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Abstract

This dissertation introduces acceleration methods for solving the linearly

constrained convex minimization problem. The proposed methods are com-

monly based on the extrapolation technique, which is used in accelerated

proximal gradient methods proposed by Nesterov. The content of this dis-

sertation is divided into two main algorithms. The first algorithm is the

accelerated Bregman method and we numerically test accelerated Bregman

method on a synthetic problem from compressive sensing and this numeri-

cal results confirm that our accelerated Bregman method is faster than the

original Bregman method. The second algorithm is the inexact accelerated

augmented Lagrangian method and we give the inexact stopping condition of

subproblem of accelerated augmented Lagrangian method. We also develop

the inexact accelerated alternating direction method of multiplier which is

developed similar with inexact accelerated augmented Lagrangian method.

Key words: Augmented Lagrangian method, Bregman iteration, Compres-

sive Sensing, Nesterov’s Acceleration Method, Convex Optimization

Student Number: 2008-20274
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β = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Noise-free case. Size A = 1000 × 5000, 2% of ū is nonzero,
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β = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Noise-free case. Size A = 2500 × 5000, 5% of ū is nonzero,
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β = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.15 Noise-added case. Size A = 2500 × 5000, 5% of ū is nonzero,
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Chapter 1

Introduction

Let us consider the linearly constrained convex optimization problem

min
x

f(x) subject to Ax = b, (1.1)

where f : Rn → R is a convex, proper and lower semi-continuous func-

tion, A ∈ Rm×n, and b ∈ Rm. A famous application of (1.1) is the case of

f(x) = ∥x∥1, which is called basis pursuit problem. Basis pursuit is related

to compressive sensing [9] whose main concept is that a sparse signal can be

recovered from incomplete information i.e. underdetermined system Ax = b

where m ≪ n.

The augmented Lagrangian method (ALM) is a well-known algorithm for

solving (1.1). It is one of the Lagrangian methods which allow primal and

dual variables to be considered at the same time via the related constrained

problem (1.1). The ALM was first proposed in [24, 41] and discussed by

Rockafellar [42] as the application of the classical proximal point algorithm.

This method was also studied by Bertsekas in [6]. It was also turned out

to be equivalent to the Bregman method [58] proposed for solving the basis

pursuit.

The alternating direction method of multipliers (ADMM) is a variant of

the ALM, which often solves the following problem:

min
u,v

F (u) +G(v) subject to Bu+ Cv = b, (1.2)

where F : Rn → R, G : Rp → R is a convex, proper and lower semicon-

tinuous functions, A ∈ Rm×n, B ∈ Rm×p, and b ∈ Rm. The ADMM is one

1



CHAPTER 1. INTRODUCTION

of the most frequently used algorithms in image processing [11, 19, 53, 54],

since many unconstrained minimization problems in image processing can

be converted to the constrained forms as in (1.2), using variable splitting

scheme [19]. It was shown in [14, 48] that the ADMM is equivalent to the

well-known algorithms, the Douglas-Rachford splitting [12] and the alternat-

ing split Bregman algorithm [19], when solving linear equality constrained

optimization problems like (1.2).

Recently, researchers have been working on acceleration of the iterative

algorithms. The accelerated methods rely on the previous computed iterate

and two or more previously computed iterates, when computing the next

iterate. First, the acceleration schemes have been developed to solve uncon-

strained convex minimization problems due to simplicity of the problems.

For instance, an acceleration scheme was studied in [13], by using sequential

subspace optimization technique and minimizing a function over an affine

subspace spanned by two or more previous iterates and current gradient.

The authors showed that their algorithm is faster than the iterative shrinkage

thresholding algorithm (ISTA) [20] which is a well-known algorithm for solv-

ing unconstrained minimization problems. Moreover, a fast iterative shrink-

age thresholding algorithm (FISTA) [4] is also proposed as an acceleration of

the ISTA, based on the Nesterov’s acceleration schemes [37]. More recently,

accelerated schemes have been also introduced for linearly constrained convex

minimization problems as (1.1) by solving its dual problem. Using the Nes-

terov’s technique, the accelerated linearized Bregman method (ALB) [26] was

developed as an acceleration of the linearized Bregman method [8]. Lastly,

to solve the constrained problem (1.2), Goldstein et al [18] proposed accel-

eration versions of alternating algorithms such as the ADMM or alternating

minimization algorithm (AMA). Very recently, He et al. [22] developed the

accelerated ALM for the linearly constraints minimization problem whose

objective function is differentiable. Since the problem (1.1) has only linear

constraint, in this dissertation, we extend the algorithm in [22] to solve the

linearly constrained minimization problem in which the object function is

convex and continuous but not differentiable. By using the equivalence be-

tween the Bregman method and the ALM, and using the generalization of the

accelerated ALM [22], we propose the accelerated Bregman method (ABM)

2



CHAPTER 1. INTRODUCTION

for solving the linearly constrained convex minimization problem (1.1).

The algorithms for solving constrained minimization problems (1.1) or

(1.2) have the common idea to derive iterative algorithms in which each it-

eration consists of a subproblem. In general, there are many cases where

the subproblems cannot be solved exactly. Hence, inexact algorithms have

been developed with analysis about inexact solutions of the subproblems.

The ALM and ADMM also have subproblems, so their inexact versions have

been introduced. In [21], an inexact stopping condition was provided with

an appropriate upper bound of difference between exact solution and inexact

solution. NG et al [38] developed an inexact version of the ADMM, whose sub-

problems additionally have quadratic proximal terms. Moreover, a property

of the ALM related to inexact solution of subproblem was discussed in [57],

when the objective function f(x) is the ℓ1-norm; a high accurate solution can

be found by a few inexact subproblem steps. On the other hand, the work [5]

provided a stopping condition of the subproblem in Bregman iteration using

the ε-subdifferential. Recently, several researchers have worked on the inex-

act versions of the accelerated schemes such as the FISTA and accelerated

proximal point method (APPM) [1], to solve unconstrained convex minimiza-

tion problems. Villa et al [51] provided an inexact stopping criteria of the

proximal operator in the FISTA, and proved that the convergence rate of the

inexact FISTA is the same as that of the FISTA. And the inexact APPM

was proposed in [23] with the same convergence rate with the APPM. These

algorithms in [23, 51] are inexact accelerated algorithms proposed for solving

unconstrained problem. None of studies have provided an inexact acceler-

ated algorithm to solve a linearly constrained convex minimization problem

so far. In this article, we propose inexact versions of accelerated ALM and

accelerated ADMM [18] to solve the constrained problems (1.1) and (1.2) re-

spectively. We introduce inexact stopping conditions of the subproblems, and

prove that the convergence rate remains O( 1
k2
) which is a common conver-

gence rate of accelerated schemes using Nesterov’s extrapolation technique.

The remainder of this dissertation is organized as follows. Chapter 2 in-

troduces the well-known algorithms for solving linearly constrained convex

optimization and accelerated schemes for solving unconstrained convex opti-

mization. Main contributions of this dissertation are introduces in chapter 3.

3



CHAPTER 1. INTRODUCTION

At first, we describe the accelerated ALM, propose our ABM and analyze the

convergence result of this algorithm. In next, we describe the inexact acceler-

ated ALM and the inexact accelerated ADMM. We give the stopping criteria

for any subproblem solvers. Lastly, we provide the numerical tests for all

proposed algorithms. For ABM, we solve the linearly constrained ℓ1 and gen-

eralized ℓ1 minimization problem and compare the performance of our ABM

with that of original Bregman method. For the inexact accelerated ALM, we

numerically test on linearly constrained ℓ1-ℓ2 minimization in two parts. In

first part, we confirm the convergence of the inexact accelerated ALM as use

various subproblem solvers. In second part, we compare the performance of

our proposed algorithm with that of state-of-the-art algorithms. For inexact

accelerated ADMM, we proposed the new model for multiplicative image

denoising and we compare the performance of our proposed algorithm for

our model with that of alternating minimization algorithm for TV model. In

chapter 4, we give the conclusion of our dissertation and discuss the future

works.

4



Chapter 2

Previous Methods

In this chapter, we introduce the previous algorithms for solving convex opti-

mization problems. At first, we explain augmented Lagrangian method(ALM),

Bregman methods and alternating direction method of multiplier(ADMM)

for solving the problem (1.1) or (1.2). We consider the relations of these algo-

rithms. We also introduce accelerating algorithms for solving unconstrained

minimization problem.

2.1 Mathematical Preliminary

In this section, we introduce the mathematical concepts and notations which

will be used in our work. Let us consider a convex function f : Rn → R and

a vector x ∈ Rn. The subdifferential ∂f(x) of f at x is defined by

∂f(x) = {s : f(y)− f(x) ≥ sT (y − x) for all y ∈ Rn}.

There are several properties of subdifferential. If f : Rn → R is a proper,

convex and lower semicontinuous, then the subdifferential of f at any x ∈
dom(f) exists. Moreover, if f is differentiable, the subdifferential of f at x

has only one element and satisfies ∂f(x) = ∇f(x).

The subdifferential can be used to solve the the unconstrained minimiza-

5



CHAPTER 2. PREVIOUS METHODS

tion problem, which is given by the following identity:

f(x) = min
y

f(y) ⇔ 0 ∈ ∂f(x). (2.1)

The subdifferential ∂f also satisfies the following relation:

x∗ ∈ ∂f(x) ⇔ x ∈ ∂f ∗(x), (2.2)

where f ∗ : Rn → R is the conjugate function of f defined as f ∗(p) =

sup
x
{⟨x, p⟩ − f(x)}. In addition, it can be easily verified that the subdif-

ferential of f is a monotone operator, i.e. ⟨p− q, x− y⟩ ≥ 0, where p ∈ ∂f(x)

and q ∈ ∂f(y). We define the ϵ-subdifferential of f at x by the set

∂ϵf(x) = {s|f(y)− f(x) ≥ sT (y − x)− ϵ for all y ∈ Rn},

where ϵ is a positive number. Similar with properties of subdifferential, it

holds

0 ∈ ∂ϵf(x) ⇔ f(x) ≤ inf f + ϵ,

x∗ ∈ ∂ϵf(x) ⇔ x ∈ ∂ϵf
∗(x∗).

The proximal point of y with respect to λf is defined as follows,

proxλf (y) := argmin
x

{
f(x) +

1

2λ
∥x− y∥22

}
and the mapping proxλf is called proximity operator of λf , which was in-

troduced in Moreau [31]. Let Φλ(x) = F (x) + 1
2λ
∥x− y∥22. By the first order

optimality condition for unconstrained minimization problem (2.1), we have

following equivalent identities:

x = proxλf (y) ⇔ 0 ∈ ∂Φλ(x) ⇔
y − x

λ
∈ ∂f(x).

The last term yields

proxλf (y) = (I + λ∂f)−1(y).

The convex function f is called a strongly convex function with the modulus

σf , if and only if there exist a constant σf > 0 such that the function f(x)−

6



CHAPTER 2. PREVIOUS METHODS

σ
2
∥x∥22 is convex. If f is a strongly convex function with the modulus σf , then

the following inequality is satisfied for every x and y:

⟨p− q, x− y⟩ ≥ σf∥x− y∥22,

where p ∈ ∂f(x) and q ∈ ∂f(y). We also note an important property of

strongly convex function related to its conjugate function: If f is a strongly

convex with σf , the conjugate function f ∗ of f is differentiable and its gradi-

ent function ∇f ∗ is Lipschitz continuous function with the Lipschitz constant

L(∇f ∗) = σ−1
f .

Now we consider the dual problem of linearly constrained minimization

problem (1.1). First, the Lagrangian function for the problem (1.1) is defined

as

L(x, λ) = f(x)− λT (Ax− b),

where λ is called Lagrangian multiplier vector or dual variable. Then the

Lagrangian dual function for (1.1) is given by

D(λ) = inf
x
L(x, λ) = inf

x
(f(x)− λT (Ax− b)),

i.e. it has the minimum value of the Lagrangian function over x. This can be

also represented as

D(λ) = −f ∗(ATλ) + λT b.

Therefore, the dual problem of (1.1) is defined as maximize the Lagrangian

dual function over dual variable λ:

max
λ

D(λ) = max
λ

(−f ∗(ATλ) + λT b). (2.3)

The original problem (1.1) is called primal problem.

Lastly, we briefly describe the duality that refers to a relation of dual

problem and primal problem. Let d∗ and p∗ be the optimal values of the dual

(2.3) and primal (1.1) problems, respectively. In the case of linear constraints,

the strong duality is satisfied, i.e., the optimal duality gap is zero; d∗ = p∗.

And we say that (x, λ) for some x ∈ Rn and λ ∈ Rm satisfies KKT (Karush-

Kuhn-Tucker) optimality conditions [25] of the problem (1.1) if (x, λ) satisfied

the following conditions:

∂f(x)− ATλ = 0, and Ax = b.

7



CHAPTER 2. PREVIOUS METHODS

The KKT condition is the necessary and sufficient optimal condition for

primal problem (1.1) and its dual (2.3). That is, x∗ and λ∗ are any primal

and dual optimal points with zero duality gap if and only if they satisfy the

KKT conditions.

2.2 The algorithms for solving the linearly

constrained convex minimization

We introduce some algorithms which can be applied the linearly constrained

convex minimization problem (1.1) or (1.2). We explain details of the aug-

mented Lagrangian method which was briefly introduced in previous chap-

ter. We also explain the Bregman method which was proposed in [58] at first

for solving the basis pursuit. We observe that the equivalence between the

Bregman method and the augmented Lagrangian method. There are some

weaknesses of Bregman method for solving the basis pursuit, so, its variant

algorithm was developed in [8], it is called linearized Bregman method. The

linearized Bregman method is equivalent to a gradient descent method, so,

based on this fact, the accelerated linearized Bregman method was developed

in [26]. Finally, we explain the alternating direction method of multipliers

which is a variant of augmented Lagrangian method and can be solves the

problem (1.2).

2.2.1 Augmented Lagrangian Method

In this section, we consider the problem (1.1) and introduce the previous

algorithms for solving the problem (1.1).

The augmented Lagrangian function for the problem (1.1) is defined as fol-

lows:

LA(x, λ, τ) = f(x)− λT (Ax− b) +
τ

2
∥Ax− b∥22,

where λ is a Lagrange multiplier vector and τ > 0 is a parameter. The

augmented Lagrangian method(ALM) minimizes the augmented Lagrangian

function with respect to x for fixed Lagrange multiplier λk, after then, update

8



CHAPTER 2. PREVIOUS METHODS

the λk.

Algorithm 1 Augmented Lagrangian Method(ALM)

1: Initialization : Choose τ > 0 and λ0=0.

2: repeat

3: xk+1=argmin
x

f(x)− (λk)
T (Ax− b) +

τ

2
∥Ax− b∥22,

4: λk+1=λk − τ(Axk+1 − b)

5: until a stopping criterion is satisfied.

By Fermat’s rule of the third step in Algorithm 1, we get

0 ∈ ∂f(xk+1)− ATλk + τAT (Axk+1 − b),

i.e. λk+1 in the fourth step is a subgradient of f at xk+1. The ALM was

proposed in [24] and [41] and Rockafellar at al.[42] and Bertsekas [6] were also

discussed. The augmented Lagrangian method is equivalent to the Bregman

method [58] that is well-known method for basis pursuit. We explain the

further details of the Bregman method in subsection 2.2.2.

The accelerated augmented Lagrangian method (AALM) was proposed

in [22] for the linearly constrained minimization whose objective function is

differentiable and x is included in some closed convex set X . They proved

that the convergence rate of the AALM is O( 1
k2
) for each iteration k, while

the convergence rate of the ALM is O( 1
k
).

In general, the third step in AALM cannot solve exactly, i.e. that does

not have the closed form solution. For example, it happens when apply-

ing (accelerated) ALM to the compressive sensing related to basis pursuit

(f(x) = ∥x∥1). Since the convergence result of AALM was proved under the

assuming that the subproblem solves exactly, that convergence analysis can-

not be applied in many application. Thus, we develop the inexact accelerated

augmented Lagrangian method (I-AALM) in next chapter.

2.2.2 Bregman Methods

In this subsection, we introduce the Bregman method and linearized Bregman

method. The Bregman method [39] was proposed for solving total variation-

9



CHAPTER 2. PREVIOUS METHODS

based image restoration. The Bregman distance with respect to a convex,

lower semicontinuous, proper function f(·) with points u and v is defined as

Dp
f (u, v) = f(u)− f(v)− pT (u− v),

where p is an element in ∂f(v), i.e., a subdifferential of f at v. The Bregman

method for solving (1.1) can be expressed as Algorithm 2.

Algorithm 2 Original Bregman Method

1: Initialization : γ > 0, x0 = 0 and p0 = 0

2: repeat

3: xk+1 = argmin
x

Dpk
f (x, xk) +

γ

2
∥Ax− b∥22,

4: pk+1 = pk − γAT (Axk+1 − b)

5: until a stopping criterion is satisfied.

By Fermat’s rule [44, Theorem 10.1] and the fourth step in original Breg-

man method, we have

0 ∈ ∂f(xk+1)− pk + γAT (Axk+1 − b),

Hence pk+1 in the second step in original Bregman method is a subgradient

of f at xk+1. Note that the original Bregman method does not have the

parameter γ (i.e., γ is set as 1). Instead the scaling parameter µ is used in

object function, for example, f(x) = µ(∥x∥1 + β
2
∥x∥22). We can get the same

solution by setting γ = 1
µ
.

Now, we slightly modify the origianl Bregman method as follows:{
xk+1 = argmin

x
f(x) +

γ

2
∥Ax− bk∥22

bk+1 = bk − (Axk+1 − b)
(2.4)

starting with x0 = 0 and b0 = b. The following lemma gives the condition of

the equivalence between the updating step of xk+1 in the original Bregman

method and that in the modified Bregman method (2.4).

Lemma 2.2.1. xk+1 computed by original Bregman method equals xk+1 com-

puted by (2.4) if and only if

pk = γAT (bk − b). (2.5)

10
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Proof. It is obvious by just comparing xk+1 in original Bregman method and

xk+1 in (2.4).

By using Lemma 2.2.1 and mathematical induction, we can establish the

following theorem.

Theorem 2.2.1. The modified Bregman method (2.4) is equivalent to the

original Bregman method.

It was proved in [58] that the Bregman method is equivalent to the

augmented Lagrangian method which was introduced in section 2.2.1. For

completeness, we provide a proof of the equivalence between the Bregman

method and the augmented Lagrangian method. By comparing xk+1 in (2.4)

and xk+1 computed by the augmented Lagrangian method, we obtain the

following technical lemma to prove the equivalence. The proof is simple, so

we omit it.

Lemma 2.2.2. The xk+1 of the first step in (2.4) is equal to that of the first

step of the augmented Lagrangian method with τ = γ if and only if

bk = b+
λk

γ
. (2.6)

Theorem 2.2.2. The original Bregman method is equivalent to the aug-

mented Lagrangian method starting with τ = γ, λ0 = 0.

Proof. We show that (2.6) holds for all integers k ≥ 0 using induction. If

k = 0, (2.6) holds by the initial conditions b0 = b and λ0 = 0. Suppose that

the (2.6) holds for k. The xk+1 in (2.4) equals the xk+1 in the augmented

Lagrangian method according to Lemma 2.2.2. Thus, we have

bk+1 = bk − (Axk+1 − b)

= b+
λk

γ
− (Axk+1 − b)

= b+
λk

γ
+

λk+1 − λk

γ

= b+
λk+1

γ
,

11
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where the first equality is from bk+1 in (2.4) and the third equality is from

updating step of λk+1 in the augmented Lagrangian method. Thus, the Breg-

man method is equivalent to the augmented Lagrangian method according

to Theorem 2.2.1 and Lemma 2.2.2.

