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Abstract

Rabinowitz Floer homology and
Coisotropic intersections

Jungsoo Kang

Department of Mathematical Sciences

The Graduate School

Seoul National University

Rabinowitz Floer homology theory was developed by Kai Cieliebak and

Urs Frauenfelder using a Lagrange multiplier action functional, which was in-

troduced by Paul Rabinowitz in order to detect periodic orbits of autonomous

Hamiltonian systems.

In this thesis, we study a generalized Rabinowitz action functional with

several Lagrange multipliers, which is well suited for exploring dynamics on

coisotropic submanifolds of arbitrary codimensions. Using this, we investi-

gate among others, the existence problem of leafwise coisotropic intersection

points, displaceability of coisotropic submanifolds, and Rabinowitz Floer ho-

mology for coisotropic submanifolds. We also derive a Künneth formula for

the Rabinowitz Floer homology of product coisotropic submanifolds, and this

enables us to find a class of coisotropic submanifolds which have infinitely

many leafwise coisotropic intersection points. This study will serve as a cru-

cial tool for exploring autonomous dynamical systems with several integrals.

Key words: Rabinowitz Floer homology, Hamiltonian dynamics, First inte-

gral, Coisotropic submanifold, Leafwise intersection.

Student Number: 2008-20276
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Chapter 1

Preliminaries on symplectic

geometry

A symplectic form on a smooth manifold M is a closed nondegenerate

2-form ω ∈ Ω2(M). We call such a pair (M,ω) symplectic manifold. By

nondegeneracy, every symplectic manifold is of even dimension and orientable.

In particular, ω∧n is a volume form of M if dimM = 2n. The easiest ex-

ample of a symplectic manifold is a Euclidean space with the standard sym-

plectic structure
(
R2n,

∑n
i=1 dxi ∧ dyi

)
. In fact, every symplectic manifold is

locally equivalent to this standard Euclidean space by Darboux’s theorem.

Thus in order to construct invariants of symplectic manifolds, one has to

go beyond local considerations. The constructions of most global invariants

in symplectic geometry, such as Floer-type homologies and Gromov-Witten

invariants, use the fact that every symplectic manifold admits a family of

compatible almost complex structure. An almost complex structure J on

M is a complex structure on the tangent bundle, explicitly J ∈ End(TM)

and J2 = −1lTM . A symplectic form ω ∈ Ω2(M) is called compatible

with J if g(·, ?) := ω(·, J?) defines a Riemannian metric on M such that

g(·, ?) = g(J ·, J?).
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Chapter 1. Preliminaries on symplectic geometry

1.1 Hamiltonian diffeomorphisms

For any time-dependent smooth function F ∈ C∞(S1 ×M), the vector

field XF defined implicitly by

iXFω = dF

is called the Hamiltonian vector field associated to the Hamiltonian func-

tion F . The flow of the Hamiltonian vector field XF is denoted by φtF .

The time one map φF = φ1
F of a Hamiltonian flow is called a Hamilto-

nian diffeomorphism. The set Ham(M,ω) of all Hamiltonian diffeomor-

phisms is a group with respect to composition. We are interested in the sub-

group Hamc(M,ω) which consists of Hamiltonian diffeomorphisms generated

by compactly supported Hamiltonian functions. Next, we briefly recall the

Hofer norm which gives rise to a unique nondegenerate bi-invariant Finsler

metric on the group Hamc(M,ω).

Definition 1.1.1. Let F ∈ C∞c (S1×M,R) be a compactly supported Hamil-

tonian function. Consider the L∞-norm of F defined by

||F || := ||F ||+ + ||F ||−.

where

||F ||+ :=

∫ 1

0

max
x∈M

F (t, x)dt, ||F ||− := −
∫ 1

0

min
x∈M

F (t, x)dt = || − F ||+.

For φ ∈ Hamc(M,ω), the Hofer norm is

||φ|| := inf{||F || | φ = φF , F ∈ C∞c (S1 ×M,R)}.

As mentioned above, the function d on Hamc(M,ω)×Hamc(M,ω) defined

by d(φ, ψ) = ||φ−1 ◦ ψ|| is the unique bi-invariant Finsler metric. The exis-

2



Chapter 1. Preliminaries on symplectic geometry

tence of the Hofer bi-invariant metric shows that Hamc(M,ω) is an infinite

dimensional Lie group.

The following easy lemma will be useful in our story.

Lemma 1.1.2. [AF1] For all φ ∈ Hamc(M,ω),

||φ|| = |||φ||| := inf{||F || | φ = φF , F (t, ·) = 0 ∀t ∈ [1
2
, 1]} .

1.2 Coisotropic submanifolds

Definition 1.2.1. A submanifold Σ in (M,ω) is said to be coisotropic if

the symplectic orthogonal bundle

TΣω := {(x, ξ) ∈ TM |ωx(ξ, ζ) = 0 for all ζ ∈ TxΣ}

is a subbundle of TΣ. By definition,

0 ≤ codim Σ ≤ 1

2
dimM.

Example 1.2.2. Any hypersurface in (M,ω) is coisotropic. A submanifold

L ⊂ (M,ω) is called Lagrangian if TL = TLω (or equivalently ω|L ≡ 0)

and clearly every Lagrangian submanifold is coisotropic.

Since ω is closed, the symplectic orthogonal bundle TΣω is integrable,

and thus Σ is foliated by leaves of the characteristic foliation. We denote by

Lx the leaf through x. In the extremal case that a connected coisotropic

submanifold is Lagrangian, it is foliated by a single leaf.

Coisotropic submanifolds naturally arise in autonomous Hamiltonian sys-

tems with several integrals. Let (M,ω) be a 2n-dimensional symplectic man-

ifold. We denote by the Hamiltonian tuple G := (G1, . . . , Gk) for time-

independent Hamiltonian functions Gi ∈ C∞(M), i ∈ {1, . . . , k} for 1 ≤ k ≤
n. We often regard G as an element of C∞(M,Rk).

3



Chapter 1. Preliminaries on symplectic geometry

Definition 1.2.3. Given two Hamiltonian functions F and G in C∞(M),

the Poisson bracket

{·, ·} : C∞(M)× C∞(M) −→ C∞(M)

is defined by {F,G} := ω(XF , XG). A Hamiltonian tuple G is said to be

Poisson-commuting if {Gi, Gj} = 0 for any 1 ≤ i, j ≤ k.

If a Hamiltonian tuple G ∈ C∞(M,Rk) Poisson-commutes and c ∈ Rk

is a regular value of G, then an invariant submanifold G−1(c) is a smooth

coisotropic submanifold of codimension k in (M,ω) with

TG−1(c)ω = 〈XG1 , . . . , XGk〉.

In this case the leaf Lx through x ∈ G−1(c) can be written by

Lx =
{
φt1G1
◦ φt2G2

◦ · · · ◦ φtkGk(x) | t1, . . . tk ∈ R
}
.

Note that dimension of leaves equals dimM − dimG−1(c) = k, see pictures

below.

We briefly explain why such Hamiltonian systems are of great impor-

tance. A function F ∈ C∞(M) is called an integral for a Hamiltonian sys-

tem ∂tz = XG(z(t)) if F is constant along the solutions of ∂tz = XG(z(t)). It

4



Chapter 1. Preliminaries on symplectic geometry

is easy to check that this condition is equivalent to {F,G} = 0. Hence, the

motion of a Hamiltonian system ∂tz = XG(z(t)) with k independent Poisson

commuting Hamiltonian integrals G1 = G, . . . , Gk is confined to a (2n− k)-

dimensional invariant submanifold
⋂

1≤i≤kG
−1
i (ci), ci ∈ R.

Remark 1.2.4. A 2n-dimensional Hamiltonian system is called integrable

if there exist n independent Poisson commuting integrals G1, . . . , Gn. Ac-

cording to Liouville-Arnold, compact connected invariant submanifolds of in-

tegrable Hamiltonian systems are diffeomorphic to torus, i.e.
⋂

1≤i≤nG
−1
i (ci) ∼=

T n, c1, . . . , cn ∈ R. Moreover integrable Hamiltonian systems admit the so-

called action-angle coordinates and this coordinates are described explic-

itly sometimes, e.g. Delaunay coordinates in the Kepler problem.

A periodic orbit v : S1 = R/Z→ G−1(c) lying on a leaf

d

dt
v(t) =

k∑
i=1

ηiXGi(v(t)), η1, . . . , ηk ∈ R (1.2.1)

is a key player of this thesis. Note that constant loops in G−1(c) are trivial

solutions of (1.2.1) with η1 = · · · = ηk = 0. Note that if G−1(c) is a hyper-

surface, i.e. k = 1, a periodic orbit exists if and only if a leaf closes up.

We remark that if there is a periodic solution v of (1.2.1) on a leaf Lx,

the leaf Lx is foliated by periodic solutions of (1.2.1). To see this, let x be

5



Chapter 1. Preliminaries on symplectic geometry

a periodic point, i.e. φt1G1
◦ · · · ◦ φtkGk(x) = x for some t1, . . . , tk ∈ R. For any

y ∈ Lx, there exists r1, . . . , rk ∈ R such that φr1G1
◦ · · · ◦ φrkGk(x) = y. Then

φt1G1
◦ · · · ◦ φtkGk(y) = φt1G1

◦ · · · ◦ φtkGk ◦ φ
r1
G1
◦ · · · ◦ φrkGk(x)

= φr1G1
◦ · · · ◦ φrkGk ◦ φ

t1
G1
◦ · · · ◦ φtkGk(x)

= φr1G1
◦ · · · ◦ φrkGk(x)

= y.

Here we used the fact that the Hamiltonian flows commute due to Pois-

son commutativity. Therefore there is a periodic solution of (1.2.1) passing

through any y ∈ Lx provided the existence of a periodic solution of (1.2.1)

on the leaf Lx.

Let us consider a single time-independent Hamiltonian function G ∈ C∞(M).

Suppose that a level hypersurface G−1(c) for c ∈ R is regular. From a simple

computation

dG(XG) = ω(XG, XG) = 0,

we know that the Hamiltonian vector field XG is tangent to the level hyper-

surface G−1(c). In general it is difficult to understand or foresee the dynam-

ics of XG on the given level surface G−1(c). For instance, even in R4 there is

a time-independent Hamiltonian function such that at least one of its level

surfaces has no periodic orbits which disproves the Hamiltonian Seifert con-

jecture, see [GG]. For this reason, we usually require an additional structure

on a level hypersurface.

Definition 1.2.5. A hypersurface S in (M,ω) is called of contact type if

there exists a 1-form α ∈ Ω1(S) such that dα = ω|S and ω|S is nondegener-

ate on the hyperplane field TSω. There exists a unique vector field R on a

contact hypersurface (S, α) such that

iRdα = 0, iRα = 1.

6



Chapter 1. Preliminaries on symplectic geometry

This vector field is called the Reeb vector field on (S, α).

The Reeb dynamics on contact hypersurfaces and the intersection prob-

lems for Lagrangian submanifolds have been widely studied. In contrast,

coisotropic submanifolds have so far received little attention. The aim of this

thesis is to study dynamics on a contact coisotropic submanifold, which is

a natural generalization of a contact hypersurface. The notions of stable,

contact, and restricted contact type for coisotropic submanifolds were intro-

duced by Philippe Bolle [Bo1, Bo2].

Definition 1.2.6. A coisotropic submanifold Σ of codimension k in (M,ω)

is called stable if there exist 1-forms α = (α1, . . . , αk) on Σ which satisfy

1. ker dαi ⊃ TΣω for i = 1, . . . , k;

2. α1 ∧ · · · ∧ αk ∧ (ω|Σ)n−k 6= 0.

We say that Σ is of contact type if α1, . . . , αk are primitives of ω|Σ. If

there are 1-forms λ = (λ1, . . . , λk) on M such that dλi = ω and λi|Σ = αi

for all i = 1, . . . , k, Σ is said to be of restricted contact type.

Examples of stable/contact/restricted contact coisotropic submanifolds will

be treated in the following section.

Definition 1.2.7. Let (Σ, α) be a stable coisotropic submanifold in (M,ω).

The unique vector fields R1, . . . , Rk on Σ characterized by

αi(Rj) = δij, Ri ∈ kerω|Σ, i, j ∈ {1, . . . , k}

are called the Reeb vector fields associated with the stable structure (Σ, α).

Here δij stands for the Kronecker delta.

When a level surface G−1(c) is stable, a periodic solution of 1.2.1 corre-

sponds to a periodic solution v ∈ C∞(S1,G−1(c)) of

∂tv(t) =
k∑
i=1

ηiRi(v(t)), η1, . . . , ηk ∈ R. (1.2.2)

7



Chapter 1. Preliminaries on symplectic geometry

since

TG−1(c)ω = 〈R1, . . . , Rk〉 = 〈XG1 , . . . , XGk〉.

Note that the normal bundle of a stable coisotropic submanifold (Σ, α) ⊂
(M,ω) is trivial, i.e. NΣ ∼= Σ × Rk and from the Weinstein neighborhood

theorem, we have the following proposition.

Proposition 1.2.8 ([Bo1, Bo2]). Let (Σ, α) be a closed stable coisotropic sub-

manifold of codimension k in (M,ω). Then there exist r > 0, a neighborhood

V of Σ which is symplectomorphic by ψ : Ur → V to

Ur := {(q, p) = (q, p1, . . . , pk) ∈ Σ× Rk | |pi| < r, for all i = 1, . . . , k}

with ψ∗ω = ω|Σ +
∑k

i=1 d(piαi).

Here we use the same symbols ω|Σ and αi for differential forms in Σ and

for their pullback to Σ× Rk. We set

δ0 := max
{
r ∈ R

∣∣ there exists a symplectic embedding ψ : Ur ↪→M
}

and let ψ : Uδ0 ↪→ M be a maximal symplectic embedding. Henceforth,

we identify Uδ with ψ(Uδ) for all 0 < δ ≤ δ0. We have Xpi ∈ kerω|Σ,

dpj(Xpi) = 0 and αj(Xpi) = δij on Σ for 1 ≤ i, j ≤ k since iXpiω = dpi.

Moreover the (local) Hamiltonian tuple p = (p1, . . . , pk) Poisson-commutes

since {Xp1 , . . . , Xpk} forms a basis for kerω|Σ.

We note that Xp1 , . . . , Xpk correspond to R1, . . . , Rk via the identification

ψ0. From now on, we choose an almost complex structure J on M which

splits on Uε with respect to

TUδ0 =

(
kerω|Σ︸ ︷︷ ︸

=:ξ

)⊕(
TΣω ⊕ ∂

∂p1

⊕ · · · ⊕ ∂

∂pk

)
︸ ︷︷ ︸

=:ξω

. (1.2.3)

8



Chapter 1. Preliminaries on symplectic geometry

i.e. J |ξω is an almost complex structure which interchanges the Reeb vector

fields Ri with ∂
∂pi

for 1 ≤ i ≤ k; strictly speaking JRi = ∂
∂pi

and J ∂
∂pi

= −Ri.

1.3 Examples of contact coisotropic submani-

folds

Although the contact condition is restrictive, we still have the following

classes of contact coisotropic submanifolds.

(i) A coisotropic submanifold which is C1-close to a contact coisotropic

submanifold is also of contact type.

(ii) A Lagrangian torus is of contact type with contact one forms dθ1, . . . , dθn

where θ1, . . . , θn are angular coordinates on the n-dimensional torus.

Indeed it turns out that a closed Lagrangian submanifold of contact

type is necessarily a torus.

(iii) Let Σ ⊂ (M1, ω1) be a contact coisotropic submanifold and T n2 ⊂
(M2, ω2) be a Lagrangian torus. Then a coisotropic submanifold Σ ×
T n2 in (M1 ×M2, ω1 ⊕ ω2) is of contact type. In particular, the sta-

bilization of Σ ⊂ (M,ω), Σ × S1 ⊂ (M × T ∗S1, ω ⊕ dθ ∧ dt) is of (re-

stricted) contact type whenever Σ is of (restricted) contact type. Here

θ is the base coordinate and t is the fiber coordinate.

(iv) Consider the Hopf fibration π : S2n−1 → CP n−1. According to Marsden-

Weinstein-Meyer reduction, we know that there is a canonical symplec-

tic form ωCPn−1 on CP n−1 satisfying π∗ωCPn−1 = ωR2n|S2n−1 where ωR2n

is the standard symplectic form on R2n. For a contact hypersurface

(∆, α) ⊂ CP n−1, π−1(∆) is a contact submanifold in R2n of codimen-

sion 2.

9



Chapter 1. Preliminaries on symplectic geometry

Let (M,ω) be a closed symplectic manifold with an integral symplectic

form [ω] ∈ H2(M ;Z). For each N ∈ N, there exists a complex line bundle

p : EN → M with the first Chern class c1(EN) = −N [ω]. We note that S1

acts on the bundle EN by

S1 × EN −→ EN

(t, v) 7−→ e2πitv.

Thus by the Boothby-Wang theorem, there exists a connection 1-form α on

EN \ E0 where E0 is the zero section of the complex line bundle EN p→M ;

moreover it holds that p∗Fα = dα for the curvature 2-form Fα = Nω. We

abbreviate r = |e| for e ∈ EN and define q : R → R by q(r) = πr2 + 1/N .

Then the following two form gives a symplectic structure on EN :

ΩE := q′(r)dr ∧ α + q(r)Np∗ω.

It is easy to check that ΩE|E0 = p∗1ω and ΩE|E\E0 = d(q(r)α). Furthermore,

for all c > 1/N , the following submanifold

Σc := {q(r) = c}

is of contact type. We perform this construction once again. We choose a

complex line bundle p′ : FK→M with the first Chern class c1(FK) = −K[ω].

As before, there is a connection 1-form β on FK \ F0 where F0 is the zero

section of the bundle FK p′→ M such that its curvature 2-form Fβ satisfies

Fβ = Kω. We set the function h(s) = πs2 + 1/K for s = |f | ∈ R where

f ∈ FK , then

ΩF := h′(s)ds ∧ β + h(s)Kp′∗ω

is a symplectic form on FK . Next, we consider the Whitney sum of EN and

FK , EN ⊕FK and let π1 : EN ⊕FK → EN and π2 : EN ⊕FK → FK be the

projection maps to the first factor and the second factor respectively. We

10



Chapter 1. Preliminaries on symplectic geometry

abbreviate ω̃ := (p◦π1)∗ω = (p′ ◦π2)∗ω, and use the same symbols r, s, g(r),

h(s), α, and β for their pull-backs to EN ⊕ FK . Then the following 2-form

ΩE⊕F := h′(s)ds ∧ β + q′(r)dr ∧ α + (q(r)N + h(s)K)ω̃

becomes a symplectic form on EN ⊕ FK . We have

(v) For any c > 1/N and d > 1/K, set

∆c,d := {q(r) = c, h(s) = d}.

Since ΩE⊕F |∆c,d
= (cN +dK)ω̃, ∆c,d with 1-forms cN+dK

N
α and cN+dK

K
β

is a contact coisotropic submanifold in (EN⊕FK ,ΩE⊕F ) of codimension

2.

Proposition 1.3.1. Let G ∈ C∞(M,Rk) be a Poisson-commuting Hamilto-

nian tuple such that c = (c1, . . . ck) ∈ Rk is a regular value of G. Suppose that

there is Liouville vector fields Y1, . . . , Yk (i.e. LY1ω = · · · LYkω = ω) such that

the matrix

[dGi(Yj)]1≤i,j,≤k =

 dG1(Y1) · · · dG1(Yk)
...

. . .
...

dGk(Y1) · · · dGk(Yk)


on TG−1(c) is nonsingular. Then G−1(c) is a contact coisotropic submanifold

with contact forms iY1ω, . . . , iYkω.

Proof. Indeed, each αj = iYjω is a primitive of ω:

dαj = diYjω = LYjω = ω, 1 ≤ j ≤ k.

Note that

TG−1(c)ω = 〈XG1 , . . . , XGk〉 ⊂ TG−1(c),

11
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and for all 1 ≤ i ≤ k,

ω(XGi , v) = dGi(v) = 0, ∀v ∈ TG−1(c).

We denote by

ξ := {(x, v) ∈ TG−1(c) |ωx(Y1, v) = · · · = ωx(Yk, v) = 0}.

Since [dGi(Yj)]1≤i,j,≤k is nonsingular, we have the splitting

TG−1(c) = TG−1(c)ω ⊕ ξ.

Moreover ξ is a symplectic complement of 〈Y1, . . . , Yk〉 ⊕ TG−1(c)ω. Hence

α1 ∧ · · · ∧ αk ∧ ω|TG−1(c) 6= 0

by nonsingularity of [dGi(Yj)]1≤i,j,≤k again.

Dynamical problems, such as the (rotating) Kepler problem or Euler’s

three-body problem, sometimes admit several integrals. It is tempting to

show whether such a problem has a (restricted) contact structure using the

previous proposition.

Remark 1.3.2. [Bo2, Gi] Let Σ be a closed contact coisotropic submanifold

in (M,ω). Then a 1-form λ = a1λ1 + · · · + akλk with a1 + · · · + ak = 0 is

closed and represents an element in H1
dR(Σ). In addition, λ 6= 0 is not exact;

otherwise λ = df for some f ∈ C1(Σ), λ(x) = 0 at a critical point x of f ,

but condition (ii) yields that λ1, . . . , λk are linearly independent on Σ; thus

λ1(x) = · · ·λk(x) = 0. As a result, dim H1
dR(Σ) ≥ k − 1. It imposes a re-

striction on the contact condition that a product of contact type coisotropic

submanifolds is not necessarily of contact type; for instance, S3 × S3 is not

of contact type in R8.

12
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Remark 1.3.3. Furthermore, a connected sum of a contact coisotropic sub-

manifold is not of contact type in general; for instance, a connected sum of

Lagrangian tori is not a torus any more, hence cannot be of contact type.

Different from the contact case, however, a product of stable coisotropic sub-

manifolds is of stable type again.
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Statement of the results

The coisotropic intersection problems were first studied in depth by Vik-

tor Ginzburg [Gi], and have been recently explored by many mathematicians,

see Section 2.7. Rabinowitz Floer homology theory, which was developed by

Kai Cieliebak and Urs Frauenfelder [CF] using the Rabinowitz action func-

tional [Ra], is one of the effective methods to study the intersection prob-

lems for hypersurfaces. By generalizing the Rabinowitz Floer homology the-

ory, we investigate the intersection problems of coisotropic submanifolds.

Throughout this thesis, we deal with a symplectic manifold (M,ω) which

is symplectically aspherical and geometrically bounded. The condition that

(M,ω) is symplectically aspherical means
∫
π2(M)

ω = 0. We call (M,ω)

geometrically bounded if there exists an ω-compatible almost complex

structure J with the property that the Riemannian metric g(·, ?) = ω(·, J?)
is complete, has injective radius bounded away from zero, and has bounded

sectional curvature.

14
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2.1 Assumptions on manifolds

In this thesis, we deal with the following classes of manifolds.

i) A closed coisotropic submanifold Σ in (M,ω) is stable or of contact

type or of restricted contact type.

ii) A symplectic manifold (M,ω) is symplectically aspherical and geomet-

rically bounded.

If Σ is a restricted contact coisotropic submanifold, (M,ω) is automati-

cally symplectically aspherical (due to
∫
π2(M)

ω =
∫
π2(M)

dλi = 0) but never

closed. Thus if this is the case, (M,ω) is only assumed to be geometrically

bounded. On the other hand, if (M,ω) is stable or of contact type, M can

be closed. In this case, (M,ω) is obviously geometrically bounded and we

only need to assume symplectic asphericity of (M,ω).

To define Rabinowitz Floer homology we need an additional assumption

on stable/contact/restricted contact coisotropic submanifolds. In this thesis

we focus on coisotropic submanifolds which are regular level sets of Poisson-

commuting Hamiltonian tuples. Suppose that a stable coisotropic submani-

fold (Σ, α) is a regular level set of a Poisson-commuting Hamiltonian tuple

G = (G1, · · · , Gk) ∈ C∞(M,Rk), say G−1(0) = Σ. Then since both the Reeb

vector fields of α = (α1, . . . , αk) and the Hamiltonian vector fields of G span

the symplectic orthogonal bundle, i.e.

TΣω = 〈R1, . . . , Rk〉 = 〈XG1 , . . . , XGk〉,

there exists a map from G−1(0) to the set of k × k matrices

Φ = (Φi,j) : G−1(0)→ Mat(k × k)

15



Chapter 2. Statement of the results

such that

XGj(x) =
k∑
i=1

Φi,j(x)Ri(x).1

Note that Φ(x) for any x ∈ G−1(0) is an invertible matrix. However in order

for Rabinowitz Floer homology to be defined, we further require Φ(x) to

have the following property.

iii) Σ is a regular level set of a Poisson-commuting Hamiltonian tuple G ∈
C∞(M,Rk). For any v ∈ C∞(S1,Σ) contractible in M ,∫

S1

Φ(v(t))dt ∈ Mat(k × k)

is invertible.

Remark 2.1.1. We choose a function χ(t) : S1 → [0,∞) with
∫
S1 χ(t)dt = 1.

Such a function will be used in Section 3. If
∫
S1 Φ(v(t))dt is invertible for

any v ∈ C∞(S1,Σ), so is
∫
S1 χ(t)Φ(v(t))dt. Indeed, we can reparametrize a

given v ∈ C∞(S1,Σ) to vχ(t) = v ◦
∫ t

0
χ(s)ds : S1 → [0,∞) so that∫

S1

Φ(vχ(t))dt =

∫
S1

χ(t)Φ(v(t))dt.

Note that an S1-family of definite or diagonal matrices meets this third

assumption. The assumption on the existence of “global coordinates” in [Ka3]

is a special case of this assumption iii).

In order to find one leafwise coisotropic intersection point or one peri-

odic orbit (Theorems A and D), we do not need the last assumption as Ra-

binowitz Floer homology is not directly involved. However, the last assump-

tion is still indispensable to define Rabinowitz Floer homology and results

using Rabinowitz Floer homology (Theorems B, C, E, F, and G).

1Strictly speaking, Φ(x) is an automorphism on TxΣω, but here we tacitly assume TΣω ∼=
Σ× Rk to have been trivialized.
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Remark 2.1.2. All the above three assumptions appear in Rabinowitz Floer

homology theory for hypersurfaces (see [CF]) as well. In particular, the last

assumption matches with a separating condition for stable hypersurfaces.

The separating condition means that a hypersurface Σ separates M into two

connected components of which one is relatively compact. With the separat-

ing condition, it is possible to find a Hamiltonian function G ∈ C∞(M) of

Σ such that G−1(0) = Σ. Moreover since Σ is of codimension 1, 〈R〉 = 〈XG〉
which in turn implies the assumption iii).

2.2 Main theorem

Let L ⊂ C∞(S1,M) be the space of contractible loops in M . Let G =

(G1, . . . , Gk) ∈ C∞(M,Rk) be a Poisson-commuting Hamiltonian tuple which

has 0 ∈ Rk (for simplicity) as a regular value. We also choose a compactly

supported time-dependent Hamiltonian function F ∈ C∞c (S1 ×M). For η =

(η1, . . . , ηk) ∈ Rk, the generalized (perturbed) Rabinowitz action functional

AGF : L× Rk → R is defined by

AGF (v, η) := −
∫
D2

v̄∗ω −
k∑
i=1

ηi

∫ 1

0

Gi(v(t))dt−
∫ 1

0

F (t, v(t))dt.

where v̄ is any filling disk of v, i.e. v̄|∂D2(t) = v(t) for t ∈ S1. The symplec-

tic asphericity condition implies that the value of the above action functional

is independent of the choice of filling discs. Then in Theorem 3.2.8, we will

prove the following compactness result under the assumptions on (M,ω,Σ, α)

described in the previous section.

Main theorem. Let {wν}ν∈N be a sequence of gradient flow lines of AGF for

which there exist a ≤ b such that

a ≤ AGF (wν(s)) ≤ b, for all ν ∈ N, s ∈ R. (2.2.1)
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Then for every reparametrization sequence σν ∈ R the sequence wν(· + σν)

has a convergent subsequence in the C∞loc-topology. That is, {wν}ν∈N has a

subsequence which converges with all derivatives on every compact subset to

a gradient flow line w ∈ C∞(R× S1,M)× C∞(R,Rk).

We refer to the next sections for a detailed and precise statement. Once

we prove this compactness theorem, all the applications of Rabinowitz Floer

homology to stable/contact/restricted contact hypersurfaces extend to cor-

responding results of stable/contact/restricted contact coisotropic subman-

ifolds with minor modifications. For the sake of completeness, we include

(sketches of) some applications, [AF1, AMo, CFP, Ka2, Ka3].

2.3 Leafwise coisotropic intersections

Let (M,ω) be a 2n-dimensional symplectic manifold and Σ be a closed

coisotropic submanifold of codimension k. Recall that Σ is foliated by leaves

of TΣω and Lx is the leaf through x ∈ Σ. A point x ∈ Σ is called a leafwise

coisotropic intersection point of φF ∈ Hamc(M,ω) if φ(x)F ∈ Lx, see

pictures below. In the extremal case k = n, a leafwise coisotropic intersection

point is nothing but a Lagrangian intersection point.
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Definition 2.3.1. We denote by ℘(Σ) > 0 the minimal symplectic area

of all solutions of (1.2.2) contractible in M . To be more exact,

℘(Σ) := inf
{
|Ω(v) > 0|

∣∣ v ∈ C∞(S1,Σ) solving (1.2.2) and contractible in M
}
.

Here Ω : L→ R stands for the symplectic area functional, i.e.

Ω(v) =

∫
D2

v̄∗ω

where v̄ ∈ C∞(D2,M) is a filling disk of v, i.e. v̄|∂D2(t) = v(t) for t ∈ S1.

The symplectic asphericity condition guarantees that the value of Ω(v) is

independent of the choice of a filling disk. If there are no solutions of (1.2.2),

we set ℘(Σ) =∞ by convention.

Theorem A. Let Σ be a closed restricted contact coisotropic submanifold in

a symplectic manifold (M,ω) being geometrically bounded. If ||φF || < ℘(Σ),

there exists a leafwise coisotropic intersection point for φF ∈ Hamc(M,ω) .

The assumption on the Hofer norm of φF is sharp. For instance ℘(S2n−1)

equals the displacement energy of S2n−1 inside (R2n, dx ∧ dy).

Remark 2.3.2. Basak Gürel [Gü] also proved Theorem A using a different

method. We cannot entirely drop the restricted contact condition in Theo-

rem A, see [Gi, Example 7.2] and [Gü, Remark 1.4].

Even if a coisotropic submanifold Σ is of contact type, we still can find a

leafwise intersection point for a restricted class of perturbations. In this case

our ambient symplectic manifold need not to be exact and can be closed; so

we have more examples. Recall that

Ur =
{

(q, p) = (q, p1, . . . , pk) ∈ Σ× Rk
∣∣ |pi| < r, for all i = 1, . . . , k

}
and ψ : Uδ0 ↪→ M is a maximal symplectic embedding. For a time depen-

dent Hamiltonian function F ∈ C∞c (S1 ×M), we define the support of the
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Hamiltonian vector field XF by

SuppXF :=
{
x ∈M

∣∣XF (t, x) 6= 0 for some t ∈ S1
}
.

We call a Hamiltonian function F ∈ C∞c (S1×M) admissible if F is constant

outside of ψ(Uδ0), i.e. SuppXF ( ψ(Uδ0). We denote by F the set of all

admissible Hamiltonian functions:

F :=
{
F ∈ C∞c (S1 ×M) | SuppXF ( ψ(Uδ0)

}
.

Then Theorem A holds even for (not necessarily restricted) contact coisotropic

submanifolds with F ∈ F.

Theorem A+. Let Σ be a closed contact coisotropic submanifold in a sym-

plectically aspherical symplectic manifold (M,ω) which is geometrically bounded

(M can be closed). Then φF for F ∈ F has a leafwise coisotropic intersection

point provided ||F || < ℘(Σ).

In fact, the assumptions in Theorem A is not sufficient to define a Ra-

binowitz Floer homology for Σ. That is one reason why we can find only

one leafwise coisotropic intersection point. However if we additionally assume

that Σ is given by a regular level set of a Poisson-commuting Hamiltonian

tuple G ∈ C∞(M,Rk) which is compatible with the Reeb vector fields on

(Σ, α) in the sense of the assumption iii), we obtain a Morse-type estimate

and a relative cup-length estimate for leafwise coisotropic intersection points.

Theorem B. Let (M,ω) be geometrically bounded and Σ be a closed regular

level set of a Poisson-commuting Hamiltonian tuple G ∈ C∞(M,Rk). Sup-

pose that Σ is of restricted contact type, and
∫
S1 Φ(v)dt is invertible for any

v ∈ C∞(S1,Σ) contractible in M . Then the number of leafwise coisotropic in-

tersection points for a generic φ ∈ Hamc(M,ω) with ||φ|| < ℘(Σ) is bounded

below by the sum of Z/2-Betti numbers of Σ.
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Theorem B+. Let (M,ω) be geometrically bounded (M can be closed) and

symplectically aspherical, and Σ be a closed regular level set of a Poisson-

commuting Hamiltonian tuple G ∈ C∞(M,Rk). Suppose that Σ is of con-

tact type, and
∫
S1 Φ(v)dt is invertible for any v ∈ C∞(S1,Σ) contractible in

M . Then the number of leafwise coisotropic intersection points for a generic

φF ∈ Hamc(M,ω) with F ∈ F and with ||F || < ℘(Σ) is bounded below by the

sum of Z/2-Betti numbers of Σ.

The genericity assumption on φF ∈ Hamc(M,ω) in the above theorems

comes from the Morse property of the Rabinowitz action functional per-

turbed by F . We are able to remove this assumption by the following cup-

length estimate as usual.

Definition 2.3.3. The relative cup-length of Σ in M is defined by

cl(Σ,M) := max{k ∈ N | ∃a1, . . . , ak ∈ H≥1(M ;Z/2) with (a1∪· · ·∪ak)|Σ 6= 0}.

Theorem C. Let (M,ω) be geometrically bounded and Σ be a closed regular

level set of a Poisson-commuting Hamiltonian tuple G ∈ C∞(M,Rk). Sup-

pose that Σ is of restricted contact type, and
∫
S1 Φ(v)dt is invertible for any

v ∈ C∞(S1,Σ) contractible in M . Then the number of leafwise coisotropic

intersection points for any φ ∈ Hamc(M,ω) with ||φ|| < ℘(Σ) is bounded be-

low by cl(Σ,M) + 1.

Theorem C+. Let (M,ω) be geometrically bounded (M can be closed) and

symplectically aspherical, and Σ be a closed regular level set of a Poisson-

commuting Hamiltonian tuple G ∈ C∞(M,Rk). Suppose that Σ is of con-

tact type, and
∫
S1 Φ(v)dt is invertible for any v ∈ C∞(S1,Σ) contractible

in M . Then the number of leafwise coisotropic intersection points for any

φF ∈ Hamc(M,ω) with F ∈ F and with ||φ|| < ℘(Σ) is bounded below by

cl(Σ,M) + 1.
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We do not include the proofs of theorems with “+” but these immediately

follow from the proofs of the corresponding theorems (without “+”) together

with arguments in [Ka2].

