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Abstract

In this dissertation, we discuss segmentation algorithms based on the level set

method that incorporates shape prior knowledge. Fundamental segmentation

models fail to segment desirable objects from a background when the objects

are occluded by others or missing parts of their whole. To overcome these

difficulties, we incorporate shape prior knowledge into a new segmentation

energy that, uses global and local image information to construct the energy

functional. This method improves upon other methods found in the literature

and segments images with intensity inhomogeneity, even when images have

missing or misleading information due to occlusions, noise, or low-contrast.

We consider the case when the shape prior is placed exactly at the locations

of the desired objects and the case when the shape prior is placed at arbitrary

locations. We test our methods on various images and compare them to other

existing methods. Experimental results show that our methods are not only

accurate and computationally efficient, but faster than existing methods as

well.

Key words: Segmentation, active contours, shape prior knowledge, level set

method, intensity inhomogeneity
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Chapter 1

Introduction

1.1 Research background

Image segmentation is one of the most basic concepts in image processing.

Extensive research on this topic has produced a numerous of segmentation

methods. The goal of image segmentation is to partition an image into

regions of objects detected from background of the image. The choice of a

segmentation method depends on the properties of the image.

Most segmentation approaches are based on the Mumford-Shah (MS)

functional [1], which is a region based model. Another common approach is

the active contour model, which is an edge based model. This model detects

significant contours rather than partitioning an image into homogeneous

regions. Other traditional approaches are discussed in [16, 17, 19]. Even

though these models are capable of detecting objects in an image, they fail

to detect an object’s interior. Furthermore, once a curve(or contour) detects

an object’s boundary, segmentation stops.

To overcome the drawbacks of traditional approaches [16, 17, 19], Chan

and Vese (Chan-Vese) propose one of the well-known approach named

active contours without edges [2], and reformulate the MS functional in

terms of the level set method [3]. This approach was also extended to

images with multiple-regions [4]; however, the re-initialization process of
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CHAPTER 1. INTRODUCTION

the level set functions makes it computationally expensive. In this

extension, they proposed the piecewise constant (PC) model, which works

well on the images with intensity homogeneity and the piecewise smooth

(PS) approach, which segments images with intensity inhomogeneity.

Unfortunately, these methods are computationally expensive as well.

Inspired by the active contour model, the local binary fitting (LBF)

method was proposed to segment images with intensity inhomogeneity

[11, 12]. This method imposes local intensity information as constraints and

eliminates the re-initialization process by using variational level set

formulation without re-initialization [36, 37]. The LBF method produces

better segmentation results and is more computationally efficient than the

PS model. The local image fitting (LIF) energy approach was also designed

of the LBF model and to regularize the level set function using Gaussian

filtering for variational level set; thus, LIF eliminates the re-initialization

process.

All of these methods fail to segment images with missing or misleading

information due to occlusion, noise or low-contrast. Therefore, shape prior

knowledge is incorporated to improve the robustness of such segmentation

methods. Many approaches have been developed for shape prior

segmentation. In general, the segmentation methods that incorporate shape

information can be classified into two types:

1. Based on statistical knowledge of the shape [5–7, 29, 30, 35].

• This method uses a set of training shapes to create a mean shape.

Training set points are aligned to minimize the weighted sum of

squares of the distances between equivalent points on different

shapes. The mean shape evolves to fit the object to be segmented.

To achieve better segmentation results, statistical tools, such as

mean value and principal component analysis are used.

2. Based on level set knowledge of the shape [8–10, 18, 26–28, 31, 34].

2



CHAPTER 1. INTRODUCTION

• This method embeds the shape prior using the level set function.

Topological changes, such as splitting and merging, allow several

objects in a given image to be segmented.

We focus on the level set knowledge of the shape, which allows us to use a

variational approach. Most methods focus on segmenting only one desired

object, Cremers et al.’s model, on the other hand, can segment the desired

object and others in a given image by introducing a labeling function [9]. In

this model, the size, pose and location of the shape have to be similar to

the desired one; in other words, geometric transformations of the shapes are

prohibited. To overcome this limitation, Chan and Zhu proposed an

algorithm [10] in which the shape term is independent of the image domain.

An additional term enables the labeling function to be easily controlled.

Thiruvenkadam et al. [27] and J. Woo et al. [28] extended the Chan-Zhu

model to segment images with multiple-regions. These models are PC

models; thus, they do not work well for the images with intensity

inhomogeneity.

Inspired by Wang et al.’s model [13], we propose a segmentation method

for images with intensity inhomogeneity by modifying the LIF model. Our

model drives the motion of the contour far away from object boundaries

by utilizing the fitting term of the Chan-Vese model as an auxiliary global

intensity fitting term. Therefore, the initial level set is more flexible, and the

computation cost is less than that of the LIF model.

Fundamental methods for shape prior segmentation utilize a general

energy functional that is a linear combination of segmentation energy and

shape energy. Analogous to the general energy functional, we minimize a

total energy function that, consists of our modified LIF energy and the

shape energy. Our approach is able to segment the desired object, as well as

other objects, when images have independent intensity inhomogeneous and

homogeneous regions. Moreover, our approach succeeds even when objects

are occluded or missing some parts (i.e., the image is corrupted). We

consider two cases for the location of given shape prior. First, the shape

3



CHAPTER 1. INTRODUCTION

prior is placed exactly at the locations of desired objects. Second, a given

shape prior is placed at arbitrary locations. Numerical experiments show

that our approach is more inexpensive and accurate than extensions of

models proposed by Cremers et al. and Chan and Zhu.

1.2 Outline of thesis

This dissertation is organized as follows: Chapter 2 discusses previous

works. We review image segmentation models for images with intensity

homogeneity and inhomogeneity and review the shape prior segmentation

models for images with noise, occlusions or low-contrast. The main

contributions of this thesis are presented in Chapter 3. In Section 3.1, we

propose a novel method for images with intensity inhomogeneity, named

the active contours driven by global and local image fitting energy. In order

to cope with the intensity inhomogeneity of the image, we set a local image

fitting term. To overcome sensitivity of initialization, a global image fitting

term is considered. In Section 3.2, we propose a shape prior segmentation,

which incorporates shape prior knowledge to improve robustness and

segment the multiple objects with different intensities using only one level

set function. Numerical experiments are discussed in Chapter 4. Finally, we

conclude our work in Chapter 5.

4



Chapter 2

Previous works

2.1 Level set method

The level set method is used to segment an image by evolving a curve to

capture the objects. The basic idea is to represent contour as the zero level set

of an implicit function defined in a higher dimension. The level set function

is propagated by a partial differential equation (PDE). The main advantage

of the level set method is that the zero level set can merge, break and change

its topology during its evolution for segmentation problems (see Fig. 2.1).

The curves, denoted by C, are represented by a zero level set of an implicit

function φ(t, x, y). Specifically,

C(t) = {(x, y)|φ(t, x, y) = 0}.

The evolution equation of the level set function φ can be written as

∂φ

∂t
+ F |∇φ| = 0. (2.1)

Equation (2.1) is called the ”level set equation” in the traditional level set

method [3]. The zero level set of φ(t, x, y) moves along at speed F , which

depends on image data such as its edges.

The level set function (LSF) φ of traditional level set methods [3, 15, 20]

creates shocks, very sharp or flat shapes during its evolution, which makes

5



CHAPTER 2. PREVIOUS WORKS

Figure 2.1: Change topology of the level set.

further computation highly inaccurate. To overcome these problems, the

fundamental level set method initializes φ as a signed distance function

(SDF) before evolution begins. In other words, the degraded level set

function is periodically re-initialized (or reshaped) during its evolution.

The re-initialization process has been extensively investigated [20–23].

The classic re-initialization method solves the following equation:

∂φ

∂t
= sign(φ0)(1− |∇φ|) (2.2)

where φ0 is the function to be re-initialized, and sign(φ) is the sign function

of φ defined by

sign(φ) =


1 if φ > 0

0 if φ = 0

−1 if φ < 0.

The re-initialization process cannot be avoided, and it is complicated

and expensive to use in practice. The most popular models, Geodesic

Active Contours and the Chan-Vese Model, are based on traditional level

set methods. These methods re-initialize the LSF using (2.2). We will

discuss these segmentation methods in the next section.

