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Abstract

Let U,(g) be one of the quantum generalized Kac-Moody algebras and let
V(A) be integrable highest weight U,(g)-module with highest weight A. We
prove that V' (A) can be categorified from the cyclotomic quiver Hecke algebra
R and supercategorified from the cyclotomic quiver Hecke superalgebras
RA. Moreover, since U, (g) is the projective limit of V(A), U, (g) can also
be categorified via the quiver Hecke algebra R and supercategorified via the

quiver Hecke superalgebras R.

Key words: categorification, perfect basis, quantum generalize Kac-Moody
algebras, quiver Hecke algebras, quiver Hecke superalgebras, supercategori-
fication

Student Number: 2007-20281
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Chapter 1

Introduction

The Grothendieck group [%'] of abelian category % is the abelian group gen-
erated by [X] (X is an object of €) with the defining relations:

if 0 - X' - X — X” — 0 is an exact sequence, then [X]| = [X'] + [X"].

We say that an algebra A categorifies an algebra (or a module) B if the
Grothendieck group of some A-module category % is isomorphic to B ([6, 9]).
More precisely, elements of B replaces by modules in %, functions on B by
functors on ¢ and relations between functions on B by natural isomorphisms
between functors on %"

categorification

m some A-module

B [(g] Grothendieck group Categ()ry %

The process of taking Grothendieck group can be understood as a ”extracting
information”, since we do not consider the module itself, but the composition
series of the module. In this situation, we say that B is embedded properly
in ¥. Thus, the category € has rich structure comparing with B.



CHAPTER 1. INTRODUCTION

With a similar picture, we have understood the quantization of Kac-
Moody algebras:

quantization

T

legq quantum Kac-Moody
algebra U,(g)

Kac-Moody
algebra U(g)

—U(g)

In [27], Lascoux-Leclerc-Thibon conjectured that the coefficients of Kashi-
wara’s lower global basis (=Lusztig’s canonical basis) of type A,Eljl tells us
the composition multiplicities of simple modules inside Specht modules over
Hecke algebras. In other word, they conjectured that the Grothendieck group
of modules over Hecke algebras might encode the information of the module
V(Ap) over U(Aéi)l).

Soon after, Ariki ([1]) stated and proved a generalization of the conjecture
by using the method of geometric representation theory and Specht module
theory. More precisely, he showed that

(Arl) the Grothendieck groups of the categories of finitely generated projec-
tive modules over affine and cyclotomic Hecke algebra H and H* are
isomorphic to U, (Aéi)l) and V' (A) for all integral dominant weight A,
respectively,

(Ar2) the set of isomorphism classes of projective indecomposable modules
corresponds to Kashiwara’s lower global basis (= Lusztig’s canoni-
cal basis) under the isomorphism, which implies the Lascoux-Leclerc-
Thibon conjecture.

We have referred this to as the Lascoux-Leclerc-Thibon-Ariki theory.

After that, many mathematicians tried to extend the Lascoux-Leclerc-
Thibon-Ariki theory to general settings, such as Kac-Moody algebras for
other types, quantum Kac-Moody algebras and variants of (quantum) Kac-
Moody algebras. In [4], Brundan and Kleshchev proved that, when the
defining parameter is primitive (2¢+1)-th root of unity, the crystals consisting
of simple modules over affine and cyclotomic Hecke-Clifford superalgebras are
isomorphic to the crystal B(oo) and B(A) of type Agi). In [32], Tsuchioka

2



CHAPTER 1. INTRODUCTION

proved a similar results for type Déi)l by considering affine Hecke-Clifford
superalgebras when the defining parameter is a primitive 2(¢ + 1)-th root of
unity. However, they only gave isomorphisms in the level of crystals.

In 2008, Khovanov and Lauda ([24, 25]) and Rouquier ([33]) indepen-
dently introduced certain graded algebras which depend on the root system
R = @sco+ R(B), called the Khovanov-Lauda-Rouquier algebras or quiver
Hecke algebras, which is a breakthrough in many aspects. Comparing with
previous results on the categorification theory, the quiver Hecke algebras
provide categorifications of quantum Kac-Moody algebras corresponding to
arbitrary symmetrizable Cartan datum. More precisely, for each Cartan da-
tum, we can define the quiver Hecke algebra R such that

Uy (g) = [Proj(R)] = €D [Proj(R(8))],

peQ+

where U, (g) is the integral form of the negative part U, (g) of U,(g) with
A = Zlq,q7'] and [Proj(R)] is the Grothendieck group of the category of
finitely generated graded projective R-modules (cf. (Arl)). When the gen-
eralized Cartan matrix is symmetric, Varangnolo and Vasserot ([34]) proved
that the set of isomorphism classes of projective indecomposable modules in
[Proj(R)] corresponds to Kashiwara’s lower global basis (= Lusztig’s canoni-
cal basis) under this isomorphism (cf. (Ar2)). The quiver Hecke algebra R has
a special quotient, the cyclotomic quiver Hecke algebra R = Dscor RA(B)
for each dominant integral weight A. In [24], Khovanov and Lauda stated a
conjecture, which is now referred to as the cyclotomic conjecture, that

Vi (A) = [Proj(RY)] = @ [Proj(R*(9))],
BeQT

where V7 (A) is the Uy (g)-module generated by vy. At the level of crystal,
Lauda and Vazirani ([28]) proved this conjecture for all types; i.e., the set of
all isomorphism classes of irreducible modules has a crystal structure which
is isomorphic to B(A). For Agl_)l and A, cases, Brundan and Kleshchev
proved this conjecture by constructing an isomorphism between R* and H*
as graded algebras ([5]). Finally, Kang and Kashiwara ([14]) proved this
conjecture for all types by investigating the properties of R* itself. In their
proof, the main difficult steps were showing the following:

3



CHAPTER 1. INTRODUCTION

(KK1) The functors E* and F corresponding to the Chevalley generators e;
and f; are well-defined on Proj(R"),

(KK2) The commutation relation derived from the natural isomorphisms be-
tween the functors E* and F! satisfies the axiom of sly-categorification
developed by Chuang and Rouquier [7].

In [19], Kang, Oh and Park extended the study of the quiver Hecke alge-
bras to the case of generalized quantum Kac-Moody algebras. In that paper,
introducing the polynomial P; for each index i, they defined the generalized
Khovanov-Lauda-Rouquier algebras or generalized quiver Hecke algebras R
which categorify the integral form of the negative half of generalized quan-
tum Kac-Moody algebras corresponding to the Borcherds-Cartan data. In
[15], Kang, Kashiwara and Oh proved the cyclotomic theorem in this case.

In [17], Kang, Kashiwara and Tsuchioka introduced a new family of
graded superalgebras R, called the quiver Hecke superalgebras, which can
be understood as the super-version of the quiver Hecke algebras. Moreover,
they proved that quiver Hecke superalgebras are weakly Morita superequiv-
alent to affine Hecke-Clifford superalgebras after suitable completions. Since
the quiver Hecke superalgebras has a natural (Z x Z,)-grading, the Z-graded
module category over R has a natural supercategory structure with endofunc-
tor IT induced by parity involution ¢ on superalgebras. As in non-super case,
we say that a superalgebra A supercategorifies an algebra (or a module) B
if the Grothendieck group of some A-module supercategory is isomorphic to
B. Recently, Kang, Kashiwara and Oh ([16]) proved that quiver Hecke su-
peralgebras and their cyclotomic quotients supercategorify U, (g) and Vi (A),
respectively.

In this thesis, we will show that

e U; (g) = [Proj(R)] and hence [Rep(R)] U (g)",
U, (g) ~ [Proj(R)] and [Rep(R)] ~ U, (g)" if a;; # 0 for all i € I,

o Vi(A) =~ [Proj(RY)] and Vi (A)Y ~ [Proj(RY)] if a;; # 0 for all i € I,

where
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(a) Uy (g)" and Vi (A)Y are dual of U, (g) and Vi (A), respectively,

(b) R is the quiver Hecke algebra associated with the Borcherds-Cartan da-
tum and ay; is the (7,7)-entry of the Borcherds-Cartan matrix,

(c) [Rep(R)] and [Rep(R%)] are the Grothendieck group of the category of
finite dimensional graded R-modules and R*-modules, respectively.

To accomplish these goals, we will employ the framework given in [14, 15].
However, unlike those papers, we will use the perfect bases introduced by
Berenstein and Kazhdan ([2]). More precisely, introducing the notion of
strong perfect bases, we show that [Rep(R)] is isomorphic to U (g)" and
hence [Proj(R)] is isomorphic to U, (g) by duality.

After that we will prove similar results for quiver Hecke superalgebras R.
Notice that, in this case, the Borcherds-Cartan datum is indeed the Cartan

datum and the Cartan matrix A is colored by Iyqq.

This thesis is organized as follows. In Section 2.1 and 2.2, we recall the
definition of a generalized Kac-Moody algebras U(g), a quantum generalized
Kac-Moody algebras U,(g) and some of their properties, which were proved
in [3, 13]. In Section 2.3, we recall the lower crystal basis theory for U,(g)
developed in [12]. In Section 2.4, 2.5 and 2.6, we will develop the upper
crystal and upper global basis theory for U,(g) and its modules, which implies
that existence of a perfect basis. In particular, we will give a characterization
of V4 (A)Y in terms of strong perfect bases (See Proposition 2.5.3).

In Section 3.1, we will give the definition of the quiver Hecke algebras R for
quantum generalized Kac-Moody algebras. In Section 3.2 and 3.3, we will
prove the Poincaré-Birkhoff-Witt-type basis for R by constructing faithful
representations of R. In Section 3.4, we will show that the categorical Serre
relations hold for [Proj(R)] and U, (g)¥ is embedded properly in [Proj(R)]
if there exists an index ¢ € [ such that a; = 0. In Section 3.5, we will
show that one can choose the set of isomorphism classes of irreducible R-
modules satisfying the axioms of strong perfect bases. In Section 3.6, we
define the simple root functors F;, F; and F; and prove the existence of
natural isomorphisms and short exact sequences, which play a crucial role in
categorification of R. In Section 3.7, we prove that the functors E* and F

5
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are well-defined on Proj(R*) and they satisfy the axiom of sl,-categorification.
In Section 3.8, we conclude that R and R* categorify the quantum generalized
Kac-Moody algebras and their integrable highest weight modules.

In Chapter 4, we will prove super-versions of results given in Chapter 3
via quiver Hecke superalgebras R. We will follow the same framework as in
Chapter 3. Thus we will sometimes omit the proof or only give a sketch of
the proof. However, working in the super case entails doing the following: (i)
in Section 4.1, we recall the notion of supercategories and superbimodules.
(ii) since all the categories dealt with in this chapter are supercategories,
we need to determine the effect of the endofunctor II on the supercategories
(See Theorem 4.3.1). (iii) since R is a superalgebra, the Zs-grading must
be considered in each computation. Thus, in super case, computations are
generally much more complicated.

This thesis is based on the series of papers [15, 16, 18, 19]. The first two
papers are in collaboration with Seok-Jin Kang and Masaki Kashiwara. The
last two papers are jointly written with Seok-Jin Kang and Euiyong Park.



Chapter 2

Quantum generalized
Kac-Moody algebras

2.1 Generalized Kac-Moody algebras

In this section, we briefly recall the definition of generalized Kac-Moody
algebra associated with a Borcherds-Cartan datum and review its properties.

Let I be a countable (possibly infinite) index set. An integral square
matrix A = (a;;); er is called a Borcherds-Cartan matriz if it satisfies

For ¢« € I, i is said to be real if a; = 2 and ¢ is said to be imaginary if
ai; <0. Set I'"*={iel]|a;=2} and '™ = {i € I | a;; < 0}. In this
paper, we assume that A is symmetrizable; i.e., there is a diagonal matrix
D = diag(d; € Z~o | i € I) such that DA is symmetric.

A Borcherds-Cartan datum (A, P,T1,TI") consists of

(i) a Borcherds-Cartan matrix A,
(ii) a free abelian group P, called the weight lattice,
(ili) I = {a; € P | i€ I}, called the set of simple roots,
)

(iv) IV ={h; | i € I} C PY:=Hom(P,Z), called the set of simple coroots,

7



CHAPTER 2. QUANTUM GENERALIZED KAC-MOODY ALGEBRAS

satisfying the following conditions:
(a) (hi, 0 ) =ay; foralli,j €1,
(b) II is linearly independent.

The weight lattice P has a symmetric bilinear pairing ( | ) satisfying
(| A) = d;i{h;, \) for all A € P.

Therefore, we have (a;|aj) = d;a;;. We set PT:={A € P | (hj,A) €
Z>, for all i € I}, which is called the set of dominant integral weights.
The free abelian group @ := @, Za; is called the root lattice. Set Q* =
Y icr Lsooy. For B =73 kia; € QF, [B]:= >, ki is called the height of 3.

Definition 2.1.1. [3] The generalized Kac-Moody algebra g associated with
a Borcherds-Cartan datum (A, P,11,11V) is the Lie algebra over Q generated
by e;, f; (i € I) and h € PV satisfying the following relations:

(i
(ii

) [h, 1] =0, forall b, € P,

)
(iii) [es, fj] = 6ishi fori,jel,

)

)

[h,ei] = (h,aq)es, [h, fi] = —(h,cu)fi for all h € PY,

(iv) (ade;)'~%i(e;) = (adfi)*" i (f;) =0 ifi € I'® and i # j,
(V [ei,ej] = [fl)fj] = O ifaij = 0

We denote by U(g) the universal enveloping algebra of g and U™ (g)(resp.
U~ (g)) the subalgebra of U(g) generated by e; (i € I) (resp. f; (i € I)).

Definition 2.1.2. We define Oy, to be the category consisting of U(g)-
modules V' satisfying the following properties:

(i) V' has a weight space decomposition with finite-dimensional weight
spaces; 1.e.,
V= @Vu with  dimg V), < oo,
nepP

where V, ={v eV | hv=(h,u)v for all h € PV} ,

8
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(i) there are finitely many A1, ..., \s € P such that

wt(V):={pe PV, #0} [ Jn - @),
i=1
(iii) the action of f; on 'V is locally nilpotent for i € I,
(iv) if i € I'™, then (h;,pu) € Zso for all p € wt(V),
(v) ifi € I'™ and (h;, p) = 0, then f;V,, =0,
(vi) if i € I'™ and (hi, pu) = —ay;, then e;V,, = 0.

For A € P, a U(g)-module V' which admits a weight space decomposition
is called a highest weight module with highest weight \ and highest weight
vector vy if there exists a nonzero element vy € V4 such that

(1) V. =U(g)vn, (2) huy=(h,\vy, (3)ewy=0 forall i€ l.

Let J(A) be the left ideal of U(g) generated by e;, h — (h,A\)1 for all i €
I,h € PY. Set M(\):=U(g)/J(\), which is called the Verma module.

Proposition 2.1.1. [3]

(a) M(A) is a highest weight module with highest weight A and highest weight
vector vy =1+ J(A).

(b) M(\) is a free U~ (g)-module of rank 1 generated by vy.

(c) Every highest weight U(g)-module with highest weight X\ is isomorphic to
a quotient of M ().

(d) M(X) has a unique mazimal proper submodule R(\).

If we set V/(X\):=M(X)/R(X), then V' ()) is the unique up to isomorphism
irreducible highest weight U(g)-module with highest weight A.
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2.2 Quantum deformation

Throughout this section, we will deal with the quantum generalized Kac-
Moody algebra U,(g). By taking the classical limit, the algebra U,(g) can be
considered as a quantum deformation of U(g). Hence U(g) embedded properly
U,(g) and U,(g) has more algebraic information which reflect the properties
of U(g) and its modules. We mainly follow [12, 13].

Let ¢ be an indeterminate and m,n € Zx>. Set
— di ;
¢ =q% fori e I.

If « € I, define

Qz‘—qi_“

1
If a;; <0, set ¢; = —§aii € Z~o and define

—ci'n

AL i m m z'
{n}i = %’ {n}il:= H{k}“ {n }Z ~{m —{n}}z'{n}z‘

7 %

If a;; = 0, set ¢;; = 0 and define

(nYii=n, {nk!=nl, {7:}:(’:)

Definition 2.2.1. [13] The quantum generalized Kac-Moody algebra U,(g)
associated with a Borcherds-Cartan datum (A, P,II,I1Y) is the associative
algebra over Q(q) with 1 generated by e;, f; (i € I) and ¢" (h € PV) satisfying
following relations:

(i) ¢"=1,¢"¢" = ¢"*" for h,h' € PV,
(i) ¢"e;qg™" = "y, ¢ fig™h =g P f; for h e PV i€ I,

K, — Kt
(iii) eif; — fjei = 6jj————, where K; = qdihi,

? 7

10
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1—&2']'

_1 - ’LH_ —Qii—T . . . .

(iv) E (=1)" iy e? Y eje; =0 ifi eI and i # j,
r

r=0 - -1

1—ai]-

_1 — CLZ"_ —aj;i—r » o re . .
(v) Z (—1)" . ! fz-1 U =0 difieI™ andi # j,
r=0 - -1

(Vl) €i€j — ejel- = 0, fzf] — f]fl =0 Zf aij =0.
Let US(g) (resp. U, (g)) be the subalgebra of U,(g) generated by the

elements e; (resp. f;), and let U(? (g) be the subalgebra of U,(g) generated by
" (h € PV). Then we have the triangular decomposition

Uy(9) = U, (9) @ U, (g) © U/ (),

and the root space decomposition

g) = P Us(e)

a€eQ

where U,(g)o = {z € U,(g) | ¢"vq¢™" = ¢z for any h € PY}. Define a
Q-algebra automorphism ~: U,(g) — U,(g) by

(2.1) eirse, fir fi, @ —q" g gt

Let A = Z|q,q7']. For n € Z+, set

en n
i if i € I, i if i € I,
el = { [l o=
el ifi e '™, fr ifi e ™,

Denote by UA_(g) (resp. U (g)) the A-subalgebra of U (g) generated by
f-(") (resp. e( ) and denote by UJ(g) the A-subalgebra generated by ¢" and

1

1—
I, q 7" for all m € Z-o and h € PY. Let Uy(g) be the A-subalgebra
—q"

generated by U2(g), U, (g) and U, (g). Then Uy(g) also has the triangular
decomposition

Un(g) ~ Uy (g) ® Up(g) @ U (a).

11
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Define a twisted algebra structure on U (g) @ U (g) as follows:

(1 @ 22) (11 ® y2) = q_(ﬁml)(%yl ® T2Y2),

where x; € U (g)g, and y; € U; (g)y, (i = 1,2). Then there is an algebra
homomorphism Ay : U/ (g) — U, (g) ® U, (g) satisfying

(22) Ao(fi)=fi®l+1® f; (i €1).

Definition 2.2.2. We define OF,, to be the category consisting of U,(g)-

wnt

modules V' satisfying the following properties:

(i) V' has a weight space decomposition with finite-dimensional weight
spaces; 1.e.,
V= @Vu with  dim V), < oo,

neP

where V, ={v € V | ¢"v = q¢"Pv, for allh € P},

(i) there are finitely many A1, ..., \s € P such that

S

wt(V):={pe PV, #0} c[Jn - Qy),
i=1
(iii) the action of f; on 'V is locally nilpotent for i € I,
(iv) if i € I'™, then (h;, u) € Zso for all p € wt(V),
(v)
(vi) if i € I'™ and (hi, pu) = —ag, then e;V,, = 0.

if i € I'"™ and (h;, ) =0, then f;V,, =0,

For A € P, a U,(g)-module V which admits a weight space decomposition
is called a highest weight module with highest weight \ and highest weight
vector vy if there exists a nonzero vector vy € V) such that

(2.3) () V=U/g)vs, (2)¢"vx=¢" vy, (3)ey=0 forallicl.

Let J,(\) be the left ideal of U,(g) generated by e;,¢" — ¢"»1 for all
itnd, h € PY. Set My(\) :==U,(g)/J,(\), which is called the Verma module.

12
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Proposition 2.2.1. [13]

(i) M,(X\) is a highest weight module with highest weight X\ and highest
weight vector vy =1+ Jy ().

(ii) My(N) is a free U (g)-module generated by vy.

(iii) Every highest weight U,(g)-module with highest weight X\ is a quotient
of My(\).

(iv) My(N) has the unique mazimal proper submodule R, ().

The quotient V() :=M,(\)/R,()) is an irreducible highest weight mod-
ule. The following theorem shows that there exists a 1-1 correspondence

a

between PT and the set of irreducible objects in Of ,.

Theorem 2.2.1. [12, Theorem 3.7] Every U,(g)-module in the category OF,
is isomorphic to a direct sum of irreducible highest weight modules V,(A) with
A e P

Let Ay = {f/g € Q(q) | f,9 € Q[g],9(1) # 0} and J the ideal of A;

generated by the element ¢ — 1 € A;. Note that A,/J ~ Q. Let Uf (g)
h

—1
be the A;-subalgebra of U,(g) generated by ¢" and 4 ] for h € PV. We
)

denote by U (g) (reps. Uy, (g)) the subalgebra of U,(g) generated by el(-n
(resp. fi(n)) for i € I and n € Z>g. Let Uy, (g) be the A;-subalgebra of U,(g)
generated by U} (g), Uy (g) and U, (g). Then we have

Un,(9) = Uy, (8) ® U, (8) ® Uy (9)-

For an irreducible highest weight U,(g)-module V,()) € O}

wnt

with highest
weight A\ and highest weight vector vy, we define

Vi, (A) := Uy, (g)ua = Uy, (g)va,
and

Ul::UAl (g)/JUA1 (g) = Q®A1 UAl (g)? Vl()‘)::VAl ()\)/JVAl <)\) = Q®A1 VAl ()\)

13
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Then we have

Vi) =@V, and dimgV, = ranky, (V,), = dimg) V.,

pnepP

where V| = Q ®4, Vi, (N),, for p € P.
Consider the following natural projection maps

Up,(g) — U' and Vi, (A) — V().

The process obtaining V*(A) from V,()\) via the above projection maps is
referred to as taking the classical limit.

Theorem 2.2.2. [13]
(a) There is an algebra isomorphism between U' and U(g).

(b) For an irreducible highest weight U,(g)-module V,(A) € OL,, VI(A) be-

wmnt’

comes a U(g)-module, and is isomorphic to V(A) € O

Corollary 2.2.1. Every U(g)-module in Oy, is isomorphic to a direct sum
of irreducible highest weight modules V (A) with A € PT.

For a fixed i € I, let
(2.4) U; be the subalgebra of U,(g) generated by e;, f;,¢" for all h € PV.

Then U; can be considered as a quantum generalized Kac-Moody algebra
associated with A = (ay;).

Proposition 2.2.2. [12] Suppose a; < 0 and let V' be the irreducible highest
weight U;-module of highest weight X and highest wight vector vy. Then we
have:

(a) if (hi, \) =0, then V = Q(q)v,,

(b) if (hiy A) >0, then V' has a basis {f"vx}n>o0-

14
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2.3 Lower crystal bases

In this section, we briefly review the lower crystal basis theory of quantum
generalized Kac-Moody algebra and its integrable modules which was devel-
oped in [12].

Fix i € I. For any P € U, (g), there exist unique elements @, R € U, (g)

such that
K.Q—- K 'R

4% —q "
We define the endomorphisms e;, ef' : U, (g) — U, (g) by

eiP—Pei:

e.(P)=R, €'(P)=Q.

Consider f; as the endomorphism of U, (g) defined by left multiplication by
fi- Then we have

(2.5) e;fy =0y +q; " fel.

Let
(e ifieI™,

2

eA(n) = (e{)n

Then we obtain the following commutation relations:

ifi e '™,

(2.6)
( n
—2nm-+(n+m)k— - n m— n— o, y 1
D g e [k] fim=h) glin=k) if i =j and i € I',
k=0 7
/(n) ¢(m) m
€, j = —ci(=2nm~+(n+m)k—k(k— m m— n- if 7 ] ) i
i 0 i (—2nm+-(ntm)k—k(k—1)/2) fi( k)e;( M ifi=jand i€ '™,
k=0 k i
g, " gl 7

Definition 2.3.1. The quantum boson algebra B,(g) associated with a Borcherds-
Cartan matriz A is the associative algebra over Q(q) generated by e}, f; (i € I)
satisfying the following relations:

(i) eif; = q; " fiel + b,

15



CHAPTER 2. QUANTUM GENERALIZED KAC-MOODY ALGEBRAS

1—&2']'

ii -1y L=ay el =0 ifie I, i 4 g,
e i<

r

r -1—ai'_ —aii—T r o re - .
(i) Y (07| VLT =0 e iy,
r=0 - %

(V) €le; — chef =0, fify — fifi =0 ifa; =0.

We denote by BY"(g) (resp. Bi¥(g)) the A-subalgebra of B,(g) generated
by ¢, and f™ (vesp. by €/"/[n];! and f;) for all i € I and n € Z,.

Proposition 2.3.1. [12, 21, 19]

(a) If v € U;(g) and ejx = 0 for all i € I, then x is a constant multiple of
1, the identity element of Uy (g).

(b) U (g) is a simple B,(g)-module.

q
For any homogeneous element u € U, (g), u can be expressed uniquely as
(2.7) u = Z fi(l)ula
1>0

where eju; = 0 for every [ > 0 and u; = 0 for [ > 0. We call this the i-string
decomposition of u in U, (g). We define the lower Kashiwara operators é;, f;
(i€l)of U (g) by

e = Z fi(k_l)uka fzu = Z fi(k+1)ulc~

k>1 k>0

Let Ao ={f/9 € Q(q) | f,g9 € Q[q],g(0) # 0}.

Definition 2.3.2. A lower crystal basis of U (@) is a pair (L, B) satisfying
the following conditions:

(i) L is a free Ag-module of Uy (g) such that U, (g) = Q(q) ®a, L and
L=@,co+ L-a, where L_o:= LN U, (8)-a,

(ii) B is a Q-basis of L/qL such that B = |],co+ B-a, where B_, := BN
(L-a/qL-a),

16
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(iii) &B c BU{0}, fiB C B for alli € I,
(iv) For bt € B andi € I,V = f;b if and only if b= &b’

Proposition 2.3.2. [12, Theorem 7.1 (b)] Let L(occ) be the free Ag-module
of U; (g) generated by (Fi - Fid|r>0,ip €I} and let

B(oo) = {fi, - i, 1 +qL(c0) | r 2 0,0 € I}\ {0}.
Then the pair (L(cc), B(c0)) is the unique lower crystal basis of Uy (g).

