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ABSTRACT 

 

The role of sigma-1 receptor of spinal 

astrocyte in the development of 

mechanical allodynia by peripheral  

nerve injury 

Ji-Young Moon 

Major in Veterinary Physiology  

Department of Veterinary Medicine 

The Graduate School 

Seoul National University 

 

BACKGROUND:  

Chronic pain, such as peripheral neuropathic pain, can be characterized by sensory 

disorders that include mechanical allodynia (MA, lowering of response threshold to light 

tactile stimuli) and thermal hyperalgesia (TH, an increased response to a noxious thermal 

stimulus). The precise mechanisms in the spinal cord underlying the development of MA and 

TH remain to be clearly defined. The role of sigma non-opioid intracellular receptor 1 (Sig-

1R) in modulating central sensitization associated with the development of neuropathic pain 

has recently been investigated. Moreover, it has been recognized that spinal Sig-1Rs play an 

important role in the induction of MA in neuropathic pain. However, it was not clearly 
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demonstrated the specific mechanism related to this spinal Sig-1R under the development of 

MA in neuropathic pain condition. 

 

OBJECTIVES:  

The present study was designed to investigate: 

1.  the precise cellular location of Sig-1Rs in the spinal cord and whether Sig-1R activation 

mediates phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-Jun 

amino-terminal kinase (JNK), among mitogen-activated protein kinase (MAPK) signaling 

pathways. The effects of p38 and ERK inhibitor on the Sig-1R induced pain behaviors were 

also investigated.   

2.  the histological and physiological relationships among Sig-1R, p-p38 and glial activation 

and whether the inhibition of Sig-1R or p38 modulates astrocyte activation in chronic 

constriction injury (CCI) mice. I also investigated whether this Sig-1R modulation of astrocyte 

activation is associated with the increase of D-serine in the spinal cord dorsal horn. 

3.  whether the inhibition of Sig-1R or p38, which modulates astrocyte activity is associated 

with MA development in CCI mice. In addition, the role of D-serine in the induction of Sig-

1R-mediated MA was also investigated in CCI mice. 

 

MATERIALS AND METHODS:  

Primary astrocyte-enriched cell cultures were prepared from newborn C57BL/6 mice. 

Other experiments were performed on male ICR mice (20-25g). A CCI of the common sciatic 

nerve was performed according to the method described by Bennett and Xie. For intrathecal 
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injection, I used the modified method of direct transcutaneous intrathecal injection on mice 

described by Hylden and Wilcox. Sensitization to innocuous mechanical stimulation (MA) 

was examined using von Frey filaments with forces of a 0.16 g. To assess nociceptive 

responses to heat stimuli, sensitization to noxious heat stimulation (TH) was examined with a 

hot-plate apparatus or Hargreaves apparatus. In the present study, the Sig-1R agonist, PRE-

084 (3 nmol), its antagonist, BD-1047 (100 nmol), a ERK inhibitor, PD98059 (3, 10, 30 nmol), 

a p38 inhibitor, SB203580 (0.1, 0.3, 1, 3, 10 nmol), an astroglial metabolic inhibitor, 

fluorocitrate (0.003, 0.001, 0.03 nmol) and a serine racemase inhibitor, LSOS (1, 3, 10 nmol) 

were used. Immunohistochemistry and Western blot assay were performed according to each 

experiment procedure. The computer-assisted image analysis system (Metamorph) was 

utilized throughout whole experiments.  

 

RESULTS:  

1.   The expression of Sig-1Rs was significantly increased in astrocytes on day 3 

following CCI surgery in mice. In cultured astrocytes, Sig-1R expression was also found, and 

the treatment of PRE-084 increased phosphorylation of ERK and p38, but not JNK. While 

intrathecal pretreatment with PD98059 inhibited both PRE-084-induced MA and TH, 

SB203580 dose-dependently inhibited PRE-084-induced MA, but not TH induction was not 

affected. Intrathecal injection of PRE-084 into naïve mice time-dependently increased the 

expression of p38 phosphorylation (p-p38), which was blocked by pretreatment with BD-1047.  

2.   The activation of astrocyte and microglia were increased in the spinal cord on day 

3 following CCI surgery in mice. Sustained intrathecal treatment with the BD-1047 during the 
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induction phase (postoperative days 0 to 3), attenuated CCI-induced increase in activation of 

astrocyte, but not microglia. The number of p-p38-ir astrocytes and neurons, but not microglia 

was also significantly increased after CCI surgery. Interestingly, intrathecal BD-1047 

attenuated the expression of p-p38 selectively in astrocytes but not in neurons. Moreover, 

intrathecal treatment with a p38 inhibitor attenuated the GFAP expression. The level of D-

serine and Serine racemase (Srr) expression were significantly increased in the spinal cord 

after CCI surgery. D-serine was localized in astrocyte and accumulated around neuron. Srr 

was also found in astrocyte. The increased level of D-serine was attenuated by sustained 

intrathecal treatment with BD-1047. Accordingly, Srr expression was also reduced by BD-

1047 treatment and I found Srr expression was located on the same cell with Sig-1R-ir cells. 

3.   Sustained intrathecal treatment with the BD-1047 combined with fluorocitrate 

synergistically reduced the development of MA, but not TH. Moreover, intrathecal treatment 

with a p38 inhibitor combined with fluorocitrate synergistically blocked the induction of MA. 

In addition, sustained intrathecal treatment with the Srr inhibitor reduced the development of 

MA, and the blockade by BD-1047 treatment was reversed by exogenous D-serine. 

 

CONCLUSIONS:  

The present study demonstrates that the direct activation of spinal Sig-1R significantly 

increased p-p38 and the activation of spinal p38 was closely involved with the Sig-1R-

mediated MA, but not TH. In CCI mice, spinal Sig-1R expression are increased in astrocytes, 

and that blockade of Sig-1Rs inhibits the pathologic activation of astrocytes via modulation of 

p-p38, which ultimately prevents the development of MA. The present study also indicates 
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that the Sig-1R-mediated MA is developed by an increase of Srr expression, which in turn 

causes an increase of D-serine level in the spinal cord of CCI mice. Collectively these findings 

imply that the increase of p-p38 and D-serine induced by spinal Sig-1R plays an important 

role in the development of MA in neuropathic pain and further suggest that MA development 

could be clinically controlled by the Sig-1R modulation.    

 

-------------------------------------------------------------------- 

Key words: Neuropathic pain, Sigma-1 receptor, Mechanical allodynia, 
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BACKGROUND 

Chronic pain  

Pain is an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage and is an essential early warning mechanism. This sensation is 

mediated in the periphery by high threshold primary sensory neurons, the nociceptors, which 

transmit information via nociceptive pathways in the spinal cord to the brain (von Hehn et al., 

2012). Alterations of the pain pathway lead to hypersensitivity, such that pain loses its 

usefulness as an acute warning system and instead becomes chronic and debilitating (Basbaum 

et al., 2009). The development of chronic pain, characterized by allodynia (pain produced 

in response to a nonnociceptive stimulus as defined by the International Association for the 

Study of Pain) and hyperalgesia (increased sensitivity to a painful stimuli), is associated 

with a variety of pathophysiologic changes at peripheral and/or central sites (Ueda, 2006; 

Latremoliere et al., 2009). Hyperalgesia and allodynia are classified according to the type of 

stimulus which elicit the sensation of pain. Mechanical and thermal (heat or cold) hyperalgesia 

and mechanical allodynia (MA) can be differentiated (Sandkuhler, 2009). However, the 

precise mechanisms underlying the development of MA versus thermal hyperalgesia (TH) 

remain to be accurately defined.  

Peripheral and central sensitization  

Peripheral sensitization occurs when the peripheral terminals of primary sensory neurons 

are exposed to inflammatory mediators and damaged tissue. It represents a reduction in 

threshold and an amplification in the responsiveness of nociceptors.  Robust hypersensitivity 

can develop with inflammation or after injection of specific components of the inflammatory 

soup (Fukuoka et al., 1994; Andreev et al., 1995). Lack of sensitization to heat in TRPV-1 
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deficient mice provides genetic support for the idea that peripheral TRPV1 is a key component 

of the mechanism through which inflammation produces TH (Caterina et al., 1997; Davis et 

al., 2000).  However, peripheral sensitization appears to play a major role in altered heat but 

not mechanical sensitivity, which is a major feature of central sensitization (Latremoliere et 

al., 2009; von Hehn et al., 2012).  

Central sensitization is a state of hyperexcitability in the central nervous system, leading 

to enhanced processing of nociceptive messages. It is induced by enhanced synaptic strength 

in the spinal cord and brain regions, due to an increase in excitatory synaptic transmission, a 

glial neuronal interactions and/or a reduction in inhibitory synaptic transmission (e.g. GABA 

currents) (Ji et al., 2007; Basbaum et al., 2009). 

Under acute pain conditions, postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptor and kainite subtypes of ionotropic glutamate receptors are activated and 

generates excitatory postsynaptic currents (EPSCs) in second order dorsal horn neurons 

(Basbaum et al., 2009). In the setting of injury, increased release of neurotransmitters, such as 

glutamate and neuropeptides, from nociceptors will sufficiently depolarize postsynaptic 

neurons to activate quiescent N-methyl-D-aspartate (NMDA) receptors or other receptors. The 

consequent increase in Ca2+ influx in the postsynaptic neurons causes downstream activation 

of a host of signaling pathways and second messenger systems, notably kinases (such as 

mitogen-activated protein kinases [MAPKs], PKA, PKC), further increases excitability of 

these neurons, in part by modulating NMDA receptor function (Latremoliere et al., 2009; 

Mendell, 2011; von Hehn et al., 2012) (Fig.1).  
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Figure 1. Schematic diagrams illustrating major mechanisms involved in peripheral and 

central sensitization. Inflammatory mediators released by peripheral injury enhance the 

magnitude of the response to a given stimulus. The increased activity in sensory neurons 

enhance synaptic strength in the spinal cord, due to an increase in excitatory synaptic 

transmission, a glial neuronal interactions and/or a reduction in inhibitory synaptic 

transmission. Adapted from (Mendell, 2011) 
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Glia activation  

Although non-neuronal glial cells were originally regarded as supporting cells in the 

central nervous system (CNS), accumulating evidence indicate that glial cells, notably 

microglia and astrocytes, also participate in chronic pain. The structural and functional 

alterations of glia in the spinal cord have been reported in various models of chronic pain 

(Milligan et al., 2009; Gao et al., 2010a) (Fig.2). Under normal conditions, microglia functions 

as resident macrophages of the CNS. However, peripheral nerve injury induces a profound 

changes in spinal microglia including increased expression of microglial markers, CD11b and 

Iba-1. ATP receptor P2X4 and the chemokine receptor CX3CR1 are specifically upregulated 

in spinal microglia, and blocking these receptors results in decreased neuropathic pain (Tsuda 

et al., 2003; Verge et al., 2004). Minocycline, a microglial inhibitor was shown to prevent or 

delay neuropathic pain (Ledeboer et al., 2005; Ma et al., 2010). Furthermore, intrathecal 

injection of ATP-activated microglia induces MA and TH, indicating that microglial activation 

is sufficient to induced pain sensitization (Tsuda et al., 2003; Narita et al., 2006).  

Astrocytes are the most abundant glial cell type in the CNS. They modulates neuronal 

function, such as extracellular ion homeostasis, neurotransmitter reuptake and release, control 

of synaptic strength. Unlike microglia, astrocytes form networks with themselves and are 

closely associated with neurons and blood vessels. Astrocytes are organized in gap junction-

coupled networks. They not only transmit Ca2+ signaling in the form of oscillations or waves 

through the networks but also form a tripartite synapse with pre- and postsynaptic membranes 

and release gliotransmitters that modulate synaptic strength (Scemes et al., 2006; Agulhon et 

al., 2008; Ben Achour et al., 2010). After injury or under disease conditions, they can be 

converted to reactive states, which is characterized by an increase in glial fibrillary acidic 
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protein (GFAP) expression, an apparent enlargement of astrocytic process, a reduction in 

glutamate reuptake, and a release of various neuromodulatory molecules. It has been reported 

that spinal GFAP was shown to be upregulated in models of neuropathic pain as well as 

inflammatory pain (Raghavendra et al., 2004; Kang et al., 2011; Zhang et al., 2011). 

Accumulating evidence indicates that activated astrocytes can enhance persistent pain states 

by producing pain mediators, such as proinflammatory cytokines (e.g. interleukin [IL]-1β, IL-

6), chemokines (e.g. monocyte chemoattractant protein-1 [MCP-1]) and growth factors in the 

spinal cord (Gao et al., 2009b; Gao et al., 2010c; Gao et al., 2010d; Weyerbacher et al., 2010). 

In addition, astrocytes also release chemical transmitters, gliotransmitters such as D-serine, 

glutamate, and ATP (Parpura et al., 2010; Agulhon et al., 2012). Although glutamate and ATP 

are the most recognized chemical transmitters that mediate astrocyte-neuron signaling, it has 

been recently demonstrated that D-serine is an endogenous ligand for the glycine site of the 

NMDA receptor, which modulates NMDA receptor mediated neurotransmission (Mothet et 

al., 2000; Henneberger et al., 2010).  Recently, it has also been reported that D-serine is 

involved in the mechanism of nociception in the spinal cord of chronic pain models (Ying et 

al., 2006; Laurido et al., 2012; Dieb et al., 2013). Further study indicate that astrocytes are 

also required for the generation of persistent pain. Fluorocitrate and its precursor fluoroacetate 

are general inhibitors for glial cells, especially astrocytes (Swanson et al., 1994). Low doses 

of fluorocitrate specially disrupt astrocytic metabolism by blocking the glial-specific enzyme 

aconitase at Krebs’ cycle. Intrathecal injection of fluorocitrate or L-α-aminoadipate, another 

relative specific cytotoxin for astrocytes, has been shown to alleviate pain behaviors in several 

animal models of chronic pain (Qin et al., 2006; Xu et al., 2007b; Gao et al., 2010c; Ji et al., 

2013). Furthermore, Zhang et al. reported that intrathecal injection of brain-derived 
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neurotrophic factor (BDNF)-activated astrocytes produce MA (Zhang et al., 2011). However, 

another group has been reported that phorbol 12,13-dibutyrate (PDBu), a PKC activator-

activated astrocytes fail to produce TH in naïve mice (Narita et al., 2006). These data imply 

that direct activation of astrocytes in the spinal cord can play more important role in 

development of MA than TH.   

