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Abstract 

 

This study investigated the impact of multiple-Doppler radar and 

AWS surface data assimilation for improving the accuracy of heavy 

rainfall forecast; the Weather Research and Forecasting (WRF) and its 

three-dimensional variational data assimilation (3DVAR) were used for 

this purpose. In the data assimilation, the WRF 3DVAR cycling mode 

with incremental analysis updates (IAU) was used to remove the high-

frequency gravity wave. To evaluate the impact of the data assimilation, 

a heavy rainfall case on 11-12 July 2006 associated with the back-building 

mesoscale convective systems (MCSs) was chosen. Using the IAU 

method, the gravity wave fluctuation was greatly reduced and the noise 

was effectively removed, which help to reduce aliasing in subsequent 

analyses. Prior to the investigation for the impact of radar and surface 

data assimilation, it was firstly assessed that the assimilation of multiple-

Doppler radar and surface data assured the improvement in the accuracy 

of heavy rainfall forecast. The assimilation of both radar and surface data 

showed the best agreement with the observations in terms of location and 

amount of rainfall, and had a more positive impact on the quantitative 

precipitation forecasting (QPF) than the assimilation of either radar data 

or surface data only. In addition, the back-building characteristic was 

successfully forecasted. Based on the data assimilation experiments, the 

radar data helped forecast the development of convective storms 

responsible for the heavy rainfall in the early hours of forecast, and the 
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surface data contributed to the occurrence of intensified low-level winds. 

Further, the surface data played a significant role in enhancing the 

thermal gradient and modulating the planetary boundary layer of the 

model, which resulted in favorable conditions for convection.  

In the assimilation of high-resolution surface data, National 

Meteorological Center (NMC) method estimate of background error 

tended to exaggerate the length scale that determined the shape and 

extent to which observed information spreads out. For effective use of 

surface data to improve forecast accuracy of the heavy rainfall, the NMC 

method estimate of background error was tuned by comparing with 

independent estimates from accumulated observation minus background 

(O-B) data. A comparison revealed that the length scale of the NMC 

method should be halved in order to better assimilate the surface data 

with that of O-B. However, the correlation between NMC method and O-

B statistics was still poor even using the half of the length scale of the 

NMC method, therefore, in this study, we examined a double iteration 

method with two different scales representing the large and small lengths.  

The resulting assimilation clearly showed that the analysis with the 

tuned length scale was able to reproduce the small-scale features of the 

ideal field effectively. Further, the analysis using the double iteration 

method reflected the large- and small-scale features of observed 

information in the model fields, allowing the 3DVAR system to extract 

high-resolution observed information more effectively. The precipitation 

forecast using this double iteration with two different length scales for 
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the heavy rainfall case was in good agreement with the observations in 

terms of rainfall distribution and amount. The improved forecast resulted 

from the development of well-identified MCSs by intensified low-level 

winds and their consequent convergence near the rainfall area. In 

addition, we assessed the impact of the background error by the double 

iteration method on the improvement of the analysis through the 

assimilation of surface data during a one-month period, in comparison 

with the background error estimated by the NMC method. The statistics 

for the one-month period indicated that the 3DVAR analysis using the 

double iteration improved the root-mean-square-errors (RMSEs) verified 

against the surface observations. These results indicate that the 

prediction of the heavy rainfall can be improved by designing a suitable 

strategy of the background error for assimilating the surface data. 

Regarding to the surface observations, the surface observation impact 

in improving 6 hour forecast was evaluated for optimal use of surface 

observations and forecast skill improvement. The observation impact was 

evaluated during the warm season, with variant formula of third-order 

approximation of forecast error variation using WRF adjoint model. It 

was concluded that wind observations showed larger impact in 

improving the 6 hour forecast than thermodynamic observations. Among 

the wind observations, the meridional wind showed the largest impact in 

reducing 6 hour forecast error.  

 

Keyword: radar and surface data, data assimilation, 3DVAR, mesoscale 
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Chapter 1 Introduction 
 

1.1 Motivation and Objectives  

 

A significant portion (normally 55 %, or about 700 mm) of annual 

precipitation on the Korean Peninsula is due to heavy rainfalls during 

summer (KMA, 2001). Heavy rainfall during the summer season is one of 

the most significant factors in natural disasters on the Korean Peninsula. 

According to the 10-year statistics (2000-2009), the damage to properties 

caused by the heavy rainfall approximately equals 0.7 billions US dollars 

and 61 % of the total damage to properties by natural disasters (National 

Emergency Management Agency, 2009). Loss of life and property 

damage has increased yearly owing to the development of a socio-

economy and the increases in the population. Most heavy rainfall events 

result from the development of intense mesoscale convective systems 

(MCSs) (Zipser, 1982) under certain synoptic-scale environmental 

conditions; examples of such systems include a surface frontal system 

accompanying an upper-level trough during the Changma (referred to as 

the biau in Japan and the meiyu in China) from mid-June to mid-July or 

strong instability in the vicinity of the subtropical Pacific high in the post-

Changma (Lee et al., 1998). Observation and numerical simulation studies 

show that the dynamic and physical process of heavy rainfall over the 

Korean Peninsula can be indentified and MCSs accompanying heavy 

rainfall are predictable (Lee et al. 1998; Wee 1999; Sun and Lee 2002). 
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However, it remains a challenge for operational forecasters to identify the 

location and evolution of MCSs, and the mechanisms. Therefore, one of 

the greatest challenges in operational forecasting is to predict the 

evolution and development of MCSs that lead to heavy rainfall and to 

understand the mechanisms governing their evolution and development 

processes.  

Radar data provide effective information for studying convective 

systems and are widely used to investigate MCSs characteristics. In 

studies of MCSs since the 1970s, Doppler radar imagery has played an 

increasingly important role (Burgess and Ray 1986). Bluestein and Jain 

(1985) studied mesoscale convective-line development in the United 

States on the basis of reflectivity data, and suggested the existence of line 

formation classes. Schumacher and Johnson (2005) investigated the 

structure and evolution of extreme rain events using composite radar 

reflectivity data, and observed two MCS organization patterns occurring 

frequently in the United States: training line/adjoining stratiform 

systems and back-building/quasi-stationary MCSs. In Korea, Chun and 

Oh (1991) retrieved the horizontal wind field from a single Doppler radar 

image and showed that maximum convergence occurred prior to the 

period of maximum rainfall intensity and that the maximum convergence 

corresponded with the rainfall intensity zone. Kim and Lee (2006) 

investigated the characteristics of MCSs accompanying heavy rainfall 

using a single data of Weather Surveillance Radar-1988 Doppler (WSR-

88D). They demonstrated that low-level vertical wind shear played an 
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important role in the development of quasi-stationary and multicell 

storms, and that the convective systems merged and stagnated due to 

blocking by mountain ranges in the Korean Peninsula. However, 

Rinehart (1997) pointed out that the application of single radar data was 

limited to investigate entire MCSs, and suggested the use of routinely 

combined data from multiple radars to cover entire events. In this context, 

Gao et al. (1999) proposed a variation method for the analysis of three-

dimensional wind fields from two Doppler radars in order to gain a more 

complete understanding. Park and Lee (2009) retrieved high-resolution 

wind fields by combining data obtained from a total of 18 operational 

radars over the Southern Korean Peninsula.  

Numerical studies of MCSs have been performed to complement 

observational studies, which are insufficient on their own. Kato (1998) 

successfully simulated a convective system incorporating a back-building 

system by using a non-hydrostatic model with a horizontal grid of 2 km; 

it was shown that the quasi-stationary convergence line near the surface 

and the strong wind shear in the lower layer played significant roles in 

the successive generation of convective cells upstream of the rainband. 

Sun and Lee (2002) simulated an insensible long-lived convergence 

formed rapidly on the upwind side of the convection initiation point, 

after which convective cells developed and moved along this line. Parker 

(2007) performed real and ideal simulations to investigate the basic 

kinematics and precipitation features of a parallel stratiform convective 

system. However, several simulations showed that the initiation of 
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convective cells was not successfully simulated as shown in the Doppler 

radar data; this was because the initial and boundary data for the models 

were limited to identify the storms due to coarse temporal and spatial 

resolution of used data. Therefore, it was suggested that asynoptic data 

assimilation was needed to improve convective cell prediction and that 

more experimental studies on the assimilation of asynoptic data should 

be conducted (Wee, 1999; Lee and Lee, 2003). Also it is generally accepted 

that the use of data with a high spatial and temporal resolution has led to 

significant improvements in the accuracy of short-range forecast and 

flash flood predictions in the United States (Serafin and Wilson, 2000).  

With the technological advances, various sources of data with high 

spatial and temporal resolutions have become available, such as Doppler 

radars, high-frequency automatic weather stations (AWSs), wind 

profilers, and space-borne sensors. Among these observational sources, 

multiple-Doppler radars and AWSs have been constructed as an 

operational network to observe and analyze weather conditions in the 

southern Korean Peninsula with the high spatial and temporal resolution 

(Fig. 1.1). Several studies on data assimilation using radar and surface 

data have been conducted, and the results of these studies have 

demonstrated that the prediction with the assimilation of these data can 

potentially be improved. Crook and Sun (2002) described a variational 

scheme for the analysis of low-level wind data by assimilating data from 

two Doppler radars, a surface mesonet, and a boundary layer profiler for 

cases of sea breezes, southerly changes, and a severe tornadic hailstorm, 
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and showed a reasonable agreement between the analysis wind and the 

dual-Doppler radar winds, particularly in terms of wind direction. Gu et 

al. (2005) indicated that assimilation of the Korean AWS surface data 

improved the landfall-typhoon track and its precipitation. Xiao et al. 

(2005) assimilated the radar radial velocity data by using the fifth-

generation Pennsylvania State University-National Center for 

Atmospheric Research Mesoscale Model (MM5) and its three-

dimensional variational data system, and demonstrated potential ability 

for the radar observations to improve the rainfall forecasts. Lee et al. 

(2006) showed the application of the incremental analysis updates to 

improve initialization performance and short-range forecast using AWS 

surface data. Xiao et al. (2007) investigated the impact of multiple-

Doppler radar data assimilation on quantitative precipitation forecast 

(QPF) of a squall line, and demonstrated that assimilation of both radial 

velocity and reflectivity had more positive impact on the QPF skill with 

multiple-radar data assimilation than the assimilation of either radial 

velocity or reflectivity only. In addition, they demonstrated that the more 

radar data in the temporal and spatial dimension were assimilated, the 

more positive was the impact on the QPF skill. Although these studies 

have shown promising results, there are no reports of numerical studies 

on heavy rainfall events involving the assimilation of both radar and 

surface data, and the way in which each data source contributes to the 

improvement of heavy rainfall forecast has not yet been studied. While 

AWSs collect data for various variables at the surface level only, the  
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Figure 1.1 Topography (m, shaded), and locations of the operational 

AWS (triangles) and radars (dots) sites over the southern Korean 

Peninsula. The dashed box denotes the area analyzed in Fig. 5.13 and 5.14.  
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radars collect data on a limited number of three-dimensional variables 

such as radial velocity and reflectivity of hydrometeors. Therefore, the 

first objective of this study is to investigate the evolution and 

development of MCSs responsible for a heavy rainfall event using a 

Doppler radar dataset that combined data from 18 radars, and to 

investigate the impact of radar and surface data assimilation for 

improving the accuracy of heavy rainfall forecasts. 

Besides the observations, another important input for data 

assimilation systems is the error statistics because a data assimilation 

system relies on specified error statistics to determine the optimal 

combination of observation and background. Observation data are 

insufficient, in terms of the number of grid points times the number of 

variables, to describe the atmosphere. Therefore, in the assimilation 

system, estimates of atmospheric variables from observation data must 

be supplemented by information from a background or first guess, 

detailed background and observation error statistics, and the law of 

physics. Among the error statistics, the background error statistics 

determine the respective weights given to each variable of the analysis 

and define the extent to which the observed information propagates 

horizontally and vertically in these variables. Therefore, correct 

specification of the background error statistics remains a major challenge 

in the assimilation system.  

In order to create these background error statistics, the National 

Meteorological Center (NMC) method (Parrish and Derber, 1992) is 
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widely used in three-dimensional (3DVAR) and four-dimensional 

variatioinal (4DVAR) systems. This method provides a climatological 

estimate of background error statistics assuming that it is well 

approximated by averaged forecast difference statistics (e.g., month-long 

series of 24 h minus 12 h forecast valid at the same time).  

TffffT
bb

Ttbtb TXTXTXTXXXXXB )]12()24()][12()24([~))((    (1) 

where, bX  is the background, tX  is the true atmospheric state and b  

is the background error. )24( TX f  and )12( TX f  are, respectively, 

24 h and 12 h forecasts valid at the same time and the overbar denotes an 

average over time and/or space. This approach is very practical, but the 

background error covariance seems to differ in several ways from the 

true background error covariance. The main shortcoming of the NMC 

method is probably the evolution of the statistics of the forecast error in 

the short-range forecast (12-24 hour or 24-48 hour). Further, it is well 

known that the background error variance for winds tends to be 

overestimated, and therefore, the spatial correlation scales are excessively 

large (Lee et al., 2006). This implied that that the small-scale observed 

details tended to be filtered out in the analysis step, and that locally 

observed information was propagated over large spatial distances (Daley, 

1991).  

A number of numerical studies for tuning the error statistics have 

been performed to complement the background error statistics of the 

NMC method. Ingleby (2001) showed that the NMC method statistics 
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required an additional tuning in order to improve model performance. 