Let M be a U,(g)-module in the category O ,. For any i € I and u € M,

nt*
the element u can be expressed uniquely as

(2.8) u=">_ fPu,

where uy € M1 q, and e;ur, = 0. We call this the i-string decomposition of
u. We define the lower Kashiwara operators é;, f; (i € I) by

Eiu = Z fi(kfl)ukj fu = Z fz»(kﬂ)uk-

E>1 k>0

Definition 2.3.3. A lower crystal basis of U,(g)-module M is a pair (L, B)
satisfying the following conditions:

(i) L is a free Ag-module of M such that M = Q(q) ®x, L and L =
@D.cp L, where Ly := LN M,

(ii) B is Q-basis of L/qL such that B = | |,.p Bx, where By:=BNLy/qLy,
(iii) &B ¢ BU{0}, fiBC BU{0} forallieI,
(iv) For bt/ € B andi eI,V = f;bif and only if b= &b’

Proposition 2.3.3. [12, Theorem 7.1 (a)] For A € PT, let L(\) be the free
Ag-module of V(X) generated by {fi, -+ fi,ox | 7> 0,0 € I} and let

B\) = {fi -+ fiox+aL(\) | r>0,i, € I}\ {0}.

Then the pair (L(X), B(\)) is the unique lower crystal basis of V().

17
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2.4 Upper crystal bases

In this section, we will develop the upper crystal bases of U, (g) and V(A)
which are dual to the lower crystal bases. From the upper crystal bases, we
can derived the global bases which will provide the existence of perfect bases
of U~ (g) and V(A) in the succeeding section .

Consider the anti-automorphism ¢ on B,(g) defined by
e;— fi and f; — el

We define the symmetric bilinear forms (, ) and (, )z on U/ (g) as follows
(cf. [21, Proposition 3.4.4], [29, Chapter 1]):

(2 9) (17 1)K = 17 (eixay)K = (x7fzy)Ka
L =1 (fi fi)r=05(1-¢)"", (z,92)r = (Do(z),y ® 2)r
for z,y,2 € U, (g).
Lemma 2.4.1.

1. The bilinear form ( , )x on U; (g) is nondegenerate.

2. For homogeneous elements x € U7 (g) o and y € U, (g)—p, we have

(.91 = [[ ——r (29,
el (1 =g~

where a« =Y . kia; € Q. Hence (, )p is nondegenerate.

iel

3. For any x,y € U (g), we have
(e, y) = (1= ¢) (=, fiy)r.

Proof. The assertion (1) is proved in [12].
It was shown in [31, (2.4)] that the bilinear form (, )k satisfies

(:Ea yz)K = Z(xle)> y)K(wg)a Z)Ka

n

18
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where Ag(z) =), P ®a?. Then assertion (2) can be proved by induction
on |a|.

To prove assertion (3), without loss of generality, we may assume that
r € U;(9)-a, where a = — 3 kjo; € —Q7. Then by (2) and the definition

of (, )k, we have

1 1
(e§x7 y)L = 2)]%,1 H Q)kj (6;513, y)K

1—q?
1—q2)1H 2 (@ S

= (1—=q))(, fi)L,

which proves assertion (3). O

Now, we define the upper Kashiwara operators for the B,(g)-module
U; (). Let u € Uy (g) such that eju = 0. Then, for n € Zxo, we define

q ~ ~
the upper Kashiwara operators F;, F; by

q‘f(nfl) (n-1)
= e(n " if ¢ € I™,
Ez(fz( )u) = [n]; Ji ! o

{n}; qcl n-1) fi(nfl)u if i € I'™,
o q'[n+ 1]ifi(”+1)u if 1 € I,
Fi(fi"u) = 1 (n+1)

Dy if e [
eEs YW

From the i-string decomposition (2.7), the upper Kashiwara operators E
and F; can be extended to the whole space U_ (g) by linearity.

Definition 2.4.1. An upper crystal basis of Uy (@) is a pair (LY, BY) satis-
fying the following conditions:

(i) LY is a free Ag-module of Uy (g) such that U; (g) = Q(q) ®a, L' and
LY =, cq+ LYo, where LY := LY N U, (8)-a;

(ii) BY is a Q-basis of LY /qL" such that BY = | .o+ BY,, where BY, =
BN (LL,/qLY,),
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(iii) E;BY c BYU{0}, F,BY C BY foralli€l,

(iv) Forb,b € BY andi € I,V = Eb if and only if b= E;b.
Lemma 2.4.2. For any u,v € U (g), we have

(B, v) = (u, frv)  and  (Fu,v) = (u, &v).

Proof. First, we consider the case E;. Fixing ¢ € I, it suffices to consider
I ={i}. Moreover by the i- string decomposition (2.7), we may assume u, v
are of the form f ug and f )vk 1 where uy, v,_1 € Ker(e}). For i € I',

we have F .
Since e;fi Uy = ql_kﬂfl(k Yy, we have

P, Fi(fE Do) = T (P8 D, (5 Vo) = E(f ), £ Vo).

For i € I'™,
(fFue, fi(fF o)) = (e (fFun), fF orn).
By (2.6), e;(fFuy) = {k}ig7* ™V f¥ 1wy, Thus

(FFu, FilfF o)) = (igd ™ (5 s £ oncn) = (Ba fFw), £ opcn)

In a similar way, we can prove the desired formula for the F} case. O]

Lemma 2.4.3. Let u € U (g), and n be the smallest integer such that

ey = 0. Then we have

. [n] Eru  ifi € I,
e, u=49q . )
ElMu ifi € I'™.

Proof. For u € U, (g) and ¢ € I, consider the i-string decomposition: u =
Y o fi(l)ul, where e/u; = 0. If i € I'®, then by (2.6) and the definition of E;,

we have
—n(n—1)/2
m —n(n—1)/2 E‘”u _ q;
’ [n];!

€, u=gq; Unp

; U,

20
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Similarly, if i € I'™, we obtain

eg(n)u _ qicm(n—l)/zum EZnu _ {n}i!qicm(n—l)/?um

which proves our assertion. O
Let (L(c0), B(c0)) be the lower crystal basis of U (g). Set
L(o0)” = {u € Uy (9) | (1, L(00))x C Ao}
We also denote by (, )k : L(o0)Y/qL(00)Y x L(c0)/qL(c0) — Q the nonde-
generate bilinear form induced by the bilinear form (, )x on U (g). Let
B(oc)” ={b| b€ B(oo)}
be the Q-basis of L(c0)Y/qL(00)" which is dual to B(oo) with respect to
( ) )K-
Proposition 2.4.1. The pair (L(c0)Y, B(c0)Y) is an upper crystal basis of
Uy (g)-
Proof. The proof is almost the same as in [22]. O
Let V' be a U,(g)-module in Of

e, and take a weight vector u € V) with

e;u = 0. Then, for n € Z>o, we define the upper Kashiwara operators E; F

hi, \) — 1 (e
B n) [( 2 > n -+ ]Zfi(n l)u iE[re,
{n}ilhi, ) + ci(n — 1)]z‘fi(n_l)u ie ™,
11;
[n+ ]7, fi(n—l—l)u i c Ire’

ﬁi(f(n)U) _ ) [(hi, A — n]i
{n+ 1}i[(hi, A) + ci(n)];

From the i-string decomposition (2.8), the upper Kashiwara operators E;

fr s ie

7

and F} can be extended to the whole space V by linearity.

Remark 2.4.1. Recall the definition U; in (2.4). Using the U;-module struc-
ture on Vy(\) for i € I'™, we have

(2.10) eiffuy = {n}i[Ahi) + ci(n — D)) fi" oy

Thus we can see Eyv = e;v forallveV andiel.
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Now, we define the upper crystal bases for integrable modules over quan-
tum generalized Kac-Moody algebras in a similar manner to U, (g).

Definition 2.4.2. An upper crystal basis of V' is a pair (LY, BY) satisfying
the following conditions:

(i) LY is a free Ag-module of Uy (@) such that V = Q(q) ®a, LY and LY =
D.cp Ly, where L} := LY NV,
B\/

aeP Za’

(ii) BY is a Q-basis of LY /qL" such that BY = |
(La/qLs),

(iii) E;BY c BYU{0}, F;BY C BYU{0} forallic,

where BY := BN

(iv) Forb,b € BY andi€ I,V = Eb if and only if b= E;b.
Consider the anti-automorphism of U,(g) given by
e;— fi, fir e and ¢" "

As the case of B,(g)-module U, (g), one can show that there exists a unique
non-degenerate symmetric bilinear form ( , )x on Vi (A) (A € P*) with
highest weight vector v, satisfying

(211) (UA,UA)K = 17 (eiuav)K = (u> fi/U)K for u, v & %(A)

Lemma 2.4.4. We have

(B, v)g = (u, fiv)g  and  (Fyu,v)x = (u, )k for all u,v € V,(A).

Proof. For i € I', our assertion is proved in [22]. For i € I'™, it suffices to
consider the module V,(A) € Of , for the case |I| = 1, I = I'™. Moreover, by
the i-string decomposition and (2.11), we may assume u,v are of the form
fFvs. Then we have

(frox, Fi(fF o)) = (e fFon), T oa) ke
= {k}s[(hi, ) + ci(k = DL oa, fF o)k

22
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Thus we obtain

(fFos, il o) e = {B}il(ha, A) + ik — DL(FF  on, fF 1 oa )k
= (Ei(fikv)\)a ffflUA)K-

In a similar way, we can prove the desired formula for the F; case. O

Let (L, B) be a lower crystal basis of a U,(g)-module V' in O}

wnt*

Set
LY ={ueV|(u,L)g C Ay}

We will also denote by (, )i : LY/qLYx L gL — Q the nondegenerate bilinear
pairing induced by the bilinear form (, )x on V. Let b = {b | b € B} be the
Q-basis of LY /qL" which is dual to B with respect to ( , )g.

Proposition 2.4.2. The pair (LY, BY) is an upper crystal basis of V.

Proof. By astandard argument on nondegenerate bilinear forms, it is straight-
forward to verify all the conditions for upper crystal basis. We will only check
the last condition. For bY,by € b and i € I, we have
EbY =bY <= 1= (FbY, b))k = (b, E:ba) i <= E;by = by <= fiby = by
= 1= (b, fibi)x = (Eiby, b)) <= Eby = b}

as desired. 0

2.5 Upper global bases

Crystal bases treated in the preceding sections can be understood as bases
at ¢ = 0. Globalizing these, we can get Q(q)-bases, the global bases. In
particular, we will study the upper global bases in more detail.

Let A, be the subring of Q(g) consisting of regular functions at co. Let
V be a Q(q)-vector space. Let Vj (resp. Lo and L) be an A-submodule
(resp. Ag-submodule and A -submodule) of V.

Definition 2.5.1. We say that (Vi, Lo, L) is a balanced triple if
(i) V=0Q(q) @ Va = Q(q) ®a, Lo = Q(q) ®u,, Lo as Q-vector spaces,
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(11) VA = A@QE, L() = A()@@E, Loo = AOO(XJQE, where B = VAﬂLoﬂLOO.

Note that if (Vj, Lo, L) is a balanced triple, there exists a natural Q-
vector space isomorphism E — Ly/qLg, and vice versa. Equivalently, there
exists a natural Q-vector space isomorphism £ —— Lo, /q ' Loo.

Recall the Q-algebra automorphism™: U (g) — U, (g) given in (2.1). For
any given Ag-submodule L of U (g), we denote by L the image of L under
the involution ™.

Proposition 2.5.1. [12] (U (g), L(o0), L(c0)) is a balanced triple for U, (g).

Define

=

2 (@) ={uecU/(9) | (u,U;(9))k C A},
L(c0)” = {u € U, (g) | (u, L(00))x C Ao},

L(x0) = {u €U (g) | (u,L(00))x C Ax}.

V

By the same argument as in [22], one can verify that (U, (g)", L(c0), L(c0) )
is a balanced triple for U, (g). Hence there is a natural isomorphism

Voo~

B = Uz () N L(s<)¥ N T(o0)" > L(00)" faL(ox)".
Let GV denote the inverse of this isomorphism and set
B(oo) = {G¥(b) | b € B(c0)"}.
Lemma 2.5.1. Let b € L(0)" /qL(c0)Y and n € Z>g.

(n]\GY(Erb)  ifi e I',

(a) If EMb =0, then "GV (b) = ~ ,
GV (EPD) ifi € ™.

(b) " 'GV(b) = 0 if and only if E"'b =0,

1 n
Proof. We first prove assertion (1). Let i € I*®. Since <p([ ] ‘e’-”) = f-( ), by

ni;:
Lemma 2.4.3, we obtain

1
[n];!

¢;"GY(b) = E} G (b) € Uy (9)" N L(00)" N L(c0)
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e/"GY(b) = GV (ErD).

1

Similarly, for i € I'™, it follows from ¢(ef") = f™ that

V

"GV (b) = EMGY(b) € Uy (g)" N L(c0)¥ N L(oco) .

Thus we have ¢,"G"(b) = GV (EID).

For assertion (2), it is obvious that €/""'GY(b) = 0 implies E"*'b = 0.
To prove the converse, suppose e/ n+1GV( ) # 0 and take the smallest m > n
such that ¢/ GY(b) = 0. By (1), we have

€;mGV(b) _ [m]l|~GV(E;nb> =0, ifi € Ife)
GY(EM™b) =0, if e e I'™,

which is a contradiction to the choice of m. Hence we conclude €] n+1GV(b) =

0. -
For v € U; (g), we define
£ (v) = min{n € Zso | /"o = 0}

Proposition 2.5.2. Forb € B(c0)", we have

(@G (B + Y. ELG0) fiel,

eGY (b) = _ <o) .
) GY(Eb)+ Y EL,G) ifi € I'm,
\ €9r (b')<e2% (b)—1
(2.12) (¢ "¢V (Eny+ YRG0 ifie I

Ol‘(b/ <£O!‘(b)
FiGY (b) = § {2 (b) + 1}iq. OV GV (Fib)
+ > ELGYY)  ifier™

\ or b/)<€0r(b)

for some E} ., Fy, € Q(q).

Proof. If i € I, our assertions were proved in [22]. We will prove the case
when ¢ € I'™. Set n = €%"(b). By Lemma 2.5.1 and Definition 2.4.1 (iv), we
have

"GV (b) = GY(Erb) = G¥(Er 'Eb) = &' ' GY(Eqb),
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which implies
e'GY(b) — GV(E;b) € Ker(e/" ™).
Using equation (2.6), we get

€;(n+1)fin(b) _ (q20i(n+1)fi62(n+1) + qcz(n—i-l) / )Gv(b)

Hence Lemma 2.5.1 yields

1 cl(n+1 /n\/
G -

Using Lemma 2.5.1 again, we obtain

L 06 (o).

e;(n—i_l)fin( ) = {n} ! q;

1 ci(n+1) ~v n+1 1 cl(n—&-l /n+1 Vi
W% G(E Fb) {n}|z G(Fb)

= {n+ 1}hig7 " Ve GY (Fb).
Thus we have
F,GY(0) — {n 4+ 1}:q7 VGV (Fb) € Ker(e)"™™)
as desired. O

Now we construct the upper global bases for U,(g)-modules in Of ,. From

int”
the involution of U,(g) given in (2.1), we can induce a Q-linear automorphism

on V() given by
(2.13) uvy — vy for u € Uy(g),

where v, is a highest weight vector of V(). Let L(\) be the image of L(\)
under the automorphism in (2.13).

Set
Va(A) = Un(g)va = Uy (g)va.
Define
Vi) ={u e V(N | (u,Va(N))x C A},
LA = {u € Vy(A) | (u, L(N)x C Ao}

x;rx_'! _C:I i 1_]|
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As in the case of U (g), we can conclude that (VA(A)V,L(A)V,WV) is a
balanced triple for V(). Hence there is a natural isomorphism
E=V,(\)'NLNY NI —= L\ /qL(\) .
We also denote by GV the inverse of this isomorphism and set
B(\) == {G"(b) | be B},
Then B(A) is an A-basis of V(\)Y satisfying the following properties.

Proposition 2.5.3.

(a) Forbe B(XN)Y, GY(b) is a unique element of Vy(A)Y N L(A)Y such that

GY(b) =b mod gL(\)Y,  GV(b) = GY(b).

(b) Forie I'™, be B(\)Y and n € Z>q, we have

GY(EMb) = e"GY (b).

Proof. Assertion (1) can be proved in the same manner as in [12]. To prove
(2), note that we have

e;GV(b) = ¢,G¥(b), FEmu=emu forall b€ B\, uc V(N

It follows that

erGV(b) = erGY(b), erGY(b) = Erb mod qL()\)".
By (1), we conclude GY(E!"b) = e?G(b). O

For any V € O, and v € V, define

wnt

(v) :=min{n € Zs, | " 'v = 0},

e’
2.14 ¢
240 @i(v) :==min{n € Zsq | f v =0}

Then, using Proposition 2.5.3 and Proposition 2.5.2, we have the follow-
ing formulas:
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For b € B(A)Y,

(2.15)
([0 (0);GV(ED) + > EL,GYY) ifielr
G (b) = eor () <egr (b)—1
|GV (E:b) if § € I,
([e:iLGY(EFED) + > FuGY(Y) ifi eI,

5" (b) <=9 (1)
FiGY(0) = q {77(0) + 1}l (ha, A) + il (0))1.GY (ED)
+ ) F,GYY) ifierm

\ e7r (b)) <e7r (b)

for some E};’b,, F,ib, € Qlg,q7"].

2.6 Perfect bases

By abstracting the property of the upper global bases, we can define the
notion of a perfect basis. In the end of this section, we will give a character-
ization of Vj(A)Y with respect to the strong perfect basis. This will play a
crucial role in proving the categorification theory.

Let k be a commutative ring. Let V =D ,.p Vi be a P-graded k-vector
space. We assume that there are finitely many Ay, ..., Ay € P such that

wt(V) = {p € PV, # 0} < O - @),

Furthermore, assume that e; (i € I) acts on V in such a way that e¢;V), C
Vita;- Recall the definition of €¢* in (2.14). For any v € V' \ {0} and i € I,
we define

(1) e¥(v) ifie I'™ or e(v) =0,
v) = _
1 if 1 € I'™ and 9" (v) > 0.

If v = 0, then we will use the convention €f(0) = —oo. One can easily check
that, for k € Z>,,

Viki={v e V| e¥(v) < k} = Ker €.
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Definition 2.6.1. /2, 18/
(i) A k-basis B of V is called a perfect basis if

(a) B =, cwi(v) Bus where B, :=BNV,,
(b) for any b € B and i € I with e;(b) # 0, there exists a unique
element €;(b) € B such that

b

e:b — c;(b) &(b) € Vf‘s?r( 7! for some ci(b) € k™,

(c) if b,/ € B and i € I satisfy " (b) = £"(V') > 0 and &;(b) = &(V'),
then b="V".

(ii) Assume that k contains Q(q). We say that a perfect basis is strong if
ci(b) = [ (b)]; for any b € B and i € I; i.e.,

(2.16) eib — [ (b)]i&;(b) € V=071

Theorem 2.6.1. For A € P,

(a) U (g) and V,(A) have strong perfect bases.

q

(b) U(g) and V(A) have strong perfect bases.

Proof. The first assertion comes from (2.12) and (2.15). By taking the clas-
sical limit to the upper global bases of U (g) and V,(A), the second assertion
follows. O

For a perfect basis B, we set &;(b) = 0 if e;b = 0. We can easily see that
for a perfect basis B

(2.17) Vh= @ kb

(2
beB, 9" (b)<k

For any sequence i = (iy,...,i,) € I"™ (m > 1), we inductively define a
binary relation <; on V'\ {0} as follows:

ifi= (i), v %0 & & (v) < &Y (vV),
e (v) < (V') or

ifi= (Z, i/), v ji 'U/ = ! £9% (v) o (v)
g (v) =" (v), e " (v) B et (V).

29
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We write
()v=0" ifv =30 and o' <50, (i)Y <50 if o' <50 and v Z 0.

We can easily verify:

(1) for allv € V\ {0}, V=:={0} | {v' € V\ {0} | v/ <; v} forms a k-linear
subspace of V.

v if v <,
(2) if v Z; v/, then v+ =; {

oo <.

For i and v € V' \ {0}, we set
;P (v) 1= efgr(v)v.
For each i = (iy,...,4,) € I"™, define a map &*P: V' \ {0} — V \ {0} by

to to
(2.18) &P i=e; T o--0e; "

Then ¢;*°?B C k*B.

Let VH :={v eV |ewv=0forallie I} be the space of highest weight
vectors in V and let B = V# N B be the set of highest weight vectors in B.
Then, (2.17) implies that

Vi =@ kb
be BH

In [2], Berenstein and Kazhdan proved the following version of the unique-
ness theorem for perfect bases.

Theorem 2.6.2. [2] Let B and B’ be perfect bases of V such that B¥ =
(B"YH. Then there exist a map ¢: B~ B' and a map &: B — k* such that
P(b) — £(b)b € V=i holds for any b € B and any i = (iy, ..., 4,) satisfying
e;P(b) € V. Moreover, such v and & are unique and ¢ commutes with &
and €" (i € I).

From now on, we set k = Q(q). We define

e; P (v) := &y,

? 7
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Then we can easily see the following:
(2.19) If B is a strong perfect basis, then e;*P)(b) = é?r(b)b for any b € B.

As in the way of (2.18), for each i = (i1, ...,im) € I'™, we can define ¢
as
e;(10P) .= o(toP) o o p(toP)

im i1

Thus, if B is a strong perfect basis, then we have e;(*?) B C B.
Lemma 2.6.1. Let B be a strong perfect basis of V.

(a) For any finite subset S of B, there exists a finite sequence i = (i1, ..., 0n)
of I such that egtOp)(b) € B foranybe S.

(b) Let by € BH and let i = (i1,...,i,) be a finite sequence in I. Then
S = {b € B | P () = bo}

18 linearly ordered by =;.

Proof. (a) is evident. In order to see (b), it is enough to show that if b,0 € S
satisfy b =; 0', then b = ' If we set vg = b, £} = & (vp_1) and v = egik)vk,l
(1 <k < m), then v, = bp. Similarly, if we set vy = V', ) = ¥ (v;,_,)
and v, = egf;“)v;_l (1 <k < m), then ¢ = ¢ and v], = by. Thus we have
v = éfl’:vk,l and v}, = éf:v;_l. Hence Definition 2.6.1 (i) (¢) shows that
vy, = vy, for all k. O

The following proposition gives a characterization of V4 (A)Y by using
strong perfect bases.

Proposition 2.6.1. Let M be a U,(g)-module in OF, such that wt(M) C

A —Q7T. Let My be an A-submodule of M. Assume that
o "M, C My forallicl,

o (My)py = Avy and M has a strong perfect basis B C My such that
BH = {UA}.

Then we have
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(a) My~ Va(A)Y,
(b) B is an A-basis of M.

Proof. Since M has only one highest weight vector vy, M is isomorphic to
the irreducible module V,(A) € Of ,. Since (Ma)a = Avy and

wnt*

ez(»fl) e egje)u € Av, for all (iq, - - ,’ig)}

Va(A)Y = {uevia
a(A)y {“ ( )A| such that ZizlakaikJr)‘:A

it is obvious that My C Vy(A)Y.

Thus it suffices to show that V4 (A)Y C My. For any u € Vi(A)Y, we
have u = ), &b with ¢, € Q(gq). By Lemma 2.6.1(a), we have a sequence
i = (i,...,ip) for the set B(u):={b € Blc, # 0} satisfying e{"" (b) = vy
for all b € B(u). Then Lemma 2.6.1(b) tells us that B(u) is the linearly
ordered set with respect to <;. By using descending induction with respect
to the order, we shall show that ¢, € A. For the maximal element b € B(u),
e;P(b) = €;®(u) = cpb. Thus we can start an induction. Assume that
cy € A for any O € B such that b <; ¢/. Then setting vg = b, {, =
gi,(Ug—1) and vy = egi’“)vk_l (1 < k < m), we have egi’”) . --egfl)u = qup +

> cb/eEiM) e egfl)b’ € Va(A)Y. Hence we obtain ¢, € A. O
b=<;b’

32
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Chapter 3

Categorification

3.1 The quiver Hecke algebra R

In this section, we construct the quiver Hecke algebra R associated with a
Borcherds-Cartan matrix A.

We take a graded commutative ring k = @,¢cz. Kk, as the base ring. For
i,j € I and r,s € Zxo, we take & j..5) € K a((aijaj)trditsd;) and Uj (o) €
k_2di(1_7,,_s,_%) such that

tiji(—aiz,0) € Koo Tijirs) = This(sr)s
(3.1) y
Uiy(1— 21 0)s Wi (0,1—%e) €ky.
In particular, #; j..s) = 0 if 2 = j.
Remark 3.1.1. We sometimes assume that
Under this assumption, t; j,rs) = Ui,sy = 0 for (r,s), (r',s') € ZQZO such
that (aila;) +dip+djq # 0 and 1 — % — ' — 5" £ 0.

Let Q;; and P; be elements in k|w, 2] which are of the form

Qi j(w, 2) = d;; Z bigsrsyW 2%,

r,8€ZL>0

Pi(w,z) = Z Wi ()W 2%

rea<i-

(3.3)
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Let s, = (a,b) be the transposition on k[zy, ..., z,] which interchanges
x, and xp. Define the operator 9, on k[xq,...,x,] by
Sapf — f
8a,bf = 2% J
LTy — Tp
and let 0, := 0y 041

For the sake of simplicity, we assume that [ is a finite set.

