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ABSTRACT 

 

This dissertation presents a thoracic cavity 

segmentation algorithm and a method of pulmonary artery and 

vein decomposition from volumetric chest CT, and evaluates 

their performances. The main contribution of this research is to 

develop an automated algorithm for segmentation of the 

clinically meaningful organ. Although there are several methods 

to improve the organ segmentation accuracy such as the 

morphological method based on threshold algorithm or the 

object selection method based on the connectivity information 

our novel algorithm uses numerical algorithms and graph theory 

which came from the computer engineering field. This 

dissertation presents a new method through the following two 

examples and evaluates the results of the method. 

The first study aimed at the thoracic cavity 

segmentation. The thoracic cavity is the organ enclosed by the 

thoracic wall and the diaphragm surface. The thoracic wall has 

no clear boundary. Moreover since the diaphragm is the thin 

surface, this organ might have lost parts of its surface in the 

chest CT. As the previous researches, a method which found 
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the mediastinum on the 2D axial view was reported, and a 

thoracic wall extraction method and several diaphragm 

segmentation methods were also informed independently. But 

the thoracic cavity volume segmentation method was proposed 

in this thesis for the first time. In terms of thoracic cavity 

volumetry, the mean±SD volumetric overlap ratio (VOR), false 

positive ratio on VOR (FPRV), and false negative ratio on VOR 

(FNRV) of the proposed method were 98.17±0.84%, 

0.49±0.23%, and 1.34±0.83%, respectively. The proposed 

semi-automatic thoracic cavity segmentation method, which 

extracts multiple organs (namely, the rib, thoracic wall, 

diaphragm, and heart), performed with high accuracy and may 

be useful for clinical purposes. 

The second study proposed a method to decompose the 

pulmonary vessel into vessel subtrees for separation of the 

artery and vein. The volume images of the separated artery and 

vein could be used for a simulation support data in the lung 

cancer. Although a clinician could perform the separation in his 

imagination, and separate the vessel into the artery and vein in 

the manual, an automatic separation method is the better 

method than other methods. In the previous semi-automatic 
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method, root marking of 30 to 40 points was needed while 

tracing vessels under 2D slice view, and this procedure needed 

approximately an hour and a half. After optimization of the 

feature value set, the accuracy of the arterial and venous 

decomposition was 89.71 ± 3.76% in comparison with the gold 

standard. This framework could be clinically useful for studies 

on the effects of the pulmonary arteries and veins on lung 

diseases. 

------------------------------------- 

Keywords: chronic obstructive pulmonary disease (COPD), 

computed tomography, multi-organ segmentation, thoracic 

cavity, pulmonary artery and vein decomposition, two 

level minimum spanning tree constructions 
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CHAPTER 1 

General Introduction 
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1.1 Image Informatics using Open Source 

 

The concept of Open Source software (OSS) promotes 

the development and sharing of software source code under 

special licensing agreements that protects author’s copyrights 

while maintaining the distribution of free and open derivative 

work based on the original code. The most successful example 

is Linux operating system.  

Numerous Open Source initiatives in medicine leading to 

innovate and cost effective information systems supporting 

electronic patient record applications and medical imaging and 

PACS have emerged in the recent years. Recent reports 

showed that adoption of computerized medical records and 

medical informatics in medicine have significantly lagged behind 

expectations due to three major barriers: excessive cost, the 

transience of vendors, and the lack of command standards and 

adequate models many authors suggested. However Open 

Source software reduces these barriers by reducing ownership 

and development costs and facilitating the adaptation of 

customized tools for clinical practice[1]. 
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The impact of open source is even greater in specialized 

areas of medicine such medical imaging[2]. The Visualization 

Toolkit or VTK[3] is well recognized and widely adopted 

software library that runs on multiple platforms and has been 

used for numerous scientific and medical applications so far[4]. 

The recent adjunction of the Insight Toolkit or ITK[5], mostly 

funded by the US National Library of Medicine as part of the 

Visible Human Project, adds a wealth of additional rendering 

and image processing tools for medical applications.  

Quantitative assessment of lung structure along with 

indices of parenchymal pathology are taking on increased roles 

in the detection and tracking of pulmonary disease. To date the 

focus has largely been on airway morphometry and indices of 

parenchymal destruction, and air trapping. The parenchymal 

analysis has, in large part, focused on the use of the density 

histogram within the lung field to identify voxels falling below a 

given density threshold to define volumes of emphysema-like 

lung or air trapping. Some work has shown that texture 

measures can provide more accurate detection and 

quantification of pathology not limited to enlargement of 

peripheral air spaces[6]. Based on ITK and self-built in 
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libraries, MIRL of Asan medical center developed AView 

solution as quantitative tools for the assessment of the lung 

parenchyma, and used this solution in a number of large multi-

center studies. 

 

1.2 History of the segmentation algorithm 

In Pre-1980 to 1984, the term “medical image analysis” 

was not yet in common use. However, a variety of meetings had 

included work related to the analysis of medical and biomedical 

images. A particular characteristic of most of the work during 

these years was that researchers were primarily thinking in 

terms of analyzing two-dimensional image datasets[7]. 

In mid-to-late 1980s, to some extent, research in the 

classic problems of boundary finding, 2D image matching, and 

ideas related to pattern recognition-driven, and computer-

aided diagnosis continued. It is important to note that during the 

later part of this time frame, deformable models were 

discovered and then introduced into the field[8]. The concept of 

scale space theory to the problem was applied in negotiating the 

segmentation of complex medical image data by the type of 

scale-space hierarchies of intensity extrema[9]. Image texture 
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also was pursued as a feature useful for grouping and 

measurement in image analysis during this period, especially 

with respect to ultrasound image data[10].  

In 1992 to 1998, the analysis of fully 3D images became 

a key goal and more mathematical-model-driven approaches 

became computationally feasible. Especially, deformable model 

methods were now coming into their own for medical 

applications, as different groups developed fully 3D “snakes” 

that could be run on volumetric image datasets[11]. In addition, 

approaches that incorporated shape priors were also extended 

into 3D, and another line of research pursued by Cootes et al. 

reported novel ways of introducing priors using point sets[12]. 

An interesting alternative to objective function-based 

deformable contours also emerged in this time frame in the 

name of level set algorithm[13]. Despite the successes noted 

above, it is fair to say that, as the 1990s draw to a close, no 

one algorithm can robustly segment a variety of relevant 

structure in medical images over a range of datasets.  

Currently, methods for segmentation of medical images 

are divided into three generations, where each generation adds 

an additional level of algorithmic complexity[14]. The first 
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generation is composed of the simplest forms of image analysis 

such as the use of intensity thresholds and region growing. The 

second generation is characterized by the application of 

uncertainty models and optimization methods, and the third 

generation incorporates knowledge into the segmentation 

process. There are so much algorithms of variety technology 

for segmentation work where specific classification of 

segmentation algorithms is needed.  Table 1-1 shows the 

classification summary of segmentation algorithms. 

 

TABLE 1-1. Classification model summary 

Generation Region-based Boundary 

Following 

Pixel  

Classification 

1st •Region 

growing 

•Edge tracing •Intensity 

threshold 

2nd •Deformable 

models 

•Graph search 

•Minimal path 

•Target 

tracking 

•Graph search 

•Neural 

networks 

•Multiresolution 

•Statistical 

pattern 

recognition 

•C-means 

clustering 

•Neural 

networks 

•Multiresolution 

3rd •Shape models 

•Appearance 

models 

 •Atlas 

•Rule-based 
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•Rule-based 

•Coupled 

surfaces 

 

The proposed method for thoracic cavity segmentation 

corresponds to the Rule-based method of 3rd and region-

based method. This method extracts the special surface from 

the rib information. This extraction comes from the rule that 

the rib is in the boundary of the thoracic cavity. The pulmonary 

vascular segmentation and classification of arteries and veins 

matches to Graph search of 2nd and Region based. As 

separation using the shortest path algorithm is based on the 

graph theory, this algorithm corresponds to this category. But 

since the pulmonary vascular decomposition method uses the 

graph theory for the application of the interactive program, this 

algorithm must also be classified as interactive segmentation 

algorithm. 

 

1.3 Goal of Thesis Work 

Image segmentation is one of the most interesting and 

challenging problems in computer vision generally and medical 

imaging applications specifically. Segmentation partitions an 
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image area or volume into nonoverlapping, connected regions, 

which are homogeneous with respect to some signal 

characteristics. Medical image segmentation is of considerable 

importance in providing noninvasive information about human 

body structures that helps radiologists to visualize and study 

the anatomy of the structures, localize pathologies, track the 

progress of diseases, and evaluate the need for radiotherapy or 

surgeries. For these reasons, segmentation is an essential part 

of any computer-aided diagnosis (CAD) system, and 

functionality of the system depends heavily on segmentation 

accuracy. Moreover, this thesis has a further application in the 

improved imaging biomarker development through the 

segmentation software development specified on the thoracic 

region and pulmonary vessels.  

Chapter 2 proposed the advanced segmentation 

algorithm for the thoracic cavity, and Chapter 3 argues the 

semi-automatic algorithm for decomposition of the artery and 

vein. These two segmentation methods were based on the 

volumetric chest CT.    
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CHAPTER 2 

Thoracic cavity segmentation 

algorithm using multi-organ 

extraction and surface fitting in 

volumetric CT 
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2.1 INTRODUCTION 

 

 The thoracic cavity is the chamber of the human body 

that is protected by the thoracic wall and includes important 

organs such as the heart and lung. Quantification of the volumes 

of various features of the thoracic cavity, especially the amount 

of regional thoracic fat (fat within the inner thoracic cavity), 

would be of high clinical value because research over the past 

two decades shows that this fat may contribute to an 

unfavorable metabolic and cardiovascular risk profile[15, 16] 

and chronic obstructive pulmonary disease (COPD)[17]. For 

example, the levels of thoracic fat, which includes both 

epicardial and extra-pericardial fat, correlate strongly with 

pericardial fat levels (typically r > 0.85)[18]. Since 

subcutaneous fat and visceral fat associate with different 

metabolic risks, this means that the amount of fat in the 

thoracic cavity may be an important risk factor for heart 

disease[19]. In addition, muscle amount in the thoracic cavity 

could be important index for some cardiovascular diseases, 

because they represent volume of major vessels and heart1. In 

lung disease, the amount of visceral fat associates with low-



12 

 

grade systemic inflammation, the severity and changes in 

emphysema and task-related metabolic demands3,[20-22]. In 

patients of COPD, the amount of visceral fat, muscle and 

calcification together may be a more accurate risk factor than 

the amount of visceral fat, as only the tissue close to the heart 

and the lung can be considered. These observations indicate 

that intra-thoracic tissue composition assessments in patients 

with COPD may be clinically useful. The presence of calcified 

plaque in vessel also associates with heart disease and COPD, 

and inflammation.    

 However, the fact that the thoracic cavity contains 

various organs significantly complicates its segmentation. As a 

result, manual thoracic cavity segmentation is a labor intensive 

and time-consuming task and inter-observer reliability cannot 

be guaranteed, especially for longitudinal studies and large-

scale screening. To reduce the manual burden and improve 

reliability, automated computerized methods for segmenting the 

thoracic cavity region are needed. The present study describes 

the semi-computerized method that we developed for this 

purpose. This method involves a multi-organ extraction 

approach. To ensure that all the tissue inside the inner thoracic 
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cavity is included in the segmentation, the inner thoracic cavity 

is modeled by using the inner surface of the ribs. To segment 

the diaphragm, the diaphragm surface is modeled by using the 

bottom surfaces of the lung. To further improve the accuracy of 

diaphragm segmentation, additional segmentations of the heart 

and its surrounding tissue are performed. In addition, since the 

accurate extraction of mediastinum tissue is one of our clinical 

goals, the lung is subtracted from the thoracic cavity for clinical 

evaluation. In the present study, this proposed thoracic cavity 

segmentation method was tested in patients with COPD against 

the gold standard, namely, manual segmentation by two experts 

that was verified by an expert thoracic radiologist. It was also 

compared to three state-of-the-art thoracic cavity organ 

segmentation methods.  

 

2.2 RELATED STUDIES 

 

 The organs in the thoracic cavity are the rib, lung, heart, 

and diaphragm. Most of previous studies on thoracic cavity 

segmentation focus on segmentation of only one of these 

organs. Moreover, few focus on the volumetric accuracy of the 
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segmentation. The studies on thoracic cavity segmentation 

include that by Zhang et al., who proposed a segmentation 

algorithm of the mediastinum region that involved calculating 

four marginal points that constructed the mediastinum contour. 

However, this method did not accurately consider the 

diaphragm surface[23]. Chittajallu et al. proposed an optimal 

surface-detection method to identify the inner thoracic cavity 

and the inner points of the rib for the surfaces[24]. Many 

studies have sought to extract the diaphragm in chest CT[25-

27], including the study by Xiangrong et al., who proposed a 

method to extract the upper surface of the diaphragm[25]. 

They estimated the position of the diaphragm by deforming a 

thin-plate model that matched the bottom surface of the lung. 

Li et al. proposed a graphcut-cut method with a multi-column 

structure that allowed terrain-like surface estimation[28]. 

Yalamanchili et al. used this method to segment the 

diaphragmand adopted the cost function calculated on the basis 

of prior conditions to guide the surface into the target 

location[26]. Rangayyanet al. proposed a method for 

automatically delineating the diaphragm by modeling using the 

linear least-squares procedure, which extracted the initial 
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diaphragm model from the voxels of the base of the lungs. In 

addition, each dome of the diaphragm was modeled as a 

quadratic surface.  

Although most previous studies on heart segmentation 

focused on segmenting the heart chambers[29], several also 

studied volumetric whole heart segmentation[30, 31]. Funka-

Lea et al. proposed an isolation algorithm of the heart that used 

a particular means of initiating and constraining the graph-cut 

technique[30]. In the initiating step, an ellipsoid is grown 

progressively from the entry point to the heart wall. In the 

energy equation of the graph-cut, the blob constraint is added 

to make cuts that look like spheres[30]. Zheng et al. proposed a 

heart segmentation method that uses optimal shape initialization. 

In this method, the optimal mean shape is initialized in the 

location of the heart. The mean shape is then aligned with the 

detected pose, followed by boundary refinement using a 

learning-based boundary detector. That paper insisted that this 

algorithm is more accurate and faster than the graph-cut based 

method[31].  

Our proposed method is a shape prior level set-based 

the heart segmentation method. This method uses a sphere as 
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the shape prior. The initial shape grows while maintaining the 

shape prior until this shape meets the stopping condition[32].  

 

2.3 THE PROPOSED THORACIC CAVITY 

SEGMENTATION METHOD 

 

Figure 2-1. Schematic depiction of the steps in the proposed 
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thoracic cavity segmentation method. 

 

In our method, airway segmentation, lung and heart 

segmentations and rib detection are performed first. After this, 

the thoracic cavity region is segmented by finding the five 

surfaces that enclose the thoracic cavity. The inner thoracic 

cavity is modeled by four surfaces along different directions 

from the inner points of the ribs. In addition, the diaphragm 

surface is approximated by the base voxels of the lung. These 

five terrain-like surfaces are approximated by a 3-dimensional 

(3D) surface-fitting method. Supplementary segmentations of 

the heart and its surrounding tissue are performed to improve 

the accuracy of diaphragm segmentation. For heart 

segmentation, two seed points are needed. Figure 2-1 shows a 

flow chart that schematically depicts our method. 

 

2.3.1 Airway and lung segmentation 

In our method, airway and lung segmentation are 

performed by using a thresholding method. The airway region 

is removed from the lung segment to differentiate the left and 

right lungs. From the seed point (SP1) that is automatically 
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marked on the top of the airway region, a seeded region-

growing method is performed to search for 3D connected 

regions below -924 Hounsfield Units (HU). This value was 

selected empirically on the basis that air is at approximately -

1000 HU while soft tissues range of -100 to 200 HU[33]. The 

SP1 in the airway can be at any point in the airway. Therefore, 

moving from the top slice to the bottom slice, we search the 

first slice for exactly three connected components with a 

specific size. SP1 is determined by the center of inertia of the 

third largest connected component, because two other 

connected components would be the left and right lungs. As 

leakage may have occurred during region growing in airway 

segmentation, explosion-controlled region growing was 

performed[34].  

In our method, to segment the lung, initial lung 

segmentation using a threshold value of -474 HU is performed. 

Previous studies have selected predetermined thresholds that 

range from -450 to -550 HU[35, 36]. In the present study, -

474HU was chosen empirically to be the threshold value on the 

basis of the characteristics of our chest CT scans. The final 

lung is generated by subtracting the airway from the initial lung. 
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To differentiate the right and left lungs, connected components 

analysis on the final lung region is performed by selecting the 

two largest connected components. If the lung is not split after 

removing the airway region, the lung-split algorithm is 

performed[37]. This algorithm performs iterative eroding until 

the lung is split. Finally to smooth the lung boundary, the 

rolling-ball filter implemented by the ITK Toolkit[38] is 

applied; for this, the radius of the kernel is set to 4.  

 

2.3.2 Surface-fitting method 

The gridfit function, which was developed by using 

MATLAB R2012a (Mathworks Inc., Natick, MA, USA), is a 

surface modeling tool that fits a terrain surface (x,y,z) from 

scattered data[39]. Since the gridfit function is an approximant, 

not an interpolant, it uses the least-squares approximation to 

calculate the ill-conditioned solution in a linear algebra problem.  

The problem is described in the following equation: 

 Ax y  (2-1) 

where the number of data points is t, the number of the grid 

nodes is s, A is a t × s matrix, x is a s × 1 matrix, and y is a 

t × 1  matrix. x and y are point arrays, and x is an unkown 
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quantity. Matrix 'A' represents geometric relations between x 

and y. Four grid nodes constitute a rectangle where the 

approximation of the z value can be evaluated by a triangle 

interpolation. However, since the input data points are not 

evenly distributed, there are only a limited number of 

rectangles for calculating the z value. To determine the 

relationship between neighboring grid nodes, the regulator was 

suggested. In the gradient regulator, the following relationship 

must be satisfied at an arbitrary rectangle vertex V(x, y): 

( 1, ) 2 ( , ) ( 1, y) 0V x y V x y V x      (2-2) 

( , 1) 2 ( , y) V(x, y 1) 0V x y V x      (2-3) 

This relation is expressed by the following equations.  

0Bx   (2-4) 

where B is a 2s × s  matrix. Equations (2-1) and (2-4) are 

combined as follows: 

0

A y
x Cx

B

   
    

   
 (2-5) 

where 𝜆 controlls the smoothness of the surface and C is a 

(t + 2s) × s matrix. The solution could be provided by following 

equation[40]. 
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 
1

0

T T
y

x C C C
  

  
 

 (2-6) 

The equation was solved in the meaning of the minimum mean 

square root method[40].  

 

2.3.3 Inner thoracic cavity surfaces 

Inner wall of thoracic cavity are modeled by four partial 

surfaces. These surfaces are fitted by terrain-like surfaces 

from the point cloud of inner rib voxels. First, ribs were 

extracted as regions where the pixel intensities were larger 

than the value of 120 HU. Among the segmented regions, only a 

largest connected component was selected as the rib region. 

The sternum or breastbone is a flat bone that lies in the middle 

front part of the rib cage. As the inaccurate segmentation of the 

sternum could make the curved horizontal fitting surface in the 

sternum region, the selection of the threshold was important. In 

general, HU value of the sternum is slightly lower than the 

other bone. There was a trade-off between the inclusion of the 

sternum and the occurrence of the noise in determining HU 

value. 
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Figure 2-2. Five fitted surfaces. (a) The anterior left thoracic 

surface (blue), (b) The posterior right thoracic surface (red) (c) 

The dorsal view of the surfaces of (a) and (b) without the 

diaphragm (d) The left and right thoracic surfaces (red and blue, 

respectively) with the diaphragm surface (green) 

 

The inner wall of thoracic cavity is found by anterior-

posterior(AP) on the upper and lower ribs and radial ray 

projection on the left and right ribs[41]. AP rays are projected 

from the line crossing the centers of the left and right lungs 

while radial rays are projected from the centers of each half 

lung. The 3D surface-fitting are the points where the 

projection rays first touch the rib. To exclude points belonging 

to different bones such as scapular, the Euclidean distance field 

from the boundary of the lungs is generated by a volume-based 

method[42, 43] and the point cloud outside the 20 distance 

offset is removed.  

