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Abstract

Homotopy cyclic A-infinity
algebras, potentials and related
cohomology theories

Sangwook Lee

Department of Mathematical Sciences
The Graduate School
Seoul National University

An A, -algebra has "associative up to homotopy" structure. For an A.-algebra
A, we give a definition of strong homotopy inner products(if exist) which is the
homotopy notion of cyclic inner products due to Kontsevich. From strong ho-
motopy inner products we get several invariants which we call "potentials". We
study their homotopy natures, gauge invariances etc. Also we find an explicit
correspondence between cohomology elements of A and isomorphism classes
of strong homotopy inner products on A.

Key words: A-infinity algebra, strong homotopy inner product, potential,
negative cyclic cohomology, formal noncommutative manifold
Student Number: 2007-30080
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Chapter 1

Introduction

In this thesis we study a special kind of inner products on A.-algebras. Our
first goal is to study invariants(which we call "potentials") defined by them,
and the second goal is to find cohomology theories which parametrize such
inner products.

As-algebras are "homotopy-transferred algebras" from associative alge-
bras, in the sense that if a chain complex B is homotopy equivalent to a
differential graded algebra A, then via homotopy equivalence the associative
product on A does not inherit an associative product on B, but if we collect
all the failures of associativity, we get the A,.-algebra structure on B. For the
detail see [Val.

There are several motivations to study A.-structure. A.-algebras were
first discovered by Stasheff[St] in his study of H-spaces. For example, if we
have a singular cochain group of a topological space X which is an associative
algebra by cup product, then its cohomology H*(X) also has the induced
cup product, but some higher product structures which are known as Massey
products are also hidden. They give rise to an A,-structure on H*(X).

Ao-structures also appear in Fukaya-Oh-Ohta-Ono’s work [FOOO1], [FOOQO2].

They proved that there exist (filtered) A,.-structures on the Floer cochain
complexes of Lagrangian submanifolds on symplectic manifolds, and studied
their obstructions to define Floer cohomologies on them. If we consider all
Lagrangian submanifolds of a symplectic manifold M and Floer cohomologies



CHAPTER 1. INTRODUCTION

between each other, we get an A..-category which is called the Fukaya cate-
gory of M, and its derived category is a main ingredient of homological mirror
symmetry due to Kontsevich|[Ko2].

On an A.-algebra, we will define cyclic inner products and potentials. Al-
though we postpone the definition of cyclic inner products to the next chapter,
we just fix a notation for the inner product as

(,):CRC =k

where C' is the underlying vector space of given A..-algebra.

Cyclic inner products appear in various contexts. Fukaya proved that on
the filtered A,.-algebra structure on a compact Lagrangian submanifold L in a
compact(or convex at infinity) symplectic manifold M a cyclic inner product is
given by Poincaré duality[Ful]. And Costello[Cos| proved that the category of
open topological conformal field theory is homotopy equivalent to the category
of Calabi-Yau categories which can be considered as categorifications of cyclic
Ao-algebras.

Unlike the homotopy nature of A,-algebras, a cyclic inner product is not
preserved under homotopy equivalences. Hence it is very natural to search
for the definition of "homotopy transferred inner products" as we have homo-
topy transferred algebra structures from associative products. This procedure
is due to [C1] and will be explained in the next chapter. If an A,.-algebra A is
equipped with a strong homotopy inner product, we call A a homotopy cyclic
Aso-algebra. Cyclic inner products and strong homotopy inner products on A
can be described as A,.-bimodule homomorphisms from A to A* satisfying sev-
eral properties. In the perspective of noncommutative geometry, A.-algebras
correspond to formal noncommutative manifolds(abbreviated formal manifolds
from now on). If an A, -algebra A has a cyclic inner product, then it gives a
constant symplectic form on the corresponding formal manifold. If A just ad-
mits a strong homotopy inner product, then it corresponds to a (possibly)
nonconstant symplectic form. Note that cyclic inner products are special cases
of strong homotopy inner products. If a strong homotopy inner product is
given on A, we define potential ®* on coordinates of the corresponding formal
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manifold.

Definition 1.0.1. Suppose that A is a homotopy cyclic As-algebra with inner
product given by a bimodule map ¢ : A — A*. The potential ®*(x) is defined

by

e} oo 1
::Z Z N+1<m’$7--',m,m?(ﬂl,%,"',$),w7"'7$|w>p,q

where x =Y . e;x;, {e;} is a basis of vector space C, x; are formal parameters
with deg(z;) = —deg(e;).

(x,...z,mi(x, .. x)z, .., x|T)pq = bpg(z, ...z, mi(x, ..., x), x, ... z)(zT).

In particular, if ¢ is a cyclic inner product, then the potential is

Now we state our first main theorem.

Theorem A. Let A be an Ay-algebra with a strong homotopy inner product
¢ 1is given. Suppose that we have an A -quasi-isomorphism h : B — A with a
commuting diagram

A<"_B (1.0.1)
1 e
A g
where B is a cyclic Ax-algebra.
Then
P = prot.

Potentials of cyclic A,.-algebras have been of interest among physicists, as
called an action of a string field theory. The meaning of Theorem A is that they
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can be considered as homotopy invariants under adoption of strong homotopy
inner products.

The second main theorem is a cohomological interpretation of strong homo-
topy inner products. It is motivated by the following theorem of Kontsevich-
Soibelman|[KST].

Theorem 1.0.2 (JKS1| Theorem 10.2.2). For weakly unital, compact As-
algebra A, cyclic cohomology class which is homologically non-degenerate gives
rise to a class of isomorphisms of cyclic inner products on a minimal model of

A.
Our theorem gives an explicit correspondence of this theorem.

Theorem B. For a weakly unital compact A -algebra A, a homologically non-
degenerate negative cyclic cohomology class [¢] gives rise to an isomorphism
class of strong homotopy inner products on A.

Finally, we propose that there is another kind of potentials from a strong
homotopy inner product, which is related to generalized holonomy maps due
to J[ATZ]. We give its definition and the statement of the final main theorem
below.

Theorem C. Let A be a unital homotopy cyclic As-algebra. Define

1
() = —(x, -, e, x| )y, 1.0.2
@)= 3 i 2 D (102)
= p q

where ¢ € MC(A).
Then U4 is invariant under the gauge equivalence.

The thesis will be devoted to give explanations of various definitions, nota-
tions and facts which are implicit in the above statements, and to give proofs
of Theorem A, B and C.



Chapter 2

A~o-algebras and homotopy
cyclicity

2.1 A,-algebra

From now on, all vector spaces are over k.

Definition 2.1.1. A (coassociative) coalgebra is a vector space C' with an
operation A : C' — C' ® C, which is called a comultiplication, together with a

following commuting diagram.:

C A C®C

N oo

CeC—2 . ceCeC.

A coderivation 0 : C'— C' is a linear map which satisfies
Aod=0®1+1®§oA:C—-CxC.

Next we recall the basic notions of A.-algebras. Let k be the field con-
taining Q (for example Q,R,C) with char(k) = 0. Let C' = P, C’ be a
graded vector space over k. Consider its suspension (C[1])™ = C™*! and |z;|'
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is the shifted grading |z;| — 1. The tensor-coalgebra of C[1] over k is given by
BC = @5, Tk(C[1]), where

TW(C[]) = C]® - & C[1], (2.1.1)

N J
-

k

with the comultiplication A : BC' — BC ® BC' defined by

n

Al @ -+ @uy) = Z(Ul R Q) ® (Vi1 @+ @ uy). (2.1.2)

i=1

It is easy to see that A is indeed a comultiplication. Now, consider a family of
maps of degree one

my : Te(C[1]) — C[1], for k=1,2,---.

We can extend mj uniquely to a coderivation

n—k+1
mk($1®' . '®33n) — Z (_1)|$1|’+...+|$i—1|/x1®' . -®mk(l’i, N ,xi+k_1)®- ®,
=1

(2.1.3)
for k <n and mg(r; ® -+ ®x,) =0 for k > n. Again, it is easy to check that
0 is a coderivation.

The coderivation d = > re My is well-defined as a map from BC' to BC.
The A..-equations are equivalent to the equality dod= 0, or equivalently,

Definition 2.1.2. An A-algebra A is a Z-graded vector space C' over a field
k which is equipped with a family of multilinear maps(of degree 1)

my, s C[1]1%% — C[1], k>1

which satisfies the following relation:

ki1—1

S D (D) My (@1, i, My (T oy Tihg1), ) =0 (2.1.4)

k1+ko=k+1 i=1
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where € = |x1|" + |xo| + -+ x| = |w1| = 1+ || = 1+ + ;1| — 1. We
also call A a strong homotopy associative algebra.

Convention 2.1.3. In the shifted environment, the signs obey Koszul conven-
tion, so from now on we write all signs as (—1)%° and it is easy to recover
them. Also we fix a ground field k of all As-algebras. Finally, when we say
A = (C,{my}) is an Ax-algebra, it means that the underlying vector space
of the Ay-algebra A is C' and mq,mso,--- are defining multilinear maps. But
later we will abuse notations as if A itself is again the underlying vector space,
not taking new symbol C'.

Definition 2.1.4. An element I € C° = C7[1] is called a unit if
M1 (21, o0 Iy ooy ) =0 for k # 1,
mo(I,z) = (—=1)*my(z, I) = .

If an A -algebra A has a unit, then we call A a unital A,-algebra.

We give the first three relations of explicitly.

e For k =1, m3(a) = 0 for all a, so m, is a differential.

e For k =2,

ma(ms(a, b)) — ma(mi(a),b) — (=1)"'ma(a,ma (b)) = 0,
i.e. my is a derivation with respect to mo.

e For k =3,

ma(ma(a,b), c) £ ma(a, ma(b,c))
= +my(ms(a,b,c)) £ ms(my(a),b,c) £ ms(a,mi(b),c) = ms(a,b,mi(c)),

i.e. me may NOT be associative, but only associative up to homotopy.
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(ax ) xy—1

- 3 " ~—ax (Bry) >+

Figure 2.1: Homotopy between two loop products

The reason why we said "up to homotopy" is encoded in the Figure [2.1
which clearly describes a homotopy between loop products (o x ) x v and
a* (B *). They are not same, but are same up to homotopy.

Now we define an A,-homomorphism between two A.-algebras. Given
two coalgebras C' and D, a map of coalgebras is a linear map f : C'— D such
that Ap o f = f o A¢, where Ag and Ap are comultiplications of C' and D,
respectively.

In the cotensor coalgebra case, the family of maps of degree 0

fk : BkCl — 02[1] for k = 1’27...

clearly induce the coalgebra map f : BCy — B(Cy, which for 1 ® -+ - ® o, €
By (] is defined by the formula

f($1®"'®$k)= Z fo (@1, ) @+ @ frp, (T 41,0 5 Tp)-

1<k < <kn<k

The map f is called an A..-homomorphism if

~ ~

dof=fod,

oo

&

| &1
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or equivalently,
dof=fod

where d := pro cZ, fi=pro f and pr is the projection BC' — C[1].
The below is a pictorial description of an A,,-homomorphism f.

n f

;

An A-algebra (C,{m;}) is called compact if H*(C,m,) is finite dimen-
sional and is called minimal if m; = 0.

2.2 Homotopy equivalence of A,-algebras

In this section we collect the definition and properties of homotopy equiva-
lences of A, -algebras without proofs and details involved. For the proofs and
the explicit constructions of models we refer to [FOOOI|. The idea for the
definition of a homotopy between two A..-homomorphisms is to consider alge-
braic analogue of a homotopy between maps of topological spaces. Recall that
a homotopy between two maps f and g between topological spaces X to Y is
amap H :[0,1] x X — Y such that H|qy«x = f and H|qyxx = g. It leads
us to the following definitions.

Definition 2.2.1. Let A = (C,{my}) be an As-algebra. An A-algebra A =
(C,{mx}) is a model of [0, 1] x A if there are As-homomorphisms

inc:A— A evg: A=A evy: A— A
such that

e incy : ByC — C[1] is zero if k # 1, and the same holds for evy and ev;.

® cuy o inc = evy o inc = identity.
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o incy : (C,my) — (C,mq) is a cochain homotopy equivalence, and (evy), (evy); :

(C,mq) — (C,mq) are cochain homotopy equivalences.

e The cochain homomorphism (evy)1 @ (evq)1 : C = C @ C' is surjective.

Definition 2.2.2. (Homotopy between two A..-homomorphisms) Let A, B be
Aso-algebras, and f,g : A — B be Ay -homomorphisms. Let B be a model of
0,1] x B.

We say f is homotopic to g via B and write f ~p g, if there is an As-
homomorphism F : A — B such that evgo F = f, evy o F'= g. We call F the
homotopy between f and g.

Then [FOOOIT] proves that the relation ~z does not depend on the choice
of B, and that it is indeed an equivalence relation. So we have a definition for
homotopies of A,-homomorphisms. For A,-algebras A and B we say that an
Aso-homomorphism f : A — B is a homotopy equivalence if there is another
As-homomorphism ¢ : B — A such that f o g is homotopic to idg and g o f
is homotopic to id4(the identity map id4 of an A-algebra A = (C, {my}) is
given by (ida); = idc : C' — C, and (ida), = 0 for k # 1).

Remark 2.2.3. Let A and B be A-algebras, with underlying vector spaces
C' and D respectively. By taking an explicit model of [0,1] x B, [FOOOI|] also
shows that an A..-homomorphisms f,qg: A — B are homotopic if and only if
there exists a family of maps hy : BC — DI[1] of degree —1 such that

Z(—l)Kosm(f(al, e @)y W@, o a5), g(ajin, ey an))

= f(ala "'7an) - g(a17 "'7an) - Z(_l)KOSh’<a1a "'7ai’7m(ai’+17 ey a’j’)aa'j’-‘rla

Observe that it is very similiar to the form of cochain homotopies.