Li et al. proposed a new variational level set formulation [36, 37] that

avoids the re-initialization process. They further generalized their formulation

by using a signed distance regularization term [37]. By definition, the SDF

of the LSF must satisfy |∇φ| = 1. Li et al. designed their formulation with

6



CHAPTER 2. PREVIOUS WORKS

an intrinsic mechanism to maintain the signed distance property of the LSF

[36]. This mechanism is associated with ”a penalty term”, which penalizes

deviation of the LSF from the SDF. Therefore, the re-initialization process

is eliminated, which results in a more efficient algorithm than the classical

level set formulation.

The penalizing term in [37] is given by the following integral:

P (φ) =

∫
Ω

1

2
(|∇φ| − 1)2dxdy. (2.3)

This integral can used to determine how close a function φ is to the SDF

in Ω ⊂ R2. The penalizing term plays a key role in the variational level set

formulation. Furthermore, (2.3) maintain the LSF as an approximate SDF

during the evolution, especially in a neighborhood around the zero level set.

To explain the effects of the penalty term, the gradient flow is very useful.

The gradient flow is given by

∂φ

∂t
= ∆φ− div

(
∇φ
|∇φ|

)
= div

[
(1− 1

|∇φ|
)∇φ

]
. (2.4)

Properties of the SDF are evident in (2.4). Factor (1− 1
|∇φ|) is the diffusion

rate. The diffusion rate is positive, if |∇φ| > 1; this term makes φ

smoother, thereby reducing the gradient |∇φ|. On the contrary, reverse

diffusion occurs when |∇φ| < 1; thus, in this case, the gradient increases.

Therefore, the LSF automatically forced to be an approximate SDF during

the evolution. Functional P (φ) is applied to an active contours algorithm

for image segmentation. This concept is discussed in Section 2.3.

Zhang et al. [14] took a different approach and proposed the variational

level set with Gaussian filtering. They were inspired by the fact that the

evolution of a function, according to its Laplacian, is equivalent to Gaussian

filtering the initial condition of the function. Furthermore, they noticed that,

the previous iteration result of the level set function can be viewed as the

initial condition for the next iteration, i.e.,

φn+1 = G√∆t ∗ φ
n

7



CHAPTER 2. PREVIOUS WORKS

where G√∆t is a Gaussian kernel with variance ∆t, and ∗ is the convolution

operator. This equation is a solution to the following equation at time t =

(n+ 1)∆t:

φt = ∆φ. (2.5)

The initial condition is φ(x, t = n∆t) = φ2, where n is the iteration number

and ∆t is the time-step.

To obtain the solution to (2.5), we first express φn+1 as

φn+1 = φn + ∆t∆φn (2.6)

where ∆t is the time-step. In general, clearly, (2.6) is not smooth because

the Laplacian term is defined on a point-by-point basis, whereas the

Gaussian filtering uses all the points around the center point to make the

level set function smooth. Zhang et al. utilized this variational level set

method in a new, region-based active contour model for images with

intensity inhomogeneity. This will be described in more detail in Section

2.3.

8



CHAPTER 2. PREVIOUS WORKS

2.2 Fundamental models for image

segmentation

The first fundamental model for image segmentation was proposed by

Mumford and Shah in 1989 [1]. Their main idea is to approximate an image

by a simplified image as a combination of regions of constant intensities and

the smoothness of the contours was disregarded. These ideas were

incorporated into a variational framework; an initial image I0, find pair

(I, C), where I is a nearly piecewise smooth approximation of I0 and C is

the set of edges. Mumford and Shah proposed to find (I, C) by minimizing

the following functional:

FMS(I, C) =

∫
Ω−C

(I − I0)2dx+ α

∫
Ω−C
|∇I|2dx+ β

∫
C

dσ (2.7)

where Ω is a bounded open set of R2, α and β are nonnegative constants

and
∫
C
dσ is the length of C. We refer to (2.7) as the Mumford-Shah (MS)

functional.

Figure 2.2: Local behaviour of curves

Furthermore, Mumford and Shah conjectured that there exists a

minimizer of FMS such that the edges are the union of a finite set of C1,1

embedded curves and that each curve ends in either a crack tip (a free

extremity i.e., C looks like a half line) or triple junction.

9



CHAPTER 2. PREVIOUS WORKS

To examine the existence of a solution to the MS problem, they predicted

the local behavior for the possible endpoints and crossings of curves as shown

in Fig.2.2 and analyzed the conjecture. In practice, it is difficult to minimize

the MS functional because dimension of C is unknown, and the problem is

nonconvex. Theoretical results and the regularity of minimizers of (2.7) can

be found in [1].

Methods of solving the general MS model are complicated and

computationally expensive, even though, (2.7) is a natural method of

segmentation. Therefore, Mumford and Shah formulated a reduced version

of the MS functional called the minimal partition problem, which can be

formulated as follows:

EMS(I, C) =
∑
i

∫
Ωi

(I0 − ci)2dxdy + β

∫
C

dσ (2.8)

The solution of the minimal partition problem can be found by restricting the

segmented image I to a piecewise constant approximation I0, i.e., I = ci in

each connected component Ωi, where ci are constants. For fixed C, minimizing

FMS functional is reduced to minimize EMS in variables ci by setting ci =

mean(I0) in each Ωi. However, minimizing the reduced MS functional is still

very difficult due to its nonconvexity.

A wide variety of active contour based models have been reported in

the existing research. The classic active contour model named ”Snake” was

proposed by Kass, Witkin, and Terzopoulos in 1987 [19]. Their goal was to

detect contours of objects automatically. The Snake model raises two very

important questions: how are contours represented, and what criteria allow

one to select the true contours? To answer these questions, the following

energy functional was proposed:

JSnake1 (c) =

∫ b

a

|c′(x)|2dx+ β

∫ b

a

|c′′(x)|2dx+ λ

∫ b

a

g2(|∇I(c(x))|)dx (2.9)

where C is the set of curves in R2 defined by

C = {c : [a, b]→ Ω, c piecewise C1, c(a) = c(b)}.

10
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The first two terms in (2.9) are the internal energy. Curve c makes the snake

act like a membrane and thin plate when the energy is minimized. The third

term is the external energy that pulls the curve toward the edges of the

objects.

Because of the magnitude of the gradient of image I is high across the

boundaries of objects, |∇I(x, y)| =
√
I2
x + I2

y is chosen as a detector for

contours. In order to characterize edges by zero values rather than infinite

values, Kass, Witkin, and Terzopoulos defined the edge detector function

g : [0,+∞[→]0,+∞[. This function is regular, monotonic, and decreasing;

it also has the properties that g(0) = 1 and limx→+∞ g(x) = 0. A typical

choice of g is g(∇I) = 1/(1 + |∇I|2). Figure 2.3 shows an example of an edge

detector function. The edges of the image can clearly be distinguished.

Figure 2.3: Original house image (left), result of∇I(x, y) (middle), and result

of g(∇I) (right).

Using calculus of variations, a global solution to (2.9) can be found.

Since Ω is bounded, the Euler-Lagrange equation associated with Jsnake1 (c)

in the Sobolev space (W 2,2(a, b))2 can be solved. Uniqueness, however, is

not guaranteed since Jsnake1 (c) is nonconvex. Other disadvantages associated

with the Snake model are: 1)Jsnake1 (c) is not intrinsic because it depends on

the parametrization of c; thus, it is called parametric active contours, 2) the

regularity constraint prohibits the model from handling changes in

topology, 3) if the initial curve does not surround the object, false

detections may occurs, 4) it does not allow for flexible initialization of the

11
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curve.

To overcome the disadvantages of the Snake model, the Geodesic Active

Contours model was proposed by Caselles et al. in 1997 [17]. They modified

Jsnake1 when β = 0 as follows:

JGAC2 (c) = 2
√
λ

∫ b

a

g(|∇I(c̄(s))|)|c̄′(s)|ds

where c̄(s) = c(φ(s)). This model can be thought of as a weighted Euclidean

length, with weight g(|∇I(c̄(s))|), which includes information concerning the

boundaries (edges) of desired objects. This method is geometrically intrinsic

because it does not depend on the parametrization of curve c.

Again, using calculus of variations and the steepest descent method, the

gradient descent flow is given by

∂c

∂t
= (kg − 〈∇g,N〉+ αg)N (2.10)

for an initial curve c0(x). Here, k is the curvature, and N is the normal to

curve C. The main advantage of Casseles et al.’s model is its level set

expression. They proposed an intrinsic model motivated by the level set

method in [3]. The level set formulation of (2.10) can be written as

∂φ

∂t
= g(|∇I|)

(
div

(
∇φ
|∇φ|

)
+ α

)
|∇φ|+ 〈∇g,∇φ〉 (2.11)

for given boundary and initial conditions.