MAPKs phosphorylation  

The MAPKs regulate diverse cellular activities. Three distinct groups of MAPKs have 

been characterized: extracellular signal-regulated kinases (ERKs), p38 and c-Jun amino-

terminal kinases (JNKs). MAPKs can be activated by phosphorylation via a variety of different 

stimuli and transduce extracellular stimuli into intracellular posttranslational and 

transcriptional responses, which represent three separate signaling pathways (Johnson et al., 

2002). Activation of MAPKs under various persistent pain conditions results in the induction 

and maintenance of pain hypersensitivity (Obata et al., 2004; Ji et al., 2009). Of interest, after 

tissue or nerve injury, ERK, p38 and JNK are differentially activated in spinal neurons and 

glial cells, leading to the synthesis of pronociceptive mediators, thereby enhancing and prolong 

pain (Obata et al., 2004; Ji et al., 2009).  

It has been reported that phosphorylation of ERK (pERK) in dorsal horn neurons is 

essential for the development of central sensitization that is responsible for the generation of 

persistent pain (Ji et al., 1999; Karim et al., 2001; Gao et al., 2009a). Recently accumulating 

evidence has demonstrated that ERK is also activated in glia in nerve injury model. 

Interestingly, ERK is only activated in microglia in the early phase (first 1 and 3 days) of the 

nerve injury (Zhuang et al., 2005). On the other hand, in the late phase after nerve injury, 

pERK is induced in spinal astrocytes and spinal inhibition of ERK activation by intrathecal 
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administration of an ERK kinase inhibitor reduced MA (Ma et al., 2002; Zhuang et al., 2005) . 

In the maintenance phase of inflammatory pain induced by complete Freund’s adjuvant (CFA) 

injection, pERK was also increased in astrocyte (Weyerbacher et al., 2010). These results 

implicate a role of astrocytic ERK in the maintenance of chronic pain. Increase in 

phosphorylation of JNK (pJNK) was also found in spinal astrocytes in several models of 

chronic pain (Ma et al., 2002; Zhuang et al., 2006; Gao et al., 2009b). In particular, the 

inhibition of JNK activation in astrocyte in spinal cord of neuropathic rats was able to prevent 

and reverse MA, suggesting that it plays an important role in development and maintenance 

of neuropathic pain (Gao et al., 2009b).  

p38 is regarded stress induced kinase and phosphorylation of p38 (p-p38) can be induced 

by elevated concentrations of intracellular Ca2+ and the activation of Ca2+ dependent enzymes 

(Lee et al., 2000a; Hayashi et al., 2007; Trang et al., 2009). p38 also plays an important role 

in a variety of chronic pain states (Jin et al., 2003; Boyle et al., 2006; Xu et al., 2007a; Sorkin 

et al., 2009; Wen et al., 2009). In general, mounting evidence indicates that p38 is activated 

in microglia under various persist pain conditions (Jin et al., 2003; Boyle et al., 2006; Piao et 

al., 2006). However, the role of p38 in the spinal cord following chronic pain condition occurs 

in a time-specific and model–specific manner. Early treatment with p38 inhibitor prevents the 

development of MA by blocking cytokines such as tumor necrosis factor-α (TNF-α) synthesis 

(Boyle et al., 2006; Xu et al., 2007a; Lee et al., 2010). On the other hand, post-treatment with 

p38 inhibitor starting on day 7 produces no effect on MA or TNF-α levels in chronic 

constriction injury (CCI) rats (Xu et al., 2007a). In addition, increase in p-p38 was also found 

in spinal astrocytes or neuron in other chronic pain conditions, such as partial sciatic nerve 

ligation (pSNL) or first-degree burn (Xu et al., 2007b; Sorkin et al., 2009). Moreover, based 
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on experiments performed in a variety of animal pain models, spinal p38 activation appears to 

be involved in the pathophysiology of MA, but not TH (Sorkin et al., 2009; Wen et al., 2009). 

Accumulating evidences indicate that glia activation, relating to MAPKs phosphorylation in 

the dorsal horn mediates pain through different mechanisms operating at different times in 

various chronic pain condition.  

 

  

 

 

 

 

 

 

 

 

 

 

 



-9- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagrams illustrating glia activation in pain processing. (A), Under 

healthy circumstances, mild noxious stimuli leads to glutamate release. AMPA receptor is 

activated and generates EPSCs in second order dorsal horn neurons. (B), After tissue or nerve 

injury, microglia and astrocyte are activated in spinal dorsal horn, leading to the synthesis of 

pronociceptive mediators, thereby enhancing and prolong pain. Adapted from (Milligan et al., 

2009). 
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OBJECTIVES 

This study is aimed to 

1. Examine: (1) the precise cellular location of Sig-1R in the spinal cord; (2) whether 

the treatment of the specific Sig-1R agonist, PRE-084 could modulate p38, ERK and 

JNK phosphorylation in cultured astrocytes; (3) whether p38 or ERK 

phosphorylation in the spinal cord are involved PRE-084 induced MA or TH .  

2. Evaluate whether: (1) the intrathecal administration of a Sig-1R antagonist, BD-1047, 

given during the induction phase of neuropathic pain modulates the CCI-induced 

activation of microglia, astrocyte and p38 in CCI mice; (2) the intrathecal 

administration of a p38 inhibitor, SB203580, given during the induction phase of 

neuropathic pain also modulates the CCI-induced activation of astrocyte; (3) the level 

of D-serine and serine racemase (Srr) expression would increase in the spinal cord 

dorsal horn in CCI mice; (4) the inhibition of Sig-1R could modulate CCI-induced 

increase in D-serine or Srr expression; 

3. Evaluate whether: (1) the intrathecal treatments of BD-1047 or SB203580 and/or 

combined with an astrocyte metabolic inhibitor, fluorocitrate during the induction 

phase of neuropathic pain could suppress MA or TH in CCI mice. (2) the selective 

inhibition of D-serine with a Srr inhibitor, LSOS in the spinal cord could suppress 

MA or TH development and the exogenous D-serine would reverse MA blockade by 

BD-1047. 
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INTRODUCTION 

Chronic pain, such as peripheral neuropathic pain, can be characterized by sensory 

disorders that include MA (lowering of response threshold to light tactile stimuli) and TH (an 

increased response to a noxious thermal stimulus). The development of neuropathic pain is 

associated with a variety of pathophysiologic changes (Ueda, 2006; Latremoliere et al., 2009) 

including peripheral sensitization and central sensitization. The precise spinal cord 

mechanisms underlying the development of MA and TH remain to be clearly defined, despite 

the fact that a number of studies have reported different signaling pathways involved with the 

development of MA versus TH (Ossipov et al., 1999; Roh et al., 2008a).  

Sigma-1 receptors 

Sig-1Rs are involved in a variety of cellular mechanisms but this involvement appears to 

occur via a common mechanism of regulating intracellular Ca2+ concentrations (Guitart et al., 

2004; Su et al., 2010). The Sig-1Rs contains two transmembrane domains with both C- and 

N- terminal residing at a mitochondrion-associated ER membrane (Hayashi et al., 2008; 

Kourrich et al., 2012). It is characterized by a unique mode of action via the regulation of both 

Ca2+ entry at the plasma membrane level and Ca2+ mobilization from endoplasmic stores 

(Monnet, 2005; Kourrich et al., 2012) (Fig.3). The role of Sig-1R in modulating chronic pain 

has recently been investigated. Recently using Sig-1R knockout mice, it has been shown that 

Sig-1Rs have a pronociceptive effect in formalin-induced nociception and in nerve injury-

induced pain (Cendan et al., 2005; de la Puente et al., 2009). Further support for a 

pronociceptive role for this receptor comes from a previous study from my laboratories 

demonstrating that intrathecal administration of the Sig-1R antagonists BD-1047 or BMY-
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14802 reduces nociceptive behaviors and spinal Fos expression associated with the formalin 

test (Kim et al., 2006). In addition, the previous study from my laboratories have shown that 

the direct activation of spinal cord Sig-1Rs enhances the response to peripheral mechanical 

and thermal stimuli via Ca2+-dependent second messenger cascades (Roh et al., 2008b). In 

addition, intrathecal injection of the Sig-1R antagonist, BD-1047 attenuates MA when 

administered during the induction phase (days 0-5 after CCI surgery), but not the maintenance 

phase (days 15-20 after CCI surgery) in CCI rats. On the other hand, BD-1047 treatment 

during either the induction or maintenance phases had no effect on TH (Roh et al., 2008c). 

These findings demonstrated that the activation of spinal Sig-1Rs is associated with the 

induction of MA, but not TH in a rat model of neuropathic pain. Although it is well recognized 

that Sig-1Rs are widely distributed in mammalian peripheral organs and throughout the CNS 

(Hellewell et al., 1994; Alonso et al., 2000; Palacios et al., 2003), the identity of specific cell 

types expressing Sig-1Rs in the spinal cord dorsal horn is unknown. Identification of the cell 

type expressing the Sig-1Rs would provide an important clue to understanding the role of Sig-

1Rs in relation to development of chronic MA.  
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Figure 3. Schematic diagrams illustrating biological function of the Sig-1R. (A), Cellular 

distribution of Sig-1Rs. The Sig-1Rs contains two transmembrane domains with a short N-

terminus and a long C terminus facing the ER lumen. (B), Sig-1Rs can modulate intracellular 

Ca2+ concentration. Sig-1Rs at the ER regulate Ca2+ efflux from the ER by associating with 

IP3 receptors. After stimulation by ligands, activated Sig-1Rs translocate to plasma membrane, 

thus regulating functional proteins, including ion channels (K+ or NMDA channels). Adapted 

from (Hayashi et al., 2008). 
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Astrocyte activation 

It is increasingly recognized that glial cells (astrocytes and microglia) play an important 

role in chronic pain processing (Gosselin et al., 2010). In particular astrocytes represent the 

most abundant cells in the central nervous system and dynamically modulate neuronal function 

under both physiological and pathological conditions (Halassa et al., 2007; Gao et al., 2010c; 

Wang et al., 2012). Accumulating evidence suggests that astrocyte activation contributes to 

the development and maintenance of chronic pain induced by nerve injury, inflammation, 

paclitaxel and paw incision.(Xu et al., 2007b; Gao et al., 2009b; Ikeda et al., 2012; Zhang et 

al., 2012). Furthermore, Ji et al. recently reported that MA was dose-dependently attenuated 

by intrathecal administration of L-α-aminoadipate in a rat chemotherapy-induced neuropathic 

pain model (Ji et al., 2013). Moreover, intrathecal administration of L-α-aminoadipate 

reversed CFA-induced MA, while it produced no effect on the CFA-induced heat hyperalgesia 

(Gao et al., 2010b). These data imply that spinal astrocytes can play an important role in 

regulating MA but not TH under chronic pain conditions. 

p38 MAPK 

p38 is a stress-activated protein kinase which is activated by phosphorylation (Ji et al., 

2007). It has been reported that p38 plays an important role in a variety of chronic pain states 

(Jin et al., 2003; Boyle et al., 2006; Xu et al., 2007a; Sorkin et al., 2009; Wen et al., 2009). 

Moreover, based on experiments performed in a variety of animal pain models, spinal p38 

activation appears to be involved in the pathophysiology of MA, but not TH (Sorkin et al., 

2009; Wen et al., 2009). p38 activation is regulated by elevated concentrations of intracellular 

Ca2+ and the activation of Ca2+ dependent enzymes (Lee et al., 2000a; Hayashi et al., 2007; 

Trang et al., 2009). Since Sig-1R sense endoplasmic reticulum (ER) Ca2+ concentration and 
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the activation of Sig-1R modulate intracellular Ca2+ signaling via the efflux of Ca2+ into the 

cytoplasm, I hypothesized that changes in p-p38 might be regulated by Sig-1R activation, 

which may ultimately contribute to the development of MA following peripheral nerve injury. 

D-serine 

D-serine is an endogenous ligand for the glycine site of the NMDA receptor, which 

modulates NMDA receptor mediated neurotransmission (Mothet et al., 2000). Activation of 

NMDA receptors requires binding of glutamate at the glutamate binding site, but also of a co-

agonist glycine or D-serine at their glycine site for the efficient opening of the receptor. D-

serine is synthesized by Srr which converts L- to D-serine. In the brain, D-serine is 

predominantly synthesized in astrocytes (Panatier et al., 2006), and Ca2+-dependent release of 

D-serine controls NMDA receptor-dependent long-term potentization (Henneberger et al., 

2010). Evidence to date supports the hypothesis that astroglial D-serine is involved in pain 

mechanisms. Intrathecal administered fluorocitrate or D-amino-acid oxidase (DAAO), which 

catalyzes the oxidative deamination of D-amino acids, inhibited tetanic sciatic stimulation-

induced MA in rats (Ying et al., 2006). In addition, intrathecal injection of the Srr inhibitors, 

LSOS and LEHA, decreased wind-up potentiation in an arthritic pain model (Laurido et al., 

2012). Despite findings reported in these studies, the involvement of D-serine in the spinal 

cord on the development of MA and TH in CCI mice remains unknown. The previous study 

from my laboratories provided evidence that PKC-dependent phosphorylation of the NMDA 

receptor GluN1 subunit (GluN1, pGluN1) in spinal cord dorsal horn are critical to the 

induction of MA related with Sig-1R in CCI rats (Roh et al., 2008c). In addition, spinal Sig-

1R-mediated nociceptive action is mediated by an increase in neuronal nitric oxide synthase 

(nNOS), which is associated with an nitric oxide (NO)-induced increase in PKC-dependent 
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pGluN1 expression (Roh et al., 2011). Based on these findings I also hypothesize that Sig-1R 

modulation of astrocytes plays an important role in the induction of MA through a D-serine 

mechanism in an animal model of neuropathic pain. 
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MATERIALS AND METHODS 

Animal preparation 

All experiments were performed on male ICR mice (20-25g) except primary astrocyte 

culture. Experimental animals were purchased from the Laboratory Animal Center of Seoul 

National University (Seoul, Republic of Korea). They had free access to food and water and 

were maintained in temperature and light controlled rooms (232°C, 12/12h light/dark cycle 

with lights on at 08:00) for at least 1 week prior to beginning an experiment. The experimental 

protocols for animal usage were reviewed and approved by the SNU Animal Care and Use 

Committee and conform to NIH guidelines (NIH publication No. 86-23, revised 1985). A CCI 

of the common sciatic nerve was performed according to the method described by Bennett and 

Xie (Bennett et al., 1988). Briefly, the left sciatic nerve was exposed at the mid-thigh level, 

and three loose ligatures of 6-0 silk were placed around the dissected nerve with a 1.0- to 1.5-

mm interval between each ligature. Sham surgery consisted of exposing the sciatic nerve in 

the same manner, but without ligating the nerve. Animals were anesthetized by intraperitoneal 

injection with 50μl of a combination of Zoletil 50®  (Virbac, Carros, France), Rompun®  

(Bayer AG, Leverkusen, Germany) and saline (a ratio of 2:1:2 respectively). Total numbers 

of mice used in the study were 491. 