The a posteriori diagnosis approach of Desroziers and Ivanov (2001) tuned 

the background and observation error weighting parameters computed 

from analysis residuals. Gu et al. (2005) studied the tuned background 

error statistics by comparing between 3DVAR analysis and observations, 

and indicated that the predictions of typhoon track and its precipitation 

were improved by background error statistics tuning. Guo et al. (2006) 

performed an assimilation of bogus typhoon data with tuned 

background error statistics, and reported an improvement in the typhoon 

analysis in terms of its track and intensity. Skamarock et al. (2008) noted 

that, in variatainoal systems where the background error covariance was 

computed off-line, significant tuning was required to optimize the 

performance for any particular application. Lee et al. (2010) showed that 

quantitative features of the heavy rainfall case were improved by tuning 

of background and observation error statistics in the assimilated radar 

retrieval wind data. Besides the above research, several more studies on 

data assimilation with tuned error statistics have been conducted (Wu et 

al., 2002; Barker et al., 2004; Chapnik et al., 2004). However, there are 

currently no reports on the use of high-resolution surface observation 

data to tune the background error statistics of heavy rainfall events. The 

effective use of the AWS data to improve forecast accuracy of heavy 

rainfall is, therefore, a challenge, and it is necessary to examine the 

approach of tuned background error statistics in order to improve the 

assimilation of high-resolution surface observation and model forecast 
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fields. Therefore, another objective of this study is to investigate the effect 

of the tuned background error statistics calculated by the NMC method 

in a 3DVAR assimilation of high-resolution surface data, and assess their 

impact on the model for a heavy rainfall case.  

The purpose of this study is to investigate the evolution and 

development of MCSs responsible for a heavy rainfall event using a 

Doppler radar dataset that combined data from 18 radars, and to 

investigate the impact of radar and surface data, and the tuned 

background error statistics in assimilation of surface data for improving 

the accuracy of forecast. The heavy rainfall event is simulated using the 

Weather Research and Forecasting (WRF) model by assimilating the 

radar and AWS data. The rest of this paper is organized as follows. The 

WRF 3DVAR system and the proposed method for tuning of background 

error statistics are presented in section 2. Section 3 describes the data 

used for analysis and data assimilation. The synoptic situation and the 

storm environment by the Doppler radar data are explained in section 4. 

In section 5, the numerical simulations and results are presented. Finally, 

a summary and conclusions are given in section 6.  
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Chapter 2 WRF 3DVAR system and tuning 
of background error correlation length scale 
 

2.1 WRF 3DVAR assimilation system 
 

The numerical model used in this study is the WRF model. WRF 

model has been developed as a next-generation mesosclae numerical 

weather prediction system for high-impact weather features across scales 

ranging from cloud to synoptic, with priority emphasis on horizontal 

girds of several kilometers. WRF equations are in terms of a terrain-

following hydrostatics pressure vertical coordinate. The WRF dynamical 

core uses Eulerian finite-differencing to integrate the fully compressible 

non-hydrostatic equations in mass-coordinate, scalar-conserving flux 

form using a time-split small step for acoustic modes. Large time steps 

utilize a third-order Runge-Kutta technique. The horizontal staggering is 

an Arakawa C grid. The WRF physical processes for real-data mesoscale 

forecasts include the selections of explicit microphysics schemes, 

cumulus convective parameterization, planetary boundary layer 

parameterizations, and longwave and shortwave radiation schemes.  

The WRF 3DVAR originated and evolved from MM5 3DVAR (Barker 

et al. 2004), but the basic software interface and coordinate framework 

are fully updated for the WRF model (Skamarock et al. 2008). The basic 

aim of the WRF 3DVAR system is to determine an optimal estimate of the 

true atmospheric state at the time of analysis by means of an iterative 
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solution of the following prescribed cost function )(xJ : 

)()(
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1
)()(

2

1
)( 11

o
T

ob
T

b
ob yyOyyxxBxxJJxJ             (2) 

where, x  is the analysis vector, bx  is the background vector, oy  is the 

observation vector and y  is the analysis observation vector transformed 

by the observation operator, B and O are the background and observation 

error covariance matrices, respectively, and T)(  and 1)(  denote the 

matrix transpose and inverse, respectively. In Eq. (2), the analysis axx   

represents the posteriori maximum likelihood estimate of the true state of 

the atmosphere given two sources of data: the background (previous 

forecast) bx  and observation oy  (Lorenc 1986). The analysis fit to this 

data is weighted by estimates of background and observation error 

covariances. The cost function in (2) assumes that observation and 

background error are described using Gaussian probability density 

functions (PDFs) with 0 mean error. Correlations between observation 

and background errors are neglected in (2) as is typical in 3/4DVAR 

system (Parrish and Derber 1992; Zou et al., 1997; Lorenc et al. 2000). To 

obtain the background error statistics in this study, we carried out 12 h 

and 24 h forecasts using WRF from 0000 UTC 1 July to 1200 UTC 31 July 

2006 at 12 h intervals. The model configuration for the background error 

statistics was identical with the one in the numerical experiments as 

mentioned in section 5.1. The averaged forecast difference (month-long 

series of 24 h minus 12 h forecast valid at the same time) was used to 

estimate the background errors by the NMC method.   
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Given a model state x  with n  degrees of freedom, calculation of 

full background bJ  term in Eq. (2) requires )(~ 2nO  calculations. For a 

typical numerical weather prediction model with 14122 10~10~n , direct 

solution is not feasible in the time slot allotted for data assimilation in 

operational applications. One practical solution to reduce computational 

cost is to calculate bJ  in terms of control variables defined via the 

relationship Uvx ' , where bxxx ' is the analysis increment. The U  

transform is well designed by a series of operations hvp UUUU   so as 

that TUUB   (Lorenc et al. 2000). In addition, the U  transform is 

designed to nondimensionalize the variational problem and also to 

permit use of efficient filtering techniques that approximate the full 

background error statistics. Using the incremental formulation (Courtier 

et al., 1994) and the control variable transform, Eq. (2) can be rewritten as: 

)()(
2

1

2

1
)( '1' UvHdOUvHdvvvJ TT                              (3) 

where  oyd H )( bx  is the innovation vector and 'H  is the 

linearization of the observation operator.  

The horizontal transform of background error ( hU ) is performed 

using recursive filters (Hayden and Purser, 1995; Purser et al., 2003a). The 

first-order recursive filter consists of an advancing step: 

1)1(  iii FDF                                               (4) 

where D  is the input and F  is the output of the advancing step. In Eq. 

(4), i  is the grid point index and must be treated in increasing order so 

that the quantities on the right-hand side of the equation are already 
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known. The advancing step is followed by the backing step: 

1)1(  iii RFR                                               (5) 

where R  is the final output from the recursive filter, and i  must be 

treated in decreasing order. The smoothing parameter   is the filter 

coefficient, and has the following relationship with a new parameter e : 

)2(1  eee , where 22 4/)( sxNe                           (6) 

where N  is the number of iterations of the filter (as N  the 

response approximates a Gaussian), x  is the horizontal resolution of 

the forecast model, and s  is the length scale of the filter. In the recursive 

filter, N  and x  are constant, and therefore the value of e  varies 

according to the length scale. The smoothing parameter  , which lies 

between 0 and 1, is related to the length scale of the recursive filter. 

Barker et al. (2004) showed that a value of 6N  was the minimum 

number of passes required to remove unphysical correlations in the wind 

field, and therefore we used this number in all applications. In this study, 

the length scale was estimated using the accumulated forecast difference 

data from the NMC method, processed as a function of grid-point 

separation. A least square fit of the resulting curve to a Gaussian function 

was then used to estimate the recursive filter length scale. The vertical 

dependence of length scale in a horizontal transform of background error 

for control variables is illustrated in Fig. 2.1 Figure 2.1 showed a general 

trend of increasing length scale as a function of decreasing vertical level, 

which represented the dominant error of the large scale (synoptic scale) 
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at the low level. The small-scale nature of humidity errors relative to 

wind errors was noticeable. A valid question was whether the small-scale 

forecast difference truly represented background error features or due to 

artifacts of the numerical forecast, for example, boundary conditions, 

noise, etc.  

The vertical component of background error ( vU ) is applied via an 

empirical orthogonal function (EOF) decomposition on model levels. 

Given a domain/time-averaged estimate of vertical component of 

background error, an eigendecomposition is performed to compute 

eigenvectors and eigenvalues. The projection onto orthogonal 

eigenvectors reduces the number of calculations required in the vertical 

component of background error from )( 2KO  to ).(KO  By definition, 

the leading eigenvector contains the largest contribution to the 

background error, while, trailing eigenvectors contain the least 

information and may be removed to reduce the computational cost of 

3DVAR. Barker et al. (2004) illustrated that for a sample 3DVAR analysis, 

truncation of vertical modes to retain 99.9 % of the background error 

variance resulted in a significant reduction in CPU and memory 

requirements. Furthermore, there was little impact on the final results. 

The truncation of vertical modes results in a significant cost reduction 

with negligible scientific impact and hence, in this study, the truncation 

of vertical component of background error is used.  

The physical variable transformation ( pU ) involves the conversion of 

control variables (streamfunction, unbalanced velocity potential, 
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unbalanced temperature, relative humidity, and unbalanced pressure) to 

model variables (u, v, t q, p s ) increment. Further details are available in 

Barker et al. (2003 and 2004).  

Figure 2.2 shows the standard deviation of the background errors as 

a function of the vertical level. It indicated a general increase in 

background errors in summer (July-August 2006) relative to autumn 

(September-October 2006). It implies that seasonal error tuning factors for 

background error is necessary. On the other hand, the AWS observation 

errors used in the WRF 3DVAR system at the low level is 1.1 m s 1 , 1.1 m 

s 1 , 2.0 K and 10 % for zonal-, meridional-wind, temperature and relative 

humidity, respectively. Generally for the short range analysis, the 

background error was smaller than the observation error (Jarvinen, 2001). 

In the NMC method, the values of background errors were larger than 

the observation errors in the wind field, which might leads over-fitting of 

surface observations.  
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Figure 2.1 Length scale of background error for control variables. 
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Figure 2.2 Vertical distribution of estimated background error from the 

NMC method for zonal, meridional-wind, temperature and relative 

humidity.  
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2.2 Tuning of the background error length scale for 
AWS surface data 

 

In order to find an optimal background error statistics, one important 

thing we can do is to estimate the recursive filter length scale because the 

length scale of the control variable determines the shape and extent to 

which observed information is spread, resulting in significant impact on 

the analysis of WRF 3DVAR (Lee et al. 2010). In addition, diagnostics of 

the length scale of background error are often used as an approximate 

indicator of the degree of spatial smoothing. As mentioned above, the 

length scales were estimated using the NMC method’s accumulated 

forecast difference data processed as a function of grid point separation. 

Figure 2.3 shows the WRF 3DVAR analysis increment in response to a 

single surface data point with the length scale calculated by the NMC 

method. The single observation test is an efficient way to determine how 

the observed information propagates to its vicinity via the established 

correlation among the 3DVAR variables. We discuss the results of a 

single AWS observation test using the WRF forecast as the first guess and 

assimilating a single surface observation at (36.5 °N, 127.5 °E; 126.0 m). 

The u and v increments (Figs. 2.3a and b) indicated cyclonic circulation 

on the southwest side of the AWS data, and anticyclonic circulation on 

the northeast side of the AWS data. Over the cyclonic region, there was a 

positive vertical velocity, and vice versa, but with a much smaller length 

scale than for the horizontal wind (Fig. 2.3c). It was also noted that these 
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patterns came mainly from the large-scale response, which should 

typically be maintained in the mesocale system. Because of the WRF 

3DVAR multivariate nature, the balance used in the 3DVAR increments 

could be used to explain why the cyclonic wind increments were 

produced with negative temperature increments (Fig. 2.3d). When an air 

column has temperature decreased (negative increments), it will reduce 

the depth of the air column and the isobaric surface will fall in the 

column. The geostrophic balance embedded in the 3DVAR increments 

will force the wind to produce cyclonic increments. The temperature 

response to the single AWS data assimilation was small. In addition, the 

influence radius of increments was large (approximately 300-500 km) 

considering AWS data density (~18 km). This implied that using the 

length scale calculated by the NMC method would broaden and 

exaggerated the impact of the surface observations.  
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Figure 2.3 The WRF 3DVAR analysis incremental response to a single 

observation of AWS at 36.5 °N and 127.5 °E (126.0 m): (a) zonal wind, (b) 

meridional wind, (c) vertical wind, and (d) temperature. [Positive 

(negative) isoline is solid (dashed), and the zero isoline is omitted.] The 

cross in (a) denotes the location of the single observation point. 
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To estimate the length scale of the recursive filter for use of the high-

resolution surface data, we compared the correlations from the recursive 

filter, with a length scale via the NMC method, to the averaged 

correlation from the difference between the observations and background 

(hereafter referred to as O-B), binned as a function of station separation. 

Hollingsworth and Lönnberg (1986) used the averaged correlation of O-B 

to estimate climatological characteristics of observation and background 

error. Hollingsworth and Lönnberg examined the statistics of O-B 

associated with radiosonde observations over North America. By 

assuming that observation errors for radiosonde were spatially 

uncorrelated, they were able to assign the spatial correlation of the O-B 

exclusively to background error. Binning the O-B statistics as a function 

of the distance between pairs of observations could estimate the spatial 

correlation of background error as a function of distance. Furthermore, 

by extrapolating the covariance of the innovations to zero separation, 

they were able to estimate the relative contribution of background and 

observation errors to the variance of the innovations. The theoretical 

basis of estimating the length scales of the surface data is that the O-B 

correlations represent spatial characteristics of observations when the 

number of data is sufficiently large. In addition, the appropriate length 

scale for the high-resolution surface data could be gained by the 

Gaussian function of O-B data,  

)
2

exp()(
2

2

s

x
xc

                                                 (7) 



 23

where )( xc   is the O-B covariance at distance x  between grid points. 

