
 

 

저 시-비 리-동 조건 경허락 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

l 차적 저 물  성할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적  허락조건
 확하게 나타내어야 합니다.  

l 저 터  허가를  러한 조건들  적 지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 적  할 수 없습니다. 

동 조건 경허락. 하가  저 물  개 , 형 또는 가공했  경
에는,  저 물과 동 한 허락조건하에서만 포할 수 습니다. 

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/


이학박사 학위논문

Some problems arising from
the dynamics of the Kuramoto

oscillators
(쿠라모토 진동자들의 동역학에서 일어나는

문제들에 대한 고찰)

2014년 2월

서울대학교 대학원

수리과학부

김용덕



Some problems arising from
the dynamics of the Kuramoto

oscillators
(쿠라모토 진동자들의 동역학에서 일어나는

문제들에 대한 고찰)

지도교수 하승열

이 논문을 이학박사 학위논문으로 제출함

2013년 10월

서울대학교 대학원

수리과학부

김용덕

김용덕의 이학박사 학위논문을 인준함

2013년 12월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)



Some problems arising from
the dynamics of the Kuramoto

oscillators

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Yongduck Kim

Dissertation Director : Professor Seung-Yeal Ha

Department of Mathematical Sciences
Seoul National University

February 2013



c© 2013 Yongduck Kim

All rights reserved.



Abstract

In this thesis, we study several problems on the ensemble of Kuramoto os-

cillators. We present the nonlinear stability of the phase-locked states using

a robust `1-metric as a Lyapunov functional. We show that the phase-locked

states are congruent each other in the sense that one phase-locked state

is the simply translation of the other and phase-shift is the difference of

averaged initial phases. We also show the contration property for measure

valued solutions of the kinetic Kuramoto model. We next consider the ef-

fect of interaction frustration on the complete synchronization of Kuramoto

oscillators. In general, interaction frustration hinders the formation of com-

plete frequency synchronization. For more quantitative estimates, we consider

three Kuramoto-type models. Our first model is for an ensemble of Kuramoto

oscillators with uniform interaction frustration. Our second model is, as a

special case of the first model, a mixture of two identical Kuramoto oscil-

lator groups with distinct natural frequencies. Our third model is like the

Kuramoto model for identical oscillators on the bipartite graph. Finally, we

investigate the intricate interplay between the inertia and frustration in an

ensemble of Kuramoto oscillators. We cannot apply the explicit macro-micro

decomposition to reduce the dynamics of intial phases to that of fluctua-

tions. However, we can still derive second-order differential inequalities for

the phase of frequency diameters so that the second-order Gronwall inequal-

ity method still works well. Moreover, both the analytical and numerical

studies demonstrate this fact.

Key words: Kuramoto model, orbital stability, contraction, frustration, sy-

chronization

Student Number: 2006-30081
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Chapter 1

Introduction

Synchronization is ubiquitous in various disciplines such as physics, biology,

chemistry, and the social sciences [59] and recent applications on power sys-

tem [28, 29]. However, rigorous mathematical treatments of synchronization

were initiated only a few decades ago by Winfree [73] and Kuramoto [44, 45],

who introduced simple ODE models for limit-cycle oscillators.

Our interest in this thesis lies in the Kuramoto model which is a prototype

for synchronization. Kuramoto oscillators can be regarded as point particles

rotating on the unit circle. Let θi = θi(t) be the phase of the i-th Kuramoto

oscillator. Then their phase are governed by the following first-order ODE

system:

θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi), t > 0, i = 1, . . . , N. (1.0.1)

where Ωi, K and N denote a natural frequency of the i-th oscillator, the

positive coupling strength, and the number of oscillators, respectively. Each

natural frequency is a random variable extracted from some given density

function.

For the details of the system (1.0.1), we refer the reader to survey papers

and books [1, 4, 44, 62]. Particularly, Ermentrout [30] found a critical cou-

pling at which all oscillators become phase-locked, independent of the number

of oscillators. The linear stability of phase-locked state has been studied us-

ing tools such as a Lyapunov functional, spectral graph theory, and control
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CHAPTER 1. INTRODUCTION

theory [3, 7, 24, 43, 52, 53, 54, 68]. Moreover, some complete frequency syn-

chronization estimates have been provided for the Kuramoto model (1.0.1)

in [17, 21, 25, 26, 32].

The problems we will consider are:

1. When two initial configurations of Kuramoto oscillators have the same

averaged phases, what happens to the `1-distance between them? If the

configurations with different phase averages? How about the kinetic

Kuramoto equation? Can we have a similar result?

2. If there is frustration as a phase shift in the Kuramoto model, what is

the effect of frustration to the synchronization?

3. If there is the interplay between inertial effect and interaction frus-

tration in an ensemble of Kuramoto oscillators, what happens to the

synchronization?

In the first topic, we will deal with two versions of Kuramoto model: par-

ticle and kinetic. First, we will show that the phase-locked states whose exis-

tence is guaranteed in [17] are orbitally stable in the `1-metric. For a fixed K

and a given distribution of natural frequencies, the phase-locked states issued

from different initial phase configurations have exactly the same structure,

which means that one is simply the translation of the other and the phase

shift is exactly equal to the difference of averaged phases. Second, we will

present a contraction property of the kinetic Kuramoto equation(KKE) in

the Wasserstein p-distance for measure valued solutions with the same natu-

ral frequency distribution by using a strategy similar to the one described in

[12, 48]. We define a cumulative distribution function of a density function

f for the KKE, and we derive a new integro-differential equation using its

pseudo-inverse function. Then, we use simple techniques for the optimal mass

transport in one-dimension, i.e., the equivalence relation between the Wasser-

stein p-distance and the Lp-distance of the corresponding pseudo-inverse of

F in order to obtain the exponential decay estimate of the Wasserstein p-

distance between two measure-valued solutions.

In the second topic, we consider three Kuramoto-type models with finite

population of oscillators under frustration. First, we study the general case

2



CHAPTER 1. INTRODUCTION

of nonidentical Kuramoto oscillators with natural frequencies that are dis-

tributed. Second, as a special case, we deal with an ensemble consisting of

two groups of identical oscillators with only two different natural frequency.

When two identical Kuramoto oscillator groups are mixed, the whole config-

uration evolves into the segregated state and then asymptotically toward the

phase-locked state. Finally, we consider a special Kuramoto-type model that

was recently derived from the Van der Pol equations for two coupled oscilla-

tor systems in the work of Lück and Pikovsky [49] where a thermodynamic

limit based on the order parameter was studied. The main contribution of

this work is to present some explicit sufficient conditions on the parameters

and initial configurations to reach the complete synchronization for each of

the three models.

In the third topic, we present several analytical conditions leading to com-

plete synchronization after studying the dynamics of phase and frequency di-

ameters through the second-oder Grownwall-type differential inequalities. For

identical Kuramoto oscillators, we derive two frameworks depending on the

relative amounts of inertia leading to asymptotic complete synchronization.

In fact, we show that complete synchronization can be attained exponentially

fast in every case for a restricted class of initial configurations. Moreover, we

provide a nearly optimal decay exponent for the small-inertia regime, where

both the size of the inertia region and the decay exponent depend on the

strength of the frustration. For nonidentical oscillators, we present two suffi-

cient conditions with small inertia and large inertia, respectively.

Let us give a brief outline of this thesis. In Chapter 2, we will introduce

the Kuramoto model and review relevant results for the Kuramoto model.

We will develop the results from these in the following chapters. In Chap-

ter 3, we will discuss the nonlinear orbital stability of phase-locked states

arising from the ensemble of non-identical Kuramoto oscillators. Moreover,

we will present contractivity estimates for the kinetic Kuramoto model ob-

tained from the Kuramoto phase model in the mean-field limit. In Chapter

4, we will consider three Kuramoto-type models with frustration. First, we

will study a general case with nonidentical oscillators. Second, as a special

case, we will study an ensemble of two groups of identical oscillators. Third,

we will consider a Kuramoto-type model that was recently derived from the

3



CHAPTER 1. INTRODUCTION

Van der Pol equations for two coupled oscillator systems in the work of Lück

and Pikovsky [49]. In Chapter 5, we will discuss how asymptotic synchroniza-

tion can arise from the competition between synchronization factors such as

strong coupling strength and desynchronization factors such as inertia and

frustration. In Chapter 6, we will give the conclusion of this thesis and discuss

the future works.

All the contents in this thesis stem from a series of papers published(accepted

or submitted) during the PhD studies.
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Chapter 2

Preliminaries

In this chapter, we briefly review the Kuramoto model and the kinetic Ku-

ramoto equation.

2.1 The Kuramoto model

In this section, we study the relevant results about the Kuramoto model.

The Kuramoto model (1.0.1) and its variants for synchronization have

been heuristically derived from the complex Ginzburg-Landau equation [45]

and the coupled system of Josephson junction arrays as averaged ones [64, 71].

Kuramoto introduced a simplest nontrivial model for a temporally organized

system by a self-sustained oscillator z governed by

ż = (iΩ + α)z − β|z|2z, z ∈ C.

He considered a population of such oscillators z1, z2, . . . , zN with various fre-

quencies and interactions between every pair:

żs = (iΩs + α)zs − β|zs|2zs +
∑
r 6=s

Krszr, r, s = 1, 2, . . . , N.

He assumed that

• Krs = K/N independently of r and s,

• α/β, Ωs, K is finite as α, β →∞.

5



CHAPTER 2. PRELIMINARIES

We put zs = ρse
iθs , then we can have ρs =

√
α/β due to the second assump-

tion. Hence we only consider the equation

θ̇s = Ωs +
K

N

∑
r 6=s

sin(θr − θs).

It is easy to see from this equation that the average phase rotates on the

unit circle with a constant average natural frequency Ωc:

dθc
dt

= Ωc, i.e., θc(t) = θc(0) + tΩc, t ≥ 0,

where

θc :=
1

N

N∑
i=1

θi, ωc :=
1

N

N∑
i=1

ωi, Ωc :=
1

N

N∑
i=1

Ωi,

and ωi := θ̇i is the instantaneous frequency of the i-th oscillator.

On the other hand, the fluctuations (θ̂i, Ω̂i) := (θi − θc,Ωi − Ωc) satisfy

equations of the same form:

˙̂
θi = ω̂i = Ω̂i +

K

N

N∑
j=1

sin(θ̂j − θ̂i),

with the additional algebraic constraints

N∑
i=1

θ̂i = 0,
N∑
i=1

Ω̂i = 0. (2.1.1)

The above conservation laws (2.1.1) for the Kuramoto model without frus-

tration are crucially used in its rigorous study. We next recall the definitions

of a few synchronization concepts for Kuramoto-type oscillator models, as

these will be used throughout this thesis.

Definition 2.1.1. Let θ(t) = (θ1(t), . . . , θN(t)) be the ensemble phase of

Kuramoto oscillators.

1. The Kuramoto ensemble asymptotically exhibits complete phase syn-

chronization if and only if the relative phase differences go to zero

asymptotically:

lim
t→∞
|θi(t)− θj(t)| = 0, ∀ i 6= j.

6



CHAPTER 2. PRELIMINARIES

2. The Kuramoto ensemble asymptotically exhibits complete frequency syn-

chronization if and only if the relative frequency differences go to zero

asymptotically:

lim
t→∞
|ωi(t)− ωj(t)| = 0, ∀ i 6= j.

3. The dynamical state θ(t) = (θ1(t), . . . , θN(t)) asymptotically approaches

the phase-locked state if and only if each relative phase difference goes

to a constant as t→∞; i.e.,

lim
t→∞
|θi(t)− θj(t)| = θij, for all i, j ∈ {1, . . . , N}.

We next introduce several notations to be used throughout the thesis. For

a given time t ≥ 0,

θm(t) := min
1≤i≤N

θi(t), θM(t) := max
1≤i≤N

θi(t),

ωm(t) := min
1≤i≤N

ωi(t), ωM(t) := max
1≤i≤N

ωi(t),

D(θ(t)) := θM(t)− θm(t), D(ω(t)) := ωM(t)− ωm(t),

D(Ω) : = max
1≤i,j≤N

|Ωi − Ωj|, Ke :=
D(Ω)

sinD(θ0)
, Kef :=

D(Ω)

1− sin |α|
,

where θ0 := θ(0). Note that D(θ(t)) is Lipschitz continuous and differentiable

except at times of collision between the extremal phases and their neighboring

phases.

We recall the following results which is related to this thesis without

proof.

Theorem 2.1.1. [17] Let θ = θ(t) be the global smooth the solution to the

system (1.0.1) satisfying

0 < D(θ0) < π, D(Ω) > 0, K > Ke. (2.1.2)

Then there exists t0 > 0 such that

D(ω(t0))e−K(t−t0) ≤ D(ω(t)) ≤ D(ω(t0))e−K(cosD∞)(t−t0), t ≥ t0,

where D∞ is the dual angle of initial phase diameter D(θ0), i.e.,

D∞ ∈
(

0,
π

2

)
, sinD∞ = sinD(θ0).

7



CHAPTER 2. PRELIMINARIES

Proposition 2.1.1. [17] Let θ = θ(t) be the global smooth solution to the

system (1.0.1) satisfying

0 < D(θ0) < π, D(Ω) > 0, K > Ke.

Then there exists t0 > 0 such that

D(θ(t)) ≤ D∞ for t ≥ t0.

2.2 The kinetic Kuramoto equation

In this section, we briefly review the kinetic mean-field model for the Ku-

ramoto model. The kinetic Kuramoto equation has been widely used in the

literature [1] to analyze the phase transition from a completely disordered

state to a partially ordered state as the coupling strength increases from zero.

Suppose that g = g(Ω) is an integrable steady probability density function

for natural frequencies with a compact support (see (2.2.5) for details). Let

f = f(θ,Ω, t) be the probability density function of Kuramoto oscillators in

θ ∈ T := R/(2πZ) with a natural frequency Ω at time t as in [46]. The kinetic

Kuramoto equation(KKE) is given as follows:

∂tf + ∂θ(ω[f ]f) = 0, (θ,Ω) ∈ T× R, t > 0,

ω[f ](θ,Ω, t) = Ω−K
∫
T

sin(θ − θ∗)ρ(θ∗, t)dθ∗, ρ(θ∗, t) :=

∫
R
fdΩ∗,

(2.2.3)

subject to the initial data:

f(θ,Ω, 0) = f0(θ,Ω),

∫
T
f0dθ = g(Ω). (2.2.4)

The natural phase-velocity (frequency) Ω is assumed to be a random variable

extracted from the density function g = g(Ω):

g(−Ω) = g(Ω), supp(g) is bounded,∫
R

Ωg(Ω)dΩ = 0,

∫
R
g(Ω)dΩ = 1.

(2.2.5)

8



CHAPTER 2. PRELIMINARIES

We next study a measure-theoretic formulation of the KKE. LetM([0, 2π)×
R) be the set of nonnegative Radon measures on [0, 2π) × R, which can be

regarded as nonnegative bounded linear functionals on C([0, 2π)× R). For a

Radon measure ν ∈M([0, 2π)× R), we use the standard duality relation:

〈ν, h〉 :=

∫ 2π

0

∫
R
h(θ,Ω)ν(dθ, dΩ), h ∈ C0([0, 2π)× R),

where Ck0 denotes the set of functions with k continuous derivatives and van-

ishing at infinity. Note that since θ ∈ [0, 2π) is a 2π-periodic variable, h(θ,Ω)

is a 2π-periodic function with respect to θ on [0, 2π) × R. The definition

of a measure-valued solution to equation (2.2.3) is given as follows. From

now on, Cw([0, T );M([0, 2π)× R)) denotes a space of all weakly continuous

time-dependent measures.

Definition 2.2.1. For T ∈ [0,∞), let µ ∈ Cw([0, T );M([0, 2π) × R)) be

a measure valued solution to (2.2.3) with an initial Radon measure µ0 ∈
M([0, 2π)× R) if and only if µ satisfies the following conditions:

1. µ is weakly continuous:

〈µt, h〉 is continuous as a function of t, ∀ h ∈ C0([0, 2π)× R).

2. µ satisfies the integral equation: ∀ h ∈ C1
0([0, 2π)× R× [0, T )),

〈µt, h(·, ·, t)〉 − 〈µ0, h(·, ·, 0)〉 =

∫ t

0

〈µs, ∂sh+ ω[µ]∂θh〉ds, (2.2.6)

where ω[µ](θ,Ω, s) is defined by

ω[µ](θ,Ω, s) := Ω−K(µs ∗ sin)θ . (2.2.7)

Here ∗ denotes the standard convolution, i.e.,

(µs ∗ sin)θ =

∫ 2π

0

∫
R

sin(θ − θ∗)µs(dθ∗, dΩ).

9
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Lemma 2.2.1. [10] Suppose that the density function g = g(Ω) has a com-

pact support and the initial measure satisfies

〈µ0,Ω〉 = 0,

and let µ ∈ Cw([0, T );M([0, 2π)×R)) be a measure valued solution to (2.2.3).

Then for t ≥ 0, we have

〈µt, 1〉 = 〈µ0, 1〉 = 1, 〈µt, θ〉 = 〈µ0, θ〉, t ≥ 0.

Theorem 2.2.1. [10] For any µ0 ∈ M([0, 2π) × R), let µt be a unique

measure valued solution to KKE (2.2.3) with initial data µ0. Then µt can be

approximated as a sum of Dirac measures of the form:

µNt =
1

N

N∑
i=1

δθi(t) ⊗ δΩi(t).

Furthermore, there holds

d(µt, µ
N
t )→ 0, as N →∞.

We now introduce some notations to be used throughout Section 3.2. Let

µ ∈ C([0, T );M([0, 2π)×R)) be a measure valued solution to (2.2.3), and let

R(t) and P (t) be the orthogonal θ and Ω-projections of supp(µt) respectively,

i.e.,

R(t) := Pθsupp(µt) = {θ ∈ [0, 2π) : (θ,Ω) ∈ supp(µt)},
P (t) := PΩsupp(µt) = {Ω ∈ R : (θ,Ω) ∈ supp(µt)}.

Then it is easy to see that

P (t) = P (0), t ≥ 0.

We also set

Dθ(µt) := diam(R(t)), DΩ(µt) := diam(P (t)), M(t) := 〈µt, 1〉,

θc(t) :=
1

M(t)
〈µt, θ〉, Ωc(t) :=

1

M(t)
〈µt,Ω〉,

10



CHAPTER 2. PRELIMINARIES

where diam(A) := supx,y∈A |x− y| for A ⊂ R. We observe from Lemma 2.2.1

that

M(t) = 〈µt, 1〉 = 〈µ0, 1〉 = M(0) = 1,

and since Ωc(0) = 0, we obtain

Ωc(t) = 0 and θc(t) = θc(0), t ≥ 0.

Remark 2.2.1. Throughout the thesis, without loss of generality, we assume

that 〈µ0, θ〉 = π in order to avoid any possible confusion arising from the

periodicity of θ. In fact, if the oscillators satisfy the assumption in Lemma

3.2.1, the orthogonal θ-projection of supp(µt), R(t) is confined to the interval

(0, 2π) for all t ≥ 0. This property will also be significantly used in Section

3.2 (see Lemma 3.2.2).

11



Chapter 3

Nonlinear stability

In this chapter, we will discuss the nonlinear orbital stability of phase-locked

states arising from the ensemble of non-identical Kuramoto oscillators. More-

over, we will present contractivity estimates for the kinetic Kuramoto model

obtained from the Kuramoto phase model in the mean-field limit. This chap-

ter is based on joint works in [10] and [17].

3.1 Orbital stability of phase-locked states

In this section, we study the nonlinear stability of the phase-locked states

whose existence is guaranteed by Theorem 2.1.1.