Definition 3.1.1 ([19]). The quiver Hecke algebra R(n) of degree n as-
sociated with the data (A, P,IL1I1Y), (Q;;)ijer and (P;)icr is the associative
algebra over k generated by e(v) (v € I"), x, 1 <k <n), 7, (1 <a<n-1)
with the following defining relations:

(R1) e(p)e(v) = dype(v) for all p, v € I, and 1 =3 ;. e(v),
(R2) zprq = z42)p,

(R3) zpe(v) = e(v)z, and T,e(v) = e(sqV)T,, where s, = (a,a + 1) is the
transposition on the set of sequences,

(R4) Taupe(v) = z5,pTae(v) if p # a, a4+ 1,
(R5) (TaZatr1 — TaTa)e(V) = (Tat1Ta — TaZa)e(V) = Ouyvars Prw (Ta, Tag1)e(v),

(R6) 72e(v) = {(aapya(xmxaﬂ))%e(y) if Vo = Vas,

QVa7Va+1 (xaaxa-i-l)e(y) Zf Va 7é Va+1,

(R7) 1,1 = 17y if |a — 0] > 1,

(RS) (Ta+lTaTa+1 - TaTa_HTa)e(V)

Pua (xa; $a+2)Qua,ya+1 (xa, Ta+1, [Ea+2)e(y) Zf Vg = Vaga 7& Vastl,
—/
Pya (:Ba; La+1s 5Ea+2)7'a€(1/)
— '
+Pl’a (l’a, La+1; $a+2>7'a+1€(1/) Zf Vo = Va+1 = Va42,

0 otherwise,
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where

P (u, v, w) = P.(v,u, w) = Pi(v, W)Pi(u,w) = Pi(u,w)Pi(v,w)  Pi(u,v)Pi(v, w)
) = Pilv ) T nw—w)  w—wv-w)  (@-—o)w-w)’
P’ U. V. W —p’ Uow.v) = _Pi(uv U)Pi(uv w) . P@'(U,w>P¢(w,U) Pi(U,U)Pi(U,U)>
P, (u,v,w) = P; (u,w,v) : (4 — o) (1 —w) (u—w)(v—w)+(u—v)(v—w)’

— Qi j(u,v) — Qi j(w,v)
. .

Qi,j (ua v, U)) =

Let us assign a Z-grading on the generators as follows: for all v € I™ |
1<k<nandl</{<n

(3.4) deg(e(r)) =0, deg(zre(v)) =2d,,, deg(me(v)) = —(ay|o,,,)

Then one can check that all relations in Definition 3.1.1 are homogeneous.
Hence R(n) has a natural Z-grading induced by (3.4).

We understand that R(0) ~ k, and R(1) is isomorphic to k’[z;] where
k! = @, ke(i) is the direct sum of the copies ke(i) of the algebra k.

Remark 3.1.2. For each w in the symmetric group S,,, we choose a reduced

expression s;, -+ - s;, of w and write 7, = 7, -+ - 7;,. Then, from the relations

giwen in Definition 3.1.1, we can see that the set

0-

{rwal* - xime(v) | ary...,an € Zso, wE€ Sy, v eI}

spans the k-module R(n).

For v = (v1,...,1,) € I" and 1 < m < n, we define
Vem = (Vlw"al/mfl), Vam = (Vl,...,Vm),
Vsm = (Vm-i-la"'ayn)a V>m = (Vm,...,Vn).

For pairwise distinct a,b,c € {1,...n}, let us define

Cap = Z e(v), Pup= Z P, (zq,xp)e(v),

veln, vel®,
Vag=Up Vag=Up

Gaybgc _ Z an,ub (xm xb) - an,ub (ZL’C, :L‘b) 6(V) =

5 Qa = 6a,a+1,a+27
Lg — Te

vel™,
Va=VcFVp
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=/ =/ =/ =/
Pa,b,c = Z Pl/a (Zlfa, Lb, J,’C)G(V), Pa = Pa,a+1,a+2’

velm™,
Va=Vp=Vc

=/ —=/! —=/! =
Pa,b,c = E Pl/a (l’a, Ty, Q?C)e(l/), Pa = Pa,a+1,a+2'
vel™,
Va=Vp=Vc

Then we have

Tat1TaTat1 — TaTor1Ta = QuPaars + PyTa + PaTat1.
We define the operator, also denoted by 0,4, on @
Sapf — [

Lg Ly

veln™

aa,bf =

€a,b, aa = aoL,cHrl-

Then we obtain

(35) Taf - (Saf)Ta - fTa - Ta(saf) = (aaf>Pa,a+1~

Using the formula (3.5), we have

—/ —/ —// —//
P,7e =P, and P, 7,41 = 7011P,,.

For g € Q1 with |3] = n, we set

Iﬁ:{uz(yl""’yn)eln|Oé,/1+""|’04,/n:ﬁ},
IO ={v=@n, .. %) el | aay, + - + apo, = B}

We define

R(m,n) = R(m) ®k R(n) C R(m + n),
en) =Y eW), ef)=) ew), ep)= 3 euv),

R(B) = e(B)R(n), R(a, ) = R(e) @k R(F) C R(ar + ),
e(n,i*) = Z e(v), e(i®,n)= Z e(v),

k k
velntk, ' vel™tk,
Up1=+=Up =i V) =--=v=i

e(B,i%) = e(B, kay) = e(B + kay)e(n, i*),
e(i*, B) = e(kay, B) = e(B + kay)e(i*, n),
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for a, 5 € Q.

Let Mod(R(3)) be a category of arbitrary Z-graded R(f)-modules. The
morphisms in the category are R(/3)-homomorphisms which are homoge-
neous. Let Proj(R(5)) (resp. Rep(R(3))) be the full subcategory consisting
of finitely generated projective (resp. finite dimensional over kg) Z-graded
(R(3))-modules. For a Z-graded R(f)-module M = @,_, M;, let M (k) de-
note the graded R(()-module whose Z-grading is shifted by & from one of
M;ie., M(k), :=D,c;, Mirx. We also denote by ¢ the grading shift functor

(3.6) (q- M)y = M,_;.

We denote by [Proj(R(3))] and [Rep(R((3))] the Grothendieck group of Proj(R())
and Rep(R(/3)), respectively. These group have the A-module structures in-
duced by the grading shift functor ¢; i.e., g[M] = [¢ - M] where [M] is the
isomorphism class of an R()-module M.

Let ¥ : R(8) — R(5) be the anti-involution given by

3.7)  ¢(ab) = ¢(b)(a), Ple(v)) =ev), ¢(ar) =z, »(n) =7

for all a, b € R(() and generators of R(3).
For any M € Mod(R(3)), we denote by M¥ the graded right R(f3)-
modules whose right action is induced by the involution . Namely,

vor =)y forve MY, reR(f).
For o, 3 € QT, consider the natural embedding
tag: Rla, B) — R(a+ f).
For M € Mod(R(«, 3)) and N € Mod(R(« + 3)), we define

Inda (M) = R(a + f)e(a, ) @riaz M € Mod(R(er + ),
Res, 3(N) = e(o, B)N € Mod(R(a, 3)).

Then Frobenius reciprocity holds in this setting:

(38) HomR(a+5) (Indaﬂ(M), N) ~ HOIIlR(aﬁ) (M, Resa”gN).
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3.2 The algebra R(nq;).

In this section, we will study the algebra R(na;) which is a special case where
B = na;. However, the properties of R(nc;) depend on the value of a;;. For
i € I'*, this algebra was treated in [24, 33].

Throughout this section, we assume that

(3.9) ko is a field and the components k; are finite-dimensional over k.

Under condition (3.9), the Z-graded algebra R(/3) satisfies the conditions:

(a) its Z-grading is bounded below and
(3.10) (b) each homogeneous subspace R(/3); is finite-dimensional over kg
(teZ).
Hence we have
(i) R(B) has the Krull-Schmidt direct sum property for finitely gen-
erated modules,

(ii) any simple object in Mod(R(/3)) is finite-dimensional over ky and
(3.11) has an indecomposable finitely generated projective cover (unique
up to isomorphism),

(iii) there are finitely many simple modules in Rep(R(/3)) up to grade
shifts and isomorphisms.

Thus Rep(R((3)) contains all irreducible R(3)-modules and
(3.12) the set of all the isomorphism classes of R(3)-modules, Irr,(R(3)),

forms a Z-basis of [Rep(R(/3))].
Now, we will study the representation theory of R(n«;). To do this, we
need to consider its primitive idempotents first.
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The case when a; = 2 (See [24, 33] for more detail). For 1 < k < n, let
by := 7krr11 € R(nay). Then, by a direct computation, we have
b,b, =bb, if |r—s| > 1,

(3.13)
b’r'br+lbr = br+1brbr+17 for 1 S r<n-—1.

Thus, for w € 5, b, is well-defined.
We denote by w[1, n] the longest element of the symmetric group S, and
set

(3.14) b(i") := bypn-
Then (3.13) implies
b(i")> =b(i") and byb(i") = b(i")b, = b(i") for 1 <k < n.

The algebra R(nq;) decomposes into the direct sum of indecomposable
projective graded modules over R(nq;) as follows:

(3.15) R(na;) ~ [n];!P(i"),

where

P(i") := R(na,)b(i") <W> .

Note that P(i") is an indecomposable projective graded module unique up
to isomorphism and grading shift. Note also that

n—1

R(na;)b(i") ~ R(nay)/ > R(na;)m.

k=1

On the other hand, there exists an irreducible graded R(nq;)-module L(i")
which is unique up to isomorphism and grading shift:

ny L R(nay)
(3.16) L(") := Indy gy, 16 oo, 1o

where 1 is the trivial k[z;] ® - - - ® k[z,,]-module which is isomorphic to k.
Hence L(i") is the R(nq;)-module generated by the element w(i") of degree
0 such that

ru(i") =0 (1 <k <n), ku(@")=0(s>0).
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The case when a; < 0. Recall the Z-grading on R(n) which is defined
in (3.4). In this case, all the generators have positive grading. Thus, the
algebra R(na;) has a unique idempotent b(i") := e(i"); i.e.,

(3.17)  R(nay) is the unique projective indecomposable R(na;)-module.

Therefore, by (3.11), we can conclude that R(n«;) has the unique 1-dimensional
irreducible graded module L(i") = kou(i") up to isomorphism and grading
shift; i.e.,

(3.18) e(@™)u(i") = u(i"), zu(i™) =0, Tu(") =0, kau(i") =0 (s > 0),
foralll<k<mand1l<a<m-—1.

The case when a; = 0 If we take P;(w, 2) = w+ 2, then R(3¢;) has —7y 79,
—1om and 1 + 779 + 771 as orthogonal primitive idempotents. In general,
R(na;) has many primitive idempotents. Hence the algebra R(nq;) is not
a principal indecomposable R(na;)-module and R(n«;) has many irreducible
modules. In this case, we also set b(i") := e(i") although e(:™) is not the
unique idempotent.

Hereafter, we construct a graded faithful representation of R(nc;). For
a polynomial ring k[X7,..., X,], we assign the degree of X (1 < k < n)
as 2d;. We define the action of 2 (1 <k <n)and 7, (1 <a<n-—1)on
k[X1,...,X,] as follows:

T - f(Xl, e ,Xn) = ka(Xl, P ,Xn),

(3.19)
Ta * f(Xla e 7Xn) = Pi(Xaa Xa+1)8a(f(X1, NN 7Xn))
for f(Xl, PN ,Xn) S k[Xl, ce ,Xn]

Proposition 3.2.1. The polynomial ring k[ X1, ..., X,] is a faithful repre-
sentation of R(nay).

Proof. 1f i € I™, our assertion was shown in [24, Example 2.2]. We may
assume that i € ™. Note that for w € S,,,

Oy is well-defined and {0,,z{* - - - 2| ay,...a, € Zxo, w € S, }

2
(3.20) is a linearly independent subset of End(k[X1,..., X,]).
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To prove our assertion, we need to prove that the map v : R(no;) —
End(k[X, ..., X,]) induced by (3.19) is indeed a homomorphism with kernel
equal to {0}. The relations given in Definition 3.1.1 except for (R5), (R6)
and (R8) are obvious. For the relation (R5), we have

XaSa — X,
TaTar1 - f = Pi<Xa7 Xa+1) (f) +1]

Xa - Xa+1 ’
XaSa - Xa
TaTa * f = P@'<Xa;Xa+1) b (f)X ] f,
a a+

for any f € k[X7,...,X,]. Thus we have

TaTar1 — TafTa = Pi(Xa, Tar1), in End(k[Xy,..., X,]).

In a similar way, we can show that x,,17,—T,%q = Pi(Za, Zay1) in End(k[ X7, ..., X,,]).

By a direct computation, we have

Pi(Xu1, Xa) = PilXe Xar)
2 ) a+1y Aa 7 ay “ra+1

Cf = P,

oS X, — Xo1 i(Xay Xor1)

salf) = f
Xa - Xa—&—l‘

Since 7;(7,) = Pi(Xa, Xa+1)0a, (R6) holds. To check relation (R8), it suffices
to show that the assertion hold for n = 3. Set

Pi($1,952) A — Pi(x%xl) B— Pz‘($2,$3) B — Pi($3,$2) C— Pi(l’hf:a)

1 — Ty 1 — T2 To — XT3 I2—$37 $1—ZL’3.

A=

Then we have

%(7—27—17—2> = ABC<828182 — S92851 — S152 + 81) — BB,C(]_ — 82) + AB2(82 — 1),
")@(7'17'2’7'1> = ABC<815281 — 8182 — 8981 + 52) — AA/C(l — 81) —+ AzB(Sl — 1)

Thus

Yi(TomiTy — 1) = (A'C + BC — AB) (A(s1 — 1))
— (AB+ B'C — AC) (B(s2 — 1)).

Since 71 = A(s; — 1) and 7, = B(se — 1) in End(k[X;, X3, X3]), (R6) also
holds. Hence ~; is a homomorphism.
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In remains to show that ~; is injective. Recall the notation 7, for w € S,
in Remark 3.1.2. We take a nonzero element

Y =Ty f1 + -+ T, fr for some fi € klzy, - ,2,] (1 <k <7)in R(na,)
such that w, # w, in S, (1 <a#b<r). Then, v,(y) can be written as

’yz(y) = awlf{ +ee 4t awrf;

for some nonzero f;. By (3.20), v:(y) is nonzero which yields our assertion.

[
Corollary 3.2.1. The set
{rwa{* - 2o |ay, ... an € Zso, w € Sy}
forms a basis of k-module R(na;).

Proof. 1t is an immediate consequence of Remark 3.1.2 and Proposition 3.2.1.
]

By Corollary 3.2.1, for i € I'®, the R(na;)-module L(i") has a ko-basis
{Tw-u(@)| wesS,}.

Set
Ly ={vel(@i)|azF-v=0} (k>0).

Since z, commutes with all z; (i =1,...,n—1)and 7; (j =1,...,n —2),
Ly has an R((n — 1)a;)-module structure. Moreover Ly has a ko-basis

{TwTn-1-Tu(@") |w e S,—1,n—k+1<s<n},
and L, = L(i"). Thus we have a module isomorphism
(3.21) L)Ly ~ L(i" 1) (2d;(1 — k)) for 1 <k <n.6

Here the grading shift is caused by the degree of 7,1 - 7, _xr1u(i™). Note
that Ly = 2" *L(i") for 0 < k < n.
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3.3 The Poincaré-Birkhoff-Witt-type basis.

In this section, we will prove that the set given in Remark 3.1.2 is indeed
a basis of k-module R(n). From this fact, we can define functor between
categories of projective R(n)-modules which play a crucial role in the later

sections.
Take a total order < on I. For § € QT with |3] = n, let

Poly = PkX1,..., X,JE(w) and Pol,= P  Pol,.
velB IBGQ+7 ‘IB|:TL

We define the action of the generators e(v) (v € I"), x (1 < k <n) and
7, (1 <a<n-—1) on Pol, as follows:

e(p) - fEW) = 0y fEW), zp- fEW) = XpfE(v),
(322) Pya(Xaa Xa+1>aa(f)E(V> if Vo = Vg1,
Ta * fE(V) = Qua,ua+1 (XayXa—i-l)Sa(f)E(Sa ) V) if Vo = Va+1,
Sa(f)E(Sq - V) if v, < Vg,

for f e k[Xy,...,X,].
Lemma 3.3.1. Pol, is a well-defined R(n)-module.

Proof. We have to verify that the defining relations given in 3.1.1 hold in
End(Pol,). It suffices to assume that n = 3 and |I| < 3. If |I| = 1, we
already proved this in Proposition 3.2.1. Thus, we may assume that || = 2
or |I| = 3. By a simple computation, one can check that the relations except
for (R8) hold trivially. Hence we will consider only relation (R8) under the
following cases:

Case (i): Let v = (7,7,7) with ¢ # j. Without loss of generality, we may
assume i < j. For a,b,c € Z>~g, Set X¥*¢:= X¢X)X$. By a direct compu-
tation, we have

Xa,b,c _ Xc,b,a
TlTQTl'Xa’b’CE(I/) = PZ‘(Xth)QZ‘j(Xl,XQ)—E(V),
X1 — X3
(X, X)X 00e — Qui (X7, Xq)Xeba
Ty - XWCE (V) = Pi(Xl,Xg)Q]( 3, X2) < S(J( 1, %) E(v),
1 — A3
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which yield

Qij(l’s,@) - Qij($17$2)6(y>

xr3 — T

(1i7am1 — TamiT2)e(v) = Py, x3) in End(Pol,,).

Case (ii): Let v = (i, j, k) such that i, j, k are distinct. Since the other cases
are similar, we will only prove our assertion when ¢ > j > k. Then we have
17T - XEW) = Qi X, X3)Qn( X1, X2)Qirn(X1, X3) X P E(v),
7'2T17'2‘Xa’b’cE(V) = Qij(XzaXs)ij(XhXz)Qik(Xth)Xc’b’aE(V)’

which implies that (71797 — o7 72)e(v) = 0 in End(Bol,,).
Case (iii): Similarly as above, we consider i = (4,14, j) with 7 > j only. Then

Xc,a,b _ Xc,b,a
T1T2T1'Xa’b’cE(V) = Qi (X1, X2)Quj (X1, X3)Ps( X2, X3) ————E(v),
Xy — X3
Xc,a,b - Xc,b,a
ToT1To 'Xa’b’cE(l/> = QZ']'<X1,XQ)Qij(Xl,Xg)Pi(XQ,Xg)—X X E(V)
2 3

Hence we have (11797 — Tom72)e(v) = 0 in End(Pol,,), which completes the
proof. O]

By the first relation in (3.22), we can naturally deduce the R(3)-module
on Poly. Note that R(5) = D, 0 e(n)R(B)e(v). For p, v € 15, let

28y = {w | we §8], w(n) = v},
By Remark 3.1.2, for g € Q* with |3] = n,

W By = {r,xlt - aire(v)|ar, ... an € Zsg, w € S, }

spans e(u)R(a)e(v).

Theorem 3.3.1. Fiz v € I®. Then the set wBy is a basis of the k-module
e(R(B)e(v) for any p € 17,

Proof. Let < be the lexicographic order of I° arising from the order < of I,
and let ,w, be the one of the elements in ,S, for n, u € I°. Let

75 : R(8) — End(Pol,)
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be the algebra homomorphism given in (3.22). We will show that v3(,B,) is
linearly independent for any p € I°, which would imply the set , B, is linearly
independent. We prove our claim using induction on the lexicographic order
< on IP.

Let v € I%, and let

p=01r.. .51 g2 Ja-Gr...jr) €I°
k k k
1 2 T

such that j; < jo < --- < j,. Note that y is a minimal element in I°. Let
m be a linear combination of ,B, such that yz(m) = 0. Note that m can be
expressed as

m = Z Ty Ty, T2 €(V)
S

for some a, € 2%, x* :::z:(lls1 -+ and some w, € Sg, X -+ - xSy, . It follows
from Lemma 3.3.1 that v3 (7,,,e(v)) is a linear map k[X1, ..., X,]E(v) to
k[Xy, ..., X,|E(n) sending E(v) to E(u). Hence,

Since v (3, Tw, 2 ®)e(v)) is in End(Poly) sending E(v) to E(u), by
Proposition 3.2.1, we have

" (Z 7_wsxuqvw(as)e(ﬂ)) =0 if and only if ZTwsxuwu-(as)e(u) =0,

which implies m = 0. Therefore, v5(,B,) is linearly independent.

We now consider the case when 7 is an arbitrary sequence in I” such that
n > p. This step can be proved by a similar induction argument as in [24,
Theorem 2.5, which completes the proof. ]

For any «, § € QT, e(a, B)R(a+ 3) has a natural graded R(«, 3)-module
structure.

Corollary 3.3.1. e(«, B)R(a+ ) is a free graded left R(«, 3)-module.
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Proof. Let n:=|al, m:=|f| and S,, X S,\S,1m be the set of the minimal
right S,, X S,-coset representatives of S,,y,,. For w € S, X S,\S,1m, set

Tw = Z e(v, N)Twe(w_l (v, ).

vel®,
uelP

Then, Theorem 3.3.1 tells that
{Tw|lw € S;, X Sp\Snim}
is a basis of the left graded R(«, 5)-module e(c, B)R(a + ). ]
By the above corollary, we can conclude that

(3.23) Ind, g and Res, s take projective modules to projective modules.

Hence we have the linear maps

[Inda g] : [Proj(R(a))] x [Proj(R(3))] — [Proj(R(a + B8))],
[Resa g : [Proj(R(a+ )] — [Proj(R(«))] x [Proj(R(3))].

Given a, o, 3, € QT with a+ 3 =o' + [, let

(3.24)

(3.25) apRa g i=ela, B)R(a+ Be(d, ).

We also write o4 3Ra5:=R(a+ B)e(a, 5) and o g Ruip :=e(a/, 3 )R(/ + ).
Note that , sRw g is a (R(«, ), R(a/, 3'))-bimodule. Now we obtain Mackey’s
Theorem for the quiver Hecke algebras.

Proposition 3.3.1. The (R(a, ), R(¢/, 8'))-bimodule , sRy g has a graded
filtration with graded subquotients isomorphic to

(aRoc—%w) ® (ﬁRﬁ-w—ﬂ’,ﬁ’—v) %Yy (oc—%oc’—w—aRoc’) ® (%6’—7R,@’)<_(7|ﬁ +7 - B/»a

where R = R(a —v) @ R(y) @ R(B+~v — ') @ R(B" — v) and v ranges over
the set of v € Q1 such that « —~, ' —~ and f+~v— ' = o+~ — a belong
to QF.
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3.4 Quantum Serre relations

In this section, we will show that the Grothendieck group [Proj(R(/3))] satis-
fies the categorical Serre relations.

Recall the definition of the idempotent b(:™) in Section 3.2. For v = (17, ..., %) €
I®) we define

b(v) :=b(u") ©--- ©b(1,*) € R(A).
Since each b(r¢) (1 <r < k) is an idempotent, so is b(r) and

is a projective graded R(3)-module. Recall that, for i € I'™,
P(i") = R(nay).

Now, we will prove that the quantum Serre relations hold on [Proj(R(3))].
Suppose that we have i € I and j € I such that ¢ # j and a;; # 0. Let
b = 1 — a;; and take nonnegative integers m,n > 0 with m +n = b. Note
that

e<im>j7 in)Tb"'Terl = 7_b"'TTr%He( m+17j7 )7

e(@™, J, ") Tna1 = T1 0 Te (@™ ,j, "+1)

Define the homogeneous elements

Oé:;,n = €(im’j’ in)Tb ... Tm+1b<< .’m—l—l?j7 .n_l))7
U = (0™, 7, 8") 1+ Twb((™7Y, 4, 0"F1)).

Choose a pair of sequences v and p such that (v,i™, 7,3, p) € 1®. Then
these elements give rise to homomorphisms of graded projective modules

At Pu,i™, g, i v) — P(u, ™ 5" ),
v —  v-b(p) ® o, @ b(v),

(
3.26 ’
(3.26) )

d:n,n : P(M,im,j, inay) - P(:uvimilaj? Z.n+17y 9
v —  v-b(u)®a,, ®b(v)
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Set d;fo =0 and d;, = 0. Then we have

d(Tb d;—l ntl dbin
0 =———=P(u,j,i"\v)=———= -+ =—=P(p,i"™,j,i",v) =—=
1,b—1 dm,n dm+1,n—1
dr d

m+1,n—1 b—1,1

m+2,n—2 db,O

Lemma 3.4.1.

(a) d;rlan © d'f—;—l,n—i-l =0, d;%,n © d';b—&—l,n—l =0 fOT m ,n > 0.

(b) diy 5 0 dyy = (=1)"Miji-ay0)id, dipy 0 dgy = liji(-ay 0)id.
(¢) For1 <m,n <b, we have
d:;zfl,n+1 © d;n,n - d;wrl,nfl © d:%n = (_1)m71ti’j§(—¢liju0)id'

Proof. 1f j € I, this lemma was proved in [25, 33]. We will prove our lemma
when j € '™,
Let by, = b((i"™,j,i")) for m,n > 0. Since i € I', it follows from

(25, 33] that
Oé;;’n =Tp- - Tb—nbm—i-l,n—l - bm,nTb T Tb—nbm—l-l,n—l,

=T1" " Tmbmfl,nJrl = bm,nTl te 7—abmfl,n+1-

m,n
By a direct computation, we have

+ +
am—17n+1am’n - bm—l,n+l7—b e Tmbm,nbm,nTb o 7_m—l-lbm—&—l,n—1

= bmfl,n+17—b T Tt 7—m+1bm+1,nfl
=0.