Primary astrocyte cultures 

Primary astrocyte-enriched cell cultures were prepared from newborn C57BL/6 mice 

(postnatal day 1) according to a previously published method (Hamby et al., 2006). Briefly, I 

isolated the hemispheres, transferred them to an ice-cold Hank’s buffer, and carefully removed 

the meninges. Tissues were then minced into ~1mm pieces and filtered through a 40 μm nylon 
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screen, and collected by centrifugation at 1250g for 10 min. The pellets were broken with a 

pipette and resuspended in a medium containing 10% fetal bovine serum in glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM). Cellular suspension was separated into 5ml 

and directly plated on 75 cm2 flasks. I cultured the plated cells for 15 days, replacing the 

medium twice a week. Once the cells had grown to 95% confluence, L-leucine methyl-ester 

(LME) at 20mM (Sigma-Aldrich) was added in culture flasks for 1 hour at 37℃ incubator to 

remove microglial cells and macrophages. For Western blot, the cells were plated in 6 well 

plate and cultured in a medium containing 10% fetal bovine serum in low glucose DMEM. 

The cells were plated on round coverslips (22 mm diameter) placed in culture dishes (50 mm 

diameter) for immunocytochemistry analysis and incubated in 2-3 days. I added 0.15mM 

dibutyryl cAMP (Sigma–Aldrich, St. Louis, MO, USA) to induce differentiation. Three days 

later, I used the cells for experiments. I performed GFAP (1:2000, MAB360, Chemicon 

International Inc., CA, USA) immunostaining to confirm the astrocyte’s purity. Confluent 

monolayers of astrocytes showed >95% positive staining for GFAP.  

Intrathecal drug injection 

For intrathecal injection, I used the modified method of direct transcutaneous intrathecal 

injection on mice (Hylden et al., 1980). Intrathecal injections were made into the L5-L6 

intervertebral space of animals using a 50 µl Hamilton syringe. The flick of the tail was 

considered indicative of a successful intrathecal administration. Mice were briefly 

anesthetized with 3% isoflurane in a mixed nitrous oxide–oxygen gas before intrathecal drug 

injection to prevent any handling-induced stress. Then, while the animals were under 

anesthesia, drugs were slowly infused. Animals awoke immediately after the intrathecal 

injection procedure and were freely moving within 45 s after injection. All drugs treated in 
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mice were dissolved in 5 µl of vehicle. Intrathecal treatments were performed twice a day on 

postoperative days 0-3 for the induction period. Animals were randomly assigned to 

experimental groups and subsequent drug treatment and analysis were performed blindly. 

The following drugs were used: 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-

084, 3 nmol, Tocris Cookson Ltd, Bristol, UK), a sigma-1 receptor agonist; N-([2-(3,4-

dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydro-bromide (BD-1047, 

100 nmol, Tocris Cookson Ltd), a sigma-1 receptor antagonist; 4-(4-fluorophenyl)-2- (4-

methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580, 0.1, 0.3, 1, 3, 10 nmol, 

Sigma–Aldrich, St. Louis, MO, USA), a p38 inhibitor; Fluorocitrate (Fc, 0.03, 0.001, 0.003 

nmol, Sigma-Aldrich), an astroglial metabolic inhibitor; L-serine O-sulfate potassium salt 

(LSOS, 1, 3, 10 nmol, Santa Cruz Biotechnology Inc., CA, USA), serine racemase inhibitor; 

D-serine (50, 500 nmol; Sigma–Aldrich). The doses of PRE-084, BD-1047 and fluorocitrate 

used were based on those used in previous studies from my laboratories showing that these 

doses produce maximal effects with no detectable side-effects (Roh et al., 2008b; Roh et al., 

2008c; Kang et al., 2011). The doses of SB203580 and LSOS used in the present study were 

selected based on doses previously used in the literature (Wu et al., 2006; Lee et al., 2009; 

Laurido et al., 2012). SB203580 was dissolved in 1% DMSO in saline, while other drugs were 

dissolved in physiological saline.    

Mechanical allodynia assay 

Sensitization to innocuous mechanical stimulation (MA) was examined using von Frey 

filaments (North Coast Medical, Morgan Hill, CA) as described in previous studies from my 

laboratories (Roh et al., 2008b; Roh et al., 2008c). A 0.16 g von Frey filament was selected 

for testing. In experimental PRE-084 injected mice group, mechanical responses to von Frey 
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filaments were measured before treatment for the baseline values and at the 30, 60, and 120 

min time points after treatment with PRE-084 (or saline). In CCI animals, mechanical 

responses to von Frey filaments were assessed 1 day before CCI or sham surgery in all animals 

to obtain normal baseline values and then animals were tested again following CCI or sham 

surgery for a period of 21 days as described above. These von Frey filaments were applied 

from underneath the metal mesh flooring to each hind paw. The filament was applied 10 times 

to each paw with each application separated by 10 second intervals. The number of paw 

withdrawal responses to the 10 von Frey applications was then recorded. The results of the 

mechanical response testing in each experimental animal were expressed as a percent 

withdrawal response frequency (PWF, %), which represented the percentage of paw 

withdrawals out of a maximum of 10 as previously described (Roh et al., 2008c; Roh et al., 

2011). 

Thermal hyperalgesia assay 

To assess nociceptive responses to heat stimuli in PRE-084 injected mice group, 

sensitization to noxious heat stimulation (TH) was examined with a hot-plate apparatus 

(Model-35100, Ugo Basile, Comerio, Italy) (Duman et al., 2006) . The temperature of plate 

was maintained at 55 ± 0.5 °C. Animals were placed into an acrylic cylinder (20 cm in 

diameter, 25 cm high) on the heated surface, and the time (in seconds) between placement and 

shaking or licking or lifting of their hind paws or jumping (whichever occurred first), was 

recorded as the responses latency (second). Baseline latency responses (8-12 seconds) were 

determined before experimental treatment. The latency responses were then measured before 

treatment and at 30, 60, and 120 min after treatment with PRE-084 (or saline) in each 

experimental mice. To assess nociceptive responses to heat stimuli in CCI mice, I measured 
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paw withdrawal response latency by using the plantar paw-flick latency test as previously 

described by Hargreaves et al.(Hargreaves et al., 1988). Briefly, animals were placed in a 

plastic chamber with a glass floor and were allowed to acclimatize for 1 hour before testing. 

A radiant heat source was positioned under the glass floor beneath the hind paw to be tested, 

and withdrawal latency was measured using a plantar analgesia meter (IITC Life Science Inc., 

Woodland Hills, CA). The test was repeated in the ipsilateral hind paw of each animal, and the 

mean withdrawal latency was calculated. Cutoff time in the absence of a response was set at 

20 s. TH assay was performed 1 day before CCI surgery on all animals to obtain normal 

baseline values of thermal stimuli. 

Western blotting analysis  

In cultured astrocytes, MAPKs phosphorylation were measured at the 0, 5, 15, 30, 60 and 

120 min time points after treatment with PRE-084. After treatment, monolayers were washed 

with ice-cold phosphate-buffered saline (PBS) and lysed in ice-cold modified RIPA buffer 

(Thermo scientific. Waltham, MA, USA) after collected. In PRE-084 injected mice group, 

mice were sacrificed at several time points (60 and 120 min) after intrathecal injection of PRE-

084 (3 nmol). In CCI mice group, the spinal cords were collected from CCI mice on day 1, 3, 

7 and 14 days after surgery or sham surgery mice to measure changes in the expression of 

target proteins. Mice were first deeply anesthetized and the location of the L4–L6 spinal cord 

segments were then verified by identifying the attachment site of each lumbar spinal nerve in 

the anesthetized animals. The spinal cord was extracted by pressure expulsion with air into an 

ice-cooled, saline-filled glass dish. Subsequently the spinal cord was separated into left and 

right halves under a neuro-surgical microscope. The spinal cord was further subdivided into 

dorsal and ventral halves by cutting straight across from the central canal laterally to a 
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midpoint in the white matter. The ipsilateral and contralateral dorsal quadrants of each spinal 

cord were separated and half containing the ipsilateral spinal cord dorsal horn was 

subsequently processed for Western blot analysis.  

The collected astrocytes and L4-6 spinal cord dorsal segments were homogenized in RIPA 

buffer. The total amount of protein in each sample was determined using the Bradford dye 

assay prior to loading on polyacrylamide gels. The homogenates (20 μg protein) were 

separated using 10% SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose. 

After the blots had been washed with TBST (10 mM Tris-HCl (pH 7.6), 150 mM NaCl, 0.05% 

Tween-20), the membranes were blocked with 5% skim milk for 1 hr and incubated at 4°C 

overnight with a primary antibody specific for β-actin (1:1000, loading control, sc-47778, 

Santa Cruz Biotechnology Inc.), GFAP (1:2000, MAB360, Chemicon International Inc.), ERK 

(1:1000, sc-94, Santa Cruz Biotechnology Inc.), pERK (1:1000, #4377, Cell signaling 

technology, Beverly, MA, USA), JNK (1:1000, sc-7345, Santa Cruz Biotechnology Inc.), 

pJNK (1:1000, sc-6254, Santa Cruz Biotechnology Inc.), p38 (1:500, #9212, Cell signaling 

technology), p-p38 (1:1000, #9211, Cell signaling technology), Srr (1:1000, sc-48741, Santa 

Cruz Biotechnology Inc.) and Sig-1R (1:1000, anti-opioid receptor sigma 1 [OPRS1] antibody, 

ab53852, Abcam Inc., Cambridge, MA, USA). After washing with TBST, membranes were 

incubated for 4 hours at room temperature (RT) with horseradish peroxidase (HRP)-

conjugated anti-rabbit IgG or anti-mouse IgG secondary antibody (1:2000, Santa Cruz 

Biotechnology Inc.). The bands were visualized with enhanced chemiluminescence 

(Amersham Biosciences, Buckinghamshire, UK).  

Immunohistochemistry 

For double immunofluorescence staining in cultured astrocytes, monolayer were fixed 



-23- 

for 10min with 4% paraformaldehyde. After washing, blocking non-specific binding sites with 

PBS containing 5% fetal bovine serum and 5% normal goat serum were performed for 1 hour 

at room temperature. The mixture of rabbit anti-Sig-1R antibody (1:1000), and mouse anti-

GFAP (1:1000) in blocking solution were added and monolayers incubated overnight at room 

temperature. After washing, cyanine 3 anti-rabbit IgG (1:400, Jackson ImmunoResearch, West 

Grove, PA, USA) and Alexa fluor 488 anti-mouse IgG (1:400, Invitrogen, Carlsbad, CA, USA) 

antibodies were used as the secondary antibodies and incubated for 1 hour at RT.  

In PRE-084 treated mice groups, mice were deeply anesthetized and perfused with 

fixative at several time points (60 and 120 min) after intrathecal injection of PRE-084. In CCI 

mice, the perfusion was performed on 1, 3 and 7 after CCI or sham surgery. Mice were 

perfused transcardially with Ca2+-free Tyrode's solution followed by a fixative containing 4% 

paraformaldehyde and 0.2% picric acid in 0.1M phosphate buffer (pH 6.9). The spinal cords 

were removed immediately after perfusion, post-fixed in the identical fixative for 12h and then 

placed in 30% sucrose in PBS (pH 7.4) for 2-3 days at 4° C. Serial transverse sections (40 m) 

of the spinal cord were cut using a cryostat (Microm, Walldorf, Germany).  

For p-p38 immunohistochemistry analysis in PRE-084 treated mice, spinal L4-L6 tissue 

sections were processed for p-p38 (1:500) immunohistochemistry using the avidin-biotin-

peroxidase complex (ABC) procedure as previously described (Osuka et al., 2007). 

Visualization of the ABC complex was performed using 3,3’-diaminobenzidine (DAB; 

Sigma-Aldrich) and the DAB reaction was intensified with 0.2% nickel chloride. For 

immunofluorescence analysis in CCI mice, transverse spinal cord sections were incubated in 

blocking solution for 1h at RT and then incubated for 48h at 4℃ with one of the following 

several primary antibodies: rabbit anti-Sig-1R antibody (1:1000), rabbit anti-D-serine 
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antibody (1:500, ab6472, Abcam Inc.) or mouse anti-GFAP (1:1000). Following incubation, 

tissue sections were washed and incubated for 1h at RT in secondary antibodies. Cyanine 3 

anti-rabbit IgG (1:400, Jackson ImmunoResearch, West Grove, PA, USA) and Alexa fluor 488 

anti-mouse IgG (1:400, 1hr at RT, Invitrogen, Carlsbad, CA, USA) antibodies were used as 

the secondary antibodies, respectively. To confirm the specificity of the Sig-1R antibody 

immunoreactivity, I performed a preabsorption test in which the antibody was mixed with the 

OPRS1 recombinant protein (25μg of peptide/ml of diluted primary antibody, Novus 

Biologicals, US) overnight at 4℃ prior to staining. Double-immunofluorescence labeling was 

used to study the distribution of Sig-1R, p-p38, D-serine and Srr in spinal cord dorsal horn 

cells. For double immunofluorescence staining, floating sections were first incubated for 48 

hours at 4℃ with a rabbit anti-Sig-1R, anti-p-p38, anti D-serine or anti-Srr antibody (1:500). 

After washing with TPBS, the sections were then incubated for 2hr at RT with a cyanine 3 or 

Alexa 488 conjugated anti-rabbit IgG antibody (1:200). After washing, slices were incubated 

for 48 hours at 4℃ with GFAP, neuronal-specific nuclear protein (NeuN) (mouse, 1:1000; 

Millipore, Billerica, MA, USA) or Iba-1 (goat, 1:500, Abcam Inc.) followed by Alexa fluor 

488 or 555 anti-mouse IgG secondary antibody (1:200) for 2hr at RT. For double 

immunofluorescence staining of Srr and Sig-1R, a rabbit anti- Sig-1R and a mouse anti-Srr 

antibody (1:500, sc-365217, Santa Cruz Biotechnology Inc.) were used. The slides were 

viewed under a confocal microscope (Fluoview4.3, Olympus).  