For any two smooth configurations θ = (θ1, · · · , θN), θ̃ = (θ̃1, · · · , θ̃N) ∈
TN , we define `1-distance by

‖θ − θ̃‖1 :=
N∑
i=1

|θi − θ̃i|.

We first state our main theorem of this section. In this theorem, we will

present `1-contraction estimate.

Theorem 3.1.1. Let θ and θ̃ be the global smooth solutions to the system

(1.0.1) with initial data θ0 and θ̃0, respectively satisfying

0 < D(θ̃0) ≤ D(θ0) < π and K > max

{
D(Ω)

sinD(θ0)
,

D(Ω)

sinD(θ̃0)

}
.

12
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Then we have the following estimates:

1. If θc(0) 6= θ̃c(0), then there exists t0 > 0 such that

‖(θ − θ̃)(t)‖1 +

∫ t

t0

Λ1(s)ds ≤ ‖(θ − θ̃)(t0)‖1 for t ≥ t0,

where the nonnegative functional Λ1(s) is defined by

Λ1(s) :=
K sinD∞

ND∞
cosD∞

[(
|I0(s)|+ 2|I−(s)|

) ∑
i∈I+(s)

|(θi − θ̃i)(s)|

+
(
|I0(s)|+ 2|I+(s)|

) ∑
i∈I−(s)

|(θi − θ̃i)(s)|
]
.

2. If θc(0) = θ̃c(0), then we have

||(θ− θ̃)(t0)||1e−K(t−t0) ≤ ||(θ− θ̃)(t)||1 ≤ ||(θ− θ̃)(t0)||1e−
K sin 2D∞

2D∞ (t−t0),

for t ≥ t0. Hence the decay rate lies in the interval [K sin 2D∞

2D∞
, K] in a

large-time regime.

We need some elementary estimates in the following lemma to prove our

theorem. Recall the sign function defined by

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

For a given α = (α1, · · · , αN) ∈ TN , we decompose the index set I :=

{1, · · · , N} as the disjoint union of three subsets:

I+ := {i | αi > 0}, I0 := {i | αi = 0}, I− := {i | αi < 0}.

We set

∆ij :=
(
sgn(αi)− sgn(αj)

)
sin
(αj − αi

2

)
.

13
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Lemma 3.1.1. Let α ∈ TN satisfy

max
1≤i,j≤N

|αj − αi| ≤ 2d < π for some d > 0.

Then we have
N∑

i,j=1

∆ij

≤


− sin d

d

[(
|I0|+ 2|I−|

)∑
i∈I+
|αi|+

(
|I0|+ 2|I+|

)∑
i∈I−
|αi|
]
,

N∑
i=1

αi 6= 0,

−N sin d
d

N∑
i=1

|αi|,
N∑
i=1

αi = 0,

and
N∑

i,j=1

∆ij

≥


−
[(
|I0|+ 2|I−|

)∑
i∈I+
|αi|+

(
|I0|+ 2|I+|

)∑
i∈I−
|αi|
]
,

N∑
i=1

αi 6= 0,

−N
N∑
i=1

|αi|,
N∑
i=1

αi = 0.

Proof. (i) First, we consider the case of
∑N

i=1 αi 6= 0. Note that when αi and

αj have the same sign, we get

∆ij = 0.

The nontrivial cases are summarized in the following table.

Cases sgn(αi) sgn(αj) ∆ij

I 1 0 − sin |αi|
2

II −1 0 − sin |αi|
2

III 0 1 − sin
|αj |

2

IV 0 −1 − sin
|αj |

2

V 1 −1 −2 sin
(
|αi|+|αj |

2

)
VI −1 1 −2 sin

(
|αi|+|αj |

2

)
14
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• Case 1: Note that the above table and the simple inequality

sinx ≥ sin d

d
x, x ∈ [0, d]

imply ∑
(i,j)∈I+×I0

∆ij = −
∑

(i,j)∈I+×I0
sin
|αi|
2

≤ −sin d

2d

∑
(i,j)∈I+×I0

|αi| = −
sin d

2d
|I0|

∑
i∈I+
|αi|.

Similarly, we have ∑
(i,j)∈I0×I+

∆ij ≤ −
sin d

2d
|I0|

∑
i∈I+
|αi|,∑

(i,j)∈I0×I−
∆ij ≤ −

sin d

2d
|I0|

∑
i∈I−
|αi|,∑

(i,j)∈I−×I0
∆ij ≤ −

sin d

2d
|I0|

∑
i∈I−
|αi|.

• Case 2: Similar to Case 1, we have∑
(i,j)∈I+×I−

∆ij ≤ −
sin d

d

(
|I−|

∑
i∈I+
|αi|+ |I+|

∑
i∈I−
|αi|
)
,

∑
(i,j)∈I−×I+

∆ij ≤ −
sin d

d

(
|I+|

∑
i∈I−
|αi|+ |I−|

∑
i∈I+
|αi|
)
.

Finally, we combine Case 1 and Case 2 to get

N∑
i,j=1

∆ij ≤ −
sin d

d

[(
|I0|+ 2|I−|

)∑
i∈I+
|αi|+

(
|I0|+ 2|I+|

)∑
i∈I−
|αi|
]
.

(ii) Next, suppose that
N∑
i=1

αi = 0. Then we have

∑
i∈I−
|αi| = −

∑
i∈I−

αi =
∑
i∈I+

αi =
∑
i∈I+
|αi|,

15
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which imply ∑
i∈I−
|αi| =

∑
i∈I+
|αi| =

1

2

N∑
i=1

|αi|.

Hence we can further simplify

N∑
i,j=1

∆ij ≤ −2 sin d

d

(
|I−|+ |I0|+ |I+|

)∑
i∈I+
|αi|

= −2N sin d

d

∑
i∈I+
|αi| = −

N sin d

d

N∑
i=1

|αi|.

Finally, by using the fact sinx ≤ x for x ≥ 0 and the same argument as the

above, we have the lower bound of
∑N

i,j=1 ∆ij. This completes the proof.

The proof of Theorem 3.1.1: We use the system (1.0.1) and elementary

identity for trigonometric functions to find

d

dt
(θi − θ̃i)

=
K

N

N∑
j=1

(
sin(θj − θi)− sin(θ̃j − θ̃i)

)
=

2K

N

N∑
j=1

cos

(
θj − θi

2
+
θ̃j − θ̃i

2

)
sin

(
θj − θ̃j

2
− θi − θ̃i

2

)
.

(3.1.1)

16
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We next multiply (3.1.1) by sgn(θi − θ̃i) and sum it over i to get

d

dt

N∑
i=1

|θi − θ̃i|

=
2K

N

N∑
i,j=1

sgn(θi − θ̃i) cos

(
θj − θi

2
+
θ̃j − θ̃i

2

)

× sin

(
θj − θ̃j

2
− θi − θ̃i

2

)

=
K

N

N∑
i,j=1

{
sgn(θi − θ̃i)− sgn(θj − θ̃j)

}
cos

(
θj − θi

2
+
θ̃j − θ̃i

2

)

× sin

(
θj − θ̃j

2
− θi − θ̃i

2

)
.

(3.1.2)

We now use the following inequality (see Lemma 3.1.1)

(
sgn(α)− sgn(β)

)
sin

(
β − α

2

)
≤ 0.

It follows from Proposition 2.1.1 that there exists t0 such that

D(θ(t)) ≤ D∞, D(θ̃(t)) ≤ D̃∞, t ≥ t0,

and eventually we have

D(θ(t)), D(θ̃(t)) ≤ D∞, t ≥ t0,

by the assumption K > max
{

D(Ω)
sinD(θ0)

, D(Ω)

sinD(θ̃0)

}
. Then this yields

0 < cosD∞ ≤ cos

(
θj − θi

2
+
θ̃j − θ̃i

2

)
≤ 1.

17
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(i) It follows from (3.1.2) and the above estimate that

d

dt

N∑
i=1

|θi − θ̃i|

≤ K

N
cosD∞

N∑
i,j=1

{
sgn(θi − θ̃i)− sgn(θj − θ̃j)

}
sin

(
θj − θ̃j

2
− θi − θ̃i

2

)

= −K sinD∞

ND∞
cosD∞

[(
|I0(t)|+ 2|I−(t)|

) ∑
i∈I+(t)

|θi − θ̃i|

+
(
|I0(t)|+ 2|I+(t)|

) ∑
i∈I−(t)

|θi − θ̃i|
]

=: −Λ1.

(3.1.3)

Hence we have
d

dt
||θ − θ̃||1 + Λ1 ≤ 0.

We integrate the above differential inequality from s = t0 to s = t to get the

desired result.

(ii) Suppose the initial phase averages are equal, i.e.

θc(0) = θ̃c(0).

In (3.1.3), we use the following identity:

N∑
i,j=1

(
sgn(θi−θ̃i)−sgn(θj−θ̃j)

)
sin
(θj − θ̃j

2
−θi − θ̃i

2

)
≤ −N sinD∞

D∞

N∑
i=1

|θi−θ̃i|

to find the Gronwall’s inequality:

d

dt

N∑
i=1

|θi − θ̃i|

≤ K

N
cosD∞

N∑
i,j=1

(
sgn(θi − θ̃i)− sgn(θj − θ̃j)

)
sin

(
θj − θ̃j

2
− θi − θ̃i

2

)

≤ −K sinD∞ cosD∞

D∞

N∑
i=1

|θi − θ̃i| for t ≥ t0.

18
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By the same argument as the above, we also have

d

dt

N∑
i=1

|θi − θ̃i| ≥ −K
N∑
i=1

|θi − θ̃i| for t ≥ t0.

Then the standard Gronwall’s lemma yields the desired result.

Remark 3.1.1. If we choose θ̃0 = θe to be the phase-locked state, then the

result of Theorem 4.1 implies the nonlinear stability of θe:

‖θ(t)−θe‖1 ≤ ‖θ(t0)−θe‖1×

{
1, θc(0) 6= 1

N

∑N
i=1 θ

e
i ,

exp
[
− K sin 2D∞

2D∞
(t− t0)

]
, θc(0) = 1

N

∑N
i=1 θ

e
i .

as long as θ0, θe and K satisfy the assumptions of Theorem 3.1.1. Hence when

the initial data θ0 have the same average as the given phase-locked state θe,

the Kuramoto flow θ converges to the given θe exponentially fast. Moreover

we can see the asymptotic behavior of a perturbation of the phase-locked state

in next corollary.

A corollary of Theorem 3.1.1 and translation invariance of the Kuramoto

model (1.0.1) yields the orbital stability of the phase-locked states. Let θe be

any reference phase-locked state guaranteed by Theorem 2.1.1 starting from

some initial configurations satisfying the assumptions of Theorem 2.1.1.

Corollary 3.1.1. (Orbital stability of phase-locked states) Suppose θ0 and

θe satisfy the assumptions in Theorem 3.1.1, and let θ be the global smooth

solution to the system (1.0.1) with initial data θ0 which is a perturbation

of the phase-locked state θe. Then the solution θ = θ(t) converges to the

translated phase-locked state exponentially fast in `1-metric:

lim
t→∞
||θ(t)− (θe + βIN)||1 = 0,

where β which is the averaged mass of the perturbation and IN are defined

as follows.

β :=
1

N

( N∑
i=1

θ0
i −

N∑
i=1

θei

)
, IN := (1, · · · , 1) ∈ ZN .
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Proof. The case β = 0 has already been treated in Theorem 3.1.1. Hence

we consider the case β 6= 0. We will use the translation-invariance of the

Kuramoto model:

If θ is the solution to the Kuramoto model with initial data θ0,

then θ + γIN is the unique solution of the Kuramoto model cor-

responding to initial data θ0 + γIN for any constant γ.

Note that assumptions in Theorem 3.1.1 are translation-invariant and the

translated phase-locked solution

θ̃e := θe + βIN ,

has the same averaged phase as θ. Hence we apply the second assertion in

Theorem 3.1.1 to find

||θ(t0)−θ̃e||1e−K(t−t0) ≤ ||θ(t)−θ̃e||1 ≤ ||θ(t0)−θ̃e||1e−
K sin 2D∞

2D∞ (t−t0) for t ≥ t0.

This yields that the phase-locked state limt→∞ θ(t) arising from the initial

configuration θ0 is exactly equal to θe + βIN .

3.2 Stability estimate of the kinetic Kuramoto

equation

In this section, we present the strict contractivity of measure valued solutions

to the KKE by using the method of optimal mass transport [12, 48, 69]. The

strict contractivity result generalizes the `1-contraction result for the KM in

[17].

3.2.1 Alternative formulation of the KKE

In this subsection, we derive an alternative form of the KKE, which is more

convenient for deriving estimates in terms of the Wasserstein-distance. First,

we study the existence of an invariant set for the KKE.
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Lemma 3.2.1. Suppose that the initial probability measure µ0 and the cou-

pling strength K satisfy

0 < Dθ(µ0) < π, 0 < DΩ(µ0) <∞, K >
DΩ(µ0)

sinDθ(µ0)
.

Then, there exist t0 > 0 and D∞ ∈ (0, π
2
) such that the measure valued

solution µ to (2.2.3) with initial datum µ0 satisfies

Dθ(µt) ≤ D∞, t ≥ t0.

Proof. Let N > 0 be given. Then we have the following approximation µN0
for µ0:

µN0 =
1

N

N∑
i=1

δθi0 ⊗ δΩi0 .

We now solve the Cauchy problem for KM:
dθi
dt

= Ωi +
K

N

N∑
j=1

sin(θj − θi), t > 0,

dΩi

dt
= 0.

subject to initial data (θi(0),Ωi(0)) = (θi0,Ωi0). Theorem 2.2.1 implies that

d(µt, µ
N
t )→ 0 as N →∞ ,

and thus, Dθ(µ
N
t ) → Dθ(µt) and DΩ(µNt ) → DΩ(µt) as N → ∞. Hence

we can take N large enough such that DΩ(µN0 ) and Dθ(µ
N
0 ) satisfies the

conditions of Proposition 2.1.1. Thus, we find that there exist tN0 > 0 and

D∞,N such that

Dθ(µ
N
t ) ≤ D∞,N , t ≥ tN0 , for N large enough,

where

tN0 :=
Dθ(µ

N
0 )−D∞,N

K sinDθ(µN0 )−DΩ(µN0 )
, D∞,N := arcsin

[DΩ(µN0 )

K

]
∈
(
0,
π

2

)
.

We now let N →∞ to obtain the desired result.
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In the remainder of this section, from Remark 2.2.1, we assume that

R(t) ⊂
(
0, 2π

)
and t ≥ 0. (3.2.4)

Under this assumption the solution is given by a smooth particle density

function f(θ,Ω, t) in L1 for all t ≥ 0. For a given Ω, we consider a one-particle

density function f as a function of θ. Then we define the pseudo cumulative

distribution function of f :

F (θ,Ω, t) :=

∫ θ

0

f(θ∗,Ω, t)dθ̃, (θ,Ω, t) ∈ [0, 2π)× R× R+,

and a pseudo-inverse φ of F (·,Ω, t) as a function of θ:

φ(η,Ω, t) := inf{θ : F (θ,Ω, t) > η}, η ∈ [0, g(Ω)].

As long as there is no confusion, we use the notation F−1(η,Ω, t) = φ as the

pseudo inverse of F as θ-function. Then it is easy to see that

F (φ(η,Ω, t),Ω, t) = η. (3.2.5)

Lemma 3.2.2. Let µ be a measure-valued solution to (2.2.3)-(2.2.4), and let

φ be the pseudo-inverse function of the cumulative distribution function F .

Then we have

(i) max{θ | θ ∈ R(t)} = max
Ω∈supp(g)

φ(g(Ω),Ω, t).

(ii) min{θ | θ ∈ R(t)} = min
Ω∈supp(g)

φ(0,Ω, t).

(iii) max
Ω∈supp(g)

φ(g(Ω),Ω, t)− min
Ω∈supp(g)

φ(0,Ω, t) ≤ D∞, t ≥ t0.

Proof. Since the estimate for (ii) is similar to that of (i) and the estimate

for (iii) follows from the estimates (i) and (ii), we only provide the proof for

the estimate (i). For notational simplicity, we set

θM := max{θ | θ ∈ R(t)}.

Then, by definition of µt, we have

θM = max{θ | θ ∈ suppθ(f(θ,Ω, t)) and Ω ∈ supp(g)},
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where suppθ(f(θ,Ω, t)) is the θ-projection of supp(f(θ,Ω, t)). This yields

θM = max{φ(g(Ω),Ω, t) such that Ω ∈ supp(g)},

by definition of the pseudo-inverse function. This completes the proof.

Next, we derive an integro-differential equation for the pseudo inverse φ.

It follows from (3.2.4) that the smooth solution f(θ,Ω, t) to (2.2.3)-(2.2.4)

satisfies

f(0,Ω, t) = 0, Ω ∈ R, t ≥ 0.

We differentiate the relation (3.2.5) in t and use ∂θF = f to get

∂tF (θ,Ω, t)
∣∣∣
θ=φ(η,Ω,t)

+ f(θ,Ω, t)
∣∣∣
θ=φ(η,Ω,t)

∂tφ(η,Ω, t) = 0.

This yields

∂tφ(η,Ω, t) = − 1

f(θ,Ω, t)
∂tF (θ,Ω, t)

∣∣∣
θ=φ(η,Ω,t)

=
1

f(θ,Ω, t)

∣∣∣
θ=φ(η,Ω,t)

× (ω[f ]f)(·,Ω, t)
∣∣∣θ=φ(η,Ω,t)

θ=0

= Ω +K

∫
R

∫ 2π

0

sin(θ∗ − φ(η,Ω, t))f(θ∗,Ω∗, t)dθ∗dΩ∗ using (3.2.1)

= Ω +K

∫
R

∫ g(Ω∗)

0

sin(φ(η∗,Ω∗, t)− φ(η,Ω, t))dη∗dΩ∗,

where we used θ∗ = φ(η∗,Ω∗, t) and relation (3.2.5) to see f(θ∗,Ω∗, t)dθ∗ =

dη∗. Hence, the pseudo-inverse φ satisfies the following integro-differential

equation:

∂tφ = Ω +K

∫
R

∫ g(Ω∗)

0

sin(φ∗ − φ)dη∗dΩ∗. (3.2.6)

where we used abbreviated notations:

φ∗ := φ(η∗,Ω∗, t), φ := φ(η,Ω, t).

The following results is a simple consequence of the change of variables and

Lemma 2.2.1.
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Lemma 3.2.3. Let µt be a measure valued solution to (2.2.3) - (2.2.4) with

an associated pseudo-inverse function φ. Then, we have∫
R

∫ g(Ω)

0

φdηdΩ =

∫
R

∫ 2π

0

θµt(dθ, dΩ),
d

dt

∫
R

∫ g(Ω)

0

φdηdΩ = 0.

3.2.2 Strict contractivity in the Wasserstein distance

In this subsection, we present the proof of the strict contraction property of

the KKE.

For the one-dimensional case, it is well known [12, 69] that the Wasserstein

p-distance Wp(µ1, µ2) between two measures µ1 and µ2 is equivalent to the

Lp-distance between the corresponding pseudo-inverse functions φ1 and φ2

respectively. Thus, we set

Wp(µ1, µ2)(Ω, t) := ‖φ1(·,Ω, t)− φ2(·,Ω, t)‖Lp(0,g(Ω)), 1 ≤ p ≤ ∞.

Since Wp(µ1, µ2) depends on Ω, we introduce a modified metric on the phase-

space (θ,Ω):

W̃p(µ1, µ2)(t) := ||Wp(µ1, µ2)(·, t)||Lp(R), 1 ≤ p ≤ ∞.