Let f be an A,-homomorphism. By definitions of A.-algebras and ho-
momorphisms, m; defines a cochain complex, and f; defines a cochain map
between m;-complexes. We say f is a weak homotopy equivalence if f; induces
an my-cochain homotopy equivalence.

Now, we state the following result, which is very useful and important for
the remaining parts.

10
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Theorem 2.2.4. (J[FOOQ1], Whitehead theorem for As-algebras) A weak ho-
motopy equivalence of As-algebras is a homotopy equivalence.

In other words, the homotopy equivalence of A,-algebras is just the homo-
topy equivalence of the underlying m;-cochain complexes. The proof involves
a careful examination of obstruction theory of A, -algebras.

Furthermore, if we only consider the ground ring as Z or a field, then it
is not hard to show that quasi-isomorphisms of cochain complexes over the
ground ring are in fact cochain homotopy equivalences. Such a restriction was
assumed at first. So if f; : C' — D is a quasi-isomorphism of m;-complexes
and is a part of an A,-homomorphism f : A — B, then we call such f an

Aso-quasi-isomorphism, and consider it as a homotopy equivalence between A
and B.

2.3 As-bimodules and inner products

Now we recall the definition of A.-bimodules and homomorphisms between
them. For oridinary bimodules over associative algebras, there is a compatibil-
ity axiom relating algebra multiplications and scalar actions. In the A.-case,
we need to generalize such compatibility condition up to homotopy.

Definition 2.3.1. Let A = (C,{mj}}) and B = (D,{mB}) be An.-algebras
and let M be a Z-graded vector space over k. Suppose that we have a family
of maps

dpy : C[1J%F @ M[1] @ D[1]® — M[1]

11
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of degree 1 for all k,1 > 0. Then M is an A-B-bimodule if {dy,} satisfies

k k—it+1

E § : Kos A
(—].) dk_iﬂ,l(al, sy T (CL]‘7 ...7ai+j_1), I, bl, ...,bl>

i=1 j=1

k l
E § : Kos

+ dk ij al,...,di,j(ak_iﬂ,...,m,bl,...,bj),...,bl)

=0 7=0

L 1—i+1

+Z Z (=) %dy—i1(ar, ....m, ..,mP (bj, ... biyj-1), ... b)) = 0

i=1 j=1

for all (ay,...,ar,m, by, ..., b) € C[1]®* @ M[1] @ D[1]®

We specified module elements(and the module itself) by underlines to avoid
confusion. If A = B, then we call M an A.-bimodule over A. Since we will
only be concerned with such cases, we just give a definition of homomorphisms
between A..-bimodules over a fixed A,-algebra A.

Definition 2.3.2. Let (M,{d}}}) and (N,{d};}) be As-bimodules over A =
(C, {my}). An A, -bimodule homomorphism between M and N is a family of
maps

fea s C[F @ M[1] ® C[1)*" — N[1]

of degree 0 for all k,1 > 0 such that

k k—it+l
Kos
§ § <_1> fk—i+1,l(afl7"'7mi(aj7"'7ai+j—1)a"'7ma"'7ak+l+l)
i=1 j=1
k k- ]+2
M
+ E E f] k4-l—i— g+3(@17-- 7dk—j+1,i+j—k;—2(aja"'yma--'-aai-f—j—l)?---aak—i-l-i-l)
7=1 i=k— j+2
1 k- z+2
+ E E sz z+1(a17---vma-'-7mi(aj>-'-a@i+j71>7---;ak+l+1)
i=1 j= k+2
k41 k41— ;+2
Kos N
—E , E , djk+l i— J+3(a17---afkfj+1,i+jfk72(aja---ama---aai+j71)7-~-7ak+l+1)-

=1 i=k—j42

12

2] 8- ] |

el



CHAPTER 2. A,-ALGEBRAS AND HOMOTOPY CYCLICITY

For the case of M = A, we may set dj; := my44+1. For the case of the dual
M = A, we define the bimodule structure dj ; as

Kos, *

dl:,l(xh sy 'rkny*ka—i-h sy xk—i—l)(w) = <_1) v (mk-‘rl-i-l(xk-i-la cory Lht, W, X1, ,.Tk))

(2.3.1)
Now we are able to define a cyclic inner product on an A,-algebra.

Definition 2.3.3. An Ay-algebra A = (C,{my}) is said to have a cyclic inner
product if there exists a skew-symmetric nondegenerate bilinear map

(,):Cx(C—Ek (2.3.2)
such that for all integers k > 1,

(mge(1, ooy ), 1) = (—1) 5% (my (22, ...y Tpgr), 1)
When A has a cyclic inner product, we call A a cyclic Ay-algebra.

Cyclic inner products are expressed as A..-bimodule maps with certain
properties.

Lemma 2.3.4 (|CI] Lemma 3.1). Let 1 be an A-bimodule homomorphism
v A— A*. Define
{a,b) := hoo(a)(b),

and suppose that (,) is nondegenerate. Then, it defines a cyclic inner product

on A if
1. wk,l =0 for (k, l) 7é (0,0)
2. oo(a)(b) = —(=1)"Plapg o (b) (a).

Conversely, any cyclic symmetric inner product (,) on A give rise to an Ax-
bimodule map ¢ : A — A* with (1) and (2).

Remark 2.3.5. If an Ay -algebra A hasmo # 0 andmy = mg =my = --- =0,
then it is in fact an associative algebra. In this case A is a cyclic As-algebra

13
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if and only if A is a Frobenius algebra, which is an associative algebra with an
mmner product

(a-b,cy={(a,b-c)==%(b-c,a).

Ifa {(a, ) is a map A — A*, then the cyclicity is equivalent to that this map
is an A-bimodule homomorphism between A and A*.

There is a notion of cyclic Ay -homomorphism due to Kajiura|Kaj].

Definition 2.3.6. An A.-homomorphism {hy}r>1 between two cyclic As-
algebras is called a cyclic As-homomorphism if

1. hy preserves inner product {a,b) = (hy(a), hi(b)).

2.
Z <hi<I1, v ,xi),hj(xﬂ_l,- . ,l’k)> = O

i+j=k
We also recall that Aoo—homomorghism f A — B can be also understood
as an A,.-bimodule homomorphism f: A — B over (f, f). In this case,
fea : C[%F @ Cl1] @ C[1J® — D
is defined by ﬁ’l = fr11+1.- One can check that fsatisﬁes fo mA =mPo f

Now, we define strong homotopy inner products whose definition is modified
from |CI].

Definition 2.3.7. Let A be an Ay-algebra. We call an As-bimodule map
¢ : A — A* a strong homotopy inner product if it satisfies the following
properties.
1. (Skew-symmetry) ¢x,(d, v, g)(w) = —(—1)K05¢l,k(5, w,a)(v).
2. (Closedness) for any choice of a family (aq,...,a;41) and any choice of
indices 1 <1< j<k<Il+1, we have

é(..., a4, ...)(a;) + (—1)KOS¢(...,%, (ag) + (=D)E%0(.., ay, .. (a;) = 0.

14



CHAPTER 2. A,-ALGEBRAS AND HOMOTOPY CYCLICITY

3. (Homological non-degeneracy) for any non-zero [a] € H*(A) with a € A,
there exists an element [b] € H®(A) with b € A, such that ¢oo(a)(b) # 0.

Remark 2.3.8. The reason for the name of the second condition is that it is
equivalent to the closedness of the corresponding noncommutative 2-form on
the formal manifold which corresponds to A.

Before we proceed, we introduce a few diagrams which helps to understand
the axioms of strong homotopy inner products. A value of ¢y ; is expressed as
in the Figure [2.3] Then the skew-symmetry is given by the Figure [2.3, and the
closedness is given by the Figure [2.3]

a,k: o o a/l

Ny

l

Figure 2.2: ¢y (ay, ..., ag, v, by, ..., b)) (w)

ar ai

N
N ;

Figure 2.3: Skew-symmetry

15
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ag

Figure 2.4: Closedness

Originally, in [CI], a strong homotopy inner product was defined by an
Aso-bimodule map ¢ : A — A* such that the following commutative diagram

exists:
A — B (2.3.3)
g=f
b7 e
A* B*

where f is an A.-quasi-isomorphism and ]?is an A.-bimodule map induced
by f as we discussed above. Then Cho’s main result in is as following:

Theorem 2.3.9. If such ¢ exists, then there exists an As-bimodule map ¢’
on A which satisfies the above three conditions of definition[2.3.7.

But the original definition does not fit well to the context of noncommu-
tative geometry. Namely, suppose that we have ¢ satisfying definition [2.3.
which corresponds exactly to a noncommutative symplectic form. Then ¢ does
not always become exactly a strong homotopy inner product if we follow its
original definition in [CI], but is only equivalent to one which satisfies the

16
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original definition(the notion of equivalence will be given later). That is why
we modify the definition of strong homotopy inner products and introduce the
notion of their equivalence.

Theorem [2.3.9| can be rephrased as the following theorem.

Theorem 2.3.10. [C1)] Let ¢ : A — A* be an A-bimodule map.

1. If ¢ is a strong homotopy inner product(in the modified sense), then there
exists an Aoo-algebra B with a cyclic inner product b : B — B* and an
Aso-quasi-isomorphism « : B — A satisfying the following commutative
diagram of Aso-bimodule homomorphisms

b
o

2. If there exists a cyclic Ax-algebra B with ¢ : B — B* and an A -quasi-
isomorphism f : A — B such that the following diagram of A -bimodules

S
Sy

(2.3.4)

over A commutes:

A — B (2.3.5)
g=f

T

A* B*

*

g

then ¢ s a strong homotopy inner product.

If ¢o o is nondegenerate in the chain level, then one can find B such that both

diagrams , holds.

Proof. If ¢ is nondegenerate on the chain level, one can find B with an A.-
isomorphism f : A — B from the proof of Theorem [2.3.9| making commuting
diagram . Hence one can find exact inverse of f to make the commuting
diagram .

Also, the statement (2) can be checked without much difficulty from the
commuting diagram, so we only consider the statement (1). We explain that

17
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CHAPTER 2. A,-ALGEBRAS AND HOMOTOPY CYCLICITY

the proof of the theorem [2.3.9 given in [CT] is enough to prove the existence of
the diagram (2.3.4): We recall from [CI] that the first step of the construction
of the cyclic A, .-algebra B when A is only homologically non-degenerate was
considering the minimal model ¢ : H*(A) — A and consider the pull back t*¢.

A< H*(A)——— H*(4) (2.3.6)
f

|

AT —= (H*(A))" =— (H*(4))"

Then ¢*¢ is non-degenerate and skew symmetric and closed, and one proves
the theorem for t*¢ to find f : H*(A) — H*(A) with the above commutative
diagram. As the quasi-isomorphism f on H®(A) is in fact an isomorphism,
hence there exists explicit inverse f~! and we obtain the diagram (2.3.4). O

We can also prove the following corollary.

Corollary 2.3.11. Let ¢ : A — A* be a strong homotopy inner product. Sup-
pose we have an Ay -quasi-isomorphism f : A — H*(A) with the commuting

diagram
A — H*(A) (2.3.7)
g=f
¢J P L cyc
A* H*(A)*

g*

then, there exists an As-quasi-isomorphism h : H*(A) — A with the commut-
ing diagram (with the same 1) as the above)

A h He(A) (2.3.8)

¢j e

A T (H*(A))"

Proof. By the decomposition theorem of A..-algebras(see |[Kaj|), the map f
has a right inverse A..-quasi-homomorphism, say h : H*(A) — A such that

18
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CHAPTER 2. A,-ALGEBRAS AND HOMOTOPY CYCLICITY

f oh =1id. To see this, consider an A..-isomorphism 7
n:A— A% .= AT g Ale

to the direct sum of the minimal A..-algebra A¥ and the linear contractible
Ale,

Let m : A% — AM be the projection and i : A? — A% be the inclusion
where the both are A..-quasi-isomorphisms with 7 o7 = id. As f is an A..-
quasi-isomorphism, fontoi: A¥ — H*(A) is an A-isomorphism, hence
has an A, -inverse say &. Then, we define the right A, inverse h =n~toio.
The property foh = id can be checked immediately. The second diagram then
follows from the first commuting diagram. O

Now we define the equivalence of strong homotopy inner products.

Definition 2.3.12. Two strong homotopy inner products ¢ : A — A* and 9 :
B — B* are said to be equivalent if there exists a cyclic minimal A,-algebra H
with a quasi-isomorphism to A and B, with the following commutative diagram:

A qis H qis B

1k

A — H*~— DB~

One can actually choose H to be a minimal(or canonical) model.
Given a strong homotopy inner product ¢ : B — B*, and an A.,-quasi-
isomorphism f : A — B, we may define a pullback f*¢: A — A*

Aﬁ'B

"y

f*

as a composition : f*¢ = f* o ;5 e f where (E and J? denote the extensions to
higher tensor powers, see section 3 of [C1].

19
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Proposition 2.3.13. f*¢ defines a strong homotopy inner product on A which
15 equivalent to ¢.

Proof. Since ¢ : B — B* is skew-symmetric and closed, so is f*¢ by lemma 5.6
of [C1]. It is not hard to check that f*¢ is also homologically non-degenerate as
f is a quasi-isomorphism. Hence, f*¢, by Definition [2.3.7] is a strong homotopy
inner product. Hence there exist an A.-algebra C' which is cyclic symmetric
(¢ : C — C%), and A,-quasi-homomorphism h : C' — A with the following
commutative diagrams.