Eq. (7) can be inverted to extract the appropriate length scale for the 

surface data. In this study, we used AWS observation data from the 

warm season (July–August 2006). The AWS observations contain wind 

speed and direction, temperature, pressure, relative humidity, and 

hourly rainfall. The temperature, wind, and rainfall are the primary 

measurements, with pressure and humidity less frequently reported. 

Figure 2.4a shows the averaged correlation of O-B for zonal wind and 

temperature. The shape of the correlations was similar; however, the 

averaged correlation for temperature was larger than that for winds. 

Figure 2.4b shows a comparison between the averaged correlation of O-B 

and the lowest level correlations from the recursive filter of several 

length scales with tuning factors of 1, 0.7, 0.5, and 0.3 for zonal wind. As 

mentioned above, the NMC method tends to exaggerate the spatial 

correlation of winds (Lee et al., 2006). Therefore, this study focuses on 

tuning the length scale for winds. The length scale from the NMC 

method was considerably larger than that from the O-B data, which was 

consistent with the results of the single observation test in Fig. 2.3. This 

implies that using untuned NMC method’s length scale in the surface 

data assimilation would result in erroneous analysis increment. The 

result showed that a localized length scale correlation was more 

consistent with the O-B correlation. The correlation from the recursive 

filter with a length scale calculated by the Gaussian function indicated 

that the length scale from the NMC method should be halved for the 
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assimilation of the surface data. However, even with the half of the 

length scale, the shape of the correlation from the recursive filter was 

different from the O-B correlation. The correlation from the recursive 

filter dropped off faster than that from the O-B at distances near the 

observation point, and vice versa. A more sophisticated formulation of 

background error is thus required to fit the data more closely. A 

Cressman-type objective analysis method (Cressman, 1959) used the 

different influence radii in a successive correction to account for the 

different scales of the analysis. Wu et al. (2002) used two different scales 

in its recursive filter to represent a fat-tailed spectrum for background 

error in order to improve the analysis on the smaller scales. However, the 

WRF 3DVAR system did not consider multiple scales in the application 

of the recursive filter. Hence, to solve the problem of ill-fitting data, a 

double iteration with two different length scales was applied. In this 

study, the process of the double iteration with two different length scales 

progressed as follows:  

1) Compute the innovation vectors )( bo xHyd   

2) Find the analysis increments )( 0

'

tx
a

 that minimize the cost 

function with the large length scale of the recursive filter  

3) Update the first guess )()()( 0
'

00
' txtxtx a  

4) Using the updated first guess, repeat steps 1–2 with the small 

length scale of the recursive filter in order to represent the 

correlation at distances near the observation point 
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Figure 2.4 (a) Correlations from O-B for temperature (solid) and zonal 

wind (solid line with filled circles), and (b) correlation from O-B (solid 

line with filled circles) and from the recursive filter of the length scale 

with tuning factors of 1 (solid line), 0.7 (dashed line), 0.5 (dotted line), 

and 0.3 (dash-dotted line) for zonal wind. The thick solid line in (b) 

indicates the correlation from the recursive filter with a length scale 

calculated by the Gaussian function.  
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5) Advance the WRF forecast to the following analysis time to 

prepare the background for the next 3DVAR analysis 

Steps 1–5 were repeated throughout the assimilation procedure. The idea 

here is to exploit the convergence on large scales during the first iteration 

of the minimization (Thépaut and Courtier 1991; Tanguay et al. 1995), 

and to allow convergence on the smaller scale during the next iteration. 

In this manner, both the large- and small-scale structures represented in 

the surface data were incorporated to the model field, and therefore the 

shape of the correlation seemed to approximate the features of the O-B 

correlation.  

To select the length scales representing large and small length scales 

in the double iteration experiment, we calculated the root-mean-square 

errors (RMSEs) of correlations from the recursive filter of the length 

scales with tuning factors from 0.1 to 1 versus the O-B correlation. 

Considering the MCSs case and the density of the AWS data, the large 

scale was defined as 200–300 km, approximately corresponding to the 

meso-  scale, and the small scale was defined as 20–100 km, which was 

roughly consistent with the meso-  scale. The statistics indicated that 

for a heavy rainfall case associated with MCSs and the background error 

in the summer month of July 2006, the correlation from the recursive 

filter with a tuning factor of 0.7 was close to the O-B correlation in the 

large-scale, while in the small-scale, the correlation from the recursive 

filter with a tuning factor of 0.3 showed the best result. As a result, a 

length scale with a tuning factor of 0.7 was selected as the large length 
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scale in the first iteration of the assimilation, and a tuning factor of 0.3 

was used for the small length scale in the second iteration. 
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Chapter 3 Data  
 

The data used in this study were taken from Japan Meteorological 

Agency analysis charts, National Center for Environmental Prediction 

(NECP) global final (FNL) analyses with a 1°1° horizontal resolution 

and 26 vertical layers from 1000 to 10 hPa, Korean Meteorological 

Administration (KMA) surface observations, multi-functional transport 

satellite (MTSAT) enhanced IR images, and rawinsonde data at Osan. 

The data from Osan weather station were analyzed by the complete 

Rawinsonde Observation Program, version 5.5 (RAOB55; ERS 2004). The 

RAOB55 allowed analysis of skew T and calculation of thermodynamic 

indices and wind data, which helped to infer convective potential, storm 

type, and movement.  

As shown in Fig.1.1, there are a total of 18 radars comprising the 

radar network over the Korean Peninsula: eleven KMA radars, five 

Republic of Korean Air Force (KAF) radars, and two WSR-88D (USAF) 

radars. The KAF radars operate at a wavelength near 5.5 cm, while the 

KMA radars operate at wavelengths near 5.5 or 10 cm. These radars are 

approximately 120 km apart on average, with the observable range for 

each exceeding 100 km; hence, most areas over the southern Korean 

Peninsula are overlapped by the coverage of two or more radars. These 

characteristics of the Korean operational radar network allow the 

coverage of the entire southern Korean Peninsula. The radar data are 

observed at intervals of 6-10 min. In contrast to the networks of the 
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European countries and Japan, all of the operational radars throughout 

the Southern Korean Peninsula have Doppler capabilities and thus they 

can measure the radar reflectivity factor ( Z ), radial velocity ( rV ), and 

spectrum width (SWD). The radial velocity contains information of 

vertical motion; the vertical velocity is sometimes important for the 

convective initiation and forecasting. The reflectivity is a measurement of 

the precipitation hydrometeors (rain, snow, etc). In this study, the 

preprocessing of radar data was based on a method proposed by Park 

and Lee (2009). The aliasing effect of the radial velocity measurements 

was corrected for under a spatial continuity constraint along the radial 

and azimuth directions. The radial velocities observed by radar were first 

processed along the radial direction at each azimuth ray, starting from 

the gate adjacent to the radar at which the observed velocity was 

assumed to be a true value unaffected by the aliasing effect. After 

terminating at all the azimuth rays, the correction procedure was then 

performed along the azimuthal direction. Then, winds derived from a 

simplified velocity-azimuth display (VAD) method were used as the 

reference values for determining whether the radial velocities were 

aliased or not. In addition, the speckling due to the dual–pulse repetition 

frequency (PRF) velocity error was removed. When the difference from 

the mean value within an area surrounded by 15 gates along the radial 

direction and seven rays along the azimuth direction centered at the 

given gate was greater than 10 m s 1 , the radial velocity at the given gate 

was considered to be noise and therefore removed. Then, the Doppler 
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radar data were then extracted by the Custom Editing and Display of 

Reduced Information in Cartesian space (CEDRIC) method and the 

Sorted Position Radar Interpolation (SPRINT) package provided by 

National Center for Atmospheric Research (NCAR). The vertical profiles 

of radar data used this study had a resolution of 0–12 km with 0.5 km 

vertical grid intervals. However, information below the 2 km height was 

limited due to complex topography over the Korean Peninsula. In order 

to investigate the characteristics of MCSs, the horizontal grid of 1 km 

radar data from 5 radar sites over the central Korean Peninsula was used, 

while, that of 5 km radar data from 18 radar sites was used for the radar 

data assimilation. The radial velocity and reflectivity observation errors 

used in the data assimilation were 2 m s 1  and 5 dBZ, respectively.  

Approximately 550 AWS data points with an average horizontal 

resolution of 18 km were used to investigate the amount of hourly 

accumulated rainfall, and variations in surface pressure and temperature. 

For the surface data assimilation, AWS data were preprocessed using 

WRF 3DVAR observation preprocessor. Because observation errors can 

be introduced at all stages including measurement, reporting practices, 

transmission and decoding, it is important that quality control is 

performed to avoid the assimilation of erroneous observations (Gu et al. 

2005). A number of quality control were performed including the 

removal of observations outside the time range and domain, re-ordering 

and merging the duplicate data reports in time location, retrieving the 

pressure or height based on the observation information with the 
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hydrostatic assumption, ensuring the vertical consistency, and estimating 

observational error based on the pre-specified errors. To make use of 

AWS data for the assimilation, when the elevation of an AWS station was 

above the height of the model’s lowest level or below the model’s lowest 

level but not more than 100 m, the observations were used for the surface 

data assimilation. However, the observation at the station was discarded 

if the elevation of an observed site was lower than the height of the 

model’s lowest level by more than 100 m.  
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Chapter 4 Heavy rainfall case 
 

The heavy rainfall case associated with the MCSs, which resulted in 

the total rainfall amount greater than 330 mm on 11-12 July 2006 in the 

Goyang area over the central Korean Peninsula with the band-shaped 

structure, was chosen to investigate the impact of not only the radar and 

surface data assimilation on heavy rainfall forecast but also the tuned 

length scale of recursive filter in background error on assimilating the 

surface data for a heavy rainfall case. One of the reasons for studying this 

case is that the operational forecasts failed to predict the amount of the 

precipitation. This was because the convective system responsible for the 

localized heavy rainfall developed over a period of just a few hours.   

 
4.1 Synoptic background 

 

Figure 4.1 shows the distribution of the accumulated 12 h and hourly 

rainfall amounts from 2100 UTC 11 July to 0900 UTC 12 July. The area 

with intense rainfall greater than 210 mm was localized within the band-

shaped structure. The maximum rainfall amount over 12 h was 335.0 mm, 

with a maximum intensity of 77.5 mm h-1 at 2300 UTC 11 July. The heavy 

rainfall was mainly concentrated from 2200 UTC 11 July to 0100 UTC 12 

July at Goyang, and then there was a 2 h break-off period from 0300 UTC 

to 0500 UTC 12 July. The heavy rainfall with 30 mm h-1 intensity occurred 

at 0600 UTC 12 July again, and then the rainfall was almost stopped. In 
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order to examine in detail the evolution of the heavy rainfall, we 

investigated the 15 min rainfall amount at Goyang station from 2200 UTC 

11 July to 0100 UTC 12 July (not shown here). It showed the first peak at 

2215 UTC 11 July with a rainfall intensity of 20 mm (15 min) 1 . After a 

temporary break for a few minutes, the maximum intensity reached 32 

mm (15 min) 1  at 2250 UTC 11 July. Then, the rainfall intensity over 25 

mm (15 min) 1  was maintained from 2315 UTC to 2330 UTC 11 July and 

then the rainfall was dissipated.  

Similar to most heavy rainfall cases that have occurred in the Korean 

Peninsula, this case had a synoptic environment that was favorable for 

heavy rainfall (Lee et al., 1998), except for some discrepancies. Figure 4.2 

shows the surface and 850 hPa weather charts at 1800 UTC 11 July, which 

is 3 h before the heavy rainfall begin. The Changma front over the central 

Korean Peninsula extended from a low-pressure center located in the 

northern East Sea and Typhoon Bilis (2006) was located over the South 

China Sea (Fig. 4.2a). The Korean Peninsula was on the edge of a high-

pressure system extending westward over the Pacific Ocean between 

roughly 30° and 40°N. A belt of relatively strong southwesterly winds, or 

low-level jets (LLJs), developed along the high-pressure systems (Fig. 

4.2b). In addition, the area of equivalent potential temperature over 345 K 

was extended to the heavy rainfall region. In this environment, the strong 

southwesterly flow continuously transported a large amount of warm 

and moist air to the central Korean Peninsula so that the relative 

humidity there was greater than 90 %. The LLJ was oriented almost 
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Figure 4.1 (a) Observed rainfall amount (mm) accumulated from 2100 

UTC 11 July 2006 to 0900 UTC 12 July 2006. (b) Hourly precipitation 

(mm) at Goyang station. The black box in (a) denotes the analyzed area in 

Fig. 4.7.  
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perpendicular to a pronounced horizontal thermal gradient that 

increased baroclinicity. LLJs are known to slope upward when they 

overrun a lower layer of cooler air, which is usually present in large-scale 

MCS environments (Trier and Parsons, 1993; Augustine and Caracena, 

1994; Rochette and Moore, 1996). At 0000 UTC 12 July, the LLJ was 

located in the vicinity of the heavy rainfall region because Typhoon Bilis 

pushed the high-pressure system further north to intensify the 

southwesterly flow. The upper-level synoptic pattern exhibited almost 

the same features as the low-level synoptic pattern. In the 500 hPa chart, 

the upper-level trough and the synoptic low pressure little influenced the 

Korean Peninsula, except for the low pressure system over the northern 

China (not shown here). Therefore, the cold air by the trough had little 

impact on the development and maintenance of the convective systems. 