Theorems A and B were proved by Peter Albers and Urs Frauenfelder

[AF1], and Theorem C was proved by Peter Albers and Al Momin [AMo]

for separating restricted contact hypersurfaces. As mentioned, once we ob-

tain the main theorem in the previous section, such applications immedi-

ately follow with minor modifications. It is noteworthy that we succeed in

removing the separating condition in Theorem A by a simple approximation

argument.

2.4 Leafwise displacement energy

A coisotropic submanifold Σ in a symplectic manifold (M,ω) is said to

be leafwisely displaceable if there exists a Hamiltonian diffeomorphism

φF ∈ Hamc(M,ω) such that φF (Lx) ∩ Lx = ∅ for all x ∈ Σ. The leafwise

displacement energy of Σ in M is defined by

e(Σ) := inf
{
||F ||

∣∣F ∈ C∞c (S1 ×M), φF (Lx) ∩ Lx = ∅, ∀x ∈ Σ
}
.

We set e(Σ) = ∞ for the infimum of the empty set; that is, the leafwise

displacement energy of a leafwisely nondisplaceable coisotropic submanifold

is infinity.

Theorem D. Let Σ be a closed stable coisotropic submanifold leafwisely dis-

placeable inside (M,ω) which is geometrically bounded (M can be closed) and

symplectically aspherical. Then there exists a periodic orbit v ∈ C∞(S1,Σ),
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i.e. a solution of (1.2.2), contractible in M , such that

0 < |Ω(v)| ≤ e(Σ). (2.4.1)

Remark 2.4.1. The estimate (2.4.1) is sharp. The unit sphere S2n−1 in

(R2n, dx ∧ dy) has e(S2n−1) = π = Ω(v) where v is a periodic Reeb or-

bit of the standard contact structure on S2n−1. For displaceable closed re-

stricted contact coisotropic submanifolds, Theorem D was proved by Vik-

tor Ginzburg [Gi]. A similar result was also proved by Kai Cieliebak, Urs

Frauenfelder, and Gabriel Paternain [CFP] for stable separating hypersur-

faces using Rabinowitz Floer theory. Making use of their proof, we slightly

improve their theorem.

2.5 Rabinowitz Floer homology

We introduced the Rabinowitz action functional AGF : L×Rk → R. With

F ≡ 0, the action functional AG is generically Morse-Bott. The chain com-

plex for Floer homology of AG is generated by critical points of an auxil-

iary Morse function on the solution space of (1.2.2) and the boundary map

is defined by counting gradient flow lines of the Morse function with gradi-

ent flow lines (cascades) of AG (based on Urs Frauenfelder’s Morse-Bott ho-

mology [Fr]). On the other hand, AGF with nonzero F is Morse for generic

F ∈ C∞(S1 ×M,R). Up to reparametrization of time supports of G and F

(see Chapter 3), the chain complex for Floer homology of AGF is generated

by leafwise coisotropic intersection points and the boundary map is defined

by counting gradient flow lines of AGF . Here gradient flow lines of AG resp.

AGF are solutions of a nonlinear elliptic PDE.

One of the power of Floer homology is the invariance property. Two

Floer homologies obtained by AG and AGF are isomorphic due to the stan-

dard continuation argument in Floer theory, see Section 5. Thus we name
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Rabinowitz Floer homology for both and denote by

RFH(Σ,M) := HF(AG) ∼= HF(AGF ).

We should mention that RFH(Σ,M) does not depend on the choice of G ∈
C∞(M,Rk) the defining Hamiltonian tuple for Σ (up to canonical isomor-

phism).

Remark 2.5.1. Though we only deal with restricted contact coisotropic sub-

manifolds, it is possible to define HF(AG) in the stable case or HF(AGF ) with

F ∈ F in the contact case. The assertions (i) and (ii) in Theorem E con-

tinue to hold for contact coisotropic submanifolds if we restrict the class of

perturbations to F and (iii) holds true for stable coisotropic submanifolds.

The following theorem is an immediate consequence of the construction

and invariance property of Rabinowitz Floer homology.

Theorem E. Let (M,ω) be geometrically bounded and Σ be a closed regular

level set of a Poisson-commuting Hamiltonian tuple G ∈ C∞(M,Rk). Suppose

that Σ is of restricted contact type, and
∫
S1 Φ(v)dt is invertible for any v ∈

C∞(S1,Σ) contractible in M .

(i) If Rabinowitz Floer homology does not vanish, there exists a leafwise

coisotropic intersection point for every φ ∈ Hamc(M,ω). In particular,

if Σ is displaceable inside M , RFH(Σ,M) = 0.

(ii) There exists a nonconstant solution of (1.2.2) contractible in M , pro-

vided that Σ is displaceable inside M .

(iii) If Σ carries no nonconstant solution of (1.2.2) contractible in M ,

RFH(Σ,M) ∼= H(Σ;Z/2).

In the extremal case, the assertions (i) and (iii) can be interpreted as:
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(iv) Let Σ be a Lagrangian torus, i.e. k = n. If i# : π1(Σ) → π1(M) is

injective for the natural embedding i : Σ ↪→M ,2

RFH(Σ,M) ∼= H(T n;Z/2).

2.6 Künneth formula

Here we only deal with the restricted contact case, but the same Künneth

formulas for stable/contact coisotropic manifolds can be derived exactly the

same way.

Theorem F. Let (Σ1, λ1) and (Σ2, λ2) be restricted contact hypersurfaces in

symplectic manifolds (M1, ω1) and (M2, ω2) respectively. Assume that Σ1 resp.

Σ2 bounds a compact region in M1 resp. M2 and that M1 and M2 are geo-

metrically bounded. Then,

RFHn(Σ1 × Σ2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ RFHn−p(Σ2,M2).

Remark 2.6.1. Unfortunately we are only able to prove a compactness the-

orem for gradient flow lines of the unperturbed Rabinowitz action functional

on (Σ1×Σ2,M1×M2). Thus we cannot study about leafwise coisotropic in-

tersection points except the case that Σ1 × Σ2 is of restricted contact type

again.

In Theorem G we do not consider Σ2, and M2 need to be closed.

2 This implies that every solution of (1.2.2) is not contractible even in M .
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Theorem G. Let (Σ1, λ1) ⊂ (M1, ω1) be as in Theorem F above. Assume

that (M2, ω2) is a closed symplectically aspherical symplectic manifold. Then,

(G1) Σ1×M2 has a leafwise coisotropic intersection point for φ ∈ Hamc(M1×
M2, ω1⊕ω2) with Hofer-norm ||φ|| < ℘(Σ1, λ1) even if Σ1 does not bound

a compact region in M1.

(G2) The Rabinowitz Floer homology RFH(Σ1 × M2,M1 × M2) ∼= HF(AGF )

is defined for a generic F ∈ C∞c (M1 × M2). Moreover, we have the

Künneth formula:

RFHn(Σ1 ×M2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ Hn−p(M2).

Since we have not assumed any contact structure on Σ1 ×M2, we need

a special version of isoperimetric inequality, see Lemma (6.3.1), in order to

prove Theorem G.

Remark 2.6.2. It is worth emphasizing that Σ1×M2 is never of restricted

contact type since M2 is closed. Nevertheless, interestingly enough, we can

achieve compactness of gradient flow lines of the perturbed Rabinowitz ac-

tion functional for a generic (Morse property) perturbation φF ∈ Hamc(M1×
M2, ω1 ⊕ ω2).

Using the Künneth formulas and a result of [AF2], we are able to find

infinitely many leafwise coisotropic intersection points on some coisotropic

submanifolds.

Corollary F. Let N be a closed Riemannian manifold of dimN ≥ 2 with

dim H∗(ΛN) = ∞ where ΛN is the free loop space of N . Then there ex-

ists infinitely many leafwise coisotropic intersection points for a generic φ ∈
Hamc(T

∗S1 × T ∗N) on (S∗S1 × S∗N, T ∗S1 × T ∗N).
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Remark 2.6.3. Since (S∗S1×S∗N, T ∗S1×T ∗N) is of restricted contact type

(see Lemma 7.1.3), φ in Corollary F is not necessarily of product type.

Corollary G. Let N be as in Corollary F above, and (M,ω) be a closed sym-

plectically aspherical symplectic manifold. Then a generic φ ∈ Hamc(T
∗N ×

M) has infinitely many leafwise coisotropic intersection points on (S∗N ×
M,T ∗N ×M).

2.7 List of related results

• On Rabinowitz Floer homology theory: [AF1, AF2, AF3, AF4,

AF5, AF6, AFMe, AMe1, AMe2, AMo, AS, BF, CF, CFO, CFP, FS,

Ka1, Ka2, Ka3, Ka4, Me1, Me2, MP, MMP].

• On leafwise (coisotropic) intersections: [AF1, AF2, AF4, AMo,

AMe1, AMc, Ba, Dr, EH, Gi, Gü, Ho, Ka2, Ka3, Ka4, Mo, Me2, MMP,

Zi1, Zi2].

• On (Leafwise) displacement energy: [Bo1, Bo2, Gi, Ka3, Ke, Us].
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The Rabinowitz action functional

with several Lagrange multipliers

This chapter is devoted to the proof of the main theorem, which proves

a compactness result for gradient flow lines of the Rabinowitz action func-

tional, and to the proof of Theorem A.

3.1 The Rabinowitz action functional for

coisotropic submanifolds

Let η = (η1, . . . , ηk) ∈ Rk be a k-tuple of Lagrange multipliers. We de-

note by L ⊂ C∞(S1,M) the space of contractible loops in M . For an arbi-

trary Hamiltonian tuple G = (G1, . . . , Gk) ∈ C∞(M,Rk) which has 0 ∈ Rk as

a regular value, and which is Poisson-commuting near
⋃k
i=1G

−1
i (0), the gen-

eralized Rabinowitz action functional AG : L×Rk → R is defined as follows:

AG(v, η) := −
∫
D2

v̄∗ω −
k∑
i=1

ηi

∫ 1

0

Gi(v(t))dt (3.1.1)
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where v̄ is any filling disk of v, i.e. v̄|∂D2(t) = v(t) for t ∈ S1. The symplectic

asphericity condition implies that the value of the above action functional is

independent of the choice of filling discs. Using the standard scalar product

〈·, ·〉 in Rk, we can express (3.1.1) by

AG(v, η) = −
∫
D2

v̄∗ω −
∫ 1

0

〈η,G〉(v(t))dt.

A critical point of the Rabinowitz action functional, (v, η) ∈ CritAG sat-

isfies the following equations.

∂tv(t) =
k∑
i=1

ηiXGi(v(t)), t ∈ S1

∫ 1

0

Gi(v(t))dt = 0, i ∈ {1, . . . , k}

 (3.1.2)

Proposition 3.1.1. If (v, η) ∈ CritAG, v(t) ∈ G−1(0) for all t ∈ S1.

Proof. Assume by contradiction that Gj(v(t0)) > 0 for some t0 ∈ S1 and

j ∈ {1, . . . , k}. Then to satisfy the second equation in (3.1.2), there exists

t1 ∈ S1 such that Gj(v(t1)) < 0 and hence v(t2) ∈ G−1
j (0) for some t2 ∈ S1.

Using the first equation in (3.1.2), we have

d

dt
Gi(v(t)) = dGi(v(t))[∂tv] = dGi

( k∑
j=1

ηjXGj(v(t))

)
=

k∑
j=1

ηj{Gi, Gj}(v(t))

which implies Gi(v(t)) is stationary whenever v(t) ∈ G−1
j (0) due to Poisson-

commutativity of G near
⋃k
i=1 G

−1
i (0). Since v(t2) ∈ G−1

j (0), Gj(v(t)) = 0 for

all t ∈ S1. This contradiction proves the proposition.
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3.2 The perturbed Rabinowitz action functional

Let G ∈ C∞(M,Rk) be as in the subsection. We choose a smooth func-

tion χ ∈ C∞(S1,R) such that χ(t) ≥ 0,
∫ 1

0
χ(t)dt = 1, and Suppχ ⊂ (1/2, 1).

Using χ, we define a time-dependent Hamiltonian Hi : S1 × M → R by

Hi(t, x) = χ(t)Gi(x) for 1 ≤ i ≤ k, i.e.

H(t, x) := χ(t)G(x) ∈ C∞(S1 ×M,Rk).

Let F ∈ C∞c (S1×M) be an arbitrary time-dependent Hamiltonian function.

Thanks to Lemma 1.1.2, we assume that F has time support in (0, 1
2
). We

note that the time support of H and the time support of F are disjoint.

With these Hamiltonian functions, the perturbed Rabinowitz action func-

tional AHF : L× Rk → R is defined by

AHF (v, η) := −
∫
D2

v̄∗ω −
∫ 1

0

F (t, v(t))dt−
∫ 1

0

〈η,H〉(t, v(t))dt.

where v̄ : D2 →M is any filling disk of v. A critical point of the perturbed

Rabinowitz action functional, (v, η) ∈ CritAHF satisfies the following equa-

tions.

∂tv(t) = XF (t, v) +
k∑
i=1

ηiXHi(t, v(t)), t ∈ S1

∫ 1

0

Hi(t, v(t))dt = 0, i ∈ {1, . . . , k}

 (3.2.1)

In the next proposition, we observe that a critical point of AHF gives rise

to a leafwise coisotropic intersection point. Albers-Frauenfelder [AF1] proved

the following proposition when Σ is a hypersurface. Their proof continues to

work for coisotropic submanifolds with minor modifications.

Definition 3.2.1. A leafwise coisotropic intersection point x ∈ Σ is called

periodic if the leaf Lx contains a solution of (1.2.2).
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Proposition 3.2.2. If (v, η) ∈ CritAHF , v(0) ∈ Σ is a leafwise coisotropic

intersection point. Moreover, the map

CritAHF −→
{

leafwise coisotropic intersections
}

is injective unless there is no periodic leafwise coisotropic intersection.

Proof. Since the time support of F is (0, 1/2), for t ≥ 1/2 and for all

i = 1, . . . , k,

d

dt
Gi(v(t)) = dGi(v(t))[∂tv] = dGi(v(t))

[
XF (t, v)︸ ︷︷ ︸

=0

+
k∑
j=1

χ(t)ηjXGj(v)
]

As in the proof of Proposition 3.1.1, the second equation in (3.2.1) implies

v(t) ∈ G−1(0) = Σ for t ∈ (1/2, 1). On the other hand, v solves ∂tv =

XF (t, v) on (0, 1/2) so that v(1/2) = φ
1/2
F (v(0)) = φ1

F (v(0)) since F = 0

for t ≥ 1/2. For t ∈ (1/2, 1), it holds that ∂tv =
∑k

i=1 ηiXHi(t, v) and thus

v(0) = v(1) ∈ Lv(1/2). Thus we conclude that v(0) ∈ LφF (v(0)) which is equiv-

alent to φF (v(0)) ∈ Lv(0).

From now on, we allow s-dependence on F as follows. Let {Fs}s∈R be a

family of Hamiltonian functions varying only on a finite interval in R. More

specifically, we assume Fs(t, x) = F−(t, x) for s ≤ −1 and Fs(t, x) = F+(t, x)

for s ≥ 1. We also choose a family of compatible almost complex structures

{J(s, t)}(s,t)∈R×S1 on M such that J(s, t) is invariant outside of the interval

[−1, 1] ⊂ R and they still split as in (1.2.3).

On the tangent space T(v,η)(L × Rk) = TvL × TηRk for (v, η) ∈ L × Rk,

we define the metric m as follows:

m(v,η)

(
(v̂1, η̂1), (v̂2, η̂2)

)
:=

∫ 1

0

gv(v̂
1, v̂2)dt+ 〈η̂1, η̂2〉.

Recall that g(·, ·) = ω(·, J ·) is a metric on M . Here η̂1 and η̂2 are elements

31



Chapter 3. The Rabinowitz action functional with several
Lagrange multipliers

in TηRk ∼= Rk and 〈·, ·〉 is the scalar product in Rk.

Definition 3.2.3. A map w ∈ C∞(R,L× Rk) which solves

∂sw(s) +∇mAHFs(w(s)) = 0. (3.2.2)

is called a gradient flow line of AHFs with respect to the metric m.

According to Floer’s interpretation, the gradient flow equation (3.2.2) can

be interpreted as w = (u, τ) = (u, τ1, . . . , τk) with u(s, t) : R × S1 → M and

τi(s) : R→ R, solving

∂su+ J(s, t, u)
(
∂tu−

k∑
i=1

τiXHi(t, u)−XFs(t, u)
)

= 0

∂sτi −
∫ 1

0

Hi(t, u)dt = 0, 1 ≤ i ≤ k

 (3.2.3)

Definition 3.2.4. The energy of a map w ∈ C∞(R,L× Rk) is defined as

E(w) :=

∫ ∞
−∞
||∂sw||2mds.

Lemma 3.2.5. Let w ∈ C∞(R,L×Rk) be a gradient flow line of AHFs with

finite energy. Then we have the following estimate.

E(w) ≤ AHF−(w−)−AHF+
(w+) +

∫ ∞
−∞
||∂sFs||−ds (3.2.4)

where w± := lims→±∞w(s) ∈ CritAHFs . Moreover, equality holds if ∂sFs = 0.
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Proof. The following computation proves the lemma.

E(w) = −
∫ ∞
−∞

dAHFs
(
w(s)

)
[∂sw(s)]ds

= −
∫ ∞
−∞

d

ds

(
AHFs

(
w(s)

))
ds+

∫ ∞
−∞

(
∂sAHFs

)(
w(s)

)
ds

= AHF−(w−)−AHF+
(w+)−

∫ ∞
−∞

∫ 1

0

∂sFs(w)dtds

≤ AHF−(w−)−AHF+
(w+) +

∫ ∞
−∞
||∂sFs||−ds .

Remark 3.2.6. We note that
∫∞
−∞ ||∂sFs||−ds has a finite value since ∂sFs

has a compact support by construction.

Proposition 3.2.7. AHFs has a uniform bound along gradient flow lines.

Proof. For any gradient flow line w ∈ C∞(R,L×Rk) of AHF and s1 < s2 ∈
R, we calculate

0 ≤
∫ s2

s1

||∂sw||2m ds

= −
∫ s2

s1

dAHFs(w(s))(∂sw)ds

= AHFs1 (w(s1))−AHFs2 (w(s2))−
∫ s2

s1

∫ 1

0

∂sFs(t, v)dtds

≤ AHFs1 (w(s1))−AHFs2 (w(s2)) +

∫ s2

s1

||∂sFs||−ds.
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From the above inequality we obtain

AHFs2 (w(s2)) ≤ AHF−(w−) +

∫ ∞
−∞
||∂sFs||−ds,

AHFs1 (w(s1)) ≥ AHF+
(w+)−

∫ ∞
−∞
||∂sFs||−ds.

This proves the proposition.

3.2.1 Compactness

In this subsection, we prove Theorem 3.2.8 which is a vital ingredient

for all our results. Here, Σ is assumed to be a closed restricted contact

coisotropic submanifold. However for a perturbation F ∈ F, adapting an

idea in [Ka2] we are able to prove the theorem in the contact case as well.

We also need the assumptions ii) and iii).

Recall that Σ = G−1(0). For compactness, we cut-off G to be constant

away from Σ. More precisely, M \G−1
i (0) consists of two parts M+

i and M−
i

such that ±Gi|M±i > 0 for 1 ≤ i ≤ k. Therefore we are able to modify Gi so

that for a small ε > 0,

Gi =

{
unchanged on G−1

i (−ε, ε),
constant near infinity.

for all 1 ≤ i ≤ k. Note that G is still Poisson-commuting on
⋃k
i=1G

−1
i (−ε, ε)

after such a modification and thus Proposition 3.1.1 and Proposition 3.2.2

remain true.

Theorem 3.2.8. Let {wν = (uν , τ ν)}ν∈N be a sequence of gradient flow lines

of AHFs for which there exist a ≤ b such that

a ≤ AHFs(w
ν(s)) ≤ b, for all ν ∈ N, s ∈ R. (3.2.5)
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Then for every reparametrization sequence σν ∈ R the sequence wν(· + σν)

has a convergent subsequence in the C∞loc-topology. That is, {wν}ν∈N has a

subsequence which converges with all derivatives on every compact subset to

a gradient flow line w ∈ C∞(R× S1,M)× C∞(R,Rk).

Proof. Once we prove Theorem 3.2.11 which is a new feature of Rabinowitz

Floer theory, the rest of the proof is established by the following steps which

are standard by now in Floer theory.

1. Since (M,ω) is geometrically bounded and we have modified G so that

G is constant near infinity, we have a uniform bound on images of uν ,

see [AL] (also see [Mc, Lemma 2.4] for the convex at infinity case).

2. Due to Lemma 3.2.5 and Proposition 3.2.7, we have a uniform energy

bound on uν and this implies a uniform bound on ∂su
ν except finitely

many points.

3. On such finitely many points where the derivative ∂su
ν explodes, we

can detect nonconstant J-holomorphic spheres, see [McS, Chapter 4.2].

However this so-called bubbling-off phenomenon does not occur due to

symplectic asphericity.

4. By Theorem 3.2.11, we have a uniform bound on τ ν1 , . . . , τ
ν
k . From the

gradient flow equation

∂su
ν + J(t, uν)

(
∂tu

ν −
k∑
i=1

τ νi (s)XGi(u
ν)
)

= 0,

we obtain a uniform bound on ∂tu
ν as well.

5. Now we can apply the elliptic bootstrapping argument in Floer theory,

see [McS, Theorem B.4.2] and hence the assertion follows.
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bubbled 
  -holomorphic
sphere

We first prove the following fundamental lemma which is a key step in

proving Theorem 3.2.11.

Lemma 3.2.9. There exist ε > 0 and C > 0 such that for (v, η) ∈ L× Rk,

||∇mAHFs(v, η)||m < ε implies |ηi| ≤ C
(
|AHFs(v, η)|+ 1

)
for all 1 ≤ i ≤ k.

Proof. The proof proceeds in three steps.

Step 1: There exists a small constant δ ∈ (0, δ0) satisfying the following.

Assume v(t) ∈ Uδ for t ∈ (1/2, 1). Then there exists C0 > 0 such that

|ηi| ≤ C0

(
|AHFs(v, η)|+ ||∇mAHFs(v, η)||m + 1

)
, i = 1, . . . , k.

Proof of Step 1. Recall that there exists a family of definite matrices

Φ = (Φi,j) : G−1(0)→ Mat(k × k)

such that

XGi = ΦRi, 1 ≤ i ≤ k
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and we have assumed ∫
S1

χ(t)Φ(v(t))dt ∈ Mat(k × k)

is invertible for any v ∈ C∞(S1,Σ) contractible in M , see Remark 2.1.1. For

each j = 1, . . . , k,

AHFs(v, η) =−
∫ 1

0

v∗λj −
k∑
i=1

ηi

∫ 1

0

Hi(t, v)dt−
∫ 1

0

Fs(t, v)dt

=−
∫ 1

0

λj
(
∂tv −

k∑
i=1

ηiXHi(t, v)−XFs(t, v)
)
dt−

k∑
i=1

∫ 1

0

λj
(
ηiXHi(t, v)

)
dt

−
∫ 1

0

λj(XFs(t, v))dt−
k∑
i=1

ηi

∫ 1

0

Hi(t, v)dt−
∫ 1

0

Fs(t, v)dt

=−
∫ 1

0

λj
(
∇mAHFs(v, η)

)
dt−

k∑
i=1

ηi

∫ 1

0

χ(t)λj
( k∑
`=1

Φi,`R`(v)
)
dt

−
∫ 1

0

λj(XFs(t, v))dt−
k∑
i=1

ηi

∫ 1

0

Hi(t, v)dt−
∫ 1

0

Fs(t, v)dt

=−
∫ 1

0

λj
(
∇mAHFs(v, η)

)
dt−

k∑
i=1

ηi

∫ 1

0

χ(t)Φi,j(v)dt

−
∫ 1

0

λj(XFs(t, v))dt−
k∑
i=1

ηi

∫ 1

0

χ(t)Gi(v)dt−
∫ 1

0

Fs(t, v)dt

Thus we have

−
k∑
i=1

ηiχ(t)

∫ 1

0

(
Φi,j +Gi

)
(v)dt =AHFs(v, η) +

∫ 1

0

λj
(
∇mAHF (v, η) +XFs(t, v)

)
+ Fs(t, v)dt
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and

Γ(v)

 η1

...

ηk

 =

 A
H
Fs

(v, η) +
∫ 1

0
λ1

(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt

...

AHFs(v, η) +
∫ 1

0
λk
(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt


where Γ(v) is a k × k matrix defined by

Γ(v) :=

[
−
∫ 1

0

χ(t)
(
Φi,j +Gi

)
(v)dt

]
1≤i,j≤k

We choose small δ > 0 so that Γ(v) is still invertible for any v ⊂ Uδ :=

G−1(−δ, δ). Therefore, η1

...

ηk

 = Γ(v)−1

 A
H
Fs

(v, η) +
∫ 1

0
λ1

(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt

...

AHFs(v, η) +
∫ 1

0
λk
(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt

 .

Since

||λi||L∞(Uδ), ||(Φi,j +Gi)||L∞(Uδ), ||Fs||L∞(Uδ), ||XFs||L∞(Uδ) <∞,

there exists a constant C0 > 0 such that

|ηj| ≤ C0

(
|AHFs(v, η)|+ ||∇mAHFs(v, η)||m + 1

)
, ∀j = 1, . . . , k.

Step 2: If there is t ∈ (1
2
, 1) such that v(t) /∈ Uδ then ||∇mAHFs(v, η)||m ≥ ε.

Proof of Step 2. The assumption v(t) /∈ Uδ means that there exists i ∈
{1, . . . , k} such that v(t) /∈ U i

δ := G−1
i (−δ, δ). If in addition, v(t) ∈M −U i

δ/2

for all t ∈ (1
2
, 1) then we easily have

||∇mAHFs(v, η)||m ≥
∣∣∣∣ ∫ 1

0

Hi(t, v(t))dt

∣∣∣∣ =

∣∣∣∣ ∫ 1

1/2

χ(t)Gi(v(t))dt

∣∣∣∣ ≥ δ

2
.
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Otherwise there exists t′ ∈ (1
2
, 1) such that v(t′) ∈ U i

δ/2. Thus we can find

t0, t1 ∈ (1
2
, 1) such that

v(t0) ∈ ∂U i
δ/2, v(t1) ∈ ∂U i

δ, v(t) ∈ U i
δ − U i

δ/2, ∀t ∈ [t0, t1],

or

v(t1) ∈ ∂U i
δ, v(t0) ∈ ∂U i

δ/2, v(t) ∈ U i
δ − U i

δ/2, ∀t ∈ [t1, t0].

We treat only the first case. The latter case is analogous. With

P := max
x∈Uδ
||∇gGi(x)||g <∞

we estimate,
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P||∇mAHFs(v, η)||m ≥ P||∂tv −
k∑
j=1

ηjXHj(t, v)−XFs(t, v)||L2

≥ P||∂tv −
k∑
j=1

ηjXHj(t, v)−XFs(t, v)||L1

≥
∫ t1

t0

||∂tv −
k∑
j=1

ηjXHj(t, v)−XFs(t, v)||g||∇gGi(v(t))||gdt

≥
∣∣∣∣ ∫ t1

t0

〈
∇gGi(v(t)), ∂tv(t)−

k∑
j=1

ηjXHj(t, v)−XFs(t, v)
〉
g
dt

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

dGi(v(t))
(
∂tv(t)−

k∑
j=1

ηjXHj(t, v)−XFs(t, v)︸ ︷︷ ︸
=0

)
)
dt

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

d

dt
Gi(v(t))dt− dGi(v)

( k∑
j=1

ηjXHj(t, v)
)

︸ ︷︷ ︸
=0

∣∣∣∣
≥
∣∣Gi(v(t1))

∣∣− ∣∣Gi(v(t0))
∣∣

=
δ

2
.

(3.2.6)

Thus Step 2 follows with ε = min
{
δ
2
, δ

2P

}
.

Step 3: Proof of the lemma.

Proof of Step 3. According to Step 2, v(t) ∈ Uδ for all t ∈ (1
2
, 1). Then Step

1 completes the proof of the lemma with C = C0 + ε+ 1.
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For a given gradient flow line w of AHFs and σ ∈ R, we define

o(σ,w, ε) := inf
{
τ ≥ 0

∣∣ ||∇mAHFs(w(σ + τ))||m ≤ ε
}
,

CF :=

∫ ∞
−∞

∫ 1

0

max
x∈M
||∂sFs(t, x)||gdtds < ∞.

(3.2.7)

Lemma 3.2.10. For a gradient flow line w of AHFs with lims→±∞w(s) = w±,

o(σ,w, ε) ≤
AHFs(w−)−AHFs(w+) + CF

ε2
.

Proof. We compute

ε2o(σ,w, ε) ≤
∫ σ+o(σ,w,ε)

σ

∣∣∣∣∇mAHFs(w)
∣∣∣∣2
m
ds

≤
∫ ∞
−∞
−dAHFs(w)(∂sw)ds− CF + CF

≤
∫ ∞
−∞
− d

ds

(
AHFs(w(s))

)
ds+ CF

= AHFs(w−)−AHFs(w+) + CF

We obtain a bound on o(σ,w, ε) by dividing ε2 in the above inequality.

Theorem 3.2.11. Assume that w = (u, τ) ∈ C∞(R,L × Rk) is a gradient

flow line of AHFs for which there exist a ≤ b such that

a ≤ AHFs(w(s)) ≤ b, for all s ∈ R. (3.2.8)

Then the L∞-norms of τi’s are uniformly bounded.

As we have mentioned, Theorem 3.2.11 completes the proof of Theorem

3.2.8.
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Proof. Using Lemma 3.2.9 and Lemma 3.2.10, we obtain

|τi(σ)| ≤ |τi(σ + o(σ,w, ε))|+
∫ σ+o(σ,w,ε)

σ

|∂sτi(s)|ds

≤ C
(∣∣AHFs(w(σ + o(σ,w, ε)))

∣∣+ 1
)

+ o(σ,w, ε)||Hi||L∞

≤ C(max{|a|, |b|}+ 1) +

(
|b− a|+ CF

ε2

)
||Hi||L∞ .

3.3 Proof of Theorem A

The proof proceeds in two steps. In Step 1, we prove Theorem A under

the assumption that Σ is a regular level set of a Poisson commuting Hamil-

tonian tuple G satisfying the assumption iii) as before. Then we remove this

additional assumption in Step 2.

Step 1. There exists a critical point (v, η) of AHF if ||F || < ℘(Σ) and Σ is

of restricted contact type with Φ : Σ→ MatDef(k × k). Moreover the action

value of that critical point is uniformly bounded as below:

− ||F || ≤ AHF (v, η) ≤ ||F ||. (3.3.1)

Proof of Step 1. We mainly follow the proof of Theorem A in [AF1] which

made use of the “stretching the neck” argument. For 0 ≤ r, we choose a

smooth family of functions ϕr ∈ C∞(R, [0, 1]) satisfying

1. for r ≥ 1: ϕ′r(s) · s ≤ 0 for all s ∈ R, ϕr(s) = 1 for |s| ≤ r − 1, and

ϕr(s) = 0 for |s| ≥ r,

2. for r ≤ 1: ϕr(s) ≤ r for all s ∈ R and Suppϕr ⊂ [−1, 1],

We note that ϕ∞ ≡ 1 is the limit of ϕr with respect to C∞loc-topology.
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We fix a point p ∈ Σ and consider the moduli space

M :=

(r, w) ∈ [0,∞)× C∞(R,L× Rk)

∣∣∣∣ w is a gradient flow line of AHϕrF with

lim
s→−∞

w(s) = (p, 0), lim
s→∞

w(s) ∈ Σ× {0}

 .

Assume on the contrary that there is no leafwise coisotropic intersection

point of φF for ||F || < ℘(Σ). For (r, w) ∈ M with w− = (p, 0) and w+ =

(q, 0) in Σ× {0}, we estimate

E(w) = −
∫ ∞
−∞

dAHϕr(s)F (w(s))(∂sw)ds

≤ AH0 (p, 0)−AH0 (q, 0) +

∫ ∞
−∞
||∂sϕrF ||−ds

=

∫ ∞
−∞
||ϕ′r(s)F ||−ds

=

∫ 0

−∞
ϕ′r(s)||F ||−ds−

∫ ∞
0

ϕ′r(s)||F ||+ds

= ϕr(0)
(
||F ||− + ||F ||+

)
≤ ||F ||.

Accordingly we can also estimate,

− ||F || ≤ AHϕrnF (wn(s)) ≤ ||F ||, (rn, wn) ∈M. (3.3.2)

Due to the action bound, Theorem 3.2.8 yields that a sequence {wn}n∈N
for (rn, wn) ∈ M has a convergent subsequence (still denoted wn) in C∞loc-

topology. We denote by x the limit gradient flow line (which can be a con-

stant gradient flow line). We want to show that M is compact and so as-

sume by contradiction that x+ /∈ Σ × {0} where x± are asymptotic ends of

x, i.e. x± = lims→±∞ x(s).

Case 1. rn is bounded.
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There is no loss of generality in assuming that rn → r as n → ∞. Let

U ∈ L × Rk be an open set containing only the constant critical points of

AHϕrF . Since x+ /∈ Σ × {0}, we can take for large n, σn ∈ R the last U -

entry time of wn, i.e. wn(σn) /∈ U and wn(s) ∈ U for s > σn. We note that

σn →∞ as n→∞ and that the reparametrized sequence σ∗nwn is a gradient

flow line of AHσ∗nϕrnF where σ∗nwn(·) := wn(·+σn) and σ∗nϕrn(·) := ϕrn(·+σn).

The new sequence σ∗nwn also has a C∞loc-convergent subsequence by Theorem

3.2.8 again and we denote by z the limit gradient flow line. Since rn → r

and σn → ∞, σ∗nϕrn C∞loc-converges to the zero function, and thus z is the

gradient flow line of AH. Since σ∗nwn → z in C∞loc-topology, we have

E(z) =

∫ ∞
−∞
||∂sz||2mds = lim

T→∞

∫ T

−T
||∂sz||2mds ≤ lim

T→∞
lim sup
n∈N

E(wn) = lim sup
n∈N

E(wn).

We observe that z(0) /∈ U and the positive asymptotic end z+ ∈ Σ × {0}
since Σ×{0} is a Morse-Bott component of CritAH (see [AF1, Lemma 2.12])

and hence z is a non-constant gradient flow line of AH. Thus the negative

asymptotic end z− is a critical point of AH; moreover it is not a constant

loop since otherwise z is a non-constant gradient flow line with zero energy

E(z) = 0. But this case is ruled out by the assumption that ||F || < ℘(Σ) as

well. To be precise, with z− = (v, η), we can derive the following estimate

which contradicts the definition of ℘(Σ).

0 < |Ω(v)| = |AH0 (z−)| = E(z) ≤ lim sup
n∈N

E(wn) ≤ ||F || < ℘(Σ).

Case 2. rn is unbounded.

Without loss of generality, we assume that rn →∞ as n→∞. The limit

of {wn}n∈N is a gradient flow line of AHF since β∞ ≡ 1. Then the asymp-

totic ends of the limit are critical points of AHF which give rise to a leafwise
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coisotropic intersection point of φF . It contradicts our assumption and Case

2 is ruled out.

