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Abstract 

 

Dual-Frequency SSVEP-based BCI 

for Reducing Eye Fatigue and 

Improving Classification Rate 

 

 

 

Min Hye Chang 

The Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University 
 

    

The steady-state visual-evoked potential (SSVEP)-based brain-computer 

interface (BCI) has been widely investigated because of its high signal-to-noise 

ratio (SNR), and little requirement for training. However, the stimulus for 

evoking SSVEP causes high visual fatigue and has a risk of epileptic seizure. 

Furthermore, stimulation frequency is limited and the SSVEP amplitude 

diminishes when a monitor is used as a stimulator. In this thesis, a dual-

frequency SSVEP is examined to resolve the aforementioned issues. 

Employing dual-frequency SSVEPs, two novel SSVEP-based BCIs are 
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introduced to decrease eye fatigue and use harmonic frequencies with increased 

performance.  

First, the spectral characteristics of dual-frequency SSVEPs are 

investigated and frequency recognition methods for dual-frequency SSVEPs 

are suggested. Three methods based on power spectral density analysis (PSDA) 

and two methods based on canonical correlation analysis (CCA) were tested. 

The proposed CCA with a novel reference signal exhibited the best BCI 

performance, and the use of harmonic components improved the classification 

rate of the dual-frequency SSVEP. 

Second, the dual-frequency SSVEP response to an amplitude-modulated 

stimulus (AM-SSVEP) was explored to verify its performance with reduced 

eye fatigue. An amplitude-modulated stimulus was generated using the product 

of two sine waves at a carrier frequency (fc) and a modulating frequency (fm). 

The carrier frequency was higher than 40 Hz to reduce eye fatigue, and the 

modulating frequency ranged around the α-band (9–12 Hz) to utilize low-

frequency harmonic information. The feasibility of AM-SSVEP with high BCI 

performance and low eye fatigue was confirmed through offline and online 

experiments. Using an optimized combination of the harmonic frequencies, the 

online experiments demonstrated that the accuracy of the AM-SSVEP was 97%, 

equivalent to that of the low-frequency SSVEP. Furthermore, subject evaluation 

indicated that an AM stimulus caused lower eye fatigue and less perception of 

flickering than a low-frequency stimulus, in a manner similar to a high-

frequency stimulus.  
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Third, a novel dual-frequency SSVEP-based hybrid SSVEP-P300 speller 

is introduced to overcome the frequency limitations and improve the 

performance. The hybrid speller consists of nine panels flickering at different 

frequencies. Each panel contains four different characters that appear in a 

random sequence. The flickering panel and the periodically updating character 

evoke the dual-frequency SSVEP, and the oddball stimulus of the target 

character evokes the P300. Ten subjects participated in offline and online 

experiments, in which accuracy and information transfer rate (ITR) were 

compared with those of conventional SSVEP and P300 spellers. The offline 

analysis revealed that the proposed speller elicited dual-frequency SSVEP. 

Moreover, the dual-frequency SSVEP significantly improved the SSVEP 

classification rate and ITR with a monitor in online experiments by 4 % 

accuracy and 18.8 bpm ITR. 

In conclusion, the proposed dual-frequency SSVEP-based BCIs reduce 

eye fatigue and improve SSVEP classification rate. The results indicate that this 

study provides a promising approach to make SSVEP-based BCIs more reliable 

and efficient for practical use. 
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 1  
Introduction 

 

 

 

 

1.1. Brain-Computer Interface 

1.1.1. Basic Concepts 

A brain-computer interface (BCI) system decodes a user’s intent in order 

to facilitate communication between the user and the environment using his/her 

own brain activity. In terms of the measurement methods for brain activity, 

BCIs can be divided into invasive and noninvasive BCIs [1]. In particular, 

noninvasive BCIs are primarily based on scalp electroencephalograms (EEGs) 

because of their low-cost and noninvasive characteristics. Various EEG signals 

are used for BCI systems, such as sensori-motor rhythm (SMR) [2], event-

related potential (ERP) [3, 4], and steady-state evoked potential (SSEP) [5, 6], 

or combined responses [7]. In particular, steady-state visual-evoked potential 

(SSVEP) and P300 potential have been widely used for high performance and 

a relatively large number of commands. 
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1.1.2. SSVEP-based BCIs 

SSVEP is generated in the occipital region when a subject focuses on a 

target flickering at a constant frequency [8]. SSVEP has peaks at the flickering 

frequency, its harmonic, and its sub-harmonic frequencies ranging from 1 to 

100 Hz [9]. An SSVEP-based BCI utilizes such spectral characteristics. While 

a user focuses on a flickering stimulus, his/her brain wave is recorded and 

analyzed using a BCI system. A dominant frequency of the EEG is identified 

and compared with the flickering frequency. If the dominant frequency is the 

same or a harmonics of the flickering frequency, the BCI system regards the 

user as focusing on the corresponding target. If multiple stimuli flicker, the BCI 

system compare the dominant frequency to the stimulation frequencies, and 

considers a stimulus with a corresponding stimulation frequency as the one the 

user focuses on. Because main and harmonic frequencies are all used, the 

stimulation frequencies should neither overlap nor be harmonics of each other. 

SSVEP-based BCI systems have recently attracted growing interest 

because they require less subject training, offer a higher information transfer 

rate (ITR), and usually involve a simple system configuration with fewer 

electrodes than other EEG-based BCI systems [10, 11]. SSVEP-based BCI 

applications have been proposed for communication with the environment, 

such as an SSVEP speller [12], control of a hospital bed nursing system [13], 

or hand orthosis for tetraplegic patients [14]. 

The stimulation frequency range is divided into low- and medium-

frequency bands (< 30 Hz) and high-frequency bands above 30 Hz. SSVEPs in 
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the low-frequency band have a larger amplitude response than those in the 

medium- and high-frequency ranges; in particular, SSVEPs at about 15 Hz 

exhibit the largest amplitude [15]. Therefore, many SSVEP-BCI systems 

employ the low-frequency band at stimulation frequencies between 8 and 15 

Hz [14, 16, 17]. However, low-frequency flickering stimuli are annoying [18] 

and can cause epileptic seizures. In particular, frequencies within the range of 

15–20 Hz pose the greatest risk of seizures. Other frequencies also pose a 

potential risk of photosensitive epilepsy; however, the percentage of patients 

with photosensitive epilepsy decreases with increasing flickering frequency 

[19]. Several recent studies have proposed higher-frequency SSVEP-based 

BCIs as an alternative to alleviate this risk and visual fatigue [20-22]. However, 

more people were unable to complete BCI tasks with high-frequency SSVEPs 

because of their poor performance than those with low-frequency SSVEPs: 84 

subjects succeeded in using low-frequency SSVEP-based BCIs, whereas only 

56 subjects succeeded with high-frequency SSVEP-based BCIs. Furthermore, 

high-frequency SSVEPs resulted in significantly lower accuracy and ITR [22]. 

Even within a high-frequency band, the detection accuracy decreased by 8.6% 

as the stimulation frequency increased from 30 Hz to 45 Hz [21].  

Various stimuli are used for SSVEP-based BCIs, such as light-emitting 

diodes (LEDs), and liquid crystal display (LCD) and cathode ray tube (CRT) 

monitors [23]. An LED stimulator can generate a great number of stimuli with 

small frequency steps and various waveforms of the signal (e.g., sine, 

rectangular, or modulated waveform). The peak power of an SSVEP evoked by 
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LEDs is higher than that evoked by LCD and CRT monitors [23]. However, the 

stimulator and signal processor are separate and complex, whereas, a monitor 

can provide both stimulation and feedback without an additional device. A 

stimulus that flickers as black and white is generated on the basis of the 

monitor’s refresh rate; thus, the stimulation frequency is limited to  

 

𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 =  𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝑟𝑎𝑡𝑒 / 𝑁,  (1) 

 

where N indicates an integer larger than 2. A recent study developed a 

dynamically optimized SSVEP speller producing 36 stimuli with only six 

flickering frequencies in frequency-limited condition [24]. Another study 

reported a 45-target monitor-based SSVEP-BCI system in which the brightness 

of a stimulus varied sinusoidally [25], thus it did not follow (1). However, in 

those systems, harmonic frequencies still could not be used for different stimuli. 

Furthermore, the SSVEP peak is weaker than that evoked by LEDs. These 

limitations reduce the ITR.  
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1.1.3. P300-based BCIs 

The P300 potential is elicited approximately 300 ms after a subject spots 

an infrequent target. When a subject detects a stimulus change, the neural 

stimulus representation updates in working memory and the P300 component 

is produced in the ERPs [26]. P300 has two subcomponents: P3a and P3b. P3b 

is the “classic” P300 which is elicited by deviant items when a subject is 

concentrating on the stimuli. P3b peaks at approximately 300 ms and is a 

maximum at the parietal region. P3a is elicited by novel stimuli that is 

exceedingly rare and has no previously formed memory template (novel 

stimuli). P3a is a maximum at the frontal or central region [27]. Both 

components can be used for P300-based BCIs [28]. 

The oddball paradigm is commonly used for P300-based BCIs, which 

presents an infrequent target in the background of frequent standard stimuli. 

Various P300-based BCI systems have been designed, including a visual 

character speller [3], an auditory speller [29], and an auditory BCI with natural 

stimuli [30]. Some of the systems have already been tested with neuromuscular 

patients [31]. 

Usually, P300-based BCIs could have many targets, which can increase 

system speed in proportion to the number of targets. However, P300-based 

BCIs need repetitive stimulation sequences to average ERPs, which increases 

the stimulation time and reduces ITR [3]. Furthermore, because of high intra-

subject variability, a training session is required to operate the system. 
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1.1.4. Hybrid SSVEP-P300 BCIs 

Complementary strategies that combine P300 and SSVEP offer a more 

reliable and faster BCI speller. A hybrid BCI system designed for practical use 

in asynchronous control has been described [32]. The system employed P300 

and SSVEP as a brain switch to control a real wheelchair; nonetheless, the speed 

of the BCI was not improved. A visual parallel-BCI speller incorporating P300 

and SSVEP-blocking (SSVEP-B) features has been suggested as a way to 

improve the speller’s accuracy and ITR [33, 34]. However, this system requires 

that the SSVEP stimulation be suspended for a certain period to generate the 

P300 potential, and this time gap can attenuate the SSVEP. Furthermore, 

harmonic frequencies cannot be used for creating more targets. The limited 

number of flickering frequencies may increase the number of flashes in a 

sequence and the stimulation time for P300 and decrease ITR. A hybrid BCI 

spelling system has been developed that divides a conventional P300 speller 

into six subgroups, where each group flickers at different frequencies [35]. The 

hybrid system combines the individual features of P300 and SSVEP to reduce 

errors occurring in the same row or column relative to the target. The same 

research team has proposed another hybrid SSVEP-P300 BCI speller to 

decrease the flash number for P300 by half, which increases the accuracy and 

ITR compared to the SSVEP and P300 spellers [36]. However, these systems 

do not solve the frequency-limitation problem of the SSVEP-based BCI system. 
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1.2. Motivation and Objectives 

SSVEP-based BCIs have advantages over other EEG-based BCIs: 1) they 

need almost no subject training; thus, they are easy to implement. 2) They have 

low inter- and intra-subject variability; simple signal processing techniques can 

lead to high performance. 3) Accuracy is relatively high with short EEG signals, 

resulting in high ITR. 

However, flickering visual stimuli cause eye fatigue and have a high 

potential for epileptic seizure in the low-frequency range. Efforts to reduce 

visual fatigue created a half-field stimulation pattern without direct attention to 

a stimulus [37] or a high duty-cycle flicker with an α-band flashing frequency 

[38]. However, these stimuli also flicker at a low frequency; thus, visual 

discomfort (annoyance and fatigue) and the risk of seizure caused by a low-

frequency flicker cannot be completely eliminated.  

Another problem is that the stimulation frequency with a monitor is 

limited, and even harmonic frequencies cannot be used in the frequency-limited 

condition. The low number of available stimulation frequencies reduces the 

number of targets, and consequently results in low ITR.  

The dual-frequency SSVEP-based BCI can be an alternative to single-

frequency SSVEPs to complement the aforementioned weaknesses. Spectra 

peaks of a dual-frequency SSVEP appear at a linear combination of stimulation 

frequencies. Thus, a dual-frequency stimulus with a high frequency can 

theoretically evoke a low-frequency SSVEP. Then, the high stimulation 

frequency can reduce eye fatigue without damage to SSVEP amplitude by 
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generating a low-frequency harmonic component. On the other hand, if one of 

the stimulation frequency pair changes, the spectral peaks of the corresponding 

dual-frequency SSVEP change. Thus, the same or harmonic frequency can be 

used for different stimuli with a different frequency pair.  

However, characteristics of dual-frequency SSVEPs, such as harmonic 

components varying with stimulation frequencies or inter- and intra-subject 

variability, have rarely been reported. Furthermore, dual-frequency SSVEP-

based BCIs using its harmonics as well as fundamental frequencies have not 

been investigated. Therefore, a feasibility study on dual-frequency SSVEP-

based BCIs should be performed to investigate the issues and to develop a 

signal processing method for a dual-frequency SSVEP-based BCI system. 

In this thesis, a standard dual-frequency SSVEP-based BCI system is 

investigated to identify the spectral characteristics of dual-frequency SSVEPs 

and establish a frequency recognition method that considers harmonic 

components as well as main frequencies. Then, two novel dual-frequency 

SSVEP-based BCI systems are proposed, each of which was designed to solve 

the aforementioned issues as follows: 

 

 Amplitude-modulated stimulation with different combinations of 

carrier and modulation frequencies was designed to reduce eye 

fatigue without degradation of performance. The visual stimulus 

was generated according to the double-sideband suppressed 

carrier (DSB) signal, which flickered at a high frequency while 
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also carrying low-frequency information. The effect of the two 

frequency bands can be identified by the amplitude of the SSVEP 

and the level of eye fatigue. 

 A novel hybrid BCI speller that generates dual-frequency 

SSVEPs was developed to present characters periodically while 

simultaneously flickering. The hybrid stimulus consists of a 

stimulation-frequency pair for SSVEP and P300. Thus, harmonic 

flickering frequencies can be used for different stimuli with 

relatively prime stimulation frequencies for P300. Furthermore, 

the simultaneous stimulation by the proposed speller can reduce 

the time required for stimulation, which results in a swift decision. 
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 2 
Frequency Recognition Methods for DFSSVEP-

based BCI 
 

 

 

 

2.1. Basic Concepts 

A dual-frequency SSVEP-based BCI system has been suggested for 

generating more stimuli with a few flickering frequencies, contrary to a single-

frequency SSVEP-based BCI system where the number of targets should be the 

same as the number of flickering frequencies [39]. Through a combination of 

the frequencies, N flickering frequencies can theoretically generate NC2 + N 

stimuli. Thus, employing dual-frequency SSVEPs can benefit in frequency-

limited settings such as the utilization of a monitor [40]. Most dual-frequency 

stimulators generate light intensity variation as a sinusoidal or square wave. 

