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Abstract 

 

Prevalence and transmission of antimicrobial 

resistance in Escherichia coli isolated from food-

producing animals 
 

Seung Won Shin 

 

(Supervisor: Han Sang Yoo, D.V.M., Ph.D.) 

 

Department of Veterinary Medicine 

The Graduate School 

Seoul National University 

 

Escherichia coli is a significant reservoir of antimicrobial resistance determinants 

which can spread pathogenic bacteria to human and animals. E. coli strains are able 

to efficiently exchange genetic mobile material such as integrons, transposomes and 

plasmid of pathogens. Acquired resistance mechanism mediated by these 

determinants play on important role in acquisition and dissemination of resistance 
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mechanism. Thus in order to investigate and analyze the prevalence and 

transferability of antimicrobial resistance in farm animals, E. coli strains isolated 

from the pathogenic lesions and fecal samples during the year 2009-2015 from beef 

cattle, pigs and chickens were included in this study.  

The first study on the prevalence and characterization of E. coli isolated from beef 

cattle farms showed the diverse patterns of phenotype and genotype in antimicrobial 

resistance and pathogenicity. The most dominant virulence gene was f17. The 152 

isolates showed multidrug-resistance. Antimicrobial susceptibility test determined 

that the most frequent resistance phenotype was streptomycin (63.1%), followed by 

tetracycline 54.5%), cephalothin (32.8%), and sulphamethoxazole/trimethoprim 

(16.6%). PCR and sequencing showed the prevalence of associated resistance 

determinants as follows: strA-strB (39.0%, 113/290), tet(A) (27.6%, 80/290), blaTEM 

(23.8%, 69/290), and sul2 (22.1%, 97/290). PFGE and O serotyping identified that 

E. coli isolates in this study showed the high degree of clonal diversity in genetic 

relation.  

Second study was focused on ampicillin-resistant bovine E. coli strains harboring 

β-lactamases which have possibility to evolve into Extended-spectrum β-lactamase 

(ESBL) or plasmid-mediated AmpC β-lactamase. In this study, 78 E. coli isolates 

from beef cattle were included in this study. In the disc diffusion test with β-lactams, 
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38.5% of the isolates showed resistance to ampicillin, amoxicillin, and cephalothin, 

together. However, none of the isolates had determined to produce ESBL or AmpC 

β-lactamases by double disc synergy method. All isolates encoded genes for TEM-

1-type β-lactamase. In plasmid replicon typing, IncFIB and IncFIA were identified 

in 71.4% and 41.0% of plasmids, respectively. Of transferable replicon, IncFIB and 

IncFIA were the most frequent type detected (61.5% and 41.0%, respectively). Based 

on these results, we might suggest that the transferable plasmids could provide 

significant effect on the acquisition and dissemination of β-lactam resistance as well 

as selection pressure although the level of antimicrobial usage in beef cattle is 

relatively low compared to those in other livestock animals in Korea.  

 In third study, the prevalence and transferability of resistance in tetracycline-

resistant E. coli isolates from beef cattle in South Korea were carried out. Among 

155 E. coli isolates, 146 were confirmed to be resistant to tetracycline. The 

tetracycline resistance gene tet(A) (46.5%) was the most prevalent. Ninety-one 

(62.3%) isolates were determined to be multidrug-resistant by the disc diffusion 

method. MIC testing using the principal tetracyclines, revealed that isolates carrying 

tet(B) had higher MIC values than isolates carrying tet(A). Conjugation assays 

showed that 121/155 (82.9%) isolates could transfer a tetracycline resistance gene to 

a recipient via the IncFIB replicon (65.1%, 95/155). This study suggests that the high 
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prevalence of tetracycline-resistant E. coli isolates in beef cattle might be due to the 

transferability of tetracycline resistance genes between E. coli populations which 

have survived the selective pressure caused by the use of antimicrobial agents.  

In final study, a total of 281 E. coli strains isolated from pigs and chickens were 

investigated for ESBL-production. Fourteen E. coli isolates were identified to 

produce ESBL. The most common CTX-M- and CMY-types were CTX-M-15 (8/14) 

and CMY-2 (3/14). All ESBL-producing isolates showed resistance to the extent of 

the fourth-generation cephalosporins, along with multi-drug resistance. A 

conjugation assay demonstrated that blaCTX-M and blaCMY genes have the potential to 

be transferred to non-resistant E. coli. The horizontal dissemination of blaCTX-M and 

blaCMY genes was mediated mainly by Frep and IncI1 plasmids. PFGE revealed that 

isolates tested in this study were very diverse, clonally. To our knowledge, this is the 

first report of E. coli isolate possessing blaCMY-6 from chickens in South Korea.  

 Distribution of resistance determinants in transferable plasmid of E. coli 

investigated in these studies could be critical in the public health. In addition future 

use of antimicrobial agents for human and veterinary purpose should be limited 

because of the increase in antimicrobial resistance for E. coli in human and farm 

animals. Thus reasonable use and long-term surveillance are needed for minimizing 

the emergence and spread of antimicrobial resistance in E. coli. 
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General introduction 
 

 

Previous and current researches on antimicrobial resistance in human and farm 

animals have clearly demonstrated that the extensive use of antimicrobials is the 

critical factor in selecting resistance. However, information on the actual prevalence 

and transferability of antimicrobial resistance among the microbes of farm origin has 

been not much available. Although most E. coli strains are considered harmless 

commensal bacteria of humans and animals, this microbe is a significant reservoir 

of antimicrobial resistance determinants which can spread pathogenic bacteria to 

human and animals. Thus, surveillance of antimicrobial resistance among E. coli 

could provide an excellent means for monitoring of antimicrobial resistance in 

human and food animals. For these reason, our study focused on accessing 

prevalence and transferability of antimicrobial resistance especially for β-lactams 

and tetracycline among E. coli isolated from farm animals  

The prevalence of β-lactam-resistant Enterobacteriaceae has increased consistently 

over the past few decades. Escherichia coli (E. coli) producing plasmid-mediated 

AmpC β-lactamases and/or extended-spectrum β-lactamases (ESBLs) has been of 

particular concern because of their implications in human and food animal health 

(Livermore, 2012). These strains encode β-lactamases that mediate resistance to β-
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lactam antimicrobials included penicillins and extended-spectrum cephalosporins 

such as 3rd and 4th generation cephalosporins (Carattoli, 2009). Genes encoding β-

lactamases are located on mobile genetic elements, mostly plasmids, which can 

transfer resistance genes horizontally to non-resistant isolates. Thus, these elements 

are believed to be responsible for the acquisition and dissemination of β-lactam 

antimicrobial resistance in the bacterial population. 

The tetracyclines are one of the most widely used classes of antimicrobial agents 

in human and veterinary medicine because they have several advantages, which 

include a broad spectrum of activity, low cost, oral administration, and few side 

effects (Chopra and Roberts, 2001). After chlortetracycline was introduced into 

clinical medicine in 1948, many derivatives, such as tetracycline, oxytetracycline, 

doxycycline, and minocycline, were developed, and today, these derivatives are 

widely used to treat disease and as growth promoters in the food animal industry. 

However, the widespread and indiscriminate use of tetracyclines has subjected 

bacterial populations to selection pressure and increased the prevalence of 

tetracycline resistance (Chopra and Roberts, 2001; Roberts, 2005). 

Thus,to gain more insight into these findings of β-lactams and tetracycline, our 

study focused on surveillance and molecular characterization of antimicrobial 

resistance in E. coli isolated from cattle, pigs and chickens. As the first part of my 

study, I focused on assessing the prevalence of general antimicrobial resistance 
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among the E. coli isolated from beef cattle. I looked for the relationship between 

virulence factors, phenotype and genotype of resistance in E. coli isolates from 

bovine fecal samples. In continuation to my work of characterization of 

antimicrobial resistance in E. coli of farm animals and its impact on animal and 

human health, I investigated β-lactams’ resistances in E. coli isolated from cattle, 

pigs and chickens.  
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Chapter I 

 

Literature review 
 

After the discovery of penicillin in 1928, antibiotics have been used in human and 

veterinary medicine for several decades, which have saved human and animal from 

the threat caused by infectious diseases (Levy and Marshall, 2004). However, the 

successful use of antimicrobial agent is compromised by the potential development 

of resistance to that compound from the time it is first employed (Cizman, 2003). 

 

1.1. Antimicrobial resistance 

 

 Antimicrobial resistance is the ability of a microorganism to survive and reproduce 

in the presence of an antimicrobial agent that would normally inhibit or kill this 

particular kind of microbes. Antimicrobial resistance is one of the many adaptive 

characteristics that resilient bacterial subpopulations might possess or acquire, 

enabling them to out-compete and out-survive their microbial neighbors and 

overcome host strategies aimed against them. This phenomenon is nearly as old as 

the discovery of antimicrobials themselves, having been described by pioneers like 

Ehrlich for trypanosomes (Ehrlich, 1907) and Fleming for staphylococci (Fleming, 
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1945). What is most alarming today is the rate at which antibiotic resistance often 

develops and how quickly it spreads across the globe and among different species of 

bacteria. Furthermore, as a result of sequential, cumulative acquisition of resistance 

characteristics against different antibiotics, more bacterial pathogens with multiple-

drug resistance are being reported worldwide. As a consequence, many bacterial 

organisms have become resistant to antibiotics which were previously quite 

efficacious 

 

1.1.1. Resistance mechanism of bacteria 

 

Most antimicrobial agents used for the treatment of bacterial infections may 

be classified according to their principal mechanism of action. There are 4 

major modes of action (Fig. 1.1) 

By prevention of the antimicrobial from reaching its target by reducing its 

ability to penetrate into the cell: Antimicrobial compounds almost always require 

access into the bacterial cell to reach their target site where they can interfere with 

the normal function of the bacterial organism. Porin channels are the passageways 

by which these antibiotics would normally cross the bacterial outer membrane. Some 

bacteria protect themselves by prohibiting these antimicrobial compounds from 

entering past their cell walls. For example, a variety of Gram-negative bacteria 
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reduce the uptake of certain antibiotics, such as aminoglycosides and β lactams, by 

modifying the cell membrane porin channel frequency, size, and selectivity. 

Prohibiting entry in this manner will prevent these antimicrobials from reaching their 

intended targets that, for aminoglycosides and β lactams, are the ribosomes and the 

penicillin binding proteins (PBPs), respectively. 

By expulsion of the antimicrobial agents from the cell via general or specific 

efflux pumps: To be effective, antimicrobial agents must also be present at a 

sufficiently high concentration within the bacterial cell. Some bacteria possess 

membrane proteins that act as an export or efflux pump for certain antimicrobials, 

extruding the antibiotic out of the cell as fast as it can enter. This results in low 

intracellular concentrations that are insufficient to elicit an effect. Some efflux 

pumps selectively extrude specific antibiotics such as macrolides, lincosamides, 

streptogramins and tetracyclines, whereas others (referred to as multiple drug 

resistance pumps) expel a variety of structurally diverse anti-infectives with different 

modes of action. 

By inactivation of antimicrobial agents via modification or degradation: 

Another means by which bacteria preserve themselves is by destroying the active 

component of the antimicrobial agent. A classic example is the hydrolytic 

deactivation of the β-lactam ring in penicillins and cephalosporins by the bacterial 

enzyme called β lactamase. The inactivated penicilloic acid will then be ineffective 
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in binding to PBPs (penicllin binding proteins), thereby protecting the process of cell 

wall synthesis. 

By modification of the antimicrobial target within the bacteria: Some resistant 

bacteria evade antimicrobials by reprogramming or camouflaging critical target sites 

to avoid recognition. Therefore, in spite of the presence of an intact and active 

antimicrobial compound, no subsequent binding or inhibition will take place 

 

1.1.2. Molecular mechanisms of resistance 

 

Intrinsic Resistance: Intrinsic resistance is the innate ability of a bacterial species 

to resist activity of a particular antimicrobial agent through its inherent structural or 

functional characteristics, which allow tolerance of a particular drug or antimicrobial 

class. This can also be called insensitivity since it occurs in organisms that have 

never been susceptible to that particular drug. Such natural insensitivity can be due 

to: i) lack of affinity of the drug for the bacterial target, ii) inaccessibility of the drug 

into the bacterial cell, iii) extrusion of the drug by chromosomally encoded active 

exporters, iv) innate production of enzymes that inactivate the drug 

Acquired Resistance: Acquired resistance is said to occur when a particular 

microorganism obtains the ability to resist the activity of a particular antimicrobial 
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agent to which it was previously susceptible. This can result from the mutation of 

genes involved in normal physiological processes and cellular structures, from the 

acquisition of foreign resistance genes or from a combination of these two 

mechanisms. Unlike intrinsic resistance, characteristics associated with acquired 

resistance are found only in some strains or subpopulations of each particular 

bacterial species. Laboratory methods are therefore needed to detect acquired 

resistance in bacterial species that are not intrinsically resistant. These same methods 

are used for monitoring rates of acquired resistance as a means of combating the 

emergence and spread of acquired resistance characteristics in pathogenic and non-

pathogenic bacterial species. Acquired resistance results from successful gene 

change and/or exchange that might involve: mutation or horizontal gene transfer via 

transformation, transduction or conjugation.  

Mutation: A mutation is a spontaneous change in the DNA sequence within the gene 

that may lead to a change in the characteristics which it codes for. Any change in a 

single base pair may lead to a corresponding change in one or more of the amino 

acids for which it codes, which can then change the enzyme or cell structure that 

consequently changes the affinity or effective activity of the targeted antimicrobials. 

In prokaryotic genomes, mutations frequently occur due to base changes caused by 

exogenous agents, DNA polymerase errors, deletions, insertions and duplications. 

For prokaryotes, there is a constant rate of spontaneous mutation of about 0.0033 
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mutations per DNA replication that is relatively uniform for a diverse spectrum of 

organisms. The mutation rate for individual genes varies significantly among and 

within genes (Gillespie, 2001). 

Horizontal Gene Transfer: Horizontal gene transfer, or the process of swapping 

genetic material between neighboring contemporary bacteria, is another means by 

which resistance can be acquired. Many of the antibiotic resistance genes are carried 

on plasmids, transposons or integrons that can act as vectors that transfer these genes 

to other members of the same bacterial species, as well as to bacteria in another genus 

or species. Horizontal gene transfer may occur via three main mechanisms: 

transformation, transduction or conjugation.  
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Fig. 1.1. Mechanism of bacterial resistance against antimicrobial agents commonly 

used. Adapted from Cesar and Barbara, 2012.
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1.2. Trend of antimicrobial consumption in food animal 

 
 1.2.1. Global trend of antimicrobial consumption  

 

 Global consumption of antimicrobials in food animal production was estimated at 

63,151 (±1,560) tons in 2010 and is projected to rise by 67%, to 105,596 (±3,605) 

tons, by 2030. Two thirds (66%) of the global increase (67%) in antimicrobial 

consumption is due to the growing number of animals raised for food production. 

The remaining third (34%) is imputable to a shift in farming practices, with a larger 

proportion of animals projected to be raised in intensive farming systems by 2030. 

In Asia alone, as much as 46% of the increase in antimicrobial consumption by 2030 

is likely due to shifts in production systems. By 2030, antimicrobial consumption in 

Asia is projected to be 51,851 tons, representing 82% of the current global 

antimicrobial consumption in food animals in 2010.  

In 2010, the five countries with the largest shares of global antimicrobial 

consumption in food animal production were China (23%), the United States (13%), 

Brazil (9%), India (3%), and Germany (3%) (Fig. 1.2). By 2030, this ranking is 

projected to be China (30%), the United States (10%), Brazil (8%), India (4%), and 

Mexico (2%) (Fig. 1.2). Among the 50 countries with the largest amounts of 

antimicrobials used in livestock in 2010, the five countries with the greatest projected 
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percentage increases in antimicrobial consumption by 2030 are likely to be Myanmar 

(205%), Indonesia (202%), Nigeria (163%), Peru (160%), and Vietnam (157%). 

China and Brazil are among the largest consumers of antimicrobials currently but 

are not the countries with the most rapid projected increases in antimicrobial 

consumption. This indicates that these two countries have already initiated a shift 

toward more intensified livestock production systems using antimicrobials to 

maintain animal health and increase productivity. Antimicrobial consumption for 

animals in the BRICS (Brazil, Russia, India, China, and South Africa) countries is 

expected to grow by 99% by 2030, whereas their human populations are only 

expected to grow by 13% over the same period (Van Boeckel et al., 2015). 
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Fig. 1.2. Antibiotic consumption in livestock in high-consuming countries, 2010–2030 (projected for 2030). Adapted from 

Van Boeckel et al. 2015 
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 1.2.2. Trend of antimicrobial consumption in Korea 

 

The trends in the consumptions of antimicrobial drugs in animals were investigated 

by animal species and antimicrobial agents in Korea from 2003, which has 

performed by Korea Animal Health Products Association. In total, about 1,500 tons 

of antimicrobial agents were sold each year during 2003-2007, however, the amounts 

tend to decrease to around 1,000 tons from 2008 (Fig. 1.3). Furthermore, less than 

1,000 tons of antimicrobials were sold from 2011 to 2014 for the four consecutive 

years and 635 tons of antimicrobials were sold in 2014 which was the lowest since 

2003 (Fig. 1.3). The largest volume of antimicrobials was sold for use in pigs (47-

57%) followed by poultry (18-24%), fishery (11-26%), and cattle (5-9%). 

Tetracycline (167 tons) and penicillins (162 tons) were the biggest selling 

antimicrobial. Overall sale of most of antimicrobials gradually decreased, however, 

the sales of phenicols and cephalosporins increased by 1.9 and 2.3 times from 2006 

to 2014, respectively (Table 1.1). 
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Table I. Antimicrobial consumption by ingredients in South Korea. Adapted from 

QIA, 2015 
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Fig. 1.3. Continuative trend of sales of antimicrobial drugs for food-producing 

animals in South Korea. Adapted from QIA, 2015 
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1.3. Prevalence of antimicrobial resistance  
 

  Even before penicillin was introduced, resistant strains of bacteria had been 

detected (Abraham and Chain, 1988). The selection pressure caused by the use of 

millions of tons of antibiotics over the past 75 years since antibiotics were introduced 

has made almost all disease-causing bacteria resistant to antibiotics commonly used 

to treat them. The rapid evolution of bacterial resistance is clear in the case of β-

lactamases class of antibiotics. Nearly 1000 resistance-related β-lactamases that 

inactivate these antibiotics have been identified, a ten times increase since before 

1990 (Davies and Davies, 2010). 

Resistance has spread worldwide. Antibiotic-resistant gonorrhoea emerged in 

Vietnam in 1967 (Holmes et al., 1967), then spread to the Philippines, and finally 

the USA (Rasnake et al., 2005). NDM enzymes, first reported in 2008, are now found 

worldwide (Nordmann et al., 2011). ESBLs are a family of enzymes, produced by 

Gram-negative bacteria that confer resistance to third- and fourth cephalosporin 

antibiotics. (Fig. 1.5). The distribution of resistance genes, such as 

Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL), NDM-1, 

and Klebsiella pneumoniae carbapenemase (KPC), indicates the ease with which 

resistance can spread. Findings of a study (Walsh et al., 2011) done in New Delhi 

showed NDM-1-producing bacteria (including Shigella boydii and Vibrio cholera) 

in two (4%) of 50 drinking water samples and 51 (30%) of 171 seepage samples (ie, 
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water pools in streets or rivulets) suggesting the possibility of acquiring resistance 

outside health-care facilities.  

Quinolone antibiotics in particular are an example of misadventure. These drugs 

are synthetic and so do not arise in nature, yet 30 years after their widespread 

introduction resistance is epidemic (Ruiz et al., 2012). More specifically, whole 

genome studies suggest that quinolone resistance was a crucial factor in the evolution 

of MRSA (Holden et al., 2013). Such examples of antibiotic-driven evolution go a 

long way to explaining present epidemics of resistant health-care associated 

infections (Ammerlaan et al., 2013).  

In health-care settings, the spread of a resistant clone can be rapid and have severe 

consequences for vulnerable hosts. Carbapenem resistance among common 

Enterobacteriaceae has increased sharply over the past decade. In 2012, 4·6% of 

acute-care hospitals in the USA reported at least one health-care associated infection 

caused by carbapenem-resistant enterobacteria. The proportion of 

Enterobacteriaceae that were resistant to carbapenems increased from 0% in 2001 

to 1·4% in 2010, with most of the increase recorded in Klebsiella spp (CDC). Health-

care associated infections are also increasingly recognized in low- and middle-

income countries (LMICs).   

These trends are globally consistent. Data from developing countries suggest that 

resistance to the WHO recommended regimen of ampicillin and gentamicin in 
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pathogens causing infections is common: 71% of isolates of Klebsiella spp and 50% 

of E coli are resistant to gentamicin (Zaidi et al., 2005). Resistance is also a problem 

in early-onset, presumably maternally acquired, neonatal infections reported from 

hospital series in developing countries. 60–70% of E coli and nearly 100% of isolates 

of Klebsiella spp are ampicillin resistant, and 40–60% are resistant to gentamicin 

(Waters et al., 2011). High rates of ESBL production in E coli have restricted the use 

of second-line treatment with extended-spectrum cephalosporins (Viswanathan et al., 

2012). Many newborn babies in hospitals in south Asia are now treated with 

carbapenems as first-line treatment for sepsis or presumed sepsis. Most worrying is 

the emergence of panresistant untreatable carbapenem-resistant Enterobacteriaceae 

and Acinetobacter spp. infections associated with high mortality in neonatal 

nurseries (Saleem et al., 2010).  

In Pakistan, the emergence of pan-resistant bacterial isolates such as Acinetobacter 

spp. and carbapenem resistant enterobacteria as causes of health-care associated 

sepsis in hospitals is rendering these infections untreatable (Saleem et al., 2010; 

Perry et al., 2011; Khan et al., 2010). 50–60% of community-acquired Gram 

negative pathogens such as E coli associated with urinary tract infections have 

become resistant to common oral antibiotics (e.g. amoxicillin, cefixime, and 

ciprofloxacin), complicating outpatient management.  