In general, the subproblem in the first step of original Bregman method

does not have the closed form solution. Hence, we have to use other iterative

methods to solve the subproblem of the Bregman method. This often takes

times to solve the subproblem. In order to solve this difficulty, the linearized

Bregman method [8] replaces ∥Ax−b∥22 with its linearization term (AT (Axk−
b))Tx and adds the proximal term to that replacement.

Algorithm 3 Linearized Bregman Method

1: Input : δ > 0 and p0 = 0.

2: repeat

3: xk+1 = argmin
x

Dpk
f (x, xk) + (AT (Axk − b))Tx+

1

2δ
∥x− xk∥22,

4: pk+1 = pk − AT (Axk − b)− 1
δ
(xk+1 − xk).

5: until a stopping criterion is satisfied.

Similar to the Bregman method,

0 ∈ ∂f(xk+1)− pk + AT (Axk − b) +
1

δ
(xk+1 − xk)

by the optimality condition of xk+1. Hence pk+1 is also in the subdifferential

∂f(xk+1).

In [8, 40], it was proved that if 0 < δ < 2
∥AAT ∥2 , then xk in the linearized

Bregman method converges to the solution of

min
x

f(x) +
1

2δ
∥x∥22 subject to Ax = b. (2.7)

Recently, an accelerated version of the linearized Bregman method was

proposed in [26]. Huang et al. [26] showed that the convergence rate of the

accelerated linearized Bregman method is O( 1
k2
), where k is the iteration

count, based on the equivalence between the linearized Bregman method and

the gradient descent method, and the extrapolation scheme used in Nesterov’s

accelerated gradient descent method [4, 34].

12
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Algorithm 4 Accelerated Linearized Bregman Method

1: Input : δ > 0, p0 = 0 and θ−1 = 1

2: repeat

3: xk+1 = argmin
x

Dp̃k
f (x, x̃k) + τ(AT (Ax̃k − b))Tx+

1

2δ
||x− x̃k||22,

4: pk+1 = p̃k − 1
δ
(xk+1 − x̃k)− τAT (Ax̃k − b),

5: θk =
1

k+2
,

6: αk = 1 + θk(θ
−1
k−1 − 1),

7: x̃k+1 = αkxk+1 + (1− αk)xk,

8: p̃k+1 = αkpk+1 + (1− αk)pk

9: until a stopping criterion is satisfied.

2.2.3 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) is a variant of the

augmented Lagrangian method, which solves the problem (1.2). To solve

the problem (1.2), the ALM is applicable to the problem, by setting x =

[uT vT ]T , A = [B C] and f(x) = F (u) + G(v). This derives the following

iterative algorithm

(uk+1, vk+1) = argmin
u,v

F (u) +G(v) + λT
k (Bu+ Cv − b) (2.8)

+
τ

2
∥Bu+ Cv − b∥22

λk+1 = λk − τ(Buk+1 + Cvk+1 − b).

It is not trivial to solve the minimization problem in (2.8) since there are

two variables coupled in a non-separable quadratic term. The ADMM alter-

natively solves by minimizing one variable (u or v) with the other variable

fixed and performs only one outer iteration.

The convergence of ADMM is given under mild condition in [7]. It is well-

known the equivalence between ADMM and Douglas-Rachford splitting [12]

applied to the dual problem of the problem (1.2) and ADMM is closely re-

lated to the split Bregman method [19]. In a recent work [18], a fast ADMM

(FADMM) was proposed, based on the Nesterov’s extrapolating technique

[37]. It was proved in [18] that the convergence rate of the ADMM is O
(
1
k

)
13
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Algorithm 5 Alternating Direction Method of Multipliers(ADMM)

1: Input : τ > 0 and λ0.

2: repeat

3: uk+1 = argmin
u

H(u)− (λk)
T (Bu) +

τ

2
∥Bu+ Cvk − b∥22,

4: vk+1 = argmin
u

G(v)− (λk)
T (Cv) +

τ

2
∥Buk + Cv − b∥22,

5: λk+1 = λ̂k+1 − τ(Buk+1 + Cvk+1 − b)

6: until a stopping criterion is satisfied.

while the convergence rate of their algorithm FADMM is O
(

1
k2

)
.

Algorithm 6 Fast Alternating Direction Method of Multipliers(FADMM)

1: Input : τ > 0, t0 = 1 and λ̂1 = λ0.

2: repeat

3: uk = argmin
u

H(u)− (λ̂k)
T (Bu) +

τ

2
∥Bu+ Cv̂k−1 − b∥22,

4: vk = argmin
u

G(v)− (λ̂k)
T (Cv) +

τ

2
∥Buk + Cv − b∥22,

5: λk = λ̂k − τ(Buk + Cvk − b),

6: tk+1 =
1+
√

1+4t2k
2

,

7: v̂k+1 = vk +
tk−1
tk+1

(vk − vk−1),

8: λ̂k+1 = λk +
tk−1
tk+1

(λk − λk−1)

9: until a stopping criterion is satisfied.

Similarly to the I-AALM, we introduce an inexact version of the FADMM,

with inexact stopping conditions of the subproblems. We also prove that

the convergence rate of proposed algorithm is preserved as O
(

1
k2

)
like the

FADMM.

14
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2.3 The accelerating algorithms for uncon-

strained convex minimization problem

Now, we explain some algorithms which can be applied the unconstrained

convex optimization problem :

min
x

F (x), (2.9)

where F is a proper, convex and lower semicontinuous(l.s.c) function. This

unconstrained minimization problem 2.9 is used in various image process-

ing problem. For example, the fundamental model in image denoising is the

ROF(Rudin-Osher-Fatemi) model [46] which is as follows:

min
u∈BV(Ω)

∫
Ω

|∇u|+ µ

2
(u− f)2,

where Ω is a bounded domain in Rn with Lipschitz boundary, BV(Ω) is the

space of the functions with bounded variation, f is an observed image, u is the

recovery image and
∫
Ω
|∇u| is the isotropic or anisotropic total variation(TV)

of u. The basis pursuit denoising (BPDN) is also a well-known mathematical

optimization model of the form (2.9):

min
x∈Rn

∥x∥1 +
µ

2
∥b− Ax∥22,

where b ∈ Rm is an observation vector, A ∈ Rm×n is a measurement matrix

with m < n and x ∈ Rn is a solution vector. In comparison with constrained

minimization problem, the unconstrained minimization problem (2.9) has

simple setting. Hence, many accelerating schemes was developed and inexact-

ness of their subproblems was analyzed. Most accelerating algorithms used

Nesterov’s extrapolation technique which is introduced in the accelerated

proximal gradient methods [34] studied by Nesterov. In this section, we ex-

plain the famous inexact accelerated algorithms using Nesterov’s technique

for solving the problem (2.9).

15



CHAPTER 2. PREVIOUS METHODS

2.3.1 Fast inexact iterative shrinkage thresholding al-

gorithm

In this subsection, we consider F (x) := f(x)+g(x) in (2.9) where f : Rn → R
is a proper, convex, continuously differentiable and g : Rn → R is a proper,

convex, l.s.c. function. The iterative shrinkage thresholding algorithm(ISTA)

is a famous algorithm for solving the unconstrained convex optimization

problem (2.9). For this algorithm, we assume that ∇f is a Lipschitz con-

tinuous function with Lipschitz constant Lf i.e.

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥ for all x, y.

By above assumption, the optimal solution x is a fixed point of the mapping

(I + τ∂g)−1(I − τ∇f) by following equivalence steps

min
x

f(x) + g(x) ⇔ 0 ∈ ∂f(x) + ∂g(x)

⇔ 0 ∈ (x+ τ∂g(x))− (x− τ∂f(x))

⇔ (I − τ∂f)x ∈ (I + τ∂g)x

⇔ x = (I + τ∂g)−1(I − τ∇f)(x).

Based on definition of the proximal mapping, we have the following equiva-

lences:

xk = (I + τ∂g)−1(I − τ∇f)(xk−1)

⇔ xk = argmin
x

τg(x) +
1

2
∥x− (xk−1 − τ∇f(xk−1))∥22 ,

⇔ xk = argmin
x

g(x) +
1

2τ
∥x− (xk−1 − τ∇f(xk−1))∥22 ,

⇔ xk = argmin
x

f(xk−1) + ⟨x− xk−1,∇f(xk−1)⟩+
1

2τ
∥x− xk−1∥22 + g(x),

When τ = 1
Lf
, the final equality of above equations is a quadratic approxi-

mation of F at x :

f(y) + ⟨x− y,∇f(y)⟩+ Lf

2
∥x− y∥22 + g(x)

and the ISTA for the problem (2.9) iterates the following step

xk+1 = argmin
y

f(xk) + ⟨y − xk,∇f(xk)⟩+
Lf

2
∥y − xk∥22 + g(y).

16
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Algorithm 7 Iterative Shrinkage Thresholding Algorithm(ISTA)

Input : x0 and Lf is the Lipschitz constant of ∇f

repeat

xk = argmin
y

f(xk−1) + ⟨∇f(xk−1), y − xk−1⟩+
Lf

2
∥y − xk−1∥22 + g(y)

until a stopping criterion is satisfied.

When g(x) = 0, ISTA is same with gradient method. In smooth setting,

i.e. g ≡ 0, the accelerated proximal gradient method with convergence rate

O
(

1
k2

)
for iteration number k was developed by Nesterov [34]. Bect et al. [4]

extended this accelerated Nesterov’s proximal gradient method and devel-

oped fast iterative shrinkage thresholding algorithm (FISTA) when g(x) is a

proper, convex, l.s.c function. They proved that the convergence rate of ISTA

is O
(
1
ϵ

)
, while the convergence rate of FISTA is O

(
1√
ϵ

)
. In the concrete,

they proved the following inequities :

F (xk)− F (x∗) ≤ Lf∥x0 − x∗∥22
2k

,

F (xk)− F (x∗) ≤ 2Lf∥x0 − x∗∥22
(k + 1)2

,

where x∗ is an optimal solution of the problem (2.9).

Algorithm 8 Fast ISTA(FISTA)

1: Input : y1 = x0, t1 = 1 and Lf is the Lipschitz constant of ∇f

2: repeat

3: xk = argmin
y

f(yk) + ⟨∇f(yk), y − yk⟩+
Lf

2
∥y − yk∥22 + g(y),

4: tk+1 =
1+
√

1+4t2k
2

,

5: yk+1 = xk +
tk−1
tk+1

(xk − xk−1)

6: until a stopping criterion is satisfied.

We also confirm that the FISTA is faster than ISTA by numerical test for

BPDN . In this test, we set n = 1000,m = 500. The measurement matrix A

17
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Figure 2.1: Results from BPDN. 1st column : Plot the object function value

at each iteration, 2nd column : Plot the recover vector (blue) for FISTA and

the solution vector x (red). 3rd column : Plot the recover vector (blue) for

ISTA and the solution vector (red).

is chosen by standard Gaussian distribution N (0, 1) and the solution vector

x is a sparse vector with sparsity k(number of the nonzero elements) whose

nonzero elements are randomly selected from uniform distribution on interval

(0, 1). We add the Gaussian noise N (0, 0.3) to the observation vector b.

In Figure 2.1, we observe that the object function value decreases as it-

eration increases. We also see that the decreasing speed of FISTA is faster

than that of ISTA. The FISTA terminate at about 300 ∼ 400 iterations,

while ISTA terminate at about 9000 ∼ 10000 iterations. Hence, we certify

that FISTA is more efficient algorithm than ISTA from numerical test and

theoretical result. If these algorithms iterates sufficiently large, the recovery

solution is similar with original solution x in case of both two algorithms

from Figure 2.1.

In [28, 51], the inexact versions of FISTA were proposed, where xk in

FISTA need not be the exact minimizer of the subproblem. We explain the

stopping conditions which was introduced in [28]. We define a map qj : Rn →
R by

qk(x) = f(yk) + ⟨∇f(yk), x− yk⟩+
Lf

2
∥x− yk∥22.

Let {ϵk} and {ξk} be sequences of nonnegative numbers such that their se-

ries converges, i.e.
∞∑
k=1

ϵk < ∞,
∞∑
k=1

ξk < ∞. The inexact minimizer xk of
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subproblem satisfies the stopping conditions

F (xk) ≤ qk(xk) + g(xk) +
ξk
2t2k

, (2.10)

∇f(yk) + L(xk − yk) + γk = δk with ∥δk∥2 ≤
ϵk√
2Lf tk

, (2.11)

where γk ∈ ∂ ξk
2t2

k

g(xk).

Algorithm 9 Fast inexact ISTA

1: Input : y1 = x0, t1 = 1 and Lf is the Lipschitz constant of ∇f

2: repeat

3: Find an approximate minimizer

xk ≈ argmin
y

f(yk) + ⟨∇f(yk), y − yk⟩+
Lf

2
∥y − yk∥22 + g(y),

satisfying the stopping conditions (2.10), (2.11).

4: tk+1 =
1+
√

1+4t2k
2

,

5: yk+1 = xk +
tk−1
tk+1

(xk − xk−1)

6: until a stopping criterion is satisfied.

The authors proved in [28] that the convergence rate of this algorithm is

O( 1
k2
) where k is number of iterations, i.e.,

0 ≤ F (xk)− F (x∗) ≤ 4

(k + 1)2
(
(
√
τ + ϵ̄k)

2 + 2ξ̄k
)
,

where ϵ̄k =
k∑

j=1

ϵj, ξ̄k =
k∑

j=1

(ξj + ϵ2j) and τ =
Lf

2
∥x0 − x∗∥22.

2.3.2 Inexact accelerated proximal point method

In this subsection, we only assume that F is a proper, convex, closed, l.s.c.

function. The iterative scheme of proximal point method is

xk+1 = ProxλkF (xk),
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where {λk} is a positive parameters and nondecreasing sequence. The proxi-

mal point algorithm was introduced by Martinet first [30] and later popular-

ized by Rockafellar [43]. Denote that F∗ is the optimal value of the problem

(2.9). In [17], the sequence of object function values F (xk) for each iteration

k converges to F∗ under minimal assumption λk’s and the global convergence

rate of proximal point method F (xk) − F ∗ ≤ O(1/k) has been shown when

F∗ is attained.

Resorting to the ideas contained in Nesterov’s work [35, 36], Guler et

al. [16] devises an elegant way to accelerated version of the proximal point

method. It was proved that the convergence rate of accelerated proximal

point method satisfies F (xk) − F ∗ ≤ O(1/k2) for each iteration k, if the

minimum F ∗ is attained. It has been known that this convergence rate is

optimal for a first order method in the sense defined in [33].

Algorithm 10 Accelerated proximal point method

1: Input : A feasible starting point x0, nondecreasing and positive sequence

{λk}, ν0 = x0, and A0 = A > 0.

2: repeat

3: Calculate

αk =

√
(Akλk)2 + 4Akλk − Akλk

2

4: yk = (1− αk)xk + αkνk
5: xk+1 = ProxλkF (yk)

6: νk+1 = νk +
1
αk
(xk+1 − yk)

7: Ak+1 = (1− αk)Ak

8: until a stopping criterion is satisfied.

In general, very often in applications, a proximity operator does not have

closed form formula. For example, there are BPDN problem and image de-

blurring with total variation [10]. In [47], the authors proposed accelerated

inexact proximal point methods and analyzed the convergence of these al-

gorithms. They provided two approximate conditions of proximity operator

and two versions of accelerated inexact proximal point method. A type 1
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approximation of proxλF (y) with ϵ > 0 is defined by

0 ∈ ∂ ϵ2

2λ

Φλ(z),

and is written by z ≈1 proxλF (y). It has important property to note that if

z ≈1 proxλF (y) with ϵ, then

z ∈ domF and ∥z − proxλF (y)∥2 ≤ ϵ.

A type 2 approximation of proxλF (y) with ϵ > 0 is defined by

y − z

λ
∈ ∂ ϵ2

2λ

F (z),

and is written by z ≈2 proxλF (y). This condition is written equivalently as

z ≈2 proxλF (y) ⇔ z ∈
(
I + λ∂ ϵ2

2λ

F
)−1

.

We summarize two accelerated versions of inexact proximal point method

using these approximations of proximity operator in Algorithm 11 and 12.

Algorithm 11 Accelerated inexact proximal point method version I

1: Input : y0 = x0, t1 = 1 and nondecreasing and positive sequence {λk}

2: repeat

3: Calculate tk+1 =
1+
√

1+4λkt
2
k/λk+1

2
,

4: Find an approximate minimizer

xk+1 ≈1 ProxλkF (yk)

5: yk+1 = xk+1 +
tk−1
tk+1

(xk+1 − xk)

6: until a stopping criterion is satisfied.

When a sequence λk satisfies

λj ≤ Mλi whenever j ≤ i for some M > 0,

the convergence of these algorithms was proved in [47] as follows:
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Algorithm 12 Accelerated inexact proximal point method version II

1: Input : y0 = x0, arbitrary sequence ak with 0 < a ≤ ak ≤ 2 and

nondecreasing and positive sequence {λk}

2: repeat

3: Calculate tk+1 =
1+
√

1+4(akλk)t
2
k/(ak+1λk+1)

2
,

4: Find an approximate minimizer

xk+1 ≈2 ProxλkF (yk)

5: yk+1 = xk+1 +
tk−1
tk+1

(xk+1 − xk) + (1− ak)
tk

tk+1
(yk − xk+1)

6: until a stopping criterion is satisfied.

• If ϵk = O(1/kq) with q > 3
2
, the sequence xk generated by Algorithm 11

is minimizing for F and if in addition F has a minimizer that following

convergence rate holds:

F (xk)− F∗ =


O(1/k2q−3), if q < 2

O( log
2 k
k

), if q = 2

O(1/k), if q > 2

.

• If ϵk = O(1/kq) with q > 1
2
, the sequence xk generated by Algorithm 12

is minimizing for F and if in addition F has a minimizer that following

convergence rate holds:

F (xk)− F∗ =


O( 1

k2
), if q < 3

2

O( 1
k2
) +O( log k

k2
), if q = 3

2

O( 1
k2
) +O( 1

k2q−1 ), if q > 3
2

.
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Chapter 3

Proposed Algorithms

In this chapter, we propose some algorithms which are accelerated version

of Bregman method, inexact version of accelerated augmented Lagrangian

method and inexact version of accelerated alternating direction method of

multipliers. At first, we propose the accelerated Bregman method based on

equivalence with the accelerated augmented Lagrangian method which in-

troduced in previous chapter. We also develop the inexact accelerated aug-

mented Lagrangian method(I-AALM) and inexact accelerated alternating di-

rection method of multipliers(I-AADMM). We give the inexact stopping con-

ditions, which can be calculated by numerically, for I-AALM and I-AADMM.

For convergence proof for inexact algorithms, we use the technique of con-

vergence proof for inexact version of FISTA in [28] and main convergence

theorems of inexact accelerated augmented Lagrangian method and inexact

accelerated alternating direction method of multiplier are almost same with

that of inexact FISTA. We also represent the numerical tests for proposed

algorithms, in last section.

3.1 Proposed Algorithm 1 : Accelerated Breg-

man method

In this section, we propose an accelerated Bregman method which has an

O( 1
k2
) global convergence rate. In section 2.2.2, we show that the Bregman

23



CHAPTER 3. PROPOSED ALGORITHMS

method is equivalent to the augmented Lagrangian method. It was proposed

in [22] that if f(x) is a differentiable convex function, the augmented La-

grangian method can be accelerated using the extrapolation scheme used in

Nesterov’s accelerated method. Based on the equivalence and the results in

[22], we propose the accelerated Bregman method(Algorithm 13).