Below, we assume that the density function g(Ω) has compact support. Then,

it is easy to see that W̃p(µ1, µ2) is a metric that satisfies

lim
p→∞

W̃p(µ1, µ2)(t) = W̃∞(µ1, µ2)(t), t ≥ 0. (3.2.7)

Recall that the sgn function is defined by

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

Lemma 3.2.4. Let Φ be a measurable function defined on [0, g(Ω)]×R sat-

isfying

|Φ(η,Ω)| < π

2
and

∫
R

∫ g(Ω)

0

Φ(η,Ω)dηdΩ = 0.
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Then for 1 ≤ p <∞, we have∫
R

∫
R

∫ g(Ω)

0

∫ g(Ω∗)

0

[
|Φ(η,Ω)|p−1sgn(Φ(η,Ω))− |Φ(η∗,Ω∗)|p−1sgn(Φ(η∗,Ω∗))

]
× sin(

Φ(η∗,Ω∗)− Φ(η,Ω)

2
)dη∗dηdΩ∗dΩ ≤ − 2

π

∫
R

∫ g(Ω)

0

|Φ(η)|pdηdΩ.

Proof. For notational simplicity, we set

Φ := Φ(η,Ω), Φ∗ := Φ(η∗,Ω∗), and

∆(η, η∗,Ω,Ω∗) :=
[
|Φ|p−1sgn(Φ)− |Φ∗|p−1sgn(Φ∗)

]
sin
(Φ∗ − Φ

2

)
,

and we decompose the domain [0, g(Ω)] × R as the disjoint union of three

subsets:

P := {(η,Ω) | Φ(η,Ω) > 0}, Z := {(η,Ω) | Φ(η,Ω) = 0},
N := {(η,Ω) | Φ(η,Ω) < 0}.

Then it follows from the condition
∫
R

∫ g(Ω)

0
ΦdηdΩ = 0 that∫

P
|Φ|dηdΩ =

∫
N
|Φ|dηdΩ. (3.2.8)

We use [0, g(Ω)]× R = P ∪ Z ∪N to obtain∫
R

∫
R

∫ g(Ω∗)

0

∫ g(Ω)

0

∆(η, η∗,Ω,Ω∗)dηdη∗dΩdΩ∗

=
(∫
P×Z

+ · · ·
∫
N×P︸ ︷︷ ︸

distinct signs

+

∫
P×P

+

∫
N×N

+

∫
Z×Z︸ ︷︷ ︸

same signs

)
∆(η, η∗,Ω,Ω∗)dηdη∗dΩdΩ∗

We now consider the following sub-integrals separately.

I(A,B) :=

∫
A×B

∆(η, η∗,Ω,Ω∗)dηdη∗dΩdΩ∗, A,B ∈ {P ,Z,N}.

We claim the following:
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Case A B I(A,B) ≤

I P Z −L(Z)
π

∫
P |Φ∗|

pdη∗dΩ∗
II N Z −L(Z)

π

∫
N |Φ∗|

pdη∗dΩ∗
III Z P −L(Z)

π

∫
P |Φ|

pdηdΩ

IV Z N −L(Z)
π

∫
N |Φ|

pdηdΩ

V P N − 1
π

[
L(P)

∫
N |Φ|

pdηdΩ + L(N )
∫
P |Φ∗|

pdη∗dΩ∗

+
∫
N |Φ|

p−1dηdΩ
∫
P |Φ∗|dη∗dΩ∗

+
∫
P |Φ∗|

p−1dη∗dΩ∗
∫
N |Φ|dηdΩ

]
VI N P − 1

π

[
L(N )

∫
P |Φ|

pdηdΩ + L(P)
∫
N |Φ∗|

pdη∗dΩ∗

+
∫
P |Φ|

p−1dηdΩ
∫
N |Φ∗|dη∗dΩ∗

+
∫
N |Φ∗|

p−1dη∗dΩ∗
∫
P |Φ|dηdΩ

]
VII P P − 1

π

[
L(P)

∫
P |Φ|

pdηdΩ + L(P)
∫
P |Φ∗|

pdη∗dΩ∗

−
∫
P |Φ|

p−1dηdΩ
∫
P |Φ∗|dη∗dΩ∗

−
∫
P |Φ∗|

p−1dη∗dΩ∗
∫
P |Φ|dηdΩ

]
VIII N N − 1

π

[
L(N )

∫
N |Φ|

pdηdΩ + L(N )
∫
N |Φ∗|

pdη∗dΩ∗

−
∫
N |Φ|

p−1dηdΩ
∫
N |Φ∗|dη∗dΩ∗

−
∫
N |Φ∗|

p−1dη∗dΩ∗
∫
N |Φ|dηdΩ

]
IX Z Z 0

where L(A) denotes the Lebesgue measure of the set A:

L(A) :=

∫
A

1dηdΩ.

We also note that

L(P) + L(Z) + L(N ) =

∫
R

∫ g(Ω)

0

1dηdΩ =

∫
R
g(Ω)dΩ = 1.

Case I: In this case, we use the definition of ∆(η, η∗,Ω,Ω∗) and the inequality

sinx ≥ 2

π
x, for x ∈

[
0,
π

2

]
,
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to determine that

∆(η, η∗,Ω,Ω∗) = −|Φ∗|p−1 sin
|Φ∗|

2
≤ − 1

π
|Φ∗|p.

This yields

I(P ,Z) ≤ − 1

π

∫
P×Z
|Φ∗|pdηdη∗dΩdΩ∗ = −L(Z)

π

∫
P
|Φ∗|pdη∗dΩ∗.

Case II - Case IV: The estimates are basically the same as in Case I. Hence,

we omit their estimates.

Case V: In this case, we have

∆(η, η∗,Ω,Ω∗) = −(|Φ|p−1 + |Φ∗|p−1) sin

(
|Φ∗|+ |Φ|

2

)
≤ − 1

π

(
|Φ|p + |Φ∗|p + |Φ|p−1|Φ∗|+ |Φ∗|p−1|Φ|

)
.

This yields the desired result.

Case VI: Once we interchange P ←→ N , the same estimate holds.

Case VII: In this case, we need to consider two subcases:

Either Φ > Φ∗ > 0 or Φ∗ ≥ Φ > 0.

By considering each case, we have

∆(η, η∗,Ω,Ω∗) =
(
|Φ|p−1 − |Φ∗|p−1

)
sin
(Φ∗ − Φ

2

)
≤ 1

π

(
|Φ|p−1 − |Φ∗|p−1

)
(|Φ∗| − |Φ|)

= − 1

π

(
|Φ|p + |Φ∗|p − |Φ|p−1|Φ∗| − |Φ∗|p−1|Φ|

)
.

This yields the desired result.

Case VIII:: The estimate is exactly the same as in Case VII. Hence we omit

its estimate.
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Case IX:: The estimate is trivial.

We now add all cases and use (3.2.8) to find∫
R

∫
R

∫ g(Ω∗)

0

∫ g(Ω)

0

∆(η, η∗,Ω,Ω∗)dηdη∗dΩdΩ∗

≤ − 2

π

(
L(P) + L(Z) + L(N )

)∫
R

∫ g(Ω)

0

|Φ|pdηdΩ

= − 2

π

∫
R

∫ g(Ω)

0

|Φ|pdηdΩ.

Theorem 3.2.1. Suppose that two initial measures µ0, ν0 ∈M([0, 2π)×R)

and K satisfy

(i) 0 < Dθ(ν0) ≤ Dθ(µ0) < π,∫
[0,2π]×R

θµ0(dθ, dΩ) =

∫
[0,2π]×R

θν0(dθ, dΩ) = π.

(ii) K > DΩ(µ0) max
{ 1

sinDθ(µ0)
,

1

sinDθ(ν0)

}
,

and let µt and νt be two measure valued solutions to (2.2.3) - (2.2.4) corre-

sponding to initial data µ0 and ν0, respectively. Then, there exists t0 > 0 such

that

W̃p(µt, νt) ≤ exp
[
− 2K cosD∞

π
(t− t0)

]
W̃p(µt0 , νt0), t > t0, 1 ≤ p ≤ ∞.

Proof. First, we consider the case where p ∈ [1,∞). Note that the Wasser-

stein distance in one-space dimension is equivalent to the Lp-distance of its

corresponding pseudo inverse distribution function. Remember that we are

assuming that the solutions are smooth, hence it is more convenient to obtain

the Lp-estimate from equation (3.2.6). Denoting by φi, i = 1, 2 the pseudo

inverse functions associated to µt and νt respectively, we get

∂tφi = Ω +K

∫
R

∫ g(Ω∗)

0

sin(φi∗ − φi)dη∗dΩ∗ ,
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for i = 1, 2. Then the above equations imply that

∂t(φ1 − φ2) = K

∫
R

∫ g(Ω∗)

0

(
sin(φ1∗ − φ1)− sin(φ2∗ − φ2)

)
dη∗dΩ∗,

= 2K

∫
R

∫ g(Ω∗)

0
cos

(
φ1∗ − φ1

2
+
φ2∗ − φ2

2

)
sin

(
φ1∗ − φ1

2
− φ2∗ − φ2

2

)
dη∗dΩ∗.

(3.2.9)

We multiply (3.2.9) by psgn(φ1−φ2)|φ1−φ2|p−1 and integrate over [0, g(Ω)]×
R using the symmetry (η,Ω)⇐⇒ (η∗,Ω∗) to obtain

d

dt
||φ1 − φ2||pLp

= 2pK

∫
R

∫
R

∫ g(Ω)

0

∫ g(Ω∗)

0

[
cos

(
φ1∗ − φ1

2
+
φ2∗ − φ2

2

)
sin

(
φ1∗ − φ1

2
− φ2∗ − φ2

2

)
×
[
|φ1 − φ2|p−1sgn (φ1 − φ2)− |φ1∗ − φ2∗|p−1sgn (φ1∗ − φ2∗)

] ]
dη∗dηdΩ∗dΩ.

It follows from the proof of Lemma 3.2.4 that for all a, b ∈ R,

(
|a|p−1sgn(a)− |b|p−1sgn(b)

)
sin

(
b− a

2

)
≤ 0.

On the other hand, Lemma 3.2.1 implies that there exists t0 such that

Dθ(µt) ≤ D∞, Dθ(νt) ≤ D∞, t ≥ t0,

and we use Lemma 3.2.2 to obtain

max
Ω∈supp(g)

φ1(g(Ω),Ω, t)− min
Ω∈supp(g)

φ1(0,Ω, t) ≤ D∞,

max
Ω∈supp(g)

φ2(g(Ω),Ω, t)− min
Ω∈supp(g)

φ2(0,Ω, t) ≤ D∞, t ≥ t0.

Then, this yields

0 < cosD∞ ≤ cos

(
φ1∗ − φ1

2
+
φ2∗ − φ2

2

)
.

Hence, we obtain
d

dt
||φ1 − φ2||pLp ≤ 2pK cosD∞J
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where

J :=

∫
R×R

∫ g(Ω)

0

∫ g(Ω∗)

0

sin

(
φ1∗ − φ2∗

2
− φ1 − φ2

2

)
×
[
|φ1 − φ2|p−1sgn (φ1 − φ2)− |φ1∗ − φ2∗|p−1sgn (φ1∗ − φ2∗)

]
dη∗dηdΩ∗dΩ.

If we set Φ := φ1 − φ2, then

|Φ∗ − Φ| ≤ |φ1∗ − φ1|+ |φ2∗ − φ2| ≤ 2D∞ < π, t > t0.

Since µ0, ν0 have the same center of mass, it follows from Lemma 3.2.3 that∫
R

∫ g(Ω)

0

ΦdηdΩ = 0, t > t0.

Thus, we can apply Lemma 3.2.4 with Φ = φ1 − φ2 to obtain

d

dt
W̃ p
p (µt, νt) ≤ −

2pK cosD∞

π
W̃ p
p (µt, νt), t ≥ t0.

This yields

W̃p(µt, νt) ≤ exp
(
− 2K cosD∞

π
(t− t0)

)
W̃p(µt0 , νt0). (3.2.10)

In the case of p =∞, we use (3.2.7) and (3.2.10) to obtain

W̃∞(µt, νt) ≤ exp
(
− 2K cosD∞

π
(t− t0)

)
W̃∞(µt0 , νt0).

This completes the proof for smooth solutions. As mentioned above a simple

approximation argument as in Subsection 3.3 in [10] finishes the proof for

measure valued solutions.

Remark 3.2.1. The assumption in Theorem 3.2.1 on the initial measures

to have equal mean in θ is not restricted. Due to Lemma 3.2.3, the mean in

θ is preserved in time. Thus, we can always restrict to the equal mean in θ

case by translational invariance of (2.2.3).
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Chapter 4

Kuramoto type models with

frustration

In this chapter, we will study the dynamic interplay between distinct natural

frequencies (intrinsic frustration) and phase shift in interactions (interaction

frustration) among Kuramoto oscillators. This chapter is based on joint works

in [34].

4.1 Kuramoto model with frustration

Kuramoto and Sakaguchi [61] proposed a variant of the Kuramoto model in

which the coupling function incorporated frustration (phase shift) so that

richer dynamical phenomena would be observed than that with no frustra-

tion. Let αji be the frustration between the j-th and i-th oscillators, which

is assumed to be symmetric in i and j. In this situation, the dynamics of

Kuramoto oscillators is governed by the following ODE system:

θ̇i = Ωi +
K

N

N∑
i=1

sin(θj − θi + αji), −π
2
< αji <

π

2
. (4.1.1)

Note that the R.H.S. of (4.1.1) is Lipschitz continuous, so the well-posedness

of the system (4.1.1) is well known from the Cauchy-Lipschitz theory. Thus,

what matters about the solutions is the dynamic behavior such as the relax-

ation process, the shape of phase-locked states, and the existence of global
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attractors, etc. In general, the frustration hinders synchronization, so cou-

pling strength greater than that of the original Kuramoto model without

frustration is needed to guarantee global synchronization. The use of frus-

tration is needed for modeling real physical and biological systems, but it

causes numerous mathematical difficulties in analyzing the synchronization.

For this reason many studies about frustration have been mostly based on the

numerical approach.[23, 47, 55, 57, 58, 66, 75] Furthermore, one of the most

important reasons for the interest in frustration is that the Kuramoto model

with frustration has no conservation law, even for identical oscillators (see

Example 4.1.1). Thus, the standard energy method [17, 19, 32, 33, 36, 37]

based on a conservation law cannot be applied in our setting. Hence, analyz-

ing the large-time behavior of physical systems without conservation laws is

challenging itself, and to the best knowledge of the authors, there are so far

no general tools for dealing with such systems without conservation laws.

In this chapter, we describe three Kuramoto type models with frustra-

tions, which are investigated in later sections. The first two models are con-

cerned with nonidentical oscillators with (interaction) frustrations. Model A

corresponds to the system (4.1.1) with a uniform frustration αij = α, and

Model B corresponds to the special case of Model A in which there are only

two distinct natural frequencies. Model C deals with identical oscillators on a

bipartite graph; i.e., interactions arise only between members from different

groups.

• Model A: (Uniform frustration)

θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi + α), i = 1, . . . , N.

• Model B: (Interaction of two identical oscillator groups under frustration)

θ̇i = Ω1 +
K

2N

[ N∑
j=1

sin(θj − θi + α) +
N∑
j=1

sin(φj − θi + α)
]
, i = 1, . . . , N,

φ̇i = Ω2 +
K

2N

[ N∑
j=1

sin(φj − φi + α) +
N∑
j=1

sin(θj − φi + α)
]
, i = 1, . . . , N.
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• Model C: (Identical oscillators on a bipartite graph)

θ̇i =
µ

N2

N2∑
j=1

sin(φj − 2θi), i = 1, . . . , N1,

φ̇i =
1− µ
N1

N1∑
j=1

sin(2θj − φi + α), i = 1, . . . , N2,

where µ ∈ (0, 1) is a positive constant. This model was recently derived from

the Van der Pol equations for two coupled oscillator systems in the work of

Lück and Pikovsky [49] .

As examples, we consider some simple situations to illustrate how the

frustration causes the system to deviate from the original Kuramoto model

(1.0.1).

Example 4.1.1. Consider the system of two oscillators with frustration and

identical natural frequencies Ω1 = Ω2 = 0:

dθ1

dt
=
K

2
sin(θ2 − θ1 + α), t > 0,

dθ2

dt
=
K

2
sin(θ1 − θ2 + α).

We introduce the mean values of the phase and instantaneous frequency:

θc :=
θ1 + θ2

2
, ωc :=

ω1 + ω2

2
.

Then, the mean phase satisfies

dθc
dt

=
K

2

[
sin(θ2 − θ1 + α) + sin(θ1 − θ2 + α)

]
= K cos(θ1 − θ2) sinα.

Thus, we do not have conservation of total phase.

Before we close this section, we present an elementary estimate for a

system of differential inequalities to be used in Section 4.3.
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Lemma 4.1.1. Let X, Y , and Z be differentiable functions satisfying the

following system of differential inequalities:

Ẋ ≤ −cX + (β + γ sin(Y + Z + |α|))X2, t ≥ t0,

Ẏ ≤ −cY + (β + γ sin(X + Z + |α|))Y 2,

Ż ≤ −2cZ + δ +
K

2
(sin(X + α) + sin(Y − α)),

(4.1.2)

where c, β, γ, and δ are positive constants. Then, there exist t1 ≥ t0 > 0

such that

X(t) ≤ c

β + γ + C(X0)ec(t−t0)
, t ≥ t0,

Y (t) ≤ c

β + γ + C(Y0)ec(t−t0)
,

Z(t) ≤ Z(t0)e−2c(t−t0) +
δ +K

2c

(
1− e−2c(t−t0)

)
,

where X0 = X(t0) and Y0 = Y (t0).

Proof. • (Estimate of X): We use sin(Y + Z + |α|) ≤ 1 to obtain

Ẋ ≤ X(−c+ (β + γ)X).

This yields

X(t) ≤ c

β + γ + C(X(t0))ec(t−t0)
, t ≥ t0, (4.1.3)

where C(X(t0)) is given as follows:

C(X(t0)) :=
∣∣∣c− (β + γ)X(t0)

X(t0)

∣∣∣.
• (Estimate of Y ): Similarly, we have

Y (t) ≤ c

β + γ + C(Y0)ec(t−t0)
, t ≥ t0. (4.1.4)

• (Estimate of Z): We use the elementary relation

| sin(X + α) + sin(Y − α)| = 2
∣∣∣ sin(X + Y

2

)
cos
(X − Y

2
+ α

)∣∣∣
≤ |X|+ |Y |,
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to derive

Ż ≤ −2cZ + δ +
K

2
(|X|+ |Y |).

On the other hand, it follows from (4.1.3) and (4.1.4) that there exists t1 ≥ t0
such that

|X(t)|+ |Y (t)| ≤ 2δ

K
, t ≥ t1.

Thus, we have

Ż ≤ −2cZ + 2δ, t ≥ t1.

This yields

Z(t) ≤ Z(t1)e−2c(t−t1) +
δ

c

(
1− e−2c(t−tt)

)
, t ≥ t1.

Remark 4.1.1. From the result of Lemma 2.1, we see that

X(t) = O(1)e−ct, Y (t) = O(1)e−ct, as t→∞ and lim
t→∞

Z(t) ≤ δ

c
.

In the following three sections, we derive sufficient conditions leading to

complete synchronization of the aforementioned three models.

4.2 Synchronization estimate for Model A

In this section, we study the synchronizability of the Model A.