Between July 2010 and August 2011, 72% of 1294 viable K pneumoniae isolates 

from sentinel sites in South Africa had antibiograms suggestive of ESBL production 
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(Perovic et al., 2012). Compounding this problem is the emergence of several 

carbapenemase-resistance mechanisms. NDM-1 was first detected in South Africa 

in September 2011 (Lowman et al., 2011), and of 70 carbapenem resistant 

enterobacteria isolates from private and public hospitals received by the 

Antimicrobial Resistance Reference Laboratory between May and July 2013, 19 

tested positive for NDM-1 (NICD-NHLS, 2012).  

In India, E coli isolated from urine cultures of pregnant women in their first 

trimesters in the community showed highest overall resistance to ampicillin, 

nalidixic acid, and co-trimoxazole, as 75%, 73%, and 59%, respectively, between 

2004 and 2007 (Hollyway et al., 2009). 30% showed resistance to injectable 

antibiotics, such as aminoglycosides. In a study of blood stream infections (Datta et 

al., 2012), the proportion of E coli producing ESBLs increased from 40% in 2002 to 

61% in 2009, and the proportion of K pneumoniae with carbapenem resistance 

increased from 2·4% to 52%. Increasing rates of resistance to colistin and polymyxin 

B in Gram-negative organisms are being reported from countries around the world, 

including South Korea (Ko et al., 2007), Italy (Capone et al., 2013), Greece 

(Antoniadou et al., 2007; Kontopidou et al., 2011), and Saudi Arabia (Baadani et al., 

2013). Moreover, there is some evidence of cross-resistance to colistin and host 

antimicrobial peptides that are part of the body’s immune response (Napier et al., 

2013). Hospital-acquired MRSA arises worldwide (Fig. 1.5). In high income 

countries, it is being tackled with a combination of new antibiotics and better hospital 
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infection control, but community strains of MRSA continue to proliferate (Klein et 

al., 2013). In LMICs such as South Africa, 52% of 1147 S aureus viable isolates 

from hospitalized bacteremic intensive care unit patients were MRSAs. Gram-

positive infections are less common in India, but high rates of MRSA in clinical 

isolates in various studies in India have been documented as 54·8% (range 32–80%) 

(Anupurba et al., 2003). In Pakistan, rates of MRSA have been fairly consistent since 

the mid-2000s at roughly 50% (Zafar et al., 2011). However, community-acquired 

MRSA are increasingly reported, and rates range from 5–10% (Malik et al., 2009). 

 

 

Fig. 1.4. Percentage of extended-spectrum β-lactamase producing Escherichia coli, 

by country. The data were collected from 2011 to 2014. Adapted from CDDEP, 2015. 
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Fig. 1.5. Percentage of Staphylococcus aureus isolates that are methicillin resistant 

(MRSA), by country. Adapted from CDDEP, 2015 
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1.4. Emerging trends of resistance in E. coli 

 

 1.4.1. Extended-spectrum β-lactamases (ESBLs) 

 

The most well-known of the newer β-lactamases was first described in 1983 and 

have been named the extended-spectrum β-lactamases (ESBLs). These enzymes 

have the ability to hydrolyse the penicillins, cephalosporins and monobactams, but 

not the cephamycins and carbapenems. ESBLs are inhibited by classical β-lactamase 

inhibitors such as clavulanic acid, sulbactam and tazobactam (Paterson and Bonomo, 

2005). Although ESBLs have been identified in a range of Enterobacteriaceae, they 

are most often present in E. coli and K. pneumoniae. The majority of ESBLs 

identified in clinical isolates during the 1980s to 90s were of the SHV or TEM types, 

which evolved from parent enzymes such as TEM-1, -2 and SHV-1. A different type 

of ESBL, named CTX-M β-lactamases, originated from environmental Kluyvera spp, 

and gained prominence in the early 2000s with reports of clinical isolates of E. coli 

producing these enzymes from Europe, Africa, Asia, South and North America 

(Pitout et al., 2005). Since the middle of 2000’s, the prevalence of CTX-M β-

lactamases increased significantly in E. coli from various parts of the world, and 

today have become the most wide-spread and common type of ESBL (Pitout et al., 

2005).   
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Surveys from several countries worldwide have illustrated an alarming trend of 

associated resistance to other classes of antimicrobial agents among CTX-M-

producing E. coli that included trimethoprim-sulfamethoxazole, tetracycline, 

gentamicin, tobramycin and ciprofloxacin (Pitout et al., 2005). Studies consistently 

show that infections due to ESBL-producing Enterobacteriaceae are associated with 

a delay in initiation of appropriate antibiotic therapy, which consequently prolongs 

hospital stays and increases hospital costs (Schwaber and Carmeli, 2007). More 

importantly, failure to initiate appropriate antibiotic therapy from the start appears 

to be responsible for higher patient mortality (Ulett et al., 2013).  

Currently, the most widespread and prevalent type of CTX-M enzyme among 

human clinical isolates of E. coli is CTX-M-15 (D'Andrea MM et al., 2013). In 2008, 

E. coli sequence type (ST) ST131 with CTX-M-15 was simultaneously identified in 

nine countries, spanning three continents (Coque et al., 2008). The intercontinental 

dissemination of this ST since then, has contributed immensely to the worldwide 

emergence of fluoroquinolone resistant and CTX-M-15 producing E. coli (Peirano 

and Pitout, 2010). Recent surveys have shown that ST131 accounted for over 50% 

of fluoroquinolone-resistant or ESBL-producing E. coli (Colpan et al., 2013; 

Johnson et al., 2010).  A recent study from Canada that investigated the molecular 

epidemiology of ESBLs-producing E. coli causing bacteremia over an 11 year period 

(2000-2010), showed that ST131 was the most common and antimicrobial resistant 
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sequence type, and the influx of a single pulsotype of ST131, was responsible for a 

significant increase since 2007 of ESBL-producing E. coli.  

 

1.4.2. Plasmid-mediated AmpC-β-lactamase 

 

E. coli possess a chromosomal gene that encodes for an AmpC β-lactamase. 

Usually, low amounts of these β-lactamases are produced because the AmpC gene 

is regulated by a weak promoter and a strong attenuator system (Jacoby, 2009). 

Occasionally, cephamycin and/or cephalosporin-resistant E. coli are encountered 

that produce plasmid-mediated β-lactamases, derived from bacteria with 

chromosomally encoded AmpC-cephalosporinases (Pitout, 2008). E. coli that 

produce plasmid-mediated or imported AmpC β-lactamases were first reported in 

the 1980's. These enzymes (e.g. CMY, ACT, FOX, ACT, and DHA types) are 

derivatives of the chromosomally encoded AmpC cephalosporinases of bacteria such 

as Enterobacter spp., C. freundii, M. morganii, Aeromonas spp. and Hafnia alvei 

and are not inhibited by the classical β-lactamase inhibitors such as clavulanic acid, 

sulbactam and tazobactam (Jacoby, 2009). However, different types of inhibitors 

such as boronic acid and cloxacillin have the ability to inhibit chromosomal and 

plasmid-mediated AmpC β-lactamases (Thomson, 2013). Resistance to the fourth 

generation cephalosporins (e.g. cefepime) are caused by point mutations in AmpC 

β-lactamases and is called extended-spectrum cephalosporinases (Jacoby, 2009). 
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The genes are typically encoded on large plasmids containing additional antibiotic 

resistance genes that are responsible for multi-resistant phenotype, leaving few 

therapeutic options (Harris and Ferguson, 2012). 

A survey from five children’s hospitals in China, detected AmpC β-lactamases in 

10% of K. pneumoniae, in 2% of E. coli with an overall increase from 2005 (2.6%) 

to 9.3% in 2006 (Ding et al., 2008). A multicenter survey from 63 hospitals 

conducted in the USA detected transferable AmpC β-lactamases in 3.3% of K. 

pneumoniae isolates at 16 of the 63 sites (25%) with no difference between ICU and 

non-ICU sites (Moland et al., 2006). The SENTRY Antimicrobial Surveillance 

Program in the USA found plasmid-mediated AmpC b-lactamases in 2% of 1429 E. 

coli isolates from 30 centers; with CMY-2, FOX-5 and DHA-1 being identified 

(Deshpande et al., 2006). 

It seems that CMY-2 (stands for active on CephaMYcins) is the most common 

imported AmpC β-lactamase reported in Enterobacteriaceae from different areas of 

the world (Jacoby, 2009). Jacoby and colleagues found plasmid-mediated AmpC-

type resistance in 7 of 75 of ceftazidime resistant E. coli from 25 U.S. states; 2 of 

these isolates produced CMY-2 (Alvarez et al., 2004). Mulvey and colleagues 

studied 232 cefoxitin resistant E. coli from 12 different hospitals in Canada and 

found 25 (11%) strains contained CMY-2 and 51 (22%) had different promoter and 

attenuator mutations (Mulvey et al., 2005). Hospital surveys from Asia, North 

America and Europe have shown that the DHA types of cephamycinases are mostly 
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present in Klebsiella spp. from Asia, CMY are present in E. coli from Asia, North 

American and Europe while FOX are present in Klebsiella spp. from North America 

and Europe (Jacoby, 2009). 

Just like ESBL-producing bacteria, organisms with plasmid-mediated AmpC 

enzymes have mostly been responsible for nosocomial outbreaks on a worldwide 

basis especially during the late 1980’s and 1990’s (Jacoby, 2009). Analysis of these 

outbreaks had shown that increased length of hospital stay, severity of illness, 

admission to an intensive care unit (ICU), and previous exposure to antibiotics are 

associated with infections with plasmid-mediated AmpC β-lactamase producing 

Enterobacteriaceae. In a study reported by Pai et al from Korea, bloodstream 

infections caused by plasmid-mediated AmpC-producing (i.e. DHA-1 and CMY-1) 

K. pneumoniae had similar clinical features, risk factors and outcomes to those 

patients infected with TEM- or SHV-related ESBL producers (Pai et al., 2004). All 

the patients that received an extended-spectrum cephalosporin (i.e. cefotaxime, 

ceftazidime, ceftriaxone) had failed therapy. 

A population-based study from the Canada has identified AmpC-producing E. coli 

in 61% of 369 patients with community-associated infections due to cephamycin-

resistant isolates and found that women were at five-times higher risk for developing 

an infection (Pitout et al., 2007). PCR showed that 125 (34%) were positive for 

blaCMY genes and sequencing identified these enzymes to be CMY-2. The study 

concluded that in this large Canadian region, AmpC-producing E. coli is an emerging 
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pathogen in the community that commonly causes urinary tract infections in older 

women. This was followed by 2 reports from Washington and Nebraska respectively 

that showed Enterobacteriaceae that produce CMY, ACC and DHA types of AmpC 

β-lactamases are present in outpatient clinics in the USA (Hanson et al., 2008; Qin 

et al., 2008). 

 

1.4.3. Metallo-β-lactamases (MBLs) 

 

The production of MBLs of the IMP and VIM types, have mostly been detected in 

P. aeruginosa and remain relatively rare in members of the Enterobacteriaceae 

except for K. pneumoniae and E. coli present in Mediterranean Europe (VIM-

producing K. pneumoniae in Greece, Italy and Spain), and Taiwan and Japan (IMP-

producing E. coli) (Bushnell et al., 2013). IMP and VIM types of MBLs are often 

associated with class 1 integrons that contain various gene cassettes that often render 

isolates resistant to various groups of antimicrobial agents. 

Recently, a new type of metallo-β-lactamase (MBL), named NDM, was described 

in K. pneumoniae and E. coli recovered from a Swedish patient who was hospitalized 

in New Delhi, India. MBLs have the ability to hydrolyse a wide variety of β-lactams, 

including the penicillins, cephalosporins and carbapenems, but not the monobactams, 

and are inhibited by metal chelators such as EDTA (Johnson and Woodford, 2013). 
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The majority of NDM-1-producing bacteria are broadly resistant to various drug 

classes and also carry a diversity of other resistance mechanisms (e.g. to 

aminoglycosides and fluoroquinolones), which leaves limited treatment options. 

From their original detection in 2008, NDM-1–carrying Enterobacteriaceae have 

been identified in more than 70 countries in all regions (Fig. 1.6). Kumarasamy and 

colleagues (Kumarasamy et al., 2010), provide compelling evidence that NDM-

producing Enterobacteriaceae (mostly K. pneumoniae and E. coli) are widespread 

in India and Pakistan. They also found that many UK patients infected with NDM-

producing bacteria had recently traveled to India to undergo several types of medical 

procedures. Recent reports from the subcontinent (including India, Pakistan and 

Bangladesh) show that the distribution of NDM β-lactamases among 

Enterobacteriaceae are widespread through these countries (Castanheira et al., 

2011a; Castanheira et al., 2011b; Lascols et al., 2009). 

Since 2011, NDM-1-positive bacteria have been reported worldwide (Johnson and 

Woodford, 2013). Most are Enterobacteriaceae including E. coli from patients 

hospitalized in 2009 and 2010 with an epidemiological link to the Indian 

subcontinent. Recent findings suggest that the Balkan states and the Middle East 

might act as secondary reservoirs for the spread of NDM-1, which may or may not 

initially have reached these countries from the Indian subcontinent (Johnson and 

Woodford, 2013). Enterobacteriaceae with NDM-1 have been recovered from many 

clinical settings, reflecting the disease spectra of these opportunistic bacteria, 
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including hospital and community-onset urinary tract infections, septicemia, 

pulmonary infections, peritonitis, device-associated infections and soft tissue 

infections. NDM-1-positive bacteria have been recovered from the gut flora of 

travelers returning from the Indian subcontinent and undergoing microbiological 

investigation for unrelated diarrheal symptoms (Leverstein-Van Hall et al., 2010). 

There is also widespread environmental contamination by NDM-1-positive bacteria 

in New Delhi (Walsh et al., 2011). 

There is no evidence that E. coli that produce NDM are more virulent than other 

isolates, however recent studies described presence of NDM β-lactamases in the very 

successful E. coli ST131 with an identical virulence genotype than ST131 that 

produce CTX-M β-lactamases (Pitout, 2008). Of interest, ST131 with VIM, KPC, 

OXA-48 carbapenemases have also recently been described (Johnson and Woodford, 

2013). Antibiotics such as colistin, tigecycline and fosfomycin show the best activity 

against NDM-producing bacteria (Akova et al., 2012). 
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Fig. 1.6. Spread of New Delhi metallo-β-lactamase-1: first detection Adapted from 

Johnson and Woodford, 2013 
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1.5. Plasmid mediated transfer of antimicrobial resistance 

among E. coli 

 

There are plasmid families that are largely prevalent and also plasmids prevalently 

associated with specific resistance genes. The IncFII, IncA/C, IncL/M, and IncI1 

plasmids showed the highest occurrence among typed resistance plasmids (Table 1.2) 

 

1.5.1. Plasmids carrying ESBLs in E. coli of animal origin 

 

IncF plasmids carrying the blaCTX-M-15 gene are not exclusive to clone ST131, since 

they were identified in other E. coli sequence types (ST405, ST354, ST28, and 

ST695). Plasmids belonging to the IncL/M family were responsible for the spread of 

CTX-M-3 in Poland, since common plasmid scaffolds were identified in eight 

species in 15 hospitals (Baraniak et al., 2002; Marcade et al., 2009). IncL/M plasmids 

carrying the blaCTX-M-3 gene were also reported in other Eastern European countries 

and in France, Belgium, and Korea, and very often, the aminoglycoside resistance 

gene armA has been co-localized on the same IncL/M plasmid as the blaCTX-M-3 gene. 

The spread of blaCTX-M-9 in clinical E. coli and S. enterica serovar Virchow was 
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largely due to the dissemination of plasmids in the IncHI2 group, although this gene 

has been found sporadically with other plasmid families. Plasmids of the IncHI2 

group were also associated with the blaCTX-M-2 gene in France and Spain. The IncHI2 

prototypic plasmid was first identified in Serratia marcescens in the United States 

in 1969, but at that time, this plasmid did not contain any blaCTX-M genes or integrons; 

thus, these resistance determinants probably represent a recent acquisition into novel 

IncHI2 plasmid derivatives (Gilmour et al. 2004).  

IncI1 plasmids were associated with the spread of several other ESBL genes. E. 

coli producing CTX-M-1 was identified in 10.7% of poultry fecal samples collected 

in 2005 from 10 slaughterhouses located in seven districts in France, and the blaCTX-

M-1 gene was located on IncI1 plasmids in all the isolates (Girlich et al. 2007). 

Recently, the blaCTX-M-1 gene was associated with IncI1 in E. coli isolated from 

human patients in different parts of France, suggesting a potential link between 

animals and humans for the dissemination of this gene variant in this country 

(Marcade et al., 2009). However, the IncI1 plasmids are so recurrent in 

Enterobacteriaceae that a further typing scheme has been proposed by using plasmid 

multilocus sequence typing (MLST) (García-Ferna´ndez et al. 2009). Besides the 

IncI1 plasmids, the blaCTX-M-1 gene was also identified on plasmids belonging to the 

IncN group in human clinical strains of E. coli and K. pneumoniae from France and 

Spain and in pigs and farm personnel from Denmark (Diestra et al. 2009; Marcade 

et al., 2009; Moodley and Guardabassi 2009). The finding that IncI1 and IncN are 
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both involved in the transmission of the blaCTX-M-1 gene suggests an animal reservoir 

for this ESBL gene variant, since either IncN or IncI1 plasmid type has been 

demonstrated to be highly prevalent in E. coli of the avian fecal flora (Johnson et al., 

2007). The spread of blaCTX-M-1-carrying plasmids in animals could be sustained by 

the use of expanded-spectrum cephalosporins in veterinary medicine. In vivo 

experiments demonstrated the selection and proliferation of indigenous CTX-M-1-

producing E. coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or 

cefquinome, and such effects persisted for a period longer than the withdrawal time 

required for these antimicrobials (Cavaco et al., 2008).  

 

1.5.2. Plasmids carrying AmpC β-lactamases in E. coli 

 

The majority of the blaCMY-2 plasmids identified in E. coli in the United States were 

categorized in the IncA/C group. IncA/C-positive strains were isolated from beef, 

chicken, turkey, and pork and were found in samples from different regions of the 

United States, revealing that this common plasmid backbone is broadly disseminated 

among resistant zoonotic pathogens associated with agriculture in this country 

(Winokur et al., 2001). Interestingly, repA/C replicons occurred in only 1.0% of E. 

coli obtained from healthy humans not exposed to antimicrobials and were absent in 

fecal flora from healthy birds (Johnson et al., 2007). Therefore, the occurrence of 
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IncA/C plasmids seems advantageous in bacterial populations that are under 

antimicrobial selective pressure, likely related to the use of ceftiofur in veterinary 

medicine (Winokur et al., 2001). Several blaCMY gene variants were also associated 

with the IncI1 plasmid family. As previously mentioned, IncI1 plasmids are 

widespread in E. coli animal strains (17.4% and 41% in avian commensal and 

pathogenic E. coli strains, respectively), again suggesting that the dissemination of 

this gene could occur in the intestinal tract of animals (Johnson et al., 2007).  

 

1.5.3. Plasmid-mediated carbapenem resistance in E. coli 

 

The 1998–2004 global SENTRY survey found only rare examples of MBL genes 

(blaIMP-1, blaIMP-11, and blaVIM-1) among Enterobacteriaceae isolates (Deshpande et 

al., 2006). The blaIMP-4 gene was recognized in Australian Enterobacteriaceae from 

Sydney in 2003 to 2006 and caused outbreaks in Melbourne in 2004 and 2005. 

IncL/M plasmids were identified in 22 of 23 Sydney isolates over 3 years, while 

IncA/C plasmids were detected in all Melbourne isolates. K. pneumoniae isolates 

carrying the blaVIM-1 gene and E. coli isolates carrying blaVIM-1 and blaCMY-13 genes, 

randomly collected from five different hospitals in Athens and Piraeus from 2001 to 

2003 and representative of the VIM-1-producing isolates circulating in Greece, were 

all assigned to the IncN group, indicating the spread of an epidemic plasmid 
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associated with the emergence of the blaVIM-1 gene in that country (Carattoli et al. 

2006). Four MBL-producing species (K. pneumoniae, K. oxytoca, Enterobacter 

cloacae, and E. coli) have been described in Spain. The strains showed different 

blaVIM-1 genetic environments, and the gene was located on different plasmid 

scaffolds. A 60-kb conjugative plasmid belonging to the IncI1 group was observed 

in the K. pneumoniae clone and in E. coli, while plasmids belonging to the IncH12 

group were found among E. cloacae isolates.  

 

1.5.4. Plasmids conferring quinolone and/or aminoglycoside resistance 

 

 Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal 

mutations, leading to alterations in target enzymes or drug accumulation. More 

recently, plasmid-mediated quinolone resistance (PMQR) has been reported by the 

acquisition of the qnr, qepA, and aac(6’)-Ib-cr genes (Poirel et al ,2008). Very often, 

PMQR is associated with ESBLs and/or aminoglycoside resistance genes on the 

same plasmid, and the spread of such multidrug-resistance plasmids among 

Enterobacteriaceae strains has a potential impact on the empirical management of 

complicated urinary tract infections (Paterson, 2006). High-level resistance to 

aminoglycosides mediated by the production of 16S rRNA methylase has been 

increasingly reported among various gram negative pathogens. Six plasmid-encoded 
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16S rRNA methylases have been identified, as follows: rmtA to rmtD, armA, and 

npmA (Doi and Arakawa, 2007). As previously mentioned, the dissemination of 

armA in clinical isolates from Europe has been associated with IncL/M plasmids co-

localizing with the blaCTX-M-3 gene (Bercot et al., 2008; Bogaerts et al., 2007; 

Galimand et al. 2005), while armA was identified on an IncN plasmid in animals 

from Spain (Gonzalez-Zorn et al. 2005). The rmtB gene was prevalently associated 

with IncA/C plasmids, which co-localized with the blaCTX-M-14 gene (Kang et al., 

2008; Kang et al., 2009). The prevalent plasmid families carrying armA were IncA/C 

and IncHI2 until 1998, but after 2001. The fully sequenced IncF plasmid pIP1206 

was identified in E. coli in France and carried the rmtB and qepA genes, with the 

latter gene conferring resistance to hydrophilic fluoroquinolones by efflux. pIP1206 

carried two copies of the repFII replicon and two additional replicons of the repFIA 

and repFIB types. The qepA, rmtB genes and the qepA2 gene variant were recently 

identified on IncF plasmids in Enterobacter aerogenes from Korea and also in E. 

coli from France (Cattoir et al., 2008; Park et al., 2009). The qnrA1 gene was located 

within a sul1-type integron often associated with the blaVEB-1 gene. The qnrB4 and 

qnrB6 genes associated with armA and ESBL genes were identified in E. col in 

Korea, located on particular IncF plasmids, carrying the replicon FIIAs, similar to 

Salmonella virulence plasmids (Tamang et al., 2008).  