However, neither periodic shape variation nor a combination of shape and 

intensity variations has been used. 
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A dual-frequency SSVEP has spectral peaks in a linear combination of the 

two stimulation frequencies as well as main frequencies. Moreover, the 

appearance of the harmonics varies with stimulation condition. In [39], in 

response to a dual-frequency stimulus flickering at different frequencies (f1 and 

f2), spectral peaks occurred at the symmetric harmonic frequencies: 2f1 − f2 and 

2f2 − f1. In [40], flickering frequencies for the dual-frequency stimulus were in 

the low-frequency band, less than 5 Hz, and the SSVEP peak appeared at the 

sum of the frequencies. With a different frequency set and various stimulus 

shapes (Figure 2-1), harmonic frequencies were found at |f1 − f2|, 3f1 − f2, and 

3f2 − f1 [41]. In the case of a dual-frequency stimulation consisting of two 

harmonic frequencies, a corresponding SSVEP concentrates the power at one 

of the frequencies [42]. The study about dual-frequency SSVEP-based BCI was 

published as a conference paper [43]. 
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Figure 2-1. Three different shapes of stimuli for evoking a dual-frequency 

SSVEP, (a) concentric circle, (b) checkerboard, and (c) square [41]  
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Bieger and Molina [44] suggested multi-frequency stimulation generated 

by the sum or average of multiple pure frequency stimulations. These authors 

assumed that such stimulation would elicit SSVEPs at linear combinations of 

the stimulus frequencies, but did not demonstrate their theory. Teng et al. [45] 

investigated EEG responses to multi-frequency sine stimulation at two or three 

frequencies. However, they examined only which stimulus frequency was 

dominant in an SSVEP according to different frequency combinations without 

a BCI application. The analysis of the resulting SSVEP peaks was limited to 

the main stimulus frequencies and not the harmonic frequencies, unlike the 

present study. In addition, the stimulus frequencies tested were below 20 Hz, 

which is sufficient to cause considerable eye fatigue. Lopez et al. [46] used AM 

stimuli similar to those used in this study; however, all of the stimuli had the 

same carrier and modulation frequencies of 16 Hz and 1 Hz, respectively; the 

only difference was the phase shift. The acquired EEG signals were AM 

demodulated before an SSVEP recognition step. Therefore, the visual response 

evoked by AM visual stimulation was not considered in the SSVEP analysis, 

and advantages obtained from using the multi-frequency stimulation could not 

be expected in their approach. Shyu et al. [39] reported that a dual-frequency 

SSVEP can be evoked through a stimulus consisting of two LEDs flickering at 

different frequencies. The approach has the advantage of generating more 

stimuli with the limited number of available flickering frequencies using the 

combination of the frequencies. When a subject was exposed to the stimulus 

flickering at both f1 and f2, the symmetric harmonic frequencies (i.e., peak 
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frequencies of dual-frequency SSVEP) were f1, f2, 2f1 – f2, and 2f2 – f1. However, 

their findings were not applied to BCI systems. 
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2.2. DFSSVEP Recognition Methods 

SSVEP is a periodic evoked potential elicited by a visual stimulus 

flickering at a constant frequency, showing peaks at multiple harmonic 

frequencies such as the main, second, or sub-harmonic frequency [9]. SSVEP-

based BCIs classify SSVEP segments by exploiting such spectral 

characteristics. The most used frequency recognition methods for SSVEP are 

power spectral density analysis (PSDA) and canonical correlation analysis 

(CCA). In the previous study, CCA and PSDA were compared for online multi-

channel SSVEP-based BCI, and CCA was superior to PSDA [5].  

Even though some research groups have reported characteristics of dual-

frequency SSVEPs, a dual-frequency SSVEP-based BCI system has rarely been 

implemented. To our knowledge, a classification strategy for dual-frequency 

SSVEP has not been investigated using both main and harmonic frequencies. 

Conventional frequency recognition methods are optimized for single-

frequency SSVEP. Contrary to single-frequency SSVEP, dual-frequency 

SSVEP can have multiple peaks at linear combinations of stimulation 

frequencies, and a distinct peak frequency or amplitude even varies between 

individuals [47]. Therefore, the existing classification methods for single-

frequency SSVEPs should be equipped to handle the variation.  

In this section, modified PSDA and CCA were examined for dual-

frequency SSVEP classification. The three new methods used conventional 

features (SNR or correlation) and classification methods (ranking or linear 

discriminant analysis, LDA). The other two methods used modified features 
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contributed by both main and harmonic frequencies, taking advantage of 

harmonic frequencies.  

 

2.2.1. PSDA-based Methods 

PSDA usually calculates spectral power or signal-to-noise ratio (SNR) of 

SSVEP at harmonic frequencies. The n-th order SSVEP-SNR is calculated as  

 

SNR(𝑓) =  
𝑛×𝑃(𝑓)

∑ [P(𝑓+𝑘∆𝑓)+P(𝑓−𝑘∆𝑓)]
𝑛/2
𝑘=1

, (2) 

 

where f denotes frequency, P represents the power of the signal, and ∆f indicates 

the frequency step. SSVEP classification is accomplished by choosing the 

largest value among those of stimuli [48] or using a classifier such as linear 

discriminant analysis (LDA) [49]. 

Three different frequency recognition methods were devised for PSDA 

(Table 2-1): 1) SNR-ranking, 2) SNR-sum, and 3) SNR-LDA.  

The first method is to select two frequencies with the largest SNRs among 

the main frequencies. SSVEP-SNR is calculated at each stimulation frequency; 

then the stimulation frequencies are arranged in descending order of SNR. 

Because dual-frequency stimuli are composed of a combination of two 

frequencies, the first two frequencies in the rank are further compared with the 

stimulation-frequency-pairs. If the frequency set selected does not correspond 

to any of the stimulation frequency pairs, the classification is considered failed. 
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The second method is to compare the sum of SNRs at the two main 

frequencies and the harmonic frequencies. The SNR values are summed for 

each class at the main frequencies (SNRi,f1, SNRi,f2) and with or without the 

combination of the harmonic frequencies (SNRi,fharm): 

 

SNRsumi = SNR i,f1 + SNR i,f2 + SNRi,fharm,      i = 1, 2, 3, 4  (3) 

 

where i indicates the class. The class with the largest SNR sum is determined 

as the target on which the subject focuses. When including harmonic 

frequencies, classification accuracies of all combinations are compared, and the 

maximum accuracy with a specific combination becomes the representative 

classification rate of a specific time.  

The last modified PSDA method is to apply LDA with features of SNR 

values at the main frequencies and the combination of the harmonic frequencies. 

LDA estimates hyperplanes to separate the data of multiple classes. This 

technique has a low computational requirement, suitable for an online BCI 

system [50]. As in the SNR-sum method, only the maximum accuracy with a 

specific combination of harmonic frequencies is considered for performance 

comparison. 
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Table 2-1. Modified frequency recognition methods for dual-frequency 

SSVEPs 

Method Feature Classification 

SNR-ranking 
SNR at each stimulation 

frequency 

Select two stimulation 

frequencies with the largest 

SNR 

SNR-sum 
Sum of SNRs at stimulation and 

non-integer harmonic frequencies 

Select a frequency set with 

the largest SNR sum 

SNR-LDA 
SNRs at stimulation and non-

integer harmonic frequencies 

Select a frequency set with 

the largest classifier score 

Correlation-

ranking 

Correlations between EEG and 

conventional reference signal for 

each stimulation frequency 

Select two stimulation 

frequencies with the largest 

correlation 

CCA with a 

novel reference 

signal 

Correlations between EEG and 

novel reference signal for each 

stimulus 

Select a frequency set with 

the largest correlation 
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2.2.2. CCA-based Methods 

CCA is a widely used approach to recognize SSVEPs [5, 51]. This 

approach finds a pair of linear transformations (WX and WY) for multichannel 

EEG (X) and reference signal (Y) by maximizing the correlation (ρ) between 

the two projections (i.e., the canonical variants x = XTWX and y = YTWY) of the 

canonical variables (X and Y) [5]: 

 

max
𝑊𝑥,𝑊𝑦

𝜌(𝑥, 𝑦) =  
𝐸[𝑥𝑇𝑦]

√𝐸[𝑥𝑇𝑥]𝐸[𝑦𝑇𝑦]
= 

𝐸[𝑊𝑥
𝑇𝑋𝑌𝑇𝑊𝑦]

√𝐸[𝑊𝑥
𝑇𝑋𝑋𝑇𝑊𝑥]𝐸[𝑊𝑦

𝑇𝑌𝑌𝑇𝑊𝑦]
. (4) 

 

Because multidimensional sets can be used as the variables, multichannel EEG 

data can be simply analyzed using CCA [5].  

When applying CCA to a BCI system, X refers to tws-long Nch-channel 

EEG signals, and Y refers to the set of reference signals with the same length 

as X. The conventional reference signal Yf consists of both the sine and cosine 

of Nh harmonics of frequency f: 

 

𝑌𝑓 = 

(

 
 
 
 
 

 sin(2𝜋𝑓𝑡) 

cos(2𝜋𝑓𝑡)

sin(4𝜋𝑓𝑡)

cos(4𝜋𝑓𝑡)
⋮

sin(2𝜋𝑁ℎ𝑓𝑡)

cos(2𝜋𝑁ℎ𝑓𝑡))

 
 
 
 
 

  (5) 
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The stimulus where the user focused is classified as 

 

C =  max
𝑖
𝜌𝑖 ,                       𝑖 = 1, 2, … , 𝐾,  (6) 

 

where K is the number of targets. For example, if four visual stimuli constitute 

a BCI system, four Yf values corresponding to each stimulus are estimated. The 

linear combinations that maximize canonical correlations between an SSVEP 

segment and each Yf are estimated. The four canonical correlations of the 

individual Yf are compared, and the class with the maximum correlation is 

assumed to be the watched target. 

Two modified CCAs are designed for dual-frequency SSVEP 

classification (Table 2-1): 1) correlation-ranking, and 2) CCA with a novel 

reference signal. Because a conventional reference signal consists of a sine and 

cosine at a specific frequency, direct multi-frequency recognition is not possible 

with correlation-ranking. Therefore, the method calculates the correlation for 

each stimulation frequency and compares the values. As with the SNR-ranking 

method, a stimulus with stimulation frequencies with the largest correlations is 

regarded as a target the user focuses on. 

The second modified CCA uses a novel reference signal for directly 

recognizing multi-frequency components of dual-frequency SSVEP. Compared 

with correlation-ranking, a novel reference signal consists of sine and cosine 

at multiple frequencies including two main frequencies (f1 and f2), non-integer 

harmonic frequencies (fNI-Harm), and their second harmonics: 
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 𝑌𝑑𝑢𝑎𝑙 = 

(

 
 
 
 
 
 
 
 
 
 
 

  sin (2𝜋𝑓1𝑡)  
cos (2𝜋𝑓1𝑡)

sin (4𝜋𝑓1𝑡)

cos(4𝜋𝑓1𝑡)

sin(2𝜋𝑓2𝑡)

cos(2𝜋𝑓2𝑡)

sin(4𝜋𝑓2𝑡)

cos(4𝜋𝑓2𝑡)

sin(2𝜋𝑓𝑁𝐼−𝐻𝑎𝑟𝑚𝑡)

cos(2𝜋𝑓𝑁𝐼−𝐻𝑎𝑟𝑚𝑡)

sin(4𝜋𝑓𝑁𝐼−𝐻𝑎𝑟𝑚𝑡)

cos(4𝜋𝑓𝑁𝐼−𝐻𝑎𝑟𝑚𝑡)
⋮ )

 
 
 
 
 
 
 
 
 
 
 

  (7) 

 

A reference signal is estimated for each class, and a correlation is 

calculated for a class. The class with the largest correlation is finally chosen, as 

with the conventional CCA.  
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2.3. Offline Analysis 

2.3.1. Dual-Frequency Stimulus 

A dual-frequency stimulus consisted of two LED arrays that flickered as 

sine waves at different frequencies (f1 and f2; Figure 2-2). A diffusion film was 

attached above the arrays so that subjects could focus on the stimulus without 

focusing on either of them. The flickering frequencies were non-harmonic and 

in the medium- or high-frequency range: 19 Hz, 23 Hz, 27 Hz, and 31 Hz. Four 

pairs of them were used for generating dual-frequency stimuli: (19 Hz, 27 Hz), 

(19 Hz, 31 Hz), (23 Hz, 27 Hz), and (23 Hz, 31 Hz).  

 

 

 

 

 

Figure 2-2. A dual-frequency stimulus composed of two LED arrays flickering 

at f1 and f2, respectively 
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2.3.2. Experimental Settings  

Three subjects (two males and one female) participated in the experiment 

with informed consent. They had corrected-to-normal vision and no experience 

or family history of epileptic seizure.  

At the beginning of a trial (t = 0 s), a subject was requested to gaze at a 

cross in the center of a 26-inch monitor (T260HD, Samsung, Korea). When an 

arrow that headed for a target was presented (t = 3 s), a subject had to focus on 

the relevant stimulus for 6 s. While focusing on the target, eye or jaw movement 

was not allowed, to avoid noise. Every target was focused on ten times equally 

in random sequence. For EEG analysis, the first 0.5 s signal of the 6 s EEG was 

rejected to exclude noise generated from eye or neck movement to locate a 

target.  

A two-channel EEG signal was achieved using g.USBamp (g.tec, Austria) 

at O1 and O2, well known for engaging in SSVEP generation [8]. The reference 

and ground electrodes were positioned at A1 and Fpz, respectively. The 

sampling rate was 512 Hz, and a high-pass filter at 2 Hz and a notch filter at 60 

Hz were applied on the amplifier. 
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2.3.3. Spectral Analysis of DFSSVEP 

A spectrum was estimated for each target and each subject using 

g.BSanalyze (g.tec, Austria) to identify harmonic frequencies of the dual-

frequency SSVEP. The “spectrum” function first detrended and windowed a 5-

s-length EEG signal, and estimated the square of the value of the fast Fourier 

transform (FFT). The power spectral density (PSD) of each target was used to 

estimate the signal-to-noise ratio (SNR) of the SSVEP as in (2). A frequency 

with SNR larger than 3 was identified as a peak frequency. Then, the peak 

frequencies of each target were compared to define the harmonic components 

of the dual-frequency SSVEP. A frequency component found in the spectra of 

the targets in common was defined as a harmonic component of the dual-

frequency SSVEP. Every possible combination of the harmonic components 

was employed as a feature, as in 2.2. Considering the effect of main frequencies, 

the combination always included two main frequencies. 
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2.3.4. Signal Processing 

The length of an EEG segment was varied from 1 s to 5 s. The segment 

was extracted using a rectangular window starting at every second of each trial. 