By applying the level set method, implementation of (2.11) is made

significantly easier. In (2.11), g(|∇I|) permits one to stop the evolving

curve when it arrives at an object’s boundary, and 〈∇g,∇φ〉 increases the

attraction of the deforming contour toward the object boundaries. While

this method improves upon the Snake model, the interior of objects cannot

segmented, i.e., once the curve has detected a contour, it stops.

Furthermore, this method is computationally expensive because it requires

re-initialization during the evolution of the LSF.

12
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A region-based segmentation method with level sets was proposed by

Chan and Vese [2, 24]. This is a variational approach for image segmentation

without a terminating edge-function, i.e., the model does not include the

gradient of the image to stop the process. Moreover, it can automatically

detect the interior contours of objects using flexible initial curve. The Chan-

Vese model is a particular case of the MS segmentation technique when i=2.

Chan and Vese proposed minimizing the following functional:

EChan−V ese(c1, c2, C) = λ1

∫
in(C)

|I0 − c1|2dx+ λ2

∫
out(C)

|I0 − c2|2dx

+ µ · Length(C) + ν · Area(inside(C))

(2.12)

where I0 is a given image on the bounded open subset Ω in R2. In most cases,

ν = 0 and λ1 = λ2 = 1. The sum of the first and second integrals in (2.12) is

called the fitting term/stopping term. That is,

Efitting(C) = Fin(C) + Fout(C) =

∫
in(C)

|I0 − c1|2dx+

∫
out(C)

|I0 − c2|2dx.

A visual explanation of the fitting term is illustrated in Fig.2.4. In this

figure, Fin(C) ≈ 0 and Fout(C) > 0 when curve C is inside the object. On

the other hand, Fin(C) > 0 and Fout(C) ≈ 0 when C is outside the object.

If C is both inside and outside the object, Fin(C) > 0 and Fout(C) > 0. On

the contrary, Fin(C) ≈ 0 and Fout(C) ≈ 0 when Efitting(C) is minimized.

Curve C ⊂ Ω can be expressed implicitly by a zero level set of φ : Ω→ R:
C = {(x, y) ∈ Ω : φ(x, y) = 0}

in(C) = inside(C) = {(x, y) ∈ Ω : φ(x, y) > 0}

out(C) = outside(C) = {(x, y) ∈ Ω : φ(x, y) < 0}.

(2.13)

Using the zero level set function φ, the terms of the Chan-Vese energy,

13
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(a) (b)

(c) (d)

Figure 2.4: Explanation of the fitting term: Fin(C) ≈ 0 and Fout(C) > 0

when curve C is inside the object (a), Fin(C) > 0 and Fout(C) ≈ 0 when

curve C is outside the object (b), If curve C is both inside and outside the

object, Fin(C) > 0 and Fout(C) > 0 (c), On the contrary, Fin(C) ≈ 0 and

Fout(C) ≈ 0 when Efitting is minimized (d).

EChan−V ese can be represented as follows:

Length{φ = 0} =

∫
Ω

|∇H(φ(x, y))|dxdy =

∫
Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy,

Area{φ ≥ 0} =

∫
Ω

H(φ(x, y))dxdy

14
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and

Fin(C) =

∫
φ>0

|I0(x, y)− c1|2dxdy =

∫
Ω

|I0(x, y)− c1|2H(φ(x, y))dxdy,

Fout(C) =

∫
φ<0

|I0(x, y)− c2|2dxdy =

∫
Ω

|I0(x, y)− c2|2(1−H(φ(x, y)))dxdy.

where

H(φ) =

1, if φ ≥ 0

0, if φ < 0
, δ0(φ) =

d

dφ
H(φ).

As a result, the level set formulation of EChan−V ese can be written as

EChan−V ese(c1, c2, φ) =

∫
Ω

((I0 − c1)2H(φ) + (I0 − c2)2(1−H(φ)))dx

+ µ

∫
Ω

|∇H(φ)|dx+ ν

∫
Ω

H(φ)dx.

(2.14)

As shown in Fig.(2.5), the curve of the Geodesic Active Contour model

cannot detect the interior boundary of objects. Also, if the initial level set is

not surrounded, object detection fails as shown in Figs.2.5(b) and (2.5)(e).

This is not a problem for the Chan-Vese model, however Fig.2.5(f) and

initialization does not depend on position Fig.2.5(c).

Inspired by Zhao et al. [38], Vese and Chan extended their model using

a multiphase level set formulation to partition multiple regions. Piecewise

constant(PC) and Piecewise smooth(PS) models were proposed in [4]. For

the PC model, level set functions φi : Ω → R, i = 1, ...,m were considered.

The union of the zero-level sets of φi represent the contours in the segmented

image. The segments, or phases, in domain Ω can be defined as follows:

Proposition 2.2.1. Two pixels (x1, y1) and (x2, y2) in Ω belong to the

same phase, or class, if and only if H(Φ(x1, y1)) = H(Φ(x2, y2)). Here,

Φ = (φ1, ..., φm) is the vector of level set functions and

H(Φ) = (H(φ1), ..., H(φm)) is the vector of Heaviside functions whose

components are 1 or 0.
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Segmentation results of the Geodesic Active Contour and Chan-

Vese models

Up to n = 2m phases or classes can be defined in the domain of definition

Ω. Classes defined in this form a disjoint decomposition and covering of Ω.

Therefore, each pixel (x, y) ∈ Ω belongs to only one class, and there is no

vacuum or overlap among phases. The set of curves is represented by the

union of the zero level sets of the functions φi.

As shown in Fig.(2.6), two level set functions (m = 2) are required to

represent four phases (n = 4) in the PC model. Therefore, the energy of the

four phase PC model can be written as:

EPC
4 (c,Φ) =

n∑
i

m∑
j

∫
Ω

((I0 − ci,j)2Hi,jdx+

∫
Ω

|∇H(φ1)|+
∫

Ω

|∇H(φ2)|

16
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Figure 2.6: Four phases of two level set functions

where

H11 = H(φ1)H(φ2), H12 = H(φ1)(1−H(φ2))

H21 = (1−H(φ1))H(φ2), H22 = (1−H(φ1))(1−H(φ2))

and ci,j = mean(I0), (i = 1, 2, j = 1, 2) in each region/phase.

Figure 2.7 shows the segmentation results of a noisy synthetic image with

a triple junction. Using only one level set function in the Chan-Vese model

(Fig.2.7(a)), it is impossible to represent the triple junction (Fig.2.7(b)). If

two level set functions are used (Fig.2.7(c)) by the PC model and n = 4, the

triple junction can be represented, and four phases are extracted as shown

in Fig.2.7(d).

The PC model has the advantage that it can represent triple junctions

and multiple regions. The works of Chan and Vese have led to numerous

segmentation methods. For example, Kim and Kang [40] proposed an

efficient algorithm for multiple-region segmentation and considered finding

the number of regions in a given image automatically. These methods work

well for images with intensity homogeneity (or roughly constant in each

phase) but do not work for images with intensity inhomogeneity. For images

with intensity inhomogeneity, figure (2.8) shows an example of when object

is unsuccessfully segmented. The Chan-Vese model does not perform well

(Fig.2.8(c)). Methods for images with intensity inhomogeneity are discussed

in the next section.
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(a) (b)

(c) (d)

Figure 2.7: PC model segmentation results for an image with a triple junction
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(a)

(b)

(c)

Figure 2.8: Segmentation results of the Chan-Vese model.
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2.3 Segmentation models for images with

intensity inhomogeneity

Intensity inhomogeneity often occurs as a result of technical limitations. In

particular, inhomogeneities in magnetic resonance (MR) images arise from

nonuniform magnetic fields produced by ratio-frequency coils, as well as from

variations in object susceptibility. Therefore, many segmentation approaches

have been developed for images with intensity inhomogeneity.

The first approach is a piecewise smooth (PS) model proposed by Vese

and Chan [4]. Consider the PS model for images with intensity inhomogeneity

when n = 2 (two phase case). The edges in the image can be represented by

one level set function φ as

C = {(x, y) | φ(x, y) = 0}.