 

53 
 



Table 1.2. Major plasmid families and associated resistance genes in antimicrobial 

resistant E. coli isolated worldwide from animal. Adapted from Carattoli et al. 2009 

 

 

 

Replicon 
No. of  

plasmid 
Resistance genes 

F 331 

aac(6’)-Ib-cr, blaCMY-2, blaCTX-M-1-2-3-9-14-15-24-27, 

blaDHA-1, blaSHV-2-5-12, blaTEM-1, armA, rmtB, qepA, 

qepA2, qnrA1, qnrB2, qnrB4, qnrB6, qnrB19, 

qnrS1 

A/C 317 

blaCMY-2-4, blaCTX-M-2-3-14-15-56, blaSHV-2-5-12, 

blaTEM-3-21-24, blaIMP-4-8-13, blaVIM-4, blaVEB-1, 

armA, rmtB, qnrA1 

L/M 270 

aac(6’)-Ib-cr, blaCTX-M-1-3-15-42, blaTEM-3-10, 

blaSHV-5, blaIMP-4-8, armA, qnrA1, qnrB1, qnrB2, 

qnrB4, qnrS1 

I1 146 
blaCMY-2-7-21, blaCTX-M-1-2-3-9-14-15-24, blaSHV-12, 

blaTEM-1-3-52, blaVIM-1, armA, rmtB, mphA, qnrA1 

HI2 90 
blaCTX-M-2-3-9-14, blaSHV-12, blaIMP-4, blaVIM-1, 

armA, qnrA1, qnrS1 

N 70 
blaKPC-2, blaCTX-M-1-3-15-32-40, blaVIM-1, qnrA3, 

qnrB2, qnrB19, qnrS1, armA 
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Chapter II 

 

Antimicrobial resistance, virulence gene and PFGE-

profiling of Escherichia coli isolates from cattle farms 

 

 

Abstract 

 

To estimate the prevalence of Escherichia coli (E. coli) with potential pathogenicity 

in cattle farm in the South Korea, a total of 290 E. coli isolates were isolated from 

cattle farms over a period of 2 years in South Korea. These were examined for 

phenotypic and genotypic characteristics, including antimicrobial susceptibility, 

serotype, and gene profiles of virulence and antimicrobial resistance. The most 

dominant virulence gene was f17 (26.2%), followed by stx2 (15.9%), ehxA (11.0%), 

stx1 (8.3%), eae (5.2%), and sta (4.1%). 15.9% of the STEC isolates possessed eae. 

All isolates except for one showed resistance to one or more antimicrobials, with 152 

isolates exhibiting multidrug-resistance. The most prevalent resistance phenotype 

detected was streptomycin (63.1%), followed by tetracycline (54.5%), neomycin 

(40.3%), cephalothin (32.8%), amoxicillin (30.0%), ampicillin (29.7%), and 
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sulphamethoxazole/trimethoprim (16.6%). The associated resistance determinants 

detected were strA-strB (39.0%), tet(E) (80.0%), tet(A) (27.6%), aac(3)-IV (33.1%), 

aphA1 (21.4%), blaTEM (23.8%), and sul2 (22.1%). When investigated by O 

serotyping and PFGE molecular subtyping, the high degree of diversity was 

exhibited in E. coli isolates. These results suggest that E. coli isolates from South 

Korean cattle farms are significantly diverse in terms of virulence and antimicrobial 

resistance. In conclusion, the gastroinstestinal flora of cattle could be a significant 

reservoir of diverse virulence and antimicrobial resistance determinants, which is 

potentially hazardous to public health. 

 

Keywords: Escherichia coli, prevalence, virulence, antimicrobial resistance, 

serotyping, PFGE 
 

 

Introduction 

 

Although Escherichia coli (E. coli) is usually a non-pathogenic member of the 

gastroinstestinal flora of the host, some strains may cause diseases that represent a 

hazard to the public health and the food-producing animal industry. Bacterial 

pathogenicity is determined by the presence of virulence factors which are mostly 

encoded by genes located in chromosomes and/or plasmids. Therefore, it is very 
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important to distinguish the pathogenic E. coli from gastroinstestinal flora by 

detection of the virulence factors, such as toxins, fimbriae and non-fimbrial adhesion 

molecules. Antimicrobial agents have been used as preventive measures against 

bacterial infections in the food-producing animal industry, with beneficial effects in 

decreasing morbidity and mortality (Berge et al., 2009). However, the intensive and 

indiscriminate usage of antimicrobials may induce the emergence and dissemination 

of antimicrobial resistance, not only in pathogenic bacteria but also in commensals. 

Also, until 2011, copious amounts of various antimicrobial agents were used as feed 

supplements in the livestock industry in South Korea. Furthermore, until 2013, 

antimicrobial agents could be used without a veterinarian’s prescription. These 

factors may have accelerated the emergence and dissemination of antimicrobial 

resistance. Antimicrobial resistance genes have been considered as one of virulence 

factors (Davies and Davies, 2010). Moreover, commensal E. coli isolates, resistant 

to several antimicrobials, may constitute an important reservoir of antimicrobial 

resistance determinants, which may be transferred via transmissible plasmids intra 

and/or inter species (Wright, 2007). Thus E. coli strains isolated from healthy 

animals need to be assessed for the prevalence of resistance in animal populations, 

and these results can be used in several monitoring programs (Franklin et al., 2001). 

Pathogenic E. coli strains isolated from animals can be transmitted from animals to 

humans through the food chain and give rise to severe disease in humans. Therefore 

it is important that the pathogenic E. coli strains are distinguished from 
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gastroinstestinal flora in food-animals by identification of virulence factors. 

Serotyping has been widely used for the differentiation of E. coli pathogenicity, and 

it is of value due to the common association of some serotypes with calf diarrhea 

(Acres, 1985). However, the pathogenicity of E. coli strains cannot be determined 

only by serotyping because there are many factors to decide the virulence of E. coli. 

According to the Center for Disease Control and Prevention (CDC), pathogenic E. 

coli isolates are classified as enterotoxigenic E. coli (ETEC), Shiga toxin-producing 

E. coli (STEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), 

enteroinvasive E. coli (EIEC) and diffusely adherent E. coli (DAEC) (CDC, 2001). 

ETEC isolates can cause diarrhea in newborn calves by the expression of fimbriae 

(F5, F41, and F17) and enterotoxin (STa and LT) (Nagy and Fekete, 1999). STEC 

isolates, producing Stx1, Stx2, or both, known also as verotoxigenic E. coli (VTEC), 

are the significant causatives of diarrhea in calves (Nagy and Fekete, 1999). In 

humans, STEC can cause hemorrhagic colitis (HC) and the hemolytic uremic 

syndrome (HUS) (Nataro and Kaper, 1998). EPEC and STEC isolates, carrying eae 

genes, produce the adhesion protein intimin to initiate attachment to the enterocyte 

and effacement of the microvillus border (Jerse et al., 1990). Although several 

researches on antimicrobial resistance or virulence factors in pathogenic bacteria 

have been carried out in South Korea (Kang et al., 2005; Lim et al., 2007), there has 

been no report showing the relationship between antimicrobial resistance and 

virulence factors in bacteria isolated on cattle farms. Based on current knowledge, 
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the genotypic and phenotypic prevalence of virulence factors and of antimicrobial 

resistance were investigated in enteric E. coli isolated from cattle farms in South 

Korea. Also, their genetic relationships were compared, using the macrorestriction 

profiling (PFGE). This information may give a new horizon to develop a new 

preventive measure against foodanimal originated E. coli infection.  

 

 

Materials and Methods 

 

Bacterial isolates 

 

A total 290 E. coli strains were isolated from 830 fecal samples collected from 

beef cattle on eight farms from six different provinces (Asan, Anyang, Buyeo, 

Chilgok, Namyangju, and Gwangju) between 2011 and 2012. These farms were 

ceftificated by HACCP (Harzard Analysis Critical Control Point) for their hygeine. 

The samples were obtained from cattle rectum and pats on the shed. The samples 

were placed at 4–8°C and delivered to the laboratory within 24 h. The fecal samples 

were plated onto eosin methylene blue (EMB) agar, and MacConkey agar for 

selection, and were incubated at 37°C for 18 h. From each sample, three to five 

colonies that were suspected to be E. coli were sub-cultured onto a blood agar plate 

(BAP). Isolates were confirmed as E. coli by a standard biochemical test (Indole, 
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Methyl Red, Voges-Proskauer, and citrate utilization tests) and by the Vitek2 system 

(bioMérieux, France). The confirmed E. coli isolates were stored in tryptic soy broth 

(TSB), with 20% glycerol, at -70°C to await further analysis. The reference E. coli 

strains for virulence factor were O9:K35 (K99+ and F41+), O141:K85ab (987P+ and 

STa+) and O15:H11 (LT+) which were kindly provided by the Animal and Plant 

Quarantine Agency, Anyang, Republic of Korea. In addition, the E. coli strains 

EC192 (Stx1+, Stx2+, Intimin+, and EhxA+) isolated in this study were used for 

reference.  

 

Antimicrobial susceptibility test 

 

The resistance against 15 antimicrobials was tested by the disk diffusion test. The 

following antimicrobial compounds were used: enrofloxacin (ENR), 5 μg (Bayer, 

Germany); ampicillin (AMP) 10 μg; amoxicillin (AML), 10 μg; streptomycin (S), 

10 μg; gentamicin (CN), 10 μg; neomycin (N), 30 μg; tetracycline (TE), 30 μg; 

nalidixic acid (NA), 30 μg; ciprofloxacin (CIP), 5 μg; cephalothin (KF), 30 μg; 

ceftiofur (EFT), 30 μg; ceftazidime (CAZ), 30 μg; chloramphenicol (C), 30 μg; 

florfenicol (FFC), 30 μg; sulfamethoxazole/trimethoprim (SXT), 25 μg, which 

contains 1.25 μg of trimethoprim and 23.75 μg of sulfamethoxazole (Oxoid, 

England). All antimicrobial resistance tests were performed on Mueller-Hinton (MH) 

agar, and data were classified as susceptible or resistant, based on the Clinical and 
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Laboratory Standards Institute (CLSI) guidelines. E. coli ATCC 29522 was included 

as the quality control strain.  

 

Detection of virulence and antimicrobial resistance genes 

 

Bacterial genomic DNA was extracted using a Wizard genomic DNA purification 

kit (Promega, USA), and following the manufacturer’s instructions. The 

concentration of DNA was measured using a Nanodrop N-1000 spectrophotometer 

(Thermoscientific, USA). PCR assay for virulence genes: All isolates were analyzed 

for nine different virulence genes. The multiplex polymerase chain reactions (m-

PCR) were used to detect toxins (Stx1, Stx2, STa, and LT), adhesions (F5, F17, F41, 

and Intimin) and enterohemolysin, and were carried out as described in earlier 

studies (Schmidt et al., 1995; Franck et al., 1998; Van Bost et al., 2001; Lopez-

Saucedo et al., 2003), with some modifications. The primers and PCR conditions 

used in this study are shown in Table 2.1.  

 

PCR assay for antimicrobial resistance genes 

 

Genes encoded for aminoglycoside resistance (aadA, aadB, aphA1, aphA2, strA-

strB, and aac(3)-IV), β-lactam resistance (ampC, blaTEM, blaOXA, and blaSHV), 

tetracycline resistance (tet(A), tet(B), tet(C), tet(D), tet(E), and tet(G)), phenicol 
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resistance (cat, cmlA, and floR) and sulfonamide resistance (sul1, sul2, and sul3) 

were screened as described by previous study (Karczmarczyk et al., 2011a) with 

some modifications (Table 2.1). EC137, EC192, and EC277 isolated in this study 

were used as the positive controls for detection of aadA, aphA1, strA-strB, aac(3)-

IV, ampC, blaTEM, tet(A), tet(B), tet(C), tet(E), cat, cmlA, floR, sul1, sul2, and sul3.  

All PCRs were performed on Veriti thermocycler (Applied Biosystems, USA), and 

each run included a negative control and an appropriate positive control. The 

reactions were run in duplicate to confirm results. All PCR products were analyzed 

by electrophoresis on a 2.0% agarose gel for 1 h at 100 V, and photographed under 

UV light after staining with ethium bromide. Amplified PCR products of expected 

sizes were subjected to direct sequencing by an automatic sequencer and dye 

termination sequencing system (Macrogen Co., Korea). A BLAST search for 

homologous sequence was performed in the GenBank database at the National 

Center for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov/BLAST). 

 

Serotyping 

 

Out of a total 290 E. coli isolates, 53 isolates were selected for serotyping. These 

isolates showed multidrug-resistance and harbored more than one virulence gene. 

The O serogroup of E. coli isolates was determined using 181 O-antisera (O1-O187) 
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by a standard slide agglutination test (Orskov and Orskov, 1984). The O-antisera 

were provided by the Animal and Plant Quarantine Agency, Anyang, South Korea.  

 

Pulsed-field gel electrophoresis (PFGE) profiling  

 

Overall, 53 E. coli isolates determined serogroups were analyzed by PFGE, 

according to a standard protocol of the Center for Disease Control and Prevention 

(CDC), with some modifications. E. coli isolates were incubated on tryptic soy agar 

(TSA) at 37°C for 18 h. Bacteria were suspended in a cell suspension buffer (100 

mM Tris:100 mM EDTA, pH 8.0), and adjusted to OD600 of 1.3–1.4 using a 

spectrophotometer. The cell suspension (400 μl) was mixed with 20 μl of proteinase 

K and 400 μl of melted 1% SeaKem Gold Agarose (Lonza, USA). The mixture was 

dispensed into appropriate wells of a disposable plug mold (Bio-Rad Laboratories, 

USA). After solidification, the plugs were transferred to 15 ml conical tubes 

containing 5 ml of cell lysis buffer (50 mM Tris:50 mM EDTA, pH 8.0 + 1% 

Sarcosyl) and 0.5 mg/ml proteinase K. The plugs were lysed in a 55°C hybridization 

incubator for 2 h. After lysis, the plugs were washed twice with distilled water, and 

four times with TE buffer, for 15 min per wash at 55°C hybridization. After washing, 

the plugs were digested with 50 U of XbaI (TaKaRa, Japan) at 37°C for 4 h. The 

digested plugs were loaded into appropriate wells in a 1% SKG gel. The gel was 

electrophoresed using a CHEF-MAPPER (Bio-Rad Laboratories) with pulse times 
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of 2–30 sec at 14°C for 18 h in 0.5× tris-borate EDTA (TBE) buffer at 6 V/cm. Then 

the gels were stained with ethium bromide, and photographed using the Gel Doc XR 

system (Bio-Rad Laboratories). Gel images were analyzed using GelCompar II 

software (Applied Maths, Belgium). PFGE dendrograms were constructed using the 

unweighted pair group method with arithmetic means (UPGMA) analysis based on 

Dice coefficients. 

 

 

Results 

 

Antimicrobial susceptibility results 

 

A total of 205 isolates were resistant to one or more antimicrobials. The 

prevalence of antimicrobial resistances was as follows: streptomycin (63.1%), 

tetracycline (54.5%), neomycin (40.3%), cephalothin (32.8%), amoxicillin (30.0%), 

ampicillin (29.7%), nalidixic acid (19.0%), chloramphenicol (17.9%), 

sulphamethoxazole/trimethoprim (16.6%), gentamicin (14.5%), enrofloxacin 

(11.0%), ciprofloxacin (10.0%), florfenicol (7.2%), ceftiofur (1.0%), and 

ceftazidime (1.0%) (Table 2.2). Two isolates showed resistance against 13 

antimicrobials. Among all the isolates, 116 (40.0%) showed resistance against more 

than three different classes of antimicrobials. The most frequent multidrug-resistance 
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patterns were [ampicillin-amoxicillin-neomycin-streptomycin-tetracycline] and 

[ampicillin-amoxicillin-cephalothin-gentamicin-neomycin-streptomycin-

tetracycline], both detected in eight of the total 116 multidrug-resistant isolates 

(6.9%) (Table 2.3). 

 

Prevalence of virulence genes 

 

A total of 290 E. coli isolates were analyzed by m-PCR. As shown in Table 2.4, 

147 (50.7%) isolates carried more than one virulence factor. The most prevalent 

virulence gene was f17 (26.2%). No other virulence gene was detected in the f17-

positive isolates. The frequencies of virulence genes detected by m-PCR were as 

follows: stx2 (15.9%), ehxA (11.0%), stx1 (8.3%), eae (5.2%), and sta (4.1%). None 

of the strains carried f5, f41 or lt. Of 55 stx-positive isolates, 9 (16.4%) carried stx1, 

while the stx2 gene was detected in 31 (56.4%) of the isolates. Fifteen (27.3%) 

isolates carried both stx1 and stx2. Also, the eae and ehxA genes were detected in 10 

(17.5%) and 15 (26.3%) isolates, respectively, of the stx gene positive isolates.  

 

Prevalence of antimicrobial resistance genes 

 

From twenty-two resistance genes investigatedin the 290 E. coli isolates, sixteen 

were detected. Genes aphA2, aadB, blaOXA, blaSHV, tet(D), and tet(G) were not 
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detected in any E. coli isolates. A total of 278 isolates (95.9%) carried more than one 

resistance gene. The prevalence of antimicrobial resistant genes is shown in Table 

2.2. Regarding aminoglycoside resistance, the most prevalent gene was strA-strB 

(39.0%), followed by aac(3)-IV (33.1%), aphA1 (21.4%), and aadA (19.7%). The 

predominant β-lactamase gene was blaTEM (23.8%). Among the 

ampicillin/amoxicillin resistant isolates, the blaTEM gene was identified in 72.1% 

(62/86). Additionally the ampC was detected in 287 isolates (99.0%). The 

determinants for phenicol resistance were identified as follows: cat gene (7.6%), floR 

gene (7.6%), and cmlA gene (4.1%). The floR gene encoding 

chloramphenicol/florfenicol efflux pump was detected in 90.5% (19/21) of the 

florfenicol resistant isolates. Sulfonamide resistance was attributable to sul2 genes 

in 33.4% at the following frequencies: sul1 (22.1%) and sul3 (3.8%). The most 

prevalent tetracycline resistant gene was tet(E) (80.0%), followed by tet(A) (27.6%), 

tet(B) (26.9%), and tet(C) (22.4%). Among the tetracycline resistant isolates, 97.5% 

of isolates (154/158) carried tet genes. On the oher hand, 80.3% (106/132) of 

tetracycline susceptible isolates were positive for tet genes.  

 

Serogroup determination 

 

Overall, 47 of 53 isolates examined were serotyped, and belonged to 20 different 

O serogroups, while six were nontypeable. Only one isolate was identified as O157. 
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The majority of isolates (62.3%) were classified in four serogroups, including O7 

(22.6%), O101 (13.2%), O15 (7.5%), and O9 (7.5%) (Table 2.5).  

 

Molecular subtyping of E. coli isolates using PFGE  

 

PFGE of XbaI-digested chromosomal DNA of the 53 serotyped E. coli isolates 

showed 93 different PFGE subtype patterns, with 14–26 discernible bands, ranging 

from 30 to 600 kb in molecular size (Fig. 2.1). The similarity of PFGE profiles was 

46.0%, with XbaI as analyzed by the Dice coefficient. However, these PFGE 

subtypes could be clustered into 26 groups of closely related PFGE subtypes, with 

more than 60% similarity by the Dice coefficient. 1 to 13 isolates were contained 

within each group. Although the PFGE profiling analyzed in this study showed a 

high degree of polymorphism, subgroup 14 showed high similarity (Dice coefficient 

similarity > 75%). 

 

 

Discussion 

 

According to the data provided by the Korea Animal Health Products Association 

(KAHPA), since the use of antimicrobials as feed supplements was banned by the 

Korean government in July 2011, the quantity of antimicrobials used therapeutically 
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is showing a growing trend. Therefore, it is necessary to choose the efficient 

antimicrobials for the reduction of them. Our results can be helpful for the 

antimicrobial selection.  

ETEC strains are the most important agent causing diarrhea in cattle (Nagy and 

Fekete, 1999). Therefore, for the detection of ETEC, we screened the genes of 

fimbriae (F5, F41, and F17) and enterotoxins (LT and STa). As shown in the results, 

we found none of the f5, f41, and lt genes, and a relatively low percentage (4.14%) 

of sta genes. We identified that 75 (25.9%) of a total of 290 E. coli isolates carried 

the gene for F17 fimbriae, although these isolates were negative for other virulence 

genes. These results are in agreement with those of a previous study (Ghanbarpour 

and Oswald, 2009), which showed a greater prevalence of F17 fimbriae than of F5 

and F41. According to Moon and Burnn (Moon and Bunn, 1993), the predominant 

distribution of F17 fimbriae could be resulted from the environment and/or from 

genetic pressures on the E. coli isolates, such as vaccination against the F5 and F41 

fimbriae.  

Over the past three decades, studies on STEC infection in cattle have been carried 

out and have demonstrated that the prevalence of non-O157 STEC in cattle may vary 

according to the country (Hussein, 2007). The different prevalence rates of STEC 

might be due to patterns of shedding STEC, influenced by several factors, such as 

geographic differences, sampling and detection methods, age of host and seasonal 

variations (Menrath et al., 2010). Although the results in this study is not enough to 
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reflect true differences in prevalence rate, we could predict that STEC is widely 

distributed in South Korean cattle farms.  

When analyzed by m-PCR, 46 STEC isolates (15.9%) harbored the stx2 gene, 24 

isolates carried (8.3%) stx1 and 15 isolates (5.2%) had both genes. This result 

differed from a previous report (Bergamini et al., 2007) that showed the dominance 

of the stx1 gene in cattle. However, other studies have shown agreement with our 

study (Zschock et al., 2000). Based on epidemiologic data indicating the significance 

of the Stx2 toxin in the development of HUS (Bonnet et al., 1998), the dominance 

of STEC strains carrying stx2 gene in cattle might cause a serious risk to public 

health. 