Four point clouds are converted into terrain-like 
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surfaces by the gridfit algorithm. As described in section III.B, 

this algorithm approximates the 3D grid points by solving a 

linear algebra equation with a gradient regulator[39]. The 

resulting four surfaces are shown in Figure. 2-2. Thegridfit 

function with 3mm by 3mm cells is performed and the fitting 

result is interpolated into the original volume spacing. 

 

2.3.4 Diaphragm surface modeling 

The diaphragm is a thin and double-domed muscle that 

separates between the thoracic and abdominal cavities. It is 

located below the lungs and forms the floor of the thoracic 

cavity on which the heart and lungs rest[26]. The similar 

appearance of the organs surrounding the diaphragm and the 

poor resolution of non-contrast CT scans makes the automatic 

segmentation of the diaphragm less accurate than inner thoracic 

cavity surface segmentation.  
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Figure 2-3. Extracting the thoracic cavity volume. (a) Five 

thoracic surfaces. The surfaces are depicted in red, magenta, 

light green, and blue, and the diaphragm is depicted in dark green 

as shown in the legend to FIG. 2-2. (b) Thoracic cavity volume 

(yellow) (c) Three-Dimensional display of the tissue inside the 

final thoracic cavity  

 

The lower parts of the lung surfaces could be the initial 

left and right diaphragmatic surfaces. Zhou et al. extracted 

these diaphragm surfaces by considering the surface normal 

direction[25]. To calculate the surface normal direction, we 

must convert the volume into the surface composed of meshes 

by a marching cube algorithm[44]. Therefore, 3D ray 

projection from the lower position is easier than extracting the 

surface normal direction. In our method, the diaphragm surfaces 

are extracted by the 3D ray projection method from the two 

centers of the bottom of each lung along the half-sphere 

direction. The x and y positions of the starting point of ray 
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projection are calculated from the mass center of each half lung 

in the axial slice of the lung containing the liver dome. In 

addition, the z position is selected from the bottom slice 

containing the lung. The ray projection is performed along the 

half-sphere. To remove the noise voxels that are not the 

diaphragm, only the voxels below the liver dome are selected 

and the connected components whose voxel counts are below 

1000 voxels are removed by labeling operator.  

The diaphragm surface is located below the heart and 

above the liver in the central region. Therefore, for 3D surface 

fitting, the initial left and right diaphragmatic lung surfaces are 

input point cloud. The gridfit function is used for this fitting. 

Figure 2-3a shows the axial view that contains the inner 

thoracic cavity surfaces and the diaphragm surface.  

In the present study, three state-of-art methods for 

modeling the thoracic cavity were implemented and compared 

with our proposed method. The Thin plate spline (TPS) method 

was developed on the basis of the TPS deformation method of 

Zhou et al.[25]. The base surface of each lung was considered 

as the diaphragm candidate with which the plate was deformed 

by using TPS deformation. To find the optimal surface of the 
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diaphragm segment, Li et al. and Yalamanchili et al. applied the 

graph-cut algorithm to the diaphragm segmentation12, [28]. 

Finally, the gridfit method, as explained in section III.B, 

approximates the surface between the base surfaces of each 

lung by using the gridfit function. Comparison of the gridfit 

method to our proposed method will show the effect of adding 

the heart and its surrounding tissue. Since the gridfit method 

yields a similar diaphragm shape as the TPS method, the 

addition of the heart and its surrounding tissue to the TPS 

result should improve the segmentation. 

 

2.3.5 Heart segmentation 

We performed two-stage level set method to extract 

the heart and the pericardial fat from volumetric chest CT. In 

the first stage, the heart segmentation was performed by the 

level set method with a sphere as a shape prior. In the second 

stage, the surrounding pericardial fat was segmented with 

shape of the heart as a shape prior which was the segmentation 

result of the first stage. As pericardial fat is located around the 

heart, we performed the pericardial segmentation with the 

boundary of the heart as the starting position. Because the 
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diaphragm exists between the heart and the liver, the 

segmentation of the heart and its pericardial fat is needed to 

enhance diaphragm segmentation result.  

In our method, the operator places two manual points on the 

heart, namely, on the upper and lower points of the heart on the 

sagittal plane that crosses near the center of the heart. From 

these seed points, the center (ch) and the estimated radius (re) 

of the heart are calculated as follows: 

   1 2 1 2

1 1
,

2 2
h ec p p r p p     (2-7) 

where p1 and p2 are the manually selected points. The level set 

method using a sphere as the shape prior is used to segment 

the heart. The initial shape for the level set is the sphere that 

uses the manually predetermined ch as its center and 0.6* re as 

its radius; it is located on the sagittal plane of the center of the 

heart. The speed function is based on an edge potential map 

with user-defined masking to prevent leaking in the following 

equation[45, 46]:  
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where u is set by 0 HU, kI is a voxel of speed image, and I(x,y,z) 

is an image voxel. Generally, the user-defined value is set to 

prevent leakage across the edges.  

This shape prior level set method is implemented by 

modifying the 

GeodesicActiveContourShapePriorLevelSetImageFilter in ITK 

Toolkit[38]. This filter adopted the level set method using a 

shape prior from Leventon et al.'s paper[32]. In this algorithm, 

the function of a shape prior was used to restrict the evolution 

of the level set surface considering the shape prior. The reason 

for heart segmentation is enhancement of diaphragm 

segmentation which would be hard to delineate correct 

especially below the heart. Compared with original filter 

implementation, shape and pose prior terms are changed for 

optimization purpose[32]. The shape prior term was replaced 

by using a Limited memory Broyden Fletcher Goldfarb Shannon 

(LBFPS) optimizer. This optimizer can restrict the search 

space. The pose prior was not used because the shape prior is 

a sphere[47]. This optimizer had four parameters: the radius, 

and the x, y and z positions from the center of the heart. The 

restricted search ranges of the optimizer are as follows: radius 
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(0.4*re ~ 1.4*re), and the x, y and z positions from the center of 

the heart (-10 ~ 10 mm).  

 

Figure 2-4. Segmentation of the heart and its surrounding tissue. 

(a-c) The result of segmentation of the heart and the 

surrounding tissue in three adjacent three sagittal planes. The 

heart is red and the surrounding tissue is blue. 

 

 

Figure 2-5. The convergence rate graph of the heart 



30 

 

segmentation of two cases (max RMS error : 0.1, max iteration : 

250). 

 

After heart segmentation, the surrounding region of the 

heart is also segmented by a level set method. The initial shape 

is the result of the previous heart segmentation. To calculate 

the speed function of kI, u is set as 0 where the voxel value is 

between -400 and 0HU, while the other region is set as 

described by the equation (2-8). This level set method is 

implemented by using the ShapeDetectionLevelSetImageFilter 

in ITK Toolkit [38]. The segmentation of the heart and its 

surrounding tissue segmentations are performed on resampled 

volume with 2-mm iso-cubic voxels to improve the execution 

speed. The results of segmentation of the heart and its 

surrounding tissue are shown in Figure 2-4a-c. Figure 2-5 

shows the convergence rate and termination conditions of level 

set algorithms using two example cases. 

 

2.3.6 Extraction of thoracic cavity volume  

The volume of the thoracic cavity can be evaluated on 

the basis of the five thoracic cavity surfaces by using Algorithm 
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2-1. The result of thoracic cavity segmentation is shown in 

Figure 2-3b. The final thoracic cavity volume is modified by 

adding the segmentation result of the heart and its surrounding 

tissue to decrease the false negatives. This method was used 

for the evaluations described in the Results section. The 3D 

view of the final thoracic cavity volume is shown in Figure 2-

3c. In addition, the modified diaphragm surface can be extracted 

from the final thoracic cavity volume by boundary extraction 

and surface selection of the diaphragm surface. As described in 

section III.C, four surfaces are extracted to model the inner 

thoracic wall surface. These surfaces construct the point cloud 

designated as PC. PC is converted into a k-d tree for nearest 

neighbor searching by using Approximate Nearest Neighbor 

(ANN) Library[48]. The boundary point whose distance from 

PC is shorter than 10 mm is considered to be the inner thoracic 

wall, while the point that is more than 10mm from PC is 

considered to be the diaphragm surface. This method can divide 

the boundary surface into the thoracic wall and the diaphragm 

surface in Section III.F. However, the upper part of the thoracic 

cavity remains undelineated, especially because the four fitted 

surfaces do not provide the exact boundary line of the 
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mediastinum in the upper part. Therefore, in the apex of the 

lung, we interpolate the region of the left lung, right lung and 

airway with the rolling ball algorithm using a 40 mm-sized 

kernel. The result volume is used to extract the upper boundary 

of the thoracic cavity. In addition, to quantify the fat levels only, 

the pulmonary vessel structure is excluded from the 

mediastinum region by using morphological closing after 

deleting the lung region from the thoracic cavity region.  
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Algorithm 2-1. Pseudo algorithm for extracting thoracic cavity 

volume mask. 

Function Thoracic cavity volume mask extraction  

Input: lung mask Lv, the z range (a, b) of Lv, surfaces Si, i = 

1,2,…,5 

Output: thoracic cavity mask TV 

Set an empty mask M1. 

Convert surfaces to volume mask and add them to M1. 

M2 = ~M1 

fork = a +0.05*( b- a ) to b 

   Perform connected component analysis on M2(·,·,k) 

   Calculate the overlapping area (OA) of each connected 

component with LV. 

   Find the connected components of OA to remove the 

small size component.    

   Add these connected components to TV. 

    end for 

 

2.3.7 EVALUATION METRICS AND 

STATISTICAL ANALYSES 

To evaluate the performance of our thoracic cavity 
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segmentation algorithm, it was compared to three conventional 

methods, namely, the TPS, graphcut, and gridfit methods. The 

manually segmented results of two expert radiographers and a 

thoracic radiologist were regarded as the gold standard. The 

gold standard of thoracic cavity segmentation includes the heart, 

the lung, the diaphragm, the pulmonary trunk, major vessels, 

and the esophagus in the mediastinum region. An expert 

manually delineated the diaphragm surface with -150 to 50 HU 

WWL, with which the diaphragm could be seen directly. The 

thoracic cavity segmentation was performed by finding the five 

surfaces enclosing thoracic cavity. The three conventional 

methods can extract the only diaphragm surface among the five 

enclosing surfaces. To test the three conventional methods 

correctly, we used the same four surfaces with the proposed 

method for thoracic wall. Six evaluation metrics were calculated: 

volumetric overlap ratio (VOR), the false positive ratio in VOR 

(FPRV), the false negative ratio in VOR (FNRV), average 

symmetric absolute surface distance (ASASD), average 

symmetric squared surface distance (ASSSD), and maximum 

symmetric surface distance (MSSD)[49]. In the present study, 

the boundary surface of the result volume mask was segmented 
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into two surfaces by the procedure described in Section III.F. In 

addition, three surface distance metrics ASASD, ASSSD, and 

MSSSD were calculated for both the inner thoracic wall and the 

diaphragm surface. To compare our algorithm to the three 

conventional algorithms, SPSS 17.0 (Armonk, New York, USA) 

was used to generate descriptive statistics and perform paired 

t-tests. The significance levels were set to 0.05, 0.01, and 

0.001. 

 

2.4 EXPERIMENTAL RESULTS  

 

2.4.1 Subjects 

In total, 50 patients with COPD underwent volumetric 

CT scans in the department of radiology, Asan Medical Center, 

South Korea. The CT scans were obtained by using a 16-multi 

detector row CT scanner (Siemens Sensation 16, Erlangen, 

Germany) with 0.75mm collimation, a smooth kernel (B30f), 

and 0.75mm slice thickness. The two radiographers with more 

than 5 years of experience delineated the rib cavity boundary 

by modifying the result of the proposed segmentation method. 
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An expert thoracic radiologist with more than 10 years of 

experience further modified these result and confirmed their 

validity as gold standard results. 

 

2.4.2 Results 

 

TABLE 2-1. Accuracy of the four thoracic cavity segmentation 

algorithms relative to the gold standard 

 

 TPS method Graph-cut 

method 

Gridfit 

method 

Proposed 

method 

VOR 

(%) 

97.28±1.41

***  

96.41±0.29

***  

97.40±1.48

***  

98.17±0.

84  

FPRV 

(%) 

0.28±0.15  2.76±2.10*

** 

0.28±0.16  0.49±0.2

3  

FNRV 

(%) 

2.45±1.41*

** 

0.82±0.47  2.32±1.49*

** 

1.34±0.8

3  

ASASD 

for 

thoraci

c wall 

(mm) 

0.33±0.17*

** 

0.57±0.35*

** 

0.33±0.19*

** 

0.28±0.1

2 

ASSSD 

for 

thoraci

c wall 

(mm) 

1.59±0.86*

** 

2.82±1.66*

** 

1.65±0.96*

** 

1.28±0.5

3 

MSSD 

for 

thoraci

c wall 

(mm) 

27.33±9.68

*** 

39.38±14.5

4*** 

27.11±10.1

2** 

23.91±7.

64 

ASASD 

for 

3.15±1.72*

** 

4.25±3.29*

** 

2.98±1.78*

** 

1.73±0.9

1 
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diaphra

gm 

(mm) 

ASSSD 

for 

diaphra

gm 

(mm) 

6.16±2.80*

** 

7.16±4.83*

** 

6.16±2.95*

** 

3.92±1.6

8 

MSSD 

for 

diaphra

gm 

(mm) 

32.64±11.3

5*** 

36.15±15.3

8** 

30.95±10.6

8*** 

27.80±10

.63 

All p values derive from paired t-tests comparing our method 

with each of the three conventional methods. * p< 0.05, ** 

p<0.01, *** p<0.001. 

VOR: volumetric overlap ratio; FPRV: false positive ratio in VOR; 

FNRV: false negative ratio in VOR; ASASD: average symmetric 

absolute surface distance; ASSSD: average symmetric squared 

surface distance; MSSD: maximum symmetric surface distance 

 

Every metric of volumetry accuracy was evaluated 

using the result of each method and the gold standard. 

Evaluation results of these metrics were shown in Table 2-1 

and pair-wisely compared among our proposed method and 

three other state-of-art methods including TPS, graphcut and 

gridfit methods described in Section III.D. As the accuracy of 

inner thoracic surface was higher than that of the diaphragm 

surface, we focused on the accuracy of diaphragm segmentation 

and compared the performances of our method and other 

diaphragm segmentation methods with the same inner thoracic 
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surface extraction algorithm. In the evaluation, the lung volume 

of thoracic cavity was not excluded to reduce ambiguity in the 

pulmonary vessel region. 

Relative to the gold standard, our proposed method was 

significantly more accurate than the three conventional methods, 

in terms of most metrics, especially the surface distance 

metrics. The TPS and gridfit methods had significantly lower 

FPRV values than our method (p<0.001). While the graph-cut 

method yielded a significantly better FPRV than our method, it 

was associated with a significantly lower FNRV (p<0.001). As 

shown by the ASASD and ASSSD values, three methods and 

our method all modeled the inner thoracic surface markedly 

better than the diaphragm surface (p<0.001).  

The gridfit method approximates the surface by using a 

gradient regulator. This regulator makes a curved surface in the 

upper direction between the bases of the left and right lungs. 

Therefore, the gridfit method yielded a relatively high rate of 

false negatives and a low rate of false positives. If the regulator 

were the spring, the approximated surface would be similar to a 

flat surface. Since addition of the heart and its surrounding 

tissue increases the resulting volume of the thoracic cavity, the 
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addition of the heart and its surrounding tissue could increase 

VOR by reducing the false negatives. 

 

Figure 2-6. The segmentation results of two cases by the gold 

standard method (a-c and g-i) and the proposed algorithm (d-f 

and j-l). The columns show the axial, sagittal, and coronal 

images of the cases from left to right. For the first case (a-f), 

the thoracic cavity volumetry metrics VOR, FPRV, and FNRV of 

our method relative to the gold standard were 99.37%, 0.22%, 

and 0.41%, respectively. The ASASD, ASSSD, and MSSD for the 
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thoracic wall were 0.10 mm, 0.51 mm, and 11.13 mm, 

respectively while the ASASD, ASSSD, and MSSD for the 

diaphragm surfaces were 0.49 mm, 1.33 mm, and 16.02 mm, 

respectively. For the second case (g-l), the VOR, FPRV, and 

FNRV were 94.27%, 0.31%, and 5.43%, respectively. The 

ASASD, ASSSD, and MSSD for the thoracic wall were 0.75 mm, 

3.44 mm, and 50mm, respectively while the ASASD, ASSSD, and 

MSSD for the diaphragm surfaces were 6.12 mm, 11.45 mm, and 

56.38 mm, respectively. 

 

 

Figure 2-7. The 3d display of segmentation results of four 

cases (yellow : thoracic cavity, red : heart) (a)~(b) The 3d 

display for two cases of Figure 6 (c)~(d) The 3d display for two 

additional cases 
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The segmentation result of two cases was shown in 

Figure 2-6 in Multi-Planar Rendering view. The gold standard, 

convergence graph of the heart segmentation (Fig. 2-5), and 

the 3D display of the diaphragm (Fig. 2-7a and b) were also 

provided. To present more information about the diaphragm 

segmentation, we added the diaphragm segmentation result 

figures of two additional cases (Fig. 2-7c and d).   

  

2.5 DISCUSSION 

There could be a gap between the surface of the lung 

and the thoracic cavity surface. To evaluate the total fat 

composition of the thoracic cavity, the tissue in this gap should 

be included in thoracic cavity segmentation. Therefore, we used 

the inner surface of the ribs to model the thoracic cavity 

surface. This could be a more robust method for measurements 

in patients with various lung diseases. 

Since the heart is sometimes attached to the liver, its 

boundaries are not clear in volumetric CT. Therefore, there 

could be leakage into the liver in this attached region. To 

prevent severe leakage, level set segmentation using a sphere 

as the shape prior was used for the heart segmentation in our 
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method.  

As mentioned in the introduction, measuring the intra-

thoracic tissue composition of patients with COPD could be 

useful for risk stratification. When making the mask for the fat 

quantification, we exclude the lung from the thoracic cavity 

region. In this case, the thoracic cavity region for a tissue 

composition analysis can be ambiguous, especially in the upper 

part of lung and around the airway. Moreover, it is difficult to 

determine how to consistently exclude the pulmonary vessel 

structure. Therefore, a systematic method of thoracic cavity 

definition and segmentation that permits reliable and accurate 

fat quantification is needed. The present paper proposed such a 

method. This method could also be used to evaluate the tissue 

outside the thoracic cavity, and the heart segmentation 

component could be used to automatically differentiate and 

measure epicardial fat. As far as we know, this is the first study 

on thoracic cavity segmentation in volumetric CT.  

The present study showed that our method delineated 

the thoracic wall more accurately than the diaphragm surface. 

This reflects the fact that it is very difficult to identify the 

diaphragm surface accurately, especially around the backbone, 
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because of the fat between the diaphragm and the lung (Fig. 2-

5h and k). Supporting this is two studies that reported DICE 

similarity coefficients of the inner thoracic wall and diaphragm 

surfaces of  0.985±0.005 and 0.942±0.010, respectively[24, 

26].  

When our method was compared to the conventional 

TPS, gridfit, and graph-cut methods, The TPS and gridfit 

methods had a significantly lower FPRV (p<0.001). The TPS 

and gridfit methods also missed significant amounts of inter 

thoracic tissue, which explains why their FNRV values were 

significantly higher than that of our proposed method (p<0.001). 

The graph-cut method did not accurately detect the thin 

diaphragm surface around the sternum, which resulted in a 

significantly higher FPRV compared to our method (p<0.001). 

The graph-cut method did not use the regulator but limit the 

difference between the z positions of grids by the inclined edge 

of the graph. Therefore the divergence sometimes occurred in a 

different direction, when information from the image could not 

guide the surface accurately.  

This study had several limitations. It was based on a 

limited number of CT scans, only studied patients with COPD, 
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and used the same CT parameters. In addition, our method did 

not segment the diaphragm and heart with sufficient accuracy. 

The heart segmentation could be leaked into the liver through 

the vague boundary between the heart and the liver, although 

the shape prior information restricts this leakage. In addition, 

the segmentation result does not guarantee the smooth 

diaphragm surface due to discontinuity between the added 

region and the original thoracic volume. Moreover, our method 

needs two manual seeds on the heart, which means that fully 

automated thoracic cavity segmentation is still not possible. 