In the same manner, we get o, 4, 10,,, =0.
On the other hand, for a,b > 0, we obtain

+ - —
am,nam—l—l,n—l - bm,nTb e 7—m-l—lbm—l—l,n—lbm—&—l,n—17_1 e Tm—l—lbm,n
=T1 " Tm—1Tb " Tm+1TmTm+1Pa b,

+ —
am,nam—17n+1 - bm,nTl T Tmbm—l,n+1bm—1,n+17—b e Tmbm,n

=T1 " Tm—1Tp " " Tme—l—lebm,nv
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which implies
-+ _ b—14 + - 4.
Qp 011 = (_1) tzvﬂ(_aijvo)bb)O’ QX p®1p—1 = tw%(—(lmo)bO,b?

and

+ + - _
am,nam—l,n+l - O‘m,nam+17n_1 =T1 " Tm—1Tp """ 7—m-|—2(7—m7—m+17—m - 7—m—i-lTme—i-l)bm,n
=T1" " Tm—1Tp " " Tm+2(Qm,m+1('xma Tm+1, xm+2)ba,b
_ m—1
- (_1) tl:]:(ialj70)ba7b'
Therefore, we obtain
+ + - - _
am—l,n-{—lam,n - 07 am—l—l,n—lam,n - 07
~ ot — (—1)b— 1y, . + 4T — f. .
Qp 011 = (=1) tigi(~ai3,0)Pb,04 Qo p1p—1 — tiji(—as3,0)P0bs
- + + - — m—1y
Crn¥m—1n+1 — YmnOmtin-1 = (_1) tz,j;(faij,O)bm,ny

as desired. O

Theorem 3.4.1. For any pair of sequences p and v,

() if ai; = O for i # j, then [P(u,i,4,)] = [P(s i, v)]
(b) Ifi € I' and j € I with i # j, then

1—a;;

> (=DFP(u, it itk vy =0,

k=0

Proof. Without loss of generality, we assume that ¢ < j. If a;; = 0, let 7=
(resp. 7T) be the element in R changing (ij) to (ji) (resp. (ji) to (ij)) and
define

d” :P(p,i, j,v) — P(p, j,i,v) (vesp. d™ : P(u, j,4,v) — P(u,i, j,v))

to be the map given by right multiplication by #; j.—a,;,007" (vesp. ;7).
From the defining relation, we see that d* and d~ are inverses to each other.
Hence

[P(u,i,5,v)] = [P(u, 3,4, )]
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Suppose that a;; # 0 and ¢ € I". By Lemma 3.4.1, the complex
(P(u,im, Jyi" ), df ) becomes an exact sequence with the splitting maps

» Ymyn

(—l)mfltm;(,amo)d* Therefore, our assertion follows from the Euler-Poincaré

m,n"*

principle. [

For a module N = @,., Nt € Mod(R(53)) such that dimy, N, < oo ,
define a formal power series

dim,(N) =) (dimy, Ny)q'".

tEL

Note that for N € Proj(R(f)), dim,(N) is well-defined.
By similar arguments to the one in [24, Section 2.5], we have the lemma
below:

Lemma 3.4.2. Assume that (3.2) holds; i.e..k = ko. The A-linear pairing
(,) : [Proj(R(8))] x [Proj(R(8))] — Z[lg, q~"]] defined by

([P, [Q]) = dimy(P¥ ®r(s) Q)
is a nondegenerate symmetric bilinear form on Proj(R(5)).

Given p € I% and v € I?, a sequence 1 € I°F is called a shuffle of 1 and
v if i is a permutation of (u, ) such that p and v are subsequences of 1. For
a shuffle  of pp € I and v € I?, let

deg(p, v, n) = deg(rwe(p,v)),

where w is the element in Sj4|415/S)a) X S| corresponding to 7.

For M € Mod(R(«)) and N € Mod(R(5)), M X N will denote the outer
tensor product of M and N. Then, from Proposition 3.3.1, one can check
that

Ind, s(P(p) X P(v)) ~ P((u,v)) for pe I vel’
(327) Res, 5P () = @ P(u) B P(v)(~ deglu, v,m))  for n € I,

where the sum is taken over all u € I*, v € I? such that n can be expressed
as a shuffle of 4 and v. Set

Proj(R) = @D Proj(R(3)) and [Proj(R)] = & [Proj(R())].

geQT geQT
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Then we can extend the linear maps [Ind, 5] and [Res, ] in (3.24) to [Ind]
and [Res] on [Proj(R)] by the following:

[Ind] :[Proj(R)] ® [Proj(R)] — [Proj(R)] given by ([ ], [N]) — [Ind, g M K NJ,

[Res| :[Proj(R)] — [Proj(R)] @ [Proj(R)] given by - Z [Resq g L].
o ,B'eQt

where
e M € Proj(R(a)) and N € Proj(R(5)),
e the sum is taken over all /.3’ € Q7 for R(¢/ + #’)-module L.

We denote by [M][N] the product [Ind]([M],[N]) of [M] and [N] in
[Proj(R)].

Proposition 3.4.1.
(a) The pair ([Proj(R)], Ind) becomes an associative unital A-algebra.
(b) The pair ([Proj(R)], Res) becomes a coassociative counital A-coalgebra.

Proof. Our assertions on associativity and coassociativity follow from the
transitivity of induction and restriction. Define

t: A — [Proj(R)] by L(Z arq”) = Zaqul
e: [Proj(R)] — A by e([M]) = c([M°]),

where 1 is the trivial module over R(0)-module which is isomorphic to k ,
[MP] is the image of [M] under the natural projection

[Proj(R)] = €D [Proj(R(8))] — [Proj(R(0))]

peQ™

and c([M?]) is the coefficient of [M°] with respect to the canonical basis of
[Proj(R(0))]. Then one can verify that ¢ (resp. €) is the unit (resp. counit) of
[Proj(R)]. O
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We define the algebra structure on [Proj(R)] ® [Proj(R)] by
([Mi] @ [Ma)) - ([N1] @ [Na]) = ¢~ =PI [ML][NL] @ [Mo][No]

for M; € [Proj(R(3:))], N; € [Proj(R(v:))] (i = 1,2). Using Proposition 3.3.1,

we prove:

Proposition 3.4.2. [Res] : [Proj(R)] — [Proj(R)] ® [Proj(R)] is an algebra
homomorphism.

Proposition 3.4.3. Under assumption (3.2), the bilinear pairing ( , ) :
[Proj(R)] @ [Proj(R)] — Q(q) satisfies the following properties:

)
(b) ([P()], [P(1)]) = 6;;(1 — )~ fori,j €1,
(¢) ([L], [M][N]) = (Res[L], [M] ® [N]) for [L], [M],[N] € [Proj(R)],
(d) ([L[M], [N]) = ([L] @ [M], Res[N]) for [L],[M],[N] € [Proj(R)].

Proof. Assertions (a) and (b) follow from the Z-grading (3.4) on R(«). Sup-
pose that L € Proj(R(a + 3)), M € Proj(R(«)) and N € Proj(R(3)). Then

we have

([L], IM][N]) = dimy (LY ®r(atp) Inda,s(M K N))
= dim,((Resq,sL)" ®Rr(as M K N) = (Resa gL, M X N),

which yields that ([L], [M][N]) = (Res[L], [M] @ [N]).
Assertion (4) can be proved in the same manner. O
Define a map @ : U (5) — [Proj(R)] by

(3.28) R e ()

»or

Theorem 3.4.2. Under assumption (3.2), the map ® is an injective algebra
homomorphism.
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Proof. By Theorem 3.4.1, ® is an algebra homomorphism. Since both of the
maps Ay and Res are algebra homomorphisms and
Ao(fi) = fi®1+1® fi, Res(P(i)) =P(i) ® 1+ 1@P(3) (i € 1),
by (2.9) and Proposition 3.4.3, we have
(z,y)r = (®(2), ®(y)) forall z,y € Uy (g).

Hence Ker® is contained in the radical of the bilinear form ( , )., which is
nondegenerate. Now our assertion follows immediately. O]

3.5 Crystal structure and strong perfect bases

In this section, we investigate the structure of RepR(3). From this, we can
choose a set of irreducible R(3)-modules which give a strong perfect basis of
[RepR()]. Throughout this section, we assume that

e K is a field and the components k;’s are finite-dimensional over k, and

e a; #0 foralliel.

For ¢ € I, define
ApM = e(B — kay,i*)M € Rep(R(B — kay, kay)),
e (M) = max{k > 0| ApM # 0},

E;(M)=e(f — a;,i)M € Rep(R(S — o)),

FI(M) = Indg,e, (M BL(i)) € Rep(R(3 + ),

éi(M) = soc((E;(M))) € Rep(R(8 — ),
fi(M) = hd((F/M)) € Rep(R(3 + ).

(3.20)

Here, soc(M) means the socle of M, the largest semisimple subobject of M
and hd(M) means the head of M, the largest semisimple quotient of M. We
set £;(M) = —oo for M = 0.

For M € Rep(R(3)), My € Rep(R(G)) (k=1,...,m) and d € Z~, set

MY = R.-..®M, kﬁle:le..&Mm.
——— =
d
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We also define the character ch,(M) of M to be

chy(M) =Y (dimy(e(v) M))v.

velb

By Frobenius reciprocity, we have

Homgg) (Indﬁ—mammai (N L@E™)), M)

(3.30) .
~ Homg(g—may,ma;) (N K L(Z™), Ajm M)

for N € Mod(R(8 — may)) and M € Mod(R(3)).

Lemma 3.5.1. Fori € I'™, take my,...,my € Zwg and set m =my + -+ - +
my. Then the following statements hold.

mia L)) = [ B L(i™)].

(b) hd(Indym,a;. . mya; (B LE™))) 2= LE™).

Proof. Assertion (a) follows from definition (3.18). To prove (2), for simplic-
ity, we assume k = 2. Let L = Ind(Ly X Ly), where L, :=L(i"V) (j = 1,2).
Set

L' ={x € L|deg(x) > 0}.

Since all generators of R((m;+ms)a;) have non-negative Z-degree, it becomes
an R((my+mg)a;)-module. Then, since (L; X Ly)NL" = {0}, L' is the unique
maximal submodule of L; i.e., L/L" ~ L(i™) as a graded module. We will
show that hd(L) is irreducible. By a direct computation,

chy(L) = > g e = (i) + a(q) (i),

WESmy +my/Smy X Smy

where a(q) is a polynomial Z[g] without constant term. Note that ch,(L; X
L) = (i"). For any quotient @) of L, by Frobenius reciprocity (3.8), we have
an injective homomorphism

Ll & LQ — Resmlai,m2a¢Q7
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which yields
chy(Q) = (i") + a'(g)(i"),

where a'(q) € Z[g] without constant term. Therefore, hd(L) has only one
summand, and hence it is irreducible. O

Recall the natural Z-basis Irr,(R(3)) of [Rep(R(3))] (see (3.12)).

Lemma 3.5.2. Let [M] € It (R(3)) and let N K L(i"™) be an irreducible
submodule of the R(B—may;, may;)-module Ajm M. Then " (N) = 9" (M)—m.

Proof. If i € I, then the proof is the same as that of [24, Lemma 3.6]. If
i € I'™ by the definition, we have e"(N) < &"(M) — m. From equation
(3.30), we obtain

0—K—->Ind(NXL(E™) —>M—0

for some submodule K of Ind(N X L(:™)). By Proposition 3.3.1 and the
exactness of the functor A, we can conclude that *(N) > &"(M) — m.
Thus our assertion follows. O

Lemma 3.5.3. Let [N] € Irr,(R(B)) with [E;][N] =0 and let M = Ind(N X
L(i™)). Here [E¥] is the map from [Rep(R(3))] to [Rep(R(B — kay))] induced
by the exact functor EF for k € Zso. Then we have

(a) [AmM] =[NKL(@E™)| € Irr,(R(5, ma)),
(b) [hd(M)] € Irry(R(G + may)) with *(hd(M)) = m.

Proof. Our assertion can be proved in the same manner as in [24, Lemma
3.7]. m

Lemma 3.5.4. For [M] € Irr,(R(B)) with e = " (M),
[Aje M| =[N K L(:%)]
for some [N| € Irr,(R(8 — ea;)) with €"(N) = 0.

Proof. Our assertion can be proved in the same manner as in [26, Lemma
5.1.4] (cf. [24, Lemma 3.8]). O
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Lemma 3.5.5. Suppose that i € I'™ and [N] € Trr,(R(3)) with [E;][N] = 0.
k
Let [M] = [Ind (N X (e&ﬂ_(iw)))] for some positive integers my,...my €
Z~o and set m =mq + -+ my. Then
(a) [hd(M)] € Irry(R(G + ai)),
(b) &"(hd(M)) = m.
Proof. By the definition, we have
k
[AmM] =[NK Ind(glglL(im‘))].
Then we have
[AimM] =) ¢~ W @INRILE™)] = [N BLE™)] + a(g) [N BLE™)],

w

where w runs over all the elements in S,,/S;,, X --- x S, and a(q) € Z[q]
without constant term. By Frobenius reciprocity (3.30), for any quotient @)
of M, there is a nontrivial homomorphism of degree 0

k
A M = N B Ind(KL{E™)) — AinQ.

By Lemma 3.5.1 (2), we have
[AimQ] = [N KIL("™)] + a(g) [N KILE™)],

for some a(q) with a(q) € Z[q] without constant term. Therefore, by the same
argument as in Lemma 3.5.1, hd(M) is irreducible and " (hd(M)) =m. O

Lemma 3.5.6. Let [N] € Irr,(R(3)) and let [M] = [Ind(N X L(:™))]. Then
[hd(M)] € Irry (R(G + may;)) with e (hd(M)) = " (N) + m.

Proof. 1f i € I'*, then the proof is identical to that of [26, Lemma 5.1.5] (cf.
24, Lemma 3.9]). Suppose that i € I™. Let ¢ = ¢"(N). By Lemma 3.5.4,
we have

[AieN] = [K K L(i)]
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for [K] € Ity (R(8 —may)) with ' (K) = 0. By Frobenius reciprocity (3.30),

there is a surjective homomorphism
Ind(K X L(#°)) - N,
which yields
Ind(K KL(#°) ®L(E™)) = Ind(N X L(z™)).
Therefore, our assertion follows from Lemma 3.5.5. O

Lemma 3.5.7. For [M] € Irry(R(5))and 0 < m < &¥"(M), the submodule
socAm M of M is an irreducible module of the form LR L(i"™) with " (L) =
e (M) —m for some L € Irr, (R(5 — may)).

)

Proof. 1f i € I'°, then the proof is the same as that of [26, Lemma 5.1.6] (cf.
24, Lemma 3.10]). If i € I'™, let € = &*(M). Note that every summand of
socA;m M has the form L X L(i"™) for L € Irr,(R(8 — may)). It follows from
Lemma 3.5.2 that

ef(L) = ¢ —m,

so that Aj—m (L) K L(E™) # 0. Tt is clear that Resg:izi’??im)ai ma, Qi M has

Aje-m(L) K L(i"™) as a submodule. On the other hand, by Lemma 3.5.1 and

Lemma 3.5.4, there exists an irreducible N € Irr,(R(8 — €q;)) such that
[Res/)—0wce ArM] =[N KLGE™) R LE™),

B—ea,(e—m)ai,ma;

which is irreducible. Hence socA;m M is irreducible and isomorphic to L X

L(i™). O

Lemma 3.5.8. For [M] € Irr,(R(3)) with [EF|][M] = 0, [M] is a linear
combination of modules [N], where [N] € Irry(R(3)) with €*(N) < k.

Proof. Write [M| = > an|[N], where ay € Z and N ranges over the set of

isomorphic classes of irreducible R(f)-modules. Let ¢ be the largest ¢"(V)

with ay # 0. Then by Lemma 3.5.7, [Ef][M] = dimy, L(i*) Y.  aum[efM].
eor (M)=¢

Hence if £ > k, then [Ef][M] = 0, which is a contradiction. Hence we obtain

the desired result. O
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By Lemma 3.5.6 and Lemma 3.5.7, the operators €; and ﬁ take irreducible
modules to irreducible modules or 0, and

(M) =max{k > 0| "M #0}, e*(fiM)=c"(M)+1.

(2

Lemma 3.5.9. For [M] € Irry(R(5)), we have
[socE" M) = [e"M],  [hd(F" M)] = [f;"M].

Proof. 1t i € I™, then the proof is the same as in [26, Lemma 5.2.1]. Suppose
that i € I'™. Now, we focus on the first assertion. Since the case m > &"(M)
is trivial, we may assume that m < ¢"(M). Since L(i) X &M — A;M, we
have

ErM B L(i)%™ — Resjj_met™ Ay M

—mao,o,...O

which implies there is a nontrivial homomorphism
emM X Ind(L()¥™) — A M.

Since any quotient of Ind(L(7)*") has a 1-dimensional submodule, A;m M has
a submodule which is isomorphic to é*M K L(i™). Hence the first assertion
follows from Lemma 3.5.7.

For the second assertion, by the definition of f;, there is a nontrivial
homomorphism Ind(M X Ind(L(i)®¥™) — f™M. By Lemma 3.5.6, we have

[hd(Ind(M K Ind(L(:)¥™))] = [f"M].
On the other hand, the nontrivial homomorphism
Ind(L(7)%™) — L(i™)
induces a nontrivial homomorphism
Ind(M X Ind(L(:)%™)) — Ind(M X L(i™)).
Therefore, we conclude [hd(E/™M)] = [f™M]. O
Lemma 3.5.10. For [M] € Irr,(R(3)) and [N] € Irr,(R(8 + «)), we have

[/iM] = [N] if and only if [M] = [¢;N].
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Proof. Using Lemma 3.5.9, our assertion can be proved in the same manner
as in [26, Lemma 5.2.3] O
For M € Rep(R(f3)), set
. eX(M) ifielI™ore(v)=0,
(M) = e
1 if i € I"™ and £9"(v) > 0.

Proposition 3.5.1. For [M] € Irr,(R(B)), assume that ¢ :=¢£y"(M) > 0 and
set e*:=¢ef(M). Then we have

(3.31) [Ei[M] = ¢/~ [e*]:]e:M] + Z[Nk]7

where the Ny, are irreducible modules with " (Ny,) < " (€;M) =€ — 1.
Proof. By Lemma 3.5.7 , we have
[ApM] =[EEMRL(>F)] and [Ag-16;M) = [EEM KL

On the other hand, (3.21) and Lemma 3.5.1 imply that

*

L) = g [ lalL ()]
as an element of [Rep(R(0))]. Thus we obtain
(B ([BM] — ¢ [")i[e:M]) = 0.
Hence the desired result follows from Lemma 3.5.8. O

For any M € Mod(R(3)), we denote by M* = Homy, (M, ko) the ko-dual
of M whose left R(()-module structure is induced by the anti-involution v
given in (3.7): namely, (af)(s) = f(¢(a)s) for f € Homy, (M, kg), a € R()
and s € M. We say that M is self-dual if M* ~ M as modules over R((3).

Lemma 3.5.11. For M € Irry (R(5))with (M) > 0, we have

(3.32) (g~ Me )] = [q; e (ar)].

K3 K3

99



CHAPTER 3. CATEGORIFICATION

Proof. Set e* =& (M). By (3.31), we have

[E[M] = [)ilq; " &:M] + Z[Nk]

Here Ni’s are irreducible modules with e(Ny) < (M) — 1. Since E;
commutes with the duality functor, we have

(BM) = [):((a =" &M) ] + Y [(Ve)'].
k
On the other hand, applying (3.31) to M*, we obtain

[E[M*] = [l e(M)] + ) _[Ni]

with " (N},) < e¥"(M) — 1. Hence we obtain the desired result. O

By a similar argument to the one in [24, Corollary 3.19], we have the
following lemma:

Lemma 3.5.12. For [M] € Irr,(R(3)), we have
ko ~ EndR(g)(M).

Proposition 3.5.2. For [M] € Irr,(R(3)), there exists r € Z such that ¢" M
15 self-dual, that is,
[(q"M)"] = [¢"M].

Proof. Using induction on |3|, we shall show that there exists r € Z such
that
q"M is self-dual.

Assume || > 0 and take ¢ € I such that (M) > 0. Set £ = f(M).

(2

Then, by the induction hypothesis, there exists r € Z such that q’"qil_a*éiM
is self-dual. Then the preceding lemma implies

g eilq" M) = (@ eila™ M) "] = o~ e (4" M)")).
Hence by Lemma 3.5.10, we get [¢" M] = [(¢"M)*]. O
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Finally we obtain the following theorem which shows the existence of
strong perfect basis of [Rep(R(53))].

Theorem 3.5.1. For § € QF, let Irrg(R(5)) be the set of isomorphism
classes of self-dual irreducible R((3)-modules. Then

{ [M]| M e Trro(R(5))}

is an A-basis of [Rep(R(3))]. Moreover, it is a strong perfect basis; i.e., it
satisfies the property (3.31).

Proof. The proof is an immediate consequence of Proposition 3.5.2 and (3.31).
O

Set

Rep(R) = @D Rep(R(9)) and [Rep(R)] = €P [Rep(R(B))].

peQt peQt

The following lemma is a categorification of the g-boson relation.

Lemma 3.5.13.
(3.33) [E[F] = ¢ “I*)[F][E;] + 6,;1d € End,([Rep(R))).

Here [Fj] is the endomorphism on [Rep(R)] induced by the functor Fj.

Proof. Choose any [M] € Rep(R(3)). Then, from Proposition 3.3.1, we have

[E[EF5][M] = [E]]([Indg 0, (M K L(5))])
[Ei

]
= [M][E;L(5)] + [Indp—a, o, (£ (M) B L(5)){(cj]c:))]
= 0y[M] + ¢~ [FE][M],

which yield our assertion. O]
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3.6 The functors E;, F; and F;

In this section, we define the functors E;, F; and F; on Mod(R(3)). The
functorial relations among them will be ingredients of the categorification
theorem for cyclotomic quiver Hecke algebras in the later section.

Recall the notion of k! = @._, ke(i). By Corollary 3.3.1, we have a

iel
decomposition
(3.34)
n+1 n+1
R(n+1) @R ) @k K [T, @Ta.. k! [2,41] @k R(n)

as left-R(n, 1)-modules (resp. right R(n, 1)-modules). Here, when a = n + 1,
we understand 7,, ... 7, = T, ... T = 1.
Let &,: R(n) — R(n + 1) be the algebra homomorphism given by

(3.35) Eo(mn) = Thp1, Galm) =7, &ule(v) =) _eli,v)
icl
forall 1 <k <n,1</¢<nandv el Wedenote by R'(n) the image of

En.

For each i € I and 3 € Q*, let F; 5:= R(8 + a;)v(i, 3) be the R(3 + a;)-
module generated by v(i, 3) of degree 0 with the defining relation e(i, 5)v(i, 5) =
v(i, ). The module F; 5 has an (R(3 + ;), R(3))-bimodule structure whose
right R(f)-action is given by

av(i, B) - b = a&,(b)v(i, B) for a € R(B+ ;) and b € R(B).

In a similar way, we define the (R(n + 1), R(n))-bimodule structure on R(n +
Du(1,n) by

av(l,n)-b=a&,(b)v(1,n) fora € R(n+1)andb e R(n).
Hence

Rin+1v(l,n)~ @ R(B+ ay)v(i, 3).

i€l, |B]=n
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Let
E;: Mod(R(B + as)) — Mod(R(f3)),
F;, Fi: Mod(R(B)) — Mod(R(B + o))
be the functors given by
E;(N) = e(B,i)N = e(B,1)R(B + ) @R(pray N

~ Homg(g1a,) (R(B + a5)e(B,17), N),
Fi{(M) = R(B + a;)e(B,1) ®r() M,

Fi(M) =F;p3®r@ M

for N € Mod(R(S + «;)) and M € Mod(R(3)).
From now on, We shall investigate the commutation relations for the
functors E;, F; and F; (i € I).

Proposition 3.6.1. The homomorphism of (R(n),R(n — 1))-bimodules

p: R(n)e(n —1,5) R(r(zgil) g @ilDe(n — 1,i)R(n) — e(n,i)R(n + 1)e(n, )

given by
TRy — TT,Y, z €R(n)e(n—1,7), y € e(n —1,i)R(n)
induces an isomorphism of (R(n),R(n))-bimodules

p: R(n)e(n —1,5) ® q @le(n—1,i)R(n)® e(n,i)R(n,1)e(n, ;)
(3.36) R(n1)

~

— e(n,i)R(n + 1)e(n, j).
Proof. The homomorphism p is well-defined since we have
aeln—1,7)me(n—1,i) =e(n—1,j)me(n —1,i) a for any a € R(n — 1).

Thus it induces a homomorphism

/. ne(n — ; —(Oéi|aj)e n — i n) — e(n’Z)R(n+ l)e(na])
P R(n)e( 1’j)R(§il)q (n —1,9)R(n) oL DR D) e(n. )
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Thus it is enough to show that p’ is an isomorphism. Since
@Ta Tk z,] @ R(n — 1),
we have
R(n)e(n —1,7) ®rm-1) e(n — 1,7)R(n)

(@ Ta** Ta—1k[zne())] @k R(n — 1)) ren_1) €(n — 1,1)R(n)

N@Ta - Tn1k[zne())] @i e(n — 1,1)R(n).

On the other hand,

e(n,))R(n+ Ve(n,j) _ Bazy e(ni)7a - mklzarie())] Ox e(n — 1,0)R(n)
e(n,i)R(n, e(n,j) e(n, i)K[zn16(7)] @ R(n)

n

12

e(n,i)7q - Tuk[rni1e())] @k e(n — 1,9)R(n).

By (3.5), for f € k[z,e(j)], y € e(n — 1,i)R(n) and 1 < a < n, we have

Ta "Tn—lany =Ta" " Tp-1 (Tn(snf) (a f) nn+1)
=To Tu(Snf)y mod e(n,1)R(n, 1)e(n, j).

2
Il

Hence p' is right R(n)-linear and p'(7, -+ o1 f) = 7o -+ - Tu(snf). Since f —
spf induces an isomorphism k[z,e(j)] ~ k[z,41€e(j)], our assertion follows.
[

Theorem 3.6.1. There exist natural isomorphism
EF; 5 ¢l BB @ 6 k[t] @ 1d,
where t; is an indeterminate of degree (o;|a;) and
k[t;] ® Id: Mod(R(8)) — Mod(R(5))

is the functor defined by M — X[t;] @ M.
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Proof. Note that the kernels of F;E; and E;F; on Mod(R(3)) are given by

R(B — a; + aj)e(B — Oéz‘,JF;)ﬁ@? ?)(ﬁ — i, ;)R(a;)  and

e(B+ o — i, )R(B + aj)e(B, ),

respectively. Since

R(n)e(n —1,7) @rm-1) e(n — 1,7)R(n)e(5)
~R(8 — ai + oy)e(B — i, j) 2 e(B — ai,;)R(8) and

—ai)

e(n,))R(n+1)e(n, je(B,j) = e(f + o — o, 1)R(B + o)e(B, j),

our assertion is obtained by applying the exact functor e e(3,j) on (3.36).
[

By a similar argument to that given in [14, Proposition 3.7], we have the
proposition below:

Proposition 3.6.2. There ezists an injective (R(n), R(n))-bimodule homo-
morphism

®: R(n)v(1,n — 1) ®r@m-1) R(n) = R(n + 1)v(1,n)
given by
zo(l,n—1)®@y+— x&,(y)v(l,n) for all z,y € R(n).