 The intimin encoded by the chromosomal gene eae may be necessary for the 

development of the virulence of STEC, providing them with attaching and effacing 

activity (Jerse et al., 1990). Several authors have described the significant 

association between the presence of the eae gene and the pathogenicity of STEC in 

causing severe diarrhea (HC) and disease (HUS) (Mainil et al., 1993). The presence 

of the eae gene was detected in 17.5% (10/55) of the STEC isolates, including one 

O157 bovine isolate in the present study. The percentage of eae-positive STEC in 

this study was higher than that found in healthy cattle (Blanco et al., 1997) or in 

diarrheic calves (Nguyen et al., 2011).  

Enterohemolysin is widespread among STEC strains isolated from calves (Aidar-

Ugrinovich et al., 2007). It has been suggested that this virulence factor probably 

69 
 



synergizes the effects of the Shiga toxin, and that it can be used as a diagnostic 

indicator because the presence of the ehxA gene is highly associated with the Shiga 

toxin (Beutin et al., 1989). The prevalence of enterohemolysin among bovine STEC 

strains has been reported by several authors (Beutin et al., 1989; Wieler et al., 1992; 

Aidar-Ugrinovich et al., 2007), with the prevalence of STEC ranging from 51.0% to 

70.8%. About 62.5% of STEC isolates harbored the ehxA gene in our study, showing 

good agreement with these studies.  

In the strA-strB determinants encoding enzymes required for streptomycin 

resistance (Chiou and Jones, 1995), the detection rates from our study were lower 

than in a previous report that described these determinants as being common in E. 

coli isolates resistant to aminoglycoside compounds (Karczmarczyk et al., 2011b). 

Notably, among the E. coli isolates resistant to gentamicin, none of isolates harbored 

the aadB determinant conferring resistance to gentamicin, tobramycin and 

kanamycin. Therefore it might be suggested that resistance to gentamicin in this 

study resulted from the presence of the aac(3)-IV gene, mediating a broad spectrum 

aminoglycosides resistance that included gentamicin (Vinue et al., 2010). It is 

interesting to note that resistance genes were largely found in isolates identified as 

susceptible by phenotype, and this could result from the existence of defective genes, 

and a reduced expression of these determinants (Karczmarczyk et al., 2011b).  

Only blaTEM was detected as a β-lactamase gene in this study, which agreed with 

previous reports (Karczmarczyk et al., 2011b; Wedley et al., 2011). The prevalence 
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of genes encoding amoxicillin- and ampicillin-resistance was lower than those of the 

phenotype to the antimicrobials in our study.This phenomenon may be attributed to 

the other β-lactamase genes not investigated in this study such as CTX-M or the 

over-expression of AmpC enzyme by mutations (Bergstrom and Normark, 1979; 

Tracz et al., 2007).  

Although the use of chloramphenicol in food-animals was banned in South Korea, 

the resistance to chloramphenicol was analyzed and was still identified with a 

relatively high percentage in our data. It could be resulted from the co-resistance to 

florfenicol by its similarity of molecular structure. The persistence of 

chloramphenicol has been reported by other authors (Kang et al., 2005; Lim et al., 

2007). The persistence of chloramphenicol resistance could result from the presence 

of floR gene. This gene encodes a specific exporter for both chloramphenicol and 

florfenicol. Gene cmlA codify an exporter specific for chloramphenicol, while the 

cat gene codify for the enzymatic inactivation from chloramphenicol. The data on 

sul2 and SXT-positive isolates of our study was consistent with the previous study 

(Enne et al., 2001), which showed that sul2 was the most prevalent mechanism for 

resistance to sulfonamides. Also most sul2-positive strains (94.8%) also showed 

positive association with strA-strB gene (Boerlin et al., 2005). The tet(E) gene was 

the predominant tetracycline resistance determinant, detected in 80.0% of isolates, 

followed by tet(A) (27.6%), tet(B) (26.9%), and tet(C) (22.4%). These results 

showed a difference in relation to the previous study (Medina et al., 2011), which 
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showed the dominance of tet(A) and tet(B) determinants in tetracycline resistance. 

The difference might be due to the origin of the tet(E) gene from the environmental 

Aeromonas strains (Marshall et al., 1986).  

In the O serotyping of the 47 E. coli isolates, 21 serogroups were identified. These 

results showed similarity with a previous study showing 25 different O serogroups 

in healthy cattle (Kobayashi et al., 2001), even though there were differences in the 

diversity of the O serogroup distribution, which may be attributed to environmental 

differences, such as diet, antimicrobials used, sampling period and method, 

geographical difference (Bettelheim et al., 2005). A total of 31.9% of the isolates 

serotyped were identified as STEC strains, and 2 of 21 O serogroups (O157 and 

O174) belonged to the major bovine STEC O groups (Blanco et al., 1993).   

A genetic comparison of some isolates was carried out us- ing PFGE in order to 

understand the correlation between virulence genes, antimicrobial resistance, O 

serotypes, and regional distribution. Our PFGE analysis showed high diversity. Only 

4 PFGE patterns were observed more than once. However, isolates that showed the 

same PFGE pattern shared similarity in the prevalence of serogroups, virulence 

genes, antimicrobial susceptibility and antimicrobial resistant genes. But there was 

no isolate that showed co-identity in genotypes and phenotypes. As shown by 

subgroups 1 and 3, the isolates displaying serotype O101 had common virulence 

factors, Stx1 and Stx2. But the regional relationship was not found in these 

subgroups. On the other hand, E. coli isolates belonged to subgroup 14 was 
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determined to share the same serogroup (O7) except two isolates and the same 

virulence factor (F17). In the view of regional respect, the isolates in subgroup 14 

were originated from closed districts, Buyeo and Asan. However, despite this result, 

our analysis indicates the existence of diverse strains of E. coli in regards to virulence 

factors, antimicrobials resistance, and O serotypes in South Korean cattle farms. 

 Our results suggest that diverse determinants of virulence and antimicrobial 

resistance of E. coli are widespread in South Korea. Moreover, these determinants 

can disseminate into non-pathogenic E. coli isolates according pathogenicity to them. 

This suggests that the normal flora of cattle could be a significant reservoir of diverse 

virulence and antimicrobial resistance determinants, which is potentially threatening 

to public health. Therefore, surveillance of virulence and antimicrobial resistance in 

healthy cattle and their transfer mechanisms need to be pursued in further studies.  
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Table 2.1. Primers and m-PCR conditions for virulence genes and antimicrobial 

resistance genes used in this study 

Target 
gene 

Nucleotide sequence (5'-3') 
PCR conditiona Amplicon 

(bp) 
Reference 

Denaturing Annealing Extension 

f5a 
TATTATCTTAGGTGGTATGG 

94℃ for 
30s 

50℃ for 
45s 

70℃ for 
90s 

314 

(Franck et al., 1998) 

GGTATCCTTTAGCAGCAGTATTTC 

f41a 
GCATCAGCGGCAGTATCT 

380 
GTCCCTAGCTCAGTATTATCACCT 

stx1
 a 

TTCGCTCTGCAATAGGTA 
555 

TTCCCCAGTTCAATGTAAGAT 

stx2
 a 

GTGCCTGTTACTGGGTTTTTCTTC 
118 

AGGGGTCGATATCTCTGTCC 

sta a 
GCTAATGTTGGCAATTTTTATTTCTGTA 

190 
AGGATTACAACAAAGTTCACAGCAGTAA 

eae a 
ATATCCGTTTTAATGGCTATCT 

425 
AATCTTCTGCGTACTGTGTTCA 

f17 a 
GCAGAAAATTCAATTTATCCTTGG 

94℃ for 
60s 

57℃ for 
60s 

72℃ for  
60s 

537 (Van Bost et al., 2001) 
CTGATAAGCGATGGTGTAATTAAC 

lt a 
GGCGACAGATTATACCGTGC 

450 (Lopez-Saucedo et al., 2003) 
CGGTCTCTATATTCCCTGTT 

ehxA a 
GGTGCAGCAGAAAAAGTTGTAG 

1551 (Schmidt et al., 1995) 
TCTCGCCTGATAGTGTTTGGTA 

aadBb 
GAGGAGTTGGACTATGGATT 

94℃ for 
60s 

53℃ for 
60s  

72℃ for 
60s 

208 

(Travis et al., 2006) 
CTTCATCGGCATAGTAAAA 

aphA2b 
GATTGAACAAGATGGATTGC 

347 
CCATGATGGATACTTTCTCG 

aphA1b 
ATGGGCTCGCGATAATGTC 

600 (Maynard et al., 2003) 
CTCACCGAGGCAGTTCCAT 

aadAb 
GTGGATGGCGGCCTGAAGCC 

58℃ for 
60s 

525 (Madsen et al., 2000) 
AATGCCCAGTCGGCAGCG 

strA-strBb 
ATGGTGGACCCTAAAACTCT 

893 (Tamang et al., 2007) 
CGTCTAGGATCGAGACAAAG 

aac(3)-IVb 
TGCTGGTCCACAGCTCCTTC 

653 (Boerlin et al., 2005) 
CGGATGCAGGAAGATCAA 

ampCb 
CCCCGCTTATAGAGCAACAA 

94 ℃ for 
60s 

53℃ for 
60s 

72℃ for 
60s 

634 

(Feria et al., 2002) 
TCAATGGTCGACTTCACACC 

blaOXA
b 

TATCTACAGCAGCGCCAGTG 
199 

CGCATCAAATGCCATAAGTG 

blaTEM
b 

TACGATACGGGAGGGCTTAC 
716 (Belaaouaj et al., 1994) 

TTCCTGTTTTTGCTCACCCA 

blaSHV
b 

TCAGCGAAAAACACCTTG 
475 (MZali et al., 1996) 

TCCCGCAGATAAATCACCA 
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tet(A) b 
GCTACATCCTGCTTGCCTTC 

94 ℃ for 
60s 

58℃ for 
60s 

72℃ for 
60s 

210 (Ng et al., 2001) 
CATAGATCGCCGTGAAGAGG 

tet(B) b 
TTGGTTAGGGGCAAGTTTTG 

659 

(Ng et al., 2001) 

GTAATGGGCCAATAACACCG 

tet(C) b 
CTTGAGAGCCTTCAACCCAG 

418 
ATGGTCGTCATCTACCTGCC 

tet(D) b 
AAACCATTACGGCATTCTGC 

58℃ for 
60s 

787 
GACCGGATACACCATCCATC 

tet(E) b 
AAACCACATCCTCCATACGC 

278 
AAATAGGCCACAACCGTCAG 

tet(G) b 
GCTCGGTGGTATCTCTGCTC 

468 
AGCAACAGAATCGGGAACAC 

catb 
AGTTGCTCAATGTACCTATAACC 

94 ℃ for 
60s 

55℃ for 
60s 

72℃ for 
60s 

547 (Van et al., 2008) 
TTGTAATTCATTAAGCATTCTGCC 

cmlAb 
CCGCCACGGTGTTGTTGTTATC 

698 

(Keyes et al., 2000) 
CACCTTGCCTGCCCATCATTAG 

floRb 
TATCTCCCTGTCGTTCCAG 

399 
AGAACTCGCCGATCAATG 

sul1b 
CGGCGTGGGCTACCTGAACG 

94 ℃ for 
60s 

57℃ for 
60s 

72℃ for 
60s 

433 (Kerrn et al., 2002) 
GCCGATCGCGTGAAGTTCCG 

sul2b 
CGGCATCGTCAACATAACCT 

721 (Lanz et al., 2003) 
TGTGCGGATGAAGTCAGCTC 

sul3b 
CAACGGAAGTGGGCGTTGTGGA 

244 (Kozak et al., 2009) 
GCTGCACCAATTCGCTGAACG 

a All PCRs were carried out for 25 cycles 

b All PCRs were carried out for 30 cycles 
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Table 2.2. The distributions of antimicrobials resistances in phenotypes and 
genotypes of E. coli isolated from South Korean cattle farms. 

Antimicrobial class Antimicrobials 
(No. of isolates) 

Resistance gene 
(No. of isolates) 

Aminoglycosides Gentamicin  (42) 
Neomycin (117) 
Streptomycin (183) 

aac(3)-IV (96) 
aadA (57) 
aadB (0) 
aphA1 (62) 
aphA2 (0) 
strA-strB (113) 

β-Lactams 
 

Ampicillin (86) 
Amoxicillin (87) 
Cephalothin (95) 
Ceftiofur (1) 
Ceftazidime (3) 

ampC (287) 
blaTEM (69) 
blaOXA (0) 
blaSHV (0) 

Phenicols 
 

Chloramphenicol (52) 
Florfenicol (21) 

cat (22) 
cmlA (12) 
floR (22) 

Sulfonamide 
 

Sulphamethoxazole/ 
trimethoprim (48) 

sul1 (64) 
sul2 (97) 
sul3 (11) 

Tetracycline 
 

Tetracycline (158) tet(A) (80) 
tet(B) (78) 
tet(C) (65) 
tet(D) (0) 
tet(E) (232) 
tet(G) (0) 

Fluoroquinolones Ciprofloxacin (29) 
ND Enrofloxacin (32) 

Others Nalidixic acid (55) 
ND 

a ND, not determined 
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Table 2.3. Multidrug-resistance patterns of E. coli isolates from South Korean 
cattle farms 

Resistance profile No. of resistant 
antimicrobials 

No. of strains 
(n=116) 

AmpAmlNSTe 5 8 (6.9%) 
AmpAmlKfCnNSTe 7 8 (6.9%) 

KfNaSTe 4 6 (5.2%) 
AmpAmlNSTeSxt 6 6 (5.2%) 

AmpAmlKfCCipEnrNaCnNSTeSxt 12 6 (5.2%) 
AmpAmlKfCCipEnrNaNSTeSxt 11 5 (4.3%) 

KfNSTe 4 4 (3.4%) 
KfCnNSTe 5 4 (3.4%) 

KfSTe 3 3 (3.4%) 
Amp, ampicillin; Aml, amoxicillin; S, streptomycin; N, neomycin; Cn, gentamycin; Kf, 
cephalothin; Enr, enrofloxacin; Cip, ciprofloxacin; Te, tetracycline; Na, nalidixic acid; Sxt, 
sulfamethoxazole/trimethoprim. 
  

77 
 



Table 2.4. The distribution of virulence genes of E. coli isolated from South 
Korean cattle farms.  

 
No. of isolates 

(%) 
No. of 
genesa 

Virulence gene 
 f5 f41 f17 stx1 stx2 sta lt eae ehxA 

 1 (0.3) 4    + +   + + 
 6 (2.1) 

3 

   +    + + 
 2 (0.7)     +   + + 
 5 (1.7)    + +    + 

 9 (3.1)     + +     
 2 (0.7)     +  +    
 2 (0.7)      + +    
 1 (0.3)      +   +  
 6 (2.1)      +    + 
 5 (1.7)         + + 
 4 (1.4)       +   + 

 76 (26.2) 

1 

  +       
 1 (0.3)    +      
 20 (6.9)     +     
 4 (1.4)      +    
 3 (1.0)         + 
 143 (50.0) 0          

Totalb 

(%) 290  0 
(0) 

0 
(0) 

76 
(26.2) 

24 
(8.3) 

46 
(15.9) 

12 
(4.1) 

0 
(0) 

15 
(5.2) 

32 
(11.0) 

a Number of the virulence genes 
b Sum of each virulence genes 
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Table 2.5. The distribution of O serotypes of E. coli isolated from South Korean 
cattle farms.   

O serogroup No. of isolates (%) O serogroup No. of isolates 

O7 12 (22.6) O140 1 (1.9) 
O101 7 (13.2) O157 1 (1.9) 
O15 4 (7.5) O165 1 (1.9) 
O9 4 (7.5) O168 1 (1.9) 

O136 2 (3.8) O174 1 (1.9) 
O2 2 (3.8) O182 1 (1.9) 
O8 2 (3.8) O26 1 (1.9) 

O88 2 (3.8) O3 1 (1.9) 
O1 1 (1.9) O45 1 (1.9) 

O109 1 (1.9) NDa 6 (11.3) 
O14 1 (1.9)   

a ND, not determined 
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Fig. 2.1. XbaI-PFGE dendrogram showing the prevalence of the 53 E. coli isolates 
from South Korean cattle farms 
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Chapter III 

 
Profiling of antimicrobial resistance and plasmid 

replicon types in β-lactamase producing Escherichia 

coli isolated from beef cattle 

 

 

Abstract 

 
In this study, 78 Escherichia coli isolated from Korean beef cattle farms were 

investigated for the production of extended-spectrum β-lactamase (ESBL) and/or 

AmpC β-lactamase. In the disc diffusion test with ampicillin, amoxicillin, 

cephalothin, ceftiofur, cefotaxime, ceftazidime, and cefoxitin, 38.5% of the isolates 

showed resistance to all of ampicillin, amoxicillin, and cephalothin. The double disc 

synergy method revealed that none of the isolates produced ESBL or AmpC β-

lactamases. DNA sequencing showed that all isolates encoded genes for TEM-1-type 

β-lactamase. Moreover, 78.2% of the isolates transferred the TEM-1-type β-

lactamase gene via conjugation. In plasmid replicon typing of all donors, IncFIB and 

IncFIA were identified in 71.4% and 41.0% of plasmids, respectively. In 

transconjugants, IncFIB and IncFIA were the most frequent type detected (61.5% 

and 41.0%, respectively). Based on these results, we might suggest that the 
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transferable plasmids could provide significant effect on the acquisition and 

dissemination of β-lactam resistance as well as selection pressure although the level 

of antimicrobial usage in beef cattle is relatively low compared to those in other 

livestock animals in Korea. Moreover, to reduce selection pressure and 

dissemination of β-lactamase, the long-term surveillance of antimicrobial use in 

domestic beef cattle should be established. 

 

Keywords: β-lactamase, antimicrobial resistance, Escherichia coli, plasmid replicon 

typing 

 

 

Introduction 

 

The prevalence of β-lactam-resistant Enterobacteriaceae has increased consistently 

over the past few decades. Escherichia coli (E. coli) producing plasmid-mediated 

AmpC β-lactamases and/or extended-spectrum β-lactamases (ESBLs) has been of 

particular concern because of their implications in human and food animal health 

(Livermore, 2012). These strains encode β-lactamases that mediate resistance to β-

lactam antimicrobials included penicillins and extended-spectrum cephalosporins 

such as 3rd and 4th generation cephalosporins (Carattoli, 2009). Genes encoding β-

lactamases are located on mobile genetic elements, mostly plasmids, which can 
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transfer resistance genes horizontally to non-resistant isolates. Thus, these elements 

are believed to be responsible for the acquisition and dissemination of β-lactam 

antimicrobial resistance in the bacterial population.  

The incidence of resistance to extended-spectrum β-lactam antimicrobials has 

increased in Korea (Bradford, 2001; Lee et al., 2013). Most studies that have been 

performed to date have focused on the characterization of β-lactamases in human 

clinical isolates (Pai et al., 1999; Pai et al., 2001; Jeong et al., 2003; Jeong et al., 

2004; Song et al., 2006). However, there is little information available regarding the 

prevalence and characteristics of plasmid-mediated AmpC β-lactamases and ESBLs 

among E. coli isolates in the Korean veterinary industry (Rayamajhi et al., 2008; 

Lim et al., 2009; Tamang et al., 2012; Tamang et al., 2013b). Furthermore, β-

lactamases-producing E. coli isolated from beef cattle have rarely been reported in 

Korea. 

Enteric bacteria, especially E. coli, derived from livestock animals are potentially 

infectious pathogens and reservoirs for β-lactamase genes; accordingly, 

investigations of these microorganisms are necessary for public health. In view of 

the risk of spreading ESBL and AmpC β-lactamase resistance determinants among 

E. coli isolates, it is important to elucidate the mechanism by which resistance is 

transferred between isolates. Thus, in the present study, we investigated 

antimicrobial resistance profiles and plasmid replicon types of ampicillin-resistant 
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E. coli isolates recovered from the feces of beef cattle with the goal of investigating 

the transfer of β-lactamase genes and antimicrobial resistance to non-resistant E. coli. 

 

 

Materials and Methods 

 

Bacterial isolates 

 

A total of 290 E. coli strains were isolated from feces collected from beef cattle 

during 2011–2012 (Shin et al., 2014). Briefly, E. coli isolates of this study were 

isolated from 830 fecal samples collected from healthy beef cattle on eight farms 

from six different provinces in South Korea. The fecal samples were collected from 

rectum and pats of cattle and plated onto MacConkey agar (BD, USA) for selection, 

then incubated at 37°C for 18 h. From each sample, three to five colonies suspected 

of being E. coli were sub-cultured onto blood agar plates. Isolates were confirmed 

as E. coli by a standard biochemical test and by the Vitek2 system (bioMérieux, 

France). 

 

 

Antimicrobial susceptibility test  
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For selection of β-lactam-resistant E. coli, all isolates were screened by plating on 

MacConkey agar plates containing ampicillin (16 µg/mL) because the MIC value of 

ampicillin for E. coli was above or at the breakpoint (≥ 32 µg/mL) for ampicillin 

resistance (CLSI, 2013). Overall, a total of 78 E. coli isolates were selected for 

characterization of β-lactamases in this study. All 78 E. coli isolates were tested 

using antimicrobial-containing discs according to the Clinical and Laboratory 

Standards Institute (CLSI) guidelines (CLSI, 2013). The following antibiotics were 

tested: ampicillin (AMP), 10 µg; amoxicillin (AMX), 20 µg; cephalothin (CF), 30 

µg; ceftiofur (EFT), 30 µg; cefoxitin (FOX), 30 µg; cefotaxime (CTX), 30 µg; and 

ceftazidime (CAZ), 30 µg (Oxoid, UK). The minimum inhibitory concentrations 

(MICs) of the isolates were also determined by the micro-broth dilution method 

using the same antibiotics. The MIC test was conducted according to the 

recommendations of the CLSI (CLSI, 2013). The breakpoint of ceftiofur (MIC ≥ 8 

µg/mL) was used based on the results of a previous study (Donaldson et al., 2006), 

because the CLSI guidelines do not include a MIC breakpoint of cefiofur for E. coli 

of bovine origin. E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 

were used as quality control organisms in the antimicrobial susceptibility tests and 

ESBL and/or AmpC β-lactamases in the phenotypic screening test. 

