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Abstract

Cooperative Estimation and
Control of Large-scale Process

Networks

Shin Je Lee

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

State estimation and control of large-scale process network systems

are considered as difficult problems because they consist of numerous

subsystems and interactions between subsystems make the entire net-

work dynamics complicated. Chemical processes and pipe networks

are representative large-scale networks. In this thesis, we propose a

novel cooperative estimation and control algorithms of large-scale

process networks. In water pipe networks, a fault such as pipe leak

or burst often happens and it is difficult to detect and diagnose. For

fault detection and location of water pipe networks, state estimation

can be an effective tool. However, a mathematical model describing

dynamics of leak in water pipe networks does not exist. Before we

develop a mathematical model of water pipe network, we propose a

novel methodology to detect and locate leak in water pipe networks.

Conventional detection methods include a cumulative sum (CUSUM)

and a wavelet transform (WT). However, the CUSUM has a problem
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of slow response and the WT is sensitive to signal transitions. We in-

tegrate two algorithms to effectively detect sudden pressure changes

of water pipe networks. The developed leak detection and location

system is validated with real field data obtained from artificial leaks

by opening hydrant valves in small-scale and medium-scale pipe net-

works and natural leak occurred in large-scale pipe network. The de-

veloped algorithm is model-free approach to detection and location

of leak in water pipe networks.

We propose consensus algorithm based mathematical model of

leak dynamics. Modeling the flow dynamics of leaks in water pipe

networks is an extremely difficult problem due to the complex en-

tangled network structure and hydraulic phenomenon. We propose

a fundamental model for negative pressure wave dynamics of leaks

in water pipe networks based on a consensus algorithm and water

hammer theory. The resulting model is a simple and linearly inter-

connected model in the network even though the dynamics of water

pipe networks has a considerable complexity. The model is then val-

idated using experimental data obtained from a real water pipe net-

work. A comparative study demonstrates that the proposed model can

describe the real system with high qualitative and quantitative accu-

racy and that it can be used to develop a model-based leak detection

and location algorithm based on the state estimation approach.

Using the developed model, we develop a fault detection and lo-

cation algorithm based on state estimation in water pipe networks.

The detection algorithm is based on cooperative H∞-estimation for

large-scale interconnected linear systems. To show applicability of

the proposed model, we apply distributed and cooperative estimation

with H∞-performance to the developed model. The estimation result
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demonstrates the consensus algorithm based pipe network model can

be potentially used for leak detection and location with state esti-

mation method. H∞-based design provides guaranteed performance

with respect to model and measurement disturbances. Also, we pro-

pose cooperative Kalman filter of large-scale network systems. Basic

concepts are based on cooperative H∞-estimation used for detection

and location. The proposed cooperative Kalman filter can show fully

decentralized or fully distributed state estimation performance de-

pending on parameter selection. It is demonstrated using large-scale

chemical process network.

We finally propose a cooperative model predictive control of

large-scale process networks based on the same concepts and ideas

used to develop cooperative state estimation. Important properties

of stability, optimality, local controllability, and scalability are also

proved. When the developed cooperative MPC is applied to chemical

process network composed of three process units, it shows perfor-

mance between decentralized and distributed manners. We also show

that the proposed cooperative MPC is the same with centralized MPC

under certain condition.

Keywords: Water pipe networks, Large-scale process, Network sys-

tems, Cooperative Kalman filter, Cooperative model predictive con-

trol

Student Number: 2013-30285
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Chapter 1

Introduction

Large-scale integrated network systems are becoming more and

more important as the need for higher energy efficiency and pro-

ductivity increases in chemical process industry. In this thesis, we

deal with estimation and control of large-scale systems and related

problems. Large-scale network systems include integrated chemical

processes, pipe distribution systems, sensor networks, and biological

networks and we mainly focus on water pipe networks and chemical

process networks. In this chapter, background and motivation of this

research are introduced and preliminaries needed to explain main re-

sults are presented, followed by contribution and outline of the thesis.

1.1 Background and Motivation

Large-scale process networks are very complex and intricate sys-

tems and cast many problems related to control and estimation. Pro-

cess networks are generally defined as a system where comprise of

agent, node, or subsystems having their own dynamics and interact-

ing with each other. Usually these network systems are large-scale

and many realistic problems can be considered as network systems.

Process network examples include chemical plant, recycle net-
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work, pipe network, sensor network, and biological network. Most

systems are large-scale and complex. We mainly deal with water

pipe networks and chemical processes with material and energy recy-

cles. Water pipe networks are particularly more complex than other

network systems because it is densely structured and composed of

many pipelines. Also, chemical plant is required to have more recy-

cle streams for high efficiency and cost reduction. Therefore, these

systems are difficult to maintain and manage due to limited sensors

and complex dynamics.

For these reasons, major issues arise in large-scale process net-

works and are listed below.

• It is difficult to detect and diagnose a fault in complex network

systems, especially when using only measurement information

without a rigorous mathematical model.

• It is difficult to estimate the state variables in large-scale process

networks with limited sensors.

• It is difficult to control the dynamic process in large-scale pro-

cess networks when each subsystems are integrated and inter-

acted.

To address these problems, some basic and important concepts

should be defined and contemplated and they are introduced in the

following section.

1.2 Preliminaries

Preliminaries and basic concepts are introduced mainly on net-

work theory, consensus algorithm, state estimation and model predic-
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tive control for large-scale process networks.

1.2.1 Network topology

A process network can be represented by a directed graph in

which the nodes of the graph correspond to process units and junc-

tions. The edges of the graph correspond to connecting streams or

pipelines. The mathematical model of the water pipe network is based

on a directed, unweighted graph G = (N ,A) that describes the net-

work topology between individual nodes. N is the set of nodes, in-

cluding virtual nodes on the pipeline or junctions,

N = Nnode ∪Njunction = {n1, · · · ,nN} (1.1)

where nk ∈ N (k = 1, · · · ,N) represents the k-th node. A ⊆ N ×N
is the set of edges and represents pipe segments between nodes or

pumps,

A = Apipe seg ∪Apump = {(nk,n j)|k = 1, · · · ,N; j ∈ Nk} (1.2)

where Nk = { j : (n j,nk) ∈ A} is the set of nodes that the node k

receives information from and called the neighborhood of the node k.

Eq. (1.2) models the information or physical flow, i.e., the k-th node

is coupled to the j-th node if and only if (n j,nk) ∈ A . The flow in

an arc (n j,nk) is defined to be positive when it is directed from j

to k; otherwise, it is negative or possibly zero. The flow is always

nonnegative in arcs where only one direction is possible.