Moreover, its image R(n)RY(n) has a decomposition

n+1

R(n)RY(n) = @ R(n, 1)1y« 7y = @Ta -1 R(1, n).

Lemma 3.6.1. Foralll1<k<nandl1 </{<n-1,
(a) TpT + TL = T+ T1 Tk,
(b) ToTw -+ T1 = Tnw+ T1T041,

(¢) Tpi1Tn++ 71 = Tp- -7y mod R(n)RY(n).
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Thus
) =7, - m1e(i, B)én(a),

) =T - - - mizre(i, B)
mod R(n)R'(n) for any a € R(p).

aty, - -me(i,
(337) $n+le(ﬁ> Z)Tn Tt Tle(i> ﬁ

Proof. We will verify that for f € k[zy,--+ , 2,11]
(338) TuTwoi- Tk f7e---1 =0 mod Rn)R'(n)if {+2<k<n+1.

We shall prove this by using downward induction on k. If £ = n 4+ 1, it is
trivial.
Assume that k& < n and our assertion is true for k¥ + 1. Then we have

T TefTe 11 =T T (Se(F)m + [0 11

(3.39) ,
:Tn"'Tk+15k<f)7_£'"TlTk+Tn"'Tk+1f7—€"'Tl

for some f' € k[zy,-+ ,Tn41]. Since 7, € R'(n), all the terms in the right-
hand side of (3.39) are 0 mod R(n)R!(n) by the induction hypothesis. Hence
our assertion holds.

(a) For 1 < k <n, we have

TpTn " T1 :Tn"'Tk-‘rlkak"'Tl

=Tn " Te1TkLk41Tk—1 """ T1 — Tn * " ‘Tk+1Pk,k+1Tk71 ce 71

Then the second term is 0 mod R(n)R'(n) by (3.38), and the first term is
equal to

(7o T 1 T ) (Tt + 1) T,
which implies our first assertion.

(b) For 1 < ¢ <mn—1, we have

T¢Tp - T1 = Tt Te42TeTo41Te -+ T1

b~ —/ —/!
=Tn - Toeg2(Ter1TeTo41r — QeProyo — Py — 7044Py) 01 -+ 1
=Tp - "T1Te41 — Tp " 'T£+2(QZP€,€+2)T€*1 T

— —
— Tn.. .T€+2<PZ)T€. . .7-1 _Tn. "TZ—FI(PZ)TK—I .. .7-1'
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By (3.38), the terms except the first one are 0 mod R(n)R!(n).
(c) If k=n+ 1, we have

Tp41Tp " T1 = (Tnxn + Pn,n—l—l)Tn—l T

= TpTnTp—1' " T1 + Pn,n+17—n71 T

TnTnTp—1"""T1

To---7ir; mod R(n)R'(n).

By Proposition 3.6.2, there exists a right R(n)-linear map
¢1: R(n+1o(1,n) = R(n) @ k' [z,41]

given by

R(n + 1)v(1,n) —Coker(P)

3.40 o ~
(340) Z R 1)y S R, 1) 2 R(n) @ K [

R(n) @ k'[1].

Similarly, there is another map ¢9: R(n+1)v(1,n) — ki[z;] @ R(n) given

by
o mR(1
R(n + 1)u(1,n) —Coker(®) = DozgTo 1 IR )
41 D, 7 -1R(1,n)
(3 ) hd Tn TlR(].,TZ) ad R(].,TL) o kl[l'l] ® R(n)

By restricting ® to

R(B+ aj — a;)v(j, B — ai) @r(a-ay) €(B — i, )R(B),
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which is the kernel of F';E; on Mod(R(f3)), (3.40) and (3.41) can be rewritten
as

e(B+ a; — a;, )R(B + aj)v(y, 5)

L, Coker(®) = GBZ% R(+a; = o Z)Tn — Tae(]:7 b
@Z:Q R(ﬁ + aj — Oy, Z>Tn e Tae(]7 B)

6, ;R(B,4) 7 - - 71 = 6 R(B,9)

and

e(B+ a; — a;, )R(6 + aj)v(y, 5)
22, Coker(®) & @Zi] e(B+ a; — ;1)1 - - T1R(j, B)
D, e(B+a; —a;,i)7, - 1iR(4, B)
=0T, - T1R(i, B) <= 6; ;R(i, B)
~ 0; ;k[z1e(i)] ® R(B) ~ d; jk[t;] @ R(5).

Therefore by (3.37), ¢1 and @9 coincide and we obtain:
Theorem 3.6.2.

(i) There is a natural isomorphism
F,E; = EF;  fori#j.
(ii) There is an exact sequence in Mod(R(())
0— F,E;M — EF;M — ¢~ @l9k[t,] @ M — 0,

which is functorial in M € Mod(R(53)). Here t; is an indeterminate of
degree (a;|ay;).
3.7 Cyclotomic quotient

Let A € Pt be a dominant integral weight. In this section, we investigate
the structure of R*(3). Then we observe that how the functors E} and FA
act on Mod(R*(3)) and the commutation relation between them.
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For A € PT and i € I, we choose a monic polynomial of degree (h;, A)

(3.42) at(u) = Z Cigpu i) =k
k=0

with Ci:k € kadi and Cio = 1.
Given § € Q1 with |3] = n, a dominant integral weight A € P* and k
(1 <k<n), set

= a) (zi)e(v) € R(A).

velb

Definition 3.7.1. For 3 € Q* and A € P*, the cyclotomic quiver Hecke
algebra RY(B3) at B (resp. RA(n) of degree n) is the quotient algebra

RY(8) = and R n)= € RH).

BeQ™, |Bl=n
Lemma 3.7.1. Let v € I™ be such that v, = V441 for some 1 < a < n.

Then, for an R(n)-module M and f € K[xy,...,z,], fe(v)M =0 implies

(0af)Pury(Zas Tay1)Poy (Tay1, a)e(v) M = 0,
(8af)Puu(Ta, Tag1)Pu, (Tat1, Ta)e(v)M =0

Proof. Note that 1,e(v) = e(v)7, and 72e(v) = (0,P,, (T4, Tar1))Tae(v). Thus
we have

(Ta — Tag1)TafTae(V)
= (20 = 2as) (50 f)7a + (90 )Py (0, Tos1) (V)
(v = @0t1) (<aap,,a (as 201)) (50f) + (Duf P (s T ) ()
= (P (a1, ) = Poy (20, 021)) (30 7a0(0) + Py (2 Tt) (salf) = F)relv)
va(@at1; Ta)(Saf)Tal(V) = Pu, (Ta, Tat1) fTae(V)
(

Lat1, xa) (Ta ( )Pva (xm $a+1)) e(’/) - Py, (xav xa-i-l)fTae(V)-

(aaf) Pl/a (xaa $a+1)Puu (anrla xa)e(V)M =0.
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Since (z, — Tq11)(Ouf) = saf — f, we have

($af)Pve(Ta; Tat1)Pu, (Tas1, Ta)e(v) M = 0.

Lemma 3.7.2. Let § € QT with || = n.

(i) There exists a monic polynomial g(u) € k[u] such that g(x,) = 0 in
RA(B) for any a (1 < a <n).

(i) Ifi € I', then there exists m € Zxq such that R*(8 + ka;) = 0 for any
k>m.

Proof. (i) By induction on a, it is enough to show that

For any monic polynomial g(u), there exists a monic polynomial h(u)
such that h(z,1)M = 0 for any R(5)-module M with g(z,)M = 0.

If v, = V441, then Lemma 3.7.1 implies that

9(®ay1)Pu, (Ta, Tay1)Po, (Tatr, 2o )e(v) M = 0.

By the definition of P;(u,v) given in (3.1), g(z4+1)Pu, (Tas Tat1)Pu, (Tat1, Ta)
is a monic polynomial in x,,; with coefficients in k[z,|. Hence we can
choose a monic polynomial h(x,y1) in the ideal generated by ¢g(x,) and

9(ai1)Pu, (T, Tas1)Pu, (Tar1, ) in K[zg, 24y1]. Thus
h(xay1)e(v)M = 0.
If v, # Vqi1, then

0(011) Qs (T T )W) M = g0 )726() M = Tug(w)e(sur)7aM = 0.
Since g(Za+1)Qugvars (Tar Tat1) is a monic polynomial in 441 with coefficients
in k[z,], we can choose a monic polynomial h(x,1) as in the case of v, = v,41.
(i) For v € I", set Supp,(v) = #{k | 1 <k <n and v, =i}. Our assertion

is equivalent to:

For all n, there exists k,, € Z>q such that e(v)RY(n+k,) =0

3.43
(3:43) for any v € 1" with Supp;(v) > k,.
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If e(v)RY(n + k) = 0 for any v € I""* such that Supp;(v) > k, then one can
easily see that

(3.44)
e(V)RMn+ k) =0 for any ¥’ > k and 1/ € "t with Supp; (Vi) > k

In order to prove (3.43), we will use induction on n. Assume that there exists
k = k,_1 such that

e(W)RMn —1+k) =0 if Supp;(v) > k.

By (i), there exists a monic polynomial g(u) of degree m > 0 such that
9(Znix)RM(n + k) = 0. Tt suffices to show

e(v)RYn + k 4+ m) = 0 for Supp;(v) > k + m.

If Supp;(V<nsr_1) > k, then by (3.44) e(v)RMn + k +m) = 0. Thus we
may assume that Supp,(v<pix—1) < k— 1. Hence we have vs,, 1 = (4,...,17).
Then the repeated application of Lemma 3.7.1 imply

Onthtm— - Onrg(Tnsn))e(V)RY(n + k +m) = 0.
Since Opikrm—1 - Onskg(Tnir) = £1, we can choose k, =k + m. O
Lemma 3.7.3. Ifi € I'™ and (h;, A — 3) = 0, then
RYB + a;) = 0.

Proof. Since (h;,A), (h;,—3) > 0, the hypothesis (h;; A — 3) = 0 implies
(hi, Ay = 0 and (h;, 3) = 0. Thus for all j € Supp(5)\{:}, we have a;; = 0. In
particular, we have Q;; € k. Since (h;, A) = 0, we have e(i, )RM (B + ;) =
0. For v € I?*%_ let k be the smallest integer such that v, = i. We shall
show e(v)RY(3 + a;) = 0 by induction on k. If k=1, it is obvious. Assume

k> 1. Hence Q,,_, ., e(V)RYB + a;) = Th_1e(sp_1v) 71 RY(B + ;) vanishes
since (sg—1v)k—1 = 4. Since Q,,_, ., € kj, we obtain the desired result
e(V)RMB + ;) = 0. O
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For each 7 € I, we define the functors

E*: Mod(R*(B + a;)) — Mod(RY(3)),
FA: Mod(RY(B8)) — Mod(R(3 + a;)),

EMNN) = ( )N = e(8,1)RNB + a;) QRA (B+a) Vs
FMNM) =RMB + aw)e(B,1) ®rags) M,

where M € Mod(R*(3 + «;)) and N € Mod(R*(3)).
We introduce (R(3 + «;), R*(3))-bimodules

FA=RYNB + ay)e(5,9),
(3.45) Ko :=R(B + as)e(,4) @rp) R (B),
Ky :=R(8 + a;)v(i, B) @res) RY(B).

The bimodules F*, K, and K are the kernels of the functors F*, F; and
F; from Mod(R*(3)) to Mod(R(3 + a;)), respectively.

Let t; be an indeterminate of degree 2d;. Then klt;] acts from the right
on R(S + «a;)e(i, f) and Ky by multiplying x;. Similarly, k[t;] acts from the
right on R(3+ «;)e(3,1), F* and K; by multiplying x,,;. Thus Ky, F* and
K, have an (R(8 + a;), k[t;] ® R*(3))-bimodule structure.

By a similar argument to the one given in [14, Lemma 4.8, Lemma 4.16],
we obtain the following lemmas.

Lemma 3.7.4.

(i) Both K, and Ky are finitely generated projective right k[t;] @ RM(3)-
modules.

(i) In particular, for any f(z1,...,Tnr1) € K[x1, ..., Tpy1] which is a monic
polynomial in xq, the right multiplication by f on Ky induces an injec-
tive endomorphism of K.

Lemma 3.7.5. Fori € I and 3 € QT with |5] = n, we have
(1) R(B+ ag)a™(@1)R(B + i) = 325 o R(B+ i) (w1)71 -+ 7o,
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(i) R(B+ a;)a™(x1)R(B + a;)e(3,1)
= R(3 + ap)at (w1) R(B)e(B, 1) + R(B + ag)a (w1) 1 - - e (3, 4).
Let pr: Koy — FA be the canonical projection and P: R(B+ ay)e(i, ) —
Ky be the right multiplication by a®(x1)7 - - - 7,, whose degree is
2d;(h;, A) + (o] — B) = (ay|2A = ).
Then, using Lemma 3.7.5, one can see that

= ~ R(B+ a)a®(x1)R(B + a;)e(B, 1)
(3:46)  Im(P) = Ker(pr) = = et (e )R(B)e(3, 1

Lemma 3.7.6. The map P: R(8 + o;)e(i, ) — Ko is a right k[t;] @ R(3)-
linear homomorphism; i.e., for all S € R(B+ ), 1 <a<nandl <b<
n—1,

P(S%ai1) = P(S)xa, P(Sz1) = P(S)2ps1, P(S7y1) = P(S)7.
Proof. First, we will verify that for f € k[zq,..., 2,41 and £+2 < k <n+1,
(3.47)

a(z)m - Tef e Tee(B,4) =0 mod R(B + ay)a’ (z1)R(B)e(3, ).

We will prove this by using downward induction on k. It is trivial for & =

C K.

n 4+ 1. Assume that k < n and our assertion is true for £ + 1. Then we have

(3.48)

at (@) Tof T Tae(B,1) = Tha (@) sk () Thpr - - Tae(B, 1)

+ o)1 T f e Tae(3,9)

for some f’ € k[xy,...,2,41], and both the terms in the right-hand side of
(3.48) are 0 mod R(B + a;)a™(z1)R(B)e(B,4) by the induction hypothesis.
Thus we obtain (3.47).

For 1 < a < n, we have
a1 (@™ (@1)71 - - Te(,9))
= (@) Tac1 (Tas1Ta) Tags - - Tne(B, 1),
a(21)71 -+ Ta1 (TaTa + Paat1) Tat1 - - Te(B, 1),
= C‘A(iﬁl)ﬁ s Taiae(3, 1) + (217 - “Ta-1Pa,at1Tat1 - Tne(B,9),
a(x1)m - - Txee(B,1)  (by (3.47)).
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For the second assertion, we have

z1(a*(z)m - Te(B, 1))

= o™ (x1)(myae — P1o)To - - The(3, 1)

= az) @y - Te(B,1) — ProTo - moa(z1)e(B, 1)

= aA(xl)TlachQ e The(, 1)

= aM)) a3 - - The(B,1) — a’(21) T PosTs - - The(B,4)
= a’(z))TimasTs - Tee(B,1)  (by (3.47))

ar(z)m - TnZns1€(6,1) mod R(B + a;)a(z)R(B)e(3,1).

For 1 <b<n—1, we have

Topr (a2 - - - Te(B, 1))

= a™(21)71 Tt (o1 Ty Toe1 ) To2 -~ Te(3,4)

= ﬂA($1)T1 o Ty1 (T o1 T + Gbpb,b+2 + Tbﬁg + EZTbJrl)TbJrZ - Tpe(,1)
= a™(z1)m1 - Tame(B,0) + at (@) 7 Tom 1 (QuPrpaa) Toro - - - Tne(B, )

+ ClA(ﬂU1)7'1 o 'Tb(ﬁg)ﬂwz e 'Tn€(5> 2) + aA<x1)7-1 e 'bel(EZ)TbJrl - 'Tn€(5> Z)

By (3.47), all the terms except the first one are 0 mod R(8+a;)a™ (x1)R(B)e(3, 7).
Thus we obtain

Topr 0 (1) 71 - The(B,1) = a(21) - - - Tme(8,4)  mod R(B+a;)a (z1)R(B)e(5,19).

]

Since P is right k[t;] ® R(8)-linear and maps R(3 + a;)a (z2)R (3)e(i, )
to R(8 + a;)a(z1)R(B)e(B, 1), it induces a map

P1K1—>K0,

which is an (R(8 + «;), k[t;] ® R(3))-bilinear homomorphism. By (3.46), we
get an exact sequence of (R(8 + ), k[t;] ® R(3))-bimodules

K 2Ky 2 A .
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We will show that P is actually injective by constructing an (R(6+a;), R(8)®
k[t;])-bilinear homomorphism @ such that @ o P is injective.
For 1 < a < n, we define the elements ¢, and g, of R(3 + «a;) by

(349)  wa= > me@)+ Y (Pu(TaTat1) = (Tar1 — Ta)Ta)e(v)

velPtog, velbteq,
l/a;ﬁl/a+1 Va=Va+1
and
(3.50)
Ga = Z Tae(V) + Z (Zar1 = 7a)Puy (Ta, Tay1) = (Tat1 — Ta)Ta)e(V)
velbtag velPteq,
I/a#l/a+1 Va=Va+1

The elements ¢,’s are called intertwiners, and the elements g, are their vari-
ants of them.

Lemma 3.7.7. For 1 <a<n and v € I, we have

Pae(V) = e(8aV)Pa, xsa(b)@ae(’/) = parpe(v) (1 <b<n+1),

(3.51) ‘
Topae(V) = pamoe(v) if[b—al > 1, TaPat1¥a = Pat+1PaTat1,

and

(3.52) ga€(V) = €(5a¥)ga,  Ts,)9a(V) = gatpe(v) (1 Sb<n+1),

Tbgae<y> = gaTbe(V) Zf |b - a| > 1a Ta9a+19a = Ya+19aTa+1-

Proof. By the defining relations in Definition 3.1.1, the first and the third
equalities can be verified immediately. We will prove the second equality in
(3.51) when v, = v,41 € I. Let b = a. Then

xa+1§0ae<y) = Tq11Py, (xaa xa—&-l) - ($a+1 - xa)(ma—HTa)e(V)

= anrlPVa (aja; xa+1> - (anrl - xa)(_Taxa + PVa, (ili'a, $a+1))€(V),
and
PaTal(V) = TaPy, (Ta; Tat1) — (Tat1 — Ta) (—TaTa)e(V).

Therefore we have

Tar1pa€(V) — paxee(v) = 0.
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Similarly, we can prove the equality when b = a + 1.

By relation (R8) in Definition 3.1.1, S = T,04+1¢a — Pat1PaTar1 does not

contain the term 7,417,7,+1 and 7,7,+17, and is contained in the K[z, Z441, To12]-

module generated by 1, 7., T,o41, TaTar1, Tar1Ta- Lhat is, S can be expressed
as
S =Ti+ ToTa + T3Tar1 + TuTaTar1 + T5Tas17a

for some T; € Kk[z4, Tai1, Tar2] (1 <@ < 5). By a similar argument given in
[14, Lemma 4.12], we have
Sxy = Ty, ,op)S  for all b.

Then one can show that all T, must be zero. Thus our second assertion
holds. O

Proposition 3.7.1.

(i) Let Q: R(B+w)e(B,i) — K be the left R(B+oy)-linear homomorphism
giwen by the multiplication of g, - - - g1 from the right. Then Q is a right
(R(B) ® k[t;])-linear homomorphism. That is,

Q(Sza) = Q(S)zars (1 <a<n), Q(Stur1) = Q(S)n
1

Q(S7) = Q(S)Tpur (1< b<n—1)
for any S € R(B + ay)e(f,1).
(ii) The map Q induces a well-defined (R(8 + o), R(3) & k[t:])-bilinear ho-

momorphism

QI KO — Kl.
Proof. The proof follows immediately from the preceding lemma. O]

Theorem 3.7.1. For each v € I?, set

Av<tz> = ai\(tz) H Qi,l/a (tza xa) H P(tu .CCa)P($a,ti>€(V),
1<a<n, 1<a<n,
Va1 vo=1€l
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and define
Alt:) = A(t;) € k[t;] @ R ().

velBb

Then the composition
CQ oP: }{i — I(l

coincides with the right multiplication by A(t;); i.e.,

PZCLA("L'l)T1~~~Tn

K Ko
A(t”i %
K.

Proof. it suffices to show that

(3.53) aA(951)7'1 e TpGn - re(i,v) = aA(x1>7_1 e Tpe(V ) g 1
' = A, mod R(B + a;)a’ (z2)R'(3),
where
A, = ai (@) H Qi v (21, Tat1) H P21, Zat1)P(@at1, T1)e(v).
1<a<n, 1<a<n,
Vo Fl vo=t€l

We will prove (3.53) by induction on || = n. If n = 0, the assertion is
obvious. Thus we may assume that n > 1.
Note that we have
(3.54)
Tne(V, i)gn — { Tne(y> i)Tn = Qi,un (:an xn+1)e(’/-<m ia VN) lf Un 7é Z:a
To(Tps1 — Tp)Pi(Tpa1, xn)e(v, 1) if v, = 1.

(i) We first assume that v, # i. Then we have
o z1) 71 Tagn - gre(i, v)
= ClA(iﬁl)Tl o 'Tnlei,z/n ($n> $n+1)9n71 o '916(7;7 V)

= aA(%)ﬁ S Tp_1Gn—1- - g1e(l, V)Qi,yn (@1, Tpi1)

=A,_ Qiy, (21, 2n41) = A, mod R(B3 + a;)a™ (z9)RY(B)e(i, 3).
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(ii) If v, = 4, then we have

aA(x1>7—1 o Tpdn gle(ia l/)
(3.55) = aMz) 71 T (@1 — 20)Pi(Tni1, Tn)gn1 - gre(i, v)

= C‘A<$1)7'1 © o TpGn—1"" '91($n+1 - 1‘1)Pz‘($n+17 xl)e(ia V)‘
Note that

ClA(l'l)Tl ©Tp—19n - 'gle(ia V) =0n-- ~91GA(:C2)72 1, =0

(3.56) mod R(B + a;)a” (z2)R' (B)e(i, B)-

By the definition of g, formula (3.56) can be written as

aA(xl)Tl ccrTh—1 (Tn(wnJrl - xn)2 - (xn+1 - xn)Pua(xaa $a+1)) gn—1""" gle(ia I/) =0.

Thus

ﬂA(iEl)Tl T 1TnGn—1 - G1(Tng1 — xl)Qe(’i, V)

= a™(21)7 T 1Gnt o 1 (T — 21)Po (21, Tagr )e(i, v)

= A1’<n (xn+1 - 'Il)PVa (xh xa—i—l)'

Since right multiplication by (2,41 — 1) on K is injective by Lemma 3.7.4,
we conclude that

aA(x1>7_1 o Tpe1Tagn-1 0 G1(Tp1 — 21)e(i, v) = A;/<nPl/a (71, Tar1)
which implies

a™(21) 71 TGt g1 (Tng1 — 1) Pi(Tgr, 1) e(d, v)

= Ai,<n sza (l’l, xa—i—l) Pya (xa+17 xl)-

Then, (3.55), together with A}, = A)_ P, (21, %a41)P.,(Tat1,21), implies the
desired result. ]

By applying the same argument as in [14, Lemma 4.19], we have the
following lemma.
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Corollary 3.7.1. The following diagram commutes

K1i>K0

wl |

Kl ?KO

A(ti)

Since K is a projective R*(3) ® k[t;]-module by Lemma 3.7.4 and A(t;)
is a monic polynomial in ¢; (up to a multiple of an invertible element), by a
similar argument to the one in [14, Lemma 4.17, Lemma 4.18], we conclude:

Theorem 3.7.2. The module F* is a projective right R*(3)-module and we
have a short exact sequence consisting of right projective R*(3)-modules:

(3.57) 0— K 25 Ko — F* - 0.

Since K, Ky and F* are the kernels of the functors F;, F; and F2,
respectively, we have:

Corollary 3.7.2. For anyi € I and 3 € Q7, there exists an exact sequence
of R(B + «;)-modules

(3.58) 0 — ¢ PAFM — FEM — FAM — 0,
which is functorial in M € Mod(RA(5)).

For a € Q7, let Proj(R*(a)) denote the category of finitely generated
projective Z-graded R*(a)-modules, and let Rep(R*(a)) be the category of
Z-graded R*(a)-modules which are finite dimensional over ky. Then we
conclude that the functors E* and F* are well-defined on @ Proj(R*(a))

aeQt

and @ Rep(RA(a)):

acQt
Theorem 3.7.3. Set
Proj(RY) = @D Proj(R*(a)), Rep(R") = @D Rep(R*()).
ace@t acQt

Then the functors E* and F? are well-defined exact functors on Proj(R%)
and Rep(RY), and they induce endomorphisms of the Grothendieck groups
[Proj(RY)] and [Rep(R™)].
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Proof. By Theorem 3.7.2, F* is a finitely generated projective module as a
right R*(3)-module and as a left RA(3+q;)-module . Similarly, e(3,i)R*(3+
;) is a finitely generated projective module as a left R*(3)-module and
as a right R*(3 + a;)-module. Now our assertions follow from these facts
immediately. [l

Theorem 3.7.4. Fori # j € I, there exists a natural isomorphism

(3.59) FMEN ~ g, " EMF).

Proof. By Proposition 3.6.1, we already know

(3.60) e(n,i)R(n+ 1)e(n,j) =~ q; “"R(n)e(n — 1,7) @rm_1) e(n — 1, j)R(n).
Applying the functor R*(n) @rm) ® ®r@m) R*(n)e(B) on (3.60), we obtain

e(n, )R (n +1)e(, )
el DR @R (n + L)e(,) + e(m, DR (n + Dar (e R(m)e(5,)
~ R (n)e(n — 1) @ragu 1) e(n — LR n)e() = FEARM(9).

