (y)dy.

Summing up this, we have

ak ≤ a1 + C
k∑

j=1

r−(n−2s)
j

∫
BN+1(x,r j)

f (y)dy

≤ a1 + C
∫ 1

rk

(
1

wN−2s

∫
BN (x,w)

f (y)dy
)

dw
w
.

For given r > 0 we take k ∈ N such that rk+1 ≤ r < rk. Then it follows from the above inequality
that (

inf
BN+1(x,r)

t1−2suγ dxdt
)1/γ

≤ inf
BN+1(x,1)

t1−2suγ dxdt + C
∫ 1

r

(
1

wN−2s

∫
BN (x,w)

f (y)dy
)

dw
w
.

It completes the proof. �

7.B A variant of Moser’s iteration method

Lemma 7.B.1. Let γ > 1 and consider a function U ∈ D1(t1−2s,RN+1
+ ) satisfying{

div(t1−2s∇U) = 0 in BN+1(0, 5),
∂s
νU = a(x)U on BN(0, 5).

(7.15)

Then, for each q > 1, there exists a number ε = ε(q) > such that, if ‖a‖
L

N
2s An

0( 1
2 ,4)
≤ ε, then the

following holds
‖U‖Lq(AN+1

0 (1,2)) + ‖U(·, 0)‖Lq(An
0(1,2)) ≤ C‖U‖Lγ(AN+1

0 ( 1
2 ,4)),

where C is a constant depending on q and γ.

Proof. We first take a smooth function φ ∈ C∞c (BN+1(0, 5)). Multiplying the function |U |β−1Uφ to
(7.15) we get

0 =

∫
RN+1

+

div(t1−2s∇U)|U |β−1Uφ2dxdt

= −

∫
RN+1

+

t1−2s∇U∇(|U |β−1Uφ2)dxdt +

∫
RN

(∂s
νU)|U |β−1Uφ2(x, 0)dx.

196



CHAPTER 7. INFINITELY MANY SOLUTIONS FOR SEMILINEAR NONLOCAL
ELLIPTIC EQUATIONS UNDER NONCOMPACT SETTINGS [ChS]

A simple computation gives∫
Rn

a(x)|U |β+1φ2(x, 0)dx

=
4β

(1 + β)2

∫
RN+1

+

t1−2s|∇(U
β+1

2 )|2φ2dxdt +

∫
RN+1

t1−2s(∇U)|U |β(2φ∇φ) dxdt.
(7.16)

Using Young’s inequality we see

|(∇U)|U |β−1Uφ∇φ| =
2

β + 1
|(∇|U |

β+1
2 φ)(|U |

β+1
2 ∇φ)| ≤

1
β + 1

(
|(∇|U |

β+1
2 )φ|2 + ||U |

β+1
2 ∇φ|2

)
. (7.17)

We combine this inequality with (7.16) to deduce that∫
RN

a(x)|U |β+1φ2(x, 0)dx +
1

β + 1

∫
RN+1

+

t1−2s|U |β+1|∇φ|2dxdt

≥
3β

(β + 1)2

∫
RN+1

+

t1−2s|∇(U
β+1

2 )|2φ2 dxdt.
(7.18)

Note that (∇|U |
β+1

2 )φ = ∇(|U |
β+1
2s φ) − |U |

β+1
2 ∇φ. Then, using an elementary inequality (a − b)2 ≥

a2

2 − 7b2 we deduce from (7.18) that∫
Rn

a(x)|U |β+1φ2(x, 0) dx+
30β

(1 + β)2

∫
RN+1

+

t1−2s(|U |
β+1

2 ∇φ)2 dxdt

≥
2β

(1 + β)2

∫
RN+1

+

t1−2s(∇(|U |
β+1

2 φ))2 dxdt.
(7.19)

The left-hand side can be estimated using Hölder’s inequality and the Sobolev-trace inequality
as follows. ∫

Rn
a(x)Uβ+1φ2(x, 0)dx ≤ ‖a‖ N

s
‖U

β+1
2 φ(·, 0)‖22N

N−2s

≤ Cε
∫
RN+1

+

t1−2s|∇(U
β+1

2 φ)|2dxdt.

We assume that ε < 1
Cβ . Then it follows from the above inequality and (7.19) that

30β
(1 + β)2

∫
RN+1

+

t1−2s|U
β+1

2 ∇φ|2dxdt ≥
β

(1 + β)2

∫
RN+1

+

t1−2s|∇(U
β+1

2 φ)|2dxdt.

Using the weighted Sobolev inequality and the Sobolev trace inequality we deduce that

30β
(1 + β)2

∫
RN+1

+

t1−2s|U
β+1

2 ∇φ|2dxdt

≥
Cβ

(1 + β)2

(∫
suppφ

t1−2s|U |(β+1)γdxdt
) 2
γ

+

(∫
suppφ
|U |

2n
n−2s ·

β+1
2 (x, 0)dx

) n−2s
n

 , (7.20)
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where γ =
2(n−2s+2)

n−2s . We use this estimate iteratively. Applying (7.20) with a suitable choice of β
and φ at each step, and Hölder’s inequality we can deduce that

‖U‖Lq(AN+1
0 (1,2)) + ‖U(·, 0)‖Lq(AN

0 (1,2)) ≤ C ‖U‖Lγ(AN+1
0 ( 1

2 ,4)) . (7.21)

The proof is complete. �

7.C Local Pohozaev identity

For D ⊂ RN+1
+ we define the following sets ∂+D = {(x, t) ∈ RN+1

+ : (x, t) ∈ ∂D and t > 0}, and
∂bD = ∂D ∩ Rn × {0}. We state the following.

Lemma 7.C.1. Let E ⊂ RN+1
+ and we assume that a function U is a solution of{

div(t1−2s∇U) = 0 in E,
∂s
νU = f (U) on ∂bE.

(7.22)

Then, for D ⊂ E we have the following identity.

Cs

{
N

∫
∂bD

F(U)dx −
(

N − 2s
2

) ∫
∂bD

U f (U)dx
}

=

∫
∂+D

t1−2s

〈
(z − x j,∇U)∇U − (z − x j)

|∇U |2

2
, ν

〉
dS

+

(
N − 2s

2

) ∫
∂+D

t1−2sU
∂U
∂ν

dS +

∫
∂∂bD

(x, ν)F(U)dS x,

(7.23)

where F(s) =
∫ s

0
f (t)dt.

Proof. We have the identity

div
{
t1−2s(z,∇U)∇U − t1−2s |∇U |2

2
z
}

+

(N − 2s
2

)
t1−2s|∇U |2 = 0. (7.24)

Integrating this over the domain D, we get∫
∂+D

t1−2s

〈
(z,∇U)∇U − z

|∇U |2

2
, ν

〉
dS + Cs

∫
∂bD

(x,∇xU)∂s
νUdx

= −

(
N − 2s

2

) ∫
D

t1−2s|∇U |2dxdt. (7.25)

By using ∂s
νU = f (U) and performing integration by parts, we deduce that∫

∂bD
(x,∇xU)∂s

νUdx =

∫
∂bD

(x,∇xU) f (U)dx

=

∫
∂bD

x · ∇xF(U)dx

= −N
∫
∂bD

F(U)dx +

∫
∂∂bD

(x, ν)F(U)dS x
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and ∫
Dr

t1−2s|∇U |2dxdt = Cs

∫
∂bD

U f (U)dx +

∫
∂+D

t1−2sU
∂U
∂ν

dS .

Then (7.25) gives the desired identity. �
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Chapter 8

Qualitative properties of multi-bubble
solutions for nonlinear elliptic equations
involving critical exponents [CKL2]

8.1 Introduction

In this paper, we perform a qualitative analysis on the problem
−∆u = up−ε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1ε)

where Ω is a bounded domain contained in Rn (n ≥ 3), p = (n + 2)/(n − 2), and ε > 0 is a small
parameter. When ε > 0, the compactness of the Sobolev embedding H1

0(Ω) ↪→ Lp+1−ε(Ω) allows
one to find its extremal function, hence a positive least energy solution ūε for (1.1ε). However
this does not hold anymore if ε = 0 and in fact existence of solutions strongly depends on
topological or geometric properties of the domain in this case (see for instance [D]). If ε = 0 and
Ω is star-shaped, then the supremum of ūε should diverge to ∞ as ε → 0 since an application of
the Pohožaev identity [Ph] gives nonexistence of a nontrivial solution for (1.1ε). In the work of
Brezis and Peletier [BP], they deduced the precise asymptotic behavior of ūε when the domain
Ω is the unit ball, and this result was extended to general domains by Han [H] and Rey [R], in
which they independently proved that ūε blows-up at the unique point x0 that is a critical point
of the Robin function of the domain. Later, Grossi and Pacella [GP] investigated the related
eigenvalue problem, obtaining estimates for its first (n + 2)-eigenvalues, asymptotic behavior of
the corresponding eigenvectors and the Morse index of ūε . Since our result is closely related to
their conclusion, we describe it in a detailed fashion.

Let us denote by G = G(x, y) (x, y ∈ Ω) the Green’s function of −∆ with Dirichlet boundary

200



CHAPTER 8. QUALITATIVE PROPERTIES OF MULTI-BUBBLE SOLUTIONS FOR
NONLINEAR ELLIPTIC EQUATIONS INVOLVING CRITICAL EXPONENTS [CKL2]

condition satisfying
−∆G(·, y) = δy in Ω and G(·, y) = 0 on ∂Ω,

by H(x, y) its regular part, i.e.,

H(x, y) =
γn

|x − y|n−2 −G(x, y) where γn =
1

(n − 2)
∣∣∣S n−1

∣∣∣ , (8.2)

and by τ the Robin function τ(x) = H(x, x). We also define the bubble Uλ,ξ with the concentration
rate λ > 0 and the center ξ = (ξ1, · · · , ξn) ∈ Rn,

Uλ,ξ(x) = βn

(
λ

λ2 + |x − ξ|2

) n−2
2

for x ∈ Rn where βn = (n(n − 2))
n−2

4 (8.3)

which are solutions of the equation

− ∆U = U p in Rn, u > 0 in Rn and
∫
Rn
|∇U |2 < ∞. (8.4)

Theorem A (Grossi and Pacella [GP]). Given n ≥ 3, we consider the eigenvalue problem at a
positive least energy solution uε = ūε to (1.1ε), that is,{

−∆v = µ(p − ε)up−1−ε
ε v in Ω,

v = 0 on ∂Ω.
(8.5)

Let µ`ε be the `-th eigenvalue of (8.5) provided that the sequence of eigenvalues is arranged
in nondecreasing order permitting duplication, and v`ε the corresponding L∞(Ω)-normalized
eigenfunction (namely, ‖v`ε‖L∞(Ω) = 1). Given the point xε ∈ Ω such that uε(xε) = ‖uε‖L∞(Ω)

(xε → x0 as ε → 0 by [H] and [R]), we also set

v̌`ε(x) = v`ε

xε +
x

‖uε‖
p−1−ε

2
L∞(Ω)

 for arbitrary x ∈ Ω̌ε = ‖uε‖
p−1−ε

2
L∞(Ω)(Ω − xε).

1. If 2 ≤ ` ≤ n+1, then there exist nonzero vectors (d`,1, · · · , d`,n) ∈ Rn and a constant C̃1 > 0
such that

v̌`ε →
n∑

k=1

d`,k
∂U1,0

∂ξk
in C1

loc(R
n), ε−

n−1
n−2 v̌`ε → C̃1

n∑
k=1

d`,k
∂G
∂yk

(·, x0) in C1 (Ω \ {x0}) .

Moreover, if ρ2 ≤ ρ3 ≤ · · · ≤ ρn+1 are the eigenvalues of the Hessian D2τ(x0) of the Robin
function at x0, then

µ`ε = 1 − c̃0ρ`ε
n

n−2 + o
(
ε

n
n−2

)
for some suitable c̃0 > 0 as ε → 0.
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2. Assume ` = n + 2. Then

v̌(n+2)ε → dn+2
∂U1,0

∂λ
in C1

loc(R
n) and µ(n+2)ε = 1 + c̃1ε + o(ε) as ε → 0

for some c̃1 > 0.

Consequently, if x0 is a nondegenerate critical point of the Robin function τ, the Morse index of
ūε is equal to 1 + (the Morse index of x0 as a critical point of τ).

As the next step to understand equation (1.1ε), one can imagine more general type of solutions
so called multi-bubbles. Let {εk}

∞
k=1 be a sequence of small positive numbers such that εk → 0 as

k → ∞ and {uεk}
∞
k=1 a bounded sequence in H1

0(Ω) of solutions for (1.1ε) with ε = εk, which blow-
up at m ∈ N points {x10, · · · , xm0} ⊂ Ω

m
. Then by the work of Struwe [Su] on the representation of

Palais-Smale sequences to (1.1ε) for any n ≥ 3, which employed the concentration-compactness
principle [Ls], it can be written as

uεk =

m∑
i=1

αikPUλikε
α0
k ,xik

+ Rk (8.6)

after extracting a subsequence if necessary. Here α0 = 1/(n − 2), {αik}k∈N and {λik}k∈N are se-
quences of positive numbers, and {xik}k∈N is a sequence of elements in Ω for each fixed i =

1, · · · ,m such that αik → 1, λik → λi0 > 0 and xik → xi0 ∈ Ω as k → ∞. Also, the function PUλ,ξ

is a projected bubble in H1
0(Ω), namely, a solution of

∆PUλ,ξ = ∆Uλ,ξ in Ω, PUλ,ξ = 0 on ∂Ω (8.7)

and Rk is a remainder term whose H1
0(Ω)-norm converges to 0 as k → ∞. According to Bahri,

Li and Rey [BLR], the blow-up rates and the concentration points (λ10, · · · , λm0, x10, · · · , xm0) ∈
(0,∞)m ×Ωm can be characterized as a critical point of the function

Υm(λ1, · · · , λm, x1, · · · xm) = c1

( m∑
i=1

τ(xi)λn−2
i −

m∑
i, j=1
i, j

G(xi, x j)(λiλ j)
n−2

2

)
− c2 log(λ1 · · · λm) (8.8)

in general, provided that n ≥ 4. Here

c1 =

(∫
Rn

U p
1,0

)2

and c2 =
(n − 2)2

4n

∫
Rn

U p+1
1,0 . (8.9)

Conversely, by applying the Lyapunov-Schmidt reduction method, Musso and Pistoia [MP]
proved that if n ≥ 3 and (λ10, · · · , λm0, x10, · · · , xm0) ∈ (0,∞)m × Ωm is a C1-stable critical point
of H in the sense of Y. Li [Li1], then there is a multi-bubbling solution of (1.1ε) having the form
(9.33) which blows-up at each point xi0 with the rate of the concentration λi0 (i = 1, · · · ,m). This
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extends the existence result also achieved in paper [BLR], where the authors used the gradient
flow of critical points at infinity to get solutions.

Our interest lies on the derivation of certain asymptotic behaviors of multiple bubbling so-
lutions {uε}ε to (1.1ε) satisfying (9.33) when ε converges to 0. (Precisely speaking, sequences of
parameters εk, αik, λik and xik in (9.33) should be substituted by ε, αiε , λiε and xiε , respectively,
such that αiε → 1, λiε → λi0 and xiε → xi0 as ε → 0. Hereafter, such a substitution is always
assumed.) In particular, we shall examine the behavior of eigenpairs (µ`ε , v`ε) to the linearized
problem (8.5) at uε for 1 ≤ ` ≤ (n + 2)m as Grossi and Pacella did for single bubbles.

Firstly, we concentrate on behavior of the first m-eigenvalues and eigenvectors. Given i, ` ∈
N, 1 ≤ i ≤ m, let ṽ`iε be a dilation of v`ε defined as

ṽ`iε(x) = v`ε (xiε + λiεε
α0 x) for each x ∈ Ωiε := (Ω − xiε) /(λiεε

α0) (8.10)

where α0 = 1/(n − 2) again.

Theorem 8.1.1. Let ε > 0 be a small parameter, {uε}ε a family of solutions for (1.1ε) of the form
(9.33), µ`ε the `-th eigenvalue of problem (8.5) for some 1 ≤ ` ≤ m. Denote also as ρ1

` the `-th
eigenvalue of the symmetric matrixA1 =

(
A1

i j

)
1≤i, j≤m

given by

A1
i j =

−
(
λi0λ j0

) n−2
2 G

(
xi0, x j0

)
if i , j,

−C0 + λn−2
i0 τ(xi0) if i = j,

where C0 = c2/(c1(n − 2)) > 0. (8.11)

Then we have

µ`ε =
n − 2
n + 2

+ b1ε + o(ε) where b1 =

(
n − 2
n + 2

)2

+
(n − 2)3c1

4n(n + 2)c2
ρ1
` (8.12)

as ε → 0. Moreover, there exists a nonzero column vector

c` =

(
λ

n−2
2

10 c`1, · · · , λ
n−2

2
m0 c`m

)T
∈ Rm

such that for each i ∈ {1, · · · ,m} the function ṽ`iε converges to c`iU1,0 weakly in H1(Rn). This c`
becomes an eigenvector corresponding to the eigenvalue ρ1

` of A1, and it holds that cT
`1
· cT

`2
= 0

for 1 ≤ `1 , `2 ≤ m.

Next, we study the next mn-eigenvalues and corresponding eigenvectors. The first theorem
for these eigenpairs concerns with asymptotic behaviors of the eigenvectors. Let us define a
symmetric m × m matrixM1 =

(
m1

i j

)
1≤i, j≤m

by

m1
i j =

−G
(
xi0, x j0

)
if i , j,

C0λ
−(n−2)
i0 + τ (xi0) if i = j.

(8.13)

By Lemma 8.2.1 below, it can be checked thatM1 is positive definite and in particular invertible.
We denote its inverse by

(
mi j

1

)
1≤i, j≤m

.
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Theorem 8.1.2. Assume that m + 1 ≤ ` ≤ (n + 1)m. Then, for each i ∈ {1, · · · ,m}, there exists a
vector (d`,i,1, · · · , d`,i,n) ∈ Rn, which is nonzero for some i, such that

ṽ`iε → −
n∑

k=1

d`,i,k
∂U1,0

∂xk
in C1

loc(R
n) (8.14)

and

ε−
n−1
n−2 v`ε(x)→ C1

 m∑
i=1

m∑
j=1

n∑
k=1

mi j
1

−1
2
λn−1

j0 d`, j,k
∂τ

∂xk
(x j0) +

∑
l, j

λn−1
l0 d`,l,k

∂G
∂yk

(
x j0, xl0

)G(x, xi0)

+

m∑
i=1

n∑
k=1

λn−1
i0 d`,i,k

∂G
∂yk

(x, xi0)


(8.15)

in C1 (Ω \ {x10, · · · , xm0}) as ε → 0. Here C1 = β
p
n

(
n+2

n

) ∫
Rn

|x|2

(1+|x|2)(n+4)/2 dx > 0.

If d` ∈ Rmn denotes a nonzero vector defined by

d` =

(
λ

n−2
2

10 d`,1,1, · · · , λ
n−2

2
10 d`,1,n, λ

n−2
2

20 d`,2,1, · · · , λ
n−2

2
(m−1)0d`,m−1,n, λ

n−2
2

m0 d`,m,1, · · · , λ
n−2

2
m0 d`,m,n

)T
, (8.16)

then we can give a further description on it. Our next theorem is devoted to this fact as well as
a quite precise estimate of the eigenvalues. Set an m × mn matrix P = (Pit)1≤i≤m,1≤t≤mn and a
symmetric mn × mn matrix Q = (Qst)1≤s,t≤mn as follows.

Pi,( j−1)n+k =


λ

n
2
j0
∂G
∂yk

(xi0, x j0) = λ
n
2
j0
∂G
∂xk

(x j0, xi0) if i , j,

−λ
n
2
i0

1
2
∂τ

∂xk
(xi0) if i = j,

(8.17)

for i, j ∈ {1, · · · ,m} and k ∈ {1, · · · , n}, and

Q(i−1)n+k,( j−1)n+q =


(
λi0λ j0

) n
2 ∂2G
∂xk∂yq

(
xi0, x j0

)
if i , j,

−
λn

i0

2
∂2τ

∂xk∂xq
(xi0) + λ

n+2
2

i0

∑
l,i
λ

n−2
2

l0
∂2G
∂xk∂xq

(xi0, xl0) if i = j,
(8.18)

for i, j ∈ {1, · · · ,m} and k, q ∈ {1, · · · , n}.

Theorem 8.1.3. LetA2 be an mn × mn symmetric matrix

A2 = PTM−1
1 P + Q.

Then as ε → 0 we have
µ`ε = 1 − c0ρ

2
`ε

n
n−2 + o

(
ε

n
n−2

)
(8.19)

for some c0 > 0 (whose value is computed in (8.1)) where ρ2
` is the (` − m)-th eigenvalue of the

matrix A2. Furthermore the vector d` ∈ Rmn is an eigenvector corresponding to the eigenvalue
ρ2
` ofA2, which satisfies dT

`1
· dT

`2
= 0 for m + 1 ≤ `1 , `2 ≤ (n + 1)m.
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Remark 8.1.4. If the number of blow-up points is m = 1, then P = 0 and so the matrix A2 is
reduced to 1

2λ
n
10D2τ(x10) which is consistent with Theorem A. See also Remark 8.5.6.

Lastly, the `-th eigenpair for (n+1)m+1 ≤ ` ≤ (n+2)m can be examined. LetA3 =
(
A3

i j

)
1≤i, j≤m

be a symmetric matrix whose components are given by

A3
i j =

−
(
λi0λ j0

) n−2
2 G

(
xi0, x j0

)
if i , j,

C0 + λn−2
i0 τ(xi0) if i = j.

(8.20)

Theorem 8.1.5. For each (n + 1)m + 1 ≤ ` ≤ (n + 2)m, let ρ3
` be the (` − m(n + 1))-th eigenvalue

ofA3
i j, which will be shown be positive. Then there exist a nonzero vector

d̂` =

(
λ

n−2
2

10 d`,1, · · · , λ
n−2

2
m0 d`,m

)T
∈ Rm (8.21)

and a positive number c1 such that

ṽ`iε ⇀ d`,i

(
∂U1,0

∂λ

)
weakly in H1(Rn)

and
µ`ε = 1 + c1ρ

3
`ε + o(ε) as ε → 0.

Furthermore, d̂` is a corresponding eigenvector to ρ3
` , and it holds that d̂T

`1
· d̂T

`2
= 0 for (n+1)(m+

1) ≤ `1 , `2 ≤ (n + 2)m.

As a result, we obtain the following corollary.

Corollary 8.1.6. Let ind(uε) and ind0(uε) be the Morse index and the augmented Morse index
of the solution uε to (1.1ε), respectively. Also for the matrix A2 in Theorem 8.1.3, ind(−A2) and
ind0(−A2) are similarly understood. Then

m ≤ m + ind(−A2) ≤ ind(uε) ≤ ind0(uε) ≤ m + ind0(−A2) ≤ (n + 1)m

for sufficiently small ε > 0. Therefore ifA2 is nondegenerate, then so is uε and

ind(uε) = m + ind(−A2) ∈ [m, (n + 1)m].

Remark 8.1.7. By the discussion before, our results hold for solutions found by Musso and Pis-
toia in [MP]. Moreover, if εk → 0 as k → ∞, any H1

0(Ω)-bounded sequence {uεk}
∞
k=1 of solutions

for (1.1ε) with ε = εk has a subsequence to which our work can be applied.

This extends the work of Bahri-Li-Rey [BLR] where the validity of the above corollary was
obtained for n ≥ 4. Besides Theorems 8.1.1, 8.1.2, 8.1.3 and 8.1.5 provide sharp asymptotic
behaviors of the eigenpairs (µ`ε , v`ε) as ε → 0 which were not dealt with in [BLR]. In this article
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we compute each component of the matrix A2 explicitly, which turns out to be complicated.
Instead doing in this way, the authors of [BLR] gave an alternative neat description.

Our proof is based on the work of Grossi and Pacella [GP] which studied qualitative behav-
iors of single blow-up solutions of (1.1ε), but requires a further inspection on the interaction
between different bubbles here. In particular we have to control the decay of solutions uε and
eigenfunctions v`ε near each blow-up point in a careful way. In order to get the sharp decay of uε ,
we will utilize the method of moving spheres which has been used on equations from conformal
geometry and related areas. (See for example [ChL, ChC, LiZ, Pa].) Furthermore we shall make
use of the Moser-Harnack type estimate and an iterative comparison argument to find an almost
sharp decay of v`ε .

The structure of this paper can be described in the following way. In Section 8.2, we gather
all preliminary results necessary to deduce our main theorems. This section in particular in-
cludes estimates of the decay of the solutions uε or the eigenfunctions v`ε outside of the con-
centration points {x10, · · · , xm0}. In Section 8.3, we prove Theorem 8.1.1 which deals with the
first m-eigenvalues and eigenfunctions of problem (8.5). A priori bounds for the first (n + 1)m-
eigenvalues and the limit behavior (8.14) of expanded eigenfunction ṽ`iε are found in Section
8.4. Based on these results, we compute an asymptotic expansion (8.15) of the `-th eigenvectors
(` = m + 1, · · · , (n + 1)m) and that of its corresponding eigenvalues (8.19) in Sections 8.5 and 8.6
respectively. The description of the vector d` is also obtained as a byproduct during the deriva-
tion of (8.19). Section 8.7 is devoted to study the next m-eigenpairs, i.e., the `-th eigenvalues and
eigenfunctions (` = (n+1)m+1, · · · , (n+2)m). Finally, we present the proof of Proposition 8.2.3
in Appendix 8.A, which is conducted with the moving sphere method.

Notations.

- Big-O notation and little-o notation are used to describe the limit behavior of a certain quantity
as ε → 0.

- Bn(x, r) is the n-dimensional open ball whose center is located at x and radius is r. Also, S n−1

is the (n − 1)-dimensional unit sphere and
∣∣∣S n−1

∣∣∣ is its surface area.

- C > 0 is a generic constant which may vary from line to line, while numbers with subscripts
such as c0 or C1 have positive fixed values.

- For any number c ∈ R, c = c+ − c− where c+, c− ≥ 0 are the positive or negative part of c,
respectively.

- For any vector v, its transpose is denoted as vT .

- Throughout the paper, the symbol α0 always denotes 1/(n − 2).
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8.2 Preliminaries

In this section, we collect some results necessary for our analysis. For the rest of the paper,
we write x1, · · · , xm to denote the concentration points, dropping out the subscript 0. The same
omission also applies to the concentrate rates λ1, · · · , λm.

Lemma 8.2.1. If we set a matrixM2 =
(
m2

i j

)
1≤i, j≤m

by

m2
i j =

−G(xi, x j) if i , j,

τ(xi) if i = j,
(8.1)

then it is a non-negative definite matrix.

Proof. See Appendix A of Bahri, Li and Rey [BLR]. �

Fix any i ∈ {1, · · · ,m} and decompose uε in the following way.

uε = Uλiεε
α0 ,xiε +

(
PUλiεε

α0 ,xiε − Uλiεε
α0 ,xiε

)
+ (αiε − 1)PUλiεε

α0 ,xiε +
∑
j,i

α jεPUλiεε
α0 ,xiε + Rε . (8.2)

Then we rescale it to define

ũiε(x) = (λiεε
α0)σεuε (xiε + λiεε

α0 x) where σε =
2

p − 1 − ε
=

n − 2
2 − (n − 2)ε/2

. (8.3)

It immediately follows that {ũiε}ε is a family of positive C2-functions defined in Bn (0, ε−α0r0) for
some r0 > 0 small enough (determined in the next lemma), which are solutions of −∆u = up−ε .
Moreover it has the following property.

Lemma 8.2.2. The sequence {ũiε}ε satisfies ‖ũiε‖L∞(Bn(0,ε−α0 r0)) ≤ c for some small r0 > 0 and
converges to U1,0 weakly in H1(Rn) as ε → 0.

Proof. For fixed i, let us denote f̃ (x) = (λiεε
α0)σε f (xiε + λiεε

α0 x) for x ∈ Ωiε = (Ω − xiε) /(λiεε
α0).

Set also U j = Uλ jεε
α0 ,x jε for all j ∈ {1, · · · ,m}. Then ‖ f̃ ‖H1(Ωiε ) = (1 + o(1))‖ f ‖H1(Ω) and

ũiε − U1,0 =
∑
j,i

α jε P̃U j +
(
P̃U i − Ũi

)
+ (αiε − 1)P̃U i + R̃ε in Ωiε (8.4)

by (8.2). Observe with the maximum principle that 0 ≤ PUi ≤ Ui in Ω and

PUλ,ξ(x) = Uλ,ξ(x) −C2λ
n−2

2 H(x, ξ) + o
(
λ

n−2
2
)

in C0
(
Ω
)
, C2 :=

∫
Rn

U p
1,0 > 0

holds for any small λ > 0 and ξ ∈ Ω away from the boundary. Thus we get from (8.4) and (8.7)
that

‖PUi − Ui‖
2
H1(Ω) =

∫
Ω

|∇PUi|
2 − 2

∫
Ω

∇PUi · ∇Ui +

∫
Ω

|∇Ui|
2 = −

∫
Ω

U p
i PUi +

∫
Ω

|∇Ui|
2

= −

∫
Ω

U p
i (PUi − Ui) −

∫
Ω

U p+1
i +

∫
Ω

|∇Ui|
2 = o(1)
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and
‖PUi‖

2
H1(Ω) =

∫
Ω

U p
i PUi ≤

∫
Rn

U p+1
1,0

so that the last three terms in the right-hand side of (8.4) go to 0 strongly in H1
0(Ωiε) ⊂ H1(Rn).

On the other hand, we have∣∣∣∣∣∣
∫

supp(ϕ)
∇P̃U j · ∇ϕ

∣∣∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)

∫
supp(ϕ)

Ũ p−ε
j → 0

as ε → 0 for any test function ϕ ∈ C∞c (Rn). Therefore ũiε ⇀ U1,0 weakly in H1(Rn).
We now attempt to attain a priori L∞-estimate for {ũiε}ε . Firstly we fix a sufficiently small

r0. In fact, the choice r0 = 1
2 min

{
|xi − x j| : i, j = 1, · · · ,m and i , j

}
> 0 would suffice. Then

for any number η > 0, one can find r > 0 small such that
∥∥∥ũp−1−ε

iε

∥∥∥
L

n
2 (Bn(x,r))

≤ η is valid for any
|x| ≤ ε−α0r0 provided ε > 0 sufficiently small. Hence the Moser iteration technique applies as in
[H, Lemma 6], deducing

‖ũiε‖L(p+1) n
n−2 (Bn(x,r/2)) ≤

C
r
‖ũiε‖Lp+1(Bn(x,r)) ≤

C
r
‖ũiε‖H1(Ωiε )

where the rightmost value is uniformly bounded in ε > 0. Also it is notable that C > 0 is
independent of x, r or ũiε . As a result, we observe from the elliptic regularity [H, Lemma 7] that

|u(x)| ≤ ‖u‖L∞(Bn(x,r/4)) ≤ C‖u‖Lp+1(Bn(x,r/2))

where C > 0 depends only on r and the supreme of
{
‖ũiε‖L(p+1) n

n−2 (Bn(x,r/2))

}
ε
. This completes the

proof. �

This lemma will be used in a crucial way to deduce a local uniform estimate near each blow-up
point x1, · · · , xm of uε .

Proposition 8.2.3. There exist numbers C > 0 and small δ0 ∈ (0, r0) independent of ε > 0 such
that

ũiε(x) ≤ CU1,0(x) for all x ∈ Bn (
0, ε−α0δ0

)
(8.5)

for all sufficiently small ε > 0.

A closely related result to Proposition 8.2.3 appeared in [LZh] as an intermediate step to deduce
the compactness property of the Yamabe equation, the problem proposed by Schoen who also
gave the positive answer for conformally flat manifolds (see [Sc]). Even though the proof of
this proposition, based on the moving sphere method, can be achieved by adapting the argument
presented in [LZh] with a minor modification, we provide it in Appendix 8.A to promote clear
understanding of the reader.

From the next lemma to Lemma 8.2.6, we study the behavior of solutions uε of (1.1ε) outside
the blow-up points {x1, · · · , xm}. For the sake of notational convenience, we set

Ar = Ω \ ∪m
i=1Bn(xi, r) for any r > 0. (8.6)
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Lemma 8.2.4. Suppose that {uε}ε is a family of solutions for (1.1ε) satisfying the asymptotic
behavior (9.33). Then for any r > 0, we have uε(x) = o(1) uniformly for x ∈ Ar as ε → 0.

Proof. Let aε = up−1−ε
ε so that −∆uε = aεuε in Ω. Then we see from (9.33) that

‖aε‖L n
2 (Ar/4) ≤ C

 m∑
i=1

∥∥∥PU p−1−ε
λiεε

α0 ,xiε

∥∥∥
L

n
2 (Ar/4)

+ ‖Rε‖
p−1−ε

Lp+1−ε n
2 (Ar/4)


≤ C

 m∑
i=1

∥∥∥U p−1−ε
λiεε

α0 ,xiε

∥∥∥
L

n
2 (Rn\Bn(xi,r/4))

+ ‖Rε‖
p−1−ε
H1(Ω)

 = O
(
ε2α0

)
+ o(1) = o(1).

Therefore we can proceed the Moser iteration argument as in the proof of [H, Lemma 6] to get
‖aε‖Lq(Ar/2) = o(1) for some q > n/2, and then the standard elliptic regularity result (see [H,
Lemma 7]) implies ‖uε‖L∞(Ar) = o(1). �

We can improve this result by combining the kernel expression of uε and Proposition 8.2.3.

Lemma 8.2.5. Fix r > 0 small. Then there holds

uε(x) = O
(√
ε
)

(8.7)

uniformly for x ∈ Ar.

Proof. Without any loss of generality, we may assume that r ∈ (0, δ0) where δ0 > 0 is the number
picked up in Proposition 8.2.3 so that (8.5) holds. Thus if we fix i ∈ {1, · · · ,m}, then we have the
bound

uε(x) = (λiεε
α0)−σε ũiε

(
(λiεε

α0)−1 (x − xiε)
)
≤ CUλiεε

α0 ,xiε (x) ≤ Cε(
n−2

2 )α0

valid for each x such that r/2 ≤ |x − xi| ≤ r. It says that uε(x) ≤ C
√
ε for all x ∈ Ar/2 \ Ar.

By Green’s representation formula, one may write

uε(x) =

∫
Ar/2

G(x, y)up−ε
ε (y)dy +

m∑
i=1

∫
Bn(xi,r/2)

G(x, y)up−ε
ε (y)dy. (8.8)

Let us estimate each of the term in the right-hand side. If we set bε = max{uε(x) : x ∈ Ar}, then
we find∫

Ar/2

G(x, y)up−ε
ε (y)dy ≤ C

∫
Ar/2

G(x, y)
(
bp−ε
ε +

√
ε p−ε

)
dy ≤ C

(
bp−ε
ε + C

√
ε p−ε

)
(8.9)

for any x ∈ Ar. Besides, (8.5) gives us that∫
Bn(xi,r/2)

G(x, y)up−ε
ε (y)dy ≤ C(r)

∫
Bn(xi,r/2)

up−ε
ε (y)dy ≤ C ·C(r)

∫
Bn(xi,r/2)

U p−ε
λiεε

α0 ,xiε
(y)dy

≤ C ·C(r)ε(
n−2

2 )α0 = C ·C(r)
√
ε

(8.10)
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for each i and x ∈ Ar, where C(r) = max{G(x, y) : x, y ∈ Ω, |x − y| ≥ r/2}. Hence, by combining
(8.9) and (8.10), we get

bε ≤ C
(
bp−ε
ε +

√
ε
)
.

Since it is guaranteed by Lemma 8.2.4 that bε = o(1), this shows that bε ≤ C
√
ε. The lemma is

proved. �

The following result will be used to obtain the asymptotic formulas of the eigenvalues.

Lemma 8.2.6. Suppose that uε satisfies equation (1.1ε) and the asymptotic behavior (9.33). Then
we have

ε−
1
2 · uε(x) = C2

m∑
i=1

λ
n−2

2
i G(x, xi) + o(1) (8.11)

in C2(Ω \ {x1, · · · , xm}). Here C2 =
∫
Rn U p

1,0 > 0.

Proof. Take any r > 0 small for which Lemma 8.2.5 holds and decompose uε(x) as in (8.8) for
x ∈ Ar. Then we have∣∣∣∣∣∣ε− 1

2

∫
Ar/2

G(x, y)up−ε
ε (y)dy

∣∣∣∣∣∣ ≤ Cε
p−1−ε

2

(∫
Ω

G(x, y)dy
)

= o(1). (8.12)

Also, if we write∫
Bn(xi,r/2)

G(x, y)up−ε
ε (y)dy = G(x, xi)

∫
Bn(xi,r/2)

up−ε
ε (y)dy +

∫
Bn(xi,r/2)

(G(x, y) −G(x, xi))up−ε
ε (y)dy

for i ∈ {1, · · · ,m}, it follows from Lemma 8.2.2 and the dominated convergence theorem that

ε−
1
2

∫
Bn(xi,r/2)

up−ε
ε (y)dy→ λ

n−2
2

i

∫
Rn

U p
1,0(y)dy = λ

n−2
2

i C2 (8.13)

and from the mean value theorem that∣∣∣∣∣∣ε− 1
2

∫
Bn(xi,r/2)

(G(x, y) −G(x, xi))up−ε
ε (y)dy

∣∣∣∣∣∣ ≤ ε− 1
2

∫
Bn(xi,r/2)

|G(x, y) −G(x, xi)|up−ε
ε (y)dy

≤ ε−
1
2

∫
Bn(xi,r/2)

sup
x∈Ar ,

t∈(0,1)

∥∥∥∇yG(x, ty + (1 − t)xi)
∥∥∥ · |y − xi|up−ε

ε (y)dy ≤ Cr.
(8.14)

Therefore, combining (8.8), (8.12), (8.13) and (8.14), we confirm that

C2

m∑
i=1

λ
n−2

2
i G(x, xi) −Cr ≤ lim inf

ε→0
ε−

1
2 uε(x) ≤ lim sup

ε→0
ε−

1
2 uε(x) ≤ C2

m∑
i=1

λ
n−2

2
i G(x, xi) + Cr.

Since r > 0 is arbitrary, (8.11) holds in C0(Ω \ {x1, · · · , xm}). Also, the C2-convergence comes
from the elliptic regularity. This proves the lemma. �
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In Lemma 8.2.7 and Lemma 8.2.8, we conduct a decay estimate for solutions of the eigen-
value problem (8.5).

Lemma 8.2.7. For a fixed ` ∈ N, let {µ`ε}ε be the family of `-th eigenvalues for problem (8.5),
and v`ε an L∞(Ω)-normalized eigenfunction corresponding to µ`ε . Then for any r > 0 the function
v`ε converges to zero uniformly in Ar as ε → 0.

Proof. For x ∈ Ar, we write

v`ε(x)
µ`ε(p − ε)

=

∫
Ar/2

G(x, y)up−1−ε
ε v`ε(y)dy +

m∑
i=1

∫
Bn(xi,r/2)

G(x, y)up−1−ε
ε v`ε(y)dy. (8.15)

From Lemma 8.2.5, we have∣∣∣∣∣∣
∫

Ar/2

G(x, y)
(
up−1−ε
ε v`ε

)
(y)dy

∣∣∣∣∣∣ ≤ C · ε
p−1−ε

2

(∫
Ω

G(x, y)dy
)

= O
(
ε

2
n−2

)
. (8.16)

Also, we utilize (8.5) to obtain that∣∣∣∣∣∣
∫

Bn(xi,r/2)
G(x, y)

(
up−1−ε
ε v`ε

)
(y)dy

∣∣∣∣∣∣ ≤ C(r)
∫

Bn(xi,r/2)
up−1−ε
ε (y)dy

≤ C ·C(r)
∫

Bn(0,r)
U p−1−ε
λiεε

α0 ,0(y)dy

=


O

(
ε

2
n−2

)
if n ≥ 5,

O(ε log ε) if n = 4,

O(ε) if n = 3

(8.17)

for any 1 ≤ i ≤ m where the definition of C(r) can be found in the sentence after (8.10). Putting
estimates (8.16) and (8.17) into (8.15) validates that v`ε = o(1) uniformly in Ar. �

Lemma 8.2.8. Assume that 0 ∈ Ω, fix ` ∈ N and set

ṽ`ε = v`ε (εα0 x) and dε(x) = dist
(
x,

{
ε−α0 x1ε , · · · , ε

−α0 xmε
})

for x ∈ Ωε := ε−α0Ω.

Then for any ζ > 0 small, we can pick a constant C = C(ζ) > 0 independent of ε > 0 such that

|ṽ`ε(x)| ≤
C

1 + dε(x)n−2−ζ for all x ∈ Ωε . (8.18)

In particular, if i ∈ {1, · · · ,m} are given and {ṽ`iε}ε is a family of dilated eigenfunctions for (1.1ε)
defined as in (8.10), then

|ṽ`iε(x)| ≤
C

1 + |x|n−2−ζ for all |x| ≤ ε−α0r (8.19)

and vε = O(ε) in Ar for some r > 0 small.
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Proof. One can derive the decay estimate (8.18) by adapting the proof of Lemmas A.5, B.3 and
Proposition B.1 of Cao, Peng and Yan [CPY], in which the authors investigated the p-Laplacian
version of the Brezis-Nirenberg problem. To account for the way to modify their argument to be
suitable for our multi-bubble case, we briefly sketch the proof. Let ũε = uε (εα0 ·) and x̃iε = ε−α0 xiε .

Notice that ṽ`ε solves

−∆ṽ`ε = a`ε ṽ`ε in Ωε where a`ε = µ`ε(p − ε)ε2α0 ũp−1−ε
ε ≥ 0.