3



1.2.2 Consensus algorithm

When multiple nodes agree on the value of a variable of inter-

est, they are said to have reached consensus. To achieve consensus,

there must be a shared variable of interest, called the information

state, as well as appropriate algorithmic methods for negotiating to

reach consensus on the value of that variable, called consensus algo-

rithms. Continuous-time and discrete-time consensus algorithms are

presented as follows.

1.2.2.1 Continuous-time consensus algorithm [1]

A dynamic graph G(t) = (V ,E(t)) is a graph in which the set of

edges E(t) and the adjacency matrix A(t) are time-varying. Clearly,

the set of neighbors Ni(t) of every agent in a dynamic graph is a

time-varying set as well. It is shown that the linear system

ẋi(t) =
∑
j∈Ni

ai j(x j(t)− xi(t)) (1.3)

is a distributed consensus algorithm, i.e., guarantees convergence to

a collective decision via local interagent interactions. Assuming that

the graph is undirected (ai j = a ji for all i, j), it follows that the sum

of the state of all nodes is an invariant quantity, or
∑

i x̂i = 0. In par-

ticular, applying this condition twice at times t = 0 and t = ∞ gives

the following result

α =
1
n

∑
i

xi(0) (1.4)

In other words, if a consensus is asymptotically reached, then nec-

essarily the collective decision is equal to the average of the initial
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state of all nodes. A consensus algorithm with this specific invariance

property is called an average-consensus algorithm and has broad ap-

plications in distributed computing on networks (e.g., sensor fusion in

sensor networks). The dynamics of system Eq. 1.3 can be expressed

in a compact form as

ẋ =−Lx (1.5)

where L is known as the graph Laplacian of G. The graph Laplacian

is defined as

L = D−A (1.6)

where D = diag(d1, · · · ,dn) is the degree matrix of G with elements

di =
∑

ji ai j and zero off-diagonal elements. By definition, L has a

right eigenvector of 1 associated with the zero eigenvalue because of

the identity L1 = 0.

1.2.2.2 Discrete-time consensus algorithm [1]

An iterative form of the consensus algorithm can be stated as

follows in discrete-time as follows

xi(k+1) = xi(k)+ ε

∑
j∈Ni

ai j(x j(k)− xi(k)) (1.7)

The discrete-time collective dynamics of the networks under this al-

gorithm can be written as

x(k+1) = Px (1.8)
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with P = I−εL (I is the identity matrix) and ε > 0 is the step size. In

general, P = exp(−εL) and the algorithm in Eq. 1.7 is a special case

that only uses communication with first-order neighbors. We refer to

P as Perron matrix of a graph G with parameter ε.

1.2.3 State Estimation for large-scale networks

State estimation and control in large-scale process networks are

considered as a very complicated problems and many efforts have

been made by researchers in the past decades. Decentralize and dis-

tributed methodologies have been adopted in literatures. We classify

the state estimation methods as centralized, decentralized, distributed,

and cooperative strategies for large-scale systems. Cooperative strat-

egy has been rather recently developed to resolve inherent problems

of conventional decentralized and distributed methods.

1.2.3.1 Centralized state estimation

Kalman filter (KF) is used as a representative state estimation

method. The continuous-time Kalman filter can be summarized as

follows. The continuous-time system dynamics and measurement equa-

tions are given as [2]

ẋ = Ax+Bu+w

y = Cx+ v

w ∼ (0,Qc)

v ∼ (0,Rc)

(1.9)
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Note that w(t) and v(t) are continuous-time white noise processes.

The continuous-time Kalman filter equations are given as

x̂(0) = E[x(0)]

P(0) = E[{x(0)− x̂(0)}{x(0)− x̂(0)}⊤]
K = PC⊤R−1

c

˙̂x = Ax̂+Bu+K(y−Cx̂)

Ṗ = −PC⊤R−1
c CP+AP+PA⊤+Qc

(1.10)

The centralized KF has a serious problem in large-scale systems

because it significantly increases computational burden when the di-

mension of the state is very large, especially for calculating Kalman

gain, K. To solve the computational problem, decentralized and dis-

tributed KF have been studied in the past decades.

1.2.3.2 Decentralized state estimation

In decentralized KF, the hierarchical strategy decomposes a large

networks into separate subsystems within which measurement data

aggregation, processing, and estimation can be carried out locally.

Ahmed et al. investigates the problem of designing decentralized ro-

bust Kalman filters for sensor networks observing a physical process

with parametric uncertainty [3]. Also, convergence propoerties of de-

centralizd KF is proposed in [4]. A new algorithm for decentralized

state estimation is proposed in the form of a multi-agent network

based on a synergy between local Kalman filters and a dynamic con-

sensus strategy between the agents in [5].

The decentralized state estimation substantially reduces compu-

tational load, however, it does not reflect the process dynamics of
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other subsystems in a completely decentralized manner. Therefore,

partially decentralized or distributed state estimation has been devel-

oped as described in the subsequent section.

1.2.3.3 Distributed state estimation

For distributed state estimation problem, the inherently asyn-

chronous sensor network is comprised of a large number of sen-

sor nodes with computing and wireless communication capabilities,

where the nodes are spatially distributed to form a wireless ad hoc

network and every node has its own notion of time. Each individual

sensor in a sensor network locally estimates the system state from not

only its own measurement but also its neighboring sensors’ measure-

ments according to the given topology.

Different from the traditional centralized filtering, an effective

distributed estimation algorithm should be capable of handling two

additional issues: 1) complicated coupling between the sensor nodes

according to a given topology and 2) network-induced phenomena

such as randomly varying nonlinearities and missing measurements.

The problem of distributed Kalman filtering for sensor networks

is one of the most fundamental distributed estimation problems for

scalable sensor fusion. The paper in [6] addresses the DKF problem

by reducing it to two separate dynamic consensus problems in terms

of weighted measurements and inverse-covariance matrices. A dis-

tributed Kalman filter is presented to estimate the state of a sparsely

connected and large-scale dynamical system monitored by a network

of N sensors [7]. The problem of distributed Kalman filtering and

smoothing is studied, where a set of nodes is required to estimate
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the state of a linear dynamic system from in a collaborative man-

ner. [8] The gossip interactive Kalman filter (GIKF) for distributed

Kalman filtering for networked systems and sensor networks is pre-

sented [9] and the internal model average consensus estimator is ap-

plied to distributed Kalman filtering [10]. A state estimation prob-

lem over a large-scale sensor network with uncertain communication

channel is addressed in [11]. By using adaptive channel status esti-

mator and robust L1-norm Kalman filter in design of the processor of

the individual sensor node, they are incorporated into the consensus

algorithm in order to achieve the robust distributed state estimation.

1.2.3.4 Cooperative state estimation

In recent study, a cooperative state estimation to guarantee H∞-

performance is developed in [12]. The cooperative estimator com-

pensates conventional decentralized and distributed state estimation

in that local detectability is not required and the estimator size does

not grow with the system size.