Image analysis 

The positive pixel area of specific bands from Western blot gels was measured with a 

computer-assisted image analysis system and normalized against the corresponding β-actin 

loading control bands. The mean value of the ratio in animals prior to PRE-084 treatment or 
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sham surgery were set at 100% for control group. Thus, the % change relative to the control 

group was then calculated for each time-point in each group.  

To quantify p-p38-immunoreactive (ir) cells in the spinal cord of naïve mice after 

intrathecal injection of PRE-084, tissue sections were examined under a brightfield 

microscope (Zeiss Axioscope, Hallbergmoos, Germany) and five spinal cord sections from 

the L4-6 lumbar spinal cord segments were randomly selected from each animal, and 

subsequently scanned. Individual sections were digitized with 4096 grey levels using a cooled 

CCD camera (Micromax Kodak 1317, Princeton Instruments, AZ, UK) connected to a 

computer-assisted image analysis system (Metamorph version 6.3r2, Molecular Devices 

Corporation, PA). To maintain a constant threshold for each image and to compensate for 

subtle variability of the immunostaining, I only counted cells that were at least 70% darker 

than the average gray level of each image after background subtraction and shading correction. 

The average number of p-p38-ir cells per section from each animal was obtained and these 

values were averaged across each group and presented as group data. To analyze 

immunofluorescence images, three to five spinal cord sections from the L4-5 lumbar spinal 

cord segments were randomly selected from each animal, and were analyzed using a 

computer-assisted image analysis system (Metamorph version 7.7.2; Molecular Devices 

Corporation). The average number of GFAP-ir cells from each animal was obtained and these 

values were averaged across each group and presented as group data. To maintain a constant 

threshold for each image and to compensate for subtle variability of the immunostaining, I 

only counted cells that were at least 45% brighter than the average level of each image after 

background subtraction and shading correction. To analyze colocalization images, pairs of 

fluorescent images were acquired on the confocal microscope as green and red channels. A 
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qualitative analysis of Sig-1R and p-p38 antibody colocalization were performed using 

metamorph. The background for each image was subtracted by an automatic algorithm 

without user intervention before analysis.  Overlap of the red/green images were visualized 

in merged images as yellow pixels, and areas of overlap were considered colocalized. The 

extent of colocalization of Sig-1R with GFAP, NeuN or Iba-1 was analyzed using Pearson’s 

correlation coefficient for metamorph. The range of values of the correlation coefficient is -

1.0 to +1.0. A value of 1.0 shows that the data are perfectly matched with one another and a 

value of -1.0 is observed when there is an inverse relationship between intensities in the two 

images (Dunn et al., 2011). As negative control, the same images were used, but one of the 

images was rotated by 90 degrees and then the same analysis was repeated. The extent of 

colocalization of p-p38 with NeuN was measured as the number of areas of overlap between 

the two fluorescent probes in each spinal cord region using metamorph. To analyze the extent 

of colocalization of p-p38 in GFAP labeled cells, I have directly quantified the number of cells 

showing astrocytic nuclei that contained p-p38 immunolabeling.  

I quantified immunostaining in the following three dorsal horn regions: 1) the superficial 

dorsal horn (SDH, laminae I and II); 2) the nucleus proprius (NP, laminae III and IV); and 3) 

the neck region (NECK, laminae V and VI). All analytical procedures described above were 

performed blindly without knowledge of the experimental conditions.  

Statistical analysis 

All values are expressed as the mean  SEM. Statistical analysis was performed using 

Prism 5.0 (Graph Pad Software, San Diego, USA). Repeated measures two-way ANOVA was 

performed to determine overall differences in the time-course of all nociceptive behavioral 

tests. One-way ANOVA was used to determine differences across all experimental groups 
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(immunohistochemistry and Western blot assay). Post-hoc analysis was performed using the 

Bonferroni’s multiple comparison test in order to determine the P value among experimental 

groups. In all cases, P<0.05 was considered statistically significant.  
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RESULTS 

1. Cellular distribution of spinal Sig-1Rs and related MAPKs 

phosphorylation 

1-1. Cellular distribution of Sig-1Rs in the ipsilateral dorsal horn in 

CCI mice 

In this study, I utilized a Sig-1R antibody to stain mouse lumbar spinal cord sections at 3 

days after CCI surgery. The specificity of the antibody was first tested using a pre-absorption 

test with a Sig-1R recombinant protein. Sig-1R-immunoreactivity was not detected in any of 

the spinal sections processed with pre-absorbed Sig-1R antibody (Fig.4A). The lack of 

immunostaining in the specificity controls validates the specificity of the antibody. To 

determine which specific cell types express Sig-1R on the ipsilateral dorsal horn in CCI mice, 

double staining was performed at day 3 post-CCI using an anti-Sig-1R antibody in 

combination with antibodies specific for astrocytes (GFAP), neurons (NeuN), or microglial 

cells (Iba-1). Double immunostaining with GFAP showed that the increased expression of Sig-

1R was located to astrocytes (Fig.4B and E). No coexpression of Sig-1R was observed with 

the NeuN, the neuronal marker (Fig.4C), or Iba-1, a microglial marker (Fig.4D). Pearson’s 

coefficient (r) was used to quantify the degree of colocalization of Sig-1R with GFAP, NeuN 

or Iba-1 (Fig.4F). There was a high correlation between Sig-1R and GFAP-ir cells in the spinal 

cord of CCI mice (r =0.801). The average correlation coefficient dropped when the same 

region was analyzed again after one of the two images of the image pair had been rotated 90 

degrees (r =0.011). In contrast, the average correlation coefficient between Sig-1R and NeuN 

was -0.0893. While the correlation between the Sig-1R and Iba-1 was a little higher (r = 0.129), 
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there was no significant difference in the average when it was compared to the average of the 

same images, when one member of the pair was rotated 90 degrees (Fig.4F). These results 

indicate that the co-expression values that I obtained provided a meaningful measure of the 

relative colocalization Sig-1R and GFAP expression in spinal cord sections (Dunn et al., 2011) 

and suggest that Sig-1R expression occurs primarily in astrocytes. 
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Figure 4. Sig-1R expression was selectively increased in astrocytes after CCI. Transverse 

sections through the lumbar spinal cord obtained from mice at day 3 post-CCI were processed 

for double immunofluorescence staining. (A), Sig-1R-immunoreactivity was not detected in 

any of the spinal sections processed with Sig-1R-antisera pre-absorbed with a Sig-1R peptide 

overnight. (B-E), immunofluorescence labeling was performed with an antibody against Sig-

1R (Sig-1R, red) and double labeled with GFAP, a marker for astrocytes, NeuN, a marker for 

neurons or Iba-1, a marker for microglia, antibodies (green staining). Sig-1R-ir cells were 

colocalized with GFAP-ir cells, but not with NeuN or Iba-1 immunostained cells at 

postoperative day 3 in the ipsilateral dorsal horn spinal cord of CCI mice. (E), Representative 

fluorescent photomicrographs depicting immunolabelling for Sig-1R (red) and the astrocyte 

marker, GFAP (green). Double immunolabelling for Sig-1R and GFAP (yellow).  (F), The 

average correlation coefficient between Sig-1R and GFAP was 0.801, but this correlation 

coefficient was significantly reduced when a region within the spinal cord dorsal horn in one 

of the images was rotated 90 degrees with respect to the other image. In contrast, the average 

correlation coefficient of Sig-1R with either NeuN or Iba-1 was very low. (n=6 for each of the 

CCI groups). ***p<0.001 as compared with those of the rotated group. Scale bar, 200 μm. 
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1-2. Sig-1R expression in cultured astrocytes and effect of PRE-084 

treatment on MAPKs phosphorylation 

Primary cultures astrocytes isolated form neonatal mouse were used to determine whether 

Sig-1R activation directly induced MAPK phosphorylation. First, I found that primary 

astrocytes expressed Sig-1R receptors using immunofluorescence analysis (Fig.5A). To 

determine cultured astrocytes express Sig-1R, double staining was performed using an anti-

Sig-1R antibody in combination with anti-GFAP antibody. Double staining with GFAP 

showed that the Sig-1R expression was located to astrocytes. Immunofluorescence staining 

without primary antibodies were processed for negative control (N.C). To test whether Sig-1R 

mediates MAPK activation in astrocytes, the phosphorylation of p38, ERK and JNK were 

probed as a function of PRE-084 exposure time using Western blot analysis. As shown in 

Fig.5B, the relative pixel area (%) of p-p38 expression in Western blots was significantly 

increased by 2 μM PRE-084 treatment, but there was no change in p38 levels, in astrocyte 

homogenates as early as 5 min after PRE-084 treatment and remained phosphorylated for 2 

hour. Similarly, ERK was also phosphorylated by PRE-084 treatment after 5 min, whereas 

ERK levels was not changed (Fig.5C).  On the other hand, treatment with PRE-084 did not 

affect the phosphorylation of JNK (Fig.5D). These data demonstrated that Sig-1R activated 

p38 and ERK, but not JNK in astrocytes.  
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Figure 5. Sig-1R expression in cultured astrocyte and Sig-1R activation induced 

phosphorylation of p38 and ERK but not JNK. (A), Immunofluorescence labeling was 

performed with an antibody against Sig-1R (Sig-1R, red) and double labeled with GFAP 

(green). Sig-1R-ir cells were colocalized with GFAP-ir cells. Immunofluorescence labeling 

without primary antibodies was performed for negative control (N.C). (B), Western blot 

analysis indicated that p-p38 expression was significantly increased at 5min after 2 μM PRE-

084 treatment and remained phosphorylated for 2 hour. A graph depicting the change in the 

p-p38 is shown in upper portion, and the representative bands of p-p38 and p38 expression are 

presented in the lower portion of 2B. (C), pERK expression was also significantly increased 

by PRE-084 treatment. (D), However, pJNK was not altered by PRE-084 treatment. Scale bar 

= 50 μm. 
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1-3. Effects of intrathecal pretreatment with ERK and p38 inhibitor 

on PRE-084 induced pain hypersensitivity in naïve mice 

To determine whether the PRE-084-induced pain behaviors involve the activation of 

ERK and p38, I examined the effects of intrathecal pretreatment with the ERK inhibitor, 

PD98059 and p38 inhibitor, SB203580 on PRE-084-induced pain hypersensitivity in mice. 

The intrathecal administration of the Sig-1R agonist, PRE-084 (3 nmol, VEH + PRE), 

significantly increased time-dependent PWF (%) to innocuous mechanical stimuli (MA, 

Fig.6A and C) and decreased response latency (sec) to noxious heat stimuli (TH, Fig.6B and 

D) as compared with those of the vehicle (VEH + VEH) treated group. Intrathecal pretreatment 

with PD98059 (3, 10, 30 nmol), dose dependently suppressed these both of PRE-084-induced 

MA and TH (Fig.6A and B). Intrathecal pretreatment with SB203580 (0.3, 1, 3 nmol), also 

dose-dependently suppressed this PRE-084-induced increase in PWF (Fig.6C). On the other 

hand, intrathecal pretreatment with SB203580 (3, 10 nmol, Fig.6B) did not affect the PRE-

084-induced decrease in thermal response latency. The intrathecal injection of this inhibitor 

alone (SB + VEH), in the absence of PRE, did not affect PWF or thermal response latency in 

comparison with the VEH + VEH group. 
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Figure 6. Spinal pERK mediates PRE-084 induced MA and TH, whereas p38 mediated only 

in PRE-084 induced MA, but not TH. Graphs illustrating the effects of intrathecal 

administration of the pERK inhibitor, PD98059 (PD+PRE) and p38 inhibitor, SB203580 

(SB+PRE) on the PRE-084-induced changes in the paw withdrawal frequency over time (PWF, 

MA), and in the thermal latency responses (TH) of mice. The inhibitors were applied 10 min 

before PRE-084 injection. (A), Intrathecal pretreatment with PD98059 blocked the increase in 

PWF that occurred in PRE-084 treated group in dose dependent manner. (B), Intrathecal 

pretreatment with PD98059 also blocked response latency. (C), Intrathecal pretreatment with 

SB203580 reduced PRE-084-induced MA in dose dependent manner. (D), However, the 

decrease in latency responses to heat stimuli was unaffected by intrathecal pretreatment with 

even the highest dose of SB203580 tested. *P < 0.05, **P < 0.01 and ***P<0.001 as compared 

with those of the VEH+VEH group and #P < 0.05 and ###P <0.001 as compared with those 

of the VEH + PRE group. 
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1-4. Effect of intrathecal PRE-084 injection on p-p38 expression in 

the mouse spinal cord dorsal horn 

An anti-p-p38 antibody was used to examine changes in p38 activation. To determine 

whether p38 was activated by Sig-1 R, I performed immunohistochemistry and Western blot 

analysis. The expression of p-p38 was examined initially in the spinal cord of naïve mice that 

received administration of the PRE-084. The intrathecal administration of PRE-084 (3 nmol, 

VEH + PRE), significantly increased the number of p-p38-ir cells in the spinal dorsal horn at 

the 60 min post-injection time point as compared with that of a vehicle-treated group (Fig.7A 

and B). To further determine whether this increase in the number of p-p38-ir cells was a direct 

and specific result of activation of spinal Sig-1R, I next pretreated a separate group of mice 

with a Sig-1R antagonist prior to intrathecal treatment with PRE-084. As illustrated in Fig.7A, 

intrathecal pretreatment with the Sig-1 R antagonist, BD-1047 (100 nmol, BD + PRE), 

completely blocked the PRE-084-induced increase in the number of p-p38-ir cells at the 60 

min post-injection time point. The intrathecal injection of this inhibitor alone (BD + VEH), in 

the absence of PRE, did not affect the number of p-p38-ir cells in comparison to the vehicle 

injected group. Western blot analysis also confirmed the effects of intrathecal administration 

of PRE-084 on p-p38 levels in the spinal cord of naïve mice (Fig.7C). Thus, the relative pixel 

area (%) of p-p38 expression in Western blots was significantly increased by PRE-084 

treatment (Fig.7C), but there was no change in p38 levels, in spinal cord homogenates 60 min 

after intrathecal injection of PRE-084 as compared with the vehicle pretreatment group. In 

addition, intrathecal pretreatment with the Sig-1 R antagonist, BD-1047 (100 nmol, BD + 

PRE), completely blocked the PRE-084-induced increase in p-p38 expression at the 60 min 

post-injection time point which confirms the immunocytochemical data. 
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Figure 7. The effect of intrathecal administration of PRE-084 on p-p38 in the mouse spinal 

cord dorsal horn. Quantitative graphs and representative photomicrographs illustrating the 

effect of intrathecal injection of PRE-084 (PRE, 3 nmol) on the number of p-p38-ir cells in the 

spinal cord dorsal horn. (A), The number of p-p38-ir cells in the superficial dorsal horn (SDH, 

lamina I–II), in the nucleus proprius (NP, lamina III–IV) and in the neck region (NECK, lamina 

V–VI) of the spinal dorsal horn are depicted graphically. Intrathecal administration of PRE-

084 (VEH+PRE), significantly increased the number of p-p38-ir cells in the dorsal horn as 

compared with that of the vehicle-treated group (VEH+VEH) at the 60 min post-injection time 

point. Moreover, pretreatment with the sigma-1 receptor antagonist BD-1047 (BD+PRE, 100 

nmol) before sigma-1 receptor agonist injection completely blocked the effect of PRE-084 on 

p-p38 expression (B), Representative photomicrographs depicting p-p38-ir cells in the SDH, 

NP, and NECK of the spinal dorsal horn from vehicle and PRE-084 treated mice. Arrows 

indicate representative p-p38-ir cells. (C) Western blot analysis illustrating the effect of 

intrathecal administration of the PRE-084 on p-p38. A graph depicting the change in the p-p38 

is shown in the upper portion, and the representative bands of p-p38 and p38 are presented in 

the lower portion. Representative Western blots showing an increase in p-p38 (top), but no 

change in p38 (bottom). *P < 0.05, **P < 0.01 and ***P<0.001 as compared with those of the 

VEH+VEH group and #P < 0.05, ##P < 0.01 and ###P <0.001 as compared with those of the 

VEH + PRE group. Scale bar = 200 μm. 
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2. The histological and physiological relationships among Sig-1R, p-

p38 and astrocyte activation in the spinal cord of CCI mice 

2-1. Changes of Sig-1R, microglia and astrocyte expressions in the 

spinal cord of CCI mice 

I performed Western blot analysis to confirm the changes of Sig-1R, microglia and 

astrocyte expressions in the spinal cord of mice at 1, 3, 7 and 14 day after CCI surgery. 