For example, a 1-s segment was extracted from each trial starting at 3.5 s, 4.5 

s, 5.5 s, 6.5 s, and 7.5 s.  

In the classification process, ten-fold cross-validation was used. BCI 

performance was estimated as the average accuracy of the ten validation sets. 

Classification accuracies were statistically compared using analysis of variance 

(ANOVA) with α = 0.05. For the SNR-sum, SNR-LDA, and CCA with a novel 

reference signal methods, classification results with or without non-integer 

harmonics were statistically compared. 
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2.4. Results 

2.4.1. Harmonic Frequency 

Peak frequency components were different for targets and subjects. For 

example, a spectrum of target 1 of subject 1 peaked at 19 Hz (f1), 27 Hz (f2), 35 

Hz (2f2 − f1), 38 Hz (2f1), and 46 Hz (f1 + f2), whereas a spectrum of target 2 of 

subject 1 peaked at 19 Hz (f1), 31 Hz (f2), 12 Hz (f2 − f1), 57 Hz (3f1), and 62 Hz 

(2f2), and a spectrum of target 2 of subject 3 peaked at 19 Hz (f1), 23 Hz, and 

46 Hz. Peak frequency components found in common and related to the main 

frequencies were defined as harmonic components of dual-frequency SSVEP. 

The peaks appeared at 23 Hz and 46 Hz in the spectrum of target 2 of subject 3 

were not related to the main frequencies (19 Hz and 31 Hz); thus, they were not 

considered as harmonic components. Finally, four harmonic components were 

identified as 2f1 − f2, 2f2 − f1, f1 + f2, and |f1 − f2|. Sixteen combinations of the four 

harmonic components were tested for the SNR-sum, SNR-LDA, and CCA with 

a novel reference signal methods. 
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2.4.2. Comparison of Recognition Rates 

Table 2-2 shows average accuracy according to the classification condition. 

Classification methods based on CCA significantly outperformed those on 

PSDA by 11.6 ± 3.4% (t-test, t = 4.332, p < 0.001). SNR-ranking was 

significantly inferior to the others (p < 0.001), and CCA with a novel reference 

signal showed significantly higher accuracy than the others except SNR-LDA 

(p < 0.02). Classification considering harmonic components resulted in better 

performance than that with only main frequencies (t-test, t = 3.124, p = 0.002). 

Accuracy increased as window length increased (F = 106.636, p < 0.001), and 

there was an interaction between window length and classification method (F 

= 2.604, p = 0.023). 

Accuracies of the SNR-sum, SNR-LDA, and CCA with a novel reference 

signal methods were compared with factors of window length and frequency 

combination using repeated-measures ANOVA (RM-ANOVA; Figure 2-3). All 

methods showed a significant difference in accuracies according to window 

length (F = 17.430, p = 0.026 for SNR-sum; F = 72.066, p = 0.001 for SNR-

LDA; F = 35.530, p = 0.017 for CCA with a novel reference signal). However, 

a significant difference between accuracy with or without harmonics existed for 

SNR-sum and SNR-LDA (F = 23.672, p = 0.04 for SNR-sum; F = 446.459, p = 

0.002 for SNR-LDA). No interaction was observed. 
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Table 2-2. Average Accuracies in terms of features, classification methods, 

frequency combinations, and window lengths 

Category Subcategory 
Average accuracy 

(%) 

Feature 
SNR (PSDA) 57.7 ± 13.4 

Correlation (CCA) 69.4 ± 16.8 

Classification 

method 

SNR-ranking 31.5 ± 17.6 

SNR-sum 62.5 ± 13.0 

SNR-LDA 66.1 ± 11.9 

Correlation-ranking 60.0 ± 18.5 

CCA with a novel reference 

signal 
74.1 ± 14.0 

Frequency 

combination 

Without harmonics 63.3 ± 13.4 

With harmonics 71.9 ± 12.8 

Window  

length 

1 s 43.7 ± 12.5 

2 s 58.3 ± 15.4 

3 s 63.9 ± 17.5 

4 s 70.6 ± 17.1 

5 s 74.1 ± 16.4 
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Figure 2-3. Classification rate according to classification methods and window lengths
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2.5. Conclusion 

In this section, a dual-frequency SSVEP-based BCI was examined with 

five classification methods. Stimulation frequencies overlapped for stimuli; 

thus, conventional classification techniques for single-frequency recognition 

should be modified for multiple-frequency recognition. The best classification 

method (CCA with a novel reference signal) classified dual-frequency SSVEPs 

with an accuracy of approximately 90%, which was higher than the others. 

These results implied that CCA with a novel reference—especially with 

harmonic components—would be better than PSDA for dual-frequency SSVEP 

as conventional CCA was for single-frequency SSVEP [5] 

The proposed method (CCA with a novel reference signal) was devised to 

classify multi-frequency SSVEPs at once. In the other methods, even though 

SNR or correlation is estimated at each stimulation frequency, an additional 

classification step, such as LDA, is required because a dual-frequency stimulus 

consists of multiple frequencies. If harmonic components are considered, 

features will be required as many as the number of harmonic frequencies. 

However, no matter how many frequencies are employed, only N features are 

required to classify N classes for CCA with a novel reference signal. 

Furthermore, all of the harmonic frequencies contributed to the frequency 

recognition; thus, the method is robust to intra-subject variability as in 2.4.1.. 
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 3  

DFSSVEP-based BCI for Reducing Eye Fatigue 
 

 

 

 

3.1. Basic Concepts 

3.1.1. Amplitude Modulation Technique 

Amplitude modulation (AM) techniques have been widely used in 

electronic communication, mostly for radio carrier waves. An amplitude-

modulated signal is presented as the amplitude variation of a carrier signal in 

accordance with the amplitude and frequency variations of the modulating 

signal. In particular, DSB signals suppress the carrier to reduce the consumption 

of power. While a general amplitude modulation signal simultaneously contains 

spectral peaks at the carrier frequency and in the upper and lower sidebands, a 

DSB signal contains peaks only at the frequencies in the sidebands [52]. If the 

brightness of a visual stimulus varies as a DSB-AM sine wave, the maximum 

and minimum brightness of a stimulus flickering at the carrier frequency will 

change sinusoidally at the modulating frequency. With the carrier frequency in 
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the high-frequency band and the modulating frequency in the low-frequency 

band, a DSB-AM stimulus can convey high- and low-frequency information 

simultaneously. If a brain responds to both types of information, the AM-

SSVEP would contain peaks in a wide frequency range from low to high 

frequencies. Then, the AM stimulus would encompass the advantages of both 

low-frequency SSVEPs, such as high amplitude and low BCI illiteracy, and 

high-frequency SSVEPs, such as less eye fatigue and a decreased risk of 

epileptic seizure.  

Several research groups have introduced various types of combined 

frequency stimulation methods analogous to AM stimulus as in 2.1. However, 

harmonic components elicited by multi-frequency stimuli were not analyzed 

and utilized for BCI systems. Moreover, the eye fatigue problem caused by low-

frequency flickering stimuli was not considered. 
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3.1.2. Amplitude-Modulated Stimuli for Evoking AM-SSVEP 

At time t, a simple carrier (c(t)) is given as a sine wave at carrier frequency 

(fc): 

 

c(t) = sin(2𝜋𝑓𝑐𝑡). (8) 

 

Here, a modulating signal (m(t)) is a sine wave with modulation frequency (fm): 

 

m(t) = sin (2𝜋𝑓𝑚𝑡). (9) 

Then, the AM stimulus, S(t), is simply expressed as the product of c(t) and m(t) 

to generate a DSB signal. Using trigonometric functions yields  

 

S(t) =  𝑐(𝑡)𝑚(𝑡) = −
1

2
[cos(2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡) − cos(2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡)]. (10) 

 

From this equation, the spectrum of S(t) has peaks at 𝑓𝑐 + 𝑓𝑚 and 𝑓𝑐 − 𝑓𝑚. In 

this study, the fcs were high frequencies exceeding 40 Hz to reduce eye fatigue 

and fms were low frequencies near the α-band (9–12 Hz) to achieve a large 

SSVEP amplitude such that high-frequency stimuli carrying low-frequency 

information could be generated. Figure 3-1 provides examples of c(t), m(t), S(t), 

and their spectra. When fc and fm are 40 and 12 Hz, respectively, spectral peaks 

of S(t) appear at 28 Hz (=(40 – 12) Hz) and 52 Hz (=(40 + 12) Hz). 

The lowest light intensity corresponded to the lowest amplitude of the 

stimulus, and the highest light intensity corresponded to the highest amplitude 
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by adjusting the DC offset. The continuous amplitude variation of the AM 

stimulus was digitized in eight bits at 1000 Hz using a microcontroller unit 

(ATmega128, Atmel, USA), and the stimulus was then converted into an analog 

signal again to operate the LEDs using a digital-to-analog converter 

(LTC1657CN, Texas Instrument, USA). Figure 3-1 (e) shows the intensity 

variation of an LED (solid line) acquired using a photodiode, which has a 

similar shape as an ideal AM stimulus signal (i.e., S(t), dashed line). 

Furthermore, its spectrum has the same peak frequencies as those of the ideal 

AM stimulus signal (Figure 3-1 (f)). The study about AM-SSVEP based BCI 

was published as a journal paper [47]. 
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Figure 3-1. Examples of (a) a sine-wave carrier, (c) a sine-wave modulating 

signal, (e) the AM stimulus, and (b), (d), (f) their respective spectra. In (e) and 

(f), the dashed line and the solid line represent the ideal AM stimulus signal and 

the LED stimulus signal, respectively. 

 

 

 

 



 

38 

      

3.2. Methods 

3.2.1. Subjects and Experimental Settings 

A total of 12 subjects (10 males and 2 females) between the ages of 24 and 

31 participated in the experiments. The subjects had normal or corrected-to-

normal vision and had no experience with epileptic seizures. After being 

sufficiently informed about the experimental procedures, the subjects 

consented to participate in the study. All of the subjects performed the offline 

experiment, and nine of them continued the first online experiment (Online 1). 

The other three subjects did not participate in Online 1 because of their 

schedules. Three subjects, who achieved 100% accuracy for each stimulus in 

Online 1, participated in the second online experiment (Online 2) on a different 

day. 

The EEG signals were acquired using g.USBamp at a sampling rate of 512 

Hz. The 15 electrodes were located at O1, Oz, O2, PO3, POz, PO4, P1, Pz, P2, 

P3, P4, P5, P6, PO7, and PO8 following the extended international 10-20 

system, around the occipital region that is known to be involved in the 

generation of SSVEPs [8]. The ground and reference electrodes were placed at 

Fpz and A1, respectively. During the measurement, a high-pass filter at 2 Hz, a 

low-pass filter at 100 Hz, and a notch filter at 60 Hz were applied to every 

amplifier channel.  

The offline experiment and Online 1 were conducted in a quiet and dim 

room without an electromagnetic shield, and Online 2 was conducted in a 

generally illuminated office room. The subjects were requested to comfortably 
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sit ~80 cm away from the visual stimuli. The visual stimulus consisted of two 

LED arrays (SMD 5050-3, Korea) with a diffusion film such that the subjects 

perceived it as a large light source. Six visual stimuli (L, UL, U, UR, R, and D) 

were positioned around an LCD monitor (SyncMaster T260HD, Samsung, 

Korea; 60-Hz refresh rate) (Figure 3-2). 
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Figure 3-2. Six visual stimuli around a monitor. The tasks where the subjects 

had to focus are indicated in the center of the monitor by arrows. 
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3.2.2. Offline Experiments 

In the offline experiment, a task involved randomly focusing on one of 

four targets in the four cardinal directions (L, U, R, and D in Figure 3-2). At the 

beginning of a trial (t = 0 s), subjects were asked to gaze at the center of a 

monitor. When an arrow appeared at the center of a monitor at t = 3 s, subjects 

had to focus on the target where the arrow pointed. To avoid EOG and EMG 

artifact contamination, we requested that the subjects not blink or move their 

jaws during this phase [53]. After the arrow disappeared at t = 13 s, the subjects 

were free to slightly move their eyes or jaws until another arrow appeared. Each 

trial lasted for 15 s, with 2 s to provide enough time to alleviate eye fatigue after 

focusing. Only the last 9.5-s segment among the 10-s EEG data was analyzed 

to exclude noise from eye or head movements during tracking of the target. 

Four targets (L, U, R, and D) flickered as AM sine waves with different 

combinations of fc and fm (Table 3-1); the fcs were 40 and 41 Hz in the 

commonly used high-frequency band [22, 54]; the fms were 10, 11, and 12 Hz 

in the α-band, where the SSVEP amplitude is higher than the amplitude in the 

high-frequency band [15]. The other two stimuli (UL and UR) were employed 

in online experiments. A run consisted of 20 trials, and two runs with a 10-min 

break constituted the offline experiment. Each target was attended equally 10 

times.  
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Table 3-1. Stimulus frequencies of six targets. Four AM stimuli (L, U, R, and 

D) were used in offline experiments. Six stimuli with three different types of 

stimulations were used in online experiments. 

Stimuli L UL U UR R D 

AM fc 40 41 41 43 40 40 

 fm 12 12 11 9 11 10 

High-frequency 40 41 42 43 44 45 

Low-frequency 9 10 11 12 13 14 
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3.2.3. EEG Analysis 

To investigate the frequency characteristics of the EEG responses to the 

AM stimuli, the power spectral density (PSD) of each target was estimated 

using the “spectrum” function of g.BSanalyze. The function computed the PSD 

by detrending and windowing the EEG signal with a “boxcar” window. In the 

spectra, the signal-to-noise ratio (SNR) of the SSVEP was estimated as the ratio 

of the Fourier power at a frequency and the average Fourier power at its eight 

adjacent frequencies [8, 15]. A peak frequency of the SSVEP was defined as 

that with a SNR higher than 3. Among the peak frequencies, a frequency 

component commonly observed in more than two spectra, across all of the 

spectra of the four targets (of all electrodes), was defined as an AM harmonic 

frequency (fAMH). The canonical correlation between the EEG signal and 

reference signal of the combination of fAMH was used as a feature for AM-

SSVEP recognition. 

