

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

이학 박사 학위논문

Discrete Logarithm with Low
Hamming Weight Exponents

(성긴 지수 이산대수 문제)

2012년 8월

서울대학교 대학원

수리과학부

김성욱

Discrete Logarithm with Low
Hamming Weight Exponents

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University

by

Sungwook Kim

Dissertation Director : Professor Jung Hee Cheon

Department of Mathematical Sciences

Seoul National University

August 2012

c© 2012 Sungwook Kim

All rights reserved.

Abstract

Discrete Logarithm with Low
Hamming Weight Exponents

Sungwook Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

The discrete logarithm problem is one of the most important underlying

mathematical problems in contemporary public key cryptography. Under the

assumption that the problem is infeasible, a great number of cryptosystems

have been constructed and researches in this area are still underway actively.

The efficiency of cryptosystems based on the discrete logarithm problem

primarily relies on the speed at which exponentiation can be performed. On

this line of research to address the issue Hoffstein and Silverman suggested

the use of low Hamming weight product exponents to accelerate group expo-

nentiation while maintaining the security level. Taking low Hamming weight

product exponents, computation costs on GF(2n) or Koblitz elliptic curves

can be reduced significantly, where the cost of squaring and elliptic curve

doubling is much lower than that of multiplication and elliptic curve addi-

tion, respectively.

In the thesis we focus our concern on the security analysis of the discrete

logarithm problem of low Hamming weight product exponents. The current

estimate on the security of the problem mainly depends on the approaches

i

for the case of low Hamming weight exponents, which does not fit into the

product form well.

We come up with parameterized splitting systems to resolve this prob-

lem. We show that it yields an efficient algorithm for the discrete logarithm

problem of low Hamming weight exponents with lower complexity than that

of any previously known algorithms.

To demonstrate its application, we attack the GPS identification scheme

modified by Coron, Lefranc, and Poupard in CHES 2005 and Hoffstein and

Silverman’s (2,2,11)-exponents. The time complexity of our key recovery at-

tack against the GPS scheme is 261.82, which was expected to be 278. Hoffstein

and Silverman’s (2,2,11)-exponent can be recovered with a time complexity

of 253.02, which is the lowest among the known attacks.

Key words: Discrete Logarithm Problem, Low Hamming Weight Discrete

Logarithm Problem, Low Hamming Weight Product Discrete Logarithm

Problem, Parameterized Splitting Systems

Student Number: No. 2005-20314

ii

Contents

Abstract i

1 Introduction 1

1.1 Notation . 5

2 The Low Hamming Weight Discrete Logarithm Problem 6

2.1 The Discrete Logarithm Problem (DLP) 7

2.2 The Low Hamming Weight DLP (LHW-DLP) 9

2.3 Algorithms for The LHW-DLP 10

2.3.1 Heiman-Odlyzko’s Algorithm 10

2.3.2 Coppersmith’s Algorithm 12

3 The Low Hamming Weight Product DLP 15

3.1 The Low Hamming Weight Product DLP (LHWP-DLP) . . . 16

3.1.1 The Efficiency of LHWP Exponents 16

3.1.2 The Definition of LHWP-DLP 18

3.2 Existing Algorithms for LHWP-DLP 19

3.2.1 Attack using Coppersmith’s Splitting System 19

3.2.2 Rotation-Free Elements 21

4 Parameterized Splitting Systems 24

iii

CONTENTS

4.1 Parameterized Splitting Systems 25

4.1.1 The Construction . 25

4.2 A Randomized Version . 28

5 A New Algorithm from Parameterized Splitting Systems 32

5.1 When The Order of a Group is Known 33

5.1.1 Motivations . 33

5.1.2 Using The Parameterized Splitting Systems 34

5.2 When the Order of a Group is Unknown 38

5.2.1 The Basic Approach 38

5.2.2 Precomputation . 38

5.2.3 Complexity of the Full Algorithm 40

6 Cryptanalysis 43

6.1 GPS identification Scheme . 44

6.1.1 The Scheme . 44

6.1.2 The LHWP Private Keys 47

6.1.3 Cryptanalysis . 47

6.2 Hoffstein and Silverman’s Exponents 50

6.2.1 Silverman and Hoffstein’s exponents 50

6.2.2 Cryptanalysis . 50

6.3 Implementation . 52

7 Conclusion and Open Problems 54

Abstract (in Korean) 61

iv

Chapter 1

Introduction

Let g be a generator of a finite cyclic group G of order m. Given g and h =

gx ∈ G, the discrete logarithm problem (DLP) is to compute x ∈ [0,m− 1],

which is denoted by logg h. The DLP is one of the most important underlying

mathematical problems in cryptographic applications. The security of many

of the current cryptosystems and cryptographic protocols is based on the

hardness of the DLP.

The efficiency of DL-based cryptosystems primarily relies on the speed

at which exponentiation can be performed. One approach to achieve fast

exponentiation is to use integers of low Hamming weight (LHW) as secret

exponents [AMOV91], because the number of multiplications required for

an exponentiation depends on the weight of the exponent. However, more

efficient attacks on the DLP with LHW exponents have been proposed by

Heiman-Odlyzko [Hei92] and then by Coppersmith [CS84, MvOV97] and so

the advantage of LHW exponents becomes insignificant. In fact, the time

complexity, which means the number of required group operations, of Cop-

persmith’s algorithm is about the square root of the size of the key space. It

can be regarded as almost optimal in the sense that the complexity of the

1

CHAPTER 1. INTRODUCTION

DLP on a group is lower bounded by the square root of the group order in

the generic group model [Sho97].

To resist previous attacks and achieve a greater speed-up, Hoffstein and

Silverman suggested the use of low Hamming weight product (LHWP) ex-

ponents [HS03]. This was then applied to the GPS identification scheme,

recommended by the NESSIE project [GPS02], in which a secret key is taken

as a product of two integers having low Hamming weights [GL04, CLP05].

In a general manner, this type of the DLP is a form of h = gxy, where x is an

integer of length n and Hamming weight t, and y is an element of a set Y .

The essential part of the attack for this exponent is to split x into the sum of

u and v and then apply the meet-in-the-middle technique for hy
−1
g−u = gv

so that the number of group operations required to compute the left-hand

side of the above equation is almost equal to that of right-hand side. How-

ever, the splitting of x in Heiman-Odlyzko’s or Coppersmith’s algorithm has

a fixed length n or a fixed weight t/2, respectively, and thus does not fit into

this situation.

Our Results

In the thesis, we propose a more flexible splitting system, called a parameter-

ized splitting system. It can be regarded as a generalization and refinement

of Coppersmith’s splitting system: given a bit string of length n and weight

t and any positive integer t1 < t, there exists a part of the string of length n1

and weight t1 where n1

t1
≈ n

t
. By exploiting this property, given an n-bit inte-

ger x one can find an n1-bit integer u and an (n−n1)-bit integer v of weight

t1 and t − t1, respectively, such that u + v2n1 ≡ x2k (mod 2n − 1) for some

integer k. Furthermore, it has an additional property while Coppersmith’s

splitting system does not: when we split x into u and v, we can take an odd

2

CHAPTER 1. INTRODUCTION

u while maintaining other properties, which reduces the attack complexity

further.

We apply a parameterized splitting system to the private key of the GPS

identification scheme in [CLP05] and [GL04] and to Hoffstein and Silverman’s

(2,2,11)-exponent in [HS03], both of which are originally designated for 80-bit

security. In CHES 2005, Coron, Lefranc, and Poupard proposed an attack

with 252 complexity to recover the private key of the modified GPS identifi-

cation scheme from CHES 2004 and suggested a new private key that they

claimed had a security level of 278 [CLP05]. But our parameterized splitting

system reduces them to 245.57 and 264.53, respectively, and its randomized ver-

sion reduces them to 244.57 and 261.82, respectively. In [CK08], Cheon and Kim

introduced the notion of rotation-free elements and proposed an attack with

255.9 group exponentiations to Hoffstein and Silverman’s (2,2,11)-exponent.

We reduce it further to 253.02 by combining parameterized splitting systems

and the notion of rotation-freeness.

Outline

We now present the organization of the thesis. The thesis is divided into

two parts. The 1st part (Chapters 2 and 3) deals with some backgrounds of

topics which are concerns of the thesis.

In Chapter 2, we describe the LHW-DLP and its motivation. Next we

briefly give an overview on two algorithms for solving LHW-DLP, Heiman-

Odlyzko’s and Coppersmith’s methods. In particular, Coppersmith’s algo-

rithm uses a symmetric splitting system which motivates our method.

Chapter 3 focuses on the LHWP-DLP which is our main topic. Two exist-

ing methods for the LHWP-DLP will be presented. The change of equation

for checking a solution and the notion of rotation-free elements in Section 3.2

3

CHAPTER 1. INTRODUCTION

plays an important role in our new algorithm.

The 2nd part (Chapters 4–6) is devoted to the description of our new algo-

rithm for solving the LHWP-DLP. In Chapter 4, we construct parameterize

splitting systems, which is a refinement and generalization of Coppersmith’s

symmetric splitting system. We present both deterministic and randomized

versions.

In Chapter 5, we describe how parameterized splitting systems can be

used to solve the DLP with LHWP exponents. We describe attacks for both

cases when the order of the group is known and unknown.

In Chapter 6, we analyze the security of the GPS identification scheme

and Hoffstein and Silverman’s (2,2,11)-exponent. And the implementation

on toy example is going to be presented. Finally, the conclusion and open

problems are given in Chapter 7.

Previous Publication

The 1st construction of parameterized splitting systems originally appeared

in “A Parameterized Splitting System and its Application to the Discrete

Logarithm Problem with Low Hamming Weight Product Exponents,” joint

work with Jung Hee Cheon, which was presented at PKC 2008 [KC08]. The

basic idea to solve LHWP-DLP of Section 5 appeared in [KC08].

A refinement of parameterized splitting systems in Section 4.1 and mate-

rials in Chapter 6 originally appeared in “Parameterized Splitting Systems

for the Discrete Logarithm,” joint work with Jung Hee Cheon, which was

published in IEEE Transactions on Information Theory in 2010 [KC10].