Additional studies will be performed to improve the heart 

segmentation method. For this, the method of Funka-Lea et al. 

will be used[30]. His method is more robust with regard to the 

location inside the heart in which the seed point should be 

placed. We will also improve the robustness of our proposed 

method with regard to CT reconstruction using various 

parameters. In addition, the diaphragm segmentation should be 

improved by using the upper boundary of diaphragm muscle, not 

the lower boundary of the lung. Finally, we will use our method 

to quantify the fat inside and outside the thoracic cavity, and 

determine the ratio between these quantities, in different 



45 

 

clinically important conditions, including diffuse interstitial lung 

disease, pulmonary tuberculosis, diabetes mellitus, sleep apnea, 

angina pectoris. 

 

2.6 CONCLUSION 

The composition of the tissue in the thoracic cavity 

region is regarded as being clinically important. However, it 

remains difficult to accurately segment the thoracic cavity 

region in volumetric CT because this region involves many 

organs and the diaphragm surface is unclear. In this paper, we 

proposed a semi-automated thoracic cavity segmentation 

method in which multiple organs, namely, the rib, lung, heart 

and diaphragm, are extracted, thus permitting delineation of the 

five surfaces that enclose the thoracic cavity. Our method was 

significantly more accurate relative to manual segmentation and 

delineation than three state-of-art methods. This study could 

be used as a framework to analyze the tissue composition of the 

thoracic cavity in various diseases.  
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CHAPTER 3 

Semi-automatic decomposition 

method of pulmonary artery and 

vein using 2-level minimum 

spanning tree constructions in 

nonenhanced volumetric CT 
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3.1 INTRODUCTION 

Quantitative assessments of the pulmonary vascular tree 

structures are important for analyzing vascular morphology and 

the effects on lung diseases [50]. Exact structural analyses of 

the pulmonary vasculature are difficult because each vascular 

tree contains a mixture of arterial and venous trees [51]. 

Moreover, partial volume effects and motion artifacts can make 

such analyses particularly problematic[52]. 

Especially for patients with chronic obstructive pulmonary 

disease (COPD), this quantification is becoming more and more 

important [53-55]. Matsuoka et al. recently reported a 

correlation between small pulmonary vessel areas and 

pulmonary function test (PFT) results [53]. Uejima et al. 

reported a correlation between vascular alterations (measured 

using cross-sectional area and airflow impairment) and normal 

pulmonary function in nonsmokers [54]. Estepar et al. also 

evaluated small-vessel volumes that were normalized to the 

total blood-vessel or nonvascular-tissue volumes in smokers 

[55]. The small-vessel volume was calculated using lobe-

specific measurements, and vessels < 5 mm2 were considered 
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small. In our group, the distributions of the pulmonary arteries 

and veins were separately evaluated in order to clarify the 

effects on lung diseases with inner offset surfaces at 5-mm 

intervals from the distal pulmonary structures [56]. 

In general, the automated extraction of accurate 3D 

pulmonary vascular structures from non-contrast CT images is 

difficult. Furthermore, explicit classification of the pulmonary 

arterial and venous subtrees is typically unsuccessful, although 

satisfactory segmentation can be performed.  To solve this 

problem, the automatic decomposition of the pulmonary arteries 

and veins needs to be developed. Park et al. tried to perform 

this decomposition by constructing minimum spanning trees 

(MST) with 3 vertex weights and edge weights on whole-

vessel volumes [52]. However, this method was based on 

manually placing the seeds with the label and, moreover, must 

be performed on whole-vessel voxels, which increases the 

running time for MST construction. 
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Figure 3-1. Multi-root minimum spanning tree construction 

theory. 

 

The Dijkstra algorithm is a well-known, shortest path-

finding algorithm used for constructing MSTs [57-59]. The 

Dijkstra algorithm is extended to construct MSTs by adapting 

multiple source inputs, which are defined as MDijkstra (Multi-

root Dijkstra algorithm) [38, 60] (Figure 3-1). Since the 

execution time for MST construction under the whole-vessel 

voxels is long, 1 MST construction was divided into 2-level 

MST constructions. The MST construction for the first level 

was made in the preprocessing step, and in the interactive 
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decomposition processing time only the second-level MST 

construction was performed to reduce execution time. Since 

manually placing the seeds of the arterial and venous trees is 

time-consuming work, an automatic method of finding roots is 

an important part for automating vessel decomposition, 

especially for the second-level MST construction. Herein, we 

propose a method for automatically finding roots by filtering the 

morphological and spatial features of the vesselsand detecting 

important subsets of vessel skeleton-subtrees. Automatic 

root-finding will be combined with 2-level MST constructions 

in order to make an interactive program. This framework was 

designed to maximally reduce additional manual operations for 

split and merge operations. 

In our present report, related studies are summarized in 

Section 2, the arterial and venous decomposition method is 

presented in Section 3, the statistical analysis method for the 

feature value set and efficient manual editing method are 

described in Section 4, decomposition evaluations are proposed 

in Section 5, and conclusions are presented in Section 6. 
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3.2 RELATED STUDIES 

There are several studies on the separation of pulmonary 

arterial and venous subtrees on CT. Buelowet al. and Yonekura 

et al. previously proposed arterial and venous separation 

algorithms based on airway segmentation that used the specific 

anatomical features of the pulmonary arterial and venous trees 

[61, 62]. However, if the attachments between the artery and 

vein trees were severe, these methods could yield inaccurate 

separation. Lei et al. developed a separation method for arterial 

and venous trees based on magnetic resonance angiographic 

imaging data with fuzzy connectedness [63]. Although the use 

of fuzzy connectedness with given seeds is valid, that study 

was restricted to just the single separation of arterial and 

venous trees. Saha et al. proposed that multiscale 

topomorphological openings could be used to separate arteries 

and veins using 2 sets of seeds for arterial and venous trees, 

along with fuzzy distance transformation and fuzzy connectivity 

[64]. This research modified the fuzzy connectedness idea into 

a multiscale concept. In that approach, the user had to spend 2–

3 minutes performing 1 separation. Although this group 

developed a local, updated procedure to improve the execution 
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time [65], the fundamental solution was not provided. 

Park et al. proposed an automatic classification method for 

pulmonary arteries and veins that uses MDijkstra and weights 

to construct MSTs [52]. However, this method requires the 

conversion from volume data to a 3D point set, manual seed 

points by an expert, and a long operating time. Bemmel et al. 

suggested a level set-based arterial and venous separation 

method [66]. In this approach, the voxels are labeled as arterial 

or venous based on the arrival time at their respective surface. 

Propagation is governed by external forces related to the 

feature images and internal forces related to the geometry of 

the level sets. This evolution was initialized by the central 

arterial axes and central venous axes of the 2 surfaces, and this 

initialization is similar to our proposed method because our 

method uses the skeleton and mapping table to extract the 

whole-vessel volume. Chowriappa et al. proposed a 3-

dimensional vascular skeleton extraction and decomposition 

method [67]. The decomposed structures were classified to 

identify aneurysm sacs for computer-aided detection [68]. 

They differentiated the vascular tree based on convex 

decomposition with approximate weights and a 3D shape index 
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analysis that was invariant under the natural deformations, 

which were composed of rigid and non-rigid deformations 

without a topology change. 

Several methods have been proposed for vessel 

skeletonization. In medial axis transformation, a maximally 

inscribed sphere is used to track the centerline, which can be 

used for skeletonization. Although this method is an advanced 

skeleton extraction method that uses the average outward flux 

[69], for small vessels with < 2 voxels it is not possible to 

exactly extract the thin centerline. In this study, the 3D 

thinning algorithm was used to extract the vessel skeleton, 

especially including small-diameter vessels with topology 

preserving aspect and simple gradual peeling. [70]. 

To reconstruct the vascular trees, Szymczak et al. 

proposed a forest to connect the persistent maxima with the 

short edges and improve the forest by applying simple 

geometric filters that trim short branches, fill gaps in blood 

vessels, and remove spurious branches from the vascular tree 

[71]. The simple geometry method filters and trims short 

branches based on Kruskal’s MST algorithm. That method 

constructed the minimum forest that uses the edges to connect 
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the points in a 3D point set that are shorter than the given 

threshold. Figueiredo et al. performed geometrical 

reconstructions using points, especially curved reconstructions 

for planar cases [72]. The point set can be separated into 

clusters by removing atypically long edges from the MSTs. 

This paper proposes 2 heuristic criteria for determining when 

an edge is too long. One is a global criterion, which removes the 

edges in order of decreasing length. The other is a local 

criterion, which removes edges that are much longer than the 

average length of the neighboring edges. 
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3.3 ARTERY AND VEIN DECOMPOSITION 

3.3.1 Overall workflow 

 

Figure 3-2. Flow chart of the overall procedure. 

 

The overall procedure is shown in Figure 3-2, which 

included following parts: preprocessing, automatic vessel 

decomposition with roots automatically found for MST 

construction, accuracy evaluation on decomposed result by 

automatic classification through volumetric overlap with 

goldstandard. If the decomposed sub-trees were not complete, 

the vessel decomposition procedure was tried again with new 

parameter set. Although the hilar region could be detected 
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automatically, the detection of rough boundary of the hilar 

region frequently needs four or five candidate points around 

hilar region manually selected in 2D view. 

 

3.3.2 Preprocessing 

For pulmonary artery and vein decomposition, the 

preprocessing procedure included the following 4 major steps: 

1) vessel segmentation; 2) initial tree construction; 3) 

statistical evaluation of the trees; and 4) construction of the 

first-level MST. 

 

3.3.2.1 Vessel segmentation 

The vessel segmentation method was explained in a 

previous study [52]. Since the purpose of vessel decomposition 

is to quantify the separated arterial and venous subtrees, the 

simple threshold method was used to preserve the geometric 

features of the CT images.  

The vessel structure was separately assessed for the left 

and right half-lungs. Airway segmentation and left-vs-right 

lung splits were performed using a previously described method 

[73-75]. Each half-lung was eroded in 3D with 2 pixels in 
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order to efficiently remove lung boundary noise because the 

intersecting objects between the lung mask and the vessel 

mask near the lung boundary could be included as noise under a 

given threshold. To segment the pulmonary vessels, an efficient 

approach that uses a threshold-based method with -750 

Hounsfield Units (HU) on non-enhanced CT was used for the 

eroded lung region. 

 

3.3.2.2 Initial tree construction 

The vessel skeleton was extracted using the 3D thinning 

method. The vessel skeleton was created based on the spacing 

of the original image in order to prevent data loss. Since the 

threshold for the vessel segmentation was -750 HU, 3D 

thinning could be performed on the binary mask to extract the 

skeleton. In a later experiment, the skeleton threshold (SKTh) 

for extracting the subset from the vessel mask was selected 

based on the decomposition accuracy. After the skeleton was 

constructed using 26 connected neighborhoods, an undirected 

graph with nonnegative edge weights was constructed to 

evaluate their connectivity. Edges with 26 connectivity—

composed of the center voxel and the neighboring voxels with a 
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distance weight—were linked if the vertexes of the edge were 

included in the skeleton mask. This edge construction was also 

computed on whole-vessel voxels. Edges were linked if the 

vertexes of the edge were included in the vessel mask. Two 

kinds of initial undirected graphs were used for statistical 

calculation and 2-level MST constructions.  

The vertex weights of the initial undirected graph were 

calculated based on the previous study [52]. The weight is the 

average of 3 kinds of different weights: the attenuation 

intensity, the distance from the boundaries, and the Laplacian of 

the distance field. The normalization method was also 

performed on each weight in order to make the resulting value 

reside between 0 and 1. In this study, 2 types of MSTs were 

made for the skeleton vertexes and the whole-vessel voxels, 

which were compared with only 1 type of MST that was 

constructed using whole-vessel voxels in the previous study 

[52].  

 

3.3.2.3 Subtree statistics 

The radius was estimated by identifying the nearest 

neighboring boundary points of the vessel surface from the 
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skeleton, which could include ≥ 1 nearest points [76]. 

Therefore, a distance transformation was performed to 

estimate the vessel radius. The direction of each skeleton 

vertex was calculated based on the difference vector between 

the parent and current vertex. Estimating the radius and 

direction of each skeleton vertex is an error-prone process 

due to the discreteness of each skeleton vertex, so a smoothing 

procedure along each branch was performed to yield a more 

robust evaluation of the radius and directional data. 

To distinguish each branch, a breadth-first search (BFS) 

was performed on each constructed skeleton MST. This search 

allowed the skeleton-subtrees to be divided into separate 

branches. In addition, the initial skeleton MST was constructed 

from the initial graph, and BFS was executed on this skeleton 

MST and the average values of the radius and direction of each 

skeleton vertex were calculated. After extracting the branch ID 

of each skeleton vertexes, the average values of radius and 

direction could be calculated. 
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3.3.2.4 The first level MST construction 

 

Figure 3-3. Two level minimum spanning tree constructions 

 

Decomposition of the vessel subtrees was performed by 

2-level construction of the MSTs. The construction of the MST 

with the skeleton vertexes as the target roots decomposed the 

vessel voxels into small fragments in the first level. In the 

second level, after constructing the MST on the skeleton graph 

with the automatically found roots, the decomposed small 

fragments of each skeleton vertex were combined based on the 

constructed second skeleton MSTs (Figure 3-3). The mapping 

table from the skeleton vertexes to either the surface or 

volume composed of the 3D points linked the skeleton vertexes 

to the small decomposed fragment of volume or surface. 
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Figure 3-4. The skeleton graph and surface points mapped to 

that skeleton vertexes. (a) A part of pulmonary vessel region in 

the skeleton threshold of -550HU (b) The same vessel region 

with left figure in the skeleton threshold of -750HU. 

 

When such data were available, a colored, textured vessel 

surface could be drawn. The surface points are shown in Figure 

3-4, and the points of several colors represent points that 

were mapped using this procedure. The vertexes of the 

skeleton tree illustrated in Figure3-4 have corresponding 

surface points or volume points that were identified using this 

procedure. By identifying the voxels attached to a specific 

skeleton vertex, this map could be used for display, vessel 

selection, and the reconstruction of the vessels of selected 
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group IDs. 

Cylinder construction around a vessel skeleton with a 

proper radius could be used to map the skeleton vertexes and 

vessel volume points. However, it can be difficult to identify 

the appropriate group for those voxels around a surface with a 

complex topology or bifurcating points. Importantly, the 

mapping table was made using MDijkstra, and this algorithm 

has strong characteristics for constructing the maps with such 

complex geometry. In addition, to determine the edges 

attached to a specific vertex, an incidence table was also used.  

 

 

3.3.3 Root finding 

The root-finding algorithm is important because the 

generation of the second-level MST would depend on the 

number and locations of the roots. To automatically identify 

roots in a given graph, the criteria to divide the graph must be 

considered. First, the connectivity of the graph could be used as 

a deciding factor for identifying root locations. This is, however, 

not enough because there could be unwanted connections. 

Among the pulmonary vessels, several vessels exist in 1 
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connected voxel object, while generally the vessel can be 

perceived from the morphology of the vessel’s structure. 

Therefore, a method for controlling this connectivity was 

proposed by filtering the edges. Unwanted roots can be 

removed using the proper filters with the optimal feature value 

set. The characteristics of the filter were made by considering 

vessel geometry and morphology, including vessel radius range, 

erosion number (ER) of the vessel mask, and additional 

thresholding on the vessel mask, which need to be optimized to 

control the connectivity of the graph and produce the proper 

roots. Additional size filtering of the connected object was 

performed to remove small objects using the total branch length 

(TBL). The number of the optimized feature value set in terms 

of filters, therefore, was 4. 

The root-finding procedure includes edge filtering, size 

filtering of the connected object, and finding the roots from the 

connected object. To run this algorithm, a sequence of updated 

functions was performed as follows: 1) create an initial graph 

from the skeleton data; 2) filter the edges of the initial graph 

according to the selected features; 3) find the group; 4) filter 

the connected object based on TBL; 5) find the roots from the 
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important subset of vessel skeleton subtrees identified by 

filtering; and 6) run MDijkstra using the selected roots. 

Size filtering worked in a different way in comparison with 

filtering the other features using the root-finding procedure. 

Figure 3-5 (e) shows skeleton trees that were filtered by size 

filtering. Figure 3-5(d) are the result of applying edge filtering 

with 3 selected features. Between procedures (2) and (4), 

there is ‚ find group‛  procedure. After edge filtering for 

selected features, the groups for each skeleton-subtree were 

identified according to connectivity information. Figure 3-5(f) 

shows skeleton trees filtered by TBL. From these skeleton 

trees, the roots were calculated from the root candidate points, 

which were manually given. 
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Figure 3-5. Sub-trees with distal branch attachment and 

automatic root finding procedure (a) Initial skeleton tree (b) 

skeleton trees after radius filter (c) skeleton trees after erosion 

filter (d)skeleton trees after additional thresholding filter (e) 

skeleton trees after size filtering (f) Root finding from the 

important subsets 

 

The connected components of the dense voxels that label 

the resulting vessels are represented as SR={R1, R2, R3,...,RnR}, 

and the root candidate points are represented as RC={PC1,PC2,

…,PCnc}. The distances between the point Rx and the RC set 

were calculated by identifying the minimum point from the RC 
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point set. The point with the shortest distance from the RC 

point set among points Rx was considered to be the root of the 

resulting vessel (Figure 3-5(c)). Basically, the root candidate 

points could be set as the hilar region points since the roots of 

the trees reside near the hilar region. But, especially, by using 

the manual split procedure, the root candidate points were set 

as the dividing skeleton vertexes since the split trees were 

made from the dividing points. 

 To more effectively tune the feature value set, an 

empirically selected feature value set could be given and a 

specific feature value set might be preferred based on the 

decomposition strategy. 

 

3.3.4 Multi-root Dijkstra algorithm 

The Dijkatra algorithm finds the MST for a weighted 

undirected graph [59]. Dijkstra algorithm’s object grows from 

1 source vertex into a tree of any size by adding vertices that 

are extracted from the priority queue, which can be used to 

divide the region into several parts based on the arrival timing 

of spanning tree construction under the given weight.  

The connected objects of different groups could meet at 1 



67 

 

vertex. When this happened, MDijkstra removed the collided 

opposite edges to stop the growth of the opposite group object. 

The MDijkstra algorithm includes the collision detection 

algorithm by adding a line code (* in Figure 3-6) to solve this 

issue. This collision detection algorithm was brought from the 

mono-oriented group-growing algorithm[38]. This code 

searches for edges, including endpoints, and removes the 

identified edges from the maxHeap. Because the edges attached 

to the 1 vertex could be found by the incidence table, this line 

code could be executed without sequential searches. Since the 

binomial heap could perform combinations of insert, pop, and 

erase operations in O(nlogn) time (‘n’ is the object number) 

[58], the execution time of MDijkstra was bound to 3–4 minutes 

for the entire volume. 
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Figure 3-6. Multi-root Dijkstra algorithm. The input parameter 

graph is the initial graph of the vessels constructed using 26 

connectivity. The input parameter graph' shows the vertexes 

structure without edges. NOTE * : code for considering multi-

root. 

 

The construction formula for MST can be found in Park et 

al. ’ s paper. In this paper, we redefined the construction 

formula for MST as a minimization problem in order to obtain a 

tree structure, T’= (V, E), that connects all of the vertices in 

V and whose construction energy (or cost) is minimized as 

Equation (3-1).  
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' min ( )
T

T C T  (3-1) 

Because the set of vertices V is already given in this case, 

the construction energy is only affected by the connections of 

the edges. C(T) is then defined as the summation of the 

connecting energies of the edges, as shown as Equation (3-2). 

( , )

( ) ( , )
i j E

C T C i j


      (3-2) 

The construction energy of each edge connecting the i-th 

and j-th vertices is defined by Equation (3-3). 

( , )
j i

j ij j

v v
C i j

w e p   




  
   (3-3) 

where, C(i,j) is the construction energy of each edge 

connecting the i-th and j-th vertices, vi and vj are the vertex 

position vectors, wj is the weight of vertex j, and eij is the 

direction weight of edge(i,j) to a local orientation vector of 

vertex j. pj is the  penalty weight of  vertex j. , , ,     (> 0) 

are positive real-value constants defined by the user, 

especially   must have a denominator  0, and we set  =1/5, 

 =3/5,  =1/5, and  =3/5 for the skeleton vertexes used in 

the second level MST construction. In the first level MST 

construction case, we set  =1/5,  =3/5,  =0, and  =0. 
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The weight of the edge’s direction and the penalty weight 

were additionally adapted for the skeleton MST construction. 