Algorithm 13 Accelerated Bregman Method

1: Input : δ > 0, p0 = 0 and t0 = 1

2: repeat

3: xk+1 = argmin
x

Dpk
f (x, xk) +

γ

2
∥Ax− b∥22

4: p̃k+1 = pk − γAT (Axk+1 − b)

5: tk+1 =
1+
√

1+4t2k
2

6: pk+1 = p̃k+1 +
(
tk−1
tk+1

)
(p̃k+1 − p̃k) +

(
tk

tk+1

)
(p̃k+1 − pk)

7: until a stopping criterion is satisfied.

3.1.1 Equivalence to the accelerated augmented La-

grangian method

In this subsection, we prove the equivalence between the proposed accelerated

Bregman method and the accelerated augmented Lagrangian method which

is a generalization of the method proposed in [22] in the sense that f can be

nondifferentible. The following lemma is similar to Theorem 2.2.2.

Lemma 3.1.1. The accelerated Bregman method is equivalent to the follow-

ing method starting with b0 = b.
xk+1 = argmin

x
f(x) +

γ

2
∥Ax− bk∥22

b̃k+1 = bk − (Axk+1 − b)

bk+1 = b̃k+1 +
(
tk−1
tk+1

)
(b̃k+1 − b̃k) +

(
tk

tk+1

)
(b̃k+1 − bk),

(3.1)

Proof. We show that (2.5) is satisfied for all k by induction. Based on the

initial condition, (2.5) holds for k = 0. We assume that (2.5) holds for all
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k ≤ n. For all k ≤ n, we get

p̃k+1 = pk − γAT (Axk+1 − b)

= γAT (bk − b)− γAT (Axk+1 − b)

= γAT (bk − b− (Axk+1 − b))

= γAT (b̃k+1 − b),

where the first equality uses the second step of the accelerated Bregman

method, the second equality is derived from the induction hypothesis, and

the fourth equality uses the second step of (3.1). Hence

p̃n+1 = γAT (b̃n+1 − b).

By using the above equality and the third step of (3.1), we have the following

equalities

pn+1 = p̃n+1 +

(
tn − 1

tn+1

)
(p̃n+1 − p̃n) +

(
tn
tn+1

)
(p̃n+1 − pn)

= γAT (b̃n+1 − b) +

(
tn − 1

tn+1

)
(γAT (b̃n+1 − b)− γAT (b̃n − b)

+

(
tn
tn+1

)
(γAT (b̃n+1 − b)− γAT (bn − b))

= γAT

(
b̃n+1 − b+

(
tn − 1

tn+1

)
(b̃n+1 − b̃n) +

(
tn
tn+1

)
(b̃n+1 − bn)

)
= γAT (bn+1 − b).

By induction,

pk = γAT (bk+1 − b)

is satisfied for all integers k ≥ 0. Thus, the accelerated Bregman method is

equivalent to the method (3.1).

The next lemma shows that the method (3.1) starting with b0 = b is

equivalent to the accelerated augmented Lagrangian method starting with

λ0 = 0.
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Lemma 3.1.2. The method (3.1) starting with b0 = b is equivalent to the

following accelerated augmented Lagrangian method starting with λ0 = 0:
xk+1 = argmin

x
f(x)− (λk)

T (Ax− b) +
γ

2
∥Ax− b∥22

λ̃k+1 = λk − γ(Axk+1 − b)

λk+1 = λ̃k+1 +
(
tk−1
tk+1

)
(λ̃k+1 − λ̃k) +

(
tk

tk+1

)
(λ̃k+1 − λk),

(3.2)

Proof. It is sufficient to show that (2.6) is satisfied for all k according to

Lemma 2.2.2. We will prove this by induction. When k = 0, (2.6) is satisfied

by the initial condition b0 = b, λ0 = 0. We assume that

bk = b+
λk

γ

is satisfied for k ≤ n. This implies that, for all k ≤ n, we have

b̃k+1 = bk − (Axk+1 − b)

= b+
λk

γ
− (Axk+1 − b)

= b+
1

γ
(λk − γ(Axk+1 − b))

= b+
λ̃k+1

γ
,

where the first equality is from b̃k+1 in (3.1) and the final equality is from

λ̃k+1 in (3.2). We find the following equalities using the induction hypothesis

and the previous equality

bn+1 = b̃n+1 +

(
tn − 1

tn+1

)
(b̃n+1 − b̃n) +

(
tn
tn+1

)
(b̃n+1 − bn)

= b+
λ̃n+1

γ
+

(
tn − 1

tn+1

)(
b+

λ̃n+1

γ
− b+

λ̃n

γ

)

+

(
tn
tn+1

)(
b+

λ̃n+1

γ
− b+

λn

γ

)

= b+
1

γ

(
λ̃n+1 +

(
tn − 1

tn+1

)
(λ̃n+1 − λ̃n) +

(
tn
tn+1

)
(λ̃n+1 − λn)

)
= b+

λn+1

γ
.
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By induction,

bk = b+
λk

γ

is satisfied for all integers k ≥ 0.

By Lemmas 3.1.1 and 3.1.2, we get the following theorem for the equiv-

alence between the accelerated Bregman method and the accelerated aug-

mented Lagrangian method.

Theorem 3.1.1. The accelerated Bregman method starting with p0 = 0 is

equivalent to the accelerated augmented Lagrangian method (3.2) starting with

λ0 = 0.

3.1.2 Complexity of the accelerated Bregman method

In the previous subsection, we proved the equivalence of the accelerated aug-

mented Lagrangian method and the accelerated Bregman method. There-

fore, the convergence rate of the (accelerated) Bregman method is equal to

the convergence rate of the (accelerated) augmented Lagrangian method. In

this section, we will show that the convergence rate of the augmented La-

grangian method (ALM) is O( 1
k
) and the convergence rate of the accelerated

augmented Lagrangian method (AALM) is O( 1
k2
).

In [22], the authors considered an augmented Lagrangian method for the

linearly constrained smooth minimization problem:

min
x∈X

h(x) s.t. Ax = b,

where h is differentiable and the set X is closed convex set. They showed that

augmented Lagrangian method was accelerated and the convergence rate of

the accelerated version (3.2) was O( 1
k2
). In this paper, we extend the acceler-

ated augmented Lagrangian method in [22] to solve the linearly constrained

nonsmooth minimization problem (1.1). The key lemma is Lemma 3.1.4 and

the proof of the O( 1
k2
) convergence rate is similar to that in [22].

The dual problem of (1.1) is

max
λ

{min
x

L(x, λ) = f(x)− λT (Ax− b)}. (3.3)
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Problem (1.1) is a convex optimization whose constraints are only a linear

equation, so there is no duality gap according to Slater’s condition [?]. Let

(x∗, λ∗) be the saddle point of the Lagrangian function. Several lemmas are

required to prove the O( 1
k2
) convergence rate.

The following lemma gives the bound for the difference of the Lagrangian

function values at the current iterates and any point that satisfies ATλ ∈
∂f(x) in terms of dual variables.

Lemma 3.1.3. Let (xk+1, λk+1) be generated by the augmented Lagrangian

method. For any (x, λ) that satisfies

f(xk+1)− f(x) ≥ λTA(xk+1 − x), (3.4)

we get the inequality

L(xk+1, λk+1)− L(x, λ) ≥ 1

γ
∥λk − λk+1∥22 +

1

γ
(λ− λk)

T (λk − λk+1).

Proof. By using (3.4) and the definition of the Lagrangian function, we have

the following inequalities

L(xk+1, λk+1)− L(x, λ) = f(xk+1)− f(x) + λT (Ax− b)− (λk+1)
T (Axk+1 − b)

≥ λTA(xk+1 − x) + λT (Ax− b)− (λk+1)
T (Axk+1 − b)

= λT (Axk+1 − b)− (λk+1)
T (Axk+1 − b)

= (λ− λk+1)
T (Axk+1 − b)

=
1

γ
(λ− λk+1)

T (λk − λk+1)

=
1

γ
∥λk − λk+1∥22 +

1

γ
(λ− λk)

T (λk − λk+1),

where the fourth equality is based on the updating step of λk+1 in the aug-

mented Lagrangian method.

The next lemma shows that the condition (3.4) in Lemma 3.1.3 is satisfied

with (x, λ) = (xk+1, λk+1), or (x∗, λ∗).

Lemma 3.1.4. The (xn+1, λn+1) generated by the augmented Lagrangian

method satisfies the condition (3.4) :

f(xk+1)− f(xn+1) ≥ (λn+1)
TA(xk+1 − xn+1),
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and (x∗, λ∗) also satisfies the same condition

f(xk+1)− f(x∗) ≥ (λ∗)TA(xk+1 − x∗).

Proof. By Fermat’s rule [44, Theorem 10.1] and the third step in the aug-

mented Lagrangian method, we have

0 ∈ ∂f(xn+1)− ATλn + γAT (Axn+1 − b),

i.e.,

AT (λn − γ(Axn+1 − b)) ∈ ∂f(xn+1).

Based on updating rule of λn+1 in the augmented Lagrangian method,

ATλn+1 ∈ ∂f(xn+1).

According to the definition of the subdifferential, we get

f(xk+1)− f(xn+1) ≥ (ATλn+1)
T (xk+1 − xn+1)

= (λn+1)
TA(xk+1 − xn+1).

Since (x∗, λ∗) satisfies the KKT condition,

∂f(x∗)− ATλ∗ ∋ 0

Ax∗ = b.

From the first condition, we get

ATλ∗ ∈ ∂f(x∗).

Thus, based on the definition of the subdifferential, we obtain

f(xk+1)− f(x∗) ≥ (λ∗)TA(xk+1 − x∗).

By the proof of Lemma 3.1.4, it is satisfied that

ATλk+1 ∈ ∂f(xk+1), ATλ∗ ∈ ∂f(x∗) and Ax∗ = b.
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By the definition of the subdifferential, we get

f(x∗)− f(xk+1) ≥ (λk+1)
TA(x∗ − xk+1)

= (λk+1)
T (b− Axk+1).

Hence, we also have

L(xk+1, λk+1) ≤ L(x∗, λ∗).

The following lemma is a key lemma to establish the O( 1
k
) convergence

rate for ALM.

Lemma 3.1.5. Let (xk+1, λk+1) be generated by the ALM. We have

∥λk+1 − λ∗∥22 ≤ ∥λk − λ∗∥22 − ∥λk − λk+1∥22 − 2γ(L(x∗, λ∗)− L(xk+1, λk+1)).

Proof. Lemma 3.1.3 with (x, λ) = (x∗, λ∗) implies that

(λk − λ∗)T (λk − λk+1) ≥ ∥λk − λk+1∥22 + γ(L(x∗, λ∗)− L(xk+1, λk+1)).

The above inequality yields that

∥λk+1 − λ∗∥22 = ∥λk+1 − λk + λk − λ∗∥22
= ∥λk+1 − λk∥22 − 2(λk − λ∗)T (λk − λk+1) + ∥λk − λ∗∥22
≤ ∥λk+1 − λk∥22 + ∥λk − λ∗∥22 − 2∥λk − λk+1∥22

−2γ(L(x∗, λ∗)− L(xk+1, λk+1))

= ∥λk − λ∗∥22 − ∥λk − λk+1∥22 − 2γ(L(x∗, λ∗)− L(xk+1, λk+1)).

We have the inequality

∥λk+1 − λ∗∥22 ≤ ∥λk − λ∗∥22 − ∥λk − λk+1∥22 (3.5)

from Lemma 3.1.5 and L(xk+1, λk+1) ≤ L(x∗, λ∗). Then the inequality (3.5)

implies the global convergence of ALM. By summing (3.5) over k = 1, · · · , n
we have

n∑
k=1

∥λk − λk+1∥22 ≤ ∥λ1 − λ∗∥22,

which implies that

lim
k→∞

∥λk − λk+1∥22 = 0.

In the next theorem, we prove that the convergence rate of ALM is O( 1
k
).
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Theorem 3.1.2. Let (xk, λk) be generated by the ALM. We obtain

L(x∗, λ∗)− L(xk, λk) ≤
∥λ0 − λ∗∥22

2kγ
.

Proof. We get

∥λn+1 − λ∗∥22 ≤ ∥λn − λ∗∥22 − ∥λn − λn+1∥22 − 2γ(L(x∗, λ∗)− L(xn+1, λn+1))

from Lemma 3.1.5. Thus, we have

L(xn+1, λn+1)−L(x∗, λ∗) ≥ 1

2γ

{
∥λn+1 − λ∗∥22 − ∥λn − λ∗∥22 + ∥λn − λn+1∥22

}
.

Summing this inequality over n = 0, · · · , k − 1, we have

k∑
n=1

L(xn, λn)−kL(x∗, λ∗) ≥ 1

2γ

{
∥λk − λ∗∥22 − ∥λ0 − λ∗∥22 +

k−1∑
n=0

∥λn − λn+1∥22

}
.

(3.6)

Based on Lemma 3.1.3 for k = n and setting (x, λ) = (xn, λn), we obtain

L(xn+1, λn+1)− L(xn, λn) ≥
1

γ
∥λn − λn+1∥22.

By multiplying this inequality with n and summing it over n = 0, · · · , k− 1,

we have the following inequalities

k−1∑
n=0

n(L(xn+1, λn+1)− L(xn, λn)) ≥
1

γ

k−1∑
n=0

n∥λn − λn+1∥22

⇔
k−1∑
n=0

((n+ 1)L(xn+1, λn+1)− nL(xn, λn)− L(xn+1, λn+1))

≥ 1

γ

k−1∑
n=0

n∥λn − λn+1∥22

⇔ kL(xk, λk)−
k∑

n=1

L(xn, λn) ≥
1

γ

k−1∑
n=0

n∥λn − λn+1∥22.

It follows from adding (3.6) and the above inequality that

k(L(xk, λk)− L(x∗, λ∗))

≥ 1

2γ

{
∥λk − λ∗∥22 − ∥λ0 − λ∗∥22 +

k−1∑
n=0

(2n+ 1)∥λn − λn+1∥22

}
.
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Thus, we have

L(x∗, λ∗)− L(xk, λk) ≤ 1

2kγ

{
∥λ0 − λ∗∥22 − ∥λk − λ∗∥22

−
k−1∑
n=0

(2n+ 1)∥λn − λn+1∥22
}

≤ 1

2kγ
∥λ0 − λ∗∥22.

The iterate (xn+1, λ̃n+1) generated by AALM (3.2) contents

f(xk+1)− f(xn+1) ≥ (λ̃n+1)
TA(xk+1 − xn+1)

by replacing (xk+1, λk+1) with (xk+1, λ̃k+1) in Lemma 3.1.4. Therefore, we get

the following lemmas by simply changing the notation.

Lemma 3.1.6. Let (xk+1, λ̃k+1) be generated by the AALM (3.2). For (x, λ) =

(x∗, λ∗) or (xn+1, λ̃n+1) generated by the AALM, we have the inequality

L(xk+1, λ̃k+1)− L(x, λ) ≥ 1

γ
∥λk − λ̃k+1∥22 +

1

γ
(λ− λk)

T (λk − λ̃k+1).

Lemma 3.1.7. Let (xk+1, λ̃k+1) be generated by the AALM (3.2). We obtain

∥λ̃k+1 − λ∗∥22 ≤ ∥λk − λ∗∥22 − ∥λk − λ̃k+1∥22 − 2γ(L(x∗, λ∗)− L(xk+1, λ̃k+1)).

Several lemmas are required to obtain our main result.

Lemma 3.1.8. The sequence {tk} generated by the accelerated Bregman

method satisfies

tk ≥
k + 2

2

and

t2k = t2k+1 − tk+1 for all k ≥ 0.

Proof. The proof is based on Lemma 3.3 in [22] and the definition of tk.
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Lemma 3.1.9. The inequality

4t2kvk+1 ≤ 4t20v1 +
1

γ
∥u1∥22, (3.7)

where vk = L(x∗, λ∗)−L(xk, λ̃k) and uk = tk−1(2λ̃k−λk−1−λ̃k−1)+λ̃k−1−λ∗,

is satisfied for all k ≥ 0

Proof. When k = 0, this is trivial. By Lemma 3.1.6 with (x, λ) = (xn, λ̃n), (x
∗, λ∗)

and using the definition of vn, we have

vn − vn+1 ≥
1

γ
∥λn − λ̃n+1∥22 +

1

γ
(λ̃n − λn)

T (λn − λ̃n+1) (3.8)

−vn+1 ≥
1

γ
∥λn − λ̃n+1∥22 +

1

γ
(λ∗ − λn)

T (λn − λ̃n+1). (3.9)

By multiplying (3.8) by tn − 1 and adding (3.9), we get

(tn−1)vn− tnvn+1 ≥
tn
γ
∥λn− λ̃n+1∥22+

1

γ
(λ∗+(tn−1)λ̃n− tnλn)

T (λn− λ̃n+1).

By multiplying the above inequality by tn and applying lemma 3.1.8, we have

t2n−1vn − t2nvn+1 ≥ 1

γ
(λ∗ − tnλn + (tn − 1)λ̃n)

T (tn(λn − λ̃n+1))

+
1

γ
∥tn(λn − λ̃n+1)∥22

=
1

γ
(λ∗ + (tn − 1)λ̃n − tnλ̃n+1)

T (tn(λn − λ̃n+1))

=
1

4γ
∥λ∗ + tn(λ̃n + λn − 2λ̃n+1)− λ̃n∥22

− 1

4γ
∥λ∗ + (tn − 1)λ̃n − tnλn∥22

=
1

4γ
∥un+1∥22 −

1

4γ
∥λ∗ + (tn − 1)λ̃n − tnλn∥22

where the second equality is from the elementary identity xTy = 1
4
∥x+y∥22−

1
4
∥x− y∥22. Based on the definition of λk in AALM (3.2), we get

−λ∗ − (tn − 1)λ̃n + tnλn = un.
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Thus, it follows that

t2n−1vn − t2nvn+1 ≥
1

4γ
∥un+1∥22 −

1

4γ
∥un∥22 for all n ≥ 1. (3.10)

By multiplying (3.10) by 4 and summing it over n = 1, · · · , k, we have

4(−t2kvk+1 + t20v1) ≥
1

γ
∥uk+1∥22 −

1

γ
∥u1∥22.

Since ∥uk+1∥22 ≥ 0, we get

4t2kvk+1 ≤ 4t20v1 +
1

γ
∥u1∥22 for all k ≥ 1.

Now, we establish our main theorem.

Theorem 3.1.3. Let (xk+1, λ̃k+1, λk+1) be generated by the AALM. For any

k ≥ 1, we have

L(x∗, λ∗)− L(xk, λ̃k) ≤
∥λ0 − λ∗∥22
γ(k + 1)2

.

Proof. Based on the equation (3.7), we get

L(x∗, λ∗)− L(xk, λ̃k) ≤
4t20v1 +

1
γ
∥u1∥22

4t2k−1

for any k ≥ 1.

This together with Lemma 3.1.8 implies that

L(x∗, λ∗)− L(xk, λ̃k) ≤
4t20v1 +

1
γ
∥u1∥22

(k + 1)2
. (3.11)

By simple calculation and t0 = 1, we have

4t20v1 +
1

γ
∥u1∥22 = 4(L(x∗, λ∗)− L(x1, λ̃1)) +

1

γ
∥2λ̃1 − λ0 − λ∗∥22.

Lemma 3.1.7 with k = 0 yields that

∥λ̃1 − λ∗∥22 ≤ ∥λ0 − λ∗∥22 − ∥λ0 − λ̃1∥22 − 2γ(L(x∗, λ∗)− L(x1, λ̃1)).
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Thus, we have

4t20v1 +
1

γ
∥u1∥22

≤ 2

γ
∥λ0 − λ∗∥22 −

2

γ
∥λ0 − λ̃1∥22 −

2

γ
∥λ̃1 − λ∗∥22 +

1

γ
∥2λ̃1 − λ0 − λ∗∥22

=
1

γ
∥λ0 − λ∗∥22. (3.12)

where the equality is from the identity 2∥a− c∥22 − 2∥b− c∥22 − 2∥b− a∥22 =
∥a − c∥22 − ∥b − a + b − c∥22 with a = λ0, b = λ̃1, c = λ∗. Thus, (3.11) and

(3.12) imply

L(x∗, λ∗)− L(xk, λ̃k) ≤
∥λ0 − λ∗∥22
γ(k + 1)2

.