1.2.4 Control for large-scale networks

Control algorithms for large-scale processes have been exten-

sively studied as integrated and networked process systems are im-

portant in process industries for high efficiency and product quality.

We mainly deal with a model predictive control (MPC). Centralized,

decentralized and distributed methods of MPC will be described in

the following sections.
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1.2.4.1 Centralized control

If a standard MPC is used for large-scale systems in a central-

ized manner, the most critical problem is that the on-line optimiza-

tion should be implemented within a sampling time. However, as a

system becomes bigger, solving the optimization requires more com-

putational time. Therefore, conventional MPC for large-scale systems

has been evolved to solve optimization problems in the sampling in-

stance.

1.2.4.2 Decentralized control

In decentralized control of network systems, the achievement of

a global control task is obtained by the cooperation of many con-

trollers, each one computing a subset of control commands individu-

ally under a possibly limited exchange of information with the other

controllers. Compared to centralized schemes, while decentralized

control has the disadvantage of inevitably leading to a loss of per-

formance, it has a twofold technological advantage: (i) no need for a

high-performance central processing unit per forming complex global

control algorithms that take into account the overall system dynam-

ics, replaced by several simpler units; (ii) all process measurements

do not need to be conveyed to a single unit, therefore limiting the

exchange of information between spatially distributed components of

the process.

A decentralized formulation is presented for model predictive

control of systems with coupled constraints. The single large plan-

ning optimization is divided into small subproblems, each planning

only for the states of a particular subsystem [13]. Robust decentral-
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ized model predictive control is impemented for a team of cooper-

ating uninhabited aerial vehicles (UAVs). The problem involves ve-

hicles with independent dynamics but with coupled constraints to

capture required cooperative behavior [14]. The design of decentral-

ized receding horizon control (RHC) schemes is studied for decou-

pled systems where the cost function and constraints couple the dy-

namical behavior of the systems [15]. Also, a novel decentralized

model predictive control (MPC) design approach is poposed in [16]

for open-loop asymptotically stable processes whose dynamics are

not necessarily decoupled. A decentralized model predictive control

method based on a dual decomposition technique is proposed in [17].

A model predictive control problem for a system with multiple sub-

systems is formulated as a convex optimization problem.

Complex processes are naturally suitable to be controlled in a de-

centralized framework: centralized control solutions are often unfea-

sible in dealing with large scale plants and they are computationally

prohibitive when the processes are too fast for the existing computa-

tional resources. In these cases, the resulting control problem is usu-

ally split into many smaller subproblems and the global requirements

are guaranteed by means of a proper coordination. A coordination

strategy based on a networked decentralized model predictive control

is proposed in [18] for improving the global control performances.

Also, a decentralized model predictive control scheme is proposed for

large-scale dynamical processes subject to input constraints in [19].

The global model of the process is approximated as the decomposi-

tion of several (possibly overlapping) smaller models used for local

predictions. A hierarchical and decentralised model predictive control

(DMPC) strategy for drinking water networks (DWN) is proposed in

11



[20]. The DWN is partitioned into a set of subnetworks using a par-

titioning algorithm that makes use of the topology of the network,

historic information about the actuator usage and heuristics.

1.2.4.3 Distributed control

Completely centralized control of large, networked systems is

impractical. Completely decentralized control of such systems, on the

other hand, frequently results in unacceptable control performance.

In this article, a distributed MPC framework with guaranteed feasi-

bility and nominal stability properties is described. All iterates gen-

erated by the proposed distributed MPC algorithm are feasible and

the distributed controller, defined by terminating the algorithm at any

intermediate iterate, stabilizes the closed-loop system. These con-

siderations motivate the development of distributed control systems

that utilize an array of controllers that carry out their calculations in

separate processors yet they communicate to efficiently cooperate in

achieving the closed-loop plant objectives. MPC is a natural control

framework to deal with the design of coordinated, distributed control

systems because of its ability to handle input and state constraints and

predict the evolution of a system with time while accounting for the

effect of asynchronous and delayed sampling, as well as because it

can account for the actions of other actuators in computing the con-

trol action of a given set of control actuators in real-time.

Distributed model predictive control is presented in [21] focus-

ing on i) the coordination of the optimization computations using it-

erative exchange of information and ii) the stability of the closed-

loop system when information is exchanged only after each itera-
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tion. An efficient distributed model predictive control scheme is pre-

sented based on Nash optimality in [22], in which the on-line op-

timization of the whole system is decomposed into that of several

small co-operative agents in distributed structures, thus it can sig-

nificantly reduce computational complexity in model predictive con-

trol of large-scale systems. This article [23] extends existing con-

cepts in linear model predictive control (MPC) to a unified, theoret-

ical framework for distributed MPC with guaranteed nominal stabil-

ity and performance properties. A distributed output feedback model

predictive control framework with guaranteed nominal stability and

performance properties is described in [24]. Distributed state estima-

tion strategies are developed for supporting distributed output feed-

back MPC of large-scale systems, such as power systems. An im-

plementable distributed MPC framework is described with guaran-

teed nominal stability and performance properties in [25]. The pro-

posed distributed MPC framework consists of three main components

(i) distributed estimator (ii) centralized/distributed target calculation

(iii) distributed regulator. The problem of distributed control of dy-

namically coupled nonlinear systems that are subject to decoupled

constraints is considered in [26]. Examples of such systems include

certain large scale process control systems, chains of coupled oscil-

lators and supply chain management systems. A distributed model

predictive control framework is proposed in [27]. The physical plant

structure and the plant mathematical model are used to partition the

system into self-sufficient estimation and control nodes. A formu-

lation for distributed model predictive control of systems with cou-

pled constraints is proposed in [28]. The approach divides the sin-

gle large planning optimization into smaller sub-problems, each plan-
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ning only for the controls of a particular subsystem. A dual-based de-

composition method, called here the proximal center method, is pre-

sented to solve distributed model predictive control problems for cou-

pled dynamical systems but with decoupled cost and constraints [29].

This work [30] focuses on a class of nonlinear control problems that

arise when new control systems which may use networked sensors

and/or actuators are added to already operating control loops to im-

prove closed-loop performance. A distributed model predictive con-

trol framework, suitable for controlling large-scale networked sys-

tems such as power systems, is presented in [31]. The overall system

is decomposed into subsystems, each with its own MPC controller.