From Proposition 8.2.3 and Lemma 8.2.5, we realize that a`ε ≤ C|x|−4+(n−2)ε holds in each annulus
Bn (x̃iε , δ0ε

−α0) \ Bn(x̃iε ,R) provided i ∈ {1, · · · ,m} and R > 1 large, and a`ε ≤ Cε4α0 in Ωε \

∪m
i=1Bn (x̃iε , δ0ε

−α0). Hence, given any η > 0, there exists a large R(η) > 1 such that∫
ÃR(η)

|a`ε |
n
2 dx < η where ÃR := Ωε \

m⋃
i=1

Bn(x̃iε ,R). (8.20)

Suppose that ζ > 0 is selected to be small enough. Then one can apply the Moser iteration
technique to get a small number η > 0 and large q > p + 1 such that if (8.20) holds, there is a
constant C > 0 independent of R, η or ṽ`ε satisfying

‖ṽ`ε‖Lq(ÃR) ≤
C

(R − 2R(η))
n−2

2 −ζ
· ‖ṽ`ε‖Lp+1(Ã2R(η))

for any R > 2R(η). On the other hand, it is possible to get that ‖ṽ`ε‖Lp+1(Ã2R(η)) ≤ CR−2ζ by taking
a smaller ζ if necessary. Thus standard elliptic regularity theory gives

|ṽ`ε(x)| ≤ ‖ṽ`ε‖L∞(Bn(x,1)) ≤ C‖ṽ`ε‖Lq(ÃR−1) ≤
C

(R − 2R(η) − 1)
n−2

2 −ζ
· ‖ṽ`ε‖Lp+1(Ã2R(η)) ≤

C

R
n−2

2 +ζ
(8.21)

for all x ∈ ÃR, R ≥ 3R(η).
Having (8.21) in mind, we now prove (8.18) by employing the comparison principle itera-

tively. Assume that it holds

|ṽ`ε(x)| ≤ D j

m∑
i=1

1
|x − x̃iε |

q j
for all x ∈ ÃR, (8.22)

some D j > 0 and 0 < q j < n−2 to be determined soon ( j ∈ N). Since we have (n−2)(p−1−ε) > 3
for small ε > 0, Proposition 8.2.3, Lemma 8.2.5 and (8.22) tell us that there exists some D̃ j > 0
whose choice is affected by only D j, n and ` such that

−∆(ṽ`ε)±(x) = µ`ε(p − ε)ũp−1−ε
ε (ṽ`ε)±(x) ≤ D̃ j

m∑
i=1

1
|x − x̃iε |

q j+3 for any x ∈ ÃR.

Select any number 0 < η̃ < min(1, n − 2 − q j) and set a function

χ j(x) = D j+1

m∑
i=1

1
|x − x̃iε |

q j+η̃
for x ∈ Rn
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where D j+1 > 0 is a number so large that χ j ≥ |ṽ`ε | on ∪m
i=1∂Bn(x̃iε ,R). Then one can compute

−∆χ j(x) = D j+1

(
q j + η̃

) (
(n − 2) −

(
q j + η̃

)) m∑
i=1

1
|x − x̃iε |

q j+η̃+2

≥ D̃ j

m∑
i=1

1
|x − x̃iε |

q j+3 ≥ −∆(ṽ`ε)±(x), x ∈ ÃR

(8.23)

by taking a larger D j+1 if necessary. However χ j > 0 and ṽ`ε = 0 on ∂Ωε , whence χ j ≥ |ṽ`ε | on
∂ÃR. Consequently, by (8.23) and the maximum principle, it follows that

|ṽ`ε(x)| ≤ χ j(x) = D j+1

m∑
i=1

1
|x − x̃iε |

q j+η̃
, x ∈ ÃR.

Letting q1 = n−2
2 + ζ in (8.21), choosing an appropriate D1 > 0 and repeating this comparison

procedure, we can deduce

|ṽ`ε(x)| ≤ C
m∑

i=1

1
|x − x̃iε |

q , x ∈ ÃR

given any 1 < q < n − 2. This proves (8.18).
Finally, (8.19) and the claim that vε = O(ε) in Ar is a straightforward consequence of (8.18).

The proof is completed. �

By utilizing (8.5), (8.19), (8.7), the fact that vε = O(ε) in Ar and regularity theory, we imme-
diately establish a decay estimate for the derivatives of ũiε and ṽ`iε .

Lemma 8.2.9. For any k ∈ {1, · · · , n}, there exists a universal constant C > 0 such that∣∣∣∣∣∂ũiε(x)
∂xk

∣∣∣∣∣ ≤ C
1 + |x|n−2 and

∣∣∣∣∣∂ṽ`iε(x)
∂xk

∣∣∣∣∣ ≤ C
1 + |x|n−2−ζ for all |x| ≤ ε−α0r

for ζ, r > 0 small. Moreover we have

|∂kuε | , |∂k∂luε | = O
(√
ε
)

and |∂kv`ε | = O(ε) for all k, l = 1, · · · , n

as ε → 0 in any compact subset of Ar.

Finally, we recall two well-known results. The first lemma states the nondegeneracy property
of the standard bubble U1,0. We refer to [BE] for its proof.

Lemma 8.2.10. The space of solutions to the linear problem

−∆v = pU p−1
1,0 v in Rn and

∫
Rn
|∇v|2 < ∞

is spanned by
x1

(1 + |x|2)
n
2
, · · · ,

xn

(1 + |x|2)
n
2

and
1 − |x|2

(1 + |x|2)
n
2
.
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The next lemma lists some formulas regarding the derivatives of Green’s function. The proof can
be found in [GP, H].

Lemma 8.2.11. For ξ ∈ Ω, it holds that∫
∂Ω

(x − ξ, ν)
(
∂G
∂ν

(x, ξ)
)2

dS = (n − 2)τ(ξ),

∫
∂Ω

(
∂G
∂ν

(x, ξ)
)2

νk(x)dS =
∂τ

∂xk
(ξ), k = 1, · · · , n

and ∫
∂Ω

∂G
∂xk

(x, ξ)
∂

∂yl

(
∂G
∂ν

(x, ξ)
)

dS =
1
2

∂2τ

∂xk∂xl
(ξ), k, l = 1, · · · , n.

Here ν is the outward normal unit vector to ∂Ω and dS is the surface measure ∂Ω.

8.3 Proof of Theorem 8.1.1

In this section, we present estimates for the first m eigenvalues and eigenfunctions of (8.5).

For the set of the concentration points {x1, · · · , xm} ⊂ Ωm, let us fix a small number r > 0
such that for any 1 ≤ i , j ≤ m and any ε > 0 small the following holds:

Bn(xi, 4r) ⊂ Ω and Bn(xi, 4r) ∩ Bn(x j, 4r) = ∅.

For each 1 ≤ i ≤ m, we set φi(x) = φ(x − xi) where a cut-off function φ ∈ C∞c (Bn(0, 3r)) satisfies
φ ≡ 1 in Bn(0, 2r) and 0 ≤ φ ≤ 1 in Bn(0, 3r). Define also

uε,i = φiuε , ψε,i,k = φi
∂uε
∂xk

(1 ≤ k ≤ n) and ψε,i,n+1 = φi ·

(
(x − xiε) · ∇uε +

2uε
p − 1 − ε

)
(8.1)

in Ω.

The following lemma serves as a main ingredient for the proof of Theorem 8.1.1

Lemma 8.3.1. Fix ` ∈ N. Suppose that {v`ε}ε is a family of normalized eigenfunctions of (8.5)
corresponding to the `-th eigenvalue µ`ε . Then there exists at least one i0 ∈ {1, · · · ,m} such that
ṽ`i0ε (see (8.10) for its definition) converges to a nonzero function in the weak H1(Rn)-sense.

Proof. Lemma 8.2.8 ensures that there exist a large R > 0 and a small r > 0 such that |ṽ`iε | ≤ 1/2
for R ≤ |x| ≤ ε−α0r. Suppose that ṽ`iε ⇀ 0 weakly in H1(Rn) as ε → 0 for all 1 ≤ i ≤ m. Then each
ṽ`iε tends to 0 uniformly in Bn(0,R) by elliptic regularity. Since we already know that vε → 0
uniformly on Ar from Lemma 8.2.7, it follows that ‖vε‖L∞(Ω) ≤ 1/2. However ‖vε‖L∞(Ω) = 1 by its
own definition, hence a contradiction arises. �
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Given Lemma 8.3.1, we are now ready to start to prove Theorem 8.1.1.

Proof of Theorem 8.1.1. Let V be a vector space whose basis consists of {uε,i : 1 ≤ i ≤ m}. By
the Courant-Fischer-Weyl min-max principle, we have

µmε = min
W⊂H1

0 (Ω),
dimW=m

max
f∈W\{0}

∫
Ω
|∇ f (x)|2dx

(p − ε)
∫

Ω

(
f 2up−1−ε

ε

)
(x)dx

≤ max
f∈V\{0}

∫
Ω
|∇ f (x)|2dx

(p − ε)
∫

Ω

(
f 2up−1−ε

ε

)
(x)dx

.

If we denote a nonzero element f ∈ V by f =
∑m

i=1 aiuε,i for some (a1, · · · , am) , 0, then the fact
that uε,i1 and uε,i2 have disjoint supports for any 1 ≤ i1 , i2 ≤ m implies∫

Ω
|∇ f |2

(p − ε)
∫

Ω
f 2up−1−ε

ε

=

∑m
i=1

∫
Ω

∣∣∣∇ (
aiuε,i

)∣∣∣2
(p − ε)

∑m
i=1

∫
Ω

(
aiuε,i

)2 up−1−ε
ε

≤ max
1≤i≤m

∫
Ω
|∇(aiuε,i)|2

(p − ε)
∫

Ω
(aiuε,i)2up−1−ε

ε

= max
1≤i≤m

∫
Ω
|∇(φiuε)|2

(p − ε)
∫

Ω
φ2

i up+1−ε
ε

→
1
p
·

∫
Rn |∇U1,0|

2∫
Rn U p+1

1,0

=
1
p

as ε → 0.

Thus we know that µmε ≤ p−1 + o(1), and particularly if we let µ` = lim
ε→0

µ`ε , then µ` ≤ p−1 for
any 1 ≤ ` ≤ m.

Fix ` ∈ {1, · · · ,m}. By Lemma 8.3.1 there is an index i0 ∈ {1, · · · ,m} such that ṽ`i0ε converges
H1(Rn)-weakly to a nonzero function V . A direct computation shows

−∆ṽ`i0ε = µ`ε(p − ε)ũp−1−ε
iε ṽ`i0ε in Ωi0ε

where the function ũiε and the set Ωi0ε are defined in (8.3) and (8.10), respectively. Thus it follows
from Lemma 8.2.2 that V ∈ H1(Rn) \ {0} is a solution of

−∆V = µ`pU p−1
1,0 V in Rn.

Note that U1,0 can be characterized as a mountain pass solution to (8.4) and so has the Morse in-
dex 1. Consequently, in light of the estimate for µ` in the previous paragraph, the only possibility
is µ` = p−1.

On the other hand, for any i, we also see that ṽ`iε converges to a function W weakly in H1(Rn)

so that W solves−∆W = U p−1
1,0 W inRn. Thus there is a nonzero vector c` =

(
λ

n−2
2

1 c`1, · · · , λ
n−2

2
m c`m

)
∈

Rm such that ṽ`iε ⇀ c`iU1,0 weakly in H1(Rn) for each i ∈ {1, · · · ,m}.
Let us prove (8.12) now. Fixing i, we multiply (1.1ε) (or (8.5) with v = v`ε) by v`ε (or uε) to

get the identity, say, I (or II respectively). Also we denote by
∫

I and
∫

II the identities which
can be obtained after integrating I and II over Bn(xiε , r). Subtracting

∫
I from

∫
II and utilizing

Green’s identity (8.12) below, we see then∫
∂Bn(xiε ,r)

(
∂uε
∂ν

v`ε −
∂v`ε
∂ν

uε

)
dS = (µ`ε(p − ε) − 1)

∫
Bn(xiε ,r)

(
up−ε
ε v`ε

)
(x)dx (8.2)
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for each i ∈ {1, · · · ,m} and any r > 0 sufficiently small. Moreover, if we set the functions

C−1
2 g̃i(x) = −λ

n−2
2

i H(x, xi) +
∑
j,i

λ
n−2

2
j G(x, x j), C−1

2 h̃i(x) = −λn−2
i c`iH(x, xi) +

∑
j,i

λn−2
j c` jG(x, x j)

which are harmonic near xi, then (the proof of) Lemma 8.2.6 permits us to obtain that

ε−
1
2 uε(x) = C2λ

n−2
2

i
γn

|x − xiε |
n−2 + g̃i(x) + o(1) (8.3)

and
ε−1 v`ε(x)

µ`ε(p − ε)
= C2λ

n−2
i c`i

γn

|x − xiε |
n−2 + h̃i(x) + o(1) (8.4)

for x ∈ Bn(xiε , 2r). Therefore, by inserting (8.3) and (8.4) into (8.2), and then using the mean
value formula for harmonic functions and ∇λΥ(λ1, · · · , λm, x1, · · · , xm) = 0, one discovers∫

∂Bn(xiε ,r)

∂
(
ε−

1
2 uε

)
∂ν

(
ε−1v`ε

)
−
∂
(
ε−1v`ε

)
∂ν

(
ε−

1
2 uε

) dS

= −(n − 2)C2γn

∫
∂Bn(xiε ,r)

[
1

|x − xiε |
n−1λ

n−2
2

i h̃i(x) −
1

|x − xiε |
n−1λ

n−2
i c`ig̃i(x)

]
dS + o(1)

→ (n − 2)C2γn

∣∣∣S n−1
∣∣∣ (λn−2

i c`ig̃i(xi) − λ
n−2

2
i h̃i(xi)

)
= c1

λn−2
i

∑
j,i

λ
n−2

2
j G(xi, x j)

 c`i −
∑
j,i

λ
n−2

2
i λn−2

j G(xi, x j)c` j


=

(
c1λ

3(n−2)
2

i τ(xi) −
c2

n − 2
λ

n−2
2

i

)
c`i − c1

∑
j,i

λ
n−2

2
i λn−2

j G(xi, x j)c` j

as ε → 0. Also, an application of the dominated convergence theorem with Lemmas 8.2.2 and
8.2.8, Proposition 8.2.3 and the observation that ṽ`iε → c`iU1,0 pointwise give us that

ε−
1
2

∫
Bn(xiε ,r)

up−ε
ε v`ε = λ

n−σε (p−ε)
iε ε(n−σε (p−ε))α0−

1
2

∫
B(0,r(λiεε

α0 )−1)
ũp−ε

iε ṽ`iε → c`iλ
n−2

2
i

4nc2

(n − 2)2

(refer to (8.9)). From these estimates, we deduce(
λn−2

i τ(xi) −
c2

(n − 2)c1

) (
λ

n−2
2

i c`i
)
−

∑
j,i

(λiλ j)
n−2

2 G(xi, x j)
(
λ

n−2
2

j c` j

)
=

(
4nc2

(n − 2)2c1

)
· lim
ε→0

(
µ`ε(p − ε) − 1

ε

) (
λ

n−2
2

i c`i
)

:= ρ1
`

(
λ

n−2
2

i c`i
)
,

or equivalently, A1c` = ρ1
`c`. This justifies (8.12). We also showed that cT

` is an eigenvector
corresponding to the eigenvalue ρ1

` at the same time.
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Finally, to verify the last assertion of the theorem, we assume that `1 , `2. Since v`1ε and v`2ε

are orthogonal each other, we have

0 = lim
ε→0

ε−1 (
µ`1ε(p − ε)

)−1
∫

Ω

∇v`1ε · ∇v`2ε

= lim
ε→0

ε−1

 m∑
i=1

∫
Bn(xiε ,r)

up−1−ε
ε v`1εv`2ε +

∫
Ω\∪m

i=1Bn(xiε ,r)
up−1−ε
ε v`1εv`2ε


= lim

ε→0

m∑
i=1

λn−2
iε

∫
Bn(0,(λiεε

α0 )−1r)
ũp−1−ε

iε ṽ`1iε ṽ`2iε =

m∑
i=1

(
λ

n−2
2

i c`1i

) (
λ

n−2
2

i c`2i

) ∫
Rn

U p+1
1,0 .

(8.5)

Thus cT
`1
· cT

`2
= 0. �

8.4 Upper bounds for the `-th eigenvalues and asymptotic be-
havior of the `-th eigenfunctions, m + 1 ≤ ` ≤ (n + 1)m

The objective of this section is to provide estimates of the `-th eigenvalues and its corresponding
eigenfunctions when m + 1 ≤ ` ≤ (n + 1)m. Their refinement will be accomplished in the
subsequent sections based on the results deduced in this section.

In the first half of this section, our interest will lie on achieving upper bounds of the eigen-
values µ`ε for m + 1 ≤ ` ≤ (n + 1)m, as the following proposition depicts.

Proposition 8.4.1. Suppose that m + 1 ≤ ` ≤ (n + 1)m. Then

µ`ε ≤ 1 + O
(
ε

n
n−2

)
.

Proof. We define a linear spaceV spanned by

{uε,i : 1 ≤ i ≤ m} ∪ {ψε,i,k : 1 ≤ i ≤ m, 1 ≤ k ≤ n}

(refer to (8.1)) so that any nonzero function f ∈ V \ {0} can be written as

f =

m∑
i=1

fi with fi = ai0uε,i +

n∑
k=1

aikψε,i,k

where at least one number aik (1 ≤ i ≤ m and 0 ≤ k ≤ n) is nonzero. By the variational
characterization of the eigenvalue µ`ε , we have

µ((n+1)m)ε = min
W⊂H1

0 (Ω),
dimW=(n+1)m

max
f∈W\{0}

∫
Ω
|∇ f |2

(p − ε)
∫

Ω
f 2up−1−ε

ε

≤ max
f∈V\{0}

∫
Ω
|∇ f |2

(p − ε)
∫

Ω
f 2up−1−ε

ε

≤ max
f∈V\{0}

max
1≤i≤m

∫
Ω
|∇ fi|

2

(p − ε)
∫

Ω
f 2
i up−1−ε

ε

:= max
f∈V\{0}

max
1≤i≤m

ai.
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Hence it suffices to show that each ai is bounded by 1 + O
(
ε

n
n−2

)
. As a matter of fact, this can be

achieved along the line of the proof of [GP, Proposition 3.2], but we provide a brief sketch here
since our argument slightly simplifies the known proof.

Fix i ∈ {1, · · · ,m}. For the sake of notational simplicity, we write a = ai, φ = φi and ak = aik

for 0 ≤ k ≤ n. Denote also zε =
∑n

k=1 ak
∂uε
∂xk

so that fi = a0φuε + φzε . After multiplying (1.1ε) by
φ2uε or φ2zε , and integrating the both sides over Ω, one can deduce∫

Ω

|∇(φuε)|2 =

∫
Ω

|∇φ|2u2
ε +

∫
Ω

φ2up+1−ε
ε . (8.1)

and ∫
Ω

∇(φuε) · ∇(φzε) =

∫
Ω

|∇φ|2uεzε +

∫
Ω

φ∇φ · (uε∇zε − zε∇uε) +

∫
Ω

φ2up−ε
ε zε . (8.2)

Similarly, testing −∆zε = (p − ε)up−1−ε
ε zε with φ2zε , one finds that∫

Ω

|∇(φzε)|2 =

∫
Ω

|∇φ|2z2
ε + (p − ε)

∫
Ω

φ2up−1−ε
ε z2

ε . (8.3)

Then (8.1)-(8.3) yields a = 1 + b/c where

b = −(p − 1 − ε)
(
a2

0

∫
Ω

φ2up+1−ε
ε + 2a0

∫
Ω

φ2up−ε
ε zε

)
+ a2

0

∫
Ω

|∇φ|2u2
ε

+

∫
Ω

|∇φ|2z2
ε + 2a0

∫
Ω

φ∇φ · (uε∇zε − zε∇uε) + 2a0

∫
Ω

|∇φ|2uεzε . (8.4)

and

c = (p − ε)
(
a2

0

∫
Ω

φ2up+1−ε
ε + 2a0

∫
Ω

φ2up−ε
ε zε +

∫
Ω

φ2up−1−ε
ε z2

ε

)
. (8.5)

Our aim is to find an upper bound of b and a lower bound of c. Let us estimate b first. We see at
once that

−(p − 1 − ε)a2
0

∫
Ω

φ2up+1−ε
ε < −Ca2

0.

Also, if we let ā = (a1, · · · , an), then (8.7) guarantees∣∣∣∣∣a0

∫
Ω

φ2up−ε
ε zε

∣∣∣∣∣ =

∣∣∣∣∣∣∣a0

n∑
j=1

ak

∫
Ω

φ2up−ε
ε

∂uε
∂xk

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ a0

p + 1 − ε

n∑
k=1

ak

∫
Ω

∂φ2

∂xk
up+1−ε
ε

∣∣∣∣∣∣∣ ≤ Ca0|ā|ε
p+1−ε

2 .

Moreover we have that
a2

0

∫
Ω

|∇φ|2u2
ε ≤ Ca2

0ε.

On the other hand, for D1 = Bn(xi, 3r) \ Bn(xi, 2r) and D2 = Bn(xi, 4r) \ Bn(xi, r), we easily
discover ∫

Ω

|∇φ|2z2
ε ≤ C

∫
D1

z2
ε ≤ C|ā|2

∫
D1

|∇uε |2 ≤ C|ā|2
∫
D2

(
up+1−ε
ε + u2

ε

)
≤ C|ā|2ε
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and ∫
D1

|∇zε |2 ≤ C
∫
D2

(
z2
ε + up−1−ε

ε z2
ε

)
≤ C

∫
D2

z2
ε ≤ C|ā|2ε

(cf. (8.1) and (8.3)), which implies∣∣∣∣∣2a0

∫
Ω

φ∇φ · (uε∇zε − zε∇uε) + 2a0

∫
Ω

|∇φ|2uεzε
∣∣∣∣∣ ≤ Ca0|ā|ε.

Utilizing these estimates and the Cauchy-Schwarz inequality we deduce

b ≤ C|ā|2ε. (8.6)

To obtain a lower bound of c, we note that∣∣∣∣∣∫
Ω

φ2up−ε
ε

∂uε
∂xk

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
p + 1 − ε

∫
Ω

∂φ2

∂xk
up+1−ε
ε

∣∣∣∣∣∣ ≤ Cε
p+1−ε

2

and that Lemma 8.2.9 ensures∫
Ω

φ2up−1−ε
ε

∂uε
∂xk

∂uε
∂xl

= λ−2
iε ε
− 2

n−2

(
δkl

n

∫
Rn

U p−1
1,0 |∇U1,0|

2 + o(1)
)

for 1 ≤ k, l ≤ n. Hence we conclude that

c ≥ Ca2
0 −Ca0|ā|ε

p+1−ε
2 + C|ā|2ε−

2
n−2 ≥

C
2
|ā|2ε−

2
n−2 . (8.7)

Consequently, a combination of (8.6) and (8.7) asserts that a ≤ 1 + O
(
ε

n
n−2

)
. This completes the

proof of the lemma. �

Corollary 8.4.2. For m + 1 ≤ ` ≤ (n + 1)m, we have the following limit

lim
ε→0

µ`ε = 1.

Proof. By Lemma 8.3.1 we can find i1 ∈ {1, · · · ,m} such that ṽ`i1ε converges weakly to a nonzero
function V . Then, as in the proof of Theorem 8.1.1, we observe that V solves

−∆V = µ`pU p−1
1,0 V in Rn

where µ` = limε→0 µ`ε . Also, owing to Proposition 8.4.1, we have µ` ≤ 1. Since the Morse index
of U1,0 is 1, it should hold that µ` = p−1 or 1.

Assume that µ` = p−1. Then the proof of Theorem 8.1.1 again gives us that there is a vector

b` =

(
λ

n−2
2

1 b`1, · · · , λ
n−2

2
m b`m

)
, 0 such that ṽ`iε ⇀ b`iU1,0 weakly in H1(Rn). Furthermore b`·c`1 = 0

for any 1 ≤ `1 ≤ m, but this is impossible since {c1, · · · , cm} already spans Rm. Hence µ` = 1,
which finishes the proof. �
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Next, we provide a general convergence result of the `-th L∞(Ω)-normalized eigenfunction
v`ε . We recall its dilation ṽ`iε defined in (8.10).

Lemma 8.4.3. Suppose that m + 1 ≤ ` ≤ (n + 1)m.

1. For any i ∈ {1, · · · ,m} there exists a vector (d`,i,1, · · · , d`,i,n+1) ∈ Rn+1 such that the function
ṽ`iε converges to

n∑
k=1

d`,i,k

(
∂U1,0

∂ξk

)
+ d`,i,n+1

(
∂U1,0

∂λ

)
weakly in H1(Rn) .In addition, there is at least one i1 ∈ {1, · · · ,m} such that (d`,i1,1, · · · , d`,i1,n+1) ,
0.

2. As ε → 0 we have

ε−1v`ε → C3

m∑
i=1

d`,i,n+1λ
n−2
i G(·, xi) in C1(Ω \ {x1, · · · , xm}) (8.8)

where C3 = p
∫
Rn U p−1

1,0

(
∂U1,0

∂λ

)
> 0.

Proof. It is not hard to show the first statement with Lemmas 8.3.1 and 8.2.10, and Corollary
8.4.2. Hence let us consider the second statement. For r > 0 fixed small, assume that a point
x ∈ Ω belongs to Ar where Ar is the set in (8.6). According to Green’s representation formula
and Lemmas 8.2.5 and 8.2.7,

ε−1v`ε(x) = ε−1µ`ε(p − ε)
m∑

i=1

∫
Bn(xiε ,r/2)

G(x, y)up−1−ε
ε (y)v`ε(y)dy + o(1).

Besides, Proposition 8.2.3 with Lemmas 8.2.8 and 8.4.3 (1) allow us to obtain

lim
ε→0

ε−1
∫

Bn(xiε ,r/2)
G(x, y)up−1−ε

ε (y)v`ε(y)dy

= λn−2
i lim

ε→0

∫
Bn(0,(λiεε

α0 )−1r/2)
G (x, xiε + λiεε

α0y)
(
ũp−1−ε

iε ṽ`iε
)

(y)dy

= d`,i,n+1λ
n−2
i G(x, xi)

∫
Rn

U p−1
1,0 (y)

(
∂U1,0

∂λ

)
(y)dy.

(8.9)

Thus the lemma is proved. �

In fact, we can refine the first statement of the above lemma to arrive at (8.14), which is the
main result of the latter part of this section.
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Proposition 8.4.4. Let m + 1 ≤ ` ≤ (n + 1)m. For each i ∈ {1, · · · ,m} and (d`,i,1, · · · , d`,i,n) ∈ Rn,
the function ṽ`iε converges to

n∑
k=1

d`,i,k

(
∂U1,0

∂ξk

)
= −

n∑
k=1

d`,i,k

(
∂U1,0

∂xk

)
weakly in H1(Rn).

As a preparation for its proof, we first consider the following auxiliary lemma.

Lemma 8.4.5. Fix 1 ≤ i ≤ m. For a small r > 0 (any choice of r < min{dist(x j, xl) : 1 ≤ j , l ≤
m}/2 is available) and 1 ≤ j, l ≤ m, we define

Ir
jl;i =

∫
∂Bn(xi,r)

(
∂

∂ν

[
(x − xi) · ∇G(x, x j) +

(
n − 2

2

)
G(x, x j)

]
G(x, xl)

−

[
(x − xi) · ∇G(x, x j) +

(
n − 2

2

)
G(x, x j)

]
∂

∂ν
G(x, xl)

)
dS . (8.10)

Then Ir
jl;i is independent of r > 0 and its value is computed as

Ir
jl;i =



0 if j , i and l , i,(
n − 2

2

)
G(xi, x j) if j , i and l = i,(

n − 2
2

)
G(xi, xl) if j = i and l , i,

−(n − 2)τ(xi) if j = l = i.

(8.11)

Proof. Assuming 0 < r2 < r1 are small enough and putting f (x) = (x − xi) · ∇G(x, x j) + G(x, x j),
g(x) = G(x, xl) and D = Bn(xi, r1) \ Bn(xi, r2) into Green’s identity∫

∂D

(
∂ f
∂ν

g −
∂g
∂ν

f
)

dS =

∫
D

(∆ f · g − ∆g · f ) dx, (8.12)

we see that Ir
jl;i is constant because

∆

[
(x − xi) · ∇G(x, x j) +

(
n − 2

2

)
G(x, x j)

]
= 0 and ∆G(x, xl) = 0 (8.13)

for all x , x j, xl. Thus it suffices to find the value I jl;i = limr→0 I
r
jl;i.

(1) If j, l , i, then I jl;i = 0. This follows simply by applying (8.12) for D = Bn(xi, r) since (8.13)
holds for any x ∈ Bn(xi, r).
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(2) If j , i and l = i, then we have

I jl;i = I ji;i = lim
r→0

∫
∂Bn(xi,r)

−

(
n − 2

2

)
G(x, x j)

∂

∂ν
G(x, xi)dS

= lim
r→0

∫
∂Bn(xi,r)

(
n − 2

2

)
G(x, x j) ·

n − 2
(n − 2)

∣∣∣S n−1
∣∣∣ |x − xi|

n−1
dS =

(
n − 2

2

)
G(xi, x j).

(3) Suppose that j = i and l , i. In this case, we deduce

I jl;i = Iil;i = lim
r→0

∫
∂Bn(xi,r)

∂

∂ν

[
(x − xi) · ∇G(x, xi) +

(
n − 2

2

)
G(x, xi)

]
G(x, xl)dS

= lim
r→0

∫
∂Bn(xi,r)

n − 2
2
∣∣∣S n−1

∣∣∣ |x − xi|
n−1
·G(x, xl)dS =

(
n − 2

2

)
G(xi, xl).

(4) If k = l = j, then the Green’s identity, the fact that G(x, xi) = 0 on ∂Ω and Lemma 8.2.11 lead

I jl;i = Iii;i =

∫
∂Ω

(
∂

∂ν

[
(x − xi) · ∇G(x, xi) +

(
n − 2

2

)
G(x, xi)

]
G(x, xi)

−

[
(x − xi) · ∇G(x, xi) +

(
n − 2

2

)
G(x, xi)

]
∂

∂ν
G(x, xi)

)
dS

= −

∫
∂Ω

[(x − xi) · ∇G(x, xi)]
∂

∂ν
G(x, xi)dS = −(n − 2)τ(xi).

All the computations made in (1)-(4) show the validity of (8.11). �

Proof of Proposition 8.4.4. Fix i ∈ {1, · · · ,m} and let

wiε(x) = (x − xiε) · ∇uε +
2uε

p − 1 − ε
for x ∈ Ω, (8.14)

a solution of
−∆wiε = (p − ε)up−ε−1

ε wiε in Ω.

Then by (8.12) it satisfies∫
∂Bn(xiε ,r)

(
∂wiε

∂ν
v`ε −

∂v`ε
∂ν

wiε

)
dS = (µ`ε − 1)(p − ε)

∫
Bn(xiε ,r)

up−1−ε
ε wiεv`ε (8.15)

for r > 0 small, where ν is the outward normal unit vector to the sphere ∂Bn(xi, r).
In light of Lemma 8.4.3 (1), we already know that ṽ`iε ⇀

∑n
k=1 d`,i,k

(
∂U1,0

∂ξk

)
+ d`,i,n+1

(
∂U1,0

∂λ

)
weakly in H1(Rn) as ε → 0. Thus we only need to verify that d`,i,n+1 = 0 for all i ∈ {1, · · · ,m} in
order to establish Proposition 8.4.4. Assume to the contrary that d`,i,n+1 , 0 for some i. We will
achieve a contradiction by showing that an estimate of µlε − 1 obtained through (8.15) does not
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match to one found in Proposition 8.4.1. To reduce the notational complexity, we use di or d`,i to
denote d`,i,n+1 in this proof.

Let us observe from Lemma 8.2.6 and (8.14) that

ε−
1
2 wiε(x)→ C2

m∑
j=1

λ
n−2

2
j

[
(x − xi) · ∇G(x, x j) +

(
n − 2

2

)
G(x, x j)

]
in C1(Ω \ {x1, · · · , xm})

(8.16)
as ε → 0. Combining this with (8.8) we get

lim
ε→0

ε−
3
2

∫
∂Bn(xiε ,r)

(
∂wiε

∂ν
v`ε −

∂v`ε
∂ν

wiε

)
dS = C2C3

m∑
j,l=1

λ
n−2

2
j λn−2

l dlI
r
jl;i

where Ir
jl;i is the value defined in (8.10). By inserting (8.11) into the above identity, we further

find that

lim
ε→0

ε−
3
2

∫
∂Bn(xiε ,r)

(
∂wiε

∂ν
v`ε −

∂v`ε
∂ν

wiε

)
dS

= C2C3

(n − 2
2

)
λ

n−2
2

i

∑
l,i

λn−2
l dlG(xi, xl) + λn−2

i di

∑
j,i

(
n − 2

2

)
λ

n−2
2

j G(xi, x j) − (n − 2)λ
n−2

2
i τ(xi)




= C2C3

(n − 2
2

)
λ

n−2
2

i

∑
j,i

λn−2
j d jG(xi, x j) − λn−2

i di

(
n − 2

2

) (
λ

n−2
2

i τ(xi) + C0λ
− n−2

2
i

) .
Here C0 = c2/((n− 2)c1) > 0 as in (8.11), and we employed the fact that (λ1, · · · , λm, x1, · · · , xm)
is a critical point of the functional Υm (see (8.8)) so as to obtain the second equality. Borrowing
the notation of the matrix A3 in (8.20), the left-hand side of (8.15) can be described in a legible
way.

lim
ε→0

ε−
3
2

∫
∂Bn(xiε ,r)

(
∂wiε

∂ν
v`ε −

∂v`ε
∂ν

wiε

)
dS = −C2C3

(
n − 2

2

) m∑
j=1

A3
i j

(
λ

n−2
2

j d j

)
. (8.17)

On the other hand, counting on Proposition 8.2.3 and Lemmas 8.2.2 and 8.4.3, we can compute
its right-hand side as follows.

lim
ε→0

ε−
1
2

∫
Bn(xiε ,r)

up−1−ε
ε (x)

[
(x − xiε) · ∇uε(x) +

2uε(x)
p − 1 − ε

]
v`ε(x)dx

= lim
ε→0

λ
n−2

2
i

∫
Bn(0,(λiε

α0 )−1r)
ũp−1−ε

iε (y)
[
y · ∇ũiε(y) +

2ũiε(y)
p − 1 − ε

]
ṽ`iε(y)dy

= λ
n−2

2
i di

∫
Rn

U p−1
1,0 (y)

[
y · ∇U1,0(y) +

2U1,0(y)
p − 1

] (
∂U1,0

∂λ

)
(y)dy = −λ

n−2
2

i diC4

(8.18)
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where C4 =
∫
Rn U p−1

1,0

(
∂U1,0

∂λ

)2
> 0. Consequently, (8.17), (8.18) and (8.15) enable us to deduce

that

A3d̂1
` =

2pC4

(n − 2)C2C3
lim
ε→0

(
µ`ε − 1
ε

)
d̂1
` where d̂1

` =


λ

n−2
2

1 d`,1
· · ·

λ
n−2

2
m d`,m

 , 0. (8.19)

Multiplying a row vector
(
d̂1
`

)T
in the both sides yields

lim
ε→0

(
µ`ε − 1
ε

)
=

(n − 2)2C2C3

2(n + 2)C4
·


(
d̂2
`

)T
M2d̂2

`∣∣∣d̂1
`

∣∣∣2 + C0

 (8.20)

where d̂2
` =

(
λn−2

1 d`,1, · · · , λn−2
m d`,m

)T
andM2 is the matrix introduced in Lemma 8.2.1. However

the right-hand side of (8.20) is positive due to Lemma 8.2.1, and this contradicts the bound of µ`ε
provided in Proposition 8.4.1. Hence it should hold that d`,i = 0 for all i. The proof is finished. �

This result improves our knowledge on the limit behavior of the `-th eigenvalues (see Corol-
lary 8.4.2) for m + 1 ≤ ` ≤ (n + 1)m, which is essential in the next section.

Corollary 8.4.6. For m + 1 ≤ ` ≤ (n + 1)m, one has

|µ`ε − 1| = O
(
ε

n−1
n−2

)
as ε → 0. (8.21)

Proof. By Proposition 8.4.4 and Lemma 8.4.3 (1), there is i1 ∈ {1, · · · ,m} such that

ṽ`i1ε ⇀
n∑

k=1

d`,i1,k

(
∂U1,0

∂ξk

)
weakly in H1(Rn)

where (d`,i1,1, · · · , d`,i1,n) , 0. Without any loss of generality, we may assume that d`,i1,1 , 0. By
differentiating the both sides of (1.1ε), we get

− ∆
∂uε
∂x1

= (p − ε)up−1−ε
ε

∂uε
∂x1

. (8.22)

Let us multiply (8.22) by v`ε and (8.5) by ∂uε
∂x1

, respectively, integrate both of them over Bn(xi1ε , r)
for a small fixed r > 0 and subtract the first equation from the second to derive∫

∂Bn(xi1ε ,r)

{
∂

∂ν

(
∂uε
∂x1

)
v`ε −

∂uε
∂x1

∂v`ε
∂ν

}
dS = (p − ε) (µ`ε − 1)

∫
Bn(xi1ε ,r)

up−1−ε
ε

∂uε
∂x1

v`ε . (8.23)

By Lemma 8.2.9, its left-hand side is O
(
ε3/2

)
while the right-hand side is computed as∫

Bn(xi1ε ,r)
up−1−ε
ε

∂uε
∂x1

v`ε =
(
λi1ε

α0
)n−(σε+1)−2

∫
Bn(0,(λiε

α0 )−1r)
ũp−1−ε

i1ε

∂ũi1ε

∂x1
ṽ`i1ε

= −λ
n−4

2
i1
ε

n−4
2(n−2)

d`,i1,1 ∫
Rn

U p−1
1,0

(
∂U1,0

∂x1

)2

+ o(1)
 . (8.24)
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Therefore, if we denote C5 =
∫
Rn U p−1

1,0

(
∂U1,0

∂x1

)2
> 0, we deduce that

O
(
ε

3
2
)

= −λ
n−4

2
i1
ε

n−4
2(n−2) (p + o(1))

[
lim
ε→0

(µ`ε − 1)
] (

d`,i,1C5 + o(1)
)
,

which leads the desired estimate (8.21). �

8.5 A further analysis on asymptotic behavior of the `-th eigen-
functions, m + 1 ≤ ` ≤ (n + 1)m

In view of Lemma 8.4.3 and the proof of Proposition 8.4.4, we know that ε−1v`ε → 0 as ε → 0
uniformly in Ω outside of the blow-up points {x1, · · · , xm}. Motivated by the argument in [GGOS],
we prove its improvement (8.15) here, which is stated once more in the following proposition.

Proposition 8.5.1. LetM1 and P be the matrices defined in (8.13) and (8.17), respectively. Also
we remind a column vector d` ∈ Rmn in (8.16) and set two row vectors G(x) and G̃(x) by

G(x) = (G(x, x1), · · · ,G(x, xm)) ∈ Rm, G̃(x) =

(
λ

n
2
1∇yG(x, x1), · · · , λ

n
2
m∇yG(x, xm)

)
∈ Rmn (8.1)

for any x ∈ Ω. If m + 1 ≤ ` ≤ (n + 1)m, then

ε−
n−1
n−2 v`ε(x)→ C1

(
G(x)M−1

1 P + G̃(x)
)

d`, (8.2)

in C1 (Ω \ {x1, · · · , xm}) as ε → 0 where C1 > 0 is a constant in Theorem 8.1.2.

Remark 8.5.2. If we write (8.2) in terms of the components of the vectors G(x) and G̃(x), and
matricesM−1

1 and P, we get (8.15).

We will present the proof by dividing it into several lemmas. The first lemma is a variant of
Lemmas 8.2.6 and 8.4.3 (2).

Lemma 8.5.3. Given a small fixed number r > 0, it holds that

uε(x) =

m∑
i=1

κi0G(x, xiε) + o
(
ε

n
2(n−2)

)
and

v`ε(x)
µ`ε(p − ε)

=

m∑
i=1

(
κi1G(x, xiε) + κi2 · ∇yG(x, xiε)

)
+ o

(
ε

n−1
n−2

)
(8.3)

in C1 (Ω \ {x1, · · · , xm}) as ε → 0 where

κi0 =

∫
Bn(xiε ,r)

up−ε
ε = O

(√
ε
)
, κi1 =

∫
Bn(xiε ,r)

up−1−ε
ε v`ε = O(ε)
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and κi2 = (κi21, · · · , κi2n) ∈ Rn is a row vector such that

κi2 =

∫
Bn(xiε ,r)

(y − xiε)
(
up−1−ε
ε v`ε

)
(y)dy = O

(
ε

n−1
n−2

)
(8.4)

(note that κi0, κi1 and κi2 depend also on ε or `).