Frequency recognition of AM-SSVEP was performed using CCA as in 

2.2.2. With N targets of N different frequencies, N different reference signals 

are required for frequency recognition. Because a traditional visual stimulus 

flickers at only one frequency, Yf can be used for traditional SSVEP-based BCI 

systems. However, an AM stimulus employs more than two flickering 

frequencies such that at least two Yf s are required to recognize the brain 

response to an AM stimulus. In this paper, for simpler AM-SSVEP detection, a 

novel composition of Y was devised. From (10), an AM stimulus can be deemed 

as the sum of two sine waves of 𝑓𝑐 + 𝑓𝑚 and 𝑓𝑐 − 𝑓𝑚. However, other fAMH 
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components may also be helpful for frequency recognition. The novel reference 

signal, YAM, was set as the sine and cosine of a combination of fAMHs and their 

second harmonics. The combination always included fundamental stimulus 

frequencies (ffunds; fAMH1 = 𝑓𝑐 + 𝑓𝑚 and fAMH2 = 𝑓𝑐 − 𝑓𝑚). Thus, the canonical 

correlation between the EEG signal and a multi-frequency stimulus can be 

estimated using only one novel reference signal instead of multiple reference 

signals. Consequently, AM-SSVEP recognition with multiple peak frequencies 

was simplified using only one reference signal. The reference signal for the AM 

stimulus was expressed as  

 

𝑌𝐴𝑀 = 

(

 
 
 
 
 
 
 
 
 
 
 

  sin (2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)  

cos (2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)

sin (4𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)

cos(4𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)

sin(2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡)

cos(2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡)

sin(4𝜋(𝑓𝑐 − 𝑓𝑚)𝑡)

cos(4𝜋(𝑓𝑐 − 𝑓𝑚)𝑡)

sin(2𝜋𝑓𝐴𝑀𝐻3𝑡)

cos(2𝜋𝑓𝐴𝑀𝐻3𝑡)

sin(4𝜋𝑓𝐴𝑀𝐻3𝑡)

cos(4𝜋𝑓𝐴𝑀𝐻3𝑡)
⋮ )

 
 
 
 
 
 
 
 
 
 
 

.  (11) 

 

The EEG was finally classified as the conventional CCA in (6). 

Every combination of NAMH-AM harmonics (fAMH) was used in the 

reference signal to find the customized frequency combination (CFC) with the 

best performance for each subject. As ffunds were always included in the 

combination, 2𝑁𝐴𝑀𝐻−2  combinations were tested using four-fold cross 
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validation. The trials were divided into four equal-sized subgroups. Three 

subgroups (thirty trials) were used as the training data set, with which the 

accuracies were estimated for each combination. The best combination was 

selected as the one with the highest accuracy. The remaining subgroup (ten 

trials) was the validation data set used for testing the best combination. These 

steps were repeated until every fold was used as validation data; thus, the four 

best frequency sets were selected for each training set. Among the four best 

combinations, the most selected combination was the CFC of a specific window 

length (i.e., tw). If two combinations were selected as the best combination, the 

CFC of tw was selected as the one with the highest validation accuracy. The 

window length varied from 1 to 9 s, with intervals of 1 s, and a total segment 

length of 9.5 s. The accuracy of ffunds across all trials and those of CFCs across 

the training and validation sets were compared using repeated-measures 

ANOVA (α = 0.05). 

 

3.2.4. Online Experiments 

Two online experiments were performed under different conditions: 

Online 1 was performed directly after the offline experiment under dim light; 

Online 2 was performed on a different day under general illumination. Online 

1 consisted of three types of random six-arrow tasks for each stimulus method, 

and Online 2 consisted of twenty types of tasks. A task involved typing six 

arrows using five arrows pointing in different directions (←, ↖ ↑, ↗, and →) 

and one backspace (BS). Each arrow corresponded to each target in the same 
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direction (e.g., ← to L) and BS to D. The subjects typed a specific arrow by 

attending to a pertinent target, and the result of SSVEP recognition was 

presented in the monitor. If the classification result was “BS,” the previous 

result was removed. 

Figure 3-2 illustrates the online environmental setting and an example of 

a task. The task was shown at the top of the monitor, and the classification 

results were shown just beneath the task. To complete the task, the subjects had 

to focus on UR – R – L – U – UL – UR in series without any errors. However, 

the third arrow (←) was misclassified as the arrow pointing toward the upper 

left (↖), necessitating a correction. In this case, the subjects had to attend to D 

to delete the error and again attend to L to type the right answer. The subjects 

were sufficiently instructed on how to type an arrow and delete an error before 

starting the online experiments. 

Three types of stimulus methods were employed in the online experiments 

to verify the utility of AM stimuli for the SSVEP-based BCI system: AM, high-

frequency, and low-frequency stimuli. The stimulus frequencies for these 

methods are shown in Table 3-1. For the AM stimuli, fc and fm ranged from 40 

to 43 Hz and from 9 to 12 Hz, respectively. Compared with the offline 

experiment, new combinations of fc and fm ((41 – 12) Hz for UL and (43 – 9) 

Hz for UR) were added in the online experiments to evaluate the feasibility of 

various other combinations. The high-frequency stimuli flickered at 40–45 Hz, 

and the low-frequency stimuli flickered at 9–14 Hz. These frequencies were 

near fcs and fms, respectively, and have been used in conventional SSVEP 
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studies [15, 22, 55]. The experimental procedure was random in both the tasks 

and stimulus methods. The subjects rested for ~5 min between experiments of 

different stimulus methods. After all of the procedures of Online 1, the subjects 

filled out a questionnaire in which they scored the sense of flickering, eye 

fatigue, and everyday usability of the three stimulus methods on a scale of 1 to 

10. As the sense of flickering (how large they sensed the change of light 

intensity to be) or eye fatigue (to what extent they felt eye fatigue) was weaker, 

subjects scored lower points for each criterion. Furthermore, the subjects gave 

higher points if they felt that they could use stimuli such as the SSVEP-based 

BCI system in their daily life (e.g., simple on/off button on a television). Several 

studies have tried to quantify the level of eye fatigue using physiological signals, 

such as eye blink frequency [56], galvanic skin response (GSR), skin 

temperature (SKT), and EEG [57, 58]. However, the methods have not been 

examined for SSVEPs in various frequency ranges and have not been 

standardized. Thus, only subjective evaluation was performed in this study. 

The online SSVEP-based BCI system was designed based on a previous 

study [15]. In this study, new 256-point EEG data were stored in a 4-s-long 

buffer (data buffer) every 0.5 s. Then, the existing data were shifted, removing 

the initial 0.5 s of data to generate a new 4-s segment. Until the buffer was full 

of real EEG data in the first 4 s, it was zero-padded. The SSVEP was recognized 

with the 4-s EEG signal using the CCA method every 0.5 s. A classified 

temporal decision from CCA was stored in another buffer (decision buffer). If 

four consecutive temporal decisions were the same, the corresponding decision 
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was selected as the final decision and the data buffer was cleared out. If not, 

after 0.5 s, a new temporal decision was stored in the decision buffer; the 

temporal decisions shifted, and the first decision was removed; then, four 

consecutive decisions were compared again. The most rapid final decision 

could be classified in 2 s (2 s for the same four consecutive temporal decisions).  

When CCA was conducted, the reference signals were traditional ones (Yf 

s) such as (5) with Nh = 2 for high- and low-frequency stimuli. For AM stimuli, 

YAMs were used with Nh = 2, as in high- or low-frequency stimuli. fAMHs for YAM 

were CFC including ffunds from offline analysis, which was the best combination 

when tw = 4 because the length of the data buffer was 4 s. Thus, YAM consisted 

of sine and cosine of CFC and second harmonics of CFC as in (11). A temporal 

decision was classified as the one with the highest correlation as in (6). 

 

The accuracy and ITR were estimated as 

 

Accuracy =  
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
  (12) 

 

ITR =  
60

𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
∙ [log2𝑁 + 𝑝 log2 𝑝 + (1 −

𝑝) log2 (
1−𝑝

𝑁−1
)],  

 (13) 

 

where p is the accuracy in (12) and N represents the number of targets (N = 6 

in this study); the command transfer interval is the average time required to 

complete the tasks for the same stimuli [59, 60]. The performance and scores 
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in every category of the questionnaire between stimuli were statistically 

compared using repeated-measures ANOVA (α = 0.05). 
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3.3. Results 

3.3.1. Harmonics of AM-SSVEP 

After the spectral peak frequencies were arranged for each target, the AM 

harmonic frequencies were discerned as the same frequency components 

appearing for each subject. For example, when a spectrum of L peaks at 80 Hz 

and a spectrum of U peaks at 82 Hz, the 2fc component was defined as fAMH 

because such frequencies are harmonics of fc of L and U (40 and 41 Hz; 80 Hz 

= 40 Hz × 2 and 82 Hz = 41 Hz × 2). However, different components were 

observed at different electrode channels, with different targets, or for different 

subjects. Figure 3-3 (a) presents a spectrum of SSVEP measured at O1 when 

subject 1 (S1) focused on L, where three AM harmonic frequencies occur at 2fm 

(24 Hz), fc – fm (28 Hz), and 2fc – 4fm (32 Hz). However, the 2fm component did 

not appear in the spectra of the SSVEP at a different electrode (O2, Figure 3-3 

(b)). When the same subject focused on a different target (D), a fc + fm (50 Hz) 

component of SSVEP newly appeared at the same electrode (O1, Figure 3-3(c)). 

For subject 6 (S6, Figure 3-3 (d)), spectral peaks at fc – 3fm (4 Hz) and fc + fm 

(52 Hz) occurred and a peak at 2fc – 4fm (32 Hz) did not occur compared with 

those of S1 with the same target and electrode position (Figure 3-3 (b)). Second 

or third harmonics of AM harmonic frequencies sometimes occurred. 

From the spectra of all of the subjects, a total of seven different AM 

harmonic frequencies were observed: 2fc, 2fm, fc ± fm, fc ± 3fm, and 2fc – 4fm. 

Table 3-2 shows fAMH observed in offline analysis for L, U, R, and D and the 

estimated fAMH for the other stimuli additionally used in the online experiments 
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(UL and UR). While the stimulus frequencies were approximately 10 Hz for fms 

and 40 Hz for fcs, spectral peaks occurred in a wide frequency range from less 

than 10 Hz to more than 80 Hz except for at ~60 Hz because of a notch filter. 

This range covered both low- and high-frequency bands in a conventional 

SSVEP-based BCI system. Every combination of the harmonic frequencies was 

tested with 4-s EEG signals to determine the best one for each subject, which 

was used in the online experiments. 
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Table 3-2. AM harmonic frequency components and their frequency values 

fAMH L UL U UR R D 

2fc 80 82 82 86 80 80 

2fm 24 24 22 18 22 20 

fc − fm 28 29 30 34 29 30 

fc + fm 52 53 52 52 51 50 

fc − 3fm 4 5 8 16 7 10 

fc + 3fm 76 77 74 70 73 70 

2fc − 4fm 32 34 38 38 36 40 
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Figure 3-3. The spectra of 9.5-s-long SSVEPs and different types of AM 

harmonic frequencies measured at (a) O1 when S1 focused on L, (b) O2 when 

S1 focused on L, (c) O1 when S1 focused on D, and (d) O2 when S6 focused 

on L. 
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3.3.2. Offline Analysis 

As tw increased from 1 to 9.5 s, ten different CFCs were selected in terms 

of the accuracies of training and validation sets. The CFCs could coincide with 

those of different tw, and this trend was more frequently observed as tw increased. 

A combination of more frequency components did not always perform better 

than that of less frequency components. The training and validation accuracies 

were averaged over folds of the same tw, where the relevant CFC had the highest 

accuracy. The average accuracies across all of the subjects are shown in Figure 

3-4 (a). The solid line and the dashed line represent the accuracies of the CFCs 

with training data and validation data, respectively. The dotted line represents 

global accuracies when only fAMH composed ffunds in (11). The accuracies were 

significantly different with window length tw (F(9, 25) = 48.534, p < 0.001) and 

conditions (training, validation, and fundamental stimulus frequencies in Figure 

3-4 (a); F(18, 50) = 2.129, p < 0.05). Tukey’s honestly significant difference 

(HSD) test suggested that CFC was superior to ffund for SSVEP classification; 

the average accuracies of the training and validation sets were 93.1 ± 13.4% 

and 91.7 ± 15.5%, respectively, and the total accuracy of ffunds was 81.4 ± 16.8%. 

Examples of the CCA weights distribution and the PSD of a canonical variant 

are presented in Figure 3-4 (b) and (c). Both the CCA weights and spectrum 

were estimated with 15-channel 9-s SSVEPs acquired when S1 focused on D. 

In the CCA weights scalp distribution (Figure 3-4 (b)), the highest positive 

coefficient is with Oz and the lowest negative one is with Pz. In the PSD of a 
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canonical variant (i.e., x; Figure 3-4 (c)), dominant peaks appear at two more 

fAMHs compared with those of raw EEG data in Figure 3-3 (c). 

. 
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Figure 3-4. (a) Accuracies of training and validation sets with CFCs and global 

accuracy with ffund according to tw (mean ± SD). Examples of (b) CCA coefficient 

scalp distribution with the highest correlation and (c) PSD of the relevant 

canonical variant. 
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3.3.3. CFC for Online Analysis 

The composition of YAM should be the best combination for the online 

experiment of AM stimuli, as appropriate feedback should be given to the 

subjects. Online frequency recognition was performed on 4-s-long EEG data; 

thus, a CFC of a 4-s window length in offline analysis was used for YAM. The 

combination always included ffunds, even if they were not peak frequencies. 

Table 3-3 lists the peak frequencies in the spectra of 4-s EEG signals, defined 

as fAMH, and the CFCs for online experiments of each subject. Notably, the 

spectral peak frequencies were not always equal to the best “features.” For 

example, peaks occurred at 2fc − 4fm for the spectra of S2; however, this peak 

was not included in CFC. In contrast, fc + 3fm performed an important role in 

SSVEP classification, even if the component was not dominant in the SSVEP 

of S2. 
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Table 3-3. Spectral peak frequencies of 4-s EEG signals and CFCs for online 

experiments. Subjects whose CFCs are blank did not participate in online 

experiments. 

Subjects Spectral peaks 
Customized Frequency 

Combination 

1 fc − fm, 2fm, 2fc−4fm fc ± fm, 2fm, 2fc − 4fm 

2 fc − fm, 2fm, 2fc − 4fm fc ± fm, fc + 3fm, 2fm 

3 fc − fm, 2fc − 4fm - 

4 fc − fm, 2fm, 2fc − 4fm fc ± fm, 2fm 

5 fc − fm, 2fm fc ± fm, 2fm, 2fc − 4fm 

6 fc − fm - 

7 fc − fm fc ± fm, 2fm 

8 fc ± fm - 

9 fc − fm, 2fc − 4fm fc ± fm, 2fc − 4fm 

10 fc − fm fc ± fm, 2fm 

11 fc − fm, 2fm, fc − 3fm fc ± fm, 2fm 

12 fc − fm, 2fc − 4fm fc ± fm, 2fm, 2fc, 2fc − 4fm 
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3.3.4. Online Analysis 

Figure 3-5 illustrates the online classification process for a task. The dash-

dot line indicates a series of targets where a subject had to attend. The dashed 

line shows the change in temporal decision, which changes every 0.5 s. The 

solid line denotes the change in final decision that was regarded as the target to 

which a subject attended. At first, 0.5 s was required to store an EEG signal in 

a buffer; up to a 0.5-s temporal decision, the final decision was “None.” At 0.5 

s, the temporal decision on the first 0.5 s data was classified as R, even though 

the target was U. At 2 s, temporal decisions changed from R to L. However, the 

four temporal decisions did not remain the same; therefore, the final decision 

was still “None.” From 2.5 s, the other four consecutive temporal decisions 

were identical to U, resulting in the first final decision as U at 4 s. Because the 

final decision was the same as the target, the next target was transformed into 

UL. In total, 4 s was required to classify the first command. However, the fifth 

target was rapidly classified because the first four temporal decisions were the 

same as the target, L. Because no error occurred in this example, BS (D) was 

not assigned as a target. 