Remark 3.1.1. In [22], the authors considered a generalized augmented La-

grangian method (3.13) with a symmetric positive definite matrix penalty

parameter Hk that satisfied

Hk ⪯ Hk+1, ∀k ≥ 0

when the object function f was differentiable: xk+1 = argmin
x

f(x)− (λk)
T (Ax− b) +

1

2
∥Ax− b∥2Hk

,

λk+1 = λk −Hk(Axk+1 − b).
(3.13)

We can also extend the O( 1
k2
) convergence rate result for this generalized

method when f(x) is not necessarily differentiable.

3.2 Proposed Algorithm 2 : I-AALM

In this section, we propose an inexact version of the AALM (I-AALM), and

we provide an inexact stopping condition of the subproblem with respect to x.

The convergence rate is O( 1
k2
) like the AALM, although xk solves inexactly.

For comprehension, we write the AALM in Algorithm 14 again by using

different notation.
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Algorithm 14 AALM

1: Input : τ > 0, t0 = 1 and λ̂1 = λ0.

2: repeat

3: xk = argmin
x

f(x)− (λ̂k)
T (Ax− b) +

τ

2
∥Ax− b∥22,

4: λk = λ̂k − τ(Axk − b),

5: tk+1 =
1+
√

1+4t2k
2

,

6: λ̂k+1 = λk +
tk−1
tk+1

(λk − λk−1) +
tk

tk+1
(λk − λ̂k)

7: until a stopping criterion is satisfied.

We consider the problem (1.1) under the assumption that f is a strongly

convex function with the parameter σf > 0. Therefore, the I-AALM to solve

(1.1) is given in Algorithm 15.

Algorithm 15 I-AALM

1: Input : τ > 0, t0 = 1 and λ̂1 = λ0.

2: repeat

3: Find an approximate minimizer

xk ≈ argmin
x

f(x)− (λ̂k)
T (Ax− b) +

τ

2
∥Ax− b∥22,

satisfying the stopping conditions (3.14).

4: λk = λ̂k − τ(Axk − b),

5: tk+1 =
1+
√

1+4t2k
2

,

6: λ̂k+1 = λk +
tk−1
tk+1

(λk − λk−1)

7: until a stopping criterion is satisfied.

In this algorithm, the updating step of λ̂ dose not have an additional term

like the updating step of λ̂ in the AALM (Algorithm 14). In fact, although the

updating rule of λ̂k+1 in the AALM is replaced by λ̂k+1 = λk+
tk−1
tk+1

(λk−λk−1),

the convergence rate of the algorithm remains O
(

1
k2

)
with the number of

iterations k.

By Fermat’s rule, the optimality condition of the updating step of xk in
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the AALM is 0 ∈ ∂f(xk+1)− AT λ̂k + τAT (Axk+1 − b), i.e.,

ATλk+1 = AT λ̂k − τAT (Axk+1 − b) ∈ ∂f(xk+1).

Based on this note, we introduce the inexact stopping condition for xk as

follows:

f ′(xk)− ATλk = δk, ∥δk∥2 <
σf√

ρ(ATA)tk
ϵk and

∞∑
k=0

ϵk < ∞ with ϵk+1 ≤ ϵk,

(3.14)

where f ′(xk) is a subgradient of f(xk). This stopping criterion can be eas-

ily computed, so it can be directly used in numerical experiments. On the

other hand, the related work [23, 32] considering an inexact solution of the

subproblem cannot compute a stopping criterion, since their stopping criteri-

ons involves a true solution. In the numerical section, we provide a stopping

criterion for each application.

By the stopping condition (3.14) and the property (2.2), we can derive

the following relations

ATλk + δk ∈ ∂f(xk) ⇒ xk ∈ ∇f ∗(ATλk + δk) ⇒ Axk ∈ A∇f ∗(ATλk + δk).

(3.15)

The last condition is the main property useful to prove the convergence of

our I-AALM. Additionally, we assume that max
λ

D(λ) is achieved at λ∗. In

the following, several lemmas are presented to prove that the convergence

rate is O( 1
k2
).

The following lemma gives the bound for the difference of the Lagrangian

dual function values at the current iterates and any point in terms of dual

variables:

Lemma 3.2.1. Let (λk+1, λ̂k+1) be generated by I-AALM. For any γ ∈ Rm

and k ≥ 0, we have

D(λk+1)−D(γ) ≥ 1

τ
(γ − λ̂k+1)

T (λ̂k+1 − λk+1) +
1

2τ
∥λk+1 − λ̂k+1∥22

+(γ − λk+1)
Tηk+1,

where ηk+1 = A∇f ∗(ATλk+1)− A∇f ∗(ATλk+1 + δk+1).
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Proof. We easily verify the following inequality.

f ∗(ATγ)− f ∗(ATλk+1) ≥ (γ − λk+1)
T (A∇f ∗(ATλk+1)). (3.16)

By using (3.16) and (3.15), we have

D(λk+1)−D(γ) = f ∗(ATγ)− f ∗(ATλk+1) + (λk+1 − γ)T b

≥ (γ − λk+1)
T (A∇f ∗(ATλk+1)) + (λk+1 − γ)T b

= (γ − λk+1)
T (Axk+1 − b) + (γ − λk+1)

Tηk+1

=
1

τ
(γ − λk+1)

T (λ̂k+1 − λk+1) + (γ − λk+1)
Tηk+1

=
1

τ
(γ − λ̂k+1)

T (λ̂k+1 − λk+1) +
1

τ
∥λk+1 − λ̂k+1∥22

+(γ − λk+1)
Tηk+1

≥ 1

τ
(γ − λ̂k+1)

T (λ̂k+1 − λk+1) +
1

2τ
∥λk+1 − λ̂k+1∥22

+(γ − λk+1)
Tηk+1,

where the second inequality is from (3.16), the third equality is from (3.15)

and the fourth equality is from updating step of λk in I-AALM.

We obtain the following lemma by simple calculation and the updating

step of λ̂k+1 in I-AALM.

Lemma 3.2.2. It is satisfied that sk+1 = sk + tk+1(λk+1 − λ̂k+1), where

sk = tkλk − (tk − 1)λk−1 − λ∗.

Proof. Using the update rule of I-AALM

λ̂k+1 = λk +
tk − 1

tk+1

(λk − λk−1),

we get following equalities:

sk+1 = tk+1λk+1 − (tk+1 − 1)λk − λ∗

= λk − λ∗ + tk+1(λk+1 − λk)

= λk − (tk − 1)λk−1 − λ∗ + tk+1(λk+1 − λk) + (tk − 1)λk−1

= tkλk − (tk − 1)λk−1 − λ∗ + tk+1(λk+1 − λk) + (tk − 1)(λk−1 − λk)

= sk + tk+1(λk+1 − λk)− tk+1(λ̂k+1 − λk)

= sk + tk+1(λk+1 − λ̂k+1).
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Several lemmas are required to obtain our main result.

Lemma 3.2.3. Under same notation in Lemma 3.2.2, we have

∥sk+1∥2 − ∥sk∥2 ≤ 2t2kτ(D(λ∗)−D(λk))− 2t2k+1τ(D(λ∗)−D(λk+1))

+2τtk+1(sk+1)
Tηk+1.

Proof. By Lemma 3.2.2, we get

∥sk+1∥2 − ∥sk∥2 = 2tk+1s
T
k (λk+1 − λ̂k+1) + t2k+1∥λk+1 − λ̂k+1∥22

= 2tk+1(tkλk − (tk − 1)λk−1 − λ∗)T (λk+1 − λ̂k+1)

+t2k+1∥λk+1 − λ̂k+1∥22.

From updating rule of λ̂k+1 in I-AALM, note that

(tk − 1)(λk − λk−1) + λk = tk+1λ̂k+1 − tk+1λk + λk = tk+1λ̂k+1 + (1− tk+1)λk.

This note yields

∥sk+1∥2 − ∥sk∥2 = 2tk+1(tk+1λ̂k+1 + (1− tk+1)λk − λ∗)T (λk+1 − λ̂k+1)

+t2k+1∥λk+1 − λ̂k+1∥22
= 2tk+1((1− tk+1)(λk − λ̂k+1) + λ̂k+1 − λ∗)T (λk+1 − λ̂k+1)

+t2k+1∥λk+1 − λ̂k+1∥22
= 2tk+1(1− tk+1)(λk − λ̂k+1)

T (λk+1 − λ̂k+1)

+2tk+1(λ̂k+1 − λ∗)T (λk+1 − λ̂k+1) + t2k+1∥λk+1 − λ̂k+1∥22
= 2(t2k+1 − tk+1)

{
(λ̂k+1 − λk)

T (λk+1 − λ̂k+1)

+
1

2
∥λk+1 − λ̂k+1∥22

}
+ 2tk+1

{
(λ̂k+1 − λ∗)T (λk+1 − λ̂k+1)

+
1

2
∥λk+1 − λ̂k+1∥22

}
.

By Lemma 3.2.1 with setting γ = λk and λ∗, we obtain

D(λk+1)−D(λk) ≥ 1

2τ
∥λk+1 − λ̂k+1∥22 +

1

τ
(λk − λ̂k+1)

T (λ̂k+1 − λk+1)

+(λk − λk+1)
Tηk+1
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and

D(λk+1)−D(λ∗) ≥ 1

2τ
∥λk+1 − λ̂k+1∥22 +

1

τ
(λ∗ − λ̂k+1)

T (λ̂k+1 − λk+1)

+(λ∗ − λk+1)
Tηk+1.

From above inequalities and t2k+1 − tk+1 = t2k in Lemma 3.1.8, we have

∥sk+1∥22 − ∥sk∥22 ≤ 2τtk+1(tk+1 − 1)(D(λk+1)−D(λk))

+2τtk+1(D(λk+1)−D(λ∗))

−2τtk+1(tk+1 − 1)(λk − λk+1)
Tηk+1

−2τtk+1(λ
∗ − λk+1)

Tηk+1

= 2τt2k+1D(λk+1)− 2τt2kD(λk)− 2τ(t2k+1 − t2k)D(λ∗)

−2τt2k(λk − λk+1)
Tηk+1 − 2τtk+1(λ

∗ − λk+1)
Tηk+1

= 2τt2k+1(D(λk+1)−D(λ∗))− 2τt2k(D(λk)−D(λ∗))

−2τt2k(λk − λk+1)
Tηk+1 − 2τtk+1(λ

∗ − λk+1)
Tηk+1.

We get the following by simple calculation and Lemma 3.1.8:

2t2k(λk − λk+1) + 2tk+1(λ
∗ − λk+1) = 2t2kλk − 2t2kλk+1 + 2tk+1λ

∗ − 2tk+1λk+1

= 2tk+1λ
∗ − 2t2k+1λk+1 + 2t2kλk

= 2tk+1(λ
∗ − tk+1λk+1 + (tk+1 − 1)λk)

= −2tk+1sk+1.

Finally, we have the last equation

∥sk+1∥22 − ∥sk∥22 ≤ 2τt2k+1(D(λk+1)−D(λ∗))− 2τt2k(D(λk)−D(λ∗))

+2τtk+1(sk+1)
Tηk+1.

Now we present our main theorem including the convergence rate of our

proposed algorithm I-AALM. The proof of this theorem is motivated by in-

exact accelerated proximal gradient method [28].
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Theorem 3.2.1. Let (λk+1, λ̂k+1) be generated by I-AALM. We have the

following inequality :

t2k(D(λ∗)−D(λk)) ≤
(√

2τ ϵ̄k +
1√
2τ

∥λ∗ − λ̂1∥2
)2

+ 2ϵ̃k,

where ϵ̃k = 2τ
k∑

j=1

ϵ2j and ϵ̄k =
k∑

j=1

ϵj. That is,

D(λ∗)−D(λk) ≤
4

(k + 1)2

[(√
2τ ϵ̄k +

1√
2τ

∥λ∗ − λ̂1∥2
)2

+ 2ϵ̃k

]
.

Proof. Let hk = t2k(D(λ∗)−D(λk)) ≥ 0 and pk = 1
2τ
∥sk∥22. By Lemma 3.2.1

with setting γ = λ∗ and k = 0, we have

−h1 ≥ 1

τ
(λ∗ − λ̂1)

T (λ̂1 − λ1) +
1

2τ
∥λ̂1 − λ1∥22 + (λ∗ − λ1)

Tη1

=
1

2τ
∥λ1 − λ∗∥22 −

1

2τ
∥λ∗ − λ̂1∥22 + (λ∗ − λ1)

Tη1

= p1 −
1

2τ
∥λ∗ − λ̂1∥22 − (s1)

Tη1. (3.17)

Note that

(sk)
Tηk ≤ ∥sk∥2∥ηk∥2 ≤ ∥sk∥2

(√
ρ(ATA)

σf

∥δk∥2

)
≤ ∥sk∥2

ϵk
tk

=
√

2τpk
ϵk
tk
,

from the inexact stopping condition (3.14). Hence, from the inequality (3.17),

we have

h1 + p1 ≤
1

2τ
∥λ∗ − λ̂1∥22 + ϵ1

√
2τp1. (3.18)

By Lemma 3.2.3 and the inequality (3.18) that considers the upper bound

of (sk)
Tηk, we have

hk+1 + pk+1 ≤ hk + pk +
√
2τpk+1ϵk+1. (3.19)

Using (3.18) and (3.19), we obtain

1

2τ
∥λ∗ − λ̂1∥22 ≥ h1 + p1 − ϵ1

√
2τp1

≥ h2 + p2 − ϵ1
√

2τp1 − ϵ2
√
2τp2

≥ · · · ≥ hk + pk − qk, (3.20)
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where qk =
√
2τp1ϵ1 + · · ·+

√
2τpkϵk.

Since hk ≥ 0,then we get the following by the inequality (3.20)

qk = qk−1 + ϵk
√

2τpk ≤ qk−1 + ϵk

√
2τ

(
qk +

1

2τ
∥λ∗ − λ̂1∥22

)
. (3.21)

Since 1
2τ
∥λ∗ − λ̂1∥22 ≥ p1 − ϵ1

√
2τp1, we have the following inequalities,

using the triangle inequality

√
p1 ≤

ϵ1
√
2τ +

√
2τϵ21 + 4( 1

2τ
∥λ∗ − λ̂1∥22)

2
≤ ϵ1

√
2τ +

1√
2τ

∥λ∗ − λ̂1∥2.

This yields

q1 =
√
2τp1ϵ1 ≤

√
2τϵ1

[
ϵ1
√
2τ +

1√
2τ

∥λ∗ − λ̂1∥2
]
= 2τϵ21 + ϵ1∥λ∗ − λ̂1∥2.

(3.22)

And from (3.21), we have(
1

2τ
∥λ∗ − λ̂1∥22 + qk

)
− ϵk

√
2τ

(
qk +

1

2τ
∥λ∗ − λ̂1∥22

)
−
(

1

2τ
∥λ∗ − λ̂1∥22 + qk−1

)
≤ 0,

i.e.√
qk +

1

2τ
∥λ∗ − λ̂1∥22 ≤

1

2

[
√
2τϵk +

√
2τϵ2k + 4

(
1

2τ
∥λ∗ − λ̂1∥22 + qk−1

)]
.

(3.23)

Consequently, we obtain

qk ≤ qk−1 + ϵ2kτ +
1

2
ϵk
√
2τ

√
2τϵ2k + 4

(
1

2τ
∥λ∗ − λ̂1∥22 + qk−1

)
≤ qk−1 + 2ϵ2kτ + ϵk

(
∥λ∗ − λ̂1∥2 +

√
2τqk−1

)
,

where the first inequality is obtained from (3.21) and (3.23), and the second

inequality is due to the triangle inequality.
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By summing the above inequality from 2 to k, we have

qk ≤ q1 + 2τ
k∑

j=2

ϵ2j + ∥λ∗ − λ̂1∥2
k∑

j=2

ϵj +
k∑

j=2

ϵj
√
2τqj−1

≤ 2τ
k∑

j=1

ϵ2j + ∥λ∗ − λ̂1∥2
k∑

j=1

ϵj +
k∑

j=1

ϵj
√
2τqj

≤ 2τ
k∑

j=1

ϵ2j + ∥λ∗ − λ̂1∥2
k∑

j=1

ϵj +
√
2τqk

k∑
j=1

ϵj

= ∥λ∗ − λ̂1∥2ϵ̄k + ϵ̃k +
√
2τqk ϵ̄k

where the second inequality is according to (3.22), and ϵj ≥ ϵj+1, for all j.

This implies that

√
qk ≤

1

2

(√
2τ ϵ̄k +

√
2τ ϵ̄2k + 4∥λ∗ − λ̂1∥2ϵ̄k + 4ϵ̃k

)
.

Therefore, we have qk ≤ 2τ ϵ̄2k +2∥λ∗− λ̂1∥2ϵ̄k +2ϵ̃k, by the arithmetic mean-

geometric mean inequality.

Since hk ≤ 1
2τ
∥λ∗ − λ̂1∥22 + qk, we derive the final conclusion as

hk ≤
(√

2τ ϵ̄k +
1√
2τ

∥λ∗ − λ̂1∥2
)2

+ 2ϵ̃k.

3.3 Proposed Algorithm 3 : I-AADMM

In this section, we propose an inexact version of the accelerated ADMM

(FADMM) [18], so called I-AADMM, with inexact stopping conditions for the

subproblems. Moreover, we prove that the convergence rate of our algorithm

remains O( 1
k2
) for each iteration k. We consider the problem (1.2) assuming

that H is a strongly convex function with σH and G is a quadratic strongly

convex function with σG.
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Algorithm 16 I-AADMM

Input : τ > 0, t0 = 1, λ0 = λ̂1, v0 = v̂1 satisfying the equation (3.26) and

a sequence ϵk satisfying (3.29)

repeat

Find an approximate minimizer

uk ≈ argmin
u

H(u)− (λ̂k)
T (Bu) +

τ

2
∥Bu+ Cv̂k − b∥22, (3.24)

satisfying the stopping conditions (3.30).

Find an approximate minimizer

vk ≈ argmin
v

G(v)− (λ̂k)
T (Cv) +

τ

2
∥Buk + Cv − b∥22, (3.25)

satisfying the stopping conditions (3.31).

λk = λ̂k − τ(Buk + Cvk − b),

tk+1 =
1+
√

1+4t2k
2

,

v̂k+1 = vk +
tk−1
tk+1

(vk − vk−1),

λ̂k+1 = λk +
tk−1
tk+1

(λk − λk−1)

until a stopping criterion is satisfied.
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In this algorithm, we take initial variables satisfying the following condi-

tion:

CT λ̂1 + ξ0 ∈ ∂G(v̂1) with ∥ξ0∥2 ≤
√
2τρ(CTC)√

6t2
ϵ0. (3.26)

Let λ̃k = λ̂k − τ(Buk + Cv̂k − b). Then, by Fermat’s rule, the optimality

conditions of the subproblems with respect to u and v in the I-AADMM are

as follows

0 ∈ ∂H(uk)−BT λ̂k + τBT (Buk + Cv̂k−1 − b) = ∂H(uk)−BT λ̃k (3.27)

0 ∈ ∂G(vk)− CT λ̂k + τCT (Buk + Cvk − b) = ∂G(vk)− CTλk. (3.28)

First, let us consider a sequence ϵk satisfying

∞∑
k=0

ϵk < ∞, with ϵk+1 ≤ ϵk. (3.29)

For the subproblem (3.24) of uk, we introduce the following stopping

conditions:

h′(uk)−BT λ̃k = δk with ∥δk∥2 <
σH

2
√

ρ(BTB)tk
ϵk (3.30)

where h′(uk) is a subgradient of H(uk). For the subproblem (3.25) of vk, the

proposed stopping condition is given by

g′(vk)− CTλk = ξk with ∥ξk∥2 < min

{√
2τρ(CTC)√

6tk+2

,
σG

2
√
ρ(CTC)tk

}
ϵk

(3.31)

where g′(vk) is a subgradient of G(vk).