Proof. The proof is similar to Lemmas 8.2.6 and 8.4.3 (2), so we just briefly sketch why (8.3)
holds in C0(K) for any compact subset K of Ω\{x1, · · · , xm}. For x ∈ Ar (see (8.6)), a combination
of Green’s representation formula and the Taylor expansion of G(x, y) in the y-variable show that

v`ε(x)
µ`ε(p − ε)

=

m∑
i=1

∫
Bn(xiε ,r/2)

(
G(x, xiε) + (y − xiε) · ∇yG(x, xiε) + O

(
|y − xiε |

2
)) (

up−1−ε
ε v`ε

)
(y)dy + O

(
ε

n
n−2

)
Also, by means of Proposition 8.2.3 and Lemma 8.2.8, we have∫

Bn(xiε ,r/2)
|y − xiε |

2 ·

∣∣∣∣(up−1−ε
ε v`ε

)
(y)

∣∣∣∣ dy = (λiεε
α0)n

∫
Bn(0,(λiεε

α0 )−1r/2)
|x|2 ·

∣∣∣∣(ũp−1−ε
ε ṽε

)
(x)

∣∣∣∣ dx

≤ Cε
n

n−2

∫ Cε−
1

n−2

0

tn+1

1 + t(n+2)−(n−2)ε dt = O
(
ε

n
n−2

)
for each i, from which the desired result follows. The order of ki0, ki1 and κi2 can be computed as
in (8.13) or (8.9). �

Let us write uε and v`ε in the following way. For each i = 1, · · · ,m,

uε(x) =
κi0γn

|x − xiε |
n−2 + giε(x) + o

(
ε

n
2(n−2)

)
where giε(x) = −κi0H(x, xiε) +

∑
j,i

κ j0G(x, x jε), (8.5)

and
v`ε(x)

µ`ε(p − ε)
=

κi1γn

|x − xiε |
n−2 + (n − 2)γnκi2 ·

x − xiε

|x − xiε |
n + hiε(x) + o

(
ε

n−1
n−2

)
(8.6)

where

hiε(x) = −
(
κi1H(x, xiε) + κi2 · ∇yH(x, xiε)

)
+

∑
j,i

(
κ j1G(x, x jε) + κ j2 · ∇yG(x, x jε)

)
. (8.7)

Note that giε an hiε are harmonic in a neighborhood of xiε . With these decompositions we now
compute κi1, will be shown to be O

(
ε

n−1
n−2

)
, by applying the bilinear version of the Pohožaev

identity which the next lemma describes.
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Lemma 8.5.4. For any point ξ ∈ Rn, a positive number r > 0 and functions f , g ∈ C2
(
Bn(ξ, r)

)
,

it holds that∫
Bn(ξ,r)

[
((x − ξ) · ∇ f ) ∆g + ((x − ξ) · ∇g) ∆ f

]
= r

∫
∂Bn(ξ,r)

(
2
∂ f
∂ν

∂g
∂ν
− ∇ f · ∇g

)
+ (n − 2)

∫
Bn(ξ,r)

∇ f · ∇g (8.8)

where ν is the outward unit normal vector on ∂Bn(ξ, r).

Proof. This follows from an elementary computation. See the proof of [Oh, Proposition 5.5] in
which the author considered it when n = 2. �

Lemma 8.5.5. Recall the definition ofM1 in (8.13) and its inverseM−1
1 =

(
mi j

1

)
1≤i, j≤m

. Then it
holds for m + 1 ≤ ` ≤ (n + 1)m that

ε−
n−1
n−2 κi1 =

m∑
j=1

mi j
1

−1
2
ε−

n−1
n−2κ j2 · ∇τ(x j) +

∑
l, j

ε−
n−1
n−2κl2 · ∇yG(x j, xl)

 + o(1). (8.9)

Remark 8.5.6. If m = 1, one has that Υ1(λ1, x1) = c1τ1(x1)λn−2
1 − c2 log λ1 (refer to (8.8)).

Therefore (8.9) and 0 = ∂x1Υ1(λ1, x1) = c1
(
∂x1τ

)
(x1)λn−2

1 imply ε−
n−1
n−2 κi1 = o(1).

Proof. Fixing a sufficiently small number r > 0, we take ξ = xiε , f = uε and g = v`ε for (8.8).
Then from (1.1ε), (8.5) and the estimate

(1 − µ`ε)
∫

Bn(xiε ,r)
[(x − xiε) · ∇uε] up−1−ε

ε v`ε

= O
(
ε

n−1
n−2

)
· ε

1
2λ

n−2
2

i

− n∑
k=1

d`,i,k

∫
Rn

(
x · ∇U1,0

)
U p−1

1,0

∂U1,0

∂xk
+ o(1)

 = o
(
ε

n−1
n−2 + 1

2
)

where Proposition 8.4.4 and Corollary 8.4.6 are made use of, one finds that the left-hand side of
(8.8) is equal to

−

∫
Bn(xiε ,r)

(x − xiε) · ∇
(
up−ε
ε v`ε

)
+ (1 − µ`ε)(p − ε)

∫
Bn(xiε ,r)

[(x − xiε) · ∇uε] up−1−ε
ε v`ε

= n
∫

Bn(xiε ,r)
up−ε
ε v`ε + o

(
ε

n−1
n−2 + 1

2
)
.

As a result, (8.8) reads as

r
∫
∂Bn(xiε ,r)

(
2
∂uε
∂ν

∂v`ε
∂ν
− ∇uε · ∇v`ε

)
+ (n − 2)

∫
∂Bn(xiε ,r)

∂uε
∂ν

v`ε

= 2
∫

Bn(xiε ,r)
up−ε
ε v`ε + o

(
ε

n−1
n−2 + 1

2
)

= 2
[
µ`ε(p − ε) − 1

]−1
∫
∂Bn(xiε ,r)

(
∂uε
∂ν

v`ε −
∂v`ε
∂ν

uε

)
dS + o

(
ε

n−1
n−2 + 1

2
) (8.10)
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where the latter equality is due to Green’s identity (8.12).
We compute the rightmost side of (8.10) first. Since giε , hiε and (x − xiε) · ∇giε are harmonic

near xiε (see (8.5) and (8.7) to remind their definitions), a direct computation with (8.5)-(8.7), the
mean value formula and Green’s identity (8.12) shows that∫

∂Bn(xiε ,r)

(
∂uε
∂ν

v`ε −
∂v`ε
∂ν

uε

)
dS

= µ`ε(p − ε)
[
(n − 2)γn

∣∣∣S n−1
∣∣∣ (κi1giε(xiε) − κi0hiε(xiε)) +

(n − 2)γn

rn κi2 ·

∫
∂Bn(xiε ,r)

(x − xiε)
∂giε

∂ν
dS

+
(n − 2)(n − 1)γn

rn+1 κi2 ·

∫
∂Bn(xiε ,r)

(x − xiε)giεdS + o
(
ε

n−1
n−2 + 1

2
)]
.

(8.11)
Moreover, both giε and x−xiε

|x−xiε |n
are harmonic in Bn(xiε , r) \ {xiε}, so Green’s identity again infers

that the value

I1r := κi2 ·

∫
∂Bn(xiε ,r)

(
x − xiε

|x − xiε |
n

∂giε

∂ν
+ (n − 1)

x − xiε

|x − xiε |
n+1 giε

)
dS

= κi2 ·

∫
∂Bn(xiε ,r)

[
x − xiε

|x − xiε |
n

∂giε

∂ν
−
∂

∂ν

(
x − xiε

|x − xiε |
n

)
giε

]
dS

(8.12)

is independent of r > 0. Thus, taking the limit r → 0 and applying the Taylor expansion of giε ,
we find that it is equal to

I10 := lim
r→0

I1r

= lim
r→0

n∑
k,l=1

κi2k

rn+1

∫
∂Bn(0,r)

xkxl
[
(∂lgiε) (xiε) + O(|x|)

]
dS

+ (n − 1) lim
r→0

n∑
k=1

κi2k

rn+1

∫
∂Bn(0,r)

xk

giε(xiε) +

n∑
l=1

xl (∂lgiε) (xiε) + O
(
|x|2

) dS

= n
n∑

k,l=1

κi2k (∂lgiε) (xiε)
∫
∂Bn(0,1)

xkxldS =
∣∣∣S n−1

∣∣∣ κi2 · ∇giε(xiε).

(8.13)

However the quantity κi2 · ∇giε(xiε) is negligible in the sense that its order is ε
n−1
n−2 + 1

2 , because
κi2 = O

(
ε

n−1
n−2

)
and that ∇xΥm(λ1, · · · , λm, x1, · · · , xm) = 0 means

lim
ε→0

ε−
1
2∇giε(xiε) = − lim

ε→0

(
ε−

1
2 κi0

)
(∇xH) (xiε , xiε) +

∑
j,i

lim
ε→0

(
ε−

1
2 κ j0

)
(∇xG) (xiε , x jε)

=

−1
2
λ

n−2
2

i (∇xτ) (xi) +
∑
j,i

λ
n−2

2
j (∇xG) (xi, x j)

C2 = 0
(8.14)

where C2 =
∫
Rn U p

1,0 as before. Hence we can conclude that

I10 = o
(
ε

n−1
n−2 + 1

2
)
. (8.15)
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Regarding the leftmost side of (8.10), one gets in a similar fashion to the derivation of (8.11)
that ∫

∂Bn(xiε ,r)

∂uε
∂ν

∂v`ε
∂ν

dS

= µ`ε(p − ε)

 (n − 2)2γ2
n

∣∣∣S n−1
∣∣∣ κi0κi1

rn−1 −
(n − 2)(n − 1)γn

rn+1 κi2 ·

∫
∂Bn(xiε ,r)

(x − xiε)
∂giε

∂ν
dS

+

∫
∂Bn(xiε ,r)

∂giε

∂ν

∂hiε

∂ν
dS + o

(
ε

n−1
n−2 + 1

2
)]
.

(8.16)

Furthermore, we have∫
∂Bn(xiε ,r)

∇uε · ∇v`εdS

= µ`ε(p − ε)

 (n − 2)2γ2
n

∣∣∣S n−1
∣∣∣ κi0κi1

rn−1 −
n(n − 2)γn

rn+1 κi2 ·

∫
∂Bn(xiε ,r)

(x − xiε)
∂giε

∂ν
dS

+
(n − 2)γn

rn κi2 ·

∫
∂Bn(xiε ,r)

∇giεdS +

∫
∂Bn(xiε ,r)

∇giε · ∇hiεdS + o
(
ε

n−1
n−2 + 1

2
)]
.

(8.17)

and ∫
∂Bn(xiε ,r)

∂uε
∂ν

v`εdS

= µ`ε(p − ε)

− (n − 2)γ2
n

∣∣∣S n−1
∣∣∣ κi0κi1

rn−2 − (n − 2)γn

∣∣∣S n−1
∣∣∣ κi0hiε(xiε)

+
(n − 2)γn

rn κi2 ·

∫
∂Bn(xiε ,r)

(x − xiε)
∂giε

∂ν
dS +

∫
∂Bn(xiε ,r)

∂giε

∂ν
hiεdS + o

(
ε

n−1
n−2 + 1

2
)]
.

(8.18)

Therefore putting (8.11) and (8.15)-(8.18) into (8.10) gives that

(µ`ε(p − ε) − 1)
[
2r

∫
∂Bn(xiε ,r)

∂giε

∂ν

∂hiε

∂ν
dS −

(n − 2)γn

rn−1 κi2 ·

∫
∂Bn(xiε ,r)

∇giεdS

−r
∫
∂Bn(xiε ,r)

∇giε · ∇hiεdS − (n − 2)2γn

∣∣∣S n−1
∣∣∣ κi0hiε(xiε) + (n − 2)

∫
∂Bn(xiε ,r)

∂giε

∂ν
hiεdS

]
= 2

[
(n − 2)γn

∣∣∣S n−1
∣∣∣ (κi1giε(xiε) − κi0hiε(xiε)) + o

(
ε

n−1
n−2 + 1

2
)]
.

(8.19)

Noticing that each component of ∇giε is harmonic, we obtain

1
rn−1κi2 ·

∫
∂Bn(xiε ,r)

∇giεdS =
∣∣∣S n−1

∣∣∣ κi2 · ∇giε(xiε) = o
(
ε

n−1
n−2 + 1

2
)
,

where the second equality was deduced in (8.14). Also, by setting f = giε , g = hiε and ξ = xiε in
the bilinear Pohožaev identity (8.8), one can verify that

r
(∫

∂Bn(xiε ,r)
2
∂giε

∂ν

∂hiε

∂ν
− ∇giε · ∇hiε

)
dS + (n − 2)

∫
∂Bn(xiε ,r)

∂giε

∂ν
hiεdS = 0.
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Subsequently, (8.19) is reduced to

2κi1

(
ε−

1
2 giε(xiε)

)
=

[
2 − (µ`ε(p − ε) − 1) (n − 2)

] (
ε−

1
2 κi0

)
hiε(xiε) + o

(
ε

n−1
n−2

)
.

Now we employ ∇λΥm(λ1, · · · , λm, x1, · · · , xm) = 0 to see that

ε−
1
2 giε(xiε) = C2

−τ(xi)λ
n−2

2
i +

∑
j,i

G(xi, x j)λ
n−2

2
j

 + o(1) = −
C2c2

c1(n − 2)λ
n−2

2
i

+ o(1)

and that ε−
1
2 κi0 = λ

n−2
2

i C2+o(1), where C2 > 0 is the constant that appeared in (8.14) and c1, c2 > 0
are the numbers in (8.9). Consequently, we have(

C0λ
−(n−2)
i + o(1)

)
κi1 = hiε(xiε) + o

(
ε

n−1
n−2

)
= −

[
κi1τ(xiε) +

1
2
κi2 · ∇τ(xiε)

]
+

∑
j,i

(
κ j1G(xiε , x jε) + κ j2 · ∇yG(xiε , x jε)

)
+ o

(
ε

n−1
n−2

)
,

which can be rewritten as

(M1 + o(1))


κ11
...

κm1

 =


−

1
2
κ12 · ∇τ(x1) +

∑
j,1
κ j2 · ∇yG(x1, x j)

...

−
1
2
κm2 · ∇τ(xm) +

∑
j,m
κ j2 · ∇yG(xm, x j)


+ o

(
ε

n−1
n−2

)
.

This is nothing but (8.9). �

Proof of Proposition 8.5.1. According to (8.4) and Proposition 8.4.4, we have

ε−
n−1
n−2 κi2k = ε−

n−1
n−2

∫
Bn(xiε ,r)

(y − xiε)k

(
up−1−ε
ε v`ε

)
(y)dy = λn−1

i d`,i,k

(
−

∫
Rn

x1U p−1
1,0

∂U1,0

∂x1

)
+ o(1)

= λn−1
i d`,i,k p−1C1 + o(1)

for any i ∈ {1, · · · ,m} and k ∈ {1, · · · , n}. Hence the proposition follows from (8.3), Corollary
8.4.2 (or Corollary 8.4.6) and Lemma 8.5.5. �

8.6 Characterization of the `-th eigenvalues, m + 1 ≤ ` ≤ (n +

1)m

Our goal in this section is to perform the proof of Theorem 8.1.3. For the convenience, we restate
it in the following proposition.
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Proposition 8.6.1. LetA2 be the matrix which was introduced in the statement of Theorem 8.1.3
and ρ2

` the (` − m)-th eigenvalue of A2. For m + 1 ≤ ` ≤ (n + 1)m, the `-th eigenvalue µ`ε for
linear problem (8.5) satisfies that

µ`ε = 1 − c0ρ
2
`ε

n
n−2 + o

(
ε

n
n−2

)
where c0 = (C1C2)/(pC5) > 0. (8.1)

In addition, the nonzero vector d` ∈ Rmn defined via (8.16) is an eigenfunction ofA2 correspond-
ing to ρ2

` and satisfies dT
`1
· dT

`2
= 0 if m + 1 ≤ `1 , `2 ≤ (n + 1)m.

The next lemma contains a key computation for the proof of Proposition 8.6.1.

Lemma 8.6.2. Define

J r
jl;ik =

∫
∂Bn(xi,r)

[
∂

∂νx

(
∂G
∂xk

(x, x j)
)

G(x, xl) −
∂G
∂xk

(x, x j)
∂G
∂νx

(x, xl)
]

(8.2)

and

K r
jl;ikq =

∫
∂Bn(xi,r)

[
∂

∂νx

(
∂G
∂xk

(x, x j)
)
∂G
∂yq

(x, xl) −
∂G
∂xk

(x, x j)
∂

∂νx

(
∂G
∂yq

(x, xl)
)]

(8.3)

for each i, j, l ∈ {1, · · · ,m} and k, q ∈ {1, · · · , n}, where the outward unit normal derivative ∂
∂νx

acts over the x-variable of Green’s function G = G(x, y). Then they are the value independent of
r > 0 and calculated as

J r
jl;ik =



0 if j , i and l , i,
∂G
∂xk

(xi, xl) if j = i and l , i,

∂G
∂xk

(xi, x j) if j , i and l = i,

−
∂τ

∂xk
(xi) if j = l = i,

and K r
jl;ikq =



0 if j , i and l , i,
∂2G
∂xk∂yq

(xi, xl) if j = i and l , i,

∂2G
∂xk∂xq

(xi, x j) if j , i and l = i,

−
1
2

∂2τ

∂xk∂xq
(xi) if j = l = i.

Proof. As explained in the proof of Lemma 8.4.5, the integral J r
jl;ik in (8.2) is independent of

r > 0, so one may take r → 0 to find its value. We compute each J r
jl;ik by considering four

mutually exclusive cases categorized according to the relation of indices j, l and i.

(1) If j, l , i, then J r
jl;ik vanishes.

(2) Suppose that j = i and l , i. Since

∂

∂νx

(
∂G
∂xk

(x, xi)
)

= (n − 2)(n − 1)γn
(x − xi)k

rn+1 −
(x − xi)

r
· ∇x

(
∂H(x, xi)
∂xk

)
on ∂Bn(xi, r) and

G(x, xl) = G(xi, xl) + (x − xi) · ∇xG(xi, xl) + O
(
|x − xi|

2
)
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near the point xi, we discover

J r
il;ik =

∫
∂Bn(xi,r)

[
∂

∂νx

(
∂G
∂xk

(x, xi)
)

G(x, xl) −
∂G
∂xk

(x, xi)
∂G
∂νx

(x, xl)
]

=
∂G
∂xk

(xi, xl).

(3) In the case that j , i and l = i, a similar argument in (2) applies, yielding

J r
ji;ik =

∂G
∂xk

(xi, x j).

(4) Assume that j = l = i. Then Green’s identity (8.12) and Lemma 8.2.11 show that

J r
ii;ik =

∫
∂Bn(xi,r)

[
∂

∂νx

(
∂G
∂xk

(x, xi)
)

G(x, xi) −
∂G
∂xk

(x, xi)
∂G
∂νx

(x, xi)
]

dS

= −

∫
∂Ω

∂G
∂xk

(x, xi)
∂G
∂νx

(x, xi)dS = −

∫
∂Ω

(
∂G
∂νx

(x, xi)
)2

νk(x)dS = −
∂τ

∂xk
(xi).

We can deal with (8.3) in a similar manner, which we left to the reader. �

Proof of Proposition 8.6.1. We reconsider (8.23), but in this time we allow to put any i ∈ {1, · · · ,m}
and xk (k ∈ {1, · · · , n}) in the place of i0 and x1, respectively. By multiplying ε−

1
2−

n−1
n−2 on both sides,

we obtain∫
∂Bn(xiε ,r)

 ∂∂ν
∂

(
ε−

1
2 uε

)
∂xk

 · (ε− n−1
n−2 v`ε

)
−
∂
(
ε−

1
2 uε

)
∂xk

·
∂
(
ε−

n−1
n−2 v`ε

)
∂ν

 dS

= (p − ε)
(
µ`ε − 1
ε

n
n−2

)
·

[
ε−

(n−4)
2(n−2)

∫
Bn(xiε ,r)

up−1−ε
ε

∂uε
∂xk

v`ε

]
. (8.4)

The right-hand side of (8.4) can be computed as in (8.24), which turns out to be(
µ`ε − 1
ε

n
n−2

) [
−λ

n−4
2

i d`,i,k pC5 + o(1)
]
.

Meanwhile, if we let λ ∈ Rm be a nonzero column vector

λ =

(
λ

n−2
2

10 , · · · , λ
n−2

2
m0

)T
,

then (8.11) in Lemma 8.2.6 can be written in a vectorial form as ε−1/2uε(x) → C2G(x)λ (see
(8.1)). Hence, with the aid of Proposition 8.5.1 and Lemma 8.6.2, it is possible to take ε → 0 in
the left-hand side of (8.4) to derive

C1C2λ
T

∫
∂Bn(xi,r)


(
∂

∂ν

∂G

∂xk
(x)

)T

G(x) −
(
∂G

∂xk
(x)

)T (
∂G

∂ν
(x)

) dx · M−1
1 P

+

∫
∂Bn(xi,r)


(
∂

∂ν

∂G

∂xk
(x)

)T

G̃(x) −
(
∂G

∂xk
(x)

)T ∂G̃
∂ν

(x)
 dx

 d`

= C1C2λ
T
[
JikM

−1
1 P +K ik

]
d`
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where Jik is an m × m matrix having J r
jl;ik defined in (8.2) as its components, namely, Jik =(

J r
jl;ik

)
1≤ j,l≤m

for each fixed i, k ∈ {1, · · · ,m}, and K ik =
(
K jb;ik

)
1≤ j≤m,1≤b≤mn

is an m × mn matrix
whose components are

K j,(l−1)n+q;ik = λ
n
2
l K

r
jl;ikq =



0 if j , i and l , i,

λ
n
2
l

∂2G
∂xk∂yq

(xi, xl) if j = i and l , i,

λ
n
2
i
∂2G
∂xk∂xq

(xi, x j) if j , i and l = i,

−λ
n
2
i

1
2

∂2τ

∂xk∂xq
(xi) if j = l = i,

for j, l, i ∈ {1, · · · ,m} and q, k ∈ {1, · · · , n}. From direct computations especially using that

λi

(
λT
Jik

)
j
=


λ

n
2
i
∂G
∂xk

(xi, x j) if i , j,

λi
∑
l,i
λ

n−2
2

l

∂G
∂xk

(xi, x j) − λ
n
2
i
∂τ

∂xk
(xi) = −λ

n
2
i

1
2
∂τ

∂xk
(xi) if i = j,

for λT
Jik =

((
λT
Jik

)
1
, · · · ,

(
λT
Jik

)
m

)
∈ Rm, we conclude

A2d` =
[
PTM−1

1 P + Q
]

d` =

(
−

pC5

C1C2

)
lim
ε→0

(
µ`ε − 1
ε

n
n−2

)
d` = ρ2

`d`

with matricesM1, P and Q given in (8.13), (8.17) and (8.18). The claim that dT
`1
· dT

`2
= 0 can be

proved as in the proof of Theorem 8.1.1, or particularly, (8.5). The proof is done. �

8.7 Estimates for the `-th eigenvalues and eigenfunctions, (n+

1)(m + 1) ≤ ` ≤ (n + 2)m

We now establish Theorem 8.1.5 by obtaining a series of lemmas. In the first lemma we will
compute the limit of the `-th eigenvalues as ε → 0 when (n + 1)(m + 1) ≤ ` ≤ (n + 2)m.

Lemma 8.7.1. If (n + 1)(m + 1) ≤ ` ≤ (n + 2)m, we have

lim
ε→0

µ`ε = 1.

Proof. By virtue of Corollary 8.4.2 or Corollary 8.4.6, it is enough to show that lim supε→0 µ`ε ≤

1. Referring to (8.1), we letV be a vector space whose basis is

{uε,i : 1 ≤ i ≤ m} ∪ {ψε,i,k : 1 ≤ i ≤ m, 1 ≤ k ≤ n + 1}.
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If we write f ∈ V \ {0} as

f =

m∑
i=1

fi with fi = ai0uε,i +

n+1∑
k=1

aikψε,i,k

for some (a10, · · · , a1(n+1), · · · , am0, · · · , am(n+1)) ∈ Rm(n+1) \ {0}, then we have

µ((n+2)m)ε = min
W⊂H1

0 (Ω),
dimW=(n+2)m

max
f∈W\{0}

∫
Ω
|∇ f |2

(p − ε)
∫

Ω
f 2up−1−ε

ε

≤ max
f∈V\{0}

∫
Ω
|∇ f |2

(p − ε)
∫

Ω
f 2up−1−ε

ε

≤ max
f∈V\{0}

max
1≤i≤m

∫
Ω
|∇ fi|

2

(p − ε)
∫

Ω
f 2
i up−1−ε

ε

:= max
f∈V\{0}

max
1≤i≤m

ai,

so it is sufficient to check that ai ≤ 1 + o(1). If we denote a = ai for a fixed i and modify the
definition of zε in the proof of Proposition 8.4.1 into zε =

∑n
k=1 ak

∂uε
∂xk

+ an+1wiε , then we again
have a = 1 +b/c. (The definition of b, c and wiε can be found in (8.4), (8.5) and (8.14).) Moreover
computing each of the term of b and c as we did in the proof of Proposition 8.4.1, we find

b ≤ C
(
|ā|2 + a2

n+1

)
ε and c ≥ Cε−

2
n−2 |ā|2 + Ca2

n+1 ≥ C
(
|ā|2 + a2

n+1

)
,

from which one can conclude that µ((n+2)m)ε ≤ 1 + O(ε). For more detailed computations, we ask
for the reader to check the proof of Theorem 1.4 in [GP]. �

The following lemma is the counterpart of Proposition 8.4.4 for (n+1)(m+1) ≤ ` ≤ (n+2)m.

Lemma 8.7.2. Let (n + 1)(m + 1) ≤ ` ≤ (n + 2)m. For each i ∈ {1, · · · ,m} and d`,i,n+1 ∈ R,
converges to

ṽ`iε ⇀ d`,i,n+1

(
∂U1,0

∂λ

)
weakly in H1(Rn).

Proof. Lemma 8.4.3 (1) holds in this case also by Lemma 8.7.1. Therefore it is enough to show
that the vector d` in (8.16) is zero.

As in (8.5), the orthogonality of v`ε and v`1ε for m + 1 ≤ `1 ≤ (n + 1)m implies dT
` · d

T
`1

= 0.
However, we also know from Proposition 8.6.1 that {dm+1, · · · ,d(n+1)m} serves a basis for Rmn.
Hence d` = 0, concluding the proof. �

As a consequence, we reach at

Proposition 8.7.3. Let A3 be the matrix (8.20). For (n + 1)(m + 1) ≤ ` ≤ (n + 2)m, if ρ3
` is the

(`− (m + 1)n)-th eigenvalue ofA3, then it is positive and the `-th eigenvalue µ`ε to problem (8.5)
is estimated as

µ`ε = 1 + c1ρ
3
`ε + o(ε) where c1 =

(n − 2)2C2C3

2(n + 2)C4
. (8.1)

Furthermore, the nonzero vector d̂` in (8.21) is a corresponding eigenvector to ρ3
` and d̂T

`1
·d̂T

`2
= 0

if (n + 1)(m + 1) ≤ `1 , `2 ≤ (n + 2)m.
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Proof. Denote d`,i = d`,i,n+1 in the previous lemma. Then we can recover (8.8) from Lemma
8.7.1. Hence the arguments in the proof of Proposition 8.4.4 works, giving (8.20) and (8.19) to
us again. From them, we conclude that ρ3

` is positive, d̂` is an eigenvector corresponding to ρ3
`

and (8.1) is valid. The last orthogonality assertion is deduced in the same way as one in Theorem
8.1.1. See (8.5). �
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Appendix

8.A A moving sphere argument

In this appendix, we show the following proposition by employing the moving sphere argument
given in [LZh] (refer also to [ChL]). Note that it implies Proposition 8.2.3 at once.

Proposition 8.A.1. Let r0 > 0 be fixed and p = (n + 2)/(n − 2) as above. Suppose that a family
{uε}ε of positive C2-functions which satisfy

−∆uε = up−ε
ε in Bn (

0, ε−α0r0
)
, ‖uε‖L∞(Bn(0,ε−α0 r0)) ≤ c

for some c > 0, and
lim
ε→0

uε(x) = U1,0(x) weakly in H1(Rn). (8.2)

Then there are constants C > 0 and 0 < δ0 < r0 independent of ε > 0 such that

uε(x) ≤ CU1,0(x) for all x ∈ Bn (
0, ε−α0δ0

)
.

Before conducting its proof, we introduce Green’s function GR of −∆ in Bn(0,R) for each R > 0
with zero Dirichlet boundary condition. By the scaling invariance, we have

GR(x, y) = G1

( x
R
,

y
R

) 1
Rn−2 for x, y ∈ Bn(0,R).

Thus we can decompose Green’s function in Bn(0,R) into its singular part and regular part as
follows:

GR(x, y) =
γn

|x − y|n−2 −
1

Rn−2 H1

( x
R
,

y
R

)
for x, y ∈ Bn(0,R). (8.3)

See (8.2) for the definition of the normalizing constant γn.

Now we begin to prove Proposition 8.A.1. By (8.2) and elliptic regularity, for arbitrarily given
ζ1 > 0 and any compact set K ⊂ Rn, there is ε1 > 0 such that it holds

‖uε − U1,0‖C2(K) ≤ ζ1 for ε ∈ (0, ε1). (8.4)
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Let us define the Kelvin transform of uε:

uλε (x) =

(
λ

|x|

)n−2

uε
(
xλ

)
, xλ =

λ2x
|x|2

for |xλ| < ε−α0r0 (8.5)

and the difference wλ
ε = uε − uλε between uε and it. Then we have

− ∆wλ
ε = up−ε

ε −

(
λ

|x|

)(n−2)ε (
uλε

)p−ε
≥ up−ε

ε −
(
uλε

)p−ε
= ξε(x)wλ

ε for |x| ≥ λ (8.6)

where

ξε(x) =


up−ε
ε −

(
uλε

)p−ε

uε − uλε
(x) if uε(x) , uλε (x),

(p − ε)up−1−ε
ε (x) if uε(x) = uλε (x).

Lemma 8.A.2. For any ζ2 > 0, there exist small constants δ1 > 0 and ε2 > 0 such that

min
|y|=r

uε(y) ≤ (1 + ζ2)U1,0(r) for 0 < r := |x| ≤ ε−α0δ1 and any ε ∈ (0, ε2). (8.7)

Proof. We first choose a candidate δ1 ∈ (0, r0) for which (8.7) will have the validity. Fix a
sufficiently small value η1 > 0 and a number R0 > 0 such that it holds

uλε (x) ≤
(
1 +

ζ2

4

)
βn|x|2−n for any 0 < λ ≤ 1 + η1 and |x| ≥ R0 (8.8)

provided ε > 0 small enough, where βn = (n(n − 2))p−1 is the constant appeared in (??). Take
λ1 = 1 − η1 and λ2 = 1 + η1. If λ = λ1, because Uλ

1,0 = Uλ2,0 for any λ > 0 and uε → U1,0 in
C1-uniformly over compact subsets of Rn as ε → 0, by enlarging R0 > 0 if necessary, we can
find a number η2 > 0 small such that

wλ1
ε (x) > 0 for λ1 < |x| ≤ R0, uλ1

ε (x) ≤ (1 − 2η2)βn|x|2−n for |x| ≥ R0 (8.9)

and ∫
Bn(0,R0)

up−ε
ε (x)dx ≥

(
1 −

η2

2

) ∫
Rn

U p
1,0(x)dx (8.10)

for sufficiently small ε > 0. On the other hand, provided δ1 > 0 small enough, the inequality

uε(x) ≥ (1 − η2)βn|x|2−n for R0 ≤ |x| ≤ ε−α0δ1 (8.11)

can be reasoned in the following way. If we choose a function ûε which solves

−∆ûε = up−ε
ε in Bn (

0, ε−α0
)

and ûε = 0 on
{
|x| = ε−α0

}
,

then the comparison principle tells us that uε ≥ ûε . Since Green’s function is always positive, we
can make

H1
(
ε−α0 x, ε−α0y

)
≤
η2γn

4
·
ε−α0(n−2)

|x − y|n−2 for x, y ∈ Bn (
0, ε−α0δ1

)
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by taking δ1 small, and the relation |x− y| ≤ (1− 1/l)|x| holds for |x| ≥ lR0 and |y| ≤ R0 given any
l ∈ (1,∞), we see from (8.3) and (8.10) that

ûε(x) =

∫
Bn(0,ε−α0)

up−ε
ε (y)Gε−α0 (x, y)dy ≥

(
1 −

η2

4

) ∫
Bn(0,ε−α0δ1)

up−ε
ε (y)

γn

|x − y|n−2 dy

≥

(
1 −

η2

2

) (∫
Bn(0,R0)

up−ε
ε (y)dy

)
γn

|x|n−2 ≥ (1 − η2)
(∫
Rn

U p
1,0(y)dy

)
γn

|x|n−2

= (1 − η2)
βn

|x|n−2 for lR0 ≤ |x| ≤ ε−α0δ1

by choosing l large enough. Also if |x| ≤ lR0, the uniform convergence of uε to U1,0 implies
uε(x) ≥ (1 − η2)βn|x|2−n for ε > 0 sufficiently small. This shows the validity of (8.11).

Fixing δ1 > 0 for which (8.11) is valid, suppose that (8.7) does not hold on the contrary. Then
there are sequences {εk}

∞
k=1 and {rk}

∞
k=1 such that εk → 0, rk ∈ (0, ε−α0δ1) and

min
|x|=rk

uεk(x) > (1 + ζ2)U1,0(rk).

Set uk = uεk for brevity. Since uk → U1,0 uniformly on any compact set, it should hold that
rk → ∞. Therefore

min
|x|=rk

uk(x) ≥
(
1 +

ζ2

2

)
βnr2−n

k . (8.12)

To deduce a contradiction, let us apply the moving sphere method to wλ
k = uk − uλk for the

parameters λ1 ≤ λ ≤ λ2. Define λ̄k by

λ̄k = sup
{
λ ∈ [λ1, λ2] : wµ

k ≥ 0 in Σµ for all λ1 ≤ µ ≤ λ
}

where Σµ = {x ∈ Rn : µ < |x| < rk}.

We claim that λ̄k = λ2 for sufficiently large k ∈ N. First of all, putting together with (8.9) and
(8.11), we discover that wλ1

k > 0 in Σλ1 , so λ̄k ≥ λ1. Recall from (8.6) that

−∆wλ̄k
k + (ξεk)−w

λ̄k
k ≥ (ξεk)+wλ̄k

k ≥ 0 in Σλ̄k .

Moreover, from (8.12) and (8.8) we have wλ̄k
k > 0 on ∂Bn(0, rk). Thus by the maximum principle

and Hopf’s lemma we have

wλ̄k
k > 0 in Σλ̄k and

∂wλ̄k
k

∂ν
< 0 on ∂Bn

(
0, λ̄k

)
where ν is the unit outward normal vector. However this means that if λ̄k < λ2, then wµ

k ≥ 0 in
Σµ even after taking a slightly larger value of µ than λ̄k, which contradicts the maximality of λ̄k.
Hence our claim is justified. Consequently, taking a limit k → ∞ to wλ2

k ≥ 0 in Σλ2 allows one to
get

U1,0(x) ≥ Uλ2
1,0(x) in |x| ≥ λ2,

but it cannot be possible since λ2 > 1. Thus (8.7) should be true. �
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The following lemma completes our proof of Proposition 8.A.1.

Lemma 8.A.3. For some constant C > 0 and parameter δ0 ∈ (0, δ1), we have

uε(x) ≤ CU1,0(x) for |x| ≤ ε−α0δ0

provided that ε > 0 is sufficiently small. Here δ1 > 0 is the number chosen in the proof of the
previous Lemma.

Proof. Argue as in the proof of Lemma 2.4 in [LZh] employing Lemma 8.A.2 above. In that
paper, the statement of the lemma as well as its proof are written for a sequence {uεk}

∞
k=1 of

solutions, but they apply to a family {uε}ε as well. To proceed our proof, we substitute Gk, Rk and
vk in [LZh] with Dirichlet Green’s function Gε−α0δ1 of −∆ in Bn(0, ε−α0δ1), Rε = ε−α0δ1δ2 and uε
where δ2 ∈ (0, 1) is a sufficiently small number. �
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Chapter 9

Privileged Coordinates and Tangent
Groupoid for Carnot Manifolds

9.1 Introduction

In this paper, we construct some natural tangent groupoids for equi-regular Carnot-Caratheodory
space. For the convenience of exposition, we consider some types of manifold M whose tan-
gent bundle equiped with a series of subbundles 0 = H0 ⊂ H1 ⊂ · · · ⊂ Hm = T M. Ad-
ditionally we assume the dimension of each subbundle is constant through the manifold and
[Hi,H j] ⊂ Hi+ j for i + j ≤ m. Let us call it equi-regular flagged manifolds. This setting is suitable
for studying Carnot-Caratheordoy space where some k vector fields X1, · · · Xk generates a ba-
sis of tangent space at each point through the Lie bracket actions [Xi1[Xi2 · · · [Xir−1 , Xir ]]] · · · ],
with an additional assumption of the equi-regular cases which means that for each s ∈ N,
dim{[Xi1[Xi2 · · · [Xir−1 , Xir ]] · · · ](p)|r ≤ s]} is constant for p ∈ Rn.

In Section 2, we review the defintiion and examples of Carnot manifolds. In Section 3, we
study the tangent group bundle of carnot manifolds. Section 4 is devoted to study privileged
coordinates for Carnot manifolds. In Section 4, we will see how privileged coordinates enables us
to approximate at each point vector fields by vector fields that generate a nilpotent Lie algebra. In
Section 6, we define the notion of Carnot coordinates, which is a intrinsic notion of the privileged
coordinates. The asymptotic formular in composition of the privileged coordinates will be also
given. Using that result, we will construct a tangent groupoid in Seciton 7.
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MANIFOLDS

9.2 Carnot Manifolds: Definitions and Main Examples

In what follows, given a manifold M and subbundles H1 and H2 of T M, we denote by [H1,H2]
the distribution given by

[H1,H2] :=
⊔
a∈M

{
[X1, X2](a); X j section of H j near a

}
.

Definition 9.2.1. A Carnot manifold is a pair (M,H), where M is a manifold and H = (H0, . . . ,Hr)
is a filtration of T M by subbundles H0 = {0} ⊂ H1 ⊂ · · · ⊂ Hr−1 ⊂ Hr = T M such that

[Hw,Hw′] ⊂ Hw+w′ when w + w′ ≤ r.

Let (Mn,H) be an n-dimensional Carnot manifold. For j = 1, . . . , n we set

w j = min{w ∈ {1, . . . , r}; j ≤ rk Hw}.

Definition 9.2.2. An H-frame near a point a ∈ M is a local tangent frame (X1, . . . , Xn) near a
such that, for all w = 1, . . . , r, the vector fields X j, w j = w, are sections of Hw.

Remark 9.2.3. If (X1, . . . , Xn) is an H-frame near a, then, for all w = 1, . . . , r, the vector fields
X j, w j ≤ w, form a local frame of Hw near a.

9.3 The Tangent Group Bundle of a Carnot Manifold

In this section, we present an intrinsic construction of the tangent group bundle of a Carnot
manifold. In what follows, we let (Mn,H) be an n-dimensional Carnot manifold.

9.3.1 The tangent Lie algebra bundle gM

The filtration H = (H0, . . . ,Hr) has a natural grading defined as follows. For w = 1, . . . , r set
gwM = Hw/Hw−1, and define

gM := g1M ⊕ · · · ⊕ gr M. (9.1)

Given a ∈ M and X ∈ Hw,a, we shall denote by Ẋ its class in gwa M. In particular, if (X1, . . . , Xn) is
a local H-frame near a, then the classes Ẋ j(a), w j = w, form a basis of gwa M.

In what follows we let w and w′ be weights in {1, . . . , r} such that w + w′ ≤ r.

Lemma 9.3.1. Given a ∈ M let X (resp., Y) be a local section of Hw (resp., Hw′) near a (which
we regard as a vector field). Then the class of [X,Y](a) in gw+w′

a M depends only on the respective
classes of X(a) and Y(a) in gwa M and gw

′

a M.
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Proof. Let (X1, . . . , Xn) be an H-frame near a. Then {X j; w j ≤ w} and {X j; w j ≤ w} are local
frames near a of Hw and Hw′ , respectively. Therefore, near x = a we may write

X =
∑
w j≤w

b j(x)X j and Y =
∑

wk≤w′
ck(x)Xk,

where the b j(x) and ck(x) are smooth functions. Set X[w] =
∑

w j=w b j(x)X j and Y[w′] =
∑

wk=w′ ck(x)Xk.
Then

X = X[w] + X′ and Y = Y[w′] + Y ′,

where X′ and Y ′ are sections of Hw−1 and Hw′−1, respectively. In particular, the respective classes
of X(a) and Y(a) in gawM and gaw′M depend only on the coordinate vectors (b j(a))w j=w and (ck(a))wk=w′ .

In addition, we have

[X,Y] = [X[w],Y[w′]] + [X[w],Y ′] + [X′,Y].

As [X[w],Y ′] and [X′,Y] are sections of Hw+w′−1 we see that

[X,Y](a) = [X[w],Y[w′]](a) mod Hw+w′−1(a).

We observe that [X[w],Y[w′]] is equal to∑
w j=w
wk=w′

[b jX j, ckXk] =
∑
w j=w
wk=w′

b jck[X j, Xk] +
∑
w j=w
wk=w′

(
b jX j(ck)Xk − ckXk(b j)X j

)
.

As all the vectors fields b jX j(ck)Xk − ckXk(b j)X j are sections of Hw+w′−1, we deduce that

[X,Y](a) =
∑
w j=w
wk=w′

b j(a)ck(a)[X j, Xk](a) mod Hw+w′−1(a).

Thus the class of [X,Y](a) in gaw+w′M depends only on the coordinate vectors (b j(a))w j=a and
(ck(a))wk=w′ , and hence depends only on the respective classes of X(a) and Y(a) in gawM and
gaw′M. The proof is complete. �

Let a ∈ M. It follows from Lemma 9.3.1 there is a unique bilinear map Lw,w′(a) : gwa M ×
gw
′

a M → gw+w′
a M such that, for all sections X of Hw near a and sections Y of Hw′ near a, we have

Lw,w′(a) (X(a),Y(a)) = class of [X,Y](a) in gw+w′
a M.

We note that this definition implies that

Lw,w′(a)(X,Y) = −Lw′,w(a)(Y, X) ∀X ∈ gwa M ∀Y ∈ gw
′

a M. (9.2)

The collection of the bilinear maps Lw,w′(a), a ∈ M, form a bilinear bundle map

Lw,w′ : gwM × gw
′

M → gw+w′M.

We then have the following result.
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Lemma 9.3.2. Lw,w′ is a smooth bilinear bundle map.