In the 1000 hPa divergence and 850 hPa moisture advection fields at 1800 

UTC 11 July, low-level convergence and moisture advection was 

dominant over the central Korean Peninsula, while divergence and dry 

advection was dominant over the northern Korean Peninsula (Fig. 4.3). 

This means that in this case, the MCSs strongly depended upon the 

development of a synoptic-scale system. The synoptic overview indicates 

that the heavy rainfall over Goyang could be attributed to the 

enhancement of convective activity over the Changma front.  
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(b) 1800 UTC July 11                            850 hPa

(a) 1800 UTC July 11                                  SFC

(b) 1800 UTC July 11                            850 hPa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (a) Surface weather chart and (b) geopotential height (gpm, 

solid), equivalent potential temperature (K, dashed), wind speed (m s-1, 

shaded) and wind vectors (m s-1) for the 850 hPa weather chart at 1800 

UTC 11 July.  
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Figure 4.3 FNL analysis chart for (a) 1000 hPa divergence (10 4 s 1 , 

negative areas are shaded) and (b) moisture advection at 850 hPa (10 4  

kg kg 1 s 1 , positive areas are shaded) at 1800 UTC 11 July.  

(a) Divergence (1000hPa)

 

(b) Moisture advection (850hPa)
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Figure 4.4 shows MTSAT IR images from 2100-2300 UTC 11 July at 1 

h intervals. MTSAT IR image clearly showed the development of MCS 

affecting the heavy rainfall at Goyang. An isolated storm appeared near 

the west coast of the central Korean Peninsula at 2100 UTC and moved 

eastward while developing quickly from 2200-2300 UTC. The size of the 

most intensive convection system at 2300 UTC 11 July was approximately 

2000 km2, which corresponded to the meso-   scale. This storm 

stagnated around Goyang for about 4 h from 2100 UTC 11 July to 0100 

UTC 12 July. After 0100 UTC, the storm started to decay and began 

moving out of Goyang.  

To investigate the storm environment in more detail, we analyzed 

sounding data from Osan, which is approximately 60 km south of 

Goyang, at 1800 UTC 11 July and 0000 UTC 12 July (Fig. 4.5). At 1800 

UTC 11 July, moist layers were strengthened between 450 and 350 hPa 

and below 600 hPa. A dry layer was confined between the two moist 

layers. At 0000 UTC 12 July, the low level was almost saturated, while the 

dry layer became weaker. A lifting condensation level (LCL) appeared 

near the surface at 1800 UTC 11 July and 0000 UTC 12 July because the 

air there was almost saturated. The level of free convection (LFC) at 621 

m at 1800 UTC 11 July was relatively low. Thus, only a small lifting force 

was needed to release its potential instability. A surface southeasterly of 

2.5 m s-1 veered to the westerly of about 10 m s-1 at 500 hPa at 1800 UTC 

11 July. At 0000 UTC 12 July, wind speed in the low level between 1000 

and 700 hPa increased due to the increase of the LLJ; at the same time, 
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there was relatively weak midlevel flow. Consequently, a strong vertical 

wind shear occurred in the low level, and the vertical wind shear in the 

midlevel was relatively weak. The hodographs during the target period 

also showed that there was veering in the lower troposphere, that is, 

warm advection was prominent from the southern or southwestern 

region (not shown here). Weisman and Klemp (1982) used the bulk 

Richardson number (BRN), which is the ratio of the total energy available 

due to buoyancy to the total energy available from vertical wind shear, as 

nondimensional parameter and concluded that supercells form and are 

stably maintained when 5   BRN   50; high values of BRN favor the 

development of multicell storms. In this case, the BRN was 7 at 1800 UTC 

11 July and decreased to 5 at 0000 UTC 12 July. The estimated BRN value 

indicated that the environment in this case would support the formation 

of supercells. Therefore, the storm had the potential to develop into a 

supercell-type storm from 1800 UTC 11 July to 0000 UTC 12 July. 

However, the convective available potential energy (CAPE) maintained a 

value of 123 J kg-1 at 1800 UTC 11 July and 136 J kg-1 at 0000 UTC 12 July. 

This value was smaller than that of operational thresholds (NWS, 2004) 

and case studies (e.g. Stensrud et al., 1997) in the United States. Hong 

(2004) showed that the atmosphere over the Korean Peninsula during the 

summer season was identified as thermodynamically neutral when 

compared to the United States by investigating the summer season 

climatology of the synoptic environment during from 1979 to 2002. The 

environment in the United States during the summer season was 



 40

characterized by the large CAPE value. While, the atmosphere during the 

summer season over the Korean Peninsula was affected by baroclinicity. 
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Figure 4.4 MTSAT IR satellite images from 2100 UTC 11 July to 2300 UTC 

11 July at intervals of 1 h. 
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(b) 0000 UTC July 12
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Figure 4.5 Skew T-log P diagram at Osan station at (a) 1800 UTC July 11 

and (b) 0000 UTC July 12.  
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4.2 Mesoscale features 
 

Figure 4.6 shows surface analyses at 2100 UTC 11 July and 

differences in the fields of surface analyses at 0000 UTC 12 July compared 

to 2100 UTC 11 July. The storm initiated at 2100 UTC 11 July and 

developed to its mature stage at 0000 UTC 12 July. At 2100 UTC 11 July, a 

surface mesoscale high pressure system was dominant over the central 

and northern Korean Peninsula, and a surface mesoscale low pressure 

system was located over the west coast of the central Korean Peninsula. 

A region of cold air collocated with the mesoscale high and mesoscale 

low pressure system located in a region of warm air. The region of cold 

air extended to the northwest of Goyang, and relatively warm air was 

dominant south of Goyang. A cold pool persisted in the central Korean 

Peninsula for many hours from 1200 UTC 11 July. Cold pools frequently 

play a role in triggering a storm in the initiation phase of successive 

convective storms (Doswell, 2001). Mesoscale boundaries such as the 

land-water contrast, rain-no rain areas, saturated-unsaturated soils, and 

steep horizontal pressure and thermal gradients can provide favorable 

conditions for storm initiation (Funk, 2004). In this case, thermal gradient 

between the mesoscale warm and cold air increased the convective 

instability over the Changma front accompanying a low-level convergence 

and thus provided favorable conditions for initiating storms. At 0000 

UTC 12 July, the warm air region extended toward the heavy rainfall 

region due to the LLJ, and the temperature around Goyang dropped 
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slightly; however, there was no noticeable change in pressure over the 

central Korean Peninsula. The surface temperature fell less than 1°C as 

the storm passed over Goyang.  

To investigate the evolution of the storm, the reflectivity, 

convergence, vertical vorticity and wind vectors of radar data were 

analyzed at a height of 4 km from 2150-2330 UTC 11 July at 10 min 

intervals (Fig. 4.7). The arrows plotted in Fig. 4.7 represent the 

movements of convective cells. The reason that the level of 4 km was 

selected is that the radar data could present the convergence and 

vorticity fields well. From 2100-2150 UTC, the storm initiated near the 

western coast of the central Korean Peninsula and moved northeastward 

together with the southwesterly flow. At 2150 UTC, a westerly flow 

occurred in the northern part of the storm, and a southwesterly flow 

dominated in the southern part of the storm. The speed of the westerly 

flow was weaker than that of the southwesterly flow. This environment 

facilitated the formation of a convergence line owing to the horizontal 

wind shear. Therefore, a linear storm along the convergence line 

developed that was aligned in the east-west direction. At the same time, a 

negative vorticity appeared in the middle of the vorticity field, and the 

strong echo region was separated into two parts at 2200 UTC. From 2150-

2230 UTC, the antecedent storm M1 and rear storm M2 moved at speed 

of 16.7 and 8.3 m s-1, respectively; the strong negative vorticity between 

storms M1 and M2 seemed to inhibit the propagation of storm M2. As a  
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Figure 4.6 (a) Surface observation at 2100 UTC 11 July and (b) the 

difference in the mesoanalysis chart at 0000 UTC 12 July compared to 

2100 UTC 11 July. Solid lines denote the pressure (hPa), and dotted lines 

denote temperature (°C).  
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result, storm M1 moved eastward faster than storm M2, and the two 

storms were then further divided. The small convective cell M3 

developed near the western coast at 2210 UTC, moved eastward while 

developing, and merged into the leading storm M2. Therefore, at 2220 

UTC, the reflectivity of storm M4, which caused heavy rainfall over 

Goyang, became stronger as it accompanied the intensified convergence 

and vorticity. Storm M4 stagnated around Goyang for 30 min from 2220-

2250 UTC and moved out of Goyang. At 2300 UTC, the ambient flow of 

the storm changed from westerly to southwesterly. As a result, the 

convergence line was weak and moved downstream; the linear storm 

then began to spread. After 2300 UTC, storms repeatedly initiated on the 

coastal area, moved northeastward relatively rapidly, and developed 

continuously around Goyang due to repeated replacement of the storms. 

The propagation of the convective system showed clear evolution on the 

development of back-building MCSs, such as stagnation of the entire 

convective system oriented in the east-west direction. Bluestein and Jain 

(1985) noted that the back-building environment was very similar to that 

of supercells and that back-building occurred in environments of strong 

vertical shear, large CAPE, and small BRN. In this study, the storm 

development environment was consistent with that used by Bluestein 

and Jain, except for the relatively low CAPE values.  

The maintenance and stagnation of the storms were closely related to 

the strength of convergence, which was associated with the upward 

motion, induced by the westerly flow in the northern part of the storm 
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Figure 4.7 (a) Reflectivity (dBZ, shaded) and convergence (10-4 s-1, lines) 

and (b) vertical vorticity (10-4 s-1, shaded) and wind vectors (m s-1) at the 4 

km height from 2150–2330 UTC 11 July. Arrows indicate the movement 

of the convective cells.  
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and the strong southwesterly flow in the southern part of the storm. 

When the southwesterly flow dominated around and within the storm 

after 2300 UTC 11 July, the storms around Goyang were maintained by 

continuous development of new cells because the strong southwesterly 

flow provided warm and moist air to the heavy rainfall region. Therefore, 

the strong southwesterly flow, or LLJ, was an important factor in 

maintaining storm development.  

Figure 4.8 shows the vertical cross section of reflectivity, wind 

vectors, vertical velocity and divergence along line A-B in Fig. 4.7 from 

2150-2250 UTC at 10 min intervals. From 2150-2200 UTC, the storm 

developed and propagated eastward at a speed of 18.3 m s-1, and the 

strong reflectivity corresponded well to the strong convergence areas. 

From 2200-2220 UTC, the storm M1 and M2 moved slowly eastward at 

12.5 and 6.7 m s-1, respectively, because these storms were blocked by the 

mountains. Along the east-west direction around Goyang, topography 

surrounds the eastern side with mountains whereas the western side is 

exposed. Topography played a role in preventing convective storms from 

moving eastward, which restrained the storms to within the area and this 

resulted in a heavy rainfall intensity of approximately 20 mm (15 min)-1 

over Goyang by storm M1. A downdraft due to the heavy rainfall 

appeared at the center of storm M1, which corresponded well to the 

strong negative vorticity, as shown in Fig. 4.7. The downdraft provided 

the cold and dry air at the leading edge of storm M2. This environment 

not only facilitated the development of storm M2 due to enhancing 
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convective instability but also inhibited the propagation of storm M2 due 

to the downdraft. Consequently, a new storm (M3) merged into storm 

M2 to build a large convective storm (M4) with a 20 km width of strong 

reflectivity (>45 dBZ). From 2230-2250 UTC, storm M4 moved eastward 

and produced a heavy rainfall intensity of approximately 30 mm (15 

min)-1 over Goyang, which corresponded well to the peak of precipitation 

(Fig. 4.1). Analysis indicated that the topography seemed to play an 

important role in blocking the eastward movement of the convective 

storms, which helped merge storms and resulted in the heavy rainfall 

over Goyang. A convergence region was observed to the west of the 

strong reflectivity; this was consistent with the upstream convective 

development, especially the back-building system. The convergence field 

was tilted to the east, and the divergence region below the convergence 

region was collocated with the downdraft. The upper-level divergence 

maximum was directly above the core of the reflectivity, which was 

characterized by the back-building MCSs (Schumacher and Johnson, 

2005) and this implied that the air was lifted from a low level through an 

upright pattern rather than a tilted pattern in the back-building MCSs. 

Another important feature in the storms was that the downdraft was 

approximately 2 m s-1, corresponding to the weak cold pool shown in Fig. 