Note that
A pARA e(n,i)R(n + 1)e(n, j)
EFFPRY(B) = (e(n,i)R(n + 1ar(z1)R(n + 1)e(n,j)> e(f).
Thus it suffices to show that
(3.61)
e(n,))R(n + 1)a™(z1)R(n + 1e(n, j)
= e(n, i)R(n)a™(z))R(n + 1)e(n, 7) + e(n,i)R(n + 1)a®(x1)R(n)e(n, 5).

Since aA(xl)Tk = TkClA(£E1> for all kK > 2, we have
n+1
R(n + 1)a®(z1)R(n + 1) ZRn+1 21)7q - - - TaR(n, 1)
= R(n + 1)a"(z1)R(n, 1) + R(n + Da’(z1)m1 - 7uR(n, 1)
n+1
= R(n + 1)a*(z,)R(n, 1) —I—ZRnl a’(zy)1 - maR(n, 1)

= R(n + 1)a®(z)R(n, 1) + R(n, Da®(z1)R(n + 1)
+R(n, 1)1, - - ma®(zy)m - - R(m, 1).
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For i # j, we get
e(na Z)R(nu ]-)Tn U 7—laA(xl>7—1 e TnR(na 1)6(77,,]) = 07
and our assertion (3.61) follows. O

Consider the following commutative diagram with exact rows and columns
derived from Theorem 3.6.1, Theorem 3.6.2 and Corollary 3.7.2:
(3.62)

00— P OF B M —— ¢ " FEM —q; " FAEAM —0

|

00— P EFM E;FiM EMEMM

0

q‘(a¢\2A*2ﬁ)k[ti] ® M—— k[tz] QR M

7

0 0

By taking the kernel modules, we obtain the following commutative dia-
gram of (R(3), R*(3))-modules:
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(3.63)
0 0
0o— - ql(aipAfﬂ)Ki r q;a“K(/) *G> q;auF;AEZARA<ﬁ) —()
: l
0—>Q§ai|2A_ﬁ)E¢K1 z EiK, Ez'AFiARA(ﬁ) —0
B C
CiPA2OK 1) @ RA(B) = Kk[ti] @ RA(5)

where

K} = F;ERMB) = R(B)e(B — a4, i) Orp—ay) (B — a;)RY(B)
K} = F,ERMB) = R(B)e(i, 8 — ;) @r(s—ar) €(8 — ;)R (B) ®@r(s) R*(B)
=R(B)e(i, B — ;) @R(B-a) RA(@)

The homomorphisms in the diagram (3.63) can be described as follows:

e P'is given by the right multiplication by a®(x)7; - - - 7,1 on R(B)e(i, 5—

CYZ'>.
o A is RA(B)-linear but not k[t;]-linear.

e Bis given by taking the coefficient of 7,, - - - 7y and is (R(5)®Kk|[z,41], k[z1]®
R!(3))-bilinear.

e Cis (R(B), RA(3))-bilinear but does not commute with ¢;.

e P is the right multiplication by a®(z;)7 -7, and is (R(3),R*(3) @
k[t;])-bilinear.

e [ is the multiplication by 7, (See Proposition 3.6.1).
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Let p be the number of a; appearing in 3. Note that the degree of ¢; in
ti_<hi7A>A1/ - H Qi,Va(ti7$a) H Pi(tiaxa)Pi(xaati)a

1<a<n, 1<a<n,
Vo Fi Vo =1

denoted by deg,, (t;<hi’A> A,), is given by
Qi
—(hi, B = paq) +2p(1 = 7)) = —(hi, ) + paii + 2p — pag; = —(hi, §) + 2p.

Define an invertible element v € k* by

(=1)” H Qi (tis a) H Pi(ti, Tar1)Pi(Tay, ti)

1<a<n, 1<a<n,
(3.64) Vi Yami
= 7l PP L (Cterms of degree < —(hi, B) + 2p in ;) .

Set A=A — [ and
(3.65) o = Atf) € k[ti] @ RY(0),
which is of degree 2(o;|\) + 2d;k = 2d;({hi, \) + k).

Proposition 3.7.2. If (h;,\) + k > 0, then vy is a monic polynomial in t;
of degree (h;, \) + k.

Note that for m < 0, we say that a polynomial ¢ is a monic polynomial
of degree m if p = 0.
To prove Proposition 3.7.2, we need some preparation. Let

=Y ap @b € R(B)e(B — i) Or(a—ay €(B — i, 1)RA(3),

k€Z>0

where a; € R(B)e(S — ay,i) and by € e(8 — a;,i)R*(B). Define a map

(3.66) 2 Z agP;i(xp, Tpi)b.

ICEZ>0

Lemma 3.7.8. For z € R(8)e(8 — i) Qr(g—as) (8 — i, )RY(B), we have

(3.67) F(z)xpi1 = F(2(z, ® 1)) + E(2).
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Proof. Let z = a®b € R(B)e(f — i, i) @r-as (8 — ai, )RY(B), where
a € R(B)e(fB — ay,i) and b € e(B — a;,7)RY(3). Then
F(z) = am,b, E(z) = aPi(xp, x,11)b.
Thus

F(2)xpi1 = amybryy = at,xp41b = a(x, 7, + Pi(Tp, ©,01))b
= ax,Tpb + aPi(zp, x,11)b
= F(ax, ®b) + E(2) = F(2(z, ® 1)) + E(2).

By Proposition 3.6.1, we have

(3.68) _ L N
=F (R(ﬁ)e(ﬁ — a;,1) @R(3—ay) (B — 04, 1)R (5)) @ kit;] ® R*(B),
where t; = x,,,1. Using the decomposition (3.68), we write

(3.69) P(7 - mix}) = F(iy) + @x

for uniquely determined ¢y, € K| and ¢y, € k[t;] @ R*(3).
Using (3.65), we have

A(tf) = AB(7, - - -Tlxlf) =CP(r, - Tlx'f) = Pk-

Thus one can verify that the definition of ¢ coincides with the definition

given in (3.65).
Since

F(¢k+1) + Qr11 = P(Tn o '7'19le+1) = P(Tn o ‘T1£C]f)$n+1

= (F(¢¥x) + @r)tni1 = F(Y(zn @ 1)) + E(r) + oxti,
we have

(3.70) Vpy1 = Yz, ® 1), Orr1 = E(r) + onti.
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Now we will prove Proposition 3.7.2. By Lemma 3.7.1, we have

gn - g1$lf7'1 Ty = xﬁ+1a?<$n+1) H Qi,ya (J;n—&-la xa) H Pi<xn+17 xG)Pi<Ia7 l’n+1)
1<a<n, 1<a<n,
I/a;ﬁi Vo =1

in (3, ))R(5 + as)e(B,i) © RA(8), which implies

AB(gn e glxlf) = C<x2+1a?<xn+1) H Qi,lla ($n+1, :Ca) H Pi(xﬂ+17 xa)Pi<xaa xn+1))

1<a<n, 1<a<n,
Va7 Vg =1
t Qzua tmxa P tzaxa xa; z)
1<a<n 1<a<n,
Va7l Vo =1

On the other hand, since B is the map taking the coefficient of 7, - - - 71, we
have

B(g---guat) = B (H (~ (@t — Ta)2)2 17 )

= th H
Thus we have
(3.71)
tk H t —Ia = ptk A H Qzua tzaxa H P tl;xa xa; z)
Vo =1 1<a<n, 1<a<ln,
Va1 Va=1
Set
S; = H(tz — 24)%,
Fi=v(— H Qi Va tzal’a H P tzama xaa z) S k[ti] ® RA(ﬁ)'
1<a<n, 1<a<n,
l/a#i Va=1

Then S; and F; are monic polynomials in ¢; of degree 2p and (h;, \) + 2p,
respectively. Note that they are contained in the center of k|[t;] ® RY((3).
Then (3.71) can be expressed as the following form:

Note that
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o if p =10, then Kj =0 and

e if i € I'™ such that (h;, \) = 0 and p > 0, then RY(3) = 0.
Thus, to prove Proposition 3.7.2, we may assume that
(3.72) p >0, and if i € I'™, then (h;, \) > 0.
Lemma 3.7.9. For any k > 0, we have

(3.73) thFi = (yor)Si + hy,

for some polynomial hy in t; with deg, (hy) < 2p — %, Moreover, if i € I',
then vy coincides with the quotient of t¥F; by S;, and if i € I'™, then

deg, (hy) < deg,, (thF,).
Proof. By (3.70), we have
Prr1 =it + EWr), k= ho(zy @ 1),
Since x,, is a nilpotent element in R*(3),
B() = B(o(rb @ 1) =0 for k30

In particular,
A(Sith)y = S;A(tF)  for k>0,

which yields
Siver = VSZ‘A(tf) = VA(Sz‘t?) = thi-

We will use downward induction. Assume that our assertion is true for k4 1.

Since
tHF = (yora1)Si + hiyr = Y(tior + E(Wr))Si + hiya,

we have
tih, = (67 F — (vor)Si) = VE(Yr)Si + hiyr.
Since deg, (YE(yx)) < 1 — %t and deg, (S;) = 2p, we get

Qi
deg; (YE(¢r)S:) <2p+1— >
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Hence
deg,, (hi) < 2p — %~
For i € I'®, our second assertion holds since deg, (h;) < deg, (S;).
Assume that i € I'™. Then we have (h;, A\) = (h;, A)—(h;, ) > —(h;, 3)
—a;;. Hence if a; < 0, then (h;, \) > —a;;/2, and if a; = 0, then (h;, \)
0 = —ay;/2 by (3.72). In both cases, we have

deg, (t°F;) = (hi, \) + 2p + k > 2p — % > deg, (hy).

ALY,

Hence the last assertion holds. O

Thus by Lemma 3.7.9, we can conclude that vy is a monic polynomial

in ¢; of degree (h;, \) + k, which completes the proof of Proposition 3.7.2.

Theorem 3.7.5. Let A = A — 3. Then there exist natural isomorphisms of

endofunctors on Mod(R(3)) given below.
(i) If (hiy A) > 0, then we have

(hi\)—1
(3.74) ¢ “FE e D ¢S EFE
k=0
(ii) If (hs, A) <0, then we have
—(hi,\)—1
(3.75) RN S EMRr e D gt

k=0

Proof. Due to Proposition 3.7.2 and (3.70), we can apply the arguments in
[14, Theorem 5.2] with a slight modification. Hence we will give only a sketch

of the proof.
From the Snake Lemma, we get an exact sequences of R*(3)-bimodules:

0 — KerA — ¢; “ FAEARMB) — EAFMRY(3) — CokerA — 0.

If a:= (h;, \) > 0, then Proposition 3.7.2 yields

a—1
KerA =0, @ kt* @ RM(3) ~ CokerA
k=0
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and our first assertion follows.
If a:= (h;, \) <0, then Proposition 3.7.2 implies CokerA = 0. By (3.70),
we can prove that there is an isomorphism

—a—1
KerA ~ @ kt¥ @ RY(B),
k=0
which completes the proof. n

3.8 Categorification

In this section, based on the natural isomorphisms of functors in previous sec-
tions, we will show that the quiver Hecke algebras R(3) and their cyclotomic
quotients provide categorifications of V4 (A) and U, (g), respectively.

From now on, we assume that k is a field and the k;’s are finite-dimensional
over k.

Recall the anti-involution 1: R*(8) — RA(B) given by (3.7). For N €
Mod(RA(3)), let N¥ be the right R*(3)-module obtained from N by the
anti-involution ¢ of R*(8). By (3.11) and Lemma 3.5.12, we have a non-
degenerate pairing

(3.76) [Proj(R)] x [Rep(RY)] — A

given by
([P], [M]) =) q" dimye, (PY @ga M),,.
nez
From Theorem 3.7.3, we can define endomorphisms E; and F;, induced by
E» and F*, on the Grothendieck groups [Proj(R*)] and [Rep(R*)] as follows:

Fi:=[F}]

[Proj(RM(8))] <~ [Proj(RYB + )],
Eolgl P

k3

(3.77)
ey
[Rep(R*(8))] < [Rep(R* (5 + 1))].
Ei:=[E;}]
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Then, from the isomorphisms (3.59), (3.74) and (3.75), we obtain the follow-
ing identities in [Proj(R*(3))] and [Rep(R*)(3)]:

(hi,A=B) qf<hiyA—5>

qf<hi7A—ﬁ> _ q§hi7A—5>
qi — g,

Let K; be an endomorphism on [Proj(R*(3))] and [Rep(R*(3))] given by

hi,A— hi7A_ﬁ
(3.79) Kilproj(r (3))] == qi< ”, Kil Rep(rA (8))] = qf .

Then (3.78) can be rewritten as the third relation in Definition 2.2.1:

Ki — K;*
-1

(3.80) [E;, Fj] = 0;;
q; — gq;

Now we assume that a;; # 0 for all i € I. Define the functors E{‘(n) and
EA(”)

FM Mod(RM(8)) — Mod(RM(3 + nav)),
EA™  Mod(RM(B + nay)) — Mod(RM(3)),

EZA(n) - N — (RA(ﬁ) X P(Zn>)w ®RA(5)®R(nai) e(ﬁa Zn)N7
P M — RNB + nai)e(8,1") @rag)mimer) (M B P(i")

for M € Mod(R*(3)) and N € Mod(R*(8 + na;)). Then they induce the

endomorphism

El/[n];!  ifie I n F*/[n;! if i e I,
{z/[n] IS and Fg)::{Z/[n] it €

E(”) .
Er ifi e ™, F? if i € I'™,

i =

by (3.15) and (3.17).
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Note that

(i) the action of E; on [Proj(R*)] and [Rep(R%)] is locally nilpotent,

(3'81)(ii) if the module [M] in [Rep(R*(3))] satisfies E;[M] = 0 for all i € I,
then g = 0.

By Lemma 3.7.2 and Lemma 3.7.3, we see that
(a) fori € I'®, the action F; on [Proj(R*)] and [Rep(R*)] are locally nilpotent.
(b) for i € I'™ and 8 € Q* with (h;, A — 3) = 0, F;[Proj(R*(3)] = 0.

(cf. See (iii), (iv) in Definition 2.2.2.)

Therefore, by (3.80) and [23, Proposition B.1], the functors F; and E;
satisfy the quantum Serre relations in Definition 3.1.1. Hence [Proj(R*)] and
[RepR*] are endowed with a Uy (g)-module structure.

Note that [Proj(R)]:=€D 5.+ [Proj(R(8))] and [Rep(R)]|:=€D 5o+ [Rep(R(3))]
are also A-dual to each other. The exact functors F;: Rep(R(S8 + o)) —
Rep(R(5)) and F}: Rep(R(53)) — Rep(R(5 + «)) defined in (3.29) induce en-
domorphisms E; and F, on [Rep(R)], respectively. Hence, (3.33) implies the
following commutation relation in [Rep(R)]:

(3.82) E/F, = g (I)FLE] + 6, .
Similarly, we define

Proj(R(8)) S — Proj(R(8 + ) ,

-

7,

by

e(3,1)R(B + ) o
e(B, 1) 01 R(B + o) (e

where |3| = n. Then they are well-defined on Proj(R), and we obtain an

FP:=R(B+ o)e(B,1) ®rgy P and  E[Q :=

exact sequence

0*>5i,j id EZIE q_(ai‘aj)F’jE'Z{HO_
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Thus the exact functors induce the endomorphisms E; and F, on [Proj(R)] and
satisfy the same equation in (3.82) (See [19, Lemma 5.1], for more details).

Let Irrg(R*(3)) be the set of isomorphism classes of self-dual irreducible
RA(8)-modules, and Irrg(R*):=| |5+ Irro(R(5)). Then {[S] | S € Trrg(RY) }
is a strong perfect basis of [Rep(R*)] by Theorem 3.5.1. By Proposition 2.6.1,
(3.81)(ii) and (3.76), we conclude:

Theorem 3.8.1. Let U,(g) be the quantum generalized Kac-Moody algebra
associated with the Cartan matriz A with a; # 0 for alli € I. For A € PT,
we have

(3.83) Va(A)Y =~ [Rep(RY)]  and  Vi(A) = [Proj(RY)]
as Ux(g)-modules.

The fully faithful exact functor Rep(R*(3)) — Rep(R(5)) induces an A-
linear homomorphism [Rep(R*)] — [Rep(R)]. Hence [Rep(R*)] — [Rep(R)] is
injective and its cokernel is a free A-module. By the duality, the homomor-
phism [Proj(R)] — [Proj(R%)] is surjective.

As a U (g)-module, U, (g) is the projective limit of V4 (A). Hence, The-
orem 3.8.1 implies the following corollary:

Corollary 3.8.1. There exist isomorphisms:

Uy (9)" ~ [Rep(R)] as a By"(g)-module,
U, (g) ~ [Proj(R)]  as a B> (g)-module.
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Chapter 4

Supercategorification

Throughout this chapter, we assume that

I' = (;ie., forallie€ I, a; = 2.

4.1 Supercategories and superbimodules

In this section, we recall the notion of supercategory, superfunctor and su-
perbimodule and their basic properties (See [17, Section 2] for more details).

Definition 4.1.1.

(i) A supercategory is a category € equipped with an endofunctor Ily of
€ and an isomorphism &g 112, = idy such that &g o Tly =TIy 0 &y €
Hom(IT2,, T1y).

(ii) For a pair of supercategories (¢ ,11,€) and (¢',1I',£’), a superfunctor
from (€11, &) to (€', 11", &) is a pair consisting of a functor F': € — €’
and an isomorphism ap: Foll = II'o F such that the following diagram

commutes:

(4.1) Foll2 T o Foll 1126
iFog §/OF\L
F e F
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CHAPTER 4. SUPERCATEGORIFICATION

If F is an equivalence of categories, we say that (F,ar) is an equiva-
lence of supercategories.

(i) Let (F,ap) and (F', ap) be superfunctors from a supercategory (€,11, )
to (€', 1U',¢&"). A morphism from (F,ar) to (F', apr) is a morphism of
functors p: F — F' such that

Foll —2 ~ proT
aFi OéF/\L
Mo F——"=1l'c F'

commutes.

In this paper, a supercategory is assumed to be an additive category.

A superalgebra is a Zs-graded algebra. Let A = Aq®A; be a superalgebra.
We denote by ¢4 the involution of A given by ¢a(a) = (—1)%a for a € A,
with € = 0,1. We call ¢4 the parity involution of the superalgebra A. An
A-supermodule is an A-module with a decomposition M = My & M; such
that AcMo C My (6,6 € Zsy). For an A-supermodule M, we denote by
¢rp: M — M the involution of M given by ¢ala, = (—1)%idy,.. We call
¢ the parity involution of the A-supermodule M. Then we have ¢y (az) =
da(a)pp(x) for any a € A and z € M.

Example 4.1.1.

(a) The category of A-modules Mod(A) has a natural supercategory structure
induced by the parity involution ¢4; i.e., for M € Mod(A),

M :={n(x) |z € M} with w(z) + 7(2") = 7(x + 2') and
a-m(x):=mn(odala)-z) fora e A.
The isomorphism &: TI? — id is given by 7 (7(z)) — x.

(b) Let A od(A) be the category of A-supermodules. The morphisms in this
category are A-linear homomorphisms which preserve the Zo-grading.
Then A od(A) has a natural supercategory structure induced by the parity
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shift; i.e.,

(IIM). :={m(x) | x € My_.} (e=0,1) and
a-7(z):=m(pdala)- - x) fora € A and x € M.

The isomorphism Eyr: TI°M — M is given by 7 (m(x)) — x (v € M).

Definition 4.1.2. Let (¢,11,&) be a supercategory. The Grothendieck group
€] of € is the abelian group generated by [X| (X is an object of € ) with the

defining relations:
if0 > X' — X — X" — 0 is an exact sequence, then [X] = [X'] + [X"].

Let A and B be superalgebras. An (A, B)-superbimodule is an (A, B)-
bimodule with a Z,-grading compatible with the left action of A and the right
action of B. For an (A, B)-superbimodule L, we have a functor F,: Mod(B) —
Mod(A) given by N — L ®p N for N € Mod(B). Then Fy, is indeed a

superfunctor with an isomorphism
Qp; . FLHN = L®B IIN — HFLN = H(L Xp N)

which is given by s ® w(x) — 7(¢L(s) ®x) (s € L, x € N).
For an (A, B)-superbimodule L, the superbimodule structure of IIL is
given as follows:

a-m(s)-b=m(¢a-(a)s-b) forallse L,ac Aandbe B.

Then there exists a natural isomorphism between superfunctors n: Fy —
[lo Fy. The isomorphism ny: (IIL)@pN = II(L&pN) is given by 7(s)®@x +—
m(s ® x). It is an isomorphism of superfunctors since one can easily check
the commutativity of the following diagram:

noll
FHLOH HOFLOH HanL
QFqL *(IloFr) IIollo Fy
Ton ML:*idHoHoFL
IIo FHL ITollo FL-

by using the fact ¢z (7(s)) = —7m(or(s)).
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4.2 The quiver Hecke superalgebra R

In this section, we recall the definition of quiver Hecke superalgebras and
their properties which were proved in [17].

We assume that a decomposition I = Ieyen | | loaa is given. We say that a
Borcherds-Cartan matrix A = (a;;); jer is colored by Ioqq if

aij € 27, for all i € I,qq and JE I.

From now on, we assume that A is colored by I,qq. We use the same graded
ring k in Chapter 3.
We define the parity function p: I — {0,1} by

p(i)=1 ifi€lqq and p(i) =0 ifi € leyen-

Then we naturally extend the parity function on I"™ and Q" as follows:
p(v) = Zp(yk), p(B) == Zp(ik) for all v € I" and 8 = Zaik e Q.
k=1 k=1 k=1

For ¢ 7& j€landr s e ZZOa we take Tiji(rs) € k72(ai|aj)77'(ai‘ai)75(aj|aj)
such that
tigi—ai;.0) € KRG tigitns) = Thissr)s
tijirs) = 0 if 4 € Ioqq and 7 is an odd integer.

For any v € I (n > 2), let
Py = k<$1, cee ,ZL‘n>/<Ia£L'b - (_1)p(ya)p(yb)xbxa>1§a<b§n

be the superalgebra generated by z; (1 < k < n) with Z x Zs-degree

((ay,|aw,), p(vk)) (E=1,...n).
For i,j € I, we choose an element Q; ; in P(;; which is of the form

(42) Qi,j(w, Z) = (SiJ' Z tm;(m)w’"zs.

T,SGZZO

Then Q, j(w, ) is an even element and Q = (Q; ;); jer satisfies
(4.3)
Q;i(w,2) = Q;i(z,w) and Qi (w,z) = Qi ;((=1)*PDw, z) fori,jeI.
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Definition 4.2.1 ([17]). The quiver Hecke superalgebra R(n) of degree n
associated with the Cartan datum (A, P,ILI1V) and (Q;;)ijer is the asso-
ciative superalgebra over k generated by e(v) (v € I™), x, (1 < k < n), 7,
(1 <a<n-—1) with the parity

(44)  ple(v)) =0, plzre(v)) =pk), p(Tae(v)) = p(va)P(Vat1)
subject to the following defining relations:

(R1) e(u)e(v) = dupe(v) for all p, v €I, and 1 =Y, e(v),

(R2) wpwge(v) = (~1)PUPIz mpe(v) if p#q,

(R3) zpe(v) = e(v)z, and Te(v) = e(s,V)T,, where s, = (a,a + 1) is the
transposition on the set of sequences,

(R4) mozpe(v) = (~1)PPCrteg, re(v), if p # a, a+1,

(R5) (TaZay1 — (_1)p(Va)p(Va+l)xa7—a)e(y) = (Tqy1Ta — <_1)p(Va)p(Va+l)7—axa)e(y)
= vy v €(V),

(R6) 77e(v) = Quypors (Ta, Tat1)e(v),

(RT) Tampe(v) = (—1)PEapar)po)poi) e (1) if |a — b| > 1,

(RS) (Ta+lTaTa+1 - TaTa+1Ta>€(V)

( T T — Ty, X
QVa,”tH—l( a+2> a"l‘l) QVa7Va+1( a) a+1)€(]/) Zf Va —_ I/a_;’_Q 6 ]even’
Lat2 — Tq
— < (—1>p(Va+l)(xa+2 _ xa) QV&,”{H& (:Ca+2, xag’l) : Q2Va7’/a+l (:CGJ xa+1)€<y)
xa+2 xa
Zf Vg = Vgy2 € Iodda
0 otherwise .

\

Remark 4.2.1. If I,qq = 0, the quiver Hecke superalgebra R(n) is the same
as the quiver Hecke algebra R(n).