Proof. Given a ∈ M, let (X1, . . . , Xn) be a (smooth) H-frame near a. We know that the sections
Ẋi with wi = w (resp., wi = w′, wi = w + w′) form a (smooth) local frame of gwM (resp., gw

′

M,
gw+w′M) near a. Moreover, the fact that [Hwi ,Hw j] ⊂ Hwi+w j for wi + w j ≤ r implies that, near a,
there are smooth functions Lk

i j(x), wk ≤ wi + w j, such that, near x = a, we can write

[Xi, X j] =
∑

wk≤wi+w j

Lk
i j(x)Xk. (9.3)

Therefore, when wi = w and w j = w′, taking classes in gw+w′M gives

Lw,w′(x)
(
Ẋi(x), Ẋ j(x)

)
=

∑
wk=w+w′

Lk
i j(x)Ẋk(x) near x = a. (9.4)

As the coefficients Lk
i j(x) depend smoothly on x we deduce that Lw,w′ is a smooth bilinear bundle

map near x = a. This proves the lemma. �

Definition 9.3.3. The bilinear bundle map [·, ·] : gM × gM → gM is defined as follows. For
a ∈ M and X j ∈ g

w j
a M, j = 1, 2, we set

[X1, X2]a =

{
Lw1,w2(a)(X1, X2) if w1 + w2 ≤ r,
0 if w1 + w2 > r.

(9.5)

Remark 9.3.4. We note that

[gwM, gw
′

M] ⊂ gw+w′M if w + w′ ≤ r and [gwM, gw
′

M] = {0} if w + w′ > r.

Defining recursively the commutator vector bundles g[w]M, w = 1, 2, . . ., by g[1]M = gM and
g[w+1]M = [gM, g[w]M], we see that

g
[w]M ⊂ gw+1 if w < r and g

[w]M = {0} if w ≥ r.

Lemma 9.3.5. The bilinear bundle map [·, ·] is a smooth field of Lie brackets on gM.

Proof. As the restriction of [·, ·] on gw1 M× gw2 M either agrees with Lw1,w2 if w + w′ ≤ r or is zero
if w1 + w2 > r, it follows from Lemma 9.3.2 that [·, ·] is a smooth bilinear bundle map. Moreover,
it follows from (9.2) that [·, ·] is antisymmetric. Therefore, it only remains to check that, for any
a ∈ M, the bilinear map [·, ·]a satisfies Jacobi’s identity on gaM.

For i = 1, 2, 3 let Xi ∈ g
wi
a M. If w1 + w2 + w3 > r, then all three brackets [X1, [X2, X3],

[X1, [X2, X3] and [X1, [X2, X3] vanish, and hence trivially satisfy Jacobi’s identity. Assume that
w1 + w2 + w3 ≤ r. For i = 1, 2, 3 let X̃i be a section of Hwi near a such that X̃i(a) represents Xi in
g

wi
a M. By definition each bracket [Xi, X j](a) is represented by [X̃i, X̃ j](a) represents and each two-

fold bracket [Xi, [X j, Xk](a)](a) is represented by [X̃i, [X̃ j, X̃k]](a). Therefore, the Jacobi’s identity
for vector fields implies that

[X1, [X2, X3]a]a + [X2, [X3, X1]a]a + [X3, [X1, X2]a]a = 0.

This shows that [·, ·]a satisfies Jacobi’s Identity on gaM. The proof is complete. �
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Combining the above lemma with Remark 9.3.4 gives the following result.

Proposition 9.3.6. (gM, [·, ·]) is a smooth bundle of step r nilpotent Lie algebras. Moreover, the
grading (9.1) is a Lie algebra bundle grading.

Definition 9.3.7. (gM, [·, ·]) is called the tangent Lie algebra bundle of (M,H).

Remark 9.3.8. Let (X1, . . . , Xn) be an H-frame near a point a ∈ M. For j = 1, . . . , n let us denote
by Ẋ j the class of X j in gw j M. Then (Ẋ1, . . . , Ẋn) is a local frame of gM near x = a. The structure
constants of gM with respect to this frame are computed as follows. As in (9.3), there are unique
smooth functions Lk

i j(x), wk ≤ wi + w j, such that

[Xi, X j] =
∑

wk≤wi+w j

Lk
i j(x)Xk,

Then using (9.4) and (9.5) we get

[Ẋi, Ẋ j] =


∑

wk=wi+w j

Lk
i j(x)Ẋl if wi + w j ≤ r,

0 if wi + w j > r.
(9.6)

9.3.2 The tangent Lie group bundle GM

The nilpotent Lie algebra bundle gM is the Lie algebra bundle of a nilpotent Lie group bundle
GM defined as follows. Given a ∈ M the Lie group structure on GaM is obtained by taking
the exponential map expa : gaM → GaM to be the identity and using the Campbell-Hausdorff
formula to define the product law on GaM. More explicitly, for X ∈ ga, we let adX : ga → ga be
the adjoint endomorphism of X, i.e.,

adX(Y) = [X,Y]a ∀Y ∈ ga. (9.7)

We note that if X ∈ gwa M, then adX maps gw
′

a M to gw+w′
a M if w + w′ ≤ r and vanishes on g(w

′)
a

if w + w′ > r. Thus, adX is a nilpotent endomorphism of gaM. Let us denote by Der(gaM) the
algebra generated by the adjoint endomorphisms adX, X ∈ gaM. Then, any A ∈ Der(gaM) maps
gwa M to gw+1

a M for all w < r and vanishes on gr M, so that A is a nilpotent endormphism of gaM.
Therefore, given any power series f (z) =

∑
k≥0 akzk, ak ∈ C, we may define

f (A) :=
∑
k≥0

akAk =
∑

0≤k≤r

akAk.

In addition, we set

φ(z) = (z + 1)
log(1 + z)

z
= 1 −

∑
k≥1

(−1)k

k(k + 1)
zk.
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Bearing this in mind, given X and Y in GaM, the Campbell-Housdorff formula gives a formula
for the the product of X and Y . Namely,

X · Y = X +

(∫ 1

0
Φ(eadX es adY − I)ds

)
Y,

= X + Y +
1
2

[X,Y] +
1
12

[X, [X,Y]] −
1

12
[Y, [X,Y]] + · · · .

(9.8)

It follows from (9.8) and the smoothness of the Lie bracket of gM that the above formula defines
a smooth family of products GaM ×GaM → GaM.

Lemma 9.3.9. Let X ∈ GaM. Then X−1 = −X.

Proof. As adX X = 0, we see that f (adX)(−X) = f (0) for any power series f (z). Bearing this in
mind we have

X · (−X) = X +

∫ 1

0
Φ(e(1−s) adX − I)(−X)ds = X +

∫ s

0
(−X)ds = 0.

Likewise (−X) · X = 0. Therefore −X is the inverse of X. �

Given a ∈ M, the grading (9.1) defines a family of anisotropic dilations δt : x → t · x, t > 0,
on gaM given by

t · X = twX ∀X ∈ gwa M. (9.9)

We note that the fact that gaM is a graded Lie algebra implies that

[t · X, t · Y]a = t · [X,Y] ∀X,Y ∈ gaM ∀t > 0. (9.10)

The action of δt on Der(gaM) is given by

δt(A) := (δt)∗A = δt ◦ A ◦ δ−1
t . (9.11)

In particular, it follows from (9.7) and (9.10) that

δt(ad X) = adt·X ∀X ∈ gaM.

Lemma 9.3.10. Let a ∈ M and t > 0. Then

t · (X · Y) = (t · X) · (t · Y) ∀X,Y ∈ GaM.

Proof. We note that if A and B are in Der(gaM), then δt(AB) = δt(A)δt(B). More generally, for
any 2-variable power series g(z, y) =

∑
aklzkyl we have δt (g(A, B)) = g (δt(A), δt(B)). Applying

this to g(z, y) =
∫ 1

0
Φ(ezesy − 1)ds and using (9.11) we see that

δt

(∫ 1

0
Φ(eadX es adY − I)ds

)
=

∫ 1

0
Φ(eadt·X es adt·Y − I)ds.
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Therefore, the dilation t · (X · Y) = δt(X · Y) is equal to

δt(X) + δt

(∫ 1

0
Φ(eadX es adY − I)ds

)
δt(Y) = t · X +

(∫ 1

0
Φ(eadt·X es adt·Y − I)ds

)
(t · Y)

= (t · X) · (t · Y).

This proves the lemma. �

For w = 1, . . . , r set GwM = gwM. We note that X ∈ GwM if and only if t · X = twX for
all t > 0. Moreover, if w > r and t · X = twX for all t > 0, then X = 0. Combining this with
Lemma 9.3.10 it then can be shown that

GwM ·Gw′M ⊂ Gw+w′M if w + w′ ≤ r and GwM ·Gw′M = {0} if w + w′ > r.

We summarize the previous discussion in the following statement.

Proposition 9.3.11. GM is a smooth graded step r nilpotent Lie group bundle.

Definition 9.3.12. GM is called the tangent Lie group bundle of (M,H).

9.3.3 Description of gaM in terms of left-invariant vector fields

Let (X1, . . . , Xn) be an H-frame near a point a ∈ M. As in (9.3) near a there are unique smooth
functions Lk

i j(x), wk ≤ wi + w j, such that

[Xi, X j] =
∑

wk≤wi+w j

Lk
i j(x)Xk.

For i = 1, . . . , n let Ẋi(a) the class of Xi(a) in gwi
a M. Then (Ẋ1(a), . . . , Ẋn(a)) is basis of gaM, and

hence defines coordinates (x1, . . . , xn) on gaM. In these coordinates the dilations (9.9) are given
by

δt(x1, · · · , xn) = (tw1 x1, · · · , twn xn), t > 0.

Let X =
∑

i≤n xiẊi(a) and Y =
∑

i≤n yiẊi(a) be in gaM. Then using Remark 9.3.8 we get

adX Y =

n∑
i, j=1

xiy j[Ẋi(a), Ẋ j]a =

n∑
i, j=1

∑
wk=wi+w j

xiy jLi j(a).

This shows that the matrix Aa(x) =
(
Aa(x)k j

)
1≤ j,k≤n

of adX is given by

Aa(x) jk =


∑

wi=wk−w j

Lk
i j(a)xi if w j < wk,

0 otherwise.
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Note that Aa(x) is an upper-triangular matrix. It then follows that in the coordinates (x1, . . . , xn)
the product (9.8) of GaM is given by

x · y = x +

(∫ 1

0
Φ

(
eAa(x)esAa(y) − I

)
ds

)
y

= x + y +
1
2

Aa(x)y +
1

12
Aa(x)2y −

1
12

Aa(y)Aa(x)y + · · · .

(9.12)

We can interpret gaM as Lie algebra of left-invariant vector fields on GaM as follows. For
i = 1, . . . , n, let Xa

i be the left-invariant vector field on GaM that agree at x = 0 with Ẋi(a) under
the identification gaM ' T0Ga. That is,

Xa
i f (x) =

d
dt

f (x · (tẊi(a)))
∣∣∣
t=0

∀ f ∈ C∞(GaM).

The span of the vector fields Xa
i is a Lie algebra with same constant structures Lk

i j(a) as gaM.
More precisely, as the Lie bracket [Xa

i , X
a
j ] is the left-invariant vector field on GaM that agrees at

x = 0 with [Xi(a), X j(a)]a =
∑

Lk
i j(a)Xk(a), we have

[Xa
i , X

a
j ] =

∑
wk=wi+w j

Lk
i j(a)Xa

k .

Moreover, the vector fields Xa
i are homogeneous with respect to the anisotropic dilations δt.

Indeed, for any f ∈ C∞(M) and s > 0, we have

(δ∗sX
a
i ) f (x) =

d
dt

f ◦ δ−1
s

(
δs(x) ·

(
tẊi(a)

))∣∣∣∣
t=0

=
d
dt

f
(
x ·

(
s−witẊi(a)

))∣∣∣∣
t=0

= s−wi Xi f (x). (9.13)

Thus,
δ∗sX

a
i = s−wi Xa

i ∀s > 0. (9.14)

The vector fields Xa
i are computed in the coordinates x1, . . . , xn as follows. Let e1 = (1, 0, · · · , 0),

..., en = (0, · · · , 0, 1) be the respective coordinate vectors of Ẋ1(a), . . . , Ẋn(a). In the coordinates
x1, . . . , xn the vector field Xa

i is given by

Xa
i f (x) =

d
dt

f (x · (tei))|t=0 , f ∈ C∞(GaM).

Using (9.12) we get

x · (tei) = x + t
(∫ 1

0
Φ(eAa(x)estAa(ei) − I)ds

)
ei.

Therefore, we see that d
dt x · (tei)|t=0 is equal to(∫ 1

0
Φ(eAa(x) − I)ds

)
ei = Φ

(
eAa(x) − I

)
ei =

(
Aa(x)

I − e−Aa(x)

)
ei. (9.15)
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Define

Ba(x) =
Aa(x)

I − e−Aa(x) − I = Aa(x) +
Aa(x)2

12
+ · · · .

Note that the coefficients of Ba(x) are polynomials in x without constant coefficients, since Aa(x)
is a nilpotent matrix whose coefficients depends linearly on x. We then can rewrite (9.15) as

d
dt

x · (tei)|t=0 = ei + Ba(x)ei = ei +

n∑
j=1

Ba(x) jie j.

Therefore, for all f ∈ C∞(GaM), we have

Xa
i f (x) =

〈
d f (x),

d
dt

(x ·a (tei))|t=0

〉
= ∂i f (x) +

n∑
j=1

Ba(x) ji∂ j f (x).

This shows that

Xa
i = ∂i +

n∑
i=1

Ba(x) ji∂ j. (9.16)

Let s > 0. Then using (9.14) we get

δ∗sX
a
i = δ∗s∂i +

n∑
j=1

Ba(δs(x)) jiδ
∗
s∂ j = s−wi∂ j +

∑
s−w j Ba(s · x) ji∂ j.

Combining this with the homogeneity (9.13) of Xa
i we deduce that

Ba(s · x) ji = sw j−wi Ba(x) ji ∀s > 0. (9.17)

In what follows, given a multi-order α ∈ Nn
0, we set

〈α〉 = w1α1 + · · · + wnαn.

We note that the monomials that are homogeneous of a given degree w, w ∈ N0, with respect
to the dilations δt are precisely those of the form xα with 〈α〉 = w. Bearing this in mind the
homogeneity (9.17) of Ba(x) ji and the fact that Ba(x) ji is a polynomial in x with no constant term
imply that

- If w j ≤ wi, then Ba(x) ji = 0.

- If w j > wi, then Ba(x)i j =
∑
〈α〉=w j−wi

b jiαxα, where b jiα = 1
α!∂

α Ba(x) ji

∣∣∣
x=0

.

Combining this with (9.16) we arrive at the following result.

Lemma 9.3.13. For i = 1, . . . , n, the vector field Xa
i is given by

Xa
i = ∂i +

∑
〈α〉=w j−wi

w j>wi

ba
jiαxα∂ j, where b jiα =

1
α!
∂α Ba(x) ji

∣∣∣
x=0
.

249



CHAPTER 9. PRIVILEGED COORDINATES AND TANGENT GROUPOID FOR CARNOT
MANIFOLDS

9.4 Privileged Coordinates for Carnot Manifolds

In this section, we explain how to extend to the setting of Carnot manifolds the construction of
privileged coordinates by Bellaı̈che [Be].

In what follows we let (X1, . . . , Xn) be an H-frame on an open neighborhood U of a given
point a ∈ M. Then there are unique smooth functions Lk

i j(x) on U such that

[Xi, X j] =
∑

wk≤wi+w j

Lk
i j(x)Xk. (9.18)

In addition, given any finite sequence I = (i1, . . . , ik) with values in {1, . . . , n}, we define

XI = Xi1 · · · Xik .

For such a sequence we also set |I| = k and 〈I〉 = wi1 + · · ·wik .

Definition 9.4.1. Let f (x) be a smooth function defined near x = a and N a nonnegative integer.

1. We say that f (x) has order ≥ N at a when XI f (a) = 0 whenever 〈I〉 < N.

2. We say that f (x) has order N at a when it has order ≥ N and there is a sequence I =

(i1, . . . , ik) with values in {1, . . . , n} with 〈I〉 = N such that XI f (a) , 0.

Remark 9.4.2. The above definition of the order of a function differs from that of Belaı̈che [Be]
as Bellaı̈che only considers monomials in vector fields Xi with wi = 1.

Lemma 9.4.3. Let f (x) be a smooth function near x = a. Then its order is independent of the
choice of the H-frame (X1, . . . , Xn) near a.

Proof. Let (Y1, · · · ,Yn) be another H-frame near a. We note that each vector field Yi is a section
of Hi. Thus, near x = a,

Yi =
∑

w j≤wi

ci j(x)X j,

for some smooth functions ci j(x) such that ci j(a) , 0 for some j such that w j = wi. More
generally, given any finite sequence I = (i1, . . . , ik) with values in {1, . . . , n}, near x = a, we may
write

YI = Yi1 · · · Yik =

( ∑
w j1≤wi1

ci1 j1(x)X j

)
· · ·

( ∑
w jk≤wi1

ci j(x)X j

)
=

∑
〈J〉≤〈I〉

cIJ(x)XJ, (9.19)

where the cIJ(x) are smooth functions.
Let N be the order of f with respect to the H-frame (X1, . . . , Xn). If 〈I〉 < N, then (9.19)

shows that YI f (a) is a linear combination of terms XJ f (a) with 〈J〉 ≤ 〈I〉 < N, which are zero.
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Thus YI f (a) = 0 whenever 〈I〉 < N. Suppose now that I is such that 〈I〉 = N and XI f (a) , 0. In
the same way as in (9.19), near x = a, we may write

XI =
∑
〈J〉≤〈I〉

dIJ(x)YJ,

where the dIJ(x) are smooth functions near x = a. Then

0 , XI f (a) =
∑
〈J〉≤〈I〉

dIJ(a)YJ f (a) =
∑
〈J〉=N

dIJ(a)YJ f (a).

Therefore, at least one of the number YJ f (a), 〈J〉 = N, must be nonzero. We then deduce that f
has order N at a with respect to the H-frame (Y1, . . . ,Yn) as well. This shows that the order of f
at a is independent of the choice of the H-frame. The lemma is thus proved. �

Lemma 9.4.4. Let f (x) and g(x) be smooth functions near x = a of respective orders N and N′

at a. Then f (x)g(x) has order ≥ N + N′ at a.

Proof. We know that Xi( f g) = (Xi f )g+ f Xig. More generally, given any sequence I = (i1, . . . , ik),
we may write

XI( f g) = Xi1 · · · Xik( f g) =
∑

〈I′〉+〈I′′〉=〈I〉

cI′J′′(XI′ f )(XI′′g), (9.20)

for some constants cIJ independent of f and g. If 〈I′〉 + 〈I′′〉 < N + N′, then one the inequality
〈I′〉 < N or 〈I′′〉 < N must hold. In both cases the product (XI′ f )(a)(XI′′g)(a) is zero. Combining
this with (9.20) we then see that XI( f g)(a) = 0 whenever 〈I〉 < N + N′. That is, f (x)g(x) has
order ≥ N + N′ at a. The proof is complete. �

Given any multi-order α ∈ Nn
0 we set

Xα := Xα1
1 · · · X

αn
n ,

and we denote
|α| = α1 + · · · + αn and 〈α〉 = w1α1 + · · · + wnαn. (9.21)

We note that Xα = XI , where I = (i1, . . . , ik) is the unique nondecreasing sequence of length
k = |α| where each index i appears with multiplicity αi. Conversely, if I = (i1, . . . , ik) is a nonde-
creasing sequence, then XI = Xα for some multi-order α with |α| = |I| and 〈α〉 = 〈I〉.

It is convenient to reformulate the definition of the order at a a function in terms of the sole
monomials Xα. To this end we shall need the following lemma.

Lemma 9.4.5 (Compare [Be, Lemma 4.12]). Let I = (i1, . . . , im) be a finite sequence with values
in {1, . . . , n} and set w = 〈I〉. Then, near x = a, then

XI =
∑
〈α〉≤w
|α|≤k

cIα(x)Xα, (9.22)

where the cIα(x) are smooth functions near x = a.
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Proof. We shall prove this result by induction on k. For k = 1 the result is immediate. In order to
prove that the results for for k′ ≤ k imply the result for k + 1 we shall need the following claims.

Claim 1. Let I = (i1, . . . , im) be a finite sequence with values in {1, . . . , n} and j an integer in
{1, . . . , n}. Set w = 〈I〉 + w j. Then, for l = 1, . . . ,m and near x = a, we may write

X jXi1 · · · Xim = Xi1 · · · Xil X jXil+1 · · · Xim +
∑
〈J〉≤w
|J|≤m

cJ
I jl(x)XJ (9.23)

where the cJ
I jl(x) are smooth functions near x = a (by convention Xil+1 · · · Xim = 1 for l = m).

Proof of Claim 1. We proceed by induction on m. For m = 1 the claim is an immediate conse-
quence of (9.23). Assume that the claim is true for m − 1 with m ≥ 2 and let l ∈ {1, . . . ,m}.
Using (9.18) we get

X jXi1 · · · Xim = Xi1 X jXi2 · · · Xim +
∑

wp≤w j+wi1

Lp
ji1

(x)XpXi2 · · · Xim .

This gives (9.23) for l = 1. If l ≥ 2, then, as the claim is true for m − 1, near x = a, we may write

X jXi2 · · · Xim = Xi2 · · · Xil X jXil+1 · · · Xim +
∑

〈J〉≤w−wi1
|J|≤m−1

cJ
I jl(x)XJ, (9.24)

where the cJ
I jl(x) are smooth functions near x = a. Thus,

Xi1 X jXi2 · · · Xim = Xi1 Xi2 · · · Xil X jXil+1 · · · Xim +
∑

〈J〉≤w−wi1
|J|≤m−1

Xi1(c
J
I jlXJ)

= Xi1 Xi2 · · · Xil X jXil+1 · · · Xim +
∑

〈J〉≤w−wi1
|J|≤m−1

(
(Xi1c

J
I jl)(x) + cJ

I jl(x)Xi1

)
XJ.

Combining this with (9.24) we see that

X jXi1 · · · Xim = Xi1 · · · Xil X jXil+1 · · · Xim +
∑
〈J〉≤w
|J|≤m

cJ
I jl(x)XJ

where the cJ
I jl(x) are some smooth functions near x = a. Thus the claims holds for m. This

completes the proof of Claim 1. �

Claim 2. Let j ∈ {1, . . . , n} and α ∈ Nn
0 be such that |α| = k. Set w = w j + 〈α〉. Assume that (9.22)

holds for |I| ≤ k. Then there is a multi-order β with |β| = k + 1 and 〈β〉 = w such that, near x = a,
we may write

X jXα = Xβ +
∑
〈γ〉≤w
|γ|≤k

cγα j(x)Xγ,

where the functions cγα j(x) are smooth near x = a.
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Proof of Claim 2. Let I = (i1, . . . , ik) be the unique nondecreasing sequence of lenght k = |α|

with values in {1, . . . , n} such that each integer i has multiplicity αi. Note that 〈I〉 = 〈α〉. Let l0 be
the the largest integer l ∈ {0, . . . , n} such that either l = 0 or jl < i1. Then by Claim 1, near x = a,
we may write

X jXα = X jXi1 · · · Xik = Xi1 · · · Xil X jXil+1 · · · Xik +
∑
〈J〉≤w
|J|≤k

cJ
I jl(x)XJ (9.25)

where the cJ
I jl(x) are smooth functions near x = a. As the sequence (i1, . . . , il0 , j, il0+1, . . . , ik) is

nondecreasing, there is a unique multiorder β ∈ Nn
0 with |β| = k + 1 and 〈β〉 = w such that

Xi1 · · · Xil X jXil+1 · · · Xik = Xβ. (9.26)

In the summation in (9.25) all the terms XJ are of the form (9.22), since by assumption (9.22) is
true for |I| ≤ k. Combining this with (9.25) and (9.26) proves the claim. �

Let us go back to the proof of Lemma 9.4.5. We assume that (9.22) holds when |I| ≤ k. Let
I = (i1, . . . , ik+1) be a finite sequence of length |I| = k + 1. We may apply (9.22) to Xi2 · · · Xik+1 to
get

Xi2 · · · Xik+1 =
∑

〈α〉≤w−wi1
|α|≤k

cIα(x)Xα.

As in (9.25), near x = a, we can write

XI = Xi1 Xi2 · · · Xik+1 =
∑

〈α〉≤w−wi1
|α|≤k

(
(Xi1cIα)(x) + cIα(x)Xi1

)
Xα

=
∑ ∑

〈α〉≤w−wi1
|α|=k

cIαXi1 Xα +
∑
|J|≤k

cIJ(x)XJ,

where the cIJ(x) are smooth functions near x = a. Combining this with Claim 2 shows that XI

can be put in the form (9.22). This establishes (9.22) for |I| = k + 1. The proof of Lemma 9.4.5 is
complete. �

Proposition 9.4.6. Let f (x) be a smooth function defined near x = a. Then f (x) has order N at
x = a if and only if the following two conditions are satisfied:

(i) (Xα f )(a) = 0 for all multi-orders α such that 〈α〉 < N.

(ii) (Xα f )(a) , 0 for at least one multi-order α with 〈α〉 = N.
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Proof. Assume that f (x) has order N at x = a. It is immediate that (i) holds. Let I = (i1, . . . , ik)
be a sequence with values in {1, . . . , n} with 〈I〉 = N and XI f (a) , 0. By Lemma 9.4.5, near
x = a,

XI =
∑
〈α〉≤〈I〉

cIα(x)Xα =
∑
〈α〉≤N

cIα(x)Xα

for some smooth functions cIα(x). Thus,

0 , XI f (a) =
∑
〈α〉≤N

cIα(a)Xα f (a) =
∑
〈α〉=N

cIα(a)Xα f (a).

This implies that at least one of the numbers Xα f (a), 〈α〉 = N, is nonzero, i.e., (ii) holds.
Conversely, suppose that (i) and (ii) holds. Then (ii) implies that f (x) has order ≤ N at x = a.

Moreover, using (i) and Lemma 9.4.5 shows that f (x) has order ≥ N at x = a. Thus f (x) has
order N at x = a. The proof is complete. �

Definition 9.4.7. We say that local coordinates {x1, . . . , xn} centered at a point a ∈ M are linearly
adpated to the H-frame X1, . . . , Xn when X j(0) = ∂ j for j = 1, . . . , n.

Lemma 9.4.8. Given local coordinates x = (x1, · · · , xn) there is a unique affine change of co-
ordinates y = Ta(x) such that the coordinates y = (y1, · · · , yn) are centered at a and linearly
adapted to the H-frame X1, · · · Xn.

Proof. In the local coordinates (x1, . . . , xn) we may write

Xi =
∑

1≤ j≤n

bi j(x)
∂

∂x j
, i = 1, . . . , n,

where the coefficients bi j(x) are smooth. Set B(x) = (bi j)1≤i, j≤n ∈ GLn(R). In what follows we
shall use the same notation for the point a and its coordinate vector a = (a1, . . . , an) with to the
local coordinates (x1, · · · , xn).

Let T (x) = A(x − a) be an affine transformation with T (a) = 0 and A = (a jk) ∈ GLn(R).
Set y = (y1, . . . , yn) = T (x), i.e., yi =

∑
j ai j(x j − a j), i = 1, . . . , n. Then (y1, . . . , yn) are local

coordinates centered at a. In those coordinates,

Xi =
∑

1≤ j,k≤n

bi j(x)
∂yk

∂x j

∂

∂yk
=

∑
1≤k≤n

 ∑
1≤ j≤n

bi j(x)ak j

 ∂

∂yk
. (9.27)

Thus Xi = ∂
∂yk

at y = 0 if and only if
∑

1≤ j≤n bi j(x)ak j = δik. We then see that the local coordinates

(y1, . . . , yn) are linearly adapted at a if and only if B(a)AT = 1, i.e., A =
(
B(a)T

)−1
. This shows

that Ta(x) =
(
B(a)T

)−1
(x − a) is the unique affine isomorphism that produces linearly adapted

coordinates centered at a. The proof is complete. �
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Definition 9.4.9. Local coordinates x = (x1, . . . , xn) centered at a are called privileged coordi-
nates at a adapted to the H-frame (X1, . . . , Xn) when the following two conditions hold:

(i) The coordinates are linearly adapted to (X1, . . . , Xn) in the sense of Definition 9.4.7.

(ii) For all j = 1, . . . , n, the coordinate function x j has order ≥ w j at a.

In what follows using local coordinates centered at a we may regard the vector fields X1, . . . , Xn

as vector fields defined on a neighborhood of the origin in Rn.

Lemma 9.4.10 ([Be, Lemma 4.13]). Let h(x) be a homogeneous polynomial of degree k. Then

(Xαh)(0) =

{
∂αx h(0) if |α| = k,

0 if |α| < k.

Remark 9.4.11. In the proof of the above result in [Be, page 40], the summation in Eq. (34) is
over all multi-orders β = (β1, . . . , βn) such that β , α and βi ≤ αi for i = 1, . . . , n. This should be
replaced by the summation over all multi-orders β such that |β| ≤ |α|.

Proposition 9.4.12 (Compare [Be, Lemma 4.14]). Let (x1, . . . , xn) be local coordinates centered
at a that are linearly adapted to the H-frame (X1, . . . , Xn). Then there is a unique polynomial
change of coordinates y = ψ(x) such that

1. The local coordinates y = (y1, . . . , yn) are privileged coordinates at a adapted to (X1, . . . , Xn).

2. For j = 1, . . . , n, the component y j = ψ j(x) is of the form,

y j = x j +
∑
〈α〉<w j
2≤|α|

a jαxα, a jα ∈ R. (9.28)

Proof. Let y = ψ(x) be a change of coordinates of the form (9.28). Let j and l be indices in
{1, . . . , n}. Using Lemma 9.4.6 we get

Xl(y j)
∣∣∣
x=0

= Xl(x j)
∣∣∣
x=0

+
∑
〈α〉<w j
2≤|α|

a jα Xl(xα)|x=0 = δ jl.

In particular, we see that Xl(y j)
∣∣∣
x=0

= 0 when wl < w j and X j(y j)
∣∣∣
x=0

= 1. Therefore, the coordi-
nate y j = ψ(x) j has order w j if and only if Xα(y j) = 0 for all multi-order α such that 〈α〉 < w j and
|α| ≥ 2. Let α be such a multi-order. Then by Lemma 9.4.12 we have

Xα(y j)
∣∣∣
x=0

= Xα(x j)
∣∣∣
x=0

+
∑
〈β〉<w j
2≤|β|

a jβ Xα(xβ)
∣∣∣
x=0

= Xα(x j)
∣∣∣
x=0

+
∑
〈β〉<w j

2≤|β|<|α|

a jβ Xα(xβ)
∣∣∣
x=0

+ α!a jα.
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Thus,
Xα(y j)

∣∣∣
x=0

= 0 ⇐⇒ α!a jα = − Xα(x j)
∣∣∣
x=0
−

∑
〈β〉<w j

2≤|β|<|α|

a jβ Xα(xβ)
∣∣∣
x=0

. (9.29)

As the right-hand side uniquely determine the coefficients a jα, we deduce there is a unique poly-
nomial change of variable y = ψ(x) of the form (9.28) that produces privileged coordinates
centered at a. The lemma is proved. �

Definition 9.4.13. Let (x1, . . . , xn) be the linearly adapted coordinates provided by the affine map
Ta from Lemma 9.4.8. Then we denote by ψa(x) the polynomial diffeormorphism provided by
Proposition 9.4.12, i.e., y = ψa(x) is the unique change of coordinates of the form (9.28) giving
privileged coordinates at a.

We conclude this section with the following unicity result.

Proposition 9.4.14. The coordinates y = ψa(Tax) are the unique privileged coordinates at a
adapted to the H-frame (X1, . . . , Xn) that are given by a change of coordinates of the form y =

ψ(T (x)), where T is an affine map such that T (a) = 0 and ψ(x) is a polynomial diffeomorphism
of the form (9.28).

Proof. Let y = φ(x) be privileged coordinates at a adapted to H-frame (X1, . . . , Xn) such that
φ(x) = ψ(T (x)), where T is an affine map such that T (a) = 0 and ψ(x) is a polynomial diffeo-
morphism of the form (9.28). The fact that the coordinates y = φ(x) are linearly adapted to the
H-frame (X1, . . . , Xn) exactly means that φ∗X j(0) = ∂ j for j = 1, . . . , n. Note that (9.28) implies
that ψ′(0) = id. Thus φ∗X j(0) = ψ′(0) ◦ T ′(a)

(
X j(a)

)
= T ′(a)

(
X j(a)

)
= T∗X j(0), so that we see

that T∗X j(0) = ∂ j. This means that the coordinates y = T (x) are linearly adapted to the H-frame
(X1, . . . , Xn). As T (x) is an affine map, it then follows from Lemma 9.4.8 that T (x) = Ta(x).
Therefore, we see that ψ(x) is a polynomial diffeomorphism of the form (9.28) that transforms
the coordinates y = ψa(x) into privileged coordinates at a adapted to (X1, . . . , Xn). It then follows
from Proposition 9.4.12 that ψ(x) = ψa(x), so that φ(x) = ψa(Tax). This proves the result. �

9.5 Nilpotent Approximation of Vector Fields

In this section, we explain how privileged coordinates enables us to approximate at every point
a ∈ M vector fields (and even differential operators) by vector fields that generate a nilpotent Lie
algebra isomorphic to the tangent Lie algebra gaM. This provides us with an extrinsic alternative
construction of the tangent space to a Carnot structure at a point a.

Definition 9.5.1. Let f (x) be a smooth function near the origin in Rn. We shall say that

1. f has weight ≥ w when ∂αx f (0) = 0 for all multiorders α ∈ Nn
0 such that 〈α〉 < w.
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2. f has weight w when f (x) has weight ≥ w and there is a multiorder α ∈ Nn
0 with 〈α〉 = w

such that ∂αx f (0) , 0.

In the same way as in Section 9.3, for t > 0 and x = (x1, . . . , xn) ∈ Rn we denote by t · x the
anisitropic dilation,

t · x := (tw1 x1, · · · , twn xn).

We shall also denote by δt the map x→ t · x.

Definition 9.5.2. A function f (x) on Rn or R \ 0 is weight-homogeneous of degree w, w ∈ R,
when

f (t · x) = tw f (x) ∀t > 0.

Examples 9.5.3. For any multi-order α ∈ Nn
0, the monomial xα is weight-homogeneous of degree

〈α〉.

Remark 9.5.4. If f (x) is smooth and weight-homogeneous of degree w, then differentiating the
equality f (t·x) = tω f (x) shows that ∂α f (t·x) = tw−〈α〉∂α f (x). Thus ∂α f (x) is weight-homogeneous
of degree w − 〈α〉. If we further assume that f (x) is smooth and we choose α so that 〈α〉 > w,
then, for all t > 0,

∂α f (x) = t〈α〉−w∂α f (t · x) −→ 0 · ∂α f (0) = 0 as t → 0.

Thus all the partial derivatives ∂α f (x), |〈α〉| > w, vanish. It then follows that f (x) must be poly-
nomial function and w must be a nonnegative integer.

In what follows, by C∞-topology on functions we mean the topology of uniform covergence
on compact subsets of Rn of the functions and their partial derivatives of all orders.

Lemma 9.5.5. Let f (x) be a smooth function near x = 0 in Rn. Then the following are equivalent:

1. f has weight w.

2. With respect to the C∞-topology, there is an asymptotic expansion,

f (t · x) '
∑
l≥w

tl f [l](x) as t → 0, (9.30)

where f [l](x) is a weight-homogeneous polynomial of degree l with f [w] , 0.

Proof. Let N ∈ N. By Taylor’s formula there are smooth functions RNα(x), |α| = N, such that

f (x) =
∑
|α|≤N

1
α!
∂αx f (0)xα +

∑
|α|=N+1

xαRNα(x),
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As the monomial xα is weight-homogeneous of degree 〈α〉, we get

f (t · x) =
∑
|α|≤N

t〈α〉
1
α!
∂αx f (0)xα + tN+1

∑
|α|=N+1

xαRNα(t · x).

The smoothness of RNα(x) implies that RNα(t·x) is O(1) with respect to the C∞-topology as t → 0.
Therefore, we see that, with respect to the C∞-topology,

f (t · x) =
∑
〈α〉≤N

t〈α〉
1
α!
∂αx f (0)xα + O(tN+1) as t → 0. (9.31)

For l = 0, 1, . . . set f [l](x) '
∑
〈α〉=l

1
α!∂

α
x f (0)xα. Then f [l](x) is a weight-homogeneous polynomial

of degree l. Moreover (9.31) shows that,with respect to the C∞-topology,

f (t · x) '
∑
l≥0

tl f [l](x) as t → 0.

This will be an asymptotic of the form (9.30) if and only if f [l] = 0 for l < w and f [w] , 0. That
is, ∂αx f (0) = 0 for 〈α〉 < w and ∂αx f (0) , 0 for some multi-order α with 〈α〉 = w, i.e., f has
weight w. The proof is complete. �

The notion of weight of a function extends to differential operators as follows. Given a
differential operator P, for t > 0 we denote by δ∗t P the pulback of P by the dilation δt, i.e.,
(δ∗t P)u = (P(u ◦ δ−1

t )) ◦ δt.

Definition 9.5.6. A differential operator P is weight-homogeneous of degree w when

δ∗t P = tωP ∀t > 0.

Examples 9.5.7. For any multiorder α, the differential operator ∂α is weight-homogeneous of
degree 〈α〉.

Definition 9.5.8. Let P =
∑
|α|≤m aα(x)∂αx be a differential operator of order ≤ m in an neighbor-

hood of the origin, where the aα(x) are smooth functions. We say that P has weight w when

1. Each coefficient aα(x) has weight ≥ w + 〈α〉.

2. There is one coefficient aα(x) which has weight w + 〈α〉.

Remark 9.5.9. The above notion of weight induces a notion of weight for vector fields consid-
ered as first order differential operators.

In what follows, by C∞-topology on differential operators of order m, we mean the topology
of uniform convergence of the coefficients and their derivatives on compact subsets of Rn.
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Lemma 9.5.10. Let P be a differential operator of order m near the origin. Then the following
are equivalent:

1. P has weight w.

2. With respect to the C∞-topology, there is an asymptotic expansion,

δ∗t P '
∑
l≥w

tlP[l] as t → 0, (9.32)

where P(l) is a weight-homogeneous differential operator of degree l with P[w] , 0.

Proof. Let us write P =
∑
|α|≤m aα(x)∂αx , where the aα(x) are smooth functions. Then

δ∗t P =
∑
|α|≤m

aα(t · x)δ∗t ∂
α
x =

∑
|α|≤m

t−w ja j(t · x)∂αx .

For α ∈ NN
0 , |α| ≤ m, let us denote by w(α) the weight of the function aα(x). Using Lemma 9.5.5

we see that, with respect to the C∞-topology,

δ∗t P '
∑
|α|≤m

∑
lα≥w(α)

tlα−wαa[lα]
α (x)∂αx as t → 0. (9.33)

We note that a[lα]
α ∂αx is a weight-homogeneous differential operator of degree lα − wα. Therefore,

the asymptotic (9.33) is of the form (9.32) if and only if w(α) − wα ≥ w for all multiorders
α, |α| ≤ m, and there is one such multiorder such that w(α) − wα = w. This means that each
coefficient aα(x) has weight ≥ w + w j and there is equality for at least one of those, that is, the
differential operator P has weight w. The proof is complete. �

Remark 9.5.11. In the above proof a[l]
α (x) =

∑
〈β〉=l

xβ
β!∂

βaα(0). Therefore, we see that the weight
w of P is given by

w = min{〈β〉 − 〈α〉; ∂βaα(0) , 0}.

Suppose that the differential operator P does not vanish at x = 0. Then we see that

min{−〈α〉; |α| ≤ m} ≤ w ≤ min{−〈α〉; aα(0) , 0}

In particular, the weight w is always a negative integer.

Remark 9.5.12. The asymptotic (9.5.11) implies that, with respect to the C∞-topology,

lim
t→0

t−wδ∗t P = P[w].

From now on we let X1, . . . , Xn be an H-frame near a ∈ M and consider local coordinates
(x1, . . . , xn) centered at a that are linearly adapated to this H-frame. Given any function, vector
field or differential operator near a, we may define its weight in the local coordinates (x1, . . . , xn).
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Definition 9.5.13. Let X be a vector field near a such that X(a) , 0. Let w be the weight of
X in the local coordinates (x1, . . . , xn). Then the leading vector field X[w] in the asymptotic ex-
pansion (9.32) is called the weight-homogeneous approximation of X in the local coordinates
(x1, . . . , xn) and is denoted X(a).

Remark 9.5.14. It follows from Remark 9.5.11 that the weight of a vector field with X(a) , 0 is
always contained in {−r,−r + 1, . . . ,−1}.

Remark 9.5.15. The definition of X(a) means that, in the local coordinates (x1, . . . , xn) and with
respect to the C∞-topology of vector fields,

lim
t→0

t−wδ∗t X = X(a). (9.34)

This provides us with an alternative notion of model vector field, which is extrinsic since it
depends on the choice of the local coordinates (x1, . . . , xn).

Lemma 9.5.16. Let f ∈ C∞(M). Then, in any privileged coordinates (x1, . . . , xn) centered at a,
the weight of f (x) agrees with its order.

Proof. Let us work in the privileged coordinates (x1, . . . , xn), so that, for j = 1, . . . , n, the coor-
dinate function x j has order w j. Let w be the weight of f (x) in these coordinates. As ∂α f (0) = 0
for 〈α〉 < w, by Taylor’s formula there are smooth functions RNα(x), |α| = w′ + 1, such that

f (x) =
∑
|α|≤w

1
α!
∂α f (0)xα +

∑
|α|=w+1

xαRNα(x) =
∑
〈α〉=w

1
α!
∂α f (0)xα +

∑
|α|=w+1

xαRNα(x). (9.35)

We note that by Lemma 9.4.6 that each monomial xα has order 〈α〉 and each term xαRNα(x),
|α| = w′ + 1, has order ≥ 〈α〉 ≥ |α| = w + 1. Therefore, we see that f (x) is a linear combination
of functions of order ≥ w, and hence has order ≥ w.