The problem of controlling two linear systems coupled through the

inputs is considered in [32] and a novel distributed model predictive

control method is proposed based on game theory in which two dif-

ferent agents communicate in order to find a cooperative solution to

the centralized control problem. Since hot-rolled strip laminar cool-

ing (HSLC) process is a large-scale, nonlinear system, a distributed

model predictive control framework is proposed for computational

reason and enhancing the precision and flexibility of control system

[33]. The overall system is divided into several interconnected sub-

systems and each subsystem is controlled by local model predictive

control. Theory for distributed model predictive control is developed

based on dual decomposition of the convex optimization problem that

is solved in each time sample [34]. The process to be controlled is

an interconnection of several subsystems, where each subsystem cor-

responds to a node in a graph. In this work [35], distributed model

predictive control of large scale nonlinear process systems is devel-

oped in which several distinct sets of manipulated inputs are used
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to regulate the process. we propose two different distributed model

predictive control architectures. This work [36] present an iterative

distributed version of Han’s parallel method for convex optimization

that can be used for distributed model predictive control of indus-

trial processes described by dynamically coupled linear systems. In

this paper [37], the control of several subsystems coupled through

the inputs by a set of independent agents that are able to commu-

nicate is considered. At each sampling time agents make proposals

to improve an initial feasible solution on behalf of their local cost

function, state and model. In this work [38], a distributed model pre-

dictive control scheme is proposed based on a cooperative game in

which two different agents communicate in order to find a solution

to the problem of controlling two constrained linear systems cou-

pled through the inputs. A new distributed model predictive control

method is introduced in [39], which is based on a novel distributed

optimization algorithm, relying on a sensitivity-based coordination

mechanism. A class of large scale systems, which is naturally divided

into many smaller interacting subsystems, are usually controlled by

a distributed or decentralized control framework. In this paper [40],

a novel distributed model predictive control (MPC) is proposed for

improving the performance of entire system. This paper [41] presents

a novel distributed predictive control algorithm for linear discrete-

time systems. This method enjoys the following properties: (i) state

and input constraints can be considered; (ii) under mild assumptions,

convergence of the closed loop control system is proved; (iii) it is

not necessary for each subsystem to know the dynamical models of

the other subsystems; (iv) the transmission of information is limited,

in that each subsystem only needs the reference trajectories of the
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state variables of its neighbors. This work [42] focuses on iterative

distributed model predictive control (DMPC) of large-scale nonlin-

ear systems subject to asynchronous, delayed state feedback. In dis-

tributed model predictive control, where a centralized optimization

problem is solved in distributed fashion using dual decomposition,

it is important to keep the number of iterations in the solution algo-

rithm small. In this technical note [43], a stopping condition to such

distributed solution algorithms that is based on a novel adaptive con-

straint tightening approach is presented.

1.2.4.4 Cooperative control

Recent researches on cooperative model predictive control are

provided in the following.

A cooperative distributed linear model predictive control strat-

egy applicable to any finite number of subsystems satisfying a stabi-

lizability condition is proposed in[44]. The control strategy has the

following features: hard input constraints are satisfied; terminating

the iteration of the distributed controllers prior to convergence re-

tains closed-loop stability; in the limit of iterating to convergence,

the control feedback is plantwide Pareto optimal and equivalent to

the centralized control solution; no coordination layer is employed.

A distributed controller is presented that can stabilize nonlinear sys-

tems in [45]. A novel nonlinear nonconvex optimizer is proposed that

improves the objective function and is feasible at every iterate. A gen-

eral framework is proposed for distributed model predictive control

of discrete-time nonlinear systems with decoupled dynamics but sub-

ject to coupled constraints and a common cooperative task [46]. To
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ensure recursive feasibility and convergence to the desired cooper-

ative goal, the systems optimize a local cost function in a sequen-

tial order, whereas only neighbor-to-neighbor communication is al-

lowed. A cooperative distributed linear model predictive control strat-

egy is proposed [47] for tracking changing setpoints, applicable to

any finite number of subsystems. The proposed controller is able to

drive the whole system to any admissible setpoint in an admissible

way, ensuring feasibility under any change of setpoint. A coopera-

tive, distributed form of MPC for linear systems subject to persis-

tent, bounded disturbances is developed in [48]. The distributed con-

trol agents make decisions locally and communicate plans with each

other. A cooperative distributed stochastic model predictive control

algorithm is given for multiple dynamically decoupled subsystems

with additive stochastic disturbances and coupled probabilistic con-

straints, for which states are not measurable [49]. Cooperation be-

tween subsystems is promoted by a scheme in which a local subsys-

tem designs hypothetical plans for others in some cooperating set,

and considers the weighted costs of these subsystems in its objective.

1.3 Contribution

Major contributions are built on the above concepts and theories

and we enumerate major contributions of the thesis in the following

as four categories.

• Propose a novel fault detection and diagnosis scheme based on

CUSUM and DWT without a system model by using only mea-

surements
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• Develop a mathematical model of water pipe network based on

consensus algorithm

• Develop a novel cooperative distributed state estimation based

on Kalman filter of large-scale process networks

• Develop a novel cooperative distributed model predictive of

large-scale process networks

These contributions will be discussed in detail throughout the

thesis.

1.4 Outline

First, we propose a novel model-free fault detection and location

of water pipe networks using a cumulative (CUSUM) and discrete

wave transform (DWT). Then, a consensus algorithm is introduced

and used to develop a network model where subsystems interact each

other. In particular, if a network has faulty agent which is randomly

generated, consensus algorithm should be modified. The modified

consensus is applied to water pipe networks to model dynamics of

water pipe networks when pipe faults such leak or burst are randomly

occurred in the pipeline. Once we have a system model, we can ap-

ply well-developed model-based methods such as Kalman filter (KF).

Therefore, a cooperative KF is proposed to estimate states and detect

the fault in the network. The idea used in developing cooperative KF

can be applied to model predictive control (MPC) for solving network

system control problems which are more intricate than other systems.

In Chapter 2, model-free fault detection and location method of

water pipe networks is presented. We use a well-known cumulative
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sum (CUSUM) algorithm and a discrete wavelet transform (DWT) to

exactly detect and locate the fault. This algorithm does not require a

system model and uses only the measurement of the system. How-

ever, if we have a mathematical model of the system, we can design

a model based systematic estimator to detect and locate the fault.

In Chapter 3, a mathematical model of water pipe networks is

presented using consensus algorithm and water hammer theory. The

developed model has a form of large-scale interconnected linear sys-

tems.

From the satisfactory result of comparison between the proposed

model and experimental data, we apply distributed and cooperative

estimation algorithm to the developed model for the purpose of fault

detection and location in Chapter 4. Even with the model and mea-

surement noises (disturbances), the estimator can robustly find all the

states of water pipe network. However, we find out that if a con-

stant disturbance enters the system such as a leak flow in water pipe

networks, the estimation error does not asymptotically approach to

zero. From this observation, a novel distributed estimation algorithm

is developed when there exist a constant disturbance and background

noises. The proposed estimation can be used in large-scale process

networks such as chemical plant with recycle because the recycle

streams are often considered as a constant disturbance to overall net-

work system.