Recall that the Kuramoto model with a uniform interaction frustration

is given by

θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi + α), t ≥ 0, i = 1, . . . , N, |α| < π

2
. (4.2.5)

So far, the sufficient conditions for the Kuramoto model (α = 0) have been

extensively studied in literature [17, 19, 21, 25, 26, 32, 33, 36, 37]. Our syn-

chronization analysis relies on two steps. First, we show the existence of a

positively invariant region so that within a finite time the initial configu-

rations are confined to the interval with length π/2. Second, we derive a

Gronwall-type inequality for the frequency diameter that is subsequently de-

fined to conclude the complete frequency synchronization.
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4.2.1 Existence of a trapping region

In this subsection, we study the existence of a positively invariant region for

the Kuramoto model. For this, we follow the approach of Choi et al. [17].

Lemma 4.2.1. (Existence of a positively invariant set) Suppose that the

natural frequencies, coupling strength, and initial data satisfy

D(Ω) > 0, K ≥ Kef :=
D(Ω)

1− sin |α|
, 0 < D(θ0) < D∞∗ − |α|,

where D∞∗ is the unique solution of the following equation:

sinx =
D(Ω) +K sin |α|

K
, x ∈

(π
2
, π
)
.

Then, for the global solution to (4.2.5), we have

sup
t≥0

D(θ(t)) ≤ D∞∗ − |α|.

Proof. We define a set T and its supremum T ∗ ∈ [0,∞]:

T :=
{
T ≥ 0 | D(θ(t)) < D∞∗ − |α|, ∀ t ∈ [0, T )

}
, T ∗ := sup T .

Since D(θ0) < D∞∗ − |α| and D(θ(t)) is continuous, there exists T > 0 such

that

D(θ(t)) < D∞∗ − |α|, ∀ t ∈ [0, T ).

Hence, the set T is not empty. We now claim that

T ∗ = +∞.

Suppose not; i.e., T ∗ <∞. Then, we have

D(θ(T ∗)) ≥ D∞∗ − |α|, and D(θ(t)) < D∞∗ − |α|, ∀ t ∈ [0, T ∗).

On the other hand, we have for t ∈ [0, T ∗),

d

dt
D(θ(t)) ≤ ΩM − Ωm +

K

N

N∑
j=1

[
sin(θj − θM + α)− sin(θj − θm + α)

]
≤ D(Ω) +

K cosα

N

N∑
j=1

[
sin(θj − θM)− sin(θj − θm)

]
+
K sinα

N

N∑
j=1

[
cos(θj − θM)− cos(θj − θm)

]
.
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We consider two cases according to the sign of α.

• Case 1: α ∈ [0, π
2
). In this case, we have

d

dt
D(θ(t))

≤ D(Ω) +
K cosα sinD(θ)

ND(θ)

N∑
j=1

[
(θj − θM)− (θj − θm)

]
+
K sinα

N

N∑
j=1

[
1− cosD(θ)

]
= D(Ω)−K

[
sin (D(θ) + α)− sinα

]
= D(Ω)−K

[
sin (D(θ) + |α|)− sin |α|

]
.

• Case 2: α ∈ (−π
2
, 0). In this case, we have

d

dt
D(θ(t))

≤ D(Ω) +
K cosα sinD(θ)

ND(θ)

N∑
j=1

[
(θj − θM)− (θj − θm)

]
+
K sinα

N

N∑
j=1

[
cosD(θ)− 1

]
= D(Ω)−K

[
sin (D(θ)− α) + sinα

]
= D(Ω)−K

[
sin (D(θ) + |α|)− sin |α|

]
.

Here we used the condition:

sin(θj − θM) ≤ sinD(θ)

D(θ)
(θj − θM), sin(θj − θm) ≥ sinD(θ)

D(θ)
(θj − θm),

and

cos(θj − θM), cos(θj − θm) ≤ 1, cos(θj − θm), cos(θj − θM) ≥ cosD(θ).

Then we have

d

dt
D(θ(t)) ≤ D(Ω) +K sin |α| −K sin(D(θ(t)) + |α|). (4.2.6)
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Since D(θ(t)) + |α| < D∞∗ < π for t ∈ [0, T ∗), we obtain

Ḋ(θ(t)) ≤ D(Ω) +K sin |α| − K sinD∞∗
D∞∗

(D(θ(t)) + |α|).

We now use the above inequality to observe that

D(θ(t)) ≤
(
D(θ0)−D∞∗ + |α|

)
e
−K sinD∞∗

D∞∗
t
+D∞∗ − |α|, t ∈ [0, T ∗).

This implies

D∞∗ − |α| ≤ D(θ(T ∗)) ≤
(
D(θ0)−D∞∗ + |α|

)
e
−K sinD∞∗

D∞∗
T ∗

+D∞∗ − |α|

< D∞∗ − |α|,

which is a contradiction. Hence, T ∗ =∞.

Remark 4.2.1. (i) Note that the lower bound on the coupling strength K is

improved even for the zero frustration case α = 0. In [17], the lower bound Ke

is defined to be dependent on the diameter of initial phase diameter D(θ0),

more precisely

K >
D(Ω)

sinD(θ0)
.

However, in our case, the lower bound for K does not depend on the initial

phase diameter.

(ii) The arguments used in the proof of Lemma 4.2.1 also imply that D(θ(t))

satisfies

Ḋ(θ) ≤ D(Ω) +K sin |α| −K sin
(
D(θ) + |α|

)
, a.e. t, (4.2.7)

where Ḋ(θ(t)) := d
dt
D(θ(t)).

4.2.2 Entrance to the exponential stability regime

In this subsection, we study the transition of the phase ensemble to the

exponential stability regime within a finite time. We introduce a reference

angle D∞:

D∞ ∈
(

0,
π

2

)
, sinD∞ =

D(Ω) +K sin |α|
K

. (4.2.8)
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Remark 4.2.2. 1. Note that D∞ is the dual angle of D∞∗ in Lemma 4.2.1

satisfying

sinD∞ = sinD∞∗ =
D(Ω) +K sin |α|

K
.

2. Since

sinD∞ =
D(Ω)

K
+ sin |α| > sin |α|,

we have D∞ > |α|.

3. The inequality (4.2.7) implies that D(θ(t)) is decreasing if

D(θ(t)) ∈ (D∞ − |α|, D∞∗ − |α|).

Proposition 4.2.1. Suppose that the natural frequencies, coupling strength

and initial data satisfy

D(Ω) > 0, K > Kef , 0 < D(θ0) < D∞∗ − |α|.

Let θ(t) be the global solution to (4.2.5). Then for any 0 < ε� 1, there exists

t0 = t0(ε) > 0 such that

D(θ(t)) ≤ D∞ − |α|+ ε, for t ≥ t0.

In particular, we can choose ε so small that D(θ(t)) + |α| ≤ D∞ + ε < π
2

for

t ≥ t0.

Proof. We consider the ordinary differential equation

ẏ = D(Ω) +K sin |α| −K sin y. (4.2.9)

Our assumption on K implies that y∗ = D∞ is an equilibrium point for the

equation (4.2.9). y∗ is locally stable because in the neighborhood of y∗,
dy
dt
< 0

for y > y∗ and dy
dt
> 0 for y < y∗. Moreover, for any initial value y(0) with

0 < y(0) < D∞∗ , the trajectory y(t) monotonically approaches y∗. Therefore,

for any ε > 0, there exists a time t0 such that

|y(t)− y∗| < ε, ∀ t ≥ t0.

39



CHAPTER 4. KURAMOTO TYPE MODELS WITH FRUSTRATION

We now apply this analysis on (4.2.9) and the principle of comparison with

(4.2.7) to find

D(θ(t)) + |α| < D∞ + ε, ∀ t ≥ t0.

That is,

D(θ(t)) < D∞ − |α|+ ε, ∀ t ≥ t0.

4.2.3 Relaxation estimate

In this subsection, we provide an estimate of the relaxation toward the phase-

locked state. We next derive the Gronwall’s differential inequality for the

frequency diameter D(ω(t)). We differentiate the system (4.2.5) with respect

to time t to obtain

dωi
dt

=
K

N

N∑
j=1

cos(θj − θi + α)(ωj − ωi).

This yields

d

dt
D(ω(t)) =

K

N

N∑
j=1

[
cos(θj − θωM + α)(ωj − ωM)− cos(θj − θωm + α)(ωj − ωm)

]
≤ K

N
cos (D∞ + ε)

N∑
j=1

[
(ωj − ωM)− (ωj − ωm)

]
= −K cos (D∞ + ε)D(ω(t)), t ≥ t0,

(4.2.10)

where θωM and θωm denote the phases of the oscillators, which have the maxi-

mum and minimum instantaneous frequencies, respectively. In summary, we

have

d

dt
D(ω(t)) ≤ −K cos (D∞ + ε)D(ω(t)), t ≥ t0. (4.2.11)

We are now ready to make the relaxation estimate for Model A.
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Theorem 4.2.1. Suppose that the natural frequencies, coupling strength, and

initial data satisfy

D(Ω) > 0, K > Kef , 0 < D(θ0) < D∞∗ − |α|.

Then, for any 0 < ε� 1 with D∞ + ε < π
2
, there exists t0 > 0 such that

D(ω(t0))e−K(t−t0) ≤ D(ω(t)) ≤ D(ω(t0))e−K cos(D∞+ε)(t−t0), t ≥ t0.

Proof. By Proposition 4.2.1, there exists some t0 > 0 such that

|θj(t)− θi(t)| ≤ D(θ(t)) ≤ D∞ − |α|+ ε, ∀ t ≥ t0.

• (Upper bound estimate): We combine the above result with (4.2.11) to find

D(ω(t)) ≤ D(ω(t0)) exp
[
−K cos

(
D∞ + ε

)
(t− t0)

]
, t ≥ t0.

Hence, the frequency diameter decays exponentially to zero.

• (Lower bound estimate): We use cos θ ≤ 1 in (4.2.10) to find

D(ω(t)) ≥ D(ω(t0)) exp[−K(t− t0)], t ≥ t0.

4.3 Synchronization estimates for Model B

In this section, we consider the interaction of two identical oscillator groups

with different natural frequencies. In the absence of frustration, this case has

already been considered by Ha and Kang [33], who found that the resulting

phase-locked states are configurations of two-point clusters and the relaxation

speed can be exponential or algebraic depending on the size of K compared

to the size of the intrinsic frustration D(Ω). More precisely, we consider the

ensemble of mixed Kuramoto oscillators with two distinct natural frequen-

cies. In this case, the plausible scenario has two stages. First the ensemble

will evolve from the mixed phase into the segregated phase; i.e., two identical

oscillator groups will separate into two groups that will each have the same
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natural frequency. Then, these two groups will evolve to become the point

clusters, respectively.

Let {θi}Ni=1 and {φi}Ni=1 be the identical oscillator groups with natural

frequencies Ω1 and Ω2, respectively. In this situation, the dynamics of the

oscillator groups is governed by the following coupled system:

θ̇i = Ω1 +
K

2N

[ N∑
j=1

sin(θj − θi + α) +
N∑
j=1

sin(φj − θi + α)
]
, i = 1, . . . , N,

φ̇i = Ω2 +
K

2N

[ N∑
j=1

sin(φj − φi + α) +
N∑
j=1

sin(θj − φi + α)
]
, i = 1, . . . , N,

(4.3.12)

subject to initial data and frustration,

(θi, φi)(0) = (θ0
i , φ

0
j), |α| < π

2
, (4.3.13)

where K > 0 denotes the coupling strength and N denotes the number of

oscillators in each group. Without loss of generality, we assume that

Ω1 > Ω2.

As an extreme case, we consider the situation where the identical oscillators

with the same natural frequencies are collapsed to a single phase at t = 0;

i.e.,

θ0
i = θ0

1, and φ0
i = φ0

1, i = 2, . . . , N.

Then, by the uniqueness of the solution to the system (4.3.12), we have

θ1(t) = · · · = θN(t), φ1(t) = · · · = φN(t), t ≥ 0.

We set

D(Ω) = Ω1 − Ω2, and ∆(t) := θ1(t)− φ1(t), t ≥ 0.
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From (4.3.12), we have

θ̇1 = Ω1 +
K

2
sinα +

K

2N

N∑
j=1

sin(−∆ + α),

φ̇1 = Ω2 +
K

2
sinα +

K

2N

N∑
j=1

sin(∆ + α).

(4.3.14)

We subtract the second equation from the first equation to obtain

∆̇ = D(Ω)−K cosα sin ∆, (4.3.15)

which is a standard Adler’s equation.

4.3.1 Existence of a trapping region

In this subsection, we will find a trapping region for the system (4.3.12). We

set

θm(t) := min
1≤i≤N

θi(t), θM(t) := max
1≤i≤N

θi(t),

φm(t) := min
1≤i≤N

φi(t), φM(t) := max
1≤i≤N

φi(t), (4.3.16)

D(θ(t)) := θM(t)− θm(t), D(φ(t)) := φM(t)− φm(t),

D(θ, φ)(t) := max
1≤i≤N

{θi, φi} − min
1≤i≤N

{θi, φi}.

We also set

∆(t) := θm(t)− φM(t).

It is easy to see that if ∆(t) ≥ 0, then

D(θ, φ)(t) = D(θ(t)) +D(φ(t)) + ∆(t).

That is, the sum of the three partial diameters is exactly the total diameter of

the phases {θ(t), φ(t)}. The next lemma demonstrates a kind of monotonicity

property among Kuramoto oscillators with the same natural frequency.
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Lemma 4.3.1. Let {θi, φi} be the global solution to the system (4.3.12)-

(4.3.13), with

φ0
1 ≤ φ0

2 ≤ · · · ≤ φ0
N .

Then for all t > 0, we have

φ1(t) ≤ φ2(t) ≤ · · · ≤ φN(t).

Proof. It is sufficient to show that

φ0
i ≤ φ0

j =⇒ φi(t) ≤ φj(t), t > 0.

Suppose that there exists some time t0 > 0 such that φi(t0) = φj(t0). Then, by

the uniqueness of the solution, we observe that φi(t) = φj(t), ∀ t ≥ t0. More-

over, owing to the analyticity of {θi, φi}, we can derive φi(t) = φj(t), ∀ t ≥ 0.

Hence, we have

φ0
i < φ0

j =⇒ φi(t) < φj(t), t > 0.

Remark 4.3.1. The same result holds for the group {θi} with natural fre-

quency Ω1. Lemma 4.3.1 means that no collision occurs in either group dur-

ing the evolution process, unless the oscillators initially have the same phase.

Hence, the oscillators that take the maximum and minimum phases in each

group are fixed forever. This implies that the extremal phases θM(t), θm(t),

φm(t), φM(t) and partial diameters D(θ(t)), D(φ(t)) are analytic functions.

Lemma 4.3.2. Let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.3.12)-

(4.3.13) satisfying

D(θ, φ)(0) ≤ R, for some constant R <
π

2
− |α|.

Then, we have

d

dt
D(θ(t))

∣∣∣
t=0
≤ 0,

d

dt
D(φ(t))

∣∣∣
t=0
≤ 0.
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Proof. (1) We use (4.3.12) and the definition of D(θ(t)) to obtain

d

dt
D(θ(t)) = θ̇M(t)− θ̇m(t)

=
K

2N

N∑
j=1

{
sin(θj − θM + α)− sin(θj − θm + α)

}
+

K

2N

N∑
j=1

{
sin(φj − θM + α)− sin(φj − θm + α)

}
= −K

N
sin

D(θ)

2

N∑
j=1

cos
(θj − θM

2
+
θj − θm

2
+ α

)
− K

N
sin

D(θ)

2

N∑
j=1

cos
(φj − θM

2
+
φj − θm

2
+ α

)
.

Note that at t = 0 we have

−R
2
≤ −D(θ)

2
≤θj − θM

2
+
θj − θm

2
≤ D(θ)

2
≤ R

2
,

−R ≤ φj − θM ≤
φj − θM

2
+
φj − θm

2
≤ φj − θm ≤ R.

This yields
d

dt
D(θ(t))

∣∣∣
t=0
≤ 0.

(2) We also have the simialr result for D(φ(t)). Note that

d

dt
D(φ(t)) = −K

N
sin

D(φ)

2

N∑
j=1

cos
(φj − φM

2
+
φj − φm

2
+ α

)
− K

N
sin

D(φ)

2

N∑
j=1

cos
(θj − φM

2
+
θj − φm

2
+ α

)
.

Since

−R
2
≤ −D(φ)

2
≤φj − φM

2
+
φj − φm

2
≤ D(φ)

2
≤ R

2
, t = 0,

−R ≤ θj − φM ≤
θj − φM

2
+
θj − φm

2
≤ θj − φm ≤ R,
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we have
d

dt
D(φ(t))

∣∣
t=0
≤ 0.

Proposition 4.3.1. Suppose that the coupling strength K satisfies

K >
D(Ω)

1− sin |α|
,

and let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.3.12)-(4.3.13) satis-

fying

D(θ, φ)(0) ≤ R, for some constant R <
π

2
− |α|.

Then we have the following two assertions:

(1) D(θ, φ)(t) ≤
{
R, if R ≥ D∞ − |α|,
D∞ − |α|, if R < D∞ − |α|, ∀ t ≥ 0;

(2) D(θ(t)) ≤ D(θ0), and D(φ(t)) ≤ D(φ0), ∀ t ≥ 0.

Here, D∞ is given by (4.2.8).

Proof. (i) Since our system (4.3.12) is a special case for the system (4.2.5),

we can use the analysis in Section 4.2, in particular, Remark 4.2.2 (3) and

the analysis in Proposition 4.2.1 to see the first assertion.

(ii) For the non-increasing property of the phase diameters D(θ(t)) and

D(φ(t)), we use Lemma 4.3.2 and standard continuation arguments.

Remark 4.3.2. The assertion (1) is equivalent to D(θ, φ)(t) ≤ max{R, D∞−
|α|}, ∀ t ≥ 0. Thus, with loss of generality we may simply say D(θ, φ)(t) ≤ R,

since we can choose R = D∞ − |α| if D(θ, φ)(0) ≤ D∞ − |α|.

4.3.2 From mixed stage to segregated stage

In this subsection, we present the emergence from the mixture of oscillators to

the segregation phase consisting of two identical Kuramoto oscillator groups

without overlapping.
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Lemma 4.3.3. Let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.3.12)-

(4.3.13) satisfying

D(θ, φ)(0) ≤ R, for some constant R <
π

2
− |α|.

Then there exists a time t0 such that

∆(t0) > 0.

Proof. We consider three cases depending on the initial phases:

∆(0) > 0, ∆(0) = 0, and ∆(0) < 0.

• Case 1 (∆(0) > 0): In this case, we have nothing to prove.

• Case 2 (∆(0) = 0): By definition of ∆, we have

d

dt
∆(t) = D(Ω) +

K

2N

N∑
j=1

sin (θj − θm + α) +
K

2N

N∑
j=1

sin (φj − θm + α)

− K

2N

N∑
j=1

sin (φj − φM + α)− K

2N

N∑
j=1

sin (θj − φM + α)

= D(Ω) +
K

2N

N∑
j=1

[
sin(θj − θm + α)− sin(θj − φM + α)

]
+

K

2N

N∑
j=1

[
sin(φj − θm + α)− sin(φj − φM + α)

]
= D(Ω) +

K

N

N∑
j=1

cos
(θj − θm

2
+
θj − φM

2
+ α

)
sin
(φM − θm

2

)
+
K

N

N∑
j=1

cos
(φj − θm

2
+
φj − φM

2
+ α

)
sin
(φM − θm

2

)
= D(Ω)

− 2K

N
sin
(∆

2

) N∑
j=1

cos
(θj − θm

2
+
φj − φM

2
+ α

)
cos
(θj − φj

2

)
.