The stopping conditions (3.30), (3.31) with the properties of subdifferen-

tial derive the following relations

BT λ̃k + δk ∈ ∂H(uk) ⇒ uk ∈ ∇H∗(BT λ̃k + δk) ⇒ Buk ∈ B∇H∗(BT λ̃k + δk),

(3.32)

CTλk + δk ∈ ∂G(vk) ⇒ vk ∈ ∇G∗(CTλk + ξk) ⇒ Cvk ∈ C∇G∗(CTλk + ξk).

(3.33)
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Since G is strongly convex and quadratic, ∇G∗ is an affine transformation.

Hence,

Cv̂k+1 = Cvk +
tk − 1

tk+1

(Cvk − Cvk−1)

∈ C∇G∗
(
CT λ̂k+1 +

tk+1 + tk − 1

tk+1

ξk −
tk − 1

tk+1

ξk−1

)
(3.34)

Based on the notes (3.27)-(3.34), we prove the convergence rate of the I-

AADMM as the similar way with the I-AALM. We also assume that maxi-

mization problem of Lagrangian dual function of the problem (1.2) is achieved

at λ∗.

Lemma 3.3.1. Suppose that τ 3 ≤ σHσ
2
G

ρ(BTB)ρ(CTC)2
. Then for any γ ∈ Rm

and k ≥ 1, we have

D(λk+1)−D(γ) ≥ 1

τ
(γ − λ̂k+1)

T (λ̂k+1 − λk+1) +
1

2τ
∥λ̂k+1 − λk+1∥22

− 1

t2k+1

ϵ2k−1 + (γ − λk+1)
T (η1k+1 + η2k+1),

where (λk+1, λ̂k+1) are generated by I-AADMM,

η1k+1 = C∇G∗(CTλk+1)− C∇G∗(CTλk+1 + ξk+1)

and

η2k+1 = B∇H∗(BT λ̃k+1)−B∇H∗(BT λ̃k+1 + δk+1).

Proof. Set α =
ρ(BTB)

σH

and β =
ρ(CTC)

σG

. We get the following inequalities:

∥λ̃k+1 − λk+1∥22 = τ 2∥Cv̂k+1 − Cvk+1∥22

= τ 2
∥∥∥C∇G∗

(
CT λ̂k+1 +

tk+1 + tk − 1

tk+1

ξk −
tk − 1

tk+1

ξk−1

)
−C∇G∗(CTλk+1 + ξk+1)

∥∥∥2
2

≤ τ 2ρ(CTC)

σ2
G

∥∥∥CT λ̂k+1 +
tk+1 + tk − 1

tk+1

ξk −
tk − 1

tk+1

ξk−1

−CTλk+1 − ξk+1

∥∥∥2
2
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≤ τ 2β2∥λk+1 − λ̂k+1∥22 +
τ 2ρ(CTC)

σ2
G

(
(tk − 1)2

t2k+1

∥ξk−1∥22

+
(tk+1 + tk − 1)2

t2k+1

∥ξk∥22 + ∥ξk+1∥22

)
,

≤ τ 2β2∥λk+1 − λ̂k+1∥22 +
2τ 3ρ(CTC)2

σ2
Gt

2
k+1

ϵ2k−1 (3.35)

where the first equality is from definition of λ̃k+1 and updating rule of λk+1 in

I-AADMM, the second equality is from (3.33) and (3.34), the third inequality

is from Lipschitz continuous of ∇G∗ with Lipschitz constant 1/σ2
G, the fourth

inequality is from triangle inequality and the last inequality is from following

notes:

• ti+1 ≥ ti and ϵi+1 ≤ ϵi for all i = 1, 2, ...

• (tk+1 + tk − 1)2

t2k+1

≤ 4 and (tk−1)2

t2k+1
≤ 1.

• max
{
∥ξk−1∥22, ∥ξk∥22, ∥ξk+1∥22

}
≤ 2τρ(CTC)

6t2k+1

ϵ2k−1.

By strongly convexity of H, we obtain

H∗(BTγ)−H∗(BTλk+1) = H∗(BTγ)−H∗(BT λ̃k+1)

+H∗(BT λ̃k+1)−H∗(BTλk+1)

≥ (γ − λ̃k+1)
T (B∇H∗(BT λ̃k+1))−

α

2
∥λk+1 − λ̃k+1∥22

−(λk+1 − λ̃k+1)
T (B∇H∗(BT λ̃k+1))

= (γ − λk+1)
T (B∇H∗(BT λ̃k+1))

−ατ 2β2

2
∥λk+1 − λ̂k+1∥22 −

ατ 3ρ(CTC)2

σ2
Gt

2
k+1

ϵ2k−1

≥ (γ − λk+1)
T (B∇H∗(BT λ̃k+1))

− 1

2τ
∥λk+1 − λ̂k+1∥22 −

1

t2k+1

ϵ2k−1, (3.36)
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where the third equality is from (3.35) and the last inequality is from the

assumption τ 3 ≤ σHσ
2
G

ρ(ATA)ρ(BTB)2
. Similarly, we get

G∗(CTγ)−G∗(CTλk+1) ≥ (γ − λk+1)
T (C∇G∗(CTλk+1)). (3.37)

Using (3.36) and (3.37), we have

D(λk+1)−D(γ) = G∗(CTγ)−G∗(CTλk+1) +H∗(BTγ)−H∗(BTλk+1)

+(λk+1 − γ)T b

≥ (γ − λk+1)
T (B∇H∗(BT λ̃k+1))−

1

2τ
∥λk+1 − λ̂k+1∥22

+(γ − λk+1)
T (C∇G∗(CTλk+1)) + (λk+1 − γ)T b− 1

t2k+1

ϵ2k−1

= (γ − λk+1)
T (Buk+1 + Cvk+1 − b)− 1

2τ
∥λk+1 − λ̂k+1∥22

− 1

t2k+1

ϵ2k−1 + (γ − λk+1)
T (η1k+1 + η2k+1)

=
1

τ
(γ − λk+1)

T (λ̂k+1 − λk+1)−
1

2τ
∥λk+1 − λ̂k+1∥22

− 1

t2k+1

ϵ2k−1 + (γ − λk+1)
T (η1k+1 + η2k+1)

=
1

τ
(γ − λ̂k+1)

T (λ̂k+1 − λk+1) +
1

2τ
∥λk+1 − λ̂k+1∥22

− 1

t2k+1

ϵ2k−1 + (γ − λk+1)
T (η1k+1 + η2k+1),

Remark 3.3.1. If k = 0, Cv̂0 ∈ C∂G∗(CT λ̂1+ξ0). Hence, we have by similar

way to proof of Lemma 3.3.1

D(λ1)−D(γ) ≥ τ−1(γ − λ̂1)
T (λ̂1 − λ1) +

1

2τ
∥λ̂1 − λ1∥22

− 1

t21
ϵ20 + (γ − λ1)

T (η11 + η21).

In proof, we use simple property :

∥ξ0∥2 ≤
√
2τρ(CTC)√

6t2
ϵ0 ≤

√
2τρ(CTC)

2t1
ϵ0
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Since the updating rule of λ̂k+1 in I-AADMM is same that in I-AALM,

the following Lemma is obvious.

Lemma 3.3.2. It is satisfied that

sk+1 = sk + tk+1(λk+1 − λ̂k+1),

where sk = tkλk − (tk − 1)λk−1 − λ∗ and (λk, λ̂k) is generated by I-AADMM.

The following Lemma is similar with Lemma 3.2.3, but for completion,

we provide the full proof of Lemma 3.3.3.

Lemma 3.3.3. Under same notation in Lemma 3.3.2, we have

∥sk+1∥2 − ∥sk∥2 ≤ 2t2kτ(D(λ∗)−D(λk))− 2t2k+1τ(D(λ∗)−D(λk+1))

+2τϵ2k−1 + 2tk+1(sk+1)
T (η1k+1 + η2k+1).

Proof. By Lemma 3.3.2, we have the equations:

∥sk+1∥2 − ∥sk∥2 = 2tk+1s
T
k (λk+1 − λ̂k+1) + t2k+1∥λk+1 − λ̂k+1∥22

= 2tk+1(tkλk − (tk − 1)λk−1 − λ∗)T (λk+1 − λ̂k+1)

+t2k+1∥λk+1 − λ̂k+1∥22
From updating rule of λ̂k+1 in I-AADMM, note that

(tk − 1)(λk − λk−1) + λk = tk+1λ̂k+1 − tk+1λk + λk = tk+1λ̂k+1 + (1− tk+1)λk.

From this note, we have

∥sk+1∥2 − ∥sk∥2 = 2tk+1(tk+1λ̂k+1 + λk(1− tk+1)− λ∗)T (λk+1 − λ̂k+1)

+t2k+1∥λk+1 − λ̂k+1∥22
= 2tk+1((1− tk+1)(λk − λ̂k+1) + λ̂k+1 − λ∗)T (λk+1 − λ̂k+1)

+tk+1∥λk+1 − λ̂k+1∥22
= 2tk+1(1− tk+1)(λk − λ̂k+1)

T (λk+1 − λ̂k+1)

+2tk+1(λ̂k+1 − λ∗)T (λk+1 − λ̂k+1)

+t2k+1∥λk+1 − λ̂k+1∥22
= 2(t2k+1 − tk+1)

{
(λ̂k+1 − λk)

T (λk+1 − λ̂k+1)

+
1

2
∥λk+1 − λ̂k+1∥22

}
+ 2tk+1

{
(λ̂k+1 − λ∗)T (λk+1 − λ̂k+1)

+
1

2
∥λk+1 − λ̂k+1∥22

}
.
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By Lemma 3.3.1 with setting γ = λk and λ∗, we obtain

D(λk+1)−D(λk) ≥ 1

2τ
∥λk+1 − λ̂k+1∥22 +

1

τ
(λk − λ̂k+1)

T (λ̂k+1 − λk+1)

− 1

t2k+1

ϵ2k−1 + (λk − λk+1)
T (η1k+1 + η2k+1)

and

D(λk+1)−D(λ∗) ≥ 1

2τ
∥λk+1 − λ̂k+1∥22 +

1

τ
(λ∗ − λ̂k+1)

T (λ̂k+1 − λk+1)

− 1

t2k+1

ϵ2k−1 + (λ∗ − λk+1)
T (η1k+1 + η2k+1).

From above inequalities and t2k+1 − tk+1 = t2k, we have

∥sk+1∥22 − ∥sk∥22 ≤ 2τtk+1(tk+1 − 1)(D(λk+1)−D(λk))

+2τtk+1(D(λk+1)−D(λ∗))

+2τt2k

{
ϵ2k−1

t2k+1

− (λk − λk+1)
T (η1k+1 + η2k+1)

}
+2τtk+1

{
ϵ2k−1

t2k+1

− (λ∗ − λk+1)
T (η1k+1 + η2k+1)

}
= 2τt2k+1D(λk+1)− 2τt2kD(λk)− 2(t2k+1 − t2k)D(λ∗)

+2τt2k

{
ϵ2k−1

t2k+1

− (λk − λk+1)
T (η1k+1 + η2k+1)

}
+2τtk+1

{
ϵ2k−1

t2k+1

− (λ∗ − λk+1)
T (η1k+1 + η2k+1)

}
= 2τt2k+1(D(λk+1)−D(λ∗))− 2t2kτ(D(λk)−D(λ∗))

+2τt2k

{
ϵ2k−1

t2k+1

− (λk − λk+1)
T (η1k+1 + η2k+1)

}
+2τtk+1

{
ϵ2k−1

t2k+1

− (λ∗ − λk+1)
T (η1k+1 + η2k+1)

}
.

We can change the terms of ϵ2k−1 and η1k+1 + η2k+1 in above inequality simply

as follows:

2t2k

(
1

t2k+1

)
ϵ2k−1 + 2tk+1

(
1

t2k+1

)
ϵ2k−1 = 2(t2k + tk+1)

(
1

t2k+1

)
ϵ2k−1 = 2ϵ2k−1
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and

2t2k(λk − λk+1) + 2tk+1(λ
∗ − λk+1) = 2t2kλk − 2t2kλk+1 + 2tk+1λ

∗ − 2tk+1λk+1

= 2tk+1λ
∗ − 2t2k+1λk+1 + 2t2kλk

= 2tk+1(λ
∗ − tk+1λk+1 + (tk+1 − 1)λk)

= −2tk+1sk+1.

Thus, we have the final equation in this proof:

∥sk+1∥22 − ∥sk∥22 ≤ 2t2k+1τ(D(λk+1)−D(λ∗))− 2t2kτ(D(λk)−D(λ∗))

+2τϵ2k−1 + 2tk+1(sk+1)
T (η1k+1 + η2k+1).

The following theorem is our main theorem which represents the conver-

gence rate of the I-AADMM.

Theorem 3.3.1. Let (λk, λ̂k) be generated by I-AADMM. Then, we have

t2k(D(λ∗)−D(λk)) ≤
(√

2τ ϵ̄k +
1√
2τ

∥λ∗ − λ̂1∥2
)2

+ 2ϵ̃k,

where ϵ̃k =
k∑

j=1

ϵ2j−2 + 2τ
k∑

j=1

ϵ2j +
√
2τ

k∑
j=1

ϵjϵj−2, ϵ̄k =
k∑

j=1

ϵj and ϵ−1 = ϵ0. It

means that

D(λ∗)−D(λk) ≤
4

(k + 1)2

[(√
2τ ϵ̄k +

1√
2τ

∥λ∗ − λ̂1∥2
)2

+ 2ϵ̃k

]
.

Proof. Let hk = t2k(D(λ∗)−D(λk)) ≥ 0 and pk = 1
2τ
∥sk∥22. By Remark 3.3.1

with setting γ = λ∗, we have

−h1 ≥ 1

τ
(λ∗ − λ̂1)

T (λ̂1 − λ1) +
1

2τ
∥λ̂1 − λ1∥22 −

1

t22
ϵ20 + (λ∗ − λ1)

T (η11 + η21)

=
1

2τ
∥λ1 − λ∗∥22 −

1

2τ
∥λ∗ − λ̂1∥22 −

1

t22
ϵ20 + (λ∗ − λ1)

T (η11 + η21)

= p1 −
1

2τ
∥λ∗ − λ̂1∥22 −

1

t22
ϵ20 + (s1)

T (η11 + η21). (3.38)
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From inexact conditions (3.30) and (3.31) of subproblems in the I-AADMM,

we note that

(sk)
T (η1k + η2k) ≤ ∥sk∥2(∥η1k∥2 + ∥η2k∥2)

≤ ∥sk∥2

(√
ρ(BTB)

σH

∥δk∥2 +
√

ρ(CTC)

σG

∥ξk∥2

)
≤ ∥sk∥2

ϵk
tk

≤
√

2τpk
ϵk
tk
.

Hence, from the inequality (3.38) and setting ϵ−1 = ϵ0, we obtain

h1+p1 ≤
1

2τ
∥λ∗−λ̂1∥22+ϵ20+ϵ1

√
2τp1 =

1

2τ
∥λ∗−λ̂1∥22+ϵ2−1+ϵ1

√
2τp1. (3.39)

By Lemma 3.3.3 and the inequality (3.39) about the upper bound of (sk)
T (η1k+

η2k), we have

hk+1 + pk+1 ≤ hk + pk + ϵ2k−1 +
√
2τpk+1ϵk+1. (3.40)

The equations (3.39) and (3.40) yield

1

2τ
∥λ∗ − λ̂1∥22 ≥ h1 + p1 − ϵ2−1 − ϵ1

√
2τp1

≥ h2 + p2 − ϵ2−1 − ϵ20 − ϵ1
√
2τp1 − ϵ2

√
2τp2

≥ · · · ≥ hk + pk − qk, (3.41)

where qk =
√
2τp1ϵ1 + · · · +

√
2τpkϵk + ϵ2−1 + · · · + ϵ2k−2. Since hk ≥ 0, we

obtain the following, by the inequality (3.41)

qk = qk−1 + ϵk
√
2τpk + ϵ2k−2

≤ qk−1 + ϵk

√
2τ

(
qk +

1

2τ
∥λ∗ − λ̂1∥22

)
+ ϵ2k−2. (3.42)

Since 1
2τ
∥λ∗ − λ̂1∥22 ≥ p1 − ϵ2−1 − ϵ1

√
2τp1, we get the following, by the

triangle inequality

√
p1 ≤

ϵ1
√
2τ +

√
2τϵ21 + 4(ϵ2−1 +

1
2τ
∥λ∗ − λ̂1∥22)

2

≤ ϵ1
√
2τ +

√
ϵ2−1 +

1

2τ
∥λ∗ − λ̂1∥22.
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This inequality and the triangle inequality yield

q1 =
√

2τp1ϵ1 + ϵ2−1 ≤
√
2τϵ1

[
ϵ1
√
2τ +

√
ϵ2−1 +

1

2τ
∥λ∗ − λ̂1∥22

]
+ ϵ2−1

≤ 2τϵ21 + ϵ2−1 + ϵ1(
√
2τϵ−1 + ∥λ∗ − λ̂1∥2). (3.43)

From (3.42), we obtain(
1

2τ
∥λ∗ − λ̂1∥22 + qk

)
− ϵk

√
2τ

(
qk +

1

2τ
∥λ∗ − λ̂1∥22

)
−
(

1

2τ
∥λ∗ − λ̂1∥22 + qk−1 + ϵ2k−2

)
≤ 0,

i.e.,√
qk +

1

2τ
∥λ∗ − λ̂1∥22 ≤

1

2

[
√
2τϵk +

√
2τϵ2k + 4

(
1

2τ
∥λ∗ − λ̂1∥22 + qk−1 + ϵ2k−2

)]
.

(3.44)

Consequently, we obtain the following inequalities

qk ≤ qk−1 + ϵ2k−2 + ϵ2kτ +
1

2
ϵk
√
2τ

√
2τϵ2k + 4

(
1

2τ
∥λ∗ − λ̂1∥22 + qk−1 + ϵ2k−2

)
≤ qk−1 + ϵ2k−2 + 2ϵ2kτ + ϵk

(
∥λ∗ − λ̂1∥2 +

√
2τqk−1 +

√
2τϵk−2

)
,

where the first inequality is from (3.42) and (3.44), and the last inequality is

from the triangle inequality. By summing the inequality (3.45) from 2 to k,

we have

qk ≤ q1 +
k∑

j=2

ϵ2j−2 + 2τ
k∑

j=2

ϵ2j + ∥λ∗ − λ̂1∥2
k∑

j=2

ϵj +
√
2τ

k∑
j=2

ϵj(
√
qj−1 + ϵj−2)

≤
k∑

j=1

ϵ2j−2 + 2τ
k∑

j=1

ϵ2j + ∥λ∗ − λ̂1∥2
k∑

j=1

ϵj +
k∑

j=1

ϵj
√

2τqj +
√
2τ

k∑
j=1

ϵjϵj−2

≤
k∑

j=1

ϵ2j−2 + 2τ
k∑

j=1

ϵ2j + ∥λ∗ − λ̂1∥2
k∑

j=1

ϵj +
√

2τqk

k∑
j=1

ϵj +
√
2τ

k∑
j=1

ϵjϵj−2

≤ ∥λ∗ − λ̂1∥2ϵ̄k + ϵ̃k +
√
2τqkϵ̄k
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where the second inequality is from (3.43) and ϵj ≤ ϵj+1, which implies that

√
qk ≤

1

2

(√
2τ ϵ̄k +

√
2τ ϵ̄2k + 4∥λ∗ − λ̂1∥2ϵ̄k + 4ϵ̃k

)
.