With σn the first U -exit time of wn, the case x− /∈ Σ×{0} is analogous.

If x− = (q, 0) ∈ Σ with q 6= p, as Case 1, there exists a gradient flow line of

AH with asymptotic ends (q, 0) and (p, 0). But this cannot occur. Therefore

we conclude that the moduli space M is compact.

Next, we regard the moduli space M as the zero set of a Fredholm sec-

tion with index 1 of a Banach bundle over a Banach manifold as in (5.1.1).

Moreover, the Fredholm section is already transversal at the (0, p, 0) since Σ

is a Morse-Bott component by [AF1, Lemma 2.12]. Therefore we can per-

turb the Fredholm section away from (0, p, 0) (even if varying J , (0, p, 0) still

solves the gradient flow equation) to obtain a transverse Fredholm section

whose zero set is a compact one-dimensional smooth manifold with bound-

ary (0, p, 0). But there is no one-dimensional manifold with a single bound-

ary point. This finishes the proof of Claim 1. �

Step 2. End of the proof of Theorem A.

Proof of Step 2. In Step 2, our restricted contact coisotropic submanifold Σ

is not necessarily of the form Σ = G−1(0). Recall that on the open neigh-

borhood Uδ0
∼= {(q, p1, . . . , pk) ∈ Σ × Dk

r} of Σ, ω|Uδ0 = ω|Σ +
∑k

i=1 d(piαi)

and Xpi = Ri for all i = 1, . . . , k.

We consider a family of Hamiltonian tuples Hν(t, x) = χ(t)Gν(x), ν ∈ N
where Hν = (H1,ν , . . . , Hk,ν) and Gν = (G1,ν , . . . , Gk,ν) such that

1. 0 < εν < δ converges to zero as ν goes to infinity,

2. Gi,ν |Uδ0 = gi(pi) for some gi ∈ C∞(R),

45



Chapter 3. The Rabinowitz action functional with several
Lagrange multipliers

3. for (x, p) ∈ Σ× (−δ0, δ0)k ∼= Uδ0 ,

Gi,ν |U2εν−Uεν/2(x, p) =

{
pi − εν if pi > 0

−pi − εν if pi < 0,
(3.3.3)

4. Gi,ν |M−Uδ0 = constant,

5. G−1
ν (0) =

⋃
2k Σ× (±εν , . . . ,±εν).

We note that

XGi,ν |Σ×(±εν ,...,+εν ,...,±εν) = +Xpi , XGi,ν |Σ×(±εν ,...,−εν ,...,±εν) = −Xpi .

By construction, Hν Poisson-commutes and Step 1 guarantees the existence

of critical points (vν , ην) lying on G−1
ν (0) for sufficiently large ν because ||F || <

℘(Σ × {(±εν , . . . ,±εν)}) for large ν ∈ N. For (vν , ην) ∈ CritAHνF , vν lies on

one of the components of G−1
ν (0), say vν ⊂ Σ × (εν , . . . , εν). According to

Proposition 3.2.2, it holds that

φ1
F

(
vν(1/2)

)
= vν(0) = φ

−η1,ν
H1,ν

◦ · · · ◦ φ−ηk,νHk,ν

(
vν(1/2)

)
.

Then the estimate (3.3.1) in Step 1 implies the following lemma.

Lemma 3.3.1. For (vν , ην) ∈ CritAHνF , η1,ν , . . . , ηk,ν are uniformly bounded

in terms of λ1, . . . , λk and F .
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Proof. We estimate as in (3.3.1): For all i ∈ {1, . . . , k},

||F || ≥
∣∣AHνF (vν , ην)

∣∣
=
∣∣∣ ∫ 1

0

v∗λi +

∫ 1

0

〈η,Hν〉(t, vν(t))dt+

∫ 1

0

F (t, vν(t))dt
∣∣∣

=
∣∣∣ ∫ 1

0

λi(vν)
( k∑
j=1

ηj,νXHj,ν (vν) +XF (t, vν)
)
dt+

∫ 1

0

F (t, vν(t))dt
∣∣∣

=
3

4
|ηi,ν | −

1

4(k − 1)

k∑
j 6=i

|ηj,ν | −
∣∣∣ ∫ 1

0

λi(vν)
(
XF (t, vν)

)
+

∫ 1

0

F (t, vν(t))dt
∣∣∣.

Therefore we conclude

1

2

k∑
i=1

|ηi,ν | ≤ k
(
||F ||+ max

1≤i≤k
||λi|Uδ0/2||L∞||XF ||L∞ + ||F ||L∞

)
.

The two sequences of points {vν(0)}ν∈N and {vν(1/2)}ν∈N converge up to

taking a subsequence (still denoted by vν(0) and vν(1/2)) and we denote by

x0 := lim
ν→∞

vν(0), x1/2 := lim
ν→∞

vν
(
1/2
)
.

Obviously x0 and x1/2 are points in Σ. Moreover we know that

x0 = lim
ν→∞

vν(0) = lim
ν→∞

φ1
F (vν(1/2)) = φ1

F ( lim
ν→∞

vν(1/2)) = φ1
F (x1/2). (3.3.4)

Furthermore, due to Lemma 3.3.1, the limit {ηi,ν}ν∈N exists for all i, say

ni := lim
ν→∞

ηi,ν .
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Thus we conclude that x0 and x1/2 lie on the same leaf:

x0 = lim
ν→∞

vν(0) = lim
ν→∞

φ
−η1,ν
H1,ν

◦ · · · ◦ φ−ηk,νHk,ν
(vν(1/2)) = φ−n1H1

◦ · · · ◦ φ−nkHk
(x1/2).

(3.3.5)

It directly follows

φ−n1H1
◦ · · · ◦ φ−nkHk

(x1/2) = φ1
F (x1/2)

from (3.3.4) together with (3.3.5). This completes the proof of Theorem A.

�
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and the leafwise displacement

energy

In this chapter, we study the existence of a periodic orbit, i.e. a so-

lution of (1.2.2), together with a relation between its symplectic area and

the leafwise displacement energy in the stable case. This proves Theorem D

which were proved by Kai Cieliebak, Urs Frauenfelder, and Gabriel Pater-

nain [CFP] for separating stable hypersurfaces. Adapting their idea, we can

extend (and slightly improve) their result to stable coisotropic submanifolds.

Let Σ be a closed stable coisotropic submanifold in a symplectically as-

pherical symplectic manifold (M,ω) which is geometrically bounded. As in

Theorem A we first assume that Σ = G−1(0) for some Poisson commuting

Hamiltonian tuple G ∈ C∞(M,Rk), but this additional assumption will be

removed in the second step. Suppose that Σ is displaced by F ∈ C∞c (S1×
M), i.e. φF (Σ) ∩ Σ = ∅. We consider again the smooth family of functions

ϕr ∈ C∞(R, [0, 1]) defined in the proof of Theorem A. As before, we fix a
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point p ∈ Σ and consider the moduli space M defined by

M =

(r, w) ∈ [0,∞)×C∞(R,L× Rk)

∣∣∣∣ w is a gradient flow line of AHϕrF with

lim
s→−∞

w(s) = (p, 0), lim
s→∞

w(s) ∈ Σ× {0}

 .

Theorem 4.0.2. For (r, w) ∈ M where w = (u, τ), τ and r are uniformly

bounded.

In the previous sections we showed how Rabinowitz Floer theory for hy-

persurfaces can be generalized to our set-up. Since the proof of Theorem

4.0.2 needs several technical lemmas and auxiliary action functionals as in

the contact case [Ka2],we refer the reader to [CFP, Section 4.3] or [Ka3] in-

stead of giving a proof .

4.1 Proof of Theorem D

Step 1. We know that a sequence {(rn, wn)}n∈N in M has a C∞loc-convergent

subsequence due to Theorem 4.0.2 together with the argument in the proof

of Theorem 3.2.8. We denote by (r, w) the limit which is a gradient flow

line of AHϕrF . Again by compactness, w asymptotically converges to w± =

(v±, η±) ∈ CritAH since ϕr(±∞) = 0. If (r, w) ∈M, the moduli space M is

a one dimensional compact manifold with a single boundary point {(0, p, 0)}
(after perturbing a Fredholm section as in the proof of Theorem A). However

such a manifold does not exist and therefore one of the asymptotic ends w±

of w is a nontrivial solution of (1.2.2). For simplicity, let us assume w+ /∈
Σ× {0}. Following the notation from the proof of Theorem A, we consider

σn ∈ R the last U -entry time. Then σ∗nwn is a gradient flow line of AHσ∗nϕrnF
and C∞loc-converges to a non-constant gradient flow line z of AH with z(0) /∈

50



Chapter 4. The existence of a periodic orbit and the leafwise
displacement energy

U and z+ ∈ Σ×{0}.1 By compactness and the energy estimate, z− = (v, η) ∈
CritAH and z− is a nontrivial solution of (1.2.2). Moreover, by (3.3.2), we

have

−||F || ≤ AHσ∗nϕrnF (σ∗nwn(s)) ≤ ||F ||, ∀s ∈ R.

As n goes to infinity, it holds that

− ||F || ≤ Ω(v) = AH(z−) ≤ ||F || (4.1.1)

for every Hamiltonian function F ∈ C∞c (S1×M) displacing Σ. Since AH(z+) =

0 and the action value of AH decreases along z,∣∣Ω(v)
∣∣ =

∣∣AH(z−)
∣∣ > 0. (4.1.2)

(4.1.1) and (4.1.2) prove Theorem E provided that Σ is a level set of some

Poisson-commuting Hamiltonian tuple.

Step 2. Now we consider the situation that Σ is not necessarily a level set of

some Poisson-commuting Hamiltonian tuple. We choose a family of Hamil-

tonian tuples Hν(t, x) = χ(t)Gν(x), ν ∈ N where Hν = (H1,ν , . . . , Hk,ν) and

Gν = (G1,ν , . . . , Gk,ν) such that

1. 0 < εν < min{1/4k, δ0/2, δ1} converges to zero as ν goes to infinity,

2. Gi,ν |Uδ0 = gi(pi) for some gi ∈ C∞(R),

3. for (x, p) ∈ Σ× (−δ0, δ0)k ∼= Uδ0 ,

Gi,ν |U2εν−Uεν/2(x, p) =

{
pi − εν if pi > 0

−pi − εν if pi < 0,

1 Honestly speaking, we did not prove C∞loc-convergence of (rn, σ
∗
nwn); but it follows from

the proof of Theorem 4.0.2.
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4. Gi,ν |M−Uδ0 = constant,

5. G−1
ν (0) =

⋃
2k Σ× (±εν , . . . ,±εν).

With this defining Hamiltonian tuple Hν , the argument in Step 1 still works

and thus there exists vε ∈ G−1
ν (0) a solution of (1.2.2) satisfying 0 < Ω(vε) ≤

e(G−1
ν (0)). Since G−1

ν (0) is disconnected, vε lies in one of its connected com-

ponents, say vε ⊂ Σε. Since there is a diffeomorphism ψε between Σε and Σ,

ψε(vε) is a loop solving (1.2.2), contractible in M with Ω(ψε(vε)) = Ω(vε) > 0.

Moreover if we have chosen sufficiently large ν, e(Σ) = e(G−1
ν (0)). For sim-

plicity, let us assume that e(Σ) + ε < e(G−1
ν (0)) for some small ε > 0 and

for all ν ∈ N; it means that there is F ∈ C∞c (S1 × M) such that ||F || ∈
(e(Σ), e(Σ) + ε) such that φF (Σ) ∩ Σ = ∅; but if ν is big enough, φF also

displaces G−1
ν (0) and it contradicts ||F || < e(G−1

ν (0)). Hence, we have proved

that

0 < Ω(ψε(vε)) = Ω(vε) ≤ e(G−1
ν (0)) = e(Σ).

�

Remark 4.1.1. If one succeeds in proving compactness of gradient flow lines

of the perturbed Rabinowitz action functional in the stable case, Theorem D

is an immediate consequence of the invariance property of Rabinowitz Floer

homology.
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In the hypersurface case, [CFP, AF1] proved that the (perturbed) Ra-

binowitz action functional is generically Morse-Bott (Morse). Their argu-

ment undeniably continues to hold in our set-up. That is, AG is Morse-Bott

and AHF is Morse for a generic perturbation F ∈ C∞c (S1 × M). Further-

more, we know that gradient flow lines of the Rabinowitz action functional

are compact modulo breaking (see (F1) and (F2) below) for restricted con-

tact coisotropic submanifolds due to Theorem 3.2.8. Therefore we can de-

fine Floer homologies of AG and AHF as usual.1 As one expects, these two

Floer homologies are isomorphic by the standard continuation method in

Floer theory. Here we only treat the restricted contact case and refer to Re-

mark 2.5.1 for other cases. As before, (M,ω) is an exact symplectic manifold

being geometrically bounded with a family of ω-compatible almost complex

structures J = J(s, t).

1AG is never Morse since there is a S1-symmetry coming from time-shift on the critical

points set. However AG is Morse-Bott for a generic coisotropic submanifold, thus we can

define Morse-Bott homology of AG by counting gradient flow lines with cascades, see [Fr].

Since Rabinowitz Floer homology is invariant under homotopies there is no loss of generality

in assuming AH is Morse-Bott, see [CFP].
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5.1 Boundary Operator

We can assign some index to critical points of AHF , namely the transverse

Conley-Zehnder index.2 But we omit the definition, referring the reader to

[BO2, CF, MP]. We denote the index by

µ : CritAHF −→ Z.

Here we assumed that the first Chern class c1 vanishes over π2(M) for sim-

plicity; otherwise the index µ is well defined modulo 2N where N is the

minimal Chern number of (M,ω).

Let MJ(w−, w+) be the moduli space of gradient flow lines of AHF with

asymptotic ends w± ∈ CritAHF .

MJ(w−, w+) :=

(u, τ) ∈ C∞(R× S1,M)× C∞(R,Rk)

∣∣∣∣∣ (u, τ) solves (3.2.3),

lim
s→±∞

(u, τ) = w±

 .

In order to show that MJ(w−, w+) is a finite dimensional smooth manifold,

we interpret it as the zero set of a Fredholm section of a Banach bundle over

a Banach space. Let P(w−, w+) be the Banach manifold given by

P(w−, w+) :=
{

(u, τ) ∈ W 1,2(R× S1,M)×W 1,2(R,Rk)
∣∣ lim
s→±∞

(u, τ) = w±
}

and E be the Banach bundle over P(w−, w+) whose fibre at (u, τ) ∈ P(w−, w+)

is

E(u,τ) := L2(R× S1, u∗TM × τ ∗TRk).

Then the moduli space M(w−, w+) is the zero set of the section

sJ : P(w−, w+) −→ E , sJ(u, τ) =
(
∂̄H,F,J(u), ∂̄1(τ1), · · · , ∂̄k(τk)

)
(5.1.1)

2 We can define Floer homology of AHF without this index.
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defined by

∂̄H,F,J(u) = ∂su+ J(s, t, u)
(
∂tu−

k∑
i=1

ηiXHi(t, u)−XFs(t, u)
)

∂̄i(τi) = ∂sτi −
∫ 1

0

Hi(t, u)dt, 1 ≤ i ≤ k


where τ = (τ1, . . . , τk). It turns out that this section is Fredholm. Then

we regard the moduli space as the zero set of this section, MJ(w−, w+) =

s−1
J (0). Let

DsJ(u, τ) : T(u,τ)P(w−, w+) −→ E(u,τ)

be the vertical differential of sJ at (u, τ). It is known that DsJ(u, τ) is

surjective for a generic ω-compatible almost complex structure J and for

any (u, τ) ∈ s−1
J (0), see [FHS, Section 5] and [BO1]. This transversality is-

sues (surjectivity of DsJ(u, τ)) can now also be settled using the framework

of polyfolds developed by Hofer-Wysocki-Zehnder [HWZ1, HWZ2, HWZ3].

Thus we perturb the section sJ (varying J slightly) so that DsJ(u, τ) is sur-

jective and the implicit function theorem yields that s−1
J (0) =MJ(w−, w+) is

a smooth finite dimensional manifold. Moreover the dimension of the moduli

space MJ(w−, w+) coincides with the dimension of the kernel of DsJ which

in turn is the same as the Fredholm index of sJ since it is surjective; be-

sides, the Fredholm index of sJ can be computed in terms of the indices of

µ(w−) and µ(w+) using the spectral flow [RS, BO2, CF]. In conclusion, we

have the identity

dimMJ(w−, w+) = µ(w−)− µ(w+), w± ∈ CritAHF .

We suppress the subindex J in MJ(w−, w+) for notational convenience. We

divide out the R-action on M(w−, w+) defined by shifting the gradient flow

lines in the s-variable. Then we obtain the moduli space of unparametrized

55



Chapter 5. Rabinowitz Floer homology

gradient flow lines which we denote by

M̂(w−, w+) :=M(w−, w+)/R.

For the compactification of the moduli space M(w−, w+), we recall the

Floer-Gromov convergence. A sequence {(uν , τ ν)}ν∈N in M(w−, w+) is

said to Floer-Gromov converge to a broken gradient flow lines {(uj, τj)}mj=1

where z0, . . . , zm ∈ CritAHFs with z0 = w− and zm = w+, and

(uj, τj) ∈M(zj−1, zj), j ∈ {1, . . . ,m}

if there exist σνj ∈ R such that reparametrized sequences (uν , τ ν)(σνj + ·)
converge to (uj, τj) for all j ∈ {1, . . . ,m} in the C∞loc-topology. The following

statements are the key ingredients for boundary operators of various Floer

homologies, including Rabinowitz Floer homology.

(F1) The moduli space M(w−, w+) is a one dimensional compact smooth

manifold with respect to the topology of Floer-Gromov convergence

when µ(w−)− µ(w+) = 1.3 Accordingly, M̂(w−, w+) is a finite set.

(F2) Let M̂c(w−, w+) be the compactification of M̂(w−, w+) with respect

to the topology of Floer-Gromov convergence. If µ(w−) − µ(w+) = 2,

M̂c(w−, w+) is a compact one-dimensional manifold whose boundary is

∂M̂c(w−, w+) =
⋃
z

M̂(w−, z)× M̂(z, w+) (5.1.2)

where the union runs over z ∈ CritAHF with µ(w−)− µ(z) = 1.

(F1) follows from the elliptic bootstrapping argument as discussed in The-

orem 3.2.8, see also Floer’s beautiful paper [Fl2]. (F2) is proved by Floer’s

gluing theorem [Fl1].

3 Without help of the Conley-Zehnder index, we can rephrase that the one dimensional

component of M(w−, w+) is a compact smooth manifold.
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We denote by CritqAHF the set of critical point of AHF of index q ∈ Z, i.e.

µ((v, η)) = q for (v, η) ∈ CritqAHF . We define a Z/2-vector space

CFq(AHF ) :=
{
ξ =

∑
(v,η)∈CritqAHF

ξ(v,η)(v, η)
∣∣∣ ξ(v,η) ∈ Z/2

}

where ξ(v,η) satisfies the finiteness condition:

#
{

(v, η) ∈ CritqAHF
∣∣ ξ(v,η) 6= 0, AHF (v, η) ≥ κ

}
<∞, ∀κ ∈ R.

We denote by n(w−, w+) be the parity of elements of the finite set M̂(w−, w+)

when µ(w−) − µ(w+) = 1, see (F1) above. Then the boundary operators

{∂q}{q∈Z} are defined by

∂q : CFq(AHF ) −→ CFq−1(AHF )

w− ∈ CritqAHF 7−→
∑

w+∈Critq−1AHF

n(w−, w+) · w+.

Due to (F2), we know ∂q−1◦∂q = 0 (in Z/2) so that (CF•(AHF ), ∂•) is a chain

complex indeed. We define Rabinowitz Floer homology by

HFq(AHF ) := Hq(CF•(AHF ), ∂•), RFHq(Σ,M) := HFq(AG).

To be exact, since AG is Morse-Bott, HF(AG) is defined by Frauenfelder’s

Morse-Bott homology [Fr, Appendix A]. We note that CritAG consists of Σ

and circles. We pick a Morse function f on CritAG and then the bound-

ary operator for HF(AG) is defined by counting gradient flow lines of AG

(called cascades) together with gradient flow lines of f . Note that if there is

no nonconstant solution of (1.2.2), CritAG ∼= Σ and thus there are no cas-

cades since the energy of each cascade is positive. Thus if this is the case,

HF(AG) ∼= H(Σ;Z/2).
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5.2 Continuation Homomorphism

Given any two Hamiltonian functions F and K in C∞c (S1×M), we con-

sider the homotopies D±s ∈ C∞(S1 ×M), s ∈ R,

D+
s (t, x) := K(t, x) + ϕ+(s)

(
F (t, x)−K(t, x)

)
and

D−s (t, x) := K(t, x) + ϕ−(s)
(
F (t, x)−K(t, x)

)
where ϕ± ∈ C∞(R, [0, 1]) are cut-off functions defined by

ϕ+(s) =

{
0 s ≤ −1

1 s ≥ 1
ϕ−(s) =

{
1 s ≤ −1

0 s ≥ 1.

We consider the time-dependent version of the gradient flow equation:

∂su+ Js(t, u)
(
∂tu−

k∑
i=1

τiXHi(t, u)−XD+
s

(t, u)
)

= 0

∂sτi −
∫ 1

0

Hi(t, u)dt = 0, 1 ≤ i ≤ k.

 (5.2.1)

The solutions of (5.2.1) with an asymptotic condition form the following

moduli space:

M(wK , wF ) :=

w ∈ C∞(R× S1,M)×C∞(R,Rk)

∣∣∣∣∣ w = (u, τ) solves (5.2.1) with

lim
s→±∞

w(s) = wF/K ∈ CritAHF/K

 .

As we discussed in the previous subsection, it is also a well-known fact in

Floer theory that the moduli space M(wK , wF ) is a smooth manifold of di-

mension µ(wK) − µ(wF ) for a generic homotopy. In particular, it is known

that M(wK , wF ) is a finite set when wK and wF have the same index and
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thus we denote the parity of M(wK , wF ) by n(wK , wF ) if this is the case.

Then we define the continuation homomorphism as follows.

ΦF
K : CFq(AHK) −→ CFq(AHF )

wK ∈ CritqAHK 7−→
∑

wF∈CritqAHF

n(wK , wF ) · wF .

In the same way, we also define

ΦK
F : CFq(AHF ) −→ CFq(AHK)

using the other homotopy D−s . Then we obtain the invariance property of

Rabinowitz Floer homology via the continuation homomorphisms using a ho-

motopy of homotopies Dr
s(t, x) := K(t, s) + ϕr(s)(F (t, x) − K(t, x)) where

ϕr : R→ [0, 1], r ∈ R and ϕr = ϕ± if ±r ≥ 1, see [Sa, Section 3.4] 4:

Theorem 5.2.1. Rabinowitz Floer homology is independent of the choice of

perturbations up to canonical isomorphism. In particular, it holds that

RFH(Σ,M) ∼= HF(AHF ), F ∈ C∞c (S1 ×M).

For the later purpose, we compare the action values of AHK and AHF :

Proposition 5.2.2. If the moduli space M(wK , wF ) is not empty,

AHF (wF ) ≤ AHK(wK) + ||F −K||−.
4 Here we again make use of Floer-Gromov compactness and Floer’s gluing theorem.
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Proof. We pick w ∈M(wK , wF ) and estimate its energy:

0 ≤ E(w)

= −
∫ ∞
−∞

dAH
D+
s

(w(s))[∂sw]ds

= −
∫ ∞
−∞

d

ds

(
AH
D+
s

(w(s))
)
ds−

∫ ∞
−∞

∫ 1

0

ϕ+
′(s)
(
F (t, w(s))−K(t, w(s))

)
dtds

≤ AH
D+
−∞

(wK)−AH
D+
∞

(wF )−
∫ ∞
−∞

ϕ+
′(s)

∫ 1

0

(
F (t, w(s))−K(t, w(s))

)
dtds

≤ AHK(wK)−AHF (wF ) + ||F −K||−.

5.3 Proof of Theorem E

Suppose that there are no leafwise coisotropic intersection points for some

φF ∈ Hamc(M,ω). Then the set CritAHF is empty since otherwise a criti-

cal point of AHF gives rise to a leafwise coisotropic intersection point. Thus

HF(AHF ) = 0 and Theorem 5.2.1 proves (i).

If there are only constant solutions of (1.2.2), no cascades appear in the

boundary operator of Morse-Bott homology. Thus the Rabinowitz Floer ho-

mology of (Σ,M) is isomorphic to the Morse homology of Σ and hence to

the singular homology of Σ. This proves (iii).

Suppose there are only constant solutions of (1.2.2). Due to (iii), we

know that the Rabinowitz Floer homology of (Σ,M) is isomorphic to the

singular homology of Σ. While the singular homology of Σ never vanishes,

the Rabinowitz Floer homology of (Σ,M) vanishes by (i) since Σ is displace-

able. This contradiction proves (ii). �
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5.4 Filtered Rabinowitz Floer Homology

For a < b ∈ R which are not critical values of AHF , we define the Z/2-

vector space

CF(a,b)
q (AHF ) := Crit(a,b)

q (AHF )⊗ Z/2

where

Crit(a,b)
q (AHF ) :=

{
(v, η) ∈ CritqAHF

∣∣AHF (v, η) ∈ (a, b)
}
.

Then
(
CF(−∞,b)
∗ (AHF ), ∂b∗

)
is a sub-complex of

(
CF∗(AHF ), ∂∗

)
since (negative)

gradient flow lines of AHF flow downhill. Here ∂b∗ := ∂∗|CF
(−∞,b)
∗

. There are

canonical homomorphisms

ib,ca : CF(a,b)
q (AHF ) −→ CF(a,c)

q (AHF ), a ≤ b ≤ c

and

πca,b : CF(a,c)
q (AHF ) −→ CF(b,c)

q (AHF ), a ≤ b ≤ c.

ib,ca is a natural inclusion and πca,b is a projection along CF(a,b)
q (AHF ). We note

that

CF(a,c)
q (AHF ) = CF(a,b)

q (AHF )⊕ CF(b,c)
q (AHF ),

We suppress the indices a, b, and c if there is no confusion. The short exact

sequence

0 −→ CF(−∞,a)
q (AHF )

i−→ CF(−∞,b)
q (AHF )

π−→ CF(a,b)
q (AHF ) −→ 0

gives rise to a boundary operator ∂ba∗ on CF(a,b)
∗ (AHF ) and this induces a ho-

mology group, namely the filtered Rabinowitz Floer homology:

HF(a,b)
q (AHF ) = Hq(CF(a,b)

• (AHF ), ∂ba•).
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More generally for a ≤ b ≤ c, we have

0 −→ CF(a,b)
q (AHF )

i−→ CF(a,c)
q (AHF )

π−→ CF(b,c)
q (AHF ) −→ 0.

The canonical homomorphisms i, π, and the boundary map ∂ are compat-

ible with each other so that they induce canonical homomorphisms on the

homology level. Thus we have

· · · δ−→ HF(a,b)
q (AHF )

i∗−→ HF(a,c)
q (AHF )

π∗−→ HF(b,c)
q (AHF )

δ−→ HF
(a,b)
q−1 (AHF )

i∗−→ · · · .

where δ is the connecting homomorphism.

Corollary 5.4.1. In the filtered case, the canonical homomorphism is given

by

(ΦF
K)∗ : HF(a,b)

q (AHK) −→ HF(a−||F−K||−,b+||F−K||−)
q (AHF ).

Proof. This is a well-known fact in Floer theory; it follows from the com-

parison of the action values of AHK and AHF , see Proposition 5.2.2.

5.5 Proof of Theorem B

All of the lemmas and the propositions in this subsection were established

for hypersurfaces in [AF1]. Without doubt, their arguments continue to hold

in our situation, but we outline the arguments for the sake of completeness.

For ||F || < ℘(Σ), we define

Critloc(AHF ) :=
{

(v, η) ∈ CritAHF
∣∣∣ − ||F ||+ ≤ AHF (v, η) ≤ ||F ||−

}
.

We note that the set Critloc(AHF ) is finite. This follows from the Arzela-

Ascoli theorem since the Lagrange multipliers ηi’s are uniformly bounded

according to Theorem 3.2.11. We define the finite dimensional Z/2 vector
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space

CFloc(AHF ) := Critloc(AHF )⊗ Z/2 .

(CFloc(AHF ), ∂loc) is a chain complex and the local Rabinowitz Floer ho-

mology is defined by

HFloc(AHF ) := H(CFloc(AHF ), ∂loc).

Proposition 5.5.1. For F ∈ C∞c (S1,M) with ||F || < ℘(Σ), the following

inequalities hold.

#

{
Leafwise coisotropic

intersection points of φF

}
≥ dim CFloc(AHF ) ≥ dim HFloc(AHF ) .

Proof. We briefly sketch the proof and refer to [AF1, Lemma 2.19] for

details. The last inequality is obvious. For the first inequality, it suffices

to show that different critical points of AHF give rise to different leafwise

coisotropic intersection points. If two distinct critical points (v, η), (v′, η′) ∈
CritlocAHF give rise to the same leafwise coisotropic intersection point, then

γ := v′|[1/2,1]#v|[1/2,1], where v(t) = v(1 − t) and # is the path catenation

operator, is a periodic orbit solving (1.2.2), see pictures below. Moreover a

close look at γ reveals that Ω(γ) ≤ ||F || < ℘(Σ) which contradicts the defi-

nition of ℘(Σ).
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Proposition 5.5.2. The local Rabinowitz Floer homology of AH is isomor-

phic to the singular homology of Σ, i.e.

H(Σ;Z/2)
Θ∼= HFloc(AH) .

Proof. The set CritlocAH consists of critical points of AH whose action val-

ues are zero which in turn implies CritlocAH ∼= Σ. Therefore no cascades ap-

pear in the boundary operator and HFloc(AH) is isomorphic to Morse homol-

ogy of Σ.

The lemma below directly follows from the definition of ℘(Σ).

Lemma 5.5.3. For any (a, b) ⊂ (−℘(Σ), ℘(Σ)), we have an isomorphism

HF(a,b)(AH) ∼= HFloc(AH).

Proposition 5.5.4. If ||F || < ℘(Σ), there exists an injective homomorphism

ι : H(Σ;Z/2) −→ HFloc(AHF ) .

In particular, dim HFloc(AHF ) ≥ dim H(Σ;Z/2).

Proof. We pick a ∈ R with 0 < a < ||F || < ℘(Σ) then using the continua-

tion homomorphism in Corollary 5.4.1, we obtain

(ΦF
0 )∗ : HFloc(AH) ∼= HF(−a,0)(AH) −→ HF(−a+||F ||−,|F ||−)(AHF ) ∼= HFloc(AHF ).

On the other hand, we also have

(Φ0
F )∗ : HF(−a+||F ||−,|F ||−)(AHF ) −→ HF(−a+||F ||,||F ||)(AH) ∼= RFHloc(Σ,M).

Using a homotopy of homotopies Dr
s(t, x) = ϕr(s)F (t, x), we deduce

(Φ0
F )∗ ◦ (ΦF

0 )∗ = idHFloc(AH).
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Therefore (ΦF
0 )∗ is injective and the proposition follows with

ι := (ΦF
0 )∗ ◦Θ.

Proof of Theorem B. It directly follows from Proposition 5.5.1 and Propo-

sition 5.5.4. �

5.6 Proof of Theorem C

We give a sketch of the proof here and refer to [AMo] for details.5

As before, F ∈ C∞c (S1 ×M) with ||F || < ℘(Σ). Let ` ∈ N. For r ≥ 0,

we choose a smooth family of functions ϕr ∈ C∞(R, [0, 1]).

We consider the following moduli space.

M(r) :=

w ∈ C∞(R,L× Rk)

∣∣∣∣ w is a gradient flow line of

AHϕrF with lim
s→±∞

w(s) ∈ Σ× {0}

 .

Note that M(0) ∼= Σ. Moreover one can show that M(r) is compact in the

sense of Theorem 3.2.8.6

5We tacitly assume all transversality conditions of evaluation maps and Fredholm sec-

tions involved (or hidden) in the proof. These conditions are true up to small perturbations,

as a matter of fact.
6The proof is similar to the corresponding part of the proof of Theorem A.
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Now we consider the evaluation map

evr :M(r) −→M×`

w = (u, τ) 7−→
(
u(r, 0), . . . u(`r, 0)

)
.

For generic Morse functions fi and Riemannian metrics gi on M and f , g on

Σ and for any x = (x1, . . . , x`, x−, x+) ∈ Critf1×· · ·×Critf`×Critf ×Critf ,

M(r, x) :=

w = (u, τ) ∈M(r)

∣∣∣∣ lim
s→±∞

u(s) ∈ W u/s(x±, f)

evr(u) ∈ W s(x1, f1)× · · · ×W s(x`, f`)


is a smooth manifold. The map defined by

θr : CM∗(f1)⊗ · · · ⊗ CM∗(f`)⊗ CM∗(f) −→ CM∗(f)

(x1 ⊗ · · · ⊗ x`)⊗ x− 7−→
∑

x+∈Critf

#2M(r, x) · x+.

is a chain map. Since M(r, x) is chain homotopy equivalent to M(0, x) via

the moduli space M[0, r] := {(e, w) | e ∈ [0, r], w ∈ M(r)}, θr is chain ho-
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motopic to θ0. The map θ0 induces the cohomology operation

Θ : H∗(M)⊗` ⊗H∗(Σ) −→ H∗(Σ),

(a1 ⊗ · · · ⊗ a`)⊗ b 7−→ (a1 ∪ · · · ∪ a`)|Σ ∩ b.

Let ` = cl(Σ,M) so that the cohomology operation Θ is nonzero, and

hence M(r, x) 6= ∅ for some x ∈ Critf1× · · · ×Critf`×Critf ×Critf and for

all r ∈ R. We may assume that Morse functions f, f1, . . . , f` and Riemannian

metrics g, g1, . . . g` satisfy the following generic condition.

• W s(xi, fi) does not intersect with the set of leafwise coisotropic inter-

section points for xi ∈ Critfi with nonzero Morse index.

We choose a sequence wn = (un, τn) ∈M(n, x), n ∈ N. That is,
∂su

n(s, t) + J(s, t, un)
(
∂tu

n −
k∑
i=1

τni (s)XHi(t, u
n)− ϕn(s)XF (t, un)

)
= 0,

∂sτ
n
i −

∫ 1

0

H(t, un)dt = 0, 1 ≤ ∀i ≤ k.

Consider the following `+ 2 sequences of maps:

wn(s+ jn), j ∈ {0, . . . `+ 1}.

The limits of ϕn(s + jn), 0 ≤ j ≤ ` + 1 in the C∞loc-topology look like as

pictures below and in particular ϕn(s + jn)F converges to F for 1 ≤ j ≤ `.