(4.3.17)
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It is easy to see from ∆(0) = 0 that

∆̇(0) = D(Ω) > 0.

Hence, there exists a small t0 > 0 such that ∆(t0) > 0.

• Case 3 (∆(0) < 0): Suppose there is no such t, i.e.,

∆(t) < 0, ∀ t ≤ 0. (4.3.18)

Note that

−D(φ)

2
+ α ≤ θj − θm

2
+
φj − φM

2
+ α ≤ D(θ)

2
+ α,

∆ ≤ θj − φj ≤ D(θ, φ).

Since D(θ), D(φ) ≤ D(θ, φ) ≤ R and |∆| ≤ D(θ, φ), in (4.3.17) we obtain

∆̇ ≥ D(Ω)− 2K sin
∆

2
cos
(R

2
+ |α|

)
cos

R

2

≥ D(Ω)− 2K

π
cos

R

2
cos
(R

2
+ |α|

)
∆,

where we used sinx ≤ 2
π
x, x ∈

(
−π

2
, 0
)
. Since R < π

2
− |α| and |α| < π

2
, we

note that R
2

+ |α| < π
2
. Therefore we have

∆(t) ≥ πD(Ω)

2K
sec

R

2
sec
(R

2
+ |α|

)
+
(

∆(0)− πD(Ω)

2K
sec

R

2
sec
(R

2
+ |α|

))
× exp

{
−πD(Ω)t

2K
sec

R

2
sec
(R

2
+ |α|

)}
.

This yields

lim
t→∞

∆(t) ≥ πD(Ω)

2K
sec

R

2
sec
(R

2
+ |α|

)
> 0.

Hence there exists a sufficiently large t0 such that

∆(t0) >
πD(Ω)

4K
sec

R

2
sec
(R

2
+ |α|

)
> 0.

This is contradictory to our assumption (4.3.18).
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Proposition 4.3.2. Suppose that the coupling strength K satisfies

K >
D(Ω)

1− sin |α|
,

and let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.3.12)-(4.3.13) satis-

fying

D(θ, φ)(0) ≤ R, for some constant R <
π

2
− |α|.

Then, there exists a finite-time t0 such that group difference ∆(t) is uniformly

bounded below for t ≥ t0:

∆(t) := θm(t)− φM(t) ≥ min
{

∆(t0),
D(Ω)

K

}
, ∀ t ≥ t0.

Proof. By Lemma 4.3.3, there exists a time t0 such that ∆(t0) > 0. Define a

set T and its supremum T ∗ ∈ [t0,∞]:

T :=
{
T ≥ t0 : ∆(t) > 0, ∀ t ∈ [t0, T )

}
, T ∗ := sup T .

Since ∆(t0) > 0, by the continuity of ∆(t), there exists T > 0 such that

∆(t) > 0, ∀ t ∈ [t0, T ).

Hence T ∈ T , that is, the set T is not empty. We now claim:

T ∗ = +∞.

Suppose not, i.e., T ∗ <∞. Then we have

lim
t→T ∗−

∆(t) = 0, (4.3.19)

and

∆(t) > 0, ∀ t ∈ [t0, T
∗). (4.3.20)

We now use (4.3.17) again to see that

∆̇(t) ≥ D(Ω)− 2K

N
sin
(∆

2

) N∑
j=1

cos
(∆

2

)
= D(Ω)−K sin ∆, for t ∈ [t0, T

∗),
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where we used

cos
(θj − θm

2
+
φj − φM

2
+ α

)
≤ 1, cos

(θj − φj
2

)
≤ cos

(∆

2

)
.

Then we have

∆(t) ≥ ∆(t0)e−K(t−t0) +
D(Ω)

K

(
1− e−K(t−t0)

)
, ∀ t ∈ [t0, T

∗). (4.3.21)

This implies

0 = lim
t→T ∗−

∆(t) ≥ ∆(t0)e−K(T ∗−t0) +
D(Ω)

K

(
1− e−K(T ∗−t0)

)
> 0,

which gives a contradiction. Hence T ∗ = ∞. Then we recall (4.3.21) to see

that

∆(t) ≥ C := min
{

∆(t0),
D(Ω)

K

}
, ∀ t ≥ t0.

Remark 4.3.3. By Lemma 4.3.3 and Proposition 4.3.1, if ∆(0) ≤ 0, after

a finite-time t0, ∆(t0) becomes positive and the trapping condition on the

phase diameter is still valid. Then we can regard (θ, φ)(t0) as a new initial

configuration. In the next subsection, without loss of generality we will assume

initially ∆(0) > 0.

4.3.3 Formation of the two-point cluster configuration

In this subsection, we study the asymptotic formation of two-point cluster

configurations from initial configurations satisfying some conditions. For this,

we derive nonlinear Gronwall-type inequalities for D(θ), D(φ), and ∆.

Lemma 4.3.4. Let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.3.12)–

(4.3.13) satisfying

∆(0) > 0, D(θ, φ)(0) ≤ R, for some constant R < π
2
− |α|.
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Then, D(θ(t)), D(φ(t)), and ∆(t) satisfy the following system of differential

inequalities:

Ḋ(θ(t)) ≤− K cosα

π
D(θ(t)) +

K

2

[
sin |α|+ sin

(
∆(t) +D(φ(t)) + |α|

)]
D(θ(t))2,

Ḋ(φ(t)) ≤− K cosα

π
D(φ(t)) +

K

2

[
sin |α|+ sin

(
∆(t) +D(θ(t)) + |α|

)]
D(φ(t))2,

∆̇(t) ≤D(Ω)− 2K cosα

π
∆(t) +

K

2

[
sin(D(θ(t)) + α) + sin(D(φ(t))− α)

]
.

Proof. (i) From the proof of Lemma 4.1, we already know that

d

dt
D(θ(t)) = −K

N
sin

D(θ)

2

N∑
j=1

cos
(θj − θM

2
+
θj − θm

2
+ α

)
− K

N
sin

D(θ)

2

N∑
j=1

cos
(φj − θM

2
+
φj − θm

2
+ α

)
.

Note that

−D(θ)

2
≤ θj − θM

2
+
θj − θm

2
≤ D(θ)

2
,

−∆−D(φ)− D(θ)

2
≤ φj − θM

2
+
φj − θm

2
≤ −∆− D(θ)

2
,

D(θ)

2
+ |α| < π

2
.

Hence, we have

d

dt
D(θ(t)) ≤ −K sin

D(θ)

2
cos
(D(θ)

2
+ |α|

)
−K sin

D(θ)

2
cos
(

∆ +D(φ) +
D(θ)

2
+ |α|

)
= −K

2

[
cosα + cos

(
∆ +D(φ) + |α|

)]
sinD(θ)

+K
[

sin |α|+ sin
(
∆ +D(φ) + |α|

)]
sin2 D(θ)

2

≤ −K
π

[
cosα + cos

(
∆ +D(φ) + |α|

)]
D(θ)

+
K

2

[
sin |α|+ sin

(
∆ +D(φ) + |α|

)]
D(θ)2,
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where we used the relations

sinx ≥ 2

π
x, 2 sin2 x

2
= 1− cosx ≤ x2 for x ∈

[
0,
π

2

]
.

To obtain the upper bound, we used the inequality cos(∆ +D(φ) + |α|) > 0.

(ii) The result is derived in the same manner as that of (i) above. We use

−D(φ)

2
≤ φj − φM

2
+
φj − φm

2
≤ D(φ)

2
,

∆ +
D(φ)

2
≤ θj − φM

2
+
θj − φm

2
≤ ∆ +D(θ) +

D(φ)

2
,

to obtain

d

dt
D(φ(t)) ≤ −K sin

D(φ)

2
cos

(
D(φ)

2
+ |α|

)
−K sin

D(φ)

2
cos

(
∆ +D(θ) +

D(φ)

2
+ |α|

)
= −K

2

[
cosα + cos

(
∆ +D(θ) + |α|

)]
sinD(φ)

+K
[

sin |α|+ sin
(
∆ +D(θ) + |α|

)]
sin2 D(φ)

2

≤ −K
π

[
cosα + cos

(
∆ +D(θ) + |α|

)]
D(φ)

+
K

2

[
sin |α|+ sin

(
∆ +D(θ) + |α|

)]
D(φ)2.

(iii) Note that

−∆−D(φ) ≤ φj − θm ≤ −∆, ∆ ≤ θj − φM ≤ ∆ +D(θ). (4.3.22)
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By the definition of ∆(t) and the relations (4.3.22), we obtain

d

dt
∆(t) = θ̇m(t)− φ̇M(t)

= D(Ω) +
K

2N

N∑
j=1

sin(θj − θm + α) +
K

2N

N∑
j=1

sin(φj − θm + α)

− K

2N

N∑
j=1

sin(φj − φM + α)− K

2N

N∑
j=1

sin(θj − φM + α)

≤ D(Ω) +
K

2
sin(D(θ) + α) +

K

2
sin(−∆ + α)

− K

2
sin(−D(φ) + α)− K

2
sin(∆ + α),

where we used the monotonicity of sinx, x ∈
(
−π

2
, π

2

)
. We then have the

result
d

dt
∆(t) ≤ D(Ω)−K cosα sin ∆ +

K

2
sin(D(θ) + α) +

K

2
sin(D(φ)− α)

≤ D(Ω)− 2K cosα

π
∆ +

K

2

[
sin(D(θ) + α) + sin(D(φ)− α)

]
.

Theorem 4.3.1. Let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.3.12)–

(4.3.13) satisfying

∆(0) > 0, D(θ, φ)(0) ≤ R, for some constant R < π
2
− |α|.

Then, D(θ), D(φ), and ∆ satisfy the following estimates:

(i) D(θ(t)) = O(1) exp
(
− K cosα

π
t
)
, as t→∞.

(ii) D(φ(t)) = O(1) exp
(
− K cosα

π
t
)
.

(iii) lim
t→∞

∆(t) ≤ πD(Ω)

K cosα
.

Proof. We use Lemma 4.1.1 and Lemma 4.3.2 to obtain the desired result,

i.e., we set

X(t) = D(θ(t)), Y (t) = D(φ(t)), Z(t) = ∆(t),

c =
K cosα

π
, β =

K sin |α|
2

, γ =
K

2
, δ = D(Ω).
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4.4 Synchronization estimates for Model C

In this section, we present synchronization estimates for Model C, which is

θ̇i =
µ

N2

N2∑
j=1

sin(φj − 2θi), i = 1, . . . , N1.

φ̇i =
1− µ
N1

N1∑
j=1

sin(2θj − φi + α), i = 1, . . . , N2.

(4.4.23)

Owing to the symmetry (θ, φ, α)→ (−θ,−φ,−α), without loss of generality,

we can assume that α ∈ (0, π
2
). To transform the system (4.4.23) into the

familiar form, we introduce a new variable

θ̃i := 2θi.

Then, the system (4.4.23) can be rewritten as

˙̃θi =
2µ

N2

N2∑
j=1

sin(φj − θ̃i), i = 1, . . . , N1,

φ̇i =
1− µ
N1

N1∑
j=1

sin(θ̃j − φi + α), i = 1, . . . , N2,

Throughout this section, we still use θi to denote θ̃i; i.e., we have

θ̇i =
2µ

N2

N2∑
j=1

sin(φj − θi), i = 1, . . . , N1,

φ̇i =
1− µ
N1

N1∑
j=1

sin(θj − φi + α), i = 1, . . . , N2,

(4.4.24)

Note that there are no interactions between duplicate groups, so the inter-

actions occur only for different groups. Thus, the system (4.4.24) can be

regarded as the Kuramoto model on a bipartite graph, which can be applied

in political science.

54



CHAPTER 4. KURAMOTO TYPE MODELS WITH FRUSTRATION

Example 4.4.1. As a simple example, we consider a two-oscillator system

consisting of θ1 and φ1; i.e.,

dθ1

dt
= 2µ sin(φ1 − θ1),

dφ1

dt
= (1− µ) cosα sin(θ1 − φ1) + (1− µ) sinα cos(θ1 − φ1).

We introduce the difference ψ := φ1 − θ1. Then, the system above becomes a

single equation for ψ:

dψ

dt
= −(2µ+ (1− µ) cosα) sinψ + (1− µ) sinα cosψ

= −
√

4µ2 + 4µ(1− µ) cosα + (1− µ)2 sin(ψ − Φ),

where

Φ = arctan

(
(1− µ) sinα

2µ+ (1− µ) cosα

)
∈
(

0,
π

2

)
. (4.4.25)

Note that, due to the frustration, complete phase synchronization does

not occur, even though the oscillators are identical.

4.4.1 Existence of a trapping region

In this subsection, we study the existence of a positive invariant region. We

define the extremal phases of each group, the partial diameters, and the total

diameter in ways similar to those in (4.3.16). We set

∆(t) := φm(t)− θM(t).

Note that the arguments in Lemma 4.3.1 can be applied to Model C. Thus,

the results in Lemma 4.3.1 and the statement in Remark 4.3.1 still hold.

That is, there are no collisions between the oscillators in each group.

Lemma 4.4.1. Suppose that the initial configuration satisfies

D(θ, φ)(0) < R, for some constant R < π
2
− α.

Then, we have

d+

dt
D(θ(t))

∣∣∣
t=0
≤ 0,

d+

dt
D(φ(t))

∣∣∣
t=0
≤ 0.
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Proof. By direct calculation, we have

d+

dt
D(θ(t))

∣∣∣
t=0

=
2µ

N2

N2∑
j=1

[
sin(φj(0)− θM(0))− sin(φj(0)− θm(0))

]
= − 4µ

N2

sin
D(θ(0))

2

N2∑
j=1

cos

(
φj(0)− θM(0)

2
+
φj(0)− θm(0)

2

)
≤ −4µ cosR sin

D(θ(0))

2

≤ 0,

where we used

−R ≤ φj − θM ≤
φj − θM

2
+
φj − θm

2
≤ φj − θm < R.

We obtain the estimate for D(φ(t)) similarly:

d+

dt
D(φ(t))

∣∣∣
t=0

=
1− µ
N1

N1∑
j=1

[
sin(θj(0)− φM(0) + α)− sin(θj(0)− φm(0) + α)

]
= −2(1− µ)

N1

sin
D(φ(0))

2

N2∑
j=1

cos

(
θj(0)− φM(0)

2
+
θj(0)− φm(0)

2
+ α

)
≤ −2(1− µ) cos(R + α) sin

D(φ(0))

2

≤ 0.

Lemma 4.4.2. Let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.4.24)

satisfying

max
{
|∆(0)|,Φ

}
+D(θ(0)) +D(φ(0)) < R, for some constant R < π

2
− α.

(4.4.26)

Then, we have the following:

(i) D(θ, φ)(t) < R, ∀ t ≥ 0;
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(ii) D(θ(t)) ≤ D(θ(0)), and D(φ(t)) ≤ D(φ(0)), ∀ t ≥ 0.

Proof. We define a set T1 and its supremum T ∗1 ∈ [0,∞]:

T1 :=
{
T ∈ R+ : D(θ, φ)(t) < R and ∆(t) < max{∆(0),Φ}+ α, ∀ t ∈ [0, T )

}
,

T ∗1 := sup T1.

where Φ is the positive constant defined by (4.4.25).

It follows from (4.4.26) that we have

D(θ, φ)(0) = ∆(0) +D(θ(0)) +D(φ(0)) < R, if ∆(0) > 0,

D(θ, φ)(0) ≤ D(θ(0)) +D(φ(0)) < R, if ∆(0) < 0,

and

∆(0) < max{∆(0),Φ}+ α.

By the continuity of D(θ, φ)(t) and ∆(t), there exists T > 0 such that T ∈ T1;

i.e., the set T1 is not empty and T ∗1 > 0. We now claim that

T ∗1 = +∞.

Proof of claim: Suppose not; i.e., T ∗1 <∞. Then, at t = T ∗1 we have

either D(θ, φ)(T ∗1 ) = R or ∆(t) = max{∆(0),Φ}+ α, (4.4.27)

and

D(θ, φ)(t) < R and ∆(t) < max{∆(0),Φ}+ α ∀ t ∈ [0, T ∗1 ). (4.4.28)

Then, by Lemma 4.4.1, we deduce that for all t ∈ [0, T ∗1 ) the partial diameters

D(θ(t)) and D(φ(t)) are nonexpanding. Hence, we have

D(θ(t)) ≤ D(θ(0)) and D(φ(t)) ≤ D(φ(0)), ∀ t ∈ [0, T ∗1 ). (4.4.29)

Next, we estimate the lower and upper bounds for ∆(t) in [0, T ∗1 ). Obviously,

we have

d

dt
∆(t) = − 2µ

N2

N2∑
j=1

sin(φj − θM) +
1− µ
N1

N1∑
j=1

sin(θj − φm + α).
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Note that

∆ ≤ φj − θM ≤ ∆ +D(φ), −∆−D(θ) ≤ θj − φm ≤ −∆, ∀ t ∈ [0, T ∗1 ).

We use (4.4.28)–(4.4.29) to obtain the upper bound

∆̇ ≤ −2µ sin ∆− (1− µ) sin(∆− α)

= −(2µ+ (1− µ) cosα) sin ∆ + (1− µ) sinα cos ∆

= −A sin ∆ +B cos ∆

= −
√
A2 +B2 sin(∆− Φ).

We note that the solution of the ODE

ẋ = −
√
A2 +B2 sin(x− Φ), x(0) = ∆(0) ∈ (−π

2
,
π

2
),

monotonically approaches the equilibrium x∗ = Φ; therefore, by the principle

of comparison we have an upper bound

∆(t) ≤ max{∆(0),Φ}, t ∈ [0, T ∗1 ). (4.4.30)

Similarly, we use (4.4.28)–(4.4.29) to derive

∆̇ ≥ −2µ sin(∆ +D(φ))− (1− µ) sin
(
∆ +D(θ)− α

)
≥ −2µ sin(∆ +D(φ(0)))− (1− µ) sin

(
∆ +D(θ(0))− α

)
= − sin ∆

(
2µ cos(D(φ(0))) + (1− µ) cos(D(θ(0))− α)

)
− cos ∆

(
2µ sin(D(φ(0))) + (1− µ) sin(D(θ(0))− α)

)
= −C sin(∆ + Φ̂),

(4.4.31)

where C = C(D(θ(0)), D(φ(0)), α, µ) is a positive constant and Φ̂ is given by

Φ̂ = arctan
[ 2µ sin(D(φ(0))) + (1− µ) sin(D(θ(0))− α)

2µ cos(D(φ(0))) + (1− µ) cos(D(θ(0))− α)

]
∈
(
− π

2
,
π

2

)
.

We use the elementary inequality

x1

y1

≤ x1 + x2

y1 + y2

≤ x2

y2

, if
x1

y1

≤ x2

y2

and y1, y2 > 0,
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as well as the monotonicity of tan x, x ∈
(
−π

2
, π

2

)
, to observe that Φ̂ is located

within the interval bounded by D(θ(0))− α and D(φ(0)).

Consider the following ODE:

ẏ = −C sin(y + Φ̂), y(0) = ∆(0).

Its solution y(t) monotonically approaches the equilibrium y∗ = −Φ̂; thus,

the trajectory y(t) is confined within the interval bounded by −Φ̂ and ∆(0).

We now recall (4.4.31) and use the principle of comparison to derive

∆(t) ≥ y(t).