Increased expression of microglial markers Iba-1 and astrocyte markers GFAP were used for 

microglia and astrocyte activation, respectively. There was a significant CCI-induced increase 

in Sig-1R expression on Western blots that peaked at 3 days post-surgery and this increased 

expression was restored to sham surgery values by 7 days post-surgery (Fig.8A). The 

expression of Iba-1 on immunoblots was significantly increased from day 1 to 3 after CCI 

(Fig.8B). The expression of GFAP was significantly increased from day 3 to 7 after CCI 

(Fig.8C). 
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Figure 8. CCI-induced changes in the expression of Sig-1R, Iba-1 and GFAP in the spinal 

cord of mice. Western blot analysis indicated that Sig-1R expression was significantly 

increased by postoperative day 1 and reached a peak level by postoperative day 3 when 

compared with Sig-1R expression in sham surgery animals (n=9 at each time point in the CCI 

or sham surgery groups). (B), Iba-1 expression also was significantly increased by 

postoperative days 1 and 3 (n=5 at each time point). (C), GFAP expression was significantly 

increased by postoperative day 3 and reached a peak level by postoperative day 7 when 

compared with that of sham surgery animals (n= 5 at each time point). *p<0.05 and **p<0.01 

as compared with those of SHAM group.  
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2-2. Effects of intrathecal BD-1047 administration on the Iba-1 and 

GFAP expression in CCI mice 

I performed a Western blot analysis to examine whether the CCI-induced increase in Iba-

1 and GFAP expression was regulated by Sig-1R activation during the induction phase. 

Intrathecal administration of the Sig-1R antagonist, BD-1047 (100 nmol, CCI+BD) on 

postoperative days 0-3 significantly attenuated the CCI-induced increase in GFAP expression 

on day 3 post-CCI surgery as compared with the vehicle treated group (Fig.9A). However, 

CCI-induced increase in Iba-1 expression was not altered by intrathecal treatment with BD-

1047 (Fig.9B). Immunohistochemistry analysis also confirmed that intrathecal administration 

of BD-1047 effectively attenuated the CCI-induced increase in the number of GFAP-ir cells 

in the SDH and NP region (Fig.9C).  
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Figure 9. The CCI-induced increase in GFAP expression is blocked by spinal injection of the 

Sig-1R antagonist, BD-1047. (A), Western blot analysis showed that intrathecal injection of 

BD-1047 (CCI+BD, 100 nmol, administered from days 0 to 3 after surgery) significantly 

decreased the level of CCI-induced GFAP expression as compared with the vehicle treated 

group. A graph depicting the change in the GFAP is shown in the upper portion, and the 

representative bands of GFAP and β-actin expression are presented in the lower portion of 6A. 

(B), However, CCI-induced increase in Iba-1 expression was unaffected by intrathecal BD-

1047 treatment. (C), Immunohistochemistry also demonstrated that intrathecal treatment of 

BD-1047 robustly suppressed the number of GFAP-ir cells in ipsilateral spinal cord dorsal 

horn as compared with the vehicle treated group. Photomicrographs of representative L4-5 

spinal cord sections illustrating GFAP-ir cells in the sham group (SHAM), in the saline treated 

CCI group (CCI+VEH) and in the BD-1047 treated CCI group (CCI+BD). An illustration 

depicting the location of the different spinal cord regions analyzed in this study is shown in 

the upper left panel of this Figure. *p<0.05, **p<0.01 and ***p<0.001 as compared with those 

of SHAM group, and #p<0.05 and ##p<0.01 as compared with those of the CCI+VEH group. 
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2-3. Cellular distribution of p-p38 in spinal cord dorsal horn after 

CCI   

Because the activation of p38 in the spinal cord contributes to the PRE-084-induced MA 

and that p-p38 is regulated by Sig-1R activation in naïve mice, I also confirm the contribution 

of p-p38 relation with Sig-1R in CCI mice. First, I performed immunofluorescence analysis 

to confirm the cellular distribution of p-p38 in mice lumbar spinal cord sections on day3 after 

surgery (Fig.10). To determine which cell types express p-p38 in the spinal cord dorsal horn 

in CCI mice, double staining was performed using NeuN, GFAP or an Iba-1 antibody. I found 

that the majority of the p-p38 staining was in the nucleus of astrocytes (Fig.10A) or neurons 

(Fig.10B). There was no evidence of p-p38 staining in Iba-1-positive microglia (Fig.10C).  
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Figure 10. p-p38 was located in spinal astrocytes and neurons following CCI in mouse 

ipsilateral spinal cord dorsal horn. Transverse sections through the lumbar spinal cord segment 

3 d after CCI were labeled with an antibody against phospho-p38 (p-p38, red) and double 

labeled with GFAP, Iba-1 or NeuN antibodies (green). (A and B), The increased p-p38-ir 

staining was preferentially located in the nuclei of GFAP-positive and NeuN-positive cells. 

(A), Some of the p-p38-labeled cells were GFAP-positive astrocytes (arrows), while others 

were not GFAP positive (arrowheads). (B), p-p38-labeled cells were clearly double labeled 

with NeuN antisera, a neuronal marker (arrows), although some phospho-p38-labeled cells 

were not NeuN-positive neurons (arrowheads). (C), No colocalization was detected for 

phospho-p38 and Iba-1, a microglia marker (arrowheads). Scale bar, 200 μm 
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2-4. Effects of intrathecal BD-1047 administration on p-p38 

expression in astrocytes or neurons in CCI mice 

The CCI-induced increased in p-p38 expression was decreased by BD-1047 treatment 

during the induction phase on day 3 after CCI surgery (Fig.11A). I next performed double 

staining to examine whether the p-p38 located in astrocytes or neurons or both is regulated by 

Sig-1Ractivation. There was a CCI-induced increase in p-p38 immunostaining in both GFAP 

and NeuN positive cells in the SDH and NP regions of the dorsal horn as compared with that 

of the sham group (Fig.11B and C). Repeated daily, i.t administration of BD-1047 significantly 

decreased the level of CCI-induced p-p38 expression in GFAP labeled cells (Fig.11B), but not 

in NeuN labeled cells (Fig.11C), as compared to the vehicle treated group.  
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Figure 11. Intrathecal treatment with the Sig-1R antagonist, BD-1047 decreased the level of 

CCI-induced p-p38 expression located in astrocytes, but not in neurons. (A), p-p38 expression 

was significantly increased on day 3 after CCI surgery, and this CCI-induced increase in p-

p38 expression was suppressed by BD-1047 treatment during the induction phase. (B), 

Intrathecal administration of BD-1047 decreased the level of CCI-induced p-p38 expression 

colocalized with GFAP as compared with the vehicle treated group. (C) However, increased 

p-p38 expression colocalized with NeuN was not altered by intrathecal treatment with BD-

1047. *p<0.05 and ***p<0.001 as compared with those of SHAM group, and ##p<0.01 and 

###p<0.001 as compared with those of the CCI+VEH group. Scale bar, 200 μm 
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2-5. Effects of intrathecal SB203580 administration on the GFAP 

expression in CCI mice 

I performed a Western blot analysis and immunohistochemistry to examine whether the 

CCI-induced increase in GFAP expression was regulated by p38 activation. Sustained i.t 

administration of the p38 inhibitor, SB203580, (3 nmol, CCI+SB) on postoperative days 0-3 

significantly reduced the CCI-induced increase in GFAP expression, as compared with 

vehicle-treated CCI mice (Fig.12A). Immunohistochemistry analysis also confirmed that the 

i.t administration of SB203580 during the induction phase effectively attenuated the CCI-

induced increase in the number of GFAP-ir cells in all dorsal horn laminae (Fig.12B).  
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Figure 12. The CCI-induced GFAP increase is blocked by spinal injection of the p38 inhibitor, 

SB203580. (A), Western blot analysis showed that intrathecal injection of SB203580 

(CCI+SB, 3 nmol, administered from days 0 to 3 after surgery) significantly decreased the 

level of CCI-induced GFAP expression as compared with the vehicle treated group. A graph 

depicting the change in GFAP is shown in the upper portion of 9A, and the representative 

bands of GFAP and β-actin expression are presented in the lower portion. (B), 

Immunohistochemistry also demonstrated that intrathecal treatment of SB203580 robustly 

suppressed the number of GFAP-ir cells in the ipsilateral dorsal horn as compared with the 

vehicle treated group. Photomicrographs of representative L4-5 spinal cord sections 

illustrating GFAP-ir cells in the sham group (SHAM), in the saline treated CCI group 

(CCI+VEH) and in the SB203580 treated CCI group (CCI+SB).  *p<0.05 and **p<0.01 as 

compared with those of SHAM group, #p<0.05 and ##p<0.01 as compared with those of the 

CCI+VEH group. 
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3. Releasing factor induced by spinal Sig-1R in CCI mice 

3-1. CCI-induced changes in the levels of D-serine and its cellular 

distribution in the dorsal horn of neuropathic mice 

To investigate the potential roles of D-serine in CCI mice, I performed 

immunohistochemistry analysis using an anti-D-serine antibody on mouse lumbar spinal cord 

sections at 1, 3 and 7 day after CCI surgery. The level of D-serine in the ipsilateral spinal cord 

dorsal horn was significantly increased from day 1 to day 3 after CCI as compared with that 

of sham surgery group (Fig.13A). The distribution of increased D-serine was primarily in the 

SDH and NP regions. The upper right hand panel in Figure 13 shows representative 

photomicrographs of L4-5 spinal cord sections demonstrating D-serine-ir cells after sham 

surgery or at 1, 3 and 7 day after CCI surgery. Double staining was performed at day 3 post-

CCI surgery to determine which cell types express D-serine on the dorsal horn in CCI mice 

(Fig.13B-D). Anti-D-serine antibody was used in combination with GFAP, NeuN and Iba-1 

antibodies. Double-labeling with D-serine and GFAP revealed a colocalization of D-serine and 

astrocytes in the SDH regions (Fig.13B). By comparison, in the deep dorsal horn, D-serine 

was found primarily associated with neurons rather than astrocytes (Fig.13C). D-serine 

labeling in the somata of such neurons was punctate and absent from the nucleus. There was 

no evidence of D-serine staining in Iba-1 positive microglia (Fig.13D).  
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Figure 13. Elevation of D-serine levels in the spinal cord following CCI surgery and its 

distribution in astrocytes and neurons. (A), Immunofluorescence analysis with an anti-D-

serine antibody was performed on lumbar spinal cord sections from CCI mice. D-serine-ir 

cells were significantly increased from days 1 to 3 post-CCI as compared with that of sham 

surgery group. Representative photomicrographs of D-serine-ir cells indicates that D-serine is 

significantly increased in the ipsilateral superficial layers of the dorsal horn, but also increased 

in the deeper laminae of CCI mice compared to the that of sham surgery groups. (B-D), Double 

Immunofluorescence labeling was performed with an antibody against D-serine (D-serine, 

green) and an antibody against GFAP, a marker for astrocytes, NeuN, a marker for neurons or 

Iba-1, a marker for microglia (red). (B), D-serine was colocalized with GFAP-positive 

astrocytes in the superficial lamina of dorsal horn. (C), Double immunofluorescence analysis 

also showed that D-serine accumulated along the surface of the NeuN-positive neurons in the 

deep dorsal horn in lumbar spinal cord sections from CCI mice. D-serine labeling in the somata 

of such neurons was punctate and absent from the nucleus. (D), There was no evidence of D-

serine staining in Iba-1 positive microglia. Arrows indicated D-serine-ir cells. *p<0.05, 

**p<0.01 and ***p<0.001 as compared with those of sham surgery group. Scale bar, 200 μm. 
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3-2. CCI-induced changes in serine racemase expression and cellular 

distribution in the dorsal horn of neuropathic mice 

Because D-serine is primarily generated by the conversion of L-serine induced by Srr, I 

performed Western blot analysis to determine the levels of Srr expression at 1, 3 and 7 day 

after CCI surgery. The expression of Srr in the ipsilateral dorsal horn was significantly 

increased on day 1 following CCI as compared that of sham surgery group (Fig.14A). By 7 

days post-CCI, Srr expression was restored to normal pre-CCI values, and no statistical 

significance was evident when compared with that of the sham surgery group. Double staining 

was performed at day 1 post-CCI surgery to determine which cell types express Srr in the 

ipsilateral dorsal horn in CCI mice. The anti-Srr antibody was used in combination with GFAP, 

NeuN and Iba-1. Double-labeling with Srr and GFAP revealed a distinct colocalization of Srr 

and astrocytes (Fig.14B). There was no evidence of Srr staining in neurons or Iba-1 positive 

microglia (Fig.14C and D). Accordingly, the elevation of the D-serine levels in CCI mice 

appears to be caused by increased Srr expression in dorsal horn astrocytes.  
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Figure 14. Elevation of Srr expression in the spinal cord after CCI surgery and specific 

localization to dorsal horn astrocytes. (A), Western blot analysis indicated that Srr expression 

was significantly increased by postoperative day 1 to 3 when compared with Srr expression in 

sham surgery animals (n=5 at each time point in the CCI or sham surgery groups). (B-D), 

Double staining was performed at day 1 post-CCI surgery to determine which cell types 

express Srr in the ipsilateral dorsal horn in CCI mice. (B), Double-labeling with Srr and GFAP 

revealed a distinct colocalization of Srr in astrocytes. (C and D), There was no evidence of Srr 

staining in neurons or Iba-1 positive microglia. *p<0.05 as compared with those of SHAM 

surgery group. Scale bar, 200 μm. 
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3-3. Effects of intrathecal BD-1047 administration on the increased 

level of D-serine in CCI mice 

To determine whether the CCI-induced increase in the level of D-serine was induced by 

Sig-1R activation during the induction phase, I performed immunohistochemistry analysis on 

day 3 post-CCI surgery. Sustained intrathecal administration of the Sig-1R antagonist, BD-

1047 (100 nmol, CCI+BD) on postoperative 0-3 significantly attenuated the CCI-induced 

increase in the levels of D-serine in the SDH and NP regions of the dorsal horn compared with 

the vehicle treated group (Fig.15A). Representative photomicrographs of L4-5 spinal cord 

sections illustrating D-serine-ir cells in the sham group (SHAM), in the saline treated CCI 

group (CCI+VEH) and in the BD-1047-treated CCI group (CCI+BD) is shown in Figure 15B. 