Functions f+ and f− are assumed to be C1 functions on φ ≥ 0 and φ ≤ 0

respectively. And the link between unknowns f = f+H(φ) + f−(1 − H(φ))

and φ can be expressed by introducing two functions f+ and f− such that

f(x, y) =

f+(x, y), if φ(x, y) ≥ 0

f−(x, y), if φ(x, y) < 0.

The PS model is formulated as minimizing the following energy:

EPS
2 (f+, f−,Φ) =

∫
Ω

((I0 − f+)2H(φ) + (I0 − f−)2(1−H(φ)))dxdy

+ µ

∫
Ω

(|∇f+|2H(φ) + |∇f−|2(1−H(φ)))dxdy + ν

∫
Ω

|∇H(φ)|.

This model can be extended to segment an image with intensity

inhomogeneity and include two or more phases.

Figure 2.9 shows an initial noisy image I0 and initial contours with the

evolving curve superimposed. The denoised version f of I0 is shown on the

far right. Clearly, the model performs well with active contours, denoising,

20



CHAPTER 2. PREVIOUS WORKS

Figure 2.9: Segmentation results of the PS model

and edge-detection, and several objects of distinct intensities are correctly

segmented with only one level set function. Even though the PS model can

segment an image by reducing the influence of intensity inhomogeneity, it is

computationally expensive and inefficient in practice.

Compared to the PS model, a more inexpensive and accurate model was

proposed by Li et al. [11, 12]. This model is called local binary fitting

(LBF), which applies local intensity information as constraints. The main

idea is to introduce two spatially varying fitting functions f1(x) and f2(x)

to approximate the local intensities inside and outside of the contour,

respectively. The local data fitting term is defined as follows in level set

formulation:

ELBF (φ, f1, f2) = λ1

∫
[Kσ(x− y)|I0(y)− f1(x)|2H(φ(y))dy]dx

+ λ2

∫
[Kσ(x− y)|I0(y)− f2(x)|2(1−H(φ(y)))dy]dx.

(2.15)

where H is the Heaviside function, Kσ is a Gaussian kernel with standard

deviation σ, and λ1 and λ2 are positive constants; in most cases, λ1 = λ2 = 1.

The distance regularizing term P (φ) in (2.3) is incorporated into the LBF

model to give stable evolution of the level set function φ. In addition, it is
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necessary to smooth the zero level set φ by penalizing its length, given by

L(φ) =

∫
Ω

δ(φ(x))|∇φ(x)|dx. (2.16)

Thus, the efficient energy can be written as follows:

F (φ, f1, f2) = ELBF (φ, f1, f2) + µP (φ) + νL(φ) (2.17)

where µ and ν are positive constants. Incorporating the distance

regularizing term into the LBF energy functional renders, the

re-initialization process unnecessary; thus, the LBF method is

computational inexpensive and efficient.

To minimize the energy functional (2.17), the standard gradient descent

method is used. Minimizing F (φ, f1, f2) with respect to φ for fixed f1 and f2,

the gradient descent flow is derived as

∂φ

∂t
= −δε(φ)(λ1e1 − λ2e2) + νδε(φ)div(

∇φ
|∇φ|

) + µ(∇2φ− div(
∇φ
|∇φ|

)) (2.18)

where δε is the regularized version of the Dirac delta function, and e1 and e2

are given by

e1(x) =

∫
Ω

Kσ(y − x)|I0(x)− f1(y)|2dy

and

e2(x) =

∫
Ω

Kσ(y − x)|I0(x)− f2(y)|2dy.

Here, f1 and f2 are defined by minimizing F (φ, f1, f2) for a fixed level set

function φ. Using calculus of variations, these functions are given by

f1(x) =
Kσ(x) ∗ [Hε(φ(x))I0(x)]

Kσ(x) ∗Hε(φ(x))
(2.19)

and

f2(x) =
Kσ(x) ∗ [(1−Hε(φ(x)))I0(x)]

Kσ(x) ∗ [1−Hε(φ(x))]
(2.20)

where Hε is the regularized version of the Heaviside function.
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Note that the standard deviation σ of the kernel plays an important role.

It can be viewed as a scale parameter that controls the region-scalability from

small neighborhoods to the entire image domain [12]. The scale parameter

should be properly chosen according to the contents of a given image. In

particular, when an image is too noisy or has low contrast, a large value of σ

should be chosen. Unfortunately, this may cause a high computational cost.

Small values of σ can cause undesirable result as well. Because of f1 and

f2 in (2.19),(2.20), the LBF model is able to handle images with intensity

inhomogeneity. These functions can be viewed as the weighted averages of

the image intensities in a Gaussian window inside and outside the contour,

respectively.

Inspired by the LBF model [11], a more computationally efficient and

accurate model was proposed by Zhang et al. [14]. They defined the local

fitted image as

ILFI = m1H(φ) +m2(1−H(φ)) (2.21)

where m1 = mean(I0 ∈ ({x ∈ Ω|φ(x) < 0} ∩Wk(x)))

m2 = mean(I0 ∈ ({x ∈ Ω|φ(x) > 0} ∩Wk(x))).
(2.22)

The rectangular window function is denoted by Wk(x). A Gaussian kernel is

used to regularize the level set function instead of the traditional regularizing

term div(∇φ/|∇φ|)δ(φ) as mentioned in Section 2.1.

Then proposed local intensity fitting (LIF) energy formulation is given

by

ELIF =
1

2

∫
Ω

|I0(x)− ILFI(x)|2dx , x ∈ Ω (2.23)

where, ILFI is a local fitted image, which defined in (2.21).

In this model, a Gaussian filtering is applied to regularize the level set

function, i.e., φ = Gγ ∗ φ , where γ is the standard deviation. This method

can segment an images with intensity inhomogeneity or multiple objects with

different intensities.
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The local and global intensity fitting (LGIF) method [13] takes advantage

of the Chan-Vese and LBF models by combining local and global intensity

information to handle intensity inhomogeneity. The local intensity fitting

energy ELIF is equal to the LBF model, and the global intensity fitting

(GIF) energy EGIF is the fitting term of the Chan-Vese model:

EGIF (φ, c1, c2) =

∫
|I0(x)− c1|2H(φ(x))dx+

∫
|I0(x)− c2|2(1−H(φ(x)))dx.

The LGIF method defined the energy functional as follows:

ELGIF (φ, c1, c2, f1, f2) = (1− ω)ELIF (φ, f1, f2) + ωEGIF (φ, c1, c2)

+ νL(φ) + µP (φ)
(2.24)

where f1 and f2 are the optimal fitting functions given by (2.19) and (2.20),

L(φ) is length of the zero level set for smoothing given by (2.16), P (φ) is the

deviation of the level set function from the signed distance function in (2.3) to

eliminate re-initialization process, and ω is a positive constant such that (0 ≤
ω ≤ 1). The value of ω should be small when the intensity inhomogeneity in

an image is severe.
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2.4 Shape prior segmentation models

The previous methods fail to segment images with missing or misleading

information due to noise, occlusion, or low-contrast. Therefore, shape prior

knowledge is incorporated to improve the robustness of these segmentation

methods. Method based on shape’s level set knowledge were first introduced

by Chen et al. [25, 26]. They modified the Geodesic Active Contour model by

adding a shape term. Their model is able to find boundaries that are similar

to the shape prior, even when the boundary has gaps in the image.

Level set representation of the shape prior was introduced in [32, 33]. Let

φ : Ω→ R2 be a Lipchitz function that refers to the level set representation

of a given shape S. This shape defines a region R in the image domain Ω.

The shape representation is defined by

φS(x, y) =


0 if (x, y) ∈ S

+D((x, y), S) > 0, if (x, y) ∈ RS

−D((x, y), S) < 0, if (x, y) ∈ Ω \RS

(2.25)

where D((x, y), S) is the minimum Euclidean distance between the grid

location (x, y) and shape S. Level set knowledge-based models represent a

shape according to (2.25).

Many models focus only on segmenting the desired objects. Cremers et

al.’s model, however, can also segment other objects by introducing a labeling

function [9]. This model is given by

ECremers(c1, c2, φ, L) = EChan−V ese(c1, c2, φ) + Eshape(φ, L). (2.26)

The shape term Eshape(φ, L) has three options: Eglobal
shape ,E

static
shape, and Edynamic

shape .