By applying Theorem 3.2.8, wn(s + jn) converges (up to subsequence) to
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some map ŵj in the C∞loc-topology for 0 ≤ j ≤ ` + 1. Note that ŵj is a

gradient flow line of AHF for 1 ≤ j ≤ ` and in particular ŵj(±∞) ∈ CritAHF
for 1 ≤ j ≤ `. Since we have assumed that W s(xi, fi) does not intersect with

the set of leafwise coisotropic intersection points for xi ∈ Critfi with nonzero

Morse index, ŵj, 1 ≤ j ≤ ` are not constant gradient flow lines. Therefore

`+ 1 critical points

ŵ1(−∞), ŵ2(−∞), · · · , ŵ`(−∞), ŵ`(∞)

of AHF are distinct. Moreover as in the proof of Theorem A, the assumption

||F || < ℘(Σ) guarantees that they give rise to distinct leafwise coisotropic in-

tersection points. This shows the existence of cl(Σ,M)+1 leafwise coisotropic

intersection points. �
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Künneth formula in Rabinowitz

Floer homology

In this chapter, we analyze the Rabinowitz Floer action functional for a

product of restricted contact hypersurfaces in a product of symplectic man-

ifolds and derive a Künneth formula for Rabinowitz Floer homology. Con-

sider restricted contact hypersurfaces (Σ1, λ1) resp. (Σ2, λ2) in exact sym-

plectic manifolds (M1, ω1 = dλ1) resp. (M2, ω2 = dλ2). Moreover we as-

sume that Σ1 resp. Σ2 bounds a compact region in M1 resp. M2 and that

those M1 and M2 are geometrically bounded. We introduce projection maps

π1 : M1×M2 →M1 and π2 : M1×M2 →M2; then (M1×M2, ω1⊕ω2) admits

the symplectic structure ω1 ⊕ ω2 = π∗1ω1 + π∗2ω2.

6.1 Rabinowitz action functional for product

manifolds

Since Σ1 and Σ2 are restricted contact hypersurfaces, there exist associ-

ated Liouville vector fields Y1 resp. Y2 on M1 resp. M2 such that LYiωi = ωi

and Yi t Σi for i = 1, 2. We denote by φtYi the flow of Yi and fix δ > 0 such
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that φtYi |Σi is defined for |t| < δ. Since Σ1 resp. Σ2 bounds a compact region

in M1 resp. M2, we are able to define Hamiltonian functions G1 ∈ C∞(M1)

and G2 ∈ C∞(M2) so that

1. G−1
1 (0) = Σ1 and G−1

2 (0) = Σ2 are regular level sets;

2. dG1 and dG2 have compact supports;

3. Gi(φ
t
Yi

(xi)) = t for all xi ∈ Σi, i = 1, 2, and |t| < δ;

We extend G1, G2 to be defined on the whole of M1 ×M2:

G̃i := π∗iGi : M1 ×M2 −→ R, i = 1, 2

(x1, x2) 7−→ Gi(xi).

We denote by L = LM1×M2 ⊂ C∞(S1,M1×M2) the space of contractible

loops in M1×M2. The perturbed Rabinowitz action functional AG̃1,G̃2

F (v, η1, η2) :

L× R2 → R is defined by

AG̃1,G̃2

F (v, η1, η2) = −
∫ 1

0

v∗(λ1 ⊕ λ2)− η1

∫ 1

0

G̃1(v)dt− η2

∫ 1

0

G̃2(v)dt

where λ1 ⊕ λ2 := π∗1λ1 + π∗2λ2. The real numbers η1 and η2 can be thought

of as Lagrange multipliers as before. A critical point (v, η1, η2) ∈ CritAG̃1,G̃2

F

satisfies
∂tv = η1XG̃1

(v) + η2XG̃2
(v),∫ 1

0

G̃1(v)dt = 0,∫ 1

0

G̃2(v)dt = 0.


(6.1.1)

We choose a compatible almost complex structure J1 on M1 and define

the metric on (M1, ω1) by g1(·, ·) = ω1(·, J1·). Analogously we also define the

metric g2(·, ·) = ω2(·, J2·) on (M2, ω2). Then g = g1 ⊕ g2 which is the metric
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on (M1×M2, ω1⊕ω2) induces a metric m on the tangent space T(v,η1,η2)(L×
R2) ∼= TvL× R2 as follows:

m(v,η1,η2)

(
(v̂1, η̂1

1, η̂
1
2), (v̂2, η̂2

1, η̂
2
2)
)

:=

∫ 1

0

gv(v̂
1, v̂2)dt+ η̂1

1 η̂
2
1 + η̂1

2 η̂
2
2 .

In this set-up, the gradient flow equation

∂sw(s) +∇mAG̃1,G̃2

F (w(s)) = 0, w ∈ C∞(R,L× R2)

can be interpreted as maps u(s, t) : R × S1 → M1 ×M2 and τ1(s), τ2(s) :

R→ R solving

∂su+ J(t, u)
(
∂tv − τ1XG̃1

(u)− τ2XG̃2
(u)
)

= 0,

∂sτ1 −
∫ 1

0

G̃1(u)dt = 0,

∂sτ2 −
∫ 1

0

G̃2(u)dt = 0.


(6.1.2)

6.1.1 Compactness

In order to define Rabinowitz Floer homology, we prove the compactness

theorem for gradient flow lines of the Rabinowitz action functional in this

subsection.

We introduce two auxiliary action functionals A1,A2 : LM1×M2×R2 → R:

A1(v, η1, η2) :=

∫ 1

0

v∗π∗1λ1 − η1

∫ 1

0

G1(v)dt

A2(v, η1, η2) :=

∫ 1

0

v∗π∗2λ2 − η2

∫ 1

0

G2(v)dt.

Lemma 6.1.1. Let w = (v, η1, η2) ∈ C∞(R,L × R2) be a gradient flow line

of AG̃1,G̃2

F with asymptotic ends w− = (v−, η1−, η2−) and w+ = (v+, η1+, η2+).
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Then the action values of A1 and A2 are bounded along w in terms of the

asymptotic data:

(i) A1(w(s)) ≤ 2|A1(w−)|+ |A1(w+)|, ∀s ∈ R;

(ii) A2(w(s)) ≤ 2|A2(w−)|+ |A2(w+)|, ∀s ∈ R.

Proof. We only show the first inequality, the latter one is proved in a sim-

ilar way. Since it holds that iX
G̃2
π∗1ω1 = 0, we compute

d

ds
A1(w(s)) = dA1(w(s))[∂sw(s)]

=

∫ 1

0

π∗1ω1

(
∂tv, ∂sv)−

∫ 1

0

ω1 ⊕ ω2

(
η1XG̃1

(v), ∂sv
)
−
(∫ 1

0

G̃1(v)dt
)2

=

∫ 1

0

π∗1ω1

(
∂tv − η1XG̃1

(v), ∂sv
)
dt−

(∫ 1

0

G̃1(v)dt
)2

= −
∫ 1

0

π∗1ω1(∂sv, J∂sv)dt−
(∫ 1

0

G̃1(v)dt
)2

.

Integrating the above equality from −∞ to any s0 ∈ R, we have

A1(w(s0))−A1(w−) =

∫ s0

−∞

d

ds
A1(w(s))ds

= −
∫ s0

−∞

∫ 1

0

π∗1ω1(∂sv, J∂sv)dtds−
∫ s0

−∞

(∫ 1

0

G̃1(v)dt
)2

ds.

We set

B(s) :=

∫ 1

0

π∗1ω1(∂sv, J∂sv)dt+
(∫ 1

0

G̃1(v)dt
)2

.

Therefore the following estimate can be derived for any s0 ∈ R

|A1(w(s0))| ≤ |A1(w+)|+
∣∣∣ ∫ s0

−∞
B(s)ds

∣∣∣,
and it remains to find a bound for |

∫ s0
−∞B(s)ds|. Since B(s) is nonnegative,
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we are able to estimate as the following. By setting s0 =∞, we have

A1(w+)−A1(w−) = −
∫ ∞
−∞

B(s)ds

Using the above formula, we obtain∣∣∣∣ ∫ s0

−∞
B(s)ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ ∞
−∞

B(s)ds

∣∣∣∣ ≤ |A1(w+)|+ |A1(w−)|.

Thus we finally deduce

|A1(w(s0))| ≤ |A1(w+)|+ 2|A1(w−)|, ∀s0 ∈ R.

Lemma 6.1.2. Assume that v ⊂ Uδ := G̃−1
1 (−δ, δ) ∩ G̃−1

2 (−δ, δ) with 0 <

2δ < min{1, δ0}. Then there exists Ci > 0 satisfying

|ηi| ≤ Ci

(
|Ai(v, η)|+ ||∇mAG̃1,G̃2||m + 1

)
, i = 1, 2.

Proof. We estimate

|Ai(v, η1, η2)| =
∣∣∣ ∫ 1

0

v∗π∗i λi + ηi

∫ 1

0

G̃i(v)dt
∣∣∣

≥
∣∣∣ηi ∫ 1

0

π∗i λi(v)
(
XG̃i

(v)
)
dt
∣∣∣− ∣∣∣ηi ∫ 1

0

G̃i(v)dt
∣∣∣|

−
∣∣∣ ∫ 1

0

π∗i λi(v)
(
∂tv − η1XG̃1

(v)− η2XG̃2
(v)
)
dt
∣∣∣

≥ |ηi| − δ|ηi| − Ci,δ||∂tv − η1XG̃1
(v)− η2XG̃2

(v))||L1

≥ |ηi| − δ|ηi| − Ci,δ||∇mAG̃1,G̃2||m

where Ci,δ := ||π∗i λi|Uδ ||L∞ . The second inequality holds since π∗i λi(XG̃j
) = 0

73
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if i 6= j. This estimate finishes the lemma with

Ci := max
{ 1

1− δ
,
Ci,δ

1− δ
,
}
, i = 1, 2.

Along arguments in Chapter 3, one can easily show the following funda-

mental lemma using previous two lemmas.

Lemma 6.1.3. For a gradient flow line w = (u, τ1, τ2) ∈ C∞(R,L × R2) of

AG̃1,G̃2 , the following assertion holds for i = 1, 2 with some C, ε > 0.

|τi| ≤ C
(
|Ai(w−)|+ |Ai(w+)|+ 1

)
if ||∇mAG̃1,G̃2(u, τ1, τ2)||m < ε.

The following compactness theorem immediately follows from the funda-

mental lemma as before, see Chapter 3.

Theorem 6.1.4. Let {wn}n∈N be a sequence of gradient flow lines of AG̃1,G̃2

for which there exist a < b such that

a ≤ AG̃1,G̃2(wn(s)) ≤ b, for all s ∈ R.

Then for every reparametrization sequence σn ∈ R, the sequence wn(· + σn)

has a subsequence which is converges in C∞loc(R,L× R2).

This theorem enables us to define the Rabinowitz Floer homology

RFH(Σ1 × Σ2,M1 ×M2) = H
(
CF(AG̃1,G̃2), ∂1,2

)
.

6.2 Proof of Theorem F

Thanks to the previous section, we are ready to define Rabinowitz Floer

homology of (Σ1×Σ2,M1×M2) and to prove Theorem F. Consider the Ra-
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binowitz action functionals AG1 : LM1 × R→ R and AG2 : LM2 × R→ R:

• AG1(v1, η1) = −
∫ 1

0

v∗1λ1 − η1

∫ 1

0

G1(v1)dt,

• AG2(v2, η2) = −
∫ 1

0

v∗2λ2 − η2

∫ 1

0

G2(v2)dt.

Recall for i = 1, 2 that (vi, ηi) ∈ CritAGi if and only if

∂tvi = ηiXGi(vi),

∫ 1

0

G1(vi)dt = 0, (6.2.1)

and wi(s, t) =
(
ui(s, t), τi(s)

)
: R × S1 → Mi × R is a gradient flow line of

AGi if and only if

∂sui + Ji(t, ui)
(
∂tui − ηiXGi(ui)

)
= 0, ∂sτi −

∫ 1

0

Gi(ui)dt = 0. (6.2.2)

Then we define chain complexes CF(AG1), CF(AG2) and their boundary op-

erators ∂1, ∂2 analogously as before and denote their Floer homologies by

RFH(Σ1,M1) = H
(
CF(AG1), ∂1

)
, RFH(Σ2,M2) = H

(
CF(AG2), ∂2

)
.

Next, for a Künneth formula, we define the tensor product of chain com-

plexes by

(
CF∗(AG1)⊗ CF∗(AG2)

)
n

:=
n⊕
i=0

CFi(AG1)⊗ CFn−i(AG2).

together with the boundary operator ∂⊗n given by

∂⊗n
(
(v1, η1)i⊗ (v2, η2)n−i

)
= ∂1

i (v1, η1)i⊗ (v2, η2)n−i + (v1, η1)i⊗ ∂2
n−i(v2, η2)n−i.
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Comparing the critical point equations (6.1.1) and (6.2.1), we easily notice

that
(
(v1, v2), η1, η2

)
= (v, η1, η2) ∈ CritAG1,G2 if and only if (v1, η1) ∈ CritAG1

and (v2, η2) ∈ CritAG2 where v1 = π1◦v : S1 →M1 and v2 = π2◦v : S1 →M2

for the projections π1, π2. Here, (v1, v2) ∈ C∞(S1,M1 ×M2) is defined by

(v1, v2) : S1 −→M1 ×M2,

t 7−→ (v1(t), v2(t)).

Moreover since the Conley-Zehnder index behaves additively, we have

Critn(AG̃1,G̃2) =
⋃

i+j=n

Criti(AG1)× Critj(AG2),

and we are able to define a chain homomorphism:

Pn :
(
CF∗(AG1)⊗ CF∗(AG2)

)
n
−→ CFn(AG̃1,G̃2),

(v1, η1)⊗ (v2, η2) 7−→
(
(v1, v2), η1, η2

)
.

To verify that Pn is a chain homomorphism, we need to show that

∂1,2
n ◦ Pn = Pn−1 ◦ ∂⊗n .
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For w1− = (v1−, η1−) ∈ CritAG1 and w2− = (v2−, η2−) ∈ CritAG2 , we compute

∂1,2
n ◦ Pn(w1− ⊗ w2−) = ∂1,2

n

(
(v1−, v2−), η1−, η2−

)︸ ︷︷ ︸
=:w−

=
∑

w+∈CritAG̃1,G̃2 ;
µ(w+)=µ(w−)−1

#2M{w−, w+}w+

=
∑

(v1+,η1+)∈CritAG1 ;
µ(w1+)=µ(w1−)−1

#2M
{
w−, ((v1+, v2−), η1+, η2−)

}(
(v1+, v2−), η1+, η2−

)
+

∑
(v2+,η2+)∈CritAG2 ;
µ(w2+)=µ(w2−)−1

#2M
{
w−, ((v1−, v2+), η1−, η2+)

}(
(v1−, v2+), η1−, η2+

)
=

∑
(v1+,η1+)∈CritAG1 ;
µ(w1+)=µ(w1−)−1

#2M
{
w1−, w1+

}
Pn−1(w1+ ⊗ w2−)

+
∑

(v2+,η2+)∈CritAG2 ;
µ(w2+)=µ(w2−)−1

#2M
{
w2−, w2+

}
Pn−1(w1− ⊗ w2+)

= Pn−1(∂1
iw1− ⊗ w2−) + Pn−1(w1− ⊗ ∂2

n−iw2−)

= Pn−1 ◦ ∂⊗n (w1− ⊗ w2−).

where M
{
w1−, w1+

}
resp. M

{
w2−, w2+

}
is the moduli space which consists

of gradient flow lines with cascades of AG1 resp. AG2 . The fourth equality

follows by comparing (6.1.2) together with (6.2.2). Therefore we have an

isomorphism

(P•)∗ : H•
(
CF(AG1)⊗CF(AG2)

) ∼=−→ H•(CF(AG̃1,G̃2)) = RFH•(Σ1×Σ2,M1×M2).
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Finally, the algebraic Künneth formula enable us to derive the desired (topo-

logical) Künneth formula in Rabinowitz Floer homology.

RFHn(Σ1 × Σ2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ RFHn−p(Σ2,M2).

6.3 Proof of Theorem G

In this section, we do not consider Σ2 and let (M2, ω2) be closed and

symplectically aspherical, i.e. ω2|π2(M2) = 0. To prove Statement (G1) in

Theorem G, we need a compactness theorem for gradient flow lines of the

perturbed Rabinowitz action functional on (Σ1 ×M2,M1 ×M2) with an ar-

bitrary perturbation F ∈ C∞c (S1 ×M1 ×M2). For that reason, we analyze

the Rabinowitz action functional again. Once we establish the fundamen-

tal lemma, then the remaining steps are exactly same as before. We assume

that Σ1×M2 bounds a compact region in M1×M2 for Statement (G2). As

before, we choose a defining Hamiltonian function G ∈ C∞(M1) so that

1. G−1(0) = Σ1 is a regular level set and dG has a compact support.

2. Gi(φ
t
Y (x)) = t for all x ∈ Σi, and |t| < δ;

where Y is the Liouville vector field for Σ1 ⊂M1. We define G̃ ∈ C∞(M1×
M2) by G̃(x1, x2) = G(x1) so that G̃ is a defining Hamiltonian function for

Σ1×M2. We let H̃(t, x) = χ(t)G̃(x) ∈ C∞(S1×M1×M2) for χ ∈ C∞(S1,R≥0)

with
∫ 1

0
χ(t)dt = 1 and Suppχ ⊂ (1/2, 1). With a perturbation F ∈ C∞c (S1×

M1 ×M2) satisfying F (t, ·) = 0 for t ∈ (1/2, 1), the perturbed Rabinowitz

action functional AH̃F : L× R→ R is given by

AH̃F (v, η) = −
∫
D2

v̄∗ω1 ⊕ ω2 − η
∫ 1

0

H̃(t, v)dt−
∫ 1

0

F (t, v)dt
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where L = LM1×M2 ⊂ C∞(S1,M1×M2) is the space of contractible loops in

M1 ×M2 and v̄ : D2 →M1 ×M2 is a filling disk of v.

We prove the following key lemma using a kind of isoperimetric inequal-

ity.

Lemma 6.3.1. Let w(s, t) = (v(s, t), η(s)) ∈ C∞(R×S1,M1×M2)×C∞(R,R)

be a gradient flow line of AH̃F . We set γ(t) = v(s0, t) ∈ C∞(S1,M1×M2) for

some fixed s0 ∈ R. Then
∫
D2 γ̄

∗π∗2ω2 is uniformly bounded provided

||∇mAH̃F (v(s0, ·), η(s0))||m < ε

for some ε > 0:∣∣∣ ∫
D2

γ̄∗π∗2ω2

∣∣∣ ≤ max
x∈M̃2

{
||λM̃2

(x)||g̃2
∣∣ dg̃2(x, M̃?) < ε+ ||XF ||L∞

}(
ε+ ||XF ||L∞

)
.

(6.3.1)

where M̃2 is the universal covering of M2; g̃2 is the lifting of the metric

g2(·, ·) = ω2(·, J2·) on M2; M̃? is a fundamental domain in M̃2; dg̃2(x, M̃?) is

the distance between x and M̃?; the value on the right hand side of (6.3.1)

is finite since M̃?
∼= M2 is compact.

Proof. We write v(s, t) as v(s, t) = (v1, v2)(s, t) where v1 : R × S1 → M1

and v2 : R × S1 → M2. Let γ ∈ C∞(S1,M1 × M2) be defined by γ(t) =

v(s0, t) for some s0 ∈ R. Since γ is contractible and M2 is symplectically

aspherical, the value of
∫
D2 γ̄

∗π∗2ω2 is well-defined. Let γ2 := π2 ◦ γ. We also

consider (M̃2, ω̃2) the universal cover of M2 where ω̃2 is the lift of ω2 and we

also lift the metric g2 on M2 which we write as g̃2. Since we have assumed

the symplectically asphericity of (M2, ω2), there exists a primitive one form

λM̃2
of ω̃2. Let M̃?(∼= M2) be one of the fundamental domains in M̃2 and

ṽ(s, t) : R×S1 →M1×M̃2 be the lift of v such that ṽ(s0, t) = γ̃(t) intersects

M1 × M̃?. Now, we can show the following kind of isoperimetric inequality.
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This inequality concludes the proof.∣∣∣ ∫
D2

γ̄∗π∗2ω2

∣∣∣ =
∣∣∣ ∫

D2

(˜̄γ2)∗ω̃2

∣∣∣ =
∣∣∣ ∫ 1

0

γ̃∗2λM̃2

∣∣∣
≤ ||λM̃2

|γ2(S1)||L∞
∫ 1

0

||∂tγ̃2||g̃2dt

= ||λM̃2
|γ2(S1)||L∞

∫ 1

0

||∂tγ2||g2dt

= ||λM̃2
|γ2(S1)||L∞

∫ 1

0

||J∂sγ2 + π2∗XF (t, γ2)||g2dt

≤ λMax

(
||∇mAH̃F (v(s0, ·), η(s0))||m + ||XF ||L∞

)
.

where

λMax := max
x∈M̃2

{
||λM̃2

(x)||g̃2
∣∣∣ dg̃2(x, M̃?) <

∫ 1

0

||∂tγ2||g2dt
}

≤ max
x∈M̃2

{
||λM̃2

(x)||g̃2
∣∣ dg̃2(x, M̃?) < ||∇mAH̃F (v(s0, ·), η(s0))||m + ||XF ||L∞

}
.

The following two lemmas can be proved similarly as before.

Lemma 6.3.2. We assume that for (v, η) ∈ C∞(S1,M1 ×M2) × R, v(t) ∈
Uδ := G̃−1(−δ, δ) for all t ∈ (1

2
, 1) with 0 < 2δ < min{1, δ0}. Then there

exists C > 0 satisfying

|η| ≤ C
(
|AH̃F (v, η)|+ ||∇mAH̃F (v, η)||m +

∣∣∣ ∫
D2

v̄∗π∗2ω2

∣∣∣+ 1
)
.

Lemma 6.3.3. For (v, η) ∈ C∞(S1,M1 ×M2) × R if there exists t ∈ [1
2
, 1]

such that v(t) /∈ Uδ, then ||∇mAH̃F (v, η)||m > ε for some ε = εδ.

Due to the three previous lemmas, we are able to deduce the fundamental

lemma in the situation of Theorem G, and thus we obtain a uniform L∞-
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bound on the Lagrange multiplier η.

Lemma 6.3.4. For a gradient flow line w(s) = (v, η)(s) ∈ C∞(R,L × R),

the following assertions holds with some C, ε > 0. If ||∇mAH̃F (v, η)||m < ε,

|η| ≤ C
(
|AH̃F (w−)|+|AH̃F (w+)|+ε+Ξε+1

)
provided that ||∇mAH̃F (v, η)||m < ε

where Ξε = max
{
||λM̃2

(x)||g̃2 | dg̃2(x, M̃?) < ε+ ||XF ||L∞
}(
ε+ ||XF ||L∞

)
<∞.

Proof. The proof is almost same as the proof of Lemma 6.1.3. Since

||∇mAH̃F (v, η)||m < ε,

v(t) ⊂ Uδ for t ∈ (1
2
, 1) by Lemma 6.3.3. Thus Lemma 6.3.1 and Lemma

6.3.2 prove the lemma.

This fundamental lemma proves compactness of gradient flow lines and

enables us to find a leafwise intersection points. Let φ ∈ Hamc(M1×M2, ω1⊕
ω2) be a Hamiltonian diffeomorphism with the Hofer norm less than ℘(Σ1, λ1).

Then there exists a leafwise coisotropic intersection point even if Σ1 ×M2

does not bound a compact region in M1×M2, see the proof of Theorem A.

Next, we define the Rabinowitz Floer homology for (Σ1×M2,M1×M2) in

the same way as before and derive the Künneth formula in this situation. We

consider another two action functionals AH : LM1×R→ R and A : LM2 → R
defined by

AH(v1, η) := −
∫ 1

0

v∗1λ1 − η
∫ 1

0

H(t, v)dt, A(v2) := −
∫
D2

v̄∗2ω2.

where H(t, x) = χ(t)G(x) ∈ C∞(S1 ×M1). As in the proof of Theorem F,

we compare critical points of AH̃ and critical points of AH as follows.

Critn(AH̃) =
⋃

i+j=n

Criti(AH)× Critj(A).
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Since CritA consists of one component M2, any gradient flow line with cas-

cades of A necessarily has zero cascades, and hence is simply a gradient flow

line of an additional Morse function f ∈ C∞(M2). Thus the chain group for

the Morse-Bott homology of A is given by CF(A, f) = CM(f). Here CM

stands for the Morse complex. The following map is a chain isomorphism,

which can be verified using the methods of the previous subsection.

Pn :
(
CF∗(AH)⊗ CM∗(f)

)
n
−→ CFn(AH̃),

(v1, η)⊗ v2 7−→
(
(v1, v2), η

)
.

Therefore it induces an isomorphism on the homology level

(P•)∗ : H•
(
CF(AH)⊗ CM(f)

) ∼=−→ H•
(
CF(AH̃)

)
= RFH•(Σ1 ×M2,M1 ×M2)

and the Künneth formula for (Σ1 ×M2,M1 ×M2) directly follows:

RFHn(Σ1 ×M2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ Hn−p(M2).
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Infinitely many leafwise

coisotropic intersection points

As we have mentioned, we do not have a compactness theorem for the

perturbed Rabinowitz action functional on product manifolds in general. For

that reason, the existence problem of leafwise coisotropic intersection points

for a product of restricted contact hypersurfaces is still open. However if

a product of restricted contact hypersurfaces is of restricted contact type

again, we have proved the compactness theorem in Chapter 3. Therefore we

are able to find leafwise coisotropic intersection points using the Künneth

formula derived in the previous chapter on restricted contact coisotropic sub-

manifolds of product type. In particular, we find a class of restricted con-

tact coisotropic submanifolds which have infinitely many leafwise coisotropic

intersection points for a generic perturbations using the Künneth formula.

7.1 Proofs of Corollary F and Corollary G

Since the Rabinowitz action functional can be defined for each homotopy

class of loops, we can define the Rabinowitz Floer homology RFH(Σ,M, γ)
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for γ ∈ [S1,M ]. Note that RFH(Σ,M) considered so far, equals RFH(Σ,M, x),

x ∈M . We also can define Rabinowitz Floer homology on the full loop space

ΛN := C∞(S1,M) and denote it by RFH(Σ,M). Then we have

RFH∗(Σ,M) =
⊕

γ∈[S1,M ]

RFH∗(Σ,M, γ).

Theorem 7.1.1. [CFO, AS] For a unit cotangent bundle S∗N over a closed

Riemannian manifold N ,

RFH∗(S
∗N, T ∗N) ∼=

 H∗(ΛN), ∗ > 1,

H−∗+1(ΛN), ∗ < 0.

Since the Künneth formula obviously holds for RFH as well, the follow-

ing corollary directly follows.

Corollary 7.1.2. Let Σ1 be a restricted contact hypersurface in (M1, ω1) bound-

ing a compact region. If RFH∗(Σ1,M1) 6= 0, and dim H∗(ΛN) =∞ then

dim RFH∗(Σ1 × S∗N,M1 × T ∗N) =∞.

Accordingly, if Σ1 × S∗N is of contact type again, Σ1 × S∗N has infinitely

many leafwise coisotropic intersection points or a periodic leafwise coisotropic

intersection point for a generic perturbation φF ∈ Hamc(M1 ×M2).

From now on, we investigate leafwise coisotropic intersection points on

(S∗S1 × S∗N, T ∗S1 × T ∗N).

Lemma 7.1.3. S∗S1×S∗N is a contact submanifold of codimension two in

T ∗S1 × T ∗N .

Proof. (T ∗S1, ωS1,can) ∼= (S1×R, dθ∧dr) where θ is the angular coordinate

on S1 and r is the coordinate on R. Then dθ∧ dr has two global primitives

−rdθ and −rdθ+dθ. We can easily check that S∗S1×S∗N carries a contact
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structure with −rdθ ⊕ λN,can and (−rdθ + dθ) ⊕ λN,can where λN,can is the

canonical one form on T ∗N .

To exclude periodic leafwise coisotropic intersection points, we consider

the loop space Ω defined by

Ω :=
{
v = (v1, v2) ∈ C∞(S1, T ∗S1 × T ∗N)

∣∣ v1 is contractible in T ∗S1
}
.

Then we consider the Rabinowitz action functional on this loop space, AG̃1,G̃2 :

Ω × R2 → R which defines the Rabinowitz Floer homology RFH(S∗S1 ×
S∗N, T ∗S1 × T ∗N,Ω). Moreover the following type of the Künneth formula

holds.

RFHn(S∗S1×S∗N, T ∗S1×T ∗N,Ω) ∼=
n⊕
p=0

RFHp(S
∗S1, T ∗S1)⊗RFHn−p(S

∗N, T ∗N).

Therefore RFH(S∗S1×S∗N, T ∗S1×T ∗N,Ω) is of infinite dimensional when-

ever dim H∗(ΛN) = ∞ and Lemma 7.1.4 below yields that there are in-

finitely many leafwise coisotropic intersection points for a generic perturba-

tion φF ∈ Hamc(T
∗S1 × T ∗N) if dimN ≥ 2. This proves Corollary F.

In order to prove that there is generically no periodic leafwise coisotropic

intersection points, we use an argument in [AF2]. Consider AH̃1,H̃2

F : Ω ×
R2 → R where H̃i(t, x) = χ(t)Gi(x) ∈ C∞(S1 × M1 × M2), i = 1, 2 and

where F ∈ C∞c (S1 ×M1 ×M2) with F (t, ·) = 0 for t ∈ (1/2, 1). We denote

by R the set of periodic Reeb orbits in T ∗N which has dimension one. It is

convenient to introduce the following sets:

F j :=
{
F ∈ Cj

c (S
1 × T ∗S1 × T ∗N)

∣∣F (t, ·) = 0, ∀t ∈
[1
2
, 1
]}
, F :=

∞⋂
j=1

F j.
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Lemma 7.1.4. If dimN ≥ 2, the following set is dense in F .

FS∗S1×S∗N :=

F ∈ F
∣∣∣∣∣ A

H̃1,H̃2

F is Morse, v(0) ∩ (S∗S1 ×R) = ∅

for all (v, η1, η2) ∈ CritAH̃1,H̃2

F , R ∈ R.

 .

Proof. We denote by

Ω1,2 :=
{
v = (v1, v2) ∈ W 1,2(S1, T ∗S1 × T ∗N)

∣∣ v1 is contractible in T ∗S1
}
.

the loop space which is indeed a Hilbert manifold. Let E be the L2-bundle

over Ω1,2 with Ev = L2(S1, v∗T (S∗S1 × S∗N)). We consider the section

S : Ω1,2×R2×F j −→ E∨×R2 defined by S(v, η1, η2, F ) := dAH̃1,H̃2

F (v, η1, η2).

Here the symbol ∨ represents the dual space. At (v, η1, η2, F ) ∈ S−1(0), the

vertical differential

DS : T(v,η1,η2,F )Ω
1,2 × R2 ×F j −→ E∨v × R2

is given by the pairing

〈
DS(v,η1,η2,F )[v̂

1, η̂1
1, η̂

1
2, F̂ ], [v̂2, η̂1

2, η̂
2
2]
〉

= H
AH̃1,H̃2
F

[(v̂1, η̂1
1, η̂

1
2), (v̂2, η̂2

1, η̂
2
2)]+

∫ 1

0

F̂ (t, v)dt.

where H
AH̃1,H̃2
F

is the Hessian of AH̃1,H̃2

F . As shown in [AF1], we know that

for (v, η1, η2, F ) ∈ S−1(0), DS(v,η1,η2,F ) is surjective on the space

V :=
{

(v̂, η̂1, η̂2, F̂ ) ∈ T(v,η1,η2,F )(Ω
1,2 × R2 ×F j)

∣∣ v̂(0) = 0
}
.
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Next, we consider the evaluation map

ev :M−→ S∗S1 × S∗N,
(v, η1, η2, F ) 7−→ v(0).

The surjectivity of DS(v,η1,η2,F )|V implies that ev is a submersion, see a lemma

due to Salamon [AF2, Lemma 3.5]. Then MR := ev−1(S∗S1 ×R) is a sub-

manifold in M of

codim(MR/M) = codim(S∗S1 ×R/S∗S1 × S∗N).

We consider the projections Π :M→ F j and ΠR := Π|MR . Then AH̃1,H̃2

F is

Morse if and only if F is a regular value of Π, which is a generic property

by Sard-Smale theorem (for j large enough). The set Π−1(F ) of leafwise

coisotropic intersection points for F is manifold of required dimension zero

since it is a critical set of AH̃1,H̃2

F . On the other hand, Π−1
R (F ) is a manifold

of dimension

0 + dimMR − dimM = −codim(MR/M) < 0

since we have assumed dimN ≥ 2. Therefore ev does not intersect S∗S1×R,

so the set

F jS∗S1×S∗N := FS∗S1×S∗N ∩ F j

is dense in F for all j ∈ N. Since FS∗S1×S∗N is the countable intersection of

F jS∗S1×S∗N for j ∈ N, it is dense again in F and the lemma is proved.

In the case of Theorem G, we consider the Rabinowitz action functional

AH̃F : ΩM2 × R→ R by where

ΩM2 :
{
v = (v1, v2) ∈ C∞(S1,M1 ×M2)

∣∣ v2 is contractible in M2

}
.

In a similar vein as above, we are able to prove Corollary G.
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Corollary 7.1.5. Let (M2, ω2) be a closed symplectically aspherical symplec-

tic manifold. If a closed manifold N has dim H∗(ΛN) =∞,

dim RFH∗(S
∗N ×M2, T

∗N ×M2,ΩM2) =∞.

Therefore, if dimN ≥ 2, S∗N ×M2 has infinitely many leafwise coisotropic

intersection points for a generic perturbation.

Remark 7.1.6. Corollary F and Corollary G still holds when we deal with

a fiber-wise star shaped hypersurface in T ∗N instead of S∗N , see [AF2].

88



Bibliography

[AF1] P. Albers, U. Frauenfelder, Leaf-wise intersections and Rabinowitz

Floer homology, Journal of Topology and Analysis 2 (2010), no. 1, 77–

98.

[AF2] P. Albers, U. Frauenfelder, Infinitely many leaf-wise intersection points

on cotangent bundles, Expositiones Mathematicae 30 (2012), no. 2, 168–

182.

[AF3] P. Albers, U. Frauenfelder, Spectral invariants in Rabinowitz Floer ho-

mology and global Hamiltonian perturbation, Journal of Modern dynam-

ics 4 (2010), no. 2, 329–357.

[AF4] P. Albers, U. Frauenfelder, A remark on a theorem by Ekeland-Hofer,

Israel Journal of Mathematics 187 (2012), no. 1, 485–491.

[AF5] P. Albers, U. Frauenfelder, Rabinowitz Floer homology : A sur-

vey, Global Differential Geometry, Springer Proceedings in Mathematics

(2012), 437–461.

[AF6] P. Albers, U. Frauenfelder, A variational approach to Givental’s

nonlinear Maslov index, Geometric and Functional Analysis (GAFA),

(2012), 1033–1050.

[AL] M. Audin and J. Lafontaine, editors. “Holomorphic curves in symplec-

tic geometry”, Progress Math. 117, Birkhäuser Verlag , 1994.
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국문초록

Urs Frauenfelder와 Kai Cieliebak은 Paul Rabinowitz가 자율적 해밀턴

시스템에서 주기궤도들 찾기 위해 제안한 라그랑즈 승수 함수를 사용하여

Rabinowitz Floer homology 이론을 개발하였다.