An illustration depicting the location of the different spinal cord regions analyzed in this study 

is shown in the upper left panel of this Figure (Fig.15B). 
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Figure 15. The CCI-induced increase of D-serine level is blocked by spinal injection of the 

Sig-1R antagonist, BD-1047. (A), Immunofluorescence analysis indicated that sustained 

intrathecal administration of the Sig-1R antagonist, BD-1047 (100 nmol, CCI+BD) on 

postoperative 0-3 significantly attenuated the CCI-induced increase in the number of D-serine-

ir cells in the SDH and NP regions compared with the vehicle treated group. (B), 

Photomicrographs of representative L4-5 spinal cord sections illustrating D-serine-ir cells in 

the sham group (SHAM), in the saline treated CCI group (CCI+VEH) and in the BD-1047 

treated CCI group (CCI+BD). *p<0.05, and ***p<0.001 as compared with those of SHAM 

group, ##p<0.01 as compared with those of the CCI+VEH group. 
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3-4. Effects of intrathecal BD-1047 administration on serine 

racemase expression and colocalization of serine racemase in Sig-1R- 

immunoreactive cells in CCI mice 

To determine whether the CCI-induced increase in Srr expression was regulated by Sig-

1R activation during the induction phase, I performed Western blot analysis on day 1 after CCI 

surgery. Intrathecal treatment with BD-1047 during the induction phase significantly reduced 

the CCI-induced increase in Srr expression (Fig.16A). The relative pixel area (%) of Srr and 

β-actin expression was significantly reduced by BD-1047 treatment during the induction 

period as compared with mice in the vehicle-treated CCI group. Because I found that Sig-1Rs 

are located in astrocytes in the spinal cord in CCI mice, I performed double staining on day 1 

with an anti-Srr antibody in combination with antibodies for Sig-1R. Double staining with the 

Sig-1R and Srr antibodies showed that the increased expression of Srr was localized to Sig-

1R-ir cells (Fig.16B). These results indicate that Srr and Sig-1R expression occur in the same 

cells in the spinal cord dorsal horn in CCI mice.  
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Figure 16. The CCI-induced increase in Srr expression is blocked by spinal injection of the 

Sig-1R antagonist, BD-1047 and Srr coexists in Sig-1R-ir cells in the dorsal horn. (A), Western 

blot analysis was performed on day 1 after CCI surgery to determine whether CCI-induced 

increase in Srr expression was regulated by Sig-1R activation during the induction phase. 

Intrathecal treatment with BD-1047 during the induction phase significantly reduced the CCI-

induced increase in Srr expression as compared with mice in the vehicle-treated CCI group. 

(B), Double staining was performed at day 1 post-CCI surgery using an anti-Srr antibody in 

combination with antibodies for Sig-1R. Double staining with Sig-1R antibody showed that 

the increased expression of Srr was localized to Sig-1R-ir cells. These results indicate that Srr 

and Sig-1R expression occur in the same cells in the spinal cord in CCI mice. *p<0.05 as 

compared with those of SHAM group, and ##p<0.01 as compared with those of the CCI+VEH 

group. Scale bar, 10 μm. 
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4. Effects on CCI-induced MA and TH 

4-1. Effects of BD-1047, fluorocitrate or concomitant fluorocitrate 

and BD-1047 treatment on the development of CCI-induced MA and 

TH  

I first confirmed the antinociceptive effect of the Sig-1R antagonist, BD-1047 (BD) during 

the induction phase (Fig.17A and B). Sustained intrathecal treatment with BD-1047 (10, 30, 100 

nmol, BD) reduced the CCI-induced increase in PWF (%) to innocuous mechanical stimuli in a 

dose dependent manner (Fig.17A). Following the termination of these repeated BD-1047 

injections on day 3, this suppressive anti-allodynia effect of BD-1047 was sustained throughout 

the 21-day experimental period following CCI surgery. On the other hand, repeated intrathecal 

administration of BD-1047 did not affect the CCI-induced TH (Fig.17B). To confirm the 

contribution of astrocyte activation to the CCI-induced pain behavior, the astroglial metabolic 

inhibitor, fluorocitrate was injected intrathecally on postoperative days 0-3. Similar to the 

antinociceptive effect of BD-1047, intrathecal treatment with fluorocitrate (0.003, 0.01, 0.03 

nmol, Fc) significantly attenuated the CCI-induced MA in a dose dependent manner (Fig.17C). 

On the other hand CCI-induced TH was not influenced by repeated intrathecal treatment of 

fluorocitrate (Fig.17D). While intrathecal treatment of either a low dose of BD-1047 (10 nmol) 

alone or a low dose of fluorocitrate (0.003 nmol) alone did not alter the MA, the combination of 

the two treatments (Fc+BD) significantly suppressed MA development (Fig.17E). These results 

suggest a significant interaction between Sig-1Rs and astrocyte activation. However, CCI-

induced TH was not affected by concomitant BD-1047 and fluorocitrate treatment (Fig.17F). 
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Figure 17. The concomitant treatment with low doses of BD-1047 and fluorocitrate also 

reduced the development of MA, but had no effect on CCI-induced TH. (A), Intrathecal 

injection of BD-1047 in CCI mice blocked the increase in PWF (%) that occurred in vehicle-

treated CCI mice in a dose dependent manner. (B), However, the decrease in response latency 

(seconds) to heat stimuli was unaffected by repeated intrathecal treatment with even at the 

highest dose of BD-1047 tested (100 nmol). (C and D), Repeated daily treatment with 

fluorocitrate significantly attenuated MA, but not TH as compared with the vehicle treated 

group. (E), When a combination of BD-1047 and fluorocitrate was given, MA was reduced, 

compared with the effects shown in either the BD-1047 or fluorocitrate alone treatment groups. 

(F), TH was not affected by concomitant BD-1047 and fluorocitrate treatment. *p <0.05, 

**p<0.01 and ***p<0.001 as compared with those of CCI+VEH group.   
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4-2. Effects of SB203580 or concomitant fluorocitrate and SB203580 

treatment on the development of CCI-induced MA and TH  

To confirm the relation between p-p38 expression and astrocyte activation to CCI-

induced pain behaviors, I intrathecally administered SB203580 or fluorocitrate on 

postoperative days 0-3. Sustained i.t treatment with SB203580 (0.3, 1, 3 nmol, SB) 

significantly attenuated the CCI-induced increase in PWF(%) to innocuous mechanical stimuli 

in a dose dependent manner (Fig.18A). However, SB203580 administration did not affect the 

CCI-induced TH (Fig.18B). While i.t. treatment of either a low dose of SB203580 (0.3 nmol) 

or a low dose of fluorocitrate (0.003 nmol) alone did not alter CCI-induced MA, the 

combination of the two treatments (Fc+SB) significantly suppressed MA development 

(Fig.18C). These results suggest that there is a significant interaction between p-p38 and 

astrocyte activation. Conversely, CCI-induced TH was not affected by concomitant SB203580 

and fluorocitrate treatment (Fig.18D).  
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Figure 18. The concomitant treatment with low doses of SB203580 and fluorocitrate also 

reduced the development of MA, but had no effect on TH. (A), Intrathecal injection of 

SB203580 blocked the increase in PWF (%) that was observed in vehicle-treated CCI mice in 

dose dependent manner. (B), However, the decrease in response latency (seconds) to heat 

stimuli was unaffected by repeated intrathecal treatment with SB203580. (C and D), The 

lowest dose of SB203580 had no effect on CCI-induce MA and TH. When a combination of 

SB203580 and fluorocitrate was given, MA was reduced, compared with the effects showed 

in either the SB203580 or fluorocitrate alone treated group. TH was not effected by 

concomitant SB203580 and fluorocitrate treatment. *p<0.05, **p<0.01 and ***p<0.001 as 

compared with those of CCI+VEH group. 
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4-3. Effects of LSOS treatment and concomitant D-serine and BD-

1047 treatment on the development of CCI-induced MA and TH 

To investigate the contribution of increased D-serine to pain behaviors during the 

induction phase, I intrathecally administered the Srr inhibitor, LSOS on postoperative days 0-

3. Repeated daily, intrathecal treatment with LSOS (1, 3, or 10 nmol) reduced the CCI-induced 

increase in PWF (%) to innocuous mechanical stimuli, as compared with vehicle treated CCI 

mice (Fig.19A). Following the termination of these repeated LSOS injections on day 3, this 

suppressive anti-allodynia effect of LSOS was sustained throughout the 21-day experimental 

period following CCI surgery. On the other hand, the CCI-induced decrease in response 

latency (seconds) to heat stimuli (TH) was not influenced by repeated intrathecal treatment 

with LSOS throughout the 21-day testing period (Fig.19B). Next, I intrathecally injected 

exogenous D-serine in combination of BD-1047 on postoperative days 0-3 to confirm the 

potential role of D-serine in the development of MA induced by Sig-1R activation in CCI mice. 

Treatment with BD-1047 reduced the CCI-induced increase in the PWF (%) to innocuous 

mechanical stimuli, while this same treatment did not affect CCI-induced TH. Treatment with 

exogenous D-serine (50 or 500 nmol in association with BD-1047) restored the CCI-induced 

mechanical allodynia that was blocked by BD-1047 (Fig.19C). However, CCI-induced TH 

was not affected by concomitant D-serine and BD-1047 treatment (Fig.19D).  
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Figure 19. Effects of endogenous and exogenous D-serine on development of MA and TH in 

CCI mice. (A and B), Intrathecal treatment with LSOS reduced the development of MA, but 

had no effect on TH in CCI mice. (A), Intrathecal treatment with LSOS (1, 3, or 10 nmol) 

reduced the CCI-induced increase in PWF (%) to innocuous mechanical stimuli, as compared 

with vehicle-treated CCI mice in a dose dependent manner. After the termination of repeated 

LSOS injection on day 3, this suppressive anti-allodynia effect of LSOS was sustained 

throughout the 21-day experimental period following CCI surgery. (B), On the other hand, the 

CCI-induced decrease in response latency (seconds) to heat stimuli (TH) was not influenced 

by repeated intrathecal treatment with LSOS throughout the 21-day testing period. (C and D), 

Intrathecal treatment with exogenous D-serine restores MA that is blocked by BD-1047 

administration in CCI mice. (C), Treatment with BD-1047 reduced the CCI-induced increase 

in PWF (%) to innocuous mechanical stimuli. Treatment with exogenous D-serine (50 or 500 

nmol in association with BD-1047) restored the CCI-induced allodynia that was blocked by 

BD-1047. (D), Conversely, the decrease in response latency (seconds) to heat stimuli was 

unaffected by repeated intrathecal treatment with BD-1047 or concomitant D-serine and BD-

1047 treatment. *p <0.05, **p<0.01 and ***p<0.001 as compared with those of CCI+VEH 

group, #p <0.05, ##p<0.01 and ###p<0.001 as compared with those of the CCI+BD group. 
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DISCUSSION 

The spinal Sig-1R expression is increased in astrocyte after CCI 

Although the role of Sig-1Rs in central sensitization and pain hypersensitivity has been 

demonstrated in several pain models (de la Puente et al., 2009; Carlsson et al., 2010; Nieto et 

al., 2012), the cellular distribution of Sig-1Rs in the spinal cord dorsal horn has not been 

reported previously, particularly as it relates to a chronic pain condition. There are two 

possibilities with respect to the mechanism underlying the action of spinal Sig-1Rs in the 

induction of chronic pain. The first hypothesis is that Sig-1Rs are upregulated in spinal neurons 

and can directly modulate these neurons (central terminals of primary afferent neurons or 2nd 

order neuron in dorsal horn) under conditions of chronic pain; and the second hypothesis is 

that spinal cord Sig-1Rs can indirectly modulate neuronal activity via a signaling mechanism 

associated with glial cells (astrocytes and/or microglia). Interestingly, the first finding of the 

present study demonstrated that Sig-1R expression is significantly and selectively increased 

only in astrocytes and not in spinal cord neurons on day 3 post-CCI surgery.  This is 

consistent with the work of Ruscher et al., which demonstrated a significant increase in Sig-

1R expression in reactive astrocytes and not neurons or microglia after experimental stroke 

(Ruscher et al., 2011). 