The weight of the edge’s direction was calculated by the dot 

product of the average direction and the local edge direction. 

The penalty weight was calculated as the distance of the 

current vertex from the nearest points of the important subsets. 

This weight was made by MAX(0,1-dist/30 mm). This weight 

was the penalty that prevented a far point from the important 

subsets from being reached earlier by MDijkstra than a near 

point. The weight of the edge’s direction and the penalty 

weight were combined with the total weight by multiplication 

with the proper constants in Equation (3-3). 

 

 

3.4 AN EFFICIENT DECOMPOSITION 

METHOD 

For skeleton generation and a root-finding method, the 

candidate optimal feature value set could reduce the time and 

yield a more consistent feature value set. 
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3.4.1 Finding a candidate optimal feature value set 

The automatic vessel decomposition procedure shown in 

Figure 3-2 was performed using a root-finding method and 2-

level MST constructions. The vessel decomposition required 5 

features and, since the lower radius limit (LR) was fixed at 0, 

the 5 optimal values of the 5features—including the upper 

radius limit (UR) for the vessel radius, TBL to remove small 

tree off, ER of the vessel mask, the additional threshold (ATh), 

and skeleton threshold (SKTh)—were tried by the grid-search 

method. Two features of the vessel, radius range and TBL, are 

related to the global shape of the skeleton of the vessel. Since 

the radius of the vessel tree decreases from the root to the 

distal branch, the radius range with LR of 0 value is an effective 

feature for tree decomposition. ER and ATh are the local shape 

features of the vessel skeleton since these features are not 

directly related to the change in the length of the vessel tree. 

The optimal value was searched with LR, UR, TBL, ER and 

ATh under SKTh of -550HU by a particle swarm optimizer[74] 

of 10 particles and 10 iterations. For the prior knowledge, 

experiments were performed to find initial variables and a 
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search order. In these experiments, the optimal value for the 

optimizer to find was [0±0 mm, 1.70±0.55 mm, 13.83±10.80 

mm, 1.1±0.85, and -176.42±151.17 HU for LR, UR, TBL, ER, 

and ATh respectively]. The optimal accuracy and decomposed 

vessel number of the pulmonary vessels were 89.34 ± 5.55% 

and 130 ± 107.42, respectively. In this experiment, the mean 

and standard deviation values of the decomposed vessel number 

were high. In addition, the local shape features showed large 

variance values compared with the global features. If the 

search-dimension of the particle swarm optimizer were large, 

the optimality of the search would be decreased.  

In the field experiment, TBL and ATh were initially 

assumed to be 10 mm and -550 HU, respectively. To flexibly 

determine the feature values, a particle swarm optimizer with 

10 particles and an iteration number of 10—which imitated 

interactive selection by the program operator—was used. If the 

grid number of the found axis were defined as gn, and the 

particle swarm optimizer was executed by the number of 10 x 

10 x gn since the particle was 10 and the iteration was 10. The 

total test number of proposed grid search per each half-lung 

was 1908 times. This value could be calculated by summation 
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of 5x100(step 1), 6x100(step2), 5x100(step3), 3x100(step4), 

and 8(step5).This grid search proceeded in the following order: 

UR(step1), SKTh(step2), TBL(step3), ER(step4), and 

ATh(step5). For the optimizer’s operation, the range of the 

feature values of ER and ATh were restricted between 0 and -

750HU, and 2 and -100HU, respectively. Two local feature 

values could be varied at the same time, or only ATh could be 

varied by the optimizer for the grid-search time of ER.  

A deterministic optimizer, such as the quasi-Newton 

method, could not be used to calculate the stable optimal value 

because the gradient value was not useful for evaluating the 

vessel decomposition algorithm. Therefore, a stochastic 

algorithm, which simulates the social behavior of a ‚flock of 

birds‛ or ‚school of fish‛, was used. The cost function of 

this optimizer minimizes the error value of arterial and venous 

decomposition.  

 

3.4.2 Comparison with previous method 

 Park et al’s method was executed with the proposed 

automatic root-finding method to compare performance. The 

decomposition accuracies of Park et al’s method and this 
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proposed method were compared. These 2 methods have the 

same vertex weights. For comparison, SPSS 17.0 (Armonk, 

New York) was used to generate descriptive statistics and 

perform paired t tests with 2 tails.  
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3.5 EVALUATION 

3.5.1 Accuracy evaluation 

Let Ta and Tv denote the true segmentations of the arterial 

and venous subtrees, respectively, in the 20 half-lungs of the 

10 patients with COPD. Sa and Sv denote the segmentations of 

the arteries and veins, respectively, that were computed using 

the current method. Since the decomposition results of the 

proposed method contain no classification information for the 

separated subtrees, the subtree was automatically classified as 

the arterial or venous subtree using the gold standard in order 

to calculate the decomposition accuracy. The automatic 

classification criterion is the area that overlaps with Ta and Tv 

in each subtree. After that, Sa and Sv can be calculated (Figure 

3-7). 
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Figure 3-7. Accuracy evaluation of decomposition under 

optimization procedure 

 

The gold standard mask used in our current report was 

generated using a sub-millimeter-thick, non-contrast, 

volumetric chest CT (the patient’s breath was held at full 

inspiration) for the 10 patients with COPD. The hilar region was 

manually removed to separate the arteries and veins. An expert 

with > 10 years of experience generated the gold standards for 

the arterial and venous vessels for these 10 patients. 

Descriptive statistics of the arteries and veins of the gold 

standards were as follows: the mean and standard deviations of 

the lower radius, upper radius, lower distance, and upper 

distance were 0.33 ± 0.01 mm, 3.13 ± 0.55 mm, 14.59 ± 
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3.00 mm, and 180.75 ± 17.96 mm, respectively. The upper 

range value of the radius was relatively low because the gold 

standard did not contain the hilar region. 

The accuracy and error of the computerized decomposition 

of the artery and vein were defined as follows. 

( ) ( )a a v v

a v

T S T S
Accuracy

T T

  



      (3-4) 

and 

( ) ( )a v v a

a v

T S T S
Error

T T

  



         (3-5) 

Since the gold standard was made by removing the hilar 

region, the resulting vessel mask is different from the gold 

standard, and the hilar region also was excluded from the 

accuracy calculation. 

 

3.5.2 Determining the pseudo-optimal feature 

value set  

In Table 3-1, step 1 shows the averaged decomposition 

results of the 20 half-lungs under the optimal UR searched by 

varying the UR value from 1 mm to 3 mm in 0.5-mm steps. In 

each half-lung case, after the optimal value and its 
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corresponding error (or accuracy) value were recorded, the 

recorded values were averaged over 20 half-lungs. The grid-

search results show that when the upper radius value was low, 

the accuracy was high but the decomposed vessel number was 

high. In the grid-search experiment, we found that the value 

between 1.5 mm and 2.0 mm was optimal. Therefore, in the 

next grid-search step, 1.75 mm was used as the UR. In step 2, 

the optimal SKTh value was searched by varying a value from 

-500 HU to -750 HU in 50-HU steps. SKTh was used to 

determine the length of the vessel skeleton. With a high 

threshold value, the constructed vessel skeleton is shorter and 

contains the core part of the vessel. Figures 3-4 (a) and (b) 

compare the skeletons made with thresholds of -550 HU and -

750HU. In the grid-search experiment, -550 HU was 

determined as the best SKTh value. For step 3, the optimal 

TBL was found by varying TBL from 10 mm to 30 mm in 5-

mm steps with the grid search. If TBL increases, the 

decomposed vessel number decreases. Fifteen millimeters was 

used as the optimal TBL value. Step 4 is to find the optimal ER 

by varying it from 0 to 2 in 1 step. In this experiment, 1 was 

the optimal parameter. Finally, in step 5, the optimal ATh was 
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searched by varying ATh between -100 HU and -750 HU. The 

optimal parameter set was [0 mm, 1.75 mm, 15 mm, 1, -

100HU, and -550HU for LR, UR, TBL, ER, ATh, and SKTh, 

respectively]. In this optimal set, the optimal accuracy and 

decomposed vessel number of the pulmonary vessels were 

89.71 ± 3.76% and 75.1 ± 15.12, respectively. This value 

could be compared with the methods of the other steps (Table 

3-1). The other methods, except the second method of step 1, 

were significantly more accurate (p< 0.001) in comparison with 

the optimal method in terms of accuracy and error terms. 

However, all other methods demonstrated significantly larger 

vessel numbers (p< 0.05) in comparison with the optimal 

method.  

 

TABLE 3-1. Sequential grid search results from steps 1–5. 

The determined optimal values for each step are underlined. 

Each row shows the averaged decomposition results of the 

20 half-lungs of 10 CT scans for the given 6 feature 

values. One or 2 of the possible values for the erosion 
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number and the additional threshold have flexibility to vary 

by an optimizer from steps 1–4. 

St

ep 

Nsep Accu 

(%) 

Error 

(%) 

LR 
(m

m) 

UR 
(mm

) 

T

B

L 
(m

m) 

ER ATh 

(HU) 

SK

Th 

(HU

) 

1 140.60

±44.50

*** 

93.36±2

.49*** 

6.64±2

.49*** 

0 1.5 10 0.65±

0.67 

-

241.12

±119.4

6 

-550 

1 98.20±

31.29*

** 

90.79±4

.00 

9.21±4

.00 

0 2 10 1.65±

0.59 

-

210.04

±137.0

5 

-550 

2 116.5±

43.64*

** 

92.34±2

.88*** 

7.66±2

.88*** 

0 1.75 10 1.84±

1.03 

-

221.74

±134.1

4 

-550 

3 89.3±3

2.43* 

91.26±3

.28*** 

8.74±3

.28 

0 1.75 15 0.85±

0.75 

-

214.76

±135.7

3 

-550 

4 93.1±3

2.49** 

91.25±3

.22*** 

8.75±3

.22*** 

0 1.75 15 1 -

217.31

±144.0

2 

-550 

5 75.1±1

5.12 

89.71±3

.76 

10.29±

3.76 

0 1.75 15 1 -100 -550 

Note: Nsep, separated vessel number; Accu, accuracy; LR, lower 

radius; UR, upper radius; TBL, total branch length; ER, erosion 

number; ATh, the additional threshold; SKTh, the skeleton 

threshold 

All p values are derived from paired t tests comparing the 

method of step 5 with the methods of the other steps.  

*p < 0.05, **p< 0.01, ***p < 0.001.  
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The execution time of the second-level MST construction 

with the automatic root-finding procedure was found to be 3.58 

± 0.65 seconds using native voxel spacing. Additionally, the 

creation time for the mapping table between the skeleton 

vertexes and volume voxels was 234.55 ± 90.87 seconds with 

native voxel spacing. This was the execution time for the first 

level MST construction. This program was executed using an 

Intel Core i7 computer with 16-GB memory on a 64-bit 

Microsoft Windows 7 operating system. 

 

3.5.3 Comparison with previous method 

For the feature value set of [0 mm, 1.75 mm, 15 mm, 1, -

100 HU, -550 HU], the decomposition accuracy and 

decomposed vessel number of pulmonary vessels of Park et al’

s method were 83.77 ± 5.22% and 75.1 ± 15.12, 

respectively (Table 3-2), in comparison with 89.71 ± 3.76% 

and 75.1 ± 15.12 using the proposed method, thereby 

demonstrating significantly better accuracy (p< 0.001). 
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Table 3-2. Average decomposition results of the 20 half-lungs 

of 10 CT scans between the proposed method and the previous 

method 

Var 

(HU) 

Nsep Accu 

(%) 

error 

(%) 
LR 

(m

m) 

UR 

(mm) 

TB

L 

(m

m) 

E

R 

AT

h 

(H

U) 

SKTh 

(HU) 

Propo

sed 

75.1±1

5.12 

89.71

±3.76 

10.29±3

.76 

0 1.75 15 1 -

100 

-550 

Previ

ous 

75.1±1

5.12 

83.77

±5.22

*** 

16.23±5

.22*** 

0 1.75 15 1 -

100 

-550 

Note: Nsep, separated vessel number; Accu, accuracy; LR, lower 

radius; UR, upper radius; TBL, total branch length; ER, erosion 

number; ATh, the additional threshold; SKTh, the skeleton 

threshold 

All p values were derived from paired t tests comparing the 

previous method with the proposed method.  

*p < 0.05, **p< 0.01, ***p< 0.001. 

 

3.5.4 Four half-lung cases 

Figures 3-8 and 3-9 show decomposition examples of 4 

half-lungs. These results came from the feature value set [0 

mm, 1.75 mm, 15 mm, 1, -100 HU, -550 HU]. This optimal 

value set did not need interactive adjustment and could be 
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applied directly for vessel decomposition. The second column 

of both figures shows the classified results from the 

decomposition results. The comparison between the second and 

third columns could give the perception of this algorithm’s 

accuracy. The second half-lung of Figure 3-9 shows the worst 

case among 20 decomposed half-lungs.   

 

Figure 3-8. Two examples of decomposition of two half-lungs. 

Arteries are shown in blue and veins are shown in red. (a) 

Decomposition result of the first half-lung (b) The classified 

artery and vein result after classification of decomposition result 
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with goldstandard (Accuracy = 96.16%) (c) Goldstandard (d) 

Decomposition result of the second half-lung (e) The classified 

artery and vein (Accuracy = 93.89%) (f) Goldstandard 

 

Figure 3-9. Two examples of decomposition of two half-lungs. 

Arteries are shown in blue and veins are shown in red. (a) 

Decomposition result of the first half-lung (b) The classified 

artery and vein result after classification of decomposition result 

with goldstandard (Accuracy = 92.03%) (c) Goldstandard (d) 

Decomposition result of the second half-lung (e) The classified 

artery and vein (Accuracy = 79.54%) (f) Goldstandard. 
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3.6 DISCUSSION AND CONCLUSION 

We developed and validated the semiautomatic 

decomposition framework based on 2-level MST constructions 

for non-enhanced volumetric chest CT. This decomposition 

framework adapted the automatic root-finding method through 

2 filters composed of edge filtering and size filtering. Through 

the experimental analysis of 5 features, the pseudo-optimal 

feature value set was determined for the automatic execution of 

decomposition. This decomposition framework could be used to 

differentiate the pulmonary arterial and venous subtrees with 

high accuracy and efficiency.  

Quantification based on the classification of the arteries 

and veins could give us a tool for the development of imaging 

biomarkers for lung disease, which would be more important 

due to its noninvasiveness and relatively low economic cost. In 

addition, using this method, automatic differentiation of the 

pulmonary arteries and veins could be developed based on 

various features of the morphological and topological analyses 

of the pulmonary skeleton-subtrees.  

It was challenging to determine the degree of invasion by 
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any branch into another tree and quantify the decomposition 

accuracy of the vessels, if it was dealt without the automatic 

classification under the artery and vein gold standards.  

However, it was also difficult to make gold standards only for 

decomposition. Saha et al. quantified the classification accuracy 

using the same strategy as our method [64]. However, their 

method put the seed with the label of the artery and vein. 

Therefore, the method did not need the classification procedure. 

In contrast, because our method adapted the automatic root-

finding procedure, there was no information about the arterial 

or venous label. Therefore, automatic classification under the 

gold standards needed to be performed to calculate the 

decomposition accuracy. We quantitatively evaluated the 

decomposition accuracies of the vessels based on the gold 

standards, which would be useful for the further development of 

arterial and venous differentiation algorithms. 

Although it yielded a satisfactory results, with an accuracy 

of around 90%. By interactively selecting feature value sets, 

our method could provide better results. The accuracy of 89.71% 

could be significantly increased if 2 local features were 

optimized for each half-lung. In the specific case of feature 
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value set optimization, the worst accuracy of the half-lung case 

with the final feature value set was 79.54% with a decomposed 

vessel number of 53 (the second case of Figure 3-9). But this 

half-lung case’s accuracy could be increased to 89.14% with 

a decomposed vessel number of 113 when the feature value set 

was changed from [0 mm, 1.5 mm, 10 mm, 1, -100 HU, -550 

HU] to [0 mm, 1.5 mm, 10 mm, 1, -285 HU, -550 HU]. 

Therefore, we need to develop a more robust optimization 

scheme. 

In addition, extending the feature settings to the other 

features of the pulmonary vessel morphology and topology 

could improve the accuracy of the decomposition. Furthermore, 

we need more quantitative criteria to validate the decomposition 

results.  

In conclusion, our proposed semiautomatic decomposition 

framework based on 2-level MST constructions could 

differentiate the arterial and venous subtrees with high 

efficiency. In the future, this algorithm could be clinically useful 

for the automated classification of the pulmonary arteries and 

veins. 
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국문 초록 

 

흉곽에 대한 컴퓨터 단층촬영 영상을 이용하여 흉강 분할 

알고리즘과 폐 동맥 정맥 분리 알고리즘을 개발하고 그 성능을 

평가하였다. 해당 연구는 흉곽 컴퓨터 단층 영상에서 임상적으로 

의미 있는 장기를 분할하는 일을 자동화 했다는 점에서 중요하다. 

장기 분할 정확성을 높이기 위해서 문턱값 방법을 기반한 형태적인 

방법이나 연결성을 이용한 물체 선택 등의 기본적인 방법이 아닌, 

좀 더 향상된 컴퓨터 공학적인 방법인 수치적인 방법과 그래프 

이론을 이용한 방법을 처음으로 적용하였다. 본 논문에서는 위와 

같이 제안된 새로운 연구 방법을 다음과 같은 두 가지 실례를 통해 

시도하고 그 결과를 평가하였다. 

첫번째 연구에서는 흉강을 분할 대상으로 하고 있다. 흉강은 

흉강 벽과 횡경막에 의해 둘러 싸여 있는 장기를 말한다. 현재 본 

연구가 대상으로 하고 있는 흉강의 경우 경계 부분에 변화가 큰 

형태의 장기가 아니고 횡경막의 경우 얇은 두께의 막이기 때문에 

그 형태가 컴퓨터 단층 영상 내에서 손실된 형태로 표현되어져 

있는 경우가 많다. 종격동을 2 차원으로 찾는 것이라든지, 흉강벽과 

횡경막을 따로 찾는 연구는 여러 연구에서 제시되어 있다. 하지만 

흉강의 볼륨을 영상분할 하는 일에 대한 연구는 본 연구가 

처음으로 제안을 하였다. 흉강 부피 관점에서 측정되는, 부피 
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겹치는 비율과 허위 양성 비율과 허위 음성 비율이 제안 방법은 

98.17±0.84%, 0.49±0.23%, 1.34±0.83% 의 값이 도출되었다. 

제안된 반자동화된 흉강 영상 분할 방법은 갈비뼈와 흉강벽, 횡경막, 

그리고 심장 등의 여러 기관을 분할 방식을 기반으로 수행되고, 

이는 임상적인 목적에서 높은 정확성과 유용성을 보여 주었다. 

두번째 연구는 폐의 동맥 정맥 분리를 위해서 폐의 혈관을 

부분혈관으로 자르는 방법을 제시하고 있다. 폐 동맥 정맥 분리의 

경우에, 폐 암 수술 시뮬레이션 시의 기초자료로 쓰일 수 있다. 의

료진이 머리 속으로 분리를 하거나 수작업으로 분리를 할 수 있으

나, 자동화된 방법을 사용하는 것이 더 향상된 방법이다. 기존 방법

의 경우에 수동으로 폐 혈관 뿌리쪽을 2D 슬라이스를 기반하여 혈

관을 하나씩 따라가며 30~40 점을 찍어주는 과정이 필요하다. 그리

고 이를 실행하는데 1 시간 30 분 정도의 시간이 필요하다. 특징값

의 최적화 후에, 자동화된 동맥 정맥 분리 정확도는 정답과 비교했

을 때 89.71±3.76%이었다. 이 분리 알고리즘은 폐 동맥 정맥의 

자동화된 분류를 위해서 미래에 임상적으로 유용하게 사용될 수 있

을 것이다. 
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ABSTRACT 

 

This dissertation presents a thoracic cavity 

segmentation algorithm and a method of pulmonary artery and 

vein decomposition from volumetric chest CT, and evaluates 

their performances. The main contribution of this research is to 

develop an automated algorithm for segmentation of the 

clinically meaningful organ. Although there are several methods 

to improve the organ segmentation accuracy such as the 

morphological method based on threshold algorithm or the 

object selection method based on the connectivity information 

our novel algorithm uses numerical algorithms and graph theory 

which came from the computer engineering field. This 

dissertation presents a new method through the following two 

examples and evaluates the results of the method. 