All of the input results were recorded with respect to the tasks, stimuli, and 

subjects to estimate accuracies. The number of inputs including the wrong 

inputs and BS was considered to estimate the performance indices. The average 

accuracies and ITRs in Online 1 were estimated according to the stimuli and 

subjects (Table 3-4). Among the three stimuli, the AM stimuli outperformed the 

high- or low-frequency stimuli in terms of both accuracy and ITR. However, 
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this difference was not significant (F(2, 16) = 0.906, p > 0.424 for accuracy, 

and F(2, 16) = 0.109, p > 0.897 for ITR). In contrast, the BCI performance in 

Online 2 was the highest with the low-frequency SSVEP (Table 3-5). The 

difference in accuracies was not significant (F(2, 114) = 2.726, p = 0.070); 

however, the difference in ITRs was significant (F(2, 114) = 7.139, p = 0.01) 

and depended on the subjects (F(4, 114) = 3.151, p = 0.017). The ITR of the 

low-frequency SSVEP was significantly different than the high-frequency and 

AM- SSVEPs (p = 0.01 for AM-SSVEP; p = 0.004 for high-frequency SSVEP). 
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Figure 3-5. Online classification diagram when subject 5 (S5) performed a 

third task with AM stimuli.
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Table 3-4. Performance indices of three types of stimuli for Online 1 
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Table 3-5. Performance indices of three types of stimuli for Online 2  

Subjects 

AM-SSVEP  High-frequency SSVEP  Low-frequency SSVEP 

Accuracy  

(%) 

ITR 

(bit/min) 
 

Accuracy  

(%) 

ITR 

(bit/min) 
 

Accuracy  

(%) 

ITR 

(bit/min) 

1 97.13 42.87  91.55 35.40  96.25 43.08 

5 96.79 40.24  97.50 38.69  97.95 44.25 

11 97.13 35.13  95.79 40.41  98.75 43.21 

Average 97.02 39.41  94.95 38.17  97.65 43.51 
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3.3.5. Subject Evaluation 

The subjects participating in Online 1 evaluated eye fatigue, the sense of 

flickering, and the feasibility of daily use with respect to three types of stimuli 

(Figure 3-6). For each category, the scores were different based on the stimulus 

types (F(2, 24) = 7.330, p < 0.01 for eye fatigue, F(2, 24) = 56.492, p < 0.001 

for sense of flickering, and F(2, 24) = 18.984, p < 0.001 for daily use). From 

post-hoc analysis using Tukey’s HSD test, the low-frequency SSVEP was 

confirmed to have yielded higher scores than the others in the eye fatigue 

category (7.56 ± 3.13 points; p < 0.05 between low- and high-frequency stimuli, 

and p < 0.01 between low-frequency and AM stimuli) and in the sense of 

flickering category (9.00 ± 1.00 points; p < 0.001). In the daily use category, 

the low-frequency stimuli received a lower score than the other two stimulus 

types (3.11 ± 1.69 points; p < 0.001). In other words, low-frequency stimuli 

caused much higher eye fatigue and sense of flickering than high-frequency and 

AM stimuli. Furthermore, the subjects regarded AM and high-frequency 

stimuli to be more suitable for use in daily life than low-frequency stimuli. 
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Figure 3-6. Subject evaluation with standard deviation in terms of eye fatigue, 

sense of flickering, and the feasibility of daily use according to the visual 

stimulus types (mean ± SD). **p < 0.01, †p < 0.001. 
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3.4. Discussion 

3.4.1. Combining of Low- and High-Frequency SSVEPs 

In this section, the SSVEP response evoked by an AM stimulus was 

investigated and verified its availability in a SSVEP-based BCI system with 

low eye fatigue. The AM stimulus was devised to deliver low-frequency 

information carried in a high-frequency stimulus, resulting in multi-frequency 

stimulation. In this experiment, the carrier frequencies were higher than 40 Hz 

and the modulation frequencies were ~10 Hz, which allowed actual flickering 

frequencies (fc ± fm) higher than 30 Hz. We employed such frequency 

combinations for two reasons. First, the combinations increased the actual 

flickering frequencies and therefore permitted a reduction in eye fatigue. 

Because the SNR decreases in the high-frequency band [18], the actual 

flickering frequencies were adjusted so as not to exceed 55 Hz. If both the 

carrier and the modulation frequencies were above 30 Hz, one of the actual 

stimulus frequencies, i.e., fc – fm, would be in the low-frequency band. Then, 

the low-stimulus frequency would cause more eye fatigue, and other increased 

harmonic frequencies would have much lower SNRs. Another reason for the 

use of such combinations was to utilize low-frequency harmonic information 

under 30 Hz. As mentioned earlier, the SSVEP power in the low-frequency 

band is larger than that in the high-frequency band, and many research groups 

have exploited this fact. Similarly, the low-frequency information (2fm) actually 

played an important role in AM-SSVEP recognition (Table 3-3). 
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With an optimized combination of frequencies, the AM-SSVEP produced 

higher or equivalent accuracy as the low-frequency SSVEP and higher accuracy 

and ITR than the high-frequency SSVEP. Eye fatigue with AM stimuli was 

lower than that with high-frequency stimuli by 0.55 points despite a higher 

sense of flickering by 1.22 points. Considering the performance and subject 

evaluation, AM-SSVEP appears to be more feasible than the other stimuli for 

use in daily life, as evaluated by the subjects.  

High BCI performance and the evaluation results with AM-SSVEP might 

arise from the good aspects of low- and high-frequency SSVEPs―the high 

amplitude of low-frequency SSVEP and low eye fatigue of high-frequency 

SSVEP. Spectral analysis demonstrated the effect of low-frequency SSVEPs in 

power difference using the Kruskal-Wallis test (p < 0.001, Table 3-6). The 

power at fc – fm was the largest, followed by that at fc – 3fm and 2fm, all of which 

are in the low-frequency band that is well known for having large amplitude. 

The largest power at fc – fm most likely arose because it was one of the actual 

stimulus frequencies (ffund). The large powers at fc – 3fm and 2fm might be 

observed because they are in the low-frequency band [15]. In addition, the 2fm 

component was employed in AM-SSVEP recognition for most of the subjects. 

The characteristics of the SSVEP response to a low-frequency stimulus seemed 

to be observed in those of the AM-SSVEP. This phenomenon was unexpected 

outcome because the real stimuli did not flicker at such low frequencies. 

However, it has not been proved yet that the low-frequency-like performance 

came from the non-linear processing in the brain as if AM stimulus contained 
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low-frequency information. Meanwhile, the AM stimulus was considered to 

cause the least eye fatigue and to be the most feasible in daily life from the 

subject evaluation. The evaluation results are similar to those of the high-

frequency stimulus, suggesting that the AM stimulus benefits from the 

advantages of high-frequency stimuli. 
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Table 3-6. Average spectral power and SNR at fAMH 

fAMH 

 Power (uV2)  SNR 

 L U R D Average  L U R D Average 

fc − fm  229.40 207.86 273.61 260.47 242.84  6.65 6.34 7.27 6.85 6.78 

f c + fm  17.10 20.62 17.28 19.10 18.53  1.58 1.76 1.67 2.20 1.80 

fc − 3fm  203.33 159.51 106.38 237.09 176.58  1.26 1.76 1.17 1.60 1.45 

fc +3fm  7.40 8.94 8.12 9.32 8.44  0.91 1.09 0.94 1.26 1.05 

2fc  9.72 8.98 9.75 9.17 9.40  1.27 1.30 1.44 1.46 1.37 

2fm  62.04 91.30 88.15 112.47 88.49  2.36 2.65 2.56 3.07 2.66 

2fc − 4fm  31.91 37.78 32.72 31.67 33.52  1.84 2.50 2.22 2.63 2.30 
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3.4.2. AM Harmonic Frequencies in CFC 

fAHM ranged from the very low-frequency band under 6 Hz to the relatively 

high-frequency band above 70 Hz. However, not all of the fAMHs appeared 

simultaneously in the AM-SSVEPs, as demonstrated in Figure 3-3. Therefore, 

we extracted the CFC from each subject’s visual response. Most CFCs included 

2fm and 2fc – 4fm components, which were not always identical to the spectral 

peaks (Table 3-3). Therefore, we analyzed the characteristics of the elements of 

the CFCs in terms of power and SNR (Table 3-6). The spectral power of the 

low-frequency band was much higher than that of the high-frequency band, as 

mentioned above: at fc – fm, fc – 3fm, and 2fm. The SNR also differed significantly 

depending on fAHM (p < 0.001, Table 3-6). The three largest SNRs were those at 

fc – fm, 2fm, and 2fc – 4fm. Because fc – fm was always included in the CFC, we 

further considered only the three fAMHs that had large power or SNR: 2fm, fc – 

3fm, and 2fc – 4fm. The three fAMHs represented three groups: (1) one with high 

power and high SNR (2fm), (2) one with low power and high SNR (2fc – 4fm), 

and (3) one with high power and low SNR (fc – 3fm). The 2fm component with 

both high power and high SNR was included in the CFCs of most subjects 

(Table 3-3). The 2fc – 4fm component with high SNR and low power was 

selected as an important feature for approximately half of the subjects (4/9) 

despite its low power. However, the fc – 3fm component was never selected as 

the CFCs for frequency recognition even with high power. Thus, we could infer 

that the fAMH with both high power and high SNR is the best component for 
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frequency recognition of AM-SSVEPs. Furthermore, the frequencies with high 

SNR are more important for YAM than those with high power. 

 

3.4.3. Error Analysis 

Error analysis was performed using data from the offline experiment with 

four targets. We assumed that EEG signals longer than 4 s would be suitable for 

reliable BCIs with the best accuracies higher than 95%; therefore, the data of 4 

s and above were used for error analysis. Figure 3-7 presents the confusion 

matrix for the presented targets and the classified targets. The error rates of U 

and D were high and were mostly misclassified as each other. This phenomenon 

may arise from the use of the same fundamental frequency (fc – fm) because 

such a frequency had the highest SNR for both targets (Table 3-6). Because the 

SNR determines the relative importance of harmonic frequencies in SSVEP 

recognition, the same fundamental frequencies with the highest SNR may be 

confused for one another. However, the error rate of ~5% between U and D is 

relatively low, even with the same stimulus frequency. Such low false positive 

rates of AM-SSVEP may be due to the use of non-integer harmonic components 

for SSVEP recognition. If the fundamental stimulus frequencies overlap in 

conventional SSVEP-BCI systems, they can never be distinguished from each 

other. In terms of multiple harmonics, more than 16% of the targets were 

misclassified as their sub-harmonic frequencies using conventional CCA [51]. 

The possibility of using the same frequencies is an advantage of AM-SSVEP, 
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which would enable the generation of more targets through the combination of 

a few frequencies. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

73 

      

 

 

Figure 3-7. Confusion matrix for the offline experiment data. Each value 

indicates the true positive rates (%) in the diagonal row and the false positive 

rates (%) in the others. 
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3.4.4. Effects of Environmental Illumination 

In [22], both the accuracy and the ITR of the low-frequency SSVEP were 

higher than those of the high-frequency SSVEP in a general fair environment. 

However, although the ITR exhibited the same trend in this study, the accuracy 

of the high-frequency SSVEP was higher than that of the low-frequency SSVEP 

in Online 1. The previous trend of BCI performance was not observed in our 

results, and we deduced that the similar BCI performance of both SSVEPs 

might result from the dimly illuminated environment. In a dark room, 

distracting objects can be difficult to perceive and flicker can be more 

pronounced. Moreover, other external flickering sources cannot affect the 

visual responses in a dark background. These effects can help subjects to 

concentrate more on the flicker stimuli rather than on other objects, leading to 

improvement of SSVEP-based BCI performance [44]. For example, five 

subjects who had trouble with spelling using an SSVEP-based BCI system put 

an overcoat over their heads to block background light [61]. Eliminating the 

background light seemed to reduce frequent errors in the BCI speller system. 

Three of these subjects reported an improvement in spelling efficacy, and the 

other two reported that eliminating the background light was effective. In our 

results, high-frequency SSVEPs seemed to benefit more from these effects.  

An additional online experiment (Online 2) was designed to demonstrate 

the BCI performance of the AM-SSVEP even in an office environment with 

general illumination compared with Online 1. The results indicated that the 

low-frequency SSVEP was better than the high-frequency SSVEP, as 
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demonstrated in previous studies, and that the AM-SSVEP was superior to the 

high-frequency SSVEP in a general environment (Table 3-5). This result 

appears to indicate that AM-SSVEP would outperform high-frequency SSVEP 

even with low eye fatigue under general and dim illumination. However, the 

experimental conditions were different for Online 1 and Online 2 because these 

experiments were performed on different days. Thus, the results of Online 2 

cannot confirm whether our hypothesis is true: the high-frequency SSVEP 

benefited more from darkness than the low-frequency SSVEP. 
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3.5. Conclusion 

An AM stimulus delivers low-frequency information carried on a high-

frequency carrier, enabling a high-frequency stimulus with low eye fatigue. 

This stimulus contains several harmonic frequencies in the low- and high-

frequency bands, which contributed to BCI performance improvements as 

classification features. Combinations of a few frequencies generate more 

targets, and the performance with overlapped stimulus frequencies does not 

deteriorate performance as much as conventional SSVEP-based BCIs. Thus, 

people who have a risk of photosensitive epilepsy can substitute a low-

frequency stimulus with an AM stimulus without any accuracy deterioration in 

the BCI system.  

The future development of EEG-based BCIs should center on the user for 

a reliable translation of the brain signal into actions [62]. A reliable BCI system 

can be achieved with low-cost and convenient equipment (e.g., amplifier, 

electrodes), good signal processing techniques (e.g., pre-processing, feature 

extraction, and classification methods), and other application strategies (e.g., 

stimuli, feedback). Many signal processing algorithms have been devised and 

optimized for various modalities [5, 21, 51, 63, 64]. With respect to sensing 

issues, dry EEG electrodes that do not need conductive gel have been recently 

introduced. Foam-based capacitive electrodes [65] can be used to acquire EEG 

signals on hair, and a low-cost flexible passive bristle-sensor [66] can produce 

high-quality EEG recordings with great comfort. For SSVEP application, high-

frequency SSVEP [20, 54] and half-field stimulation patterns [37] were 
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suggested to reduce eye fatigue and the risk of seizure. However, as stated 

earlier, the high-frequency SSVEP produced worse BCI performance than the 

conventional low-frequency SSVEP [22], and the average performance of half-

field stimuli was comparable or worse than that of a low-frequency stimulus 

even with a lower chance level [17]. 