4.6. It is known that a strong downdraft in a convective cell causes a 

strong outflow, which cuts the warm and moist air supply to an updraft 

of a convective cell (Weisman and Klemp, 1982). In this study, the weak 

downdraft did not cut off the southwesterly flow and therefore new 
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storms developed continuously because the southwesterly flow provided 

moist air from the regions of high equivalent potential temperature to the 

convective system, which was a favorable condition for heavy rainfall.  
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Figure 4.8 (a) Vertical cross section of reflectivity (dBZ, shaded) and wind 

vectors (m s-1) and (b) divergence (10-4 s-1, shaded) and vertical velocity 

(m s-1, positive (negative) values solid (dashed)) from 2150–2250 UTC 11 

July at 10 min intervals with topographical distribution.  
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Chapter 5 Numerical results 
 
5.1 Configuration of numerical model 

 

In order to investigate the impact of radar and surface data 

assimilation and the tuned length scale of recursive filter in the 

assimilation of surface data for the heavy rainfall forecast, we conducted 

numerical simulations using WRF and WRF 3DVAR version 3.1. The 

model domain consisted of 18 km (170 × 150 horizontal grid points) and 6 

km (211 × 211 horizontal grid points) grid domains (Fig. 5.1); this was a 

one-way nested grid system with 31   vertical layers and 50 hPa at the 

model top. A modified version of Kain-Fritsch cumulus parameterization 

scheme was used for subgrid scale convection (Kain and Fritsch, 1990, 

1993), and the mixed-phase microphysics scheme for WRF single-

moment 6-class (WSM6) (Hong et al., 2004) was used for moist processes 

at the grid-resolvable scale. The YSU scheme, NOAH land-surface model, 

and rapid radiative transfer model (RRTM) longwave/Dudhia shortwave 

schemes were used for the planetary boundary layer, land surface, and 

atmospheric radiation process, respectively. The vertical layers and all 

physics for the model were the same in all domains, except for cumulus 

parameterization, which was not used in the 6 km grid domain. Design 

of domain and model schemes used in this study is summarized in Table 

1.  



 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Domain configurations for WRF 3DVAR and WRF forecasting 

experiment and topography (m). Domain 1 (D01) has 170 × 150 grid 

points with a grid spacing 18 km, and domain 2 (D02) has 211 × 211 

grid points with grid spacing of 6 km. 
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Table 1. Summary of model schemes and design of domain 

 

description Domain 1 (D01) Domain 2 (D02)

Horizontal resolution 18 km 6 km

Horizontal grid number 170 × 150 211 × 211

Vertical layers / Model top 31 sigma layers / 50 hPa

Cumulus parameterization Kain-Fritsch

scheme

No

Explicit moisture WSM6 scheme

Boundary layer YSU scheme

Longwave radiation RRTM scheme

Shortwave radiation Dudhia scheme

Surface physics Thermal diffusion scheme



 55

5. 2 Radar and surface data assimilation  
 

5.2.1 Experiment design 

 

The initial conditions for the 18 km horizontal resolution coarse grid 

in the numerical simulations were obtained from FNL analysis data at 6 h 

intervals. In addition, we assimilated conventional data for the coarse-

grid domain to produce more accurate initial and boundary conditions 

for the 6 km horizontal resolution fine grid using WRF 3DVAR. 3DVAR 

system has practical advantages; 1) observations can easily be assimilated 

directly without the need for prior retrieval. This results in a consistent 

treatment of all observations and, as the observation errors are less 

correlated, practical simplifications to the analysis algorithm. 2) The 

3DVAR system solution is found using all observations simultaneously. 

3) Balance constraints can be built into the preconditioning of the cost-

function minimization. Even though 3DVAR system has practical 

advantages, there are still issues associated with spinup and initialization. 

Linear balance constraints in the variational system are often insufficient 

for preventing the development of spurious energy on fast timescales in 

numerical forecasts (Polavarapu et al., 2004). Therefore, a separate 

filtering procedure is required to remove spurious high-frequency 

gravity wave noise, which can have a detrimental effect on the first few 

hours of the forecast, and on the data assimilation cycle as a whole. A 

number of approaches have been developed to address the initialization 
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problem including nonlinear normal mode initialization (Daley 1979), 

damped time-differencing scheme (Baker et al. 1987), diabatic 

initialization (Puri 1985), digital filter initialization (DFI; Lynch and 

Huang 1992), nudging technique (Grell et al. 1995), and incremental 

analysis updates (IAU; Bloom et al. 1996). The U.K. Met Office (UKMO) 

has used the digital filter and IAU as an alternative initialization 

technique (Clayton 2003). In this study, we applied the IAU method for 

data assimilation of the WRF model to reduce the noise of spurious high-

frequency gravity waves. By gradually incorporating analysis increments, 

IAU method removes high frequencies (Lee et al., 2006). In general, 

numerical weather prediction centers filter analysis increments rather 

than analysis in order to preserve the physical signal in the background 

state (Polavarapu et al., 2004). The increments are considered as 

additional forcing terms in the model equation  

( )
( ) ( )a b

dX t
F X W X X

dt
   ,                           (8) 

where )(tX , ( )F X , W , and a bX X  are model variables, the original 

model forcing term, the predefined weighting coefficient, and the 

analysis increment, respectively. In Eq. (8), if the analysis increment is 

zero at a specific location, IAU forcing will be zero. This implies that IAU 

forcing is significant only in regions where observations induce an 

analysis increment. In this study, the IAU process progressed as follows:  

1) WRF 3DVAR generated increments at analysis time. The 
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increments were transformed into tendencies of the model 

variables, i.e. winds, temperature, and water vapor mixing ratio, 

and the results were saved for use in IAU forcing.  

2) An earlier model state was recovered for forecasting.  

3) WRF advanced a forced forecast to the following analysis time to 

prepare the background for the next 3DVAR analysis.  

Steps 1–3 above were repeated throughout the assimilation. More 

detailed information on IAU can be found in Bloom et al. (1996). In this 

study, the coarse-grid simulation was carried out for 21 h forecasts after 

two update cycles (1200 and 1500 UTC) from 1200 UTC 11 July, in which 

a 3 h time window from -1.5 h to + 1.5 h centered at the analysis time was 

given (Lee et al., 2006). The initial condition for the 6 km horizontal 

resolution was obtained at 1800 UTC 11 July. The 6 km horizontal 

resolution began at 2100 UTC after assimilating radar (reflectivity and 

radial velocity) and surface data by IAU from 1800 UTC 11 July and was 

integrated for 15 h until 1200 UTC 12 July. IAU in the 6 km horizontal 

resolution was applied at a 1 h time window from -30 to +30 min 

centered at the analysis time.  

A number of assimilation and forecast experiments were conducted 

to examine the sensitivity of the forecast with different data sources. The 

sensitivity tests included the impacts of radar data, or surface data, or 

both combined. The CNTL experiment examined the results without data 

assimilation. The RADAR experiment examined the impact of 

assimilating only reflectivity and radial velocity data, and the AWS 
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experiment investigated the impact of assimilating only AWS surface 

data. Xiao et al. (2007) obtained sound analyses that had adjustments in 

both the dynamical and thermodynamical fields when both radial 

velocity and reflectivity were assimilated, and thus, we also assimilated 

both radial velocity and reflectivity data. RADAR+AWS experiment 

investigated the impact of radar and surface data assimilation.  

 

5.2.2 Results of numerical simulations 

 

Prior to the investigation of the impact of radar and surface data 

assimilation on the heavy rainfall forecast, the result of applying the IAU 

method to the initialization of the analysis is described. Figure 5.2 shows 

the evolution of the absolute tendency of surface pressure averaged over 

the 6 km horizontal resolution domain. The average absolute surface 

pressure and surface pressure tendency are indicators of the level of 

noise in the external gravity wave component to measure the degree of 

balance of the model solution. The initialization performance for the 

experiment with IAU at 1800 UTC was very similar to that for the 

experiment without IAU because both experiments used the same 

forecast at that time. The inclusion of data at 1900 and 2000 UTC caused a 

fluctuating curve in the experiment without IAU, indicating the presence 

of gravity waves for initialization in the experiment without IAU. It 

implies significant imbalance and inconsistency in the initial condition 

for the experiment without IAU method. However, using the IAU 
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method, the gravity wave fluctuation at 1900 and 2000 UTC was greatly 

reduced and the noise was effectively removed. This reduction in gravity 

wave by IAU will help to reduce aliasing in subsequent analyses. After 3 

h, the noise stayed low with small oscillations for both experiments.  

Figure 5.3 shows the 12 h accumulated rainfall amounts from 2100 

UTC 11 July to 0900 UTC 12 July for CNTL, RADAR, AWS, and 

RADAR+AWS. The major difference between the results of these 

experiments was in the spatial distribution of the rainfall. The 

RADAR+AWS simulation showed better agreement with the observation 

results than the other simulations. CNTL, RADAR, and AWS were likely 

to simulate the spread of rainfall distribution. In CNTL, RADAR, and 

AWS, erroneous precipitation was simulated near the southwestern coast, 

with local maxima of 240.8, 220.2, and 220.8 mm, respectively. In contrast, 

for RADAR+AWS, the heavy rainfall was concentrated near Goyang. 

RADAR+AWS captured a 12 h rainfall amount that was greater than 220 

mm, with a band-shaped structure over the central Korean Peninsula, 

even though the rainfall peak was delayed by approximately 2 h when 

compared with the observed rainfall peak (Fig. 5.4) and the maximum 

precipitation (287.9 mm) was underestimated compared with observation 

(335.0 mm). In the comparison between AWS and RADAR, the simulated 

rainfall over the central Korean Peninsula in AWS was comparable to 

that in RADAR+AWS, and the maximum rainfall amount over the central 

Korean Peninsula was 348.8 mm, representing an overestimation when 

compared with the observation. The rainfall distribution in RADAR was 
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more spread out with a relatively lower maximum rainfall amount (191.4 

mm) over the central Korean Peninsula as compared to that in AWS. In 

the time series of the maximum rainfall point, the simulated rainfall in 

RADAR began and ended in the early hours of the forecast, but in AWS it 

began in the late hours of the forecast and continued up until the final 

hour as compared with the other experiments (Fig. 5.4). The evolution of 

hourly rainfall at the maximum rainfall point in RADAR+AWS was 

similar to that in CNTL. 
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Figure 5.2 Averaged absolute tendency of surface pressure by 3DVAR 

without IAU (solid line with dots) and with IAU (solid).  
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(b) RADAR(a) CNTL

(c) AWS (d) RADAR+AWS

  

  

(b) RADAR(a) CNTL

(c) AWS (d) RADAR+AWS

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Total accumulated 12 h rainfall (mm, lines) from 2100 UTC 11 

July to 0900 UTC 12 July for (a) CNTL, (b) RADAR, (c) AWS, and (d) 

RADAR+AWS. The dashed box in (d) denotes the analyzed area in Fig. 

5.6, and the solid box in (d) shows the area of interest used for area-mean 

analysis in Fig. 5.11.  
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Figure 5.4 Time series of the observed and simulated hourly precipitation 

(mm) at the grid point of the maximum accumulated 12 h rainfall.  
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To evaluate the ability of the model at QPF skills for the designed 

experiments, the threat scores of precipitation forecast in each experiment, 

verified against the 12 h accumulated precipitation from 2100 UTC 11 to 

0900 UTC 12 July are calculated. Figure 5.5 shows the threat scores of 

precipitation for CNTL, RADAR, AWS, and RADAR+AWS experiments. 

The threat scores of the threshold value with 10 mm showed the similar 

values among the experiments because the land area with the 10 mm 

rainfall was comparable in all experiments (Fig. 5.3). However, the 

experiments with data assimilation produced higher threat scores than 

CNTL for heavy rainfall (thresholds of 50 and 70 mm). It should be noted 

that RADAR+AWS resulted in the highest threat score among the 

experiments with the data assimilation for 50 and 70 mm threshold value, 

because RADAR+AWS improved the location of the heavy rainfall near 

Goyang as compared with the other experiments (Fig. 5.3). This means 

that assimilation of both multiple-Doppler radar and surface data had a 

more positive impact on QPF than the assimilation of either radar or 

surface data alone. In addition, the improvement in QPF with multiple-

Doppler radar and surface data assimilation was more obvious for heavy 

rainfall than light rainfall. 

To investigate the evolution of the simulated convective system, 

Figure 5.6 shows the simulated reflectivity with a 2 km height from 2300 

UTC 11 July to 0100 UTC 12 July at 10 min intervals for RADAR+AWS, 

which produced the best precipitation forecast among the four 

experiments. The plotted arrows show the movements of convective cells.  
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Figure 5.5 Threat scores for accumulated 12 h precipitation from 2100 

UTC 11 July to 0900 UTC 12 July in the CNTL, RADAR, AWS, and 

RADAR+AWS experiments.  
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To the west of the convective system, new cells were successively 

generated in the Yellow Sea. The generated cells moved eastward and 

merged into the existing convective system. The evolution of the 

simulated convective systems agreed with observations (Fig. 4.7), albeit 

with some discrepancies. The general evolution of the simulated storms 

in RADAR+AWS indicated good performance of the model and data 

assimilation. We now discuss the impact of radar and surface data on 

simulating storm development.  

Figure 5.7 shows the simulated reflectivity, wind vectors and LLJ, 

defined as regions with wind speeds greater than 12.5 m s-1, at a 2 km 

height for RADAR+AWS, RADAR, and AWS in order to investigate the 

impact of each data type. At 2300 UTC 11 July, the simulated storm 

initiated, and at 0100 UTC 12 July the maximum rainfall intensity 

occurred in the targeted storm. At 2300 UTC 11 July, RADAR, AWS, and 

RADAR+AWS simulated strong reflectivity in the east–west direction 

over 40 dBZ near the west coast of the central Korean Peninsula. In 

RADAR+AWS and RADAR, the simulated reflectivity pattern over the 

central Korean Peninsula was comparable with observations, while that 

in AWS showed a wide-spreading reflectivity over the central western 

Korean Peninsula. At 0100 UTC 12 July, the simulated reflectivity was 

highly concentrated in the central Korean Peninsula by RADAR+AWS 

and RADAR, but much more spread out by AWS. The results indicated 

that the radar data, rather than the surface data, contributed to the 

development of convective cells in the models. It is noted that the strong 
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Figure 5.6 Simulated reflectivity at the 2 km height in the RADAR+AWS 

experiment from 2300 UTC 11 July to 0100 UTC 12 July. Arrows indicate 

the movement of convective cells. 
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reflectivity occurred along the northern edge of the LLJ in RADAR+AWS, 

RADAR and AWS. This suggests that interactions existed between the 

MCS and LLJ, which was consistent with observations (Fig. 4.2b and Fig. 