By combining the developed estimation and model predictive

control, we propose a distributed and cooperative estimation and con-

trol of large-scale process networks in Chapter 5.

Also, the overall summary and concluding remarks are provided

in Chapter 6 including future work directions.
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Chapter 2

Model-free Approach to Fault Detection and
Location of Water Pipe Networks

In this chapter, we propose a model-free approach to fault de-

tection and location of water pipe networks by using cumulative sum

(CUSUM) and discrete wavelet transform (DWT). The proposed al-

gorithm is validated with experimental data obtained from three dif-

ferent real pipe networks. When the network system model does not

exist, the proposed algorithm can effectively detect and diagnose pipe

faults.

2.1 Introduction

Pipeline networks are one of the largest infrastructures of indus-

trial society. In particular, they are of great importance to water distri-

bution systems by efficiently transporting water resources throughout

cities, worldwide. When a leak or burst occurs in such a pipe net-

work, it causes an associated loss of water, unnecessary energy us-

age, and additional treatment cost. The maintenance costs of repair

and replacement give rise to a huge financial waste for society. More-

over, it is not only an economic issue but also an environmental and

potentially a health and safety issue.
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Although the leak indiscriminately refers to chronic long-term

leak or sudden pipe burst, they should be distinguished because they

are quite different phenomena and the transients for each event are

significantly distinct. Not all leaks grow as a burst and many leaks

would never be found by existing burst technologies. In this work,

we only consider burst occasions showing obvious pressure reduction

although some references still use the terms with confusion.

Over the past decades, extensive efforts of governments and aca-

demic communities have been dedicated to develop efficient burst

detection and location strategies to immediately identify the source

after the incident.

Conventional burst detection is mostly conducted by discovering

the burst by visual inspection at the surface. To detect the burst more

systematically and efficiently, computational methods using a pres-

sure transient of the burst which shows distinct signal transition have

been investigated over the last couple of decades [50, 51, 52, 53, 54].

Pressure transients that occur in pressurized pipes propagate back and

forth, and carry information about the features of the pipe system.

The recognition of these features allows for the identification of hy-

draulic phenomena, thus providing a potential tool for burst detection

[55, 56, 57].

Among transient based techniques, a negative pressure wave based

method is one of the most popular approaches. When a burst occurs

along the pipeline, it first removes the confining pressure produced

locally by the pipe wall, allowing an outward flow from the pipe. A

consequence of which is the creation of a low-pressure water hammer

wave that propagates from the burst location into the remainder of the

system. Taking the pressure before the burst as a reference criterion,
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the wave generated by such a burst is called a negative pressure wave

(NPW) [58]. To apply the NPW based approach, it requires the pipe

rupture be quick and abrupt as burst because a slow leak does not

generate a distinct pressure reduction signal. Therefore, NPW-based

methods are most helpful for detection of pipe bursts.

Two popular methods to detect pressure changes carried by the

NPW are a Cumulative sum (CUSUM) and a wavelet transform (WT).

Misiunas et al. [59] propose the CUSUM based burst detection algo-

rithm. Since the CUSUM gives a robust sum for data change, it can

be a potential tool for the detection of signal change with consider-

able measurement noise, such as water pressure. On the other hand,

the CUSUM is relatively slow to respond to large data shifts [60].

This is unfavorable characteristic for burst detection algorithm where

an immediate detection is crucial for system accuracy.

The wavelet based methods have been intensively investigated

in the detection of signals showing abrupt transition such as a spike

or peak because the WT can extract detailed information of the sig-

nal through decomposition into several scales. The applications in-

clude electric, mechanical, and acoustic systems [61, 62, 63, 64]. The

WT technique has been also broadly applied to water pipe systems

to detect the burst or leak–some authors did not effectively distin-

guish leaks from bursts–because such signals show sudden transient

changes [65, 66, 67, 68, 69]. Especially, Ferrante et al. [65] apply the

continuous and discrete WT to detect hydraulic discontinuities in pipe

system using different mother wavelets. Ferrante et al. [66] present

the multi-scale products of the WT for leak-edge detection. Ahadi et

al. [67] apply the WT to acoustic emission of water pipe to detect the

leak and also propose the strategy to find a mother wavelet for the
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best signal localization. Srirangarajan et al. [69] introduce wavelet

decomposition into the burst detection of pipe networks not pipelines.

The WT definitely provides excellent means for the detection

of sudden signal transitions as presented in the previous works. It

is because signal noises are suppressed and singularities of the sig-

nal are emphasized as the decomposition level of the WT increases.

However, it also indicates there is a high possibility that the insignifi-

cant signal transitions could be wrongly emphasized as the significant

ones. Water pipe network is particularly such a system since pressure

wave signals have considerable amounts of minor signal changes.

Therefore, there are high possibilities of false alarms in applying the

WT to complex water pipe networks, whereas the CUSUM has less

possibilities caused by small signal transitions. This is why we inte-

grate the WT and CUSUM algorithms for effective detection of the

burst.

Regarding pipe burst location, most of the previous studies are

focused on pipelines [58, 70, 71], not pipe networks which are much

more complex systems. It is because the conventional location strat-

egy requires two pressure sensors for finding the burst site and it is

not practical to install two sensors every pipeline in the case of com-

plex pipe networks. Thus, applications are mainly concerned with oil

or gas pipelines having a long length and for pipe networks such as

water distribution systems, a new methodology is required. A few

works investigate effective location strategies for the pipe networks

using network nodes as possible burst positions, not requiring many

pressure sensors [59, 69]. Based on this, the present work proposes

a systematic network representation methodology by defining a node

matrix to conveniently describe pipe networks and facilitate the loca-
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tion algorithm.

Consequently, techniques of online burst detection and location

of water pipe networks are here developed using the NPW signal.

Moreover, the developed system is validated with real field data ob-

tained from simulated bursts by opening hydrant valves for simple

and complex pipe networks and from real burst event, and conven-

tional algorithms are also tested with the same data for comparison.

With the reliable validation results, a software program has been de-

veloped based on the proposed algorithm.

The paper is organized as follows. In Section 2, the proposed de-

tection and location algorithm is presented; and in Section 3, simple

and complex pipe network test with which the system is validated are

presented with detailed discussion. Validation results with real burst

event are provided in Section 4, followed by concluding remarks in

Section 5.

2.2 Detection Algorithm

The proposed burst detection and location algorithms consist of

two parts: detection and location units. Each of the algorithms is de-

scribed in the following subsections.

2.2.1 Noise filtering of raw pressure data

Raw pressure data contain considerable amounts of noise which

should be removed before the detection process. Wavelet denoising is

used in this work because other filtering schemes such as SMA can re-

duce the pressure signal scales used for WT and it is consistent for the

WT based detection algorithm presented in the later subsection. Tak-
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ing into consideration the denoising effect and data distortion, noise

of the raw data are suppressed up to level 5.