Set k = max{|α|; ∂α f (0) , 0 and 〈α〉 = w}. Then (9.35) can be rewritten as

f (x) =
∑
〈α〉=w
|α|≥k

1
α!
∂α f (0)xα +

∑
|α|=w+1

xαRNα(x).

Let α be a multiorder such that |α| = k, 〈α〉 = w, and ∂α f (0) , 0. Then using Lemma 9.4.6 we
get

Xα f (0) =
∑
〈β〉=w
|β|=k

1
β!
∂β f (0) ∂α(xβ)

∣∣∣
x=0

=
1
α!
∂α f (0) , 0.

It then follows that f has order w at a. This proves the lemma. �
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Remark 9.5.17. The notion of weight can be defined relatively to any system of local coordi-
nates centered at a. However, this an extrinsic notion, as a function may have different weights
depending on the choice of the local coordinates. The previous proposition precisely says that, in
the case of privileged coordinates, the extrinsic notion of weight agrees with the intrinsic notion
of order.

Proposition 9.5.18. Let (x1, . . . , xn) be local coordinates centered at a that are linearly adapted
to the H-frame (X1, . . . , Xn). Then the following are equivalent

(i) (x1, . . . , xn) are privileged coordinates at a.

(ii) For all j = 1, . . . , n, the vector field X j has weight −w j in the local coordinates (x1, . . . , xn).

(iii) For all multiorders α ∈ Nn
0, the differential operator has weight −〈α〉 in the local coordi-

nates (x1, . . . , xn).

Moreover, if X j has weight −w j, then its weight-homogeneous approximation in the local coor-
dinates (x1, . . . , xn) takes the form,

X(a)
j = ∂ j +

∑
wk−〈α〉=w j

wk>w j

bαxα∂k, bα ∈ R. (9.36)

Proof. If X =
∑

a j(x)∂ j is a vector field near the origin, then X(x j) =
∑

ak(x)∂k(x j) = a j(x)
for j = 0, . . . , n. More generally, if P =

∑
aα(x)∂α is a differential operator near the origin such

that P(0) = 0, then aα(x) = P(xα) for |α| = 1. Bearing this in mind, assume that (x1, . . . , xn) are
privileged coordinates at a. The coefficient of ∂k of X j is X j(xk) and has order wk −w j, and hence
has weight wk −w j by Lemma 9.5.16. It then follows that X j has weight −w j. This shows that (i)
implies (ii).

Suppose that for j = 1, . . . , n the vector field X j has weight w j. Set X j =
∑

a jk(x)∂k, for some
smooth functions a jk(x). The fact that the coordinates (x1, . . . , xn) are linearly adapted at a means
that a jk(0) = δ jk. Therefore, the weight homogeneous approximation of X j is given by

X(a)
j =

∑
wk−〈α〉=w j

1
α!
∂αa jk(0)xα∂k = ∂ j +

∑
wk−〈α〉=w j

wk>w j

1
α!
∂αa jk(0)xα∂k, (9.37)

which proves (10.159). Let α ∈ Nn
0. It follows from (9.34) that, as t → 0 and with respect to the

C∞-topology, we have

t〈α〉δ∗t Xα =
(
tw1δ∗t X1

)α1 · · ·
(
twnδ∗t Xn

)αn −→
(
X(a)

1

)α1
· · ·

(
X(a)

n

)αn
.

As
(
X(a)

1

)α1
· · ·

(
X(a)

n

)αn
, 0 this shows that Xα has weight −〈α〉. Thus (ii) implies (iii).
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It remains to show that (iii) implies (i). Suppose that, for each α ∈ Nn
0, the differential operator

Xα has weight −〈α〉. This implies that, for j = 1, . . . , n, the coefficient of ∂ j, namely Xα(x j), has
weight ≥ w j − 〈α〉, and hence vanishes at x = 0 if 〈α〉 < w j. Thus x j has order≥ −w j. Moreover,
as X j = ∂ j at x = 0 we have X j(x j) = 1 at x = 0. Therefore, x j has order w j, and so (x1, . . . , xn)
are privileged coordinates. This shows that (iii) implies (i). The proof is complete. �

Definition 9.5.19. Given privileged coordinates at a relatively to the H-frame (X1, . . . ., Xn), we
denote by g(a) the subspace of TRn spanned by the weight-homogeneous weight vector fields
X(a)

j , j = 1, . . . , n.

For w = 1, . . . , r let us denote by g(a)
w the subspace of g(a) spanned by vector fields X(a)

j ,
w j = w. As these vector fields are precisely the vector fields among X(a)

1 , . . . , X(a)
n that are weight-

homogeneous of degree −w, we see that, for any X ∈ g(a),

X ∈ g(a) ⇐⇒ δ∗t X = t−wX ∀t > 0.

Moreover, we have the grading,
g

(a) = g
(a)
1 ⊕ · · · ⊕ g

(a)
r , (9.38)

As (X1, . . . , Xn) is an H-frame, there are smooth functions Lk
i j(x), wk ≤ wi + w j, defined near

a such that
[X j, Xk] =

∑
wk≤wi+w j

Lk
i j(x)Xk. (9.39)

Lemma 9.5.20. For i, j = 1, . . . , n, we have

[X(a)
i , X(a)

j ] =


∑

wk=wi+w j

Lk
i j(a)X(a)

k if wi + w j ≤ r,

0 otherwise.

Proof. With respect to the C∞-topology, we have

[Xa
i , X

a
j ] = lim

t→0
[twiδ∗t Xi, tw jδ∗t X j] = lim

t→
twi+w jδ∗t [Xi, X j].

Combining this (9.39) we get

[Xa
i , X

a
j ] =

∑
wk≤wi+w j

lim
t→0

twi+w jδ∗t (Lk
i jXk) =

∑
wk≤wi+w j

Lk
i j(a) lim

t→0
twi+w jδ∗t Xk.

Note that limt→0 twi+w jδ∗t Xk = Xa
k if wk = wi + w j and limt→0 twi+w jδ∗t Xk = 0 if wk < wi + w j.

Therefore, [Xa
i , X

a
j ] is equal to

∑
wk=wi+w j

Lk
i j(a)X(a)

k if wi + w j ≤ r and is zero otherwise. The proof
is complete. �

As an immediate consequence of Lemma 9.5.20 we obtain the following result.
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Proposition 9.5.21. With respect to the Lie bracket of vector fields, g(a) is a step r nilpotent Lie
subalgebra of TRn. Moreover, the grading (9.1) is a Lie algebra grading, i.e.,

[g(a)
w , g(a)

w′ ] ⊂ g
(a)
w+w′ for w + w′ ≥ −r.

In fact, it follows from (9.6) and Lemma 9.5.20 that the Lie algebras gaM and g(a) have the
same structure constants with respect to their respective bases {Ẋ j(a)} and {X(a)

j }. Therefore, we
arrive at the following statement.

Proposition 9.5.22. Given privileged coordinates at a relatively to the H-frame (X1, . . . ., Xn),
define the linear isomorphism L̂a : gaM → g(a) by

L̂a

(
x1Ẋ1(a) + · · · + xnẊn(a)

)
= x1X(a)

j + · · · + xnX(a)
n ∀x j ∈ R. (9.40)

Then L̂a is a Lie algebra isomorphism from gaM onto g(a).

As g(a) is a Lie algebra of vector fields, it is natural to realize it as a Lie algebra of left-
invariant vector field over a nilpotent Lie group G(a). As a manifold G(a) is Rn. We define the Lie
group structure on G(a) by using the Campbell-Hausdorff formula (9.8) and the exponential map
exp(a) : g(a) → G(a) given by

exp(a)(x1X(a)
1 + · · · + xnX(a)

n ) = exp(x1X(a)
1 + · · · + xnX(a)

n )(0). (9.41)

Here exp(x1X(a)
1 + · · · + xnX(a)

n )(0) = exp(tX)(0)
∣∣∣
t=1

, where exp(tX) is the flow of the vector field
X = x1X(a)

1 + · · · + xnX(a)
n , i.e., the solution of the initial-value problem,

∂t exp(tX)(x) = X
(
exp(tX)(x)

)
, exp(tX)(x)

∣∣∣
t=0

= x.

Definition 9.5.23. G(a) is called the extrinsic tangent group at a in the privileged coordinates
x = (x1, . . . , xn).

9.6 Carnot Coordinates

In this section, we shall refine the construction of the privileged to get a system of privileged
coordinates in which notion of extrinsic and intrinsic model vector fields agree. In this section,
we keep on using the notation of the previous sections. In particular, a is a point of M and
(X1, . . . , Xn) is an H-frame near a.

Following is the precise definition of Carnot privileged coordinates.

Definition 9.6.1. Local coordinates (x1, . . . , xn) centered at a are called Carnot (privileged) co-
ordinates at a adapted to the H-frame (X1, . . . , Xn) when

1. They are privileged coordinates at a adapted to (X1, . . . , Xn).
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2. In these coordinates, for any vector field X near a, the extrinsic model vector field X(a)

agrees with the intrinsic model vector field Xa.

We shall now explain how to construct Carnot coordinates. The idea is to compose privi-
leged coordinates with a Lie group isomorphism from the extrinsic tangent group G(a) onto the
intrinsic tangent group GaM. Let (x1, . . . , xn) be privileged coordinates at a adapted to the H-
frame (X1, . . . , Xn). In the previous section, we constructed G(a) associated to the Lie algebra g(a)

spanned by the vector fields X(a)
j defined by (9.34). More precisely, as a manifold G(a) is just Rn

and its product law is obtained by using the Campbell-Hausdorff formula and the exponential
map exp(a) : g(a) → G(a) given by (9.41). We then define the diffeomorphism ε̂a : Rn → Rn by

ε̂a =
(
ξ(a)

)−1
◦
(
exp(a)

)−1
, (9.42)

where ξ(a) : Rn → ga is the coordinate map,

ξ(a)(x1, . . . , xn) = x1X(a)
1 + · · · + xnX(a)

n ∀x j ∈ R
n.

Definition 9.6.2. A map φ : Rn → Rn is weight-homogeneous of degree w, w ∈ R when

φ ◦ δt = δtw ◦ φ ∀t > 0. (9.43)

Remark 9.6.3. Let us write φ(x) = (φ1(x), . . . , φn(x)). The condition (9.43) exactly means that,
for all j = 1, . . . , n, the j-th component φ j is weight-homogeneous of degree w j. In particular,
in vew of Remark 9.5.4, we see that if φ is smooth and weight-homogeneous, then it must be a
polynomial map.

Lemma 9.6.4. The diffeomorphism ε̂a is a degree 1 weight-homogeneous polynomial diffeomor-
phism such that ε̂′a(0) = id.

Proof. Let (x1, . . . , xn) ∈ R and set X = x1X(a)
1 + · · · + xnX(a)

n . In addition, let λ > 0. As δ∗
λ−1 X(a)

j =

λw j X(a)
j , we get

(ε̂a)−1 (λ · x) = exp
(
λw1 x1X(a)

1 + · · · + λwn xnX(a)
n

)
(0) = exp

(
δ∗
λ−1 X

)
(0).

As exp
(
tδ∗
λ−1 X

)
= δ∗

λ−1

(
exp(tX)

)
, we see that

(ε̂a)−1 (λ · x) = δ∗
λ−1

(
exp(X)

)
(0) = δλ ◦ exp(X)(λ−1 · 0) = λ · (ε̂a)−1 (x).

This proves that ε̂a is weight-homogeneous of degree 1. As ε̂a is smooth this implies this is a
polynomial map. In addition, as X(a)

j = ∂x j at x = 0, we get

∂x j (ε̂a)−1 (0) = ∂t exp
(
tX(a)

j

)
(0)

∣∣∣∣
t=0

= X(a)
j

(
exp

(
tX(a)

j

))
(0)

∣∣∣∣
t=0

= X(a)
j (0) = ∂x j .

This shows that ε̂′a(0) = id. The proof is complete. �
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Remark 9.6.5. Given x0 = (x0
1, . . . , x

0
n) ∈ Rn, it follows from (9.16) that the vector field X =

x0
1X(a)

1 + · · · + x0
nX(a)

n is of the form,

X =
∑

1≤ j≤n

x0
j∂ j +

∑
wk=w j+〈α〉

w j<wk

b jkαx0
j x
α∂k =

∑
1≤k≤n

(
x0

k +
∑

w j+〈α〉=wk
w j<wk

b jkαx0
j x
α
)
∂k.

Set x(t) = exp(tX)(0). Then x(t) = (x1(t), . . . , xn(t)) is a solution of the following ODE system,

d
dt

xk(t) = x0
k +

∑
wk=w j+〈α〉

w j<wk

b jkαx0
j x(t)α, x(0) = 0.

An induction on k then shows that xk(t) is of the form,

xk(t) = tx0
k +

∑
〈α〉=wk
|α|≥2

ckαt|α|(x0)α, ckα ∈ R.

Setting t = 1 and noting that x(1) = (ε̂a)−1
(
x0

)
provides us with an alternative proof of Lemma 9.6.4.

As shown in Section 9.3 the H-frame (X1, . . . , Xn) defines a global coordinate system x =

(x1, . . . , xn) on gaM and GaM. Thus using this coordinate system we may regard the diffeomor-
phism ε̂a as a map from Rn = G(a) onto GaM.

Lemma 9.6.6. Under the above convention, the diffeomorphism ε̂α is a Lie group isomorphism
from G(a) onto GaM. Incidentally,

(ε̂a)∗ X(a)
j = Xa

j for j = 1, . . . , n.

Proof. Let ξa : Rn → gaM be the coordinate map defined by the frame (X1, . . . , Xn), i.e.,

ξa(x1, . . . , xn) = x1Ẋ1(a) + · · · + xnẊn(a) ∀x ∈ Rn,

where Ẋ j(a) is the class of X j(a) in gw j
a M. Then expa ◦ξa = ξa defines coordinates on GaM = gaM.

We need to show that ξa ◦ ε̂a is a Lie group isomorphism. To this end note that ξ(a) ◦ (ξa)−1 = L̂a,
where L̂a is the linear map defined by (9.40). Thus,

ξa ◦ ε̂a =
(
expa ◦ξa

)
◦
(
ξ(a)

)−1
◦
(
exp(a)

)−1
= expa ◦L̂

−1
a ◦

(
exp(a)

)−1
.

As Proposition 9.5.22 asserts that L̂a is a Lie algebra isomorphism, it then follows that ξa ◦ ε̂a is
a Lie group isomorphism from G(a) onto GaM.

Finally, as ε̂′a(0) = id and ε̂a is a Lie group isomorphism, we see that, for j = 1, . . . , n,
the vector field (ε̂a)∗ X(a)

j is a left-invariant vector field on GaM which at x = 0 agrees with

ε̂′a(0)
(
Xa

j (0)
)

= X(a)
j (0) = ∂ j. Thus (ε̂a)∗ X(a)

j = Xa
j for j = 1, . . . , n. The proof is complete. �
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The following shows the existence of Carnot coordinates at a

Lemma 9.6.7. The change of local coordinates y = ε̂(x) provides us with Carnot coordinates at
a adapted to H-frame (X1, . . . , Xn).

Proof. The coordinates x = (x1, . . . , xn) are privileged coordinates at a adapted to the H-frame
(X1, . . . , Xn). As ε̂′a(0) = id, we see that (εa)∗ X j(0) = ε′a(0)

(
X j(0)

)
= ∂ j for j = 1, . . . , n. There-

fore, the coordinates y = ε̂(x) are linearly adapted to the H-frame (X1, . . . , Xn). In addition,
the fact that the coordinates x = (x1, . . . , xn) are privileged coordinates at a implies that, for
j = 1, . . . , n, we have

δ∗t X j = t−w j X(a)
j + O

(
t−w j+1

)
as t → 0+.

Thanks to Lemma 9.6.4 and Lemma 9.6.6 we know that ε̂a is a degree 1 weight-homogeneous
diffeomorphism such that (εa)∗ X(a)

j = Xa
j . Thus,

δ∗t (εa)∗ X j = (εa)∗ δ
∗
t X j = t−w j (εa)∗ X(a)

j + O
(
t−w j+1

)
= t−w j Xa

j + O
(
t−w j+1

)
.

This shows that y = ε̂(x) are Carnot coordinates at a. The proof is complete. �

We shall now show that ε̂ is unique degree 1 weight-homogenous change of coordinates that
provides us with Carnot coordinates. To reach this end we need the following lemma.

Lemma 9.6.8. Let φ : Rn → Rn be a degree 1 weight-homogeneous diffeomorphism such that

φ∗Xa
j = Xa

j for j = 1, . . . , n.

Then φ = id.

Proof. As mentioned in Remark 9.5.4, the fact that φ(x) is smooth and weight-homogeneous
implies that φ(x) is a polynomial map. Thus,

φ(x) = φ′(0)x + h(x),

where h(x) = (h1(x), . . . , hn(x)) is of the form,

h j(x) =
∑
〈α〉=w j
|α|≥2

a jαxα, a jα ∈ R.

Moreover, as Xa
j (0) = ∂ j, j = 1, . . . , n, the equality φ∗Xa

j = Xa
j at x = 0 gives φ′(0)∗∂ j = ∂ j. It

then follows that φ′(0) = 1. Thus,
φ(x) = x + h(x).

Set y = φ(x). We note that the function h j(x), j = 1, . . . , n, does not depend on the variables xk

with wk ≥ w j, and so ∂xkh j = 0 for wk ≥ w j. Thus, for j = 1, . . . , n,

∂y j = ∂x j +
∑

1≤k≤n

∂x jh j(x)∂xk = ∂x j +
∑

wk>w j

∂x jh j(x)∂xk . (9.44)
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Each vector field Xa
j is of the form,

Xa
j = ∂x j +

∑
wk−〈α〉=w j

wk>w j

b jkαxα∂xk , b jkα ∈ R.

Then the equality φ∗Xa
j = Xa

j exactly means that

∂x j +
∑

wk−〈α〉=w j
wk>w j

b jkαxα∂xk = ∂y j +
∑

wk−〈α〉=w j
wk>w j

b jkαφ
−1(x)α∂yk .

Combining this with (9.44) we get

∂y j = ∂x j +
∑

wk>w j

∂x jh j(x)∂xk = ∂x j +
∑

wk−〈α〉=w j
wk>w j

b jkα

{
xα∂xk − φ

−1(x)α∂yk

}
.

We shall show by induction on w that

∂x jhk(x) = 0 whenever wk − w j ≤ w. (9.45)

For w = 0 this is a consequence of the fact that h(x) has no linear component, i.e, ∂ jhk(x) = 0
whenever w j = wk. Suppose now that (9.45) is true up to w. Consider integers j, k and l be such
that w j < wk ≤ w j + w + 1 and wk < wl ≤ w j + w + 1. Then wl −wk ≤ (w j + w + 1)− (w j + 1) = w.
By the induction hypothesis this implies that ∂khl = 0. In view of this we see that, for w j < wk ≤

w j + w + 1,

∂yk = ∂xk +
∑

wl≥w j+w+2

∂khl∂xl = ∂xk mod Span
{
∂xl ; wl ≥ w j + w + 2

}
.

Combining this with (9.44) we obtain∑
wk>w j

∂x jh j(x)∂xk =
∑

wk−〈α〉=w j
w j<wk≤w j+w+1

b jkα

{
xα − φ−1(x)α

}
∂xk mod Span

{
∂xl ; wl ≥ w j + w + 2

}
. (9.46)

In particular, if wk = w j + 1, then

∂x jhk(x) =
∑

wk−〈α〉=w j
wk=w j+w+1

b jkα

{
xα − φ−1(x)α

}

By assumption ∂xkhl = 0 whenever wl − wk ≤ w. In particular, for wk ≤ w + 1 it holds that
∂xlhk = 0 for l = 1, . . . , n, i.e., hk = 0 and yk = xk. This also implies that φ−1(x)k = xk whenever
wk ≤ w + 1, and hence φ−1(x)α = xα whenever 〈α〉 ≤ w + 1. Combining this with (9.46) then
shows that ∂x jhk(x) = 0 whenever wk = w j + w + 1. This proves that (9.45) holds up to w + 1. It
then follows from (9.45) holds to wn, i.e., ∂x jhk(x) = 0 for all j, k = 1, . . . , n. Therefore, h(x) = 0,
and so φ = id. The lemma is proved. �
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We are now in a position to prove the first main result of this section.

Proposition 9.6.9. Assume that x = (x1, . . . , xn) are privileged coordinates at a adapted to the
H-frame (X1, . . . , Xn). Then the coordinate change y = ε̂a(x) is the unique degree 1 weight-
homogeneous coordinate change providing us with Carnot coordinates at a adapted to (X1, . . . , Xn).

Proof. The fact that the coordinate change y = ε̂a(x) provides us with Carnot coordinates is the
contents of Lemma 9.6.7. Let y = φ(x) be another degree 1 weight-homogeneous coordinate
change providing us with Carnot coordinates at a adapted to (X1, . . . , Xn). This means that, for
j = 1, . . . , n, we have φ∗X

(a)
j = Xa

j = (ε̂a)∗ X(a)
j , and so

(
φ ◦ ε̂−1

a

)
∗

Xa
j = Xa

j . As φ ◦ ε̂−1
a is weight-

homogeneous of dgree 1, it then follows from Lemma 9.6.8 that φ ◦ ε̂−1
a = id, i.e., φ = ε̂a. This

shows that y = ε̂a(x) is the unique degree 1 weight-homogeneous coordinate change providing
us with Carnot coordinates at a adapted to (X1, . . . , Xn). The proof is complete. �

Definition 9.6.10. Given local coordinates x = (x1, . . . , xn) near a, the diffeomorphism εa : Rn →

Rn is given by the composition,
εa = ε̂a ◦ ψa ◦ Ta,

where ψa and Ta are as in Definition 9.4.13 and Lemma 9.4.8, and ε̂a is defined by (9.42) rela-
tively to the privilege coordinates defined by ψa ◦ Ta.

Using Lemma 9.6.7 and Proposition 9.6.9 we arrive at the following statement.

Proposition 9.6.11. Given local coordinates x = (x1, . . . , xn) near a, the coordinate change
y = εa(x) provides us with Carnot coordinates at a adapted to (X1, . . . , Xn).

In the same way as there are many privileged coordinates at a given point, there are also many
Carnot coordinates. However, the following result provides us with a characterization of Carnot
coordinates at a. Ultimately, it shows that the coordinate change y = εa(x) is “minimal” among
the coordinate changes providing us with Carnot coordinates.

Definition 9.6.12. Let Θ(x) = (Θ1(x), . . . ,Θn(x)) be a smooth map between open neighborhoods
of the origin in Rn. We shall say that Θ(x) is Ow(xw+1) and write Θ(x) = Ow(xw+1) when, near
x = 0, each takes the form,

Θ j(x) =
∑

〈α〉=w j+1

xαθ jα(x), j = 1, . . . , n, (9.47)

where the θ jα(x) are smooth functions near x = 0.

Remark 9.6.13. Equivalently, the condition (9.47) means that

t−1 · Θ(t · x) = O(t) as t → 0+.
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Proposition 9.6.14. Let x = (x1, . . . , xn) be local coordinates and y = φ(x) be a smooth change
of coordinates near the point a. Then the following are equivalent:

1. The coordinates y = φ(x) are Carnot coordinates at a adapted to the H-frame (X1, . . . , Xn).

2. Near the point a the coordinate change φ(x) takes the form,

φ(x) = εa(x) + Θ (εa(x)) , (9.48)

where Θ(x) is Ow(xw+1) near x = 0.

Proof. Suppose that the coordinates y = φ(x) are Carnot coordinates at a adapted to the H-
frame (X1, . . . , Xn). In particular, they are privileged coordinates at a, and so, for j = 1, . . . , n,
the coordinate y j = φ j(x) has order w j. Thus, by Proposition 9.5.18 in the privileged coordinates
provided by εa the component φ j has weight w j. That is, it takes the form,

φ j ◦ ε
−1
a (x) =

∑
〈α〉=w j

a jαxα +
∑

〈β〉=w j+1

xβθ jβ(x),

where the a jα are constants and the θ jβ(x) are smooth functions near x = 0. Define φ̂ : Rn → Rn

by
φ̂ j(x) =

∑
〈α〉=w j

a jαxα. (9.49)

Then φ̂ is weight-homogeneous of degree 1 and we have

φ ◦ ε−1
a (x) = φ̂(x) + Θ(x), (9.50)

where Θ(x) is Ow(xw+1) near x = 0. Moreover, as t → 0,

δ−1
t ◦

[
φ ◦ ε−1

a

]
◦ δt(x) = φ̂(x) + O(t).

Therefore, for j = 1, . . . , n, we have((
φ ◦ ε−1

a

)
∗

X j

)(a)
= lim

t→0
(δt)∗

((
φ ◦ ε−1

a

)
∗

X j

)
= lim

t→0

(
δ−1

t ◦
(
φ ◦ ε−1

a

)
◦ δt

)
∗

(δt)∗X j = φ̂∗X
(a)
j .

As φ provides us with Carnot privileged coordinates at a, we have (φ)∗X
(a)
j = Xa

j = (εa)∗X
(a)
j .

Thus, it holds that

φ̂∗Xa
j = (φ ◦ ε−1

a )∗Xa
j = (φ)∗X

(a)
j = Xa

j for j = 1, . . . , n.

It then follows from Lemma 9.6.8 that φ̂ = id. Combining this with (9.50) we see that

φ(x) = εa(x) + Θ (εa(x)) ,
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where Θ(x) is Ow(xw+1) near x = 0.
Conversely, assume that φ is of the form (9.48) near a. Then φ′(a) = ε′a(a) = id, and so

φ∗X j(0) = (εa)∗ X j(0) = ∂ j for j = 1, . . . , n. Thus the coordinates y = φ(x) are linearly adapted to
(X1, . . . , Xn). In addition, the form (9.48) precisely means that

δ−1
t ◦

(
φ ◦ ε−1

a

)
◦ δt = id + O(t) as t → 0+.

Recall also that as εa provides us with Carnot coordinates tw jδ∗t (εa)∗ X j = Xa
j + O(t) as t → 0+.

Therefore, for j = 1, . . . , n, as t → 0+ we have

tw jδ∗t φ∗X j = tw j
(
δ−1

t ◦
(
φ ◦ ε−1

a

)
◦ δt

)
∗
δ∗t (εa)∗ X j = (id + O(t))∗

(
Xa

j + O(t)
)

= Xa
j + O(t).

This shows that y = φ(x) are Carnot coordinates at a. The proof is complete. �

The fact that ε̂a(x) is weight-homogenous of degree 1 and ε̂′a(0) = id exactly means that the
components ε̂a, j(x), j = 1, . . . , n, are of the form,

ε̂a, j(x) = x j +
∑
〈α〉=w j
|α|≥2

a jαxα, a jα ∈ R.

Combining this with (9.28) it not hard to see that (ε̂a ◦ ψa) j(x) is of the form,

(ε̂a ◦ ψa) j(x) = x j +
∑
〈α〉≤w j
|α|≥2

a jαxα, a jα ∈ R.

Proposition 9.4.14 states unicity result for privileged coordinates. The following is a version of
that result for Carnot coordinates.

Proposition 9.6.15. The coordinates y = εa(x) are the unique Carnot coordinates at a adapted
to the H-frame (X1, . . . , Xn) given by a change of variable of the form y = φ̂(T x), where T is an
affine map such that Ta = 0 and φ̂ is a polynomial diffeomorphism of the form (9.49).

Proof. Let y = φ(x) be Carnot coordinates at a adapted to (X1, . . . , Xn) such that φ(x) = φ̂(T x),
where T is an affine map such that Ta = 0 and φ̂ is a polynomial diffeomorphism of the
form (9.49). In the same way as in the proof of Proposition 9.4.14 it can be shown that T = Ta.
Set φ̂a = ε̂a ◦ ψa, so that εa = φ̂a ◦ Ta. In order to complete the proof it is enough to show that
φ̂ = φ̂a.

Note that φ ◦ ε−1
a = (ϕ̂ ◦ Ta) ◦

(
φ̂a ◦ Ta

)−1
= φ̂ ◦ φ̂−1

a . Moreover, as y = φ(x) are Carnot
coordinates at a, it follows from Proposition 9.6.14 that

φ̂ ◦ φ̂−1
a (x) = φ̂ ◦ ψ−1

a ◦ ε̂
−1
a (x) = x + Θ(x),

where Θ(x) is of the form (9.47).
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Claim. The diffeormorphisms of the form (9.49) form a subgroup of the diffeomorphism group
of Rn.

Proof of the claim. Let ϕ and ψ be diffeomorphisms of the form (9.49), so that their components
ϕ j(x) and ψ j(x), j = 1, . . . , n, are of the form ,

ϕ j(x) = x j +
∑
〈α〉≤w j
|α|≥2

a jαxα and ψ j(x) = x j +
∑
〈β〉≤w j
|β|≥2

b jβxβ,

where the a jα and b jβ are real constants. Note this implies that ϕ j(x) − x j and ψ j(x) − x j are
polynomials in the variables xk with wk < w j. Therefore,

ψ j ◦ ϕ(x) = x j +
∑
〈α〉≤w j
|α|≥2

a jαxα +
∑
〈β〉≤w j
|β|≥2

b jβ

∏
wk<w j

(
xk +

∑
〈α〉≤wk
|α|≥2

akαxα
)βk

,

which is of the form (9.49). Moreover, the equation ψ j ◦ ϕ(x) = x j gives∑
〈α〉≤w j
|α|≥2

a jαxα = −
∑
〈β〉≤w j
|β|≥2

b jβ

∏
wk<w j

(
xk +

∑
〈α〉≤wk
|α|≥2

akαxα
)βk

,

This uniquely determines the coefficients a jα. (Note this implies that a jα = 0 if w j = 1.) It then
follows that the inverse map ψ−1 of the form (9.49). This completes the proof of the claim. �

Let us go back to the proof of Proposition 9.6.15. The above claim ensures us that φ̂ ◦ φ̂−1
a (x)

is of the form (9.49). Moreover, we know from (9.49) that φ̂ ◦ φ̂−1
a (x) = x + Ow(xw+1). However,

as φ̂ ◦ φ̂−1
a is of the form (9.49) this is possible only if φ̂ ◦ φ̂−1

a (x) = x. Thus φ̂(x) = φ̂a(x). The
proof is complete. �

Definition 9.6.16. Consider two Carnot manifolds (M,H) and (M′,H′) with subbundles H0 =

{0} ⊂ H1 ⊂ · · · ⊂ Hr−1 ⊂ Hr = T M and H′0 = {0} ⊂ H′1 ⊂ · · · ⊂ H′r−1 ⊂ H′r = T M′. Then a
diffeomorphism φ from M onto M′ is called a Carnot diffeormorphism when

φ∗(H j) = H′j ∀1 ≤ j ≤ r. (9.51)

If φ is a Carnot diffeomorphism, by the property φ∗(H j) = H′j, we see that φ′ induces a smooth
vector bundle isomorphism φ̄ from H j/H j−1 onto H′j/H

′
j−1 for each 1 ≤ j ≤ r.

Definition 9.6.17. For a Carnot diffeomorhpism from (M,H) onto (M′,H′) we define the tangent
map φ′H : gM = H1/H0 ⊕ Hr/Hr−1 → gM′ = H′1/H

′
0 ⊕ · · · ⊕ H′r/H

′
r−1 by

φ′H(m)(X1 + X2 + · · · + Xr) = φ̂′(m)X1 + · · · + φ̂′(m)Xr (9.52)

for any m ∈ M and X j ∈ H j/H j−1, 1 ≤ j ≤ r.
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Remark 9.6.18. It is easy to see that the vector bundle isomorphism φ′H is an isomorphism of
graded Lie group bundles from GM onto GM′.

Another consequence of Proposition 9.6.14 is the following approximation result for Carnot
diffeomorphisms in Carnot coordinates.

Proposition 9.6.19. Let φ be a Carnot diffeomorphism from (M,H) onto a Carnot manifold
(M′,H′). Let a ∈ M and set a′ = φ(a). Then, in any Carnot coordinates at a and a′, the diffeo-
morphism φ(x) has the following behavior near x = 0,

φ(x) = φ′H(a)x + Ow(xw+1),

where φ′H(a) : GaM → Ga′M′ is the tangent map (9.52).

Proof. Let (X1, . . . , Xn) be an H-frame near a and y = φa(x) Carnot coordinates at a adapted to
(X1, . . . , Xn). Likewise let X′1, . . . , X

′
n be an H′-frame and y′ = φa′(x) Carnot coordinates at a′

adapted to (X′1, . . . , X
′
n). As y′ = φa′(x) are privileged coordinates at b, for j = 1, . . . , n, the com-

ponent y′j = φa′, j(x) has order w j at b. Note that, as φ is a Carnot diffeomorphism {φ∗X1, . . . , φ∗Xn}

is an H′-frame near a′. Therefore, it follows from Definition 9.4.1 that, for all α ∈ Nn
0 with

〈α〉 < w j, it holds that

0 = (φ∗X)α(φa′, j)(b) = Xα
(
φa′, j ◦ φ

) (
φ−1(a′)

)
= Xα(φ ◦ φa′, j)(a).

Thus φ ◦ φa′, j has order w j at a, and so by Proposition 9.6.14 it has weight w j in the privileged
coordinates y = φa(a). It then follows that φa′ ◦ φ ◦ φ

−1
a takes the form,

φa′ ◦ φ ◦ φ
−1
a = φ̂(x) + Ow(xw+1), (9.53)

where φ̂ is a polynomial map which is weight-homeogeneous of degree 1.
In order to complete the proof it remains to show that φ̂ = φ′H(a). Let j ∈ {1, . . . , n}. We

observe that (9.53) implies that

δ−1
t ◦ (φa′ ◦ φ ◦ φ

−1
a ) ◦ δt = φ̂ + O(t) as t → 0+.

Moreover, as φa gives rise to Carnot privileged coordinates at a, we have

tw jδ∗t φa∗X j = Xa
j + O(t) as t → 0+.

As δ∗t (φa′ ◦ φ)∗ X j =
(
δ−1

t ◦ (φa′ ◦ φ ◦ φ
−1
a ) ◦ δt

)
∗
δ∗t (φa)∗X j we then deduce that

tw jδ∗t (φa′ ◦ φ)∗ X j =
(
φ̂ + O(t)

)
∗

(
Xa

j + O(t)
)

= φ̂∗Xa
j + O(t). (9.54)

Note also that as φa′ provides us with Carnot privileged coordinates at a′, we have

tw jδ∗t (φa′ ◦ φ)∗ X j = tw jδ∗t (φa′)∗
(
φ∗X j

)
∗

=
(
φ∗X j

)a′
= φ′H(a)∗Xa

j .
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Combining this with (9.54) shows that

(φ̂ ◦ φ′H(a)−1)∗Xa
j = Xa

j for j = 1, . . . , n.

As φ̂ ◦ φ′H(a)−1 is a weight-homogeneous diffeomorphism of degree 1, it then follows from
Lemma 9.6.8 that φ̂ ◦ φ′H(a)−1 = id, i.e., φ̂ = φ′H(a). This completes the proof. �

Remark 9.6.20. Bellaiche [Be, Prop. 7.29] proved a somewhat similar approximation result for
Carnot diffeomorphisms in privileged coordinates. However, in this case the first order approx-
imation need not agree with the tangent map φ′H(a) and is a Lie algebra isomorphism between
gaM and ga′M′, rather than a Lie group isomorphism from GaM onto Ga′M′.

Finally, we look at the dependence of εa(x) with respect to a. In the following proofs, we
shall use the following notation: For given f : Rn ×Rn → R we write wt( f ) = w if f (t · p, t · x) =

tw f (p, x) ∀t > 0, and wt( f ) ≥ w if sup|p|+|x|≤1 | f (t · p, t · x)| = O(tw) as t → 0+. This notation
means that we count the weight in both two variables.

Lemma 9.6.21. Consider that we are given a privileged coordinates at a point a0 ∈ Mn and
denote by · the group law of G(a0). Suppose that the vector fields X j equal to X(a0)

j for each
1 ≤ j ≤ n. Then the map La(x) = a · x provides a privileged coordinates at a. Moreover L−1

a

equals to the map ψa ◦ Ta defined in Proposition 9.4.14.

Proof. From the assumption we may let X j = X(a0)
j in the proof. By (10.159) we have

X(a0)
j (x) =

∑
j≤i≤n

b ji(x)
∂

∂xi
, j = 1, . . . , n, (9.55)

where smooth functions b ji(x) satisfy bii ≡ 1 for any 1 ≤ i ≤ n and b ji(0) = 0 for i , j, and
wt(b ji(x)) = wi −w j. On the other hand, as La is a left-translation map of the group G(a0), it holds
that

(La)∗(X
(a0)
j (x)) = X(a0)

j (La(x)). (9.56)

First, we take x = 0 here to see

(La)∗

(
∂

∂x j

∣∣∣∣∣∣
0

)
= X(a0)

j (a).

Thus the coordinates system changed by La is adapted to X(a0)
j at the point a.

Next, combining (9.55) and (9.56) we find that

(La)∗(X
(a0)
j (L−1

a (x))) =
∑
j≤i≤n

b ji(x)
∂

∂xi
, j = 1, . . . , n,

and so the map x → L−1
a (x) provides a privileged coordinates at a by the equivalence of (i) and

(ii) in Proposition 9.5.18.
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It remains to show that L−1
a (x) = a−1 · x equals to ψa ◦ Ta(x). Letting Ha(x) = L−1

a (T−1
a (x)), it

is equivalent to prove that Ha(x) = ψa(x). For this aim, we only need to prove that Ha(x) is of the
form (9.28).

First we observe, from the homogeneity coming from the dilation law (λ · a−1) · (λ · x) =

λ · (a−1 · x) for λ > 0, that (a−1 · x) is of the form,

(a−1 · x) j =
∑

〈α〉+〈β〉=w j

bα,β xαaβ = x j − a j +
∑

〈α〉+〈β〉=w j
〈α〉<w j

bα,βxαaβ, (9.57)

where bαβ ∈ R and the second equality follows by testing the cases a = 0 and x = 0.

Next we know from Lemma 9.4.8 that Ta(x) = A(x − a) where A =
(
B(a)T

)−1
and B(a) =

(bi j(a)). Here we observe that we have the form (B(a)T x)i =
∑

k≤i bki(a)xk from (9.55). Hence
B(a)x + a is given by the form

(B(a)T x + a)i =
∑
k≤i

bki(a)xk + ai. (9.58)

Plugging this into the position of x in (9.57), with observing that (B(a)T x + a)i consists of terms
whose weights are not greater than it of xi and Ha(0) = 0, we can find that Ha(x) = a−1 ·(
B(a)T x + a

)
is given by the form

(Ha(x)) j =
∑
k≤i

c jkxk +
∑
〈α〉<w j

dαxα (9.59)

for some c jk ∈ R and dα ∈ R.
On the other hand, we note that

(La)∗

(
∂

∂x j

∣∣∣∣∣∣
0

)
= X j(a) and (T−1)∗

(
∂

∂x j

∣∣∣∣∣∣
0

)
= X j(a),

which implies

(Ha)∗

(
∂

∂x j

∣∣∣∣∣∣
0

)
=

∂

∂x j
.

Hence Ha(x) is of the form
(Ha(x)) j = x j +

∑
2≤|α|

a jαxα (9.60)

for some a jα ∈ R.
Now, combining (9.59) and (9.60) we can say that Ha(x) is of the form,

(Ha(x)) j = x j +
∑
2≤|α|
〈α〉<w j

a jαxα,

which is exactly the form (9.28). Therefore we have L−1
a (T−1

a (x)) = Ha(x) = ψa(x) by the unique-
ness result of Proposition 9.4.12. Hence we get L−1

a (x) = ψa ◦ Ta(x). The lemma is proved. �
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In the next proposition, we shall see that the above result holds also true up to a small er-
ror for general vector fields. For this aim, it is convenient to introduce the notation f (a, x) =

Ow

(
(a, x)w+1

)
for a function f : Rn × Rn → Rn such that t−1 · f (t · a, t · x) = (O(t), · · · ,O(t))

as t → 0. We remark that this is a natural variation of the notation Ow(xw+1) given in Definition
9.6.12.

Proposition 9.6.22. Suppose that we are given a privileged coordinates (x1, · · · , xn) at some
point a0 ∈ Mn and denote by · the group law of G(a0). Then we have the following results.

1. The maps (a, x)→ ψa ◦ Ta(x) and (a, x)→ εa(x) are smooth and we have

ψa ◦ Ta(x) = a−1 · x + Ow((a, x)w+1), (9.61)

2. In the above, suppose further that the privileged coordinates provides a Carnot coordinates
at the point a0. Then we have

εa(x) = a−1 · x + Ow((a, x)w+1). (9.62)

Proof. We shall first prove the smoothness result and we shall prove the asymptotic formula in
the second part of the proof.

For proving the smoothness, with seeing that εa(x) = ε̂a ◦ψa ◦Ta(x), it is enough to show that
ε̂a(x), ψa(x) and Ta(x) are smooth in a and x.

To show Ta(x) is smooth, we recall from Lemma 9.4.8 that Ta(x) = (B(a)T )−1(x − a) where
B(x) = (bi j)1≤i, j≤n ∈ GLn(R) and the smooth functions bi j(x) are coefficients of the vector fields

Xi(x) =
∑

1≤ j≤n

bi j(x)
∂

∂x j
, i = 1, · · · , n. (9.63)

As the vector fields consist a basis of the tangent space at any point and they are smooth, we find
that the map a → (B(a)T )−1 is smooth. From this we see that Ta(x) is smooth with respect to a
and x.

Next, in order to exploit ψa(x) for each point a ∈ Mn, we work on the coordinates transformed
by the map x→ Ta(x) which is smooth also with respect to a. It implies importantly that, in this
coordinates, we have Xi(x) =

∑n
j=1 ci j(a, x) ∂

∂x j
for some functions ci j(a, x) which are smooth both

in a and x. From Proposition 9.4.12 we see that y j = (ψa) j(x) is given by

y j = x j +
∑
〈x〉<w j
2≤|α|

a jα(a)xα, (9.64)

where a jα(a) satisfies the formula (9.29),

α!a jα(a) = − Xα(x j)
∣∣∣
x=a
−

∑
〈β〉<w j

2≤|β|<|α|

a jβ(a) Xα(xβ)
∣∣∣
x=a

, (9.65)
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and it is not difficult to check that this inductive formula yields the smoothness of a jα(a) with
respect to a. Thus, the map (a, x)→ ψa(x) is smooth in a and x.