C = A — B
h f

AT

o A (B)*

From the diagram, it is easy to see that ¢ and f*¢ are equivalent in the sense
of definition 2.3.12 O

Remark 2.3.14. In general, Ay -quasi-isomorphisms do not preserve cyclic
property of As-algebra, i.e. a pullback of a cyclic inner product may not be
again cyclic. That is why we need to consider strong homotopy inner products,
which is given via any A -quasi-isomorphism from a cyclic inner product. The
notion of a cyclic Aso-homomorphism, which preserves cyclic property of As-
algebra, was first considered by Kajiura[Kaj] from the condition f*w = W' so
that both w and W' are constant coefficient symplectic forms.

20
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Chapter 3

Formal noncommutative geometry

We recall the language of formal noncommutative geometry mainly from [KS1],
which provides more geometric point of view of the related homotopy theo-
ries. For a more systematic exposition, we refer readers to Kontsevich and
Soibelman|KS1], Kajiura|Kaj| or Hamilton and Lazarev[HL2].

3.1 Noncommutative function rings and vector
fields

We restrict ourselves to A.-algebras on a finite dimensional vector space C
over a field k(to prove the main theorem for compact A,-algebras, we will
pullback all the related notions to H*(C,m;) which is finite dimensional). We
choose a basis of C' and denote it as {e;,--- ,e,}. Consider the dual space
C* = Hom(C, k) and denote the dual basis as xy,--- ,x, whose degrees are
given as |z;|" = —|e;|".

As an A.-algebra is given by coalgebra with codifferential, its dual becomes
a (noncommutative) differential graded algebra (DGA) or a formal manifold
in the language of Kontsevich and Soibelman [KS1|. Namely, the dual of the
coalgebra (BC)* is a DGA. To have a unit, actually, one should work with
an augmented bar complex BCT := BC & k with the comultiplication A :

BC*T — BCt ® BC™ defined as in (2.1.2)) with the sum from i = 0 to i = n.
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CHAPTER 3. FORMAL NONCOMMUTATIVE GEOMETRY

Then, the dual space (BC™)* may be considered as a function ring O(X) such
that
O(X) = k((x1, ..., zp)).

Namely, it is a noncommutative formal power series ring, regarded as the ring
of regular functions on the formal noncommutative manifold X.

Dual of the codifferential d becomes a differential of the DGA, which may
be considered as a vector field on X. The vector field () on X corresponding d
may be defined by

. 4 b)

— J15 50k
Q= E :az‘ lesz"'xjkax'
k)0 !

where the coefficients a’s are defined by the A..-operations

e e _E Tk
mk(eh? 7ejk) - a; €i-

Note that ) may be an infinite sum and is regarded as a formal vector field.
The Ao -equation dod = %[d, d] = 0 implies the relation [@, Q] = 0 or the
following identities between the coefficients of @) for each s

D S FTRT 7 J P F T RTE T TRy NI |
0= g (=1)as ’ " a ’
kq+ho=k+1
Jsl

0
oz’
k(x), f(x) and g(x) has homogeneous degree),

Here acts on O(X) in a natural way: for example(assume each of

a 6 / / ’ a
— - —_ . —1)UE@I =z ) f@)]) . —_
k()55 (f(2)g(2)) = k(z) 57 (f(2))-g(2)+(=1) f(2)k(2) 55 (g(2)).
Here we set ’8%1"/ = —|z;|". Then one may check that A,.-equation corresponds

to [@, Q] = 0 or more precisely, for any f(z), we have

Q. QI(f) = Q) — (=1"VQ(Q(f)) = 2Q(Q(f)) = 0.
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CHAPTER 3. FORMAL NONCOMMUTATIVE GEOMETRY

In the non-graded situation, [Q, @] is zero for any vector field @), but now
we need to consider gradings when we take the commutator. In particular, if
|Q] is odd, then [@, @] is not automatically zero any more, and if it is zero, @
is a very special vector field. In particular, the structure of an A .-algebra on
C'is equivalent to the noncommutative (pointed) formal manifold X equipped
with a vector field @ with [@, Q] = 0. Here pointed means that we consider the
case of my = 0, or in another way, we consider formal series with no constant
term.

A cohomomorphism between coalgebras corresponding to A,.-algebras nat-
urally corresponds to the algebra homomorphism compatible with derivations.
Namely for two A-algebras (A,m2),(B,m?) and an A,-homomorphism
h : B — A, the formal change of coordinates of the dual variables are given
as follows. We assume B is finite dimensional as a vector space, and denote
by {f.} its basis, and introduce corresponding formal variables y. as before.
Suppose

hk(f.?l’ T 7f-7k) = h;l:"':jkei7 h;l:'":jk e R'

Then, algebra homomorphism is defined by changing each variable as

ZTi = h;"uyju + h§'21,j22yj21yj22 +eeet+ héll,---,jlkyju Y e (3'1'1)

We refer readers to [Kaj| for detailed explanation on this point.

3.2 Noncommutative de Rham theory

There is a noncommutative version of de Rham(or Karoubi) theory(see for ex-
ample [KS1]). The main difference from the commutative case is that the space
X where the differential forms should live does not really exist but is only con-
sidered hypothetical, and the right de Rham complex in the noncommutative
case is the cyclic de Rham complex.

First, one may introduce the de Rham forms as follows. Consider O(T'[1]X) :=

k{(x;, dz;)), where dzx; are another formal variables such that |dz;| = |z|.
There are additional signs when dealing with these forms or vector fields,
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CHAPTER 3. FORMAL NONCOMMUTATIVE GEOMETRY

which we follow the definition in [Kaj|. First denote

ﬂ(d$1) =1, tt(xl) =0, ﬁ(

-) = —1
81”)

and in general, by denoting x; or dx; by ¢, one defines

And the Koszul sign rule in this case is given by considering the sign f and
| - | separate. For example, graded commutator is defined (for homogeneous
elements) by

[£(9), g(®)] = f(®)g(p) — (_1)(If(¢)|’lg(fb)|’+ﬁ(f(¢))ﬁ(g(¢)))g<¢)f(¢)_

Cyclic functions are defined by the quotient

Qeye(X) = O(X)/[0(X), O(X)]10p-
Here one takes the closure of algebraic commutator in the adic topology. The
space of cyclic differential forms on X is defined similarly by

Qeye(X) = O(TX)/[O(T[1X), O(TUX) 10

1

eye(X) is generated by expressions

Cyclic noncommutative one forms on X | €}
as x;, -+ x5, drg, , where by cyclic rotation, dz, may be regarded as being in
the last slot. But in general, cyclic 2-form is generated by equivalence classes
of elements like

Tiy o Xy, AT T X dTpTgy o T,

T

Hence, unlike in the ordinary commutative case, €23,.(X) does not vanish for

s > dim(V'). The usual de Rham differential d descends to the quotient Q.,.(X)
and we denote it as deye as in [KSI]|. (Qeye(X), deyer) is the noncommutative
de Rham complex.
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Furthermore, it is well-known that the contraction map(or interior product)
ic : O(T[1]X) = O(T[1]1X)

can be defined by ic(f) = 0, ig(df) = &(f) for all f € O(T[1]X). Now, one
defines the Lie derivative

Le=[dig] = doi¢+icod.
As L is also a derivation, we have for any f(¢), g(¢) € O(T[1]X),

Le([f(0), 9(9)]) < [O(TT1]X), O(T[1]X)].

Hence, L is well-defined on cyclic forms .,.(7[1]X). Like the standard differ-
ential calculus, the following holds true also for the noncommutative de Rham
complex. We remark that these identities are also called "geometric identities"
in some literatures.

d,d] =0,[d, L] =0,
[Le,in] =i [Le L] = Ligs lig, 1] = 0.
We mention two of the well-known theorems. The first one is

Theorem 3.2.1 (Poincaré lemma). The cohomology of (Qeye(X), d) is trivial.

Proof. We follow Lemma 4.8 of [Kaj|. One can define the explicit contracting
homotopy H satistying dH + Hd = Id as follows. Denote an element of 2.,.(X)
as a = %ail...ikgbil -+ ¢y, where ¢;, = x;, or ¢;; = dx;;. Then, H is defined by

1

H(a) = Z(_l)ﬁn—i- m]_lgail---ik@l e (H(@J)) - iy -
where H(z;;) = 0 and H(dz;;) = ;. O
Theorem 3.2.2. (Darboux theorem) Any symplectic form on a formal non-

commutative manifold can be transformed to the constant (coefficient) sym-
plectic form by a coordinate transformation.
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We refer readers to [Gi], [Kaj| or Theorem of this paper for its proof
in the filtered case.

3.3 Kontsevich-Soibelman’s theorem

We give a brief sketch of the proof of the Kontsevich-Soibelman’s theorem for
readers’ convenience, and refer readers to [KS1] for more details.

Proof. Consider a symplectic form w, satisfying deyqw = 0, Lo(w) = 0, which
is a cycle of the complex (Q%%(X), L), where ¢l means d,q-closed elements.
By the Poincaré lemma, there exists an element o € QL (X)/deyeQ2 .(X)

cyc cyc

such that dgy;a = w. This provides an isomorphism of complexes:

d . Qiyc<X) E N (Q2,CZ(X) E )
cvet dcylegyc(X)7 N e e
We remark that as it is an isomorphism, there exists an inverse, but we do not
know any map from Q%% (X) — Ql (X) which is a chain map with respect
to Lg which is a source of some complications. For example, the contracting
homotopy in the proof of the Poincaré lemma does not commute with the
differential L.

Kontsevich and Soibelman has proved that the following map via adb —
[a, b]

(dczfg—aﬁlw) = ([0(X), O(X)top, La),

is a quasi-isomorphism. From the definition Q7,.(X) = O(X)/[O(X), O(X)]iop,
we have a short exact sequence of Lg-complexes,

0 — [0(X),0(X)]ip = O(X) /. — Q2 (X)/k — 0.

cyc
Note that (O(X)/k, Lg) is acyclic ([KS2] Prop. 8.4.1), hence (Q%%(X), Lg) is

quasi-isomorphic to (22 .(X)/k, Lg) which is the cyclic cohomology of A (see

cyc

Lemma [6.1.2)). O]
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To show that the resulting cyclic structure really depends only on the L-
cohomology class of w, they prove

Lemma 3.3.1 (|[KS2| Lemma 11.2.6). Let wy = w+ Lg(da). Then there exists
a vector field v such that v(zg) =0, [v,Q] =0, and L,(w) = Lo(da).

Proof. As in the proof of Darboux lemma, we need to find a vector field v,
satisfying the condition L,w = Lg(da). Let = Lg(a). Then, df = L(da).
Hence, the desired equation £,w = Lg(dw), is equivalent to

diyw = df = dLg(a).

Hence, we solve
Ly = ﬂa

which is possible by the non-degeneracy of w.
We also claim that any such solution v automatically satisfies [@Q),v] = 0.
To see this, note that

Looivw = Lo o Lo(a) = Ligga) = 0.
But the first term equals
Lg 0iyw = i,Low + 1[Q W = 1[Qu|W-

Hence, ijg,w = 0 and this implies the claim as w is non-degenerate. O

The above lemma suggests that there exist an A,.-automorphism (preserv-
ing A..-structure) which transforms the symplectic form w+ Lg(do) to w, thus
proving that the cyclic structure depends only on the Lg-cohomology class.
But we found that the construction of such an automorphism is rather involved
which occupies the whole section [6.3]
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Chapter 4

Review of cohomology theories on
A~o-algebras

We need another main ingredients, namely cohomology theories of A.-algebras,
to understand and prove Theorem B and Theorem C. From now on, all A.-
algebras are assumed to be unital.

4.1 Hochschild (co)homology for A.-algebras

Hochschild homology of an A..-algebra A = (A, {my}) as an A.-module over
itself is defined as follows. Denote

CF(A,A) = A® A[1]%F, (4.1.1)

and its degree o part by C¥(A, A). We define the Hochschild chain complex
(Co(A, A),b) = (@r20 CJ(A, A),b), (4.1.2)
where the degree one differential b is defined as follows: for v € A and z; € A,

b(y®x1®®xk): Z (_1)€1Q®...®xi_1®mj(l=i’... 717i+j—1)®"'®$k

0<j<k+1—i
<i
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+ Z (=D 2Migj1 (Thoint, - T, 0, 81, -+, T) @2 Q-+ @ Ty (4.1.3)

0<i,j<k
i+§ <k

We underline module elements to avoid confusion. We note again that the signs
follow the Koszul sign convention:

i J
e = v + ]|+ ], e = (Z |2h—igs|) (o] + Z jz:[').
s=1 t=1

Combining the Koszul sign rules and A..-relation ([2.1.4)), we have b* = 0.
We introduce Figure [4.1] to understand the Hochschild differential better.

e
= 3¢ ”’; + > ‘”

Figure 4.1: The Hochschild boundary map b

Similarly, one can define the reduced Hochschild homology by considering
Ared := A/R - I where [ is the unit of A, and set C* ,(A, A) = A® (A™d[1])®*
instead, and the resulting homology is isomorphic to the standard one.

The cochain complex obtained by taking a dual of the reduced Hochschild
chain complex, ((A:ed(A, A))*, b*), defines the Hochschild cohomology H?. (A, A*).