 

Screening and phenotypic identification of ESBLs and AmpC β-lactamases 
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A double disc diffusion method (DDDM) was performed with cefotaxime (30 

µg)/cefotaxime-clavulanate (30 µg/10 µg) (BD, USA) and ceftazidime (30 

µg)/ceftazidime-clavulanate (30 µg/10 µg) (BD, USA) to detect ESBL production 

according to CLSI guidelines (CLSI, 2013). Similarly, plasmid-mediated AmpC β-

lactamase production was screened by the cefoxitin-cloxacillin double disc synergy 

method (CC-DDSM) using cefoxitin (30 µg)/cefoxitin-cloxacillin (30 µg/10 µg) 

(Himedia, India), as described in a previous study (Tan et al., 2009). 

 

Detection of β-lactamase-encoding genes 

 

PCR amplification of genes of the ESBL (blaTEM, blaSHV, blaOXA, and blaCTX-M) and 

plasmid-mediated AmpC was carried out as previously described (Feria et al., 2002; 

Perez-Perez and Hanson, 2002; Batchelor et al., 2005; Rayamajhi et al., 2008). The 

primers used to detect β-lactamases in this study are shown in Table 3.1. The DNA 

templates used in this study were prepared by the boiling method. In all PCR 

amplifications, distilled water was used as a negative control. A positive control 

organism was not used in this assay as all DNA products were sequenced by a dye-

termination sequencing system using an automatic sequencer (Macrogen, Korea). 

Homologous sequence searches were performed against the GenBank database using 

the BLAST tool of the National Center for Biotechnology Information (NCBI) 

website (http://www.ncbi.nlm.nih.gov/BLAST). 
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Conjugation assay 

 

 To determine the transferability of the β-lactamase-encoding genes, a conjugation 

assay was conducted. A mixed broth culture mating method in a previous study 

(Rayamajhi et al., 2008) was applied with sodium azide-resistant E. coli J53AzR as 

a recipient strain, with some modifications. Single colonies of donor and recipient 

isolates were incubated in tryptic soy broth (TSB) (BD) and grown at 37°C for 20 h. 

The donor and recipient strains were grown in TSB for 8 hrs, after which the cultures 

were mixed at a ratio of 1: 2 and incubated at 37°C for 20 h. Transconjugants were 

selected on Mueller-Hinton (MH) agar (BD) supplemented with ampicillin (100 

µg/mL) and sodium azide (200 µg/mL). The conjugation frequency of each isolate 

was calculated as the number of CFU transconjugants per CFU donor. In addition, 

transfer of the genes was confirmed by PCR amplification of specific genes in the 

transconjugants. 

 

Typing of plasmid replicons 

 

For typing plasmid replicons, PCR was performed using DNA extracted from all 

donor and transconjugant strains. The primers used in this study targeted 18 different 

replicons (Table 3.2), as described previously (Johnson et al., 2007).  
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Results 

 

Antimicrobial susceptibility results 

  

Resistance to ampicillin and amoxicillin was observed in all isolates, and 30 isolates 

(38.5%) were resistant to cephalothin. None of the isolates showed resistance to any 

of the extended-spectrum β-lactams used in the test (ceftiofur, ceftazidime, 

cefotaxime, and cefoxitin) (Table 3.3). The MIC values of the different β-lactams 

tested for the 78 E. coli isolates are shown in Table 3.3. All isolates were highly 

resistant to ampicillin (MIC > 1024 µg/mL) and amoxicillin (MIC > 1024 µg/ml). 

Cephalothin resistance (MIC ≥ 32 µg/mL) was detected in 32 isolates (41.0%). None 

of the isolates was resistant to ceftiofur (MIC ≤ 4 µg/mL), ceftazidime (MIC ≤ 8 

µg/mL), cefotaxime (MIC ≤ 2 µg/mL), or cefoxitin (MIC ≤ 8 µg/mL) (Table 3.3). 

However, intermediate resistance to ceftiofur (MIC = 4 µg/mL), ceftazidime (MIC 

= 8 µg/mL), and cefotaxime (MIC = 2 µg/mL) was detected in 39.7%, 17.9%, and 

46.2% of the isolates, respectively. The resistance patterns of the isolates were 

[AMP-AMX] (61.5%) and [AMP-AMX-CF] (38.5%). 

 

Screening of ESBL and AmpC β-lactamase production 
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None of the isolates were positive for ESBL or AmpC β-lactamase production. In 

the MIC test, none of the isolates were resistant to cefotaxime, ceftazidime, or 

cefoxitin, even though 36 (46.2%), 14 (17.9%), and 4 (5.1%) of the E. coli isolates 

showed intermediate MIC values against cefotaxime (MIC, 2 µg/mL), ceftazidime 

(MIC, 8 µg/mL), and cefoxitin (MIC, 8 µg/mL), respectively (Table 3.3).  

 

Molecular characterization of β-lactamase-encoding genes 

 

All 78 E. coli isolates harbored a TEM-type gene. None of the genes encoding the 

ESBLs (blaSHV, blaOXA, and blaCTX-M) or pAmpC β-lactamases were found in any of 

the isolates. Sequence analysis identified TEM-1-type β-lactamase in all isolates. 

 

Transferability of β-lactamase resistance and plasmid replicon analysis 

 

Plasmid replicon typing and conjugal transferability of plasmids revealed that the 

blaTEM-1, gene for β-lactamase resistance was transferred in 59 (75.6%) of the isolates 

(Table 3.4). The transfer frequency of the isolates ranged from 1.29 × 10-6 to 9.22 × 

10-4. Plasmid replicon typing of the transconjugants was performed to identify the 

transfer of plasmids in E. coli carrying the TEM-1 gene. The prevalence of the 

plasmid replicon type of the donor isolates was as follows: IncFIB (71.8%); IncFIA 

(41.0%); IncP (34.6%); Frep (29.5%); IncY (29.5%); IncI1 (28.2%); IncN (15.4%); 
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IncB/O (10.3%) and IncHI1 (1.3%). Among the 10 plasmids detected from the 

isolates, the main plasmid for the horizontal dissemination of blaTEM-1 in E. coli 

isolated from beef cattle was the IncFIB (Table 3.4). Plasmid replicon typing 

revealed that all donor isolates exhibited 32 different replicon combinations. The 

most frequent combination was [FIA-FIB-Y], which was detected in eight isolates 

(Table 3.4). For transconjugants, a total of five classes of replicon were detected. 

IncFIB and IncFIA were the most frequently detected replicons, being found either 

alone or in combination at ratios of 61.5% and 41.0%, respectively. The prevalence 

of the remaining plasmid replicons of transconjugants was as follow: IncI1 (17.9%); 

Frep (16.7%) and IncB/O (5.1%). PCR revealed that all 59 transconjugants harbored 

TEM-1-type β-lacatamase transferred from the donors. 

 

 

Discussion 

 

In the present study, the extremely high resistance to ampicillin (MIC > 1024 

µg/mL resistance, 100%) and amoxicillin (MIC > 1024 µg/mL resistance, 100%) of 

these E. coli isolates might have been caused by selection pressures from their 

excessive use in beef cattle farms over the last decade (QIA, 2013). Additionally, the 

use of β-lactam antimicrobials, such as penicillins and cephems, has increased 

gradually (QIA, 2013). In addition, the antimicrobial resistance to cephalothin of the 
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E. coli isolates used in this study was high. A total of 32 (41.0%) isolates showed 

resistance to cephalothin (MIC ≥ 32 µg/mL), and this resistance was much higher 

than that of E. coli (1.0%) in a previous national report (QIA, 2013). A considerable 

number of isolates exhibited intermediate resistance to cefotaxime (n = 36), ceftiofur 

(n = 31), and ceftazidime (n = 14), although none of the isolates in this study were 

identified as resistant to these compounds (Table 3.3). E. coli isolates showing 

intermediate resistance to these compounds may acquire resistance to β-lactams by 

selection pressure if they are exposed to continuous use of antimicrobials. 

In this study, no ESBL- and/or AmpC β-lactamase-producing E. coli isolates were 

detected, which is consistent with the results of a previous study showing a low 

prevalence (< 2%) of β-lactamase-producing E. coli isolates (Lim et al., 2009, 

Tamang et al., 2012, Tamang et al., 2013a). Although recent reports indicated that 

there are various types of ESBL- and AmpC β-lactamase-producing 

Enterobacteriaceae (Pai et al., 2001, Jeong et al., 2003, Paterson et al., 2003, Huang 

et al., 2005, Hu et al., 2008), only TEM-1-type β-lactamase was detected in the 

present study. These findings suggest that less third- and fourth-generation 

cephalosporins might be used in the production of Korean beef cattle than in the 

human population and production of other livestock. In the present study, PCR and 

sequencing results revealed that all ampicillin-resistant isolates were only associated 

with TEM-1-type β-lactamase, which is known to be widely distributed in Korea 

(Pai et al., 2004, Rayamajhi et al., 2008). These results are in agreement with those 
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of a previous study, which showed that most of the ampicillin-resistant E. coli 

harbored the TEM-1 β-lactamase gene as the only plasmid-mediated β-lactamase 

(Cooksey et al., 1990). 

Continuous selective pressure exerted by β-lactams is an important reason for 

occurrence of ESBL- and AmpC β-lactamase determinants (Helfand and Bonomo, 

2005). Similarly, genetically non-resistant strains might be able to acquire resistance 

plasmids, either randomly or specifically, due to constant antimicrobial use, leading 

to widespread occurrence of resistance plasmids (Petit et al., 1990). Replicon typing 

of the transconjugant of E. coli isolates revealed that the IncFIA and IncFIB 

plasmids, which are commonly found in the fecal flora of humans and animals, were 

most frequently detected (Couturier et al., 1988). We found that strains that carried 

F plasmid (IncFIB, IncFIA and Frep) and I1 either alone or combination had 

transferred the TEM-1-type β-lactamase. These results suggest that blaTEM-1 gene, a 

primitive type of β-lactamase encoding gene, is harbored by these kind of plasmids 

and associated with old type β-lactams such as ampicillin and amoxicillin (Johnson 

and Nolan, 2009). Two isolates that carried IncB/O did not transfer TEM-1-type β-

lactamase to the recipients. 

When compared to other veterinary studies, our results are unusual as no resistance 

to cephems was found and only one kind of β-lactamase was detected. Although 

these results might be consistent with the decreasing amount of β-lactamases in beef 

cattle, the transferable plasmids remained among E. coli could provide significant 
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chance on the acquisition and dissemination of β-lactam resistance. Therefore 

continuous exposure to antimicrobials could increase selection pressure for β-

lactamases, which presents a critical risk to human and animal health. Thus, the use 

of β-lactam antimicrobials such as extended-spectrum cephalosporin should be 

restricted. In addition, monitoring the use of antimicrobials and assessment of 

antimicrobial resistance mechanisms in the bacteria of beef cattle could reduce 

selection pressure and may help enhance treatment for both humans and animals. 
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Table 3.1. Primers for the detection of β-lactamase genes used in this study 

β-lactamase targeted Primers Sequence 
Product 

Size (bp) 
Annealing 
Temp (°C) 

Reference 

TEM 
TEM-F TCG GGG AAA TGT GCG 

1074 62 

(Rayamajhi et al., 2008) 
TEM-R TGC TTA ATC AGT GAG GCA CC 

SHV 
SHV-F GCC GGG TTA TTC TTA TTT GTC GC 

1016 62 
SHV-R ATG CCG CCG CCA GTC A 

OXA 
OXA-F TAT CTACAG CAG CGC CAG TG 

199 53 (Donaldson et al., 2006) 
OXA-R CGC ATC AAA TGC CAT AAG TG 

MOX-1, MOX-2, CMY-1, 
CMY-8 to CMY-11 

MOX-F GCT GCT CAA GGA GCA CAG GAT 
520 64 

(Perez-Perez and Hanson, 2002) 

MOX-R CAC ATT GAC ATA GGT GTG GTG C 

LAT-1 to LAT-4, CMY-2 to 
CMY-7, BIL-1 

CIT-F TGG CCA GAA CTG ACA GGC AAA 
462 64 

CIT-R TTT CTC CTG AAC GTG GCT GGC 

DHA-1, DHA-2 
DHA-F AAC TTT CAC AGG TGT GCT GGG T 

405 64 
DHA-R CCG TAC GCA TAC TGG CTT TGC 

ACC 
ACC-F AAC AGC CTC AGC AGC CGG TTA 

346 64 
ACC-R TTC GCC GCA ATC ATC CCT AGC 

MIR-1T, ACT-1 
EBC-F TCG GTA AAG CCG ATG TTG CGG 

302 64 
EBC-R CTT CCA CTG CGG CTG CCA GTT 

FOX-1 to FOX-5b 
FOX-F AAC ATG GGG TAT CAG GGA GAT G 

190 64 
FOX-R CAA AGC GCG TAA CCG GAT TGG 

CTX-M universal 
CTXMU-F CGA TGT GCA GTA CCA GTA A 

585 60 (Batchelor et al., 2005) 
CTXMU-R TTA GTG ACC AGA ATC AGC GG 
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Table 3.2. Primers for analysis of plasmid replicon types used in this study 

Replicons 
Target 
sites 

Primer sequence Annealing 
Temp (°C) 

Product 
size 
(bp) Direction Sequence (5’ to 3’) 

T repA 
F TTG GCC TGT TTG TGC CTA AAC CAT 

60 750 R CGT TGA TTA CAC TTA GCT TTG GAC 

P Iterons 
F CTA TGG CCC TGC AAA CGC GCC AGA AA 

60 534 
R TCA CGC GCC AGG GCG CAG CC 

A/C repA F GAG AAC CAA AGA CAA AGA CCT GGA 60 465 
R ACG ACA AAC CTG AAT TGC CTC CTT 

FIC repA2 F GTG AAC TGG CAG ATG AGG AAG G 60 262 
R TTC TCC TCG TCG CCA AAC TAG AT 

B/O RNAI 
F GCG GTC CGG AAA GCC AGA AAA C 

60 159 R TCT GCG TTC CGC CAA GTT CGA 

Y repA 
F AAT TCA AAC AAC ACT GTG CAG CCT G 

60 765 
R GCG AGA ATG GAC GAT TAC AAA ACT TT 

FIB repA F GGA GTT CTG ACA CAC GAT TTT CTG 60 702 
R CTC CCG TCG CTT CAG GGC ATT 

FIA Iterons 
F CCA TGC TGG TTC TAG AGA AGG TG 

60 462 R GTA TAT CCT TAC TGG CTT CCG CAG 

FIIA repA 
F CTG TCG TAA GCT GAT GGC 

60 270 R CTC TGC CAC AAA CTT CAG C 

W repA F CCT AAG AAC AAC AAA GCC CCC G 60 242 
R GGT GCG CGG CAT AGA ACC GT 

K/B RNAI F GCG GTC CGG AAA GCC AGA AAA C 60 160 
R TCT TTC ACG AGC CCG CCA AA 

L/M RepA,B,C 
F GGA TGA AAA CTA TCA GCA TCT GAA G 

60 785 R CTG CAG GGG CGA TTC TTT AGG 

HI2 Iterons 
F TTT CTC CTG AGT CAC CTG TTA ACA C 

60 644 
R GGC TCA CTA CCG TTG TCA TCC T 

N repA F GTC TAA CGA GCT TAC CGA AG 60 559 
R GTT TCA ACT CTG CCA AGT TC 

HI1 parA-parB 
F GGA GCG ATG GAT TAC TTC AGT AC 

60 471 R TGC CGT TTC ACC TCG TGA GTA 

X oriɣ 
F AAC CTT AGA GGC TAT TTA AGT TGC TGA T 

60 376 R TGA GAG TCA ATT TTT ATC TCA TGT TTT 
AGC 

Frep RNAI/ repA F TGA TCG TTT AAG GAA TTT TG 60 270 
R GAA GAT CAG TCA CAC CAT CC 

I1 RNAI 
F CGA AAG CCG GAC GGC AGA A 

60 139 R TCG TCG TTC CGC CAA GTT CGT 
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Table 3.3. Antimicrobial susceptibility of 78 Escherichia coli isolates to β-lactam 
antimicrobial agents 

Antimicrobials Phenotype of Disc 

Diffusion method  

MIC (µg/mL) 

R 

(%) 

I 

(%) 

S 

(%) 

< 

0.5 

1 2 4 8 16 32 64 128 256 512 102

4 

> 

102

4 

Ampicillin 100 0 0             78 

Amoxicillin 100 0 0             78 

Cephalothin 38.5 61.5 0     36 10 18 12 2     

Ceftiofur 0 0 100 4 32 11 31          

Ceftazidime 0 0 100 3 3 4 54 14         

Cefotaxime 0 0 100 2 40 36           

Cefoxitin 0 0 100  3 59 12 4         

MIC, minimum inhibitory concentration; R, resistant; I, intermediate; S, susceptible. 
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Table 3.4. Profile of plasmid replicon typing and transferability of 78 Escherichia 
coli isolates 

Number of 
replicons 

Donor 
replicon 

Number 
of 

strains 
Transferability Transfer frequency Replicon of transconjugant Transfer of  

β-lactamase 

1 B/O 1 + 2.52×10-4 B/O  

FIB 1 + 4.01×10-5 FIB TEM-1 

I1 2 + (2/2) 3.68×10-5 ~ 6.81×10-5 I1 TEM-1 

N 2 −    

Frep 2 + (1/2) 3.14×10-4 Frep TEM-1 

FIA 5 + (4/5) 9.09×10-6 ~ 1.01×10-4 FIA TEM-1 

P 5 −    

2 P-FIA 1 + 3.91×10-5 FIA TEM-1 

P-I1 1 −    

FIB-I1 1 + 9.81×10-6 FIB-I1 TEM-1 

FIB-Y 1 + 3.27×10-5 FIB TEM-1 

FIB-Frep 1 + 7.71×10-6 FIB TEM-1 

FIA-FIB 2 + (2/2) 2.91×10-5 ~ 7.11×10-5 FIA-FIB TEM-1 

FIB-N 3 −    

3 B/O-P-FIB 1 + 2.52×10-5 B/O-FIB TEM-1 

P-FIA-FIB 1 + 4.45×10-5 FIA-FIB TEM-1 

P-FIB-Y 1 + 3.62×10-5 FIB TEM-1 

P-FIB-Frep 1 + 9.22×10-4 FIB TEM-1 

FIB-Y-Frep 1 + 8.32×10-5 FIB TEM-1 

FIB-I1-Frep 2 + (2/2) 6.24×10-6 ~ 3.33×10-5 FIB-I1, FIB-Frep TEM-1 

FIB-Y-I1 5 +(5/5) 1.29×10-6 ~ 5.24×10-4 FIB, I1, FIB-I1, FIA-FIB-I1 TEM-1 

FIA-FIB-Frep 5 + (5/5) 8.24×10-6 ~ 4.48×10-5 FIA, FIB, FIA-FIB-Frep,  TEM-1 

P-FIB-I1 6 + (5/6) 9.24×10-6 ~ 3.31×10-5 FIB-I1 TEM-1 

FIA-FIB-Y 8 + (8/8) 9.57×10-6 ~ 1.44×10-5 FIA-FIB TEM-1 

4 B/O-FIB-Frep-N 1 + 2.56×10-5  B/O-Frep TEM-1 

FIA-FIB-Y-HI1 1 + 2.78×10-5 FIA-FIB TEM-1 

P-FIB-I1-Frep 2 + (2/2) 3.01×10-5 ~ 1.19×10-4 FIB, FIB-I1-Frep TEM-1 

B/O-P-FIB-Frep 2 + (1/2) 5.78×10-4 B/O  

B/O-P-I1-Frep 2 + (2/2) 4.27×10-5~7.79×10-5 I1-Frep TEM-1 

P-FIA-FIB-Frep 3 + (3/3) 3.33×10-5~1.91×10-4 FIA-FIB-Frep TEM-1 

FIA-FIB-Y-N 6 + (6/6) 2.52×10-6 ~ 4.49×10-5 FIA-FIB TEM-1 

5 B/O-P-FIB-I1-Frep 1 + 5.62×10-4 FIB-Frep TEM-1 

0 None 1     
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Chapter IV 

 

Prevalence of antimicrobial resistance and transfer of 

tetracycline resistance genes in Escherichia coli 

isolates from beef cattle 

 

 

Abstract 

 

The aim of this study was to investigate the prevalence and transferability of 

resistance in tetracycline-resistant Escherichia coli isolates recovered from beef 

cattle in South Korea. A total of 155 E. coli isolates were collected from feces in 

South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline 

resistance gene tet(A) (46.5%) was the most prevalent, followed by tet(B) (45.1%) 

and tet(C) (5.8%). Strains carrying tet(A) plus tet(B) and tet(B) plus tet(C) were 

detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) 

isolates were classified as phylogenetic group B1, followed in decreasing order by 

D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined 
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to be multidrug-resistant by the disk diffusion method. MIC testing using the 

principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, 

doxycycline, and minocycline, revealed that isolates carrying tet(B) had higher MIC 

values than isolates carrying tet(A). Conjugation assays showed that 121 (82.9%) 

isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB 

replicon (65.1%). This study suggests that the high prevalence of tetracycline-

resistant E. coli isolates in beef cattle is due to the transferability of tetracycline 

resistance genes between E. coli populations which have survived the selective 

pressure caused by the use of antimicrobial agents. 

 

Keywords: Escherichia coli, tetracycline resistance, tet, beef cattle  

 

 

Introduction 

 

Antimicrobial resistance in humans and animals is considered a problem worldwide. 

Resistance to antimicrobial agents impedes the effective prevention and treatment of 

infectious disease, and thus, many governments have planned and implemented 

national programs for monitoring resistance in humans and animals (Cizman, 2003, 

Aarestrup, 2004, Lee et al., 2011, Tadesse et al., 2012). Surveillance data show that 

the inadequate selection and extensive use of antimicrobials result in the emergence 
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and spread of resistant bacteria, particularly multidrug-resistant bacteria, and 

increase resistance to newer compounds, such as tetracycline-class antimicrobials 

(Levy and Marshall, 2004).  