Lastly, we shall now prove the smoothness of ε̂a = (ξ(a))−1 ◦ (exp(a))−1. As in the previous
step, we work on the coordinates system transformed by the map x→ ψa ◦Ta(x). We recall from
(9.41) that the exponential map is defined by

exp(a)(x1X(a)
1 + · · · + xnX(a)

n ) = exp(x1X(a)
1 + · · · + xnX(a)

n )(0). (9.66)

By (9.37) the vector field X(a)
j is given

X(a)
j (x) =

∑
wk−〈α〉=w j

1
α!
∂αca

jk(0)xα∂k, (9.67)

where c jk(x) are coefficients of the vector fields X j =
∑

k ca
jk(x)∂k. On the other hand, we know

the map (a, x) → ca
jk(x) is smooth in a and x since the coordinate change map x → ψa ◦ Ta(x) is

smooth with respect to a as we have just proved in the above. Therefore a→ ∂αca
jk(0) is a smooth

function of a, and combining this fact with (9.67) shows that X(a)
j (x) is smooth with respect to a

and x. Hence the related exponential map x → exp(a) ◦(ξ(a))(x) is smooth in a and x variables.
Then, by the inverse function theorem, ε̂a(x) = (exp(a) ◦(ξ(a)))−1 is also smooth in a and x.

In the aboves, we have shown that all of ε̂a(x), ψa(x) and Ta(x) are smooth in a and x. Thus
εa(x) is smooth in a and x.

Now we are only left to show the asymptotic formulas (9.61) and (9.62). For this aim, as the
maps are formulated explicitly by the vector fields, we begin the proof with observing the vector
fields first. Namely, given the privileged coordinates at a0, we know by Proposition 9.5.18 that

X j(a) =
∂

∂x j
+

∑
k

F jk(a)
∂

∂xk

=
∂

∂x j
+

∑
k

F0
jk(a)

∂

∂xk
+

∑
k

h jk(a)
∂

∂xk
,

(9.68)

where F0
jk and h jk satisfy wt(F0

jk) = wk − w j and wt(h jk) ≥ wk − w j + 1. Note that when h jk ≡ 0
holds for any j and k, we have ψa ◦ Ta(x) = a−1 · x by Lemma 9.6.21. Thus (9.61) holds in the
case that h jk ≡ 0 holds for all j and k.

In what follows, we denote by T 0
a and ψ0

a the transforms Ta and ψa corresponding to the case
h jk ≡ 0. Then we just checked that ψ0

a ◦ T 0
a (x) = a−1 · x.

The idea to obtain the desired result for the the general case is to regard h jk as a perturbation to
the case h jk ≡ 0 in which we know well. More precisely, using the condition wt(h jk) ≥ wk−w j +1
we shall show that

ψa ◦ Ta(x) = ψ0
a ◦ T 0

a (x) + Ow((a, x)w+1). (9.69)

The only strategy is to observe the term by term expansion of the exact formulas of ψa and Ta

which can be written using F0
jk and h jk of (9.68), and to concern computing the wt of each term

with the fact that wt(F0
jk) = wk − w j and wt(h jk) ≥ wk − w j + 1.
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Claim 1. We have Ta(x) = T 0
a (x) + Ow((a, x)w+1).

Proof of Claim 1. Consider the matrix B = (B jk)1≤ j,k≤n with B jk(a) = δ jk + F0
jk(a) + h jk(a) and let

A(a) = (B(a)T )−1. Then, as in the proof of Lemma 9.4.8 we have

Ta(x) = A(a)(x − a). (9.70)

By a direct matrix computation (See Lemma 9.A.1), we have

Ak j(a) = B−1
jk (a) = δ jk + G0

jk(a) + h̃ jk(a),

where G0 = (G0
jk)1≤ j,k≤n satisfies (I + F0)(I + G0) = I and h̃ jk satisfies wt(̃h jk) ≥ wk − w j + 1, and

h̃ jk ≡ 0 holds when hαβ ≡ 0 for any α and β. Injecting this into (9.70) we get

(Ta) j(x) =
∑

k

A jk(a)(xk − ak)

=
∑

k

[δ jk + G0
k j(a)](xk − ak) +

∑
k

h̃k j(a)(xk − ak)

= (T 0
a ) j(x) +

∑
k

h̃k j(a)(xk − ak),

(9.71)

and we note that

wt(̃hk j(a)(xk − ak)) ≥ wt(̃hk j(a)) + wt(xk − ak) ≥ (w j − wk + 1) + wk = w j + 1.

This with (9.71) shows that Ta(x) = T 0
a (x) + Ow((a, x)w+1). �

Claim 2. We have ψa ◦ Ta(x) = ψ0
a ◦ T 0

a (x) + Ow((a, x)w+1).

Proof of Claim 2. Let us work on the coordinates transformed by the map x → Ta(x). Then, by
(9.27) we know

Xi(x) =
∑

1≤k≤n

( ∑
1≤ j≤n

Bi j
(
a + A−1(a) · x

)
Ak j(a)

)
∂

∂xk
.

Using this and the forms of B jk(a) and A jk(a), we can see that Xi is of the form

Xi(x) =
∂

∂xi
+

∑
k

Q0
ik(a, x)

∂

∂xk
+

∑
k

rik(a, x)
∂

∂xk
, (9.72)

where Q0
ik satisfies wt(Q0

ik(a, x)) = wk −wi and rik satisfies wt(rik(a, x)) ≥ wk −wi + 1, and rik ≡ 0
if hαβ ≡ 0 holds for any α and β. On the other hand, from the proof of Proposition 9.4.12, we
know that for j = 1, . . . , n, the component y j = ψ j(x) is given by the form,

y j = x j +
∑
〈α〉<w j
2≤|α|

a jαxα, (9.73)
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where a jα ∈ R are determined as (9.29) in the following relations

Xα(y j)
∣∣∣
x=0

= 0 ⇐⇒ α!a jα = − Xα(x j)
∣∣∣
x=0
−

∑
〈β〉<w j

2≤|β|<|α|

a jβ Xα(xβ)
∣∣∣
x=0

. (9.74)

Let us denote by a0
jα the values of a jα corresponding to the case hαβ = 0 ∀(α, β). To see how a jα is

perturbed from a0
jα for the general case, we just observe the expansion of a jα explicitly obtained

by applying (9.72) into (9.74). In that expansion, we note that any rik increases the wt at least one
more than Q0

ik by the fact that wt(rik(a, x)) ≥ wk − wi + 1 and wt(Q0
ik(a, x)) = wk − wi. Now we

again note the important fact that rik ≡ 0 holds in the case that hαβ ≡ 0 ∀(α, β). Combining these
two facts, one may see that a jα is given by the form,

a jα(a) = a0
jα(a) + r jα(a), (9.75)

with r jα such that wt(r jα(a)) ≥ w j − 〈α〉 + 1. Hence we have

(ψa) j(x) = x j +
∑
〈α〉<w j
2≤|α|

a0
jα(a)xα +

∑
〈α〉<w j
2≤|α|

r jα(a)xα = (ψ0
a) j(x) +

∑
〈α〉<w j
2≤|α|

r jα(a)xα,

and
wt(r jα(a)xα) ≥ wt(r jα(a)) + wt(xα) ≥ (w j − 〈α〉 + 1) + 〈α〉 = w j + 1.

These means that ψa(x) = ψ0
a(x) + Ow((a, x)w+1). �

By Claim 1 and Claim 2, and using the fact that wt(ψ0
a(x) j) = wt(T 0

a (x) j) = wt(x j), we finally
get

ψa ◦ Ta(x) = (ψ0
a(·) + Ow((a, ·)w+1)) ◦ (T 0

a (x) + Ow((a, x)w+1))

= ψ0
a ◦ T 0

a (x) + Ow((a, x)w+1).

It completes the proof of (1).
To prove (2), we recall that εa(x) = ε̂a ◦ ψa ◦ Ta(x), where ε̂a is a group isomorphism which

change a privileged coordinates to a Carnot coordinates. Since we are already on a Carnot coor-
dinates at a = 0 by assumption, it holds that ε̂0 ≡ id. This implies ε̂a(y) = y + r(a, y) where

(r(a, y)) j =
∑
〈α〉=w j

r jα(a)yα (9.76)

for some r jα(a) = O(a). Using this and the previous result of (1), we can deduce that

ε̂a ◦ ψa ◦ Ta(x) = ε̂a

(
a−1 · x + Ow((a, x)w+1

)
= ε̂a(a−1 · x) + Ow((a, x)w+1)

= (1 + r(a, ·))(a−1 · x) + Ow((a, x)w+1)

= a−1 · x + Ow((a, x)w+1),

(9.77)

which proves (2). The proof is completed. �
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Before finishing this section, we state the following lemma which is essential in the construc-
tion of Carnot groupoid with boundary topology in the next section.

Lemma 9.6.23. In a given coordinates, we denote by εx a Carnot coordinates map at x. Next
we take a point x0 and change the coordinates system by the map εx0 and in the new coordinates
system, for a given point X we find a Carnot coordinates map ε̃X at the point X. Then, it holds
that

(̃εX) ◦ (εx0) ◦ (εε−1
x0 (X))

−1(y) = y + Ow(yw+1), (9.78)

and
εx0 ◦ ε

−1
ε−1

x0 (X)(y) = (̃εX)−1(y) + O((X, y)w+1) = X · y + O((X, y)w+1), (9.79)

where · denotes the group law of Gx0 M and the second equality is shown in Proposition 10.3.2.

Proof. In the coordinates which is given previously, we consider a Carnot coordinates map at
point ε−1

x0
(X) and denote it by εε−1

x0 (X). Next, we change the coordinates by the map εx0 , and we
observe that the point recorded by ε−1

x0
(X) in the previous coordinates is recorded newly as

εx0

(
ε−1

x0
(X)

)
= X (9.80)

in the new coordinates system.
In the new coordinates system, we find a Carnot coordinates map at X and denote it by

ε̃X. Then, noting that X is recorded as ε−1
x0

(X) in the previous coordinates, we know that the
composition of two coordinates change maps ε̃X ◦ εx0 provides a Carnot coordinates at ε−1

x0
(X) in

the setting of the previous coordinates system. Consequently, using Proposition 9.6.19 we find
that

εε−1
x0 (X) ◦ (εx0)

−1 ◦ (̃εX)−1(y) = εε−1
x0 (X) ◦ (̃εX ◦ εx0)

−1(y) = y + Ow(yw+1). (9.81)

Inverting this, we get
(̃εX) ◦ (εx0) ◦ (εε−1

x0 (X))
−1(y) = y + Ow(yw+1). (9.82)

Here, observing that (̃εX)−1(y) = X · y + O((X, y)w+1) by Proposition 10.3.2, we can deduce that

εx0 ◦ ε
−1
ε−1

x0 (X)(y) = (̃εX)−1(y) + Ow((X, y)w+1). (9.83)

It completes the proof. �

9.7 The Tangent Groupoid of a Carnot Manifold

This section is devoted to construct the tangent groupoids of a Carnot manifold (M,H).
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9.7.1 Differentiable groupoids.

Here we review the definition of groupoids and present the example of Connes’ tangent groupoid
on Riemannian manifolds.

Definition 9.7.1. A groupoids consists of a set G, a distinguished subset G(0) ⊂ G, two maps r
and s from G to G(0)(called the range and source maps) and a composition map,

◦ : G(2) = {(γ1, γ2) ∈ G × G | s(γ1) = r(γ2)} → G

such that the following properties are satisfied:

1. s(γ1 ◦ γ2) = s(γ2) and r(γ1 ◦ γ2) = r(γ1), for any (γ1, γ2) ∈ G(2);

2. s(x) = r(x) = x for any x ∈ G(0);

3. γ ◦ s(γ) = r(γ) ◦ γ = γ for any γ ∈ G;

4. (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3);

5. each element γ ∈ G has a two-sided inverse γ−1 so that γ ◦ γ−1 = r(γ) and γ−1 ◦ γ = s(γ).

The groupoids interpolate between spaces and groups. This aspect especially pertains in the
construction by Connes [Co] of the tangent groupoid G = GM of a smooth manifold M.

At the set-theoretic level we let

G = T M t (M × M × (0,∞)) and G(0) = M × [0,∞),

where T M denotes the (total space) of the tangent bundle of M. The inclusion ι of G(0) into G is
given by

ι(m, t) =

{
(m,m, t) for t > 0 and m ∈ M,

(m, 0) ∈ T M for t = 0 and m ∈ M.
(9.84)

The range and source maps of G are such that

r(p, q, t) = (p, t) and s(p, q, t) = (q, t) for t > 0 and p, q ∈ M,

r(p, X) = s(p, X) = (p, 0) for t = 0 and (p, X) ∈ T M,

and the composition law is defined by

(p,m, t) ◦ (m, q, t) = (p, q, t) for t > 0 and m, p, q ∈ M,

(p, X) ◦ (p,Y) = (p, X + Y) for t = 0 and (p, X), (p,Y) ∈ T M.
(9.85)

Actually, GM is a b-differentiable groupoid in the sense of the following definition.
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Definition 9.7.2. A b-differentiable groupoid is a groupoid G, so that G and G(0) are smooth
manifolds with boundary and the following properties hold:

1. The inclusion of G(0) into G is smooth;

2. The source and range maps are smooth submersions, so that G(2) is a submanifold (with
boundary) of G × G;

3. The composition map ◦ : G(2) → G is smooth.

The tangent groupoid G = GM is endowed with the topology such that:

• The inclusions of G(0) and G(1) := M×M× (0,∞) into G are continuous and G(1) is an open
subset of G;

• A sequence (pn, qn, tn) from G(1) converges to (p, X) ∈ T M if, and only if, lim(pn, qn, tn) =

(p, p, 0) and for any local chart κ near p we have

lim
n→∞

t−1
n (κ(qn) − κ(pn)) = κ′(p)X.

One can check that this condition does not depend on the choice of a particular chart near p.

The differentiable structure of GM is obtained by gluing those of T M and of G(1) = M ×M ×
(0,∞) by means of a chart of the form,

γ(p, X, t) =

{
(p, expp(−tX), t) if t > 0 and (p, tX) ∈ dom exp,
(p, X) if t = 0 and (p, X) ∈ dom exp.

Here exp : dom exp→ M×M denotes the exponential map associated to an arbitrary Reimannian
metric on M, so that γ maps an open subset of T M × [0,∞) onto an open neighborhood in G of
the boundary T M (See [Co]).

9.7.2 The tangent groupoid of a Carnot manifold.

We now construct the tangent groupoid G = GH M of a Carnot manifold (M,H).

G = GM t (M × M × (0,∞)) and G0 = M × [0,∞),

where GM denotes the total space of the tangent Lie group bundle of M. We have an inclusion
ι : G0 → G as

ι(m, t) =

{
(m,m, t) for t > 0 and m ∈ M,
(m, 0) ∈ GM for t = 0 and m ∈ M,
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the range and source maps are given by

r(p, q, t) = (p, t) s(p, q, t) = (q, t) for t > 0 and p, q ∈ M,

r(p, X) = s(p, X) = (p, 0) for t = 0 and (p, X) ∈ GM.

We endow G with the composition

(p,m, t) ◦ (m, q, t) = (p, q, t) for t > 0 and m, p, q ∈ M,

(p, X) ◦ (p,Y) = (p, X · Y) for t = 0 and (p, X), (p,Y) ∈ GM.
(9.86)

The inverse map is given by

(p, q, t)−1 = (q, p, t) for t > 0 and p, q ∈ M,

(p, X)−1 = (p, X−1) = (p,−X) for t = 0 and (p, X) ∈ GM.

Definition 9.7.3. The groupoid GH M is called the tangent groupoid of (M,H).

We now turn the groupoid G = GH M into a b-differentiable groupoid. First, we endow Gwith
the topology such that:

• The inculusions of G0 and G(1) := M × M × (0,∞) into G are continuous and make G(1) an
open subset of G.

• A sequence (pn, qn, tn) from G(1) converges to (p, X) ∈ GM if, and only if, lim(pn, qn, tn) =

(p, p, 0) and for any local H-chart κ : dom κ → U near p we have

lim
n→∞

t−1
n · εκ(pn)(κ(qn)) = (εκ(p) ◦ κ)′H(p)X. (9.87)

Here a local H-chart means a local chart with a local H-frame of T M over its domain.

Lemma 9.7.4. The condition (9.87) is independent of the choice of H-chart κ.

Proof. Assume that (9.87) holds for a H-chart κ. Let κ1 be another H-chart near p, and let φ =

κ1 ◦ κ
−1. Letting xn = κ(pn) and yn = κ(qn), we have

t−1
n · εκ1(pn)(κ1(qn)) = t−1

n · εφ(xn)(φ(yn))

= t−1
n ◦ εφ(xn) ◦ φ ◦ ε

−1
xn
◦ δtn(t

−1
n · εxn(yn)).

(9.88)

On the other hand, with the fact that φ is a Carnot diffeomorphism, we deduce by Proposition
9.6.19 that

lim
t→0

t−1 ◦ εφ(x) ◦ φ ◦ ε
−1
x ◦ δt(y) = ∂y(εφ(x) ◦ φ ◦ ε

−1
x )H(0)y.
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locally uniformly with respect to x and y. Since (xn, yn, tn)→ (κ(p), κ(p), 0) and t−1
n ·εκ(pn)(κ(qn))→

(εκ(p) ◦ κ)′H(p)X, by combining this with (9.88) we obtain

lim
n→∞

t−1
n · εκ1(pn)(κ1(qn)) = (εφ(κ(p)) ◦ φ ◦ ε

−1
κ(p))

′
H(0)((εκ(p) ◦ κ)′H(p)X)

= (εκ1(p) ◦ κ1)′H(p)X.

The lemma is proved. �

In order to endow GH M with a manifold structure we take the following local charts. Let
κ : dom κ → U be a local H-chart near a point m ∈ M. Then we give a local coordinates for
GM|dom κ ∈ G by

γκ(x, X, t) =


(
κ−1(x), κ−1 ◦ ε−1

x (t · X), t
)

if t > 0 and x, ε−1
x (t · X) ∈ U,(

κ−1(x), (κ−1 ◦ ε−1
x )′H(0)X

)
if t = 0 and (x, X) ∈ U × Rd+1.

The map γk is one-to-one from an open neighborhood of the boundary U ×Rd+1×0 in U ×Rd+1×

[0,∞). Moreover, γk is continuous off the boundary. It is also continuous near any boundary
point (x, X, 0) because if a sequnce (xn, Xn, tn) ∈ dom γk with tn > 0 converges to (x, X, 0) then
(pn, qn, tn) = γk(xn, Xn, tn) has limit limn→∞(pn, qn, tn) = γκ(x, X, 0), for we have

lim
n→∞

t−1
n · εk(pn)(k(qn)) = lim

n→∞
Xn = X = κ′H(κ(x))(κ−1)′H(x)X.

The inverse γ−1
κ is given by

γ−1
κ (p, q, t) = (κ(p), t−1 · εκ(p) ◦ κ(q), t) for t > 0,

γκ1(p, X) = (κ(p), κ′H(p)X) for (p, X) ∈ GM in the range of γκ1 .
(9.89)

Therefore, if κ1 is another local H-chart near m then, in terms of φ = κ−1
1 ◦ κ, the transition map

γ−1
κ ◦ γκ1 is

γ−1
κ ◦ γκ1(x, X, t) =

{
(φ(x), t−1 · εφ(x) ◦ φ ◦ ε

−1
x (t · X), t) for t > 0,

(φ(x), φ′H(x)X, 0) for t = 0.

This shows that γ−1
κ ◦ γκ1(x, X, t) is smooth with respect to x and X and is meromorphic with

respect to t with at worst a possible singularity at t = 0 only. However, by Proposition 9.6.19 we
have

lim
t→0

t−1 · εφ(x) ◦ φ ◦ ε
−1
x (t · X) = φ′H(x)X,

so there is no singularity at t = 0. Hence γ−1
κ ◦ γκ1 is a smooth diffeomorphism between open

subsets of Rd+1 × [0,∞). Therefore the coordinates system γκ allows us to glue together the
differentiable structures of GM and G(1) = M×M× [0,∞) to turn G into a smooth manifold with
boundary.
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Next, G(0) = M×[0,∞) is a manifold with boundary and the inclusion i : G(0) → G is smooth.
In addition, the range map r and the source map s are submersions off the boundary. Moreover,
in a coordinates system γκ near the boundary of G the maps r and s are given by

r(x, X, t) = (x, t) and s(x, X, t) = (ε−1
x (t · X), t) (9.90)

which shows that ∂x,tr and ∂X,ts are invertible near the boundary. Hence r and s are submersions
on all G.

Proposition 9.7.5. The composition map ◦ : G2 → G is smooth.

Proof. It is clear that ◦ is smooth off the boundary, and so it suffices to concern the case near
the boundary. In view of (9.90), in a local coordinate system γκ near the boundary two elements
(x, X, t) and (y,Y, t) can be composed if and only if we have y = εx(t · X). Then for t > 0 using
(9.86) and (9.89) we see that (x, X, t) ◦ (ε−1

x (t · X),Y, t) is equal to

γ−1
κ

(
(κ−1(x), κ−1ε−1

x (t · X), t)◦(κ−1ε−1
x (t · X), κ−1 ◦ ε−1

ε−1
x (t·X)(t · Y), t)

)
= γ−1

κ

(
(κ−1(x), κ−1 ◦ ε−1

ε−1
x (t·X)(t · Y), t)

)
=

(
x, t−1 · εx ◦ ε

−1
ε−1

x (t·X)(t · Y), t)
)
.

On the other hand, for t = 0 from (9.86) and (9.89) we see that (x, X, 0) ◦ (x,Y, 0) is equal to

γ−1
κ

(
(κ−1, (κ−1 ◦ ε−1

x )′H(0)X) ◦ (κ−1, (κ−1 ◦ ε−1
x )′H(0)Y)

)
= γ−1

κ

(
(κ−1(x), ((κ−1 ◦ ε−1

x )′H(0)X) · ((κ−1 ◦ ε−1
x )′H(0)Y)

)
= γ−1

κ

(
κ−1(x), (κ−1 ◦ ε−1

x )′H(0)(X · Y)
)

= (x, X · Y, 0),

where we used the fact that (κ−1 ◦ ε−1
x )′H(0) is a morphism of Lie groups (cf. Remark 9.6.18).

Therefore, we get

(x, X, t) ◦ (ε−1
x (t · X),Y, t) =


(
x, t−1 · εx ◦ ε

−1
ε−1

x (t·X)
(t · Y), t

)
for t > 0,

(x, X · Y, 0) for t = 0.

This shows that ◦ is smooth with respect to x, X, and Y and is meromorphic with respect to t with
at worst a singularity at t = 0. Therefore, in order to show the smoothness of ◦ at t = 0, it is
enough to prove that

lim
t→0+

t−1 · εx ◦ ε
−1
ε−1

x (t·X)(t · Y) = X · Y. (9.91)

For proving this limit, we use Lemma 9.6.23 to see

εx ◦ ε
−1
ε−1

x (t·X)(y) = (t · X) · (t · Y) + O((t · X, t · Y)w+1)

= t · (X · Y) + O((t · (X · Y))w+1),
(9.92)
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and using this we can derive that

lim
t→0+

t−1 · εx ◦ ε
−1
ε−1

x (t·X)(t · Y) = lim
t→0

t−1 · t · (X · Y) + t−1 · O((t · (X · Y))w+1) = X · Y, (9.93)

which is the desired equality (9.91). This completes the proof. �

Summarizing all this we have proved:

Theorem 9.7.6. The groupoid GH M is a b-differentiable groupoid.

We conclude this section with a comparison of the tangent groupoids GH M and GH′M′ such
that manifolds (M,H) and (M′,H′) are diffeomorphic with a Carnot-diffeomorphism φ. For this,
we consider the map ΦH : GH M → GH′M′ such that

ΦH(p, q, t) = (φ(p), φ(q), t) for t > 0 and p, q ∈ M,

ΦH(p, X) = (φ(p), φ′H(p)X) for (p, X) ∈ GM.
(9.94)

For t > 0 and p, q ∈ M, we have

rM′ ◦ ΦH(p, q, t) = (φ(q), t) = ΦH ◦ rM(p, q, t),

sM′ ◦ ΦH(p, q, t) = (φ(p), t) = ΦH ◦ sM(p, q, t),

and for (p, X) ∈ GM we have

sM′ ◦ ΦH(p, X) = rM′ ◦ ΦH(p, X) = (φ(p), 0)

= ΦH ◦ rM(p, X) = ΦH ◦ sM(p, X).

Thus we have rM′ ◦ΦH = ΦH ◦ rM and sM′ ◦ΦH = ΦH ◦ sM. Moreover, for t > 0 and m, p, q ∈ M
we get

ΦH(m, p, t) ◦M′ ΦH(p, q, t) = (φ(m), φ(q), t)

= ΦH ((m, p, t) ◦M (p, q, t)) ,

and for p ∈ M and X,Y ∈ GpM we get

ΦH(p, X) ◦M′ ΦH(p,Y) = (φ(p), φ′H(p)(X · Y))

= ΦH ((p, X) ◦M ΦH(p,Y)) .

All this means that ΦH is a morphism of groupoids. In addition, the inverse map is defined by
replacing φ with φ−1 in (9.94), which yields that ΦH is a groupoid isomorphism from GH M onto
GH′M′.

Continuity off the boundary for ΦH follows by (9.94). In order to see what happens at the
boundary we consider a sequence (pn, qn, tn) which converges to (p, X) ∈ GM. Let κ be a local
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H-chart for M′ near p′ = φ(p). By pulling back the H′-frame of κ by φ we turn κ ◦ φ into a
H-chart, so that setting (p′n, q

′
n, tn) = ΦH(pn, qn, tn) we get

t−1
n · εk(p′n)(k(q′n)) = tn · εκ◦φ(pn)(κ ◦ φ(qn))→ (κ ◦ φ)′H(p)X = κ′H(p)(φ′H(p)X).

Thus, ΦH is continuous from GH M to GH′M′. It also follows from (9.94) that ΦH is smooth off

the boundary. Moreover, if κ is a local H-chart for M′ then ΦH ◦ γκ◦φ(p, X, t) coincides for t > 0
with (

φ
(
φ−1 ◦ κ−1(x)

)
, φ

(
φ−1 ◦ κ−1 ◦ ε−1

x (t · X)
)
, t
)

=
(
κ−1(x), κ−1 ◦ ε−1

x (t · X), t
)

= γκ(x, X, t),

while for t = 0 it is equal to(
φ
(
φ−1 ◦ κ−1(x)

)
, φ′H

(
φ−1 ◦ κ−1(x)

) (
(κ−1 ◦ ε−1

x )′H(0)X
)
, 0

)
=

(
κ−1(x), (κ−1 ◦ ε−1

x )′H(0)X, t
)

= γk(x, X, 0).

Hence γk ◦Φ ◦ γκ◦φ = id, which shows that ΦH is smooth map. By similar arguments we see that
Φ−1

H is smooth, and so ΦH is a diffeomorphism. We have thus proved:

Proposition 9.7.7. The map ΦH : GH M → GH′M′ given by (9.94) is an isomorphism of b-
differentiable groupoids. Hence the isomorphism class of b-differentiable groupoids of GH M
depends only on the Carnot diffeomorphism clss of (M,H).
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Appendix

9.A A matrix computation for degree

In this appendix, we justify the result on the matrix computation concerning wt which was used
in the proof of Proposition 10.3.2. As there, for f : Rn × Rn → R we write wt( f ) = w if
f (t · p, t · x) = tw f (p, x) ∀t > 0, and wt( f ) ≥ w if sup|p|+|x|≤1 | f (t · p, t · x)| = O(tw) as t → 0+.

Lemma 9.A.1. Consider an invertible n × n matrix B(p) = (B jk(p))1≤ j,k≤n with entry

B jk = δ jk + F jk(p) + h jk(p),

where F jk and h jk satisfy 
F jk(p) ≡ 0 if wk ≤ w j,

wt(F jk(p)) = wk − w j if wk > w j,

wt(h jk(p)) ≥ wk − w j + 1 ∀ 1 ≤ j, k ≤ n.
(9.95)

Let F(p) = (F jk(p)1≤ j,k≤n). Then we have

1. The matrix I + F(p) has an inverse matrix I + G(p), with G(p) = (G jk(p))1≤ j,k≤n such that{
G jk(p) ≡ 0 if wk ≤ w j,

wt(G jk(p)) = wk − w j if wk > w j.
(9.96)

2. Let D(p) = (D jk(p))1≤ j,k≤n be the inverse matrix of B(p). Then,

D jk(p) = δ jk + G jk(p) + e jk(p), (9.97)

where e jk(p) satisfies wt(e jk(p)) ≥ max{wk − w j + 1, 1} for any k and j.

Proof. Since F is strictly upper diagonal, (I + F) has a unique inverse matrix (I + G) given
by a strictly upper diagonal matrix G, i.e., Gab ≡ Fab ≡ 0 whenever a ≥ b. By the identity
(I + F)(I + G) = 0 we have

δi j =
∑

k

(δik + Fik)(δk j + Gk j)

= δi j + Gi j + Fi j +
∑
k,i, j

FikGk j

= δi j + Gi j + Fi j +
∑
i<k< j

FikGk j.

(9.98)
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Therefore we get
Gi j(p) = −Fi j −

∑
i<k< j

FikGk j. (9.99)

Let us fix a value of j. Taking i = j − 1 in (9.99), we have G j−1, j(p) = −F j−1, j, and so
wt(G j−1, j(p)) = wt(F j−1, j(p)) = w j − w j−1 holds. Thus (9.96) holds with i = j − 1. Next we
observe that Gi j involves Gk j only with k > i in the formula (9.99). Hence we can use an induc-
tion argument with respect to i from j−1 to 1. Using that wt(FikGk j) = wt(Fik)+wt(Gk j) it proves
(9.96).

To show (9.97), we begin with letting D jk(p) = δ jk + G jk(p) + e jk(p) for some function e jk(p)
to be determined. Then it is enough to show that wt(e jk(p)) ≥ wk − w j + 1, ∀ 1 ≤ j, k ≤ n. Since
B · D = I, we have

δi j =
∑

k

((δik + Fik) + hik)
(
(δk j + Gk j) + ek j

)
=

∑
k

[
(δik + Fik)(δk j + Gk j) + hikδk j + ek jδik + hikGk j + ek jFik + hikek j

]
.

Using this and (9.98) we get

0 = hi j + ei j +
∑

k

[
hikGk j + ek jFik + hikek j

]
.

= hi j + ei j +
∑

k

hikGk j +
∑
k>i

ek jFik +
∑

k

hikek j,
(9.100)

where we also use the fact that Fik = 0 for wi ≤ wk. From this identity, using (9.95) and that
wt(hikGk j) ≥ (wk − wi + 1) + (w j − wk) = w j − wi + 1, we deduce

wt(ei j) ≥ min
{
w j − wi + 1, min

k>i
wt(ei j · Fik), min

1≤k≤n
wt(ek j · hik)

}
. (9.101)

To show the property of wt(ei j) in (9.97), we shall fix j and use an induction argument with
respect to i from ( j− 1) to 1 via the inequality (9.101). Note that we have eab(0) = hab(0) = 0 for
any a and b, and so wt(eab) ≥ 1 and wt(hab) ≥ 1. Then we take i = j − 1 in (9.101) to get

wt(e j−1, j) ≥ min
{
w j − w j−1 + 1, min

k>i
wt(ei j · Fik), min

1≤k≤n
wt(ek j · hik)

}
≥ min

{
w j − w j−1 + 1, 2

}
= w j − w j−1 + 1.

Thus (9.97) holds for i = j − 1.
Next, for a given s ∈ [2, j−1], we assume that wt(ei j) ≥ w j−wi +1 holds for i > s. Combining

this, (9.95) and (9.101) we see

min
{
min
k>s

wt(ek j · hsk), min
k>s

wt
(
ek j · Fsk

)}
≥ w j − ws + 1.
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Using this and that wt(hab) ≥ 1 for any a and b, we deduce from (9.101) that for each i ≤ s,

wt(ei j) ≥ min
{
w j − ws + 1, min

k≤i
wt(ek j · hik)

}
≥ min

{
w j − ws + 1, min

k≤s
wt(ek j) + 1

}
,

where we also used that w j −wi + 1 ≥ w j −ws + 1 for i ≤ s. Taking a minimum of this inequality
with respect to i ≤ s, we get

min
i≤s

wt(ei j) ≥ min
{
w j − ws + 1, min

k≤s
wt(ek j) + 1

}
.

From this, we easily get mini≤s wt(ei j) ≥ w j − ws + 1. It gives that wt(es j) ≥ w j − ws + 1. Thus
(9.97) holds for s, and so the induction concludes that (9.97) holds for any case. The lemma is
proved. �
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Chapter 10

Pseudodifferential calculus

This paper is devoted to establish the pseudodiiferential calculus on Carnot manifolds based on
the preliminary study of the previous chapter.

In Section 2, we begin with studying symbols of differential operators at each point. We then
extend it to define the pseudodifferential operators on Carnot manifolds. Also the convolution
of operators on Carnot group will be discussed. In Section 3, we establish the pseudodifferential
calculus on Carnot manifolds. Namely, we obtain the asymptotic expansion formula for compo-
sition, change of coordinates, and adjoint operators. Section 4 is devoted to study the mapping
property of pseudodifferential operators on Lp space. In Section 5, we recall the result on the
equivalence between the Rockland condition and the invertibility. In Section 6, we study the hy-
poelliptic heat operators. In Appendices, we will arrange various technical computations which
are essentially used in the paper.

10.1 Classes of Symbol and Pseudodifferential operators

In this section, we define the suitable classes of pseudodifferential operators on Carnot manifolds
for studying hypoelliptic operators. First we will define symbol classes on open sets and define
the classes of kernels by considering their inverse Fourier transform. Then we shall define the
pseudodifferential operators using the kernels and Carnot coordinates map εx(y).

As in the previous sections we consider a Carnot-Caratheodory space (Mn,H) with flagged
vector fields

H0 = {0} ⊂ H1 ⊂ · · · ⊂ Hr−1 ⊂ Hr = T M (10.1)

such that [Hw,Hw′] ⊂ Hw+w′ when w + w′ ≤ r. For j = 1, · · · , n, we set

w j = min{w ∈ {1, · · · r}; j ≤ rkHw}. (10.2)

The homogeneous dimension of Mn is then given by Q =
∑n

j=1 w j. We shall use notation ‖ξ‖ for
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ξ = (ξ1, · · · , ξd) ∈ Rn to denote the quasi-norm

‖ξ‖ =

n∑
j=1

|ξ j|
1

w j . (10.3)

Note that this quasi-norm satisfies the relation

‖t · ξ‖ = t‖ξ‖ ∀t > 0 and ∀ξ ∈ Rn, (10.4)

where · denotes the isotropic dilation. We denote the usual norm by |ξ| =
(∑n

j=1 |ξ j|
2
)1/2

. Then we
have the following basic property.

Remark 10.1.1. There exists a constant C > 0 such that ‖ξ‖ ≥ C|ξ| for any ξ ∈ Rn with ‖ξ‖ ≤ 1.
To see this, we note that if ‖ξ‖ ≤ 1 then |ξ j| ≤ ‖ξ‖ ≤ 1 holds, and so

‖ξ‖ ≥

n∑
j=1

|ξ j| ≥

 n∑
j=1

|ξ j|
2


1
2

= |ξ|. (10.5)

Locally we may assume that M = U ⊂ Rn is an open set endowed with a local tangent frame
(X1, · · · , Xn) such that the vector fields X j, w j = w, are sections of Hw for each w = 1, · · · , r.

10.1.1 Definition of ΨHDOs

We first define the symbol classes on open sets.

Definition 10.1.2.

1. S m(U × Rn), m ∈ C consists of functions p ∈ C∞(U × (Rn \ {0})) such that

p(x, λ · ξ) = λm p(x, ξ), and ∀λ > 0 (10.6)

holds for all (x, ξ) ∈ U × Rn.

2. S m(U × Rn), m ∈ C consists of functions p ∈ C∞(U × Rn) which admit an asymptotic
expansion:

p(x, ξ) ∼
∞∑
j=0

pm− j(x, ξ), pk ∈ S m(U × Rn), (10.7)

in the sense that for all multi-orders α, β and all N > 0, it holds that∣∣∣∣∣∣∣Dα
x Dβ

ξ

(
p(x, ξ) −

∑
j<N

pm− j(x, ξ)
)∣∣∣∣∣∣∣ ≤ CαβKN‖ξ‖

m−N−〈β〉 ∀x ∈ K, |ξ| ≥ 1, (10.8)

where K is any compact subset of U and CαβKN is a positive constant determined by α, β,
K and N.
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Next we shall define the classes of kernels. We begin with defining homogeneous kernels.
For K ∈ S′(Rn) and for λ > 0 we denote by Kλ the element of S′(Rn) such that

〈Kλ, f 〉 = λ−Q〈K(x), f (λ−1 · x)〉 ∀ f ∈ S(Rn). (10.9)

We say that K is homogeneous of degree m, m ∈ C, when Kλ = λmK for any λ > 0.

Definition 10.1.3. S′reg(Rn) denotes the set of tempered distributions on Rn which are smooth
outside the origin.

Definition 10.1.4.

1. Km(U×Rn), m ∈ C, consists of distributions K(x, y) in C∞(U)⊗̂S ′reg(Rn) such that for some
functions cα(x) ∈ C∞(U), 〈α〉 = m, we have

(a) If j < N0, K(x, λ · y) = λ jK(x, y) ∀λ > 0.

(b) If j ∈ N0, K(x, λ · y) = λmK(x, y) + λm log λ
∑
〈α〉=m cK,α(x)yα ∀ λ > 0, where the

functions cK,α(x) are contained in C∞(U).

2. Km(U×Rn), m ∈ C, consists of distributions K ∈ D′(U×Rn) with an asymptotic expansion
K ∼

∑
j≥0 Km+ j, Kl ∈ Kl(U × Rn), in the sense that, for any integer N, as soon as J is large

enough we have
K −

∑
j≤J

Km+ j ∈ CN(U × Rn). (10.10)

Then the following result holds.

Lemma 10.1.5. [BG, Prop. 15.24], [CoM, Lem. 1.4].

1. Any p ∈ S m(U × Rn) agrees on U × (Rn \ 0) with a distribution γ(x, ξ) ∈ C∞(U)⊗̂S′(Rn)
such that γ̂ξ→y is in Km̂(U × Rn), m̂ = −(m + Q).

2. If K(x, y) belongs to Km̂(U × Rn) then the restriction of K̂y→ξ(x, ξ) to U × (Rn \ 0) belongs
to S m(U × Rn).

Now we define the class of pseudodifferential operators.

Definition 10.1.6. The class Ψm(U), m ∈ C consists of continuous operators P : C∞c (U) →
C∞(U) with distribution kernel kP(x, y) such that

kP(x, y) = |ε′x|KP(x,−εx(y)) + R(x, y), (10.11)

with KP ∈ K
m̂(U × Rn), m̂ = −m − Q, and R ∈ C∞(U × U).
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10.2 Convolutions on nilpotent Lie groups

We shall consider convolution operators with distributions kernels on nilpotent Lie groups and
define a modified convolution. This is essential for the calculus of composition of pseudo-
differential operators in the next section.

Let G be a nilpotent Lie group which is realized on Rn endowed with a group law ·. Then, for
K ∈ S′(Rn) we set the convolution operators by

TKg(x) = 〈K, g ◦ ψx〉, g ∈ S(Rn), (10.12)

where ψx(y) = (x ·y)−1. When K is contained in a suitable function space, we may write the above
operator as

TK f (x) =

∫
G

K(x · y−1) f (y)dy. (10.13)

Note that it is difficult to define the convolution for the operators TK with K ∈ Km(Rn) because
K may have an unbounded supoort. To go around this difficulty, as in [BG, BGS], we consider
almost homogenous functions.

Definition 10.2.1. For m ∈ C, the set Sah
m (Rn) consists of function f ∈ C∞(Rn) which is almost

homogeneous of degree m in the sense that

λ−mδλ f − f ∈ S(Rn) for all λ > 0, (10.14)

where
δλ f (ξ) = f (λ · ξ). (10.15)

We say that the function f has the homogeneous part g ∈ Fm if for each N ≥ 0 and each α, it
holds that

lim
|ζ |→∞

‖ζ‖N Dα[ f (ζ) − g(ζ)] = 0, (10.16)

and we shall write g = hom( f ).

Proposition 10.2.2 ([BGS]). If f is almost homogeneous of degree m, then it has a unique ho-
moegeneous part.

We denote by E′ the space of compactly supported distributions. Then we have the following
result.

Proposition 10.2.3 ([BGS]). Assume that g j is almost homogeneous of degree m j, j = 1, 2. Then
the inverse transofrm k j is contained in E′ + S. In addition, the function g = (k1 ∗ k2)∧ is almost
homogeneous of degree m1 + m2, and the homogeneous part f = hom(g) is uniquely determined
by f j = hom(g j), j = 1, 2.
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Definition 10.2.4. Suppose f j belongs to Sm j(R
n+1), j = 1, 2. Then T ( f1, f2) is the element of

Sm(Rn+1), m = m1 + m2, which is defined by

T ( f1, f2) = hom([g]1 ∗ g]2]b), (10.17)

where the g j are almost homogeneous with hom(g j) = f j.

Definition 10.2.5. Let K1 ∈ Km̂1(U × R
n) and K2 ∈ Km̂2(U × R

n). Then we define K1 ∗K2 ∈

Km̂1+m2(U × R
n) as

K1 ]K2(x, y) = T
(
K1(x, ·) ∗K2(x, ·)

)
. (10.18)

10.3 Pseudodifferential calculus

In this section, we establish the calculus of the pseudodifferential operators in Ψm(U). Namely,
we shall study the composition of two operators, the adjoint operators, and the invariance prop-
erty.