4

CHAPTER 1. INTRODUCTION

1.1 Notation

Throughout the thesis we use the following notation:

• Zm: residue classes Z/mZ. We represent Zm as a set {0, 1, 2, . . . ,m−1}.

Then n = dlog2me bits are required to represent an element of Zm as

a binary string,

• x mod n: the remainder of an integer x when divided by an integer n,

• wt(x): the Hamming weight of an integer x, which is defined as the

number of nonzero coefficients in its binary representation,

• #A: the cardinality of a finite set A,

• log(·): the logarithm to base 2, i.e., log2(·),

• [a, b)n: given integers a, b, and n with 0 ≤ a, b < n and a 6= b, we define

[a, b)n :=

{a, a+ 1, . . . , b− 1}, if a < b,

[a, n)n ∪ [0, b)n, if b < a.

We call a the starting element of the interval [a, b)n.

5

Chapter 2

The Low Hamming Weight

Discrete Logarithm Problem

Given g and h in a cyclic group G, the discrete logarithm problem (DLP) is

to find the smallest non-negative inter x such that h = gx. In this chapter

we introduce the low Hamming weight DLP (LHW-DLP) and the existing

algorithms for the problem. First, we explain benefits from the use of LHW

exponents in DL-based cryptosystems and security issues appearing in these

systems. Then we introduce two algorithms i.e., Heiman-Odlyzko algorithm

and Coppersmith’s algorithm for the LHW-DLP.

6

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

2.1 The Discrete Logarithm Problem (DLP)

The discrete logarithm problem (DLP) is one of the most fundamental math-

ematical problem in contemporary cryptography. The definition of the DLP

is as follows:

Definition 2.1.1. Let G be a multiplicative cyclic group of order m gen-

erated by g. Given h ∈ G, the DLP is to find the unique integer x,

0 ≤ x ≤ m− 1, such that gx = h, which is denoted by logg h.

Since firstly being introduced in 1976 by Diffie and Hellman [DH76], the

DLP plays an important role in public key cryptography. Numerous pub-

lic key cryptosystems, such as the Diffie-Hellman key agreement protocol

[DH76], the ElGamal encryption and signature schemes [ElG85], and its vari-

ants [Sch91, DSS, LL98], rely on the hardness of the DLP.

Algorithms for solving number-theoretic problems can be categorized into

two main classes: generic attacks, applicable in any group, and specific at-

tacks designed for particular groups. The generic attacks on the DLP include

the baby-step giant-step (BSGS) attack [Sha71], Pollard’s rho and lambda

algorithms [Pol78] as well as their parallelized versions [vOW99, Pol00] and

the Pohlig-Hellman Algorithm [PH78]. For the survey, refer to [Tes01]. On

the other hand, the index calculus method, where the basic idea goes back to

Kraitchik [Kra22] surveyed in [SWD96, Odl00], is a specific attack suitable

for the multiplicative group of a finite field. The index calculus algorithm is

the best solution known for solving the DLP.

Shoop showed that if p is the largest prime divisor of the group or-

der on which the DLP is defined, a generic attack has to perform at least

O(
√
p) group operations to solve the DLP [Sho97]. The BSGS, Pollard’s rho,

lambda, and Pohlig-Hellman methods fit into this bound which are called the

7

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

square-root attack, while the index calculus method solves the problem in

sub-exponential time.

Before completing this section we describe the BSGS algorithm in brief

since all the solutions to the low Hamming weight (product) DLP, on which

the thesis focuses, are based on the method.

Let n := d
√
me for the group order m. Given g and h = gx, x can be

represented as x = in + j for some 0 ≤ I, j ≤ m. From this fact the BSGS

finds x as follows: first the algorithm computes hg−1, hg−2, . . . hgn and build

a lookup table that support an efficient search. Then the algorithm computes

gI·n for 0 ≤ I ≤ n−1 and use the lookup table to find a collision. If a collision

occurs in x1 of hg−x1 and x2 of gx2·n, then outputs x = x2n + x1. Thus the

algorithm solves the DLP with O(
√
m) group operations using a O(

√
m)

storage.

8

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

2.2 The Low Hamming Weight DLP (LHW-

DLP)

In practical cryptosystems that are based on the intractability of the DLP,

logarithms of special structure are sometimes used. The idea is to choose

a subset X ∈ Zm of some special structure, which makes the system more

efficient. Note that for an integer x of weight t and g of an element of a

group G, computing gx requires

(log x squarings) + (t− 1 multiplications)

by using the text book binary method. So if squarings can be done very

efficiently, for example, squarings in GF(2n) and doublings on Koblitz elliptic

curves.

On the other hand, the use of LHW exponents may weaken the security

of the scheme. More precisely, the use of LHW exponents gave a question

for the hardness of the following variant of the DLP, which is called the

LHW-DLP:

Definition 2.2.1 (The LHW-DLP). Let G be a multiplicative cyclic group

of order m generated by g. Let n := dlogme and St be the subset of Zm
which consists of n-bit integers of the Hamming weight t, where t is chosen

to be much less than n typically. Suppose h = gx for some x ∈ St. Then the

LHW-DLP is: given h = gx for some x ∈ St and integers n and t, find an

integer x.

Theoretically, the generic computational complexity of the DLP con-

strained to a subset of S ∈ Zm is known to be lower-bounded by the square

root of the cardinality of S [MMN06, Sho97].

9

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

2.3 Algorithms for The LHW-DLP

In this section we cover two algorithms for the LHW-DLP, Heiman-Odlyzko’s

algorithm [Hei92] and Coppersmith’s algorithm [CS84, MvOV97]. Both algo-

rithms are based on the BSGS approach and uses combinatorial techniques.

2.3.1 Heiman-Odlyzko’s Algorithm

Given an integer x of weight t, and a non-negative integer ts < t we want to

express x as the sum of two integers x1 and x2, with weights ts and t − ts,

respectively. Such x1 is easily obtained by choosing ts positions among the

nonzero coefficients of the binary representation of x. Then we have

h = gx = gx1+x2 , hg−x2 = gx1 .

Heiman-Odlyzko’s algorithm deterministically finds x as follows: first we

compute gx1 for each x1 ∈ Zm of weight ts, build a lookup table that contains

all the pairs (gx1 , x1), and support an efficient search on the first component.

Then we compute hg−x2 for each x2 ∈ Zm of weight t− ts and use the lookup

table to find a collision. This procedure is presented as a pseudo-code in

Algorithm 1.

Note that the exponentiations can be performed incrementally so that

each requires only a constant number of group operations. Neglecting log-

arithmic factors required to sort the table, the time complexity of Heiman-

Odlyzko’s algorithm is O
((

n
ts

)
+
(

n
t−ts

))
group operations in G. Since we

need to store only either the left- or right-hand side, the space complexity of

Heiman-Odlyzko’s algorithm is O
(

min{
(
n
ts

)
,
(

n
t−ts

)
}
)

.

10

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

Algorithm 1 Heiman-Odlyzko’s Algorithm for the LHW-DLP

Input: g, h ∈ G of order m, n, t and ts(< t)

Output: logg h

Initialize an easily searched structure table T

for all X1 ⊂ Zn such that #X1 = ts do

Compute x1 :=
∑

i∈X1
2i and gx1

Store (gx1 , x1) in T ordered according to the 1st coordinate

end for

for all X2 ⊂ Zn −X such that #X2 = t− ts do

Compute x2 :=
∑

i∈X2
2i and hg−x2

if hg−x2 = gx1 for some (gx1 , x1) then

return x1 + x2

end if

end for

11

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

2.3.2 Coppersmith’s Algorithm

Coppersmith developed a time/memory tradeoff algorithm for the LHW-

DLP. The algorithm was originally invented by Coppersmith. We follows the

description presented by Stinson [Sti02] and Galbraith [Gal12, Section 13.6].

The algorithm finds a solution of the LHW-DLP nearly in time of square-root

of the size of the key space.

The idea of the algorithm is to reduce solving h = gx where x is n-bit

with Hamming weight t to solving hg−x2 = gx1 where x1 and x2 are both

n/2-bit and weight t/2. Coppersmith’s algorithm comes from the following

observation called Coppersmith’s Splitting System.

Theorem 2.3.1 (Coppersmith’s Splitting System). Suppose n and t are

both even integers. Let I = [0, n)n and B = {Bi : 0 ≤ i ≤ n
2
− 1}, where

Bi = [i, i+ n
2
)n is an interval called a block. Then for every T ⊆ I such that

|T | = t, there exists a block B ∈ B such that |T ∩B| = t
2
.

Proof. Fix any Y ⊂ I of size t/2. Define

ν(i) := #(Y ∩Bi)−#(Y ∩ (I −Bi)).

Then ν(i) is always even and

ν(n/2) = −ν(0), v(i+ 1)− v(i) = {−2, 0, 2}.

If ν(0) = 0, we are done. Otherwise, the values ν(i) change sign at least once

as I goes from 0 to n/2− 1. Thus there exists some integer 0 ≤ I ≤ n/2− 1

such that ν(i) = 0.

This system can be extended to odd integers n and t [Sti02], where n
2

and

t
2

are replaced by the nearest integers to n
2

and t
2
, respectively.

12

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

Coppersmith’s algorithm works as follows: given a binary representation∑n−1
i=0 xi2

i of x ∈ Zm, we define

uk :=

n
2
−1∑
j=0

xk+j mod n2k+j mod n,

vk := x− uk

for k = 0, . . . , n
2
− 1. By Theorem 2.3.1, there exists i such that

x =
n−1∑
j=0

xj2
j = ui + vi,

where wt(ui) = wt(vi) = t
2
. Then we can compute x using

hg−ui = gvi .

This algorithm has a time complexity of O
(
n
(n

2
t
2

))
and a space complexity

of O
((n

2
t
2

))
.

The randomized version of the above algorithm was invented by Cop-

persmith and is described in [Sti02]. In this version, a block B consists of

randomly chosen n
2

elements in [0, n)n. The time and space complexities

of the randomized version are O
(√

t
(n

2
t
2

))
and O

((n
2
t
2

))
, respectively. We

present the randomized version of Coppersmith’s algorithm in Algorithm 2.