The tetracyclines are one of the most widely used classes of antimicrobial agents in 

human and veterinary medicine because they have several advantages, which include 

a broad spectrum of activity, low cost, oral administration, and few side effects 

(Chopra and Roberts, 2001). After chlortetracycline was introduced into clinical 

medicine in 1948, many derivatives, such as tetracycline, oxytetracycline, 

doxycycline, and minocycline, were developed, and today, these derivatives are 

widely used to treat disease and as growth promoters in the food animal industry. 

However, the widespread and indiscriminate use of tetracyclines has subjected 

bacterial populations to selection pressure and increased the prevalence of 

tetracycline resistance (Chopra and Roberts, 2001, Roberts, 2005). Tetracycline 

resistance is generally caused by the acquisition of a tetracycline resistance (tet) gene, 

as these genes are associated with primary resistance mechanisms, which involve 

active efflux pumps, ribosomal protection, and enzyme inactivation (Koo and Woo, 

2011). To date, more than 40 different resistance genes have been identified (Roberts, 

2005). In Gram-negative bacteria, the most important mechanism involves the efflux 

pump system, which is encoded by tetracycline resistance genes tet(A), tet(B), tet(C), 

tet(D), and tet(G) (Chopra and Roberts, 2001).  
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Although most Escherichia coli strains are considered harmless commensal 

bacteria of the gastrointestinal tracts of humans and animals, pathogenic strains that 

can cause several intestinal and extraintestinal infections exist. Surveillance of E. 

coli isolates is also considered to provide an excellent means of monitoring 

antimicrobial resistance in food and the environment because of the wide range of 

hosts of E. coli and because it easily acquires resistance (Erb et al., 2007). Thus, the 

degrees of resistance in commensal and pathogenic E. coli strains provide indicators 

of antimicrobial selection in their environment, and tetracycline-resistant E. coli 

strains could be used for surveillance for tetracycline resistance in humans and 

animals. Studies have reported tetracycline-resistant E. coli strains in various 

environments (Sengelov et al., 2003, Karami et al., 2006, Tuckman et al., 2007, Gow 

et al., 2008, Koo and Woo, 2011), but only a small number of studies have been 

conducted in animals. The aim of this study was to determine the prevalence of 

tetracycline-resistant E. coli isolates in South Korean beef cattle and determine the 

phenotypes and genotypes of these isolates with a view toward investigating the 

transferabilities of tetracycline resistance determinants between E. coli isolates. 

 

 

Materials and Methods 

 

Bacterial strains  
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In total, 290 E. coli strains were isolated from feces collected from clinically 

healthy beef cattle during 2011 and 2012 (Shin et al., 2014). E. coli isolates that 

showed resistance and intermediate resistance to tetracycline were obtained by 

culture on MacConkey agar plates containing tetracycline at a concentration of 8 

µg/ml (the MIC of tetracycline for E. coli indicating tetracycline resistance is ≥16 

µg/ml) (CLSI, 2013). As a result, 155 E. coli isolates were selected for analysis. E. 

coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as quality 

control organisms in antimicrobial susceptibility tests and MIC tests.  

 

Antimicrobial susceptibility test 

 

The E. coli isolates were tested for susceptibility by the disk diffusion method in 

accordance with the guidelines issued by the Clinical and Laboratory Standards 

Institute (CLSI) (CLSI, 2013). The antimicrobial disks (Oxoid, Basingstoke, United 

Kingdom) used in this study included ampicillin (10 µg), streptomycin (25 µg), 

gentamicin (10 µg), chloramphenicol (C, 30 µg), nalidixic acid (30 µg), 

ciprofloxacin (5 µg), trimethoprim-sulfamethoxazole (1.25/23.75 µg), and 

tetracycline (30 µg) disks.  

 

Detection of tetracycline resistance genes  
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All 155 tetracycline-resistant isolates were tested by multiplex PCR for the 

presence of the tet(A), tet(B), tet(C), tet(D), and tet(G) genes, as described previously 

(Ng et al., 2001). Bacterial DNA for PCR was obtained by suspending colonies of 

bacteria grown on tryptic soy broth (TSB) in 500 µl of ultrapure water and boiling 

at 100°C for 10 min. The oligonucleotide primers used in this study are shown in 

Table 4.1. The PCRs included a negative and a positive control, and reactions were 

run in duplicate to confirm the results. Sequence alignments were performed by use 

of a search of the GenBank database via the National Center for Biotechnology 

Information website with the BLAST program 

(http://www.ncbi.nlm.nih.gov/BLAST). 

 

Phylogenetic grouping 

  

The phylogenetic tree described by Clermont et al. was used to classify all E. coli 

isolates into one of four phylogenetic groups, that is, groups A, B1, B2, and D 

(Clermont et al., 2000). Triplex PCR was used to determine the phylogenetic 

groupings by targeting two genes (chuA and yjaA) and an anonymous DNA fragment 

(TspE4.C2) (Clermont et al., 2000). The result of phylogenetic typing was used to 

compare the pattern of antimicrobial resistance and the tet gene distributions among 

the E. coli isolates tested in this study. 
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Determination of MICs of principal tetracyclines 

 

To investigate the phenotypic characteristics of tetracycline-resistant isolates, the 

MIC values of the principal tetracycline antibiotics, tetracycline, chlortetracycline, 

oxytetracycline, doxycycline, and minocycline, were determined using the broth 

dilution method (CLSI, 2013). All antimicrobials used in this study were tested in 2-

fold dilutions from 1 to 2,048 µg/ml. MIC tests were conducted in triplicate for each 

sample.  

 

Conjugation assay and plasmid replicon typing  

 

To determine the transferability of tetracycline resistance, conjugation assays were 

conducted on tetracycline-resistant isolates using the broth mating method. E. coli 

J53 Azr was used as the recipient strain, and tetracycline-resistant isolates served as 

the donors (Wang et al., 2004). Eight-hour cultures of recipient and donor cells 

grown in Luria-Bertani (LB) broth at 37°C were mixed with each other at a ratio of 

1:1, and the mixture was incubated for 20 h. To identify resistance carried by 

plasmids, 100 µl aliquots of these mixtures were spread onto tryptic soy agar (TSA) 

plates containing tetracycline (8 µg/ml) and sodium azide (200 µg/ml) and incubated 

at 37°C for 20 h. PCR was used to confirm that the transconjugants carried the tet 

gene of their donors. Multiplex PCR was conducted on all donors and 
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transconjugants to type the plasmid replicons, as described previously (Johnson et 

al., 2007).  

 

Statistical analysis  

 

Data were analyzed using IBM SPSS Statistics, version 21, software (SPSS Inc., 

Chicago, IL). The distributions of the tet genes were analyzed using the chi-square 

test. To compare the different tet genes and MIC values, survival analysis was carried 

out using the Kaplan-Meier method, and the curves so obtained were compared using 

the logrank test. P values of < 0.05 were considered statistically significant.  

 

 

Results 

 

Antimicrobial resistance profile 

 

Among 155 E. coli isolates, 146 (94.2%) isolates were resistant to tetracycline, as 

determined using the disk diffusion method. The tetracycline-resistant isolates 

detected in this study showed concurrent resistance to streptomycin (82.2%), 

ampicillin (45.3%), nalidixic acid (32.8%), chloramphenicol (28.8%), trimethoprim-
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sulfamethoxazole (25.3%), ciprofloxacin (10.3%), and gentamicin (5.5%) (Table 

4.2). Of these 146 tetracycline-resistant E. coli isolates, 91 (62.3%) were multidrug-

resistant. The most frequent combination of multidrug-resistance was tetracycline-

streptomycin-ampicillin, which was detected in 20 (13.7%) isolates. Five (3.4%) 

isolates in phylogenetic group B2 showed resistance to streptomycin; resistance to 

no other antimicrobial was found (Table 4.2).  

 

Phylogenetic classification  

 

Of the 155 E. coli isolates, 101 (65.2%) isolates were classified as phylogenetic 

group B1; 27 (17.4%) were classified as group D, which is associated with 

pathogenic bacteria; 22 (14.2%) were classified as group A; and 5 (3.2%) were 

classified as group B2, the phylogenetic lineage associated with virulent 

extraintestinal strains (Table 4.3). Prevalence of tetracycline resistance determinants. 

All 155 isolates carried at least one of the tet genes examined. PCR detection of 

single tet determinants showed that 142 (91.6%) isolates carried tet(A) or tet(B) only: 

72 (46.5%) harbored tet(A) only, and 70 (45.1%) isolates harbored tet(B) only. tet(C) 

was detected in 11 (7.1%) isolates. Four (2.6%) isolates contained two tet genes: 

tet(A) plus tet(B) in two (1.3%) isolates and tet(B) plus tet(C) in two (1.3%) isolates. 

tet(D) and tet(G) were not detected. The distributions of tet(A) and tet(B) in the 
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phylogenetic groups were not significantly different (chi-square test, P < 0.05) 

(Table 4.3).  

 

MIC values of tetracycline-class antimicrobials  

 

The MIC distributions of tetracycline, chlortetracycline, oxytetracycline, 

doxycycline, and minocycline for each group of isolates containing the same tet 

genes are shown in Table 4.4. The MIC values of all tetracyclines for isolates 

susceptible by the disk diffusion method were higher than the breakpoint (MIC > 16 

µg/ml). The MIC of chlortetracycline (range, 1,024 to 2,048 µg/ml) was much higher 

than the MICs of the four other tetracyclines. Resistance to minocycline (MIC > 16 

µg/ml) was observed for 35 (22.6%) isolates, and the genomes of 34 of these isolates 

encoded only the tet(B) resistance determinant. In fact, the average MICs for isolates 

containing the tet(B) gene were higher than those for isolates harboring the tet(A) 

gene (Fig. 4.1). Furthermore, the differences in the MICs between isolates containing 

tet(A) or tet(B) were greater for doxycycline and minocycline than the other three 

tetracyclines (Fig. 4.1).  

 

Conjugative transfer of plasmid-mediated tetracycline resistance genes  
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Of the 146 tetracycline-resistant isolates, 121 (82.9%) isolates were found to 

transfer the tet gene to the recipient strain in conjugation assays. Transfer frequencies 

ranged from 1.26 X 10-8 to 9.26 X 10-6 CFU/ml. For 121 isolates possessing tet(A) 

or tet(B), the transconjugants possessed the same tet gene as their donors. 

Interestingly, for isolates containing tet(A) plus tet(B) or tet(B) plus tet(C), the 

transconjugants carried only the tet(B) gene. Plasmid replicon typing revealed that 

the most frequent replicon in the transconjugants was IncFIB, which was found in 

95 (65.1%) isolates, and this was followed by Frep (45.2%), IncI1 (25.3%), IncP 

(24.7%), IncFIA (19.2%), and IncY (17.1%). The results of the conjugation assay 

with E. coli isolates included in phylogenetic groups B2 and D are shown in Table 

4.5. The tetracycline resistance gene was successfully transferred for all except two 

isolates in these phylogenetic groups. IncFIB was the most frequent plasmid replicon 

detected in transconjugants of these groups (Table 4.5).  

 

 

DISCUSSION 

 

In the present study, all tetracycline-resistant isolates carried either tet(A) or tet(B), 

suggesting that these genes are important for the development of tetracycline 

resistance. Actually, tet(A) and/or tet(B), encoding efflux mechanisms, has been 

reported to be the most common tetracycline resistance determinant in E. coli isolates 
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from humans and animals in many countries (Karami et al., 2006; Tuckman et al., 

2007; Ahmed et al., 2010; Schwaiger et al., 2010; Hu et al., 2013). Previous studies 

conducted in cattle disagree: some have reported that the tet(A) determinant is 

dominant in E. coli isolates recovered from cattle (Guerra et al., 2003; Sharma et al., 

2008; Karczmarczyk et al., 2011b), whereas others found tet(B) to be dominant 

(Sawant et al., 2007; Walk et al., 2007; Mirzaagha et al., 2011). In the present study, 

the prevalences of tet(A) and tet(B) were almost equal at 46.5% and 45.1%, 

respectively, which is consistent with other reports that showed a similar distribution 

pattern for the tet gene in E. coli isolates recovered from animals (Guerra et al., 2003; 

Momtaz et al., 2012). The degree of resistance to tetracycline is associated with the 

presence of tet(B) (Gow et al., 2008). In the present study, MIC testing showed that 

E. coli isolates carrying only tet(B) appeared to have higher MIC values for 

tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, 

which concurs with previous reports (Blake et al., 2003; Tuckman et al., 2007; Gow 

et al., 2008). Furthermore, we found that the MIC values for isolates carrying tet(B) 

were significantly higher for doxycycline and minocycline. These results are 

consistent with those of a previous study, in which tet(B) was found to confer 

resistance to expanded-spectrum tetracyclines, including minocycline and 

doxycycline (Huys et al., 2005).  

In a previous study, tet(C) was frequently identified in E. coli isolates recovered 

from a commercial beef processing plant (Aslam and Service, 2006). However, we 
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found tet(C) in only nine strains isolated from beef cattle, and those isolates showed 

susceptibility, but with low MIC values, to tetracycline, which concurs with the 

findings of previous studies (Chalmers et al., 2010; Koo and Woo, 2011). 

Interestingly, the prevalences of tet(C) in E. coli isolates recovered from animals was 

reported to be higher than the prevalences of tet(C) in E. coli isolates recovered from 

meat and meat products (Koo and Woo, 2011), which suggests that some processing 

stages may reduce tetracycline resistance in E. coli.  

Several studies have described E. coli isolates carrying more than two tet genes 

(Lanz et al., 2003; Sengelov et al., 2003; Bryan et al., 2004). In South Korea, 40% 

of E. coli strains isolated from cows and pigs in slaughterhouses were found to have 

two different tet genes (Cho, 2008), and in the present study, four E. coli isolates 

were found to carry more than two tet genes. Although the prevalence of isolates 

containing both tet(A) and tet(B) in the present study was lower than that reported 

in previous studies (Lanz et al., 2003; Sengelov et al., 2003), we found two isolates 

harboring tet(B) and tet(C), which is the first report of this combination in E. coli 

strains isolated from beef cattle in South Korea. However, this conflicts with the 

findings of a previous study, in which tet(C) was always found with tet(A) (Maynard 

et al., 2003). Our study also showed that two isolates that carried more than one tet 

gene did not have higher MIC values than isolates that harbored one tet gene. This 

phenomenon was described in a previous study, in which it was proposed that the 
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acquisition of more than one tet gene is caused by strong selective pressure rather 

than a selective advantage (Bryan et al., 2004). 

The long-term use of tetracycline confers resistance to other antimicrobial agents 

by E. coli. This phenomenon, called coselection, could be the result of tet genes 

being located on the same mobile genetic elements, such as plasmids, transposons, 

or integrons, as other resistance genes (Gophna et al., 2003). In the present study, 

many isolates were resistant to tetracycline and other antimicrobials, and 62.3% of 

tetracycline-resistant isolates exhibited multidrug-resistance. Thus, coselection has 

important implications, as it means that tetracycline resistance has contributed much 

to the increased prevalence of multidrug-resistance in E. coli.  

Phylogenetic groups B2 and D are associated with pathogenicity, whereas strains 

of groups A and B1 are classified as nonpathogenic commensal strains (Clermont et 

al., 2000; Cocchi et al., 2007). In the present study, most isolates were classified as 

group B1 (65.2%). This is consistent with the results of other studies that found that 

bovine E. coli isolates most frequently belong to group A and/or B1 (Houser et al., 

2008; Karczmarczyk et al., 2011b). Twentyseven isolates (17.4%) were classified as 

group D, even though they were cultured from clinically healthy cattle in this study.  

Conjugative transfer is the most common mechanism for the delivery of 

antimicrobial resistance between Gram-negative isolates because plasmid 

conjugation can occur at a high frequency and transfer resistance genes (Sunde and 

Norstrom, 2006). In the present study, most tetracycline-resistant isolates (82.9%) 
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exhibited conjugative transfer, which means that most tet genes are carried and 

transferred by conjugative plasmids. Therefore, we presume that the horizontal 

transfer of tet genes provides an effective mechanism for the widespread distribution 

of tetracycline resistance in bacterial populations and explains the high prevalence 

of tetracycline-resistant E. coli isolates.  

In South Korea, although the use of tetracyclines as feed additives was entirely 

banned in July 2011, in 2013, about 40% of bovine E. coli isolates were found to be 

resistant to tetracycline (QIA, 2013). Accordingly, we propose that the high 

prevalence of tetracycline resistance in E. coli is probably due to the horizontal 

transfer of tet determinants from E. coli isolates carrying tet genes which have 

survived selective pressure caused by the use of tetracycline derivatives. We hope 

that these findings can be utilized as basic data for epidemiologic studies and studies 

to assess the risk of tetracycline resistance. 
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Table 4.1 Primers used in this study 
Target 
gene 

Primer Sequence 
Amplicon 
Size (bp) 

Accession 
No. 

Reference 

tet(A) 
TetA-F GCTACATCCTGCTTGCCTTC 

210 X61367 

(Ng et al., 2001) 

TetA-R CATAGATCGCCGTGAAGAGG 

tet(B) 
TetB-F TTGGTTAGGGGCAAGTTTTG 

659 J01830 
TetB-R GTAATGGGCCAATAACACCG 

tet(C) 
TetC-F CTTGAGAGCCTTCAACCCAG 

418 J01749 
TetC-R ATGGTCGTCATCTACCTGCC 

tet(D) 
TetD-F AAACCATTACGGCATTCTGC 

787 L06798 
TetD-R GACCGGATACACCATCCATC 

tet(G) 
TetG-F GCTCGGTGGTATCTCTGCTC 

468 S52437 
TetG-R AGCAACAGAATCGGGAACAC 

chuA 
ChuA-F GACGAACCAACGGTCAGGAT 

279 HQ284193 

(Clermont et al., 
2000) 

ChuA-R TGCCGCCAGTACCAAAGACA 

yjaA 
Yja-F TGAAGTGTCAGGAGACGCTG 

211 HQ284194 
Yja-R ATGGAGAATGCGTTCCTCAAC 

TspE4C2 
TspE4C2-F GAGTAATGTCGGGGCATTCA 

152 HQ284195 
TspE4C2-R CGCGCCAACAAAGTATTACG 
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Table 4.2. Resistances of 146 tetracycline-resistant E. coli isolates in different 
phylogenetic groups to other antimicrobials 

Phylogenetic 
groups 

 
No. of strains showing antimicrobial resistance (%) 

AMP GN STR C SXT NA CIP 

Total 66 (45.3) 8 (5.5) 120 (82.2) 42 (28.8) 37 (25.3) 48 (32.8) 15 (10.3) 

A 14 (9.6) 3 (2.1) 15 (10.3) 7 (4.8) 7 (4.8) 6 (4.1) 5 (3.4) 

B1 43 (29.5) 4 (2.7) 75 (51.4) 33 (22.6) 26 (17.8) 24 (16.4) 10 (6.8) 

B2   5 (3.4)     

D 9 (6.2) 1 (0.7) 25 (17.1) 2 (1.4) 4 (2.7) 18 (12.3)  

AMP, ampicillin; GN, gentamicin; STR, streptomycin; NA, nalidixic acid; C, 
chloramphenicol; SXT, sulfamethoxazole/trimethoprim; CIP, ciprofloxacin. 
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Table 4.3. Distributions of tetracycline resistance genes in E. coli isolates in the four 
identified phylogenetic groups 

Phylogenetic 
groups 

No. of 
isolates 

(%) 

No. of tetracycline resistance genes (%) 

tet(A) tet(B) tet(C) tet(A)+(B) tet(B)+C) 

Total 155 (100) 72 (46.5) 70 (45.1) 9 (5.8) 2 (1.3) 2 (1.3) 

A 22 (14.2) 6 (3.9) 9 (5.8) 5 (3.2) - 2 (1.3) 

B1 101 (65.2) 41 (26.5) 54 (34.8) 4 (2.6) 2 (1.3) - 

B2 5 (3.2) - 5 (3.2) - - - 

D 27 (17.4) 25 (16.1) 2 (1.3) - - - 
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Table 4.4. MICs of tetracycline antimicrobials for E. coli isolates with different tetracycline resistance genes 

Antimicrobial Gene 
profile 

No. of 
strain 

Average 
(㎍/ml) 

MIC (㎍/ml) 
1 2 4 8 16 32 64 128 256 512 1024 2048 

Tetracycline 

tet(A) 72 200.0       3 27 42    
tet(B) 70 245.9       1 4 65    
tet(C) 9 23.1     5 4       
tet(A)+(B) 2 256.0         2    
tet(B)+(C) 2 256.0         2    

Chlortetracycline 

tet(A) 72 1365.3           48 24 
tet(B) 70 1682.3           25 45 
tet(C) 9 170.7        6 3    
tet(A)+(B) 2 1536           1 1 
tet(B)+(C) 2 1536           1 1 

Oxytetracycline 

tet(A) 72 384.0         36 36   
tet(B) 70 479.1         9 61   
tet(C) 9 49.8      4 5      
tet(A)+(B) 2 512.0          2   
tet(B)+(C) 2 384.0         1 1   

Doxycycline 

tet(A) 72 17.3  1  7 54 10       
tet(B) 70 42.5     4 41 25      
tet(C) 9 5.8  6 2   1       
tet(A)+(B) 2 32.0      2       
tet(B)+(C) 2 32.0      2       

Minocycline 

tet(A) 72 3.3  39 28 4 1        
tet(B) 70 13.7  1 6 29 24 10       
tet(C) 9 1.1 8 1           
tet(A)+(B) 2 6.0   1 1         
tet(B)+(C) 2 8.0    2         
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Table 4.5. Characterization and transferability of resistance in E. coli isolates classified into phylogenetic groups B2 and D 

a TE, tetracycline; S, streptomycin; GN, gentamicin; SXT, sulfamethoxazole-trimethoprim; C, chloramphenicol; NA, nalidixic acid; AMP, ampicillin. 
b TET, tetracycline; OXY, oxytetracycline; CTC, chlortetracycline; DOX, doxycycline; MIN, minocycline. 
c FIB, IncFIB replicon; I1, IncI1 replicon; P, IncP replicon, FIA, IncFIA replicon; Y, IncY replicon. 