The AM-SSVEP performed well with low-stimulus flashing, 

demonstrating competitive BCI performance. In addition, a subjective 

evaluation indicated the suitability of the AM-SSVEP for daily use. Thus, the 

AM-SSVEP may contribute to the realization of a reliable and nonintrusive 

SSVEP-based BCI system for the user, which would be more powerful if the 

AM-SSVEP is integrated with signal processing techniques and more 

convenient equipment. 
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4 
DFSSVEP-based Hybrid BCI for Improving 

Classification Rate 
 

 

 

 

4.1. Basic Concepts 

The hybrid speller was designed to generate P300 potential and SSVEP 

simultaneously without interference. In particular, a black-and-white flickering 

stimulus includes four different characters, which appear periodically in a 

random sequence. The flickering stimulus and periodic change of the character 

evokes dual-frequency SSVEP, while the oddball stimulus of the target 

character evokes P300. The dual-frequency SSVEP peaks at a linear 

combination of the flickering frequency (SSVEP stimulation frequency) and 

the frequency of characters appearing (P300 stimulation frequency) rather than 

the harmonics of the flickering frequency. This approach enables the use of the 

harmonic SSVEP frequencies for different stimuli in conjunction with 

relatively prime P300 stimulation frequencies. 
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The four different characters appear in different colors and places for 

improved recognition and performance (Figure 4-1 (a)). Thus, nine stimuli 

consist of 36 characters (A to Z, 1 to 9, and Backspace) arranged in sequence 

(Figure 4-1 (b)). Each stimulus flickers in black (OFF) and white (ON) with a 

different flickering period (SSVEP stimulation period; Table 4-1) to evoke 

SSVEPs. The duty rate remains at 0.8. When the stimulus is ON, one of the 

four characters appears randomly. The period in the ON state during which a 

character appears (P300 stimulation period) varies with the stimulus (Table 4-

1). For example, a character among A to D appears at every two ON states. 

Figure 4-2 describes the hybrid speller paradigm for frames 1 to 60. The 

stimulation frequency is estimated as the refresh rate/stimulation period (in this 

study, 120/stimulation period). P300 stimuli (i.e., characters) are presented on 

the basis of the SSVEP stimulus; thus, the P300 stimulation frequency is sub-

harmonic of the SSVEP stimulation frequency. The study about the hybrid 

SSVEP-P300 BCI was published as a journal paper [67]. 
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Figure 4-1. Proposed hybrid speller: (a) Composition of the hybrid stimulus 

and (b) hybrid speller 
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Table 4-1. Stimulation parameters of the hybrid speller 

Stimulus 

SSVEP 

stimulation 

period 

SSVEP 

stimulation 

frequency 

(Hz) 

P300 

stimulation 

period 

P300 

stimulation 

frequency 

(Hz) 

Flash duration 

(ms) 

SOA 

(ms) 

Stimulation 

time of a 

sequence (ms) 

1 10 12.0 2 6.0 66.7 166.7 667 

2 7 17.1 3 5.7 46.7 175.0 700 

3 11 10.9 2 5.5 73.3 183.3 733 

4 23 5.2 1 5.2 153.3 191.7 767 

5 12 10.0 2 5.0 80.0 200.0 800 

6 5 24.0 5 4.8 33.3 208.3 833 

7 13 9.2 2 4.6 86.7 216.7 867 

8 9 13.3 3 4.4 60.0 225.0 900 

9 14 8.6 2 4.3 93.3 233.3 933 
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Figure 4-2. Paradigm of the hybrid speller 
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Each stimulus has a different SSVEP and P300 stimulation period; thus, 

each stimulus has different P300 stimulation parameters, such as flash duration, 

stimulus onset asynchrony (SOA: onset-to-onset time), and sequence 

stimulation time (Table 4-1). In particular, because the stimulation time of a 

sequence varies with the stimulus, stimulations finish at different times. 

 

𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (s) =  
𝑆𝑆𝑉𝐸𝑃 𝑝𝑒𝑟𝑖𝑜𝑑 × 𝑃300 𝑝𝑒𝑟𝑖𝑜𝑑

𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒
 ×

 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠  

 (14) 

 

However, the SSVEP response to a stimulus with a short stimulation time 

has a disadvantage in the SSVEP analysis as compared to that with a long 

stimulation time. To equalize the SSVEP stimulation time, a stimulus keeps 

flickering without showing characters after its P300 stimulation time until the 

last stimulus finishes. The SSVEP response was segmented and analyzed on the 

basis of the longest stimulation time (i.e., 0.933 s × # sequence, stimulation 

time of Stimulus 9). 
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4.2. Methods 

4.2.1. Experimental Setting 

Ten graduate students (male:female, 8:2; age range, 26.7 ± 2.6 years) 

participated in the experiments with informed consent. EEG signals were 

acquired using a g.USBamp with a sampling rate of 600 Hz. Every channel was 

high-pass-filtered at 0.1 Hz, low-pass-filtered at 60 Hz, and notch-filtered at 60 

Hz. Electrodes were placed at 14 channels following the international 10-20 

system, namely F3, Fz, F4, Cz, P7, P3, Pz, P4, P8, PO7, PO8, O1, Oz, and O2, 

on the subjects, grounded at Fpz, and referenced at A1. In the P300 recognition 

step, a stepwise linear discriminant analysis (SWLDA) automatically chooses 

channels on the basis of their statistical significance. In the SSVEP recognition 

step, three electrode configurations were compared in an offline analysis: 

 

Channel Set 1: All 14 channels 

Channel Set 2: Oz, PO7, PO8, O1, and O2 

Channel Set 3: Oz, PO7, PO8, O1, O2, Pz, P3, P4, P7, and P8 

 

The configuration with the highest accuracy was subsequently used in the 

online experiments. 

The hybrid speller consisted of nine stimuli flickering at different 

frequencies (Table 4-1). Two pairs of stimuli flickered at harmonic frequencies: 

Stimuli 1 (120/10 Hz) and 6 (120/5 Hz), and Stimuli 2 (120/7 Hz) and 9 (120/14 

Hz). Conventional SSVEP and P300 spellers were employed with equivalent 
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settings to compare and assess the practicality of the hybrid speller. However, 

because single-frequency SSVEP-based BCI systems cannot accurately 

classify SSVEP responses to stimuli that flicker at harmonic frequencies, only 

seven stimuli were used for the SSVEP speller in the study (Stimuli 3 to 9; 

Figure 4-3 (a)). The stimuli were represented by a colored number from 3 to 9, 

where the colors were the same as those of the hybrid stimuli. Both the hybrid 

speller and the SSVEP speller were implemented using Matlab/Simulink 

(Mathworks, USA) and Psychophysics Toolbox extensions [68, 69]. The P300 

speller was implemented using BCI2000 [70], which consisted of 36 characters, 

as did the hybrid speller (Figure 4-3 (b)). The SOA and the flash duration of the 

P300 speller were determined as an average of those produced by the hybrid 

speller (SOA of 200 ms and flash duration of 80 ms) because the correlation 

between the BCI performance and the SOA or the flash duration is still 

controversial [3, 71, 72]. The stimulator for the spellers was a 24-inch LED 

monitor (ASUS, VG248QE; resolution: 1920 × 1080) with a refresh rate of 

120 Hz. 
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Figure 4-3. Conventional spellers used in this study: (a) SSVEP speller and (b) 

P300 speller. 
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4.2.2. Experimental Procedure 

All experiments were performed in a general laboratory under common 

illumination conditions on two or three separate days according to a subject’s 

schedule. However, the experiments with the same speller were conducted on 

the same day. 

For the hybrid or P300 speller, a participant was instructed to focus on a 

target character and to count the number of times it appeared or flashed. In 

offline experiments, a trial consisted of ten sequences. Therefore, the P300 

stimulus of the hybrid speller appeared ten times during a trial, and the stimulus 

of the P300 speller flashed twenty times. The subject was exposed to every 

character in a random order. For the SSVEP speller, the trial stimulation took 

9.3 s, which is in accordance with the longest ten-sequence-stimulation time of 

the hybrid speller (Stimulus 9). A subject focused on one of the seven stimuli 

during this time, which was repeated 36 times. 

In the online experiments, the sequence number was different for each 

speller: the hybrid and P300 spellers had a trial with sequences equal to the 

optimal number of sequences; the SSVEP speller flickered for the stimulation 

time that corresponded to the optimal number of sequences. The optimal 

number of sequences was determined as the number of sequences with the 

highest ITR in the offline experiments. The hybrid and P300 speller task was to 

type the subject’s name and his/her phone number once in a run. The task for 

the SSVEP speller was to type a sequence of numbers consisting of six numbers 

(3 to 8). Stimulus 9 of the SSVEP speller functioned as “Backspace (BS)” in 
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the online analysis. The classification result was shown on the screen. The task 

length remained equal for all the spellers, and the average task length for the 

subjects was 20.9 characters (range: 18 to 25). Subjects repeated the task twice. 

All spellers had BS; thus, a subject could correct an error by erasing it and 

typing a new character. We regarded a run as failed if a subject made more than 

five consecutive errors for the same target or if the subject was frustrated with 

repeated errors. Between trials, a period of 5 s was allowed for feedback and a 

break. 

 

4.2.3. Signal Processing 

SSVEP and P300 recognition steps were performed in parallel for the 

hybrid speller. For SSVEP recognition, the EEG signals were band-pass-filtered 

at [2 50] Hz and segmented starting from the stimulus onset to the end of the 

longest stimulation, whose length was 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 × 0.93  s. The 

SSVEP response was classified using CCA, which showed high accuracy for 

both single- and dual-frequency SSVEP recognition [5, 43]. The reference 

signal of CCA for the hybrid speller (Yhybrid) consisted of the sine and cosine of 

up to the third harmonics of the SSVEP stimulation frequency (fSSVEP) and the 

P300 stimulation frequency (fP300): 
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Yhybridi= 

(

 
 
 
 
 
 
 
 
 
 

sin(2πfSSVEPit)

cos(2πfSSVEPit)
⋮

sin(6πfSSVEPit)

cos(6πfSSVEPit)

sin(2πfP300it)

cos(2πfP300it)
⋮

sin(6πfP300it)

cos(6πfP300it) )

 
 
 
 
 
 
 
 
 
 

,      𝑖 = 1, 2, 3, … , 9.  (15) 

 

Finally, nine correlations (𝜌i) between the transformed SSVEP response and 

the reference signals were calculated and compared. 

In the P300 recognition steps, 800-ms-long EEG segments (480 samples) 

were extracted starting from the onset of each P300 stimulus for each channel. 

These segments were then down-sampled to 30 Hz (16 samples) by using a 

moving average filter. The dimension-reduced segments of all channels were 

concatenated to yield a single feature vector (𝑥) as [# channels × 16 samples]. 

Then, SWLDA was performed to choose 30 statistically significant features and 

compute the feature weights vector ω [73]. The classifier was trained by a 

leave-one-out cross validation technique. For the online experiment, the feature 

weight vector was computed using all the data from the offline experiment. 

Lastly, the scores of each P300 stimulus were calculated as the sum of the inner 

product of the feature weight vector and the feature vector. 

Taken together, a target on which a subject focused was classified as 

follows: 
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(𝑙,𝑚) =  arg
𝑖,𝑗
 [max(𝜌𝑖) ,max [∑ (𝜔 ∙ 𝑥𝑗𝑘)

𝐾
𝑘=1 ]], 𝑖 ∈ [1, … , 9], 𝑗 ∈ [1, … ,4]  

 (16) 

 

where i and j denote the numbers of the SSVEP and P300 stimuli of the hybrid 

speller, respectively; k represents the sequence number, and K is equal to 10 for 

the offline analysis and the optimal number of sequences for the online analysis. 

Consequently, the target was regarded as the mth character (P300 stimulus) of 

the lth stimulus group (SSVEP stimulus). 

For the SSVEP speller, the EEG segments were extracted and analyzed 

using CCA with a reference signal consisting of up to the third harmonics as 

(5). The EEG response to a P300 speller was processed with the same P300 

recognition steps as those used for the hybrid speller. 

 

4.2.4. Statistical Comparison of the EEG Responses 

Segmented SSVEP and P300 responses were statistically compared in the 

frequency and time domains, respectively (α = 0.05). First, the grand average 

periodograms of the SSVEP were calculated for subjects with respect to the 

stimulus and the speller. Then, 8th-order SSVEP SNRs were calculated at each 

stimulation frequency [8, 15] and were statistically compared between spellers 

as (2). Two-way repeated-measure analysis of variance (RM-ANOVA) was 

employed to compare SSVEP SNRs with the speller and the stimulation-
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frequency factors. Post hoc testing was conducted using a paired t-test with 

Bonferroni correction.  

Grand average ERPs over subjects were calculated and plotted using 

EEGLAB [74]. Pairs of target and non-target ERPs at different electrodes (Fz, 

Cz, and Pz) and target ERP pairs of different spellers were compared 

statistically by using a paired t-test with Bonferroni correction. Moreover, the 

P300 amplitude and latency at each electrode were statistically compared 

between spellers using two-way RM-ANOVA (speller × channel). The P300 

amplitude was estimated as the amplitude difference between the peak 

amplitude within 300 to 600 ms and the pre-stimulus baseline at −200 to 0 ms. 

P300 latency was estimated as the time from stimulus onset to the peak 

amplitude between 300 ms and 600 ms [26]. 

 

4.2.5. BCI Performance 

In addition to accuracy, Wolpaw’s ITR is the most common BCI metric 

that incorporates time [75]. The ITR was calculated using the time taken for 

feedback and a break as follows: 

 

𝐵 = log2𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2[(1 − 𝑃)/(𝑁 − 1)]   (bits/

symbol),  

 (17) 
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𝑇 = {

𝑆𝑇∙𝑁𝑠+𝐼𝑇𝐼

60
           for hybrid and conventional SSVEP spellers

𝑆𝑂𝐴∙𝑁𝑠∙12+𝐼𝑇𝐼

60
                          for the conventional P300 speller

 ,(18) 

 

𝐼𝑇𝑅 = 𝐵/𝑇 (bpm), (19) 

 

where N denotes the number of stimuli (36 for the hybrid and P300 spellers, 

and 7 for the SSVEP speller) and P represents the accuracy. ST, Ns, and ITI 

indicate the stimulation time, the sequence number, and the inter-trial interval 

(5 s), respectively. The equations of T for the hybrid and SSVEP spellers were 

the same because the SSVEP recognition of the spellers was based on the same 

stimulation time of a sequence (i.e., 0.933 s). 