13

CHAPTER 2. THE LOW HAMMING WEIGHT DISCRETE LOGARITHM
PROBLEM

Algorithm 2 Coppersmith’s Algorithm for the LHW-DLP

Input: g, h ∈ G of order m, even n, even t

Output: logg h, or ⊥

1: Choose B ⊂ Zn such that #B = n/2

2: Initialize an easily searched structure table T

3: for all X1 ⊂ B such that #X1 = t/2 do

4: Compute x1 :=
∑

i∈X1
2i and gx1

5: Store (gx1 , x1) in T ordered according to the 1st coordinate

6: end for

7: for all X2 ⊂ Zn −B such that #X2 = t/2 do

8: Compute x2 :=
∑

i∈X2
2i and hg−x2

9: if hg−x2 = gx1 for some (gx1 , x1) then

10: return x1 + x2

11: end if

12: end for

13: return ⊥

14

Chapter 3

The Low Hamming Weight

Product DLP

In this chapter, we introduce the low Hamming weight product DLP (LHWP-

DLP) proposed by Hoffstein and Silverman and advantages from the use

of LHWP exponents. Then we review existing algorithms for solving the

LHWP-DLP: the method from Coppersmith’s splitting system and the method

from the notion of rotation-free elements. In particular, the approach of the

last method plays an important role for constructing a new algorithm later.

15

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

3.1 The Low Hamming Weight Product DLP

(LHWP-DLP)

As discussed in Chapter 2, the use of LHW exponents brings better compu-

tational efficiency to DL-based cryptosystems. However more efficient attack

on the LHW-DLP have been proposed by Coppersmith, hence, the LHW-

DLP appeared to have less complexity than suggested [Sti02, CLP05], and

so does not give any significant advantage over the ordinary exponents.

To enhance the security and achieve a greater speed-up, Hoffstein and

Silverman suggested the use of low Hamming weight product (LHWP) ex-

ponents [HS03]. They suggested to use an exponent x which is a product

x1x2 · · · xr of very low Hamming weight exponents and take advantage of the

fact that the sample space of the product x is more-or-less the product of

the sample spaces for x1, x2, . . . , xr. This was then applied to the GPS iden-

tification scheme, recommended by the NESSIE project [GPS02], in which a

secret key is taken as a product of two integers having low Hamming weights

[GL04, CLP05].

3.1.1 The Efficiency of LHWP Exponents

Let G be a group g be an element of G. Suppose we want to compute gx

where x = x1x2. Then the computation of gx can be done by

gx = gx1x2 = (gx1)x2 .

Then the cost of computing is approximately

(log x squarings) + (wt(x1) + wt(x2) multiplications),

when the text book binary method is used.

16

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

If squaring and multiplication take approximately the same amount of

time, then the approach above will not be good. However if squaring is very

fast, the method significantly accelerates the computation of gx. Hoffstein

and Silverman captured the idea and developed in three situations of cryp-

tographic interest, namely exponentiation GF(2n), multiplication on Koblitz

curves, and multiplication in NTRU convolution rings. We briefly take a

look at the 1st two cases, which are our concern.

Squarings over GF(2n)

For an exponent x of Hamming weight t over a group GF(2n), only t−1 mul-

tiplications are required for exponentiation if a group element is represented

with respect to a normal basis [AMOV91]. Note that in this case a squaring

is just a shift operation.

Doublings on Koblitz Curves

Koblitz curve is an elliptic curve over GF(2n) defined by

E : y2 + xy = x3 + ax2 + 1, a ∈ GF(2).

Let τ be a Frobenius map on E:

τ : E(GF(2n)→ E(GF(2n)); (x, y) 7→ (x2, y2).

Then Frobenius map is efficiently computable on E(GF(2n)) and plays a

similar role to squaring in binary fields. That is, suppose we want to compute

NP for an integer N and a point P on the curve. Then it is possible to write

N as a linear combination

N = N0 + τN1 + · · ·+ τnNn,

with NI ∈ {0,±1}.

17

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

3.1.2 The Definition of LHWP-DLP

Using LHWP exponents we are faced with the following problem, so-called

the low Hamming weight product DLP (LHWP-DLP).

Definition 3.1.1 (The LHWP-DLP). Let G be a multiplicative cyclic group

of order m generated by g. For i = 1, . . . , r, let Sti be subsets of Zm which

consists of ni-bit integers of the Hamming weight ti, where ti is chosen to be

much less than ni typically. Then the LHW-DLP is: given h = gx, where

x =
∏r

i=1 xi for some xi ∈ Sti , find an integer x.

In practical applications such as Hoffstein and Silverman’s suggestion and

the GPS identification scheme, r is chosen to be 2 or 3. In the rest of this

chapter we review existing methods to solve this problem focusing on the

case r = 2 or 3.

18

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

3.2 Existing Algorithms for LHWP-DLP

In a general manner, the LHWP-DLP is a form of h = gxy, where x is an

integer of bit-length n and Hamming weight t, and y is an element of a set Y .

More precisely, when x = x1x2 such that x1 is of bit-length n1 with weight

t1 and x2 is of bit-length n2 with weight t2, the above Y can be regarded

as a set of n-bit number of weight t2. When x = x1x2x3 such that xI is of

bit-length nI with weights tI , the above Y can be regarded as a product of

a set of n2-bit number of weight t2 and a set of n3-bit number of weight t3.

3.2.1 Attack using Coppersmith’s Splitting System

Coron, Lefranc, and Poupard presented a method for solving the LHWP-DLP

using Coppersmith’s algorithm to analyze the security of the GPS identifica-

tion scheme [CLP05]. They gave methods in cases that the order of a group

is both known and unknown when r = 2.

The Known Order Case: let G be a group of prime order m and g be an

element of G. Let X and Y subsets of Zm and let h := gxy for some x ∈ X

and y ∈ Y . Then we have

hy
−1

= gx,

where y−1 is the inverse of y modulo m.

Now we can find xy as follows: first we compute gx for each x ∈ X, build a

lookup table that contains all the pairs (gx, x), and support an efficient search

on the first component. Then we compute hy
−1

for each y2 ∈ Y and use the

lookup table to find a collision. Neglecting logarithmic factors required to

sort the table, the time complexity of the method is O (#X + #Y) group

operations in G. Since we need to store only either the left- or right-hand

19

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

side, the space complexity of the method is O (min{#X,#Y }).

The Unknown Order Case: we assume that the order of G is prime.

Recall the equation

hy
−1

= gx. (3.2.1)

If the order of g is unknown, y−1 can not be computed from y and so we can-

not use the above equation directly. However, authors in [CLP05] overcame

this obstacle by the following trick, originally proposed by Shoop [Sho00]: let

Υ :=
∏
y∈Y

y, ĝ := gΥ.

Since the order of g is prime, for any nonzero x the order of gx is equal to

that of g, which implies ĝ is also a generator of G. By raising both sides of

(3.2.1) to the power Υ, we have

h
∏

y′∈Y−{y} y
′

= ĝx. (3.2.2)

With this new equation we can make use of the BSGS technique. That

is, we compute the two following sets:

S1 := {h
∏

y′∈Y−{y} y
′
: y ∈ Y }, S2 := {ĝx : x ∈ X}.

Then in the two sets, two values meet for one value h
∏

y′∈Y−{y0}
y′ and one

value ĝx0 such that xy = x0y0.

The main bottleneck of this approach is to compute S1. This can be done

efficiently by using binary product tree method [Gal12, Section 2.15.1] (The

details of a method will be presented in Section 5.2.). With this one can com-

pute S1 in #Y log(#Y) group exponentiations or #Y log(#Y) logm group

operations. Thus neglecting logarithmic factors required to sort the table,

the time and space complexity of the method are O (#X + #Y log(#Y))

and O (min{#X,#Y log(#Y)}).

20

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

3.2.2 Rotation-Free Elements

As discussed in Section 3.1, Hoffstein and Silverman considered the LHWP-

DLP over a multiplicative group of GF(2n) with a generator g, i.e., finding

x1x2x3, given h = gx1x2x3 where each xI is an integer of bit-length nI with

weight tI .

In [CK08], Cheon and Kim proposed an attack to Hoffstein and Silver-

man’s exponents using the notion of Rotation-Free elements. The idea behind

Cheon and Kim’s attack is to reduce the key search space by considering only

one element from each equivalent class. An equivalent relation ∼ on Z2n−1

is defined an equivalent relation ∼ on Z2n−1 as follows:

a ∼ b if and only if there exists a non-negative integer I such that a = 2ib.

However since there is no known algorithm to generate such representa-

tives efficiently, they suggested the use of a set of rotation-free elements that

contains at least one representative for each equivalent class. The set is only

slightly larger than the number of equivalent classes and is easily generated,

which defined as follows [CK08, Algorithm 1]:

Definition 3.2.1. [CK08, Definition 1] An element z ∈ Z2n−1 is called a

rotation-free element if there is a t-tuple (a1, a2, . . . , at) for a positive integer

t satisfying

1. ai ≥ a1 for 1 ≤ i ≤ t,

2.
t∑
i=1

ai = n,

3. z = 2n−1 + 2n−1−a1 + · · ·+ 2n−1−(a1+a2+···+at−1).

Note that the corresponding t-tuple for a rotation-free element satisfies

ta1 ≤ a1 + · · · + at = n. All the rotation-free elements of weight t can be

easily generated by the following procedures:

21

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

1. Input n and t

2. Choose a positive integer a1 ≤ n/t

3. For i = 2 up to t− 1, select an integer ai such that

a1 ≤ ai ≤ n− (t− i)a1 −
i−1∑
j=1

aj

4. Output 2n−1 + 2n−1−a1 + · · ·+ 2n−1−(a1+a2+···+at−1)

Note that the largest element of each equivalence class is a rotation-free

element. Hence one can see that there is at least one rotation-free element in

each equivalence class of Z/(2n− 1) with respect to the relation ∼. Authors

of [CK08] showed that this number is not far from the number of equivalence

classes. We omit the proof.

Lemma 3.2.1. [CK08, Theorem 1] Let n, t be positive integers with t < n

and RF(n, t) be the number of rotation-free elements of weight t in Z/(2n−1).

We have the followings:

1. RF(n, t) =

bn
t
c−1∑
i=0

(
n− 2− ti
t− 2

)
.