For this aim, we define the following notations of distributions.

Definition 10.3.1. Let w ∈ Nn
0 and and γ ∈ Nn

0.

1. For given K ∈ S′(Rn), we define the distribution Kw by

〈Kw, f (z)〉 = 〈K, zw f (z)〉, f ∈ S(Rn). (10.19)

2. For given K ∈ S′(Rn), we define the distribution Kw:γ by

〈Kw:γ, f (z)〉 = 〈Kw, (−∂z)γ f (z)〉, f ∈ S(Rn). (10.20)

3. For given K ∈ Km(U × Rn), m ∈ C, we define the distribution (K)α ∈ Km(U × Rn) by

〈(K)α, f 〉 = ∂αx〈K(x, ·), f 〉, f ∈ S(Rn). (10.21)

10.3.1 Composition of Pseudodifferential operators on vector fields

Proposition 10.3.2. Consider two pseudo-differential operators PK1 ∈ Ψm1(U) and PK2 ∈ Ψm2(U)
with K1 ∈ K

m̂1(U × Rn) and K2 ∈ K
m̂2(U × Rn). Assume that one of the operators is properly

supported. Then, PK1 ◦ PK2 ∈ Ψm1+m2(U) and there exists a kernel K ∈ K m̂1+m2(U × Rn) such that

PK1 ◦ PK2 = PK . (10.22)

In addition, the principal kernel of K equals to (K1)m̂1](K2)m̂2 , and generally, the term kernel with
homogeneous degree k in the asymptotic expansion of PK1 ◦ PK2 is given by the form∑

Cαβγδ((K1)l)γ]((K2)t)δ:βα (10.23)

where Cαβγδ are functions in C∞(U) independent of the operators PK1 and PK2 . The sum is finite,
taken over indices such that
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• −m1 − Q ≤ l and −m2 − Q ≤ t,

• (−l − Q) − 〈γ〉 + (−t − Q) − 〈δ〉 + 〈β〉 = −k − Q,

• 〈γ〉 + 〈δ〉 − 〈β〉 ≥ |α| + |β|.

Proof. Without loss of generality, we may assume that PK1 ∈ Ψm1(U) and PK2 ∈ Ψm2(U) with
K1 ∈ K

ah
m̂1

(U × Rn) and K2 ∈ K
ah
m̂2

(U × Rn). Take a function f ∈ S(Rn) which is compactly
supported in U. Then we have

PK1 f (x) =
〈
K1(x,−y), f (ε−1

x y)
〉

and PK2 f (x) =
〈
K2(x,−y), f (ε−1

x y)
〉
. (10.24)

Since one of PK1 and PK2 is properly supported, we may compose these two operators, which
leads to

PK1 ◦ PK2 f (x) =
〈
K1(x,−y), (PK2 f )(ε−1

x (y))
〉

=
〈
K1(x,−y),

〈
K2(ε−1

x (y),−z), f (ε−1
ε−1

x (y)(z))
〉〉
.

(10.25)

Changing the variable z→ εε−1
x (y) ◦ ε

−1
x (z) we have

PK1 ◦ PK2 f (x) =
〈
K1(x,−y),

〈
K2(ε−1

x (y),−εε−1
x (y) ◦ ε

−1
x (z)), f (ε−1

x (z))
〉〉

=
〈
K1(x,−y),

〈
K2(x + a(x, y),−y · z + b(x, y, z)), f (ε−1(z))

〉〉 (10.26)

where we have let a(x, y) = ε−1
x (y) − x and b(x, y, z) = εε−1

x (y) ◦ ε
−1
x (z) − y · z.

Using the Taylor expansion (see Lemma 10.C.1), we have the formal identity

K2 (x + a(x, y), −y · z + b(x, y, z))

=
∑

|α|+|β|<N

1
α!β!

∂α1∂
β
2K2(x, z · y)a(x, y)αb(x, y, z)β + RN(x, a(x, y),−y · z, b(x, y, z)), (10.27)

where

RN (x, a(x, y), z · y, b(x, y, z))

=

∫ 1

0

(N + 1)(1 − t)N

α!β!
a(x, y)αb(x, y, z)β∂α1∂

β
2K2(x + a(x, y)t, −y · z + b(x, y, z)t)dt.

(10.28)

This enables us to write〈
K2 (x + a(x, y),−y · z + b(x, y, z)) , f (ε−1(z))

〉
=

∑
|α|+|β|<N

1
α!β!

〈
∂α1∂

β
2K2(x, z · y)a(x, y)αb(x, y, z)β, f (ε−1(z))

〉
+

〈
RN(x, a(x, y), z · y, b(x, y, z)), f (ε−1(z))

〉
.

(10.29)
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From the fact that a(x, 0) = 0 and using Lemma 9.6.23 we have

a(x, y) = O(y) and b(x, z, y) = O((z, y)w+1). (10.30)

Thus we have
a(x, y)α =

∑
|α|≤〈γ〉≤r|α|

Cαγyγ, (10.31)

and
b(x, z, y)β =

∑
γ,δ

C̃βγδyγzδ =
∑
γ,δ

Cβγδyγ(y · z)δ, (10.32)

where Cαγ, Cβγδ and C̃βγδ are constants depending on δ, γ, β and the group law, and the indices
satisfy the relation

〈γ〉 + 〈δ〉 ≥ |β| + 〈β〉. (10.33)

In the second equality, we used the identity zγ = ((y · z) · (−z))γ =
∑
〈p〉+〈q〉=〈γ〉Cpqγ(y · z)p(z)q,

where Cpqγ are constants determined by the group law. Combining (10.31) and (10.32) we have

a(x, y)αb(x, z, y)β =
∑
γ,δ

Cαβγδyγ(y · z)δ, (10.34)

where γ and δ satisfy the relation

〈γ〉 + 〈δ〉 ≥ |β| + |α| + 〈β〉. (10.35)

Using this we may write each term in the right hand side of (10.27) as

∂α1∂
β
2K2(x, z · y)aαbβ = ∂α1∂

β
2K2(x, z · y)

∑
γ,δ

Cαβγδyγ(y · z)δ. (10.36)

which leads to

K2 ((x + a(x, y), −y · z + b(x, y, z)))

=
∑

|α|+|β|<N

∑
γ,δ

Cαβγδ

α!β!
∂α1∂

β
2K2(x, z · y)yγ(y · z)δ + RN (x, a(x, y), z · y, b(x, y, z)) .

Now we put this into (10.26) to get

(PK1 ◦ PK2) f (x)

=
∑

|α|+|β|<N

∑
γ

Cβδγ

α!β!

〈
yγK1(x,−y),

〈
∂α1∂

β
2K2(x, y · z)(y · z)δ, f (ε−1

x (z))
〉

z

〉
y

+

〈
K1(x, y),

〈
RN(x, a(x, y), y · z, b(x, y, z)), f (ε−1

x (z))
〉

z

〉
y

:=M f (x) + R f (x).
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Note that if we set L1 ∈ Km̂1+〈γ〉(U × Rn) and L2 ∈ K〈δ〉+m̂2−〈β〉(U × R
n) by

L1(x, y) = yγK1(x, y) and L2(x, y) = yδ∂α1∂
β
2K2(x, y), (10.37)

then we have〈
yγK1(x,−y),

〈
∂α1∂

β
2K2(x, y · z)(y · z)δ, f (ε−1

x (z))
〉

z

〉
y

=

〈
(L1(x)]L2(x))(z), f (ε−1

x (z))
〉
.

Since 〈γ〉 + 〈δ〉 ≥ |α| + |β| + 〈β〉, we have

L1 ] L2 ∈ K
m̂1+m2+|β|+|α|(U × Rn). (10.38)

This completes the first part of the proof.
Now we are only left to show the smoothness of the distribution kernel of the remainder term

R. Heuristically we can see from (10.30) that (RN)δ(x, a, z · y, b) has also gain at least |α|+ |β| = N
order of |y|. Essentially, it explains why the remainder term becomes smooth as N becomes large.
We shall justify this heuristic rigorously. Recall that

RN(x, a(x, y), y · z, b(x, y, z))

=

∫ 1

0

(N + 1)(1 − t)N

α!β!
a(x, y)αb(x, y, z)β∂α1∂

β
2K2(x + a(x, y)t, Φt(x, y, z))dt.

(10.39)

where we have let
Φt(x, y, z) := z · y + t

(
εε−1

x (y) ◦ ε
−1
x (z) − y · z

)
. (10.40)

Using (10.30) again and Lemma 10.B.3, we have

a(x, y)αb(x, y, z)β =
∑
γ,δ

Cαβγδ(t)yγΦt(x, y, z)δl (10.41)

where δ and γ satisfy
〈δ〉 + 〈γ〉 ≥ 〈β〉 + |β| + |α|. (10.42)

Using this we write

a(x, z)αb(x, z, y)β∂α1∂
β
2K2(x + at,Φt(x, z, y))

=
∑
γ,δ

CαβγδyγΦt(x, z, y)δ∂α1∂
β
2K2(x + at,Φt(x, z, y)). (10.43)

Injecting this into (10.39) we get

R f (x) =
∑

|α|+|β|=N

∑
γ,δ

∫ 1

0

〈
Cαβγδ(t)
α!β!

(K1(x, y)yγ) ,

〈(
Φt(x, z, y)δ∂α1∂

β
2K2(x + at,Φt(x, z, y))

)
, f (ε−1

x (z))
〉

z

〉
y

dt.

(10.44)
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By (10.42) we find that

wt(K1(x, z)zγ) + wt(zδ∂α1∂
β
2K2(x + at, z))

≥
(
m̂1 + 〈γ〉

)
+

(
〈δ〉 − 〈β〉 + m̂2

)
≥ |α| + |β| + m̂1 + m̂2 = N + m̂1 + m̂2.

(10.45)

Note that we can write R f (x) as

R f (x) =
∑

|α|+|β|=N

∑
γ,δ∫ 1

0

〈〈
Cαβγδ(t)
α!β!

(K1(x, y)yγ) ,
(
Φt(x, z, y)δ∂α1∂

β
2K2(x + at,Φt(x, z, y))

)〉
y
, f (ε−1

x (z))
〉

z

dt,

and it is enough to show that each integration〈
K1(x, y)yγ, Φt(x, z, y)δ∂α1∂

β
2K2(x + at,Φt(x, z, y))

〉
y

(10.46)

is a function in CM(U ×U) if N is large enough. Actually, this fact follows directly from (10.45)
combining and Remark 10.A.3 and Lemma 10.C.2. The proof is completed. �

10.3.2 Invariance theorem of peudodifferential operators

Proposition 10.3.3. Let U (resp. Ũ) be an open subset of Rn equipped with a hyperplane bundle
H ⊂ TU (resp. H̃ ⊂ TŨ) and a H-frame of TU (resp. H̃-frame of TŨ). Suppose that U and Ũ are
Carnot diffeomorphic with φ : (U,H)→ (Ũ, H̃) a Carnot diffeomorphism. Then, for P̃ ∈ Ψm

H̃
(Ũ),

the following holds:

1. The operator P = φ∗P̃ is a ΨHDO of order m on U.

2. Consider that the kernel of P̃ is given by the form (10.11) with KP̃ ∈ K
m̂(Ũ × Rn). Then,

the kernel of P is of the form (10.11) with KP(x, y) ∈ K m̂(U × Rn) such that

KP(x, y) ∼
∑

〈β〉≥〈α〉+|α|

1
α!β!

aαβ(x)yβ(∂α2 KP̃)(φ(x), φ′H(x)y), (10.47)

where we have let aαβ(x) = ∂
β
y

[
|∂y(̃εφ(x) ◦ φ ◦ ε

−1
x )(y)|(̃εφ(x) ◦ φ ◦ ε

−1
x (y) − φ′H(x)y)α

]
|y=0 and

ε̃x denote the change to the Carnot coordinates at x̃ ∈ Ũ. Especially,

KP(x, y) = |φ′H(x)|KP̃(φ(x), φ′H(x)y) mod K m̂+1(U × Rn). (10.48)

Proof. The kernel of P̃ is given by

kP̃(x̃, ỹ) = |̃εx̃′ |KP̃(x̃,−ε̃x(̃y)) + R̃(x̃, ỹ), (10.49)
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with KP̃(x̃, ỹ) ∈ K m̂(Ũ × Rn) and R̃(x̃, ỹ) ∈ C∞(Ũ × Ũ).
By definition, we have

(φ∗P̃)( f )(x) = P̃( f ◦ (φ−1(·)))(φ(x))

=

∫
|̃ε′φ(x)(y)|KP̃(φ(x), ε̃φ(x)(y)) f (φ−1(y))dy +

∫
R̃(φ(x), y) f (φ−1(y))dy

=

∫
|̃εφ(x)(φ(y))||φ′(y)|KP̃(φ(x), ε̃φ(x)(φ(y))) f (y)dy +

∫
|φ′(y)|R̃(φ(x), φ(y)) f (y)dy.

Hence the kernel of P = φ∗P̃ is given by

kP(x, y) = |φ′(y)|KP̃(φ(x), φ(y)) = |ε′x|K(x,−εx(y)) + R̃(φ(x), φ(y)), (10.50)

where K is a distribution on {(x, y) ∈ U × Rn; ε−1
x (−y) ∈ U} ⊂ U × Rn such that

K(x, y) = |∂yΦ(x, y)|KP̃(φ(x),Φ(x, y)), (10.51)

with Φ(x, y) = −ε̃φ(x) ◦ φ ◦ ε
−1
x (−y). By Proposition 9.6.19 we have

Φ(x, y) = φ′H(x)(y) + Θ(x, y), (10.52)

where Θ(x, y) = O(yw+1). By performing the Taylor expansion around ỹ = φ′H(x)y we have

K(x, y) = |∂yΦ(x, y)|KP̃(φ(x), φ′H(x)(y) + Θ(x, y))

=
∑
|α|<N

|∂yΦ(x, y)|
Θ(x, y)α

α!
(∂α2 KP̃)(φ(x), φ′H(x)y) + RN(x, y), (10.53)

where RN(x, y) equals to

RN(x, y) =
∑
|α|=N

|∂yΦ(x, y)|
Θ(x, y)α

α!

∫ 1

0
(t − 1)N−1∂α2 KP̃(φ(x),Φt(x, y))dt, (10.54)

and we have let Φt(x, y) = φ′H(x)y + tΘ(x, y).
Set fα(x, y) = |∂yΦ(x, y)|Θ(x, y)α. As Θ(x, y) = O(yw+1), near y = 0 we have

fα(x, y) =
∑

〈α〉+|α|≤〈β〉<2N

fαβ(x)yβ +
∑
〈β〉≥2N

rNαβ(x, y)yβ, (10.55)

with fαβ(x) = 1
β!∂

β
y fα(x, 0) and rMαβ(x, y) ∈ C∞(U × U). Then,

K(x, y) =
∑
〈α〉<N

[ ∑
(〈α〉+|α|)≤〈β〉<2N

Kαβ(x, y)
]

+
∑
〈α〉<N

RNα(x, y) + RN(x, y), (10.56)
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where we have let

Kαβ(x, y) = fαβ(x)yβ(∂α2 KP̃)(φ(x), φ′H(x)y),

RNα(x, y) =
∑
〈β〉≥2N

rNαβ(x, y)yβ(∂α2 KP̃)(φ(x), φ′H(x)y). (10.57)

First we note that Kαβ ∈ K
〈β〉−〈α〉+m̂(U × Rn) because φ′H(x)(λ · y) = λ · (φ′H(x)y) holds for λ > 0.

Next, we see that RNα ∈ K
N+〈m〉(U × Rn) as 〈β〉 − 〈α〉 ≥ N holds in the summation of RNα. Thus,

RNα(x, y) ∈ CM(U ×U) as soon as N is large enough. To see the smoothness of RN(x, y), we state
the following lemma.

Lemma 10.3.4. In a neighborhood of y = 0 we have

Θ(x, y)α =
∑

〈α〉+|α|≤〈β〉≤n|α|

Cβt(x)Φt(x, y)β, (10.58)

where Cβt(x) are smooth functions which are bounded uniformly for x ∈ U and t ∈ [0, 1].

Proof. As Φt(x, y) = φ′H(x)y + tΘ(x, y) with Θ(x, y) = O(yw+1), one can apply Lemma 10.B.1 to
see that

(Φt(x, ·))−1(y) = (φ′H(x))−1y + Θ̃t(x, y), (10.59)

where Θ̃t(x, y) = O(yw+1) uniformly for t ∈ [0, 1]. Using this and the fact that Θ(x, y) = O(yw+1)
again, we have

Θ(x, (Φt(x, ·))−1(y))α = Θ(x, (φ′H(x))−1y + Θ̃t(x, y))α =
∑

〈α〉+|α|≤〈β〉≤n|α|

Cβ(x)yβ. (10.60)

By taking y→ Φt(x, y) we get

Θ(x, y)α =
∑

〈α〉+|α|≤〈β〉≤n|α|

Cαβ(x)Φt(x, y)β. (10.61)

The lemma is proved. �

By applying this lemma, we may write (10.54) as

RN(x, y) =
∑
〈α〉=N

∑
〈α〉+|α|≤〈β〉≤n|α|

Cβ(x)|∂yΦ(x, y)|
∫ 1

0
(t − 1)N−1Φt(x, y)β∂αỹ KP̃(φ(x),Φt(x, y))dt.

(10.62)
Here we observe that

yβ∂α2 KP̃(φ(x), y) ∈ K 〈β〉−〈α〉(U × Rn), (10.63)

and 〈β〉 − 〈α〉 ≥ |α| = N. Hence this is contained in CM as soon as N is large enough. Thus
RN(x, y) ∈ CM(U × U) if N is large enough. The proof is completed. �
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10.3.3 Adjoint of pseudodifferential operators

Proposition 10.3.5. Let P ∈ Ψm
H(U). Then the following holds:

1. The transpose operator Pt is a ΨHDO of order m on U.

2. If we write the distribution kernel of P in the form (10.11) with KP(x, y) in K m̂(U × Rn)
then Pt is of the form (10.11) with KPt ∈ K m̂(U × Rn) such that

KPt(x, y) ∼
∑

〈α〉+|α|≤〈β〉

∑
|γ|≤|γ|≤n|γ|

aαβγγ(x)yβ+γ(∂γx∂
α
y KP)(x,−y), (10.64)

where aαβγγ(x) =
|ε−1

x |

α!β!γ!γ! [∂
β
y(|ε′

ε−1
x (−y)
|(y−εε−1

x (y)(x))α)∂γy(ε−1
x (−y)− x)γ](x, 0). In particular we

have
KPt(x, y) = KP(x,−y) mod K m̂+1(U × Rn). (10.65)

Proof. By definition 10.1.6 the kernel of PK is given by

kP(x, y) = |ε′x|KP(x,−εx(y)). (10.66)

And the kernel of Pt is given by kPt(x, y) = kP(y, x), which is equal to

|ε′y|KP(y,−εy(x)) + R(y, x) = |ε′x|K(x,−εx(y)) + R(y, x), (10.67)

where
K(x, y) = |ε′x|

−1|ε′y|KP

(
ε−1

x (−y),−εε−1
x (−y)(x)

)
. (10.68)

Taking z→ y and y→ 0 in (10.30) we have

εε−1
x (−y)(x) = −y − Θ(x, y), (10.69)

with Θ(x, y) = O(yw+1). Using the Taylor expansion, we have

K(x, y) = |ε′x|
−1|ε′y|KP

(
ε−1

x (−y), y + Θ(x, y)
)

=
∑
|α|<N

|ε′x|
−1|ε′y|

Θ(x, y)α

α!
(∂α2 KP)(ε−1

x (−y), y) + RN(x, y).
(10.70)

Here RN(x, y) is equal to∑
|α|=N

|ε′x|
−1|ε′y|

Θ(x, y)α

α!

∫ 1

0
(1 − t)N−1(∂α2 Kp)(ε−1

x (−y),Ψt(x, y)), (10.71)

where we let Ψt(x, y) = y + tΘ(x, y).
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Let aα(x, y) = |ε′x|
−1|ε′y|

Θ(x,y)α

α! . As in (10.55) we have

aα(x, y) =
∑

|α|+〈α〉≤〈β〉<2N

aαβ(x)yβ +
∑
〈β〉=2N

rNα(x, y)yβ, (10.72)

where aα(x) = 1
β!∂

βaα(x, 0) and rNα(x, y) ∈ C∞(U × U). Plugging this into (10.70) we have

K(x, y) =
∑
|α|<N

∑
|α|+〈α〉≤〈β〉<2N

aαβ(x)yβ(∂αy KP)(ε−1
x (−y), y)

+
∑
|α|<N

RNα(x, y) + RN(x, y),
(10.73)

where we have let
RNα(x, y) =

∑
〈β〉=2N

rNα(x, y)yβ(∂αy KP)(ε−1
x (−y), y). (10.74)

Next, a further Taylor expansion around (∂α2 KP)(x, y) shows

(∂αy KP)(ε−1
x (−y), y) =

∑
|γ|<N

1
γ!

(ε−1
x (−y) − x)γ(∂γx∂

α
y KP)(x, y)

+
∑
|γ|=N

∫ 1

0
(1 − t)N−1(∂γx∂

α
y KP)(εt(x, y), y),

(10.75)

where we have let εt(x, y) = x + t(ε−1
x (−y) − x). As ε−1

x (−y) − x is a polynomial whose degree is
at most n and ε−1

x (0) − x = 0, we have

1
γ!

(ε−1
x (−y) − x)γ =

∑
|γ|≤|γ|≤n|γ|

bγγ(x)yγ, (10.76)

where bγγ(x) = 1
γ!γ!∂

γ
y(ε−1

x (−y) − x)γ |y=0 . Thus,

K(x, y) =

(N)∑
α,β,γ,γ

Kαβγγ(x, y) +
∑
|α|<N

∑
|α|+〈α〉≤〈β〉<2N

RNαβ(x, y)

+
∑
|α|<N

RNα(x, y) + RN(x, y),
(10.77)

where the first summation goes over all the multi-indices α, β, γ and γ such that |α| < N, |α| +
〈α〉 ≤ 〈β〉 < 2N and |γ| ≤ |γ| ≤ n|γ| < nN, and

Kαβγγ(x, y) = fαβγγ(x)yβ+γ(∂γx∂
α
y KP)(x, y), (10.78)

with fαβγγ(x) = aαβ(x)bγγ(x) and RNαβ(x, y) equals to∑
|γ|=N

∑
N≤|γ|≤nN

aαβγγ(x)yβ+γ

∫ 1

0
(1 − t)N−1(∂γx∂

α
y KP)(εt(x, y), y). (10.79)
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Here, we observe that yβ∂αy KP(x, y) belongs to K m̂−〈α〉+〈β〉(U × Rn). As 〈β〉 − 〈α〉 ≥ |α| we have
that yβ∂αy KP(x, y) is in CJ(U × Rn) as soon as N is large enough. It follows that all the remainder
terms RNα(x, y), 〈α〉 < N, belong to CJ(U) as soon as N is large enough.

Similarly, if 〈α〉+ |α| ≤ 〈β〉 and |γ| = N ≤ |γ| ≤ nN then m̂−〈α〉+ 〈β〉+ 〈γ〉 ≥ m̂+ 〈γ〉 ≥ m̂+ N,
so we see that yβ+γ(∂γx∂αy KP)(x, y) is in CJ(U × Rn) for N large enough. Therefore RNαβ(x, y) with
〈α〉 < N and |α| + 〈α〉 ≤ 〈β〉 = 2N are all contained in CJ(U) as soon as N is large enough.

To handle the last remainder term RN(x, y), we use Lemma 10.3.4 again to have

Θ(x, y)α =
∑

〈α〉+|α|≤〈β〉≤n|α|

Cβ(x)Φt(x, y)β. (10.80)

Therefore χ(x, y)RN(x, y) equals to∑
|α|=N

∑
〈β〉=〈α〉+|α|

|ε′x|
−1|ε′y|

∫ 1

0
rNαβ(t, x, y)(yβ∂αy KP)(ε−1

x (−y),Φt(x, y)), (10.81)

for some functions rNαβ(t, x, y) ∈ C∞([0, 1] × U × Rn). Since (yβ∂αy KP) is in K m̂−〈α〉+〈β〉(U × Rn)
and we have m − 〈α〉 + 〈β〉 ≥ m + |α| = m + N, we see that χ(x, y)RN(x, y) is in CJ(U) as soon
as N is large enough. As χ(x, y)RN(x, y) is properly supported with respect to x, it belongs to
CJ(U × Rn). �

10.4 Mapping properties on Lp spaces

In this section we prove the following theorem.

Theorem 10.4.1. Let P be a ΨHDO of order 0. Then, there P is bounded on Lp(M) for any
1 < p < ∞.

We first prove this result for the case p = 2. The proof relys on the Cotlar-Stein lemma and
the property of Carnot coordinates obtained in Lemma 9.6.23.

Lemma 10.4.2 (Cotlar-Stein Lemma). Let T 1, T 2, · · · , be a family of bounded operators on a
Hilbert space. Suppose that for a number 0 < γ < 1, they satisfy the estimates

‖T j(T k)∗‖ ≤ γ| j−k| and ‖(T j)∗T k‖ ≤ Cγ| j−k| (10.82)

for any k and j. Then, it holds that

‖

N∑
j=1

T j‖ ≤ C (10.83)

for some constant C > 0 independent of N ∈ N.
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Proof for the case p = 2. The operator P is given by

P f (x) =

∫
Rn
|ε′x(y)|K(x,−εx(y)) f (y)dy, (10.84)

for some K ∈ K−Q(U). For each j ∈ Z we let K j(x, y) := K(x, y)12− j≤‖y‖<2− j+1(y) and

T j f (x) =

∫
|ε′x(y)|K j(x,−εx(y)) f (y)dy. (10.85)

By the Cotlar-Stein lemma it is enough to show that

‖T j‖L2→L2 ≤ C, (10.86)

for some C > 0 independent of j ∈ Z and for some γ > 1,

‖Tk(T ∗j ) f ‖ ≤ Cγ−|k− j| and ‖T ∗k (T j) f ‖ ≤ Cγ−|k− j| (10.87)

hold for any (k, j) ∈ Z2.
Since K ∈ K−Q(U) there is a constant C > 0 such that |K(x, y)| ≤ C|y|−Q. Hence we have∫

|ε′x(y)||K j(x,−εx(y))|dy =

∫
|K j(x, y)|dy ≤ C (10.88)

uniformly for j. Then we may apply Young’s inequality to deduce that

‖T j‖L2→L2 ≤ C, (10.89)

uniformly for j ∈ Z. This proves (10.86).
We are left to show (10.87). We shall only prove ‖Tk(T ∗j ) f ‖ ≤ Cγ−|k− j| since the other one can

be proved in a similar way. In addition we shall prove it for the case k > j + 10 only. The other
case k < j − 10 can be handled in a similar manner.

For this aim, we shall estimate the kernel of the operator

Tk(T ∗j ) f (x) =

∫
|ε′x(z)|Kk(x,−εx(y))T ∗j f (z)dz

=

∫
|ε′x(z)|Kk(x,−εx(y))

(∫
|ε′y(z)|K j(y,−εy(z)) f (y)dy

)
dz

=

∫ (∫
|ε′x(z)||ε′y(z)|Kk(x,−εx(z))K j(y,−εy(z))dz

)
f (y)dy.

(10.90)

Let
Kk j(x, y) =

∫
|ε′x(z)||ε′y(z)|Kk(x,−εx(z))K j(y,−εy(z))dz. (10.91)
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Lemma 10.4.3. There exists a constant C > 0 independent of j such that

|K j(x) − K j(y)| ≤ C‖x − y‖‖x‖−Q−1 (10.92)

holds for any x, y ∈ Rn satisfying ‖x − y‖ ≤ 1
2‖x‖

Proof. By definition it is enough to show that∣∣∣φ(2− j · x)K(x) − φ(2− j · y)K(y)
∣∣∣ ≤ C‖x − y‖‖x‖−Q−1. (10.93)

Changing the variables as x→ 2 j · x and y→ 2 j · y, it is equivalent to

2− jQ|φ(x)K(x) − φ(y)K(y)| = |φ(x)K(2 j · x) − φ(y)K(2 j · y)| ≤ C2− jQ‖x − y‖‖x‖−Q−1, (10.94)

where the first identity follows from the homogeneity of K.
In order to prove (10.94), we use the mean value formula to get

|φ(x)K(x) − φ(y)K(y)| ≤ |x − y| sup
t
|∇(φK)(x + t(y − x))|

≤ C|x − y|,
(10.95)

since φK is a C1(Rn) function. Noting that |φ(x)K(x) − φ(y)K(y)| = 0 unless that at least one of
1
2 ≤ ‖x‖ ≤ 2 and 1

2 ≤ ‖y‖ ≤ 2 holds by definition of φ, we deduce from (10.95) that

|φ(x)K(x) − φ(y)K(y)| ≤ C|x − y|(‖x‖−Q−1 + ‖y‖−Q−1)

≤ C1|x − y|‖x‖−Q−1

≤ C1‖x − y‖‖x‖−Q−1,

(10.96)

where the second inequality holds as 1
2‖x‖ ≤ ‖y‖ ≤

3
2‖x‖ and the last inequality holds by (10.5).

We note that (10.96) is same with (10.94). Hence the lemma is proved. �

Letting a(x, y, z) := |ε′x(z)||ε′y(z)| we write (10.91) as

Kk j(x, y) =

∫
a(x, y, z)Kk(x,−εx(z))

[
K j(y,−εy(z)) − K j(y,−εy(x))

]
dz

+

(∫
a(x, y, z)Kk(x,−εx(z))dz

)
K j(y,−εy(x)).

(10.97)

Using Lemma 10.4.3 we have

|K j(y,−εy(z)) − K j(y,−εy(x))| ≤ C1‖εy(z) − εy(x)‖‖εy(x)‖−Q−1. (10.98)

In order to estimate the right hand side, we use Lemma 10.B.2 to get

|K j(y,−εy(z)) − K j(y,−εy(x))| ≤ C1

(
‖εx(z)‖ + ‖εx(z)‖

1
m ‖εy(z)‖1−

1
m
)
‖εy(x)‖−Q−1. (10.99)
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Recall that 2−k−1 ≤ ‖εx(z)‖ ≤ 2−k+1, 2− j−1 ≤ ‖εy(z)‖ ≤ 2− j+1 if Kk j , 0 in (10.91). Since k > j + 10
this also implies that 2− j−2 ≤ ‖εy(x)‖ ≤ 2− j+2. Injecting these estimates into (10.99) we get

|K j(y,−εy(z)) − K j(y,−εy(x))| ≤ 4C1

(
2−k + 2−

k
m 2− j(1− 1

m )
)
2 j(Q+1). (10.100)

Using this we estimate the first integration of (10.97) as∫
2− j−2≤‖εy(x)‖≤2− j+2

(∫ ∣∣∣∣∣a(x, y, z)Kk(x,−εx(z))
[
K j(y,−εy(z)) − K j(y,−εy(x))

]∣∣∣∣∣dz
)

dy

≤

(
2−k + 2−

k
m 2− j(1− 1

m )
)
2 j(Q+1)

∫
2− j−2≤‖εy(x)‖≤2− j+2

(∫ ∣∣∣∣∣a(x, y, z)Kk(x,−εx(z))
∣∣∣∣∣dz

)
dy

≤ C
(
2−k + 2−

k
m 2− j(1− 1

m )
)
2 j(Q+1)2− jQ log(2)

= C(2−(k− j) + 2−
(k− j)

m ).

(10.101)

Next we turn to estimate the second integration of (10.97),(∫
a(x, y, z)Kk(x,−εx(z))dz

)
K j(y,−εy(x)). (10.102)

Since K ∈ K−Q it holds that ∫
‖z‖=1

Kk(x, z)dS z = 0. (10.103)

Using this we deduce that∫
a(x, y, z)Kk(x,−εx(z))dz =

∫
|ε′x(z)|−1a(x, y, ε−1

x (z))Kk(x, z)dz

=

∫
a(x, y, ε−1

x (0))|ε′x(0)|−1Kk(x, z)dz

+

∫ [
a(x, y, ε−1

x (z))|ε′x(z)|−1 − a(x, y, ε−1
x (0))|εx(0)′|−1

]
Kk(x, z)dz

=

∫ [
a(x, y, ε−1

x (z))|ε′x(z)|−1 − a(x, y, ε−1
x (0))|ε′x(0)|−1

]
Kk(x, z)dz.

(10.104)

We estimate this using the mean value formula to get∣∣∣∣∣∫ [
a(x, y, ε−1

x (z))|ε′x(z)|−1 − a(x, y, ε−1
x (0))|ε′x(0)|−1

]
Kk(x, z)dz

∣∣∣∣∣
≤ C

∫
‖z‖|Kk(x, z)|dz ≤ C

∫
ψ(2k · z)‖z‖−Q+1dz = C2−k.

(10.105)

Combining (10.104) and (10.105) we have∫ ∣∣∣∣∣∣
(∫

a(x, y, z)Kk(x,−εx(z))dz
)

K j(y,−εy(x))

∣∣∣∣∣∣ dy

≤ C2−k
∫
|K j(y,−εy(x))|dy ≤ C log(2)2−k ≤ C2−(k− j).

(10.106)
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Collecting the estimates (10.101) and (10.106) with (10.97), we get∫
|Kk j(x, y)|dy ≤ C2−

(k− j)
m . (10.107)

This estimate yields the inequality

‖Tk(T ∗j ) f ‖ ≤ C2−
(k− j)

m . (10.108)

Hence the proof is finished. �

In order to extend the above result to the case 1 < p < ∞, we recall the following result.

Theorem 10.4.4 (Coifman and Weiss). Let L(x, y) be a function supported in {(x, y) : |φx(y)| ≤ 1}
with the properties:

1. T is bounded on L2.

2. For some C1 > 0 and C2 ∫
|εx(y)|>C1 |φx(z)|

|L(y, z) − L(y, x)|dy ≤ C2. (10.109)

3. Tg(x) =
∫

L(x, y)g(y)dy exists a.e. for all g ∈ Lp, 1 ≤ p ≤ 2.

Then T is bounded on Lp for each 1 < p ≤ 2.

Proof of Theorem 10.4.1. We shall first prove the condition (10.109). Recall that the kernel of P
is given by

L(x, y) = |ε′x(y)|K(x,−εx(y)). (10.110)

Hence, to check (10.109), it is enough to show that∫
‖εx(y)‖≥C1‖εx(z)‖

|K(y,−εy(z)) − K(y,−εy(x))|dy ≤ C2 (10.111)

for some C2 > 0.
To obtain it, we apply Lemma 10.4.3 and Lemma 10.B.2 to get

|K(y,−εy(z)) − K(y,−εy(x))| ≤ C‖εy(z) − εy(x)‖‖εy(z)‖−Q−1

≤ C
(
‖εx(z)‖ + ‖εx(z)‖

1
m ‖εy(z)‖

m−1
m

)
‖εy(z)‖−Q−1

= C
(
‖εx(z)‖‖εy(z)‖−Q−1 + ‖εx(z)‖

1
m ‖εy(z)‖−Q− 1

m

)
.

(10.112)
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Using this, we esimate (10.111) as∫
‖εx(y)‖≥C1‖εx(z)‖

|K(y,−εy(z)) − K(y,−εy(x))|dy

≤ C
∫
‖εx(y)‖≥C1‖εx(z)‖

(
‖εx(z)‖‖εy(z)‖−Q−1 + ‖εx(z)‖

1
m ‖εy(z)‖−Q− 1

m

)
≤ C

∫
‖z‖≥‖εx(z)‖

(
‖εx(z)‖‖z‖−Q−1 + ‖εx(z)‖

1
m ‖z‖−Q− 1

m

)
= C

(
‖εx(z)‖‖εx(z)‖−1 + ‖εx(z)‖

1
m ‖εx(z)‖−

1
m
)

= C.

(10.113)

It shows that P satisfies the condition (2) of Theorem 10.4.4. The condition (1) was shown previ-
ously. The condtion (3) can be checked by a standard argument. Hence we may adapt Theorem
10.4.4 to conclude that P is bounded on Lp for each 1 < p ≤ 2. The proof is completed. �

10.5 Rockland condition and the construction of parametrix

In this section we shall discuss on the invertibility of the pseudodifferential operators related
to the Rockland condition. Basically we heavily rely on the result of [CGGP] for ΨHDOs on
Carnot groups and the argument in [P2] where the result of [CGGP] is extended to Heisenberg
manifolds.

We say that P satisfies the Rockland condition at a if for any nontrivial unitary irreducible
representation π of GaM the operator πPa is injective on C∞π (εa).

Theorem 10.5.1. Let P : C∞0 (M) → C∞(M) be a ΨHDO of order m. Then the following are
equivalent:

(i) P admits a parametrix Q in Ψ−m
H (M) such that PQ = QP = 1 mod Ψ−∞(M).

(ii) The principal symbol σm(P) of P is invertible with respect to the convolution product for
homogeneous sybols.

(iii) P and Pt satisfy the Rockland condition at every point a ∈ M.

Proof. See [CGGP] and [P2, Section 3]. �

10.6 Heat equation

In this section, we shall study the pseudodifferential operators which are fit to study the heat equa-
tions with hypoelliptic diffusions. The main objective of this study is to calculate the asymptotic
formula of the heat kernels.

We consider the variables z = (x, t) ∈ Rn × R and ζ = (ξ, τ) ∈ Rn × R.
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We set the isotropic dilation

λ · z = (λ · x, λ2t), λ · ζ = (λ · ξ, λ2τ), λ ∈ R \ 0. (10.114)

For f a function on Rn+1 \ 0 we define uλ(z) = u(λ · z). It is extended to distribution by

〈gλ, u〉 = λ−Q−2〈g, u 1
λ
〉. (10.115)

Let a ∈ U. The group law of G(a) × R;

(x, t) · (y, s) = (x · y, t + s). (10.116)

Then the convolution is defined by

(u ∗ v)(z) =

∫
u(w−1 · z)v(w)dw =

∫
u(w)v(z · w−1)dw. (10.117)

The dilations (10.114) are automorphisms of G and

(u ∗ v)λ = λQ+2uλ ∗ vλ, λ ∈ R \ 0. (10.118)

Convolution is associative and satisfies

(u ∗ v)(z) = 〈u, (ṽ)z〉, (10.119)

〈u1 ∗ u2, v〉 = 〈u2, ũ1 ∗ v〉 = 〈u1, v ∗ ũ2〉, (10.120)

where
〈u, v〉 =

∫
uv, ṽ(z) = v(z−1), vz(w) = v(wz−1). (10.121)

We set the following norm;

‖z‖ =

n∑
j=1

|x j|
1

w j + |t|
1
2 , for z = (x, t) ∈ G(a) × R. (10.122)

See that ‖λ · z‖ = |λ|‖z‖. We say that a function or distribution f is homogeneous of degree m if
and only if

fλ = λm f , ∀λ ∈ R \ 0. (10.123)

Definition 10.6.1. Sm(Rn+1) is the set of functions in C∞(Rn+1 \ 0) which are homogeneous of
degree m.

Set
ψ(z) = −(z−1), g] = ǧ ◦ ψ, kb = (k ◦ ψ−1)∧. (10.124)

It is easy to check that Proposition 2.19 holds with

k j = g]j, g = (k1 ∗ k2)b. (10.125)

Note that any f ∈ Fm is the homogeneous part of an almost homogeneous g; indeed one may
take g = χ f , where χ ∈ C∞ is ≡ 0 near 0 and ≡ 1 near ∞. Therefore the following construction
is well defined.
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Definition 10.6.2. Suppose f j belongs to Sm j(R
n+1), j = 1, 2. Then T ( f1, f2) is the element of

Sm(Rn+1), m = m1 + m2, which is defined by

T ( f1, f2) = hom([g]1 ∗ g]2]b), (10.126)

where the g j are almost homogeneous with hom(g j) = f j.

Definition 10.6.3. Sm,h(Rn+1) consists of the functions f (ξ, τ) ∈ Sm(Rn+1) which extend to (Rn+1×

C̄−) \ {0} so that ts is C∞ in all variables and holomorphic with respect to τ, τ ∈ C−.

The extension is unique and will be denoted by f ; it will continue to be homogeneous with
respect to the dialtion (10.114) which act on Rn × C̄−. We recall the following results.

Proposition 10.6.4 ([BGS]).

1. If f belongs to Sm,h(Rn+1), then there is a distribution g such that g is homogeneous of
degree m and g agrees with f on Rn+1 \ {0}.

2. Suppose g is a tempered distribution which is homogeneous of degree m. Then the restric-
tion of g to Rn+1 \ 0 is smooth if and only if the restriction of k = ĝ to Rn+1 \ 0 is smooth.
If k also vanishes for t < 0, then the restriction of g belongs to Sm,h(Rn+1). Conversely, if f
belongs to Sm,h(Rn+1), then the distribution g of Proposition 10.6.4 can be chosen so that
k = ǧ vanishes for t < 0.

3. Suppose f j belongs to Sm j,h(Rn+1), j = 1, 2. Then f = T ( f1, f2) belongs to Sm,h(Rn+1),
m = m1 + m2.

We define the following class of kernels.

Definition 10.6.5. Kv,m(U×Rn+1
(v) ), m ∈ Z, is the set of distributions K(x, y, t) in C∞(U)⊕̂S′reg(Rn+1)

such that:

1. The support of K(x, y, t) is contained in U × Rn+1 × R+;

2. K(x, λ · y, λvt) = (signλ)QλmK(x, y, t) for any λ ∈ R \ 0.

Note that if Q + m is odd, it should hold that K(x, 0, t) = 0 since K(x, (−1) · y, t) = −K(x, y, t)
holds by the homogeneity.

Definition 10.6.6. Km
v (U × Rd+1), m ∈ Z, is the set of distributions K(x, y, t) in D′(U × Rd+1)

which admit an asymptotic expansion K ∼
∑

j≥0 Km+ j with Km+ j in Kv,m+ j(U × Rd+1) in the sense
that, for any integer N, as soon as J is large enough we have

K −
∑
j≤J

Km+ j ∈ CN(U × Rn). (10.127)
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Next we define the class of pseudodifferential operators.