The global shape prior is formulated as

Eglobal
shape (φ) = α

∫
Ω

(φ(x)− φ0(x))2dx (2.27)

where φ0 is the level set function embedding a given shape prior, and α

controls the weight of the prior shape. The global shape term of Cremers et
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al.’s has the ability to ignore objects that do not require segmentation. Static

energy segments all objects in an image. The static shape term is given by

Estatic
shape(φ, L) = α

∫
Ω

(φ(x)− φ0(x))2(L+ 1)2dx (2.28)

where L is a static labeling function used to indicate the region where the

shape prior should be active. Labeling function L is either +1 and −1

depending on whether the prior should be enforced or not. Note that, the

labeling function must be specified beforehand.

By minimizing the total energy with dynamic shape term with respect

to L and φ, prior knowledge of the labeling function can be avioded. The

dynamic shape term is given by

Edynamic
shape (φ, L) = α

∫
Ω

(φ(x)− φ0(x))2(L+ 1)2dx

+

∫
Ω

λ2(L− 1)2dx+ γ

∫
Ω

|∇H(L)|dx.
(2.29)

Compared to the static labeling function, this labeling function is dynamic,

i.e., it does not need to be specified beforehand. It can control the region

where the shape prior is enforced and the smoothness of the boundary

separating the regions. If the labeling function is not included in the shape

term of Cremers et al.’s model, the other objects in a given image are not

segmented as shown in Fig.(2.10). In contrast, by incorporating the labeling

function, the other objects are segmented as shown in Fig.(2.11).
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(a) (b)

(c) (d)

Figure 2.10: Results of Cremers et al.’s model: initial level sets are shown

in (a) and (c), and segmentation results without the labeling function are

shown in (b) and (d).
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(a) (b)

(c) (d)

Figure 2.11: Results of Cremers et al.’s model: initial level sets are shown in

(a) and (c), and segmentation results with the labeling function are shown

in (b) and (d).
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Cremers et al.’s model can be extended to multiple-region images as well

[42]:

ECremers
extension =

∫
Ω

((I0 − c11)2H(φ1)H(φ2) + (I0 − c10)2H(φ1)(1−H(φ2)))dx

+

∫
Ω

((I0 − c01)2(1−H(φ1))H(φ2) + (I0 − c00)2(1−H(φ1))(1−H(φ2)))dx

+ ν1

∫
Ω

|∇H(φ1)|dx+ ν2

∫
Ω

|∇H(φ2)|dx

+ α1

∫
Ω

(φ1(x)− φshape1(x))2(L1 + 1)2dx

+ α2

∫
Ω

(φ2(x)− φshape2(x))2(L2 + 1)2dx

where c11, c01, c10 and c00 are the mean intensities in each region given by

c11 = mean(I) in{x : φ1 > 0, φ2 > 0}
c01 = mean(I) in{x : φ1 > 0, φ2 < 0}
c10 = mean(I) in{x : φ1 < 0, φ2 > 0}
c00 = mean(I) in{x : φ1 < 0, φ2 < 0}.

Figure 2.12 shows the results of the extended model. Two level set functions

φ1 and φ2 are used to segment objects with shape priors. In the presence of

labeling functions L1 and L2, the other objects are also segmented.

No transformation is allowed for the prior shape in Cremers et al.’s model,

whereas the prior shape is geometrically transformed in the Chan-Zhu model

[9]. The concepts of invariance to translation, rotation and scaling are defined

for a set of objects.

Definition 2.4.1. Any two objects are said to be equivalent if they have the

same shape.

In other words, their signed distance functions are related. Let ψ and ψ0

be the signed distance functions of two objects S1 and S2, of the same shape.

Then, there exists a four-tuple (a, b, r, θ) such that:

ψ(x, y) = rψ0(x∗, y∗) (2.30)
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(a) (b)

Figure 2.12: Segmentation results of shapes:(a)Initial φ1 (blue) for an

occluded object and φ2 (red) for an object with missing information. Labeling

functions L1 and L2- are sky blue and green, respectively, (b) segmentation

results

where x∗ = (x−a) cos(θ)+(y−b) sin(θ)
r

y∗ = −(x−a) sin(θ)+(y−b) cos(θ)
r

and (a, b), r and θ represent the translation, scaling and rotation parameters,

respectively. The proposed simple shape energy is given by

Esimple
shape (φ, ψ) =

∫
Ω

(H(φ)−H(ψ))2dx (2.31)

where φ is a level set function for segmentation, ψ0 is the signed distance

function of a given prior shape, and ψ is the fixed signed distance function

in (2.30) of the shape. Therefore, the total energy of the Chan-Zhu model is

EChan−Zhu(φ, ψ, c1, c2) = EChan−V ese(φ, c1, c2) + λEsimple
shape (φ, ψ). (2.32)
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More explicitly,

E(c1, c2, φ, ψ) =

∫
Ω

((I0 − c1)2H(φ) + (I0 − c2)2(1−H(φ)))dx

+ µ

∫
Ω

|∇H(φ)|+ λ

∫
Ω

(H(φ)−H(ψ))2dx.

(2.33)

Chan and Zhu extended their model by introducing labeling function L.

In general case, the shape term is

Egeneral
shape (φ, ψ, L) =

∫
Ω

(H(φ)H(L)−H(ψ))2dx

+ µ1

∫
Ω

(1−H(L))dx+ µ2

∫
Ω

|∇H(L)|dx
(2.34)

where H(φ)H(L) characterizes the intersection of φ > 0 and L > 0. The

second term in (2.34) encourages the area in region {(x, y) ∈ Ω : L(x, y) > 0},
and the last term smooths the boundary separated by L in domain Ω.

In Fig.2.13(a), the initial level set φ0 is represented by a green circle, and

the prior shape ψ of a hand is shown in blue. Although the Chan-Zhu model

allows geometric transformations of the shape prior, it can only segment an

object with shape prior information (see Fig.2.13(c)).

(a) (b) (c)

Figure 2.13: Results of the Chan-Zhu model:(a) initial (green) and prior shape

(blue), (b) segmentation results for φ, and (c) segmentation results for ψ.

Alternatives to the generalized Chan-Zhu model are developed in [27, 28].

Thiruvenkadam et al. considered selective shape priors to segment multiple
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occluded objects. Their proposed energy can be written as

E(Φ, C, T ) =
4∑
i=1

∫
Ω

(I0 − cimi)
2dx+ λ(

∫
Ω

|∇H(φ1)|+
∫

Ω

|∇H(φ2)|)

+

∫
Ω

{β + β1H(φ2)(c3 − c2)2}(H(φ1)− S ◦ T1)2dx

+

∫
Ω

{β + β1H(φ1)(c3 − c1)2}(H(φ2)− S ◦ T2)2dx

(2.35)

where m1 = H(φ1), m2 = H(φ2), m3 = H(φ1)H(φ2), and

m4 = (1−H(φ1))(1−H(φ2)). Two level set functions φ1 and φ2 are used to

define the following four regions: {φ1 > 0}, {φ2 > 0}, {φ1 > 0, φ2 > 0} and

{φ1 < 0, φ2 < 0}, and, where c1, c2, c3 and c4 are mean intensities in each

region, respectively. Function S embeds one shape prior, and

Tk = [µk, θk, tk] are rigid transformations with scale factor µk, rotation

factor θk and translation factor tk for k = 1, 2.
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Proposed models

3.1 Global and local image fitting energy

Inspired by Wang et al.’s model, we take advantages of the LIF model and

the Chan-Vese model, to reduce the computational complexity and cost, and

to improve the convergence speed by eliminating the segmentation process’

sensitivity to initialization. First, we recall the LIF model and the Chan-Vese

models. The LIF model is given by:

ELIF (φ) =
1

2

∫
Ω

|I0(x)−m1H(φ(x))−m2(1−H(φ(x)))|2dx (3.1)

where m1 = mean(I0 ∈ ({x ∈ Ω|φ(x) < 0} ∩Kσ(x)))

m2 = mean(I0 ∈ ({x ∈ Ω|φ(x) > 0} ∩Kσ(x))).

Equation (3.1) uses a Gaussian kernel to regularize the level set function φ,

i.e., φ = Gξ ∗ φ.

The Chan-Vese model is given by:

EChan−V ese(c1, c2, φ) =

∫
Ω

((I0 − c1)2H(φ) + (I0 − c2)2(1−H(φ)))dx

+ µ

∫
Ω

|∇H(φ)|dx+ ν

∫
Ω

H(φ)dx.