From here, we have qk ≤ 2τ ϵ̄2k + 2∥λ∗ − λ̂1∥2ϵ̄k + 2ϵ̃k, by the arithmetic

mean-geometric mean inequality. Since hk ≤ 1
2τ
∥λ∗ − λ̂1∥22 + qk, we have

hk ≤
(√

2τ ϵ̄k +
1√
2τ

∥λ∗ − λ̂1∥2
)2

+ 2ϵ̃k.

3.4 Numerical Results

In this section, we provide the numerical test applying our proposed algo-

rithms which are the accelerated Bregman method, the I-AALM and the

I-AADMM. In subsection 3.4.1, we perform the numerical test making a

comparison between Bregman method and accelerated Bregman method for

solving the linearly constrained ℓ1 and generalized ℓ2 minimization. For ap-

plying the I-AALM, we solve the linearly constrained ℓ1-ℓ2 minimization

problem in subsection 3.4.2 and subsection 3.4.3. In subsection 3.4.2, we use

the various algorithms for solving the subproblem of I-AALM and confirm

the convergence of I-AALM although the subproblem is inexactly solved. In

subsection 3.4.3, we compare the performance of I-AALM with state-of-art

algorithms for solving the linearly constrained ℓ1-ℓ2 minimization. Lastly, we

propose the new variational model for removing multiplicative noise and we

apply our I-AADMM to this new model. We compare the denoising results

of our new model with TV model.

3.4.1 Comparison to Bregman method with acceler-

ated Bregman method

In this subsection, we compare the performance of the Bregman method with

that of the accelerated Bregman method for solving the linearly constrained
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ℓ1 and generalized ℓ2 minimization :

min
x

µ∥x∥1 +
1

2
xTQx subject to Ax = b, (3.45)

where ∥ · ∥1 is the ℓ1-norm in Rn, ∥ · ∥2 is the ℓ2-norm in Rn, A ∈ Rn×m,

b ∈ Rm and Q is a symmetric positive definite matrix with size n× n. Note

that xTQx > 0 for all nonzero vector x ∈ Rn, since Q is a symmetric positive

definite matrix. In addition, we easily prove that xTQx is a norm when Q

is a symmetric positive definite matrix. Thus, we can write ∥x∥Q =
√

xTQx

and it is called generalized ℓ2-norm with respect to Q.

If Q = 0, the equation (3.45) is basis pursuit problem in compressive sens-

ing. The object function of the basis pursuit is not strongly convex function.

Adding the ∥ · ∥Q in the basis pursuit problem yields the tractable object

function µ∥x∥1 + ∥x∥2Q, which is a strongly convex function. Thus, the lin-

early constrained ℓ1 and generalized ℓ2 minimization problem (3.45) has a

unique solution and the dual problem is smooth. Problem (3.45) has a gen-

eralized ℓ2-norm in the regularizer term, so it is less sensitive to noise than

the basis pursuit problem. Actually, many researchers considered this model

(3.45) in [8, ?, 56] related to linearized Bregman method and compressive

sensing when Q = βI. We consider this case Q = βI in next subsection. We

set Q = λI − γATA in these experiments. If λ > γ∥A∥22, Q is a symmetric

positive definite. In this case, the subproblem with respect to x in Bregman

method or accelerated Bregman method

argmin
x

µ∥x∥1 +
1

2
∥x∥2Q − pTk x+

γ

2
∥Ax− b∥22

has closed form solution

x = shrink

(
pk + γAT b

λ
,
µ

λ

)
,

where the soft thresholding or shrinkage operator is defined by

(shrink(x, α))i = sign(xi)(|xi| − α)+.

For experiments, we fix the parameters λ = 2, γ = 1 and µ = 10. we

set n = 1000, m = 500 for the size of the Gaussian measurement matrix A
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whose entries are selected randomly from a standard Gaussian distribution

N (0, 1) with ∥ATA∥2 = 1. For making ∥ATA∥2 = 1, we use the following

matlab codes :

o p t s e i g s . issym = 1 ; o p t s e i g s . d i sp = 0 ;

e i g s q r t = sq r t ( e i g s (A∗A’ , 1 , ’ lm ’ , o p t s e i g s ) ) ;

A = A/ e i g s q r t ;

Since ∥ATA∥2 = 1, Q = λI − γATA is a symmetric positive definite matrix.

The sparsity k, i.e., the number of nonzero elements of the original solution, is

fixed at 50. The location of nonzero elements in the original solution (signal) x̄

is selected randomly and the nonzero elements of x̄ are selected from uniform

distribution in interval [−10, 10]. (matlab code : 20*(rand(k,1)-0.5)). The

noise n in

b = Ax̄+ n

is generated by a standard Gaussian distribution N (0, 1) and then it is nor-

malized to the norm σ = 0, 0.1, 1.(When σ = 0, we consider the noise-free

case.) When noise is present, we terminate all the methods when the residual

error ∥Axk − b∥2 ≤ σ. But, for a noise-free case, i.e., b = Ax̄ or σ = 0, we

stop all the methods when the residual error

∥Axk − b∥2 < 10−4

is satisfied. In each test, we calculate the residual error ∥Ax−b∥2, the relative
error

∥x− x̄∥2
∥x̄∥2

,

and the signal-to-noise ratio (SNR)

10 log10
∥x̄− mean(x̄)∥22

∥x̄− x∥22
,

where x is the recovery signal. For this setting, 100 different tests are con-

ducted.

In Figures 3.1 - 3.3, we plot the Lagrangian function value, relative error

and residual error at each iteration of the accelerated Bregman method and

Bregman method in 1st row for various σ. We also plot the comparison final
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Figure 3.1: Results from linearly constrained ℓ1 and generalized ℓ2 minimiza-

tion problem for noise-free case. 1st row : Lagrangian function (1st column),

relative error (2nd column) and residual error (3rd column) at each iteration.

2nd row : Plot the recover vector (blue) for Bregman method and the solution

vector (red) in 1st column and Plot the recover vector (blue) for accelerated

Bregman method and the solution vector (red) in 2nd column

Table 3.1: Comparison of the Bregman method with the accelerated Bregman

method for noise-free case

mean std. maximum minimum

Iteration Bregman 2132.71 2621.94 24460 660

Acc. Bregman 240.94 50.46 532 189

Time Bregman 16.7696 20.3191 188.3310 5.2542

Acc. Bregman 1.8917 0.3945 4.0727 1.4680

Res. Err. Bregman 9.954e-05 3.200e-07 9.999e-05 9.868e-05

Acc. Bregman 9.315e-05 5.162e-06 9.996e-05 7.953e-05

Rel. Err. Bregman 1.950e-05 3.826e-06 3.622e-05 1.206e-05

Acc. Bregman 7.135e-06 6.793e-07 8.763e-06 5.781e-06

SNR Bregman 94.349 1.612 98.36 88.804

Acc. Bregman 102.966 0.829 104.76 101.15
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Figure 3.2: Results from linearly constrained ℓ1 and generalized ℓ2 minimiza-

tion problem for σ = 0.1. 1st row : Lagrangian function (1st column), relative

error (2nd column) and residual error (3rd column) at each iteration. 2nd row

: Plot the recover vector (blue) for Bregman method and the solution vec-

tor (red) in 1st column and Plot the recover vector (blue) for accelerated

Bregman method and the solution vector (red) in 2nd column

Table 3.2: Comparison of the Bregman method with the accelerated Bregman

method for σ = 0.1.

mean std. maximum minimum

Iteration Bregman 486.34 146.91 933.00 228.00

Acc Bregman 240.37 28.25 288.00 72.00

Time Bregman 3.8230 1.1714 7.2579 1.7712

Acc Bregman 1.8840 0.2269 2.3225 0.5463

Res. Err. Bregman 9.972e-02 3.444e-04 1.000e-01 9.806e-02

Acc Bregman 9.825e-02 1.570e-03 9.998e-02 9.322e-02

Rel. Err. Bregman 1.264e-02 3.437e-03 2.401e-02 7.202e-03

Acc Bregman 1.594e-02 1.821e-03 2.083e-02 8.275e-03

SNR Bregman 38.261 2.271 42.851 32.392

Acc Bregman 36.004 1.046 41.641 33.621
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Figure 3.3: Results from linearly constrained ℓ1 and generalized ℓ2 minimiza-

tion problem for σ = 1. 1st row : Lagrangian function (1st column), relative

error (2nd column) and residual error (3rd column) at each iteration. 2nd

row : Plot the recover vector (blue) for Bregman method and the solution

vector (red) in 1st column and Plot the recover vector (blue) for accelerated

Bregman method and the solution vector (red) in 2nd column

Table 3.3: Comparison of the Bregman method with the accelerated Bregman

method for σ = 1.

mean std. maximum minimum

Iteration Bregman 113.95 12.23 156.00 91.00

Acc Bregman 29.00 2.53 38.00 25.00

Time Bregman 0.9133 0.1013 1.3204 0.7283

Acc Bregman 0.2251 0.0220 0.2876 0.1863

Res. Err. Bregman 9.966e-01 2.550e-03 1.000e+00 9.888e-01

Acc Bregman 9.804e-01 1.711e-02 9.999e-01 9.326e-01

Rel. Err. Bregman 1.154e-01 1.590e-02 1.639e-01 6.946e-02

Acc Bregman 8.744e-02 1.212e-02 1.192e-01 6.550e-02

SNR Bregman 18.834 1.228 23.165 15.705

Acc Bregman 21.242 1.186 23.676 18.471
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recovery vector with original exact solution for each method in 2nd row. In

Tables 3.1 - 3.3, we report the average number of iterations, the CPU time,

the residual error, the relative error, and SNR of recovery solution for vari-

ous noise. From number of iterations and CPU time in Tables 3.1 - 3.3, the

accelerated Bregman method is faster than the Bregman method for all noise

level. Based on the relative error and SNR in Table 3.1, it is observed that

the sparse original signal is well restored, especially, the recovery solution of

the accelerated Bregman method is more accurate than that of the Bregman

method when σ = 0. This is also shown in Figure 3.1. We conclude that

the accelerated Bregman method has a better performance of both speed

and accuracy than the Bregman method for noise-free case. Meanwhile, the

observed solution of the Bregman method is more accurate than that of the

accelerated Bregman method when σ = 0.1. In Figure 3.2, the residual error

of accelerated Bregma method stays around 0.1 and the relative error of ac-

celerated Bregma method increases when number of iterations is between 50

and 200. Since the accelerated Bregman method is not monotone method and

noise is present, these problems can be present. If we find more suitable stop-

ping criteria, these problems can be improved. Based on 2nd row of Figure

3.3 and relative error, SNR in Table 3.3, the sparse solution is relatively well

restored, in spite of heavy noise data. In this experiments, we observe that

the accelerated Bregman method overall performs better than the Bregman

method and the model (3.45) work well when finding sparse solution.

3.4.2 Numerical results of inexact accelerated augmented

Lagrangian method using various subproblem solvers

In this subsection, We consider the ℓ1-ℓ2 minimization problem with linear

equality constraints :

min
x

∥x∥1 +
β

2
∥x∥22 such that Ax = b, (3.46)

where A ∈ Rn×m, b ∈ Rm and β is a positive constant.

This model (3.46) is same with (3.45) when Q = βI. In [15, 56], the authors

proved the exact regularization property of ℓ1-ℓ2: the solution of (3.46) is

also a solution of the basis pursuit if β is very small. In this test, we find the
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sparse solution for solving linearly constrained ℓ1-ℓ2 minimization problem.

With setting f(x) = ∥x∥1 + β
2
∥x∥22, the problem (3.46) is represented as the

form (1.1), so we can apply ALM or AALM. However, the subproblem with

respect to x in ALM or AALM

argmin
x

∥x∥1 +
β

2
∥x∥22 − (λk)

T (Ax− b) +
τ

2
∥Ax− b∥22 (3.47)

can not be solve exactly and the objective function ∥x∥1 + β
2
∥x∥22 is strongly

convex function. Thus, we can apply the I-AALM for solving the linearly

constrained ℓ1-ℓ2 minimization problem. For solving (3.47), we must apply

other algorithm which solves unconstrained convex optimization. There are

many algorithms for solving the unconstrained convex optimization as intro-

duced in previous chapter. We explain some algorithms which can be applied

the unconstrained convex optimization problem (2.9) and are some variants

of ISTA.

Fixed Point method with BB line search(FP-BB) Under same setting

in ISTA, we recall that the optimal solution of the problem (2.9) is a fixed

point of the operator (I + τ∂g)−1(I − τ∇f), for any τ > 0. We rewrite the

equivalence between the previous operator and quadratic approximation of

f + g :

xk+1 = (I + τ∂g)−1(I − τ∇f(xk))

⇔ xk+1 = argmin
y

f(xk) + ⟨y − xk,∇f(xk)⟩+
1

2τ
∥y − xk∥22 + g(y).

Thus, ISTA is often called “Fixed Point method.” In general, the Lipschitz

constant Lf is not always easily computable, so, in order to find an approx-

imated step size 1
τ
, FP-BB use Barzilai-Borwein line search using Barzilai-

Borwein steps [3].

Sparse Reconstruction by Separable Approximation(SpaRSA) We con-

sider F (x) = f(x) + τc(x) in (2.9), where f is a proper, smooth, convex

function and c is finite and convex for all x ∈ Rn. In SpaRSA, the subprob-

lem

xk+1 = argmin
y

f(xk) + ⟨y − xk,∇f(xk)⟩+
αk

2
∥y − xk∥22 + τc(y)
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is set up to solving problems of the form (2.9) with setting F (x) = f(x) +

τc(x). Actually, above problem is same with the step of ISTA by setting

g(x) = τc(x) and αk instead of Lf . Hence, SpaRSA [52] is also closely related

to ISTA. SpaRSA is an outer-inner iteration algorithm with respect to αk.

In inner iteration, the above subproblem is solved and then αk is multiplied

by positive constant η > 1 until the inner acceptance criterion is satisfied. In

outer iteration, αk is found using BB line search. The specification of SpaRSA

is presented in the paper [52] and we can also find the convergence analysis

of SpaRSA.

Now, we give the experimental results applying our proposed algorithm

for solving linearly constrained ℓ1-ℓ2 minimization problem (3.46) and we use

various algorithms, which are ISTA, FP-BB, FISTA and SpaRSA, for solving

the subproblem (3.47). For experiments, we set n = 500 and m = 250 for

the size of the measurement matrix A and we use the Gaussian measurement

matrix A whose entries are randomly selected by standard Gaussian distribu-

tion and norm is 1, that is, ∥ATA∥2 = 1. The ℓ2 parameter β is fixed at 0.01

and the number k of nonzero elements of the original solution is fixed at 25.

The locations of nonzero elements in the solution x̄ are randomly chosen and

the values of nonzero elements of x̄ are chosen from standard Gaussian dis-

tribution. The penalty parameter γ is fixed to 100. For algorithms for solving

subproblem (3.47) of I-A ALM, we use the decreasing sequence ϵk =
10
1.1k

. In

this case, we can get the subdifferential of f(x) = ∥x∥1 + β
2
∥x∥22 as follows :

∂f(x)i =


βxi + 1, xi > 0

βxi − 1, xi < 0

{y : −1 ≤ y ≤ 1}, xi = 0

,

where yi means i-th element of y for any vector y. Hence, we can find the

subgradient vector of f at xk+1 which is the closest vector to ATλk+1 =

AT (λ̂k− τ(Axk+1− b)) for each iteration k and we can have the inexact stop-

ping condition by simple calculation. In each test, we calculate the residual

error ∥Axk − b∥2, the relative error

∥xk − x̄∥2
∥x̄∥2
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Figure 3.4: Results from ℓ1-ℓ2 minimization problem. Lagrangian dual func-

tion (1st column), relative error (2nd column) and residual error (3rd column)

at each iteration

and the Lagrangian dual function at λk

D(λk) = − 1

2β
∥(|ATλk| − 1)+∥2 + λT

k b

for each iteration k. We terminate the I-AALM when

∥Axk − b∥ < 10−10

is satisfied.

In Figure 3.4, we plot the Lagrangian dual function D(λk), relative er-

ror and residual error at each iteration k. We observe that the Lagrangian

dual function value monotone increases as the iteration number k increases.

Although various algorithms use for solving subproblem (3.47) in I-AALM,

Lagrangian dual function value in all tests converges same value. Since the I-

AALM is not monotone method, the relative error and the residual error dose

not decrease monotony, but both errors decay to zeros. Although same ter-

minate condition uses in all tests, we observe that terminate iteration varies

in all tests. Thus, we can show that the performance of I-AALM depends on

the algorithms solving the subproblem (3.47).

3.4.3 Comparison to the inexact accelerated augmented

Lagrangian method with other methods

In this subsection, we compare the performance of the I-AALM and state-

of-the-arts algorithms for solving the linearly constrained ℓ1-ℓ2 minimization
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(3.46). There are many algorithms for solving the ℓ1-ℓ2 minimization problem

with linear equality constraints (3.46), which are original linearized Bregman

method, accelerated schemes of linearized Bregman method. Yin et al. [56]

proved that the linearized Bregman method is equivalent to a gradient de-

scent method applied to the Lagrangian dual problem of (3.46). Based on

this study, Yin [56] improved the linearized Bregman method using Barzilai-

Borwein line search [3], the limited memory BFGS [29], and nonlinear conju-

gate gradient methods. Recently, the accelerated linearized Bregman method

in [26] was developed based on Nesterov’s acceleration of gradient method

and Yang et al. [55] developed the linearized Bregman method-split Bregman

method.

linearized Bregman method-split Bregman method(LB-SB) [55] To solv-

ing the linearly constrained ℓ1-ℓ2 minimization (3.46), the authors consider

the dual formulation of (3.46):

min
y,z

−bTy +
1

2β
∥ATy − z∥22 such that z ∈ [−1, 1], (3.48)

with relation x = 1
β
· shrink(ATy, 1) between primal and dual variables. Note

that z can be expressed by Proj[−1,1](A
Ty). Based on this note, we easily

verify that the dual problem (3.48) of (3.46) is equivalent to the unconstrained

minimization problem

min
y

−bTy +
1

2β
∥ATy − Proj[−1,1](A

Ty)∥22. (3.49)

By applying the variable splitting, the previous unconstrained optimization

problem (3.49) is equivalent to the linearly constrained minimization problem

min
y,d

−bTy +
1

2β
∥d− Proj[−1,1](d)∥22 such that d = ATy. (3.50)

The problem (3.50) has the form (1.2), so, ADMM can be applied to this

problem (3.50). Each subproblem with respect to y or d has the closed form

solution. Based on this process, the dual split Bregman method is summarized

in Algorithm 17.

We compare our I-AALM with state-of-the-art algorithms which are ac-

celerated linearized Bregman method [26] and dual split Bregman method
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Algorithm 17 LB-SB

Input : β > 0, y0 = 0, f0 = 0 and λ = 10

repeat

Update dk following steps. (·)i means i-th component.

if |(ATyk−1 + fk−1)i| ≤ 1 then

(dk)i = (ATyk−1 + fk−1)i
else

(dk)i =
(ATyk−1 + fk−1)i + sign((ATyk−1 + fk−1)i)λ/β

1 + λ/β
end if

yk = (AAT )−1(Adk − Afk−1 + λb)

fk = fk−1 + ATyk − dk
xk =

1
β
· shrink(ATyk, 1)

until a stopping criterion is satisfied.