The BCI performance values were compared with SPSS Statistics 20 (IBM, 

USA) using two-way RM-ANOVA (speller × sequence number; α = 0.05). 

Significant differences between pairs were found using a paired t-test with 

Bonferroni correction. 
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4.3. Results 

4.3.1. EEG Response to the Hybrid Speller 

The EEG response to the hybrid stimuli peaked at the P300 and SSVEP 

stimulation frequencies (Figure 4-4). Other peaks appeared at the harmonics of 

the P300 stimulation frequency. Furthermore, compared with the SSVEP 

stimuli, the hybrid stimuli evoked stronger SSVEPs with significantly higher 

SSVEP SNR by a factor of 2.24 at the SSVEP stimulation frequency (Figure 4-

5; F = 8.897, p = 0.015). The post hoc analysis revealed that the SNR difference 

was significant for Stimuli 3 and 4 (t = 4.752 and p < 0.001 for Stimulus 3; t = 

−3.266 and p = 0.010 for Stimulus 4). 

The hybrid speller also generated P300 components in the frontal, central, 

and parietal regions. In Figure 4-6 (a), the grand average ERPs at Fz, Cz, and 

Pz show apparent positive peaks approximately 450 ms after the P300 stimulus. 

These positive waves are significantly different from those of the non-target 

responses (p < 0.05). However, the target response at Oz does not show a 

positive peak and was not significantly different from the non-target response. 

The P300 latency values showed a significant difference between the spellers 

(F = 9.049, p = 0.015; Figure 4-6); the positive peak of the hybrid speller (455 

± 17 ms) occurred 66 ms later than that of the P300 speller (389 ± 15 ms). 

However, the P300 latency did not differ between channels (F = 2.259, p = 

0.133) and showed no interaction between the speller and channels (F = 0.440, 

p = 0.651). P300 amplitudes were not significantly different between the hybrid 

and P300 spellers (hybrid speller: 3.093 ± 0.279 μV, P300 speller: 2.790 ± 0.405 
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μV; F = 1.098, p = 0.322) and the channels (F = 2.393, p = 0.120). There was 

no interaction between the speller and the channel (F = 0.923, p = 0.415).  

 

 

 

 

 

 

 

 

 

 

 

 



 

96 

      

 
 

 

Figure 4-4. Grand average power spectrum of the SSVEP response to each 

hybrid stimulus at Oz. The dash-dot line represents the P300 stimulation 

frequency, and the dashed line represents the SSVEP stimulation frequency for 

each stimulus. The dash-dot and dashed lines of stimulus 4 are overlapped 

because SSVEP and P300 frequencies are the same. 
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Figure 4-5. Average SSVEP SNR of the hybrid and the SSVEP speller for each 

stimulus (**: p < 0.01, ***: p < 0.001). 
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Figure 4-6. Grand average ERP waveforms for different channels. Solid and 

dashed lines, respectively, represent the target and non-target waveforms of the 

hybrid speller (top) and the P300 speller (bottom). The gray-shaded regions 

indicate a significant difference between the two waveforms with p < 0.05 

(paired t-test). 
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4.3.2. Offline Analysis 

An optimized channel set improved the SSVEP recognition rate (Figure 4-

7) by 0.017 ± 0.057 for the hybrid speller (t = 2.977, p = 0.004) and 0.069 ± 

0.092 on average for the SSVEP speller (t = 7.491, p < 0.001). Almost every 

subject had the highest accuracy with Channel Set 2 for both spellers, which 

corresponds to the occipital region, which is well known as the place of origin 

for SSVEP [8]. However, subjects 4, 5, 7, and 10 (S4, S5, S7, and S10, 

respectively) showed the best performance with Channel Set 3 for the hybrid 

speller, while S4 and S10 showed the highest accuracy with Channel Set 1 for 

the SSVEP speller. The channel set that produced the highest accuracy was 

employed in the online analysis. 

The average accuracy over all the sequences of the SSVEP speller (0.855 

± 0.024) was higher than that for the other spellers (hybrid speller: 0.819 ± 

0.027, P300 speller: 0.831 ± 0.030; Figure 4-8 (a)), although the difference was 

not significant (F = 0.736, p = 0.493). The average ITR was significantly 

different between spellers (F = 51.294, p < 0.001) and sequence numbers (F = 

48.211, p < 0.001), and the interaction between the two factors also existed (F 

= 22.103, p < 0.001; Figure 4-8 (b)). In particular, the hybrid speller (22.290 ± 

1.274 bpm) outperformed the others (11.843 ± 0.743 bpm for the SSVEP speller; 

13.251 ± 0.938 bpm for the P300 speller; p < 0.001). More importantly, the ITR 

of the hybrid speller was consistently significantly higher than that of the other 

spellers for sequence numbers of 3 and above (p < 0.003).  
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Figure 4-7. SSVEP recognition rate of the SSVEP and hybrid stimuli with or 

without channel selection in the offline analysis (*: p < 0.05; **: p < 0.01). The 

solid lines indicate the SSVEP recognition rate with channel selection. 
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Figure 4-8. BCI performance of the hybrid, SSVEP, and P300 spellers in the 

offline analysis: (a) Average accuracy and (b) average ITR across subjects 
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4.3.3. Online Analysis 

The optimal number of sequences for each speller differed depending on 

the subject, as shown in Table 4-2. The average optimal number of sequences 

was significantly different between the spellers (F = 6.766, p = 0.006), which 

seems consistent with ITR trends in the offline analysis (Figure 4-8 (b)).  

Table 4-2 shows the accuracy and ITR values for each subject with the 

different spellers. Each value indicates an average of two runs. S3 could not 

complete the first run on the hybrid speller; S5 could not complete the second 

run on the P300 speller or either run on the hybrid speller; and S7 and S10 could 

not complete either run on the SSVEP speller, yielding very low ITR (Table 4-

2). The average accuracy was not significantly different between the spellers (F 

= 0.330, p = 0.624). However, the ITR was significantly different between the 

spellers (F = 37.159, p < 0.001). In the post hoc test, the hybrid speller showed 

a significantly higher ITR than the others by more than 11 bpm (p < 0.002).  
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Table 4-2. Results of online experiments in terms of accuracy and ITR with optimal sequence number (SN). 

Subject 

Hybrid SSVEP P300 

Optimal SN Accuracy ITR Optimal SN Accuracy ITR Optimal SN Accuracy ITR 

S1 3 .93 34.2 8 .94 11.4 2 .98 30.0 

S2 3 .96 36.7 3 .96 19.3 4 .94 18.7 

S3 3 .83 28.3 4 1.00 19.3 3 .98 24.2 

S4 6 1.00 29.3 9 .96 11.0 3 .96 23.5 

S5 3 .70 21.3 6 .94 13.1 2 .62 16.3 

S6 4 .98 33.9 7 .95 12.6 4 .88 16.5 

S7 3 1.00 39.8 6 .56 3.9 5 .87 14.0 

S8 3 .96 36.6 4 .98 18.1 3 .94 22.2 

S9 5 .96 29.4 6 .98 14.8 4 .98 20.2 

S10 6 .98 28.1 4 .64 6.6 5 .85 13.5 

Average 3.9 .93 31.8 5.7 .89 13.0 3.5 .90 19.9 
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4.4. Discussion 

4.4.1. DFSSVEP 

In this section, we propose a hybrid BCI speller that flickers at the SSVEP 

stimulation frequency and presents characters at the P300 stimulation 

frequency simultaneously. The EEG response to the stimulus shows not only 

P300 but also the spectral peaks at the sub-harmonic of the SSVEP frequency, 

which demonstrates that the hybrid speller generates dual-frequency SSVEP. 

The response to a single-frequency stimulation typically peaks at the 

fundamental frequency and at the second harmonic. A few rare stimulation 

frequencies evoke SSVEPs at the second sub-harmonic around the α-band [9]. 

However, hybrid speller-evoked SSVEPs exhibit peaks at a third, or some other 

sub-harmonic of the SSVEP stimulation frequency. Considering that the P300 

stimulation frequency is a sub-harmonic of the SSVEP stimulation frequency, 

the peak frequencies can be regarded as a linear combination of the SSVEP and 

P300 frequencies. The spectral peaks at the linear combination of the 

stimulation frequencies indicate that the hybrid speller evokes dual-frequency 

SSVEPs; this is in agreement with the results of previous studies [42, 43]). 

It is interesting that the EEG response to the hybrid stimulus is the dual-

frequency SSVEP. Usually, a visual stimulus for SSVEP flickers at a constant 

frequency in a constant shape (e.g., black and white squares or checkerboard). 

Even a visual stimulus that generates dual-frequency SSVEPs consists of two 

LEDs flickering at different frequencies without a shape change [39]. However, 

notwithstanding the fact that the shape (i.e., the character presented on a hybrid 
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stimulus) changes randomly, a combination of light intensity and shape 

variations generated dual-frequency SSVEPs successfully. 

The dual-frequency stimulation shows some advantages; first, it enhances 

SSVEPs and improves SSVEP recognition. Second, the use of harmonic 

frequencies as flickering frequencies increases the number of targets. Third, the 

simultaneous light intensity and shape variation eliminates unnecessary 

suspension to generate two types of EEG responses and reduces the stimulation 

time. All of these effects of dual-frequency stimulation contribute to the 

improvement of ITR. 

 

4.4.1.1. Improvement in SSVEP Recognition 

The dual-frequency stimulation of the hybrid speller enhances the SSVEP 

SNR and creates features at the harmonics (Figure 4-5), apparently resulting in 

more accurate SSVEP recognition. Figure 4-7 shows the average SSVEP 

recognition rate of the hybrid speller and the average accuracy of the SSVEP 

speller in the offline analysis. The SSVEP recognition rate of the hybrid speller 

is consistently higher than that of the SSVEP speller except when the sequence 

number is 1 (Figure 4-7).  

The hybrid speller enhanced the SSVEPs in every frequency range 

including the relatively high frequencies (24 Hz). In the online experiments 

with the SSVEP speller, two subjects (S7 and S10) failed to complete the whole 

task, yielding very low ITR. They made almost every error when they tried to 

type “6” (Stimulus 6). In the offline analysis, their error rate for Stimulus 6 
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reached 87.5% (7/8). The average SSVEP SNR at the corresponding 

stimulation frequency (3.250 ± 0.472) was lower than that corresponding to the 

other stimuli (6.234 ± 4.503). Furthermore, the average SNR for Stimulus 6 of 

the subjects (3.250 ± 0.472) was lower than that of the other subjects (10.447 ± 

6.740). This weak SSVEP would be expected to result in low performance by 

the SSVEP speller, and the weak response to Stimulus 6 might result from the 

relatively high SSVEP frequency. Nevertheless, the phenomenon was scarcely 

observed with the hybrid speller. The two subjects completed the tasks with 

almost 100% accuracy, and the average SNR of Stimulus 6 (11.140 ± 4.237) 

was considerably higher than that for the SSVEP speller. We inferred that the 

dual-frequency stimulation of the hybrid speller enhanced the SSVEPs to 

Stimulus 6 as well as the other stimuli; therefore, the SSVEP to Stimulus 6 was 

better recognized with the hybrid speller. 

 

4.4.1.2. Use of Harmonic Frequencies 

The hybrid speller augments the number of available targets by 

successfully employing harmonic frequencies for different stimuli. In an 

SSVEP-based BCI system, stimulation frequencies should be adjusted 

according to the refresh rate of the monitor [76], and harmonic frequencies 

cannot be used for different stimuli. However, the hybrid speller overcame the 

problem by employing relatively prime P300 stimulation frequencies, which 

generated harmonics at non-overlapping frequencies, even with harmonic 

SSVEP frequencies. The hybrid speller succeeded in classifying the two stimuli 
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by using the non-overlapping harmonic frequencies and achieved a high SSVEP 

recognition rate.  

 

4.4.1.3. Reduction in Stimulation Time 

The hybrid speller reduces the stimulation time compared with a previous 

hybrid or P300 speller. The combination of intensity and shape variation 

generates both SSVEP and P300 at the same time; thus, the proposed speller 

does not require separate stimulation times, as was not the case with a previous 

hybrid speller [33]. Figure 4-9 illustrates the representative target responses to 

Stimulus 2 of S10 at Fz, Cz, Pz, and Oz (average of 200 ms before and 800 ms 

after the appearance of a target character) along with the response spectrum at 

Oz. Interestingly, a seamless periodic oscillation is observed at Oz, while the 

P300 component dominates at Fz, Cz, and Pz, as shown in Figure 4-6. The peak 

frequency of the periodic oscillation at Oz corresponds to the SSVEP 

stimulation frequency. In addition, the proposed speller reduces the stimulation 

time compared with the P300 speller by grouping four characters into one 

stimulus. This strategy results in reducing the number of flashes in a sequence 

from twelve flashes in the P300 speller (six rows and six columns) to four in 

the hybrid speller (four P300 stimuli). Simultaneous stimulation and the 

reduced number of flashes allow the hybrid speller to have a considerably 

shorter stimulation time (0.93 s) even with a longer stimulus duration and ISI 

than the P300 speller (stimulation time: 2.4 s). 
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Figure 4-9. Average target response to Stimulus 2 for S10 at Fz (dashed gray 

line), Cz (dash-dot gray line), Pz (dotted gray line), and Oz (solid black line). 

The right panel illustrates the power spectrum of the target response at Oz, and 

the dashed line indicates the corresponding SSVEP stimulation frequency. 
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4.4.2. ITR Comparison with Conventional Spellers 

The characteristics of dual-frequency stimulation in the proposed speller 

increased the number of targets and reduced the stimulation time; all of these 

effects contributed to an ITR improvement, shown by Eqs. (17)–(19). In the 

offline analysis, the ITR of the hybrid speller was considerably larger than that 

of the other spellers except when the sequence number was 1. In particular, 

sequence numbers higher than 3 are more likely to be used in practical BCI 

applications with higher-than-minimum acceptable accuracy (70%) [77, 78]. 

These results suggest that the hybrid speller is more beneficial in practical use 

than the conventional spellers. The same conclusion is drawn from the results 

of the online analysis, in which the hybrid speller showed the best accuracy and 

ITR. For the hybrid and P300 spellers, the subject-specific parameter (ω) and 

the channel set in the offline/online tasks and the subject-specific optimal 

sequence number in the online tasks were employed. 

Speller attributes such as the stimulus design and stimulation parameters 

are different, which makes it difficult to compare the performance of spellers. 