이 논문에서는 우리는 임의의 여차원을 가지는 여등방성 부분다양체 위

의 역학구조를 분석하는데 적합한 여러개의 Lagrange 상수들을 가지는 일반

화된 Rabinowitz 함수를 연구할 것이다. 우리는 일반화된 Rabinowitz 함수

를 사용하여 여등방성 궤적 교차점, 여등방성 부분 다양체의 전치가능성, 그

리고 여등방성 부분다양체의 Rabinowitz Floer homology 등에 관해 연구할

것이다. 우리는 또한 Rabinowitz Floer homology의 Künneth 공식을 유도하

여 무한개의 여등방 궤적 교차점을 가지는 여등방성 부분다양체들을 찾을

것이다. 이 연구는 여러 개의 운동 상수 (보존량) 를 가지는 운동 시스템을

연구하는데 중요한 역할을 할 것이다.

주요어휘 : 라비노위츠 플로어 호몰로지, 해밀턴 역학, 보존량, 여등방성 부

분다양체, 여등방 궤적교차점.

학번 : 2008-20276
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Abstract

Rabinowitz Floer homology and
Coisotropic intersections

Jungsoo Kang

Department of Mathematical Sciences

The Graduate School

Seoul National University

Rabinowitz Floer homology theory was developed by Kai Cieliebak and

Urs Frauenfelder using a Lagrange multiplier action functional, which was in-

troduced by Paul Rabinowitz in order to detect periodic orbits of autonomous

Hamiltonian systems.

In this thesis, we study a generalized Rabinowitz action functional with

several Lagrange multipliers, which is well suited for exploring dynamics on

coisotropic submanifolds of arbitrary codimensions. Using this, we investi-

gate among others, the existence problem of leafwise coisotropic intersection

points, displaceability of coisotropic submanifolds, and Rabinowitz Floer ho-

mology for coisotropic submanifolds. We also derive a Künneth formula for

the Rabinowitz Floer homology of product coisotropic submanifolds, and this

enables us to find a class of coisotropic submanifolds which have infinitely

many leafwise coisotropic intersection points. This study will serve as a cru-

cial tool for exploring autonomous dynamical systems with several integrals.

Key words: Rabinowitz Floer homology, Hamiltonian dynamics, First inte-

gral, Coisotropic submanifold, Leafwise intersection.

Student Number: 2008-20276
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Chapter 1

Preliminaries on symplectic

geometry

A symplectic form on a smooth manifold M is a closed nondegenerate

2-form ω ∈ Ω2(M). We call such a pair (M,ω) symplectic manifold. By

nondegeneracy, every symplectic manifold is of even dimension and orientable.

In particular, ω∧n is a volume form of M if dimM = 2n. The easiest ex-

ample of a symplectic manifold is a Euclidean space with the standard sym-

plectic structure
(
R2n,

∑n
i=1 dxi ∧ dyi

)
. In fact, every symplectic manifold is

locally equivalent to this standard Euclidean space by Darboux’s theorem.

Thus in order to construct invariants of symplectic manifolds, one has to

go beyond local considerations. The constructions of most global invariants

in symplectic geometry, such as Floer-type homologies and Gromov-Witten

invariants, use the fact that every symplectic manifold admits a family of

compatible almost complex structure. An almost complex structure J on

M is a complex structure on the tangent bundle, explicitly J ∈ End(TM)

and J2 = −1lTM . A symplectic form ω ∈ Ω2(M) is called compatible

with J if g(·, ?) := ω(·, J?) defines a Riemannian metric on M such that

g(·, ?) = g(J ·, J?).

1



Chapter 1. Preliminaries on symplectic geometry

1.1 Hamiltonian diffeomorphisms

For any time-dependent smooth function F ∈ C∞(S1 ×M), the vector

field XF defined implicitly by

iXFω = dF

is called the Hamiltonian vector field associated to the Hamiltonian func-

tion F . The flow of the Hamiltonian vector field XF is denoted by φtF .

The time one map φF = φ1
F of a Hamiltonian flow is called a Hamilto-

nian diffeomorphism. The set Ham(M,ω) of all Hamiltonian diffeomor-

phisms is a group with respect to composition. We are interested in the sub-

group Hamc(M,ω) which consists of Hamiltonian diffeomorphisms generated

by compactly supported Hamiltonian functions. Next, we briefly recall the

Hofer norm which gives rise to a unique nondegenerate bi-invariant Finsler

metric on the group Hamc(M,ω).

Definition 1.1.1. Let F ∈ C∞c (S1×M,R) be a compactly supported Hamil-

tonian function. Consider the L∞-norm of F defined by

||F || := ||F ||+ + ||F ||−.

where

||F ||+ :=

∫ 1

0

max
x∈M

F (t, x)dt, ||F ||− := −
∫ 1

0

min
x∈M

F (t, x)dt = || − F ||+.

For φ ∈ Hamc(M,ω), the Hofer norm is

||φ|| := inf{||F || | φ = φF , F ∈ C∞c (S1 ×M,R)}.

As mentioned above, the function d on Hamc(M,ω)×Hamc(M,ω) defined

by d(φ, ψ) = ||φ−1 ◦ ψ|| is the unique bi-invariant Finsler metric. The exis-

2
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tence of the Hofer bi-invariant metric shows that Hamc(M,ω) is an infinite

dimensional Lie group.

The following easy lemma will be useful in our story.

Lemma 1.1.2. [AF1] For all φ ∈ Hamc(M,ω),

||φ|| = |||φ||| := inf{||F || | φ = φF , F (t, ·) = 0 ∀t ∈ [1
2
, 1]} .

1.2 Coisotropic submanifolds

Definition 1.2.1. A submanifold Σ in (M,ω) is said to be coisotropic if

the symplectic orthogonal bundle

TΣω := {(x, ξ) ∈ TM |ωx(ξ, ζ) = 0 for all ζ ∈ TxΣ}

is a subbundle of TΣ. By definition,

0 ≤ codim Σ ≤ 1

2
dimM.

Example 1.2.2. Any hypersurface in (M,ω) is coisotropic. A submanifold

L ⊂ (M,ω) is called Lagrangian if TL = TLω (or equivalently ω|L ≡ 0)

and clearly every Lagrangian submanifold is coisotropic.

Since ω is closed, the symplectic orthogonal bundle TΣω is integrable,

and thus Σ is foliated by leaves of the characteristic foliation. We denote by

Lx the leaf through x. In the extremal case that a connected coisotropic

submanifold is Lagrangian, it is foliated by a single leaf.

Coisotropic submanifolds naturally arise in autonomous Hamiltonian sys-

tems with several integrals. Let (M,ω) be a 2n-dimensional symplectic man-

ifold. We denote by the Hamiltonian tuple G := (G1, . . . , Gk) for time-

independent Hamiltonian functions Gi ∈ C∞(M), i ∈ {1, . . . , k} for 1 ≤ k ≤
n. We often regard G as an element of C∞(M,Rk).

3
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Definition 1.2.3. Given two Hamiltonian functions F and G in C∞(M),

the Poisson bracket

{·, ·} : C∞(M)× C∞(M) −→ C∞(M)

is defined by {F,G} := ω(XF , XG). A Hamiltonian tuple G is said to be

Poisson-commuting if {Gi, Gj} = 0 for any 1 ≤ i, j ≤ k.

If a Hamiltonian tuple G ∈ C∞(M,Rk) Poisson-commutes and c ∈ Rk

is a regular value of G, then an invariant submanifold G−1(c) is a smooth

coisotropic submanifold of codimension k in (M,ω) with

TG−1(c)ω = 〈XG1 , . . . , XGk〉.

In this case the leaf Lx through x ∈ G−1(c) can be written by

Lx =
{
φt1G1
◦ φt2G2

◦ · · · ◦ φtkGk(x) | t1, . . . tk ∈ R
}
.

Note that dimension of leaves equals dimM − dimG−1(c) = k, see pictures

below.

We briefly explain why such Hamiltonian systems are of great impor-

tance. A function F ∈ C∞(M) is called an integral for a Hamiltonian sys-

tem ∂tz = XG(z(t)) if F is constant along the solutions of ∂tz = XG(z(t)). It

4
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is easy to check that this condition is equivalent to {F,G} = 0. Hence, the

motion of a Hamiltonian system ∂tz = XG(z(t)) with k independent Poisson

commuting Hamiltonian integrals G1 = G, . . . , Gk is confined to a (2n− k)-

dimensional invariant submanifold
⋂

1≤i≤kG
−1
i (ci), ci ∈ R.

Remark 1.2.4. A 2n-dimensional Hamiltonian system is called integrable

if there exist n independent Poisson commuting integrals G1, . . . , Gn. Ac-

cording to Liouville-Arnold, compact connected invariant submanifolds of in-

tegrable Hamiltonian systems are diffeomorphic to torus, i.e.
⋂

1≤i≤nG
−1
i (ci) ∼=

T n, c1, . . . , cn ∈ R. Moreover integrable Hamiltonian systems admit the so-

called action-angle coordinates and this coordinates are described explic-

itly sometimes, e.g. Delaunay coordinates in the Kepler problem.

A periodic orbit v : S1 = R/Z→ G−1(c) lying on a leaf

d

dt
v(t) =

k∑
i=1

ηiXGi(v(t)), η1, . . . , ηk ∈ R (1.2.1)

is a key player of this thesis. Note that constant loops in G−1(c) are trivial

solutions of (1.2.1) with η1 = · · · = ηk = 0. Note that if G−1(c) is a hyper-

surface, i.e. k = 1, a periodic orbit exists if and only if a leaf closes up.

We remark that if there is a periodic solution v of (1.2.1) on a leaf Lx,

the leaf Lx is foliated by periodic solutions of (1.2.1). To see this, let x be

5
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a periodic point, i.e. φt1G1
◦ · · · ◦ φtkGk(x) = x for some t1, . . . , tk ∈ R. For any

y ∈ Lx, there exists r1, . . . , rk ∈ R such that φr1G1
◦ · · · ◦ φrkGk(x) = y. Then

φt1G1
◦ · · · ◦ φtkGk(y) = φt1G1

◦ · · · ◦ φtkGk ◦ φ
r1
G1
◦ · · · ◦ φrkGk(x)

= φr1G1
◦ · · · ◦ φrkGk ◦ φ

t1
G1
◦ · · · ◦ φtkGk(x)

= φr1G1
◦ · · · ◦ φrkGk(x)

= y.

Here we used the fact that the Hamiltonian flows commute due to Pois-

son commutativity. Therefore there is a periodic solution of (1.2.1) passing

through any y ∈ Lx provided the existence of a periodic solution of (1.2.1)

on the leaf Lx.

Let us consider a single time-independent Hamiltonian function G ∈ C∞(M).

Suppose that a level hypersurface G−1(c) for c ∈ R is regular. From a simple

computation

dG(XG) = ω(XG, XG) = 0,

we know that the Hamiltonian vector field XG is tangent to the level hyper-

surface G−1(c). In general it is difficult to understand or foresee the dynam-

ics of XG on the given level surface G−1(c). For instance, even in R4 there is

a time-independent Hamiltonian function such that at least one of its level

surfaces has no periodic orbits which disproves the Hamiltonian Seifert con-

jecture, see [GG]. For this reason, we usually require an additional structure

on a level hypersurface.

Definition 1.2.5. A hypersurface S in (M,ω) is called of contact type if

there exists a 1-form α ∈ Ω1(S) such that dα = ω|S and ω|S is nondegener-

ate on the hyperplane field TSω. There exists a unique vector field R on a

contact hypersurface (S, α) such that

iRdα = 0, iRα = 1.

6
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This vector field is called the Reeb vector field on (S, α).

The Reeb dynamics on contact hypersurfaces and the intersection prob-

lems for Lagrangian submanifolds have been widely studied. In contrast,

coisotropic submanifolds have so far received little attention. The aim of this

thesis is to study dynamics on a contact coisotropic submanifold, which is

a natural generalization of a contact hypersurface. The notions of stable,

contact, and restricted contact type for coisotropic submanifolds were intro-

duced by Philippe Bolle [Bo1, Bo2].

Definition 1.2.6. A coisotropic submanifold Σ of codimension k in (M,ω)

is called stable if there exist 1-forms α = (α1, . . . , αk) on Σ which satisfy

1. ker dαi ⊃ TΣω for i = 1, . . . , k;

2. α1 ∧ · · · ∧ αk ∧ (ω|Σ)n−k 6= 0.

We say that Σ is of contact type if α1, . . . , αk are primitives of ω|Σ. If

there are 1-forms λ = (λ1, . . . , λk) on M such that dλi = ω and λi|Σ = αi

for all i = 1, . . . , k, Σ is said to be of restricted contact type.

Examples of stable/contact/restricted contact coisotropic submanifolds will

be treated in the following section.

Definition 1.2.7. Let (Σ, α) be a stable coisotropic submanifold in (M,ω).

The unique vector fields R1, . . . , Rk on Σ characterized by

αi(Rj) = δij, Ri ∈ kerω|Σ, i, j ∈ {1, . . . , k}

are called the Reeb vector fields associated with the stable structure (Σ, α).

Here δij stands for the Kronecker delta.

When a level surface G−1(c) is stable, a periodic solution of 1.2.1 corre-

sponds to a periodic solution v ∈ C∞(S1,G−1(c)) of

∂tv(t) =
k∑
i=1

ηiRi(v(t)), η1, . . . , ηk ∈ R. (1.2.2)

7
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since

TG−1(c)ω = 〈R1, . . . , Rk〉 = 〈XG1 , . . . , XGk〉.

Note that the normal bundle of a stable coisotropic submanifold (Σ, α) ⊂
(M,ω) is trivial, i.e. NΣ ∼= Σ × Rk and from the Weinstein neighborhood

theorem, we have the following proposition.

Proposition 1.2.8 ([Bo1, Bo2]). Let (Σ, α) be a closed stable coisotropic sub-

manifold of codimension k in (M,ω). Then there exist r > 0, a neighborhood

V of Σ which is symplectomorphic by ψ : Ur → V to

Ur := {(q, p) = (q, p1, . . . , pk) ∈ Σ× Rk | |pi| < r, for all i = 1, . . . , k}

with ψ∗ω = ω|Σ +
∑k

i=1 d(piαi).

Here we use the same symbols ω|Σ and αi for differential forms in Σ and

for their pullback to Σ× Rk. We set

δ0 := max
{
r ∈ R

∣∣ there exists a symplectic embedding ψ : Ur ↪→M
}

and let ψ : Uδ0 ↪→ M be a maximal symplectic embedding. Henceforth,

we identify Uδ with ψ(Uδ) for all 0 < δ ≤ δ0. We have Xpi ∈ kerω|Σ,

dpj(Xpi) = 0 and αj(Xpi) = δij on Σ for 1 ≤ i, j ≤ k since iXpiω = dpi.

Moreover the (local) Hamiltonian tuple p = (p1, . . . , pk) Poisson-commutes

since {Xp1 , . . . , Xpk} forms a basis for kerω|Σ.

We note that Xp1 , . . . , Xpk correspond to R1, . . . , Rk via the identification

ψ0. From now on, we choose an almost complex structure J on M which

splits on Uε with respect to

TUδ0 =

(
kerω|Σ︸ ︷︷ ︸

=:ξ

)⊕(
TΣω ⊕ ∂

∂p1

⊕ · · · ⊕ ∂

∂pk

)
︸ ︷︷ ︸

=:ξω

. (1.2.3)

8
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i.e. J |ξω is an almost complex structure which interchanges the Reeb vector

fields Ri with ∂
∂pi

for 1 ≤ i ≤ k; strictly speaking JRi = ∂
∂pi

and J ∂
∂pi

= −Ri.

1.3 Examples of contact coisotropic submani-

folds

Although the contact condition is restrictive, we still have the following

classes of contact coisotropic submanifolds.

(i) A coisotropic submanifold which is C1-close to a contact coisotropic

submanifold is also of contact type.

(ii) A Lagrangian torus is of contact type with contact one forms dθ1, . . . , dθn

where θ1, . . . , θn are angular coordinates on the n-dimensional torus.

Indeed it turns out that a closed Lagrangian submanifold of contact

type is necessarily a torus.

(iii) Let Σ ⊂ (M1, ω1) be a contact coisotropic submanifold and T n2 ⊂
(M2, ω2) be a Lagrangian torus. Then a coisotropic submanifold Σ ×
T n2 in (M1 ×M2, ω1 ⊕ ω2) is of contact type. In particular, the sta-

bilization of Σ ⊂ (M,ω), Σ × S1 ⊂ (M × T ∗S1, ω ⊕ dθ ∧ dt) is of (re-

stricted) contact type whenever Σ is of (restricted) contact type. Here

θ is the base coordinate and t is the fiber coordinate.

(iv) Consider the Hopf fibration π : S2n−1 → CP n−1. According to Marsden-

Weinstein-Meyer reduction, we know that there is a canonical symplec-

tic form ωCPn−1 on CP n−1 satisfying π∗ωCPn−1 = ωR2n|S2n−1 where ωR2n

is the standard symplectic form on R2n. For a contact hypersurface

(∆, α) ⊂ CP n−1, π−1(∆) is a contact submanifold in R2n of codimen-

sion 2.

9
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Let (M,ω) be a closed symplectic manifold with an integral symplectic

form [ω] ∈ H2(M ;Z). For each N ∈ N, there exists a complex line bundle

p : EN → M with the first Chern class c1(EN) = −N [ω]. We note that S1

acts on the bundle EN by

S1 × EN −→ EN

(t, v) 7−→ e2πitv.

Thus by the Boothby-Wang theorem, there exists a connection 1-form α on

EN \ E0 where E0 is the zero section of the complex line bundle EN p→M ;

moreover it holds that p∗Fα = dα for the curvature 2-form Fα = Nω. We

abbreviate r = |e| for e ∈ EN and define q : R → R by q(r) = πr2 + 1/N .

Then the following two form gives a symplectic structure on EN :

ΩE := q′(r)dr ∧ α + q(r)Np∗ω.

It is easy to check that ΩE|E0 = p∗1ω and ΩE|E\E0 = d(q(r)α). Furthermore,

for all c > 1/N , the following submanifold

Σc := {q(r) = c}

is of contact type. We perform this construction once again. We choose a

complex line bundle p′ : FK→M with the first Chern class c1(FK) = −K[ω].

As before, there is a connection 1-form β on FK \ F0 where F0 is the zero

section of the bundle FK p′→ M such that its curvature 2-form Fβ satisfies

Fβ = Kω. We set the function h(s) = πs2 + 1/K for s = |f | ∈ R where

f ∈ FK , then

ΩF := h′(s)ds ∧ β + h(s)Kp′∗ω

is a symplectic form on FK . Next, we consider the Whitney sum of EN and

FK , EN ⊕FK and let π1 : EN ⊕FK → EN and π2 : EN ⊕FK → FK be the

projection maps to the first factor and the second factor respectively. We

10
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abbreviate ω̃ := (p◦π1)∗ω = (p′ ◦π2)∗ω, and use the same symbols r, s, g(r),

h(s), α, and β for their pull-backs to EN ⊕ FK . Then the following 2-form

ΩE⊕F := h′(s)ds ∧ β + q′(r)dr ∧ α + (q(r)N + h(s)K)ω̃

becomes a symplectic form on EN ⊕ FK . We have

(v) For any c > 1/N and d > 1/K, set

∆c,d := {q(r) = c, h(s) = d}.

Since ΩE⊕F |∆c,d
= (cN +dK)ω̃, ∆c,d with 1-forms cN+dK

N
α and cN+dK

K
β

is a contact coisotropic submanifold in (EN⊕FK ,ΩE⊕F ) of codimension

2.

Proposition 1.3.1. Let G ∈ C∞(M,Rk) be a Poisson-commuting Hamilto-

nian tuple such that c = (c1, . . . ck) ∈ Rk is a regular value of G. Suppose that

there is Liouville vector fields Y1, . . . , Yk (i.e. LY1ω = · · · LYkω = ω) such that

the matrix

[dGi(Yj)]1≤i,j,≤k =

 dG1(Y1) · · · dG1(Yk)
...

. . .
...

dGk(Y1) · · · dGk(Yk)


on TG−1(c) is nonsingular. Then G−1(c) is a contact coisotropic submanifold

with contact forms iY1ω, . . . , iYkω.

Proof. Indeed, each αj = iYjω is a primitive of ω:

dαj = diYjω = LYjω = ω, 1 ≤ j ≤ k.

Note that

TG−1(c)ω = 〈XG1 , . . . , XGk〉 ⊂ TG−1(c),

11
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and for all 1 ≤ i ≤ k,

ω(XGi , v) = dGi(v) = 0, ∀v ∈ TG−1(c).

We denote by

ξ := {(x, v) ∈ TG−1(c) |ωx(Y1, v) = · · · = ωx(Yk, v) = 0}.

Since [dGi(Yj)]1≤i,j,≤k is nonsingular, we have the splitting

TG−1(c) = TG−1(c)ω ⊕ ξ.

Moreover ξ is a symplectic complement of 〈Y1, . . . , Yk〉 ⊕ TG−1(c)ω. Hence

α1 ∧ · · · ∧ αk ∧ ω|TG−1(c) 6= 0

by nonsingularity of [dGi(Yj)]1≤i,j,≤k again.

Dynamical problems, such as the (rotating) Kepler problem or Euler’s

three-body problem, sometimes admit several integrals. It is tempting to

show whether such a problem has a (restricted) contact structure using the

previous proposition.

Remark 1.3.2. [Bo2, Gi] Let Σ be a closed contact coisotropic submanifold

in (M,ω). Then a 1-form λ = a1λ1 + · · · + akλk with a1 + · · · + ak = 0 is

closed and represents an element in H1
dR(Σ). In addition, λ 6= 0 is not exact;

otherwise λ = df for some f ∈ C1(Σ), λ(x) = 0 at a critical point x of f ,

but condition (ii) yields that λ1, . . . , λk are linearly independent on Σ; thus

λ1(x) = · · ·λk(x) = 0. As a result, dim H1
dR(Σ) ≥ k − 1. It imposes a re-

striction on the contact condition that a product of contact type coisotropic

submanifolds is not necessarily of contact type; for instance, S3 × S3 is not

of contact type in R8.

12
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Remark 1.3.3. Furthermore, a connected sum of a contact coisotropic sub-

manifold is not of contact type in general; for instance, a connected sum of

Lagrangian tori is not a torus any more, hence cannot be of contact type.

Different from the contact case, however, a product of stable coisotropic sub-

manifolds is of stable type again.

13
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Statement of the results

The coisotropic intersection problems were first studied in depth by Vik-

tor Ginzburg [Gi], and have been recently explored by many mathematicians,

see Section 2.7. Rabinowitz Floer homology theory, which was developed by

Kai Cieliebak and Urs Frauenfelder [CF] using the Rabinowitz action func-

tional [Ra], is one of the effective methods to study the intersection prob-

lems for hypersurfaces. By generalizing the Rabinowitz Floer homology the-

ory, we investigate the intersection problems of coisotropic submanifolds.

Throughout this thesis, we deal with a symplectic manifold (M,ω) which

is symplectically aspherical and geometrically bounded. The condition that

(M,ω) is symplectically aspherical means
∫
π2(M)

ω = 0. We call (M,ω)

geometrically bounded if there exists an ω-compatible almost complex

structure J with the property that the Riemannian metric g(·, ?) = ω(·, J?)
is complete, has injective radius bounded away from zero, and has bounded

sectional curvature.
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2.1 Assumptions on manifolds

In this thesis, we deal with the following classes of manifolds.

i) A closed coisotropic submanifold Σ in (M,ω) is stable or of contact

type or of restricted contact type.

ii) A symplectic manifold (M,ω) is symplectically aspherical and geomet-

rically bounded.

If Σ is a restricted contact coisotropic submanifold, (M,ω) is automati-

cally symplectically aspherical (due to
∫
π2(M)

ω =
∫
π2(M)

dλi = 0) but never

closed. Thus if this is the case, (M,ω) is only assumed to be geometrically

bounded. On the other hand, if (M,ω) is stable or of contact type, M can

be closed. In this case, (M,ω) is obviously geometrically bounded and we

only need to assume symplectic asphericity of (M,ω).

To define Rabinowitz Floer homology we need an additional assumption

on stable/contact/restricted contact coisotropic submanifolds. In this thesis

we focus on coisotropic submanifolds which are regular level sets of Poisson-

commuting Hamiltonian tuples. Suppose that a stable coisotropic submani-

fold (Σ, α) is a regular level set of a Poisson-commuting Hamiltonian tuple

G = (G1, · · · , Gk) ∈ C∞(M,Rk), say G−1(0) = Σ. Then since both the Reeb

vector fields of α = (α1, . . . , αk) and the Hamiltonian vector fields of G span

the symplectic orthogonal bundle, i.e.

TΣω = 〈R1, . . . , Rk〉 = 〈XG1 , . . . , XGk〉,

there exists a map from G−1(0) to the set of k × k matrices

Φ = (Φi,j) : G−1(0)→ Mat(k × k)
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such that

XGj(x) =
k∑
i=1

Φi,j(x)Ri(x).1

Note that Φ(x) for any x ∈ G−1(0) is an invertible matrix. However in order

for Rabinowitz Floer homology to be defined, we further require Φ(x) to

have the following property.

iii) Σ is a regular level set of a Poisson-commuting Hamiltonian tuple G ∈
C∞(M,Rk). For any v ∈ C∞(S1,Σ) contractible in M ,∫

S1

Φ(v(t))dt ∈ Mat(k × k)

is invertible.

Remark 2.1.1. We choose a function χ(t) : S1 → [0,∞) with
∫
S1 χ(t)dt = 1.

Such a function will be used in Section 3. If
∫
S1 Φ(v(t))dt is invertible for

any v ∈ C∞(S1,Σ), so is
∫
S1 χ(t)Φ(v(t))dt. Indeed, we can reparametrize a

given v ∈ C∞(S1,Σ) to vχ(t) = v ◦
∫ t

0
χ(s)ds : S1 → [0,∞) so that∫

S1

Φ(vχ(t))dt =

∫
S1

χ(t)Φ(v(t))dt.

Note that an S1-family of definite or diagonal matrices meets this third

assumption. The assumption on the existence of “global coordinates” in [Ka3]

is a special case of this assumption iii).

In order to find one leafwise coisotropic intersection point or one peri-

odic orbit (Theorems A and D), we do not need the last assumption as Ra-

binowitz Floer homology is not directly involved. However, the last assump-

tion is still indispensable to define Rabinowitz Floer homology and results

using Rabinowitz Floer homology (Theorems B, C, E, F, and G).

1Strictly speaking, Φ(x) is an automorphism on TxΣω, but here we tacitly assume TΣω ∼=
Σ× Rk to have been trivialized.
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Remark 2.1.2. All the above three assumptions appear in Rabinowitz Floer

homology theory for hypersurfaces (see [CF]) as well. In particular, the last

assumption matches with a separating condition for stable hypersurfaces.

The separating condition means that a hypersurface Σ separates M into two

connected components of which one is relatively compact. With the separat-

ing condition, it is possible to find a Hamiltonian function G ∈ C∞(M) of

Σ such that G−1(0) = Σ. Moreover since Σ is of codimension 1, 〈R〉 = 〈XG〉
which in turn implies the assumption iii).

2.2 Main theorem

Let L ⊂ C∞(S1,M) be the space of contractible loops in M . Let G =

(G1, . . . , Gk) ∈ C∞(M,Rk) be a Poisson-commuting Hamiltonian tuple which

has 0 ∈ Rk (for simplicity) as a regular value. We also choose a compactly

supported time-dependent Hamiltonian function F ∈ C∞c (S1 ×M). For η =

(η1, . . . , ηk) ∈ Rk, the generalized (perturbed) Rabinowitz action functional

AGF : L× Rk → R is defined by

AGF (v, η) := −
∫
D2

v̄∗ω −
k∑
i=1

ηi

∫ 1

0

Gi(v(t))dt−
∫ 1

0

F (t, v(t))dt.

where v̄ is any filling disk of v, i.e. v̄|∂D2(t) = v(t) for t ∈ S1. The symplec-

tic asphericity condition implies that the value of the above action functional

is independent of the choice of filling discs. Then in Theorem 3.2.8, we will

prove the following compactness result under the assumptions on (M,ω,Σ, α)

described in the previous section.

Main theorem. Let {wν}ν∈N be a sequence of gradient flow lines of AGF for

which there exist a ≤ b such that

a ≤ AGF (wν(s)) ≤ b, for all ν ∈ N, s ∈ R. (2.2.1)
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Then for every reparametrization sequence σν ∈ R the sequence wν(· + σν)

has a convergent subsequence in the C∞loc-topology. That is, {wν}ν∈N has a

subsequence which converges with all derivatives on every compact subset to

a gradient flow line w ∈ C∞(R× S1,M)× C∞(R,Rk).

We refer to the next sections for a detailed and precise statement. Once

we prove this compactness theorem, all the applications of Rabinowitz Floer

homology to stable/contact/restricted contact hypersurfaces extend to cor-

responding results of stable/contact/restricted contact coisotropic subman-

ifolds with minor modifications. For the sake of completeness, we include

(sketches of) some applications, [AF1, AMo, CFP, Ka2, Ka3].

2.3 Leafwise coisotropic intersections

Let (M,ω) be a 2n-dimensional symplectic manifold and Σ be a closed

coisotropic submanifold of codimension k. Recall that Σ is foliated by leaves

of TΣω and Lx is the leaf through x ∈ Σ. A point x ∈ Σ is called a leafwise

coisotropic intersection point of φF ∈ Hamc(M,ω) if φ(x)F ∈ Lx, see

pictures below. In the extremal case k = n, a leafwise coisotropic intersection

point is nothing but a Lagrangian intersection point.
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Definition 2.3.1. We denote by ℘(Σ) > 0 the minimal symplectic area

of all solutions of (1.2.2) contractible in M . To be more exact,

℘(Σ) := inf
{
|Ω(v) > 0|

∣∣ v ∈ C∞(S1,Σ) solving (1.2.2) and contractible in M
}
.

Here Ω : L→ R stands for the symplectic area functional, i.e.

Ω(v) =

∫
D2

v̄∗ω

where v̄ ∈ C∞(D2,M) is a filling disk of v, i.e. v̄|∂D2(t) = v(t) for t ∈ S1.

The symplectic asphericity condition guarantees that the value of Ω(v) is

independent of the choice of a filling disk. If there are no solutions of (1.2.2),

we set ℘(Σ) =∞ by convention.

Theorem A. Let Σ be a closed restricted contact coisotropic submanifold in

a symplectic manifold (M,ω) being geometrically bounded. If ||φF || < ℘(Σ),

there exists a leafwise coisotropic intersection point for φF ∈ Hamc(M,ω) .

The assumption on the Hofer norm of φF is sharp. For instance ℘(S2n−1)

equals the displacement energy of S2n−1 inside (R2n, dx ∧ dy).

Remark 2.3.2. Basak Gürel [Gü] also proved Theorem A using a different

method. We cannot entirely drop the restricted contact condition in Theo-

rem A, see [Gi, Example 7.2] and [Gü, Remark 1.4].

Even if a coisotropic submanifold Σ is of contact type, we still can find a

leafwise intersection point for a restricted class of perturbations. In this case

our ambient symplectic manifold need not to be exact and can be closed; so

we have more examples. Recall that

Ur =
{

(q, p) = (q, p1, . . . , pk) ∈ Σ× Rk
∣∣ |pi| < r, for all i = 1, . . . , k

}
and ψ : Uδ0 ↪→ M is a maximal symplectic embedding. For a time depen-

dent Hamiltonian function F ∈ C∞c (S1 ×M), we define the support of the
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Hamiltonian vector field XF by

SuppXF :=
{
x ∈M

∣∣XF (t, x) 6= 0 for some t ∈ S1
}
.

We call a Hamiltonian function F ∈ C∞c (S1×M) admissible if F is constant

outside of ψ(Uδ0), i.e. SuppXF ( ψ(Uδ0). We denote by F the set of all

admissible Hamiltonian functions:

F :=
{
F ∈ C∞c (S1 ×M) | SuppXF ( ψ(Uδ0)

}
.

Then Theorem A holds even for (not necessarily restricted) contact coisotropic

submanifolds with F ∈ F.

Theorem A+. Let Σ be a closed contact coisotropic submanifold in a sym-

plectically aspherical symplectic manifold (M,ω) which is geometrically bounded

(M can be closed). Then φF for F ∈ F has a leafwise coisotropic intersection

point provided ||F || < ℘(Σ).

In fact, the assumptions in Theorem A is not sufficient to define a Ra-

binowitz Floer homology for Σ. That is one reason why we can find only

one leafwise coisotropic intersection point. However if we additionally assume

that Σ is given by a regular level set of a Poisson-commuting Hamiltonian

tuple G ∈ C∞(M,Rk) which is compatible with the Reeb vector fields on

(Σ, α) in the sense of the assumption iii), we obtain a Morse-type estimate

and a relative cup-length estimate for leafwise coisotropic intersection points.

Theorem B. Let (M,ω) be geometrically bounded and Σ be a closed regular

level set of a Poisson-commuting Hamiltonian tuple G ∈ C∞(M,Rk). Sup-

pose that Σ is of restricted contact type, and
∫
S1 Φ(v)dt is invertible for any

v ∈ C∞(S1,Σ) contractible in M . Then the number of leafwise coisotropic in-

tersection points for a generic φ ∈ Hamc(M,ω) with ||φ|| < ℘(Σ) is bounded

below by the sum of Z/2-Betti numbers of Σ.
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Theorem B+. Let (M,ω) be geometrically bounded (M can be closed) and

symplectically aspherical, and Σ be a closed regular level set of a Poisson-

commuting Hamiltonian tuple G ∈ C∞(M,Rk). Suppose that Σ is of con-

tact type, and
∫
S1 Φ(v)dt is invertible for any v ∈ C∞(S1,Σ) contractible in

M . Then the number of leafwise coisotropic intersection points for a generic

φF ∈ Hamc(M,ω) with F ∈ F and with ||F || < ℘(Σ) is bounded below by the

sum of Z/2-Betti numbers of Σ.

The genericity assumption on φF ∈ Hamc(M,ω) in the above theorems

comes from the Morse property of the Rabinowitz action functional per-

turbed by F . We are able to remove this assumption by the following cup-

length estimate as usual.

Definition 2.3.3. The relative cup-length of Σ in M is defined by

cl(Σ,M) := max{k ∈ N | ∃a1, . . . , ak ∈ H≥1(M ;Z/2) with (a1∪· · ·∪ak)|Σ 6= 0}.

Theorem C. Let (M,ω) be geometrically bounded and Σ be a closed regular

level set of a Poisson-commuting Hamiltonian tuple G ∈ C∞(M,Rk). Sup-

pose that Σ is of restricted contact type, and
∫
S1 Φ(v)dt is invertible for any

v ∈ C∞(S1,Σ) contractible in M . Then the number of leafwise coisotropic

intersection points for any φ ∈ Hamc(M,ω) with ||φ|| < ℘(Σ) is bounded be-

low by cl(Σ,M) + 1.

Theorem C+. Let (M,ω) be geometrically bounded (M can be closed) and

symplectically aspherical, and Σ be a closed regular level set of a Poisson-

commuting Hamiltonian tuple G ∈ C∞(M,Rk). Suppose that Σ is of con-

tact type, and
∫
S1 Φ(v)dt is invertible for any v ∈ C∞(S1,Σ) contractible

in M . Then the number of leafwise coisotropic intersection points for any

φF ∈ Hamc(M,ω) with F ∈ F and with ||φ|| < ℘(Σ) is bounded below by

cl(Σ,M) + 1.
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We do not include the proofs of theorems with “+” but these immediately

follow from the proofs of the corresponding theorems (without “+”) together

with arguments in [Ka2].