Therefore, we have

∆(t) ≥ min{−Φ̂, ∆(0)} ≥ min
{
α−D(θ(0)), −D(φ(0)), ∆(0)

}
. (4.4.32)

We combine (4.4.30) and (4.4.32), the estimates of the upper and lower

bounds, to obtain

−max{D(θ(0)), D(φ(0)),∆(0)} ≤ ∆(t) ≤ max{∆(0),Φ}, ∀ t ∈ [0, T ∗1 ).

(4.4.33)

Then, from the continuity we know that the estimate (4.4.33) is still valid

for t = T ∗1 ; thus,

−max{D(θ(0)), D(φ(0)),∆(0)} ≤ ∆(T ∗1 ) < max{∆(0),Φ}+ α. (4.4.34)

We now combine (4.4.29) and (4.4.33) to estimate D(θ, φ)(t) on [0, T ∗1 ).

• Case 1 (∆(t) ≥ 0) : In this case, we have

D(θ, φ)(t) = ∆(t)+D(θ(t))+D(φ(t)) ≤ max{∆(0),Φ}+D(θ(0))+D(φ(0)).

• Case 2 (∆(t) < 0) : In this case, we have

D(θ, φ)(t) ≤ D(θ(t)) +D(φ(t)) ≤ D(θ(0)) +D(φ(0)).

We use the continuity of D(θ, φ)(t) and combine Cases 1 and 2 at t = T ∗1 to

observe that

D(θ, φ)(T ∗1 ) ≤ max{∆(0),Φ}+D(θ(0)) +D(φ(0)) < R. (4.4.35)
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Note that (4.4.34)–(4.4.35) contradict (4.4.27). Hence, T ∗1 =∞, which implies

that

D(θ, φ)(t) < R, ∀ t ≥ 0.

Thus, we have the result(i) desired. To derive the result(ii), we use the re-

sult(i) and Lemma 4.4.1.

4.4.2 Relaxation estimate

In this subsection, by means of the following theorem, we present an estimate

of the relaxation toward the phase-locked states.

Theorem 4.4.1. Let (θ, φ) = (θ(t), φ(t)) be the smooth solution to (4.4.24)

with initial data satisfying

max
{
|∆(0)|,Φ

}
+D(θ(0)) +D(φ(0)) < R, for some constant R < π

2
− α.

Then each group exhibits asymptotic phase synchronization and the two groups

will asymptotically become separated. More precisely, D(θ(t)), D(φ(t)) and

∆(t) satisfy the following estimates:

(i) D(θ(t)) ≤ D(θ(0)) exp

{
−
(4µ cosR

π

)
t

}
, t ≥ 0.

(ii) D(φ(t)) ≤ D(φ(0)) exp

{
−
(2(1− µ) cos(R + α)

π

)
t

}
.

(iii) ∆(t)→ Φ, as t→∞.

Here, Φ is given by (4.4.25).

Proof. First, by Lemma 4.4.2, we have

D(θ, φ)(t) < R, D(θ(t)) ≤ D(θ(0)), D(φ(t)) ≤ D(φ(0)), ∀ t ≥ 0.

(i) In the proof of Lemma 4.4.2, we used

Ḋ(θ) ≤ −4µ cosR sin
D(θ)

2
≤ −4µ

π
cosRD(θ),
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where we used sinx ≥ 2
π
x, x ∈

(
0, π

2

)
. Then, the standard Gronwall estimate

yields the desired result.

(ii) Similarly, we have

Ḋ(φ) ≤ −2(1− µ) cos(R + α) sin
D(φ)

2
≤ −2(1− µ)

π
cos(R + α)D(φ).

(iii) This assertion follows from the phase synchronization of each group and

the analysis in Example 4.4.1.

4.5 Numerical examples

In this section, we present several numerical examples and compare the sim-

ulation results with the analytical results in this chapter.

4.5.1 Model A

For the simulation, we used the fourth-order Runge-Kutta method and em-

ployed the parameters

N = 100, K = 20.

The natural frequencies Ωi were randomly chosen from the interval (−1, 1)

so that

D(Ω) = 1.9867, Ωc = 0.

The initial configuration θ0
i was randomly chosen from the interval (0, π −

2× 0.7) satisfying

D(θ0) = 1.7130.

For a fixed initial configuration, we will compare the case α = 0 with other

cases (i.e., α = 0.3, 0.7) to observe the effects of the frustrations. Note that

D(θ0) satisfies our assumptions in Theorem 4.2.1. The initial and limiting

phase configurations are displayed in Figure 4.1(a) and (b).

Although we do not have the optimal decay rate for D(ω(t)) in Theo-

rem 4.2.1, the upper bound estimate for D(ω(t)) suggests that the decay

rate is proportional to cos(D∞+ε) ≈ cosD∞. Recall that the reference angle
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D∞ is defined by (4.2.8). We observe that as α increases, cosD∞ decrease,

i.e., the decay rate may decrease, which can be seen in Figure 4.1(c).

4.5.2 Model B

Figure 4.2 shows the effects of α on the dynamic behavior of θ and φ. We

consider effects such as preservation of segregated states and relaxation to

the two-point clusters. For this simulation, we employed

N = 40, K = 10.

The initial configurations of θ and φ were randomly chosen from (0, π − 2×
0.8), and Ω was chosen from (0, 1) so that Ω1 > Ω2. From the numerical

simulations, we observed that the segregated states are robust, as expected

from Proposition 4.3.1. We can see the effect of α on the asymptotic phase

of θ and φ in Figure 4.2(c).

Figure 4.3 shows the effect of K for fixed N and α. In this simulation, we

used

N = 40, α = 0.8,

and the initial configurations θ0, φ0 and Ω was the same as for Figure 4.2.

We see in Figure 4.3 that the value of ∆ is affected by that of K. Based

on these two simulations, we conclude that the behavior of θ and φ is asymp-

totically like that for the two-oscillators system.

4.5.3 Model C

To produce Figure 4.4, we used

N1 = 30, N2 = 70, α = 0.3.

The initial configuration of θ0 and φ0 was chosen randomly from [0, π] and

[0, π − 2 × 0.3], respectively. We compare the case µ = 0.2 with the case

µ = 0.8 with the same initial configuration. In Figure 4.4(b), we observe that

θ and φ are synchronized to two distinct point clusters. In Figures 4.4(c)

and 4.4(d), we observe that if µ is small, then the sub-configuration of φ

becomes synchronized faster than the sub-configuration of θ, whereas if µ is
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large, then θ synchronizes faster than φ. Note that the group φ is under the

effect of frustration. Hence, when µ is large, the group φ becomes synchro-

nized much slower than the group θ, because of the low coupling strength and

the effect of the frustration on the dynamics of φ. This is why the difference

in relaxation rates in Figure 4.4(d) is much greater than the difference in

relaxation rates in Figure 4.4(c). Recall that the group distance ∆ depends

on the frustration α and the coupling strength µ. Thus, in the next two sets

of simulations, we investigated the dynamic behavior of ∆ with respect to α

and µ separately.

Figure 4.5 shows the relation between α and the group distance ∆. For

this simulation, we used

N1 = 70, N2 = 30, µ = 0.6,

and the initial configurations θ0 and φ0 were chosen randomly from [0, π −
2× 0.9]. Note that if α = 0, then θ and φ are completely synchronized, even

though there is no coupling strength within the group. The same phenomenon

exists in the Kuramoto model for identical oscillators. We see that ∆ is

monotonically increasing as α increases.

Figure 4.6 shows the relation between µ and ∆. For this simulation, we

used

N1 = 60, N2 = 40, α = 0.5,

and the initial configurations θ0 and φ0 were chosen ramdomly from[0, π −
2 × 0.5]. From the numerical simulations, it is easy to see that the group

distance ∆ decreases as µ increases.
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(a) Initial phase configuration (b) Final phase configuration

(c) logD(ω) for α = 0, 0.3, 0.7

Figure 4.1: Model A: The initial and limiting phase configurations are dis-

played in (a) and (b). We observe that as α increases, cosD∞ decrease, i.e.,

the decay rate may decrease, which can be seen in (c).
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(a) Initial phase configuration (b) Final phase configuration

(c) Dynamics of ∆ for α = 0.2, 0.4, 0.6, 0.8

Figure 4.2: Model B: Figure shows the effects of α on the dynamic behavior

of θ and φ. The initial configurations of θ and φ were randomly chosen from

(0, π − 2 × 0.8), and Ω was chosen from (0, 1) so that Ω1 > Ω2. From the

numerical simulations, we observed that the segregated states are robust. We

can see the effect of α on the asymptotic phase of θ and φ in (c)

65



CHAPTER 4. KURAMOTO TYPE MODELS WITH FRUSTRATION

Figure 4.3: Model B: dynamics of ∆ for K = 3, 5, 10, 20. The initial con-

figurations θ0, φ0 and Ω were the same as for Figure 4.2. We can see that

the value of ∆ is affected by that of K. Based on these two simulations,

we conclude that the behavior of θ and φ is asymptotically like that for the

two-oscillators system.
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(a) Initial phase configuration (b) Final phase configuration

(c) µ = 0.2 (d) µ = 0.8

Figure 4.4: Model C: dynamics of phases for µ = 0.2, 0.8. The initial config-

uration of θ0 and φ0 was chosen randomly from [0, π] and [0, π − 2 × 0.3],

respectively. We compare the case µ = 0.2 with the case µ = 0.8 with the

same initial configuration. In Figure 4(b), we observe that θ and φ are syn-

chronized to two distinct point clusters. In (c) and (d), we observe that if µ

is small, then the sub-configuration of φ becomes synchronized faster than

the sub-configuration of θ, whereas if µ is large, then θ synchronizes faster

than φ. Note that the group φ is under the effect of frustration.
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Figure 4.5: Model C: dynamics of ∆ for α = 0, 0.3, 0.6, 0.9. The initial con-

figurations θ0 and φ0 were chosen randomly from [0, π − 2× 0.9]. Note that

if α = 0, then θ and φ are completely synchronized, even though there is no

coupling strength within the group. We see that ∆ is monotonically increas-

ing as α increases.

Figure 4.6: Model C: dynamics of ∆ for µ = 0.1, 0.3, 0.6, 0.9. The initial

configurations θ0 and φ0 were chosen ramdomly from[0, π − 2 × 0.5]. We

observe that the group distance ∆ decreases as µ increases.

68



Chapter 5

Kuramoto model with inertia

and frustration

In this chapter, we will study the intricate interplay between inertial ef-

fect and interaction frustration in as ensemble of Kuramoto oscillators. This

chapter is based on joint works in [35].

The inertial effect on the Kuramoto model was first conceived by Ermen-

trout [31] to explain the slow synchronization of certain biological systems,

e.g. fireflies of the Pteroptyx malaccae, but the inertia Kuramoto model ap-

pears in the modeling of superconducting Josephson junction arrays [70, 71].

Mathematically, incorporating the inertial effect to the Kuramoto model is

simply to add the second order term mθ̈i, and the inertia causes rich phe-

nomena from the dynamical view point [2, 19, 41, 42, 67].

5.1 The Kuramoto model with inertia

In this section, we briefly review the second-order Kuramoto model.

Let θi = θi(t) ∈ R be the phase of i-th oscillator with a natural frequency

Ωi. Then, the Kuramoto model with inertia effect can be written as

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi), t > 0, i = 1, 2, . . . , N, (5.1.1)
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We rewrite the system (5.1.1) as a system of first-order ODEs: for i =

1, · · · , N ,

θ̇i = ωi, t > 0,

ω̇i =
1

m

[
− ωi + Ωi +

K

N

N∑
j=1

sin(θj − θi)
]
.

(5.1.2)

We introduce macro-variables (center-of-mass frame) and micro-variables

(fluctuations around macro-variables) as follows:

Ωc :=
1

N

N∑
i=1

Ωi, θc :=
1

N

N∑
i=1

θi, ωc :=
1

N

N∑
i=1

ωi,

Ω̂i := Ωi − Ωc, θ̂i := θi − θc, ω̂i := ωi − ωc.

Then, due to
N∑

i,j=1

sin(θj − θi) = 0, we can easily see that the macro-variables

θc and ωc satisfy
dθc
dt

= ωc, m
dωc
dt

= −ωc + Ωc. (5.1.3)

By direct calculation, θc and ωc are given by the following explicit analytic

forms:

θc(t) = θc(0) + tΩc +m(ωc(0)− Ωc)(1− e−
t
m ),

ωc(t) = Ωc + (ωc(0)− Ωc)e
− t
m .

(5.1.4)

Note that ωc is uniformly bounded, whereas θc tends to the traveling profile

with a constant speed Ωc :

lim
t→∞

∣∣θc(t)− (θc(0) +m(ωc(0)− Ωc) + tΩc

)∣∣ = 0, lim
t→∞
|ωc(t)− Ωc| = 0.

(5.1.5)

On the other hand, the micro-variable θ̂i satisfies the same dynamics as the

original one (5.1.1):

m
¨̂
θi +

˙̂
θi = Ω̂i +

K

N

N∑
j=1

sin(θ̂j − θ̂i), i = 1, 2, . . . , N, (5.1.6)
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and the total sums of micro variables are zero:

N∑
i=1

Ω̂i = 0,
N∑
i=1

θ̂i(t) = 0,
N∑
i=1

ω̂i(t) = 0 t ≥ 0.

The above macro-micro decomposition for the second-order Kuramoto model

without frustration are crucially used in its rigorous study. However, for the

Kuramoto model with frustration and inertia, in general (5.1.3) is not true;

thus we cannot derive an macro-micro variables systems (5.1.3)-(5.1.6) in

which the macro-variable system can be easily solved.

Before we close this section, we present basic a priori estimates related

to a second-order differential inequality, which will be crucially used in this

chapter. Consider a nonnegative function satisfying the following second-

order differential inequality:

aÿ + bẏ + cy + d ≤ 0, t > 0,

y(0) = y0, ẏ(0) = y1,
(5.1.7)

where a, b, c and d are constants with a > 0 and c 6= 0. We set ν1 and ν2 as

follows:

ν1 :=
b+
√
b2 − 4ac

2a
, ν2 :=

b−
√
b2 − 4ac

2a
.

Lemma 5.1.1. [19] Let y = y(t) be a nonnegative C2-function satisfying

the differential inequality (5.1.7).

(i) If b2 − 4ac > 0, then

y(t) ≤
(
y0 +

d

c

)
e−ν1t + a

e−ν2t − e−ν1t√
b2 − 4ac

(
y1 + ν1y0 +

2d

b−
√
b2 − 4ac

)
− d
c

;

(ii) If b2 − 4ac ≤ 0, then

y(t) ≤ e−
b
2a
t
[
y0 +

4ad

b2
+
( b

2a
y0 + y1 +

2d

b

)
t
]
− 4ad

b2
.
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Remark 5.1.1. If y(t) satisfies

aÿ + bẏ + cy + d ≥ 0, b2 − 4ac > 0,

then we have

y(t) ≥
(
y0 +

d

c

)
e−ν1t + a

e−ν2t − e−ν1t√
b2 − 4ac

(
y1 + ν1y0 +

2d

b−
√
b2 − 4ac

)
− d

c
.

5.2 Synchronization estimate: identical oscil-

lators

In this section, we present complete phase synchronization estimates to the

Kuramoto model with a uniform inertia and interaction frustration for iden-

tical oscillators: for i = 1, · · · , N ,

mθ̈i + θ̇i = Ω +
K

N

N∑
j=1

sin(θj − θi + α), t ≥ 0, |α| < π

2
. (5.2.8)

5.2.1 Notations

In this subsection, we present several notations to be used later. Note that

the non-differentiable points for the extremal functions are the subset of

collision times in phase and frequency. Hence, those points are countable and

isolated. Therefore, extremal functions are piecewise C2 with respect to time

t, and Lipschitz continuous, and the asymptotic complete phase-frequency

synchronization in Defintion 2.1.1 can be rephrased as the zero convergence

of phase-frequency diameters as t→∞:

lim
t→∞

D(θ(t)) = 0, lim
t→∞

D(ω(t)) = 0.

For m > 0 and configuration (θ(t), ω(t)) we set

Cl(t) := max
{
D(θ(t)) + |α|, D(θ(t)) + |α|+ lmḊ(θ(t))

}
,

Rl(t) :=
sin Cl(t)
Cl(t)

, t ≥ 0, l = 1, 2, . . . .
(5.2.9)
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Here, Ḋ(θ(t)) is given by

Ḋ(θ(t)) := θ̇M(t)− θ̇m(t)
(
≤ D(ω(t))

)
.

Note that (5.2.9) implies

D(θ(t)) ≤ Cl(t)− |α|.

5.2.2 Complete synchronization

For the complete phase synchronization, we employ a kind of boot strapping

argument. First we show that the phase diameter is uniformly bounded, and

then we improve our rough estimate to get the zero convergence of phase

diameter.

Lemma 5.2.1. Suppose that m,K and initial configuration (θ0, ω0) satisfy

m > 0, K > 0, 0 < C1(0) < π − |α|.

Then for any solution to (5.1.1), we have

D(θ(t)) ≤ C1(0)− |α|, t ≥ 0.

Proof. We define

Γ := {T ≥ 0 : D(θ(t)) < π − 2|α|, ∀ t ∈ [0, T )}, T∗ := sup Γ.

Since C1(0) < π − |α|, we have D(θ(0)) < π − 2|α|. Due to the continuity of

D(θ(t)), there exists ε > 0 such that

D(θ(t)) < π − 2|α|, ∀ t ∈ [0, ε).

This means that the set Γ is nonempty and T∗ is well-defined. We now claim:

T∗ = +∞.

Suppose not, i.e., T∗ < +∞. Then, by the continuity of D(θ(t)), we have

D(θ(T∗)) = π − 2|α|. (5.2.10)
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On the other hand, it follows from the system (5.2.8) that we have

mD̈(θ(t)) + Ḋ(θ(t))

= −2K

N
sin

D(θ(t))

2

N∑
j=1

cos

(
θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+ α

)
(5.2.11)

Note that for all t ∈ [0, T∗),∣∣∣θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+α
∣∣∣ ≤ D(θ(t))

2
+|α| < π

2
,

D(θ(t))

2
∈
[
0,
π

2

)
.

Thus, (5.2.11) implies

mD̈(θ(t)) + Ḋ(θ(t)) ≤ 0. (5.2.12)

Then we have

D(θ(t)) ≤ D(θ(0)) +m(1− e−
t
m )Ḋ(θ(0)), ∀ t ∈ [0, T∗). (5.2.13)

By the continuity of D(θ(t)), we can see that

D(θ(T∗)) = lim
t→T∗−

D(θ(t))

≤ D(θ(0)) +m(1− e−
T∗
m )Ḋ(θ(0)) ≤ C1(0)− |α| < π − 2|α|.

This is a contradiction to (5.2.10). Thus, T∗ = +∞. We now turn back to

(5.2.13) with T∗ = +∞ to find the desired estimate.

Theorem 5.2.1. Suppose that m,K and initial configuration (θ0, ω0) satisfy

m > 0, K > 0, 0 < C1(0) < π − |α|.

Then, we have complete phase-frequency synchronization asymptotically.

Proof. (i) (Estimate on D(θ(t))): First of all, we recall (5.2.11) in the proof

of Proposition 5.2.1

mD̈(θ(t)) + Ḋ(θ(t))

= −2K

N
sin

D(θ(t))

2

N∑
j=1

cos

(
θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+ α

)
.
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From Proposition 5.2.1, for all t ≥ 0, we have∣∣∣θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+ α

∣∣∣ ≤ D(θ(t))

2
+ |α| ≤ C1(0) + |α|

2
,

and
D(θ(t))

2
∈
[
0,
π

2

)
.