A growing number of studies have used Ca2+ as an indicator of astrocytic activity and 

demonstrated that an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) in astrocytes is 

correlated with gliotransmitter release and modulation of neuronal activity (Agulhon et al., 

2008; Ben Achour et al., 2010). Astrocytes exhibit a large number of G protein-coupled 

metabotropic receptors (GPCRs) linked to Ca2+ mobilization from internal stores or ionotropic 

glutamate channels or receptors linked to extracellular Ca2+ entry (Agulhon et al., 2008; 
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Miyano et al., 2010). The stimulation of the GPCRs coupled to PLC hydrolyzes the membrane 

lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to generate diacylglycerol (DAG) and 

inositol triphosphate (IP3), leading to IP3 receptor (IP3 R) activation and Ca2+ release from the 

ER. It has been reported that Sig-1Rs normally reside at a mitochondrion-associated ER 

membrane where Sig-1Rs regulate ER-mitochondrion Ca2+ signaling and ER-nucleus 

crosstalk (Su et al., 2010). When cells are stimulated by Sig-1R ligands or undergo prolonged 

stress, Sig-1Rs have been shown to activate IP3-induced Ca2+ efflux from the ER (Hayashi et 

al., 2001). In addition, activated Sig-1Rs translocate to plasma membrane, thus regulating 

functional proteins, including ion channels, receptors and kinases (Su et al., 2009; Su et al., 

2010). Recent studies from my laboratories have also demonstrated that spinal Sig-1R-

mediated nociceptive action is associated with Ca2+ dependent second messenger cascades 

including PLC and PKC (Roh et al., 2008b; Roh et al., 2010), which are also known to be 

closely linked to an increase in [Ca2+]i in astrocytes. These findings suggest that the increased 

expression or upregulation of Sig-1Rs in CCI animals occurs primarily in spinal cord 

astrocytes and thus they can regulate a variety of cellular functions via [Ca2+]i modulation in 

these glial cells. Conversely, there are several reports that Sig-1Rs are also located in motor 

neurons of spinal cord ventral horn (Mavlyutov et al., 2010; Mancuso et al., 2012) and that 

Sig-1R mRNA is found in cultured microglial cells (Gekker et al., 2006) and that Sig-1Rs are 

present in retinal microglia (Zhao et al., 2014) as well as brain astrocytes (Francardo et al., 

2014). Clearly there are some discrepancies among the various studies with regard to which 

cell types express Sig-1R receptors and this could be due to the use of different animal species 

(mouse versus rat versus human) and to the use of different Sig-1R antibodies. It is also likely 

that the pattern of cellular distribution of Sig-1Rs may different under different physiological 

or pathologic conditions and among different animal models of disease or pain. However, in 
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the mouse CCI model used here, the only significant change in Sig-1R expression occurred in 

astrocytes in the spinal cord dorsal horn.  

Sig-1R-mediated increase in spinal p-p38 leads to the induction of 

MA in CCI mice 

The present study indicate that phosphorylation of p38 and ERK is increased by direct 

activation of spinal Sig-1Rs in cultured astrocytes. Sig-1Rs have been shown to modulate 

intracellular Ca2+ signaling and activate Ca2+-dependent enzymes, which lead to p38 and 

pERK phosphorylation in dorsal horn neurons (Lee et al., 2000a; Hayashi et al., 2007; Roh et 

al., 2008b; Trang et al., 2009). A potential relationship between Sig-1R activation and p-p38 

or pERK has been previously reported. Nishimura et al. demonstrated that stimulation of Sig-

1Rs potentiate the nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells 

through the interaction with IP3 receptors and several subsequent signaling molecules 

including p38 (Nishimura et al., 2008). In addition, De la Puente et al. reported that in contrast 

to wild-type mice, Sig-1R knockout mice did not show pERK in the spinal cord 14 days after 

partial sciatic nerve injury surgery (de la Puente et al., 2009). However, the cellular location 

of pERK in the spinal cord of this model is unknown. Previous study from my laboratories 

have demonstrated that direct activation of spinal Sig-1Rs induces both mechanical allodynic 

and thermal hyperalgesic behaviors in mice (Roh et al., 2008b). Remarkably, the present study 

shows that intrathecal pretreatment with a p38 inhibitor only attenuated the MA, but not the 

TH produced by intrathecal administration of a Sig-1R agonist, while the pretreatment of ERK 

inhibitor reduced both of PRE-084 induced MA and TH. In addition, the inhibition of spinal 

p38 activation during the induction phase of neuropathic pain reduces the development of MA, 

but not TH in CCI mice. These results corroborate those of the effect of intrathecal treatment 
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with a Sig-1R antagonist. The present results indicate that the activation of spinal p38 is closely 

involved with the induction of Sig-1R-mediated MA, but not TH, in a model of neuropathic 

pain. Recently several studies have also reported that spinal p38 activation plays an important 

role in the pathophysiological mechanism of MA in a variety of experimental pain models. 

p38 phosphorylation is immediately increased by plantar incision, which is coincident with 

the development of incisional pain (Wen et al., 2009). Single intrathecal of another p38 

inhibitor, FR167653 potently attenuated incision-induced MA for 2 days after pretreatment 

incision, whereas a higher dose of FR167653 only resulted in a very brief inhibition on TH. In 

addition, intrathecal pretreatment of SB203580 dose-dependently blocked the development of 

tactile allodynia induced by a first-degree burn in the rat (Sorkin et al., 2009). These results 

imply that the activation of spinal Sig-1Rs and the subsequent signaling of p38 are more 

closely associated with the development of MA, but not TH in chronic pain conditions.  

In addition, Xu et al. reported that pretreatment or early treatment with the SB203580 

significantly reduced in TNF-α synthesis and subsequent development of MA, while post-

treatment with SB203580 starting on Day 7 produces no effect on MA or TNF-α levels in CCI 

rats (Xu et al., 2007a). In this regard it is reported that spinal Sig-1R expression was 

upregulated only the induction phase, and the early blockade of spinal Sig-1Rs inhibits both 

the development of CCI-induced MA and the CCI-induced increase in spinal GluN1 

expression and phosphorylation. In contrast, BD-1047 treatment during the maintenance phase 

of neuropathic pain had no effect on MA or pGluN1 expression (Roh et al., 2008c). These 

results suggest that the activation of spinal Sig-1R plays a critical role in the induction of MA 

rather than the maintenance of MA in CCI-induced neuropathic pain. Collectively it appears 

that p38 activation is regulated by Sig-1R stimulation, which ultimately leads to the induction 

of MA, rather than the maintenance of MA in CCI animals.  
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Moreover, Romero et al. recently reported that mice receiving systemic administration of 

S1RA, a new Sig-1R antagonist exhibit antinociceptive effects on MA as well as TH (Romero 

et al., 2012). In contrast, I demonstrate in the present study that inhibition of spinal Sig-1Rs 

only inhibits the development of MA, but not TH. This discrepancy may be due to the 

difference in administration of the Sig-1R antagonist between the two studies such that the 

reduction in CCI-induced TH produced by systemic Sig-1R antagonism is mediated by the 

inhibition of Sig-1Rs located either in supra-spinal brain regions or in the periphery, where 

Sig-1Rs have been shown to modulate some ion channels like Kv 1.4 potassium channels in 

dorsal root ganglion cells (Aydar et al., 2002; Matsuyoshi et al., 2012). Thus, spinal Sig-1R 

activation may be more important for the development of CCI-induced MA rather than TH.   

Sig-1Rs activate astrocytes via p-p38 leading to the development of 

MA in CCI mice  

I found that the activation of p38 occurs predominantly in both spinal dorsal horn neurons 

and astrocytes and that intrathecal treatment with a Sig-1R antagonist during the induction 

phase significantly reduced p-p38 expression in astrocytes, but not in neurons. Although many 

studies using chronic pain models in rats have reported that p38 is activated exclusively in 

microglia (Tsuda et al., 2004; Terayama et al., 2008; Wen et al., 2009), I found that p-p38-ir 

staining was preferentially localized to the nucleus of GFAP-positive astrocytes and NeuN-

positive neurons. These results are in line with several studies using chronic pain models in 

mice. Xu et al. reported p38 was activated in the nucleus of astrocytes or neurons, but that 

there was no evidence of p-p38 staining in microglia, after pSNL in lumbar spinal sections in 

mice (Xu et al., 2007b). They reported that multiple intrathecal injections of a p38 inhibitor 

reduced spinal astrocyte proliferation after pSNL. Zhang et al. also reported recently that the 
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inhibitory effect of TNF-α on GABAergic neurons is mediated by p-p38, which is expressed 

in neurons and astrocytes (Zhang et al., 2010). The expression of TNF receptor 1 and p-38 in 

spinal astrocytes suggests that astrocytes are involved in the TNF-α-induced spinal 

disinhibition. Collectively these results together with my data suggest that the p38 pathway 

may play an important role in astrocyte modulation and the subsequent induction of MA under 

chronic pain conditions. Moreover, the fact that intrathecal BD-1047 injection specifically 

inhibited p-p38 expression in astrocytes, but not neurons, provides evidence that furthers my 

understanding of the possible relationship between p-p38 modulation and the cellular 

distribution of Sig-1Rs in the spinal cord. 

In addition, it was previously reported that p38 has at least four different isoforms, α, β, 

γ and δ, which differ in their substrate preference, activation modes and response to inhibitors.  

(Kumar et al., 2003). The conventional p38 inhibitor, SB203580 inhibits only p38α and p38β2 

(Barone et al., 2001). In addition, among the four isoforms, p38α and p38β are constitutively 

expressed in the spinal cord (Svensson et al., 2005). Svensson et al. also demonstrated that 

intraplantar formalin and intrathecal substance P in rats produced nocifensive flinching and p-

p38 expression, and this was prevented when spinal p38β, but not p38α, was down-regulated. 

Meanwhile, in mouse brain, both p38α and p38β are present in neurons, while p38β is also 

expressed in glial cells (Lee et al., 2000b). Thus, this diversity in the pattern of p-p38 subtype 

expression might reflect the fact that p38 subtypes can be differentially activated under a 

variety of pain conditions. Thus, it is possible that the different p-p38 subtypes, especially 

p38α and p38β, are differentially distributed in the spinal cord dorsal horn in CCI mice and 

affected differentially by Sig-1R activation.  

The present study shows that intrathecal treatment with the astroglial inhibitor, 

fluorocitrate as well as the Sig-1R antagonist, BD-1047 given during the induction phase of 
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neuropathic pain, significantly reduced the development of MA, but not TH, in CCI mice. 

Interestingly, low doses of fluorocitrate produced synergic suppressive effects on MA 

development when combined with low doses of BD-1047 or the p38 inhibitor, SB203580. In 

addition, the CCI-induced increase in GFAP expression was significantly reduced when BD-

1047 or SB203580 were injected intrathecally during the induction phase. Recently several 

studies have also reported that spinal astrocytes can directly contribute to the development of 

MA, but not TH in various pain conditions. GAO et al. reported that intrathecal administration 

of the L-α-aminoadipate on post-CFA day 2 reversed CFA-induced bilateral MA, but not TH 

(Gao et al., 2010b). They also reported that spinal intrathecal injection of TNF-α-activated 

astrocytes produce MA by releasing MCP-1 in naïve mice (Gao et al., 2010d). In addition, 

Zhang et al. reported that MA can be induced by the intrathecal administration of exogenous 

BDNF-stimulated astrocytes to naïve rats (Zhang et al., 2011). Furthermore, a single 

intrathecal injection of spinal astrocytes activated by a PKC activator failed to produce TH in 

naïve mice, while intrathecal injection of a microglia cell line activated by ATP significantly 

decreased paw withdrawal latency to a thermal stimulus (Narita et al., 2006). These results 

imply that the spinal Sig-1Rs can modulate astrocyte activation via phosphorylation of p38 

and contribute to the development of MA, but not TH in neuropathic mice.  

Spinal Sig-1R activation increases the expression of D-serine from 

astrocytes leading to the development of MA in CCI mice 

It has been reported that activated astrocytes released proinflammatory cytokines or 

chemokines or growth factors under chronic pain conditions (Cao et al., 2008; Gao et al., 

2010c). However, I hypothesized that D-serine may be involved in this process, because Sig-

1R-induced MA development is NMDA receptor dependent. D-serine is an endogenous ligand 
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that acts at the strychnine-insensitive glycine site of the NMDA receptor, and controls NMDA 

receptor activity (Mothet et al., 2000; Henneberger et al., 2010). D-serine is synthesized by 

Srr in astrocytes, but it has also been reported to be synthesized by microglia or neurons in the 

brain (Wu et al., 2004b; Miya et al., 2008). In the present study I demonstrate that D-serine is 

localized to astrocytes and neurons, while Srr is only expressed in astrocytes. In the deep dorsal 

horn, D-serine is localized around neurons, suggesting a correlation between the D-serine 

accumulation and NMDA receptor activity in neuron. Collectively, these data suggest that D-

serine is produced in astrocytes in the superficial dorsal horn and potentially mediates NMDA 

receptor activation during the induction phase of CCI-induced neuropathic pain.   

It has been reported that D-serine has diverse effects on chronic pain in variety of pain 

models. Wake et al. reported that the second phase of the formalin-induced licking response 

was significantly increased in mutant mice lacking DAAO (Wake et al., 2001). In addition, 

intrathecally injected LSOS or another Srr inhibitor, LEHA, decreased wind-up potentiation 

in an arthritic pain model and this antinociceptive effects were abolished when D-serine was 

injected intrathecally (Laurido et al., 2012). Furthermore, Dieb et al. reported that spinal 

astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain through 

the secretion of D-serine (Dieb et al., 2013). However, Hopkins et al. showed that systemic 

administration of the DAAO inhibitor attenuated pain behavior in a neuropathic pain model 

and also reduced spontaneous activity in recordings obtained both centrally and peripherally 

(Hopkins et al., 2013). In addition, intracerebroventricular administration of D-serine has been 

shown to significantly and dose-dependently decrease formalin-induced pain behaviors (Ito et 

al., 2014). These discrepancies among the various studies could be due to differential 

localization of D-serine in different animal models of pain. Collectively, these results indicate 

that D-serine may play a differential role in chronic pain based on its location and specifically 
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spinal D-serine may be involved in the processing of the nociceptive transmission under 

chronic pain conditions.  

In addition, I show that endogenous D-serine reduction in the spinal cord induced by 

intrathecal treatment with a Srr inhibitor, contribute to MA, but not TH. These results are 

consist with the reports indicating that spinal astrocytes contribute to the development of MA, 

but not TH, under various chronic pain conditions. (Narita et al., 2006; Gao et al., 2010b; Gao 

et al., 2010d; Zhang et al., 2011). In the present study I demonstrated that D-serine and Srr are 

both localized to astrocytes in the spinal cord in CCI mice and that sustained administration of 

a Srr inhibitor reduced MA, but not TH development. These results imply that the spinal 

endogenous D-serine can be increased in astrocyte and contribute to the development of MA, 

but not TH in CCI mice. 

I also found that the CCI-induced increase in Srr expression is reduced by BD-1047 

treatment during the induction phase, and that Srr is colocalized in the same cells as Sig-1Rs. 