2. There is at least one rotation-free element in each equivalence class.

3. The difference E(n, t) between RF(n, t) and the number of equivalence

classes on Z/(2n − 1) is at most(
n− 2

t− 2

)
−
bn
t
c−1∑
i=1

(
n− 2− ti
t− 1

)
+ 1.

Now we are in a position to present the attack on Hoffstein and Silver-

man’s exponent using rotation-free elements. The authors of [CK08] consid-

ered the case that n = 1000, t1 = t2 = 2, and t3 = 11. First we convert the

22

CHAPTER 3. THE LOW HAMMING WEIGHT PRODUCT DLP

equation

y = gx1x2x3

to

y2kx̄−1
1 x̄−1

2 = gx3 ,

where 0 ≤ k < n = 1000 and each of x̄1 and x̄2 is a rotation-free element

in Z2n−1. Furthermore we rewrite x3 as x3 = x′3 + x̄′3 where x′3 and x̄′3 are

of weights 3 and 8 in Z/(2n − 1) and x̄′3 is rotation-free. Then check the

following equation:

y2−k(x̄1x̄2)−1

g−x
′
3 = gx̄

′
3 .

Then the complexity is

n · RF(n, 2)2 ·
(
n− 1

3

)
+ RF(n, 8) ≈ 255.2 + 254.5 ≈ 255.2, n = 1000.

23

Chapter 4

Parameterized Splitting

Systems

In this chapter, we propose parameterized splitting systems. A parameterized

splitting system is a generalization of Coppersmith’s splitting system for

further applications. Given T ⊂ I, Coppersmith’s splitting system gives

B ∈ B such that #(T ∩B) = t/2. Our parameterized splitting system,

however, is flexible since it provides T with #(T ∩B) = ts and #B = b tsn
t
c

for any 1 ≤ ts ≤ t. Furthermore, it has an additional property i.e., it allows

us to find a block B whose starting element belonging to T .

24

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

4.1 Parameterized Splitting Systems

In this section, we propose a more flexible splitting system, called a param-

eterized splitting system. It can be regarded as a generalization of Copper-

smith’s splitting system: given a bit string of length n and weight t and any

positive integer t1 < t, there exists a part of the string of length n1 and

weight t1 where n1

t1
≈ n

t
.

We start with the definition of parameterized splitting systems.

Definition 4.1.1 (Parameterized Splitting Systems). Let n and t be integers

such that 0 < t < n and I := [0, n)n. For any ts with 1 ≤ ts ≤ t, a subset

Bn of {B ⊂ I : #B = b tsn
t
c} with cardinality N is called an (N ;n, t, ts)-

parameterized splitting system of I if there exists a block B ∈ B such that

#(T ∩B) = ts for every T ⊆ I with #T = t.

4.1.1 The Construction

For any n, t, and ts such that 0 < t < n and 1 ≤ ts ≤ t, we construct

(n;n, t, ts)-parameterized splitting systems in the following theorem. Inter-

estingly, though the motivation of parameterized splitting systems comes

from Coppersmith’s splitting system, our parameterized splitting systems

have one nice additional property different from Coppersmith’s.

Theorem 4.1.1. Let 1 ≤ ts ≤ t < n be integers and ns = b tsn
t
c. Then

Bn = {Bi = [i, i+ ns)n : 0 ≤ i ≤ n− 1}

is an (n;n, t, ts)-parameterized splitting system of I = [0, n)n with additional

property: for any T ⊂ I of cardinality t, there exists a block Bi ∈ Bn such

that i ∈ T and #(Bi ∩ T) = ts.

25

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

Proof. Let T := {y0, y1, . . . , yt−1}. For 0 ≤ i ≤ t− 1, we define

Ii := [yi mod t, yi+1 mod t)n

and

Ai := Ii mod t ∪ · · · ∪ Ii+ts−1 mod t.

Then #(T ∩ Ai) = ts for all i. Since Ii =
⋂ts−1
j=0 Ai−j mod t,

#A0 + #A1 + · · ·+ #At−1 = ts

t−1∑
i=0

#Ii = ts#I = tsn.

If #Ai = ns for some i, then this block Ai = [yi mod t, yi+ts mod t)n is the

desired one. Now suppose that #Ai 6= ns for all i. If #Ai < ns for all i, then

tsn =
t−1∑
i=0

#Ai < tns = t

⌊
tsn

t

⌋
≤ tsn,

which is a contradiction.

If #Ai > ns for all i, then

tsn =
t−1∑
i=0

#Ai ≥ t(ns + 1) > tsn,

which is a contradiction. Thus there exists i such that

#Ai < ns and #Ai+1 mod t > ns,

which implies

#[yi+1 mod t, yi+ts mod t)n = #(Ai ∩ Ai+1 mod t) < ns

and

#{(Ai ∩ Ai+1 mod t) ∪ [yi+ts mod t, yi+ts+1 mod t)n} = #Ai+1 mod t > ns.

Therefore there exists

` ∈ [yi+ts mod t, yi+ts+1 mod t)n

26

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

such that

#[yi+1 mod t, `)n = ns.

This block [yi+1 mod t, `)n is what we want to find because

T ∩ [yi+1 mod t, `)n = T ∩ Ai+1 mod t

= {yi+1 mod t, . . . , yi+ts mod t}

whose cardinality is equal to ts.

The above (n;n, t, ts)-parameterized splitting system guarantees that for

any given target string x of length n and weight t, by trying at most n blocks

of ns consecutive elements, we can split x into the sum of two strings, one

of which is of length ns and weight ts, and starts from one of the fixed t

positions. More precisely, by exploiting this property, given an n-bit integer

x one can find an n1-bit integer u and an (n − n1)-bit integer v of weight

t1 and t − t1, respectively, such that u + v2n1 ≡ x2k (mod 2n − 1) for some

integer k.

27

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

4.2 A Randomized Version

We may consider a faster algorithm by using probabilistic approaches. Given

n, t, ts, and ns = b tsn
t
c such that 1 ≤ ts ≤ t < n, we randomly choose

B ⊂ I such that #B = ns and check whether #T ∩B = ts. Theorem 4.2.1

determines the expected running time in this case.

Lemma 4.2.1. Let I := [0, n)n. Given t, ts, and ns = b tsn
t
c such that

1 ≤ ts ≤ t < n, fix a set T ⊂ I such that #T = t. The probability that a

randomly chosen B ⊂ I such that #B = ns and #(T ∩B) = ts is

p =

(
t
ts

)(
n−t
ns−ts

)(
n
ns

) =

(
ns

ts

)(
n−ns

t−ts

)(
n
t

) .

Proof. The total number of blocks B such that |B| = ns and |T ∩B| = ts is(
t
ts

)(
n−t
ns−ts

)
. Hence given ts, the probability of success is

p =

(
t
ts

)(
n−t
ns−ts

)(
n
ns

)
=

t!
ts!(t−ts)!

· (n−t)!
(ns−ts)!{(n−t−(ns−ts)!)}

n!
ns!(n−ns)!

=
t! · (n− t)! · 1

ts!(ns−ts)!
· 1

(t−ts)!{n−ns−(t−ts)}!

n! · 1
ns!(n−ns)!

=

ns!
ts!(ns−ts)!

· (n−ns)!
(t−ts)!{n−ns−(t−ts)}!

n!
t!(n−t)!

=

(
ns

ts

)(
n−ns

t−ts

)(
n
t

) .

In order to calculate the lower bound of p, we need Lemma 4.2.2. For the

proof, refer to [MS77].

28

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

Lemma 4.2.2. [MS77, p. 309, Lemma 7] Suppose that n and λn are positive

integers, where 0 < λ < 1. Define

H(λ) := −λ log λ− (1− λ) log(1− λ).

Then
2nH(λ)√

8nλ(1− λ)
≤
(
n

λn

)
≤ 2nH(λ)√

2πnλ(1− λ)
.

The lower bound of p can be easily obtained using Lemma 4.2.2 if t divides

tsn, which includes the case that n is even and ts = t/2 [Sti02]. But if t - tsn,

a more elaborate proof is required.

Theorem 4.2.1. Suppose 2 ≤ t ≤ n/2 and 1 ≤ ts ≤ t/2. Then

p >
1

4

√
nπ

et(n− t)
>

√
π

4
√
et
.

Furthermore, if t | tsn, then

p >
1

4

√
nπ

t(n− t)
>

√
π

4
√
t
.

Proof. Let

λ1 :=
ts
t
, λ2 :=

ns − ts
n− t

, λ :=
ns
n
.

Then we can write

p =

(
t
λ1t

)(
n−t

λ2(n−t)

)(
n
λn

) .

From Lemma 4.2.2,

p ≥
2tH(λ1)+(n−t)H(λ2)−nH(λ) ·

√
λ(1− λ) ·

√
2πn√

λ1(1− λ1)λ2(1− λ2) · 8
√
t(n− t)

.

If t | tsn, then ns = tsn/t and so λ1 = λ2 = λ. Hence,

tH(λ1) + (n− t)H(λ2)− nH(λ) = 0.

29

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

If t - tsn, then λ2 < λ < λ1 ≤ 1
2
. Since H is a continuous function, by the

mean value theorem there exist λ < c1 < λ1 and λ2 < c2 < λ such that

H(λ1)−H(λ) = H ′(c1)(λ1 − λ)

and

H(λ2)−H(λ) = H ′(c2)(λ2 − λ).

Hence we have

tH(λ1) + (n− t)H(λ2)− nH(λ)

= t(H(λ1)−H(λ)) + (n− t)(H(λ2)−H(λ))

= tH ′(c1)(λ1 − λ) + (n− t)H ′(c2)(λ2 − λ)

=
tsn− tns

n
(H ′(c1)−H ′(c2)).

Again by the mean value theorem, there exists c2 < c < c1 such that

H ′(c1)−H ′(c2) = H ′′(c)(c1 − c2)

since H ′ is also continuous. From the inequality

tsn− tns ≤ t− 1,

we have

tsn− tns
n

(H ′(c1)−H ′(c2))

=
tsn− tns

n
H ′′(c)(c1 − c2)

≥ t− 1

n
· −log e

λ2(1− λ2)
· t− 1

(n− t)t
> −log

√
e,

where the first inequality holds since H ′′(x) = − log e
x(1−x)

is increasing for

0 < x < 1/2 and c1 − c2 < λ1 − λ2,

30

CHAPTER 4. PARAMETERIZED SPLITTING SYSTEMS

and the second is obtained by using

1/(n− t) ≤ λ2 and (t− 1)/n < 1/2.