Theorems A and B were proved by Peter Albers and Urs Frauenfelder

[AF1], and Theorem C was proved by Peter Albers and Al Momin [AMo]

for separating restricted contact hypersurfaces. As mentioned, once we ob-

tain the main theorem in the previous section, such applications immedi-

ately follow with minor modifications. It is noteworthy that we succeed in

removing the separating condition in Theorem A by a simple approximation

argument.

2.4 Leafwise displacement energy

A coisotropic submanifold Σ in a symplectic manifold (M,ω) is said to

be leafwisely displaceable if there exists a Hamiltonian diffeomorphism

φF ∈ Hamc(M,ω) such that φF (Lx) ∩ Lx = ∅ for all x ∈ Σ. The leafwise

displacement energy of Σ in M is defined by

e(Σ) := inf
{
||F ||

∣∣F ∈ C∞c (S1 ×M), φF (Lx) ∩ Lx = ∅, ∀x ∈ Σ
}
.

We set e(Σ) = ∞ for the infimum of the empty set; that is, the leafwise

displacement energy of a leafwisely nondisplaceable coisotropic submanifold

is infinity.

Theorem D. Let Σ be a closed stable coisotropic submanifold leafwisely dis-

placeable inside (M,ω) which is geometrically bounded (M can be closed) and

symplectically aspherical. Then there exists a periodic orbit v ∈ C∞(S1,Σ),
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i.e. a solution of (1.2.2), contractible in M , such that

0 < |Ω(v)| ≤ e(Σ). (2.4.1)

Remark 2.4.1. The estimate (2.4.1) is sharp. The unit sphere S2n−1 in

(R2n, dx ∧ dy) has e(S2n−1) = π = Ω(v) where v is a periodic Reeb or-

bit of the standard contact structure on S2n−1. For displaceable closed re-

stricted contact coisotropic submanifolds, Theorem D was proved by Vik-

tor Ginzburg [Gi]. A similar result was also proved by Kai Cieliebak, Urs

Frauenfelder, and Gabriel Paternain [CFP] for stable separating hypersur-

faces using Rabinowitz Floer theory. Making use of their proof, we slightly

improve their theorem.

2.5 Rabinowitz Floer homology

We introduced the Rabinowitz action functional AGF : L×Rk → R. With

F ≡ 0, the action functional AG is generically Morse-Bott. The chain com-

plex for Floer homology of AG is generated by critical points of an auxil-

iary Morse function on the solution space of (1.2.2) and the boundary map

is defined by counting gradient flow lines of the Morse function with gradi-

ent flow lines (cascades) of AG (based on Urs Frauenfelder’s Morse-Bott ho-

mology [Fr]). On the other hand, AGF with nonzero F is Morse for generic

F ∈ C∞(S1 ×M,R). Up to reparametrization of time supports of G and F

(see Chapter 3), the chain complex for Floer homology of AGF is generated

by leafwise coisotropic intersection points and the boundary map is defined

by counting gradient flow lines of AGF . Here gradient flow lines of AG resp.

AGF are solutions of a nonlinear elliptic PDE.

One of the power of Floer homology is the invariance property. Two

Floer homologies obtained by AG and AGF are isomorphic due to the stan-

dard continuation argument in Floer theory, see Section 5. Thus we name
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Rabinowitz Floer homology for both and denote by

RFH(Σ,M) := HF(AG) ∼= HF(AGF ).

We should mention that RFH(Σ,M) does not depend on the choice of G ∈
C∞(M,Rk) the defining Hamiltonian tuple for Σ (up to canonical isomor-

phism).

Remark 2.5.1. Though we only deal with restricted contact coisotropic sub-

manifolds, it is possible to define HF(AG) in the stable case or HF(AGF ) with

F ∈ F in the contact case. The assertions (i) and (ii) in Theorem E con-

tinue to hold for contact coisotropic submanifolds if we restrict the class of

perturbations to F and (iii) holds true for stable coisotropic submanifolds.

The following theorem is an immediate consequence of the construction

and invariance property of Rabinowitz Floer homology.

Theorem E. Let (M,ω) be geometrically bounded and Σ be a closed regular

level set of a Poisson-commuting Hamiltonian tuple G ∈ C∞(M,Rk). Suppose

that Σ is of restricted contact type, and
∫
S1 Φ(v)dt is invertible for any v ∈

C∞(S1,Σ) contractible in M .

(i) If Rabinowitz Floer homology does not vanish, there exists a leafwise

coisotropic intersection point for every φ ∈ Hamc(M,ω). In particular,

if Σ is displaceable inside M , RFH(Σ,M) = 0.

(ii) There exists a nonconstant solution of (1.2.2) contractible in M , pro-

vided that Σ is displaceable inside M .

(iii) If Σ carries no nonconstant solution of (1.2.2) contractible in M ,

RFH(Σ,M) ∼= H(Σ;Z/2).

In the extremal case, the assertions (i) and (iii) can be interpreted as:

24



Chapter 2. Statement of the results

(iv) Let Σ be a Lagrangian torus, i.e. k = n. If i# : π1(Σ) → π1(M) is

injective for the natural embedding i : Σ ↪→M ,2

RFH(Σ,M) ∼= H(T n;Z/2).

2.6 Künneth formula

Here we only deal with the restricted contact case, but the same Künneth

formulas for stable/contact coisotropic manifolds can be derived exactly the

same way.

Theorem F. Let (Σ1, λ1) and (Σ2, λ2) be restricted contact hypersurfaces in

symplectic manifolds (M1, ω1) and (M2, ω2) respectively. Assume that Σ1 resp.

Σ2 bounds a compact region in M1 resp. M2 and that M1 and M2 are geo-

metrically bounded. Then,

RFHn(Σ1 × Σ2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ RFHn−p(Σ2,M2).

Remark 2.6.1. Unfortunately we are only able to prove a compactness the-

orem for gradient flow lines of the unperturbed Rabinowitz action functional

on (Σ1×Σ2,M1×M2). Thus we cannot study about leafwise coisotropic in-

tersection points except the case that Σ1 × Σ2 is of restricted contact type

again.

In Theorem G we do not consider Σ2, and M2 need to be closed.

2 This implies that every solution of (1.2.2) is not contractible even in M .
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Theorem G. Let (Σ1, λ1) ⊂ (M1, ω1) be as in Theorem F above. Assume

that (M2, ω2) is a closed symplectically aspherical symplectic manifold. Then,

(G1) Σ1×M2 has a leafwise coisotropic intersection point for φ ∈ Hamc(M1×
M2, ω1⊕ω2) with Hofer-norm ||φ|| < ℘(Σ1, λ1) even if Σ1 does not bound

a compact region in M1.

(G2) The Rabinowitz Floer homology RFH(Σ1 × M2,M1 × M2) ∼= HF(AGF )

is defined for a generic F ∈ C∞c (M1 × M2). Moreover, we have the

Künneth formula:

RFHn(Σ1 ×M2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ Hn−p(M2).

Since we have not assumed any contact structure on Σ1 ×M2, we need

a special version of isoperimetric inequality, see Lemma (6.3.1), in order to

prove Theorem G.

Remark 2.6.2. It is worth emphasizing that Σ1×M2 is never of restricted

contact type since M2 is closed. Nevertheless, interestingly enough, we can

achieve compactness of gradient flow lines of the perturbed Rabinowitz ac-

tion functional for a generic (Morse property) perturbation φF ∈ Hamc(M1×
M2, ω1 ⊕ ω2).

Using the Künneth formulas and a result of [AF2], we are able to find

infinitely many leafwise coisotropic intersection points on some coisotropic

submanifolds.

Corollary F. Let N be a closed Riemannian manifold of dimN ≥ 2 with

dim H∗(ΛN) = ∞ where ΛN is the free loop space of N . Then there ex-

ists infinitely many leafwise coisotropic intersection points for a generic φ ∈
Hamc(T

∗S1 × T ∗N) on (S∗S1 × S∗N, T ∗S1 × T ∗N).
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Remark 2.6.3. Since (S∗S1×S∗N, T ∗S1×T ∗N) is of restricted contact type

(see Lemma 7.1.3), φ in Corollary F is not necessarily of product type.

Corollary G. Let N be as in Corollary F above, and (M,ω) be a closed sym-

plectically aspherical symplectic manifold. Then a generic φ ∈ Hamc(T
∗N ×

M) has infinitely many leafwise coisotropic intersection points on (S∗N ×
M,T ∗N ×M).

2.7 List of related results

• On Rabinowitz Floer homology theory: [AF1, AF2, AF3, AF4,

AF5, AF6, AFMe, AMe1, AMe2, AMo, AS, BF, CF, CFO, CFP, FS,

Ka1, Ka2, Ka3, Ka4, Me1, Me2, MP, MMP].

• On leafwise (coisotropic) intersections: [AF1, AF2, AF4, AMo,

AMe1, AMc, Ba, Dr, EH, Gi, Gü, Ho, Ka2, Ka3, Ka4, Mo, Me2, MMP,

Zi1, Zi2].

• On (Leafwise) displacement energy: [Bo1, Bo2, Gi, Ka3, Ke, Us].
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Chapter 3

The Rabinowitz action functional

with several Lagrange multipliers

This chapter is devoted to the proof of the main theorem, which proves

a compactness result for gradient flow lines of the Rabinowitz action func-

tional, and to the proof of Theorem A.

3.1 The Rabinowitz action functional for

coisotropic submanifolds

Let η = (η1, . . . , ηk) ∈ Rk be a k-tuple of Lagrange multipliers. We de-

note by L ⊂ C∞(S1,M) the space of contractible loops in M . For an arbi-

trary Hamiltonian tuple G = (G1, . . . , Gk) ∈ C∞(M,Rk) which has 0 ∈ Rk as

a regular value, and which is Poisson-commuting near
⋃k
i=1G

−1
i (0), the gen-

eralized Rabinowitz action functional AG : L×Rk → R is defined as follows:

AG(v, η) := −
∫
D2

v̄∗ω −
k∑
i=1

ηi

∫ 1

0

Gi(v(t))dt (3.1.1)
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where v̄ is any filling disk of v, i.e. v̄|∂D2(t) = v(t) for t ∈ S1. The symplectic

asphericity condition implies that the value of the above action functional is

independent of the choice of filling discs. Using the standard scalar product

〈·, ·〉 in Rk, we can express (3.1.1) by

AG(v, η) = −
∫
D2

v̄∗ω −
∫ 1

0

〈η,G〉(v(t))dt.

A critical point of the Rabinowitz action functional, (v, η) ∈ CritAG sat-

isfies the following equations.

∂tv(t) =
k∑
i=1

ηiXGi(v(t)), t ∈ S1

∫ 1

0

Gi(v(t))dt = 0, i ∈ {1, . . . , k}

 (3.1.2)

Proposition 3.1.1. If (v, η) ∈ CritAG, v(t) ∈ G−1(0) for all t ∈ S1.

Proof. Assume by contradiction that Gj(v(t0)) > 0 for some t0 ∈ S1 and

j ∈ {1, . . . , k}. Then to satisfy the second equation in (3.1.2), there exists

t1 ∈ S1 such that Gj(v(t1)) < 0 and hence v(t2) ∈ G−1
j (0) for some t2 ∈ S1.

Using the first equation in (3.1.2), we have

d

dt
Gi(v(t)) = dGi(v(t))[∂tv] = dGi

( k∑
j=1

ηjXGj(v(t))

)
=

k∑
j=1

ηj{Gi, Gj}(v(t))

which implies Gi(v(t)) is stationary whenever v(t) ∈ G−1
j (0) due to Poisson-

commutativity of G near
⋃k
i=1 G

−1
i (0). Since v(t2) ∈ G−1

j (0), Gj(v(t)) = 0 for

all t ∈ S1. This contradiction proves the proposition.
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3.2 The perturbed Rabinowitz action functional

Let G ∈ C∞(M,Rk) be as in the subsection. We choose a smooth func-

tion χ ∈ C∞(S1,R) such that χ(t) ≥ 0,
∫ 1

0
χ(t)dt = 1, and Suppχ ⊂ (1/2, 1).

Using χ, we define a time-dependent Hamiltonian Hi : S1 × M → R by

Hi(t, x) = χ(t)Gi(x) for 1 ≤ i ≤ k, i.e.

H(t, x) := χ(t)G(x) ∈ C∞(S1 ×M,Rk).

Let F ∈ C∞c (S1×M) be an arbitrary time-dependent Hamiltonian function.

Thanks to Lemma 1.1.2, we assume that F has time support in (0, 1
2
). We

note that the time support of H and the time support of F are disjoint.

With these Hamiltonian functions, the perturbed Rabinowitz action func-

tional AHF : L× Rk → R is defined by

AHF (v, η) := −
∫
D2

v̄∗ω −
∫ 1

0

F (t, v(t))dt−
∫ 1

0

〈η,H〉(t, v(t))dt.

where v̄ : D2 →M is any filling disk of v. A critical point of the perturbed

Rabinowitz action functional, (v, η) ∈ CritAHF satisfies the following equa-

tions.

∂tv(t) = XF (t, v) +
k∑
i=1

ηiXHi(t, v(t)), t ∈ S1

∫ 1

0

Hi(t, v(t))dt = 0, i ∈ {1, . . . , k}

 (3.2.1)

In the next proposition, we observe that a critical point of AHF gives rise

to a leafwise coisotropic intersection point. Albers-Frauenfelder [AF1] proved

the following proposition when Σ is a hypersurface. Their proof continues to

work for coisotropic submanifolds with minor modifications.

Definition 3.2.1. A leafwise coisotropic intersection point x ∈ Σ is called

periodic if the leaf Lx contains a solution of (1.2.2).
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Proposition 3.2.2. If (v, η) ∈ CritAHF , v(0) ∈ Σ is a leafwise coisotropic

intersection point. Moreover, the map

CritAHF −→
{

leafwise coisotropic intersections
}

is injective unless there is no periodic leafwise coisotropic intersection.

Proof. Since the time support of F is (0, 1/2), for t ≥ 1/2 and for all

i = 1, . . . , k,

d

dt
Gi(v(t)) = dGi(v(t))[∂tv] = dGi(v(t))

[
XF (t, v)︸ ︷︷ ︸

=0

+
k∑
j=1

χ(t)ηjXGj(v)
]

As in the proof of Proposition 3.1.1, the second equation in (3.2.1) implies

v(t) ∈ G−1(0) = Σ for t ∈ (1/2, 1). On the other hand, v solves ∂tv =

XF (t, v) on (0, 1/2) so that v(1/2) = φ
1/2
F (v(0)) = φ1

F (v(0)) since F = 0

for t ≥ 1/2. For t ∈ (1/2, 1), it holds that ∂tv =
∑k

i=1 ηiXHi(t, v) and thus

v(0) = v(1) ∈ Lv(1/2). Thus we conclude that v(0) ∈ LφF (v(0)) which is equiv-

alent to φF (v(0)) ∈ Lv(0).

From now on, we allow s-dependence on F as follows. Let {Fs}s∈R be a

family of Hamiltonian functions varying only on a finite interval in R. More

specifically, we assume Fs(t, x) = F−(t, x) for s ≤ −1 and Fs(t, x) = F+(t, x)

for s ≥ 1. We also choose a family of compatible almost complex structures

{J(s, t)}(s,t)∈R×S1 on M such that J(s, t) is invariant outside of the interval

[−1, 1] ⊂ R and they still split as in (1.2.3).

On the tangent space T(v,η)(L × Rk) = TvL × TηRk for (v, η) ∈ L × Rk,

we define the metric m as follows:

m(v,η)

(
(v̂1, η̂1), (v̂2, η̂2)

)
:=

∫ 1

0

gv(v̂
1, v̂2)dt+ 〈η̂1, η̂2〉.

Recall that g(·, ·) = ω(·, J ·) is a metric on M . Here η̂1 and η̂2 are elements
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in TηRk ∼= Rk and 〈·, ·〉 is the scalar product in Rk.

Definition 3.2.3. A map w ∈ C∞(R,L× Rk) which solves

∂sw(s) +∇mAHFs(w(s)) = 0. (3.2.2)

is called a gradient flow line of AHFs with respect to the metric m.

According to Floer’s interpretation, the gradient flow equation (3.2.2) can

be interpreted as w = (u, τ) = (u, τ1, . . . , τk) with u(s, t) : R × S1 → M and

τi(s) : R→ R, solving

∂su+ J(s, t, u)
(
∂tu−

k∑
i=1

τiXHi(t, u)−XFs(t, u)
)

= 0

∂sτi −
∫ 1

0

Hi(t, u)dt = 0, 1 ≤ i ≤ k

 (3.2.3)

Definition 3.2.4. The energy of a map w ∈ C∞(R,L× Rk) is defined as

E(w) :=

∫ ∞
−∞
||∂sw||2mds.

Lemma 3.2.5. Let w ∈ C∞(R,L×Rk) be a gradient flow line of AHFs with

finite energy. Then we have the following estimate.

E(w) ≤ AHF−(w−)−AHF+
(w+) +

∫ ∞
−∞
||∂sFs||−ds (3.2.4)

where w± := lims→±∞w(s) ∈ CritAHFs . Moreover, equality holds if ∂sFs = 0.
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Proof. The following computation proves the lemma.

E(w) = −
∫ ∞
−∞

dAHFs
(
w(s)

)
[∂sw(s)]ds

= −
∫ ∞
−∞

d

ds

(
AHFs

(
w(s)

))
ds+

∫ ∞
−∞

(
∂sAHFs

)(
w(s)

)
ds

= AHF−(w−)−AHF+
(w+)−

∫ ∞
−∞

∫ 1

0

∂sFs(w)dtds

≤ AHF−(w−)−AHF+
(w+) +

∫ ∞
−∞
||∂sFs||−ds .

Remark 3.2.6. We note that
∫∞
−∞ ||∂sFs||−ds has a finite value since ∂sFs

has a compact support by construction.

Proposition 3.2.7. AHFs has a uniform bound along gradient flow lines.

Proof. For any gradient flow line w ∈ C∞(R,L×Rk) of AHF and s1 < s2 ∈
R, we calculate

0 ≤
∫ s2

s1

||∂sw||2m ds

= −
∫ s2

s1

dAHFs(w(s))(∂sw)ds

= AHFs1 (w(s1))−AHFs2 (w(s2))−
∫ s2

s1

∫ 1

0

∂sFs(t, v)dtds

≤ AHFs1 (w(s1))−AHFs2 (w(s2)) +

∫ s2

s1

||∂sFs||−ds.
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From the above inequality we obtain

AHFs2 (w(s2)) ≤ AHF−(w−) +

∫ ∞
−∞
||∂sFs||−ds,

AHFs1 (w(s1)) ≥ AHF+
(w+)−

∫ ∞
−∞
||∂sFs||−ds.

This proves the proposition.

3.2.1 Compactness

In this subsection, we prove Theorem 3.2.8 which is a vital ingredient

for all our results. Here, Σ is assumed to be a closed restricted contact

coisotropic submanifold. However for a perturbation F ∈ F, adapting an

idea in [Ka2] we are able to prove the theorem in the contact case as well.

We also need the assumptions ii) and iii).

Recall that Σ = G−1(0). For compactness, we cut-off G to be constant

away from Σ. More precisely, M \G−1
i (0) consists of two parts M+

i and M−
i

such that ±Gi|M±i > 0 for 1 ≤ i ≤ k. Therefore we are able to modify Gi so

that for a small ε > 0,

Gi =

{
unchanged on G−1

i (−ε, ε),
constant near infinity.

for all 1 ≤ i ≤ k. Note that G is still Poisson-commuting on
⋃k
i=1G

−1
i (−ε, ε)

after such a modification and thus Proposition 3.1.1 and Proposition 3.2.2

remain true.

Theorem 3.2.8. Let {wν = (uν , τ ν)}ν∈N be a sequence of gradient flow lines

of AHFs for which there exist a ≤ b such that

a ≤ AHFs(w
ν(s)) ≤ b, for all ν ∈ N, s ∈ R. (3.2.5)
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Then for every reparametrization sequence σν ∈ R the sequence wν(· + σν)

has a convergent subsequence in the C∞loc-topology. That is, {wν}ν∈N has a

subsequence which converges with all derivatives on every compact subset to

a gradient flow line w ∈ C∞(R× S1,M)× C∞(R,Rk).

Proof. Once we prove Theorem 3.2.11 which is a new feature of Rabinowitz

Floer theory, the rest of the proof is established by the following steps which

are standard by now in Floer theory.

1. Since (M,ω) is geometrically bounded and we have modified G so that

G is constant near infinity, we have a uniform bound on images of uν ,

see [AL] (also see [Mc, Lemma 2.4] for the convex at infinity case).

2. Due to Lemma 3.2.5 and Proposition 3.2.7, we have a uniform energy

bound on uν and this implies a uniform bound on ∂su
ν except finitely

many points.

3. On such finitely many points where the derivative ∂su
ν explodes, we

can detect nonconstant J-holomorphic spheres, see [McS, Chapter 4.2].

However this so-called bubbling-off phenomenon does not occur due to

symplectic asphericity.

4. By Theorem 3.2.11, we have a uniform bound on τ ν1 , . . . , τ
ν
k . From the

gradient flow equation

∂su
ν + J(t, uν)

(
∂tu

ν −
k∑
i=1

τ νi (s)XGi(u
ν)
)

= 0,

we obtain a uniform bound on ∂tu
ν as well.

5. Now we can apply the elliptic bootstrapping argument in Floer theory,

see [McS, Theorem B.4.2] and hence the assertion follows.
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bubbled 
  -holomorphic
sphere

We first prove the following fundamental lemma which is a key step in

proving Theorem 3.2.11.

Lemma 3.2.9. There exist ε > 0 and C > 0 such that for (v, η) ∈ L× Rk,

||∇mAHFs(v, η)||m < ε implies |ηi| ≤ C
(
|AHFs(v, η)|+ 1

)
for all 1 ≤ i ≤ k.

Proof. The proof proceeds in three steps.

Step 1: There exists a small constant δ ∈ (0, δ0) satisfying the following.

Assume v(t) ∈ Uδ for t ∈ (1/2, 1). Then there exists C0 > 0 such that

|ηi| ≤ C0

(
|AHFs(v, η)|+ ||∇mAHFs(v, η)||m + 1

)
, i = 1, . . . , k.

Proof of Step 1. Recall that there exists a family of definite matrices

Φ = (Φi,j) : G−1(0)→ Mat(k × k)

such that

XGi = ΦRi, 1 ≤ i ≤ k
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and we have assumed ∫
S1

χ(t)Φ(v(t))dt ∈ Mat(k × k)

is invertible for any v ∈ C∞(S1,Σ) contractible in M , see Remark 2.1.1. For

each j = 1, . . . , k,

AHFs(v, η) =−
∫ 1

0

v∗λj −
k∑
i=1

ηi

∫ 1

0

Hi(t, v)dt−
∫ 1

0

Fs(t, v)dt

=−
∫ 1

0

λj
(
∂tv −

k∑
i=1

ηiXHi(t, v)−XFs(t, v)
)
dt−

k∑
i=1

∫ 1

0

λj
(
ηiXHi(t, v)

)
dt

−
∫ 1

0

λj(XFs(t, v))dt−
k∑
i=1

ηi

∫ 1

0

Hi(t, v)dt−
∫ 1

0

Fs(t, v)dt

=−
∫ 1

0

λj
(
∇mAHFs(v, η)

)
dt−

k∑
i=1

ηi

∫ 1

0

χ(t)λj
( k∑
`=1

Φi,`R`(v)
)
dt

−
∫ 1

0

λj(XFs(t, v))dt−
k∑
i=1

ηi

∫ 1

0

Hi(t, v)dt−
∫ 1

0

Fs(t, v)dt

=−
∫ 1

0

λj
(
∇mAHFs(v, η)

)
dt−

k∑
i=1

ηi

∫ 1

0

χ(t)Φi,j(v)dt

−
∫ 1

0

λj(XFs(t, v))dt−
k∑
i=1

ηi

∫ 1

0

χ(t)Gi(v)dt−
∫ 1

0

Fs(t, v)dt

Thus we have

−
k∑
i=1

ηiχ(t)

∫ 1

0

(
Φi,j +Gi

)
(v)dt =AHFs(v, η) +

∫ 1

0

λj
(
∇mAHF (v, η) +XFs(t, v)

)
+ Fs(t, v)dt
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and

Γ(v)

 η1

...

ηk

 =

 A
H
Fs

(v, η) +
∫ 1

0
λ1

(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt

...

AHFs(v, η) +
∫ 1

0
λk
(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt


where Γ(v) is a k × k matrix defined by

Γ(v) :=

[
−
∫ 1

0

χ(t)
(
Φi,j +Gi

)
(v)dt

]
1≤i,j≤k

We choose small δ > 0 so that Γ(v) is still invertible for any v ⊂ Uδ :=

G−1(−δ, δ). Therefore, η1

...

ηk

 = Γ(v)−1

 A
H
Fs

(v, η) +
∫ 1

0
λ1

(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt

...

AHFs(v, η) +
∫ 1

0
λk
(
∇mAHFs(v, η) +XFs(t, v)

)
+ Fs(t, v)dt

 .

Since

||λi||L∞(Uδ), ||(Φi,j +Gi)||L∞(Uδ), ||Fs||L∞(Uδ), ||XFs||L∞(Uδ) <∞,

there exists a constant C0 > 0 such that

|ηj| ≤ C0

(
|AHFs(v, η)|+ ||∇mAHFs(v, η)||m + 1

)
, ∀j = 1, . . . , k.

Step 2: If there is t ∈ (1
2
, 1) such that v(t) /∈ Uδ then ||∇mAHFs(v, η)||m ≥ ε.

Proof of Step 2. The assumption v(t) /∈ Uδ means that there exists i ∈
{1, . . . , k} such that v(t) /∈ U i

δ := G−1
i (−δ, δ). If in addition, v(t) ∈M −U i

δ/2

for all t ∈ (1
2
, 1) then we easily have

||∇mAHFs(v, η)||m ≥
∣∣∣∣ ∫ 1

0

Hi(t, v(t))dt

∣∣∣∣ =

∣∣∣∣ ∫ 1

1/2

χ(t)Gi(v(t))dt

∣∣∣∣ ≥ δ

2
.
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Otherwise there exists t′ ∈ (1
2
, 1) such that v(t′) ∈ U i

δ/2. Thus we can find

t0, t1 ∈ (1
2
, 1) such that

v(t0) ∈ ∂U i
δ/2, v(t1) ∈ ∂U i

δ, v(t) ∈ U i
δ − U i

δ/2, ∀t ∈ [t0, t1],

or

v(t1) ∈ ∂U i
δ, v(t0) ∈ ∂U i

δ/2, v(t) ∈ U i
δ − U i

δ/2, ∀t ∈ [t1, t0].

We treat only the first case. The latter case is analogous. With

P := max
x∈Uδ
||∇gGi(x)||g <∞

we estimate,
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P||∇mAHFs(v, η)||m ≥ P||∂tv −
k∑
j=1

ηjXHj(t, v)−XFs(t, v)||L2

≥ P||∂tv −
k∑
j=1

ηjXHj(t, v)−XFs(t, v)||L1

≥
∫ t1

t0

||∂tv −
k∑
j=1

ηjXHj(t, v)−XFs(t, v)||g||∇gGi(v(t))||gdt

≥
∣∣∣∣ ∫ t1

t0

〈
∇gGi(v(t)), ∂tv(t)−

k∑
j=1

ηjXHj(t, v)−XFs(t, v)
〉
g
dt

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

dGi(v(t))
(
∂tv(t)−

k∑
j=1

ηjXHj(t, v)−XFs(t, v)︸ ︷︷ ︸
=0

)
)
dt

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

d

dt
Gi(v(t))dt− dGi(v)

( k∑
j=1

ηjXHj(t, v)
)

︸ ︷︷ ︸
=0

∣∣∣∣
≥
∣∣Gi(v(t1))

∣∣− ∣∣Gi(v(t0))
∣∣

=
δ

2
.

(3.2.6)

Thus Step 2 follows with ε = min
{
δ
2
, δ

2P

}
.

Step 3: Proof of the lemma.

Proof of Step 3. According to Step 2, v(t) ∈ Uδ for all t ∈ (1
2
, 1). Then Step

1 completes the proof of the lemma with C = C0 + ε+ 1.
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For a given gradient flow line w of AHFs and σ ∈ R, we define

o(σ,w, ε) := inf
{
τ ≥ 0

∣∣ ||∇mAHFs(w(σ + τ))||m ≤ ε
}
,

CF :=

∫ ∞
−∞

∫ 1

0

max
x∈M
||∂sFs(t, x)||gdtds < ∞.

(3.2.7)

Lemma 3.2.10. For a gradient flow line w of AHFs with lims→±∞w(s) = w±,

o(σ,w, ε) ≤
AHFs(w−)−AHFs(w+) + CF

ε2
.

Proof. We compute

ε2o(σ,w, ε) ≤
∫ σ+o(σ,w,ε)

σ

∣∣∣∣∇mAHFs(w)
∣∣∣∣2
m
ds

≤
∫ ∞
−∞
−dAHFs(w)(∂sw)ds− CF + CF

≤
∫ ∞
−∞
− d

ds

(
AHFs(w(s))

)
ds+ CF

= AHFs(w−)−AHFs(w+) + CF

We obtain a bound on o(σ,w, ε) by dividing ε2 in the above inequality.

Theorem 3.2.11. Assume that w = (u, τ) ∈ C∞(R,L × Rk) is a gradient

flow line of AHFs for which there exist a ≤ b such that

a ≤ AHFs(w(s)) ≤ b, for all s ∈ R. (3.2.8)

Then the L∞-norms of τi’s are uniformly bounded.

As we have mentioned, Theorem 3.2.11 completes the proof of Theorem

3.2.8.
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Proof. Using Lemma 3.2.9 and Lemma 3.2.10, we obtain

|τi(σ)| ≤ |τi(σ + o(σ,w, ε))|+
∫ σ+o(σ,w,ε)

σ

|∂sτi(s)|ds

≤ C
(∣∣AHFs(w(σ + o(σ,w, ε)))

∣∣+ 1
)

+ o(σ,w, ε)||Hi||L∞

≤ C(max{|a|, |b|}+ 1) +

(
|b− a|+ CF

ε2

)
||Hi||L∞ .

3.3 Proof of Theorem A

The proof proceeds in two steps. In Step 1, we prove Theorem A under

the assumption that Σ is a regular level set of a Poisson commuting Hamil-

tonian tuple G satisfying the assumption iii) as before. Then we remove this

additional assumption in Step 2.

Step 1. There exists a critical point (v, η) of AHF if ||F || < ℘(Σ) and Σ is

of restricted contact type with Φ : Σ→ MatDef(k × k). Moreover the action

value of that critical point is uniformly bounded as below:

− ||F || ≤ AHF (v, η) ≤ ||F ||. (3.3.1)

Proof of Step 1. We mainly follow the proof of Theorem A in [AF1] which

made use of the “stretching the neck” argument. For 0 ≤ r, we choose a

smooth family of functions ϕr ∈ C∞(R, [0, 1]) satisfying

1. for r ≥ 1: ϕ′r(s) · s ≤ 0 for all s ∈ R, ϕr(s) = 1 for |s| ≤ r − 1, and

ϕr(s) = 0 for |s| ≥ r,

2. for r ≤ 1: ϕr(s) ≤ r for all s ∈ R and Suppϕr ⊂ [−1, 1],

We note that ϕ∞ ≡ 1 is the limit of ϕr with respect to C∞loc-topology.
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We fix a point p ∈ Σ and consider the moduli space

M :=

(r, w) ∈ [0,∞)× C∞(R,L× Rk)

∣∣∣∣ w is a gradient flow line of AHϕrF with

lim
s→−∞

w(s) = (p, 0), lim
s→∞

w(s) ∈ Σ× {0}

 .

Assume on the contrary that there is no leafwise coisotropic intersection

point of φF for ||F || < ℘(Σ). For (r, w) ∈ M with w− = (p, 0) and w+ =

(q, 0) in Σ× {0}, we estimate

E(w) = −
∫ ∞
−∞

dAHϕr(s)F (w(s))(∂sw)ds

≤ AH0 (p, 0)−AH0 (q, 0) +

∫ ∞
−∞
||∂sϕrF ||−ds

=

∫ ∞
−∞
||ϕ′r(s)F ||−ds

=

∫ 0

−∞
ϕ′r(s)||F ||−ds−

∫ ∞
0

ϕ′r(s)||F ||+ds

= ϕr(0)
(
||F ||− + ||F ||+

)
≤ ||F ||.

Accordingly we can also estimate,

− ||F || ≤ AHϕrnF (wn(s)) ≤ ||F ||, (rn, wn) ∈M. (3.3.2)

Due to the action bound, Theorem 3.2.8 yields that a sequence {wn}n∈N
for (rn, wn) ∈ M has a convergent subsequence (still denoted wn) in C∞loc-

topology. We denote by x the limit gradient flow line (which can be a con-

stant gradient flow line). We want to show that M is compact and so as-

sume by contradiction that x+ /∈ Σ × {0} where x± are asymptotic ends of

x, i.e. x± = lims→±∞ x(s).

Case 1. rn is bounded.
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There is no loss of generality in assuming that rn → r as n → ∞. Let

U ∈ L × Rk be an open set containing only the constant critical points of

AHϕrF . Since x+ /∈ Σ × {0}, we can take for large n, σn ∈ R the last U -

entry time of wn, i.e. wn(σn) /∈ U and wn(s) ∈ U for s > σn. We note that

σn →∞ as n→∞ and that the reparametrized sequence σ∗nwn is a gradient

flow line of AHσ∗nϕrnF where σ∗nwn(·) := wn(·+σn) and σ∗nϕrn(·) := ϕrn(·+σn).

The new sequence σ∗nwn also has a C∞loc-convergent subsequence by Theorem

3.2.8 again and we denote by z the limit gradient flow line. Since rn → r

and σn → ∞, σ∗nϕrn C∞loc-converges to the zero function, and thus z is the

gradient flow line of AH. Since σ∗nwn → z in C∞loc-topology, we have

E(z) =

∫ ∞
−∞
||∂sz||2mds = lim

T→∞

∫ T

−T
||∂sz||2mds ≤ lim

T→∞
lim sup
n∈N

E(wn) = lim sup
n∈N

E(wn).

We observe that z(0) /∈ U and the positive asymptotic end z+ ∈ Σ × {0}
since Σ×{0} is a Morse-Bott component of CritAH (see [AF1, Lemma 2.12])

and hence z is a non-constant gradient flow line of AH. Thus the negative

asymptotic end z− is a critical point of AH; moreover it is not a constant

loop since otherwise z is a non-constant gradient flow line with zero energy

E(z) = 0. But this case is ruled out by the assumption that ||F || < ℘(Σ) as

well. To be precise, with z− = (v, η), we can derive the following estimate

which contradicts the definition of ℘(Σ).

0 < |Ω(v)| = |AH0 (z−)| = E(z) ≤ lim sup
n∈N

E(wn) ≤ ||F || < ℘(Σ).