4.7). At 0100 UTC 12 July, the strong reflectivity in RADAR+AWS moved 

northeastward in relation to at 2300 UTC, and it then developed around 

Goyang along the northern edge of the LLJ (Fig. 5.7b). RADAR simulated 

the strong reflectivity around Goyang; however, another strong 

reflectivity over the southern Korean Peninsula developed along the 

southward-shifted LLJ (Fig. 5.7d). This implies that the rainfall 

distribution in RADAR was somewhat more spread out relative to 

RADAR+AWS. AWS also simulated the strong reflectivity over the 

central Korean Peninsula along the LLJ, even though the LLJ did not 

extend over the eastern Korean Peninsula (Fig. 5.7f). On the basis of these 

results, the radar data contributed to better development of convective 

storms, and the surface data contributed to an increase in low-level wind 

over the central Korean Peninsula. Therefore, the assimilation of 

multiple-Doppler radar and surface data together resulted in better 

simulation of heavy rainfall in RADAR+AWS than in each individual 

source only.  
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(a) RADAR+AWS 2006-07-11_23 (b) RADAR+AWS 2006-07-12_01

(c) RADAR 2006-07-11_23 (d) RADAR 2006-07-12_01

(e) AWS 2006-07-11_23 (f) AWS 2006-07-12_01

  

  

  

(a) RADAR+AWS 2006-07-11_23 (b) RADAR+AWS 2006-07-12_01

(c) RADAR 2006-07-11_23 (d) RADAR 2006-07-12_01

(e) AWS 2006-07-11_23 (f) AWS 2006-07-12_01

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Simulated reflectivity (dBZ, shaded), wind speed (m s-1, lines) 

and wind vectors (m s-1) at 2 km height at 2300 UTC 11 July and 0100 

UTC 12 July for (a, b) RADAR+AWS, (c, d) RADAR, and (e, f) AWS 

experiments.  



 70

To more investigate the effect of the radar data, Figure 5.8 shows the 

850 hPa rain water mixing ratio difference from AWS experiment (Figs. 

5.8a and 5.8b) for experiments RADAR+AWS and RADAR at 2300 UTC 

11 July. The rainwater mixing ratio showed a positive difference over the 

west coast of the central Korean Peninsula, which was consistent with the 

area of strong reflectivity as shown in Fig. 5.7. The maximum increase of 

the rainwater mixing ratio was over 2 g kg 1 . These positive differences 

in rainwater mixing ratio seemed to cause highly concentrated 

convection over the west coast of the central Korean Peninsula as 

compared with AWS experiment, and contributed to the development of 

the convection. This is because the reflectivity of the radar data seemed to 

facilitate storm development in the early hours of the forecast, which was 

consistent with the time series of the maximum rainfall point, and more 

radar data points (~10,000) were available near the Goyang area 

compared with surface data. The north-south vertical cross sections of an 

intense convective cell in RADAR+AWS and RADAR experiment at 2300 

UTC 11 July were analyzed in Fig. 5.9. The distinct character of the 

simulated convective cell could be seen in the pronounced vertical 

structure, and it was noted that the vertical structure of both experiments 

was similar. The strong updraft associated with the convergence at the 

lower troposphere was simulated, and the divergence existed in the 

upper troposphere (Figs. 5.9a and c). Comparing the equivalent potential 

temperature (Figs. 5.9b and d), both experiments showed that the low-

level southerly or southwesterly flow supplied the warm and moist air to 
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the convective cell, and most of this inflow became the updraft. And a 

significant outflow was found at the top of the convection cell, and 

extended far to the north. This is typical characteristics of developed 

convective cell as other studies have shown (Sun and Lee, 2002; Kim et al. 

2006). The results indicated that the radar data assimilation contributed 

to the establishment of the vertical structure of convective cell, even 

though RADAR+AWS experiment simulated the enhanced convergence 

and divergence in the low-level perhaps due to the assimilation of the 

surface data as compared with RADAR experiment. 
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Figure 5.8 Analyzed 850 hPa water vapor mixing ratio difference from 

AWS by (a) RADAR+AWS and (b) RADAR at 2300 UTC 11 July 2006. 

(a) RADAR+AWS - AWS

(b) RADAR - AWS
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Figure 5.9 North-south vertical cross sections of the convective systems at 

2300 UTC 11 July 2006 for (a, b) RADAR+AWS, and (c, d) RADAR 

experiment: (a, c) divergence (10-4 s-1, positive (negative) values solid 

(dashed) and negative areas are shaded) and wind vectors (m s-1), and (b, 

d) equivalent potential temperature (K, lines) and wind vectors (m s-1).  

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(b) Equivalent potential temperature 

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(b) Equivalent potential temperature 

(S) (N)

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(a) Divergence

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(a) Divergence

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(c) Divergence

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(c) Divergence

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(d) Equivalent potential temperature 

P
re

ss
ur

e 
(h

P
a)

Distance (km)

(d) Equivalent potential temperature 



 74

We analyzed the temperature field at a height of 2 m (air 

temperature) at 2300 UTC 11 July and 0100 UTC 12 July (Fig. 5.10) to 

further investigate the effect of surface data. The distribution of the 

simulated temperature in RADAR+AWS was similar to that observed: 

cold air dominated over the northern and central Korean Peninsula, 

while warm air dominated over the southern Korean Peninsula at 2300 

UTC 11 July. After 2 h, the warm air extended to the heavy rainfall region. 

In the difference fields (Figs. 5.10c and d), the negative difference 

between RADAR+AWS and RADAR over the central Korean Peninsula 

was due to cold advection and evaporative cooling caused by 

precipitation, while the positive difference over the southern Korean 

Peninsula seems to have been mainly due to warm advection by the 

southwesterly flow. Thus, the thermal gradient in the lower troposphere 

was enhanced when surface data were added to the data assimilation. 

Tao and Soong (1991) showed that surface forcing played an important 

role in the development of squall lines. Therefore, in this study, we 

investigated surface forcing when surface data assimilation was added. 

Figure 5.11 shows the time series for the ground temperature, friction 

velocity, height of the planetary boundary layer (PBL), and precipitation 

averaged over the heavy rainfall region (125–129°E and 37.2–38°N) in 

RADAR+AWS and RADAR, which is defined by the solid box in Fig. 

5.3d. RADAR+AWS and RADAR had similar ground temperature 

distribution, as shown in Fig. 5.11a. On the other hand, the friction 

velocity was larger for RADAR than for RADAR+AWS (Fig. 5.11b). The 
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larger friction velocity induced a higher PBL height, which resulted in a 

decrease of the specific humidity at lower levels due to entrainment of 

relatively dry air from the above PBL; consequently, there was a smaller 

potential for convection in RADAR (Fig. 5.11c). That was why greater 

rainfall occurred in RADAR+AWS experiment with the surface data 

assimilation than in RADAR experiment, as shown in Fig. 5.11d. This 

result indicates that the surface data played an important role in inducing 

the lower tropospheric environment to be favorable for convection 

development in RADAR+AWS.  
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(a) RADAR+AWS (b) RADAR+AWS

(c) RADAR+AWS - RADAR (d) RADAR+AWS - RADAR

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Simulated temperature (K, lines) at 2 m height in the 

RADAR+AWS experiment at (a) 2300 UTC 11 July and (b) 0000 UTC 12 

July; (c) and (d) indicate the difference in temperature (K, positive 

(negative) values solid (dashed)) at 2 m height between the 

RADAR+AWS and RADAR experiments at 2300 UTC 11 July and 0100 

UTC 12 July, respectively.  
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Figure 5.11 Temporal variation of (a) ground temperature (K), (b) friction 

velocity (m s-1), (c) height of PBL (m), and (d) precipitation (mm) of the 

RADAR+AWS and RADAR experiments averaged over the black box 

shown in Fig. 5.3d.  
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5. 3 Tuning of the background error correlation length 
scale for surface data 
 

5.3.1 Experiment design 

 

The WRF and WRF 3DVAR systems are used to investigate the 

impact of the tuned length scale of background error statistics for the 

surface data assimilation. The model configuration was identical with the 

one in numerical experiments as mentioned in section 5.1. The initial and 

lateral boundary conditions for the coarse grid with 18 km horizontal 

resolution were provided by the NCEP FNL analyses with a 1° × 1° 

horizontal resolution at 6 h intervals. In addition, we assimilated 

conventional data for the coarse-grid domain to produce more accurate 

initial and boundary conditions for the 6 km horizontal resolution fine 

grid. The coarse grid simulation was carried out for 21 h forecasts after 

two update cycles (1200 and 1500 UTC) from 1200 UTC 11 July. The 

simulation on the 6 km horizontal resolution began at 2100 UTC 11 July 

after assimilating the surface data from 1800 UTC 11 July at 1 h time 

window and was integrated until 0900 UTC 12 July. For the data 

assimilation, a Rapid Update Cycle (RUC) 3DVAR system was applied to 

incorporate more frequent observations. Update cycling can supplement 

a disadvantage of non-varying with time in 3DVAR, and reduce the 

spinup time at the analysis state. 

A number of assimilation and forecast experiments were conducted 
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to examine the forecast with respect to various changes of the length scale 

in the surface data assimilation for the heavy rainfall case. In the 

assimilation experiments, CNTL examined the results without data 

assimilation, and LS examined the impact of the original length scale 

from the NMC background error statistics to investigate the effect of the 

NMC background error statistics in the assimilation of the surface data. 

LS0.7, 0.5, and 0.3 examined the impact of the tuning factors of 0.7, 0.5, 

and 0.3 applied to the original length scale, respectively. We investigated 

the impact of the assimilated surface data with the large length scale of 

the recursive filter in LS0.7, the half of the original length scale in LS0.5, 

and the small length scale in LS0.3. In addition, we investigated the 

impact of the double iteration of the tuned length scales with tuning 

factors of 0.7 and 0.3 in DILS.  

Figure 5.12 shows the vertical zonal wind increments using a single 

surface observation that is performed in section 2.2 to examine the 

vertical response with respect to the length scale. The assimilation with 

the tuned length scale (i.e., LS0.7, LS0.5 and LS0.3) showed a 

comparatively smaller correlated area than that obtained using the 

original length scale from the NMC background error statistics. It was 

noted that the experiments using smaller length scales tended to generate 

the shallow propagation depth with the enhanced vertical response in the 

boundary layer. The propagation depth in LS0.3 was slightly shallow as 

compared to the other experiments around an observation point. 

However, the vertical response in DILS was comparable with that in LS, 
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and DILS was characterized by a strongly correlated vertical pattern, 

particularly in the boundary layer.  
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Figure 5.12 Vertical zonal wind responses for single observation test for 

(a) LS, (b) LS0.7, (c) LS0.5, (d) LS0.3, and (e) DILS. 
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5.3.2 Idealized experiment 

 

Prior to investigating the impact of length scale on the heavy rainfall 

forecast, we conducted an ideal experiment that could illustrate the 

response of the length scale tuning. Even though the estimates derived in 

ideal experiments are unrealistically good, such experiments are valuable 

because we can gain information on the sensitivity of the estimation 

procedure to various inputs. Regarding the true state of the atmosphere 

as a composition of sinusoidal waves (


13

1

2sin
n

nx ), a first guess was made 

using the filter of the initial condition for the 6 km horizontal grid mesh, 

with the frequency of wave number 2 set to approximately 300 km. The 

values extracted at the AWS locations shown in Fig. 1.1 from the true 

state were used as the observation data for the ideal experiment. Using 

the first guess and the observation, we conducted a number of 

assimilations with the tuned length scales. The results of these 

experiments were analyzed in the area defined by the dashed box in Fig. 

1.1, because the influence of AWS data was limited around the Korean 

Peninsula.  

Figure 5.13 shows the distribution of the analysis after the surface 

data assimilation for the various length scales. The relatively large length 

scale used in LS and LS0.7 contributed to the simulation of the large-scale 

features of the truth state, and the small-scale features tended to filter out 

(Figs. 5.13b and c). However, the assimilation using tuning factors of 0.5 

and 0.3 enhanced the simulation of the small-scale features related to the 
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mesoscale phenomena due to the reduced length scale (Figs. 5.13d and e). 

LS0.3 simulated the large- and small-scale features of the truth state 

compared with the experiments using the tuned length scale; however, in 

the southwest part, the distribution and intensity in LS0.3 was different 

from that in the truth state. It was noted that DILS showed the best 

agreement with the truth state in terms of distribution and intensity (Figs. 