2.2.2 Cumulative sum for global detection

In pipe networks, the NPW continually reflects and attenuates

after its occurrence. However, only the first pressure drop signal is

used to detect and locate the event and other reduced waves are not

significant. We use a CUSUM chart to detect this pressure drop. The

CUSUM chart is a statistical method to detect significant changes in

the mean of a data sequence from its random background noise. The

advantage of the CUSUM is that it gives a robust sum to the data

noise.

In pipe burst detection, the negative CUSUM for a decrease is

utilized because the pressure always drops when the burst happens

and it is described as follows [72]

T0 = 0

Tn =
n∑

k=1

(
xk −µ0 +

νm
2

)
Mn = max

k=1,··· ,n
Tk

Alarm when Mn −Tn > λ and set tc = t

(2.1)

where xk is a single data value, µ0 is a mean of a normal data set, νm is

an a priori chosen minimum jump magnitude, and λ is the threshold.

Two user parameters, νm and λ, affecting the detection performance

are calculated by the strategy proposed by Choe [73]. The parameter

selection criteria is based on the statistics of the raw signals and from

it, νm and λ are set as 6σ and 3σT , respectively, where σ is the stan-
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dard deviation of the normal data distribution and σT is the standard

deviation of T under the normal situation. They should be individu-

ally assigned for each sensor since the characteristics of the measured

data are different between sensors.

When the decrease detector exceeds the threshold, λ, an alarm is

issued and the alarm time is recorded as tc.

Although the CUSUM is suitable for global detection for large

process changes (for example, 3σ shifts) without being interrupted

with noise or small transitions, the detection tends to be slow [60]

because of its integral property. Slow detection eventually has a neg-

ative effect on the location accuracy in the application of pipe burst

detection. Therefore, we combine the CUSUM with a multi-level dis-

crete wavelet transform (DWT) so as to improve the location accuracy

since the DWT can identify the precise event occurrence time owing

to the immediate response to the signal transitions by its derivative

property. Although two signal processing algorithms are used, they

do not distort the original pressure signal twice because the CUSUM

is only to find globally a data segment where the WT should be ap-

plied to. Therefore, it is the raw signal, not the integrated signal by the

CUSUM that the WT is applied to and thus the actual time resolution

is affected only by the WT implementation.

2.2.3 Discrete wavelet transform for local time correc-
tion

Given the global detection results of the CUSUM, tc, the DWT

is applied in an interval around tc. The raw discrete signal can be

decomposed into wavelet coefficients which are referred to approxi-
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mation and detailed coefficients. If the signal is decomposed once, it

is called a 1-level DWT and it can be further decomposed into multi-

level coefficients.

In WT applications, it is important to choose a mother wavelet

that is suitable for the signal of interest since it affects the results

of the analysis [62, 67]. Because a wavelet coefficient represents the

similarity between the signal and the basis function, it is reasonable to

look for the mother wavelet that is similar to the burst transient [62].

For this reason, the Haar wavelet is proved to yield the best results for

the burst detection applications. Its stepwise shape which resembles

that of the sudden pressure drop of the burst event signal enhances

the correlation between the mother wavelet and the pressure signal

[65]. With this reason, most of works to detect the burst use the Haar

wavelet as the mother wavelet [62, 74] and also in this work the Haar

wavelet is used. Other wavelets such as ’db’ or ’sym’ families were

also tested, however, they give an inappropriate signal extraction.

Given the Haar wavelet, the multi-level DWT is applied in the

internal of tc, and a new detection time, twm , that exceeds the statistical

threshold, λw, at the decomposition level m is found.

twm = nλ×
2m

f
such that Wψ[nλ]> λw for tc−d ≤ t < tc+d (2.2)

where Wψ is the detailed coefficient, f is the frequency, and d is the

time span. The DWT is performed within the interval 2d and d is

chosen as 0.3 s in this work. The signal is transformed up to level 5

by considering the noise suppression effect and conservation of the

featured signal. Although the featured signal is more prominent with

higher levels, the data point interval increases by T × 2m at level m
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with the sampling instance, T , owing to the down-sampling property

of the DWT. Therefore, a back propagation step is needed to elaborate

the time interval [69]. The local maxima of the wavelet coefficients

between twm and the previous time index is defined as the final cor-

rected detection time at level 1.

tw1 = nm × 21

f
such that nm = max

n
Wψ[n] for twm −

2m

f
≤ t < twm

(2.3)

Though the time interval, T ×21, after the back propagation to level

1, cannot be the same as the sampling instance, T , it would be consid-

ered as acceptable if the sampling time of the sensor is small enough

to not influence the location accuracy. As many of the newly detected

times, tw1 , are found as the sensor numbers and they are transmitted

to the location system for burst location.

The DWT detection method apparently gives the improved burst

detection results because of the instantaneous signal recognition while

the CUSUM slowly responds. On the other hand, using the DWT

alone in the burst detection of pipe networks involves risk of high

possibilities of false alarms since the water pressure transient contin-

uously varies and leads to frequent signal transitions. Therefore, we

propose the CUSUM is implemented with the DWT. Fig. 2.1 illus-

trates justification of the proposition.

We apply two algorithms to the normal water pressure to com-

pare the possibilities of false alarm. The wavelet coefficients incor-

rectly appear when no hydraulic event happens while the CUSUM

shows a robustness to the data.
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Figure 2.1: CUSUM and DWT detection results of normal pressure

2.3 Location Algorithm

After a fault is detected by the detection algorithm, the fault

should be located by location algorithm. In this section, we propose

fault location algorithm based on negative pressure wave (NPW) and

optimization.

2.3.1 Negative pressure wave

When a burst occurs along the pipeline, fluid loss around the

burst point leads to an abrupt pressure drop creating a negative pres-

sure wave (NPW). Based on the NPW, the burst point, x, can be com-

puted using arrival times at pressure sensors, the pipe length, and the

29



pressure wave speed as follows [58, 75]

x =
L+(t1 − t2)v

2
(2.4)

where L is the pipe length, v is the pressure wave speed, and t1 and

t2 are the arrival times from the burst point to the sensors on both

sides, respectively. Using this method, the burst location can be easily

and rather precisely estimated provided time synchronization of the

sensors is consistent since the time synchronization determines the

time difference, (t1 − t2).

The above NPW based burst location has been mostly applied to

a long pipeline carrying oil or gas [76, 71]. This is because in such

a long pipeline, placing two sensors on upstream and downstream of

the pipeline is financially feasible. In a water pipe network, on the

other hand, consisting of many pipelines to efficiently supply wa-

ter, it is impractical to install two sensors every pipeline. Thus, the

conventional burst location strategy cannot be applied and a new lo-

cation strategy is required for water pipe networks. A methodology

introducing nodes on the pipes is presented by Misiunas et al [59].