The precise mechanism by which activation of Sig-1Rs induces an increase in Srr expression 

is certainly complex and requires further extensive investigation. The possible mechanisms by 

which Srr induces an increase in D-serine production and release either by elevating 

transcription or by increasing its enzymatic remains to be determined. It has been reported that 

increased Srr expression can elevated D-serine release in cultured microglia. Wu et al. reported 

that amyloid β-peptide stimulation elevated D-serine release by increasing expression of Srr 

mediated by a JNK MAP kinase-dependent activation of a transcription factor activator 

protein-1 in cultured microglia (Wu et al., 2004a; Wu et al., 2004b). SaSabe et al. also showed 

that elevation of Srr expression, initially induced by glial activators, subsequently increased 

D-serine levels in activated glia in amyotrophic lateral sclerosis (Sasabe et al., 2007). I founded 

that Sig-1R can increase p38 phosphorylation, another MAP kinase activation, in astrocyte 
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during the induction phase. So there is a possibility that the increased expression of Srr in CCI 

mice is mediated by a p38-dependent activation of a transcription factors induced by Sig-1Rs 

in astrocytes. Another possibility is that there is an increase in the activity of Srr. An increase 

in intracellular Ca2+ concentration in astrocytes and direct Ca2+ binding to the Srr causes 

activation of this enzyme, which in turn leads to an increase in D-serine levels (Cook et al., 

2002). This suggests that Ca2+ could also be an important Srr cofactor. It has been reported 

that Sig-1Rs normally reside at a mitochondrion-associated ER membrane and cause IP3-

induced Ca2+ efflux from the ER when cells are stimulated by Sig-1R ligands or undergo 

prolonged stress (Hayashi et al., 2001; Su et al., 2010). These findings suggest a potential 

model by which the upregulation of Sig-1Rs in astrocytes regulates Srr expression and/or 

activation leading to an increase in D-serine in these glial cells. 

Finally, I demonstrate that MA induced by Sig-1R activation in CCI mice is dependent 

on D-serine. I found that removal of endogenous D-serine by a Srr inhibitor prevented MA, 

but not TH. In addition, in conditions in which Sig-1Rs were inactivated by BD-1047, 

exogenous D-serine treatment restored MA. I can thus conclude that the Sig-1R-induced D-

serine release from dorsal horn astrocytes contributes to MA development in CCI mice. In 

support of this theory, Miraucourt et al. reported that intracisternal treatment with the astrocyte 

inhibitor, fluorocitrate prevented MA induced by removal of glycine inhibition and this effect 

was restored with intracisternal administration of exogenous D-serine (Miraucourt et al., 2011). 

Because both neurons and astrocytes have been reported to express NMDA receptors (Schipke 

et al., 2001; Petrenko et al., 2003), there is a possibility that D-serine could also be acting on 

astrocytes to induced the release of other factors. However, astrocytes cannot be the only target 

of D-serine, because exogenous D-serine is able to recovered MA when astrocytes are 

inactivated by a Sig-1R antagonist, as discussed by Miraucourt et al. in their study (Miraucourt 
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et al., 2011).  

In conclusion, the current study has demonstrated that intrathecal treatment with a Sig-

1R antagonist during the induction phase of CCI induced neuropathic pain significantly 

reduces the CCI-induced pathologic activation of astrocytes in the spinal cord dorsal horn. 

Moreover, this effect of a Sig-1R antagonist on spinal astrocyte activation is mediated in part 

by the inhibition of p-p38, which can dramatically suppress the induction of MA, but not TH, 

in neuropathic mice. This spinal Sig-1R-induced MA is also mediated by an increase in Srr 

expression, which in turn causes an increase in the production and possible release of D-serine. 

Collectively these findings suggest that the pharmacological inhibition of spinal Sig-1Rs may 

be a useful approach for the management of astrocyte-mediated MA development in 

neuropathic pain patients. 
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SUMMARY 

Recently, it has been recognized that the role of Sig-1R in modulating central sensitization 

associated with the development of neuropathic pain. Moreover, it has been reported that 

spinal Sig-1Rs play an important role in the induction of MA in neuropathic pain. However, it 

was not clearly demonstrated that the specific mechanism related to this spinal Sig-1R under 

the development of MA in neuropathic pain condition. 

The results demonstrated that direct activation of Sig-1R time-dependently increased the 

expression of p38 phosphorylation, and the p-p38 was correlated with Sig-1R induced MA, 

but not TH in PRE-084 injected mice. The expression of Sig-1Rs was significantly increased 

in astrocytes on day 3 following CCI surgery and sustained intrathecal treatment with the BD-

1047, attenuated CCI-induced increase in GFAP-ir astrocytes. Interestingly, intrathecal BD-

1047 attenuated the expression of p-p38 selectively in astrocytes but not in neurons, and 

intrathecal treatment with a p38 inhibitor attenuated the GFAP expression. These data suggest 

that spinal Sig-1Rs are localized in astrocytes, and that blockade of Sig-1Rs inhibits the 

pathologic activation of astrocytes via modulation of p-p38 in neuropathic mice. The level of 

D-serine and Srr expression were significantly increased in the spinal cord after CCI surgery. 

D-serine was localized in astrocyte and accumulated around neuron. The increased level of D-

serine was attenuated by sustained intrathecal treatment with BD-1047. Accordingly, Srr 

expression was also reduced by BD-1047 treatment and I found Srr expression located on the 

same cell with Sig-1R-ir cells. These data suggest indicates that spinal Sig-1R activation 

increases Srr expression, which in turn causes an increase of D-serine.  

In the pain behavior, sustained intrathecal treatment with the BD-1047, combined with 
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fluorocitrate synergistically reduced the development of MA, but not TH. Moreover, 

intrathecal treatment with a p38 inhibitor combined with fluorocitrate also synergistically 

blocked the induction of MA. In addition, sustained intrathecal treatment with the Srr inhibitor 

reduced the development of MA, and the MA blockade induced by BD-1047 treatment was 

reversed by exogenous D-serine. 

Collectively these findings suggest that spinal Sig-1Rs are localized in astrocytes, and 

that blockade of Sig-1Rs inhibits the pathologic activation of astrocytes via modulation of p-

p38, which ultimately prevents the development of MA in neuropathic mice. I also 

demonstrate that the spinal Sig-1R-mediated MA is developed by an increase of Srr expression, 

which in turn causes an increase of D-serine. Accordingly these results imply that chronic 

neuropathic pain - especially MA development could be clinically controlled by the spinal Sig-

1R modulation.  
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실험배경 및 연구목적 

말초 신경의 손상에 의해 유도되는 신경병증성 통증과 같은 만성 통증은 물

리적 이질통 (통증을 일으키지 않는 가벼운 자극에도 통증을 느끼는 것)과 열성 

통각과민증 (약간의 통증을 일으킬만한 열적 자극에 더욱 아파하는 것) 등의 증

상이 나타나는 것으로 알려져 있다. 하지만 이러한 물리적 이질통과 열성 통각

과민증이 어떻게 형성되는지 자세한 기전은 알려져 있지 않다. 최근 좌골신경의 

만성압박 손상 모델을 이용한 말초 신경병증성 통증에서 sigma-1 수용체가 척수 

내 중추성 감작 현상을 통한 물리적 이질통의 형성에 중요한 역할을 담당하고 

있다고 보고되었다. 하지만, 이러한 sigma-1 수용체와 관련된 척수 내 특정 조절 
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기전은 명확히 밝혀진 바가 없다.  

따라서 본 연구는 (1) sigma-1 수용체의 척수 내 세부적인 분포를 확인하고 

mitogen-activated protein (MAP) kinase 신호 전달 기전으로 알려져 있는 extracellular 

signal-regulated kinase (ERK), p38 및 c-Jun amino-terminal kinase (JNK)가 sigma-1 수용

체에 의해 활성화 되는지, sigma-1 수용체에 의한 물리적 이질통에 관여하는지를 

조사하였다. (2) 좌골신경 만성 압박 손상 모델에서 수술 유발 후 3일째에 sigma-

1 수용체, p38 인산화, 별아교세포 (astrocyte) 및 미세아교세포 (microglia) 의 활성

을 확인하였다. sigma-1 수용체 및 p38 인산화의 억제가 좌골신경 만성 압박에 

의해 증가한 별아교세포의 활성에 미치는 영향을 조사하고, 이러한 sigma-1 수용

체에 의한 별아교세포의 활성이 척수 내 D-serine의 증가와 관련이 있는지를 검

증하였다. (3) 마지막으로, 이러한 sigma-1 수용체에 의한 p38 활성화 및 D-serine

의 증가가 좌골신경 만성 압박 손상에 의한 물리적 이질통의 형성에 기여함을 

검증하고자 하였다.   

 

실험방법 

생후 1-2일 된 C57BL/6 마우스 뇌에서 별아교세포를 일차 배양하여 실험에 사용

하였다. 그 외에 다른 실험에는 20-25g의 수컷 ICR 마우스를 사용하였으며, 신경

병증성 통증은 Bennett과 Xie에 의해 고안된 좌골신경의 만성압박 손상에 의해 

유도되었다. 각각의 약물은 척수 지주막하강 내로 직접 주입하였다. 무해한 물리

적 자극에 대한 반응은 0.16g von Frey filaments를 이용하여 반응빈도로 측정하였

다. 열자극에 대한 회피반응 시간이 단축되는 열성 통각과민증은 hot plate 검사

와 Hargreaves 검사를 시행하여 측정하였다. 약물은 각각의 실험목적에 따라 처

치되었다. sigma-1 수용체 효능제인 PRE-084 (3 nmol)와 길항제인 BD-1047 (100 
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nmol), ERK 억제제인 PD98059 (3, 10, 30 nmol), p38 억제제인 SB203580 (0.1, 0.3, 1, 3, 

10 nmol), 별아교세포 대사억제제인 fluorocitrate (0.003, 0.001, 0.03 nmol), 그리고 

serine racemase (Srr) 억제제인 LSOS (1, 3, 10 nmol)가 사용되었다. 면역조직화학법 

및 Western blot assay를 실시하였으며, 컴퓨터와 연계된 image analysis program인 

Metamorph를 이용하여 단백질의 발현 정도를 분석하였다.  

 

실험결과  

1.  신경손상 유발 후 3일째에 척수 내 sigma-1 수용체의 발현이 별아교세포에서 

현저히 증가하였다. 일차 배양된 별아교세포에서도 sigma-1 수용체가 발현되었고, 

sigma-1 수용체의 선택적 효능제인 PRE-084 처치 시 ERK와 p38의 활성화된 형

태인 인산화가 증가하였다. PRE-084를 척수 내로 주입 시 물리적 이질통과 열성 

통각과민증이 유도되는데, ERK 억제제인 PD98059를 전처치시 물리적 이질통 및 

열성 통각과민증이 모두 억제되는 반면, p38 억제제인 SB203580을 전처치시 물

리적 이질통은 억제되지만, 열성 통각과민증에는 영향이 없었다. 정상적인 동물

에서 PRE-084를 척수 내로 주입 시 p38의 인산화가 시간 별로 증가하고, 이러한 

증가는 sigma-1 수용체 길항제인 BD-1047에 의해 억제되었다.  

2.  좌골신경 만성 압박 손상 후 3일째에 척수 내 신경교세포 및 미세아교세포

의 활성이 증가됨을 각각의 표시인자인 GFAP 및 Iba-1의 증가를 통하여 확인하

였다. BD-1047을 만성통증이 유발되는 초기 (수술 후 0일에서 3일째)에 처치 시 

신경손상에 의한 별아교세포의 척수 내 발현 증가를 억제 시킨 반면, 미세아교

세포의 활성에는 영향이 없었다. p38 인산화는 별아교세포와 신경세포에서 발현

이 증가하였으며, 미세아교세포에서는 발견되지 않았다.  흥미롭게도, BD-1047의 

척수 내 처치는 별아교세포내의 p38의 인산화만 억제하였다. 더욱이, p38 억제제
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의 척수 내 처치는 별아교세포의 발현 증가를 억제시켰다. 척수 내 D-serine 및 

D-serine을 형성하는 효소인 Srr의 발현 역시 신경손상 유발 초기에 증가하였다. 

D-serine은 별아교세포와 신경세포 주변에 위치하고 있었으며, Srr은 주로 별아교

세포에서 발견되었다. 신경손상에 의한 D-serine의 증가는 BD-1047 처치에 의해 

억제되었고, Srr의 발현 역시 BD-1047처치에 의해 억제되며, Srr은 sigma-1 수용체

와 같은 세포에 존재하였다. 

3.  신경손상 유발 초기에 지속적인 BD-1047의 척수 내 처치는 물리적 이질통의 

형성만 억제하였고, BD-1047과 fluorocitrate를 함께 처치 시 이러한 억제 효과가 

더욱 증가하지만, 열성통각과민증에는 영향이 없었다. 더욱이, p38 억제제와 

fluorocitrate를 함께 처치 시에도 물리적 이질통의 형성을 더욱 강력하게 억제할 

수 있었다. 또한, Srr 억제제의 지속적인 척수 내 처치 역시 물리적 이질통의 형

성만 억제하였고, BD-1047에 의한 물리적 이질통의 억제는 외인성 D-serine을 척

수 내 투여 시 반전됨을 보여주어, 신경병증성 통증 유발 시 sigma-1 수용체가 

별아교세포에서 p38 인산화 및 D-serine을 증가를 통해 물리적 이질통의 형성에 

기여함을 제시하였다.   

 

결론 

본 연구는 척수 내 sigma-1 수용체는 p38의 인산화 증가를 통해 신경병증 성 통

증의 물리적 이질통의 형성에 기여하고 있으며, sigma-1 수용체는 별아교세포에 

존재하고, sigma-1 수용체의 활성억제는 p38 인산화의 감소를 통해 별아교세포의 

활성을 저해하여 물리적 이질통의 형성을 억제할 수 있음을 검증하였다. 또한 

sigma-1 수용체에 의한 물리적 이질통의 형성은 별아교세포에서 Srr 발현 증가에 

따른 D-serine의 증가로 인해 나타남을 증명하였다. 이러한 연구 결과들은 척수 
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내 sigma-1 수용체의 활성화가 신경 병증 성 통증 중 물리적 이질통의 형성에 

기여하고 있는 세부 기전을 보다 명확히 제시해주고 있다.   

 

 

-------------------------------------------------------------------------------------------------------- 

주요어: 신경병증성 통증, sigma-1 수용체, 물리적 이질통, p38, 별아교세포, 

D-serine 
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