The algebra R(n) is also Z-graded via the following assignment:
degz(e(v)) =0, degy(are(v)) = (uylan,),  degy(rae(v)) = —(au,|aw,.,).
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For a,b € {1,...,n} with a # b, we define the elements of R(n) by

(4.5) egy, = Z e(v), egfib: Z e(v) and ea,b:eZYb—Fer},.

yeln’ VEI",
Va=VpEleven Va=Vp€load

Let P¢¥ be the subalgebra of P, generated by x}1€+p(uk) (1 <k <n). Then

PcY is isomorphic to the polynomial ring k[x}ﬂ)(”l), e ,x,lfp('/”)]. Set
P, = @ Poe(v) and P = @ Pre(v).
veln veln

Then P;Y is contained in the center of P,,.
By (4.3),

(4.6)  Quyvuir (Ta, Tar1)e(v) belongs to Py for all v € I" and 1 < a < n.
For 1 < k < n, we define the algebra endomorphism s; of P, by
(4.7) Sp(xpe(v)) = (—1)p(”’“)p(”k“)p(””)xsk(p)e(skl/) for 1 <p<mn,

where s, = (k,k+ 1) € S, is the transposition which acts on I” in a natural
way. For f € P, and 1 < k < n, define

Onf = G T - 3 _ 2 - Rkt
(4.8) Tht1 = Tk Ty — Tk
fgk — f =5t ev f(xk—l-l — xk) - ($k+1 - Ik)(gkf) od
T Zips — xRk + 2 2 Chk+1:
k1 — Tk TP — T}

Then one can easily show that
(4.9) Ot [P € P Tf = Gauf)me + Ouf, fro = Ti(Ef) + f7
and

_ 5k o ev ev od od
ak(xj) = (%) = 05 k+1€k 1 — 5j,k€k,k+1 + 5j,k+1€k,k+1 + 5j,kek,k+1a

I(f9) = Ouf)g + Gef)Org, (f9)% = f(g%) + (f7)5ng.
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As in the case of the quiver Hecke algebras, we define

R(m,n) = R(m) @ R(n) C R(m +n),
e(n) =7 ew), eB)=) eW), elapf)= Y  epv)

R(B) = e(B)R(n), Rle, ) = R(e) @k R(B) € Rla + f),
e(n,i*) = Z e(v), e(if,n)= Z e(v),

I/EITLJHC7 I/EI"Jrk,
Ung1==Vpy=10 V==V =1

e(B3,i%) = e(B, kay) = e(B + kay)e(n, i¥),

e(i*, B) = e(kay, B) = e(B + kay)e(i*, n)
for a, B € Q7.
Proposition 4.2.1 ([17, Corollary 3.15)). For each w € S,,, we choose a
reduced expression s;, - --s;, of w and write T, = 7;, -+ 7;,. Then

{ai' - aprmee(v) | a = (ay,...,a,) € 25y, weE Sy, veI}

forms a basis of the k-module R(n).
By the proposition above we have:
Lemma 4.2.1. The algebra R(n + 1) has a direct sum decomposition
ntl a1
(410)  R(n+1) = G?R(n, )Ty Ty = 931 R(n) @ k! [Tni1]mn -+ - Ta-
In particular, R(n+ 1) is a free R(n,1)-module of rank n + 1.

Let Mod(R(5)) (resp. Proj(R(5)), Rep(R(B))) be the category of arbi-
trary (resp. finitely generated projective, finite dimensional over kg) Z-graded
R(F)-modules. The morphisms in these categories are R((3)-homomorphisms
which are homogeneous with respect to the Z-grading. By the observation in
Example 4.1.1 (a), these categories have a supercategory structure induced
by the parity involution ¢ := ¢rg).
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Let 7 be an odd element with the defining equation 72 = 1. For any
superring IC, we define

K™ :=K ®gzZr] ~ K& K.

Thus A™ = Zlq,q"*,n] with 72 = 1. We denote by [Proj(R(3))] and
[Rep(R(53))] the Grothendieck group of Proj(R(3)) and Rep(R(53)), respec-
tively (See Definition 4.1.2). Then [Proj(R(())] and [Rep(R(3))] have the
A7-module structure given by ¢[M| = [¢M] and 7[M] = [IIM], where [M] is
the isomorphism classes of an R(3)-module M.

Hereafter, an R(n)-module always means a Z-graded R(n)-module.

In a manner similar to (3.25), we can define
asRa g =e(a, B)R(a+ Be(d/, ')
and we have Mackey’s Theorem for quiver Hecke superalgebras as follows:

Proposition 4.2.2. The Z x Zs-graded (R(a, ), R(d/, 3"))-superbimodule
a,3Ra 3 has a graded filtration with graded subquotients isomorphic to

Hp('y)p(BJr’y_ﬁ,) (aRa*%“/)®([3Rﬂ+vfﬁ’,ﬂ/7'y)®7€’ (af%a%vfaRa ) (v B'— Rﬁ’) <_(7W+7_6/)>>

where R' = R(a—7) @R(y) @R(B+~v— ) @R(S —7) and v ranges over
the set of v € Q1 such that « —~, ' —~ and S+~ — ' = o+~ — a belong
to QT.

4.3 Strong perfect basis of [Rep(R(3))]

In this section, we study the structure of R(n«;) as an R(na;)-supermodule
and choose a set of irreducible R(3)-modules which provides a strong per-
fect basis of [Rep(R(f))] as in Section 3.2 and Section 3.5, respectively. Al-
though, the quiver Hecke superalgebras are different from the quiver Hecke
algebras, we can apply many results in those sections. However, since the
supercategory [Mod(R(/))] has the endofunctor II, we need to investigate
how the endofunctor II affects the structure of R(nc;) and [Rep(R(5))].
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Throughout this section, we assume that (3.9) holds; i.e.,

kg is a field and the k,’s are finite-dimensional over kg.

Under this assumption, the quiver Hecke superalgebra R () satisfies the
properties in (3.10); i.e., as a Z-graded algebra, the Z-grading of R(/3) is

bounded below and each Z-homogeneous subspace is finite dimensional over

ko. Hence R(f3) holds the properties in (3.11). In other words,

(i) there exists a 1 — 1 correspondence between the projective inde-
composable modules in Proj(R(F)) and the simple modules in

Rep(R(5)),
(4.11)

(ii) [Rep(R(B))] is a finite dimensional A™-vector space and has a
natural Z-basis Zrr,(R(f)), consisting of the isomorphism classes
of simple R()-modules.

We now consider the algebra R(ncq;). By Remark 4.2.1, it suffices to

assume that 7 € I qq.

For 1 < k < n, we can check that the element b(i") defined in the same

way as (3.14) also is an idempotent.

Set
(4.12) I, = Hp(i)’ = 7P
and define
o (mg)" —q" o TTis
(4.13) n]f = ——=—, [ni!= H[k]z

—1

Proposition 4.3.1. [8] The algebra R(nco;) decomposes into the direct sum

of projective indecomposable 7. X Zo-modules as follows:

(4.14) Rinas) ~ [n]71P(im),
where
(4.15) P =T 7 R(na)b(i") <@(ai\ai)> |
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Similar to Section 3.2 we have

e P(i") is an indecomposable projective Z X Zs-graded module unique
up to isomorphism and Z X Zy-grading shift.

e there exists an irreducible Z x Zg-graded R(n«;)-module £(:™) which
is unique up to isomorphism and Z x Zs-grading shift:
ny L R(na;)
(4.16) L(i") = Indyiy, 18 orent b

which is isomorphic to k.
By Proposition 4.2.1, the R(na;)-module £(i™) has a ko-basis
{Tw - u(@™) | weS,}.
As in the Section 3.2, set
Ly:={ve L]zt -v=0} (k>0).

Then we have a supermodule isomorphism
(4.17) Li/Lrpy ~ LY (1 — B)(u|ew))  for 1 <k <n.
Here the Zx Z,-grading shift is caused by the (ZxZs)-degree of 7,1 - - - Tp_y1u(i™).

Remark 4.3.1. In general, 7, depends on the choice of reduced expressions
of w. However, we still write T, after choosing a reduced expression of w. In
I = {i} case, by the axioms in Definition 4.2.1, +7,, does not depend on the
choice of reduced expressions of w € S, i.e., for any two reduced expressions
W =8 "8 = 8j 5., we have

Tiy oo Tip = E£Tj 0 Ty,

Lemma 4.3.1. Let w[l,n] be the longest element of S,,. Then we have

R(na;)TwpmR(nog) = R(noy).
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Proof. We have
Twl,n] = Twl,n-1]Tn-1Tn-2 """ T1.

Hence by induction, it is enough to show that for 1 <a <n—1
(418) Twl,n-1]Tn-1Tn—2 """ Ta+1 € R(nai)Tw[l,n—l]Tn—lTn—Q T TaR(nai)~
Note that

TnTwln—-1]Tn-1Tn—2 """ Ta = j:Tw[l,nfl]l’nTn—lTn—Q cTa
= T 1) (ETn1Tn-1 + D)o+ 7,

= iTw[l,n—l]TnflxnflTn72 0 Ta

= iTw[l,n—l]TnflTn72 o Tat1%a+1Ta

= iTw[l,nfl]Tn—lTn—Z T Ta—i-l(:l:Taxa + 1)
Thus we have (4.18) and our assertion follows. O

Now, we will choose the strong perfect basis of [Rep(R(/3))]. To do this,
we need to employ many results in Section 3.5. However, in the quiver
Hecke superalgebra case, we can apply the arguments with slight modifica-
tion. Thus we will focus on the perfect basis property arising from the set
of irreducible R(f)-modules (3 € Q) by using the results in Section 3.5 as
ingredients.

For M € Rep(R(f)) and i € I, we define,

ApM = e(B — kay,i*)M € Rep(R(B — kay, kay)),
gi(M) = max{k > 0| ApM # 0},

E;(M)=e(f— a;,i)M € Rep(R(S — o)),

F/(M) =1Indg ., (M X L(i)) € Rep(R(S + v;)),
éi(M) =soc(E;(M)) € Rep(R(5 — o)),

F(M) = hd(F/M) € Rep(R(B + ),

(4.19)

These definitions are almost the same as (3.29). But we drop the superscript
°r for g;, since I = I in this chapter.

Then we have the following statements: (cf. Lemma 3.5.4, Lemma 3.5.6,
Lemma 3.5.7, Lemma 3.5.8, Lemma 3.5.10, Lemma 3.5.12)
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(I1) For [M] € Irr,(Rep(R(5))) with € = ;(M) > 0,
A M ~ NXL(i°) for some [N] € Irr, (Rep(R(S—ec))) with ;(N) = 0.
Moreover, [N] = [é5(M)].

(12) For [M] € Irry(Rep(R(A)));
[fiM] € Trry(Rep(R(B+a;))) and [¢;M] € Irry(Rep(R(B—ay))) if &;(M) > 0.

(I3) For [M] € [Rep(R(3))] with [E}][M] = 0,

[M] = [Ny] for [Ny] € Irry(Rep(R(B))) with &;(M) < k.

(I4) For [M] € Irry(Rep(R(3))),
[ f;M] = [M] and [fie:.M]=[M] if g;(M)> 0.

(I5) For [M] € Irry(Rep(R(5))),
ko ~ EndR(B) (M)

Now we are ready to prove the following fundamental result on irreducible
modules over quiver Hecke superalgebras.

Theorem 4.3.1. II acts as the identity on [Rep(R(5))] and [Proj(R(3))].
Hence [Rep(R(B))] and [Proj(R(5))] are indeed A-modules.

Proof. We shall prove
IIM ~ M for M € Irr,(R(5))

by induction on |3|. If |3] > 0, there exists ¢ € I such that £;(M) > 0. Since
the endofunctor IT commutes with the functor E;

¢ (IIM) ~ (I1e; M).
By induction hypothesis, I1¢;(M) ~ é;M. Hence we obtain
e;M ~ e 11M.
Then IIM ~ M follows from (I4). The second assertion follows from (4.11)(i).
O
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Now, we have the same result as in Proposition 3.5.1 for the quiver Hecke
superalgebras.

Proposition 4.3.2. For [M] € Irr,(R(B)) with ¢ :=¢;(M) > 0. Then we
have

[E[M] = ¢} [el[&M] + ) [Ny,
k

where Ny, € Irry,(R(5 — o)) with £;(Ng) < ;(é;M) = — 1.
Proof. By applying (I1) to the irreducible modules M and é; M, we have

ApM ~EMRLGEF) and ApaéM ~EM K LGEE).
On the other hand, (4.17),

[EJLG)] = m;q; " [e]T[L(77)] € [Rep(R((e — L)ew))].
Hence we have

7 (M) — ="~

)

*le]F[e;:M]) = 0.
Then, from (I1) and Theorem 4.3.1, we can conclude that

[E[M] = ¢;%[eli[e:M] + Z[Nk]

Let 1: R(B) — R(6) be the involution given by

(4.20)  ¢(ab) = (b)ip(a), Ylew)) =e(v), ¢(zx) =wr Y(n) =7,

for all a,b € R(p).
Set

Rep(R) = €D Rep(R(5)) and [Rep(R)] = €D [Rep(R(5))].
BeQ+ peQ+

Analogous to the definitions in Section 3.5, we can define
M* = Homy, (M, ko) and M a self-dual R(S)-module if M* ~ M.

Moreover, we have the following theorem:
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Theorem 4.3.2. For € Q*, we let Irro(R(3)) be the set of isomorphism
classes of self-dual irreducible R(3)-modules. Moreover,

is a strong perfect basis of [Rep(R)]; i.e., for [M] € Zrro(R(B)), there exists
a unique [&M] € Irro(R(S — ;) such that

[B]M] = [a(M)L&M] + ) [N,

where Ny, are irreducible modules in Rep(R(8—«;)) with £;(Ny) < ;(M)—1.

Proof. We can apply the same arguments given in Lemma 3.5.11 and Propo-
sition 3.5.2. O

By Theorem 4.3.1 and the argument in Lemma 3.5.13, we have

(4.21) [E[F]] = ¢ @) POPOFIE] + 6,;1d € Endy ([Rep(R)]).

4.4 The superfunctors E;, F;, and F;

In this section, we will construct super-analogues of the functors in Section
3.6. The ideas of all proofs in this section originated from Section 3.6. But
we need to apply the arguments given in the section very carefully, since
R(f3) is a superalgebra and hence the Zy-grading should be considered in
each computation. To avoid repetition, we will give only the ingredients of
the proofs.

Let
E;: Mod(R(B + ;) — Mod(R(S)),
Fi: Mod(R(8)) — Mod(R(5 + a))
be the superfunctors given by
Ei(N) = e(8,i)N = e(8,))R(3 + ) @nissan N
~ HomR(g+ai) (R(ﬁ + O‘i)e(ﬁv Z)v N)?
F(M) = R(B + a;)e(B,1) @r(p M
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for N € Mod(R(S + «;)) and M € Mod(R(f)).

Note that the definitions of F; and F; are essentially the same as in the
Section 3.6. But, in this case, the kernels of E; (resp. F;) have natural
(R(B), R(B + «;))-superbimodule (resp. (R(8 + «;), R())-superbimodule)
structure. Hence by Section 4.1, they become superfunctors.

Moreover, (F;, E;) is an adjoint pair; i.e.,

Homg (g4a,) (F5M, N) = Homgg) (M, E;N).

Let n = |3]. There are natural transformations:

vp,: By — 1LqE;, rp: Fy — g 2 Fy,
Th, EE; — Hp(i)p(j)q(ailaj)EjEi, T, FF; — Hp(i)P(j)q(ai\aj)FjFi
induced by

(a) the left multiplication by x,.1 on e(3,7)N for N € Mod(R(5 + «)),

(b) the right multiplication by z,.1 on the kernel R(5 + «;)e(5,7) of the
functor Fj,

(¢) the left multiplication by 7,41 on e(3,i,7)N for N € Mod(R(8 + a; +
a;)),

(d) the right multiplication by 7,41 on the kernel R(8 + o; + a;)e(5, j,1) of
the functor F;Fj.

By the adjoint property, 7, induces a natural transformation
FE; — Hp(i)p(j)q(a”aj)EiFj.
Theorem 4.4.1. The homomorphism of (R(n), R(n — 1))-superbimodules

R(n)e(n—1,7) (® )q_(ailaj)ﬂp(i)p(j)e(n—l,i)R(n) — e(n,))R(n+1)e(n, j)
R(n—1

given by

(4.22) @ PPy s 7y, r € R(n)e(n—1,7), y €e(n—1,i)R(n)
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induces a natural isomorphism between superfunctors
EF 5 q*(ai\a]‘)Fij(i)p(j)Ei @ 0; k[t @ 1d.
Here, t; is an indeterminate of (Z x Zs)-degree ((cy]ey), p(i)) and
k[t;] @ Id: Mod(R(5)) — Mod(R(5))
is the superfunctor defined by M — k(t;] @ M.

Proof. We can apply the same arguments given in Proposition 3.6.1 and
Theorem 4.4.1. Note that, in this case, the endofunctor IIPPU) arises from
the Zs-grading of m,e(n — 1,4, 7). O

Remark 4.4.1. For an R(3)-module M, the R(3)-module structure on k[t;]®
M s given by

a(tf ®s) = tf ® gf)kp(i)(a)s fora € R((), s€ M,

where ¢ = ¢r(g) in Evxample 4.1.1(a). Thus we have an isomorphism of
functors
k[t:)] @ Id ~ @D (g *11,)*.
k>0

Recall the map &, in (3.35). We can define a map, also denoted by &,,
from R(n) to R(n+ 1) in a similar way and denoted by R'(n) the image of
&n.

For each i € I and 3 € Q*, let F; 5:=R (B + a;)v(i, 3) be the R(3+ a;)-
supermodule generated by wv(i,3) of Z x Zs-degree (0,0) with the defin-
ing relation e(i, 8)v(i,3) = v(i,3). The supermodule F; 5 has an (R(3 +
a;), R(5))-superbimodule structure whose right R(/)-action is given by

av(i, B) - b = a&,(b)v(i, ) for a € R(G+ «;) and b € R(5).

Then following Section 4.1, we can define the (R(n+1), R(n))-superbimodule
R(n + 1)v(1,n) such that

R(n+1v(l,n)~ & R(B+ a)v(i, ).

i€l, |Bl=n

107



CHAPTER 4. SUPERCATEGORIFICATION

Now, for each i € I, we define the superfunctor
F;: Mod(R(3)) = Mod(R(3+ ;) by N — F; 5 Qrs) N.

By a direct calculation, for 1 <k <mn,1</{<n—1landv € I8, we can
easily see that

zre(v, )Ty - - me(i,v) = (=1)POPEOPW) 2 oy e(i, ),
me(v, i), - me(i, v) = (_1)p(i)p(ﬁ)p(w)p(w+1)7-n e TTee(i, v),

Tnre(v, i) - - me(i,v) = (~1D)POPOr o rzie(i,v) mod R(n)RY(n).
Note that

p(7n -+~ Tie(i,v)) = p(i)p(B), plrre(v,i)) =
p(ree(v,1)) = p(ve)p(Ver1), P(Tpp1e(v,i)) =

Hence

Tn

aTp - - 'Tl€<i7 6) o 'Tle(i> 6)¢p(i)p(ﬁ) (gn(a))>
(4.23)  zpi1e(B, i) - - me(i, B) =(=1)POPEr o mzie(i, B)
mod R(n)R'(n) for any a € R(f3).

Theorem 4.4.2. There is an exact sequence in Mod(R(f3))
0— F]E,M — EszM — 6i,ij(i)p(6)q_(aiW)k[tz‘] QM — O,

which is functorial in M € Mod(R(3)). Here t; is an indeterminate of
(Z x Zs)-degree ((ca;]ay), p(7)).

Proof. The proof can be obtained by applying the arguments given in Propo-
sition 3.6.2 and Theorem 3.6.2 with (Z x Z,)-grading consideration (4.23). [

4.5 Cyclotomic quotient

In this section, we define the cyclotomic quotient of the quiver Hecke super-
algebra and investigate its structure.
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For A € PT and i € I, we choose a monic polynomial of degree (h;, A)

(4.24) a(u) = Z cieu )=k
k=0

with cii € Ki(a,]a;) such that ¢;o = 1 and ¢;x = 0 if ¢ € I,qq and k is odd.
Hence a?(z;)e(i) has the Z x Zy-degree

For 1 < k < n, define
Z Clyk .I‘k G R( )
veln

Definition 4.5.1. Let 8 € Q1 and A € PT. The cyclotomic quiver Hecke
superalgebra R™(3) at 3 is the quotient algebra

R(B)
R(B)ar(z1)R(B)

We shall prove that the cyclotomic quotients are finitely generated over
k. For the definition of 5, and d,, see (4.7) and (4.8).

Lemma 4.5.1. Assume that fe(v)M = 0 for M € Mod(R(n)), f € P,
velandl <a<n such that v, = v,y = 1. Then we have

R(B) =

(Daf) (g — Tar1)PPe()M =0 and
(7 +221)PY Gaf)e(W)M = (5.f)(af + 2541)"e(v)M = 0.
Proof. By (4.8), we have

(xifl)( ) xclfp )TafTae(V) = ((ZL‘Q_H — 2PV f — 5 f(Tagr — xa)p<i)) T.e(V)
= ((Ia—&-l - )p( ( 1) SafTa(xa—H - x@)p(i)) 6(”)
= ((xa+1 -z )p(l fT — (= 1) Taf<xa+1 - xa)p(i) + (_1)p(i)5af(xa+1 - ma)p(i)) e(v).

Hence we have (0qf)(24 — Tq11)?Pe(v)M = 0. It follows that
0= (2,0 = 2, 3 @uf) (@0 = Tasa)PPe(v)M
= ((xa - xa+1) )f<xa - anrl)p( B — Saf(xa - xa+1)2p(i)) G(V)M.
Thus (2, — Za41)®D G f)e(v)M = (22 + 22,,)PD (5, f)e(v)M = 0. O
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Lemma 4.5.2. There exists a monic polynomial g(u) with coefficients in k
such that g(z2) = 0 in R*(B) (1 <a < n).

Proof. 1If a = 1, g(2%) = [1,c; o (—21)af*(z1) satisfies the condition. Hence,
by induction on a, it is enough to show the following statement:

For any monic polynomial g(u) € k[u] and v € I"™, we can find
a monic polynomial h(u) € k[u| such that
h(22,,)e(v)M = 0 for any R(3)-module M with g(z2)M = 0.

(i) Suppose v, # V44+1. In this case, we have
g(x(21+1)QVa:Va+1(xa7 Tor1)e(V)M = g(x¢21+1>7-36(1/)M = Tag(xz)Tae(V)M = 0.

. . . . . 1+p(y +1) .
Since Qy, v, (Ta, Tat1) is @ monic polynomial in x, 7 “"" with coeffi-

xé"'p(lla)]

cients in k| , there exists a monic polynomial h(u) such that

h(x?,,) e[z e(w), 2l e (1)) g(22)+
Va 1 Vg
K[z P e(v), b ()] g(2211) Qo vy (Tas Tatn).

Then h(22,,)e(v)M = 0.
(ii) Suppose v, = Vgy1. Then Lemma 4.5.1 implies

9(1'2+1)($2 + x2+1)p(ya)e(’/)M =0.
Then we can apply the same argument as (i). ]

Lemma 4.5.3. Let f € P,y1 be a monic polynomial of degree m in x,11
whose coefficients are contained in P, @ k!. Set R = e(n, ™™ )R(n +m +
1e(n,i™). Then we have

RIR=TR.

Proof. We will prove the following statement by induction on k:
(4.25) g1+ Ongr fe(n, @™ ) i € RFR

form+1 <k <n+m+ 1. Here wn+ 1,k] is the longest element of
the subgroup Sp, 41,4 generated by s, (n+ 1 < a < k) (See Remark 4.3.1).
Assuming (4.25), by multiplying 7414~ 1wns1,44+1 from the right, we have

g1+ '5n+1f€(”7 im+1)Tw[n+1,k+1} € ﬁfﬁ-
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By multiplying 75 from the left, we have

Tk(gkfl o -5n+1f)€(n> im+1>7—w[n+1,k+1}
- (§k<5k—1 o '5n+1f)7k: + 0 '5n+1f)6(n7 im+1)7_w[n+1,k+l]
= Ok -+ Ongr fe(n, ™ ) Tupnirpen € RIR.

Here we have used the fact that 7.7,n+1,k+1 = 0.

Thus the induction proceeds and we obtain (4.25) for any k. Since
5n+m .- -5n+1 f = 1, our assertion follows from ﬁTw[n+1,n+m+1}ﬁ = R in
Lemma 4.3.1. [

Corollary 4.5.1. For € Q" with |3| = n and i € I, there exists m such
that
RYB + kay) = 0 for any k > m.
Proof. By Lemma 4.5.2; there exists a monic polynomial g(u) of degree m
such that
g(za)RA(S) = 0.

Lemma 4.5.3 implies e(n, i*)R*(8 + ka;) = 0 for k > m. Now our assertion
follows from arguments similar to those for Lemma 3.7.2. O]

4.6 The superfunctors EZA and EA

In this section, we define the superfunctors E* and F* on Mod(R*(3))
and investigate their action on Proj(R™(3)) and Rep(R*()). After that
we study their commutation relations as functors, which will give categori-
cal Uy (g)-module structure on [Proj(R™(3))] and [Rep(R*(8))] in the last
section.

For each 7 € I, we define the superfunctors

Bt Mod(R™(S + a;)) — Mod(R™(8)),
E: Mod(R™(8)) — Mod(R* (5 + )

E}MN)
FA M)

7

e(B,i)N = e(B,)R B + i) ®ra(syan N,
RMNB+ ci)e(B, 1) @ragsy M
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for M € Mod(R*(3)) and N € Mod(R (3 + ).
For each i € I, f € Q" and m € Z, let

i3 = R(B + ai)v(i, B)T}"

be the R(8 + «;)-supermodule generated by v(i, 5)T;" with the defining re-
lation

e(i, B)v(i, B)T7" = w(i, B)T7".
We assign to v(i, 3)T]" the (Z x Zy)-degree (0,0). The supermodule K" has

7

an (R(B+«;), k[t;] @R (5))-superbimodule structure whose right k|t Z](X)R(ﬁ)
action is given by

(. ﬁ)Tm b= agn( ) (276) i
(i, YT 1, = agp (@ o(i, TP = (~ 1z o(i, BT
for a € R(B+a;) and b € R(B3). Here, ¢;:=¢P® and ¢ is the parity involution
(see Example 4.1.1(a)).
In the sequel, we sometimes omit the Z-grading shift functor g when the

Z-grading can be neglected.
Set A; := (h;, A). We introduce (R(S + «a;), R*(3))-superbimodules

=RMB + a)e(B3, ),
Ko :=R(3+ a)e(B,1) ®r(s R™(B),
Ky = KN @re IPORN(9)
= R(B+ a;)v(i, )T @ I PIRA(B).

(4.26)

(4.27)

For i € I, let t; be an indeterminate of Z x Zs-degree ((a;|a;),p(i)). Then
k[t;] is a superalgebra. The superalgebra k|[t;] acts on K; from the right by
the formula given in (4.26). Namely,

(avli BTN @ 7)1 = ag? (w)oli, TN @ P (0)

for a € R(B+a;) and b € RY(B). Here m;:=7P" and ¢; = ¢*@. On the other
hand, k[t;] acts on R(B+ a;)e(B3,7), F* and Ky by multiplying by z,,; from
the right. Thus Ko, F* and K; have a graded (R(8 + a;),k[t;] ® R*(8))-
superbimodule structure.
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By a similar argument to Lemma 3.7.4 and 3.7.5, we have quiver Hecke
superalgebra versions of those lemmas; i.e.; for i € [ and € Q" with
|| = n, we have the following statements:

(i) Both K, and Kj are finitely generated projective right k[t;] ® R*(3)-

supermodules.