Since

λ1(1− λ2) ≤ λ1 =
ts
t
≤ 1

2
,

we have √
λ(1− λ)√

λ1(1− λ1)λ2(1− λ2)
≥

√
λ2(1− λ1)√

λ1(1− λ1)λ2(1− λ2)

=
1√

λ1(1− λ2)
>
√

2.

Therefore,

p > 2− log2

√
e ·
√

2 ·
√

2πn

8
√
t(n− t)

>

√
π

4
√
et
.

Theorem 4.2.1 implies that the expected value of trials to find an appro-

priate block B such that #T ∩B = ts is O(
√
t), regardless of n and ts. Note

that a randomized version loses an additional property, that is, we know

exactly one element of B ∩ T in a deterministic version of parameterized

splitting systems of Theorem 4.1.1.

31

Chapter 5

A New Algorithm from

Parameterized Splitting

Systems

In this chapter we describe how parameterized splitting systems can be used

to solve the DLP with LHWP exponents. We describe attacks for both

cases when the order of the group is known and unknown. In virtue of the

flexibility of parameterized splitting systems, a new algorithm shows more

efficient performance that those of existing methods.

32

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

5.1 When The Order of a Group is Known

Let G be a cyclic group of order m generated by g. Given h ∈ G, recall that

the LHWP-DLP is to fine logg h when h = gz, where z :=
∏r

i=1 xi for xi of

(known) bit-length ni and (known) Hamming weight ti (see Definition 3.1.1).

In this section we consider the LHWP-DLP when z is a product of two

elements x ∈ X and y ∈ Y for two subsets X and Y of Zm.

5.1.1 Motivations

If we apply the BSGS technique for the equation hy
−1

= gx, x and y can be

computed in O(#X + #Y). This might not be the best approach when #X

is greater than #Y . In this unbalanced case, it might be better to split x as

u+ v for u ∈ U and v ∈ V where U and V are subsets of Zm satisfying

X ⊂ U + V := {u+ v : u ∈ U, v ∈ V }.

Then we check the following equality for each y ∈ Y as in [CLP05]:

h (gy)−u = (gy)v .

Then the complexity becomes O (#Y · (#U + #V)). When X is a set of

LHW elements, the usable splitting systems include those of Heiman-Odlyzko

[Hei92] and Coppersmith: the latter has a lower complexity.

In order to lower the complexity, we may consider the following the equa-

tion, as suggested in [HS03],

hy
−1

g−u = gv. (5.1.1)

The BSGS attack using the above equation has the complexity

O(#Y · #U + #V), which is smaller than the previous when #U < #V .

33

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

For the above X consisting of LHW elements, it is obtained by Heiman-

Odlyzko’s algorithm, but not by Coppersmith’s algorithm, which supports

only symmetric splitting with #U ≈ #V .

5.1.2 Using The Parameterized Splitting Systems

Let us consider the subset X of Zm

X :=

{
x =

n−1∑
j=0

xj2
j : xj = 0 or 1,wt(x) = t

}
.

We explain how to apply our parameterized splitting systems of Theorem

4.1.1 in more detail. Define

T = {j : xj = 1} ⊂ I = [0, n)n.

Given ts ∈
[
0, d t

2
e
]
, there exists an (n;n, t, ts)-parameterized splitting system

(I,B) by Theorem 4.1.1. Hence, for ns :=
⌊
tsn
t

⌋
, there is a block

Bi := [i, i+ ns mod n)n ∈ B

such that #(T ∩Bi) = ts. For this i, we set

u =
ns−1∑
j=0

xi+j mod n2i+j mod n.

Then we have wt(u) = ts and wt(v) = t− ts for v := x− u. Furthermore we

can force the first nonzero bit of u to be xi thanks to an additional property.

The algorithm works as follows: for each i with 0 ≤ i ≤ n− 1, we define

Ui :=

{
u =

ns+i−1∑
j=i

uj mod n2j mod n : ui = 1,wt(u) = ts

}
and

Vi :=

{
v =

n−1∑
j=0

vj2
j : vi = vi+1 mod n = · · · = vns+i−1 mod n = 0,wt(v) = t− ts

}
.

34

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

Then we compute the left-hand side of Eq. (5.1.1) for all u ∈ Ui and y ∈ Y ,

and store them after sorting by the value hy
−1
g−u. Second, we compute the

right-hand side of Eq. (5.1.1) for each v ∈ Vi and check if it is in the list

from the first part.

We have to compute #Y ·
(
ns−1
ts−1

)
exponentiations in the first step,

(
n−ns

t−ts

)
exponentiations in the second step, and repeat these two steps n times. Hence

the time complexity is

O

(
n

(
#Y ·

(
ns − 1

ts − 1

)
+

(
n− ns
t− ts

)))
.

Since we can store the smaller set among the sets from the first and the

second step, the space complexity is

O

(
min

{
#Y ·

(
ns − 1

ts − 1

)
,

(
n− ns
t− ts

)})
.

The randomized version of this algorithm uses randomly chosen blocks

that do not need to be sets of consecutive numbers. Theorem 4.2.1 guarantees

that we can find an appropriate block in at most 4
√
et√
π

trials. Thus, the

running time of the randomized version is

O

(√
t

(
#Y ·

(
ns
ts

)
+

(
n− ns
t− ts

)))
.

The space requirement is the same as that of the deterministic version.

We present pseudo-codes of deterministic and randomized versions in Al-

gorithm 3 and Algorithm 4, respectively.

35

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

Algorithm 3 Solving the LHWP-DLP of known order case with parameter-

ize splitting systems (deterministic)

Input: g, h ∈ G of order m, two subsets X and Y of Zm with descriptions

n and t such that 0 < t < n

Output: logg h

1: Choose appropriate 1 ≤ ts ≤ t and set ns :=
⌊
tsn
t

⌋
2: for i = 0 to n− 1 do

3: Initialize an easily searched structure table T

4: Set Bi := [i, i+ ns)n ⊂ I (:= [0, n)n)

5: for all y ∈ Y do

6: for all U ⊂ Bi − {i} such that #U = ts − 1 do

7: Compute u := 2i +
∑

j∈U 2j

8: Store
(
hy
−1
g−u, y, u

)
in T ordered according to the 1st coordinate

9: end for

10: end for

11: for all V ⊂ I −Bi such that #V = t− ts do

12: Compute v :=
∑

j∈V 2j

13: if hy
−1
g−u = gv for some (gv, v) then

14: return y(u+ v)

15: end if

16: end for

17: end for

36

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

Algorithm 4 Solving the LHWP-DLP of known order case with parameter-

ize splitting systems (randomized)

Input: g, h ∈ G of order m, two subsets X and Y of Zm with descriptions

n and t such that 0 < t < n

Output: logg h, or ⊥

1: Choose appropriate 1 ≤ ts ≤ t and set ns :=
⌊
tsn
t

⌋
2: Choose B ⊂ I (:= [0, n)n) such that #B = ns

3: Initialize an easily searched structure table T

4: for all U ⊂ B such that #U = ts do

5: Compute u :=
∑

j∈U 2j

6: Store
(
hy
−1
g−u, y, u

)
in T ordered according to the 1st coordinate

7: end for

8: for all V ⊂ I −B such that #V = t− ts do

9: Compute v :=
∑

j∈V 2j

10: if hy
−1
g−u = gv for some (gv, v) then

11: return y(u+ v)

12: end if

13: end for

14: return ⊥

37

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

5.2 When the Order of a Group is Unknown

5.2.1 The Basic Approach

We consider the DLP of LHWP exponents when the order of G is unknown.

We assume it is known that the order of G is prime. Recall Eq. (5.1.1)

hy
−1

g−u = gv.

If the order of g is unknown, y−1 can not be computed from y and so we

cannot use Eq. (5.1.1) directly. However we can overcome this obstacle by

the trick discussed in Section 3.2. We recall it compactly. By letting

Υ :=
∏
y∈Y

y, ĝ := gΥ,

and raising both sides of Eq. (5.1.1) to the power Υ, we have we have

h
∏

y′∈Y−{y} y
′ · ĝ−u = ĝv. (5.2.2)

Once we precompute and store ĝ, ĝ−1, and h
∏

y′∈Y−{y} y
′
, we can solve the

DLP using parameterized splitting systems and a technique similar to that

in the known-order case. Then the main bottleneck of this approach is to

compute h
∏

y′∈Y−{y} y
′

for all y′ ∈ Y . We come up with binary product tree

method for this problem.

5.2.2 Precomputation

For a better overview of the construction, we consider in the following a set

Y of 2n elements denoted by xi for 1 ≤ i ≤ 2n. What we want to compute is

the set of values

S :=
{
h
∏

y′∈Y−{y} y
′
}
.

38

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

The method relies on an implicit binary tree structure. The algorithm starts

from the root equal to g and it ends with 2n leaves equal to the elements of

S. The tree consists of n level, i.e., the depth of the tree is n (we ignore the

root level) and each level Li consists of 2i elements in G. We represent Li as

{hi,1, . . . , }

We define some notations as follows:

• for A ⊂ Zn, gA := g
∏

i∈A xi ,

• Li is identified with {hi,1, . . . , hi,2i},

• from each element hi,j of Li we compute two elements of Li+1. Hence

we can denote these two elements by hi+1,2j−1 and hi+1,2j

• let hi,j := gA for some A ⊂ Zn. Then idx(hi,j) := A

Now we describe the algorithm.

1. compute h1,1 := g{2
n−1+1...,2n} and h1,2 := g{1,2,...,2

n−1}.

2. for 1 ≤ i ≤ n− 1, compute Li+1 from Li as follows:

(a) for each hi,j, set A := Zn − idx(hi,j).

(b) according to numerical order set A1 and A2 as the last and first

half elements of A, respectively.