Hence, the differential inequality (5.2.11) implies

mD̈(θ(t)) + Ḋ(θ(t)) ≤ −2K cos
(C1(0) + |α|

2

)
sin

D(θ(t))

2

≤ −2K

π
cos
(C1(0) + |α|

2

)
D(θ(t)),

i.e.,

mD̈(θ(t)) + Ḋ(θ(t)) +
2K

π
cos
(C1(0) + |α|

2

)
D(θ(t)) ≤ 0, a.e. t. (5.2.14)

Here we used the inequality

sinx ≥ 2

π
x, x ∈

[
0,
π

2

)
.

We now consider two cases.

• Case 1: mK < π

8 cos
(
C1(0)+|α|

2

) . In this case, we have

1− 4m
2K

π
cos
(C1(0) + |α|

2

)
> 0. (5.2.15)

Hence, we can use (5.2.14) and Lemma 5.1.1 (i) with

a = m, b = 1, c =
2K

π
cos
(C1(0) + |α|

2

)
, d = 0,

to obtain an upper bound estimate:

D(θ(t)) ≤ Ce−λ1t, λ1 =

1−
√

1− 8mK
π

cos
(
C1(0)+|α|

2

)
2m

, (5.2.16)
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where C > 0 is some constant.

• Case 2: mK ≥ π

8 cos
(
C1(0)+|α|

2

) . In this case, we have

1− 4m
2K

π
cos
(C1(0) + |α|

2

)
≤ 0.

Then we can use (5.2.14) and Lemma 5.1.1 (ii) with

a = m, b = 1, c =
2K

π
cos
(C1(0) + |α|

2

)
, d = 0,

to obtain an upper bound estimate:

D(θ(t)) ≤ e−
t

2m

[
D(θ(0)) +

(D(θ(0))

2m
+ Ḋ(θ(0))

)
t
]

= |O(1)|e−( 1
2m
−η)t.

(5.2.17)

Here η is any constant with 0 < η � 1
2m
. We combine the relations (5.2.16)

and (5.2.17) to see that D(θ(t)) exponentially decays to 0 for all m,K ≥ 0.

(ii) [Estimate on D(ω(t))] We obtain the following equation from (5.2.8):

mω̈i + ω̇i =
K

N

N∑
j=1

cos(θj − θi + α)(ωj − ωi).

By the definition of ωM and ωm, we have

mω̈M + ω̇M ≤ K cos C1(0)
N∑
j=1

(ωj − ωM),

mω̈m + ω̇m ≥ K cos C1(0)
N∑
j=1

(ωj − ωm),

where we used

cos(θj − θM + α), cos(θj − θm + α) ≥ cos(D(θ) + |α|) ≥ cos C1(0), ∀ t.

This yields

mD̈(ω(t)) + Ḋ(ω(t)) +K cos C1(0)D(ω(t)) ≤ 0, a.e. t. (5.2.18)
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We again consider two cases here.

• Case 1: mK < 1
4 cos C1(0)

. In this case, we have

1− 4mK cos C1 > 0.

Hence, we can use (5.2.18) and Lemma 5.1.1 (i) with

a = m, b = 1, c = K cos C1(0), d = 0,

to obtain an upper bound estimate:

D(ω(t)) ≤ Ce−λ2t, λ2 =
1−

√
1− 4mK cos C1(0)

2m
,

where C > 0 is some constant.

• Case 2: mK ≥ 1
4 cos C1(0)

. In this case, we have

1− 4mK cos C1(0) ≤ 0.

Then we use (5.2.18) and Lemma 5.1.1 (ii) with

a = m, b = 1, c = K cos C1(0), d = 0,

to obtain an upper bound estimate:

D(ω(t)) ≤ e−
t

2m

[
D(ω(0)) +

(D(ω(0))

2m
+ Ḋ(ω(0))

)
t
]

= |O(1)|e−( 1
2m
−η)t.

Here η is any constant with 0 < η � 1
2m
.

We next derive a refined estimate for the asymptotic decay exponent for

small inertia regime.

Theorem 5.2.2. (Nearly-optimal decay exponent) Suppose that m,K and

initial configuration satisfy

m > 0, mK <
1

4 cosα
, 0 < C1(0) < π − |α|.

Then for any sufficiently small ε > 0, there exists time t∗ > 0 such that

C1e
−λ0(t−t∗) ≤ D(θ(t)) ≤ C2e

−λ′0(t−t∗), ∀ t > t∗,

where λ0 =
1−
√

1−4mK cos(|α|−ε)
2m

, λ′0 =
1−
√

1−4mK cos(|α|+ε)
2m

.
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Proof. • (Lower bound estimate): First of all, due to mK < 1
4 cosα

, we can

find a positive ε0 � 1, such that

1− 4mK cos(|α| − ε) > 0, for all ε < ε0. (5.2.19)

We now recall the relation (5.2.11), i.e.,

mD̈(θ(t)) + Ḋ(θ(t))

= −2K

N
sin

D(θ(t))

2

N∑
j=1

cos

(
θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+ α

)
.

By Theorem 5.2.1, we see that D(θ(t)) decays to 0 exponentially fast for any

choice of positive parameters m and K. Therefore, for all ε < ε0, there exists

some t∗ > 0 such that

D(θ(t)) < ε, ∀ t ≥ t∗.

This implies that

cos

(
θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+ α

)
< cos(|α| − ε), ∀ t ≥ t∗.

Hence, we can use the inequality (5.2.11) and sin D(θ(t))
2
≤ D(θ(t))

2
to find that

mD̈(θ(t)) + Ḋ(θ(t)) +KD(θ(t)) cos(|α| − ε) ≥ 0, a.e. t ≥ t∗.

Thanks to (5.2.19), we can apply Lemma 5.1.1 to derive a lower bound esti-

mate:

D(θ(t)) ≥ C1e
−λ0t, ∀ t ≥ t∗.

• (Upper bound estimate): Obviously, for the same ε, we have

1− 4mK cos(|α|+ ε) > 0.

Note that for the same t∗, we have

cos

(
θj(t)− θM(t)

2
+
θj(t)− θm(t)

2
+ α

)
> cos(|α|+ ε), ∀ t ≥ t∗.

Note that sinx = x+O(x3) for x� 1. Then it follows from (5.2.11) that

mD̈(θ(t)) + Ḋ(θ(t)) +KD(θ(t)) cos(|α|+ ε) ≤ 0, a.e. t ≥ t∗.
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Then we apply Lemma 5.1.1 (i) to derive the desired upper bound estimate:

D(θ(t)) ≤ C2e
−λ′0t, ∀ t ≥ t∗.

Remark 5.2.1. Theorem 5.2.2 gives a nearly-optimal decay rate estimate

for D(θ(t)) under the small inertia regime. Since ε can be sufficiently small,

we have

λ0 ≈ λ′0 ≈
1−
√

1− 4mK cosα

2m
.

5.3 Synchronization estimate: non-identical os-

cillators

In this section, we consider non-identical oscillators with distributed natural

frequencies. Recall the Kuramoto model with a uniform inertia and interac-

tion frustration: for i = 1, · · · , N ,

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi + α), t ≥ 0, |α| < π

2
. (5.3.20)

This is equivalent to the following first order system:

θ̇i = ωi ,

mω̇i = −ωi + Ωi +
K

N

N∑
j=1

sin(θj − θi + α).
(5.3.21)

We will derive two frameworks for the asymptotic synchronization depending

on the strength of inertia.

5.3.1 A small inertia regime

In this part we consider the small inertia regime. We first introduce several

structural conditions on the parameters of the system (5.3.20). For a fixed

K > 0,
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• (Hs1) The oscillators are non-identical and the diameter of natural

frequencies satisfy

K >
D(Ω)

1− sin |α|
.

• (Hs2) The strength of inertia m satisfies

m <
∆∞

4K sin ∆∞
,

where ∆∞ is the (unique) root of the following trigonometric equation:

sinx =
D(Ω) +K sin |α|

K
, x ∈

(
0,
π

2

)
.

Here we note that the condition (Hs1) guarantees the above trigonometric

equation has a solution, since the right-hand side is a positive number less

than 1.

We set

µ1 :=
1 +

√
1− 4mKR̄1

2m
, µ2 :=

1−
√

1− 4mKR̄1

2m
,

where R̄1 is a constant given by

R̄1 :=
sin ∆∞

∆∞
.

Lemma 5.3.1. Suppose that (Hs1) and (Hs2) hold, and the initial configu-

ration satisfies

C2(0) < ∆∞.

Then, we have

Ḋ(θ(0)) + µ1(D(θ(0)) + |α|)− 2(D(Ω) +K sin |α|)
1−

√
1− 4mKR̄1

≤ 0.

Proof. By direct calculation, we have

Ḋ(θ(0)) + µ1(D(θ(0)) + |α|)− 2(D(Ω) +K sin |α|)
1−

√
1− 4mKR̄1
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= Ḋ(θ(0)) +
1 +

√
1− 4mKR̄1

2m
(D(θ(0)) + |α|)

−(D(Ω) +K sin |α|)(1 +
√

1− 4mKR̄1)

2mKR̄1

=
1

2m

[
2mḊ(θ(0)) +D(θ(0)) + |α| −∆∞

+
√

1− 4mKR̄1

(
D(θ(0)) + |α| −∆∞

)]
≤ 1

2m

[
C2(0)−∆∞ +

√
1− 4mKR̄1

(
C2(0)−∆∞

)]
≤ 0.

We can derive a trapping region for the phases based on Lemma 5.3.1.

Proposition 5.3.1. Suppose that (Hs1) and (Hs2) hold, and the initial con-

figuration satisfies

C2(0) < ∆∞.

Then, for any global solution to the system (5.3.20), we have

D(θ(t)) ≤ ∆∞ − |α|, t ≥ 0.

Proof. We use the proof by contradiction. We set

T := {T ∈ [0,∞) : D(θ(t)) < ∆∞ − |α|, ∀ t ∈ [0, T )}, T∗ := sup T .

Since C2(0) < ∆∞, we see that D(θ0) < ∆∞ − |α|. By continuity of D(θ(t)),

the set T contains some small interval [0, ε), which means that T∗ is well-

defined. We claim that

T∗ = +∞.

Suppose not, i.e., T∗ < +∞. Then by continuity we should have

D(θ(T∗)) = ∆∞ − |α|. (5.3.22)

We now make an estimate for the diameter D(θ(t)). By system equation
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(5.3.20) we have

mD̈(θ(t)) + Ḋ(θ(t))

≤ ΩM − Ωm +
K

N

N∑
j=1

[
sin(θj − θM + α)− sin(θj − θm + α)

]
≤ D(Ω) +

K cosα

N

N∑
j=1

[
sin(θj − θM)− sin(θj − θm)

]
+
K sinα

N

N∑
j=1

[
cos(θj − θM)− cos(θj − θm)

]
, t ∈ [0, T∗).

We consider two cases according to the sign of α.

• Case 1: α ∈ [0, π
2
). In this case, we have

mD̈(θ(t)) + Ḋ(θ(t))

≤ D(Ω) +
K cosα sinD(θ(t))

ND(θ(t))

N∑
j=1

[
(θj(t)− θM(t))− (θj(t)− θm(t))

]
+
K sinα

N

N∑
j=1

[
1− cosD(θ(t))

]
= D(Ω)−K

[
sin (D(θ(t)) + α)− sinα

]
= D(Ω)−K

[
sin (D(θ(t)) + |α|)− sin |α|

]
.
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• Case 2: α ∈ (−π
2
, 0). In this case, we have

mD̈(θ(t)) + Ḋ(θ(t))

≤ D(Ω) +
K cosα sinD(θ(t))

ND(θ(t))

N∑
j=1

[
(θj(t)− θM(t))− (θj(t)− θm(t))

]
+
K sinα

N

N∑
j=1

[
cosD(θ(t))− 1

]
= D(Ω)−K

[
sin (D(θ(t))− α) + sinα

]
= D(Ω)−K

[
sin (D(θ(t)) + |α|)− sin |α|

]
,

where we used

cos(θj(t)− θM(t)), cos(θj(t)− θm(t)) ≤ 1,

and D(θ(t)) < ∆∞ − |α| < π
2
, ∀ t ∈ [0, T∗), which means

cos(θj(t)− θm(t)), cos(θj(t)− θM(t)) ≥ cosD(θ(t)), ∀ t ∈ [0, T∗).

We combine Case 1 and Case 2 to get a differential inequality as follows:

mD̈(θ(t)) + Ḋ(θ(t)) ≤ D(Ω)−K
[

sin (D(θ(t)) + |α|)− sin |α|
]
, a.e. t ∈ [0, T∗).

(5.3.23)

We now set

∆(t) := D(θ(t)) + |α|,

then the inequality (5.3.23) implies

m∆̈(t) + ∆̇(t) +K sin ∆(t)−D(Ω)−K sin |α| ≤ 0, a.e. t ∈ [0, T∗).

Since ∆(t) < ∆∞, t ∈ [0, T∗), we can use the inequality

sin ∆(t)

∆(t)
≥ sin ∆∞

∆∞
(0 ≤ t < T∗)

to obtain

m∆̈(t) + ∆̇(t) +KR̄1∆(t)−D(Ω)−K sin |α| ≤ 0, a.e. t ∈ [0, T∗).

(5.3.24)
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Since 1− 4mKR̄1 > 0, we can apply Lemma 5.1.1 (i) with

a = m, b = 1, c = KR̄1, d = −D(Ω)−K sin |α|,

to obtain

∆(t) ≤
(

∆(0)− D(Ω) +K sin |α|
KR̄1

)
e−µ1t +m

e−µ2t − e−µ1t√
1− 4mKR̄1

×
(

∆̇(0) + µ1∆(0)− 2(D(Ω) +K sin |α|)
1−

√
1− 4mKR̄1

)
+
D(Ω) +K sin |α|

KR̄1

= ∆(0)e−µ1t +
D(Ω) +K sin |α|

KR̄1

(
1− e−µ1t

)
+m

e−µ2t − e−µ1t√
1− 4mKR̄1

(
∆̇(0) + µ1∆(0)− 2(D(Ω) +K sin |α|)

1−
√

1− 4mKR̄1

)
.

By assumption (Hs2) we have

D(Ω) +K sin |α|
KR̄1

=
sin ∆∞

R̄1

= ∆∞.

Thus, we have

∆(t) ≤ ∆∞ + (∆(0)−∆∞)e−µ1t

+m
e−µ2t − e−µ1t√

1− 4mKR̄1

(
∆̇(0) + µ1∆(0)− 2(D(Ω) +K sin |α|)

1−
√

1− 4mKR̄1

)
, t ∈ [0, T∗).

We now employ Lemma 5.3.1 and 0 < µ2 < µ1 to find that

∆(t) ≤ ∆∞ + (∆(0)−∆∞)e−µ1t, t ∈ [0, T∗).

From the continuity of ∆(t) we have

∆(T∗) < ∆∞, i.e., D(θ(T∗)) < ∆∞ − |α|.

This contradicts to (5.3.22); thus T∗ = +∞ and the desired estimate is

established.

We now give the main result for the complete synchronization under small

inertia regime.
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Theorem 5.3.1. Suppose that (Hs1) and (Hs2) hold, and the initial config-

uration satisfies

C2(0) < ∆∞.

Then for any global solutions to the system (5.3.20), we have asymptotic

complete frequency synchronization:

D(ω(t)) ≤ |O(1)|e−µ3t, µ3 :=
1−
√

1− 4mK cos ∆∞

2m
.

Proof. First of all, the frequency diameter D(ω(t)) is piecewise C2 and con-

tinuous every where. Its non-differentiable points are a subset of the collision

time in frequency, which are isolated. More precisely, there exist at most a

countable number of times 0 := t0 < t1 < · · · < t∞ ≤ ∞ such that D(ω(t))

is differentiable in each time interval (tk, tk+1), k = 1, 2, . . . . For a given time

interval (tk, tk+1), we choose two indices i1, i2 such that

ωi1(t) = ωM(t) and ωi2(t) = ωm(t), t ∈ (tk, tk+1).

By Proposition 5.3.1, we see that for all i, j = 1, 2, · · · , N,

|θi(t)− θj(t)| ≤ D(θ(t)) < ∆∞ − |α|, t ∈ (tk, tk+1),

which implies

|θi(t)− θj(t) + α| < ∆∞ <
π

2
, t ∈ (tk, tk+1),

and

cos
(
θi(t)− θj(t) + α

)
> cos ∆∞, t ∈ (tk, tk+1).

On the other hand, we use the system (5.3.21) to find

mω̈i1 + ω̇i1 =
K

N

N∑
j=1

cos(θj − θi1 + α)(ωj − ωi1)

≤ K cos ∆∞

N

N∑
j=1

(ωj − ωi1), t ∈ (tk, tk+1).

(5.3.25)
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Here we used ∆∞ < π
2

and ωj−ωi1 ≤ 0. Similarly, we can derive an inequality

for ωi2 as follows:

mω̈i2 + ω̇i2 ≥
K cos ∆∞

N

N∑
j=1

(ωj − ωi2), t ∈ (tk, tk+1). (5.3.26)

We combine the estimates (5.3.25)-(5.3.26) for each time interval to obtain

mD̈(ω) + Ḋ(ω) +K(cos ∆∞)D(ω) ≤ 0 a.e. t. (5.3.27)

By the assumption (Hs2) and sin ∆∞

∆∞
≥ cos ∆∞, we see that

1− 4mK cos ∆∞ ≥ 1− 4mK
sin ∆∞

∆∞
> 0.

Then we can apply Lemma 5.1.1 (i) with

a = m, b = 1, c = K cos ∆∞, d = 0,

to obtain the desired estimate.

5.3.2 A large inertia regime

In this part we consider a large inertia case. We first impose several structural

conditions on the parameters of the system (5.3.20). For a fixed K > 0,

• (H`1) The inertia satisfies

mK ≥ π

8
.

• (H`2) The natural frequencies and frustration satisfy

4m(D(Ω) +K sin |α|) < π

2
.

For convenience we denote

∆∞` := 4m(D(Ω) +K sin |α|).

Again we derive a trapping region estimate and then give the main result on

complete synchronization.
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Proposition 5.3.2. Suppose that (H`1) and (H`2) hold, and the initial con-

figuration satisfies

C2(0) < ∆∞` .

Then for the smooth global solution to system (5.3.20), we have

D(θ(t)) < ∆∞` − |α|, t ≥ 0.

Proof. We use the proof by contradiction. We set

T` := {T ∈ [0,∞) : D(θ(t)) < ∆∞` − |α|, ∀ t ∈ [0, T )}, T ∗` := sup T`.

Since C2(0) < ∆∞` , we see that D(θ0) < ∆∞` − |α|. By continuity of D(θ(t)),

the set T` contains some small interval [0, ε), which means that T` is non-

empty and T ∗` is well-defined. We claim that

T ∗` = +∞.

Suppose not, i.e., T ∗` < +∞. Then by continuity we should have

D(θ(T ∗` )) = ∆∞` − |α|. (5.3.28)

By the same argument as in Proposition 5.3.1 we have

m∆̈(t) + ∆̇(t) +KR̄2∆(t)−D(Ω)−K sin |α| ≤ 0, a.e. t ∈ [0, T ∗` ),

(5.3.29)

where ∆(t) := D(θ(t)) + |α| and

R̄2 :=
sin ∆∞`

∆∞`
.