[55] with the same setup for A and x̄ as in the subsection 3.4.2 except

for n, m, k and β. We set m = 2500, n = 5000 and sparsity k = 250 or

m = 1000, n = 5000 and k = 100. We use various β = 0.1, 0.01, 0.001. We

also give the observed vector the various noise :

b = Ax̄+ n

where the noise n is generated by standard Gaussian distribution N (0, 1)

and then it is normalized with the norm σ = 0, 0.01. When noise is present,

we terminate all the methods when the residual error ∥Axk − b∥2 ≤ σ and

for a noise-free case, we terminate all the methods when the relative residual

error

∥Axk − b∥2 < 5 · 10−5∥b∥2
is satisfied. The coefficient γ in the penalty term of the subproblem of the

I-AALM is fixed to γ = 100. We use the SpaRSA for solving the subproblem

of the I-AALM. We also set a decreasing sequence

ϵk =


1

1.1k
, β = 0.1

10
1.1k

, β = 0.01
100
1.1k

, β = 0.001,

65



CHAPTER 3. PROPOSED ALGORITHMS

whose series
∞∑
k=1

ϵk converges, for inexact stopping condition.

We record the average number of iterations, computing time, residual

error, relative error and SNR for clean data in Tables 3.4-3.9, while we report

results for noisy data with σ = 0.01 in Tables 3.10-3.15. In case of I-AALM,

we report the number of total iteration which is summation of number of

inner iterations.

As general conclusions we can say, the I-AALM is the fastest algorithm

except for the one case that size of A is 2500 × 5000, β = 0.1 and σ = 0.

We can see that the speed of I-AALM stays almost the same whenever we

decrease the value of β for fixing noise level, size of A and sparsity. We can

also observe that the recovery solution of I-AALM is well-restored for every

case and it is slightly more accurate as we decrease the value of β. On the

other hand, ALB get slower speed as we decrease β and the speed of ALB

is less-affected by adding noise to b. The accuracy (relative error or SNR)

of restored solution of ALB stays almost the same whenever we increase the

value of β for noise-free case. The speed of LB-SB is very slow when we add

noise to b and LB-SB has slightly slower speed as we decrease the value of

β. When we give noise to b, LB-SB has less accurate than I-AALM or ALB.

For all methods, as we increase number of measurement and density of ū,

the speed is slower, although number of iterations stays almost the same. In

conclusion, our proposed algorithm is the best algorithm in terms of accuracy

and speed.

Let us comment on each single experiment in a little more details:

1. In first experiment (Table 3.4), all methods recover original sparse so-

lution up to small relative error. Since I-AALM has inner iterations, we

observe that the I-AALM has the smallest residual error and residual

error of LB-SB is similar with that of ALB. Thus, the I-AALM has the

smallest relative error and largest SNR and I-AALM find best-restored

sparse solution. The I-AALM has the fastest runtime although I-AALM

has larger number of iterations than ALB or LB-SB.

2. In second experiment (Table 3.5), we decrease the value of β. We ob-

serve that the performance of I-AALM is similar with that of I-AALM
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for β = 0.1. Since average residual error is smaller than average residual

error for β = 0.1, the average relative error is also smaller than that

for β = 0.1 and average SNR is larger than that in the case of β = 0.1.

ALB has very slower speed and the speed of LB-SB is slightly slower

than the case of β = 0.1.

3. As we decrease very small value of β in Table 3.6, ALB has poor speed

and many number of iterations, especially, I-AALM is around 12 times

faster than ALB. The I-AALM is also around 2 times faster than LB-

SB. From relative error or SNR in Table 3.6, we can show that the

recovery solution of I-AALM has more accuracy than that of ALB or

LB-SB.

4. By changing the size of A to 2500×5000 and having 250 nonzero entries

of x̄, we can see in 3.7 that all methods have slightly slower speed, espe-

cially, the LB-SB has larger computing time although average number

of iterations for LB-SB is smaller than that in first experiment. We pre-

dict that speed of LB-SB is slow down because of computing inverse of

the larger matrix. In only this case, the LB-SB is faster and has smaller

number of iterations than I-AALM.

5. In this experiment (Table 3.8), we increase the value of β then, we can

see that computing time of I-AALM and LB-SB stay almost the same

in comparison with fourth experiment (Table 3.7) and the same is true

for the number of iterations. However, I-AALM is slightly faster than

LB-SB. Similar with second experiment (Table 3.5), average speed and

number of iteration of ALB increase largely in comparison with fourth

experiment.

6. By changing the value of β to smaller value 0.001, speed of I-AALM and

LB-SB is similar with that at previous test, while number of iteration

ALB is about 3 times larger than the case of β = 0.01. Average relative

error and SNR of ALB and LB-SB stay almost the same whenever the

value of β decreases. In the case of I-AALM, average relative error

slightly larger than that for β = 0.01. On the contrary, average SNR is
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about 122.252 up from 113.930 in β = 0.01. However, relative error or

SNR is slightly different from that in β = 0.01.

7. By adding noise to b, the computation time and number of iterations

of ALB and LB-SB grow so rapidly. Since stopping criterion is changed

as adding noise to b, all algorithms can stop at larger residual error.

For this reason, computing time and number of total iteration decrease

a little bit in the case of I-AALM. Unusually, based on SNR or relative

error in Table 3.10, we can observe that restored solution of LB-SB is

very poor in comparison with that of ALB or I-AALM.

8. As value of β decreases, we can see that ALB has slower speed similar

with the noise-free case and LB-SB has also slower speed, but this phe-

nomenon is different from noise-free case. In particular, the computing

time and number of iterations in LB-SB is larger than these in ALB

with direct opposition to the case in Table 3.5. The speed of I-AALM

is similar with that in the case of β = 0.1. average relative error and

SNR increase in ALB and I-AALM, but decrease in LB-SB. I-AALM

has still better restored-solution than that of ALB or LB-SB.

9. By modifying β = 0.001, LB-SB has very slow speed and relatively, LB-

SB has less accurate restored solution based on SNR and relative error

in Table 3.11. I-AALM has the 31 times faster speed than ALM and has

as much as 141 times faster speed than LB-SB. ALB find more exact

solution than the case of β = 0.01 and accuracy of restored solution of

I-AALM remain almost like, whenever β is changed.

10. By modifying the size of A to 2500×5000 and having sparsity k = 250,

computing time of LB-SB is very larger than that of ALB when β = 0.1.

Additionally, LB-SB find less exact recovery solution than ALB or I-

AALM. On the other hand, performance of I-AALM is the fastest and

find the best accurate restored-solution.

11. Although we decrease the value of β, we can see a similar trend in Table

3.14. Continuously, LB-SB is very slow and has low accuracy restored

solution when noise is added to b.
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Table 3.4: Noise-free case. Size A = 1000× 5000, 2% of ū is nonzero, β = 0.1

mean std. maximum minimum

Iter. I-AALM 13.84(459.47) 7.60(224.89) 41(1292) 6(167)

(Total Iter.) ALB 408.64 213.91 1084 174

LB-SB 230.82 156.91 1114 155

Time I-AALM 2.5234 1.2266 6.9829 0.9708

ALB 3.0721 1.6158 8.4168 1.3081

LB-SB 3.7019 2.4291 17.5928 2.5029

Res. Err. I-AALM 5.860e-05 3.939e-05 1.529e-04 3.716e-06

ALB 1.425e-04 1.575e-05 1.685e-04 6.473e-05

LB-SB 1.399e-04 1.507e-05 1.709e-04 1.057e-04

Rel. Err. I-AALM 2.288e-05 1.495e-05 5.822e-05 1.279e-06

ALB 6.058e-05 5.898e-06 6.958e-05 2.898e-05

LB-SB 5.998e-05 5.220e-06 6.830e-05 4.849e-05

SNR I-AALM 95.488 7.944 117.862 84.698

ALB 84.401 0.974 90.758 83.149

LB-SB 84.473 0.775 86.285 83.310

12. When we set β = 0.001 and we add noise to b, average number of

iterations in LB-SB has maximum value in all cases and that value is

as much as 481 second. As we decrease the value of β, the restored

solution of ALB or I-AALM is slightly more accurate, but it is only

little different in essence. On the other hand, LB-SB find lower accurate

solution than the case of β = 0.1. Thus, when we add noise to b, we

can conclude that LB-SB may be unsuitable to use according to speed

(computation time or number of iterations) and accuracy (SNR, relative

error).

3.4.4 Inexact accelerated alternating direction method

of multipliers for Multiplicative Noise Removal

The application of our I-AADMM is the problem of restoring a clean image

from a noisy image corrupted by multiplicative noise. The multiplicative

noise appears in ultrasound imaging, synthetic aperture radar (SAR) and

sonar (SAS), laser imaging and magnetric field inhomogeneity in MRI. In
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Table 3.5: Noise-free case. Size A = 1000×5000, 2% of ū is nonzero, β = 0.01

mean std. maximum minimum

Iter. I-AALM 14.38(448.69) 7.04(204.75) 43(1119) 6(122)

(Total Iter.) ALB 1301.36 679.18 4032 502

LB-SB 277.17 151.61 1363 201

Time I-AALM 2.4417 1.1178 6.2926 0.6877

ALB 9.7400 5.2552 31.0395 3.5917

LB-SB 4.4042 2.4997 22.9216 3.1630

Res. Err. I-AALM 1.365e-05 1.940e-05 1.293e-04 1.077e-06

ALB 1.443e-04 1.710e-05 1.908e-04 1.009e-04

LB-SB 1.397e-04 1.610e-05 1.801e-04 1.058e-04

Rel. Err. I-AALM 5.520e-06 7.662e-06 4.883e-05 3.676e-07

ALB 6.040e-05 6.216e-06 7.027e-05 3.429e-05

LB-SB 6.017e-05 5.247e-06 7.009e-05 4.223e-05

SNR I-AALM 109.140 7.840 128.692 86.225

ALB 84.431 0.996 89.296 83.061

LB-SB 84.447 0.795 87.487 83.085

Table 3.6: Noise-free case. Size A = 1000×5000, 2% of ū is nonzero, β = 0.001

mean std. maximum minimum

Iter. I-AALM 14.54(444.46) 7.83(213.90) 41(1272) 5(136)

(Total Iter.) ALB 4107.48 2388.69 12124 1052

LB-SB 326.35 167.68 1380 239

Time I-AALM 2.3018 1.0966 6.5070 0.7336

ALB 29.6453 17.2323 87.2290 7.5966

LB-SB 4.9909 2.4808 20.5475 3.6606

Res. Err. I-AALM 1.446e-05 2.660e-05 1.403e-04 6.993e-07

ALB 1.421e-04 1.643e-05 1.885e-04 6.641e-05

LB-SB 1.354e-04 2.025e-05 1.822e-04 7.099e-05

Rel. Err. I-AALM 5.661e-06 9.903e-06 5.077e-05 2.928e-07

ALB 6.043e-05 6.836e-06 6.983e-05 2.736e-05

LB-SB 5.944e-05 8.227e-06 7.147e-05 3.268e-05

SNR I-AALM 112.023 9.997 130.668 85.888

ALB 84.444 1.176 91.259 83.120

LB-SB 84.615 1.366 89.715 82.918
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Table 3.7: Noise-free case. Size A = 2500× 5000, 5% of ū is nonzero, β = 0.1

mean std. maximum minimum

Iter. I-AALM 13.10(425.00) 5.18(157.51) 31(878) 5(163)

(Total Iter.) ALB 344.78 144.30 798 135

LB-SB 102.32 55.28 362 60

Time I-AALM 5.4799 2.0281 11.2427 2.1229

ALB 6.1618 2.5992 14.2068 2.4008

LB-SB 5.2342 2.1821 15.5214 3.4063

Res. Err. I-AALM 6.438e-05 7.084e-05 3.248e-04 1.204e-06

ALB 2.898e-04 3.752e-05 3.670e-04 1.668e-04

LB-SB 2.786e-04 3.928e-05 3.579e-04 1.801e-04

Rel. Err. I-AALM 1.139e-05 1.209e-05 5.554e-05 2.250e-07

ALB 5.646e-05 8.063e-06 6.790e-05 2.498e-05

LB-SB 5.300e-05 6.860e-06 6.454e-05 3.497e-05

SNR I-AALM 103.691 10.159 132.952 85.109

ALB 85.068 1.413 92.046 83.362

LB-SB 85.592 1.192 89.126 83.804

Table 3.8: Noise-free case. Size A = 2500×5000, 5% of ū is nonzero, β = 0.01

mean std. maximum minimum

Iter. I-AALM 12.93(400.47) 5.12(160.40) 31(989) 6(151)

(Total Iter.) ALB 1057.26 452.83 2620 405

LB-SB 112.44 59.93 417 75

Time I-AALM 5.1625 2.0480 12.6600 1.9516

ALB 18.9107 8.1014 46.9173 7.2332

LB-SB 5.6709 2.3591 17.7615 4.0957

Res. Err. I-AALM 6.566e-05 9.876e-05 3.282e-04 6.093e-07

ALB 2.836e-04 3.268e-05 3.600e-04 1.497e-04

LB-SB 2.781e-04 3.561e-05 3.376e-04 1.959e-04

Rel. Err. I-AALM 1.147e-05 1.715e-05 5.539e-05 1.015e-07

ALB 5.578e-05 8.340e-06 6.924e-05 2.534e-05

LB-SB 5.430e-05 6.678e-06 6.556e-05 3.899e-05

SNR I-AALM 113.930 17.839 139.872 85.129

ALB 85.186 1.504 91.924 83.188

LB-SB 85.373 1.120 88.179 83.665
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Table 3.9: Noise-free case. Size A = 2500×5000, 5% of ū is nonzero, β = 0.001

mean std. maximum minimum

Iter. I-AALM 13.48(427.44) 4.76(155.23) 30(932) 6(116)

(Total Iter.) ALB 3467.44 1357.63 8150 1351

LB-SB 126.02 48.77 306 87

Time I-AALM 5.6007 2.0104 12.2323 1.5594

ALB 63.3687 24.8209 149.1493 24.6064

LB-SB 6.3126 1.9639 13.4824 4.5769

Res. Err. I-AALM 3.307e-05 6.819e-05 2.641e-04 2.928e-07

ALB 2.889e-04 3.117e-05 3.419e-04 1.813e-04

LB-SB 2.711e-04 4.122e-05 3.411e-04 1.558e-04

Rel. Err. I-AALM 5.590e-06 1.126e-05 4.297e-05 4.954e-08

ALB 5.672e-05 6.547e-06 6.750e-05 3.067e-05

LB-SB 5.309e-05 7.585e-06 6.477e-05 3.100e-05

SNR I-AALM 122.252 16.517 146.101 87.336

ALB 84.987 1.081 90.265 83.414

LB-SB 85.595 1.335 90.173 83.772

Table 3.10: Noise-added case. Size A = 1000 × 5000, 2% of ū is nonzero,

β = 0.1

mean std. maximum minimum

Iter. I-AALM 7.41(247.68) 1.38(90.44) 11(570) 4.00(61)

(Total Iter.) ALB 660.06 372.72 1017 123

LB-SB 517.80 39.37 600 386

Time I-AALM 1.2858 0.4493 2.8669 0.3417

ALB 6.3292 3.5855 10.0232 1.1564

LB-SB 7.8709 0.5961 9.1464 5.8928

Res. Err. I-AALM 9.542e-03 2.418e-04 9.988e-03 9.109e-03

ALB 9.841e-03 1.536e-04 1.000e-02 9.232e-03

LB-SB 9.824e-03 1.315e-04 9.997e-03 9.383e-03

Rel. Err. I-AALM 1.730e-03 3.967e-04 3.227e-03 9.305e-04

ALB 4.524e-03 2.274e-03 7.402e-03 1.237e-03

LB-SB 7.028e-03 6.152e-04 8.546e-03 5.737e-03

SNR I-AALM 55.460 1.977 60.624 49.824

ALB 48.413 5.585 58.150 42.613

LB-SB 43.095 0.767 44.826 41.362
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Table 3.11: Noise-added case. Size A = 1000 × 5000, 2% of ū is nonzero,

β = 0.01

mean std. maximum minimum

Iter. I-AALM 7.39(231.29) 1.25(76.79) 11(478) 5(69)

(Total Iter.) ALB 1513.83 1398.41 3914 374

LB-SB 2626.77 189.63 3135 2129

Time I-AALM 1.2307 0.3857 2.4620 0.4018

ALB 14.7370 13.6041 38.0016 3.6205

LB-SB 40.0628 2.8931 47.4138 32.2973

Res. Err. I-AALM 9.561e-03 2.047e-04 9.988e-03 9.078e-03

ALB 9.902e-03 9.618e-05 9.996e-03 9.452e-03

LB-SB 9.933e-03 5.105e-05 9.999e-03 9.728e-03

Rel. Err. I-AALM 1.558e-03 3.149e-04 2.608e-03 1.031e-03

ALB 2.945e-03 2.041e-03 7.600e-03 1.228e-03

LB-SB 7.182e-03 5.451e-04 8.618e-03 5.859e-03

SNR I-AALM 56.313 1.702 59.735 51.674

ALB 52.352 5.212 58.216 42.378

LB-SB 42.899 0.656 44.642 41.291

Table 3.12: Noise-added case. Size A = 1000 × 5000, 2% of ū is nonzero,

β = 0.001

mean std. maximum minimum

Iter. I-AALM 7.63(222.66) 1.58(78.76) 11(486) 4(69)

(Total Iter.) ALB 3816.13 4180.94 14358 943

LB-SB 11093.84 1270.58 14763 8843

Time I-AALM 1.1583 0.3861 2.4329 0.3806

ALB 36.2291 39.7064 136.4345 8.8944

LB-SB 164.1395 18.8453 219.6760 131.1316

Res. Err. I-AALM 9.630e-03 2.147e-04 9.997e-03 9.073e-03

ALB 9.935e-03 8.443e-05 1.000e-02 9.460e-03

LB-SB 9.963e-03 2.553e-05 9.999e-03 9.873e-03

Rel. Err. I-AALM 1.634e-03 3.549e-04 2.780e-03 9.244e-04

ALB 2.312e-03 1.686e-03 7.366e-03 1.053e-03

LB-SB 7.057e-03 6.328e-04 8.917e-03 5.657e-03

SNR I-AALM 55.943 1.936 60.682 51.118

ALB 54.132 4.373 59.553 42.655

LB-SB 43.061 0.778 44.948 40.991
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Table 3.13: Noise-added case. Size A = 2500 × 5000, 5% of ū is nonzero,

β = 0.1

mean std. maximum minimum

Iter. I-AALM 7.47(235.35) 1.14(73.50) 10(494) 5(89)

(Total Iter.) ALB 299.79 375.11 1733 116

LB-SB 509.34 33.75 577 416

Time I-AALM 3.0294 0.9005 6.1662 1.2402

ALB 7.1908 9.0235 41.8323 2.7654

LB-SB 21.1852 1.3550 23.8966 17.6403

Res. Err. I-AALM 9.653e-03 1.901e-04 9.989e-03 9.377e-03

ALB 9.912e-03 8.181e-05 1.000e-02 9.612e-03

LB-SB 9.797e-03 1.516e-04 1.000e-02 9.410e-03

Rel. Err. I-AALM 6.709e-04 9.152e-05 9.307e-04 4.969e-04

ALB 9.403e-04 6.491e-04 3.427e-03 5.622e-04

LB-SB 3.645e-03 1.911e-04 4.366e-03 3.234e-03

SNR I-AALM 63.546 1.175 66.074 60.624

ALB 61.485 3.350 65.002 49.300

LB-SB 48.777 0.452 49.804 47.198

Table 3.14: Noise-added case. Size A = 2500 × 5000, 5% of ū is nonzero,

β = 0.01

mean std. maximum minimum

Iter. I-AALM 7.64(234.78) 1.17(79.93) 11(424) 5(81)

(Total Iter.) ALB 636.45 127.46 935 329

LB-SB 2717.18 206.89 3276 2266

Time I-AALM 3.0461 0.9884 5.3953 1.1021

ALB 15.4051 3.0955 22.4608 8.0013

LB-SB 108.6316 8.2255 131.1447 90.9103

Res. Err. I-AALM 9.690e-03 1.815e-04 9.997e-03 9.407e-03

ALB 9.919e-03 9.309e-05 1.000e-02 9.495e-03

LB-SB 9.932e-03 5.510e-05 9.999e-03 9.757e-03

Rel. Err. I-AALM 6.691e-04 9.167e-05 9.350e-04 4.712e-04

ALB 7.482e-04 7.182e-05 8.920e-04 5.904e-04

LB-SB 3.936e-03 2.053e-04 4.447e-03 3.501e-03

SNR I-AALM 63.571 1.204 66.536 60.583

ALB 62.559 0.852 64.577 60.990

LB-SB 48.110 0.451 49.114 47.037
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Table 3.15: Noise-added case. Size A = 2500 × 5000, 5% of ū is nonzero,

β = 0.001

mean std. maximum minimum

Iter. I-AALM 7.45(218.26) 1.29(80.99) 11(477) 5(81)

(Total. Iter.) ALB 1961.25 386.61 2885 1127

LB-SB 11961.34 1099.85 15039 8781

Time I-AALM 2.8866 1.0137 5.8436 1.1520

ALB 48.2929 9.5364 71.2886 27.8140

LB-SB 481.5565 44.0275 604.6174 354.1902

Res. Err. I-AALM 9.656e-03 1.713e-04 9.996e-03 9.312e-03

ALB 9.914e-03 8.128e-05 1.000e-02 9.612e-03

LB-SB 9.964e-03 2.902e-05 1.000e-02 9.880e-03

Rel. Err. I-AALM 6.452e-04 8.550e-05 8.311e-04 4.779e-04

ALB 7.424e-04 6.239e-05 8.831e-04 5.665e-04

LB-SB 3.923e-03 1.799e-04 4.316e-03 3.448e-03

SNR I-AALM 63.880 1.137 66.414 61.606

ALB 62.617 0.736 64.935 61.079

LB-SB 48.136 0.401 49.248 47.299

this work, we assume the degradation model as

f = g · n, (3.51)

where f : Ω → R is an observed noisy data defined on an open and bounded

set Ω ⊂ R2, g is the ideal image to be recovered, and n is the noise that

follows a Gamma distribution with E(n) = 1, commonly occuring in SAR

(known as speckle).