(c) compute hi+1,2j−1 := hA1
i,j and hi+1,2j := hA2

i,j and discard hi,j.

Example: let n = 8. We first compute h1,1 = gx5x6x7x8 and h1,2 = gx1x2x3x4 .

And then we compute the level 2 elements from h1,1 and h1, 2, i.e., we com-

pute h2,1 = hx3x41,1 = gx3x4·x5x6x7x8 , h2,2 = hx1x21,1 = gx1x2·x5x6x7x8 , h2,3 = hx7x81,2 =

gx7x8·x1x2x3x4 , and h2,4 = hx5x61,2 = gx5x6·x1x2x3x4 . The rest of computation is

presented in Fig. 5.1.

39

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

g

h1,1 =

gx5x6x7x8

h2,1 =

hx3x4
1,1

h3,1 = hx2
2,1 h3,2 = hx1

2,1

h2,2 =

hx1x2
1,1

h3,3 = hx4
2,2 h3,4 = hx3

2,2

h1,2 =

gx1x2x3x4

h2,3 =

hx7x8
1,2

h3,5 = hx6
2,3 h3,6 = hx5

2,3

h2,4 =

hx5x6
1,2

h3,7 = hx8
2,4 h3,8 = hx7

2,4

Figure 5.1: Product Tree when #Y=8

The cost for precomputation: at each level we need to perform 2n = #Y

exponentiations. Since the total number of levels is log(#Y), the algorithm

requires #Y log(#Y) group exponentiations or #Y log(#Y) log log(#Y) group

operations. The space requirement during the algorithm execution is equal

to the space required for the storage of the set S, i.e., #Y log(#Y) group

elements.

5.2.3 Complexity of the Full Algorithm

Recall Eq. (5.2.2),

h
∏

y′∈Y−{y} y
′ · ĝ−u = ĝv.

If we have the set {
(y′, h

∏
y′∈Y−{y} y

′
) : y′ ∈ Y

}
,

40

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

we can compute (u, v, y′) satisfying the above equation as the known order

case. Then we have logg h = y′(u+ v).

The only difference from the known order case, we need to precompute the

above set. This can be computed efficiently using the product tree method

with #Y log(#Y) group exponentiations. Thus the total time and space

complexities for solving the DLP increase by #Y log(#Y) both in the deter-

ministic or randomized versions. However, this increment is almost negligible

because log(#Y) ≤ n when #X ≥ #Y .

We present pseudo-codes of procedures of unknown order case in Algo-

rithm 5 (deterministic) and Algorithm 6 (randomized), respectively.

41

CHAPTER 5. A NEW ALGORITHM FROM PARAMETERIZED SPLITTING
SYSTEMS

Algorithm 5 Solving the LHWP-DLP of unknown order case with param-

eterize splitting systems (deterministic)

Input: g, h ∈ G, two subsets X and Y of Zm with descriptions n and t such

that 0 < t < n

Output: logg h

1: Set Υ :=
∏

y∈Y y, ĝ := gΥ, ĥ := hΥ and compute ĝ−1

2: Initialize a table for precomputation T ′

3: Store
{

(y′, h
∏

y′∈Y−{y} y
′
= ĥy

′−1
) : y′ ∈ Y

}
in T ′

4: Substituting ĝ for g and ĥ for h, execute Algorithm 3 (during execution,

identify ĥy
′−2

with h
∏

y′∈Y−{y} y
′

in T ′)

Algorithm 6 Solving the LHWP-DLP of unknown order case with param-

eterize splitting systems (randomized)

Input: g, h ∈ G, two subsets X and Y of Zm with descriptions n and t such

that 0 < t < n

Output: logg h

1: Set Υ :=
∏

y∈Y y, ĝ := gΥ, ĥ := hΥ and compute ĝ−1

2: Initialize a table for precomputation T ′

3: Store
{

(y′, h
∏

y′∈Y−{y} y
′
= ĥy

′−1
) : y′ ∈ Y

}
in T ′

4: Substituting ĝ for g and ĥ for h, execute Algorithm 4 (during execution,

identify ĥy
′−2

with h
∏

y′∈Y−{y} y
′

in T ′)

42

Chapter 6

Cryptanalysis

In this chapter, we apply our algorithms to the private key of the GPS iden-

tification scheme and Hoffstein and Silverman’s (2,2,11)-exponents. Girault

and Lefranc suggested the use of LHWP exponents for the private key of the

GPS identification scheme at CHES 2004. Coron, Lefranc, and Poupard gave

an attack to this private key and proposed new parameters at CHES 2005.

We give more efficient attack to both parameters using our algorithm. We

also propose an attack to Hoffstein and Silverman’s (2,2,11)-exponents. Our

attack takes the smaller time and space complexity over the attack proposed

by Cheon and Kim in 2008.

43

CHAPTER 6. CRYPTANALYSIS

6.1 GPS identification Scheme

The GPS identification scheme, the only identification scheme in the recom-

mended portfolio of the NESSIE project [GPS02], is an interactive protocol

between a prover and a verifier which contains one or several rounds of three

passes [GL04].

The GPS identification scheme is a (statistically) zero-knowledge protocol

based on both discrete logarithm and integer factorization. As in many other

DL-based schemes, the GPS scheme can be used in on-line/off-line manner

[EGM89]: almost all the computations can be performed by the prover before

the interaction with the verifier. But contrary to all the other DL-based

schemes, it can be used in an on the fly manner [PS98]: the prover only has

one multiplication and one addition to do, without any modular reduction,

after the prover received the challenge from the verifier [GPS02].

6.1.1 The Scheme

We describe the GPS identification scheme briefly.

Public parameters:

• N : N be a product of two primes that is hard to factorize,

• g: an element of ZN ∗ of maximal order m,

• S: the upper bound of the binary size of secret keys. Typically S=160,

• k: the binary size of the challenges sent to the prover and determines

the level of security of the scheme,

• R: the binary size of the exponents used in the commitment computa-

tion. Typically R = S + k + 80,

44

CHAPTER 6. CRYPTANALYSIS

• e: the number of rounds the scheme is iterated. Theoretically, e is a

polynomial in the size of the security parameter. But, in practice, e is

often chosen equal to 1.

Public/Private keys:

• Private key: a non-negative integer x, whose binary size is at most S,

• Public key: h = g−x mod N .

Protocol:

step 1. [from the prover to the verifier]

a round of identification consists for the prover in randomly choosing

an integer r in [0, 2R) and computing the commitment W := gr mod N ,

step 2. [from the verifier to the prover]

the prover sends W to the verifier who answers a challenge c randomly

chosen in [0, 2k),

step 3. [from the prover to the verifier]

the prover computes z := r+x×c and send it to the verifier who checks

W = gzhc mod N .

A complete identification consists in repeating e times the elementary

round. We present the scheme in Fig. 6.1. It was reported that the order of

g is kept secret and the answer z is computed in Z in the NESSIE submission

of the GPS scheme, “GPS - An Asymmetric Identification Scheme for on the

fly Authentication of Low Cost Smart Cards.”

45

CHAPTER 6. CRYPTANALYSIS

Parameters: N a composite modulus, g ∈ Z∗N

Private key: x non-negative k-bit integer

Public key: y = g−x mod N

Prover Verifier

choose r ∈ [0, 2R)

compute W = gr mod N
W

-

choose c ∈ [0, 2k)

c�

check c ∈ [0, 2k)

compute z = r + x× c
z

- check z ∈ [0, 2R + 2k+S)

verify gzhc = W

Figure 6.1: The GPS identification scheme

46

CHAPTER 6. CRYPTANALYSIS

6.1.2 The LHWP Private Keys

Assuming the commitment is precomputed, the efficiency of the protocol from

the prover side depends on the computation cost of z = r + x× c carried by

the prover in Fig. 6.1. For fast computation of the response, Girault and

Lefranc suggested the use of a LHWP secret key [GL04]; that is, given a S-bit

secret key x, we choose ` numbers, x1, . . . , x`, where xi has bit-length ni and

Hamming weight ti. Here S =
∑`

i=1 ni. If c is a k-bit number, computing

z = r + x× c requires S + k +
∑`

i=1 ti × (k +
∑i−1

j=1 nj) bit additions.

As a concrete example, in [GL04], a private key x was proposed to be x =

x1x2, where x1 is a 19-bit number with 5 random bits equal to 1, chosen from

among the 16 least significant ones and x2 is a 142-bit number with 16 random

bits equal to 1, chosen from among the 138 least significant ones. With

this private key, the prover should perform 1168 bit additions for computing

z = r + x × c. Later, in order to strengthen the security, x1 and x2 were

proposed to be a 30-bit number with 12 nonzero bits and a 130-bit number

with 26 nonzero bits, respectively [CLP05]. With this private key, the prover

should perform 2188 bit additions.

6.1.3 Cryptanalysis

We attack the above parameters.

Parameter settings: we set

#X1 =

(
16

5

)
, n2 = 138, t2 = 16

for the private keys from [GL04] and

#X1 =

(
30

12

)
, n2 = 130, t2 = 26

47

CHAPTER 6. CRYPTANALYSIS

Method Exponentiations Storage

[GL04] 252 233

Deterministic, ts = 7 245.57 237.41

Probabilistic, ts = 7 244.57 237.41

Table 6.1: Private keys from [GL04]

Method Exponentiations Storage

[CLP05] 277.3 243.9

Deterministic, ts = 10 264.53 254.58

Probabilistic, ts = 9 261.82 256.09

Table 6.2: Private keys from [CLP05]

for the private keys from [CLP05]. Since N is public, we can easily compute

ĝ−1 of Eq. (5.2.2) using the extended Euclidean algorithm. We note that ts

is chosen to minimize the time complexity.

Results: Table 6.1 and 6.2 compare the complexities of the processes of

recovering the private keys for the scheme suggested in [GL04] and [CLP05],

respectively.

For the private key suggested [GL04], Coron, Lefranc, and Poupard pre-

sented an attack requiring 252 group exponentiations [CLP05]. But the pa-

rameterized splitting system and its randomized version reduce this further

to 245.57 and 244.57, respectively.

Table 6.2 shows that a parameterized splitting system and its randomized

version reduce the complexity of the DLP with the private key proposed in

[CLP05] from 277.3 to 264.53 and 261.82, respectively. We can use the better

bound of p in Theorem 4.2.1 because t2 | n2.