5.13a and f). To further analyze the effect of the tuned length scale, Figure 

5.14 presents the wave number distribution produced by a two-

dimensional Fast Fourier Transform (FFT). The analysis of the wave 

number spectra clearly showed that the assimilation with the tuned 

length scale was able to contain small-scale features when compared to 

the LS simulation, which was consistent with Fig. 5.13. It should be noted 

that LS0.3 overestimated the simulation of small-scale features in the y-

direction compared with the truth state, which resulted in contamination 

of the subsequent forecast (Fig. 5.14e). However, DILS better identified 

both large- and small-scale features of the truth state in the model fields, 

albeit with some discrepancies (Figs. 5.14a and f). These results indicate 

that the length scale tuning of background error statistics can be a critical 

process in the 3DVAR system, and that assimilation using the double 

iteration with two different length scales is able to reflect the observed 

information more effectively in the model fields by designing a suitable 

strategy for assimilating the surface data. Another effect of the double 

iteration method was that the assimilation system was able to utilize 

more observations than when using only a single iteration with the tuned 
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length scale. With the two different length scales approach, over 92% of 

the AWS observations were incorporated in the assimilation procedure of 

DILS, while about 73% of AWS observations were incorporated in LS, 

LS0.7, LS0.5, and LS0.3.  
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Figure 5.13 The distribution of (a) truth state, and (b), (c), (d), (e), and (f) 

assimilated fields for LS, LS0.7, LS0.5, LS0.3, and DILS, respectively, in 

the dashed box shown in Fig. 1.1 [Positive (negative) isoline is solid 

(dashed), and the zero isoline is omitted].

(a) Truth (b) LS

(c) LS0.7 (d) LS0.5

(e) LS0.3 (f) DILS
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Figure 5.14 Two-dimensional wave number distribution calculated by 

two-dimensional Fast Fourier Transform (FFT) for ideal experiments in 

(a) truth, (b) LS, (c) LS0.7, (d) LS0.5, (e) LS0.3, and (f) DILS.  
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5.3.3 Results of numerical simulations for heavy rainfall  

 

Figure 5.15 shows the bias of domain-averaged zonal wind (Fig. 

5.15a) and meridional wind (Fig. 5.15b) to compare the analysis fields at 

1800 UTC 11 July. The biases were calculated over the southern Korean 

Peninsula (34°-38°N, 126°-130°E) by using the NCEP FNL data with its 

horizontal resolution of 1.0°, approximately 100 km. The NCEP FNL data 

were used as an observational reference for the comparison among the 

experiments because there was no availability of atmospheric mesoscale 

wind observations in comparison for this study. The results showed that 

the surface data assimilation affected large difference of the bias in the 

layer between 950 and 800 hPa. In addition, the bias differences were 

more significant for meridional wind than zonal wind. The experiments 

with the surface data assimilation resulted in smaller biases at low levels 

than CNTL. It should be noted that, even with the smallest length scale in 

this study, LS0.3 resulted in the largest bias among the experiments with 

the surface data assimilation, which was consistent with the result in Fig. 

5.14. Among all experiments, the assimilation using DILS was in better 

agreement with the observation reference. This meant that data 

assimilation using a double iteration of two different length scales 

contributed positive impact to the analysis fields than the other 

experiments.  

The 12 h accumulated rainfall predictions from 2100 UTC 11 July to 

0900 UTC 12 July for CNTL, LS, LS0.7, LS0.5, LS0.3, and DILS are shown  
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Figure 5.15 Vertical distribution of (a) zonal and (b) meridional wind bias 

in the analysis field at 1800 UTC 11 July 2006; CNTL (solid line with dots), 

LS (solid line), LS0.7 (dashed line), LS0.5 (dotted line), LS0.3 (dash-dotted 

line), and DILS (solid line with down-triangles). 
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in Fig. 5.16. The main difference between the results was in the spatial 

distribution and amount of rainfall. The experiments using smaller length 

scales tended to generate a comparatively narrow rainfall distribution 

with an increased rainfall amount. Among the experiments, the DILS 

simulation showed better agreement with the observational results than 

the other simulations. It captured a 12 h accumulated rainfall amount of 

over 300 mm, with a band-shaped structure over the central Korean 

Peninsula, even though some erroneous precipitation was simulated near 

the southwestern coast. In contrast, the CNTL simulation produced a 

rainband that shifted southward, while the location of the maximum 

rainfall in LS was shifted eastward as compared to the observation data. 

The simulations with the tuned length scale (i.e., LS0.7, LS0.5, and LS0.3) 

were in better agreement with observations than LS; however, their 

maximum precipitation underestimated the observed amount. Between 

LS0.7, LS0.5, and LS0.3, we could see that the location of the maximum 

rainfall in LS0.5 agreed well with the observation data, which was 

consistent with the results in Fig. 2.4, but gave a relatively low maximum 

rainfall amount (233.6 mm).  

To investigate the structure of the simulated convective system, Fig. 

5.17 shows the north–south vertical cross sections of an intensive 

convective cell in DILS, which produced the best precipitation forecast 

among the six experiments, at 2230 UTC 11 July 2006. The convective 

core of strong reflectivity (>45 dBZ) reached 500 hPa altitude with a 

width of approximately 30 km (Fig. 5.17a). The strong updraft was 
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located in the mid-troposphere (500 hPa), and a downdraft of less than 1 

m s-1 existed at the low-level (Fig. 5.17b), which was consistent with the 

observation. The intense convective cells simulated strong convergence 

below 600 hPa and divergence in the lower troposphere, as for general 

convective cells in their mature stage (Fig. 5.17c). Behind the convection 

(northern side of the convection), a downdraft with a maximum speed of 

0.27 m s-1 occurred at approximately 900 hPa, in the area between 45–55 

km where the strong reflectivity was found. This downdraft enhanced 

the convergence, and consequently the updraft, at 30–50 km. However, 

this did not seem to be the most crucial factor in the development of 

strong updrafts when we considered its strength. Indeed, it seemed that 

the strong convergence along the northern edge of the LLJ corresponded 

to the strong updraft. Lee et al. (1998) suggested that strong convergence 

ahead of the LLJ region played a key role in the production of heavy rain 

associated with an eastward propagation disturbance. In addition, the 

strong low-level southerly or southwesterly flow supplied warm and 

moist air to the convective system. Thus, the equivalent potential 

temperature and convective instability )/( pe   showed the presence of 

unstable stratification between 700–800 hPa by a high e  inflow (Fig. 

5.17d). The present convective system showed both similarities and 

dissimilarities to other convective systems. It showed some similarities in 

its structure, such as the low-level inflow ahead of the band, and the 

downdraft behind the band. However, unlike the squall lines, the 

updrafts tilted northward below about 700 hPa and stood upright above 
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about 700 hPa, which induced the continued development of convection 

and significant precipitation. This was consistent with the analysis of 

observed radar data. 
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Figure 5.16 Total accumulated 12 h rainfall (mm) from 2100 UTC 11 July 

to 0900 UTC 12 July for (a) CNTL, (b) LS, (c) LS0.7, (d) LS0.5, (e) LS0.3 

and (f) DILS.   
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Figure 5.17 North–south vertical cross sections of the intense convective 

system in DILS for 2230 UTC 11 July 2006: (a) reflectivity (dBZ, lines), (b) 

vertical velocity (m s-1, positive (negative) values solid (dashed)), (c) 

divergence (10-4 s-1, positive (negative) values solid (dashed) and negative 

areas are shaded) and wind speed greater than 12 m s-1 (thick dashed), 

and (d) equivalent potential temperature (K, lines), convective instability 

(K hPa 1 , negative areas are shaded), and wind vectors (m s-1).  
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Figure 5.18 shows the observed and simulated reflectivity, wind 

speed ( 5.12 m s-1), divergence, equivalent potential temperature, and 

wind vectors at a 1.5 km height for DILS, LS0.5, and LS at 2200 UTC 11 

July. DILS simulated strong reflectivity over 40 dBZ in the east–west 

direction near the west coast of the central Korean Peninsula, which 

agreed with the radar observations, albeit with some discrepancies (Figs. 

5.18a and b). However, LS0.5 generated a convective band that was 

shifted northwestward with a wide-spreading reflectivity (Fig. 5.18c), 

and the simulated reflectivity in LS was shifted southward and much 

more spread out (Fig. 5.18d). The results indicated that the simulation 

using the double iteration with two different length scales, rather than 

the simulation using the single iteration with the tuned length scale, 

contributed to the better development of convective cells in the early 

hours of the forecast. After length scale tuning in DILS and LS0.5, the 

low-level wind over the central Korean Peninsula was intensified 

compared to the LS simulation (Figs. 5.18b, c, and d), because the length 

scale tuning in the surface data assimilation had significantly affected the 

extent to which the information was spread and the intensity of wind 

increment (Fig. 5.19). Figure 5.19 shows the lowest level analysis 

increments of zonal wind and temperature at 1800 UTC 11 July. The 

wind increments were propagated over small spatial distance and 

enhanced locally as smaller length scale of recursive filter was used. 

However, the distribution of temperature increments was similar with 

respect to the length scale tuning, except for reducing the correlated area 
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as the small length scale was used. From the results, we noted that the 

length scale tuning in the surface data assimilation more affected wind 

increments. Therefore, the length scale tuning in the surface data 

assimilation resulted in reduced spatial correlation of the winds and gave 

rise to a strengthened low-level wind increment. The wind strengthening 

over the central Korean Peninsula was consistent with the skew T log P 

chart at Osan, which is approximately 60 km south of Goyang. The 

sounding data showed that the wind speed at the 850 hPa level increased 

to 20 m s-1 between 1800 UTC 11 July and 0000 UTC 12 July (Fig. 4.5). In 

DILS and LS0.5, an area of equivalent potential temperature over 352 K 

extended almost to the observed heavy rainfall region and the strong 

convergence corresponded well to the area of strong reflectivity (Figs. 

5.18e and f). In this environment, a strong southwesterly could 

continuously transport a large amount of warm and moist air to the 

central Korean Peninsula, and so the strengthened low-level wind due to 

the surface data assimilation with the tuned length scale facilitated the 

development of the convective system near the observed heavy rainfall 

region. Based on these results, the length scale tuning in the surface data 

assimilation contributed to an increase in the low-level wind, which 

played an important role in the development of this convective system. 

In addition, the simulation using the double iteration with two different 

length scales contributed to the better development of convective storms, 

which resulted in better simulation of the heavy rainfall. 
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Figure 5.18  (a) The radar-observed reflectivity, and (b), (c), and (d) 

show the simulated reflectivity (dBZ, shaded) and wind speed (m s-1, 

contours) for DILS, LS0.5, and LS, respectively, at 1.5 km height at 2200 

UTC 11 July. (e), (f), and (g) represent divergence (10-4 s-1, shaded), 

equivalent potential temperature (K, contours), and wind vectors (m s-1) 

for DILS, LS0.5, and LS, respectively. The black dot in (a), (b), (c), and (d) 

denotes the location of Osan.  

(b) DILS (c) LS0.5 (d) LS

(a) OBS

(e) DILS (f) LS0.5 (g) LS

(b) DILS (c) LS0.5 (d) LS

(a) OBS

(e) DILS (f) LS0.5 (g) LS
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Figure 5.19 Analysis increment of zonal wind (positive (negative) isoline 

is solid (dashed)) and temperature (shaded) at 1800 UTC 11 July 2006.  

(a) LS(a) LS (b) LS0.7(b) LS0.7

(c) LS0.5(c) LS0.5 (d) LS0.3(d) LS0.3

(e) DILS(e) DILS
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In order to assess the performance of the assimilation of surface data 

with the tuned length scale in the WRF 3DVAR, the surface data were 

assimilated in 3DVAR during one-month period (July 2006). Figure 5.20 

shows the RMSEs of lowest level zonal wind (Fig. 5.20a), meridional 

wind (Fig. 5.20b), and temperature (Fig. 5.20c) after the 3DVAR 

assimilation verified against the AWS surface observations for CNTL, LS 

and DILS experiments. For most of cases, the analysis errors for winds 

and temperature were improved in the experiments with the surface data 

assimilation as compared with CNTL. The analysis error statistics 

showed that the 3DVAR assimilation using the double iteration with two 

different length scales yielded smaller analysis error than the other 

experiments. This result suggests that the reflection of the observed 

information effectively in the model field for DILS can eliminate 

improper information caused by the longer length scale of the 

background error in the NMC method. The RMSEs of zonal wind was 

significantly improved in the DILS as compared with LS, while, the 

RMSEs of temperature was improved slightly.  
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Figure 5.20 (a) RMSE errors of the 3DVAR analysis for (a) zonal wind, (b) 

meridional wind and (c) temperature against AWS surface observations 

for a one-month period (July 2006); CNTL (solid line), LS (solid line with 

down-triangles), and DILS (solid line with dots).  
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As mentioned above, the AWS surface data provide the various 

variables. Therefore, in this study, the sensitivities of variables for AWS 

observations on this heavy rainfall case are also investigated. The 

sensitivity tests included the impact of winds (hereafter referred to as 

UV) versus temperature and relativity humidity (hereafter referred to as 

TRH) from the AWS measurement. Figure 5.21 shows the 12 h 

accumulated rainfall amounts from 2100 UTC 11 July to 0900 UTC 12 July 

2006 for UV and TRH experiment. Comparing the rainfall distribution of 

different experiments as shown in Fig. 5.3 leads to two characteristics in 

the heavy rainfall forecast. First, assimilation of wind variables alone 

(UV) resulted in similar rainfall distribution to assimilation of all 

variables (AWS in Fig.5.3). As shown in Fig. 2.2, background errors for 

winds were larger than observation errors. Thus, the analysis from the 

surface data assimilation inclined toward the observation more than the 

background ( bo   ) and hence produced large wind analysis 

increments. While observation errors for temperature and relative 

humidity were larger than background errors, and the analysis produced 

only small analysis increments. That seemed why rainfall distribution in 

UV was similar to that in AWS experiment. Second, assimilation of the 

wind variables produced better agreement with the observational results 

than assimilation of thermodynamic variables. When the wind variables 

were added to the data assimilation, the southwesterly flow over the 

western coast of the central Korean Peninsula was enhanced as compared 

with the other experiments, which was an important factor influencing 
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continuous storm development (not shown here). While, the rainfall 

distribution by temperature and relative humidity assimilation was 

shifted southward, which was similar to that in CNTL. Thus, it was noted 

that in this case, the wind variables in the surface data assimilation 

assisted in better positioning and amount of the rainband.  