Here, cochain elements are given by the maps {f, : (A"¢[1])®" — C*} and the
degree one differential b* is given by

b flay,...,a,) = Z(—l)K"sf(al, (L), ...,an)+Z(—1)K°5d*(a1, o f) e an)-

We recall that d* was defined in ([2.3.1]).
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4.2 (Negative) cyclic cohomology for A..-algebras

In this section, we briefly review the definition of the cyclic and negative cyclic
cohomology of a unital A,-algebra. For weakly unital case, see for example,
[HL2| or [C2]. Given an A..-algebra, there exists a Tsygan’s bicomplex. Con-

sider the Hochschild chain complex C4(A, A) defined in (4.1.2)). For the cyclic
generator t,,1 € Z/(n + 1)Z, we define its action on A%V as follows:

(_1)Ixn\’(\xo|’+~--+\zn_1|'(

b1 - (Toy ey Tp) = Ty TOy vey Tt )

Here, we set t; to be identity on A and write the identity map as 1. Consider
Npjp =14 topn +10 + - tnyy.
As in the classical case, we have the natural augmented exact sequence:

A1) Tt pemt1) Dttt peman) T qemrnet

We consider @, , N,, action on .-, A" and denote it as
N :C(AA) = Co (A, A).

We can also similarly define (1 —1¢) : Co(A, A) = Co(A, A).

Recall that in the classical case, cyclic bicomplex has even columns which
are the copies of the Hochschild complex, and odd columns which are the
copies of the bar complex. Bicomplex for A, case is constructed in a similar
way. Even columns will be given by (C,(A, A),b). Consider d operation on
Co(A, A) considered as a subspace of BC'. The homology of the chain complex
(C4(A, A),d) vanishes, and this will be the odd columns. We set ¥ := d to
follow the standard notation. The following lemma is a standard fact.

Lemma 4.2.1. We have the following identities on Co(A, A):

b(1—t) = (1 —t)¥,)'N = Nb. (4.2.1)
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We thus obtain the cyclic bicomplex(analogous to Tsygan’s) defined as
follows.

Definition 4.2.2. Define
CCpy(A) :==Cy (A, A) forallp >0, q € Z.
We define differentials on the double complex as
b: CCpy(A) = CCphg41)(A) for p even,

=t CCpy(A) = CCprgsny(A) for p odd,
1 —1t:CCh(A) = CCp-1)q(A) for p odd,
N : CCpe(A) = CCp-1)q(A) for p even.

As a diagram, we have

b —b b —b
C_i(A,A) == CLy(A A) =T Oy (A A) == O (A, A) &
b —b b -

(4.2.2)

Denote C2(A) := coker(1 —t) = Cy(A, A)/im(1 — t). Then as in the clas-
sical case, we can prove that its homology with differentials inherited from
Hochschild boundary b is the same as that of the above bicomplex.

We have another bicomplex named by (b, B)-complex, which can be also
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used to define cyclic homology. The Connes’ B-operator is defined by
B = (1—-t)sN,

where
sl ® - ®ay) =IRa; -+ R ay.

Cyclic and negative cyclic cochain complex can be obtained by taking the
dual of the (b, B)-complex in the following way.
Consider the following unbounded (b*, B*) complex.

(4.2.3)

b*
B*
02

red

b*

B*
Ol

red
b*

B*
CO

red

b*

(4, A7)

(A4, A7)

(4, 47)

b*
(A, A7)
b*

(A4, A7)

B* 1
Cred

B* 0
Cred
b*

(A, A7)

b*

B* -1
Cred

.
B0

B* -1
Cred

*

B —2
Cred

red

"
(4, A f—
"
(A, A*f—
"
(A, AP

b*

Here (C?,

red

(A, A*),b*) is the dual of reduced Hochschild cochain complex in the
previous subsection, and the dual of the Connes-Tsygan’s operator is given by

B f(a1,...an) = Y flai, a1, .., ai1)(I).

The double complex C'C*® (A, A*) which consists of only negative columns
of defines the negative cyclic cohomology of an A..-algebra A, which
we denote by HC*® (A) . Here, elements in the line parallel to y = —z line has
the same total degree of the double complex, and we consider the direct sums
instead of the direct products so that its dualization would give the negative
cyclic homology which is given by the direct products (with suitable finiteness
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assumption).

The double complex CC*(A, A*) which consists of only nonnegative columns
of defines the cyclic cohomology of the A,.-algebra A, which we denote
by HC*(A). Here we use the direct products instead of direct sums so that the
dualization of the cyclic homology would give cyclic cohomology.

The double complex C'P*(A, A*) which consists of all columns of
defines the periodic cyclic cohomology of the A,.-algebra A, which we denote
by HP*(A). Here we use the direct products.

As usual, one obtains the following spectral sequence of these three homol-
ogy theories given by the inclusion of CC*(A, A*) to CP*(A, A*):

o= HC™(A) — HP"(A) — HC"(A) — HC"'(A) — - (4.2.4)

Here the map HC™(A) — HC™1(A) is induced by B*.

These homology theories for arbitrary A..-algebras are in general difficult
to deal with, and we are mainly interested in the case that the A.-algebra
A = (C,{my}) satisfies either C>% = 0 or C<? = ( before shifting degrees.
We remark that the usual (non-graded) algebras may be considered as A-
algebras and after degree shifting, all elements have degree —1. In this case
the Hochschild complex Cso(A, A) = 0 for degree reasons. The examples from
geometry, for example the usual de Rham complex, has degree from 0 to V. In
particular, if we assume that C? is generated by the unit (in cohomology), then
it is easy to show that the Hochschild cochain complex satisfies C2L(A, A*) =
0. We also remark that by the standard spectral sequence arguments, homotopy
equivalent A,-algebras have isomorphic Hochschild (co)homology classes. As
we have used direct sums to define negative cyclic cohomology, the usual usual
invariant-coinvariant relation gives rise to the following lemma:

Lemma 4.2.3 (JHLI| Lemma 3.6). Let (A, m) be a weakly unital A-algebra
for which there exists an integer N such that H(V,V*) =0 for k > N. Then,
for any integer n, we have

HCO™(A) = HO"™(A).
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The equivalence is given by the map in the long exact sequence (4.2.4)), and
this is also the relation between the cohomology classes used in Theorem
and Theorem C.
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Chapter 5

Potentials of homotopy cyclic
A~o-algebras and proof of theorem

A

5.1 Potentials

Let an A-algebra (A, {mi'}) be given a strong homotopy inner product ¢ :
A — A* which consists of a family of maps

Gpq: AP @ A® A®T — A*.
We denote by

<l‘1, L Tp, Uy Y1, 5 Yg ‘ w>p,q = ¢p,q(mla" Ly Tp, U, Y1, 7yq)(w) (511)

As in the cyclic case, let {e;} be a basis of A as a vector space, which is
assumed to be finite dimensional(one may use the pullback defined in the
previous section using the inclusion ¢ : H*(A) — A in the case that H*(A) is
finite dimensional). Define @ = ). e;z; where z; are formal parameters with
deg(z;) = —deg(e;).

Now we give a definition of the potentials for strong homotopy inner prod-
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ucts.

Definition 5.1.1. The potential of an An-algebra (A, {mi}) with a strong
homotopy inner product ¢ : A — A* is defined as

N=1

oMx) =) Ey(x)

1
::Z Z N—_H<gg,a;7---,m,m,‘?(:v,m,---,w),a),--',$|$>p,q
N=1p+q+k=N

(5.1.2)
The definition itself is somewhat similar to that of cyclic case (1.0.1). But

in (1.0.1f), the fraction k; L

the potential due to cyclic symmetry ([2.3.2)), whereas in the strong homotopy
case, such cyclic symmetry of the rotation of arguments do not exist. Namely,

was to cancel out by repetitive contribution to

in general

<61a"' 7mi(€j7"' 7€j+i71)a"' ; €k ’ ek’+l> 7é :i:<627"' 7mi(€j+17"' 76j+i)7"' y Ck+1 ’ e1>-

We later show that the combination of A..-bimodule equation, skew-symmetry
and closed condition will compensate the absence of the strict cyclic symmetry.

We explain how the potential behaves under pullbacks, and this will show
the relation between potentials of equivalent strong homotopy inner products.
For an A,.-quasi-isomorphism h : B — A, the pullback of a potential is defined
as follows: We assume B is finite dimensional as a vector space, and denote
by {f:} its basis, and introduce corresponding formal variables y; as before.
Suppose

hk(fjl’ T ’fjk) - h;lw'wjkei’ h;'h"wjk € k.

Then, we set

Ti = h;'llyj11 + h;'m,jggyjmyjm +oeee hé»”,...,jlkyjll Y (513)

Then, one defines the pullback ~*®* by using the above change of coordinate
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formula. Namely, h*®* is given by the replacement of x by > k1 Pk (y®*) in the
formula of ®4, where y := Y fiy;. Here y; are formal variables corresponding
to f; as above.

5.2 Theorem A

Now, we are ready to state and prove our first main theorem.

Theorem 5.2.1. (Theorem A) Let ¢ : A — A* be a strong homotopy inner
product. Let B be a cyclic Ay-algebra with a quasi-isomorphism h : B — A
providing the commutative diagram . Then, we have

o8 = pro4

Proof. The overall scheme of the proof, which is first to differentiate and then
to compare, follows that of [CI]| (idea due to Kajiura [Kaj] in the unfiltered
case). The main difficulty, and the essential part of the proof is the first step
where we take (formal) partial derivatives on each side. The following lemma
shows that after partial differentiation, the fraction on each summand disap-

pears.
Lemma 5.2.2.
0 0 1
aIQJI?f(w) = O Z N——}-l<m7w7”' 7$7m;e4(w7m7"' 7w)7m7"' ) L | $>P7q
) U pbgth=N
- Z (w,m,-~-,w,mf(m,w,---,m),m,---,a:|ei>p7q.
ptqt+k=N

We assume the lemma for a moment and show the proof of the theorem
using the lemma. Let {f;} be a basis of H*(A), and let {y;} be corresponding
formal variables for {f;}, namely y := > . v; fi.

We let h¥*™(y) := >, <, he(y®*). Then

@yicp :Z<mkH.(A)(y>"‘ Y), i)

k>1
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by cyclic symmetry, and

0 0 1
7}1*@14 _ sum ®p A hSum .
p+qtk=N

LA (), R () | R (y)

N>1

0]
hsum hsum ®Kq hsum
; (), (y)=* | o (y))
pHg+k=N

S B () mp (T (y),

by the above lemma. From the diagram

2.3.4), we have ) = h*o éﬁ\o I, where
all maps are H*(A)-bimodule homomorphisms, consider following
> v m ),y (f) =
pk,qZElO

S (70 do )y, mi @)y (f)  (5.2.1)
k>1

= > > RSy (W g (), y00), By ),y O ) ()
p,g>0 p1+p2+p3=p
k>1 q1+tg2+tg3=q

ooy e(h(y®r

1 A 1 N 2
)y hptare1 (P me (), 450, hYE2)) (Bt gy1 (YEC, i, y572))
P,q > p1+p2+p3=p
k>1 q1+q2+q3=q
P

H*(A T
(h(y®2), hpy g1 (O g (), 4%9) (Y ®) | hpyg a1 (W%, f1,yP))
,q=>0 p1+p2+p3=p
k>1 q1+q2+q3=q

S B () mi (T (y),

0
L. pSuUm hSum ®q __psum
2 : (y)); (y)*? | a0; (v))
p+q+k=N
0
— h 34,
yi

Here, we denote by my, () the expression my(y,

-+« y) for simplicity. The
last identity holds because the sum is over all p; +ps+p3 =

pand q1+q2+qs = ¢
where p and g Tun over all nonnegative integers, and there is the A..-bimodule
relation mA o o = h o m"* (). We also used the fact that
0

a hk<y®k) = Z hp3+Q3+1<y®p37 fi? y®q3)'
Yi p3+qs+1=k
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The summands of (5.2.1)) are all zero except for (p, q) = (0,0) because v is
a cyclic inner product. Hence,

* *(A 8 .
h ot = wm" PN = Y V) f) = 5o
E>1 k>1 ¢
This proves the theorem. m

Proof of lemmal[5.2.9. Before we proceed, we give some remarks on the signs.
The sign convention used in this paper and in [C1] is the Koszul convention
after the degree one shift. For simplicity, we omit the Koszul sign factor and
the expressions will appear with + if it agrees with the Koszul sign rule, — if
it is the negative of the Koszul sign. We illustrate this for two examples, from
which the general convention can be easily understood. The first example is
the A, .-equation with two inputs. We write

m1m2<l'1, {BQ) + mg(ml (Il), 1‘2) + mg(xl, ml(:pg)) =0 (522)
whereas the actual equation is

[z1]’

mime (1, x2) + ma(my(z1), x2) + (—1)""my(z1, my(22)) = 0.

The equation (5.2.2)) will also be written as
mima (21, T2) = —ma(mi(z1), x2) — ma(r1, mi(r2)).

The second example is the equation for (mq(z1,22) | 23). Note that ¢ being
an A,-bimodule map ¢ : A — A* with the induced A..-bimodule structure on
A* (see expression (3.3) [CI] for the precise definition) implies the following
actual equation.

(ma(z1,72) | 23) + (Ma(21), 72 | 23) + (—1)|I1|/<ﬂ7 my(zg) | 3)

(D)= gy [ () + (1) (21 | ma(as, 23)) = 0.
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In this paper, the above equation will be written simply as

(ma(z1, x2) | 23) + (Ma(21), v2 | 3) + (21, M0 (22) | 23)

(21, 22 [ ma(x3)) + (21 [ ma(z2, 73)) = 0.

Now, we begin the proof of the lemma. From now on, we replace mi by
my, if there is no confusion. By taking a derivative, the expression becomes as
follows. For

0
Z (,x, - ,x,my(x,x, - @), x, -, x| X)pg (5.2.3)

i p+q+k=N
Z (@, - e,my(T, - 2,6, T, -, @), 2, -, x| X)py (5.24)
pratk=N
r+s=k—1
T, L, e, L, Mm@, x), ;| )y, 5.2.5
Z < k:( ) | >p7q ( )
p+q+k=N M .
r+s=p—1
Z (@, e,my(x, -+, @), @, - T, e, | T)py,  (5.2.6)
pa+h=N Hf_/ H‘:_/
r+s=q—1
Z (@, e,my(x,- -, x), @, | e)pg,  (5.2.7)
p+q+k=N
we have
(5.2.3) = (5.2.4) + (5.2.5) + (5.2.6) + (5.2.7]).
Now, the lemma can be proved by the following lemma. O]

Lemma 5.2.3. The sum of the terms in .(5.2.5) and equals to
N times of the expression .