48

CHAPTER 6. CRYPTANALYSIS

A search for another key candidates: we note that the private keys

with n1 + n2 = 160 and t1 + t2 ≤ 44 can be revealed in 270 group exponenti-

ations. Under these condition the strongest private key, whose security level

is 269.92, is obtained when n1 = 3, t1 = 1, n2 = 157 and t2 = 43. And the

private keys with t1 + t2 ≤ 52 can be revealed in 275 group exponentiations.

Under these condition the strongest private key is obtained when n1 = 3,

t1 = 1, n2 = 157 and t2 = 51. This private key achieves a security level of

274.94. We get the above results by applying a randomized version to all keys

under a given condition.

49

CHAPTER 6. CRYPTANALYSIS

6.2 Hoffstein and Silverman’s Exponents

6.2.1 Silverman and Hoffstein’s exponents

Hoffstein and Silverman proposed the use of exponent x = x1x2x3 ∈ Z21000−1,

where x1, x2 and x3 are integers of wt(x1) = 6, wt(x2) = 7 and wt(x3) = 7,

called a (6,7,7)-exponent, or wt(x1) = 2, wt(x2) = 2 and wt(x3) = 11

[HS03], called a (2,2,11)-exponent. When ignoring squaring, which is much

faster than a multiplication in binary fields, the computation of gx requires

5+6+6=17 multiplications for a (6,7,7)-exponent and 1+1+10=12 multipli-

cations for a (2,2,11)-exponent. For a (6,7,7)-exponent, all values of the

Hamming weights are similar. Hence, splitting one of xi does not afford an

advantage. Therefore, we focus on a (2,2,11)-exponent.

6.2.2 Cryptanalysis

As discussed in Section 3.2.2, authors of [CK08] proposed an attack with

255.9 group exponentiations by storing 254.5 elements. The key idea is to

reduce the key space by giving an equivalence class over the space, called the

rotation-free elements.

Our attack to a (2,2,11)-exponent also exploits the technique of [CK08].

According to the trick of [CK08], we convert the equation y = gx1x2x3 to

y2tx̄−1
1 x̄−1

2 = gx3 , where 0 ≤ t < n = 1000 and each of x̄1 and x̄2 is a

rotation-free element in Z2n−1. Then we split x3 into x3 = x4 + x5 using

our parameterized splitting system with wt(x4) = ts and wt(x5) = 11 − ts.

We then have

y2tx̄−1
1 x̄−1

2 g−x4 = gx5 . (6.2.1)

We take more operations to Eq. (6.2.1). By repeating squaring both sides

50

CHAPTER 6. CRYPTANALYSIS

Method Exponentiations Storage

[CK08] 255.9 254.5

Ours , ts = 4 253.02 249.80

Table 6.3: Hoffstein and Silverman’s (2,2,11)-exponent

of Eq. (6.2.1), we may assume that x4 is just the first ns bits of 2t
′
x3 for

some t′. Then the complexity of the splitting systems is reduced by n. That

is, it is sufficient to consider a string of length ns with weight ts and starting

from 1 for x4. Therefore the total time complexity for ts = 4 is equal to

n ·
(

RF(n, 2) + 1

2

)
·
(
ns − 1

ts − 1

)
+

(
n− ns
t− ts

)
≈ 253.02

group exponentiations and the space complexity is equal to 249.80. The second

term of the left-hand side is obtained from a combination with repetition of

RF(n, 2) elements choose 2. It is a deterministic algorithm, but has no less

complexity than our randomized algorithm. We summarize the results in

Table 6.3.

51

CHAPTER 6. CRYPTANALYSIS

6.3 Implementation

The full implementation of the proposed attacks is not easy due to huge

memory requirements. For example, the proposed attack in GF(21000) for

(2, 2, 11)-exponents requires 249.80 memory, which amounts to about 216 TBytes.

It is too huge to store.

To verify the effectiveness of our attack and estimate the attack time

in practice, we may try an implementation of our attacks for modified pa-

rameters requiring smaller time and storage complexity. We have chosen

(2,2,11)-exponents because the change of the size of the base field is enough

to reduce the complexity within practical bound. On GF(261), we take ts = 4

and the lookup table for right-hand side of Eq. (6.2.1) consists of about 223.87

elements, which requires 0.25 GBytes memory. The number of y2tx̄−1
1 x̄−1

2 of

Eq. (6.2.1) is about 225.17. Hence the time complexity is about

223.87 + 225.17 ≈ 225.66.

The experiment was performed using the NTL [Sho] on a machine with a

dual-core AMD Opteron 2.6 GHz CPU and 4 GBytes RAM. We have tested

the attack for 200 number of randomly chosen h. The discrete log of each

h was computed in 219.64 seconds on average. More precisely, computing

exponentiations for 223.87 exponents and constructing the lookup table took

103.6 seconds. And computing on-the-fly and finding a match on the lookup

table took 116.04 seconds.

A multiplication in GF(21000) could be 162 times slower than GF(261)

using a schoolbook multiplication method. Using a fast arithmetic, however,

a multiplication in GF(21000) is about 5 times slower than GF(261) by our

experiment. Hence the attack time on (2, 2, 11)-exponents in GF(21000) is

52

CHAPTER 6. CRYPTANALYSIS

estimated to be about

219.64 · 5 · 253.02−25.66 ≈ 237.6 sec.

We note that the attack on real parameters are possible only with sufficiently

large memory allowing efficient read and write.

53

Chapter 7

Conclusion and Open Problems

In the thesis we have proposed parameterized splitting systems, which is a

generalization and refinement of Coppersmith’s splitting system. The flexi-

bility in the choice of the size of a block allows easier control of the trade-off

between time and space complexity for solving the DLP with LHWP expo-

nents. Moreover, the property that such a block starts with one reduces the

time complexity further.

In the generic group model, the computational complexity of the DLP

constrained to a subset S of a group G is known to be lower-bounded by the

square root of the cardinality of S [Sho97, MMN06]. In [EN77], Erdös and

Newman asked for finding a set that is resistant to the baby-step giant-step

algorithm, i.e., the computational complexity of the DLP on S is larger than

the square root of the cardinality of S.

A set of LHWP exponents is a good candidate for this problem. The

attack on LHWP exponents using a parameterized splitting system is the

most efficient of any previously known algorithms, but is still larger than the

square root bound of the key space. In particular, when the secret exponent

is the product of three integers with almost-equal Hamming weights, our

54

CHAPTER 7. CONCLUSION AND OPEN PROBLEMS

algorithm is far from the bound. It still remains open whether a set of

LHWP exponents is an answer to the Erdös and Newman question.

So far today, all known efficient algorithms for the LHWP-DLP require

the space complexity comparable to the time complexity while the ordinary

DLP has space-efficient algorithms such as Pollard rho or kangaroo. It would

be an important future research question to find a space-efficient algorithm

for this problem.

55

Bibliography

[AMOV91] G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone, “An Im-

plementation for a Fast Public-Key Cryptosytem,” J. Cryptology, vol.

3, no. 2, pp. 63–79, 1991.

[CK08] J. Cheon and H. Kim, “Analysis of Low Hamming Weight Products,”

Discrete Appl. Math., vol. 156, no. 12, pp. 2264–2269, Jun. 2008.

[CS84] D. Coppersmith and G. Seroussi, “On the Minimum Distance of Some

Quadratic Residue Codes,” IEEE Trans. Inf. Theory, vol. IT-30, no. 2,

pp. 407–411, Mar. 1984.

[CLP05] J. Coron, D. Lefranc, and G. Poupard, “A New Baby-Step Giant-

Step Algorithm and Some Application to Cryptanalysis,” in Proc. Cryp-

tographic Hardware and Embedded Systems – CHES 2005, vol. 3656,

Lecture Notes in Computer Science, pp. 47–60, 2005.

[DH76] W. Diffie, M. Hellman, “New Directions in Cryptography,” IEEE

Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[DSS] NIST, ”Digital Signature Standard,” FIPS PUB 186, 1994.

[ElG85] T. ElGamal, “A Public Key Cryptosystem and a Signature scheme

based on discrete logarithms,” IEEE Trans. Inf. Theory, vol. IT-31, no.

4, pp. 469–472, Jul. 1985.

56

BIBLIOGRAPHY

[EGM89] S. Even, O. Goldreich, and S. Micali, “On-line/off-line Digital Sig-

natures,” in Proc. Advances in Cryptology – Crypto 1989, vol. 435, Lec-

ture Notes in Computer Science, pp. 263–277, 1990.

[EN77] P. Erdös and D. Newman, “Bases for Sets of Integers,” J. Number

Theory, vol. 9, no. 4, pp. 420–425, 1977.

[Gal12] D. Galbraith, “Mathematics of Public Key Cryptography ,” Cam-

bridge University Press; 1 edition, 2012.

[Gir91] M. Girault, “Self-Certified Public Keys,” in Proc. Advances in Cryp-

tology – Eurocrypt 1991, vol. 547, Lecture Notes in Computer Science,

pp. 490–497, 1991.

[GL04] M. Girault and D. Lefranc, “Public Key Authentication with One

Single (on-line) Addition,” in Proc. Cryptographic Hardware and Em-

bedded Systems – CHES 2004, vol. 3156, Lecture Notes in Computer

Science, pp. 413–427, 2004.

[GPS02] M. Girault, G. Poupard, and D. Lefranc, “Some Modes of Use of the

GPS Identification Scheme,” presented at the 3rd NESSIE Workshop,

Nov. 2002.

[Hei92] R. Heiman, “A Note on Discrete Logarithms with Special Struc-

ture,” in Proc. Advances in Cryptology – Eurocrypt 1992, vol.658, Lec-

ture Notes in Computer Science, pp. 454–457, 1992.

[HS03] J. Hoffstein and J. Silverman, “Random Small Hamming Weight

Products with Application to Cryptography,” Discrete Appl. Math., vol.

130, no.1, pp. 37–49, 2003.

[Kra22] M. Kraitchik, “Théorie des nombres,” Gauthier–Villards, 1922.