These nodes represent the possible burst candidate; and the burst site

is chosen as the node with minimum value of an particular objective

function. Here, we define the distance between two nodes as a link.

If the link between neighboring nodes is long, then the location ac-

curacy is limited to that extent. Thus, we propose a strategy to divide

the link into the specific length. For instance, if the link is within 10

m, then the location error is theoretically within 10 m for a correct

detection.
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2.3.2 Node matrix

We define a node matrix A to describe the pipe network based on

a graph data structure using the nodes. The node matrix A, describing

the basic nodes of the network, is defined as

Definition.

A(i, j) =


0 if i = j for i, j ∈ [1,N]

di, j if node i and node j are linked

∞ otherwise

(2.5)

where N is the node number, and di, j is the distance between node i

and node j and di, j = d j,i. A is the N ×N symmetric matrix. If nodes

i and j are not linked, A(i, j) is set as ∞. We propose a new node

matrix A having every element A(i, j)≤ 10 after the node division. If

A(m,n) > 10, A(m,n) is divided into additional nodes M with step-

size D. First, we define an N ×M matrix B as

B(i, j) =

{
D if B(m,1) or B(n,M)

∞ otherwise
(2.6)

and C is the M×M symmetric matrix defined as

C(i, j) =


0 if i = j for i, j ∈ [1,M]

D if j = i+1 for i ∈ [1,M−1]

∞ otherwise

(2.7)
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Then the final new (N +M)× (N +M) node matrix A′ is

A′ =

 A B

BT C

 (2.8)

The node division process is repeated until every element of matrix

A is less than 10 m. We can represent the entire network based on the

GIS (Geographical information system) by using the node matrix A,

and it is used for Dijkstra’s minimum distance algorithm explained in

the following. After obtaining A, we define an objective function to

find the burst node.

2.3.3 Objective function

The rationale is that the difference of the detected times in sen-

sors should be the same as the difference of the theoretically calcu-

lated times for the waves to propagate from the burst site to each

sensor. The calculated time can be obtained from the wave speeds

and distances between a node and each sensor. If the burst occurs at

node i, the detected time difference and the calculated time difference

are ideally the same as follows [59]

t j − tk ̸= j = τi, j − τi,k ̸= j for 1 ≤ i ≤ N, 1 ≤ j,k ≤ S (2.9)

where, t j and τi, j are the detected time and calculated time, respec-

tively; and N and S are the node number and sensor number, respec-

tively. Based on this idea, the following objective function is formu-
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lated as

OFi =
S−1∑
j=1

S∑
k= j+1

[(t j − tk)− (τi, j − τi,k)]
2 for 1 ≤ i ≤ N (2.10)

The objective function value of node i would be theoretically zero

if i is the burst node. In reality, however, the value hardly becomes

zero owing to various uncertainties. Accordingly, its minimal node

is referred to as the burst node. With this approach, we can identify

the node closest to an actual burst occurrence point. In complex net-

work systems, however, it is more practical to report several candi-

date nodes as the burst site owing to the various system uncertainties.

Therefore, at least three nodes are claimed as possible burst sites in-

cluding the node with the minimum objective function value.

In finding the path between the burst and the sensor, it is noted

that although many routes exist between them, we use the short-

est path. It is reasonable since the first waves recorded by the sen-

sors would travel the shortest path among possible routes and most

quickly arrive at the sensors. Dijkstra’s minimum distance algorithm

[77] to find the shortest path from node i to all sensors is employed,

given the node matrix A. Using the computed path and the wave

speed, the theoretical travel time from node i to sensor j, τi, j, can

be found.

2.4 Integrated System

First, water pressure transients are measured at sensors installed

on the pipe network, stored in a database, and transmitted to a moni-

toring unit. Facilities database includes pipe information such as pipe
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type, length, or diameter and the calculated node matrix A. The sys-

tem deals with the 30-seconds data segment at once as a whole batch

update for online implementation. The raw pressure data are denoised

using a wavelet denosing technique. If the burst is detected as tc by

the CUSUM based global detection, then the local correction is im-

plemented using the DWT in the interval around tc. By threshold-

ing the wavelet coefficients, the corrected time, tw1 , is found through

back propagation up to level 1. The detection results are transmitted

to the NPW based location unit where the burst location is estimated

by calculating the objective function. Dijkstra’s minimum distance

algorithm is applied to find the shortest path between node and sen-

sor using the node matrix A. If no change is detected, then the next

30-seconds data window subsequently moves in. The final results are

displayed on the user interface in real-time.

2.5 Experiments and Validations

Detection and location algorithm developed in the previous sec-

tions is validated with experimental data in this section. We obtained

water pressure measurement from three different pipe networks, small-

, medium-, and large-scale networks described below.

2.5.1 Small-scale pipe network with artificial faults

The developed burst detection and location system was validated

with field data obtained from simple and moderately complex real

water distribution systems. The experiment performed at area A in

South Korea is rather simple without any household or factory nearby.

Hence, the burst experiment could be controlled for sensors to capture
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the burst incident only.

2.5.1.1 Description of pipe network

The experimental pipe networks of areas A and B include three

pressure sensors and two fire hydrants as shown in Figs. 2.2(a) and 2.5.

Total pipe lengths covered by three sensors in each test area are

451.54 m and 2.577 km, respectively. Fire hydrants were used to gen-

erate a burst by opening valves. Fig. 2(b) shows a measurement sta-

tion and water discharge of the hydrants in the experiments. The nor-

mal flow rate continuously varies from 4.17 to 8.33 L/s.

The basic network nodes are firstly selected as sensors and pipe

connections. The number of network nodes in area A is four as illus-

trated in Fig. 2(a). Then, 4×4 node matrix A is expressed as follows

A =


0 d1 ∞ ∞

d1 0 d2 d3

∞ d2 0 ∞

∞ d3 ∞ 0


Links over 10 m are divided by the node division strategy. After the

node division, the final node matrix A has the dimension of 50× 50

and the minimum and maximum step sizes are 9.4841 and 9.6410 m,

respectively.
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Figure 2.2: (a) Small-scale pipe network and (b) measurement station and
water discharge
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2.5.1.2 Measurement strategy and hardware system

Pressure transients are measured by three pressure sensors, named

UNIK 5000 (GE). They are connected to a PC equipped with 12 bit

A/D and D/A converters. The sampling frequency of the pressure

sensor is 250 Hz; that is, the pressure is sampled every 0.004 s (or

4 ms) in this experiment. Pressure change by NPW should be cap-

tured in milliseconds because the pressure wave is very fast. Hard-

ware equipment is uniquely designed to deal with the heavy data load;

GPS based auto-synchronization technology to synchronize the mea-

surement and transmission times and data compression technique to

reduce communication cost. With this, the raw data could be com-

pressed by up to 90%. A dual core high-speed microprocessor has

been used to handle the massive data set for online measurement.