Proof. To prove the lemma, we recall the A,-bimodule equation. The equation
for As-bimodule homomorphism A — A* is

$oby=ba 0o (5.2.8)

with by = m* when A is considered to be an A..-bimodule, and b4« is defined
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by canonical construction of the dual of the A -bimodule A. Here <$ is the coal-
gebra homomorphism induced from ¢ (We refer readers to |[C1],[T] or [GJ] for
details). Let us restrict the equation tothe case (x, -+ ,@,e, ¢, - ,x) €
A" @ A® A®™ where n +m + 1 = N. For

J1 J2
— —
Z <£L', e 7m7mj1+j2+1<m7 L, &, 6, T, ,ZB),(L‘, L, | m>p7q7 (529)
fota=m
Z (@, - x,my(x, @), @, @, e, @, x| @), (5.2.10)
k1+ko+i=n k k
p=k1+ka+1 1 2
Z (@, @, e, @, m,my(x, @), @, x| @)l (5.2.11)
li+lg+h=m l l
q=li+l2+1 ! 2
k1 ko
—— —
Z (@, Mpy b1 (T, 2, @), @, - x| €)pg, (5.2.12)
L
we have

(.2.9) + (5.2.10) + (B.2.11) = (5.2.12).

It is important to note that the expression in the summand is obtained
in k := ky + ko + 1 different ways according to the position of the (underlined)
bimodule element x. Namely, different choices of a bimodule element still give
rise to equivalent expressions. We also observe that : after sum-
ming over n +m+ 1= N.

We apply skew-symmetry to (5.2.10) and (5.2.11f), namely we have

— (5.2.10) = > (%P, @, % m;(Z), x| ¢;), (5.2.13)
ptj+ki+ka+1=N

— (5.2.11) = > (@ my(E), 2Nz, 2 | ey). (5.2.14)
ptjt+kitke+1=N

Here we set m;(&) := m;(z, ..., z).
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In summary, we have the following:

B24) = k- B2.7) + (5-2.13) + (5.2.14),

hence

(5.2.3) = k- (5.2.7) + (5.2.13)) + (5.2.14) + (5.2.5) + (5.2.6)) + (5.2.7)).

Now it remains to show that

(G-2.13) + (p.2.14) + (B-2.5) + (B-2.6) = (N — k) - (5.2.7),

which proves the theorem.
Let us list the remaining terms first.

(5.2.5) > (@ e ™ my (@), 2 | z),
pt+k+j1+j2+1=N

(5-2.6) Yoo (@ (@), 2 e, x| @),
pt+k+j1+j2+1=N

(.2.13) o (@ x® (), 29 | ey),
ptk+j1+i2+1=N

(5-2.14) > (@ m(@), 2z, 2 | ).

ptk+ji+j2+1=N

Now we use the closed condition with these terms.

1. By applying the closed condition from theorem [2.3.9 to (5.2.6) and
(5.2.13), we obtain (here (a;, a;j, a;) corresponds to (e;, my(Z),x))

<EE’ , L, L, T, ’az7mk<£>,w®7‘ ’ ei>
TV
s
+ <m7 7mamk(a_f)7m7"' y Ly €, Ly T | 33>

+ (@™, e, @ [ my(2)) =0

In fact, we obtain s different such equations depending on the position
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of x in the first line. Hence, the sum of expressions (5.2.6) and (5.2.13])
produces s times that of (5.2.7) as the last term equals the minus of

(15.2.7)):

(27, e, %% | mi(2)) = — (¥, mp (), 2% | &)

2. Similarly by applying the closed condition to (5.2.5) and (5.2.14]),

<w®s7mk(a_§>7ir7"' Yy L, L, Ly umj| 67;>
P
+ <.’B, y Ly €4y Ly e 7w7mk(£)7w7"' , L ‘ $>
b (2%, e 2% | mi())

0.

we obtain r different such equations depending on the position of x in
the first line.

Hence we obtain r + s = N — k times the expression of ((5.2.7]), which proves
lemma 5.2.3 ]
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Proof of Theorem B

We studied A, .-algebras via formal noncommutative geometry in chapter
because it is very useful in the proof of Theorem B. We will use such non-
commutative geometry languages, so we begin from giving explicit correspon-
dences between A..-algebras and formal noncommutative manifolds, and then
the proof will be based on the correspondence.

6.1 Correspondences between algebra and for-

mal noncommutative geometry

It is useful to develop a "dictionary" between notions in homological algebras
and that of formal manifolds. First, it is well-known(originally due to Kont-
sevich) that cyclic symmetry of an A, -algebra can be understood as certain
symplecic forms.

Lemma 6.1.1. For an As-algebra A, if an A-bimodule map ¢ : A — A* is a
cyclic inner product on A, then it is equivalent to a moncommutative constant
symplectic two form w with Low = 0.
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Proof. Let w = Zwab(dx“d:pb)c, where ¢(eq, €5) = wap. Then

a,b

Low = EQ(Z Wap(dzdz®),)

a,b

= Y ((wap(Lodz")da’), + (da(—1)V Loda®),)

a,b
= Z(w“b Z Z me . (z - da't - - - 2 da®),)
a,b

i1,k 1<I<k

DT b a0,

11,00k 1<I<k

= E Wab E E my .. Zk 1---da:”---x““dxb)c

11,00k 1<I<k

+Z 1) (1)1 Gl §™ ST (i it i),

11,0 1<I<Ek

— Z Z Z Wap(1 A (— 1) BN i+l ) Hal 1o yme (@ dat

ab i1,ein 1<I<k

- Z Z Z Qwabmgl...ik (xil S '$ikd$b)c_

@b ity 1<I<k
/ s |7 ;| / /
Note that (—1)U IOl +ix)+Hal'I+1 — ] hecause

la|" = lir|] + -+ il + 1,

by the fact that @ has degree 1. A careful observation on the cyclic monomials

in (6.1.1]) leads us to the following: Low = 0 is equivalent to

wabmll Tk (

coda’ -2 dab),
- U1, gt byt L L -1 ol
+wallmil+1"'ikbi1'~~il_1(x x*da’x " dx )c
1w m® oyt kb
(Wflbmzl Qg +< 1) wmlmiprl---ikbil---il,l)(‘T dx ' dx )c

= 0
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for p =14 (Jir] + -+ |a|)(Jizga] + - - - + |ig] + |b]), if and only if

a _ (_1\p+1l, . a
wabmil---ik - ( 1) wallmil+1---ikbi1---il,17
i.e.
<m(ei17 e 7eik)7 eb>
— ix|" i) (G '+ ik |+ (0]
= (_1)(|1| l521) (1411 lik|'+| ‘)<m(eiz+17"'  Ciry €by Cirs 5 Cip 1)y €LY,
which is the cyclicity. [

Recall that we have Lg o Ly = 0 and hence, on de Rham complex €,.(X),
we have two differentials d.,. and Lg. By the Poincaré lemma, the homology
with respect to dgy. is trivial. On the other hand, the differential £ gives an
interesting cohomology.

Lemma 6.1.2. For a unital finite dimensional A-algebra A, (QL, (X)[1], L)

cyc

can be identified with Hochschild cochain complex (C*(A, A*),b*), and (92, .(X)/k, L)

cyc

can be identified with cyclic cochain complex ((C*(A))*,b*).
Namely, we have the following 1-1 correspondences.

’ Ay -algebra A ‘ Formal noncommutative manifold X ‘
ne C*(A, A%) Q) € Qiyc(X)
b*n Lo,
£ (Ci(A) fe € Q0 (X)
b*¢ Lofe

Proof. We first check the statement for Hochschild cochains. The degree shift-
ing [1] is the result due to the choice of the chain complex in {4.1.1] If n €
Hom(A[1]®", A*) given by n(e;,, ..., e;,)(e;) = nj, ;. for basis elements e,, it
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signs in the following formulas. We verify that b*n corresponds to Lgav,.

b'n(ei, ..., e;)(e;) = Z N(€irs ooy Mi(€i o €irp 1)y s € ) (€5)
+ Z M€y s Ciryy ) M (Ciypiys s Ci €45 Ciys oovy €1y )

_ E:] o4
- 777:17~-~’i171’(I77jl+k’~~-,in mlz,~~-ﬂz+k71
q
q q
+ nllw-wll-o-p U4p+19-5tns0521 500 —1
q

Thus,

_ § : § : J P
vy = ( nil7--~7il—1»q7il+k7---yin miz,-~-,iz+k—1

q
E g -ml S L
+ nllw-ﬂH—p mzl+p+11-“)1n7],117'--7Zl—1>x x dl’
q

is the 1-form corresponding to b*n.
On the other hand,

— J (AR TS RGN 7 /2 W, 1o WG JINUC T gt J
Looy, = E Myoin™ T (mjhm’jrx )z " dx

J it J Ji ... pd
+ E :%MU wtrd(my, z’).

By comparing each coefficients, we obtain ay«, = Lo,

For the cyclic case, the Connes’ complex C}(A) = Co(A, A)/im(1 — t)
defines the cyclic homology and similar arguments as above can be used to
prove the desired identifications, which we leave for the readers as an exercise.

Later, we will introduce an operation ", and then show that b;vn corresponds
to dLqgn. O

6.2 Explicit relations

In this section, we show that for a negative cyclic cocycle ¢ € HC® (A, A*) with
a suitable non-degeneracy condition, it gives rise to a strong homotopy inner
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product in a canonical way. Denote the negative cyclic cycle pas ¢ = > -, divt,
where v is a formal parameter of degree -2. Here cocycle condition implies that
we have b*¢; = B*¢;,, for each i.

First, we make the following observation.

Proposition 6.2.1. Let ¢ € C*(A, A*) be a negative cyclic cocycle. We define

-

gfbv()(c_i? v, )(w) = ¢0(67 U, b)(w) - qu(ga w, 6)(”)

Then ggo is an Aso-bimodule map from A to A*, satisfying the skew-symmetry
and closedness condition in the definition |2.5.7.

For convenience, we write both 50 = gg without distinction.

Proof. Recall that ¢NO is an A,.-bimodule map from (C,m) to (C*,m*) if
o 0 T =m* o .
We will show this in two steps.

Lemma 6.2.2. We have

~

$o 0 T —m* o g = B¢y,

where E*\/Qﬁl is defined by

- — -

B*é1(@, v,b)(w) = B*¢y(b, w, @) (v) — B*¢1(a, v, b)(w)

Lemma 6.2.3. We have

— — —

B*V(a’: v, )(w) = B*7<g7w7 E)(U) - B*V(a’: v, )(w) =0,

for any v € C*(A, A*), and for any a, b, v, w.

Combining the above two lemmas, we obtain the proposition. The skew-

symmetry and closedness condition is easy to check and its proof is omitted.
O
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Proof. We begin the proof of lemma [6.2.2] We first show that

=~
- =

(¢o 0 M — m* 0 ) (@, v, b)(w) = b* (@, v, b)(w) — b*¢o(b, w, @) (v). (6.2.1)

And this equals the following as b*¢y = B*¢; as it is negative cyclic cocycle.

-,

B*¢1(b,w, @) (v) — B*¢(@,v,b)(w).

We again omit the Koszul signs in the following formula and express the ad-
ditional contributions of signs. Let @ := (ay, ..., a,) and b := (by, ..., by).

M) (@, v, b)(w) (6.2.2)
o(a1

0
= Z 7aiamk<ai+17"‘7ai+k)7ai+k+17"’7anavag)<w)
0<i<n
k>1

+ Z ¢0(a1,...,ai,mk(aiﬂ,...,an,v,bl,...,bj),bj+1,...,bm)(w)

0<i<n—1,1<5<m
k>1

+ Z ¢0(67U7b17"'7bjamk(bj+17“'7bj+k)7bj+k+17"-abm)(w)

0<j<m—1
k>1

- Z ¢0(b17 ) b]7 mk(bj+17 L) bj+k)7 bj+k+17 ) bm7 w, 6)<U)
0<j<m
k>1

— Z ¢0(b, W, a1y ..., A4, mk(aiﬂ, ceey ai+k), (077 VT [N an)(w)

0<i<n—1
k>1

— Z ¢0(bj+1,...,bm,w,al,...,as)(mk(asH,...,an,v,bl,...,bj))

0<s<n—1,1<j<m
k>1
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(m™ o ¢o)(d,v,b)(w) (6.2.3)

- Qb()(bl, "'7bj7mk(bj+l7 "'7bm7w7a17 "'7bi)aa'i+17 "'aan)(v)

— ¢0<CLZ'+1, ceey Ay U, bl, ceey bj)(TTLk(bj_H, ceey bm, W, A1y ...y CLZ>>

On the other hand,

b do(@, v, b)(w) — b*¢o (b, w, @) (v)
= (6.2.2) — (6.2.3)

+ > Go(ai, oy @) (mlapss, o ar, v, bw, g, ais))  (6.2.4)
+ > " Golby, o by) (mbyi, ooy by w, @0, by, b)) (6.225)
— > Go(by, s b)) (Mbpsa, oo by w0, @0, b1, b)) (6.2.6)
— > olai, o @) (mlaps, o ar, v, bow,an, i) (6.2.7)

Note that the terms ([6.2.4)-(6.2.7) cancel out by themselves. By combining
the above results, the lemma is obtained. O

Proof. Now we prove lemma [6.2.3

B*y(c1y ooy en)(Cna1) = Z Y(Co(1ys s Comi1))(1)
o€Z/nZ
Hence, B*v(cy, ... )(cn+1) B*y(coq1), ...Lca(n))(cg(n+1)) for any o € Z/nZ.