Strain  Phylogen
y 

Resistance  
Phenotypea 

Resistance 
gene 

MICb (㎍/ml) Plasmid replicon 
typec 

Transconjugants 

TET OXY CTC DOX MIN Transferability tet 
genes Replicon type 

60 B2 TE, S tet(B) 256 512 1024 32 8 FIB, Y, I1, Frep + tet(B) FIB, I1, Frep 
61 B2 TE, S tet(B) 256 512 1024 32 16 FIB, Y, I1, Frep - - - 
62 B2 TE, S tet(B) 256 512 1024 32 8 FIB, Y, I1 + tet(B) FIB, I1 
64 B2 TE, S tet(B) 256 512 1024 32 8 FIB, Y, I1 + tet(B) FIB, I1 
68 B2 TE, S tet(A) 256 512 1024 32 8 FIB, Y, I1, Frep - - - 
90 D TE, S, AMP tet(A) 256 512 2048 32 4 P, FIA, FIB, Frep + tet(A) FIA, FIB, Frep 
106 D TE, S tet(B) 256 512 2048 32 16 Frep + tet(B) Frep 
123 D TE, NA tet(A) 256 512 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
124 D TE, CN, SXT, C, S, NA, AMP tet(B) 256 512 2048 64 8 FIA, FIB, Frep + tet(B) FIB, Frep 
127 D TE, S, AMP tet(A) 256 512 2048 32 4 P, I1 + tet(A) I1 
128 D TE, AMP tet(A) 256 512 2048 16 4 FIB, I1 + tet(A) Frep, I1 
133 D TE, S, NA tet(A) 256 512 1024 2 2 FIB, Frep + tet(A) Frep 
135 D TE, S, NA tet(A) 256 512 1024 8 2 FIB + tet(A) FIB 
136 D TE, S, NA tet(A) 256 512 1024 16 2 FIB, Frep + tet(A) FIB 
147 D TE, S, NA tet(A) 256 512 1024 16 2 FIB + tet(A) FIB 
148 D TE, S, NA tet(A) 256 512 1024 8 2 FIB, Frep + tet(A) FIB, Frep 
152 D TE, S, NA tet(A) 256 512 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
153 D TE, S, NA tet(A) 256 512 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
156 D TE, S, NA tet(A) 256 512 1024 16 2 FIB, Frep + tet(A) FIB 
162 D TE, S, NA tet(A) 128 256 1024 32 2 FIB, Frep + tet(A) FIB, Frep 
163 D TE, S, NA tet(A) 128 256 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
164 D TE, S, NA tet(A) 128 256 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
167 D TE, S, NA tet(A) 128 256 1024 16 2 FIB, Frep + tet(A) FIB 
172 D TE, S, NA tet(A) 128 256 1024 16 2 FIB, Frep + tet(A) FIB 
173 D TE, S, NA tet(A) 128 256 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
174 D TE, S, NA tet(A) 128 256 1024 16 2 FIB, Frep + tet(A) FIB, Frep 
175 D TE, S, NA tet(A) 256 512 1024 8 2 FIB, Frep + tet(A) FIB 
177 D TE, S, AMP tet(A) 64 256 2048 16 4 P, FIA, FIB, Frep + tet(A) FIB, Frep 
178 D TE, S, AMP tet(A) 64 256 2048 16 4 P, FIA, FIB, Frep + tet(A) FIB, Frep 
192 D TE, SXT, C, S, AMP tet(A) 256 512 1024 16 2 P, FIB, Frep + tet(A) FIB, Frep 
194 D TE, SXT, S, AMP tet(A) 128 256 1024 16 2 Frep + tet(A) Frep 
198 D TE, SXT, S, AMP tet(A) 128 256 1024 32 2 Frep + tet(A) Frep 
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Fig. 4.1. Survival curves (obtained by the Kaplan-Meier method) of E. coli isolates 

harboring tet(A) or tet(B) for resistance to the tetracycline family of antimicrobials. 

The survival rates of the E. coli isolates are compared with the MIC values of the 

five tetracyclines (tetracycline, chlortetracycline, oxytetracycline, oxycycline, and 

minocycline). Full and dotted lines, survival rates of tet(A)-carrying and tet(B)-

carrying strains, respectively. a, the MIC values of the five etracyclines were log 

transformed (base 2). 
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Chapter V 

 

Prevalence and characterization of CTX-M- and 

CMY-Type extended-spectrum β-lactamase 

producing Escherichia coli isolates from pigs and 

chickens 

 

Abstract 

 

Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has 

disseminated rapidly worldwide and constitutes a serious threat to public health. A 

total of 281 Escherichia coli strains isolated from pigs and chickens between 2009 

and 2015 in South Korea were investigated for ESBL-production. ESBL phenotypes 

were identified in 14 E. coli isolates; ten and three ESBL-producing isolates carried 

only blaCTX-M and blaCMY genes, respectively, and one isolate harbored both genes. 

The most common CTX-M- and CMY-types were CTX-M-15 (n=8) and CMY-2 

(n=3). We also detected ESBL-producing isolates harboring blaCTX-M-14, blaCTX-M-65, 

blaCMY-6, blaDHA-1, and blaTEM-1 genes. All ESBL-producing isolates showed 
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resistance to the extent of the fourth-generation cephalosporins, along with multi-

drug resistance. MIC test determined that isolates that had produced CTX-M-15 

showed higher MIC values than those that produced CTX-M-14 and CTX-M-65. A 

conjugation assay demonstrated that blaCTX-M and blaCMY genes have the potential to 

be transferred to E. coli J53 AzR. The horizontal dissemination of blaCTX-M and 

blaCMY genes was mediated mainly by Frep and IncI1 plasmids. PFGE revealed that 

isolates tested in this study were very diverse, clonally. To our knowledge, this is the 

first report of blaCMY-6 in E. coli strains that have been isolated from chickens in 

South Korea. The emergence of this CMY-6 ESBLs in a population of poultry 

suggests that extensive screening with long-term surveillance is necessary for the 

dissemination of ESBL from chicken to human. 

 

Key words: swine, poultry, extended-spectrum β-lactamase (ESBL), CTX-M, CMY, 

conjugative transfer, public health  

 

 

Introduction 

 

Extended-spectrum-β-lactamases (ESBLs) are emerging enzymes that confer 

resistance to extended-spectrum cephalosporins, which are detected most commonly 

in Enterobacteriaceae (Livermore, 1995). The mechanism of β-lactamases is to 
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provide protection from the lethal effect of β-lactam class of antimicrobials on cell 

wall synthesis (Sanders and Sanders, 1992). The vast majority of ESBLs belongs to 

TEM- and SHV-type families, which are common plasmid mediated β-lactamase of 

E.coli. The family of CTX-M type β-lactamases, which is a derivative of TEM or 

SHV, is increasingly being reported in gram-negative bacteria that consist of more 

than 170 CTX-M subtypes (http://www.lahey.org/studies/webt.asp) and are 

classified in accordance to the subgroups (CTX-M group 1, 2, 8, and 9) (Bradford, 

2001; Bonnet, 2004). CTX-M enzymes possess a clinical significance of the high 

levels of hydrolytic activity against cefotaxime. Similarly, various groups of 

plasmid-mediated AmpC (pAmpC) β-lactamases have been reported, and the most 

common one is CMY-type β-lactamase produced by E. coli (Philippon et al., 2002). 

These enzymes typically confer antimicrobial resistance to cephamycins.  

Food-producing animals may play an important role, serving as a reservoir of 

antimicrobial resistance determinants in bacterial populations, as they transfer 

resistant bacteria or mobile resistance determinants from food-producing animals to 

human. Previous studies have generally focused on the presence and transmission of 

ESBLs and pAmpC β-lactamase in E. coli isolated from clinical cases (Saladin et al., 

2002; Bonnet, 2004; Kim et al., 2005; Rodriguez-Bano and Navarro, 2008). In South 

Korea, Lim et al. had reported for the first time the presence of blaCTX-M gene in E. 

coli strain isolated from diseased animals in 2009 (Lim et al., 2009). Moreover, 

several studies have reported E. coli strains producing ESBLs and pAmpC β-
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lactamase (Tamang et al., 2011; Tamang et al., 2012; Lim et al., 2015). Recently, 

we reported extended-cephalosporin resistance among Enterobactericae isolates 

from farm animals in South Korea (Rayamajhi et al., 2011), and hypothesized that 

ESBL genes would be present in isolates from pigs and chickens in South Korea. 

However, still limited reports on ESBL-producing E. coli strains have been 

published in food-producing animal populations, which relied on data by national 

surveillance (Lim et al., 2009; Tamang et al., 2011; Tamang et al., 2012). Therefore, 

this study aims to investigate the prevalence of ESBL-producing E. coli isolates 

recovered from pigs and chickens that had been collected in South Korea between 

2009 and 2015 and also to analyze their phenotypes and genotypes.  

 

 

Materials and Methods 

 

Bacterial strains 

 

A total of 281 non-duplicate isolates of E. coli were collected in this study. Among 

the 281 isolates, 206 isolates were isolated from necropsied pigs with clinical signs 

of digestive and respiratory disorders between 2009 to 2015, and 75 isolates of avian 

pathogenic E. coli collected from 2011 to 2015 were kindly provided by Chung Ang 

Vaccine Laboratory (CAVAC, Korea). These isolates were re-confirmed by using a 
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biochemical test (IMViC test) and/or Vitek®2 system (bioMérieux, Marcy l'Etoile, 

France). E. coli J53 AzR was used as a recipient for a conjugation assay (Rayamajhi 

et al., 2011). E. coli ATCC 25922 was used as the quality control strains in 

antimicrobial susceptibility tests and MIC tests. Salmonella serotype Braenderup 

strain (H9812) was selected as the universal size standard (Hunter et al., 2005). 

 

Antimicrobial susceptibility test and detection of ESBL-producing isolates 

 

 E. coli isolates were tested for antimicrobial susceptibility by a disc diffusion assay, 

proposed by the Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2013). 

The antimicrobial agents (Oxoid, Basingstoke, UK) were as follows: ampicillin (10 

μg), ceftazidime (30 μg), cefotaxime (30 μg), ciprofloxacin (5 μg), nalidixic acid (30 

μg), tetracycline (30 μg), trimethoprim-sulfamethoxazole (1.25/23.75 μg), and 

gentamicin (10 μg). The results of antimicrobial susceptibility tests were interpreted 

in accordance to the guidelines set forth by CLSI (CLSI, 2013). After interpretation 

of the results, a double-disc synergy method was performed for all isolates showing 

resistance to ampicillin, ceftazidime, and cefotaxime to determine the production of 

ESBL, as previously described (CLSI, 2013). Briefly, antimicrobial discs (BD, 

Franklin Lakes, NJ) containing ceftazidime/clavulanate (30/10 μg) and 

cefotaxime/clavulanate (30/10 μg) were placed with ceftazidime and cefotaxime on 

a plate inoculated by the resistant isolates. After overnight incubation at 37°C, the 
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ESBL production was determined by the difference of zone diameter, which 

indicated the inactive effect of clavulanate to the test agents. Then, the ESBL-

producing isolates were further screened for profiling antimicrobial resistance to the 

β-lactam class. The following agents (Oxoid, Basingstoke, UK) were included: 

amoxicillin/clavulanic acid (30 μg), cephalothin (30 μg), cefaclor (30 μg), 

ceftriaxone (30 μg), cefixime (5 μg), cefpirome (30 μg), cefepime (30 μg), ertapenem 

(30 μg), and imipenem (10 μg). Moreover, a MIC value of ceftazidime, cefotaxime, 

ceftriaxone, aztreonam, and cefoxitin was determined by a micro-broth dilution 

method (CLSI, 2013). All antimicrobial agents used in tis study were tested in 2-fold 

dilutions from 0.25 to 2,048μg/ml. Antimicrobial susceptibility test and MIC tests 

were performed in triplicate for each sample. 

 

Detection of β-lactamase determinants 

 

 For all ESBL-producing isolates, PCR amplification with primers that target blaTEM 

(Rayamajhi et al., 2008), blaSHV (Rayamajhi et al., 2008), blaCTM-M (Batchelor et al., 

2005), and pAmpC β-lactamase genes (Dallenne et al., 2010) were conducted. For 

positive isolates of blaCTX-M, further PCRs were performed to confirm blaCTX-M genes, 

using the blaCTX-M group specific primers for the CTX-M-1, CTX-M-2, CTX-M-8, 

and CTX-M-9 group (Jeong et al., 2005). DNA templates for PCR were obtained by 

centrifugation of the suspending colonies of isolates grown on a tryptic soy broth 
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(TSB) in 500μl of distilled water after boiling at 100°C for 10 min. Sequence 

analyses and comparison with known sequences were performed by searching the 

GenBank database via the National Center for Biotechnology Information website, 

with a BLAST program (http://www.ncbi.nlm.nih.gov/BLAST). 

 

Phylogenetic grouping and plasmid replicon typing 

 

All ESBL-producing isolates were classified into one of the four phylogenetic 

groups (A, B1, B2, and D) by a phylogenetic grouping PCR method (Clermont et al., 

2000). A multiplex PCR was used to determine the phylogenetic groupings by 

targeting two genetic determinants (chuA and yjaA) and an anonymous DNA 

fragment (TSPE4.C2). The result of phylogenetic typing was used to compare the 

pattern of antimicrobial resistance and the β-lactamase gene distributions among the 

ESBL-producing E. coli isolates tested in this study. A multiplex PCR was 

performed on all isolates to type the plasmid replicons, as described previously 

(Carattoli et al., 2005). 
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Pulse-field gel electrophoresis (PFGE)  

 

For 14 ESBL-producing isolates, PFGE of XbaI digested genomic DNA was 

carried out according to a standard protocol of the Center for Disease Control and 

Prevention (CDC), using a CHEF MAPPER apparatus (Bio-Rad Laboratories, 

Hercules, CA), as previously described (Shin et al., 2014). Gel images were analyzed 

using a GelCompar II software (Applied Maths, Sint-Martens-Latem, Belgium). 

Clustering was constructed using an unweighted pair group method with arithmetic 

means (UPGMA) analysis based on the Dice similarity index. 

 

Conjugation assay  

 

To determine the transferability of β-lactamase resistance genes, conjugation assays 

were conducted on ESBL-producing isolates using the broth-mating method. E. coli 

J53 AzR was used as the recipient strain, and ESBL-producing isolates served as the 

donors, as previously described (Shin et al., 2015). The PCR method used above was 

conducted to determine whether the transconjugants carried the β-lactamase 

resistance gene of their donors. In addition, for all transcnjugants, antimicrobial 

susceptibility test, MIC test, and plasmid replicon typing were performed to 

determine the characteristics of transconjugants as conducted to the donors.. 
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Results 

 

Antimicrobial resistance profiling of ESBL-producing isolates 

 

Among the 281 E. coli isolates, 20 of them showed resistance and/or intermediate 

resistance to ceftazidime and/or cefotaxime, as determined by the disc diffusion 

method. Of these 20 isolates, 14 were confirmed to produce ESBLs by the double-

disc synergy test. ESBL-producing isolates detected in this study showed a 

concurrent resistance to nalidixic acid (n=12), tetracycline (n=11), ciprofloxacin 

(n=9), gentamicin (n=8), and trimethoprim/sulfamethoxazole (n=7) (Table 5.1). As 

a result, 10 isolates showed multi-drug resistance to be resistant to at least three 

classes of antimicrobial agent. 

The prevalence of antimicrobial resistance to β-lactam agents was as follows: 

ampicillin (n=14); cephalothin (n=14); cefaclor (n=14); cefotaxime (n=14); 

ceftriaxone (n=14); cefixime (n=13); ceftazidime (n=11); cefpirome (n=7); cefepime 

(n=4); and amoxicillin/clavulante (n=4). None of the isolates were resistant to 

ertapenem and imipenem (Table 5.1).  

The MIC distribution of ceftazidime, cefotaxime, ceftriaxone, aztreonam and 

cefoxitin for ESBL-producing isolates are shown in Table 5.1. There are various 

MIC values of all agents, ranging from 0.25 to 2,048 μg/ml. The MIC values of all 

agents for the isolates that showed a resistance by the disc diffusion method were 
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higher than the breakpoint of each agent (ceftazidime ≥ 16 μg/ml, cefotaxime ≥ 4 

μg/ml, ceftriaxone ≥ 4 μg/ml, aztreonam ≥ 16 μg/ml, cefoxitin ≥ 32 μg/ml). The 

average MIC value of cefotaxime and ceftriaxone is much higher than that of the 

other three agents. Resistance to cefoxitin (MIC ≥ 32 μg/ml) was detected in four 

isolates, and these isolates had plasmid-mediated AmpC β-lactamase encoding genes 

(CMY-2 or CMY-6) in common (Table 5.1). 

 

Prevalence of β-lactamase encoding genes 

 

A total of 11 ESBL-producing E. coli isolates that harbored the blaCTX-M-type genes 

were included in the CTX-M-1 or CTX-M-9 group. A sequencing analysis of the 

blaCTX-M-positive isolates identified that eight isolates carried blaCTX-M-14, two 

isolates harbored blaCTX-M-14, and one isolate had blaCTX-M-65 (Table 5.1). Among 

these 11 blaCTX-M-positive isolates, six isolates co-carried blaTEM-1, one isolate each 

co-harbored blaCMY-2, and blaDHA-1. None of the isolates was positive for the blaSHV 

gene. Of the three isolates that were negative for blaCTX-M, two isolates showed to 

produce CMY-2, and one isolate to produce CMY-6 (Table 5.1).  

 

Profile of phylogenetic grouping and plasmid replicon typing 

 

128 
 



Of the 14 ESBL-producing E. coli isolates, ten were classified into the non-virulent 

groups A (n=7) and B1 (n=3), and four isolates into groups B2 (n=2) and D (n=2), 

which are associated with virulent bacteria (Table 5.1). Plasmid replicon typing 

revealed that four types of plasmid were detected in 14 ESBL-producing isolates. 

Incompatibility Frep was the most frequent replicon type detected in the 13 ESBL-

producing isolates. This was followed by IncFIB (n=12), IncI1 (n=6), and IncN (n=2) 

(Table 5.1). 

 

PFGE analysis 

 

All 11 CTX-M-producing strains and three CMY-producing strains showed PFGE 

profiles with a low similarity (< 70% similarity), which suggests that these isolates 

are unlikely to be derived from a single clone of E. coli. However, EC085 and EC092 

strains isolated from pigs in the same year and carrying both blaCTX-M-15 and blaTEM-

1 genes showed a high genetic homogenicity with 89.7% of similarity (Fig. 5.1). 

 

Conjugation assay  

 

The horizontal transfer of the phenotypes and genotypes of the ESBL-producing 

isolates to the recipient strains (E. coliJ53 AzR) by the conjugation assay was found 

in nine transconjugants. The characteristics of transconjugants are shown in Table 
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4.2. For nine trasnsconjugants, PCR analysis for β-lactamase genes identified the 

transfer of blaCTX-M-15 (n=4), blaTEM-1 (n=4), blaCTX-M-14 (n=1), blaCMY-2 (n=1), and 

blaCMY-6 (n=1) genes to the recipient strain as detected in their donors. The 

antimicrobial susceptibility test on β-lactams of nine transconjugants determined the 

transfer of β-lactam-resistance. All transconjugants were resistant to ampicillin, and 

all but EC096-Tc were resistant to cephalothin. The two transconjugants producing 

only TEM-1-type β-lactamase were resistant to ampicillin and/or cephalothin. The 

other seven transconjugants producing CTX-M-type or CMY-type β-lactamase 

showed resistance to cefaclor and ceftriaxone. EC085-Tc and EC240-Tc that carried 

the blaCTX-M-15 gene were resistant to cefpirome, which is included in the fourth-

generation cephalosporin. In addition to the transfer of β-lactams resistance, 

resistance to non-β-lactams was also determined in four isolates. The resistance to 

gentamicin was commonly identified in four transconjugants. The MIC test for 

transconjugants revealed that the isolates producing only TEM-1-type β-lactamase 

were susceptible to five antimicrobial agents. Three transconjugants harboring 

blaCTX-M-15, blaCMY-6 and blaCMY-2 gene showed resistance to cefoxitin with high MIC 

values, ranging from 512 to 1024 μg/ml. The plasmid replicon typing results for nine 

transconjugants revealed four different replicon types as their donors. Among these, 

three of nine transconjugants contained more than one type of replicon. The replicon 

type Frep was the most frequent replicon detected in five transconjugant, followed 

by IncI1 (n=4), IncFIB (n=3), and IncN (n=1). 
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Discussion 

 

In the present study, the phenotypic and genotypic characteristics of ESBL-

producing E. coli strains that had been isolated from pigs and chickens between 2009 

and 2015 in South Korea were investigated. From 206 isolates that originated in 

necropsied pigs, nine isolates (4.36%) were ESBL-producing E. coli strains. From 

75 isolates of avian pathogenic E. coli, five isolates (6.67%) produced ESBLs. A 

total of 14 isolates (4.98%) were identified as ESBL-producing E. coli from 281 E. 

coli isolates. This prevalence is similar with previous studies that reported E. coli 

isolates from pigs in Denmark (Agerso and Aarestrup, 2013) and from chickens in 

Japan (Hiroi et al., 2012). In contrast, a high prevalence of ESBL-producing E. coli 

isolates was reported for E. coli isolates from pigs and chickens in Hong Kong (Ho 

et al., 2011), Netherland (Dierikx et al., 2013), and South Korea (Lim et al., 2015). 