The first study aimed at the thoracic cavity 

segmentation. The thoracic cavity is the organ enclosed by the 

thoracic wall and the diaphragm surface. The thoracic wall has 

no clear boundary. Moreover since the diaphragm is the thin 

surface, this organ might have lost parts of its surface in the 

chest CT. As the previous researches, a method which found 
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the mediastinum on the 2D axial view was reported, and a 

thoracic wall extraction method and several diaphragm 

segmentation methods were also informed independently. But 

the thoracic cavity volume segmentation method was proposed 

in this thesis for the first time. In terms of thoracic cavity 

volumetry, the mean±SD volumetric overlap ratio (VOR), false 

positive ratio on VOR (FPRV), and false negative ratio on VOR 

(FNRV) of the proposed method were 98.17±0.84%, 

0.49±0.23%, and 1.34±0.83%, respectively. The proposed 

semi-automatic thoracic cavity segmentation method, which 

extracts multiple organs (namely, the rib, thoracic wall, 

diaphragm, and heart), performed with high accuracy and may 

be useful for clinical purposes. 

The second study proposed a method to decompose the 

pulmonary vessel into vessel subtrees for separation of the 

artery and vein. The volume images of the separated artery and 

vein could be used for a simulation support data in the lung 

cancer. Although a clinician could perform the separation in his 

imagination, and separate the vessel into the artery and vein in 

the manual, an automatic separation method is the better 

method than other methods. In the previous semi-automatic 
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method, root marking of 30 to 40 points was needed while 

tracing vessels under 2D slice view, and this procedure needed 

approximately an hour and a half. After optimization of the 

feature value set, the accuracy of the arterial and venous 

decomposition was 89.71 ± 3.76% in comparison with the gold 

standard. This framework could be clinically useful for studies 

on the effects of the pulmonary arteries and veins on lung 

diseases. 

------------------------------------- 

Keywords: chronic obstructive pulmonary disease (COPD), 

computed tomography, multi-organ segmentation, thoracic 

cavity, pulmonary artery and vein decomposition, two 

level minimum spanning tree constructions 
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CHAPTER 1 

General Introduction 
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1.1 Image Informatics using Open Source 

 

The concept of Open Source software (OSS) promotes 

the development and sharing of software source code under 

special licensing agreements that protects author’s copyrights 

while maintaining the distribution of free and open derivative 

work based on the original code. The most successful example 

is Linux operating system.  

Numerous Open Source initiatives in medicine leading to 

innovate and cost effective information systems supporting 

electronic patient record applications and medical imaging and 

PACS have emerged in the recent years. Recent reports 

showed that adoption of computerized medical records and 

medical informatics in medicine have significantly lagged behind 

expectations due to three major barriers: excessive cost, the 

transience of vendors, and the lack of command standards and 

adequate models many authors suggested. However Open 

Source software reduces these barriers by reducing ownership 

and development costs and facilitating the adaptation of 

customized tools for clinical practice[1]. 
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The impact of open source is even greater in specialized 

areas of medicine such medical imaging[2]. The Visualization 

Toolkit or VTK[3] is well recognized and widely adopted 

software library that runs on multiple platforms and has been 

used for numerous scientific and medical applications so far[4]. 

The recent adjunction of the Insight Toolkit or ITK[5], mostly 

funded by the US National Library of Medicine as part of the 

Visible Human Project, adds a wealth of additional rendering 

and image processing tools for medical applications.  

Quantitative assessment of lung structure along with 

indices of parenchymal pathology are taking on increased roles 

in the detection and tracking of pulmonary disease. To date the 

focus has largely been on airway morphometry and indices of 

parenchymal destruction, and air trapping. The parenchymal 

analysis has, in large part, focused on the use of the density 

histogram within the lung field to identify voxels falling below a 

given density threshold to define volumes of emphysema-like 

lung or air trapping. Some work has shown that texture 

measures can provide more accurate detection and 

quantification of pathology not limited to enlargement of 

peripheral air spaces[6]. Based on ITK and self-built in 
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libraries, MIRL of Asan medical center developed AView 

solution as quantitative tools for the assessment of the lung 

parenchyma, and used this solution in a number of large multi-

center studies. 

 

1.2 History of the segmentation algorithm 

In Pre-1980 to 1984, the term “medical image analysis” 

was not yet in common use. However, a variety of meetings had 

included work related to the analysis of medical and biomedical 

images. A particular characteristic of most of the work during 

these years was that researchers were primarily thinking in 

terms of analyzing two-dimensional image datasets[7]. 

In mid-to-late 1980s, to some extent, research in the 

classic problems of boundary finding, 2D image matching, and 

ideas related to pattern recognition-driven, and computer-

aided diagnosis continued. It is important to note that during the 

later part of this time frame, deformable models were 

discovered and then introduced into the field[8]. The concept of 

scale space theory to the problem was applied in negotiating the 

segmentation of complex medical image data by the type of 

scale-space hierarchies of intensity extrema[9]. Image texture 
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also was pursued as a feature useful for grouping and 

measurement in image analysis during this period, especially 

with respect to ultrasound image data[10].  

In 1992 to 1998, the analysis of fully 3D images became 

a key goal and more mathematical-model-driven approaches 

became computationally feasible. Especially, deformable model 

methods were now coming into their own for medical 

applications, as different groups developed fully 3D “snakes” 

that could be run on volumetric image datasets[11]. In addition, 

approaches that incorporated shape priors were also extended 

into 3D, and another line of research pursued by Cootes et al. 

reported novel ways of introducing priors using point sets[12]. 

An interesting alternative to objective function-based 

deformable contours also emerged in this time frame in the 

name of level set algorithm[13]. Despite the successes noted 

above, it is fair to say that, as the 1990s draw to a close, no 

one algorithm can robustly segment a variety of relevant 

structure in medical images over a range of datasets.  

Currently, methods for segmentation of medical images 

are divided into three generations, where each generation adds 

an additional level of algorithmic complexity[14]. The first 
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generation is composed of the simplest forms of image analysis 

such as the use of intensity thresholds and region growing. The 

second generation is characterized by the application of 

uncertainty models and optimization methods, and the third 

generation incorporates knowledge into the segmentation 

process. There are so much algorithms of variety technology 

for segmentation work where specific classification of 

segmentation algorithms is needed.  Table 1-1 shows the 

classification summary of segmentation algorithms. 

 

TABLE 1-1. Classification model summary 

Generation Region-based Boundary 

Following 

Pixel  

Classification 

1st •Region 

growing 

•Edge tracing •Intensity 

threshold 

2nd •Deformable 

models 

•Graph search 

•Minimal path 

•Target 

tracking 

•Graph search 

•Neural 

networks 

•Multiresolution 

•Statistical 

pattern 

recognition 

•C-means 

clustering 

•Neural 

networks 

•Multiresolution 

3rd •Shape models 

•Appearance 

models 

 •Atlas 

•Rule-based 
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•Rule-based 

•Coupled 

surfaces 

 

The proposed method for thoracic cavity segmentation 

corresponds to the Rule-based method of 3rd and region-

based method. This method extracts the special surface from 

the rib information. This extraction comes from the rule that 

the rib is in the boundary of the thoracic cavity. The pulmonary 

vascular segmentation and classification of arteries and veins 

matches to Graph search of 2nd and Region based. As 

separation using the shortest path algorithm is based on the 

graph theory, this algorithm corresponds to this category. But 

since the pulmonary vascular decomposition method uses the 

graph theory for the application of the interactive program, this 

algorithm must also be classified as interactive segmentation 

algorithm. 

 

1.3 Goal of Thesis Work 

Image segmentation is one of the most interesting and 

challenging problems in computer vision generally and medical 

imaging applications specifically. Segmentation partitions an 
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image area or volume into nonoverlapping, connected regions, 

which are homogeneous with respect to some signal 

characteristics. Medical image segmentation is of considerable 

importance in providing noninvasive information about human 

body structures that helps radiologists to visualize and study 

the anatomy of the structures, localize pathologies, track the 

progress of diseases, and evaluate the need for radiotherapy or 

surgeries. For these reasons, segmentation is an essential part 

of any computer-aided diagnosis (CAD) system, and 

functionality of the system depends heavily on segmentation 

accuracy. Moreover, this thesis has a further application in the 

improved imaging biomarker development through the 

segmentation software development specified on the thoracic 

region and pulmonary vessels.  

Chapter 2 proposed the advanced segmentation 

algorithm for the thoracic cavity, and Chapter 3 argues the 

semi-automatic algorithm for decomposition of the artery and 

vein. These two segmentation methods were based on the 

volumetric chest CT.    
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CHAPTER 2 

Thoracic cavity segmentation 

algorithm using multi-organ 

extraction and surface fitting in 

volumetric CT 

 

 

  



11 

 

2.1 INTRODUCTION 

 

 The thoracic cavity is the chamber of the human body 

that is protected by the thoracic wall and includes important 

organs such as the heart and lung. Quantification of the volumes 

of various features of the thoracic cavity, especially the amount 

of regional thoracic fat (fat within the inner thoracic cavity), 

would be of high clinical value because research over the past 

two decades shows that this fat may contribute to an 

unfavorable metabolic and cardiovascular risk profile[15, 16] 

and chronic obstructive pulmonary disease (COPD)[17]. For 

example, the levels of thoracic fat, which includes both 

epicardial and extra-pericardial fat, correlate strongly with 

pericardial fat levels (typically r > 0.85)[18]. Since 

subcutaneous fat and visceral fat associate with different 

metabolic risks, this means that the amount of fat in the 

thoracic cavity may be an important risk factor for heart 

disease[19]. In addition, muscle amount in the thoracic cavity 

could be important index for some cardiovascular diseases, 

because they represent volume of major vessels and heart1. In 

lung disease, the amount of visceral fat associates with low-
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grade systemic inflammation, the severity and changes in 

emphysema and task-related metabolic demands3,[20-22]. In 

patients of COPD, the amount of visceral fat, muscle and 

calcification together may be a more accurate risk factor than 

the amount of visceral fat, as only the tissue close to the heart 

and the lung can be considered. These observations indicate 

that intra-thoracic tissue composition assessments in patients 

with COPD may be clinically useful. The presence of calcified 

plaque in vessel also associates with heart disease and COPD, 

and inflammation.    

 However, the fact that the thoracic cavity contains 

various organs significantly complicates its segmentation. As a 

result, manual thoracic cavity segmentation is a labor intensive 

and time-consuming task and inter-observer reliability cannot 

be guaranteed, especially for longitudinal studies and large-

scale screening. To reduce the manual burden and improve 

reliability, automated computerized methods for segmenting the 

thoracic cavity region are needed. The present study describes 

the semi-computerized method that we developed for this 

purpose. This method involves a multi-organ extraction 

approach. To ensure that all the tissue inside the inner thoracic 
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cavity is included in the segmentation, the inner thoracic cavity 

is modeled by using the inner surface of the ribs. To segment 

the diaphragm, the diaphragm surface is modeled by using the 

bottom surfaces of the lung. To further improve the accuracy of 

diaphragm segmentation, additional segmentations of the heart 

and its surrounding tissue are performed. In addition, since the 

accurate extraction of mediastinum tissue is one of our clinical 

goals, the lung is subtracted from the thoracic cavity for clinical 

evaluation. In the present study, this proposed thoracic cavity 

segmentation method was tested in patients with COPD against 

the gold standard, namely, manual segmentation by two experts 

that was verified by an expert thoracic radiologist. It was also 

compared to three state-of-the-art thoracic cavity organ 

segmentation methods.  

 

2.2 RELATED STUDIES 

 

 The organs in the thoracic cavity are the rib, lung, heart, 

and diaphragm. Most of previous studies on thoracic cavity 

segmentation focus on segmentation of only one of these 

organs. Moreover, few focus on the volumetric accuracy of the 
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segmentation. The studies on thoracic cavity segmentation 

include that by Zhang et al., who proposed a segmentation 

algorithm of the mediastinum region that involved calculating 

four marginal points that constructed the mediastinum contour. 

However, this method did not accurately consider the 

diaphragm surface[23]. Chittajallu et al. proposed an optimal 

surface-detection method to identify the inner thoracic cavity 

and the inner points of the rib for the surfaces[24]. Many 

studies have sought to extract the diaphragm in chest CT[25-

27], including the study by Xiangrong et al., who proposed a 

method to extract the upper surface of the diaphragm[25]. 

They estimated the position of the diaphragm by deforming a 

thin-plate model that matched the bottom surface of the lung. 

Li et al. proposed a graphcut-cut method with a multi-column 

structure that allowed terrain-like surface estimation[28]. 

Yalamanchili et al. used this method to segment the 

diaphragmand adopted the cost function calculated on the basis 

of prior conditions to guide the surface into the target 

location[26]. Rangayyanet al. proposed a method for 

automatically delineating the diaphragm by modeling using the 

linear least-squares procedure, which extracted the initial 
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diaphragm model from the voxels of the base of the lungs. In 

addition, each dome of the diaphragm was modeled as a 

quadratic surface.  

Although most previous studies on heart segmentation 

focused on segmenting the heart chambers[29], several also 

studied volumetric whole heart segmentation[30, 31]. Funka-

Lea et al. proposed an isolation algorithm of the heart that used 

a particular means of initiating and constraining the graph-cut 

technique[30]. In the initiating step, an ellipsoid is grown 

progressively from the entry point to the heart wall. In the 

energy equation of the graph-cut, the blob constraint is added 

to make cuts that look like spheres[30]. Zheng et al. proposed a 

heart segmentation method that uses optimal shape initialization. 

In this method, the optimal mean shape is initialized in the 

location of the heart. The mean shape is then aligned with the 

detected pose, followed by boundary refinement using a 

learning-based boundary detector. That paper insisted that this 

algorithm is more accurate and faster than the graph-cut based 

method[31].  

Our proposed method is a shape prior level set-based 

the heart segmentation method. This method uses a sphere as 
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the shape prior. The initial shape grows while maintaining the 

shape prior until this shape meets the stopping condition[32].  

 

2.3 THE PROPOSED THORACIC CAVITY 

SEGMENTATION METHOD 

 

Figure 2-1. Schematic depiction of the steps in the proposed 
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thoracic cavity segmentation method. 

 

In our method, airway segmentation, lung and heart 

segmentations and rib detection are performed first. After this, 

the thoracic cavity region is segmented by finding the five 

surfaces that enclose the thoracic cavity. The inner thoracic 

cavity is modeled by four surfaces along different directions 

from the inner points of the ribs. In addition, the diaphragm 

surface is approximated by the base voxels of the lung. These 

five terrain-like surfaces are approximated by a 3-dimensional 

(3D) surface-fitting method. Supplementary segmentations of 

the heart and its surrounding tissue are performed to improve 

the accuracy of diaphragm segmentation. For heart 

segmentation, two seed points are needed. Figure 2-1 shows a 

flow chart that schematically depicts our method. 

 

2.3.1 Airway and lung segmentation 

In our method, airway and lung segmentation are 

performed by using a thresholding method. The airway region 

is removed from the lung segment to differentiate the left and 

right lungs. From the seed point (SP1) that is automatically 
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marked on the top of the airway region, a seeded region-

growing method is performed to search for 3D connected 

regions below -924 Hounsfield Units (HU). This value was 

selected empirically on the basis that air is at approximately -

1000 HU while soft tissues range of -100 to 200 HU[33]. The 

SP1 in the airway can be at any point in the airway. Therefore, 

moving from the top slice to the bottom slice, we search the 

first slice for exactly three connected components with a 

specific size. SP1 is determined by the center of inertia of the 

third largest connected component, because two other 

connected components would be the left and right lungs. As 

leakage may have occurred during region growing in airway 

segmentation, explosion-controlled region growing was 

performed[34].  

In our method, to segment the lung, initial lung 

segmentation using a threshold value of -474 HU is performed. 

Previous studies have selected predetermined thresholds that 

range from -450 to -550 HU[35, 36]. In the present study, -

474HU was chosen empirically to be the threshold value on the 

basis of the characteristics of our chest CT scans. The final 

lung is generated by subtracting the airway from the initial lung. 
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To differentiate the right and left lungs, connected components 

analysis on the final lung region is performed by selecting the 

two largest connected components. If the lung is not split after 

removing the airway region, the lung-split algorithm is 

performed[37]. This algorithm performs iterative eroding until 

the lung is split. Finally to smooth the lung boundary, the 

rolling-ball filter implemented by the ITK Toolkit[38] is 

applied; for this, the radius of the kernel is set to 4.  

 

2.3.2 Surface-fitting method 

The gridfit function, which was developed by using 

MATLAB R2012a (Mathworks Inc., Natick, MA, USA), is a 

surface modeling tool that fits a terrain surface (x,y,z) from 

scattered data[39]. Since the gridfit function is an approximant, 

not an interpolant, it uses the least-squares approximation to 

calculate the ill-conditioned solution in a linear algebra problem.  

The problem is described in the following equation: 

 Ax y  (2-1) 

where the number of data points is t, the number of the grid 

nodes is s, A is a t × s matrix, x is a s × 1 matrix, and y is a 

t × 1  matrix. x and y are point arrays, and x is an unkown 
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quantity. Matrix 'A' represents geometric relations between x 

and y. Four grid nodes constitute a rectangle where the 

approximation of the z value can be evaluated by a triangle 

interpolation. However, since the input data points are not 

evenly distributed, there are only a limited number of 

rectangles for calculating the z value. To determine the 

relationship between neighboring grid nodes, the regulator was 

suggested. In the gradient regulator, the following relationship 

must be satisfied at an arbitrary rectangle vertex V(x, y): 

( 1, ) 2 ( , ) ( 1, y) 0V x y V x y V x      (2-2) 

( , 1) 2 ( , y) V(x, y 1) 0V x y V x      (2-3) 

This relation is expressed by the following equations.  

0Bx   (2-4) 

where B is a 2s × s  matrix. Equations (2-1) and (2-4) are 

combined as follows: 

0

A y
x Cx

B

   
    

   
 (2-5) 

where 𝜆 controlls the smoothness of the surface and C is a 

(t + 2s) × s matrix. The solution could be provided by following 

equation[40]. 
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 
1

0

T T
y

x C C C
  

  
 

 (2-6) 

The equation was solved in the meaning of the minimum mean 

square root method[40].  

 

2.3.3 Inner thoracic cavity surfaces 

Inner wall of thoracic cavity are modeled by four partial 

surfaces. These surfaces are fitted by terrain-like surfaces 

from the point cloud of inner rib voxels. First, ribs were 

extracted as regions where the pixel intensities were larger 

than the value of 120 HU. Among the segmented regions, only a 

largest connected component was selected as the rib region. 

The sternum or breastbone is a flat bone that lies in the middle 

front part of the rib cage. As the inaccurate segmentation of the 

sternum could make the curved horizontal fitting surface in the 

sternum region, the selection of the threshold was important. In 

general, HU value of the sternum is slightly lower than the 

other bone. There was a trade-off between the inclusion of the 

sternum and the occurrence of the noise in determining HU 

value. 
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Figure 2-2. Five fitted surfaces. (a) The anterior left thoracic 

surface (blue), (b) The posterior right thoracic surface (red) (c) 

The dorsal view of the surfaces of (a) and (b) without the 

diaphragm (d) The left and right thoracic surfaces (red and blue, 

respectively) with the diaphragm surface (green) 

 

The inner wall of thoracic cavity is found by anterior-

posterior(AP) on the upper and lower ribs and radial ray 

projection on the left and right ribs[41]. AP rays are projected 

from the line crossing the centers of the left and right lungs 

while radial rays are projected from the centers of each half 

lung. The 3D surface-fitting are the points where the 

projection rays first touch the rib. To exclude points belonging 

to different bones such as scapular, the Euclidean distance field 

from the boundary of the lungs is generated by a volume-based 

method[42, 43] and the point cloud outside the 20 distance 

offset is removed.  