(3.2)
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The fitting term of the Chan-Vese model, excluding regularization terms, is

given by:

EGIF =

∫
Ω

(|I0 − c1|2H(φ) + |I0 − c2|2(1−H(φ)))dx. (3.3)

We call this term by global image fitting (GIF) term.

The proposed energy functional consists of a local image fitting term and

global image fitting term. Specifically,

EM.LIF = ELIF + αEGIF (3.4)

where α is a positive constant such that (0 ≤ α ≤ 1). The value of α should

be small for images with severe intensity inhomogeneity.

The local image fitting term includes a local force to attract the

contours and stop it at object boundaries. This enables the model to cope

with intensity inhomogeneity. The global image fitting term includes a

global force to drive the motion of the contour far away from object

boundaries. This allows flexible initialization of the contours. The modified

LIF energy can be written as

EM.LIF (φ, c1, c2) =
1

2

∫
Ω

|I0(x)−m1H(φ)−m2(1−H(φ))|2dx

+ α

∫
Ω

(|I0 − c1|2H(φ) + |I0 − c2|2(1−H(φ)))dx.

(3.5)

Expressing m1 and m2 using the level set function φ yeildsm1 = Kσ∗(H(φ)I0(x))
Kσ∗(H(φ))

m2 = Kσ∗((1−H(φ))I0(x)))
Kσ∗(1−H(φ))

.

The influence of the local and global forces on the curve evolution is

complementary. The local force is dominant near the object boundaries,

while the global force is dominant at locations far away from object

boundaries.

The standard deviation σ of the kernel and regularizing parameter γ play

an important role. Standard deviation σ is a scale parameter that controls
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the region-scalability from small neighborhoods to the entire image domain.

The scale parameter should be properly chosen depending on the contents of

an image. In particular, when image is noisy or has low contrast, σ should be

large. Unfortunately, this results in a high computational cost. In the same

way, values of σ that are too small produce undesirable side effects as well.

In general, γ should be chosen between 0.5 and 1.

We now discuss the numerical approximation for minimizing the EM.LIF

functional. Constants c1 and c2 that minimize the energy in (3.5) are given

by

c1 =

∫
I0(x)H(φ(x))dx∫
H(φ(x))dx

, c2 =

∫
I0(x)(1−H(φ(x)))dx∫

(1−H(φ(x)))dx
(3.6)

Calculus of variations [39] allows us to add variation ζ to the level set function

φ such that φ̄ = φ+ εζ. For fixed c1 and c2, differentiating with respect to φ,

and letting ε→ 0 produces

δEM.LIF

δφ
= lim

ε→0

d

dε
(
1

2

∫
Ω

|I0(x)−m1Hε(φ̄)−m2(1−Hε(φ̄))|2dx

+ α

∫
Ω

(|I0 − c1|2Hε(φ̄) + |I0 − c2|2(1−Hε(φ̄)))dx)

= lim
ε→0

(−
∫

Ω

δε(φ̄){I0 −m1Hε(φ̄)−m2(1−Hε(φ̄))}(m1 −m2)ζdx

+ α

∫
Ω

δε(φ̄)(−(I0 − c1)2 + (I0 − c2)2)ζdx)

= −(

∫
Ω

δε(φ){I0 −m1Hε(φ)−m2(1−Hε(φ))}(m1 −m2)ζdx

+ α

∫
Ω

δε(φ)(−(I0 − c1)2 + (I0 − c2)2)ζdx).

Therefore we obtain the Euler-Lagrange equation

δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)} = 0

where ILFI = m1Hε(φ) + m2(1 − Hε(φ)). The regularized versions of the
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Heaviside and Dirac delta functions are

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
))

δε(φ) =
1

π
· ε

ε2 + φ2
.

(3.7)

Using the steepest gradient descent method, we obtain the following gradient

descent flow

∂φ

∂t
= δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)}. (3.8)

The algorithm for solving EM.LIF is as follows:

Step 1: Initialize the level set function φ.

Step 2: Compute c1 and c2 according to (3.6).

Step 3: Evolve the level set function φ according to (3.8).

Step 4: Regularize the level set function φ using a Gaussian kernel,

i.e., φ = Gγ ∗ φ , where γ is the standard deviation.

Step 5: Check whether the evolution is stationary. If not, return

to step 3.

Using gradient descent flow (3.8) and the above algorithm, segmentation

results are produced faster and require fewer iteration than the LBF, LGIF

and LIF models. Experimental results are illustrated in Fig.3.1. Our

algorithm works well on images with intensity inhomogeneity and

segmenting multiple objects with different intensities (Figs.3.1(b),(e) and

(h)). The scale parameter σ is equal to 3 for these images and the

regularizing parameter γ is properly chosen between 0.65 and 0.85. These

results are similar to the results of the LIF, LBF, and LGIF models.
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The proposed model allows flexible initialization of contours as shown in

Fig.3.2. We tested our method using other initial contours (see

Figs.3.2(a),(d) and (g)) and the same parameters as in Fig.3.1. As seen

Figs.3.2(c),(f) and (i), the LIF model does not work well for these initial

conditions. We also tested the LGIF method using different initial contours

as shown in Figs.3.2(a),(d) and (g). Notice that same results are produced

by our method. Computational times are relatively high using the LGIF

method, however. In Table1, we compare the number of iterations and

computational times for the LBF, LGIF, LIF models to our proposed

method.

Table 3.1: Computation time results.

Methods Vessel(a) Vessel (c) Synthetic one (e)

Iterations(time(s)) Iterations(time(s)) Iterations(time(s))

LBF 300 (2.41) 280 (2.03) 900 (9.82)

LGIF 220 (2.05) 150 (1.29) 800 (8.47)

LIF 200 (1.16) 200 (0.94) 600 (4.43)

M.LIF 120 (0.49) 100 (0.41) 400 (1.97)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: Segmentation results of the modified LIF method: (a), (d) and

(g) are the given images with the initial level set; (b), (e) and (h) are the

results of the modified LIF model; (c), (f) and (i) are the results of the LGIF

model.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Segmentation results of the modified LIF method: (a), (d) and

(g) are the given images with the initial level set; (b), (e) and (h) the results

of the modified LIF model; (c), (f) and (i) are the results of the LIF model.

39



CHAPTER 3. PROPOSED MODELS

3.2 Global and local image fitting energy

with shape prior

Simpler active contour methods fail to segment images with missing or

misleading information due to noise, occlusion, or low-contrast. Therefore,

shape prior knowledge is incorporated to improve the robustness of such

segmentation methods. Fundamental methods for shape prior segmentation

have a general energy functional that is a linear combination of

segmentation energy and shape energy. Analogous to the general energy

functional, we propose a method that can be viewed as minimizing the

total energy of our modified LIF energy and the shape energy.

Our method consider two cases. In the first case, the prior shapes are

located exactly at the placement of the desired objects and have the same

scales and pose as the desired objects; thus, no transformations is required.

Let ψ0 be the signed distance function of the prior shape and L be a static

labeling function. The labeling function takes on the values +1 and −1

depending on whether the prior shape is enforced or not.

The formulation of our energy is as follows:

E(φ, ψ0) = EM.LIF + β

∫
Ω

(H(φ)−H(ψ0))2(L+ 1)2dx (3.9)

where H(·) is the Heaviside function and EM.LIF is our modified LIF model

described in Section 3.1. More explicitly,

E(φ, ψ0, c1, c2) =
1

2

∫
Ω

|I0(x)−m1H(φ)−m2(1−H(φ))|2dx

+ α

∫
Ω

(|I0 − c1|2H(φ) + |I0 − c2|2(1−H(φ)))dx

+ β

∫
Ω

(H(φ)−H(ψ0))2(L+ 1)2dx.

(3.10)

Numerical approximations of this model are discussed in previous sections.