In particular, B*¢1( ,w,@)(v) — B*¢(d,v,b)(w) = 0. =

Remark 6.2.4. In the case that we use the (dual of ) Tsygan’s bicomplez, in-
stead of (b*, B*)-complex to define the negative cyclic cohomology, the same
proposition holds true: this is because the equation still holds. If we have
b*pog = N*¢) instead for the symmetrization operator N, then the proof above
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shows that ]m also should vanish as in the case of B using the same sym-
metry argument.

Hence if 50,0 is nondegenerate on H*(A), then ¢ indeed gives a strong
homotopy inner product. We call such a ¢ € C* (A, A*) be homologically non-
degenerate(H.N. for short below).

Lemma 6.2.5. We have the following 1-1 correspondences.

’ Aso-algebra A ‘ Formal noncommutative manifold X ‘
skew-sym. As-bimod. map 1) : A — A* wy € Q2 (X) with Lowy =0
ne C* (A, AY) oy € QL (X)
Ul doy
SHIP. ¢:A— A* HN. wy € Q0 (X),dwy = 0= Louwy

Proof. Given a collection of maps 9y : A" @ A ® A®" — A*, we assign a
cyclic 2-form

wp = Y (UnalCins o iy €55 41, ey ) (€)™ - dad e -l da

for basis elements e, (as in [CI]). Skew-symmetry is needed as we cannot tell
the order of dz7, dz" in the expression for cyclic forms.

We omit the proof of the correspondence of Lg-closedness and A-bimodule
property. This can be carried out similarly as in the proof of Prop and
Lemma [6.1.2] and it is tedious but elementary computations.

We show that wy = da,,. Observe that

M€y s €ip, €, €515 s €5 ) (€n) = €315y €k €5, €5y, s €5,) (€0)
=€y, -1 €jys €ns €iy s o5 €4, ) (€5)

oo gl
LLyeey k]I 15001 15500570521 5050k )

SO

== n — . Y72 BRI S Y Py B S Y | o
wn - Z(nilv“'vikvjvjlwwjl 77.717"'7]l7n77/1="'72k:)x T dI T T d'r

is the 2-form corresponding to 7.
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CHAPTER 6. PROOF OF THEOREM B

By definition,
oy = YN e (629
!

Note that in €2y, we have (up to Koszul sign)
g i dad g gyt = gt gt iy
and hence (6.2.8]) reduces to

_E E 7 o i1, i in g
dan - <T7'Ll7zln nil—‘—l:'“)inhj:il7'-'77:l—1>x dx x dx '
l

Then we have w, = do,, by rearranging indices above.

Suppose that we are given a strong homotopy inner product ¢ : A — A*.
Consider the corresponding two form w, from the above. It is not hard to check
that the closedness condition is equivalent to d.,.ws = 0. Hence, as we proved
that Lg-closedness of wy is equivalent to ¢ being A.-bimodule map, so we
obtain the last claim. O]

6.3 Construction of an automorphism

In this section, we prove that two strong homotopy inner products obtained
two negative cyclic cocycles in the same homology class are indeed equivalent
to each other in the sense of (see also the comments at the end of the
section [3.3]).

First, we construct A,-automorphisms from certain kinds of vector fields.

Lemma 6.3.1. A formal vector field v which satisfies [Q,v] = 0 provides an
Aoo-automorphism. Here v is assumed to have length > 2. (i.e. any non-trivial

component of v which is given by f(x)aii satisfies order(f(x)) > 2).

Proof. A formal vector field v (as a derivation) corresponds to a coderivation,
which we also call v, of tensor coalgebra T'V[1]. Such v is represented by a
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family of maps v, : A®* — A, and denote by ¥ the coderivation

0TV = TV, 5 =) 0.
k

where 0}, is defined as in the definition of A.-operation my. Corresponding to
the condition [@,v] = 0 is the identity
dod=7od. (6.3.1)

We define its exponential e’ as

| —

()" (6.3.2)

I

- S U =
e”:1+v—|——vov—|——vovov+---zz '
k=0

2! 3!

One can check that the infinite sum makes sense due to the assumption on v.
Let m : TV[1] — V1] be the natural projection to its component of tensor
length one. Then, we define

fi=moe’ : TV[l] = V[1]. (6.3.3)
It is easy to check that one may write
. Lok
f:1do7r+v(ZH(v) ).

In fact, by the assumption on v, f; : V[1] — V[1] is given by identity.
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For example, we have

617(3:1 ® T ®CE3)
= 11 @@ x5+ (11 ®23) @23+ 71 V(T2 ® 3)
+o(z1 ® T ® 73) + v(v(1 ® T2) ® T3) —;— v(r; @ v(ry ® x3))
= fi(z1) ® fi(w2) @ fi(xs) + fo(r1 @ 22) @ fi(xs) + fi(21) ® fa(we @ x3)

+f3(x1 ® 29 ® x3)

~

= f(z1 @ 79 @ x3).

In general, we have fA': e’, which we prove in the following lemma. Now,
the proof of the Lemma follows from the following lemma. O

Lemma 6.3.2. f defines an A.-automorphism. More precisely, we have
f=¢é, df = Jd.
Proof. We first show that e’ : TV — TV satisfies the following identity
(*@e’)oA=Aoe’ (6.3.4)

This would imply that e’ is a cohomomorphism, and it is well-known that such
a cohomomorphism is completely determined by its projection (see for
example [T]) and satisfies the identity F=e

To prove the identity, we apply to an expression r; ® - - - ® x. The
left hand side of becomes

k
(@) oA @ @)=Y ('(01® @ a;) @ (241 @+ ® 1)),

i=1
The right hand side becomes
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1
:Z]— Z (60---@\)®(7JO---@\)OA($1®---®$;€).
-0

(41,32) shuffle Ji J2
Ji+tj2=j

The equality here is obtained by noting that A divides the tensor product into
two parts. Recall that the number of such shuffies are 31]'_3'2' and hence the above
expression becomes

— Z 2 (i'(i;\)ﬂl ® é(@)h) o A(z1® - ® ).

This proves the claim.
From this, we have

by the identity (6.3.1)) above. O

Remark 6.3.3. The automorphism just defined is not the automorphism to
transform
w+ Lo(da) = w

that is suggested in the Lemma|3.3.1l. In fact it is a first order approximation
of the correct automorphism, and in the next proposition, we show how to find
the actual automorphism which transforms w + Lg(da) to w.

In the section [6.2, we assigned a strong homotopy inner product to a neg-
ative cyclic cocycle. Now we prove that the assignment is also well-defined on
the cohomology level up to equivalence of strong homotopy inner products.

Proposition 6.3.4. Let A be a weakly unital compact A, -algebra. If two neg-
ative cyclic cocycles ¢ and ¢ give the same cohomology class, then ¢ and ¢’
are equivalent as strong homotopy inner products.

Proof. First, we pullback all the related notions to the minimal model H*(A, m;),
which is unital and finite dimensional. By using the decomposition theorem of
an A.-algebra, suppose we have A = H & A,., where H is the minimal part
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and A;. is the linear contractible part of A. Let ¢ : H — A be the inclusion,
which is also an A,.-quasi-isomorphism.

First,in the unital case, as the two cycles ¢, ¢’ are cohomologous, we may
write ¢ = ¢ + (b* + vB*)1. Hence may write for some 7, v € C* (A, A*)

B0 = b0+ b'n+ B*y.

Hence, the induced A.-bimodule maps from the Prop. satisfy gz? = 5 +
b*n + B*v, but by lemma we have B*y = 0, so ¢’ = ¢ + b*n. In the
weakly unital case, one can proceed similarly using Tsygan’s bicomplex using
the remark [6.2.4 N
Now, using the A-quasimorphism i : H — A, we pull back ¢ and ¢’ to H
by
A<—H (6.3.5)
o

A* i H*

to obtain z*<$ and z*g . From the definition of the equivalence of strong ho-
motopy inner products, it is enough to prove the equivalence between z*gg and
it

Using ¢, we can also pullback the Hochschild cohomology classes by i* :
C*(A, A*) — C*(H, H*). We claim that

e~

Here, the first ¢* was used to pullback an infinity inner product, while the other
1*’s are for Hochschild cochains. The first equality is almost trivial, and the
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CHAPTER 6. PROOF OF THEOREM B

second one is given by following:

i *A77<a17 ) ak)(ak+1)

= > ban(i(ar), .., i(ax)) (i(ax1))
= Zn (i(ar)y .oy i(ar), ma(i(air)s -y i(ap)), iaps1), -y i(ag) ) (i(ar+1))
+ > n(i(ag), .., i(ap)) (ma(iapsa), oy ilarsa), i(ar), .. i(a;-1)))
= Y n(i(ar), . i(a), i(mpg (@, ., ), i(aper), -y i(ar)) (i(ars))
+ 3 n(i(a), - i(ay) (i (ma(ap4), ---riaj 1))
).

= byi'n(ay,...,a )(ak+1

~

Observe that in the third equality we used the fact ¢ o g = my4 o4, i.e. 7 is
an A,.-homomorphism.
By using the results of [C1], in fact, we can pull them back further similarly
via the diagram
H——H (6.3.6)

to assume that the strong homotopy inner product (Z is in fact cyclic inner
product.

Therefore, it is enough to prove the proposition for the minimal model H
with the cyclic inner product (Z and it suffices to find an A, .-automorphism f
with the following commutative diagram:

g-f.n (6.3.7)
¢>L l@rb*n
H <f* """ H

It is very hard to get such an automorphism f at once, so we need to
construct it recursively. The construction becomes more natural if we use the
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dual notion of all above, namely formal noncommutative calculus. In the dual
context, H corresponds to a formal noncommutative affine manifold X, and
Aso-automorphism f corresponds to the coordinate change of X preserving ()
which is a vector field corresponding to the A, -structure of H as before.

Let w = Y w;;dz’dz? be a closed cyclic 2-form on X which corresponds to
the cyclic inner product gg We denote

dLgn = Z aijdxjdxi + Z aijﬂxldxix‘]d:cj.

[TuJ|>1

We claim that the coefficients a;; = 0 for all ¢, 7: By minimality of H, ) =
0 + O(z?), i.e. the constant and the linear part of @ is zero, and this implies
the claim.

By a simple-minded idea, we might be tempted to solve an equation

Ev/w = —dﬁQﬁ
or
Ly = —ﬁQT}
by the nondegeneracy of w, to get a vector field v = Y- v{(z)52;. But such v’

may not be the desired solution, in the sense that it may not satisfy suitable
length condition. Instead of solving the above equation, we solve

ivw = _LQUZI’

where we write

n= Z a;dz; + Z arjrrdr;

i [1]>1

and 7> 1= Zle arjrrdx;. It is straightforward to check that L,w = —dLgn.
But the important feature of v is that v = 0 4+ O(x?). The vector field v’ from
the simple-minded equation does not satisfy this in general.

Note that w and w + dLgn have the same constant part, or

w+dLg=w+ O(z?).
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Using v, we constructed the automorphism f in the previous lemma. To check
how much f has transformed w + dLg, we proceed as follows using noncom-
mutative calculus.

First, we denote

(L) (£)°

Ly .
e~ :=1d+ L, + o al

Lemma 6.3.5. Under change of coordinates x' +— e“vx', any differential form
B transforms as

B ek .
In fact the coordinate change here corresponds to an As-isomorphism of

the lemma in the sense of the (5.1.5).

Proof. This is easily seen as follows. Since this is trivial for coordinate functions
and e commutes with d, it suffices to show that e (a - ) = e“ra - e+ 3 for
any two differential forms o and 5.

L,)" L,)
wra-ctg = 3Bk 3

k>0 ) 1>0
(£,)* (L)
)
k,1>0
and
Ly _ (‘C'U)k
€ (Oé : B) - Z k' a - /8
k>0
1 k!
= — (L) e (L)' ——. 6.3.8
g;ok!( Fre B (6:38)
k!
In (6.3.8]), we used that L, is a derivation, and m means the number of

(k — 1, )-shuffles. Hence we get the desired result.
To prove the second claim, let f : H — H be an A, -automorphism such

29
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CHAPTER 6. PROOF OF THEOREM B

that

J J [AT 7%
x»—)E R 'k,

where {27} is the dual coordinate of {e;}.
Now let f be given as in lemma 7.1, i.e. f =idom +v(> H(0)" ). As
usual, let

— E J
U(€i17"'7€ik) - U’il ..... ikej’

Jo
U1yeenslg

As above, let

. 1.
e, . ei,) = Z ﬁv]oi)\l Y, i) (6.3.9)

1<I<k—1 "

Finally, compare the coefficient of the [-th summand of (6.3.9) and that of
(L)'

ij , then we will easily get the result. O]

Hence, this coordinate change gives us

w = w4 dLgn — w? = eFrw + eF (dLgn),
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eFrwtefrdLon = (W Low + Z k;' + (dLgn + Z L)kdLgn)

k>2 k>1

_ 1
= wt ) E(cv)k "Low+dLy» H(ﬁv)’“n

k>2 E>1
= w+zk| ) (—dLgn) +d£QZ (L) n
k>2 k>1
1
= w+dLg Z(—g(ﬁ Loy o
k>2 k>1
= w+dLg Z an(Ly)*n
k>1
= w4+ Z ar(L,)(dLgn)
k>1

for some numbers a; € k. We emphasize that for the second and the fourth
identities, we used lemma so that [Lg, L] = Lo, = 0.