Four point clouds are converted into terrain-like 
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surfaces by the gridfit algorithm. As described in section III.B, 

this algorithm approximates the 3D grid points by solving a 

linear algebra equation with a gradient regulator[39]. The 

resulting four surfaces are shown in Figure. 2-2. Thegridfit 

function with 3mm by 3mm cells is performed and the fitting 

result is interpolated into the original volume spacing. 

 

2.3.4 Diaphragm surface modeling 

The diaphragm is a thin and double-domed muscle that 

separates between the thoracic and abdominal cavities. It is 

located below the lungs and forms the floor of the thoracic 

cavity on which the heart and lungs rest[26]. The similar 

appearance of the organs surrounding the diaphragm and the 

poor resolution of non-contrast CT scans makes the automatic 

segmentation of the diaphragm less accurate than inner thoracic 

cavity surface segmentation.  

 

 

 



24 

 

 

Figure 2-3. Extracting the thoracic cavity volume. (a) Five 

thoracic surfaces. The surfaces are depicted in red, magenta, 

light green, and blue, and the diaphragm is depicted in dark green 

as shown in the legend to FIG. 2-2. (b) Thoracic cavity volume 

(yellow) (c) Three-Dimensional display of the tissue inside the 

final thoracic cavity  

 

The lower parts of the lung surfaces could be the initial 

left and right diaphragmatic surfaces. Zhou et al. extracted 

these diaphragm surfaces by considering the surface normal 

direction[25]. To calculate the surface normal direction, we 

must convert the volume into the surface composed of meshes 

by a marching cube algorithm[44]. Therefore, 3D ray 

projection from the lower position is easier than extracting the 

surface normal direction. In our method, the diaphragm surfaces 

are extracted by the 3D ray projection method from the two 

centers of the bottom of each lung along the half-sphere 

direction. The x and y positions of the starting point of ray 



25 

 

projection are calculated from the mass center of each half lung 

in the axial slice of the lung containing the liver dome. In 

addition, the z position is selected from the bottom slice 

containing the lung. The ray projection is performed along the 

half-sphere. To remove the noise voxels that are not the 

diaphragm, only the voxels below the liver dome are selected 

and the connected components whose voxel counts are below 

1000 voxels are removed by labeling operator.  

The diaphragm surface is located below the heart and 

above the liver in the central region. Therefore, for 3D surface 

fitting, the initial left and right diaphragmatic lung surfaces are 

input point cloud. The gridfit function is used for this fitting. 

Figure 2-3a shows the axial view that contains the inner 

thoracic cavity surfaces and the diaphragm surface.  

In the present study, three state-of-art methods for 

modeling the thoracic cavity were implemented and compared 

with our proposed method. The Thin plate spline (TPS) method 

was developed on the basis of the TPS deformation method of 

Zhou et al.[25]. The base surface of each lung was considered 

as the diaphragm candidate with which the plate was deformed 

by using TPS deformation. To find the optimal surface of the 
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diaphragm segment, Li et al. and Yalamanchili et al. applied the 

graph-cut algorithm to the diaphragm segmentation12, [28]. 

Finally, the gridfit method, as explained in section III.B, 

approximates the surface between the base surfaces of each 

lung by using the gridfit function. Comparison of the gridfit 

method to our proposed method will show the effect of adding 

the heart and its surrounding tissue. Since the gridfit method 

yields a similar diaphragm shape as the TPS method, the 

addition of the heart and its surrounding tissue to the TPS 

result should improve the segmentation. 

 

2.3.5 Heart segmentation 

We performed two-stage level set method to extract 

the heart and the pericardial fat from volumetric chest CT. In 

the first stage, the heart segmentation was performed by the 

level set method with a sphere as a shape prior. In the second 

stage, the surrounding pericardial fat was segmented with 

shape of the heart as a shape prior which was the segmentation 

result of the first stage. As pericardial fat is located around the 

heart, we performed the pericardial segmentation with the 

boundary of the heart as the starting position. Because the 
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diaphragm exists between the heart and the liver, the 

segmentation of the heart and its pericardial fat is needed to 

enhance diaphragm segmentation result.  

In our method, the operator places two manual points on the 

heart, namely, on the upper and lower points of the heart on the 

sagittal plane that crosses near the center of the heart. From 

these seed points, the center (ch) and the estimated radius (re) 

of the heart are calculated as follows: 

   1 2 1 2

1 1
,

2 2
h ec p p r p p     (2-7) 

where p1 and p2 are the manually selected points. The level set 

method using a sphere as the shape prior is used to segment 

the heart. The initial shape for the level set is the sphere that 

uses the manually predetermined ch as its center and 0.6* re as 

its radius; it is located on the sagittal plane of the center of the 

heart. The speed function is based on an edge potential map 

with user-defined masking to prevent leaking in the following 

equation[45, 46]:  
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where u is set by 0 HU, kI is a voxel of speed image, and I(x,y,z) 

is an image voxel. Generally, the user-defined value is set to 

prevent leakage across the edges.  

This shape prior level set method is implemented by 

modifying the 

GeodesicActiveContourShapePriorLevelSetImageFilter in ITK 

Toolkit[38]. This filter adopted the level set method using a 

shape prior from Leventon et al.'s paper[32]. In this algorithm, 

the function of a shape prior was used to restrict the evolution 

of the level set surface considering the shape prior. The reason 

for heart segmentation is enhancement of diaphragm 

segmentation which would be hard to delineate correct 

especially below the heart. Compared with original filter 

implementation, shape and pose prior terms are changed for 

optimization purpose[32]. The shape prior term was replaced 

by using a Limited memory Broyden Fletcher Goldfarb Shannon 

(LBFPS) optimizer. This optimizer can restrict the search 

space. The pose prior was not used because the shape prior is 

a sphere[47]. This optimizer had four parameters: the radius, 

and the x, y and z positions from the center of the heart. The 

restricted search ranges of the optimizer are as follows: radius 
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(0.4*re ~ 1.4*re), and the x, y and z positions from the center of 

the heart (-10 ~ 10 mm).  

 

Figure 2-4. Segmentation of the heart and its surrounding tissue. 

(a-c) The result of segmentation of the heart and the 

surrounding tissue in three adjacent three sagittal planes. The 

heart is red and the surrounding tissue is blue. 

 

 

Figure 2-5. The convergence rate graph of the heart 
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segmentation of two cases (max RMS error : 0.1, max iteration : 

250). 

 

After heart segmentation, the surrounding region of the 

heart is also segmented by a level set method. The initial shape 

is the result of the previous heart segmentation. To calculate 

the speed function of kI, u is set as 0 where the voxel value is 

between -400 and 0HU, while the other region is set as 

described by the equation (2-8). This level set method is 

implemented by using the ShapeDetectionLevelSetImageFilter 

in ITK Toolkit [38]. The segmentation of the heart and its 

surrounding tissue segmentations are performed on resampled 

volume with 2-mm iso-cubic voxels to improve the execution 

speed. The results of segmentation of the heart and its 

surrounding tissue are shown in Figure 2-4a-c. Figure 2-5 

shows the convergence rate and termination conditions of level 

set algorithms using two example cases. 

 

2.3.6 Extraction of thoracic cavity volume  

The volume of the thoracic cavity can be evaluated on 

the basis of the five thoracic cavity surfaces by using Algorithm 
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2-1. The result of thoracic cavity segmentation is shown in 

Figure 2-3b. The final thoracic cavity volume is modified by 

adding the segmentation result of the heart and its surrounding 

tissue to decrease the false negatives. This method was used 

for the evaluations described in the Results section. The 3D 

view of the final thoracic cavity volume is shown in Figure 2-

3c. In addition, the modified diaphragm surface can be extracted 

from the final thoracic cavity volume by boundary extraction 

and surface selection of the diaphragm surface. As described in 

section III.C, four surfaces are extracted to model the inner 

thoracic wall surface. These surfaces construct the point cloud 

designated as PC. PC is converted into a k-d tree for nearest 

neighbor searching by using Approximate Nearest Neighbor 

(ANN) Library[48]. The boundary point whose distance from 

PC is shorter than 10 mm is considered to be the inner thoracic 

wall, while the point that is more than 10mm from PC is 

considered to be the diaphragm surface. This method can divide 

the boundary surface into the thoracic wall and the diaphragm 

surface in Section III.F. However, the upper part of the thoracic 

cavity remains undelineated, especially because the four fitted 

surfaces do not provide the exact boundary line of the 
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mediastinum in the upper part. Therefore, in the apex of the 

lung, we interpolate the region of the left lung, right lung and 

airway with the rolling ball algorithm using a 40 mm-sized 

kernel. The result volume is used to extract the upper boundary 

of the thoracic cavity. In addition, to quantify the fat levels only, 

the pulmonary vessel structure is excluded from the 

mediastinum region by using morphological closing after 

deleting the lung region from the thoracic cavity region.  
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Algorithm 2-1. Pseudo algorithm for extracting thoracic cavity 

volume mask. 

Function Thoracic cavity volume mask extraction  

Input: lung mask Lv, the z range (a, b) of Lv, surfaces Si, i = 

1,2,…,5 

Output: thoracic cavity mask TV 

Set an empty mask M1. 

Convert surfaces to volume mask and add them to M1. 

M2 = ~M1 

fork = a +0.05*( b- a ) to b 

   Perform connected component analysis on M2(·,·,k) 

   Calculate the overlapping area (OA) of each connected 

component with LV. 

   Find the connected components of OA to remove the 

small size component.    

   Add these connected components to TV. 

    end for 

 

2.3.7 EVALUATION METRICS AND 

STATISTICAL ANALYSES 

To evaluate the performance of our thoracic cavity 
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segmentation algorithm, it was compared to three conventional 

methods, namely, the TPS, graphcut, and gridfit methods. The 

manually segmented results of two expert radiographers and a 

thoracic radiologist were regarded as the gold standard. The 

gold standard of thoracic cavity segmentation includes the heart, 

the lung, the diaphragm, the pulmonary trunk, major vessels, 

and the esophagus in the mediastinum region. An expert 

manually delineated the diaphragm surface with -150 to 50 HU 

WWL, with which the diaphragm could be seen directly. The 

thoracic cavity segmentation was performed by finding the five 

surfaces enclosing thoracic cavity. The three conventional 

methods can extract the only diaphragm surface among the five 

enclosing surfaces. To test the three conventional methods 

correctly, we used the same four surfaces with the proposed 

method for thoracic wall. Six evaluation metrics were calculated: 

volumetric overlap ratio (VOR), the false positive ratio in VOR 

(FPRV), the false negative ratio in VOR (FNRV), average 

symmetric absolute surface distance (ASASD), average 

symmetric squared surface distance (ASSSD), and maximum 

symmetric surface distance (MSSD)[49]. In the present study, 

the boundary surface of the result volume mask was segmented 
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into two surfaces by the procedure described in Section III.F. In 

addition, three surface distance metrics ASASD, ASSSD, and 

MSSSD were calculated for both the inner thoracic wall and the 

diaphragm surface. To compare our algorithm to the three 

conventional algorithms, SPSS 17.0 (Armonk, New York, USA) 

was used to generate descriptive statistics and perform paired 

t-tests. The significance levels were set to 0.05, 0.01, and 

0.001. 

 

2.4 EXPERIMENTAL RESULTS  

 

2.4.1 Subjects 

In total, 50 patients with COPD underwent volumetric 

CT scans in the department of radiology, Asan Medical Center, 

South Korea. The CT scans were obtained by using a 16-multi 

detector row CT scanner (Siemens Sensation 16, Erlangen, 

Germany) with 0.75mm collimation, a smooth kernel (B30f), 

and 0.75mm slice thickness. The two radiographers with more 

than 5 years of experience delineated the rib cavity boundary 

by modifying the result of the proposed segmentation method. 
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An expert thoracic radiologist with more than 10 years of 

experience further modified these result and confirmed their 

validity as gold standard results. 

 

2.4.2 Results 

 

TABLE 2-1. Accuracy of the four thoracic cavity segmentation 

algorithms relative to the gold standard 

 

 TPS method Graph-cut 

method 

Gridfit 

method 

Proposed 

method 

VOR 

(%) 

97.28±1.41

***  

96.41±0.29

***  

97.40±1.48

***  

98.17±0.

84  

FPRV 

(%) 

0.28±0.15  2.76±2.10*

** 

0.28±0.16  0.49±0.2

3  

FNRV 

(%) 

2.45±1.41*

** 

0.82±0.47  2.32±1.49*

** 

1.34±0.8

3  

ASASD 

for 

thoraci

c wall 

(mm) 

0.33±0.17*

** 

0.57±0.35*

** 

0.33±0.19*

** 

0.28±0.1

2 

ASSSD 

for 

thoraci

c wall 

(mm) 

1.59±0.86*

** 

2.82±1.66*

** 

1.65±0.96*

** 

1.28±0.5

3 

MSSD 

for 

thoraci

c wall 

(mm) 

27.33±9.68

*** 

39.38±14.5

4*** 

27.11±10.1

2** 

23.91±7.

64 

ASASD 

for 

3.15±1.72*

** 

4.25±3.29*

** 

2.98±1.78*

** 

1.73±0.9

1 
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diaphra

gm 

(mm) 

ASSSD 

for 

diaphra

gm 

(mm) 

6.16±2.80*

** 

7.16±4.83*

** 

6.16±2.95*

** 

3.92±1.6

8 

MSSD 

for 

diaphra

gm 

(mm) 

32.64±11.3

5*** 

36.15±15.3

8** 

30.95±10.6

8*** 

27.80±10

.63 

All p values derive from paired t-tests comparing our method 

with each of the three conventional methods. * p< 0.05, ** 

p<0.01, *** p<0.001. 

VOR: volumetric overlap ratio; FPRV: false positive ratio in VOR; 

FNRV: false negative ratio in VOR; ASASD: average symmetric 

absolute surface distance; ASSSD: average symmetric squared 

surface distance; MSSD: maximum symmetric surface distance 

 

Every metric of volumetry accuracy was evaluated 

using the result of each method and the gold standard. 

Evaluation results of these metrics were shown in Table 2-1 

and pair-wisely compared among our proposed method and 

three other state-of-art methods including TPS, graphcut and 

gridfit methods described in Section III.D. As the accuracy of 

inner thoracic surface was higher than that of the diaphragm 

surface, we focused on the accuracy of diaphragm segmentation 

and compared the performances of our method and other 

diaphragm segmentation methods with the same inner thoracic 



38 

 

surface extraction algorithm. In the evaluation, the lung volume 

of thoracic cavity was not excluded to reduce ambiguity in the 

pulmonary vessel region. 

Relative to the gold standard, our proposed method was 

significantly more accurate than the three conventional methods, 

in terms of most metrics, especially the surface distance 

metrics. The TPS and gridfit methods had significantly lower 

FPRV values than our method (p<0.001). While the graph-cut 

method yielded a significantly better FPRV than our method, it 

was associated with a significantly lower FNRV (p<0.001). As 

shown by the ASASD and ASSSD values, three methods and 

our method all modeled the inner thoracic surface markedly 

better than the diaphragm surface (p<0.001).  

The gridfit method approximates the surface by using a 

gradient regulator. This regulator makes a curved surface in the 

upper direction between the bases of the left and right lungs. 

Therefore, the gridfit method yielded a relatively high rate of 

false negatives and a low rate of false positives. If the regulator 

were the spring, the approximated surface would be similar to a 

flat surface. Since addition of the heart and its surrounding 

tissue increases the resulting volume of the thoracic cavity, the 
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addition of the heart and its surrounding tissue could increase 

VOR by reducing the false negatives. 

 

Figure 2-6. The segmentation results of two cases by the gold 

standard method (a-c and g-i) and the proposed algorithm (d-f 

and j-l). The columns show the axial, sagittal, and coronal 

images of the cases from left to right. For the first case (a-f), 

the thoracic cavity volumetry metrics VOR, FPRV, and FNRV of 

our method relative to the gold standard were 99.37%, 0.22%, 

and 0.41%, respectively. The ASASD, ASSSD, and MSSD for the 
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thoracic wall were 0.10 mm, 0.51 mm, and 11.13 mm, 

respectively while the ASASD, ASSSD, and MSSD for the 

diaphragm surfaces were 0.49 mm, 1.33 mm, and 16.02 mm, 

respectively. For the second case (g-l), the VOR, FPRV, and 

FNRV were 94.27%, 0.31%, and 5.43%, respectively. The 

ASASD, ASSSD, and MSSD for the thoracic wall were 0.75 mm, 

3.44 mm, and 50mm, respectively while the ASASD, ASSSD, and 

MSSD for the diaphragm surfaces were 6.12 mm, 11.45 mm, and 

56.38 mm, respectively. 

 

 

Figure 2-7. The 3d display of segmentation results of four 

cases (yellow : thoracic cavity, red : heart) (a)~(b) The 3d 

display for two cases of Figure 6 (c)~(d) The 3d display for two 

additional cases 
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The segmentation result of two cases was shown in 

Figure 2-6 in Multi-Planar Rendering view. The gold standard, 

convergence graph of the heart segmentation (Fig. 2-5), and 

the 3D display of the diaphragm (Fig. 2-7a and b) were also 

provided. To present more information about the diaphragm 

segmentation, we added the diaphragm segmentation result 

figures of two additional cases (Fig. 2-7c and d).   

  

2.5 DISCUSSION 

There could be a gap between the surface of the lung 

and the thoracic cavity surface. To evaluate the total fat 

composition of the thoracic cavity, the tissue in this gap should 

be included in thoracic cavity segmentation. Therefore, we used 

the inner surface of the ribs to model the thoracic cavity 

surface. This could be a more robust method for measurements 

in patients with various lung diseases. 

Since the heart is sometimes attached to the liver, its 

boundaries are not clear in volumetric CT. Therefore, there 

could be leakage into the liver in this attached region. To 

prevent severe leakage, level set segmentation using a sphere 

as the shape prior was used for the heart segmentation in our 
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method.  

As mentioned in the introduction, measuring the intra-

thoracic tissue composition of patients with COPD could be 

useful for risk stratification. When making the mask for the fat 

quantification, we exclude the lung from the thoracic cavity 

region. In this case, the thoracic cavity region for a tissue 

composition analysis can be ambiguous, especially in the upper 

part of lung and around the airway. Moreover, it is difficult to 

determine how to consistently exclude the pulmonary vessel 

structure. Therefore, a systematic method of thoracic cavity 

definition and segmentation that permits reliable and accurate 

fat quantification is needed. The present paper proposed such a 

method. This method could also be used to evaluate the tissue 

outside the thoracic cavity, and the heart segmentation 

component could be used to automatically differentiate and 

measure epicardial fat. As far as we know, this is the first study 

on thoracic cavity segmentation in volumetric CT.  

The present study showed that our method delineated 

the thoracic wall more accurately than the diaphragm surface. 

This reflects the fact that it is very difficult to identify the 

diaphragm surface accurately, especially around the backbone, 
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because of the fat between the diaphragm and the lung (Fig. 2-

5h and k). Supporting this is two studies that reported DICE 

similarity coefficients of the inner thoracic wall and diaphragm 

surfaces of  0.985±0.005 and 0.942±0.010, respectively[24, 

26].  

When our method was compared to the conventional 

TPS, gridfit, and graph-cut methods, The TPS and gridfit 

methods had a significantly lower FPRV (p<0.001). The TPS 

and gridfit methods also missed significant amounts of inter 

thoracic tissue, which explains why their FNRV values were 

significantly higher than that of our proposed method (p<0.001). 

The graph-cut method did not accurately detect the thin 

diaphragm surface around the sternum, which resulted in a 

significantly higher FPRV compared to our method (p<0.001). 

The graph-cut method did not use the regulator but limit the 

difference between the z positions of grids by the inclined edge 

of the graph. Therefore the divergence sometimes occurred in a 

different direction, when information from the image could not 

guide the surface accurately.  

This study had several limitations. It was based on a 

limited number of CT scans, only studied patients with COPD, 
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and used the same CT parameters. In addition, our method did 

not segment the diaphragm and heart with sufficient accuracy. 

The heart segmentation could be leaked into the liver through 

the vague boundary between the heart and the liver, although 

the shape prior information restricts this leakage. In addition, 

the segmentation result does not guarantee the smooth 

diaphragm surface due to discontinuity between the added 

region and the original thoracic volume. Moreover, our method 

needs two manual seeds on the heart, which means that fully 

automated thoracic cavity segmentation is still not possible. 