57

BIBLIOGRAPHY

[KC08] S. Kim and J. Cheon, “A Parameterized Splitting System and its

Application to the Discrete Logarithm Problem with Low Hamming

Weight Product Exponents,” in Proc. Public Key Cryptography – PKC

2008, vol. 4939, Lecture Notes in Computer Science, pp. 328–343, 2008.

[KC10] S. Kim and J. Cheon, “Parameterized Splitting Systems for the Dis-

crete Logarithm,” IEEE Trans. Inf. Theory, vol. IT-56, no. 5, pp. 2528–

2535, May 2010.

[LL98] C. Lim and P. Lee, “A Study on the Proposed Korean Digital Signa-

ture Algorithm,” Proc. Advances in Cryptology – Asiacrypt 1998, vol.

1514, Lecture Notes in Computer Science, pp. 175–186, 1998.

[MMN06] I. Mironov, A. Mityagin, and K. Nissim, “Hard Instances of the

Constrained Discrete Logarithm Problem,” in Proc. Algorithm Number

Theory Symposium – ANTS 2006, vol. 4076, Lecture Notes in Computer

Science, pp. 582–598, 2008.

[MS77] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-

Correcting Codes,” Amsterdam, The Netherands: North-Holland, vol.

MR 57:5408a; MR 57:5408b, p. 309, 1977.

[MvOV97] A. Menezes, P. van Oorschot, and S. Vanstone, “Handbook of

Applied Cryptography,” Boca Raton, FL: CRC, p. 128, 1997.

[Odl00] A. Odlyzko, “Discrete logarithms: The past and the future,” Des.

Codes Cryptography, vol. 19, no. 2, pp. 129–145, Mar. 2000.

[Pol78] J. Pollard, “Monte Carlo Methods for Index Computation (mod

p),” Math. Comput., vol. 32, pp. 918–924, 1978.

58

BIBLIOGRAPHY

[Pol00] J. Pollard, “Kangaroos, Monopoly and Discrete Logarithms,” J.

Cryptology, vol. 13, no. 4, pp. 437–447, 2000.

[PH78] S. Pohlig and M. Hellman, “An improved algorithm for computing

logarithms over GF(p) and its cryptographic significance,” IEEE Trans.

Inf. Theory, vol. IT-24, no. 1, pp. 106–110, Jan. 1978.

[PS98] G. Poupard and J. Stern, “Security Analysis of a Practical “on the

fly” Authentication and Signature Generation,” in Proc. Advances in

Cryptology – Eurocrypt 1998, vol. 1403, Lecture Notes in Computer

Science, pp. 422–436, 1998.

[Sch91] C. Schnorr, ”Efficient Signature Generation by Smart Cards,” J.

Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[Sha71] D. Shanks, “Class Number, a Theory of Factorization and Genera,”

Proc. Symp. Pure Math., vol. 20, pp 415–440, 1971.

[Sho] V. Shoup, NTL: A Library for doing Number Theory [Online]. Avail-

able: http://www.shoup.net/ntl/

[Sho97] V. Shoup, “Lower Bounds for Discrete Logarithms and Related

Problems,” in Proc. Advances in Cryptology – Eurocrypt 1997, vol. 1233,

Lecture Notes in Computer Science, pp. 256–266, 1997.

[Sho00] V. Shoup, “Practical Threshold Signatures,” in Proc. Advances in

Cryptology – Eurocrypt 2000, vol. 1807, Lecture Notes in Computer

Science, pp. 207–220, 2000.

[Sti02] D. Stinson, “Some Baby-Step Giant-Step Algorithms for the Low

Hamming Weight Discrete Logarithm Problem,” Math. Comput, vol.

71, no. 237, pp. 379–391, 2002.

59

BIBLIOGRAPHY

[SWD96] O. Schirokauer, D. Weber, and T. Denny, “Discrete logarithms:

The effectiveness of the index calculus method,” in Proc. Algorithmic

Number Theory Symposium – ANTS 1996, vol. 1122, Lecture Notes in

Computer Science, pp. 337–361, 1996.

[Tes01] E. Teske, “Square-root Algorithms for The Discrete Logarithm Prob-

lem (a survey),” In Public-Key Cryptography and Computational Num-

ber Theory, pp. 283–301, 2001.

[vOW99] P. van Oorschot and M. Wiener, “ Parallel Collision Search with

Cryptanalytic Applications,” J. Cryptology, vol. 12, no. 1, pp.1–28,

1999.J. Cryptology, vol. 13, no. 4, pp. 437–447, 2000.

60

국문초록

이산대수 문제는 현대 공개키 암호에 있어 가장 중요한 수학적 기반 문제

의 하나이다. 수많은 암호 시스템과 프로토콜들이 이산대수가 어렵다는

가정하게 설계 및 제안되고 있으며 이러한 연구는 활발하게 진행되고 있

다.

이산대수 기반 암호 시스템의 효율성은 지수승 연산 속도에 직결된다.

Hoffstein과 Silverman은 이산대수 문제가 정의된 군에서 빠른 지수승과 안

전성을보장하기위해해밍웨이트가작은지수들의곱(성긴지수곱)을사

용할 것을 제안하였다. 특히 GF(2n)에서의 제곱연산 그리고 Koblitz 타운

곡선에서의 두 배 연산은 각각의 군 연산보다 훨씬 빠르기 때문에 성긴 지

수 곱을 사용하면 연산을 매우 가속화시킬 수 있다.

본 학위 논문에서는 성긴 지수 곱 이산대수 문제의 안전성을 분석한다.

현재의 성긴 지수 곱 이산대수 문제의 안전성 분석은 성긴 지수 이산대수

문제의 분석 기법에 의존하고 있는데 이로부터는 본래 문제의 정확한 안

전성을 측정할 수 없다.

본 논문에서는 성긴 지수 곱 이산대수 문제의 안전성을 분석하기 위해

매개화된 분할 시스템을 이용하여성긴 지수 곱 이산대수 문제를 공격하는

효율적인 알고리즘을 제안한다. 제안알고리즘은 현재까지 알려진 알고리

즘 중 가장 빠른 시간 안에 성긴 지수 곱 이산대수 문제의 해를 찾는다. 실

증적인 예로써 Coron, Lefranc 그리고 Poupard가 CHES 2005에서 제안한

GPS 인증 스킴의 비밀키와 Hoffstein과 Silverman이 제안한 (2,2,11)-지수

에대해제안알고리즘을적용하여각각에대해 261.82 그리고 253.02 번의군

연산을 사용하여 비밀키를 복구할 수 있음을 보인다.

주요어휘: 성긴 지수 이산대수 문제, 성긴 지수 곱 이산대수 문제, 매개화

분할 시스템

학번: No. 2005-20314

	1 Introduction
	1.1 Notation

	2 The Low Hamming Weight Discrete Logarithm Problem
	2.1 The Discrete Logarithm Problem (DLP)
	2.2 The Low Hamming Weight DLP (LHW-DLP)
	2.3 Algorithms for The LHW-DLP
	2.3.1 Heiman-Odlyzko's Algorithm
	2.3.2 Coppersmith's Algorithm

	3 The Low Hamming Weight Product DLP
	3.1 The Low Hamming Weight Product DLP (LHWP-DLP)
	3.1.1 The Efficiency of LHWP Exponents
	3.1.2 The Definition of LHWP-DLP

	3.2 Existing Algorithms for LHWP-DLP
	3.2.1 Attack using Coppersmith's Splitting System
	3.2.2 Rotation-Free Elements

	4 Parameterized Splitting Systems
	4.1 Parameterized Splitting Systems
	4.1.1 The Construction

	4.2 A Randomized Version

	5 A New Algorithm from Parameterized Splitting Systems
	5.1 When The Order of a Group is Known
	5.1.1 Motivations
	5.1.2 Using The Parameterized Splitting Systems

	5.2 When the Order of a Group is Unknown
	5.2.1 The Basic Approach
	5.2.2 Precomputation
	5.2.3 Complexity of the Full Algorithm

	6 Cryptanalysis
	6.1 GPS identification Scheme
	6.1.1 The Scheme
	6.1.2 The LHWP Private Keys
	6.1.3 Cryptanalysis

	6.2 Ho�stein and Silverman's Exponents
	6.2.1 Silverman and Ho�stein's exponents
	6.2.2 Cryptanalysis

	6.3 Implementation

	7 Conclusion and Open Problems

<startpage>9
1 Introduction 1
 1.1 Notation 5
2 The Low Hamming Weight Discrete Logarithm Problem 6
 2.1 The Discrete Logarithm Problem (DLP) 7
 2.2 The Low Hamming Weight DLP (LHW-DLP) 9
 2.3 Algorithms for The LHW-DLP 10
 2.3.1 Heiman-Odlyzko's Algorithm 10
 2.3.2 Coppersmith's Algorithm 12
3 The Low Hamming Weight Product DLP 15
 3.1 The Low Hamming Weight Product DLP (LHWP-DLP) 16
 3.1.1 The Efficiency of LHWP Exponents 16
 3.1.2 The Definition of LHWP-DLP 18
 3.2 Existing Algorithms for LHWP-DLP 19
 3.2.1 Attack using Coppersmith's Splitting System 19
 3.2.2 Rotation-Free Elements 21
4 Parameterized Splitting Systems 24
 4.1 Parameterized Splitting Systems 25
 4.1.1 The Construction 25
 4.2 A Randomized Version 28
5 A New Algorithm from Parameterized Splitting Systems 32
 5.1 When The Order of a Group is Known 33
 5.1.1 Motivations 33
 5.1.2 Using The Parameterized Splitting Systems 34
 5.2 When the Order of a Group is Unknown 38
 5.2.1 The Basic Approach 38
 5.2.2 Precomputation 38
 5.2.3 Complexity of the Full Algorithm 40
6 Cryptanalysis 43
 6.1 GPS identification Scheme 44
 6.1.1 The Scheme 44
 6.1.2 The LHWP Private Keys 47
 6.1.3 Cryptanalysis 47
 6.2 Ho�stein and Silverman's Exponents 50
 6.2.1 Silverman and Ho�stein's exponents 50
 6.2.2 Cryptanalysis 50
 6.3 Implementation 52
7 Conclusion and Open Problems 54
</body>