Note that the term dLgn changed into Y, -, ax(L,)*(dLgn). The operation
L, =doi,+1i,0d increase the number of formal variable z%’s in the expression
at least by one.

Hence, we have
w® =w+0(2?).

By repeating the same procedure, we can transforms w + dLgn into w via
countably many procedures. We remark that the infinite composition of such
automorphism is well-defined as the automorphism at the step (k) will fix the
tensor product of length up to (k). This proves the proposition. ]

Summarizing this provides proof of the Theorem B.
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6.4 A connection to the Kontsevich-Soibelman’s
result

In |[KSI], Kontsevich-Soibelman has provided the formula for the cyclic inner
product on the minimal model using the trace, and we show that it agrees with
our formula.

Namely, we have two ways to get cyclic inner products on H*(A) from
given a homologically nondegenerate negative cyclic cocycle ¢. Namely, for
a,b € H*(A), we may consider ¢(a)(b) = ¢(a)(b) — ¢(b)(a) as in proposition
[6.2.1] or consider w(a)(b) = Treg)(ma(a,b)) = Trip-g,(m2(a,b)) as in [KSI].
Tryy « AJ[A, A] — k for [n] € HC® is given by

TT[n}(a) = 1o|a-(a)

(Recall that 19 € C*(A, A*) = @5 Hom(A®", A*) = @5 Hom(A®", k).

n>0 n>1

Proposition 6.4.1. Let ¢ be a negative cyclic cocycle of A with whose zeroth
column part is ¢g.

Then Trig«g,(ma(-, ) = QNb()()

Proof. We identify cocycles in p,,-, Hom(A®", k). For a,b € H*(A),

Trigegy) (ma(a; b))
= B*¢0<m2(a, b))
= ¢o(1,ma(a,b)).

A priori, we have b*¢(1,a,b) = B*i(1,a,b) for some hochschild cochain
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because ¢ is a cocycle. Clearly the right hand side is zero. On the other hand,

b*po(1,a,b)
= QbO(/b\(lv a, b))
= ¢0<m2(1’ a’)? b) + (_1)1'1¢0(17 m2(a7 b)) + (_1)‘b"(|a‘/+1)¢0(m2(b7 1)7 a)
= o(a,b) — ¢o(1,ma(a,b)) + (—1)lIHIHPlG, 5 a).

Hence Trigeg(m2(a, b)) = ¢o(1,ma(a,b)) = ¢o(a,b) — (=1)ldtl'py(b, a) as we
desired. []

We remark that a minimal model of an A,-algebra also has many automor-
phisms which do not preserve the A,-structure and the cyclic structure, hence
given an arbitrary minimal model, one cannot assume that the trace as above
provides the cyclic inner product of the given minimal model. Rather, [KSI]
proves the existence of one minimal model which is cyclic with respect to the
trace. Our formula provides a diagram to connect cyclic structure, (negative)
cyclic cohomology class and the related A..-structures.

We also remark that the homological nondegeneracy of cyclic cohomology
class ¢ does not imply that ¢ is a nontrivial cohomology class. For example,
there exists an A.-algebra with trivial m;-homology, but equipped with cyclic
inner product. In such a case, cyclic cohomology can be shown to be trivial
using the spectral sequence arguments with the length filtration.

6.5 Gapped filtered cases

Gapped filtered A.-algebras are introduced by Fukaya, Oh, Ohta and Ono in
their construction of gapped filtered A.-algebra of Lagrangian submanifold.
For the gapped filtered A..-algebras, many of the results in this paper remain
true as it will be explained. But there exists some subtlety in filtered notions,
as sometimes non-negativity of the energy from the filtration is needed. For
example, the Darboux theorem in the general form does not hold true, but
only for non-negative symplectic forms.
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6.5.1 Filtered A, -algebras

We recall the notion of gapped filtered A, .-algebra, and we refer readers to
[FOOO1] for full details. To consider A..-algebras arising from the study of
Lagrangian submanifolds or in general pseudo-holomorphic curves, one con-
siders filtered A..-algebras over Novikov rings, where the filtration is given by
the energy of pseudo-holomorphic curves. Here Novikov rings are, for a ring R
(here T and e are formal parameters)

Anow ={D_a;TVe"| a; € R, X\ €R, ¢; € Z, lim \; = oo}
71— 00

=0
Anov,O - {Z aiT)\ieqi S Anovl)\i Z 0}

When we take dualizations, it is convenient to work with Novikov fields. The
above rings Ayou, Anovo are not fields but one can forget the formal parameter
e (and work with Z/2 grading only) and work with the following Novikov fields

Ai . _ _ Ai
A= {;aiT [a; €k, A €R, lim A =00}, A= {;aiT e AJ\; > 0}
(6.5.1)
Here, we consider a field k containing Q, and there also exist another choice
ALY, in [CT]. We remark that in most of the construction of [FOOQT], they
work with A4, 0 and only when one needs to work with A,,,, they take tensor
product ®A,,,, to work with A,,,, coeflicients. We take a similar approach for
A and Ag.
The gapped condition is defined as follows. The monoid G C Rxy X 2Z is
assumed to satisfy the following conditions

1. The projection 7 (G) C Ry is discrete.
2. GN ({0} x2Z)={(0,0)}

3. GN({\} x 2Z) is a finite set for any A.
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Consider a free graded A,,,,o module C', and let C be an k-vector space
such that C' = C' ®g Ayov0- Then (C;m>o) is said to be G-gapped if there exists
homomorphisms my, 5 : (C[1])®* — C[1] fork = 0,1,---, 8 = (\(B), u(B)) € G
such that

mi = S T 2
BeG

One defines filtered gapped A-algebras as in the definition [2.1.2] by consid-
ering the same equation (2.1.4) for £ =0,1,---.

Recall that these myj operations may be considered as coderivations by

defining
n—k+1
mp(21®- - -®x,) = Z (_1)|x1| totleioily @ @mp(zi, - Tigk1)Q- - - Ty
i=1

(6.5.2)
for k < n and my(z1 ® -+ ® x,) = 0 for k > n. If we set d = Y, 7y, the
As-equations are equivalent to the equality d o d = 0.

We recall cyclic Ay-algebras in the gapped filtered case.

Definition 6.5.1. A filtered gapped A-algebra (C,{m.}) is said to have a
cyclic inner product if there exists a skew-symmetric non-degenerate, bilinear
map

():Cl]@C[] — k,
which is extended linearly over C, such that for all integer k > 0, 5 € G,
<mk,ﬁ($1, U ’xk)7 $k+1> = (_1)K<mkﬂ($27 e 7$k+1>7 $l>~ (653)

where K = |x1| (|z2| + « -+ + |zk11]"). For short, we will call such an algebra,
cyclic (filtered) A -algebra.

6.5.2 Weakly filtered A,-bimodule homomorphisms

The usual notions of filtered A,.,-homomorphisms, and filtered bimodule maps
require the maps to preserve filtrations. But the map obtained via differential
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forms in the Lemma do not always preserve the filtration, but provides
so called, weakly filtered A,-bimodule homomorphisms in [FOOOT].

First we recall the notion of filtered A,-homomorphism between two fil-
tered A.-algebras. The family of maps of degree 0

fr : B,(Cy) — Cy[1] for k=0,1,---

induce the coalgebra map f : BC’l — BCQ, which for r1 ® --- ® x;, € BpC is
defined by the formula

flar - @) = Z Jin(@1, o 20) @ @ fromky (T, The)-

0<ky < <kn<k

We remark that the above can be an infinite sum due to the possible existence
of fo(1). In particular, f(1) = o). It is assumed that

{fk(F)\Bk<Cl)) C FAGy[1], and (6.5.4)

fo(1) € FNCy[1] for some N > 0.
The map f is called a filtered A,,-homomorphism if
dof=fod.

We recall the definition of weakly filtered A,.-bimodule homomorphisms

from [FOOQT] in a simple case of A-bimodules for an A..-algebra A = (C,{m}).

Let M and M’ be filtered (A, A) A.-bimodules over A,,,. A weakly filtered
Ao -bimodule homomorphism M — M is a family of A,,,,-module homomor-
phisms - -

¢k’1,ko : Bk1<C)®M®BkO(0) — M

with the following properties:
1. There exists ¢ > 0 independent of kg, k1 such that

Py ko (FAlBkl(C’)®F>‘M®F/\OB,€0(C)) c AT M-
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~

2. pod=do¢

Weakly filtered homomorphisms arise when we study the invariance prop-
erty of the Floer cohomology H F'(Lg, L1) = HF (L, $(L1)) where the constant
c is related to the Hofer norm of the Hamiltonian isotopy ¢.

6.5.3 Formal manifolds

The bar complex BC in the filtered case is obtained by taking a completion
with respect to energy. Hence, the Hochschild complex C,(A, A) is similarly
defined but also has to be completed. To consider dualization of the bar com-
plex BC , we consider only Novikov fields A, and also assume that C' is a finite
dimensional vector space. And then, we can take topological dual spaces as in
[CI]: Let V' be a vector space over the field A with finitely many generators
{e;}"_,. Consider V as a topological vector space by defining a fundamental
system of neighborhoods of V' at 0: first define the filtrations F>*V as

k
FPAV = {Z a;vi,la; € A, 7(a;) > A, Vi}.
j=1

Here 7 is the valuation of A which gives the minimal exponent of T'. We regard
F>2V for A = 0,1,2,--- as fundamental system of neighborhoods at 0. The
completion with respect to energy can be also considered as a completion using
the Cauchy sequences in V' with the above topology.

Now, consider the following topological dual space

O(X) = Homeon (BC, A).

Consider the dual basis {x;}!_; considered as elements in Vr = Homwm(f/, A).
Then, the Lemma 9.1 of [CI] may be translated as

Lemma 6.5.2. We have

O(X) = A{(z1, -+, 2)), (6.5.5)
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where the right hand side is the set of all formal power series of variables
x1,- -+, x, whose coefficients in A are bounded below.

In particular, O(X) does not contain formal power series whose energy of
the coefficients converging to —oo. Intuitively, the dual elements are allowed
to have infinite sums with bounded energy since the inputs for the evaluation
already has energy converging to infinity in its infinite sum.

One can also possibly use (6.5.5)) as a definition with several different choices
of coefficient rings Ao, Apov,0, A, Ag. From now on, we will work with A but
other coefficients can be used for the rest of the paper also with little modifi-
cation.

6.5.4 Darboux theorem

First, we define de Rham complex .,.(X), vector field () as before. Note that
the coefficients of the vector field ) always have non-negative energy from
the definition of A.-structure. Also note that ) may have a component of
constant vector field which corresponds to the term my.

We show that the Darboux theorem in general does not hold in the filtered
case, and one should restrict to symplectic forms with non-negative energy.
Let w € Q2,.(X) be a closed non-degenerate two form in the filtered setting
as above. Suppose the symplectic form can be written as w = w;jdz’dx’ + o/
for w' € Q2,.(X) such that each term of w’ has either positive energy (T for

A > 0) or positive length (with possibly negative energy).

Theorem 6.5.3 (Darboux theorem). Consider the symplectic form w = w;;da’dz?+

W' as above. If W' does not contain a term with negative enerqy, then there exist

filtered Aoo-isomorphism f which solves Darboux theorem.
ie. frw=wjdr'dx’.

But if W' contains a term with negative energy with positive length, then there
does not exist any filtered Aso-isomorphism f solving the Darbouz theorem.

Proof. For the first claim, we follow the proof of unfiltered case in the theorem
4.15 of [Kaj|. In the gapped filtered case, the induction should be run over the
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sum of two indices. As m(G) is discrete, we can find an increasing sequence \;
with lim \; = oo which covers the image of m1(G) C R>o. We run the induction
over the sum k + j = N, where k is the power of z%’s and j is for the energy
level \;.

Now, assume that w satisfies the assumption, and w is transformed to the
constant up to level N. Then, we consider the transformation of the form

a4+ f, ff= E TAgh ... g,
j+k=N

By this transformation, w is transformed as
(wijda'dr? + wy + -+ ) —> (wida'de’ + wy + wi2deya ((f)da?)e + -+ ).

But as wijdxidxj +wn + -+ 18 deya-closed, hence wy is dye-closed and hence
deye-exact. So, by appropriate choice of f’, wy can be cancelled out as w;;
is non-degenerate. Thus w is transformed to be constant up to (N + 1)-level.
Repeating this process completes the proof.

For the second statement, it is enough to show that a filtered isomorphism
preserve the minimal negative exponent of the given symplectic form. Note
that as f is an isomorphism, f; is an isomorphism. Then it is not hard to
see as in the above that from the contribution of f;, the change of coordinate
by filtered A,-map f preserve the minimal negative exponent of the given
symplectic form. O]

We remark that there does not exist a notion of weakly filtered A..-
homomorphism. Namely, a component f, of the filtered A,-map f cannot
decrease the energy. If f, does decrease the energy, ]?k for the bar complex
would provide sequence of terms with the energy converging to —oo, but such
elements do not exist in the bar complex BC.

6.5.5 Correspondences

First, the definition of Hochschild (co)homology of filtered A..-algebra can be
given in a similar way. But to consider its homological algebra, one has to be
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careful to deal with mg terms, which we refer readers to |[CI]. (For example,
the standard contracting homotopy for the bar complex has to be modified.)
One define also the Hochschild cochain complex (C*(A, A*),b*) by taking the
topological dual of (C4(A, A),b).

As in the lemma [6.1.2, we have

Lemma 6.5.4. For a unital finite dimensional filtered gapped A.-algebra A,
the complex (Q},(X)[1], Lg) can be identified with Hochschild cochain com-
plex (C*(A, A*),0%), and (Q2,,(X)/A, Lq) can be identified with cyclic cochain
complez ((C*(A))*, b%).