Additional studies will be performed to improve the heart 

segmentation method. For this, the method of Funka-Lea et al. 

will be used[30]. His method is more robust with regard to the 

location inside the heart in which the seed point should be 

placed. We will also improve the robustness of our proposed 

method with regard to CT reconstruction using various 

parameters. In addition, the diaphragm segmentation should be 

improved by using the upper boundary of diaphragm muscle, not 

the lower boundary of the lung. Finally, we will use our method 

to quantify the fat inside and outside the thoracic cavity, and 

determine the ratio between these quantities, in different 
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clinically important conditions, including diffuse interstitial lung 

disease, pulmonary tuberculosis, diabetes mellitus, sleep apnea, 

angina pectoris. 

 

2.6 CONCLUSION 

The composition of the tissue in the thoracic cavity 

region is regarded as being clinically important. However, it 

remains difficult to accurately segment the thoracic cavity 

region in volumetric CT because this region involves many 

organs and the diaphragm surface is unclear. In this paper, we 

proposed a semi-automated thoracic cavity segmentation 

method in which multiple organs, namely, the rib, lung, heart 

and diaphragm, are extracted, thus permitting delineation of the 

five surfaces that enclose the thoracic cavity. Our method was 

significantly more accurate relative to manual segmentation and 

delineation than three state-of-art methods. This study could 

be used as a framework to analyze the tissue composition of the 

thoracic cavity in various diseases.  
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CHAPTER 3 

Semi-automatic decomposition 

method of pulmonary artery and 

vein using 2-level minimum 

spanning tree constructions in 

nonenhanced volumetric CT 
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3.1 INTRODUCTION 

Quantitative assessments of the pulmonary vascular tree 

structures are important for analyzing vascular morphology and 

the effects on lung diseases [50]. Exact structural analyses of 

the pulmonary vasculature are difficult because each vascular 

tree contains a mixture of arterial and venous trees [51]. 

Moreover, partial volume effects and motion artifacts can make 

such analyses particularly problematic[52]. 

Especially for patients with chronic obstructive pulmonary 

disease (COPD), this quantification is becoming more and more 

important [53-55]. Matsuoka et al. recently reported a 

correlation between small pulmonary vessel areas and 

pulmonary function test (PFT) results [53]. Uejima et al. 

reported a correlation between vascular alterations (measured 

using cross-sectional area and airflow impairment) and normal 

pulmonary function in nonsmokers [54]. Estepar et al. also 

evaluated small-vessel volumes that were normalized to the 

total blood-vessel or nonvascular-tissue volumes in smokers 

[55]. The small-vessel volume was calculated using lobe-

specific measurements, and vessels < 5 mm2 were considered 
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small. In our group, the distributions of the pulmonary arteries 

and veins were separately evaluated in order to clarify the 

effects on lung diseases with inner offset surfaces at 5-mm 

intervals from the distal pulmonary structures [56]. 

In general, the automated extraction of accurate 3D 

pulmonary vascular structures from non-contrast CT images is 

difficult. Furthermore, explicit classification of the pulmonary 

arterial and venous subtrees is typically unsuccessful, although 

satisfactory segmentation can be performed.  To solve this 

problem, the automatic decomposition of the pulmonary arteries 

and veins needs to be developed. Park et al. tried to perform 

this decomposition by constructing minimum spanning trees 

(MST) with 3 vertex weights and edge weights on whole-

vessel volumes [52]. However, this method was based on 

manually placing the seeds with the label and, moreover, must 

be performed on whole-vessel voxels, which increases the 

running time for MST construction. 
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Figure 3-1. Multi-root minimum spanning tree construction 

theory. 

 

The Dijkstra algorithm is a well-known, shortest path-

finding algorithm used for constructing MSTs [57-59]. The 

Dijkstra algorithm is extended to construct MSTs by adapting 

multiple source inputs, which are defined as MDijkstra (Multi-

root Dijkstra algorithm) [38, 60] (Figure 3-1). Since the 

execution time for MST construction under the whole-vessel 

voxels is long, 1 MST construction was divided into 2-level 

MST constructions. The MST construction for the first level 

was made in the preprocessing step, and in the interactive 
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decomposition processing time only the second-level MST 

construction was performed to reduce execution time. Since 

manually placing the seeds of the arterial and venous trees is 

time-consuming work, an automatic method of finding roots is 

an important part for automating vessel decomposition, 

especially for the second-level MST construction. Herein, we 

propose a method for automatically finding roots by filtering the 

morphological and spatial features of the vesselsand detecting 

important subsets of vessel skeleton-subtrees. Automatic 

root-finding will be combined with 2-level MST constructions 

in order to make an interactive program. This framework was 

designed to maximally reduce additional manual operations for 

split and merge operations. 

In our present report, related studies are summarized in 

Section 2, the arterial and venous decomposition method is 

presented in Section 3, the statistical analysis method for the 

feature value set and efficient manual editing method are 

described in Section 4, decomposition evaluations are proposed 

in Section 5, and conclusions are presented in Section 6. 
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3.2 RELATED STUDIES 

There are several studies on the separation of pulmonary 

arterial and venous subtrees on CT. Buelowet al. and Yonekura 

et al. previously proposed arterial and venous separation 

algorithms based on airway segmentation that used the specific 

anatomical features of the pulmonary arterial and venous trees 

[61, 62]. However, if the attachments between the artery and 

vein trees were severe, these methods could yield inaccurate 

separation. Lei et al. developed a separation method for arterial 

and venous trees based on magnetic resonance angiographic 

imaging data with fuzzy connectedness [63]. Although the use 

of fuzzy connectedness with given seeds is valid, that study 

was restricted to just the single separation of arterial and 

venous trees. Saha et al. proposed that multiscale 

topomorphological openings could be used to separate arteries 

and veins using 2 sets of seeds for arterial and venous trees, 

along with fuzzy distance transformation and fuzzy connectivity 

[64]. This research modified the fuzzy connectedness idea into 

a multiscale concept. In that approach, the user had to spend 2–

3 minutes performing 1 separation. Although this group 

developed a local, updated procedure to improve the execution 
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time [65], the fundamental solution was not provided. 

Park et al. proposed an automatic classification method for 

pulmonary arteries and veins that uses MDijkstra and weights 

to construct MSTs [52]. However, this method requires the 

conversion from volume data to a 3D point set, manual seed 

points by an expert, and a long operating time. Bemmel et al. 

suggested a level set-based arterial and venous separation 

method [66]. In this approach, the voxels are labeled as arterial 

or venous based on the arrival time at their respective surface. 

Propagation is governed by external forces related to the 

feature images and internal forces related to the geometry of 

the level sets. This evolution was initialized by the central 

arterial axes and central venous axes of the 2 surfaces, and this 

initialization is similar to our proposed method because our 

method uses the skeleton and mapping table to extract the 

whole-vessel volume. Chowriappa et al. proposed a 3-

dimensional vascular skeleton extraction and decomposition 

method [67]. The decomposed structures were classified to 

identify aneurysm sacs for computer-aided detection [68]. 

They differentiated the vascular tree based on convex 

decomposition with approximate weights and a 3D shape index 
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analysis that was invariant under the natural deformations, 

which were composed of rigid and non-rigid deformations 

without a topology change. 

Several methods have been proposed for vessel 

skeletonization. In medial axis transformation, a maximally 

inscribed sphere is used to track the centerline, which can be 

used for skeletonization. Although this method is an advanced 

skeleton extraction method that uses the average outward flux 

[69], for small vessels with < 2 voxels it is not possible to 

exactly extract the thin centerline. In this study, the 3D 

thinning algorithm was used to extract the vessel skeleton, 

especially including small-diameter vessels with topology 

preserving aspect and simple gradual peeling. [70]. 

To reconstruct the vascular trees, Szymczak et al. 

proposed a forest to connect the persistent maxima with the 

short edges and improve the forest by applying simple 

geometric filters that trim short branches, fill gaps in blood 

vessels, and remove spurious branches from the vascular tree 

[71]. The simple geometry method filters and trims short 

branches based on Kruskal’s MST algorithm. That method 

constructed the minimum forest that uses the edges to connect 
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the points in a 3D point set that are shorter than the given 

threshold. Figueiredo et al. performed geometrical 

reconstructions using points, especially curved reconstructions 

for planar cases [72]. The point set can be separated into 

clusters by removing atypically long edges from the MSTs. 

This paper proposes 2 heuristic criteria for determining when 

an edge is too long. One is a global criterion, which removes the 

edges in order of decreasing length. The other is a local 

criterion, which removes edges that are much longer than the 

average length of the neighboring edges. 
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3.3 ARTERY AND VEIN DECOMPOSITION 

3.3.1 Overall workflow 

 

Figure 3-2. Flow chart of the overall procedure. 

 

The overall procedure is shown in Figure 3-2, which 

included following parts: preprocessing, automatic vessel 

decomposition with roots automatically found for MST 

construction, accuracy evaluation on decomposed result by 

automatic classification through volumetric overlap with 

goldstandard. If the decomposed sub-trees were not complete, 

the vessel decomposition procedure was tried again with new 

parameter set. Although the hilar region could be detected 
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automatically, the detection of rough boundary of the hilar 

region frequently needs four or five candidate points around 

hilar region manually selected in 2D view. 

 

3.3.2 Preprocessing 

For pulmonary artery and vein decomposition, the 

preprocessing procedure included the following 4 major steps: 

1) vessel segmentation; 2) initial tree construction; 3) 

statistical evaluation of the trees; and 4) construction of the 

first-level MST. 

 

3.3.2.1 Vessel segmentation 

The vessel segmentation method was explained in a 

previous study [52]. Since the purpose of vessel decomposition 

is to quantify the separated arterial and venous subtrees, the 

simple threshold method was used to preserve the geometric 

features of the CT images.  

The vessel structure was separately assessed for the left 

and right half-lungs. Airway segmentation and left-vs-right 

lung splits were performed using a previously described method 

[73-75]. Each half-lung was eroded in 3D with 2 pixels in 
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order to efficiently remove lung boundary noise because the 

intersecting objects between the lung mask and the vessel 

mask near the lung boundary could be included as noise under a 

given threshold. To segment the pulmonary vessels, an efficient 

approach that uses a threshold-based method with -750 

Hounsfield Units (HU) on non-enhanced CT was used for the 

eroded lung region. 

 

3.3.2.2 Initial tree construction 

The vessel skeleton was extracted using the 3D thinning 

method. The vessel skeleton was created based on the spacing 

of the original image in order to prevent data loss. Since the 

threshold for the vessel segmentation was -750 HU, 3D 

thinning could be performed on the binary mask to extract the 

skeleton. In a later experiment, the skeleton threshold (SKTh) 

for extracting the subset from the vessel mask was selected 

based on the decomposition accuracy. After the skeleton was 

constructed using 26 connected neighborhoods, an undirected 

graph with nonnegative edge weights was constructed to 

evaluate their connectivity. Edges with 26 connectivity—

composed of the center voxel and the neighboring voxels with a 
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distance weight—were linked if the vertexes of the edge were 

included in the skeleton mask. This edge construction was also 

computed on whole-vessel voxels. Edges were linked if the 

vertexes of the edge were included in the vessel mask. Two 

kinds of initial undirected graphs were used for statistical 

calculation and 2-level MST constructions.  

The vertex weights of the initial undirected graph were 

calculated based on the previous study [52]. The weight is the 

average of 3 kinds of different weights: the attenuation 

intensity, the distance from the boundaries, and the Laplacian of 

the distance field. The normalization method was also 

performed on each weight in order to make the resulting value 

reside between 0 and 1. In this study, 2 types of MSTs were 

made for the skeleton vertexes and the whole-vessel voxels, 

which were compared with only 1 type of MST that was 

constructed using whole-vessel voxels in the previous study 

[52].  

 

3.3.2.3 Subtree statistics 

The radius was estimated by identifying the nearest 

neighboring boundary points of the vessel surface from the 
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skeleton, which could include ≥ 1 nearest points [76]. 

Therefore, a distance transformation was performed to 

estimate the vessel radius. The direction of each skeleton 

vertex was calculated based on the difference vector between 

the parent and current vertex. Estimating the radius and 

direction of each skeleton vertex is an error-prone process 

due to the discreteness of each skeleton vertex, so a smoothing 

procedure along each branch was performed to yield a more 

robust evaluation of the radius and directional data. 

To distinguish each branch, a breadth-first search (BFS) 

was performed on each constructed skeleton MST. This search 

allowed the skeleton-subtrees to be divided into separate 

branches. In addition, the initial skeleton MST was constructed 

from the initial graph, and BFS was executed on this skeleton 

MST and the average values of the radius and direction of each 

skeleton vertex were calculated. After extracting the branch ID 

of each skeleton vertexes, the average values of radius and 

direction could be calculated. 
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3.3.2.4 The first level MST construction 

 

Figure 3-3. Two level minimum spanning tree constructions 

 

Decomposition of the vessel subtrees was performed by 

2-level construction of the MSTs. The construction of the MST 

with the skeleton vertexes as the target roots decomposed the 

vessel voxels into small fragments in the first level. In the 

second level, after constructing the MST on the skeleton graph 

with the automatically found roots, the decomposed small 

fragments of each skeleton vertex were combined based on the 

constructed second skeleton MSTs (Figure 3-3). The mapping 

table from the skeleton vertexes to either the surface or 

volume composed of the 3D points linked the skeleton vertexes 

to the small decomposed fragment of volume or surface. 



61 

 

 

 

Figure 3-4. The skeleton graph and surface points mapped to 

that skeleton vertexes. (a) A part of pulmonary vessel region in 

the skeleton threshold of -550HU (b) The same vessel region 

with left figure in the skeleton threshold of -750HU. 

 

When such data were available, a colored, textured vessel 

surface could be drawn. The surface points are shown in Figure 

3-4, and the points of several colors represent points that 

were mapped using this procedure. The vertexes of the 

skeleton tree illustrated in Figure3-4 have corresponding 

surface points or volume points that were identified using this 

procedure. By identifying the voxels attached to a specific 

skeleton vertex, this map could be used for display, vessel 

selection, and the reconstruction of the vessels of selected 
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group IDs. 

Cylinder construction around a vessel skeleton with a 

proper radius could be used to map the skeleton vertexes and 

vessel volume points. However, it can be difficult to identify 

the appropriate group for those voxels around a surface with a 

complex topology or bifurcating points. Importantly, the 

mapping table was made using MDijkstra, and this algorithm 

has strong characteristics for constructing the maps with such 

complex geometry. In addition, to determine the edges 

attached to a specific vertex, an incidence table was also used.  

 

 

3.3.3 Root finding 

The root-finding algorithm is important because the 

generation of the second-level MST would depend on the 

number and locations of the roots. To automatically identify 

roots in a given graph, the criteria to divide the graph must be 

considered. First, the connectivity of the graph could be used as 

a deciding factor for identifying root locations. This is, however, 

not enough because there could be unwanted connections. 

Among the pulmonary vessels, several vessels exist in 1 
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connected voxel object, while generally the vessel can be 

perceived from the morphology of the vessel’s structure. 

Therefore, a method for controlling this connectivity was 

proposed by filtering the edges. Unwanted roots can be 

removed using the proper filters with the optimal feature value 

set. The characteristics of the filter were made by considering 

vessel geometry and morphology, including vessel radius range, 

erosion number (ER) of the vessel mask, and additional 

thresholding on the vessel mask, which need to be optimized to 

control the connectivity of the graph and produce the proper 

roots. Additional size filtering of the connected object was 

performed to remove small objects using the total branch length 

(TBL). The number of the optimized feature value set in terms 

of filters, therefore, was 4. 

The root-finding procedure includes edge filtering, size 

filtering of the connected object, and finding the roots from the 

connected object. To run this algorithm, a sequence of updated 

functions was performed as follows: 1) create an initial graph 

from the skeleton data; 2) filter the edges of the initial graph 

according to the selected features; 3) find the group; 4) filter 

the connected object based on TBL; 5) find the roots from the 
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important subset of vessel skeleton subtrees identified by 

filtering; and 6) run MDijkstra using the selected roots. 

Size filtering worked in a different way in comparison with 

filtering the other features using the root-finding procedure. 

Figure 3-5 (e) shows skeleton trees that were filtered by size 

filtering. Figure 3-5(d) are the result of applying edge filtering 

with 3 selected features. Between procedures (2) and (4), 

there is ‚ find group‛  procedure. After edge filtering for 

selected features, the groups for each skeleton-subtree were 

identified according to connectivity information. Figure 3-5(f) 

shows skeleton trees filtered by TBL. From these skeleton 

trees, the roots were calculated from the root candidate points, 

which were manually given. 
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Figure 3-5. Sub-trees with distal branch attachment and 

automatic root finding procedure (a) Initial skeleton tree (b) 

skeleton trees after radius filter (c) skeleton trees after erosion 

filter (d)skeleton trees after additional thresholding filter (e) 

skeleton trees after size filtering (f) Root finding from the 

important subsets 

 

The connected components of the dense voxels that label 

the resulting vessels are represented as SR={R1, R2, R3,...,RnR}, 

and the root candidate points are represented as RC={PC1,PC2,

…,PCnc}. The distances between the point Rx and the RC set 

were calculated by identifying the minimum point from the RC 
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point set. The point with the shortest distance from the RC 

point set among points Rx was considered to be the root of the 

resulting vessel (Figure 3-5(c)). Basically, the root candidate 

points could be set as the hilar region points since the roots of 

the trees reside near the hilar region. But, especially, by using 

the manual split procedure, the root candidate points were set 

as the dividing skeleton vertexes since the split trees were 

made from the dividing points. 

 To more effectively tune the feature value set, an 

empirically selected feature value set could be given and a 

specific feature value set might be preferred based on the 

decomposition strategy. 

 

3.3.4 Multi-root Dijkstra algorithm 

The Dijkatra algorithm finds the MST for a weighted 

undirected graph [59]. Dijkstra algorithm’s object grows from 

1 source vertex into a tree of any size by adding vertices that 

are extracted from the priority queue, which can be used to 

divide the region into several parts based on the arrival timing 

of spanning tree construction under the given weight.  

The connected objects of different groups could meet at 1 
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vertex. When this happened, MDijkstra removed the collided 

opposite edges to stop the growth of the opposite group object. 

The MDijkstra algorithm includes the collision detection 

algorithm by adding a line code (* in Figure 3-6) to solve this 

issue. This collision detection algorithm was brought from the 

mono-oriented group-growing algorithm[38]. This code 

searches for edges, including endpoints, and removes the 

identified edges from the maxHeap. Because the edges attached 

to the 1 vertex could be found by the incidence table, this line 

code could be executed without sequential searches. Since the 

binomial heap could perform combinations of insert, pop, and 

erase operations in O(nlogn) time (‘n’ is the object number) 

[58], the execution time of MDijkstra was bound to 3–4 minutes 

for the entire volume. 
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Figure 3-6. Multi-root Dijkstra algorithm. The input parameter 

graph is the initial graph of the vessels constructed using 26 

connectivity. The input parameter graph' shows the vertexes 

structure without edges. NOTE * : code for considering multi-

root. 

 

The construction formula for MST can be found in Park et 

al. ’ s paper. In this paper, we redefined the construction 

formula for MST as a minimization problem in order to obtain a 

tree structure, T’= (V, E), that connects all of the vertices in 

V and whose construction energy (or cost) is minimized as 

Equation (3-1).  
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' min ( )
T

T C T  (3-1) 

Because the set of vertices V is already given in this case, 

the construction energy is only affected by the connections of 

the edges. C(T) is then defined as the summation of the 

connecting energies of the edges, as shown as Equation (3-2). 

( , )

( ) ( , )
i j E

C T C i j


      (3-2) 

The construction energy of each edge connecting the i-th 

and j-th vertices is defined by Equation (3-3). 

( , )
j i

j ij j

v v
C i j

w e p   




  
   (3-3) 

where, C(i,j) is the construction energy of each edge 

connecting the i-th and j-th vertices, vi and vj are the vertex 

position vectors, wj is the weight of vertex j, and eij is the 

direction weight of edge(i,j) to a local orientation vector of 

vertex j. pj is the  penalty weight of  vertex j. , , ,     (> 0) 

are positive real-value constants defined by the user, 

especially   must have a denominator  0, and we set  =1/5, 

 =3/5,  =1/5, and  =3/5 for the skeleton vertexes used in 

the second level MST construction. In the first level MST 

construction case, we set  =1/5,  =3/5,  =0, and  =0. 
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The weight of the edge’s direction and the penalty weight 

were additionally adapted for the skeleton MST construction. 