Case 2. rn is unbounded.

Without loss of generality, we assume that rn →∞ as n→∞. The limit

of {wn}n∈N is a gradient flow line of AHF since β∞ ≡ 1. Then the asymp-

totic ends of the limit are critical points of AHF which give rise to a leafwise
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coisotropic intersection point of φF . It contradicts our assumption and Case

2 is ruled out.

With σn the first U -exit time of wn, the case x− /∈ Σ×{0} is analogous.

If x− = (q, 0) ∈ Σ with q 6= p, as Case 1, there exists a gradient flow line of

AH with asymptotic ends (q, 0) and (p, 0). But this cannot occur. Therefore

we conclude that the moduli space M is compact.

Next, we regard the moduli space M as the zero set of a Fredholm sec-

tion with index 1 of a Banach bundle over a Banach manifold as in (5.1.1).

Moreover, the Fredholm section is already transversal at the (0, p, 0) since Σ

is a Morse-Bott component by [AF1, Lemma 2.12]. Therefore we can per-

turb the Fredholm section away from (0, p, 0) (even if varying J , (0, p, 0) still

solves the gradient flow equation) to obtain a transverse Fredholm section

whose zero set is a compact one-dimensional smooth manifold with bound-

ary (0, p, 0). But there is no one-dimensional manifold with a single bound-

ary point. This finishes the proof of Claim 1. �

Step 2. End of the proof of Theorem A.

Proof of Step 2. In Step 2, our restricted contact coisotropic submanifold Σ

is not necessarily of the form Σ = G−1(0). Recall that on the open neigh-

borhood Uδ0
∼= {(q, p1, . . . , pk) ∈ Σ × Dk

r} of Σ, ω|Uδ0 = ω|Σ +
∑k

i=1 d(piαi)

and Xpi = Ri for all i = 1, . . . , k.

We consider a family of Hamiltonian tuples Hν(t, x) = χ(t)Gν(x), ν ∈ N
where Hν = (H1,ν , . . . , Hk,ν) and Gν = (G1,ν , . . . , Gk,ν) such that

1. 0 < εν < δ converges to zero as ν goes to infinity,

2. Gi,ν |Uδ0 = gi(pi) for some gi ∈ C∞(R),
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3. for (x, p) ∈ Σ× (−δ0, δ0)k ∼= Uδ0 ,

Gi,ν |U2εν−Uεν/2(x, p) =

{
pi − εν if pi > 0

−pi − εν if pi < 0,
(3.3.3)

4. Gi,ν |M−Uδ0 = constant,

5. G−1
ν (0) =

⋃
2k Σ× (±εν , . . . ,±εν).

We note that

XGi,ν |Σ×(±εν ,...,+εν ,...,±εν) = +Xpi , XGi,ν |Σ×(±εν ,...,−εν ,...,±εν) = −Xpi .

By construction, Hν Poisson-commutes and Step 1 guarantees the existence

of critical points (vν , ην) lying on G−1
ν (0) for sufficiently large ν because ||F || <

℘(Σ × {(±εν , . . . ,±εν)}) for large ν ∈ N. For (vν , ην) ∈ CritAHνF , vν lies on

one of the components of G−1
ν (0), say vν ⊂ Σ × (εν , . . . , εν). According to

Proposition 3.2.2, it holds that

φ1
F

(
vν(1/2)

)
= vν(0) = φ

−η1,ν
H1,ν

◦ · · · ◦ φ−ηk,νHk,ν

(
vν(1/2)

)
.

Then the estimate (3.3.1) in Step 1 implies the following lemma.

Lemma 3.3.1. For (vν , ην) ∈ CritAHνF , η1,ν , . . . , ηk,ν are uniformly bounded

in terms of λ1, . . . , λk and F .
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Proof. We estimate as in (3.3.1): For all i ∈ {1, . . . , k},

||F || ≥
∣∣AHνF (vν , ην)

∣∣
=
∣∣∣ ∫ 1

0

v∗λi +

∫ 1

0

〈η,Hν〉(t, vν(t))dt+

∫ 1

0

F (t, vν(t))dt
∣∣∣

=
∣∣∣ ∫ 1

0

λi(vν)
( k∑
j=1

ηj,νXHj,ν (vν) +XF (t, vν)
)
dt+

∫ 1

0

F (t, vν(t))dt
∣∣∣

=
3

4
|ηi,ν | −

1

4(k − 1)

k∑
j 6=i

|ηj,ν | −
∣∣∣ ∫ 1

0

λi(vν)
(
XF (t, vν)

)
+

∫ 1

0

F (t, vν(t))dt
∣∣∣.

Therefore we conclude

1

2

k∑
i=1

|ηi,ν | ≤ k
(
||F ||+ max

1≤i≤k
||λi|Uδ0/2||L∞||XF ||L∞ + ||F ||L∞

)
.

The two sequences of points {vν(0)}ν∈N and {vν(1/2)}ν∈N converge up to

taking a subsequence (still denoted by vν(0) and vν(1/2)) and we denote by

x0 := lim
ν→∞

vν(0), x1/2 := lim
ν→∞

vν
(
1/2
)
.

Obviously x0 and x1/2 are points in Σ. Moreover we know that

x0 = lim
ν→∞

vν(0) = lim
ν→∞

φ1
F (vν(1/2)) = φ1

F ( lim
ν→∞

vν(1/2)) = φ1
F (x1/2). (3.3.4)

Furthermore, due to Lemma 3.3.1, the limit {ηi,ν}ν∈N exists for all i, say

ni := lim
ν→∞

ηi,ν .
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Thus we conclude that x0 and x1/2 lie on the same leaf:

x0 = lim
ν→∞

vν(0) = lim
ν→∞

φ
−η1,ν
H1,ν

◦ · · · ◦ φ−ηk,νHk,ν
(vν(1/2)) = φ−n1H1

◦ · · · ◦ φ−nkHk
(x1/2).

(3.3.5)

It directly follows

φ−n1H1
◦ · · · ◦ φ−nkHk

(x1/2) = φ1
F (x1/2)

from (3.3.4) together with (3.3.5). This completes the proof of Theorem A.

�
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The existence of a periodic orbit

and the leafwise displacement

energy

In this chapter, we study the existence of a periodic orbit, i.e. a so-

lution of (1.2.2), together with a relation between its symplectic area and

the leafwise displacement energy in the stable case. This proves Theorem D

which were proved by Kai Cieliebak, Urs Frauenfelder, and Gabriel Pater-

nain [CFP] for separating stable hypersurfaces. Adapting their idea, we can

extend (and slightly improve) their result to stable coisotropic submanifolds.

Let Σ be a closed stable coisotropic submanifold in a symplectically as-

pherical symplectic manifold (M,ω) which is geometrically bounded. As in

Theorem A we first assume that Σ = G−1(0) for some Poisson commuting

Hamiltonian tuple G ∈ C∞(M,Rk), but this additional assumption will be

removed in the second step. Suppose that Σ is displaced by F ∈ C∞c (S1×
M), i.e. φF (Σ) ∩ Σ = ∅. We consider again the smooth family of functions

ϕr ∈ C∞(R, [0, 1]) defined in the proof of Theorem A. As before, we fix a
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point p ∈ Σ and consider the moduli space M defined by

M =

(r, w) ∈ [0,∞)×C∞(R,L× Rk)

∣∣∣∣ w is a gradient flow line of AHϕrF with

lim
s→−∞

w(s) = (p, 0), lim
s→∞

w(s) ∈ Σ× {0}

 .

Theorem 4.0.2. For (r, w) ∈ M where w = (u, τ), τ and r are uniformly

bounded.

In the previous sections we showed how Rabinowitz Floer theory for hy-

persurfaces can be generalized to our set-up. Since the proof of Theorem

4.0.2 needs several technical lemmas and auxiliary action functionals as in

the contact case [Ka2],we refer the reader to [CFP, Section 4.3] or [Ka3] in-

stead of giving a proof .

4.1 Proof of Theorem D

Step 1. We know that a sequence {(rn, wn)}n∈N in M has a C∞loc-convergent

subsequence due to Theorem 4.0.2 together with the argument in the proof

of Theorem 3.2.8. We denote by (r, w) the limit which is a gradient flow

line of AHϕrF . Again by compactness, w asymptotically converges to w± =

(v±, η±) ∈ CritAH since ϕr(±∞) = 0. If (r, w) ∈M, the moduli space M is

a one dimensional compact manifold with a single boundary point {(0, p, 0)}
(after perturbing a Fredholm section as in the proof of Theorem A). However

such a manifold does not exist and therefore one of the asymptotic ends w±

of w is a nontrivial solution of (1.2.2). For simplicity, let us assume w+ /∈
Σ× {0}. Following the notation from the proof of Theorem A, we consider

σn ∈ R the last U -entry time. Then σ∗nwn is a gradient flow line of AHσ∗nϕrnF
and C∞loc-converges to a non-constant gradient flow line z of AH with z(0) /∈
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U and z+ ∈ Σ×{0}.1 By compactness and the energy estimate, z− = (v, η) ∈
CritAH and z− is a nontrivial solution of (1.2.2). Moreover, by (3.3.2), we

have

−||F || ≤ AHσ∗nϕrnF (σ∗nwn(s)) ≤ ||F ||, ∀s ∈ R.

As n goes to infinity, it holds that

− ||F || ≤ Ω(v) = AH(z−) ≤ ||F || (4.1.1)

for every Hamiltonian function F ∈ C∞c (S1×M) displacing Σ. Since AH(z+) =

0 and the action value of AH decreases along z,∣∣Ω(v)
∣∣ =

∣∣AH(z−)
∣∣ > 0. (4.1.2)

(4.1.1) and (4.1.2) prove Theorem E provided that Σ is a level set of some

Poisson-commuting Hamiltonian tuple.

Step 2. Now we consider the situation that Σ is not necessarily a level set of

some Poisson-commuting Hamiltonian tuple. We choose a family of Hamil-

tonian tuples Hν(t, x) = χ(t)Gν(x), ν ∈ N where Hν = (H1,ν , . . . , Hk,ν) and

Gν = (G1,ν , . . . , Gk,ν) such that

1. 0 < εν < min{1/4k, δ0/2, δ1} converges to zero as ν goes to infinity,

2. Gi,ν |Uδ0 = gi(pi) for some gi ∈ C∞(R),

3. for (x, p) ∈ Σ× (−δ0, δ0)k ∼= Uδ0 ,

Gi,ν |U2εν−Uεν/2(x, p) =

{
pi − εν if pi > 0

−pi − εν if pi < 0,

1 Honestly speaking, we did not prove C∞loc-convergence of (rn, σ
∗
nwn); but it follows from

the proof of Theorem 4.0.2.
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4. Gi,ν |M−Uδ0 = constant,

5. G−1
ν (0) =

⋃
2k Σ× (±εν , . . . ,±εν).

With this defining Hamiltonian tuple Hν , the argument in Step 1 still works

and thus there exists vε ∈ G−1
ν (0) a solution of (1.2.2) satisfying 0 < Ω(vε) ≤

e(G−1
ν (0)). Since G−1

ν (0) is disconnected, vε lies in one of its connected com-

ponents, say vε ⊂ Σε. Since there is a diffeomorphism ψε between Σε and Σ,

ψε(vε) is a loop solving (1.2.2), contractible in M with Ω(ψε(vε)) = Ω(vε) > 0.

Moreover if we have chosen sufficiently large ν, e(Σ) = e(G−1
ν (0)). For sim-

plicity, let us assume that e(Σ) + ε < e(G−1
ν (0)) for some small ε > 0 and

for all ν ∈ N; it means that there is F ∈ C∞c (S1 × M) such that ||F || ∈
(e(Σ), e(Σ) + ε) such that φF (Σ) ∩ Σ = ∅; but if ν is big enough, φF also

displaces G−1
ν (0) and it contradicts ||F || < e(G−1

ν (0)). Hence, we have proved

that

0 < Ω(ψε(vε)) = Ω(vε) ≤ e(G−1
ν (0)) = e(Σ).

�

Remark 4.1.1. If one succeeds in proving compactness of gradient flow lines

of the perturbed Rabinowitz action functional in the stable case, Theorem D

is an immediate consequence of the invariance property of Rabinowitz Floer

homology.
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Rabinowitz Floer homology

In the hypersurface case, [CFP, AF1] proved that the (perturbed) Ra-

binowitz action functional is generically Morse-Bott (Morse). Their argu-

ment undeniably continues to hold in our set-up. That is, AG is Morse-Bott

and AHF is Morse for a generic perturbation F ∈ C∞c (S1 × M). Further-

more, we know that gradient flow lines of the Rabinowitz action functional

are compact modulo breaking (see (F1) and (F2) below) for restricted con-

tact coisotropic submanifolds due to Theorem 3.2.8. Therefore we can de-

fine Floer homologies of AG and AHF as usual.1 As one expects, these two

Floer homologies are isomorphic by the standard continuation method in

Floer theory. Here we only treat the restricted contact case and refer to Re-

mark 2.5.1 for other cases. As before, (M,ω) is an exact symplectic manifold

being geometrically bounded with a family of ω-compatible almost complex

structures J = J(s, t).

1AG is never Morse since there is a S1-symmetry coming from time-shift on the critical

points set. However AG is Morse-Bott for a generic coisotropic submanifold, thus we can

define Morse-Bott homology of AG by counting gradient flow lines with cascades, see [Fr].

Since Rabinowitz Floer homology is invariant under homotopies there is no loss of generality

in assuming AH is Morse-Bott, see [CFP].
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5.1 Boundary Operator

We can assign some index to critical points of AHF , namely the transverse

Conley-Zehnder index.2 But we omit the definition, referring the reader to

[BO2, CF, MP]. We denote the index by

µ : CritAHF −→ Z.

Here we assumed that the first Chern class c1 vanishes over π2(M) for sim-

plicity; otherwise the index µ is well defined modulo 2N where N is the

minimal Chern number of (M,ω).

Let MJ(w−, w+) be the moduli space of gradient flow lines of AHF with

asymptotic ends w± ∈ CritAHF .

MJ(w−, w+) :=

(u, τ) ∈ C∞(R× S1,M)× C∞(R,Rk)

∣∣∣∣∣ (u, τ) solves (3.2.3),

lim
s→±∞

(u, τ) = w±

 .

In order to show that MJ(w−, w+) is a finite dimensional smooth manifold,

we interpret it as the zero set of a Fredholm section of a Banach bundle over

a Banach space. Let P(w−, w+) be the Banach manifold given by

P(w−, w+) :=
{

(u, τ) ∈ W 1,2(R× S1,M)×W 1,2(R,Rk)
∣∣ lim
s→±∞

(u, τ) = w±
}

and E be the Banach bundle over P(w−, w+) whose fibre at (u, τ) ∈ P(w−, w+)

is

E(u,τ) := L2(R× S1, u∗TM × τ ∗TRk).

Then the moduli space M(w−, w+) is the zero set of the section

sJ : P(w−, w+) −→ E , sJ(u, τ) =
(
∂̄H,F,J(u), ∂̄1(τ1), · · · , ∂̄k(τk)

)
(5.1.1)

2 We can define Floer homology of AHF without this index.
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defined by

∂̄H,F,J(u) = ∂su+ J(s, t, u)
(
∂tu−

k∑
i=1

ηiXHi(t, u)−XFs(t, u)
)

∂̄i(τi) = ∂sτi −
∫ 1

0

Hi(t, u)dt, 1 ≤ i ≤ k


where τ = (τ1, . . . , τk). It turns out that this section is Fredholm. Then

we regard the moduli space as the zero set of this section, MJ(w−, w+) =

s−1
J (0). Let

DsJ(u, τ) : T(u,τ)P(w−, w+) −→ E(u,τ)

be the vertical differential of sJ at (u, τ). It is known that DsJ(u, τ) is

surjective for a generic ω-compatible almost complex structure J and for

any (u, τ) ∈ s−1
J (0), see [FHS, Section 5] and [BO1]. This transversality is-

sues (surjectivity of DsJ(u, τ)) can now also be settled using the framework

of polyfolds developed by Hofer-Wysocki-Zehnder [HWZ1, HWZ2, HWZ3].

Thus we perturb the section sJ (varying J slightly) so that DsJ(u, τ) is sur-

jective and the implicit function theorem yields that s−1
J (0) =MJ(w−, w+) is

a smooth finite dimensional manifold. Moreover the dimension of the moduli

space MJ(w−, w+) coincides with the dimension of the kernel of DsJ which

in turn is the same as the Fredholm index of sJ since it is surjective; be-

sides, the Fredholm index of sJ can be computed in terms of the indices of

µ(w−) and µ(w+) using the spectral flow [RS, BO2, CF]. In conclusion, we

have the identity

dimMJ(w−, w+) = µ(w−)− µ(w+), w± ∈ CritAHF .

We suppress the subindex J in MJ(w−, w+) for notational convenience. We

divide out the R-action on M(w−, w+) defined by shifting the gradient flow

lines in the s-variable. Then we obtain the moduli space of unparametrized
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gradient flow lines which we denote by

M̂(w−, w+) :=M(w−, w+)/R.

For the compactification of the moduli space M(w−, w+), we recall the

Floer-Gromov convergence. A sequence {(uν , τ ν)}ν∈N in M(w−, w+) is

said to Floer-Gromov converge to a broken gradient flow lines {(uj, τj)}mj=1

where z0, . . . , zm ∈ CritAHFs with z0 = w− and zm = w+, and

(uj, τj) ∈M(zj−1, zj), j ∈ {1, . . . ,m}

if there exist σνj ∈ R such that reparametrized sequences (uν , τ ν)(σνj + ·)
converge to (uj, τj) for all j ∈ {1, . . . ,m} in the C∞loc-topology. The following

statements are the key ingredients for boundary operators of various Floer

homologies, including Rabinowitz Floer homology.

(F1) The moduli space M(w−, w+) is a one dimensional compact smooth

manifold with respect to the topology of Floer-Gromov convergence

when µ(w−)− µ(w+) = 1.3 Accordingly, M̂(w−, w+) is a finite set.

(F2) Let M̂c(w−, w+) be the compactification of M̂(w−, w+) with respect

to the topology of Floer-Gromov convergence. If µ(w−) − µ(w+) = 2,

M̂c(w−, w+) is a compact one-dimensional manifold whose boundary is

∂M̂c(w−, w+) =
⋃
z

M̂(w−, z)× M̂(z, w+) (5.1.2)

where the union runs over z ∈ CritAHF with µ(w−)− µ(z) = 1.

(F1) follows from the elliptic bootstrapping argument as discussed in The-

orem 3.2.8, see also Floer’s beautiful paper [Fl2]. (F2) is proved by Floer’s

gluing theorem [Fl1].

3 Without help of the Conley-Zehnder index, we can rephrase that the one dimensional

component of M(w−, w+) is a compact smooth manifold.
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We denote by CritqAHF the set of critical point of AHF of index q ∈ Z, i.e.

µ((v, η)) = q for (v, η) ∈ CritqAHF . We define a Z/2-vector space

CFq(AHF ) :=
{
ξ =

∑
(v,η)∈CritqAHF

ξ(v,η)(v, η)
∣∣∣ ξ(v,η) ∈ Z/2

}

where ξ(v,η) satisfies the finiteness condition:

#
{

(v, η) ∈ CritqAHF
∣∣ ξ(v,η) 6= 0, AHF (v, η) ≥ κ

}
<∞, ∀κ ∈ R.

We denote by n(w−, w+) be the parity of elements of the finite set M̂(w−, w+)

when µ(w−) − µ(w+) = 1, see (F1) above. Then the boundary operators

{∂q}{q∈Z} are defined by

∂q : CFq(AHF ) −→ CFq−1(AHF )

w− ∈ CritqAHF 7−→
∑

w+∈Critq−1AHF

n(w−, w+) · w+.

Due to (F2), we know ∂q−1◦∂q = 0 (in Z/2) so that (CF•(AHF ), ∂•) is a chain

complex indeed. We define Rabinowitz Floer homology by

HFq(AHF ) := Hq(CF•(AHF ), ∂•), RFHq(Σ,M) := HFq(AG).

To be exact, since AG is Morse-Bott, HF(AG) is defined by Frauenfelder’s

Morse-Bott homology [Fr, Appendix A]. We note that CritAG consists of Σ

and circles. We pick a Morse function f on CritAG and then the bound-

ary operator for HF(AG) is defined by counting gradient flow lines of AG

(called cascades) together with gradient flow lines of f . Note that if there is

no nonconstant solution of (1.2.2), CritAG ∼= Σ and thus there are no cas-

cades since the energy of each cascade is positive. Thus if this is the case,

HF(AG) ∼= H(Σ;Z/2).
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5.2 Continuation Homomorphism

Given any two Hamiltonian functions F and K in C∞c (S1×M), we con-

sider the homotopies D±s ∈ C∞(S1 ×M), s ∈ R,

D+
s (t, x) := K(t, x) + ϕ+(s)

(
F (t, x)−K(t, x)

)
and

D−s (t, x) := K(t, x) + ϕ−(s)
(
F (t, x)−K(t, x)

)
where ϕ± ∈ C∞(R, [0, 1]) are cut-off functions defined by

ϕ+(s) =

{
0 s ≤ −1

1 s ≥ 1
ϕ−(s) =

{
1 s ≤ −1

0 s ≥ 1.

We consider the time-dependent version of the gradient flow equation:

∂su+ Js(t, u)
(
∂tu−

k∑
i=1

τiXHi(t, u)−XD+
s

(t, u)
)

= 0

∂sτi −
∫ 1

0

Hi(t, u)dt = 0, 1 ≤ i ≤ k.

 (5.2.1)

The solutions of (5.2.1) with an asymptotic condition form the following

moduli space:

M(wK , wF ) :=

w ∈ C∞(R× S1,M)×C∞(R,Rk)

∣∣∣∣∣ w = (u, τ) solves (5.2.1) with

lim
s→±∞

w(s) = wF/K ∈ CritAHF/K

 .

As we discussed in the previous subsection, it is also a well-known fact in

Floer theory that the moduli space M(wK , wF ) is a smooth manifold of di-

mension µ(wK) − µ(wF ) for a generic homotopy. In particular, it is known

that M(wK , wF ) is a finite set when wK and wF have the same index and
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thus we denote the parity of M(wK , wF ) by n(wK , wF ) if this is the case.

Then we define the continuation homomorphism as follows.

ΦF
K : CFq(AHK) −→ CFq(AHF )

wK ∈ CritqAHK 7−→
∑

wF∈CritqAHF

n(wK , wF ) · wF .

In the same way, we also define

ΦK
F : CFq(AHF ) −→ CFq(AHK)

using the other homotopy D−s . Then we obtain the invariance property of

Rabinowitz Floer homology via the continuation homomorphisms using a ho-

motopy of homotopies Dr
s(t, x) := K(t, s) + ϕr(s)(F (t, x) − K(t, x)) where

ϕr : R→ [0, 1], r ∈ R and ϕr = ϕ± if ±r ≥ 1, see [Sa, Section 3.4] 4:

Theorem 5.2.1. Rabinowitz Floer homology is independent of the choice of

perturbations up to canonical isomorphism. In particular, it holds that

RFH(Σ,M) ∼= HF(AHF ), F ∈ C∞c (S1 ×M).

For the later purpose, we compare the action values of AHK and AHF :

Proposition 5.2.2. If the moduli space M(wK , wF ) is not empty,

AHF (wF ) ≤ AHK(wK) + ||F −K||−.
4 Here we again make use of Floer-Gromov compactness and Floer’s gluing theorem.
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Proof. We pick w ∈M(wK , wF ) and estimate its energy:

0 ≤ E(w)

= −
∫ ∞
−∞

dAH
D+
s

(w(s))[∂sw]ds

= −
∫ ∞
−∞

d

ds

(
AH
D+
s

(w(s))
)
ds−

∫ ∞
−∞

∫ 1

0

ϕ+
′(s)
(
F (t, w(s))−K(t, w(s))

)
dtds

≤ AH
D+
−∞

(wK)−AH
D+
∞

(wF )−
∫ ∞
−∞

ϕ+
′(s)

∫ 1

0

(
F (t, w(s))−K(t, w(s))

)
dtds

≤ AHK(wK)−AHF (wF ) + ||F −K||−.

5.3 Proof of Theorem E

Suppose that there are no leafwise coisotropic intersection points for some

φF ∈ Hamc(M,ω). Then the set CritAHF is empty since otherwise a criti-

cal point of AHF gives rise to a leafwise coisotropic intersection point. Thus

HF(AHF ) = 0 and Theorem 5.2.1 proves (i).

If there are only constant solutions of (1.2.2), no cascades appear in the

boundary operator of Morse-Bott homology. Thus the Rabinowitz Floer ho-

mology of (Σ,M) is isomorphic to the Morse homology of Σ and hence to

the singular homology of Σ. This proves (iii).

Suppose there are only constant solutions of (1.2.2). Due to (iii), we

know that the Rabinowitz Floer homology of (Σ,M) is isomorphic to the

singular homology of Σ. While the singular homology of Σ never vanishes,

the Rabinowitz Floer homology of (Σ,M) vanishes by (i) since Σ is displace-

able. This contradiction proves (ii). �
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5.4 Filtered Rabinowitz Floer Homology

For a < b ∈ R which are not critical values of AHF , we define the Z/2-

vector space

CF(a,b)
q (AHF ) := Crit(a,b)

q (AHF )⊗ Z/2

where

Crit(a,b)
q (AHF ) :=

{
(v, η) ∈ CritqAHF

∣∣AHF (v, η) ∈ (a, b)
}
.

Then
(
CF(−∞,b)
∗ (AHF ), ∂b∗

)
is a sub-complex of

(
CF∗(AHF ), ∂∗

)
since (negative)

gradient flow lines of AHF flow downhill. Here ∂b∗ := ∂∗|CF
(−∞,b)
∗

. There are

canonical homomorphisms

ib,ca : CF(a,b)
q (AHF ) −→ CF(a,c)

q (AHF ), a ≤ b ≤ c

and

πca,b : CF(a,c)
q (AHF ) −→ CF(b,c)

q (AHF ), a ≤ b ≤ c.

ib,ca is a natural inclusion and πca,b is a projection along CF(a,b)
q (AHF ). We note

that

CF(a,c)
q (AHF ) = CF(a,b)

q (AHF )⊕ CF(b,c)
q (AHF ),

We suppress the indices a, b, and c if there is no confusion. The short exact

sequence

0 −→ CF(−∞,a)
q (AHF )

i−→ CF(−∞,b)
q (AHF )

π−→ CF(a,b)
q (AHF ) −→ 0

gives rise to a boundary operator ∂ba∗ on CF(a,b)
∗ (AHF ) and this induces a ho-

mology group, namely the filtered Rabinowitz Floer homology:

HF(a,b)
q (AHF ) = Hq(CF(a,b)

• (AHF ), ∂ba•).
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More generally for a ≤ b ≤ c, we have

0 −→ CF(a,b)
q (AHF )

i−→ CF(a,c)
q (AHF )

π−→ CF(b,c)
q (AHF ) −→ 0.

The canonical homomorphisms i, π, and the boundary map ∂ are compat-

ible with each other so that they induce canonical homomorphisms on the

homology level. Thus we have

· · · δ−→ HF(a,b)
q (AHF )

i∗−→ HF(a,c)
q (AHF )

π∗−→ HF(b,c)
q (AHF )

δ−→ HF
(a,b)
q−1 (AHF )

i∗−→ · · · .

where δ is the connecting homomorphism.

Corollary 5.4.1. In the filtered case, the canonical homomorphism is given

by

(ΦF
K)∗ : HF(a,b)

q (AHK) −→ HF(a−||F−K||−,b+||F−K||−)
q (AHF ).

Proof. This is a well-known fact in Floer theory; it follows from the com-

parison of the action values of AHK and AHF , see Proposition 5.2.2.

5.5 Proof of Theorem B

All of the lemmas and the propositions in this subsection were established

for hypersurfaces in [AF1]. Without doubt, their arguments continue to hold

in our situation, but we outline the arguments for the sake of completeness.

For ||F || < ℘(Σ), we define

Critloc(AHF ) :=
{

(v, η) ∈ CritAHF
∣∣∣ − ||F ||+ ≤ AHF (v, η) ≤ ||F ||−

}
.

We note that the set Critloc(AHF ) is finite. This follows from the Arzela-

Ascoli theorem since the Lagrange multipliers ηi’s are uniformly bounded

according to Theorem 3.2.11. We define the finite dimensional Z/2 vector
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space

CFloc(AHF ) := Critloc(AHF )⊗ Z/2 .

(CFloc(AHF ), ∂loc) is a chain complex and the local Rabinowitz Floer ho-

mology is defined by

HFloc(AHF ) := H(CFloc(AHF ), ∂loc).

Proposition 5.5.1. For F ∈ C∞c (S1,M) with ||F || < ℘(Σ), the following

inequalities hold.

#

{
Leafwise coisotropic

intersection points of φF

}
≥ dim CFloc(AHF ) ≥ dim HFloc(AHF ) .

Proof. We briefly sketch the proof and refer to [AF1, Lemma 2.19] for

details. The last inequality is obvious. For the first inequality, it suffices

to show that different critical points of AHF give rise to different leafwise

coisotropic intersection points. If two distinct critical points (v, η), (v′, η′) ∈
CritlocAHF give rise to the same leafwise coisotropic intersection point, then

γ := v′|[1/2,1]#v|[1/2,1], where v(t) = v(1 − t) and # is the path catenation

operator, is a periodic orbit solving (1.2.2), see pictures below. Moreover a

close look at γ reveals that Ω(γ) ≤ ||F || < ℘(Σ) which contradicts the defi-

nition of ℘(Σ).
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Proposition 5.5.2. The local Rabinowitz Floer homology of AH is isomor-

phic to the singular homology of Σ, i.e.

H(Σ;Z/2)
Θ∼= HFloc(AH) .

Proof. The set CritlocAH consists of critical points of AH whose action val-

ues are zero which in turn implies CritlocAH ∼= Σ. Therefore no cascades ap-

pear in the boundary operator and HFloc(AH) is isomorphic to Morse homol-

ogy of Σ.

The lemma below directly follows from the definition of ℘(Σ).

Lemma 5.5.3. For any (a, b) ⊂ (−℘(Σ), ℘(Σ)), we have an isomorphism

HF(a,b)(AH) ∼= HFloc(AH).

Proposition 5.5.4. If ||F || < ℘(Σ), there exists an injective homomorphism

ι : H(Σ;Z/2) −→ HFloc(AHF ) .

In particular, dim HFloc(AHF ) ≥ dim H(Σ;Z/2).

Proof. We pick a ∈ R with 0 < a < ||F || < ℘(Σ) then using the continua-

tion homomorphism in Corollary 5.4.1, we obtain

(ΦF
0 )∗ : HFloc(AH) ∼= HF(−a,0)(AH) −→ HF(−a+||F ||−,|F ||−)(AHF ) ∼= HFloc(AHF ).

On the other hand, we also have

(Φ0
F )∗ : HF(−a+||F ||−,|F ||−)(AHF ) −→ HF(−a+||F ||,||F ||)(AH) ∼= RFHloc(Σ,M).

Using a homotopy of homotopies Dr
s(t, x) = ϕr(s)F (t, x), we deduce

(Φ0
F )∗ ◦ (ΦF

0 )∗ = idHFloc(AH).
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Therefore (ΦF
0 )∗ is injective and the proposition follows with

ι := (ΦF
0 )∗ ◦Θ.

Proof of Theorem B. It directly follows from Proposition 5.5.1 and Propo-

sition 5.5.4. �

5.6 Proof of Theorem C

We give a sketch of the proof here and refer to [AMo] for details.5

As before, F ∈ C∞c (S1 ×M) with ||F || < ℘(Σ). Let ` ∈ N. For r ≥ 0,

we choose a smooth family of functions ϕr ∈ C∞(R, [0, 1]).

We consider the following moduli space.

M(r) :=

w ∈ C∞(R,L× Rk)

∣∣∣∣ w is a gradient flow line of

AHϕrF with lim
s→±∞

w(s) ∈ Σ× {0}

 .

Note that M(0) ∼= Σ. Moreover one can show that M(r) is compact in the

sense of Theorem 3.2.8.6

5We tacitly assume all transversality conditions of evaluation maps and Fredholm sec-

tions involved (or hidden) in the proof. These conditions are true up to small perturbations,

as a matter of fact.
6The proof is similar to the corresponding part of the proof of Theorem A.
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Now we consider the evaluation map

evr :M(r) −→M×`

w = (u, τ) 7−→
(
u(r, 0), . . . u(`r, 0)

)
.

For generic Morse functions fi and Riemannian metrics gi on M and f , g on

Σ and for any x = (x1, . . . , x`, x−, x+) ∈ Critf1×· · ·×Critf`×Critf ×Critf ,

M(r, x) :=

w = (u, τ) ∈M(r)

∣∣∣∣ lim
s→±∞

u(s) ∈ W u/s(x±, f)

evr(u) ∈ W s(x1, f1)× · · · ×W s(x`, f`)


is a smooth manifold. The map defined by

θr : CM∗(f1)⊗ · · · ⊗ CM∗(f`)⊗ CM∗(f) −→ CM∗(f)

(x1 ⊗ · · · ⊗ x`)⊗ x− 7−→
∑

x+∈Critf

#2M(r, x) · x+.

is a chain map. Since M(r, x) is chain homotopy equivalent to M(0, x) via

the moduli space M[0, r] := {(e, w) | e ∈ [0, r], w ∈ M(r)}, θr is chain ho-
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motopic to θ0. The map θ0 induces the cohomology operation

Θ : H∗(M)⊗` ⊗H∗(Σ) −→ H∗(Σ),

(a1 ⊗ · · · ⊗ a`)⊗ b 7−→ (a1 ∪ · · · ∪ a`)|Σ ∩ b.

Let ` = cl(Σ,M) so that the cohomology operation Θ is nonzero, and

hence M(r, x) 6= ∅ for some x ∈ Critf1× · · · ×Critf`×Critf ×Critf and for

all r ∈ R. We may assume that Morse functions f, f1, . . . , f` and Riemannian

metrics g, g1, . . . g` satisfy the following generic condition.

• W s(xi, fi) does not intersect with the set of leafwise coisotropic inter-

section points for xi ∈ Critfi with nonzero Morse index.

We choose a sequence wn = (un, τn) ∈M(n, x), n ∈ N. That is,
∂su

n(s, t) + J(s, t, un)
(
∂tu

n −
k∑
i=1

τni (s)XHi(t, u
n)− ϕn(s)XF (t, un)

)
= 0,

∂sτ
n
i −

∫ 1

0

H(t, un)dt = 0, 1 ≤ ∀i ≤ k.

Consider the following `+ 2 sequences of maps:

wn(s+ jn), j ∈ {0, . . . `+ 1}.

The limits of ϕn(s + jn), 0 ≤ j ≤ ` + 1 in the C∞loc-topology look like as

pictures below and in particular ϕn(s + jn)F converges to F for 1 ≤ j ≤ `.