Also the Prop. holds true in the gapped filtered case. The lemma[6.2.5
has to be modified as follows. First, we denote by

QZ

Cyc7+

(X) € Q5,.(X),
the subset consisting of formal sums each term of which has non-negative
energy coefficient.

Lemma 6.5.5. We have the following 1-1 correspondences.

1. A filtered (resp. weakly filtered) skew-symmetric A-bimodule map 1 :
A — A* corresponds to a two form wy € Q2. (X) (resp. € 02, (X))
with Lwa =0.

2. The relation between 1 and dov, is as before.

3. The strong homotopy inner product ¢ : A — A* corresponds to the ho-

mologically nondegenerate wy € Q7. (X) with dwy = 0 = Lows.

We remark that weakly filtered A,-bimodule maps can be used to prove

the following lemma, which is proved in [C1].

Lemma 6.5.6. The homologically non-degenerate weakly filtered Ao -bimodule
map ¢ : A — A* provides an isomorphism of Hochschild homology He(A, A)
with He(A, A*).
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6.5.6 Theorem B in the filtered case

Now, we prove the main theorem for gapped filtered A..-algebras. First, we
call a filtered A,-algebra (C,m) compact if the homology H*(C,m ) is finite
dimensional, and is called canonical if myo = 0. In [FOOOI], the canonical
model theorem (similar to minimal model theorem) is proved.

Theorem 6.5.7. For a weakly unital compact gapped filtered Ao -algebra A,
a homologically nondegenerate negative cyclic cohomology class [¢], each term
of which has non-negative energy, gives rise to an isomorphism class of strong
homotopy inner products on A. In particular, from [¢], we construct a strong
homotopy inner product qz% : A — A* explicitly using the Proposition .

In particular, we have a quasi-isomorphic cyclic gapped filtered As-algebra
B with ¢ : B — B* satisfying the commuting diagram

A<—B (6.5.6)

4

Ao B

Proof. The correspondence can be proved using the lemma in the previous
section. Hence it is enough to prove that cohomologous negative cyclic homol-
ogy classes provide equivalent strong homotopy inner products. As before, we
pullback all the related notions to the canonical model H*(C,m; ), which is
unital and finite dimensional.

In the unital case, as the two cycles ¢, ¢’ are cohomologous, we may write
¢ = ¢+ (b* + vB*). Hence may write for some 7, v € C* (A, A*)

o = do + "0+ B.

Here we also assume that each term of 7 and v also has non-negative energy.
So we have ¢’ = 5 + b::;y as before. To find a filtered A.,-automorphism f
satisfying the diagram|6.3.6| we proceed as before but only modify the inductive
argument using sum of order and energy.

In fact, we run the induction over the sum k 4+ 25 = N, where k is the
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power of z'’s and j is for the energy level \; as in the proof of the theorem
[6.5.3] The reason that we use 2j instead of j is as follows.
First, given a differential form

Aj
I xyy, - “Tiga, dlexi21 T Tigg, dl‘]é U d'rjmflximl * Limay,

we define its order to be 25 + a; + - - - a,,. One can note that d decrease the
order by one, and ig for the canonical model, increase the order by at least
two. Hence, the Lie derivative Lo = d o ig + ig o d increases the order by one.

Now, we will work with formal vector field v such that L,w = —dLgn as
before. Note that such a v can be chosen without a constant vector field term.
Then, the following can be proved analogously:

Lemma 6.5.8. In the filtered case, a formal vector field v which satisfies
(Q,v] = 0 provides an A-automorphism. Here v is assumed to have order
> 2 and no constant vector field term. (i.e. any non-trivial component of v

which is given by T f;(x) -2 satisfies (order(fi(z))+2j > 2) and f;(z) is not

constant. )

The rest of proof works as in the unfiltered case. In this case also, the
automorphism f constructed above will change the symplectic form as

w+dLon — w+ Z ax(Ly)*(dLon)

k>1

But, note that v has at least have order two. Hence, £, = doi, +1,0d increase
the order at least by one. Hence even in the gapped filtered case, the induction
works as in the unfiltered case. O
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Proof of Theorem C

Now we can study another kind of potentials for a unital homotopy cyclic
As-algebra A. We discuss its gauge invariance and its relationship with the
algebraic analogue of generalized holonomy map in [ATZ].

We assume that the strong homotopy inner product ¢ : A — A* is a unital
A-bimodule map, or ¢y (a, v, l;) (w) vanishes if one of a;’s or b;’s is a constant
multiple of I.

We also recall the Maurer-Cartan elements and its gauge equivalences.

Definition 7.0.9. Let A = (C,m) be an Ay -algebra. An element b € C' sat-
isfying m(e®) = >, my(b, ...,b) = 0 is called a Maurer-Cartan element and we
denote by MC(A) the set of all Maurer-Cartan elements. Let MC := MC/ ~
be the moduli space of Maurer-Cartan elements, whose gauge equivalence is
defined as follows(definition 2.3 of [Fu2[): b is gauge equivalent to b if there
are one-parameter families b(t) € Al[t], c(t) € A°[t] such that

e b(0) =b,b(1) = b, and
. %b(t) = S abt), - b(E), (), b(E), ., b(E)).
k>1

We remark that b(¢) is also a Maurer-Cartan element for any ¢ (Lemma
4.3.7 of [FOOOI]). Now, we prove the gauge invariance of the potential ¥ for
Maurer-Cartan elements.
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Proposition 7.0.10. The potential W(z) = > -, p+(11+1 (z%P @ x ® %7 |

I) which is restricted to the Maurer-Cartan elements MC' is invariant under

gauge equivalences. i.e. if x(t) is a one-parameter family in the Maurer-Cartan
solution space, then

d
U (x(t)) = 0.

Proof. We prove this proposition with the help of following lemmas.
Lemma 7.0.11. ¥(z) = Y, o(z @ 2% | I).

Proof. By the closedness condition of ¢, for any p and ¢ we have

<x®p ®£® x@q | I) + <x®p+q ® l | l’>
+ @®eI®zes® | z)=0.

By definition of unital A.,.-bimodule homomorphisms, we have
(¥ @ I@res | z) =0,
and the above equation gives
(@ @rea™|I) =@ el]r) = (™| I),

where the last equality follows from the skew-symmetry of ¢. This proves the

lemma. O
Lemma 7.0.12. ZOGZ/RZ<CLU(1)7CLU(2)7 ooy Ao (n—1) ‘ aa(n)> =0.

Proof. Fix ay,--- ,a, and denote [i,j] := (..., a,, ... | a;). Then what we need
to prove is

L,n]+[2,1] 4+ [n,n—1] =0.

The closedness condition of strong homotopy inner products gives

(i, J1+ 5, k] = [0, K.
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Hence, it follows that

[1,n]+[n,n—1]+---+[2,1] =[1,n] + [n,1] = 0.

O
Now we prove the above proposition. First, assume
ix(t) = > mpa(E®)® @ ct) @ 2(t)).
dt 4 *
i+j=k>0
We denote x by x(t) and ¢ by ¢(t), for it causes no problem in this proof.
Applying lemma [7.0.11] the fraction disappears and we get
d ; :
V() = Z‘ Z M1 (2% @ ¢ @ 2%) @ 2% | 1) (7.0.1)
120 it+j=k>0
+ Z (z®2®® Z M1 (2% @ ¢ ® 2%7) @ 9™ | 1}7.0.2)
1,m>0 i+j=k>0

To prove that it is zero, we use the A,-bimodule equation. Namely, we compute

(¢om—m*o$)(2g®x®l+ Z r® 2% ®c®a®)(I),

>0 1,m>0

which is a priori zero.

(pom)() _c@a®)I) = Y ) mpulc@a®™) @2 | 1) (7.0.3)

>0 >0 k>0
+ Y (e®a® @ (O mp(a®) @2 | (7.0.4)
I,m>0 k>1

and ((7.0.4) is zero by Maurer-Cartan equation.
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(pom)(D_ z@a@caa™)(I)

1,20

= Z <Z my(2%%) @ 2% @ c @ 2°™ | I) (7.0.5)
I,m>0 k>1

+ YA ma® cor®) @™ | 1) (7.0.6)
>0 i>1,j>0

+ Z (z®2®® Z M1 (2% @ c@ ) @™ | I) (7.0.7)
Lm>0 i+j=k>0

+ Z (z201¥®c®1%"® ka(x®k) @ x®" | 1) (7.0.8)
I,m,n>0 k>1

+ Y @er® ) m@®) e @ca®™ | I). (109
I,m,n>0 k>1

Remark again, that (7.0.5)), (7.0.8) and (7.0.9)) vanish by Maurer-Cartan equa-
tion. Observe also that

e (7.0.3)+(7.0.6)=(7.0.1),
i )

It remains to show that

(m0)> coa®+ Y z@i®@coa®)(I)=0.

1>0 1,m>0

Since I is the unit, we may easily verify that

(m” 05)(;9’@96@’)(1) = ;@@x@l | z), (7.0.10)
(m* o 5)(;@8 2® @ c)(]) = ;@@ 2| o), (7.0.11)
(m* 0 ¢) (l>02>1£® ' @ c@ ) (I) ; lz>o<z @2 @ c® ™ | x).
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In (7.0.10) and (7.0.11)), for [ = 0, we have

(clz)+(x|c)=0

by skew-symmetry. For remaining parts, we collect terms appropriately and use
closedness condition to show that they all vanish. More precisely, for £ > 1,
we claim that

(c@a® | z) + (z@a® | ¢) + Z (21 @c@r® | 1) =0
I+m=k—1

But this follows from the previous lemma [7.0.12] by setting
ap =C,ag = -+ = Q42 = T.

]

Lemma 7.0.13. Let ¢ : B — B* be a strong homotopy inner product, and
let f: A— B an Asx-quasi-isomorphism, with pullback strong homotopy in-
ner product f*¢ : A — A*. Given a Maurer-Cartan element x € A, denote
by fo(x) = >, fu(z, - ,x) the corresponding Maurer-Cartan element of B.
Then, we have

() = U7 (fu(2))

Proof. This can be checked from the Lemma as in the case of the po-
tential ®. We leave the details to the readers. O

Now, we discuss the potential ¥ and the algebraic generalized holonomy
map. We refer readers to [ATZ] and section |4.2| for the relevant definitions of
this construction.

First, recall from proposition that given a negative cyclic cohomology
class a of an A,-algebra A, one obtains a bimodule map ag : A — A*. This
provides a strong homotopy inner product, if « is in addition homologically
non-degenerate. The equation thus provides a definition of the potential
U using . Combined with the above proposition, we prove
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Theorem 7.0.14. The potential ¥ provides a map ¥ : HC*(A) — O(MC)
defined by o — V| yc. Furthermore, this agrees with the algebraic analogue
of generalized holonomy map of Abbaspour, Tradler and Zeinalian [ATZ].

Proof. We only need to prove the relation with that of [ATZ] and we recall
the construction of a map p: HC®(A) — O(MC). Here we always work with
reduced versions of negative cyclic or Hochschild (co)homologies.

Given a Maurer-Cartan element a of a unital A,.-algebra A, consider the
expression (Definition 8 of [ATZ])

Pla):=> I®a®=(Ic)+{I®a)+(I®a®a)+:--.

1>0

One can check that P(a) is a Hochschild homology cycle from the unital prop-
erty of I and the Maurer-Cartan equation. Note that Connes-Tsygan operator
B of P(a) vanishes on the reduced complex, due to the unit /. Hence, P(a)
can be considered as a negative cyclic homology cycle.

Hence, given a negative cyclic cohomology cycle o € HC® (A), one can use
the pairing (,) : HC*(A) ® HC, (A) — k to define the map p as

pl])([a]) = (o, ) T ®@a®) (7.0.12)

120

Now, we compare the above expression with that of Lemma [7.0.1T] We
recall again, proposition [6.2.1} Negative cyclic cocycle lies in 2nd and 3rd
quadrant of (b*, B*)-bicomplex (4.2.3) including 0-th column(y-axis), and by
ap, we mean a 0-th column of « in that (b*, B*)-bicomplex . It is easy to see
that Hochschild cocycles Ker(b*), given at 0-th column, becomes a negative
cyclic cocycle. For a general negative cyclic cocycle «, b*ay may not vanish,
but equals B*a;, and it is shown above that Z% =0 in lemma

Also, from the unital property, we have

agla,a, -+ ,a)(I) =ag(a, - ,a)(I) —ap(a, -+ ,a,1)(a) = ag(a, -+ ,a)(l)
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Hence,

(o, I®a®") = (o, [2a®") = ag(a,--- ,a)(]) = ap(a,a,--- ,a)(I) = {a,a,--- ,a|I)

where the second equality follows from the identification
Hom(A ® (A[1]/k - 1)®", k) = Hom((A[1]/k - 1)®", A*).

Hence, each term of the function p of [ATZ] equals the potential ¥ in the paper
given in the Lemma [7.0.11} This proves the theorem. O

Remark 7.0.15. The homological non-degeneracy condition is well-defined for
negative cyclic cohomology classes (independent of coboundary), and we know
that homologically nondegenerate negative cyclic cohomology elements(not co-
cycles in the cochain level) determines an equivalence class of strong homotopy
inner products. The value of potential at Maurer-Cartan elements are well-
defined up to equivalence classes of strong homotopy inner product from the
Lemma[7.0.13 Thus the map W : HC® (A) — O(MC) when restricted to the
subset with homological non-degeneracy conditions, factors through the equiv-
alence classes of strong homotopy inner products.
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"... the LORD will be your everlasting light, and your God will be your
glory." (Isaiah 60:19)
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