Thanks to the assumptions (H`1) and (H`2), we can use the elementary

inequality

sinx ≥ 2

π
x, x ∈

(
0,
π

2

)
,

to derive

1− 4mKR̄2 ≤ 0.
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Then, we can apply Lemma 5.1.1 (ii) with

a = m, b = 1, c = KR̄2, d = −D(Ω)−K sin |α|,

to see

∆(t) ≤ e−
1

2m
t

[
∆(0)− 4m(D(Ω) +K sin |α|)

+

(
1

2m
∆(0) + ∆̇(0)− 2(D(Ω) +K sin |α|)

)
t

]
+ 4m(D(Ω) +K sin |α|)

≤ e−
1

2m
t

2m

(
C2(0)−∆∞`

)
t+ e−

1
2m

t
(
C2(0)−∆∞`

)
+ ∆∞` , t ∈ [0, T∗).

Hence, we have

∆(T ∗` ) < ∆∞` , i.e., D(θ(T ∗` )) < ∆(t)− |α|.

This contradicts to (5.3.28); thus T ∗` = +∞ and the desired estimate is

established.

We set

µ̄1 :=
1 +

√
1− 4mK cos ∆∞`

2m
, µ̄2 :=

1−
√

1− 4mK cos ∆∞`
2m

,

Theorem 5.3.2. Suppose that (H`1) and (H`2) hold, and the initial config-

uration satisfies

C2(0) < ∆∞` .

Then for any global solution to the system (5.3.20) with initial data (θ0, θ̇0),

we have complete frequency synchronization, more precisely,

D(ω(t)) ≤ max{U1(t), U2(t)}, t ≥ 0,

where U1 and U2 are given by the following relations:

U1(t) := D(ω(0))e−µ̄1t +m
e−µ̄2t − e−µ̄1t√

1− 4mK cos ∆∞`

(
Ḋ(ω(0)) + µ̄1D(ω(0))

)
,

U2(t) := e−
t

2m

[
D(ω(0)) +

(D(ω(0))

2m
+ Ḋ(ω(0))

)
t
]
.
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Proof. By the similar argument as in Theorem 5.3.1 we can derive an differ-

ential inequality as follows:

mD̈(ω) + Ḋ(ω) +K(cos ∆∞` )D(ω) ≤ 0 a.e. t. (5.3.30)

Next, we apply Lemma 5.1.1 with

a = m, b = 1, c = K cos ∆∞` , d = 0,

in two cases depending on different regions of the discriminant b2 − 4ac.

• Case 1(1 − 4mK cos ∆∞` > 0) : In this case, we apply Lemma 5.1.1 (i) to

find

D(ω(t)) ≤ D(ω(0))e−µ̄1t +m
e−µ̄2t − e−µ̄1t√

1− 4mK cos ∆∞`

(
Ḋ(ω(0)) + µ̄1D(ω(0))

)
.

• Case 2 (1− 4mK cos ∆∞` ≤ 0) : In this case, we apply Lemma 5.1.1 (ii) to

find

D(ω(t)) ≤ e−
t

2m

[
D(ω(0)) +

(D(ω(0))

2m
+ Ḋ(ω(0))

)
t
]
.

Then we combine the estimates in two cases to obtain the desired result.

5.4 Numerical simulations

In this section, we present several numerical examples to display the complex

interplay between inertia and frustration, and we compare simulation results

with analytical results in previous sections. For the simulations, we used the

fourth-order Runge-Kutta method.

5.4.1 Identical oscillators

In this subsection, we discuss several numerical simulations for identical os-

cillators and compare these with the analytical results in Section 5.2. To see

the interplay between inertia m and frustration α, we study the effect of each

while the other is fixed. In all simulations, we used K = 1 and N = 100.
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Fixed frustration and varying inertia

To see the effect of inertia at fixed frustration as in Theorem 5.2.2, we per-

formed two sets of simulations with α = 0.3 and α = 0.9, respectively. First

of all, Theorem 5.2.1 predicts that for all positive values of m and K, the

diameters D(θ(t) and D(ω(t)) decay exponentially fast. As noted in Theo-

rem 5.2.2 and Remark 5.2.1, if m < mc(K,α) :=
1

4K cosα
, then we have a

nearly optimal exponential decay which means that logD(θ(t)) decays lin-

early. Moreover, for either case, as we increase the strength of the inertia

from m = 0.1, the decay of D(θ(t)) and D(ω(t)) becomes more rapid until

m reaches the threshold mc.

In the case of Figure 5.1, with α = 0.3, the initial configuration was

randomly chosen from the interval (0, π − 2× 0.3) satisfying

D(θ0) = 1.9867.

Note that in Figure 5.1 oscillatory motions emerge in the regime m ≥ 0.27,

whereas no oscillatory motions appear in the regime m < 0.26. This is ex-

actly as predicted by Theorem 5.2.2: if m < 1
4 cos 0.3

≈ 0.2617, then logD(θ(t))

decays linearly.

In the case of Figure 5.2, with α = 0.9, the initial configuration was

extracted from (0, π − 2 × 0.9). Note that in Figure 5.2 oscillatory motions

appear in the relaxation process for m ≥ 0.41, which coincides with the result

predicted by Theorem 5.2.2:

mc =
1

4 cos 0.9
≈ 0.4022.

Another observation in these simulations is, as m is increased beyond mc,

the decay rate becomes smaller as m increases (see Figure 5.1 (c)-(d) and

Figure 5.2 (c)-(d)). This is opposite to regime m < mc.

Fixed inertia and varying frustration

In this subsection, we consider the situation in which the frustration α is

varied for a fixed m to concentrate on the effect of α. Again, it follows from
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Theorem 5.2.2 that if α > αc(m,K) := arccos
( 1

4mK

)
, then D(θ(t)) and

D(ω(t)) will decay exponentially fast without any oscillatory motion. To

confirm this theoretical expectation, we employed the fixed value m = 0.3,

and the initial configuration was chosen from (0, π). With these settings, the

critical frustration αc theoretically satisfies

αc(0.3, 1) = arccos
5

6
≈ 0.5857.

Figure 5.3 shows the qualitative difference between the regimes α ≤ 0.5

and α ≥ 0.6. In particular, logD(θ(t)) decays linearly when α ≥ 0.6 and the

asymptotic decay rate (the slope of the line) decreases as α increases, which

is expected from Theorem 5.2.2. Note that for small α < αc, the oscillatory

phase appears, and the oscillation period increases as α is increased toward

αc from some value below αc. We conjecture that the period of oscillation

diverges to ∞ as α→ αc.

Relation between oscillation period and m

In this subsection, we observe the relation between the oscillation period and

the parameters m and α through numerical simulations. In particular, we

focus on the effect of the frustration α on the oscillation period. For this,

we first consider the case with no frustration; i.e., α = 0. In this case, as

shown by Figure 5.4, the oscillation period decreases as m increases from

0.3 to 0.5. However, for m ≥ 0.5, Table 5.1 shows that the period begins

to increase as m increases. Here, Table 5.1 was obtained by examining the

time of the local minimum of log(D(θ(t))) for each value of m. Of course, in

the presence of frustration, similar phenomena occur. However, some other

things occur as well. For the simulations with fixed α = 0.2 and α = 0.8,

we refer to Tables 5.2–5.3 and Figures 5.5–5.6. It follows from Tables 5.2–5.3

that as m is increased the periods begin to decrease but then increase at some

critical inertia mc(α). Although we have conducted only two simulations, we

conjecture that mc(α) is an increasing function with respect to α.
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m Starting and ending times for each period Average period

0.3 4.59 8.80 13.01 17.23 4.21

0.4 3.27 6.51 9.75 13.00 16.24 19.49 3.24

0.5 2.90 6.05 9.19 12.33 15.47 18.61 3.14

0.6 2.73 5.92 9.11 12.29 15.48 18.66 3.19

0.7 2.63 5.91 9.19 12.47 15.75 19.03 3.28

0.8 2.56 5.96 9.35 12.74 16.13 19.52 3.39

0.9 2.52 6.04 9.55 13.05 16.56 3.51

1.0 2.48 6.13 9.76 13.39 17.01 3.63

1.1 2.46 6.23 9.98 13.73 17.48 3.75

1.2 2.44 6.34 10.21 14.08 17.95 3.87

1.3 2.42 6.45 10.44 14.42 18.41 3.99

Table 5.1: Evolution of the oscillation period for (K,α) = (1, 0)

m Starting and ending times for each period Average period

0.3 4.61 9.11 13.60 18.09 4.49

0.4 3.07 6.40 9.74 13.07 16.40 19.74 3.30

0.5 2.65 5.85 9.06 12.27 15.48 18.68 3.21

0.6 2.45 5.69 8.94 12.18 15.42 18.66 3.24

0.7 2.33 5.66 8.99 12.32 15.65 18.98 3.33

0.8 2.25 5.69 9.13 12.56 16.01 19.44 3.44

0.9 2.19 5.75 9.31 12.86 16.42 19.98 3.56

1.0 2.14 5.83 9.51 13.19 16.87 3.68

1.1 2.11 5.92 9.72 13.52 17.32 3.80

1.2 2.08 6.02 9.94 13.86 17.78 3.92

1.3 2.06 6.13 10.17 14.20 18.24 4.04

Table 5.2: Evolution of the oscillation period for (K,α) = (1, 0.2)
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m Starting and ending times for each period Average period

0.4 7.92 15.34 22.72 7.40

0.5 4.50 9.51 14.52 19.51 24.54 29.47 4.99

0.6 3.53 8.13 12.72 17.33 21.92 26.52 4.60

0.7 3.05 7.58 12.07 16.59 21.10 25.61 4.51

0.8 2.78 7.34 11.87 16.40 20.93 25.47 4.54

0.9 2.59 7.24 11.84 16.44 21.05 25.65 4.61

1.0 2.47 7.23 11.91 16.62 21.31 26.02 4.71

1.1 2.37 7.26 12.05 16.84 21.68 26.49 4.82

1.2 2.30 7.32 12.25 17.16 22.09 27.01 4.94

1.3 2.24 7.40 12.44 17.48 22.52 27.57 5.06

Table 5.3: Evolution of the oscillation period for (K,α) = (1, 0.8)

5.4.2 Nonidentical oscillators

In this subsection, we present numerical simulations for nonidentical oscil-

lators. For these simulations, the natural frequencies were randomly chosen

from the interval (−0.5, 0.5) to satisfy

D(Ω) = 0.9593, Ωc = 0.

To prepare Figure 5.7, we took the frustration and the coupling strength as

α = 0.1, K = 2.

It is easy to see that the above choices satisfy the condition (Hs1) in Sec-

tion 5.3; i.e.,
D(Ω)

1− sin |α|
≈ 0.9994.

In this case, since ∆∞ = arcsin
(
D(Ω)
K

+ sin |α|
)
≈ 0.5819, the condition

(Hs2) requires that the inertia satisfy

m <
∆∞

4K sin ∆∞
≈ 0.13235.

We observe that if m ≤ 0.13, then logD(ω(t)) decays linearly. Although the

inertia m > 0.13 in Figures 5.7(c) and 5.7(d) does not satisfy (H`1), we see
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that the oscillations also occur in this case. Hence, the assumptions in Sec-

tion 5.3 are not necessary for the complete frequency synchronization.

Figure 5.8 compares simulations with different α but otherwise the same.

We took α = 0.8 and K = 4 satisfying

K >
D(Ω)

1− sin |α|
≈ 3.1828.

In this case the inertia m has to satisfy m < 0.0815 for the small-inertia

results and 0.0982 ≤ m < 0.1042 for the large-inertia results. However, Fig-

ure 5.8 shows that these assumptions are not necessary. Although m does not

satisfy our assumptions, we observe that logD(ω(t)) decays linearly for small

inertia and undergoes oscillations for large inertia. Moreover, the asymptotic

behavior of logD(θ(t)) does not depend on the value of m.
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Figure 5.1: The relaxation of phase and frequency diameters for (K,α) =

(1, 0.3).
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Figure 5.2: The relaxation of phase and frequency diameter for (K,α) =

(1, 0.9).
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Figure 5.3: The behaviors of D(θ) for (K,m) = (1, 0.3)
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Figure 5.4: Dynamics of logD(θ(t)) for α = 0
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Figure 5.5: Dynamics of logD(θ(t)) for α = 0.2
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Figure 5.6: Dynamics of logD(θ(t)) for α = 0.8
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Figure 5.7: The behaviors of phase and frequency diameters for (K,α) =

(2, 0.1)
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Figure 5.8: The behaviors of phase and frequency diameters for (K,α) =

(4, 0.8)
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Chapter 6

Conclusion and future works

6.1 Conclusion

In this thesis, we studied several problems in the ensemble of Kuramoto

oscillators. We show the nonlinear stability of the phase-locked states using

a robust `1-metric as a Lyapunov functional. The main result of Section 3.1

says that the phase-locked states are congruent each other in the sense that

one phase-locked state is the simply translation of the other and phase-shift

is the difference of averaged initial phases. Our stability approach is very

elementary and nonlinear in the sense that we do not use any linearization

arguments of the Kuramoto model at the phase-locked states and do not

require a prior spectral information. We also show the contraction property

for measure valued solutions of the KKE. If two initial Radon measures have

the same natural frequency density function and strength of coupling, we

show that the Wasserstein p-distance between corresponding measure valued

solutions is exponentially decreasing in time. This contraction principle is

more general than previous `1-contraction properties of Section 3.1.

In Chapter 4, we studied the effect of interaction frustration on the com-

plete synchronization of Kuramoto oscillators. In general, interaction frustra-

tion hinders the formation of complete (frequency) synchronization. Hence,

even for the same initial configuration, we need a larger coupling strength

to ensure the synchronization in the presence of nonzero interaction frustra-

tion. For more quantitative estimates, we considered three Kuramoto-type
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models. Our first model is for an ensemble of Kuramoto oscillators with uni-

form interaction frustration. In this case, we derived the explicit sufficient

conditions of Theorem 4.2.1 for the initial configurations, coupling strength,

and frustration that lead to complete frequency synchronization. Although

we do not have an optimal rate of decay in the frequency diameter, the up-

per bound estimate of Theorem 4.2.1 suggests how the frustration slows the

decay, and this coincides with Figure 1(b). Our second model is a special

case of the first model; i.e., the ensemble is simply a mixture of two identical

Kuramoto oscillator groups with distinct natural frequencies. In this case, we

showed that the mixed configuration evolves toward two-point cluster config-

urations exponentially fast. We also estimated the lower and upper bounds

on the distance between two point clusters in terms of the system parame-

ter K, the frustration α, and D(Ω). Our third model is like the Kuramoto

model for identical oscillators on the bipartite graph. In this case, like in the

second model, the configuration evolves toward the two-point cluster config-

uration and, furthermore, we obtained the exact asymptotic diameter of the

two-point cluster configuration.

In Chapter 5, we investigated the intricate interplay between the inertia

and frustration in an ensemble of Kuramoto oscillators. As shown in Sec-

tion 5.1, we cannot apply the explicit macro-micro decomposition to reduce

the dynamics of initial phases to that of fluctuations. However, we can still

derive second-order differential inequalities for the phase or frequency diam-

eters so that the second-order Gronwall inequality method still works well.

We presented several sufficient conditions on the parameters and initial con-

figurations to guarantee asymptotic complete synchronization of phase or

frequency. The results exhibit the interplay between the inertia and interac-

tion frustration in the relaxation process. For identical oscillators, a nearly

optimal decay rate for the phase diameter was presented, with the strength of

the inertia less than some critical value depending on the strength of the frus-

tration. Moreover, both the analytical and numerical studies demonstrated

this fact.
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6.2 Future works

We obtained some results for the dynamics of Kuramoto oscillators. How-

ever, we always have constraint on initial phase configurations: D(θ0) < π.

This condition is improved in comparison with [32] and [21]. But we can

find many studies without initial condition which is based on the numerical

approach. Because This stems from mathematical technics, it is possible to

eliminate this condition. Moreover, the transition and relaxation stages have

been studied in [17] for initial configurations with a diameter greater than

π/2. Using this results, we may shrink the diameter for any initial condition

in a finite time. Then we can deal with the problem in a similar way as be-

fore. Hopefully, we will show all the results for the synchronization without

initial phase configurations.

We next consider a system of two coupled Kuramoto oscillators with

frustration:

dθ1

dt
= Ω1 +

K

2
sin(θ2 − θ1 + α), t > 0,

dθ2

dt
= Ω2 +

K

2
sin(θ1 − θ2 + α),

(6.2.1)

where the natural frequencies Ωi and frustration α are assumed to satisfy

Ω1 > Ω2, |α| < π

2
.

To reduce the number of equations, we introduce the following differences:

θ := θ1 − θ2, Ω := Ω1 − Ω2.

Then, the system (6.2.1) becomes a single equation for the differences:

dθ

dt
= Ω−K(cosα) sin θ. (6.2.2)

We easily see that to obtain complete frequency synchronization we need to

satisfy the condition

K ≥ Ω

cosα
.

However, this critical value is less than our condition for the coupling strength

Kef = D(Ω)
1−sin |α| . As mentioned before, this condition Kef is improved on the
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previous papers [17, 32] in some sense. Hence we try to obtain more optimal

condition for the coupling strength K.

Finally, we need to improve our results for more general case:

θ̇i = Ωi +
N∑
j=1

Kij

N
sin(θj − θi + αij).

We only dealt with uniform frustration in Chapter 4 and 5, though frustration

is an interaction between oscillators. So we can consider the non-uniform

constant frustration, and furthermore it is a natural problem that frustration

is a function of t, changing with time. As a first step to generalize the results,

we can consider two identical oscillators groups with different frustration:

θ̇i = Ω1 +
K11

N1

N1∑
k=1

sin(θk − θi + α11) +
K12

N2

N2∑
k=1

sin(φk − θi + α12),

φ̇j = Ω2 +
K21

N2

N2∑
k=1

sin(φk − φj + α21) +
K22

N1

N1∑
k=1

sin(θk − φj + α22),

for i = 1, . . . , N1, j = 1, . . . , N2. In this case, it is meaningful that we com-

pare the interaction frustration(α12 and α22) between two identical oscillator

groups(θ’s and φ’s) with the intra-frustration(α11 and α21) of each group.

Moreover we do not need to assume that the interaction occurs between

all mutual oscillators. When a very large group of birds fly together, for

example, each bird is affected by only few birds close to itself. Additionally,

the network problem is natural, in which there is an interaction between

only connected objects. Hence, we can improve Model C in Chapter 4 for the

network:

θ̇i = Ωi +
∑
θj∼θi

Kij sin(θj − θi + αij).
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국문초록

이 논문에서 우리는 쿠라모토 진동자들에서 일어나는 문제들에 대해 알

아보았다. 우리는 `1 측도를 이용하여 위상 동기 상태의 비선형 안정성을

제시하였다. 어떤 위상 동기 상태는 다른 위상동기의 초기 평균상태의 차

이만큼 위상 변위되었다는 의미에서 서로 동치라고 할 수 있다. 또한 우

리는 쿠라모토 운동방정식의 해에 대한 축소 성질을 증명하였다. 우리는

쿠라모토진동자들의동기화에관한상호방해의효과에대해알아보았다.

일반적으로 상호 방해는 동기화의 형성을 저지한다. 우리는 세가지 상황

을 고려하였는데, 첫번째는 모든 입자 사이의 상호 방해가 같은 경우이다.

두번째로는 첫번째 모델의 특별한 경우로, 서로 다른 빈도를 갖는 동질 진

동자 집단이 섞여 있는 경우이다. 세번째 모델은 양분 그래프 상에 있는

진동자들에 관한 것이다. 마지막으로 우리는 관성과 방해의 상호작용에

대해 알아보았다. 여기에서 우리는 위상과 빈도의 직경에 대한 2차 그론

월 부등식을 유도하였다. 이를 보여 줄 해석적 연구와 수치적 연구를 함께

하였다.

주요어휘: 쿠라모토 모델, 궤도 안정성, 축소, 방해, 동기화

학번: 2006-30081
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