In order to further investigate the impact of surface observations, the 

adjoint-based observation impact is evaluated using WRF and WRF 

3DVAR system. For optimal use of surface observations and forecast skill 

improvement, it is important to evaluate and monitor the impact of the 

surface observations in the numerical weather prediction system. Baker 

and Daley (2000) showed that the sensitivity of the analysis to 

observations could be computed using the adjoint of analysis system. 

And Langland and Baker (2004) showed that the adjoint of a data 

assimilation system could be used to measure the impact of observation 

on forecast skill. Thus, in this study, we investigated the impact of 

surface observations on the forecast skill using the WRF adjoint model. 

While nonlinear forecast model is integrated with full physics packages 

including moist subgrid processes, the adjoint model is integrated with 

only dry physics. The surface observations, wind speed and direction, 

temperature, and relative humidity, were assimilated in the WRF 3DVAR. 

To calculate the observation impact, a forecast error ( )e  from an analysis 

ax  and background bx  was calculated based on total dry energy. 

)()( tfTtf xxCxxe                                            (9) 
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where tx  is analysis state and C is a symmetric, usually diagonal matrix 

of weights. fx  is the forecast from the analysis and background field, 

respectively. The difference f
b

f
a eee   measures the combined impact 

of all observations assimilated at the given time and 0e  indicates that 

the observations improve the forecast skill or reduce the forecast error. In 

this study, the observation impact in reducing 6 hour forecast error was 

evaluated from 0000 UTC 11 to 1200 UTC 14 July 2006, with variant 

formula of third-order approximation of forecast error variation. Figure 

5.22 shows the time-averaged surface observation impact in the 6 km 

horizontal resolution grid. In the results, the water vapor mixing ratio 

showed the negative value, however, the observation impact of water 

vapor mixing ratio was very small compared with the other variables. 

This seems because the relative humidity is less reported than the other 

variables. Among the observation variables, wind observations showed 

larger impact in improving the 6 hour forecast than the thermodynamic 

observations in this modeling system framework, which was consistent 

with the results of Fig. 5.21. And it was noted that the meridional wind 

showed the largest impact in reducing 6 hour forecast error.  
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Figure 5.21 Total accumulated 12 h rainfall (mm, lines) from 2100 UTC 11 

July to 0900 UTC 12 July for (a) UV and (b) TRH experiment. 

(a) UV(a) UV(a) UV

(b) TRH(b) TRH
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Figure 5.22 Time-averaged observation impacts for surface observation 

variables from 0000 UTC 11 to 1200 UTC 14 July 2006.  
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6. Summary and conclusions 
 

This study investigated the impact of the multiple-Doppler radar and 

AWS surface data assimilation on the heavy rainfall forecast, and tuning 

of the length scale of the background error statistics with the surface data 

assimilation. To evaluate the impact of data assimilation, we selected the 

heavy rainfall case that the operational forecasts failed to predict the 

amount of the precipitation. The selected heavy rainfall case was a band-

shaped torrential rainfall associated with MCSs, which resulted in the 

total rainfall amount greater than 330 mm on 11-12 July 2006 in the 

Goyang area of the central Korean Peninsula, located approximately 13 

km northwest of Seoul. In the analysis of Doppler radar data, MCSs 

responsible for the heavy rainfall in Goyang were characterized by the 

back-building formation of convective storms, which were successively 

formed upstream of the rainband.  

Numerical simulations were carried out using a three-dimensional 

non-hydrostatic mesoscale model and its three-dimensional variationial 

data assimilation with the radar and surface data. In addition, to reduce 

the noise of spurious high-frequency gravity waves, IAU method was 

applied for the data assimilation. Using the IAU method, the gravity 

wave fluctuation was greatly reduced and the noise was effectively 

removed, which help to reduce aliasing in subsequent analyses. The 

simulation without data assimilation failed to capture the precipitation 

location, while the simulations with assimilation using radar and surface 
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data showed better agreement with the observations. The assimilation of 

both radar and surface data showed the best agreement with the 

observations in terms of location and amount of rainfall, and had a more 

positive impact on the QPF than the assimilation of either radar data or 

surface data only. In addition, the improvement in the QPF with the 

assimilation of both radar and surface data was observed more clearly for 

heavy rainfall than for light rainfall. Based on the data assimilation 

experiments, we found that the simulation using radar data contributed 

to the development of convective storms in the early hours of forecast, 

and the simulation using surface data led to the establishment of the low-

level environment that was favorable for convection by enhancing the 

thermal gradient, and modulating the frictional velocity and height of the 

PBL over the central Korean Peninsula. These results demonstrate that 

the prediction of heavy rainfall can be potentially improved through the 

data assimilation of radar and surface observations.  

In order to improve the assimilation of surface data, the length scale 

of the recursive filter in the background error was tuned by observation 

minus background (O-B) statistics. This was necessary because the NMC 

method tended to exaggerate the length scale that determined the shape 

and extent to which observed information spread out for the assimilation 

of high-resolution surface data. A comparison revealed that the length 

scale of the NMC method should be halved in order to better assimilate 

the surface data with that of O-B. However, even using half of the 

original length scale, the correlation between the NMC method and O-B 
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statistics was still poor. To solve this problem, we applied a double 

iteration method with two different scales representing large and small 

lengths.  

The results of the data assimilation using an ideal field clearly 

showed that the assimilation using a length scale with tuning factors was 

able to contain small-scale features effectively, as the horizontal influence 

extension of the analysis increments was reduced. The two-dimensional 

wave number distribution was calculated by a two-dimensional Fast 

Fourier Transform (FFT). This showed that the assimilation using the 

double iteration with two different length scales improved the reflection 

of the large- and small-scales features from the observed information to 

the model fields, allowing the 3DVAR system to extract high-resolution 

observed information more effectively. In the results of the heavy rainfall 

forecasts, the results of the data assimilation showed that length scale 

tuning of the recursive filter improved the low-level wind circulation, 

and subsequent precipitation forecasts, compared to the simulation with 

the original length scale of the NMC method. The strengthened low-level 

winds forecast over the west coast of the central Korean Peninsula 

enhanced the transport of warm and moist air towards the heavy rainfall 

region. This consequently enhanced low-level convergence, so that the 

simulations with tuned length scales could identify the location of the 

observed rainfall, although the maximum rainfall amount was 

underestimated compared to observational data. The simulation using 

the double iteration with two different length scales not only reproduced 
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the band-shaped rainfall area over the central Korean Peninsula, but also 

the maximum rainfall amount (321.4 mm). By using a suitable strategy to 

assimilate surface data that allowed the representation of large- and 

small-scale features in the model fields, the assimilation using the double 

iteration with two different length scales contributed to the better 

development of convective cells near the observed heavy rainfall region. 

We assessed the impact of the background error tuning on the 

improvement of the analysis through the assimilation of surface data 

during a one-month period, in comparison with the background error 

estimated by the NMC method. The statistics results for the one-month 

period indicated that the analysis using the double iteration with two 

different length scales improved the RMSEs verified against the surface 

observations, particularly in zonal wind analysis.  

Regarding the surface observations, the adjoint-based surface 

observation impact was evaluated for optimal use of surface observation 

and forecast skill improvement. The observation impact in improving 6 

hour forecast was evaluated with variant formula of third-order 

approximation of forecast error variation. The results indicated that wind 

observations showed larger impact in improving the 6 hour forecast than 

thermodynamic observations. In addition, the meridional wind showed 

the largest impact in reducing 6 hour forecast error.  
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초록 
 

본 연구에서는 집중호우의 예보 향상을 위해 레이더 및 AWS 지표 

관측 자료의 동화 영향을 살펴보았으며, 이를 위해 WRF와 WRF 

3DVAR 시스템을 이용하였다. 또한 자료 동화 시 발생하는 고주파의 

중력파를 제거하기 위하여 IAU 방법을 적용하였으며, 백빌딩 (back-

building) 중규모 대류계에 의해 발생한 2006년 7월 11-12일의 집중 

호우를 대상으로 각 관측 자료 동화가 강수 예보에 미치는 영향을 

살펴보았다. IAU 방법은 중력파 변동을 현저하게 감소시키고 노이즈를 

효과적으로 제거함으로 분석장을 향상시키는데 도움을 주었다. 먼저 

레이더와 지표 관측 자료 동화의 효과를 살펴보기에 앞서, 레이더와 

지표 관측 자료를 동화한 실험이 집중호우의 예측을 향상시키는지를 

살펴보았다. 레이더와 지표 관측 자료를 동시에 동화한 실험은 강수 

강도와 위치에 있어 관측과 유사한 결과를 모의하였으며, 정량적인 

검증에 있어서도 각 관측 자료를 동화한 실험에 비해 긍정적인 효과를 

나타내었다. 또한 백빌딩 중규모 대류계의 특징을 잘 모의하였다. 자료 

동화 실험 결과를 바탕으로, 레이더 관측 자료의 동화는 모형의 초기 

시각에 집중 호우를 유발하는 중규모 대류계 발달에 긍정적인 영향을 

주고, 지표 관측 자료 동화는 강화된 하층 바람의 생성에 영향을 

준다는 결과를 얻어내었다. 또한 지표 관측 자료는 하층의 온도 

경도를 강화시키고 행성경계층을 변화시켜 하층에 대류가 발생하기 

좋은 조건을 형성하는데 중요한 역할을 하였다. 이러한 결과들은 

레이더 및 AWS 지표 관측 자료 동화가 모형의 집중호우 예보 능력 

향상에 기여할 수 있다는 가능성을 제시한다.  
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고해상도의 지표 관측 자료를 동화함에 있어, NMC 방법으로 

계산된 배경오차는 관측 정보의 전파와 형태를 결정하는 길이규모를 

과장되게 표현하는 경향이 있다. 따라서 효과적인 지표 관측 자료 

사용으로 집중호우의 예측을 향상시키기 위해, NMC 방법으로 계산된 

배경오차의 상관도와 관측과 배경장의 차이인 O-B 상관도를 비교하여 

NMC 방법으로 계산된 배경오차의 길이규모를 조절하였다. 비교를 

통해, 보다 효과적으로 지표 관측 자료를 동화하기 위해서는 NMC 

방법으로 계산된 길이규모를 반으로 줄여야 한다는 결과를 얻어내었다. 

하지만 그럼에도 불구하고 O-B 와 NMC 방법의 상관도 형태에서는 

차이가 나타났으며, 이를 해결하기 위하여 본 연구에서는 큰 규모와 

작은 규모로 표현되는 두 개의 길이규모를 적용하여 자료 동화하는 

방법 (DILS) 에 대해 살펴보았다.                 

 이상화 실험에서, 길이규모를 조절한 실험은 NMC 방법으로 

계산된 배경오차를 이용한 실험에 비해 관측 정보의 작은 규모를 

효과적으로 나타내었다. 또한, DILS 는 자료 동화 시스템이 고해상도 

지표 관측 정보를 효과적으로 얻어내는 것을 가능하게 함으로써 NMC 

방법보다 관측 정보를 모형에 보다 효과적으로 반영하는 결과를 

보였다. 집중 호우 사례에 대해, DILS 실험은 길이규모를 조절한 후 한 

번의 자료 동화를 수행한 실험에 비해 강수 분포와 양에 있어 관측과 

유사한 결과를 나타내었다. 이는 강화된 하층 바람과 이와 연관된 

수렴에 의해 집중 호우가 발생했던 지역에 중규모 대류계를 잘 

모의하였기 때문이다. 이러한 결과들은 자료 동화 시스템에서 

적절하게 계산된 배경오차를 이용함으로써 고해상도 AWS 지표 관측 

자료의 활용성을 극대화하고 이를 통해 중규모 수치 모형에서 
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집중호우의 예측 성능을 향상시킬 수 있음을 제시한다. DILS 방법을 

적용한 배경오차가 중규모 예보 모형에 미치는 영향을 평가하기 

위하여 1 개월의 기간에 대하여 지표 관측 자료 동화 실험을 수행하고, 

초기 시각의 분석장을 지표 관측 자료에 대하여 평균제곱근 오차를 

계산하여 검증하였다. 두 번의 길이규모를 적용한 배경오차를 

이용하여 지표 관측 자료의 동화 실험에 적용한 결과, 온도장의 

분석결과는 NMC 방법을 적용한 분석장과 유사하게 나타났지만, 동서 

바람장의 분석오차는 현저하게 감소하는 결과를 보였다.  

지표 관측 자료 동화에 더해 여러 변수를 제공하는 AWS 지표 

관측 자료가 예보장에 미치는 영향을 살펴보기 위해 WRF 수반모형을 

이용하여 6시간 예보장에 대한 지표 관측 자료의 영향에 대해 

살펴보았다. 그 결과, 온도와 상대 습도의 열역학 변수보다는 바람 

자료가 예보장을 향상시킨다는 결과를 얻어냈으며, 바람 변수 

중에서도 남북 바람이 예보장의 오차를 감소시키는데 큰 역할을 

한다는 결과를 얻어내었다. 이러한 결과들은 지표 관측 자료의 변수를 

효과적으로 사용함으로써 중규모 수치 모형의 예측 성능을 향상시킬 

수 있음을 제시한다.  

 

주요어: 레이더와 지표 관측 자료, 자료 동화, 3차원 변분 자료 동화, 

중규모 대류계, 집중 호우, 조절 
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