By applying Theorem 3.2.8, wn(s + jn) converges (up to subsequence) to
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some map ŵj in the C∞loc-topology for 0 ≤ j ≤ ` + 1. Note that ŵj is a

gradient flow line of AHF for 1 ≤ j ≤ ` and in particular ŵj(±∞) ∈ CritAHF
for 1 ≤ j ≤ `. Since we have assumed that W s(xi, fi) does not intersect with

the set of leafwise coisotropic intersection points for xi ∈ Critfi with nonzero

Morse index, ŵj, 1 ≤ j ≤ ` are not constant gradient flow lines. Therefore

`+ 1 critical points

ŵ1(−∞), ŵ2(−∞), · · · , ŵ`(−∞), ŵ`(∞)

of AHF are distinct. Moreover as in the proof of Theorem A, the assumption

||F || < ℘(Σ) guarantees that they give rise to distinct leafwise coisotropic in-

tersection points. This shows the existence of cl(Σ,M)+1 leafwise coisotropic

intersection points. �
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Künneth formula in Rabinowitz

Floer homology

In this chapter, we analyze the Rabinowitz Floer action functional for a

product of restricted contact hypersurfaces in a product of symplectic man-

ifolds and derive a Künneth formula for Rabinowitz Floer homology. Con-

sider restricted contact hypersurfaces (Σ1, λ1) resp. (Σ2, λ2) in exact sym-

plectic manifolds (M1, ω1 = dλ1) resp. (M2, ω2 = dλ2). Moreover we as-

sume that Σ1 resp. Σ2 bounds a compact region in M1 resp. M2 and that

those M1 and M2 are geometrically bounded. We introduce projection maps

π1 : M1×M2 →M1 and π2 : M1×M2 →M2; then (M1×M2, ω1⊕ω2) admits

the symplectic structure ω1 ⊕ ω2 = π∗1ω1 + π∗2ω2.

6.1 Rabinowitz action functional for product

manifolds

Since Σ1 and Σ2 are restricted contact hypersurfaces, there exist associ-

ated Liouville vector fields Y1 resp. Y2 on M1 resp. M2 such that LYiωi = ωi

and Yi t Σi for i = 1, 2. We denote by φtYi the flow of Yi and fix δ > 0 such
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that φtYi |Σi is defined for |t| < δ. Since Σ1 resp. Σ2 bounds a compact region

in M1 resp. M2, we are able to define Hamiltonian functions G1 ∈ C∞(M1)

and G2 ∈ C∞(M2) so that

1. G−1
1 (0) = Σ1 and G−1

2 (0) = Σ2 are regular level sets;

2. dG1 and dG2 have compact supports;

3. Gi(φ
t
Yi

(xi)) = t for all xi ∈ Σi, i = 1, 2, and |t| < δ;

We extend G1, G2 to be defined on the whole of M1 ×M2:

G̃i := π∗iGi : M1 ×M2 −→ R, i = 1, 2

(x1, x2) 7−→ Gi(xi).

We denote by L = LM1×M2 ⊂ C∞(S1,M1×M2) the space of contractible

loops in M1×M2. The perturbed Rabinowitz action functional AG̃1,G̃2

F (v, η1, η2) :

L× R2 → R is defined by

AG̃1,G̃2

F (v, η1, η2) = −
∫ 1

0

v∗(λ1 ⊕ λ2)− η1

∫ 1

0

G̃1(v)dt− η2

∫ 1

0

G̃2(v)dt

where λ1 ⊕ λ2 := π∗1λ1 + π∗2λ2. The real numbers η1 and η2 can be thought

of as Lagrange multipliers as before. A critical point (v, η1, η2) ∈ CritAG̃1,G̃2

F

satisfies
∂tv = η1XG̃1

(v) + η2XG̃2
(v),∫ 1

0

G̃1(v)dt = 0,∫ 1

0

G̃2(v)dt = 0.


(6.1.1)

We choose a compatible almost complex structure J1 on M1 and define

the metric on (M1, ω1) by g1(·, ·) = ω1(·, J1·). Analogously we also define the

metric g2(·, ·) = ω2(·, J2·) on (M2, ω2). Then g = g1 ⊕ g2 which is the metric
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on (M1×M2, ω1⊕ω2) induces a metric m on the tangent space T(v,η1,η2)(L×
R2) ∼= TvL× R2 as follows:

m(v,η1,η2)

(
(v̂1, η̂1

1, η̂
1
2), (v̂2, η̂2

1, η̂
2
2)
)

:=

∫ 1

0

gv(v̂
1, v̂2)dt+ η̂1

1 η̂
2
1 + η̂1

2 η̂
2
2 .

In this set-up, the gradient flow equation

∂sw(s) +∇mAG̃1,G̃2

F (w(s)) = 0, w ∈ C∞(R,L× R2)

can be interpreted as maps u(s, t) : R × S1 → M1 ×M2 and τ1(s), τ2(s) :

R→ R solving

∂su+ J(t, u)
(
∂tv − τ1XG̃1

(u)− τ2XG̃2
(u)
)

= 0,

∂sτ1 −
∫ 1

0

G̃1(u)dt = 0,

∂sτ2 −
∫ 1

0

G̃2(u)dt = 0.


(6.1.2)

6.1.1 Compactness

In order to define Rabinowitz Floer homology, we prove the compactness

theorem for gradient flow lines of the Rabinowitz action functional in this

subsection.

We introduce two auxiliary action functionals A1,A2 : LM1×M2×R2 → R:

A1(v, η1, η2) :=

∫ 1

0

v∗π∗1λ1 − η1

∫ 1

0

G1(v)dt

A2(v, η1, η2) :=

∫ 1

0

v∗π∗2λ2 − η2

∫ 1

0

G2(v)dt.

Lemma 6.1.1. Let w = (v, η1, η2) ∈ C∞(R,L × R2) be a gradient flow line

of AG̃1,G̃2

F with asymptotic ends w− = (v−, η1−, η2−) and w+ = (v+, η1+, η2+).
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Then the action values of A1 and A2 are bounded along w in terms of the

asymptotic data:

(i) A1(w(s)) ≤ 2|A1(w−)|+ |A1(w+)|, ∀s ∈ R;

(ii) A2(w(s)) ≤ 2|A2(w−)|+ |A2(w+)|, ∀s ∈ R.

Proof. We only show the first inequality, the latter one is proved in a sim-

ilar way. Since it holds that iX
G̃2
π∗1ω1 = 0, we compute

d

ds
A1(w(s)) = dA1(w(s))[∂sw(s)]

=

∫ 1

0

π∗1ω1

(
∂tv, ∂sv)−

∫ 1

0

ω1 ⊕ ω2

(
η1XG̃1

(v), ∂sv
)
−
(∫ 1

0

G̃1(v)dt
)2

=

∫ 1

0

π∗1ω1

(
∂tv − η1XG̃1

(v), ∂sv
)
dt−

(∫ 1

0

G̃1(v)dt
)2

= −
∫ 1

0

π∗1ω1(∂sv, J∂sv)dt−
(∫ 1

0

G̃1(v)dt
)2

.

Integrating the above equality from −∞ to any s0 ∈ R, we have

A1(w(s0))−A1(w−) =

∫ s0

−∞

d

ds
A1(w(s))ds

= −
∫ s0

−∞

∫ 1

0

π∗1ω1(∂sv, J∂sv)dtds−
∫ s0

−∞

(∫ 1

0

G̃1(v)dt
)2

ds.

We set

B(s) :=

∫ 1

0

π∗1ω1(∂sv, J∂sv)dt+
(∫ 1

0

G̃1(v)dt
)2

.

Therefore the following estimate can be derived for any s0 ∈ R

|A1(w(s0))| ≤ |A1(w+)|+
∣∣∣ ∫ s0

−∞
B(s)ds

∣∣∣,
and it remains to find a bound for |

∫ s0
−∞B(s)ds|. Since B(s) is nonnegative,
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we are able to estimate as the following. By setting s0 =∞, we have

A1(w+)−A1(w−) = −
∫ ∞
−∞

B(s)ds

Using the above formula, we obtain∣∣∣∣ ∫ s0

−∞
B(s)ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ ∞
−∞

B(s)ds

∣∣∣∣ ≤ |A1(w+)|+ |A1(w−)|.

Thus we finally deduce

|A1(w(s0))| ≤ |A1(w+)|+ 2|A1(w−)|, ∀s0 ∈ R.

Lemma 6.1.2. Assume that v ⊂ Uδ := G̃−1
1 (−δ, δ) ∩ G̃−1

2 (−δ, δ) with 0 <

2δ < min{1, δ0}. Then there exists Ci > 0 satisfying

|ηi| ≤ Ci

(
|Ai(v, η)|+ ||∇mAG̃1,G̃2||m + 1

)
, i = 1, 2.

Proof. We estimate

|Ai(v, η1, η2)| =
∣∣∣ ∫ 1

0

v∗π∗i λi + ηi

∫ 1

0

G̃i(v)dt
∣∣∣

≥
∣∣∣ηi ∫ 1

0

π∗i λi(v)
(
XG̃i

(v)
)
dt
∣∣∣− ∣∣∣ηi ∫ 1

0

G̃i(v)dt
∣∣∣|

−
∣∣∣ ∫ 1

0

π∗i λi(v)
(
∂tv − η1XG̃1

(v)− η2XG̃2
(v)
)
dt
∣∣∣

≥ |ηi| − δ|ηi| − Ci,δ||∂tv − η1XG̃1
(v)− η2XG̃2

(v))||L1

≥ |ηi| − δ|ηi| − Ci,δ||∇mAG̃1,G̃2||m

where Ci,δ := ||π∗i λi|Uδ ||L∞ . The second inequality holds since π∗i λi(XG̃j
) = 0
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Chapter 6. Künneth formula in Rabinowitz Floer homology

if i 6= j. This estimate finishes the lemma with

Ci := max
{ 1

1− δ
,
Ci,δ

1− δ
,
}
, i = 1, 2.

Along arguments in Chapter 3, one can easily show the following funda-

mental lemma using previous two lemmas.

Lemma 6.1.3. For a gradient flow line w = (u, τ1, τ2) ∈ C∞(R,L × R2) of

AG̃1,G̃2 , the following assertion holds for i = 1, 2 with some C, ε > 0.

|τi| ≤ C
(
|Ai(w−)|+ |Ai(w+)|+ 1

)
if ||∇mAG̃1,G̃2(u, τ1, τ2)||m < ε.

The following compactness theorem immediately follows from the funda-

mental lemma as before, see Chapter 3.

Theorem 6.1.4. Let {wn}n∈N be a sequence of gradient flow lines of AG̃1,G̃2

for which there exist a < b such that

a ≤ AG̃1,G̃2(wn(s)) ≤ b, for all s ∈ R.

Then for every reparametrization sequence σn ∈ R, the sequence wn(· + σn)

has a subsequence which is converges in C∞loc(R,L× R2).

This theorem enables us to define the Rabinowitz Floer homology

RFH(Σ1 × Σ2,M1 ×M2) = H
(
CF(AG̃1,G̃2), ∂1,2

)
.

6.2 Proof of Theorem F

Thanks to the previous section, we are ready to define Rabinowitz Floer

homology of (Σ1×Σ2,M1×M2) and to prove Theorem F. Consider the Ra-
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binowitz action functionals AG1 : LM1 × R→ R and AG2 : LM2 × R→ R:

• AG1(v1, η1) = −
∫ 1

0

v∗1λ1 − η1

∫ 1

0

G1(v1)dt,

• AG2(v2, η2) = −
∫ 1

0

v∗2λ2 − η2

∫ 1

0

G2(v2)dt.

Recall for i = 1, 2 that (vi, ηi) ∈ CritAGi if and only if

∂tvi = ηiXGi(vi),

∫ 1

0

G1(vi)dt = 0, (6.2.1)

and wi(s, t) =
(
ui(s, t), τi(s)

)
: R × S1 → Mi × R is a gradient flow line of

AGi if and only if

∂sui + Ji(t, ui)
(
∂tui − ηiXGi(ui)

)
= 0, ∂sτi −

∫ 1

0

Gi(ui)dt = 0. (6.2.2)

Then we define chain complexes CF(AG1), CF(AG2) and their boundary op-

erators ∂1, ∂2 analogously as before and denote their Floer homologies by

RFH(Σ1,M1) = H
(
CF(AG1), ∂1

)
, RFH(Σ2,M2) = H

(
CF(AG2), ∂2

)
.

Next, for a Künneth formula, we define the tensor product of chain com-

plexes by

(
CF∗(AG1)⊗ CF∗(AG2)

)
n

:=
n⊕
i=0

CFi(AG1)⊗ CFn−i(AG2).

together with the boundary operator ∂⊗n given by

∂⊗n
(
(v1, η1)i⊗ (v2, η2)n−i

)
= ∂1

i (v1, η1)i⊗ (v2, η2)n−i + (v1, η1)i⊗ ∂2
n−i(v2, η2)n−i.
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Comparing the critical point equations (6.1.1) and (6.2.1), we easily notice

that
(
(v1, v2), η1, η2

)
= (v, η1, η2) ∈ CritAG1,G2 if and only if (v1, η1) ∈ CritAG1

and (v2, η2) ∈ CritAG2 where v1 = π1◦v : S1 →M1 and v2 = π2◦v : S1 →M2

for the projections π1, π2. Here, (v1, v2) ∈ C∞(S1,M1 ×M2) is defined by

(v1, v2) : S1 −→M1 ×M2,

t 7−→ (v1(t), v2(t)).

Moreover since the Conley-Zehnder index behaves additively, we have

Critn(AG̃1,G̃2) =
⋃

i+j=n

Criti(AG1)× Critj(AG2),

and we are able to define a chain homomorphism:

Pn :
(
CF∗(AG1)⊗ CF∗(AG2)

)
n
−→ CFn(AG̃1,G̃2),

(v1, η1)⊗ (v2, η2) 7−→
(
(v1, v2), η1, η2

)
.

To verify that Pn is a chain homomorphism, we need to show that

∂1,2
n ◦ Pn = Pn−1 ◦ ∂⊗n .
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For w1− = (v1−, η1−) ∈ CritAG1 and w2− = (v2−, η2−) ∈ CritAG2 , we compute

∂1,2
n ◦ Pn(w1− ⊗ w2−) = ∂1,2

n

(
(v1−, v2−), η1−, η2−

)︸ ︷︷ ︸
=:w−

=
∑

w+∈CritAG̃1,G̃2 ;
µ(w+)=µ(w−)−1

#2M{w−, w+}w+

=
∑

(v1+,η1+)∈CritAG1 ;
µ(w1+)=µ(w1−)−1

#2M
{
w−, ((v1+, v2−), η1+, η2−)

}(
(v1+, v2−), η1+, η2−

)
+

∑
(v2+,η2+)∈CritAG2 ;
µ(w2+)=µ(w2−)−1

#2M
{
w−, ((v1−, v2+), η1−, η2+)

}(
(v1−, v2+), η1−, η2+

)
=

∑
(v1+,η1+)∈CritAG1 ;
µ(w1+)=µ(w1−)−1

#2M
{
w1−, w1+

}
Pn−1(w1+ ⊗ w2−)

+
∑

(v2+,η2+)∈CritAG2 ;
µ(w2+)=µ(w2−)−1

#2M
{
w2−, w2+

}
Pn−1(w1− ⊗ w2+)

= Pn−1(∂1
iw1− ⊗ w2−) + Pn−1(w1− ⊗ ∂2

n−iw2−)

= Pn−1 ◦ ∂⊗n (w1− ⊗ w2−).

where M
{
w1−, w1+

}
resp. M

{
w2−, w2+

}
is the moduli space which consists

of gradient flow lines with cascades of AG1 resp. AG2 . The fourth equality

follows by comparing (6.1.2) together with (6.2.2). Therefore we have an

isomorphism

(P•)∗ : H•
(
CF(AG1)⊗CF(AG2)

) ∼=−→ H•(CF(AG̃1,G̃2)) = RFH•(Σ1×Σ2,M1×M2).
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Finally, the algebraic Künneth formula enable us to derive the desired (topo-

logical) Künneth formula in Rabinowitz Floer homology.

RFHn(Σ1 × Σ2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ RFHn−p(Σ2,M2).

6.3 Proof of Theorem G

In this section, we do not consider Σ2 and let (M2, ω2) be closed and

symplectically aspherical, i.e. ω2|π2(M2) = 0. To prove Statement (G1) in

Theorem G, we need a compactness theorem for gradient flow lines of the

perturbed Rabinowitz action functional on (Σ1 ×M2,M1 ×M2) with an ar-

bitrary perturbation F ∈ C∞c (S1 ×M1 ×M2). For that reason, we analyze

the Rabinowitz action functional again. Once we establish the fundamen-

tal lemma, then the remaining steps are exactly same as before. We assume

that Σ1×M2 bounds a compact region in M1×M2 for Statement (G2). As

before, we choose a defining Hamiltonian function G ∈ C∞(M1) so that

1. G−1(0) = Σ1 is a regular level set and dG has a compact support.

2. Gi(φ
t
Y (x)) = t for all x ∈ Σi, and |t| < δ;

where Y is the Liouville vector field for Σ1 ⊂M1. We define G̃ ∈ C∞(M1×
M2) by G̃(x1, x2) = G(x1) so that G̃ is a defining Hamiltonian function for

Σ1×M2. We let H̃(t, x) = χ(t)G̃(x) ∈ C∞(S1×M1×M2) for χ ∈ C∞(S1,R≥0)

with
∫ 1

0
χ(t)dt = 1 and Suppχ ⊂ (1/2, 1). With a perturbation F ∈ C∞c (S1×

M1 ×M2) satisfying F (t, ·) = 0 for t ∈ (1/2, 1), the perturbed Rabinowitz

action functional AH̃F : L× R→ R is given by

AH̃F (v, η) = −
∫
D2

v̄∗ω1 ⊕ ω2 − η
∫ 1

0

H̃(t, v)dt−
∫ 1

0

F (t, v)dt
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where L = LM1×M2 ⊂ C∞(S1,M1×M2) is the space of contractible loops in

M1 ×M2 and v̄ : D2 →M1 ×M2 is a filling disk of v.

We prove the following key lemma using a kind of isoperimetric inequal-

ity.

Lemma 6.3.1. Let w(s, t) = (v(s, t), η(s)) ∈ C∞(R×S1,M1×M2)×C∞(R,R)

be a gradient flow line of AH̃F . We set γ(t) = v(s0, t) ∈ C∞(S1,M1×M2) for

some fixed s0 ∈ R. Then
∫
D2 γ̄

∗π∗2ω2 is uniformly bounded provided

||∇mAH̃F (v(s0, ·), η(s0))||m < ε

for some ε > 0:∣∣∣ ∫
D2

γ̄∗π∗2ω2

∣∣∣ ≤ max
x∈M̃2

{
||λM̃2

(x)||g̃2
∣∣ dg̃2(x, M̃?) < ε+ ||XF ||L∞

}(
ε+ ||XF ||L∞

)
.

(6.3.1)

where M̃2 is the universal covering of M2; g̃2 is the lifting of the metric

g2(·, ·) = ω2(·, J2·) on M2; M̃? is a fundamental domain in M̃2; dg̃2(x, M̃?) is

the distance between x and M̃?; the value on the right hand side of (6.3.1)

is finite since M̃?
∼= M2 is compact.

Proof. We write v(s, t) as v(s, t) = (v1, v2)(s, t) where v1 : R × S1 → M1

and v2 : R × S1 → M2. Let γ ∈ C∞(S1,M1 × M2) be defined by γ(t) =

v(s0, t) for some s0 ∈ R. Since γ is contractible and M2 is symplectically

aspherical, the value of
∫
D2 γ̄

∗π∗2ω2 is well-defined. Let γ2 := π2 ◦ γ. We also

consider (M̃2, ω̃2) the universal cover of M2 where ω̃2 is the lift of ω2 and we

also lift the metric g2 on M2 which we write as g̃2. Since we have assumed

the symplectically asphericity of (M2, ω2), there exists a primitive one form

λM̃2
of ω̃2. Let M̃?(∼= M2) be one of the fundamental domains in M̃2 and

ṽ(s, t) : R×S1 →M1×M̃2 be the lift of v such that ṽ(s0, t) = γ̃(t) intersects

M1 × M̃?. Now, we can show the following kind of isoperimetric inequality.
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This inequality concludes the proof.∣∣∣ ∫
D2

γ̄∗π∗2ω2

∣∣∣ =
∣∣∣ ∫

D2

(˜̄γ2)∗ω̃2

∣∣∣ =
∣∣∣ ∫ 1

0

γ̃∗2λM̃2

∣∣∣
≤ ||λM̃2

|γ2(S1)||L∞
∫ 1

0

||∂tγ̃2||g̃2dt

= ||λM̃2
|γ2(S1)||L∞

∫ 1

0

||∂tγ2||g2dt

= ||λM̃2
|γ2(S1)||L∞

∫ 1

0

||J∂sγ2 + π2∗XF (t, γ2)||g2dt

≤ λMax

(
||∇mAH̃F (v(s0, ·), η(s0))||m + ||XF ||L∞

)
.

where

λMax := max
x∈M̃2

{
||λM̃2

(x)||g̃2
∣∣∣ dg̃2(x, M̃?) <

∫ 1

0

||∂tγ2||g2dt
}

≤ max
x∈M̃2

{
||λM̃2

(x)||g̃2
∣∣ dg̃2(x, M̃?) < ||∇mAH̃F (v(s0, ·), η(s0))||m + ||XF ||L∞

}
.

The following two lemmas can be proved similarly as before.

Lemma 6.3.2. We assume that for (v, η) ∈ C∞(S1,M1 ×M2) × R, v(t) ∈
Uδ := G̃−1(−δ, δ) for all t ∈ (1

2
, 1) with 0 < 2δ < min{1, δ0}. Then there

exists C > 0 satisfying

|η| ≤ C
(
|AH̃F (v, η)|+ ||∇mAH̃F (v, η)||m +

∣∣∣ ∫
D2

v̄∗π∗2ω2

∣∣∣+ 1
)
.

Lemma 6.3.3. For (v, η) ∈ C∞(S1,M1 ×M2) × R if there exists t ∈ [1
2
, 1]

such that v(t) /∈ Uδ, then ||∇mAH̃F (v, η)||m > ε for some ε = εδ.

Due to the three previous lemmas, we are able to deduce the fundamental

lemma in the situation of Theorem G, and thus we obtain a uniform L∞-
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bound on the Lagrange multiplier η.

Lemma 6.3.4. For a gradient flow line w(s) = (v, η)(s) ∈ C∞(R,L × R),

the following assertions holds with some C, ε > 0. If ||∇mAH̃F (v, η)||m < ε,

|η| ≤ C
(
|AH̃F (w−)|+|AH̃F (w+)|+ε+Ξε+1

)
provided that ||∇mAH̃F (v, η)||m < ε

where Ξε = max
{
||λM̃2

(x)||g̃2 | dg̃2(x, M̃?) < ε+ ||XF ||L∞
}(
ε+ ||XF ||L∞

)
<∞.

Proof. The proof is almost same as the proof of Lemma 6.1.3. Since

||∇mAH̃F (v, η)||m < ε,

v(t) ⊂ Uδ for t ∈ (1
2
, 1) by Lemma 6.3.3. Thus Lemma 6.3.1 and Lemma

6.3.2 prove the lemma.

This fundamental lemma proves compactness of gradient flow lines and

enables us to find a leafwise intersection points. Let φ ∈ Hamc(M1×M2, ω1⊕
ω2) be a Hamiltonian diffeomorphism with the Hofer norm less than ℘(Σ1, λ1).

Then there exists a leafwise coisotropic intersection point even if Σ1 ×M2

does not bound a compact region in M1×M2, see the proof of Theorem A.

Next, we define the Rabinowitz Floer homology for (Σ1×M2,M1×M2) in

the same way as before and derive the Künneth formula in this situation. We

consider another two action functionals AH : LM1×R→ R and A : LM2 → R
defined by

AH(v1, η) := −
∫ 1

0

v∗1λ1 − η
∫ 1

0

H(t, v)dt, A(v2) := −
∫
D2

v̄∗2ω2.

where H(t, x) = χ(t)G(x) ∈ C∞(S1 ×M1). As in the proof of Theorem F,

we compare critical points of AH̃ and critical points of AH as follows.

Critn(AH̃) =
⋃

i+j=n

Criti(AH)× Critj(A).
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Since CritA consists of one component M2, any gradient flow line with cas-

cades of A necessarily has zero cascades, and hence is simply a gradient flow

line of an additional Morse function f ∈ C∞(M2). Thus the chain group for

the Morse-Bott homology of A is given by CF(A, f) = CM(f). Here CM

stands for the Morse complex. The following map is a chain isomorphism,

which can be verified using the methods of the previous subsection.

Pn :
(
CF∗(AH)⊗ CM∗(f)

)
n
−→ CFn(AH̃),

(v1, η)⊗ v2 7−→
(
(v1, v2), η

)
.

Therefore it induces an isomorphism on the homology level

(P•)∗ : H•
(
CF(AH)⊗ CM(f)

) ∼=−→ H•
(
CF(AH̃)

)
= RFH•(Σ1 ×M2,M1 ×M2)

and the Künneth formula for (Σ1 ×M2,M1 ×M2) directly follows:

RFHn(Σ1 ×M2,M1 ×M2) ∼=
n⊕
p=0

RFHp(Σ1,M1)⊗ Hn−p(M2).
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Infinitely many leafwise

coisotropic intersection points

As we have mentioned, we do not have a compactness theorem for the

perturbed Rabinowitz action functional on product manifolds in general. For

that reason, the existence problem of leafwise coisotropic intersection points

for a product of restricted contact hypersurfaces is still open. However if

a product of restricted contact hypersurfaces is of restricted contact type

again, we have proved the compactness theorem in Chapter 3. Therefore we

are able to find leafwise coisotropic intersection points using the Künneth

formula derived in the previous chapter on restricted contact coisotropic sub-

manifolds of product type. In particular, we find a class of restricted con-

tact coisotropic submanifolds which have infinitely many leafwise coisotropic

intersection points for a generic perturbations using the Künneth formula.

7.1 Proofs of Corollary F and Corollary G

Since the Rabinowitz action functional can be defined for each homotopy

class of loops, we can define the Rabinowitz Floer homology RFH(Σ,M, γ)
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for γ ∈ [S1,M ]. Note that RFH(Σ,M) considered so far, equals RFH(Σ,M, x),

x ∈M . We also can define Rabinowitz Floer homology on the full loop space

ΛN := C∞(S1,M) and denote it by RFH(Σ,M). Then we have

RFH∗(Σ,M) =
⊕

γ∈[S1,M ]

RFH∗(Σ,M, γ).

Theorem 7.1.1. [CFO, AS] For a unit cotangent bundle S∗N over a closed

Riemannian manifold N ,

RFH∗(S
∗N, T ∗N) ∼=

 H∗(ΛN), ∗ > 1,

H−∗+1(ΛN), ∗ < 0.

Since the Künneth formula obviously holds for RFH as well, the follow-

ing corollary directly follows.

Corollary 7.1.2. Let Σ1 be a restricted contact hypersurface in (M1, ω1) bound-

ing a compact region. If RFH∗(Σ1,M1) 6= 0, and dim H∗(ΛN) =∞ then

dim RFH∗(Σ1 × S∗N,M1 × T ∗N) =∞.

Accordingly, if Σ1 × S∗N is of contact type again, Σ1 × S∗N has infinitely

many leafwise coisotropic intersection points or a periodic leafwise coisotropic

intersection point for a generic perturbation φF ∈ Hamc(M1 ×M2).

From now on, we investigate leafwise coisotropic intersection points on

(S∗S1 × S∗N, T ∗S1 × T ∗N).

Lemma 7.1.3. S∗S1×S∗N is a contact submanifold of codimension two in

T ∗S1 × T ∗N .

Proof. (T ∗S1, ωS1,can) ∼= (S1×R, dθ∧dr) where θ is the angular coordinate

on S1 and r is the coordinate on R. Then dθ∧ dr has two global primitives

−rdθ and −rdθ+dθ. We can easily check that S∗S1×S∗N carries a contact
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structure with −rdθ ⊕ λN,can and (−rdθ + dθ) ⊕ λN,can where λN,can is the

canonical one form on T ∗N .

To exclude periodic leafwise coisotropic intersection points, we consider

the loop space Ω defined by

Ω :=
{
v = (v1, v2) ∈ C∞(S1, T ∗S1 × T ∗N)

∣∣ v1 is contractible in T ∗S1
}
.

Then we consider the Rabinowitz action functional on this loop space, AG̃1,G̃2 :

Ω × R2 → R which defines the Rabinowitz Floer homology RFH(S∗S1 ×
S∗N, T ∗S1 × T ∗N,Ω). Moreover the following type of the Künneth formula

holds.

RFHn(S∗S1×S∗N, T ∗S1×T ∗N,Ω) ∼=
n⊕
p=0

RFHp(S
∗S1, T ∗S1)⊗RFHn−p(S

∗N, T ∗N).

Therefore RFH(S∗S1×S∗N, T ∗S1×T ∗N,Ω) is of infinite dimensional when-

ever dim H∗(ΛN) = ∞ and Lemma 7.1.4 below yields that there are in-

finitely many leafwise coisotropic intersection points for a generic perturba-

tion φF ∈ Hamc(T
∗S1 × T ∗N) if dimN ≥ 2. This proves Corollary F.

In order to prove that there is generically no periodic leafwise coisotropic

intersection points, we use an argument in [AF2]. Consider AH̃1,H̃2

F : Ω ×
R2 → R where H̃i(t, x) = χ(t)Gi(x) ∈ C∞(S1 × M1 × M2), i = 1, 2 and

where F ∈ C∞c (S1 ×M1 ×M2) with F (t, ·) = 0 for t ∈ (1/2, 1). We denote

by R the set of periodic Reeb orbits in T ∗N which has dimension one. It is

convenient to introduce the following sets:

F j :=
{
F ∈ Cj

c (S
1 × T ∗S1 × T ∗N)

∣∣F (t, ·) = 0, ∀t ∈
[1
2
, 1
]}
, F :=

∞⋂
j=1

F j.

85



Chapter 7. Infinitely many leafwise intersection points

Lemma 7.1.4. If dimN ≥ 2, the following set is dense in F .

FS∗S1×S∗N :=

F ∈ F
∣∣∣∣∣ A

H̃1,H̃2

F is Morse, v(0) ∩ (S∗S1 ×R) = ∅

for all (v, η1, η2) ∈ CritAH̃1,H̃2

F , R ∈ R.

 .

Proof. We denote by

Ω1,2 :=
{
v = (v1, v2) ∈ W 1,2(S1, T ∗S1 × T ∗N)

∣∣ v1 is contractible in T ∗S1
}
.

the loop space which is indeed a Hilbert manifold. Let E be the L2-bundle

over Ω1,2 with Ev = L2(S1, v∗T (S∗S1 × S∗N)). We consider the section

S : Ω1,2×R2×F j −→ E∨×R2 defined by S(v, η1, η2, F ) := dAH̃1,H̃2

F (v, η1, η2).

Here the symbol ∨ represents the dual space. At (v, η1, η2, F ) ∈ S−1(0), the

vertical differential

DS : T(v,η1,η2,F )Ω
1,2 × R2 ×F j −→ E∨v × R2

is given by the pairing

〈
DS(v,η1,η2,F )[v̂

1, η̂1
1, η̂

1
2, F̂ ], [v̂2, η̂1

2, η̂
2
2]
〉

= H
AH̃1,H̃2
F

[(v̂1, η̂1
1, η̂

1
2), (v̂2, η̂2

1, η̂
2
2)]+

∫ 1

0

F̂ (t, v)dt.

where H
AH̃1,H̃2
F

is the Hessian of AH̃1,H̃2

F . As shown in [AF1], we know that

for (v, η1, η2, F ) ∈ S−1(0), DS(v,η1,η2,F ) is surjective on the space

V :=
{

(v̂, η̂1, η̂2, F̂ ) ∈ T(v,η1,η2,F )(Ω
1,2 × R2 ×F j)

∣∣ v̂(0) = 0
}
.
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Next, we consider the evaluation map

ev :M−→ S∗S1 × S∗N,
(v, η1, η2, F ) 7−→ v(0).

The surjectivity of DS(v,η1,η2,F )|V implies that ev is a submersion, see a lemma

due to Salamon [AF2, Lemma 3.5]. Then MR := ev−1(S∗S1 ×R) is a sub-

manifold in M of

codim(MR/M) = codim(S∗S1 ×R/S∗S1 × S∗N).

We consider the projections Π :M→ F j and ΠR := Π|MR . Then AH̃1,H̃2

F is

Morse if and only if F is a regular value of Π, which is a generic property

by Sard-Smale theorem (for j large enough). The set Π−1(F ) of leafwise

coisotropic intersection points for F is manifold of required dimension zero

since it is a critical set of AH̃1,H̃2

F . On the other hand, Π−1
R (F ) is a manifold

of dimension

0 + dimMR − dimM = −codim(MR/M) < 0

since we have assumed dimN ≥ 2. Therefore ev does not intersect S∗S1×R,

so the set

F jS∗S1×S∗N := FS∗S1×S∗N ∩ F j

is dense in F for all j ∈ N. Since FS∗S1×S∗N is the countable intersection of

F jS∗S1×S∗N for j ∈ N, it is dense again in F and the lemma is proved.

In the case of Theorem G, we consider the Rabinowitz action functional

AH̃F : ΩM2 × R→ R by where

ΩM2 :
{
v = (v1, v2) ∈ C∞(S1,M1 ×M2)

∣∣ v2 is contractible in M2

}
.

In a similar vein as above, we are able to prove Corollary G.
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Corollary 7.1.5. Let (M2, ω2) be a closed symplectically aspherical symplec-

tic manifold. If a closed manifold N has dim H∗(ΛN) =∞,

dim RFH∗(S
∗N ×M2, T

∗N ×M2,ΩM2) =∞.

Therefore, if dimN ≥ 2, S∗N ×M2 has infinitely many leafwise coisotropic

intersection points for a generic perturbation.

Remark 7.1.6. Corollary F and Corollary G still holds when we deal with

a fiber-wise star shaped hypersurface in T ∗N instead of S∗N , see [AF2].
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국문초록

Urs Frauenfelder와 Kai Cieliebak은 Paul Rabinowitz가 자율적 해밀턴

시스템에서 주기궤도들 찾기 위해 제안한 라그랑즈 승수 함수를 사용하여

Rabinowitz Floer homology 이론을 개발하였다.

이 논문에서는 우리는 임의의 여차원을 가지는 여등방성 부분다양체 위

의 역학구조를 분석하는데 적합한 여러개의 Lagrange 상수들을 가지는 일반

화된 Rabinowitz 함수를 연구할 것이다. 우리는 일반화된 Rabinowitz 함수

를 사용하여 여등방성 궤적 교차점, 여등방성 부분 다양체의 전치가능성, 그

리고 여등방성 부분다양체의 Rabinowitz Floer homology 등에 관해 연구할

것이다. 우리는 또한 Rabinowitz Floer homology의 Künneth 공식을 유도하

여 무한개의 여등방 궤적 교차점을 가지는 여등방성 부분다양체들을 찾을

것이다. 이 연구는 여러 개의 운동 상수 (보존량) 를 가지는 운동 시스템을

연구하는데 중요한 역할을 할 것이다.

주요어휘 : 라비노위츠 플로어 호몰로지, 해밀턴 역학, 보존량, 여등방성 부

분다양체, 여등방 궤적교차점.

학번 : 2008-20276
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