The weight of the edge’s direction was calculated by the dot 

product of the average direction and the local edge direction. 

The penalty weight was calculated as the distance of the 

current vertex from the nearest points of the important subsets. 

This weight was made by MAX(0,1-dist/30 mm). This weight 

was the penalty that prevented a far point from the important 

subsets from being reached earlier by MDijkstra than a near 

point. The weight of the edge’s direction and the penalty 

weight were combined with the total weight by multiplication 

with the proper constants in Equation (3-3). 

 

 

3.4 AN EFFICIENT DECOMPOSITION 

METHOD 

For skeleton generation and a root-finding method, the 

candidate optimal feature value set could reduce the time and 

yield a more consistent feature value set. 
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3.4.1 Finding a candidate optimal feature value set 

The automatic vessel decomposition procedure shown in 

Figure 3-2 was performed using a root-finding method and 2-

level MST constructions. The vessel decomposition required 5 

features and, since the lower radius limit (LR) was fixed at 0, 

the 5 optimal values of the 5features—including the upper 

radius limit (UR) for the vessel radius, TBL to remove small 

tree off, ER of the vessel mask, the additional threshold (ATh), 

and skeleton threshold (SKTh)—were tried by the grid-search 

method. Two features of the vessel, radius range and TBL, are 

related to the global shape of the skeleton of the vessel. Since 

the radius of the vessel tree decreases from the root to the 

distal branch, the radius range with LR of 0 value is an effective 

feature for tree decomposition. ER and ATh are the local shape 

features of the vessel skeleton since these features are not 

directly related to the change in the length of the vessel tree. 

The optimal value was searched with LR, UR, TBL, ER and 

ATh under SKTh of -550HU by a particle swarm optimizer[74] 

of 10 particles and 10 iterations. For the prior knowledge, 

experiments were performed to find initial variables and a 
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search order. In these experiments, the optimal value for the 

optimizer to find was [0±0 mm, 1.70±0.55 mm, 13.83±10.80 

mm, 1.1±0.85, and -176.42±151.17 HU for LR, UR, TBL, ER, 

and ATh respectively]. The optimal accuracy and decomposed 

vessel number of the pulmonary vessels were 89.34 ± 5.55% 

and 130 ± 107.42, respectively. In this experiment, the mean 

and standard deviation values of the decomposed vessel number 

were high. In addition, the local shape features showed large 

variance values compared with the global features. If the 

search-dimension of the particle swarm optimizer were large, 

the optimality of the search would be decreased.  

In the field experiment, TBL and ATh were initially 

assumed to be 10 mm and -550 HU, respectively. To flexibly 

determine the feature values, a particle swarm optimizer with 

10 particles and an iteration number of 10—which imitated 

interactive selection by the program operator—was used. If the 

grid number of the found axis were defined as gn, and the 

particle swarm optimizer was executed by the number of 10 x 

10 x gn since the particle was 10 and the iteration was 10. The 

total test number of proposed grid search per each half-lung 

was 1908 times. This value could be calculated by summation 
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of 5x100(step 1), 6x100(step2), 5x100(step3), 3x100(step4), 

and 8(step5).This grid search proceeded in the following order: 

UR(step1), SKTh(step2), TBL(step3), ER(step4), and 

ATh(step5). For the optimizer’s operation, the range of the 

feature values of ER and ATh were restricted between 0 and -

750HU, and 2 and -100HU, respectively. Two local feature 

values could be varied at the same time, or only ATh could be 

varied by the optimizer for the grid-search time of ER.  

A deterministic optimizer, such as the quasi-Newton 

method, could not be used to calculate the stable optimal value 

because the gradient value was not useful for evaluating the 

vessel decomposition algorithm. Therefore, a stochastic 

algorithm, which simulates the social behavior of a ‚flock of 

birds‛ or ‚school of fish‛, was used. The cost function of 

this optimizer minimizes the error value of arterial and venous 

decomposition.  

 

3.4.2 Comparison with previous method 

 Park et al’s method was executed with the proposed 

automatic root-finding method to compare performance. The 

decomposition accuracies of Park et al’s method and this 
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proposed method were compared. These 2 methods have the 

same vertex weights. For comparison, SPSS 17.0 (Armonk, 

New York) was used to generate descriptive statistics and 

perform paired t tests with 2 tails.  
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3.5 EVALUATION 

3.5.1 Accuracy evaluation 

Let Ta and Tv denote the true segmentations of the arterial 

and venous subtrees, respectively, in the 20 half-lungs of the 

10 patients with COPD. Sa and Sv denote the segmentations of 

the arteries and veins, respectively, that were computed using 

the current method. Since the decomposition results of the 

proposed method contain no classification information for the 

separated subtrees, the subtree was automatically classified as 

the arterial or venous subtree using the gold standard in order 

to calculate the decomposition accuracy. The automatic 

classification criterion is the area that overlaps with Ta and Tv 

in each subtree. After that, Sa and Sv can be calculated (Figure 

3-7). 
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Figure 3-7. Accuracy evaluation of decomposition under 

optimization procedure 

 

The gold standard mask used in our current report was 

generated using a sub-millimeter-thick, non-contrast, 

volumetric chest CT (the patient’s breath was held at full 

inspiration) for the 10 patients with COPD. The hilar region was 

manually removed to separate the arteries and veins. An expert 

with > 10 years of experience generated the gold standards for 

the arterial and venous vessels for these 10 patients. 

Descriptive statistics of the arteries and veins of the gold 

standards were as follows: the mean and standard deviations of 

the lower radius, upper radius, lower distance, and upper 

distance were 0.33 ± 0.01 mm, 3.13 ± 0.55 mm, 14.59 ± 
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3.00 mm, and 180.75 ± 17.96 mm, respectively. The upper 

range value of the radius was relatively low because the gold 

standard did not contain the hilar region. 

The accuracy and error of the computerized decomposition 

of the artery and vein were defined as follows. 

( ) ( )a a v v

a v

T S T S
Accuracy

T T

  



      (3-4) 

and 

( ) ( )a v v a

a v

T S T S
Error

T T

  



         (3-5) 

Since the gold standard was made by removing the hilar 

region, the resulting vessel mask is different from the gold 

standard, and the hilar region also was excluded from the 

accuracy calculation. 

 

3.5.2 Determining the pseudo-optimal feature 

value set  

In Table 3-1, step 1 shows the averaged decomposition 

results of the 20 half-lungs under the optimal UR searched by 

varying the UR value from 1 mm to 3 mm in 0.5-mm steps. In 

each half-lung case, after the optimal value and its 
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corresponding error (or accuracy) value were recorded, the 

recorded values were averaged over 20 half-lungs. The grid-

search results show that when the upper radius value was low, 

the accuracy was high but the decomposed vessel number was 

high. In the grid-search experiment, we found that the value 

between 1.5 mm and 2.0 mm was optimal. Therefore, in the 

next grid-search step, 1.75 mm was used as the UR. In step 2, 

the optimal SKTh value was searched by varying a value from 

-500 HU to -750 HU in 50-HU steps. SKTh was used to 

determine the length of the vessel skeleton. With a high 

threshold value, the constructed vessel skeleton is shorter and 

contains the core part of the vessel. Figures 3-4 (a) and (b) 

compare the skeletons made with thresholds of -550 HU and -

750HU. In the grid-search experiment, -550 HU was 

determined as the best SKTh value. For step 3, the optimal 

TBL was found by varying TBL from 10 mm to 30 mm in 5-

mm steps with the grid search. If TBL increases, the 

decomposed vessel number decreases. Fifteen millimeters was 

used as the optimal TBL value. Step 4 is to find the optimal ER 

by varying it from 0 to 2 in 1 step. In this experiment, 1 was 

the optimal parameter. Finally, in step 5, the optimal ATh was 
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searched by varying ATh between -100 HU and -750 HU. The 

optimal parameter set was [0 mm, 1.75 mm, 15 mm, 1, -

100HU, and -550HU for LR, UR, TBL, ER, ATh, and SKTh, 

respectively]. In this optimal set, the optimal accuracy and 

decomposed vessel number of the pulmonary vessels were 

89.71 ± 3.76% and 75.1 ± 15.12, respectively. This value 

could be compared with the methods of the other steps (Table 

3-1). The other methods, except the second method of step 1, 

were significantly more accurate (p< 0.001) in comparison with 

the optimal method in terms of accuracy and error terms. 

However, all other methods demonstrated significantly larger 

vessel numbers (p< 0.05) in comparison with the optimal 

method.  

 

TABLE 3-1. Sequential grid search results from steps 1–5. 

The determined optimal values for each step are underlined. 

Each row shows the averaged decomposition results of the 

20 half-lungs of 10 CT scans for the given 6 feature 

values. One or 2 of the possible values for the erosion 
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number and the additional threshold have flexibility to vary 

by an optimizer from steps 1–4. 

St

ep 

Nsep Accu 

(%) 

Error 

(%) 

LR 
(m

m) 

UR 
(mm

) 

T

B

L 
(m

m) 

ER ATh 

(HU) 

SK

Th 

(HU

) 

1 140.60

±44.50

*** 

93.36±2

.49*** 

6.64±2

.49*** 

0 1.5 10 0.65±

0.67 

-

241.12

±119.4

6 

-550 

1 98.20±

31.29*

** 

90.79±4

.00 

9.21±4

.00 

0 2 10 1.65±

0.59 

-

210.04

±137.0

5 

-550 

2 116.5±

43.64*

** 

92.34±2

.88*** 

7.66±2

.88*** 

0 1.75 10 1.84±

1.03 

-

221.74

±134.1

4 

-550 

3 89.3±3

2.43* 

91.26±3

.28*** 

8.74±3

.28 

0 1.75 15 0.85±

0.75 

-

214.76

±135.7

3 

-550 

4 93.1±3

2.49** 

91.25±3

.22*** 

8.75±3

.22*** 

0 1.75 15 1 -

217.31

±144.0

2 

-550 

5 75.1±1

5.12 

89.71±3

.76 

10.29±

3.76 

0 1.75 15 1 -100 -550 

Note: Nsep, separated vessel number; Accu, accuracy; LR, lower 

radius; UR, upper radius; TBL, total branch length; ER, erosion 

number; ATh, the additional threshold; SKTh, the skeleton 

threshold 

All p values are derived from paired t tests comparing the 

method of step 5 with the methods of the other steps.  

*p < 0.05, **p< 0.01, ***p < 0.001.  
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The execution time of the second-level MST construction 

with the automatic root-finding procedure was found to be 3.58 

± 0.65 seconds using native voxel spacing. Additionally, the 

creation time for the mapping table between the skeleton 

vertexes and volume voxels was 234.55 ± 90.87 seconds with 

native voxel spacing. This was the execution time for the first 

level MST construction. This program was executed using an 

Intel Core i7 computer with 16-GB memory on a 64-bit 

Microsoft Windows 7 operating system. 

 

3.5.3 Comparison with previous method 

For the feature value set of [0 mm, 1.75 mm, 15 mm, 1, -

100 HU, -550 HU], the decomposition accuracy and 

decomposed vessel number of pulmonary vessels of Park et al’

s method were 83.77 ± 5.22% and 75.1 ± 15.12, 

respectively (Table 3-2), in comparison with 89.71 ± 3.76% 

and 75.1 ± 15.12 using the proposed method, thereby 

demonstrating significantly better accuracy (p< 0.001). 
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Table 3-2. Average decomposition results of the 20 half-lungs 

of 10 CT scans between the proposed method and the previous 

method 

Var 

(HU) 

Nsep Accu 

(%) 

error 

(%) 
LR 

(m

m) 

UR 

(mm) 

TB

L 

(m

m) 

E

R 

AT

h 

(H

U) 

SKTh 

(HU) 

Propo

sed 

75.1±1

5.12 

89.71

±3.76 

10.29±3

.76 

0 1.75 15 1 -

100 

-550 

Previ

ous 

75.1±1

5.12 

83.77

±5.22

*** 

16.23±5

.22*** 

0 1.75 15 1 -

100 

-550 

Note: Nsep, separated vessel number; Accu, accuracy; LR, lower 

radius; UR, upper radius; TBL, total branch length; ER, erosion 

number; ATh, the additional threshold; SKTh, the skeleton 

threshold 

All p values were derived from paired t tests comparing the 

previous method with the proposed method.  

*p < 0.05, **p< 0.01, ***p< 0.001. 

 

3.5.4 Four half-lung cases 

Figures 3-8 and 3-9 show decomposition examples of 4 

half-lungs. These results came from the feature value set [0 

mm, 1.75 mm, 15 mm, 1, -100 HU, -550 HU]. This optimal 

value set did not need interactive adjustment and could be 
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applied directly for vessel decomposition. The second column 

of both figures shows the classified results from the 

decomposition results. The comparison between the second and 

third columns could give the perception of this algorithm’s 

accuracy. The second half-lung of Figure 3-9 shows the worst 

case among 20 decomposed half-lungs.   

 

Figure 3-8. Two examples of decomposition of two half-lungs. 

Arteries are shown in blue and veins are shown in red. (a) 

Decomposition result of the first half-lung (b) The classified 

artery and vein result after classification of decomposition result 
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with goldstandard (Accuracy = 96.16%) (c) Goldstandard (d) 

Decomposition result of the second half-lung (e) The classified 

artery and vein (Accuracy = 93.89%) (f) Goldstandard 

 

Figure 3-9. Two examples of decomposition of two half-lungs. 

Arteries are shown in blue and veins are shown in red. (a) 

Decomposition result of the first half-lung (b) The classified 

artery and vein result after classification of decomposition result 

with goldstandard (Accuracy = 92.03%) (c) Goldstandard (d) 

Decomposition result of the second half-lung (e) The classified 

artery and vein (Accuracy = 79.54%) (f) Goldstandard. 
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3.6 DISCUSSION AND CONCLUSION 

We developed and validated the semiautomatic 

decomposition framework based on 2-level MST constructions 

for non-enhanced volumetric chest CT. This decomposition 

framework adapted the automatic root-finding method through 

2 filters composed of edge filtering and size filtering. Through 

the experimental analysis of 5 features, the pseudo-optimal 

feature value set was determined for the automatic execution of 

decomposition. This decomposition framework could be used to 

differentiate the pulmonary arterial and venous subtrees with 

high accuracy and efficiency.  

Quantification based on the classification of the arteries 

and veins could give us a tool for the development of imaging 

biomarkers for lung disease, which would be more important 

due to its noninvasiveness and relatively low economic cost. In 

addition, using this method, automatic differentiation of the 

pulmonary arteries and veins could be developed based on 

various features of the morphological and topological analyses 

of the pulmonary skeleton-subtrees.  

It was challenging to determine the degree of invasion by 
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any branch into another tree and quantify the decomposition 

accuracy of the vessels, if it was dealt without the automatic 

classification under the artery and vein gold standards.  

However, it was also difficult to make gold standards only for 

decomposition. Saha et al. quantified the classification accuracy 

using the same strategy as our method [64]. However, their 

method put the seed with the label of the artery and vein. 

Therefore, the method did not need the classification procedure. 

In contrast, because our method adapted the automatic root-

finding procedure, there was no information about the arterial 

or venous label. Therefore, automatic classification under the 

gold standards needed to be performed to calculate the 

decomposition accuracy. We quantitatively evaluated the 

decomposition accuracies of the vessels based on the gold 

standards, which would be useful for the further development of 

arterial and venous differentiation algorithms. 

Although it yielded a satisfactory results, with an accuracy 

of around 90%. By interactively selecting feature value sets, 

our method could provide better results. The accuracy of 89.71% 

could be significantly increased if 2 local features were 

optimized for each half-lung. In the specific case of feature 
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value set optimization, the worst accuracy of the half-lung case 

with the final feature value set was 79.54% with a decomposed 

vessel number of 53 (the second case of Figure 3-9). But this 

half-lung case’s accuracy could be increased to 89.14% with 

a decomposed vessel number of 113 when the feature value set 

was changed from [0 mm, 1.5 mm, 10 mm, 1, -100 HU, -550 

HU] to [0 mm, 1.5 mm, 10 mm, 1, -285 HU, -550 HU]. 

Therefore, we need to develop a more robust optimization 

scheme. 

In addition, extending the feature settings to the other 

features of the pulmonary vessel morphology and topology 

could improve the accuracy of the decomposition. Furthermore, 

we need more quantitative criteria to validate the decomposition 

results.  

In conclusion, our proposed semiautomatic decomposition 

framework based on 2-level MST constructions could 

differentiate the arterial and venous subtrees with high 

efficiency. In the future, this algorithm could be clinically useful 

for the automated classification of the pulmonary arteries and 

veins. 
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국문 초록 

 

흉곽에 대한 컴퓨터 단층촬영 영상을 이용하여 흉강 분할 

알고리즘과 폐 동맥 정맥 분리 알고리즘을 개발하고 그 성능을 

평가하였다. 해당 연구는 흉곽 컴퓨터 단층 영상에서 임상적으로 

의미 있는 장기를 분할하는 일을 자동화 했다는 점에서 중요하다. 

장기 분할 정확성을 높이기 위해서 문턱값 방법을 기반한 형태적인 

방법이나 연결성을 이용한 물체 선택 등의 기본적인 방법이 아닌, 

좀 더 향상된 컴퓨터 공학적인 방법인 수치적인 방법과 그래프 

이론을 이용한 방법을 처음으로 적용하였다. 본 논문에서는 위와 

같이 제안된 새로운 연구 방법을 다음과 같은 두 가지 실례를 통해 

시도하고 그 결과를 평가하였다. 

첫번째 연구에서는 흉강을 분할 대상으로 하고 있다. 흉강은 

흉강 벽과 횡경막에 의해 둘러 싸여 있는 장기를 말한다. 현재 본 

연구가 대상으로 하고 있는 흉강의 경우 경계 부분에 변화가 큰 

형태의 장기가 아니고 횡경막의 경우 얇은 두께의 막이기 때문에 

그 형태가 컴퓨터 단층 영상 내에서 손실된 형태로 표현되어져 

있는 경우가 많다. 종격동을 2 차원으로 찾는 것이라든지, 흉강벽과 

횡경막을 따로 찾는 연구는 여러 연구에서 제시되어 있다. 하지만 

흉강의 볼륨을 영상분할 하는 일에 대한 연구는 본 연구가 

처음으로 제안을 하였다. 흉강 부피 관점에서 측정되는, 부피 



96 

 

겹치는 비율과 허위 양성 비율과 허위 음성 비율이 제안 방법은 

98.17±0.84%, 0.49±0.23%, 1.34±0.83% 의 값이 도출되었다. 

제안된 반자동화된 흉강 영상 분할 방법은 갈비뼈와 흉강벽, 횡경막, 

그리고 심장 등의 여러 기관을 분할 방식을 기반으로 수행되고, 

이는 임상적인 목적에서 높은 정확성과 유용성을 보여 주었다. 

두번째 연구는 폐의 동맥 정맥 분리를 위해서 폐의 혈관을 

부분혈관으로 자르는 방법을 제시하고 있다. 폐 동맥 정맥 분리의 

경우에, 폐 암 수술 시뮬레이션 시의 기초자료로 쓰일 수 있다. 의

료진이 머리 속으로 분리를 하거나 수작업으로 분리를 할 수 있으

나, 자동화된 방법을 사용하는 것이 더 향상된 방법이다. 기존 방법

의 경우에 수동으로 폐 혈관 뿌리쪽을 2D 슬라이스를 기반하여 혈

관을 하나씩 따라가며 30~40 점을 찍어주는 과정이 필요하다. 그리

고 이를 실행하는데 1 시간 30 분 정도의 시간이 필요하다. 특징값

의 최적화 후에, 자동화된 동맥 정맥 분리 정확도는 정답과 비교했

을 때 89.71±3.76%이었다. 이 분리 알고리즘은 폐 동맥 정맥의 

자동화된 분류를 위해서 미래에 임상적으로 유용하게 사용될 수 있

을 것이다. 

------------------------------------- 

주요어 : 만성 폐색성 폐질환,컴퓨터 단층 촬영, 다기관 영상분할, 흉

곽, 폐 동맥 정맥 분리, 이단계 최소신장트리 구축 
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