In variational approaches, several work devoted to multiplicative noise

removal have been proposed, such as Rudin et al. [45], Aubert and Aujol

[2], Shi and Osher [49], Huang et al. [27], Steidl and Teuber [50], etc. As a

seminal work, Aubert and Aujol [2] used a maximum a posteriori (MAP) reg-

ularization approach and derived a functional whose minimizer corresponds

to the denoised image to be recovered. This functional is

min
g

α

∫
Ω

(
log g +

f

g

)
dx+

∫
Ω

|∇g| dx, (3.52)

where the total variation of g is utilized as the regularization term, and
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α > 0 is the parameter that controls the smoothness of the restored image g.

Despite the noncovexity of the functional, the authors proved the existence

of a minimizer, and provided a sufficient condition for the uniqueness.

Huang et al. [27] proposed a strictly convex TV minimization function for

multiplicative noise removal. The authors used logarithmic transformation on

both side of (3.51) and converted the multiplicative problem into the additive

one: log f = log g+log n. Then they added a quadratic term in the data term

of the Aubert and Aujol model (3.52) and replaced the regularizer for g by

z by using an auxiliary variable z = log g. Therefore, their proposed model

is described as

min
z,u

α

∫
Ω

(z + fe−z) dx+
µ

2

∫
Ω

(z − u)2 dx+

∫
Ω

|∇u| dx, (3.53)

where µ > 0 is the parameter that measures the trade-off between an image

obtained by a maximum likelihood estimation from the first term and a total

variation denoised image u. The main advantage of this model is that the

total variation regularization enables us to preserve edges well in the denoised

image.

It is known that the total variation denoising method preserves edges well

but produces undesirable staircasing effect in the denoised image, since it fa-

vor piecewise constant solutions. To ameliorate the staircasing effect, a pop-

ular approach is the use of the higher-order regularization. The most of the

higher-order noms involve second-order differential operators because second-

order derivatives lead to piecewise-linear solutions that better fit smooth in-

tensity changes. We propose a hybrid total variation minimization model for

multiplicative noise removal, so that it reduces the staircasing effect while

preserving the discontinuities (edges) as well as that our I-AADMM is appli-

cable. Therefore, the proposed model is as follows

min
z,u

E(z, u) = α

∫
Ω

(z + fe−z) dx+
β

2

∫
Ω

z2 dx+
µ

2

∫
Ω

(z − u)2 dx(3.54)

+

∫
Ω

|∇u|+ ϵ

2
|∇u|2 dx+

δ

2

∫
Ω

|∇2u|2 dx,

where ϵ, δ > 0 are parameters.
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Now we introduce auxiliary variables d and w, and convert the proposed

unconstrained minimization problem (3.54) to the constrained one as

min
z,u,d,w

F (z, u, d, w) = α

∫
(z + fe−z) dx+

β

2

∫
z2 dx+

µ

2

∫
(z − u)2 dx

+

∫
|d|+ ϵ

2
|d|2 dx+

δ

2
∥w∥22,

s.t. d = ∇u, w = ∇2u. (3.55)

This constrained model can be rewritten as

min
z,u,d,w

F (z, u, d, w) = H(z, u, d) +G(w), s.t. B

z

u

d

+ Cw = 0, (3.56)

with the functionals H, G and the matrices B, C defined as

H(z, u, d) = α

∫
z + fe−z dx+

β

2

∫
z2 dx+

µ

2

∫
(z − u)2 dx

+

∫
|d|+ ϵ

2
|d|2 dx,

G(w) =
δ

2
∥w∥22,

B =

(
0 −∇ I

0 −∇2 0

)
, C =

(
0

I

)
,

where ρ(BTB) = ∥∆∥22 = 64 and ρ(CTC) = 1.

It is trivial to show that the functional H is strongly convex with respect

to z, with modulus β. Hence, H is strongly convex with respect to (z, u, d)

with the modulus

σH = min(λmin(Hess), ϵ), (3.57)

where Hess =

(
β + µ −µ

−µ µ

)
and λmin(Hess) is the minimum eigenvalue

of the matrix Hess. Moreover, G is also strongly convex with the modulus

σG = δ, and it is quadratic.
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Therefore, the I-AADMM algorithm to solve the problem (3.56) is given

by

(zk, uk, dk) ≈ argmin
z,u,d

{
H(z, u, d)− λ̂T

k ·
(
−∇u+ d

−∇2u

)
+

τ

2
∥d−∇u∥22

+
τ

2
∥ŵk −∇2u∥22

}
,

wk ≈ argmin
w

{
G(w)− λ̂T

k ·
(
0

w

)
+

τ

2
∥dk −∇uk∥22 +

τ

2
∥w −∇2uk∥22

}
,

λk = λ̂k − τ

(
dk −∇uk

wk −∇2uk

)
, (3.58)

αk+1 =
1 +

√
1 + 4α2

k

2
,

ŵk+1 = wk +
αk − 1

αk+1

(wk − wk−1),

λ̂k+1 = λk +
αk − 1

αk+1

(λk − λk−1),

where λ̂T
k = (λ̂1,k, λ̂2,k).

To solve the subproblem for (zk, uk, dk), we take the partial derivatives of

the energy with respect to z, u, d, leading to the normal equations as below

α(1− fe−z) + βz + µ(z − u) = 0, (3.59)

(µ− τ∆+ τ∆2)u = µz − τ∇ · (d− λ̂1,k

τ
) + τdiv2(ŵk −

λ̂2,k

τ
),(3.60)

d = shrink(
τ∇u+ λ̂1,k

τ + ϵ
,

1

ϵ+ τ
). (3.61)

To overcome the expensive computation of inverse of coefficient matrix, we

use the semi-implicit scheme, which alternatively solves the Euler-Lagrange

equations. Fixing u and d, we begin with solving the first equation for zkn ,

which can be very efficiently determined by using the Newton method. On

the other hand, when z and d are fixed, the solution ukn can be obtained by

one-step FFT implementation by assuming the periodic boundary condition.

Lastly, the iterates dkn can be obtained with the one-step thresholding op-

erator. We iterate this process for kn = 0, 1, ... until the stopping criteria is

reached, to obtain (zk, uk, dk).
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Finally, the minimizing solution wk can be obtained with the explicit

formula

wk =
τ(∇2uk) + λ̂2,k

δ + τ
. (3.62)

Hence, the summary of our iterative algorithm is as follows:

• For (zk, uk, dk), iterate for kn = 0, 1, ... until the stopping criteria, with

(zk0 , uk0 , dk0) = (zk−1, uk−1, dk−1):

– For zkn : iterate for ℓ = 0, 1, ..., L (in practice, we set L = 5) with

zkn,0 = zkn−1 ,

zkn,ℓ+1 = zkn,ℓ −
α(1− fe−zkn,ℓ) + βzkn,ℓ + µ(zkn,ℓ − ukn−1)

αfe−zkn,ℓ + β + µ

– For ukn : perform one-step FFT implementation

ukn = F−1

(
F(µzkn − τ∇ · (dkn−1 −

λ̂1,k

τ
) + τdiv2(ŵk − λ̂2,k

τ
))

µ− γF(∆) + γF(∆)2

)
– For dkn :

dkn = shrink
(τ∇ukn + λ̂1,k

τ + ϵ
,

1

ϵ+ τ

)
• For wk:

wk =
τ(∇2uk) + λ̂2,k

δ + τ

• Update:

λ1,k = λ̂1,k − τ(dk −∇uk),

λ2,k = λ̂2,k − τ(wk −∇2uk),

αk+1 =
1 +

√
1 + 4α2

k

2
,

ŵk+1 = wk +
αk − 1

αk+1

(wk − wk−1),

λ̂1,k+1 = λ1,k +
αk − 1

αk+1

(λ1,k − λ1,k−1),

λ̂2,k+1 = λ2,k +
αk − 1

αk+1

(λ1,k − λ1,k−1).
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For inexact stopping conditions in I-AADMM, we set the sequence ϵk =
105

1.1k

for all k ≥ 1. Although we take a large ϵ0, the series
∑

k=0 ϵk is converges.

Hence, we take v̂1 = 0. For solving TV model (3.53), we apply alternating

minimization algorithm which do the minimization for z, u in an alternating

fashion. 
zk+1 = min

z
α

∫
Ω

(z + fe−z) dx+
µ

2

∫
Ω

(z − uk)
2 dx (3.63a)

uk+1 = min
u

µ

2

∫
Ω

(zk+1 − u)2 dx+

∫
Ω

|∇u| dx, (3.63b)

To solve the equation for z, we also use Newton method as our model. To

solve the second equation for u, we apply one-step split Bregman method

[19].

min
u,d

µ

2

∫
Ω

(zk+1 − u)2 dx+

∫
Ω

|d| dx, s.t. d = ∇u.

by variable splitting. Then, using alternating direction method of multipliers,

we obtain

uk+1,n = argmin
u

{µ
2

∫
Ω

(zk+1 − u)2 dx+ λT
n−1(∇u) +

τ

2
∥dn −∇u∥22

}
dn = argmin

d

{∫
Ω

|d| dx− λT
n−1(d) +

τ

2
∥d−∇uk+1,n∥22

}
λn = λn−1 − τ(dn −∇uk+1,n)

and we take n = 1 for fast speed, i.e. we perform only one ADMM itera-

tion. The summary of alternating minimization algorithm for TV model is

as follows:

• For zk: iterate for ℓ = 0, 1, ..., L (in practice, we set L = 5) with zk,0 =

zk−1,

zk,ℓ+1 = zk,ℓ −
α(1− fe−zk,ℓ) + µ(zk,ℓ − uk−1)

αfe−zk,ℓ + µ

• For uk: perform one-step FFT implementation

uk = F−1

(
F(µzk − τ∇ · (dk−1 − λk−1

τ
))

µ− γF(∆)

)

80



CHAPTER 3. PROPOSED ALGORITHMS

Table 3.16: Comparison results of TV model and Our model

SNR Total Iteration Time(s)

Our TV Our TV Our TV

Circle 28.36 27.41 1851 704 38.22 12.29

Satellite 16.04 15.61 2105 502 173.06 32.38

Barbara 19.08 17.88 2358 728 44.07 11.90

• For dk:

dk = shrink
(τ∇uk + λk

τ
,
1

τ

)
• Update of dual variables λk:

λk = λk−1 − τ(dk −∇uk).

Then, the outer iteration for two models ( TV model (3.53) and our model

(3.54)) is stopped when

|E(uk, zk)− E(uk−1, zk−1)|
|E(uk, zk)|

< tol,

where tol is a threshold defining the desired accuracy. As default value we

use tol = 10−4.

In Figures 3.5-3.7, the data f are corrupted by the speckle noise following

a Gamma density with E(n) = 1 and σ2
n = 1/L. First, we can observe that

our hybrid model combined with the second-order regularization ameliorates

staircasing effect arisen from the total variation term. This leads to more

natural looking restored images while preserving details better than the TV

model. This shows that our additional quadratic second order regularization

term enhances the denoising results in the presence of high density of multi-

plicative noise. The SNR values in Table 3.16 also yield that denoised image

of our model is better than that of TV model. We can also show convergence

of both algorithms from the graphs of log scale of residual error. In Table

3.16, we observed that the I-AADMM for our model has slower speed than

the alternating minimization algorithm for the TV model. However, conver-

gence of our algorithm was proved in the previous section. On the other
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Data f with L = 10 (a) Denoised g = exp(z) log ∥dk −∇uk∥2
in TV model in TV model
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Figure 3.5: Denoising results of (b) our model and comparison with (a)

the TV model (3.53). Parameter: α = 3, β = 0.005 (ours), α = 3 (TV),

(ϵ, δ, µ, β) = (0.01, 1, 500, 0.005).
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Data f with L = 10 (a) Denoised g = exp(z) log ∥dk −∇uk∥2
in TV model in TV model
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(b) Denoised g = exp(z) log ∥dk −∇uk∥2 log ∥wk −∇2uk∥2
in our model in our model
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Figure 3.6: Denoising results of (b) our model and comparison with (a)

the TV model (3.53). Parameter: α = 4 (ours), α = 3 (TV), (ϵ, δ, µ, β) =

(0.01, 1, 500, 0.005).
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Data f with L = 10 (a) Denoised g = exp(z) log ∥dk −∇uk∥2
in TV model in TV model
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(b) Denoised g = exp(z) log ∥dk −∇uk∥2 log ∥wk −∇2uk∥2
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Figure 3.7: Denoising results of (b) our model and comparison with (a)

the TV model (3.53). Parameter: α = 9, β = 0.005 (ours), α = 5 (TV),

(ϵ, δ, µ, β) = (0.01, 1, 500, 0.005).
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hand, for the subproblem of the alternating minimization algorithm, we just

use one iteration of the ADMM. Actually, we apply the alternating split

Bregman method to the TV model which has coupled objective function.

When the alternating split Bregman method is applied to problem with cou-

pled objective function, its convergence has not been proved, although each

subproblem can be solved exactly. In conclusion, our algorithm is slower than

the alternating minimization algorithm for the TV model in numerical tests,

but the convergence of our algorithm is proven theoretically while the al-

ternating minimization algorithm for the TV model converges in numerical

tests without theoretical analysis.
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Conclusion

We proposed the new algorithms for solving linearly constrained convex min-

imization problems (1.1) and (1.2) in this dissertation.

The first method is an accelerated algorithm for the Bregman method.

We have shown that the convergence rate of the original Bregman method

is O( 1
k
) and that of the accelerated Bregman method is O( 1

k2
) for general

linearly constrained nonsmooth convex minimization, based on the equiva-

lence between the Bregman method and the augmented Lagrangian method.

According to numerical test, we showed that the proposed algorithm is faster

than the original Bregman method when we solve the linearly constrained ℓ1
and generalized ℓ2 minimization.

The first method is an inexact version of the accelerated augmented La-

grangian method (AALM). Despite acceleration of the convergence rate, the

computational cost of the accelerated methods is comparable with that of the

original ones. This is mainly due to the subproblem minimization required

to be solved exactly at each (outer) iteration. In general, the subproblem in

the ALM does not have a closed-form solution. Therefore, we have developed

an inexact version of the AALM (I-AALM), with an stopping condition for

the subproblem. It is also proven that the convergence rate of the I-AALM

remains the same as the AALM. The numerical results related to the linearly

constrained ℓ1-ℓ2 minimization problem show that the proposed I-AALM has

outstanding speed and accuracy of recovery, compared with state-of-art al-

gorithms. The proposed method can only apply the problem whose object
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function is a strongly convex function and the objective function of models

in many applications is not a strongly convex function. In future research, we

will develop the inexact conditions, which are computed numerically, of sub-

problem in (accelerated) augmented Lagrangian method when object func-

tion is an convex, proper and lower semicontinuous function.

The last is the I-AADMM, which is an inexact version of the fast alter-

nating direction method of multipliers (FADMM). Again, inexact stopping

criterions of the subproblems are provided, and it is proven that the con-

vergence rate is O( 1
k2
) under the same conditions with the FADMM. As an

application, we introduced a new variational model for multiplicative noise

removal, which incorporates the total variation regularization with a higher-

order one. When heavy noise is given, our model with the proposed algorithm

provides better denoised images than the model with the total variation (TV)

regularizer, visually and according to the SNR values. Even though the total

speed of our algorithm is slower than the alternating minimization algorithm

applied to the TV model, our algorithm is more based on a theoretical analy-

sis. The alternating minimization algorithm is the other popular method for

solving (1.2). This algorithm is the same with alternating direction method of

multipliers except for first subproblem. If we use the similar technique with

the case of I-AADMM, we will most likely be able to develop the inexact

version of accelerated alternating minimization algorithm in future.
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국문초록

선형 제한 조건의 수학적 최적화는 다양한 영상 처리 문제의 모델로서 사

용되고 있다. 이 논문에서는 이 선형 제한 조건의 수학적 최적화 문제를

풀기위한 빠른 알고리듬들을 소개하고자 한다. 우리가 제안하는 방법들

은 공통적으로 Nesterov에 의해서 개발되었던 가속화한 프록시말 그레디
언트 방법에서 사용되었던 보외법을 기초로 하고 있다. 여기에서 우리는

크게보아서 두가지 알고리듬을 제안하고자 한다. 첫번째 방법은 가속화한

Bregman방법이며,압축센싱문제에적용하여서원래의 Bregman방법보다

가속화한방법이더빠름을확인한다.두번째방법은가속화한어그먼티드
라그랑지안 방법을 확장한 것인데, 어그먼티드 라그랑지안 방법은 내부
문제를 가지고 있고, 이런 내부문제는 일반적으로 정확한 답을 계산할 수

없다.그렇기때문에이런내부문제를적당한조건을만족하도록부정확하
게 풀더라도 가속화한 어그먼티드 라그랑지 방법이 정확하게 내부문제를
풀때와 같은 수렴성을 갖는 조건을 제시한다. 우리는 또한 가속화한 얼터

네이팅 디렉션 방법데 대해서도 비슷한 내용을 전개한다.

주요어휘:어그먼티드라그랑지안방법, Bregman방법,압축센싱 ,Nesterov

의 가속화 방법 ,최적화 이론

학번: 2008-20274
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