Definition 10.6.7. The class Ψm
H,v(U × R) consists of the operators P whose kernel can be put in

the form
kP(x, t, ; y, s) = |ε′x|KP(x,−εx(y), t − s) + R(x, y, t − s), (10.128)

with KP in K m̂
v (U × Rd+1

(v) ), m̂ = −(m + Q + v), and R in C∞(U × Rd+1).

Then the composition formula follows directly from the result of Proposition 10.3.2.

Proposition 10.6.8. Consider two pseudo-differential operators PK1 and PK2 with K1 ∈ K
m̂1(U×

Rn × R+) and K2 ∈ K
m̂2(U × Rn × R+). Assume that one of the operators is properly supported.

Then, PK1 ◦ PK2 ∈ Ψm̂1+m2 and there exists a kernel K ∈ K m̂1+m2(U × Rn × R+) such that

PK1 ◦ PK2 = PK , (10.129)

and the principal symbol of K equals to (K1)m̂1](K2)m̂2 . Generally the term with homogeneous
degree k in the asymptotic expansion of PK1 ◦ PK2 is given by the form∑

Cαβγδ((K1)l)γ]((K2)t)δ:βα (10.130)

where Cαβγδ are functions in C∞(U) independent of the operators PK1 and PK2 . The sum is finite,
taken over indices such that

• −m1 − (Q + v) ≤ l and −m2 − (Q + v) ≤ t,

• (−l − (Q + v)) − 〈γ〉 + (−t − (Q + v)) − 〈δ〉 − 〈β〉 = −k − (Q + v),

• 〈γ〉 + 〈δ〉 − 〈β〉 ≥ |α| + |β|.

Theorem 10.6.9 ([BGS]). Suppose that the operator P + ∂t satisfies the ”Rockland” condition.
Then:

1. The heat operator P + ∂t has an inverse (P + ∂t)−1 in Ψ−v
H,v(M × R(v),E).

2. Let K(P+∂t)−1(x, y, t − s) denote the kernel of (P + ∂t)−1. Then the heat kernel kt(x, y) of P
satisfies

kt(x, y) = K(P+∂t)−1(x, y, t) for t > 0. (10.131)

Proposition 10.6.10. Let P ∈ Ψm
H,v(U ×R(v)) have symbol q ∼

∑
j≥0 qm− j and kernel kP(x, y, t− s).

Then as t → 0+ the following asymptotics holds in C∞(U),

kP(x, x, t) ∼ t−
2[ m

2 ]+Q+ν

ν

∑
j≥0

t
2 j
ν (KQ)−2[ m

2 ]−Q−ν+2 j(x, 0, 1). (10.132)
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10.7 Holomorphic families of ΨHDOs

In this section we consider holomorphic families of pseudodifferential operators.

Definition 10.7.1. Hol(Ω, S ∗(U × Rn)) is the set of holomorphic familiy of symbols (pz)z∈Ω ⊂

S ∗(U × Rn) in the sense that

(i) The order m(z) of pz is analytic in z;

(ii) For any (x, ξ) ∈ U × Rn the function z→ pz(x, ξ) is holomorphic on Ω;

(iii) The bounds of the asymptotic expansion (10.7) for pz are locally uniform with respect to
z, i.e., we have pz ∼

∑
j≥0 pz,m(z)− j, pz,m(z)− j ∈ S m(z)− j(U ×Rn), and for any integer N and any

compacts K ⊂ U and L ⊂ Ω we have∣∣∣∣∣∣∣Dα
x Dβ

ξ

(
pz −

∑
j<N

pz,m(z)− j

)
(x, ξ)

∣∣∣∣∣∣∣ ≤ CαβKNL‖ξ‖
Rm(z)−N−〈β〉 ∀x ∈ K, |ξ| ≥ 1, (10.133)

for (x, z) ∈ K × L and ‖ξ‖ ≥ 1.

Definition 10.7.2. Hol(Ω,Ψ∗H(U)) is the set of holomorphic familiy (Pz)z∈Ω ⊂ Ψm
H(U) in the sense

that it can be put into the form

Pz = pz(x,−iX) + Rz z ∈ Ω, (10.134)

with (pz)z∈Ω ∈ Hol(Ω, S ∗(U × Rn)) and (Rz)z∈Ω ∈ Hol(Ω,Ψ−∞(U)).

The following result can be obtained.

Lemma 10.7.3. Consider (p j,z)z∈Ω ∈ Hol(Ω, S ∗(U × Rn)) for j = 1, 2. Then (p1,z ∗ p2,z)z∈Ω ∈

Hol(Ω, S ∗(U × Rn)).

Proof. See [P2, Lemma 4.3.5]. �

Proposition 10.7.4. Consider (P j,z)z∈Ω ∈ Hol(Ω,Ψ∗H(U)) for j = 1, 2. Assume that at least one of
them is uniformly properly supported. Then the family (P1,zP2,z)z∈Ω is contained in Hol(Ω,Ψ∗H(U)).

Proof. See [P2, Proposition 4.3.6]. �

10.7.1 Kernels of holomorphic ΨHDOs

Definition 10.7.5. Hol(Ω,K ∗ah(U × Rd)) consists of holomorphic family (Kz)z∈Ω ⊂ K
∗
ah(U × Rd)

in the sense that

1. The degree m(z) of Kz is a holomorphic function of Ω;
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2. The family (Kz)z∈Ω belongs to Hol(Ω,C∞(U) ⊗D′reg(Rd));

3. For any λ > 0 the family {Kz(x, λ ·y)−λm(z)Kz(x, y)}z∈Ω is a holomorphic family with values
in C∞(U × Rd).

We also introduce the following definition.

Definition 10.7.6. Hol(Ω,K ∗(U ×Rd)) consists of holomorphic family (Kz)z∈Ω ⊂ K
∗(U ×Rd) in

the sense that

1. The order mz of Kz is a holomorphic function of z;

2. For j = 0, 1, · · · there exists (K j,z) ∈ Hol(Ω,K ∗ah(U × Rd)) of degree m(z) + j such that
Kz ∼

∑
j≥0 K j,z in the sense that, for any open Ω′ ⊂ Ω and and integer N, as soon as J is

large enough we have

Kz −
∑
j≤J

Kz,mz+ j ∈ Hol(Ω′,CN(U × Rd)). (10.135)

Then we have the following characterization of the kernels of holomorphic ΨHDOs.

Proposition 10.7.7. Let (Pz)z∈Ω ∈ Hol(Ω,Ψm
H(U)). Then its distribution kernel kPz(x, y) can be

put in the form
kPz(x, y) = |ε′x|Pz(x,−εx(y)) + Rz(x, y), (10.136)

with (Kz)z∈Ω in Hol(Ω,K ∗(U×Rd)) of order m̂(z) := −(m(z)+Q) and (Rz)z∈Ω in Hol(Ω,C∞(U×U)).

Proof. See the proof of Proposition 4.4.5 in [P2]. �

10.8 Complex powers of ΨHDOs

Let P : C∞(M)→ C∞(M) be a selfadjoint differential operator of even order v such that P has an
invertible principals symbol and is positive, i.e., 〈Pu, v〉 ≥ 0 for any u ∈ C∞(M).

Let Π0(P) be the orthogonal projection onto kerP and set P0 = (1 − Π0(P))P + Π0(P). Then
P0 is selfadjoint with spectrum contained in [c,∞) for some c > 0. Thus by standard functional
calculus, for any s ∈ C, the power Ps

0 is a well defined unbounded operator of L2(M). Then we
define the power Ps, s ∈ C, as

Ps = (1 − Π0(P))Ps
0 = Ps

0 − Π0(P), (10.137)

so that Ps coincides with Ps
0 on (ker(P))⊥ and is zero on ker(P). Particularly, it holds that P0 =

1 − Π0(P) and P−1 is the partial inverse of P.
We use the approach of Theorem 5.3.1. in [P2] to get the following result.
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Theorem 10.8.1. Suppose that the principal symbol of P + ∂t admits an inverse in S ν,−v(g∗M ×
R(v)). Then:

1. For any s ∈ C the operator Ps defined by (10.137) is a ΨHDO of order vs;

2. The family (Ps)s∈C forms a holomorphic 1-parameter group of ΨHDOs.

Proof. We first consider the case Rs > 0. Then the function x → x−s is bounded on [c,∞), and
hence the operators P−s

0 and P−s are bounded. By the Melin formula we have

P−s = (1 − Π0(P))Ps
0 =

1
Γ(s)

∫ ∞

0
t1−2s(1 − Π0(P))e−tPdt. (10.138)

We let

As =

∫ 1

0
ts−1e−tPdt, (10.139)

and observe that

Γ(s)P−s − As =

∫ 1

0
ts−1Π0(P)e−tPdt +

∫ ∞

1
ts−1(1 − Π0(P))e−tPdt

=
1
2

Π0(P) + e−P/2
(∫ ∞

0
(1 + t)s−1e−tPdt

)
e−P/2.

(10.140)

Since Π0(P) and
(∫ ∞

0
(1 + t)s−1e−tPdt

)
are bounded operators on L2(M) and e−P/2 is a smoothing

operator, it holds that (
Γ(s)P−s − As

)
Rs>0 ∈ Hol(Rs > 0, Ψ−∞(M)). (10.141)

Now it suffices to show that (As)Rs>0 is a holomorphic family of ΨHDOs such that ordAs = −vs.
As we assumed that the principal kernel of P + ∂t is invertible, Theorem 10.6.9 implies that

(P+∂t) has an inverse Q0 = (P+∂t)−1 in Ψ−v
H,v(M×R(v)) and the distribution kernel KQ0(x, y, t− s)

of Q0 is related to the heat kernel kt of P by

kt(x, y) = KQ0(x, y, t), t > 0. (10.142)

From this and (10.139) we see that As has the distribution kernel

kAs(x, y) =

∫ 1

0
ts−1kt(x, y)dt =

∫ 1

0
ts−1KQ0(x, y, t)dt. (10.143)

Now Lemma 10.8.2 says that for any local Carnot chart κ : U → V the family (κ∗AsU)Rs>0 is a
holomorphic family of ΨHDOs on V of order −vs. Next, we take two smooth functions φ and ψ
on M with disjoint supports. Then, from (10.149) we know that φAsψ has the distribution kernel

kφAsψ(x, y) =

∫ 1

0
ts−1φ(x)KQ0(x, y, t)ψ(y)dt. (10.144)
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Since the distribution kernel of a Volterra-ΨHDO is smooth off the diagonal of (M × R) × (M ×
R) the distribution KQ0(x, y, t) is smooth on the region {x , y} × R. Hence (10.150) defines a
holomorphic family of smooth kernels, and so

(φAsψ)Rs>0 ∈ Hol(Rs > 0, Ψ−∞(M)). (10.145)

Thus (As)Rs>0 is a holomorphic family of ΨHDOs, and so is (Ps)Rs<0.
Now, for s ∈ C we take a positive integer k such that k > Rs. Then on C∞(M) it holds that

Ps = Ps−kPk. Then, as Ps−k is a ΨHDO of order v(s − k) and Pk is a ΨHDO of order ks, we see
that Ps is a ΨHDO of order vs and Proposition 10.7.4 yields that (Ps)s∈C is a holomorphic family
of ΨHDOs with ordPs = vs for each s ∈ C.

�

Lemma 10.8.2. For a Carnot chart V ⊂ Rd+1, we take Q ∈ Ψ−v
H,v(V×R(v)) with distribution kernel

KQ(x, y, t − s). For Rs > 0 let Bs : C∞c (V)→ C∞(V) be given by the distribution kernel,

kBs(x, y) =

∫ 1

0
ts−1KQ(x, y, t)dt. (10.146)

Then (Bs)Rs>0 is a holomorphic family of ΨHDOs with ordBs = −vs.

Proof. Denote by εx the Carnot coordinates at x. By (10.128) the distribution KQ(x, y, t) is given
by the form

KQ(x, y, t) = |εx‘|K(x,−εx(y), t) + R(x, y, t), (10.147)

where R ∈ C∞(V × V × R) and K ∈ K−Q
v (V × RQ

(v)) having an expansion K ∼
∑

j≥0 K j−(d+2) with
Kl ∈ Kv,l(V × R

Q
(v)). Thus, given any integer N, if J is large enough, we have

K(x, y, t) =
∑
j≤J

K j−(d+2)(x, y, t) + RNJ(x, y, t), RNJ ∈ CN(V × RQ). (10.148)

Hence, on V × V we have

KBs(x, y) = |ε′x|Ks(x, εx(y)) + Rs(x, y), Ks(x, y) =

∫ 1

0
ts−1K(x, y, t)dt, (10.149)

with (Rs)Rs>0 in Hol(Rs > 0,C∞(V × V)). Moreover, Ks(x, y) is of the form

Ks =
∑
j≤J

K j,s + RNJ,s, K j,s(x, y) =

∫ 1

0
ts−1K j−(d+2)(x, y, t)dt, (10.150)

with (RNJ,s)Rs>0 in Hol(Rs > 0,CN(V × V)).
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We note that K j−(d+2)(x, y, t) belongs to C∞(V)⊗̂D′reg(RQ × R) and is parabolic homogeneous
of degree j − (d + 2) ≥ −(d + 2). Thus (K j,s)Rs>0 belongs to Hol(Rs > 0,C∞(V)⊗̂Dreg(RQ)) and
for λ > 0, the diffrenece K j,s(x, λ · y) − λvs+ j−QK j,s(x, y) equals to∫ λ2

1
ts−1K j−(d+2)(x, y, t)dt ∈ Hol(Rs > 0,C∞(V × RQ)). (10.151)

Therefore (K j,s)Rs>0 is a holomorphic family of almost homogeneous distribution of degree vs −
(d + 2) + j. This with (10.150) tells that (Ks)Rs>0 is contained in Hol(Rs > 0,K∗(V × RQ)) with
order vs − (d + 2). Then, by (10.149) and Proposition 4.4.5 we know that the family (Bs)Rs>0 is a
holomorphic family of ΨHDOs with ordBs = −(ordKs + Q) = −vs. The proof is completed. �

10.9 Spectral asymptotics for Hypoelliptic operators

Applying the heat kernel asymptotics we have

Proposition 10.9.1. As t → 0+ we have

Tre−tP ∼ t−
Q
m

∑
j≥0

t
2 j
m A j(P), A j(P) =

∫
M

a j(P)(x), (10.152)

where the density a j(P)(x) is the coefficient of t
2 j−Q

m in the heat kernel asymptotic (5.1.20) for P.

Let λ0(P) ≤ λ1(P) ≤ · · · denote the eigenvalues of P counted with multiplicity and let N(P; λ)
be the counting function of P, that is,

N(P; λ) = ]{k ∈ N; λk(P) ≤ λ}, λ ∈ R. (10.153)

In what follows, for given two functions f : [0,∞) → [0,∞) and g : [0,∞) → [0,∞), we shall
use the notation f (t) ∼ g(t) when t → t0 for some t0 ∈ [0,∞] if the following limit holds

lim
t→t0

f (t)
g(t)

= 1. (10.154)

Now we recall a Tauberian theorem from [?].

Theorem 10.9.2. Let φ : [0,∞) → [0,∞) is a positive and increasing function such that
limx→∞ φ(x) = ∞. In addition, we assume that for some σ > 0,

φ(x) = xσL(x), (10.155)

with L such that L(cx) ∼ L(x) for every positive c. Now we consider an increasing function α(t),
and assume that I(y) ∼ φ(y−1) when y→ 0. Then, we have

α(t) ∼
φ(t)

Γ(σ + 1)
(10.156)

when t → ∞.

316



CHAPTER 10. PSEUDODIFFERENTIAL CALCULUS

Combining the results of Proposition 10.9.1 and Theorem 10.9.2 we can attain the following
result.

Proposition 10.9.3.

1. It holds that A0(P) > 0.

2. As λ→ ∞, it holds that

N(P; λ) ∼ ν0(P)λ
Q
m , ν0(P) = CA0(P). (10.157)

3. As k → ∞, it holds that

λk(P) ∼
(

k
ν0(P)

)m
Q

. (10.158)
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Appendix

10.A Review on the class of symbols and kernels given at a
point

Given a point x0 ∈ M, in a privileged coordinates at x0, the point x0 is recorded as 0 and we have

X j = ∂ j +
∑

〈α〉≥wk−w j
wk>w j

bαxα∂k, bα ∈ R. (10.159)

Thus, for a polynomial P ∈ C∞(Rn) we have

P(X1, · · · , Xn) f (0) = P(∂1, · · · , ∂n) f (0)

=

∫
Rn

P(ξ1, · · · , ξn) f̂ (ξ)dξ.
(10.160)

Hence, at a point x0 in a privileged coordinates at x0, the differential operators can be expressed
with a polynomial P which is a sum of homogeneou polynomials Pm of degree m with respect to
the dilation ·, i.e., Pm(λ · ξ) = λmP(ξ) for m ∈ N0.

In order to study some differential operators of this kind and their inverses, and to find the
explicit form of their kernels we need to introduce some necessary prerequisites;

1. Sm(Rn) ⊂ C∞(Rn \ {0}): Set of homogeneous functions of degree m.

2. Sah
m (Rn) ⊂ C∞(Rn): Set of almost homogeneous functions (see Definition 10.2.1).

3. Gm(Rn) ⊂ S′(Rn): Set of distributions g ∈ S′(Rn) such that the singular support of g is
contained in {0} and there are constants cα satisfying

gλ = λkg +
∑

〈α〉=−k−〈n〉

cα(λk log λ)γ(α), λ > 0. (10.161)

Next we define the main class of the symbols which model the differential operators and the
parametrices of invertible differential operators.
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Definition 10.A.1. Sm(Rn), m ∈ Z denotes the subspace of C∞(Rn) consisting of functions p
which have an asymptotic expansion:

p(ξ) ∼
∞∑
j=0

pm− j(ξ), pm ∈ S m(Rn), (10.162)

in the sense that for all multi-orders α, β and all N > 0, it holds that∣∣∣∣∣∣∣Dβ
ξ

(
p(ξ) −

∑
j<N

pm− j(ξ)
)∣∣∣∣∣∣∣ ≤ CαβKN‖ξ‖

m−N−〈β〉 ∀ |ξ| ≥ 1. (10.163)

There are some pros and cons related to Sm, Sah
m (Rn), and Gm(Rn) in representing a symbol

p ∈ Sm(Rn). First, in the definition (10.162), we note that although a symbol p ∈ S m(Rn) is
represented by functions pm ∈ S m(Rn), there is an important difference between them in the
sense that p ∈ C∞(Rn) while pm ∈ C∞(Rn \ {0}) can be very singular near the zero. Actually we
can go around this difficuly using almost homogeneous symbols, that is, we may have

p(ξ) ∼
∞∑
j=0

pah
m− j(ξ), pah

m ∈ S ah
m (Rn), (10.164)

in the sense that ∣∣∣∣∣∣∣Dβ
ξ

(
p(ξ) −

∑
j<N

pah
m− j(ξ)

)∣∣∣∣∣∣∣ ≤ CαβKN(1 + ‖ξ‖)m−N−〈β〉 ∀ ξ ∈ Rn. (10.165)

In spite of this advantage of the functions Sah
m (Rn), when we want to know the shape of kernels

of their multipliers, it is convenient to exploit the fourier transform of homogeneous functions in
S m(Rn). More precisely, we shall modify an element of S m(Rn) to a distribution in Gm(Rn) and
observe their distributional fourier transform, whose property can be attained relatively easily.
For this aim, we shall prove the following result with taking a function φ ∈ C∞c (Rn) such that
φ ≡ 1 near the origin for a normalization purpose.

Proposition 10.A.2.

1. If g ∈ Gm(Rn) then the restriction of g to Rn \ {0} belongs to Sm(Rn).

2. If f ∈ Sm(Rn) then there is a g ∈ Gm(Rn) which agrees with f on Rn \ 0. There is a unique
such g satisfying

〈g, ξαφ〉 = 0 whenever 〈α〉 = −m − 〈n〉. (10.166)

Proof. The proof of this result can be found in [BG, Proposition 15.8]. Assume that k ≤ −〈n〉.
For f ∈ Gk, we define a distribution g which agrees with f on Rn \ 0 and acts on u ∈ S(Rn) as

〈g, u〉 =

∫
f (ξ)

{
u(ξ) −

∑
0≤〈α〉≤−k−〈n〉

(α!)−1u(α)(0)ξαφ(ξ)
}
dξ. (10.167)
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Then, it must holds that
f = g +

∑
〈α〉≤−Q−k

cαγ(α). (10.168)

The detail of this fact can be found in the proof of [BG, Proposition 15.8]. To be completed.. �

Remark 10.A.3. The formulas (10.167) and (10.168) reveals that g ∈ Gk is a bounded linear
functional from C[−〈n〉−k](Rn) to R, where [ ] is the greatest integer function. Therefore K(x, ·) ∈
Kk(U × Rn) is a family of bounded linear functional from C[−〈n〉−k](Rn) to R which is smooth in
x ∈ U.

Now we shall consider the fourier transform of distribtuions in Gm(Rn).

Definition 10.A.4. Km(Rn), m ∈ C, consists of distributions K(y) in S ′reg(Rn) such that for some
constants cα(x), 〈α〉 = m, we have

1. If m < N0, K(λ · y) = λmK(y) ∀λ > 0.

2. If m ∈ N0, K(λ · y) = λmK(y) + λm log λ
∑
〈α〉=m cK,αyα ∀ λ > 0.

Then we have the following result.

Proposition 10.A.5. The inverse fourier transform is a bijection from Gk(Rn) to K−k−Q(Rn).

Proof. See the proof of [BG, Proposition 15. 24]. �

From the relation of Definition 10.A.4 we can easily derive the following important property.

Proposition 10.A.6. Let K ∈ Km. Then

K(x) =

{
f (x) + p(x) log ‖x‖, x , 0, m ∈ N0,

f (x) m < N0,
(10.169)

where f ∈ S m(Rn) and p is a homoegenous polynomial of degree m.

Proof. See the proof of [BG, Proposition 15.21]. �

Proposition 10.A.7 ([BG]). Suppose f ∈ C∞(Rn). The followings are equivalent:

1. f is almost homogeneous of degree m.

2. f ∈ Sm(Rn) and f has a single term, of degree m, in its asymptotic expansion.

3. There is g ∈ Sm(Rn) such that for any cut-off function χ ∈ C∞(Rn) with χ ≡ 0 near the
origin and χ ≡ 1 at∞,

f − χg ∈ S(Rn). (10.170)
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Moreover the function g in (c) is unique, given by

g(ξ) = lim
λ→∞

λ−m f (λ · ξ). (10.171)

We call g the homogeneous part of f .

Similarly to Proposition 10.A.5 the fourier transform of almost homogeneous functions are
contained in the following set.

Definition 10.A.8. For m ∈ C the set Kah
m (Rd) consists of almost homogeneous distributions

K(y) ∈ D′reg(Rn) of degree m in the sense that

1. K(y) ∈ C′(Rn) + S (Rn).

2. K(y) − λmK(y) ∈ C∞(Rd) for any λ > 0.

10.A.1 Micellaneous

Definition 10.A.9. A continuous linear map T : C∞c → C∞(U) is properly supported when for
each compact set K ⊂ U, there are two compact sets K′ ⊂ U and K′′ ⊂ U with K ⊂ K′, K ⊂ K′′

and satisfying the properties

1. supp ⊂ K ⇒ suppTu ⊂ K′.

2. K′′ ∩ suppu = φ⇒ K ∩ suppTu = φ.

We introduce the notion of almost homogeneity for kernels.

Definition 10.A.10. For m ∈ C the setKah
m (U ×Rd) consists of almost homogeneous distribution

K(x, y) ∈ C∞(U)⊕̂D′reg(Rn) of degree m in the sense that

1. K(x, y) ∈ C∞(U)⊕̂(C′(Rn) + S (Rn)).

2. K(x, λ · y) − λmK(x, y) ∈ C∞(U × Rd) for any λ > 0.

We then easily get the following result.

Proposition 10.A.11. Let K(x, y) ∈ C∞(U)⊕̂D′reg(Rn). Then the following are equivalent:

1. K(x, y) belongs to Kah
m (U × Rd).

2. We can put K(x, y) in the form,

K(x, y) = Km(x, y) + R(x, y), (10.172)

for some Km ∈ Km(U × Rn) and R ∈ C∞(U × Rn).
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10.B Technical computations

This appendix is devoted to prove Lemma 10.B.2 and Lemma 10.B.3. We begin with a prelimi-
nary lemma.

Lemma 10.B.1. Suppose that a smooth family of maps Lz : Rn → Rn for z ∈ Rn is of the form
Lz(x) = x · z + O((x, z)w+1) for (x, z) near (0, 0). Then we have

(Lz)−1(x) = x · (−z) + O((x, z)w+1) (10.173)

for (x, z) near (0, 0).

Proof. Let us denote Tz(x) = (Lz)−1(x) and take a value k ∈ {1, · · · , d}. As the map (z, x)→ Tz(x)
is smooth, by a Taylor expansion, we may let

(Tz)k(x) =

wk−1∑
l=0

( ∑
〈a〉+〈b〉=l

Ckabxazb
)

+
∑

〈a〉+〈b〉≥wk

Ckabxazb, (10.174)

for some constants Ckab. To prove the lemma, we first aim to show that
∑
〈a〉+〈b〉=l Ckabxazb ≡ 0 for

any 0 ≤ l ≤ wk − 1 in the above formula, i.e.,

(Tz)k(x) =
∑

〈a〉+〈b〉≥wk

Ckabxazb. (10.175)

In order to prove this, we shall get a contradiction after assuming that
∑
〈a〉+〈b〉=l Ckabxazb , 0

holds for some value 0 ≤ l ≤ wk − 1. In that case, there exists a minimum value l0 such that∑
〈a〉+〈b〉=l0 Ckabxazb , 0. Then, (10.174) is written as

(Tz)k(x) =

wk−1∑
l=l0

( ∑
〈a〉+〈b〉=l

Ckabxazb
)

+
∑

〈a〉+〈b〉≥wk

Ckabxazb, (10.176)

We write the identity (Tz)k((Lz)(x)) = xk using (10.176) to get

xk =
∑

〈a〉+〈b〉=l0

CkabLz(x)azb + · · · +
∑

〈a〉+〈b〉=wk−1

CkabLz(x)azb +
∑

〈a〉+〈b〉≥wk

CkabLz(x)azb (10.177)

Injecting Lz(x) = x · z + O((x, z)w+1) here, we easily see that (RHS) of (10.177) has its lowest
weight term ∑

〈a〉+〈b〉=l0

Ckab(x · z)azb, (10.178)

whose weight is equal to l0. On the other hand, in (LHS) of (10.177), the term with the lowest
weight is equal to xk whose weight is wk. As l0 < wk, this is a contradiction. Hence (10.175)
should hold.
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Now, we write (10.175) as

(Tz)k(x) =
∑

〈a〉+〈b〉=wk

Ckabxazb +
∑

〈a〉+〈b〉>wk

Ckabxazb (10.179)

and (10.177) becomes

xk =
∑

〈a〉+〈b〉=wk

CkabLz(x)azb +
∑

〈a〉+〈b〉>wk

CkabLz(x)azb

=
∑

〈a〉+〈b〉=wk

Ckab(x · z)azb +
∑

〈a〉+〈b〉>wk

C̃abxazb,

=
∑

〈a〉+〈b〉=wk

Ckab(x · z)azb,

(10.180)

where the second equality follows using that Lz(x) = x ·z+O((x, z)w+1) and the last equality holds
as the left hand side is homogeneous of degree wk. Taking x→ x · z−1 in (10.180), we get

(x · z−1)k =
∑

〈a〉+〈b〉=wk

Ckabxazb. (10.181)

Injecting this into (10.179) we have

(Tz)k(x) = (x · z−1)k +
∑

〈a〉+〈b〉>wk

Ckabxazb. (10.182)

This proves the lemma. �

We are ready to prove Lemma 10.B.2;

Lemma 10.B.2. There exists a constant C > 0 such that

‖εy(z) − εy(x)‖ ≤ C
(
‖εx(z)‖ + ‖εx(z)‖

1
m ‖εy(z)‖1−

1
m
)

(10.183)

holds for any (x, z, y) ∈ (Rn)3 such that ‖εy(z)‖ ≤ 1 and ‖εy(z)‖ ≤ 1.

Proof. Taking z→ ε−1
y (z) and x→ ε−1

y (x), we see that (10.183) is equivalent to

‖x − z‖ ≤ C
(
‖εε−1

y (x) ◦ ε
−1
y (z)‖ + ‖εε−1

y (x) ◦ ε
−1
y (z)‖

1
m ‖z‖1−

1
m
)

= C
(
‖Tz(x)‖ + ‖Tz(x)‖

1
m ‖z‖1−

1
m
)
,

(10.184)

where we have let Tz(x) = εε−1
y (x) ◦ ε

−1
y (z) in the last equality. By Lemma 9.6.23 we have

Tz(x) = x · (−z) + O((x, z)w+1), (10.185)

and using Lemma 10.B.1 we have

(Tz)−1(x) = x · z + O((x, z)w+1). (10.186)
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Letting x→ (Tz)−1x in (10.184), it is equivalent to prove that

‖(Tz)−1(x) − z‖ ≤ C(‖x‖ + ‖x‖
1
m ‖z‖1−

1
m ). (10.187)

To show this inequality, we are concerned with the weight to see that (Tz)−1(x) − z is written as

(Tz)−1(x) − z = (x · z − z) j + O((x, z)w+1)

=

 ∑
〈a〉+〈b〉≥w1

C1,abxazb, · · · ,
∑

〈a〉+〈b〉≥wd

Cd,abxazb

 (10.188)

In addition, observing that (Tz)−1(0) − z = z − z = 0, we may get further as

(Tz)−1(x) − z =

( ∑
〈a〉+〈b〉≥w1
|a|≥1

C1,abxazb, · · · ,
∑

〈a〉+〈b〉≥wd
|a|≥1

Cd,abxazb
)

(10.189)

For ‖x‖ ≤ 2 and ‖y‖ ≤ 2, using that |xa| ≤ ‖x‖〈a〉 and |zb| ≤ ‖z‖〈b〉, and Young’s inequality we have∥∥∥∥∥ ∑
〈a〉+〈b〉≥w j
|a|≥1

C1,abxazb
∥∥∥∥∥ 1

w j
≤ C

( ∑
〈a〉+〈b〉≥w j
|a|≥1

‖x‖〈a〉‖z‖〈b〉
) 1

w j

≤ C
∑

〈a〉+〈b〉≥w j
|a|≥1

‖x‖
〈a〉
w j ‖z‖

〈b〉
w j

≤ C(‖x‖ + ‖x‖
1

w j ‖z‖1−
1

w j ) ≤ C(‖x‖ + ‖x‖
1
m ‖z‖1−

1
m )

(10.190)

From this and definition (10.3), we deduce from (10.189) and (10.190) that

‖(Tz)−1(x) − z‖ ≤ C
(
‖x‖ + ‖x‖

1
m ‖z‖1−

1
m

)
. (10.191)

The lemma is proved. �

Next we prove the following lemma.

Lemma 10.B.3. Let Φt(x, z, y) = z · y + t
(
εε−1

x (−z) ◦ ε
−1
x (y) + z · y

)
. Then we have

yw =
∑

〈p〉+〈q〉≥〈w〉

apqw(t)zpΦt(x, z, y)q, (10.192)

where apqw(t) are constants determined by the group law · and depend on t smoothly.

Proof. Let Lt,x,z(y) = Φt(x, z, y). Note that Φt(x, z, y) = z ·y+O((z, y)w+1) by Lemma 9.6.23. Then,
we apply Lemma 10.B.1 to see

(Lt,x,z)−1(y) = (−z) · y + O((z, y)w+1). (10.193)
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Using this we have

(L−1
t,x,z(y))w =

(
(−z) · y + O((z, y)w+1)

)w

=
∑

〈p〉+〈q〉≥〈w〉

apqw(t)zpyq, (10.194)

where apqw(t) is a constant depending on t smoothly and determined by the group law ·. Injecting
y→ Φt(x, z, y) into (10.194), we get

yw =
∑

〈p〉+〈q〉≥〈w〉

apqw(t)zpΦt(x, z, y)q, (10.195)

which is the desired result. �

10.C Some properties of distributions

In this section, we shall have some definitions related to distribution kernels and the properties.
For K ∈ D′(Rn) we define the distribution kernel K(x + y) for each y ∈ Rn and ∂αK(x) for

each multi-index α ∈ Nn
0 by

1. 〈K(x + y), f (x)〉 := 〈K(x), f (x − y)〉.

2. 〈∂αK(x), f (x)〉 := 〈K(x), (−∂)α f (x)〉.

Then we have the following lemma.

Lemma 10.C.1. We have〈
K(x + γ(x), y + θ(x, y)), f (y)

〉
=

∑
|α|+|β|≤N

1
α!β!

〈
∂α1∂

β
2K(x, y)γ(x)αθ(x, y)β, f (y)

〉
+

〈
RN(x, y), f (y)

〉
,

(10.196)

where

RN(x, y) =

∫ 1

0

N + 1
α!β!

[
∂α1∂

β
2K

(
x + tγ(x), y + tθ(x, y)

)
γ(x)αθ(x, y)β

]
(1 − t)Ndt. (10.197)

Proof. Let us set
Kδ(x, y) = (K(x, ·) ∗ φδ(·))(y), (10.198)

where ∗ denotes the usual convolution on Rn, .e., ( f ∗ g)(x) = 〈 f (y), g(x − y)〉 for a distribution
f ∈ S′(Rn) and g ∈ S(Rn). Next, we recall the Taylor expansion formula: For r > 0 and any
smooth function f : (−s, s)→ R it holds that

f (r) =

N∑
k=0

f (k)(0)
k!

rk −

∫ 1

0

(1 − t)N

N!

(
d
dt

)N+1

f (rt) dt (10.199)
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for all r ∈ (−s, s) and N ∈ N.
As Kδ is contained in C∞(U × U), we may apply the Taylor expansion in the classical sense

to get 〈
Kδ(x + γ(x), y + θ(x, y)), f (y)

〉
=

∑
|α|+|β|≤N

1
α!β!

〈
∂α1∂

β
2Kδ(x, y)γ(x)αθ(x, y)β, f (y)

〉
+

〈
RN,δ(x, y), f (y)

〉
,

(10.200)

where

RN,δ(x, y) =

∫ 1

0

N + 1
α!β!

[
∂α1∂

β
2Kδ

(
x + tγ(x), y + tθ(x, y)

)
γ(x)αθ(x, y)β

]
(1 − t)Ndt. (10.201)

Note that ∂α1∂
β
2Kδ(x, y) = ∂α1∂

β
2K(x, ·) ∗ φδ(·)(y). Letting δ→ 0 in the above identity, we get〈

K(x + γ(x), y + θ(x, y)), f (y)
〉

=
∑

|α|+|β|≤N

1
α!β!

〈
∂α1∂

β
2K(x, y)γ(x)αθ(x, y)β, f (y)

〉
+

〈
RN(x, y), f (y)

〉
,

(10.202)

The proof is completed. �

We conclude this section with proving the following lemma.

Lemma 10.C.2. Suppose that Dx(·) is a distribution which is smooth in x ∈ U such that

〈Dx(·), g(·)〉 ≤ C
∑
|α|≤M

sup
x∈U
|∂αg(x)|. (10.203)

Consider a function fx(·, ·) ∈ CM+N+2(Rn × Rn) which is smooth in x ∈ U. For (x, y) ∈ U × U we
let

K(x, y) = 〈Dx(·), fx(y, ·)〉. (10.204)

Then, we have K(x, y) ∈ CN(U × U).

Proof. In order to show that K(x, y) is defferential with respect to y, we write

K(x, y + he1) − K(x, y)
h

= 〈Dx(z),
fx(y + he1, z) − fx(y, z)

h
〉. (10.205)

Using the Taylor expansion, we have

fx(y + he1, z) = fx(y, z) + h
∂

∂y1
fx(y, z) −

h2

2!

∫ 1

0
(1 − t)2 ∂2

(∂y1)2 fx(y + the1, z)dt. (10.206)
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Injecting (10.206) into (10.205), we have

K(x, y + he1) − K(x, y)
h

= 〈Dx(z),
∂

∂y1
fx(y, z)〉 −

h
2

∫ 1

0
(1 − t)2

〈
Dx(z),

∂2

(∂y1)2 fx(y + the1, z)
〉
dt,

where the right hand side is well defined as

∂2

(∂y1)2 fx(y + the1, ·) ∈ CM+N(Rn) ⊂ CM(Rn). (10.207)

Taking the limit h→ 0, we get

∂

∂y1
K(x, y) = lim

h→0

K(x, y + he1) − K(x, y)
h

= 〈Dx(z),
∂

∂y1
fx(y, z)〉.

This shows that K(x, y) is differentiable with respect to y1 variable. In fact, we can adapt the
above argument whenever the condition like (10.207) holds. Therefore we may show that

K(x, y) ∈ CN(U × U). (10.208)

The lemma is proved. �
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국문초록

논문의 구성은 크게 다음의 세 부분으로 나누어져 있다; 선형작용소의 정밀한 계측, 반
선형 타원형 방정식, 그리고 캐놋 다양체위에서의 의미분 연산. 이 주제들은 직접적이거나
간접적으로서로연관이되어있다.
첫 부분의 저자의 논문 [Ch1, Ch2, Ch3] 을 바탕으로 하고 진동작용소와 분광 곱 연산

자에 관한 정밀 계측을 얻는 것을 목표로 한다. 좀 더 구체적으로, 첫번째 논문 [Ch1]에서는
하이젠베르그 군에서 정의된 강한 특수성을 가진 작용소의 L2 공간과 Hp 공간에서의 바운

드를 보인다. L2 공간 바운드를 위해 퇴화된 형태의 진동작용소 계측을 이용하고, Hp 공간

바운드를 위해서는 하디 공간의 분자 분해를 이용한다. 두번째 논문 [Ch2] 에서는 층상화된
군들에서곱작용소들의최대함수들에대한정밀화된 Lp 바운드를구한다.또한층상화된군
들의 곱형태의 군에서도 관련된 바운드를 얻고, 하나의 응용으로 하이젠베르그 군에서 결합
분광 곱 작용소들의 최대함수에 대해서도 정밀화된 Lp 바운드를 얻는다. 세번째 논문 [Ch3]
에서는바운드가없는옹골한다양체위에서정의된양의자체수반타원형미분작용소 P가
있을때, 헤르만더-미흘린 조건아래에서 이 작용소와 관련된 분광 곱 작용소들의 최대함수에
대한정밀화된 Lp 바운드를구한다.
두번째 부분은 반선형 타원형 방정식들에 대한 공부이고, 논문 [Ch4]와 공동 논문 [CKL,

CKL2, ChS]을기반으로되어있다.
논문 [Ch4]에서 우리는 유한 영역내에서 분수 라플라시안을 포함하며 강하게 엮여있는

시스템에대해서연구한다.구체적으로,우리는존재성과비존재성에관한결과들을보이고,
기다스-스프럭형태의선계측,대칭구조에관한결과를보인다.여기서우리는논문 [CT, T1]
에서보여졌던비선형타원형방정식들에대한선계측에대해서새로운증명을얻는다.
김승혁 박사님, 이기암 교수님과의 공동 논문인 [CKL]에서는 분수 라플라시안을 포함한

비선형타원형방정식들에대해서임계지수와관련되어최소에너지해들의점근행동을공부

하고,다중으로버블링하는해들의존재성을공부한다.이것은 Han (1991) [H]과 Rey (1990)
[R]결과의비국부적버전이라고할수있다.
석진명 교수님과 함께 연구한 논문 [ChS]에서 우리는 옹골성이 없는 비국부적 반선형 타

원형방정식에대해서공부한다.구체적으로,우리는유한영역내에서분수계수버전의브레
지스-니렌버르그문제가무한해를갖는다는것을증명한다.
이파트의마지막챕터는김승혁박사님,이기암교수님과의공동연구논문 [CKL2]을바

탕으로한다.이논문의목적은 3차원이상에서레인-엠덴-파울러방정식의임계지수근처에서
다중버블링하는해들에대한질적성질들을얻는데있다.각각의 m버블해들에서선형화된
문제를공부하여,우리는처음 (n + 2)m개의고유함수와고유치에대해서정확한계측들을보
인다. 특별히, 우리는 4차원이상에서 다중 버블 해의 모스-인덱스가 그란함수, 로빈함수들의
일차,이차미분들로이루어진대칭행렬들로규명되된다는 Bahri-Li-Rey (1995)에의한고전
적인결과에대한새로운증명을제시한다.우리의증명은 3차원일경우에도적용이된다.
세번째 파트는 라파엘 폰즈교수님과 함께한 논문 [CP1, CP2]를 바탕으로 쓰여졌다. 논문

[CP1] 에서는 캐놋 다양체의 내부적으로 주어진 접한 군 다발들을 정의하고 우선적 좌표에
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대해서 공부를 한다. 이를 통해서 캐놋 다양체의 매끈한 접 이군을 정의한다. 이러한 공부들
을 바탕으로 논문 [CP2] 에서는 캐놋 다양체위에서의 의미분 작용소에 대한 공부를 합니다.
적절한의미분작용소들의모임을정의하고이작용소들의계산법을정확히구한다.구체적으
로는,결합,수반작용소,좌표변환에관한구체적인커널전개를구한다.이것을통해우리는
약한 타원성을 가진 미분 작용소들의 역의 구체적인 커널 전개 표현을 얻어낼 수 있다. 또한
관련된열미분작용소에대한열커널전개도얻을수있다.이것의한응용으로케놋다양체
위에서의분광밴드의성질을공부할수있다.

주요어휘:반선형타원형방정식,분수계수라플라시안,진동작용소계측,최대푸리에작용
소,캐놋다양체,의미분작용소연산
학번: 2009-20283
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