(ii) For any monic polynomial f(t;) € P,[t;], right multiplication by f(¢;)
on K7 induces an injective endomorphism of Kj.

)R+ i) = Y0 R(B + ai)at (x1) 71 -+ - 7,

(iv) R(B+ ai)a™(z1)R(B + ai)e(B, 1)

= R(B+ a;)a? (@) R(B)e(B,i) + R(B + ci)a™ (1) 71 - - - Tne(B, ).

(i) R(3 + a;)a

A
A

—_—~ o~

Applying an argument to the one for Lemma 3.7.6, we have

10z - Tee(v,d) = (=1DPOPOGA @)y -z e(v,d),
(4.28) at(zy)1 - The(B,d)c Egb?ﬁp(ﬁ) (€n(e))a®(z)my - - - The(B, 1)
mod R(n + 1)a™(z1)R(B)e(S3,1)

for any 3 € QT with |3| =n, v € I? and ¢ € R(n).
Let P: K; — K be the homomorphism defined by

Ai+p(B)

(4.29) (i, B)TN @ 7 Py — wa™ (@) 7 - Te(B,1) @ y

for v € R(B+ o;) and y € R*(3). Then, by (4.28), P becomes an (R(3 +
a;), k[t;] ® R(B))-superbimodule homomorphism.

Let pr: Ky — F* be the canonical projection. Then by a similar reason as
(3.46), we have an exact sequence of (R(8+a), k[t;] @R (5))-superbimodules

K 2Ky 2 r .

As in the quiver Hecke algebra case, we will construct a map (R(G +
a;), k[t;] ® R(B))-bilinear homomorphism @ such that @ o P is injective.
This then implies that P is indeed injective.
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For 1 < a < n, we define the elements ¢, and g, of R(5 + «;) which can
be understood to be super-extensions of (3.49) and (3.50):

Ca= O Tae)+ Y ((@apr — 2P — (pih) — gHP0) e (v)

y€[6+(’i7 UEIB+Q7«',
VaFVa+1 Va=Va+1

and

Ja = Z Tae(lj)

1,615-!—041'7
VaFVa+t1

+ Z (x(llizf(w) _ :E:“p("“))((ivaﬂ _ %)p(ua) _ (x(lli?("“) _ x(lﬁp(ua))%)e(,/)_

V€[6+C¥¢’
Va=Va+1

Note that if v, = v,41,

(4.30)
1+p(’/a)

goae(l/) _ (mcller(Va)Ta — Tzl 1+p(va) 1+p(1/a)7.a)e<y)

Je(v) = (Taxa—H — Loq1

= (g — Tayr )P0 — 7, (x1P00) — gLy o),

and
(4.31) gae(V) = (:Biff(l’“) — gLt yvarati g e(v),
where (m}lff(”“) - x}fp(”“))‘s”a»%ﬂ e(v) is an even element.

Lemma 4.6.1. For 1 <a<n and v € I"", we have

‘pae(’/) = e(say>90aa
%a(b)%@(v) — (_1)p(ua)p(ua+1)p(ub)%xbe(y) (1 <b<n-+ 1),

(4.32) Topac(V) = (—1)PUaPEar)PR0s) o o) if b — af > 1,
TaPat1Pa = Pat1PaTat1,

and
gae(v) = €(5aV)a;

(4.33) oy ygac(V) = (—1)PLaPlas P00 g 0 o) (1< b <m+ 1),

Thgae(v) = (_1)p(’/a)p(’/a-H)P(Vb)P(Vb+l)ga7—be(V) if lb—al > 1,

Ta9a+19a = Ga+19aTa+1-
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Proof. By the defining relations of quiver Hecke superalgebras, the third
equality can be verified immediately. If v, # v 11 or vy = V441 € Iloven, the
first and second equalities were covered by Lemma 3.7.7. We will prove the
second equality in (4.32) when v, = V411 € logqa.- Let b = a. Then

Tar1P0e(V) = 1’3+1 — La+1Lg — ($Z+1 - xz)(%HTa)@(V)

=Ty — Tap1Ta — (224 — 23)(~Taa + De(v),
and
PaTal(V) = Tay1Ta — ‘/Bi - ($§+1 - $3)(Ta$a)€(V)-

Therefore we have
ZTar19a€(V) + @axqe(v) = 0.

Similarly, we can prove the equality when b = a + 1.
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Let S = Tu@0at1Pa — Par1PaTar1- Using the second equality, we have

(TaPas1Pa)Tae(V) = (_1)p('/a)(p('/a)p(1/a+1)+p(Va)p(Va+2)+p(Va+1)p(Va+2))
xa—&-?(Ta‘pa—&-lQ@a)e(V)v
(Pat1PaTas1)Tae(V) = (_1)p(ua)(p(ua+1)p(va+2)+p(ua)p(l/a+2)+p(Va)p(va+1))

xa+2(90a+190a7—a+1)€<1/)?
(Ta@a+1@a)xa+1€(y) — (_1)p(l’a+1)(p(Va)P(Va+1)+P(Va)P(Va+2))7-axa(pa+lgpae<y)
(_1)p(l/a+1)(p(l/a+1)p(l/a)+p(Va)p(l/a+2)+p(Va+1)p(ua+2))

(Ta+1Ta = €aa+1)Pat1Pa(V),
(Par1PaTas1)Tarre(v) = (—1)PErIPCer2lp 00 (TayoTast — €atiare)e(V)
= (_1)p(l’a+1)(P(Va+1)P(Va+2)+P(Va)P(Va+2)+p(l’a)p(1/a+1))anrlgpa+lgpaTa+1e(V>
- (_1)p(ya+l)p(ua+2)90a+190a€a+1,a+2€(1/),

(Ta%+1§0a)$a+2€(v) _ (_1)p(va+2)(p(ua)p(va+1)+p(va+2)p(va))Ta%ﬂ%H%e(y)
(_1)p(Va+2)(p(Va)P(Va+1)+p(Va+2)P(Va))

((_1)p(ua+1)P(ua+2)xa7—a + €a7a+1)80a+190a6(V)

= (=1)Par2)®Pa)par)tp(as2)pve) tp(as)PWas2) g 15 1o (1)

+ (_ 1)P(Va+2)(P(Va)p(VaJrl)+P(Va+2)p(l/a))¢a+1¢aea+17a+2e(y)’

(Qpa+190a7—a+1)xa+2€(V) - Qpa-i-lSOa((_1)p(ua+1)p(ya+2)$a+l7—a+l + €a+17a+2)€<y)
_ (_1)p(Va+2)(p(Va)p(VaJrl)+p(l’a+2)p(l’a)+p(’/ﬂ+1)p(ya+2))l‘a7'a(pa+lgﬁa€<l/)

+ Qat1PaCat1.ar26(V).

Hence we have Sz, = +x,,,,,»S for all b. Using the argument in Lemma
3.7.7 we conclude that S = 0.
The equalities in (4.33) follow from (4.31). O

By the preceding lemma, one can see that
agn - gie(i, ) = gu- -~ gre(i, 880 (€ (a)),
Tn1gn - gre(i, ) = (=P, - gie(i, B)ay.

for any a € R(3).
Using a similar method to the construction of P, we obtain the following

(4.34)

proposition:
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Proposition 4.6.1. There is an (R(8 + ), k[t;] ® R™(3))-bilinear homo-
morphism

Q: Ko — K| := R(8 + a,)v(i, B) @rs ITPRA(3)

defined by

ae(B,i) @ b— ag, - giv(i, 8) ® 7P Vp

fora € R(B+a;) and b € RY(3). Here, the right action of t; on K| is given
by
av(i, ) ® Wf(ﬂ)b — (=1)POPB gz10(1, B) ® ﬂf(m@(b).

Theorem 4.6.1. For each v € I®, set

Ay(tz) = a?(tl> H Qi,ua (tza xa) H (xa - ti)Qe(y)a
1<a<n, 1<a<n,
Vo i va=1€lodd
and define
Alt) =Y Ay(t:) € k[t;] ® R(3).

velb

Then the composition
QoP: Ky — K;

coincides with the right multiplication by (—1)POAPB) A(t,); i.e.,

i

= av(i, B)A(t;) @ 7*7b.

av(i, ﬂ)TlAl Q ﬂ_l{\ﬁp(ﬁ)b NN (cw(i, 3) & WP(B)@M(())) (_1)p(i)Aip(ﬁ)A(ti)

Proof. If i € Ioyen, we already proved in Theorem 3.7.1. If ¢ € I qq, then it
suffices to show that

aA(ﬂfl)Tl o ToGn o gre(, V) = C‘A(xl)ﬁ TV 1)

(4.35) A 1
= A, mod R(S+ a;)a™(x2)R(5),

where

A, = af‘(xl) H Qiva (1, Tat1) H (Tat1 — x1)%e(i, ).
1<a<n, 1<a<n,
Vi Va=1€ 1544
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As in Theorem 3.7.1, we will use induction on |3| = n to prove (4.35). If
n = 0, it is obvious. Thus we may assume that n > 1.
Note that, by (4.30), we have

Tne(l/, Z)Tn - Qi,un(xnu In+1)6<y<n7 'i, Vn) if Un 7é Z.a
Tn(x?’b-‘,—l - IE?L>(ZE”+1 - l‘n)e(yv Z) if Up = i

Tne(V, 1) gn = {
(i) We first assume that v, # i. Then, by (4.6), we have

a7 Tagn - gre(i, v)

= aA(xl)Tl o Te1 Qi (T Tg1 )Gt - - - gre(d, v)

= a* (@)1 Tae1Gno1 o 916(8, 1) Qi (1, Ty

= A, Qv (w1,2001) = A, mod R(B + a)a’ (z2) R (B)e i, B).

(ii) Assume that v, =i. Then we have

a (@)1 Tugn - qre(i, v)

(4.36) ,
= (e (T — @) (@0 — 20)gn1 - gre(iv).
Note that
A ~ A _
T1)TL Tn1Gn - 1e(t, V) = £gp - - qra” (x2)m2 -+ 7, =0
(4.37) (z1)71 19n - re(i,v) = £g, - g1a” (22) 72

mod R(B + a;)a™(z)RY(B)e(i, ).
By (4.30), formula (4.37) can be written as

a® ()71 T (Ta (@ —20) = (@1 = 20)) (2541 = 27) g1 - gre(i,v) = 0.
Thus

C‘A(xl)ﬁ e 'TnflTn(xiﬁl - l‘i)Zgnfl - gre(i, v)
= aA(xl)Tl T Tn—l(xn—i-l - xn)($721+1 - mi)gn—l Tt gle<i7 y)
(_

DPC) AL (nen — ) (254 — 7).

Since the right multiplication by (22,, — i) and (z,11 — x1) on K, are

injective, we conclude that
i)gn—l T gle(i> V)
= ()P AL (21 — 1),

ar(z)m - Tn_lTn(QTi_H —x
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which implies

(1P at (@)1 Tua (250 — 27)(@ns1 = Ta)gno1 - gre(i, v)
= (-

1)plren AL@ (Tps1 — x1)*.

Then, (4.36), together with A, = A],_ (zn41 — 21)°, implies the desired
result. O

By applying the same argument given in Corollary 3.7.1, we have the
following lemma.

Corollary 4.6.1. Set
K= R(B + ai)e(8, )T @rg TR (B).
Then the following diagram commutes

K, -~ K,

_ e l
—1)PDAPB) A(¢, i Q
(1) Iy

K —~ K},

(—1)PDAP(B) A(t;)

Here, A; = (A, h;) and P': K| — K|, is given by
av(i, ) ® Wf(ﬁ)b — aa®(z1)7 - - Tee(3, )TN @ 7b,

and (—1)POYPB) A(t;): Ko — K} is given by

a®b — (a]—;Ai®ﬂ.Z{\i¢é\i(b))(_1)p(i)Aip(:@)A(ti) = (=1)P p(i)Asp( ﬁ)aA( t)T: Z®7r Aip,

In particular, for any v € I®, we have

gn glaA(xl)Tl e Tn6<V7 Z) & 6(6)
- (_1)p(i)Aip(ﬁ)a?(In+1) H Qua,i(xaa xn—i—l) H (xa - xn+1)2€(y7 Z) ® 6(5)

1<a<n, 1<a<n,

Va7 Va=1€1oda

in R(B+ ai)e(B,1) @rg) RA(B)
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Set

Proj(R*) = GB Proj(R*(a)), Rep(R*) = @ Rep(RM«

aeQt aeQt

Since K is a projective R*(3) ® k|[t;]-supermodule and .A(t;) is a monic
(skew)-polynomial in ¢; (up to a multiple of an invertible element of k) by
applying arguments similar to those in Section 3.7, we have the following
theorem:

Theorem 4.6.2. The module F» is a projective right R*(3)-supermodule
and we have a short exact sequence consisting of right projective R™(3)-
supermodules:

(4.38) 0— K, 5 Koy — F* > 0.

Hence the functors EY and F» are well-defined ezact functors on Proj(R™)
and Rep(R?), and they induce endomorphisms on the Grothendieck groups
[Proj(R*)] and [Rep(R™Y)].

Now, we will show that the superfunctors E* and F satisfy certain
commutation relations, from which we obtain a supercategorification of V' (A).

By taking the kernels of exact sequences given in Theorem 4.4.1, Theorem
4.4.2 and the exact sequence of superbimodules (4.38), we have the following
commutative diagram of (R(3), R*(3))-superbimodules:

(4.39)

0 0
0 L4 Lj ¢ *FMLEMRMB) —0
0 L, Ly EAFARMB) ——0
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where

Ly = g7 R(B)e(8 — 01, ) @ i) e — s, ) RMN(B)

Ly = ¢ P R(B)o(i, B — ) TN @pg_ay P Pe(8 — ai, i) RN(B),

Lo = e(B,)R(B + ai)e(B, 1) @res) R (9),

L1 = ¢ Pe(B,)R(5 + aa)uli, YT @rs) TV RN(B),

The homomorphisms in the diagram (4.39) can be described as follows
(cf. (3.63)):

e P is given by (4.29). It is (R(8 + o), k[t;] ® R*())-bilinear.

A is defined by chasing the diagram. Note that it is R*(3)-linear but
not klt;]-linear.

B is given by taking the coefficient of 7, - - - 1. It is (R(5), k[t;| @R(5))-
linear (see the remark below).

e Fis given by a ® mb — ar,, ® b for a € R(B)e(f — ay,i) and b €
e(B — a;,1)RY(B) (See Theorem 4.4.1).

C is the cokernel map of F. Tt is (R(3), R*(3))-bilinear but does not

commute with ;.

Remark 4.6.1. The map B can be described as
B(al, ar, - mpoi, BTN @ ﬂ?ﬁp(ﬁ)b) = Op TN @ g (a)b
for a € R(B) and b € RM(3). Then
B ((ah 0 moli, T o w20
— B <5k71(_1)p(i)(Ai+p(ﬁ))(mil 1T (i, BTN @ wi ) @(b))
=B <(5k,1(xfl+1aa:n+17n (i, BTN @ W?ﬁp(ﬁ)qﬁi(l)))
= B (ua(atfioi(@)m, - mali, TN © 70 6,(0) )

= St TN @ m g (a) i (D).
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On the other hand,

B <(Jcln+1a7'n (4, ﬁ)TiA" ® ﬂf\#p(ﬁ)b)) t, = 5k,1(t§TiA" ® 7r;-/\"d>f"(a)b)ti
= Ot TN @ g ()i ().

Thus B is right (k[t;] @ R(3))-linear.

Define

T =T" @M1 e k[t]T @ TNRMNB), Ty =v(i, )TN @ w1 e L.

i

The element T has Z,-degree p(i)A; and T has Zs-degree p(i)(A; + p(f)).
Note that
th = tzT and Tltz = (—1>p(l)p(ﬂ)tlT1

Let p be the number of «; appearing in (3. Define an invertible element
v € k* by

(~1pOne T Quy (tiza) [ (20 = 1)
1<a<n, 1<a<n,
Va?‘éi va=1€1544

= 7’1t;<hi’ﬁ>+2(l+p(i))p + (terms of degree < —(h;, 8) +2(1 4 p(i))p in t;).

Note that v does not depend on v € I°.
Set A=A — ( and

(4.40) vk = A(Tt) € k[t,] @ RY(6).

From now on, we investigate the kernel and cokernel of the map A which
are the key ingredients of the proof of Theorem 4.6.3 below. For this purpose,
the following proposition is crucial.

Proposition 4.6.2. The element vy is a monic (skew)-polynomial in t; of
degree (hi, \) + k.
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Here and in the sequel, for m < 0, we say that a (skew)-polynomial ¢ is

a monic polynomial of degree m if ¢ = 0.
Define a map E: L) — R*(3) by

a ® b ag;(b)  for a € R(B)e(S — ay,i) and b € e(f — ay, i) RM(B).
We define the endomorphism (x, ® 1) of L{, by
(a @ mb)(x, @ 1) = (=1)PDaz, @ m;p;(b).
Lemma 4.6.2. Let
Ly :=R(B)e(B — s, ) On(o-ay Lie(B — ai, i)RM(B).
Then for any z € Ly, we have
(4.41) F(2)t; = F(z2(z, ® 1)) +e(B,i) @ E(2).
Proof. We may assume z = a ® m;b. Note that
F(2) = ame(f — a;,i?) @ b, E(z) = ag;(b).

Thus

F(2)t; = ampe(8 — @i, i°)Tng1 © ¢4(b)
= a((=1)PDz,7, + De(f — a4, i%) @ ¢i(b)
= (=1)PDaz, e — o4,i%) @ ¢5(b) + ae(B — az, %) @ di(b)
= (=1)PDF(az, @ mp:i(b)) + e(B,1) @ E(z)
=F(z(z,®1)) +e(B,1) ® E(2).

By Theorem 4.4.1, we have

e(B,)R(B+ a)e(B,1) @rz RM(B)
(4.42) = F((R(B)e(B — a1, 1) @r(s-as) e(8 — i, )R(B)))
& e(B3,1)(k[t;] @ R*(3)).
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Then reasoning as in 3.69, we may write

P(e(B,i), - - mT1tl) = F (i) + e(8, ) ox

for uniquely determined ¢y, € L{ and ¢y, € k[t;] @ R*(3). On the other hand,
we have

A(Tt;) = AB(e(3, )7, - -- 1 Tut7)
=CP(e(B,i)Tn - -TlTltf) = Pk-

Hence the definition of ¢y coincides with the definition given in (4.40). Note
that

(8,i)7 - - Tyt* )
(B,)70 - - LTt

= (F(¢k) + e(B, 1))t

= F({r(r, @ 1)) + e(B,4) E(Yr) + e(B,9)pxti

F(Yry1) + e(B, )@kﬂ P(e
P(

e

which yields

(4.43) Vpr1 = Vi(Tn ® 1), g1 = E(r) + @it

Now we will prove Proposition 4.6.2. By Corollary 3.7.1, the equality

- abeli, ) (@),
= (_1)(k+Ai)p(i)p(ﬁ)$Z+1az{\($n+1) H Qua7i($av Tni1) H (Ta — :L’n+1)26(l/, i)

1<a<n, 1<a<n,
Va7t Va=1€Iodd

holds in R(3 + a;)e(f, 1) ®r (g R*(B), which implies

AB(gn - - qrtye(i, v)Ty)
_C<( >(k+A JP(Ep(8) fz—i—la (Tny1) H Qua,i($aaxn+1) H (xa_xn—&-l)?@(%i))

1<a<n, 1<a<n,
I/gﬁéi Va=1€1544q
= (—)*AOeO g 1) T Quuilwants) [ (wa —ti)?ew).
1<a<n, 1<a<n,
l/a;ﬁi va=1€15q4
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On the other hand, since B is the map taking the coefficient of 7, - - - 71,
we have

B(gn e 'glx]fe(ia V)Tl)

=B ((_1)kp(i)p(ﬂ)xi+1 H _<xi:3(i) - xclLer(i))Q@(V’ )T '7'1T1)

Va=1

— (_1)kp(i)p(ﬁ)+p tf H(EHP@ _ x}l*p(i)fTe(l/).

Va=1

Thus we have

A(th H (7P — 2P 0)2Te (1))

(444)  _ ()hp@pd)p gk (q D I Quilzatd) ] (@a—t)e).
1<a<n, 1<a<n,
Va7t va=1€1lodd
Set
Si= > [T —alD)2ew) € klt] @ R (),
velB va=1
Fo= ()0 1) S (] Qualtors) ] (o %)
velB 1<a<n, 1<a<n,
Va7 va=1€15q4

c k[t;] @ RMB).

Then they are monic (skew)-polynomials in ¢; of degree 2(1 + p(i))p and
(hi, A) +2(1 4 p(7))p, respectively. Note that S; is contained in the center of
k[t;] @ R*(B) and F; commutes with ¢;. Hence (4.44) can be expressed in the

following form:
(4.45) YA(*S,T) = t5F;.
Lemma 4.6.3. For any k > 0, we have

tyFi = (ver)Si + hg,

where hy, € k[t;] @ RMB) is a polynomial in t; of degree < 2(1 + p(i))p. In
particular, vy, coincides with the quotient of tFF; by S;.
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Proof. By (4.43),

(4.46) Alat;) — A(a)t; € k[t;] ® R(3) is of degree < 0 in t;,
for any a € kt;|T* @ IINRA(5). We will show
(4.47)

for any polynomial f in the center of k[t;] ® R*(3) in t; of degree m € Zxg
and a € k[t;]TY @ RYB), A(af) — A(a)f is of degree < m.
We will use induction on m. Since A is right R*(3)-linear, (4.47) holds for

m = 0. Thus it suffices to show (4.47) when f = ¢;g. By the induction
hypothesis, (4.47) is true for g. Then we have

Alaf) = Ala) f = (Alatig) — Alati)g) + (Alat;) — A(a)ti)g.

It follows that the first term is of degree < deg(g) in ¢; and the second term
is of degree < deg(g) + 1, which proves (4.47). Thus we have

by (4.45) and it is of degree < 2(1+p(7))p by applying (4.47) for f =S;. O
Therefore, by Lemma 4.6.3, we conclude vy, is a monic (skew)-polynomial
in t; of degree (h;, \) + k, which completes the proof of Proposition 4.6.2.

Applying the arguments given in Theorem 3.7.4 and Theorem 3.7.5, we
have the following theorem.

Theorem 4.6.3. Let A = A — 3. Then there exist natural isomorphisms of
endofunctors on Mod(R*(3)) given below.

(i) Ifi # j, then we have
EiAFJA -, q_(ai|o‘j)Hp(i)p(j)P’]{\E{X'
(i) If (hiy A) >0, then we have

Mg *FrEM o @ Tig* = EMFM
k=0

(iii) If (hs, A) < 0, then we have

—(hi;N)—1
Mg 2FrEN S BN e @) T2,
k=0
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4.7 Supercategorification

In this section, we will show that the supercategories consisting of R*(3)-
modules and R(/)-modules give supercategorifications of U, (g) and Vi (A).
Here, we need to recall the Cartan matrix is colored by I,qq. We prove these
by using the same arguments given in Section 3.8.

We assume that (3.9); i.e.,

ky is a field and the components k; are finite-dimensional over k
Recall the result of Theorem 4.3.1; i.e.,
IT acts as the identity on [Rep(R(f3))] and [Proj(R(f3))].

Thus, although the natural isomorphisms in Theorem 4.6.3 are differ-
ent from the ones of Theorem 3.7.5, we obtain the following identities in
[ProjR*(3)] and [RepR*()] as in Theorem 3.7.5:

(hi,A=B) qf<h¢,/\*5>

(448) EZFZ - FZEZ + ql _ q;l lf <hza A 5) Z Oa
qf<hi,/\*5> _ q'<hz‘,1\*ﬂ>
qi — ¢;
Hence they are summarized as
Ki — K *
[Ei,Fjl =di;——
4 — ¢q;

(See (3.77) and (3.79) for the definition of E;, F; and K;, respectively.)

Using P(i™) and (4.14), we can also define the endomorphisms E;/[n];! and
F:/[n]! on [Rep(R(5))] and [Proj(R(5))]. Moreover, Lemma 4.5.1 implies
that

the action F; on [Proj(R(5))] and [Rep(R(53))] is locally nilpotent.
Thus, by [23, Proposition B.1],

170,”' 170‘2.].
Z (_]_)TEgl—aij_T) EJE,ET) — Z (_1)TF§1—aij—r) FJF: _ O
r=0 "—0

Moreover, by Theorem 4.3.1
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(i) [Proj(R)]:=@pscq+ [Proj(R(5))] and [Rep(R)] := Dpseq+ [Rep(R(9))]
are indeed A-dual to each other,
(ii) (4.21) can be expressed as
E,/LF; = qi(ai|aj)F3-E; + 61‘,]’;
as an endomorphism of [Proj(R)] and [Rep(R)] (cf. (3.82)).

Let Zrro(R™(3)) be the set of isomorphism classes of self-dual irreducible
RA(3)-modules, and Zrrg(R™Y):=[ |sep+ Zrro(R*(3)). Then {[S] | S € Trro(R")}
is a strong perfect basis of [Rep(R")] by Theorem 4.3.2. Applying the argu-
ments given in Theorem 3.8.1 and Corollary 3.8.1, we have

Theorem 4.7.1. Let U,(g) be the quantum Kac-Moody algebra associated
with the Cartan matrixz colored by I,qq. For A € P, we have the following
isomorphisms:

(a) Va(A)Y =~ [Rep(R™)] and Vi (A) ~ [Proj(R*)] as Ua(g)-modules,
(b) Uy (g)Y ~ [Rep(R)] as a B,’(g)-module,

(c) Uy (g) =~ [Proj(R)] as a BY"(g)-module.
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