Calculus of variation allows us to add variation ζ to the level set function φ
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such that φ̄ = φ+ εζ. Fixing c1 and c2, differentiating with respect to φ, and

letting ε→ 0 yeilds

δE(φ, ψ0)

δφ
= lim

ε→0

d

dε
(
1

2

∫
Ω

|I0(x)−m1Hε(φ̄)−m2(1−Hε(φ̄))|2dx

+ α

∫
Ω

(|I0 − c1|2Hε(φ̄) + |I0 − c2|2(1−Hε(φ̄)))dx

+ β

∫
Ω

(Hε(φ̄)−Hε(ψ0))2(L+ 1)2dx)

= lim
ε→0

(−
∫

Ω

δε(φ̄){I0 −m1Hε(φ̄)−m2(1−Hε(φ̄))}(m1 −m2)ζdx

+ α

∫
Ω

δε(φ̄)(−(I0 − c1)2 + (I0 − c2)2)ζdx

− 2β

∫
Ω

δε(φ̄)(Hε(φ̄)−Hε(ψ0))(L+ 1)2ζdx)

= −(

∫
Ω

δε(φ){I0 −m1Hε(φ)−m2(1−Hε(φ))}(m1 −m2)ζdx

+ α

∫
Ω

δε(φ)(−(I0 − c1)2 + (I0 − c2)2)ζdx

− 2β

∫
Ω

δε(φ)(Hε(φ)−Hε(ψ0))(L+ 1)2ζdx).

Therefore, using the steepest descent method, we obtain the Euler-Lagrange

equation

δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)

− 2β(Hε(φ)−Hε(ψ0))(L+ 1)2} = 0.

The gradient descent flow of energy (3.10) is given by:

∂φ

∂t
= δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)}

− 2βδε(φ)(Hε(φ)−Hε(ψ0))(L+ 1)2.
(3.11)

If we minimize the above energy with respect to c1 and c2 for fixed φ, the

optimal values of c1 and c2 are obtained using (3.6).

The algorithm for solving E(φ, ψ0) is given in Table 3.2.
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Table 3.2: Method for solving E(φ, ψ0).

A) Definitions:

I0 : Initial image to segment

Ω : Image domain

ψ0 : Given shape

φ : Level set function for segmentation

L : Labeling function

β : Parameter weight of the shape term

δε(φ) : Regularized Dirac-delta function of φ defined by (3.7)

Hε(φ) : Regularized Heaviside function of φ defined by (3.7)

Gγ : Gaussian filtering with standard deviation γ

t : Step size

α : Parameter for intensity inhomogeneity

B) Set initial conditions:

Initialize φ at t = 0 as φ(x, t = 0) =


ω if x ∈ Ω \ Ω0

0 if x ∈ ∂Ω0

−ω if x ∈ Ω0 \ ∂Ω0

where ω > 0 is a constant, Ω0 is a subset of Ω and

∂Ω0 is the boundary of Ω0.

Labeling function L is set to either +1 and −1 depending on

whether the prior shape is enforced or not

C) For n : n = 1, 2, . . .

1) Compute c1 and c2 using (3.6)

2) Evolve the level set function φ according to (3.11).

3) Regularize the level set function φ using the Gaussian kernel,

i.e., φ = Gγ ∗ φ, where γ is the standard deviation.

4) Check whether the evolution is stationary. If not, return to Step 2.
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For the second case of our model, the prior shape ψ0 is placed at arbitrary

locations. The prior shape is transformed to the location, pose, and size

according to x∗ = (x−a−acx) cos(θ)+(y−b−bcy) sin(θ)

r
+ acx

y∗ = −(x−a−acx) sin(θ)+(y−b−bcy) cos(θ)

r
+ bcy.

(3.12)

The new signed distance function ψ is defined as ψ(x, y) = rψ0(x∗, y∗). Then

proposed energy is written as

E(φ, ψ) = EM.LIF + β

∫
Ω

(H(φ)−H(ψ))2(L+ 1)2dx. (3.13)

Numerical approximations of minimizing the functional E(φ, ψ) are

performed using the same computation as other proposed models. By

theory of calculus of variations, we add variation ζ to the level set function

φ such that φ̄ = φ + εζ. For fixed c1 and c2, differentiating with respect to

φ, and letting ε→ 0 yeilds

δE(φ, ψ)

δφ
= lim

ε→0

d

dε
(
1

2

∫
Ω

|I0(x)−m1Hε(φ̄)−m2(1−Hε(φ̄))|2dx

+ α

∫
Ω

(|I0 − c1|2Hε(φ̄) + |I0 − c2|2(1−Hε(φ̄)))dx

+ β

∫
Ω

(Hε(φ̄)−Hε(ψ))2(L+ 1)2dx)

= lim
ε→0

(−
∫

Ω

δε(φ̄){I0 −m1Hε(φ̄)−m2(1−Hε(φ̄))}(m1 −m2)ζdx

+ α

∫
Ω

δε(φ̄)(−(I0 − c1)2 + (I0 − c2)2)ζdx

− 2β

∫
Ω

δε(φ̄)(Hε(φ̄)−Hε(ψ))(L+ 1)2ζdx)

= −(

∫
Ω

δε(φ){I0 −m1Hε(φ)−m2(1−Hε(φ))}(m1 −m2)ζdx

+ α

∫
Ω

δε(φ)(−(I0 − c1)2 + (I0 − c2)2)ζdx

− 2β

∫
Ω

δε(φ)(Hε(φ)−Hε(ψ))(L+ 1)2ζdx).
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Minimizing energy (3.13) with respect to φ for fixed c1 and c2, results in the

following gradient descent flow:

∂φ

∂t
= δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)}

− 2βδε(φ)(Hε(φ)−Hε(ψ))(L+ 1)2.
(3.14)

For ψ, note that

S(φ, ψ) = (Hε(φ)−Hε(ψ))(L+ 1)2.

Thus, the optimal pose parameters are updated according to

∂a

∂t
=

∫
Ω

S(φ, ψ){ψ0x(x
∗, y∗) cos(θ)− ψ0y(x

∗, y∗) sin(θ)}δε(ψ)dxdy (3.15)

∂b

∂t
=

∫
Ω

S(φ, ψ){ψ0x(x
∗, y∗) sin(θ) + ψ0y(x

∗, y∗) cos(θ)}δε(ψ)dxdy (3.16)

∂r

∂t
=

∫
Ω

S(φ, ψ){−ψ0(x∗, y∗) + ψ0x(x
∗, y∗)x∗ + ψ0y(x

∗, y∗)y∗}δε(ψ)dxdy

(3.17)
∂θ

∂t
=

∫
Ω

S(φ, ψ){−rψ0x(x
∗, y∗)y∗ + rψ0y(x

∗, y∗)x∗}δε(ψ)dxdy (3.18)

where

ψ0x =
∂ψ0

∂x
, ψ0y =

∂ψ0

∂y

and (x∗, y∗) is defined according to (3.12).

Gaussian filtering is applied to regularize functions φ and ψ at each

iteration to achieve a smooth level set function and shape. The algorithm

for solving E(φ, ψ) is given in Table 3.3.
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Table 3.3: Method for solving E(φ, ψ).

A) Definitions:

I0 : Initial image to segment

ψ0 : Given shape

ψ : Transformed shape given by (3.12)

φ : Level set function for segmentation

L : Labeling function

β : Parameter weight of the shape term

α : Parameter for intensity inhomogeneity

Gγ : Gaussian filtering with standard deviation γ

t : Step size

B) Set initial conditions:

Initialize φ at t = 0 as φ(x, t = 0) =


ω if x ∈ Ω \ Ω0

0 if x ∈ ∂Ω0

−ω if x ∈ Ω0 \ ∂Ω0

where ω > 0 is a constant, Ω0 is a subset of Ω and

∂Ω0 is the boundary of Ω0.

Labeling function L is set to either +1 and −1 depending on

whether the prior shape is enforced or not.

C) For n : n = 1, 2, . . .

1) Compute c1 and c2 by (3.6)

2) Evolve the level set function φ according to (3.14).

3) At each iteration, update ψ function using (3.15)-(3.18).

4) Evolve the level set function φ according to (3.14).

5) Regularize the level set function φ and ψ using the Gaussian kernel,

i.e., φ = Gγ ∗ φ ,ψ = Gγ ∗ ψ , where γ is the standard deviation.

6) Check whether the evolution is stationary. If not, return to Step 2.
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Experimental results

In this section, we illustrate the experimental results of our proposed

method. We tested our model on noisy, occluded, and low-contrast images,

with varying parameters. The scale parameter σ defines the size of the

kernel Kσ; its value depends on the image content. If σ is too small, we

cannot segment the desirable objects. In contrast, if σ is too large, it may

result in high computational costs. For the Gaussian filtering Gγ, γ is

chosen between 0.5 and 1, and the kernel size is 5× 5.