However, the different attributes reflect and highlight the superiority of the 

speller proposed in this paper. First, the hybrid speller consists of two more 

SSVEP stimuli than an SSVEP speller. This difference comes from the ability 

of the hybrid speller to employ harmonic frequencies for different stimuli, 

which is an important advantage that results in a positive effect on ITR. Second, 

the flash duration and the SOA of the P300 stimuli on the hybrid speller vary, 

and the segmentation performed for the final classification is based on the 
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longest SOA. In contrast, the stimulation parameters of the P300 speller are set 

to the median of those of the hybrid speller rather than the longest or the shortest 

ones. This method avoids any unascertained effects of the stimulation 

parameters on the BCI performance. However, the hybrid speller showed a 

higher ITR than did the P300 speller despite the longer stimulation time and the 

shorter distance between characters in a group. Only P300 latency was different 

between the spellers (Figure 4-6), and it is presumed to be because of different 

task complexity; that is, the more densely located characters and the higher 

degree of noise (white and black squares) in the proposed speller may impede 

the target recognition and thereby result in a longer P300 latency. 

 

4.4.3. ITR Comparison with Previous Studies 

The BCI performance in this study was lower than that observed in 

previous studies because of the long ITI. A period of 5 s was given to the 

subjects to rest their eyes and to prepare for the next task. An ITI of 5 s is 

relatively long considering the stimulation time (9.33 s) and the fact that the 

ITR is inversely proportional to the time taken, as seen in Eqs. (17)–(19). 

Therefore, the long interval inevitably results in considerable decreases in the 

ITR. However, some recent studies take approximately 2 s, and some studies 

do not even consider the ITI in the ITR calculation. Table 4-3 shows the 

estimated ITR values from the online analysis for ITIs of 2 s. As the ITI is 

reduced, the estimated ITR substantially increases by about 20 bpm. The 

estimated ITR is higher than or equivalent to that of recently proposed hybrid 
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spellers (Table 4-4). In addition, the estimated practical ITR (PITR) with 2-s 

ITI (48.2 ± 12.7 bpm) is also equivalent to that of a previous study for 

increasing ITR (Table 4-4). 

However, hybrid BCI with a high ITR has scarcely been investigated to 

improve the SSVEP recognition rate. Most SSVEP-based hybrid BCIs for 

improving ITR achieved their goals by increasing the number of stimuli 

compared with an SSVEP speller and by decreasing the stimulation time 

compared to a P300 speller. A hybrid SSVEP-P300 speller with a monitor 

increased ITR by these methods, but failed to improve the SSVEP classification 

rate. On the contrary, the proposed hybrid speller increased ITR by improving 

the SSVEP recognition rate as well as by those methods. The SSVEP 

improvement was obtained by using dual-frequency stimulation with integer-

harmonic stimulation frequencies without complex signal processing methods. 
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Table 4-3. Estimated ITR (bpm) in online analysis with different inter-trial 

intervals. 

 Inter-trial interval 

 5 s 2 s 

Average 31.8 49.4 

SD 5.9 10.8 

Max 39.8 64.6 

Min 19.6 31.8 
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Table 4-4. ITR comparison with recently proposed hybrid SSVEP-P300 spellers 

Hybrid SSVEP-P300 speller # stimuli ITI (s) Average ITR (bpm) SSVEP improvement Experiment 

R. C. Panicker et al., 2011 [79] 36 1 19.05 - Online 

Y. Li et al., 2013 [32] 4 2 22.11 No Online 

L. Bi et al., 2013 [80] 9 - - No Offline 

E. Yin et al., 2013 [35] 36 2 56.44 No Online 

M. Xu et al., 2013 [33] 9 0 > 30 - Offline 

M. Xu et al., 2014 [34] 36 1.9 48.5 No Online 

E. Yin et al., 2014 [36] 36 2 48.9 (PITR) No Online 

B. Z. Allison et al., 2014 [81] 4 0 < 29.8 No - 

M. Wang et al., 2015 [82] 4 - 16.74 No Offline 

Proposed speller [67] 36 2 49.4 (PITR: 48.2) Yes Online 
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4.4.4. ITR with Different Visual Angle 

The accuracy of an SSVEP- or P300 speller is affected by the size of the 

speller, which is sometimes expressed in degrees of visual angle. SSVEP 

accuracy decreased as visual angle decreased from 40° to 30° [83]; the reason 

seems to be that the stimulus size decreased and the distance between stimuli 

became narrow [44, 84]. Likewise, P300-BCI showed decreasing accuracy 

when the stimulator was changed from a 17-in monitor to a 5-in mobile phone 

[85]. Reduced stimulus size and the reduced distance between the stimuli of a 

smaller stimulator might decrease the P300 accuracy as in the case of the 

SSVEP accuracy [86]. 

However, the proposed hybrid speller showed higher P300 accuracy with 

a smaller visual angle than the P300 speller, contrary to the previous studies 

(Figure 4-10). This can be attributed to the larger distance between stimuli and 

larger size of the stimulus of the proposed speller, which overlapped four 

characters in a stimulus group. Specifically, the visual angle of the proposed 

speller was 25.8° and for the P300 speller was 41.6° (Figure 4-11). In spite of 

the smaller size of the speller, the stimulus size and the distance between stimuli 

of the proposed speller was 2.2 times and 3.6 times greater than those of the 

P300 speller, respectively. Moreover, the P300 accuracy of the proposed speller 

was 6 % higher on average than that of the P300 speller (Figure 4-10).  

Therefore, the proposed hybrid speller is expected to be more useful in a 

BCI system with a stimulator of narrow visual angle (e.g., mobile phone or see-

through display). With the narrow visual angle, most SSVEP, P300, and hybrid 



 

115 

      

SSVEP-P300 spellers should decrease the stimulus size and the distance 

between stimuli because they cannot overlap stimuli. However, the proposed 

speller generates stimuli overlapped; thus the stimulus size and the distance 

between stimuli can be larger than those of other spellers. The larger size and 

distance can make the proposed speller superior to other spellers when it is 

implemented on a small display or used in a monitor with other applications. 

 

 

 

 

 

Figure 4-10. P300 accuracy of the P300 and the hybrid spellers in offline 

analysis (*: p<0.05) 
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Figure 4-11. Visual angle of (a) the proposed hybrid speller and (b) P300 

speller 
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4.4.5. Limitations 

A limitation of the present study is the different stimulation times of the 

stimuli. When the number of sequences remains constant, a stimulus with a 

short stimulation time finishes its stimulation earlier than that with a longer 

stimulation time. We let the stimulus flicker black and white without showing 

characters after the simulation is completed, but this strategy appears to be time 

inefficient. Therefore, in the future, we will rearrange the stimulus shapes (i.e., 

characters) so that all stimuli finish their stimulations at similar times. Another 

consideration is the visual fatigue caused by the complex stimulation method. 

The proposed speller presents colorful characters non-uniformly in various 

directions, which may increase visual fatigue. Thus, modifications in speller 

design are needed to reduce eye fatigue while maintaining performance. 
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4.5. Conclusion 

The proposed hybrid speller was designed so that a flickering SSVEP 

stimulus would simultaneously provide a P300 stimulus. The simultaneous 

stimulation evoked dual-frequency SSVEP, which enhanced SSVEPs and 

significantly improved the performance of some subjects (S7 and S10). 

Furthermore, it allowed for harmonic frequencies to be employed as flickering 

frequencies for different stimuli. These results make up for the weak points of 

SSVEP-based BCIs with a monitor, such as weak SSVEP and unavailable 

harmonic frequencies. Further, the hybrid speller reduced the number of flashes 

from twelve (RC paradigm) to four (the hybrid speller), thereby reducing the 

stimulation time and improving ITR compared to a P300 speller. In the online 

analysis, the ITR of the hybrid speller was considerably greater than that of the 

conventional SSVEP and P300 spellers with accuracy of more than 90%.  
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5 
Conclusion 

 

 

 

 

SSVEP-based BCIs have been widely investigated because of not only 

their simple system but also high accuracy and speed. In particular, 

considerably high ITR and low inter- and intra- subject variability raise hopes 

that it can improve the quality of life of the severely disabled. However, a 

flickering stimulus causes high eye fatigue so that it makes long-term use 

difficult. Furthermore, limitation in selection of a stimulation frequency and 

low SSVEP power with a monitor prevents realization of a simple device, and 

consequentially, practical use.  

In this thesis, dual-frequency SSVEP-based BCIs have been investigated 

to resolve these issues. First, spectral characteristics of dual-frequency SSVEPs 

have been identified. From the result, a frequency recognition method that 

considers harmonics was developed and examined. Then, two dual-frequency 

SSVEP-based BCIs were designed, each of which addresses the issues 



 

120 

      

respectively: AM-SSVEP based BCI and hybrid BCI speller. AM-SSVEP based 

BCI significantly reduced eye fatigue by combining high carrier frequency and 

low modulating frequency. Furthermore, its BCI performance was maintained 

high with an accuracy of 91.2% and ITR of 30.4 bpm in online experiments. 

The hybrid BCI speller produced 36 stimuli with only nine flickering 

frequencies, and harmonic frequencies were successfully employed in a BCI 

speller. Moreover, SSVEPs evoked by the hybrid stimuli were stronger with a 

higher SSVEP recognition rate than those by single-frequency flickering 

stimuli. These novel BCI systems improved an SSVEP-based BCI system with 

equivalent or higher performance compared with conventional systems.  

The proposed systems can be improved by combining recently reported 

techniques. First, AM-SSVEP based BCI uses LEDs as a stimulator to generate 

a modulated signal, which makes the system complex. However, a recent report 

demonstrated that a monitor can generate sine stimulation in both low- and 

high-frequency ranges [25]. Thus, AM-SSVEP based BCI can be tested with a 

monitor to simplify the system. Second, the proposed hybrid speller can reduce 

eye fatigue resulting from colorful stimuli. It can be obtained by changing the 

color arrangement or location of stimuli, however, while being careful not to 

degrade the P300 classification performance. On the other hand, machine 

learning techniques such as dynamic stopping can be used to increase 

classification speed. 

The dual-frequency SSVEP-based BCIs have been developed to 

complement weaknesses and to be used in real life. To do that, the developed 
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systems should be examined by potential users. SSVEP-based BCIs have had 

less testing by the disabled than P300- or SMR-based BCIs. Through a long-

term test by the severely disabled, SSVEP-based BCIs should be complemented 

and finally contribute to improving a patient’s life. 
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국문 초록 

낮은 시각 피로도와 높은 정확도를 

위한 이중주파수 SSVEP 기반 

BCI 
 

 

 안정상태 시각유발전위는 다른 뇌파에 비해 신호대잡음비가 높고 

트레이닝이 거의 필요 없어 뇌-컴퓨터 인터페이스에 많이 이용된다. 

이로 인해 안정상태 시각유발전위 기반 뇌-컴퓨터 인터페이스는 

복잡한 신호 처리 기술이 없이도 높은 정확도를 보이며, 높은 정보 

전달률을 가지는 뇌-컴퓨터 인터페이스 시스템이 개발되었다. 

그러나 안정상태 시각유발전위는 높은 시각 피로도를 유발하고 

간질성 발작을 일으킬 확률이 높다. 또한, 배수 성분의 주파수를 

사용하지 못 하는 등 자극 주파수 선택에 제한이 있고, 모니터를 

자극기로 사용할 경우 안정상태 시각유발전위의 크기가 감소하는 

문제점이 있다. 본 연구에서는 이중 주파수 안정상태 

시각유발전위를 이용하여 위의 문제점들을 해결하고자 하였다.  

먼저 이중 주파수 안정상태 시각유발전위의 주파수 특성을 

살펴보고 분류 알고리즘을 제안하였다. 각각의 방법은 파워 

스펙트럼 밀도 분석과 정준상관분석에 기반한 방법으로, 기존의 

단일 주파수 안정상태 시각유발전위 분류를 위한 방법을 이중 

주파수 안정상태 시각유발전위의 주파수 특성에 맞추어 개선하였다. 

분석 결과 새로운 형태의 기준 신호를 이용한 정준상관분석법이 

가장 높은 정확도를 보였으며, 특히 자극 주파수 성분과 하모닉 

성분을 함께 고려할 경우 정확도가 더 높게 나타났다. 

다음으로는 진폭 변조된 시각자극에 의해 발생하는 안정상태 

시각유발전위를 이용해 시각 피로도를 낮추고자 하였다. 진폭 
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변조된 시각 자극은 40 Hz 이상의 높은 캐리어 주파수와 알파 밴드 

영역(9-12 Hz)의 낮은 모듈레이팅 주파수의 두 사인 함수의 

곱으로 발생되었다. 높은 캐리어 주파수는 시각 피로도를 줄이기 

위해, 낮은 모듈레이팅 주파수는 저주파수 하모닉 성분을 이용하기 

위해 적용되었다. 피험자 각각 최적화된 주파수 조합을 구하여 

온라인 실험에 적용한 결과 제안한 시스템의 성능은 기존의 

고주파수 또는 저주파수 안정상태 시각유발전위 기반 뇌-컴퓨터 

인터페이스와 동등하게 나타났다. 또한, 온라인 실험에서 피험자의 

주관적 평가를 통해 시각 피로도가 유의미하게 낮아졌음을 

확인하였다.  

세 번째로는 주파수 제한 문제를 극복하고 정확도를 향상시키기 

위해 안정상태 시각유발전위와 P300 전위를 조합한 하이브리드 

뇌-컴퓨터 인터페이스 스펠러를 제안하였다. 하이브리드 스펠러는 

서로 다른 주파수로 깜빡이는 아홉 개의 자극 군으로 구성되었으며, 

각 자극 군은 서로 다른 네 개의 알파벳을 임의의 순서로 

보여주었다. 이를 통해 깜빡이는 자극 군과 주기적으로 변하는 

글자들은 이중 주파수 안정상태 시각유발전위를 일으켰으며, 글자로 

이루어진 오드볼 자극은 P300 전위를 유발하였다. 오프라인/온라인 

실험을 통해 제안된 하이브리드 스펠러와 기존의 안정상태 

시각유발전위 또는 P300 기반 스펠러들의 성능을 비교하였다. 분석 

결과 제안한 하이브리드 스펠러가 이중 주파수 안정상태 

시각유발전위를 유발시킴을 확인하였으며, 또한 이중 주파수 자극이 

안정상태 시각유발전위 정확도를 높이고, 최종적으로 기존 

스펠러들에 비해 정보전달률을 향상시켰음을 확인하였다. 

결론적으로 제안된 안정상태 시각유발전위 기반 뇌-컴퓨터 

인터페이스들은 이중 주파수 안정상태 시각유발전위를 이용하여 

시각 피로도를 낮추고 정확도를 향상시켰으며, 주파수 제한 문제를 

해소하였다. 이러한 결과들은 안정상태 시각유발전위 기반 뇌-

컴퓨터 인터페이스 시스템이 일상 생활에서 더 안정적이고 

효과적으로 사용되는데 기여할 것으로 기대한다. 
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주요어 : 뇌-컴퓨터 인터페이스, 안정상태 시각유발전위, 이중 

주파수, 진폭 변조, 하이브리드 뇌-컴퓨터 인터페이스 
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