With respect to the β-lactamase type produced, out of 281 E. coli isolates tested, 

11isolates (3.91%) produced CTX-M-type β-lactamase and three isolates (1.07%) 

produced CMY-type β-lactamase. One isolate (EC051) produced a combined type 

of β-lactamases (CTX-M-15 and CMY-2). Although a similar frequency of CTX-

M-type β-lactamase producing E. coli isolates was observed in E. coli strains isolated 

from pigs and cattle in South Korea (Lim et al., 2009; Tamang et al., 2013a), the 

prevalence of CTX-M-type lactamase described in previous reports is much higher 

than that of our study (Ho et al., 2011; Zheng et al., 2012; Dierikx et al., 2013). 
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The ESBL-producing E. coli isolates investigated in this study carried a various 

type of β-lactamase genes. Three different CTX-M type- (blaCTX-M-14, blaCTX-M-15, and 

blaCTX-M-65) and two different CMY type- (blaCMY-2 and blaCMY-6) β-lactamase genes 

were detected. These resistance variants have been reported previously for E. coli 

strains isolated from food-producing animals in Asia (Lim et al.; 2009, Ho et al., 

2011; Hiroi et al., 2012; Zheng et al., 2012; Hiki et al., 2013). The blaCTX-M-15, which 

is the most dominant CTX-M-type β-lactamase detected globally (Nicolas-Chanoine 

et al., 2008), was also identified most frequently in this study. Similarly, the blaCMY-

2 detected in this study has previously been reported for E. coli strains isolated from 

food-producing animals in Europe, the United States, and South Korea (Winokur et 

al., 2001; Rayamajhi et al., 2008; Liebana et al., 2013). In South Korea, many studies 

reported the prevalence of blaCTX-M-14 gene in E. coli from pigs, cattle, and chickens 

and Salmonella spp. from chicken (Rayamajhi et al., 2011; Tamang et al., 2011; 

Tamang et al., 2013a; Tamang et al., 2013b, Tamang et al., 2014). Furthermore, in 

this study, we identified the blaCMY-6 gene in one isolate from chicken. This variant 

has previously been reported for E. coli strains from only clinical cases in South 

Korea (Yoo et al., 2010). Thus, to our knowledge, this study is the first report of an 

E. coli strain carrying blaCMY-6 from chicken in South Korea. This findings suggest 

that the emergence of blaCMY-6 gene in E. coli strains isolated from chicken may 

constitute a potential risk to public health with increased consumption of chicken in 

South Korea.  
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In this study, the MIC test for five β-lactam agents showed that the average MICs 

of each agent for isolates that produced CTX-M-15 was higher those that produced 

CTX-M-14 and CTX-M-65, especially in cefotaxime and ceftriaxone (data not 

shown). Although the number of samples tested was low to have statistical 

significance, this data is similar with a previous study which reported that the CTX-

M group 1 showed higher MIC values than the CTX-M group 9 in third- and fourth-

generation cephalosporins (Tarnberg et al., 2011). Meanwhile, our results revealed 

that the isolates producing CMY-2 or CMY-6 β-lactamase had higher MICs of 

cefoxitin (ranging 512 to 1024 μg/ml) than those without CMY-type β-lactamase 

(ranging 4 to 16 μg/ml), which is in agreement with the previous studies that showed 

the effectiveness of CMY-type β-lactamase onto cefoxitin-resistance (Yan et al., 

2000, Winokur et al., 2001). Therefore, we suggest that the isolates that produced 

both CTX-M-15 and CMY-2 could have high MIC values in cefotaxime, ceftriaxone 

and cefoxitin. The susceptibility test for β-lactam resistance determined that all 

ESBL-producing E. coli isolates showed extensive resistance to the extent of the 

fourth-generation cephalosporins. This may have resulted from an increasing trend 

in the amount of usage of cephems, such as ceftiofur, annually from 2006 (QIA, 

2014). Usually, CMY-type β-lactamase confers resistance to 1st-, 2nd-, and 3rd-

generation cephalosporins, but not to 4th-generation cephalosporins (Liebana et al., 

2013). Interestingly, in this study, all isolates producing CMY-2 and/or CMY-6 

showed resistance to 4th-generation cephalosporins. 
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In this study, nine isolates transferred the β-lactamase-encoding genes by the 

conjugation assay to the recipient strain. The blaCTX-M-65 and blaDHA-1 genes did not 

transfer to the recipient strains, which indicate that these genetic determinants may 

not be located in the plasmid that transferred the blaCTX-M-14, blaCTX-M-15, blaCMY-2, 

blaCMY-6, and blaTEM-1 genes. Furthermore, our results indicate that the horizontal 

dissemination of blaCTX-M and blaCMY genes in the E. coli strains tested in this study 

is due mainly to Frep and IncI1 plasmids, respectively. Some β-lactamase-encoding 

genes are located within the mobile genetic elements associated with other resistance 

genes, which confer resistance to the antimicrobials that could be extensively used 

in humans and animals (e.g. fluoroquinolones and aminoglycosides), which could 

also play an important role in the co-selection of these resistance genes (Brinas et al., 

2005). Similarly, in this study, four isolates co-transfer gentamicin resistance with 

β-lactams to the recipient strain. Interestingly, the two isolates only transferred the 

blaTEM-1 gene that had lost their ESBL-producing phenotype, and showed an 

increased susceptibility to β-lactams in the disc diffusion test and MIC test.  

In this study, three E. coli isolates harboring blaCTX-M genes and one isolate 

harboring blaCMY genes belonged to the virulent phylogenetic groups B2 and D. 

These findings may constitute concerns regarding the transfer of CTX-M- or CMY-

producing E. coli isolates that belong to the virulent phylogenetic groups from 

animals to humans, because humans share the same environment and remain in close 

contact with them (Hammerum et al., 2014). Furthermore, molecular typing by 
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PFGE showed that CTX-M- and CMY-producing E. coli strains were clonally very 

diverse, which suggests that the spread of the blaCTX-M and blaCMY genes in E. coli 

strains among pigs and chicken may mainly result from horizontal transmission, 

rather than clonal expansion from a single clone of E. coli. In general, there was no 

significant correlation between the phylogenetic groups and the groupings of strains 

in each cluster by XbaI-digested PFGE.  

In conclusion, our results describe the recent dissemination of ESBL-producing E. 

coli strains among pigs and chickens in South Korea. Although the presence of 

extended-spectrum cephalosporin resistance in animals is very low, the spread of 

ESBLs genes in these strains could arise among animal species, as well as humans, 

which can lead to treatment failures in both veterinary and human medicines. To our 

knowledge, this is the first report of blaCMY-6 gene in E. coli strains from chicken in 

South Korea. More studies are needed with a better long-term surveillance to trace 

the evolution and dissemination of CTX-M- and CMY-type β-lactamase between 

different food-producing animals. 
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Table 5.1. Profile of antimicrobial resistance and resistance gene of ESBL-producing Escherichia coli isolated form pig and chicken 
 

AMP, ampicillin; AMC, amoxicillin/clavulanic acid; KF, cephalothin; CEC, cefaclor; CAZ, ceftazidime; CTX, cefotaxime; CRO, ceftriaxone; CFM, cefixime; 
CPO, cefpirome; FEP, cefepime; CIP, ciprofloxacin; NA, nalidixic acid; TE, tetracycline; SXT, trimethoprim/sulfamethoxazole; GN, gentamicin 
 
 
 

Strain Origin 
Phylo- 
genetic 
group 

β-lactamase genes 
Plasmid 
replicon Transfer 

Antimicrobial resistance 
 

MIC values (㎍/㎖) 

CTX-M 
type 

Other 
β-lactamase β-lactams Others 

 
CAZ CTX CRO ATM FOX 

EC010 Pig A CTX-M-
14 TEM-1 Frep, FIB, N Positive AMP, KF, CEC, CTX, CRO, 

CFM 
NA, TE, 
SXT, GN 

 4 128 512 8 8 

EC035 Pig A CTX-M-
15 - Frep, FIB Positive AMP, KF, CEC, CAZ, CTX, 

CRO, CFM, CPO, FEP 
CIP, NA, TE, 
SXT, GN 

 64 1024 1024 256 16 

EC050 Pig D CTX-M-
15 TEM-1 Frep, FIB Positive AMP, KF, CEC, CAZ, CTX, 

CRO, CFM, CPO, FEP GN  256 2048 2048 256 8 

EC051 Pig A CTX-M-
15 CMY-2 Frep, FIB Positive AMP, AMC, KF, CEC, CAZ, 

CTX, CRO, CFM, CPO, FEP CIP, NA, GN  512 512 1024 256 512 

EC065 Pig B2 CTX-M-
15 DHA-1 Frep Negativ

e 
AMP, KF, CEC, CAZ, CTX, 
CRO, CFM 

CIP, NA, TE, 
SXT, GN 

 32 128 256 32 16 

EC085 Pig A CTX-M-
15 TEM-1 Frep, I1 Positive AMP, KF, CEC, CAZ, CTX, 

CRO, CFM, CPO CIP, NA, TE  128 1024 1024 128 16 

EC092 Pig A CTX-M-
15 TEM-1 Frep, FIB, I1 Negativ

e 
AMP, KF, CEC, CAZ, CTX, 
CRO, CFM, CPO 

CIP, NA, TE, 
SXT, GN 

 128 512 1024 128 16 

EC096 Pig A CTX-M-
15 TEM-1 Frep, FIB, 

I1, N Positive AMP, KF, CEC, CAZ, CTX, 
CRO, CFM, CPO 

CIP, NA, TE, 
SXT, GN 

 32 2048 2048 64 8 

EC105 Pig B1 CTX-M-
65 TEM-1 Frep, FIB, I1 Negativ

e 
AMP, KF, CEC, CTX, CRO, 
CFM 

CIP, NA, TE, 
SXT, GN 

 2 512 512 16 8 

EC240 Chicke
n D CTX-M-

15 - Frep, FIB Positive AMP, KF, CEC, CAZ, CTX, 
CRO, CFM, CPO, FEP -  32 1024 1024 64 8 

EC243 Chicke
n B1 - CMY-2 Frep, FIB Negativ

e 
AMP, AMC, KF, CEC, CAZ, 
CTX, CRO, CFM NA, TE,  256 64 128 32 512 

EC260 Chicke
n A - CMY-6 FIB, I1 Positive AMP, AMC, KF, CEC, CAZ, 

CTX, CRO, CFM CIP, NA, TE  512 128 256 128 1024 

EC262 Chicke
n B2 - CMY-2 Frep, FIB, I1 Positive AMP, AMC, KF, CEC, CAZ, 

CTX, CRO, CFM NA, TE  1024 128 256 128 512 

EC264 Chicke
n B1 CTX-M-

14 - Frep, FIB Negativ
e AMP, KF, CEC, CTX, CRO CIP, NA, TE, 

SXT, GN 
 2 256 256 4 4 
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Table 4.2. Characteristics of transconjugants of ESBL-producing Escherichia coli isolates  

AMP, ampicillin; AMC, amoxicillin/clavulanic acid; KF, cephalothin; CEC, cefaclor; CAZ, ceftazidime; CTX, cefotaxime; CRO, 
ceftriaxone; CFM, cefixime; CPO, cefpirome; SXT, trimethoprim/sulfamethoxazole; GN, gentamicin; ATM, aztreonam; FOX, cefoxitin 

  

Strain Donor 
strains 

Transferred 
β-lactamase genes 

Plasmid 
replicon 

Antimicrobial resistance 
 

MIC values (㎍/㎖) 

CTX-M 
type 

Other 
β-lactamase β-lactams Others 

 
CAZ CTX CRO ATM FOX 

EC010-Tc PEC510 CTX-M-14 TEM-1 Frep, FIB, N AMP, KF, CEC, 
CTX, CRO, CFM -  4 64 64 8 16 

EC035-Tc PEC574 CTX-M-15 TEM-1 Frep, FIB 
AMP, KF, CEC, 
CAZ, CTX, CRO, 
CFM 

GN 
 

64 512 512 128 8 

EC050-Tc PEC590 - TEM-1 Frep AMP, KF GN  2 0.25 1 1 4 

EC051-Tc PEC591 CTX-M-15 - Frep, FIB 
AMP, KF, CEC, 
CAZ, CTX, CRO, 
CFM 

GN 
 

64 512 512 128 16 

EC085-Tc PEC705 CTX-M-15 - I1 
AMP, KF, CEC, 
CAZ, CTX, CRO, 
CFM, CPO 

- 
 

128 1024 1024 256 16 

EC096-Tc PEC716 - TEM-1 I1 AMP SXT, GN  2 0.25 1 1 4 

EC240-Tc AEC34 CTX-M-15 - Frep 
AMP, KF, CEC, 
CAZ, CTX, CRO, 
CFM, CPO 

- 
 

128 1024 512 8 1024 

EC260-Tc AEC54 - CMY-6 I1 
AMP, AMC, KF, 
CEC, CAZ, CTX, 
CRO, CFM 

- 
 

512 32 128 32 512 

EC262-Tc AEC56 - CMY-2 I1 
AMP, AMC, KF, 
CEC, CAZ, CTX, 
CRO, CFM 

- 
 

256 128 128 64 1024 
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Fig. 5.1 Dendrogram generated showing the cluster analysis of XbaI digested PFGE patterns of ESBL-producing E. coli 

strains isolated from pigs and chickens. Similarity analysis was performed by using the Dice coefficient, and clustering was 

done by the unweighted-pair group method using average linkages (UGPMA). For 14 ESBL-producing E. coli strains, 

details given include the strain, origin, phylogenetic groups of each strain, β-lactamase encoding genes, the sampled year 

of each strain, and antimicrobial resistance profiles in order.  
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General conclusions 

This study showed that plasmid mediated resistance in E. coli is on rise and are 

conferring resistance to important antimicrobial used in farm animal. In first study, 

our results suggested that diverse determinants of virulence and antimicrobial 

resistance of E. coli were widespread in E. coli strains isolated from cattle farms in 

South Korea. Moreover, these determinants could disseminate into non-pathogenic 

E. coli isolates according pathogenicity to them. This suggests that the normal flora 

of cattle could be a significant reservoir of diverse virulence and antimicrobial 

resistance determinants, which is potentially threatening to public health. In second 

study, when compared to other veterinary studies, our results were unusual as no 

resistance to cephems was found and only one kind of β-lactamase was detected. 

These results suggested that the present selection pressure of antimicrobial use on β-

lactamases in beef cattle might be relatively low in comparison to other livestock in 

Korea. However, increased exposure to antimicrobials could increase selection 

pressure for β-lactamases, which presented a critical risk to human and animal health. 

In third study, we proposed that the high prevalence of tetracycline resistance in E. 

coli was probably due to the horizontal transfer of tet determinants from E. coli 

isolates carrying tet genes which have survived selective pressure caused by the use 

of tetracycline derivatives. In final study, our results described the recent 

dissemination of ESBL-producing E. coli strains among pigs and chickens in South 
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Korea. Although the presence of extended-spectrum cephalosporin resistance in 

animals was very low, the spread of ESBLs genes in these strains could arise among 

animal species, as well as humans, which can lead to treatment failures in both 

veterinary and human medicines. To our knowledge, this is the first report of blaCMY-

6 gene in E. coli strains from chicken in South Korea. More studies are needed with 

a better long-term surveillance to trace the evolution and dissemination of CTX-M- 

and CMY-type β-lactamase between different food-producing animals. 
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국내 농장분리 대장균의 항생제 내성유형 및 

내성유전자의 전달에 관한 분석 
 

신 승 원 
 

(지도교수: 유한상, D.V.M., Ph.D.) 
 

서울대학교 대학원 
수의학과 수의미생물학 전공 

 
대장균은 항생제 내성 유전체를 사람과 동물의 해로운 미생물에게 

전달하는 중요한 전달매체이다. 대장균은 병원체들과 인테그론, 

트랜스포좀 그리고 플라스미드와 같은 유동성 유전물질을 효과적으로 

교환할 수 있다. 이러한 유전체들에 의해 획득한 내성기전은 내성의 

획득과 전파에 있어서 중요한 역할을 한다. 따라서 산업동물 내의 

항생제 내성의 분포와 전달성에 대해 조사 및 분석하기 위해 

2009 년부터 2015 년까지 비육우, 돼지 그리고 닭의 병변과 분변으로부터  

분리한 대장균이 이번 연구에 포함되었다. 

비육우에서 분리한 대장균의 분포와 특성에 관한 첫 번째 연구는 

표면적으로 및 유전적으로 다양한 유형의 항생제 내성 및 병원성을 
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보여주었다. 19% (55/290)의 균주들이 Shiga 독소를 분비하는 대장균 

(STEC)으로 판명되었다. 가장 많이 발견된 병원성 유전자는 f17 (26.2%, 

76/290)이었다. 152 주의 균주들이 다재 항생제 내성을 보였다. 항생제 

감수성 검사에서 가장 많은 내성률을 보인 항생제는 streptomycin (63.1% 

95/290)이었으며, tetracycline (54.5%, 158/290), cephalothin (32.8%, 95/290), 

그리고 sulphamethoxazole/trimethoprim (16.6%, 48/290)가 그 뒤를 이었다. 

PCR 및 sequencing 결과는 다음과 같은 연관 내성 유전자의 분포를 

보여주었다; strA-strB (39.0%, 113/290), aac(3)-IV (33.1%, 96/290), aphA1 (21.4%, 

62/290), tet(A) (27.6%, 80/290), tet(B) (78/290, 26.9%), blaTEM (23.8%, 69/290), 

sul2 (22.1% 97/290). PFGE 와 O 혈청형 분석 결과 이번 연구에서 분리된 

대장균은 유전적으로 클론 다양성의 정도가 매우 높게 나타났다.. 이러한 

결과들은 비육우에서 분리된 대장균 균주들의 병원성 및 항생제 내성이 

매우 다양함을 암시하였다. 

다음 연구는 ESBL 이나 plasmid-mediated AmpC (pAmpC) 

베타락탐효소로 진화할 가능성이 있는 베타락탐효소를 가지고 있는 

ampicillin 내성 소 유래 대장균에 관한 것이었다. 이 연구에서는 

비육우로부터 분리된 78 주의 대장균에 대하여 ESBL 또는 pAmpC 

베타락탐효소의 생성에 대해 조사하였다. 베타락탐계 항생제를 이용한 

디스크확산법에서 38.5%의 균주들이 ampicillin, amoxicillin 그리고 
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cephalothin 에 내성을 보였다. Double disc synergy method 결과 ESBL 이나 

pAmpC 베타락탐효소의 생성을 보이는 균주는 없었다. DNA 

염기서열분석 결과 모든 균주가 TEM-1 형의 베타락탐효소를 

암호화하였다. 제공균주의 플라스미드 레플리콘형 분석에서는 IncFIB 와 

IncFIA 이 각각 71.4%와 41.0% 를 차지하였다. transconjugant 에서는 

IncFIB 와 IncFIA 가 각각 61.5%와 41.0%가 발견되었다. 이 연구는 국내 

비육우군에서 베타락탐효소에 대한 항생제의 선택적압박이 다른 

가축군에 비해 상대적으로 낮음을 시사하였다. 

세번째 연구에서 국내 비육우에서 분리된 tetracycline 내성 대장균의 

분포와 항생제 전달성에 대해 조사하엿다. 155 주의 대장균 중 146 주가 

tetracycline 에 대해 내성인 것으로 나타났다. tetracycline 내성유전자 

tet(A)가 가장 많이 발견되었으며 (46.1%, 72/155). tet(B) (45.1, 70/155)와 

tet(C) (5.8%, 9/155)가 그 뒤를 이었다. 계통학적 분석에서 65.2% 

(101/155)의 균주가 그룹 B1 에 속하였으며, D (17.4%), A (14.2%) 그리고 

B2 (3.2%)가 그 뒤를 이었다. 91 주 (62.3%)의 균주가 디스크확산법 결과 

다재 내성이었다. 중요 tetracycline 계 항생제, tetracycline, chlortetracycline, 

oxytetracycline, doxycycline 그리고 minocycline 을 이용한 MIC 검사결과 

tet(B)를 지닌 균주가 tet(A)를 지닌 균주에 비해 더 높은 MIC 수치를 

나타냈다. Conjugation 실험결과 82.9% (121/155)의 균주가 tetracycline 내성 
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유전자를 수령 균주에 전달하였으며, IncFIB 형의 플라스미드가 가장 

많이 이용되었다 (65.1% 95/155). 이 연구는 비육우 유래 tetracycline 내성 

대장균의 높은 분포가 항생제로부터 살아남아, 대장균집단에 의한 

내성유전자의 전파를 통해 이루어진다는 것을 시사하였다. 

마지막 연구에서는 2009 년부터 2015 년까지 돼지와 닭에서 분리된 총 

281 주의 대장균을 대상으로 ESBL 생성성을 조사하였다. 14 주의 

균주에서 ESBL 생성성이 확인되었다; 각각 10 주 및 3 주의 ESBL 생성 

대장균에서 blaCTX-M 및 blaCMY 유전자가 홀로 발견되었고, 한 주의 

대장균에서 두 유전자 모두 발견되었다. 가장 많이 발견된 CTX-M 형 및 

CMY 형은 CTX-M-15 (8/14) 과 CMY-2 (3/14)이었다. 또한 blaCTX-M-14, 

blaCTX-M-65, blaCMY-6, blaDHA-1 그리고 blaTEM 유전자를 지닌 ESBL 생성 

균주들이 발견되었다. 모든 ESBL 생성 균주들은 4 세대 cephalosporin 

항생제에 까지 내성을 나타냈으며, 모두 다재 내성이었다. MIC 검사결과 

CTX-M-15 을 분비하는 균주들이 CTX-M-14 와 CTX-M-65 를 분비하는 

균주들에 비해 높은 MIC 수치를 나타내었다. Conjugation 실험 결과 

blaCTX-M 과 blaCMY 유전자는 모두 수령 균주에게 전달되었다. blaCTX-M 과 

blaCMY 유전자의 수평 전파에는 Frep 과 IncI1 형 플라스미드가 

매개하였다. PFGE 실험 결과 이 실험에 사용된 균주들은 매우 다양한 
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클론들이 분포한다는 것을 보여주었다. 또한 이 결과는 국내최초로 

닭에서 분리된 대장균에서 blaCMY-6 가 분포한다는 것을 밝혔다.  

이러한 연구 결과, 대장균 유래 전달성 플라스미드와 염색체 내에 

존재하는 항생제 내성 유전자는 공공위생에 치명적일 수 있다. 게다가 

사람과 축산동물 내 대장균의 항생제 내성이 증가하므로 사람과 

수의학적 목적으로 사용되는 항생제의 사용이 제한되어야 한다는 의견을 

뒷받침하였다. 따라서 대장균 내 항생제 내성의 출현과 전파를 

최소화하기 위해 항생제의 합리적인 사용과 내성에 관한 장기적인 

조사가 필요하였다. 

 

 

핵심어 :  대장균, 항생제 내성, 축산동물, 플라스미드, tetracycline, ESBL, 

CMY-6 
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