Figures 4.1, 4.2 and 4.3 show the result of the first case of the proposed

model, i.e., the prior shape is placed exactly at the locations of desired

objects. Figures 4.4, 4.5, 4.6 and 4.7 show the results of the second case,

i.e., the prior shape is placed at arbitrary locations. In Fig.4.1, we utilize

our algorithm for a synthetic image in the cases of no prior shape, including

the prior shape, and with noise. Our segmentation model works well for

each of these cases when some parts are missing as shown in the Figs4.1(c)

and (d). For the synthetic image, we set σ = 3, γ = 0.65 to regularize the

level set, the time step ∆t = 0.005, and α = 0.0005 for the global image

fitting term.

We also tested our algorithm on real images with shape information as

shown in Fig.4.2. As demonstrated in Fig.4.2(a), if no shape prior is given, the

algorithm cannot extract the object. However, when shape prior information
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(a) (b) (c) (d)

Figure 4.1: Segmentation results of the proposed model:(a) given image with

initial level set, (b) result without shape prior, (c) result with shape prior,

(d) result in the presence of noisy.

is used, the model segments the desired objects, even when image is occluded

as shown in Figs.4.2(b),(c), and (d). Figure 4.2(c) illustrates the result when

the labeling function L is not incorporated in the model.

The comparison of the first case of our model to the extension of Cremers

et al.’s model is shown in Fig.4.3. Figures 4.3(b) and (c) show the extension of

Cremers et al.’s model using two level set functions and two labeling function

to segment occluded and corrupted objects. Our proposed model can segment

these objects using only one level set function as shown in Fig.4.3(d).

For the implementation of the second case of our model, we set the

translation parameter (a, b) = (0, 0) to be the origin of the plane. We tested

the image in Figs.4.4(a) and (b) using the Chan-Zhu model. We also tested

this image using our proposed method. As seen in Figs.4.4(c) and (d), the

hand and other objects are segmented correctly using only one level set

function.

In Fig.4.5, the intensity of the object in the given image is similar to the

background intensities. As seen in Fig.4.5(b), the modified LIF and

Chan-Vese algorithms are unable to segment the hand in the given image.

By utilizing shape information and the second case of our model, the

results in Figs.4.5(c) and (d) are obtained. Although, the object is

successfully extracted, the value of σ is large, which may cause high
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computational costs. Computational time and costs are shown in Table 4.1.

If the Chan-Zhu model is used to extract the hand in the image using the

same shape prior(see Fig.4.5(e)) as in Fig.4.5(a), the hand cannot be

extracted either (Fig.4.5(f)). In other words, the Chan-Zhu model works

well when the prior shape is placed near the object. This is illustrated by

the next example as well.

Finally, we applied the proposed model to a brain image to extract the

corpus callosum. We compared our model with the extensions of Cremers

et al.’s model and Chan-Zhu’s model. The shape of the corpus callosum is

placed arbitrary locations. As shown in Figs.4.6(b) and 4.6(d), the proposed

model successfully extracts the corpus callosum in brain image. Our model

permits the shape prior to be placed far from the desired objects whereas

Chan and Zhu’s model requires the initial prior shape to be close to the

desired object. In other words, the Chan-Zhu model is not as accurate as our

proposed model. These results are shown in Figs.4.7(c) and 4.7(d). Table 4.1

shows the comparison of computation time of our model to other models.

Table 4.1: Computation time results.

Methods Bird Hand Corpus callosum

Iter(Time(s)) Iter(Time(s)) Iter(Time(s))

4 phase Cremers 50(25.51) - 300(49.81)

Chan-Zhu model - 50(94.63) 90(158.72)

Proposed method 200(2.79) 60(23.24) 200(2.46)
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(a)

(b) (c)

(d) (e)

Figure 4.2: Segmentation results of the proposed model: (a) given shape, (b)

result without shape prior, (c) result with shape prior, (d) result without

labeling function L, and (e) result with labeling (σ = 6, γ = 0.5).
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(a) (b)

(c) (d)

Figure 4.3: Segmentation results of the proposed model: (a) original synthetic

image, (b) initial φ1 (blue) and φ2 (red) and labeling functions L1-sky blue,

L2-green, (c) result of the four phase Cremers et al.’s model, and (d) result

of the proposed model.
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(a) (b)

(c) (d)

Figure 4.4: Segmentation results of the proposed model: (a) original image

with initial shape superimposed under the Chan-Zhu model, (b) segmentation

result of the Chan-Zhu model, (c) original image with initial shaped

superimposed, and (d) segmentation result of the proposed model.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Segmentation results of the proposed model: (a) initial φ and

shape ψ, (b) result without shape prior, (c) result with shape prior (σ =

60, γ = 0.5), (d) result in presence of Gaussian noise (σ = 60, γ = 0.9), (e)

initial level set of the Chan-Zhu model, and (f) result of the Chan-Zhu model.
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(a) (b)

(c) (d)

Figure 4.6: Segmentation results of the brain:(a) without shape prior, i.e.,

result of the modified LIF model, (b) result of the proposed model with

labeling function (σ = 3, γ = 0.5), (c) initial φ and shape ψ for the proposed

model, and (d) result of the proposed model without labeling.
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(a) (b)

(c) (d)

Figure 4.7: Segmentation results of the brain: (a) initials φ1(red) and φ2(blue)

for the four-phase Cremers et al.’s model, (b) result of the four-phase Cremers

et al’s model, (c) initial φ and shape ψ for the Chan-Zhu model, and (d) result

of ψ for the Chan-Zhu model.
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Conclusion

We proposed the global and local image fitting energy method for images with

intensity inhomogeneity. In order to cope with the intensity inhomogeneity

of the image, we set a local image fitting term. To overcome initialization

sensitivity, a global image fitting term was considered. Our segmentation

results were obtained faster, requiring fewer iterations than the LBF, LGIF

and LIF models. Moreover, our method worked well for multiple objects with

varying intensities and allowed flexible initialization of the contours. We also

proposed a new method for shape prior segmentation, called the global and

local image fitting energy with shape prior. For the shape prior segmentation

method, we considered two cases: when prior shapes were placed exactly at

the locations of the desired objects and when they were placed at arbitrary

locations.

Our model has many advantages over Cremers at el.’s model. First, our

model can segment objects using only one level set function, while two level

set functions are required by the four phase case of Cremers et al.’s model.

In particular, our model can segment multiple objects with different

intensities using only one level set function, even when a given image is

corrupted. Second, our method is simple, cheaper and faster.

Computationally speaking, our method is easier to numerically compute

and takes less time to implement. Third, the transformation of prior shape
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is not dependent on the locations of the shape and its size.

There are a few disadvantages of our model, however. In our model, it is

possible for prior shape to be selected by a similar object rather than the

training shape. In particular applications, the prior shape ψ0 has to be

embedded as the mean shape of a set of training shape; for the corpus

callosum case, the training shape of their shapes must be used.

Furthermore, our method cannot represent triple junctions because it only

uses one level set function. In the future, we will work to overcome these

drawbacks and also plan to extend our method to multi-phase level set

formulation.
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국문초록

이 논문에서 우리는 형태 사전 지식을 사용한 레벨 셋 방법에 기초해서

분할 알고리즘을 다룬다. 기본적인 분할 모델은 대상이 가려져 있거나 일

부분이 누락된 경우에 배경에서 바람직한 대상을 분할하지 못한다. 이런

어려움을 극복하기 위해서 부분 및 전체 이미지 정보를 이용해서 만든 에

너지 함수를 형태 사전 지식과 통합한다. 이 방법은 다른 문헌에서 제시된

방법들을 향상 시켜서 심지어 이미지가 누락돼있거나 가려짐, 잡음, 낮은

명암을 가진 불균일한 강도의 이미지도 분할한다. 우리는 두 가지 경우를

고려한다.하나는형태사전지식이원하는개체의위치에정확하게배치되

고,다른하나는형태사전지식이임의의위치에배치된다.우리는다양한

이미지에 우리 방법을 테스트하고 기존의 다른 방법과 비교한다. 실험 결

과들로 우리 방법이 정확하고 계산이 효율적일뿐만 아니라 기존의 방법들

보다 더 빠르다는 것을 볼 수 있다.

주요어휘: 분할, 적극적 경로, 형태 사전 지식, 레벨 셋 방법, 강도의 불균
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