The same measurement equipment and hardware were employed in

two test areas. If frequency of sensor is higher than 250 Hz, the pres-

sure change would be measured more accurately since the pressure

wave is very fast. However, a technology does not exist to measure

and save such big data in real-time.

2.5.1.3 Data acquisition and hydraulic behavior

Burst experiments were carried out by opening valves of hy-

drants installed on the pipe networks shown in Figs. 2(a) and 3. Dur-

ing the field tests, there was no other hydrant or pump operation

around the area. The valve opening action may affect the pressure

transient, however, it would be insignificant as compared with the

influence by the sudden water release. Also, hydraulic phenomena

at pipe junctions or valves always exist but, it appears as the noise.
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Therefore, it is assumed that the experimental pressure transients were

caused only by the sudden water discharge such as real burst.

Before we obtain the burst data, a steady state behavior of water

pressure in area A was analyzed in advance as shown in Fig. 2.3(a)–

(b). Under normal situations, the pressure was maintained at a con-

stant value with background noise. After applying the filtering, the

averaged pressures for Sensors 1, 2, and 3 were 250, 267, and 245

kPa, and the standard deviations were 1.86, 2.72, and 2.28, respec-

tively. The statistical data obtained from the steady state analysis were

used to calculate the CUSUM parameters, νm and λ. Fig. 2.3(c) shows

the unsteady state behavior driven by the burst experiment. When

the hydrant valve was open, sudden pressure drops were clearly ob-

served and after the pressure dropped, the resulting NPW quickly dis-

appeared with some fluctuations. We obtained a total of thirty burst

experimental data, fifteen of which were generated at Hydrant 1 and

the rest at Hydrant 2. The water flow was discharged about 3 L/s and

the maximum normal flow rate of area A was 9.4 L/s. By a leak/burst

criteria proposed by Ferrante et al. [78], the simulated burst can be

considered as a detectable and huge accident.

2.5.1.4 Validation results

Using the experimental data, the performance of the proposed

system was validated. First, Fig. 2.3(d) shows CUSUM results of the

burst data from Hydrant 1 opening in test area A. The CUSUM sig-

nals appeared when the pressure was abruptly changed owing to the

sudden water discharge and the local time correction step was imple-

mented by the DWT. At level 5, the detection times for Sensors 1, 2,
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Figure 2.3: Steady state behavior of raw pressure for (a) 1 hr and (b) 30 s,
(c) unsteady state behavior for 30 s, and (d) CUSUM global detection result
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Figure 2.4: Validation result of small-scale network

and 3 were 16.332, 16.572, and 16.640 s; and they were propagated

back to level 1 to elaborate the detected time, and adjusted to 16.328,

16.572, and 16.644 s, respectively. The detection results were used in

the location unit to find out the burst site.

The burst node was located by minimizing the objective function

in Eq. (2.10). A pressure wave speed indicates the speed of transient

propagation in the pipeline, and may significantly affect the location

accuracy. The wave speed can be measured in the field test by mea-

suring the wave travel time from one sensor to another with informa-

tion of distances between sensors. The measured wave speeds for 30

simulated waves were averaged to give 1103 m/s. Table 2.1 presents

the burst candidates, the minimum node, and location errors between

the minimum node and the actual burst site for all 30 events and the

proposed algorithm was compared with the CUSUM algorithm. Ta-

ble 2.1 shows that the integrated system could improve the location
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Table 2.1: Burst candidate and minimum nodes and location errors between
integrated algorithm and CUSUM only in test area A

Data set Burst site Candidate nodes Minimum node
Location errors (m)

CUSUM and DWT CUSUM

1

1 4, 49, 50 4 0 0
1 4, 49, 50 4 0 0
1 4, 49, 50 4 0 10
2 20, 21, 22 21 2 21
2 20, 21, 22 21 2 11
2 18, 19, 20 19 21 2

2

1 4, 49, 50 4 0 0
1 4, 49, 50 4 0 0
1 4, 49, 50 4 0 0
2 20, 21, 22 21 2 21
2 18, 19, 20 19 21 21
2 19, 20, 21 20 11 2

3

1 4, 49, 50 4 0 10
1 4, 49, 50 4 ‘ 0 19
1 4, 49, 50 4 0 0
2 18, 19, 20 19 21 31
2 17, 18, 19 18 31 40
2 18, 19, 20 19 21 31

4

1 4, 49, 50 4 0 0
1 4, 49, 50 4 0 29
1 4, 49, 50 4 0 0
2 20, 21, 22 21 2 21
2 18, 19, 20 19 21 29

5

1 4, 49, 50 4 0 0
1 4, 49, 50 4 0 10
1 4, 49, 50 4 0 0
2 18, 19, 20 19 21 31
2 18, 19, 20 19 21 40
2 17, 18, 19 18 31 40

Average error (m) 8 15
Maximum error (m) 31 40
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Table 2.2: Comparison with previous researches
Source Filtering method Detection method False alarm Missed alarm Average error (m) Maximum error (m)

Area A

This work Wavelet denoising Modified CUSUM & DWT 0 0 8 31
Misiunas et al. Exponential filter CUSUM 2 0 27 57
Srirangarajan et al. Wavelet denoising Wavelet decomposition 18 0 - -

Area B

This work Wavelet de-noising Modified CUSUM & DWT 0 0 22 39
Misiunas et al. Exponential filter CUSUM 2 0 42 67
Srirangarajan et al. Wavelet de-noising Wavelet decomposition 7 0 - -

accuracy, resulting in smaller average and maximum errors of 8 m

and 31 m than using the CUSUM only. To the author’s knowledge,

the average error of less than 10 m in a real field is, at present, one of

the outstanding performances reported in the literature.

To illustrate the effectiveness and robustness of the presented

method, the validation results were also compared with previous re-

searches [59, 69]. Misiunas et al. use exponential filter and CUSUM

algorithm as filtering and detection methods, respectively, while Sri-

rangarajan et al. use wavelet de-noising and wavelet decomposition.

The monitoring performance was evaluated by the number of false

alarms and missed alarms using one-hour steady state pressure data

without any incident. Table 2.2 presents comparison results of three

systems. The wavelet decomposition based monitoring algorithm gives

the most frequent false alarms, 18 and 7 times for each network;

whereas, two CUSUM based methods show much more robust prop-

erty to data noise even in the moderately complex network. This is

because the wavelet technique can amplify noise signals as significant

featured data. Table 2.2 also presents location errors of two CUSUM

based systems. In comparing location errors with the method in Mi-

siunas et al. [59], the average and maximum location errors of the

proposed approach are much smaller since the DWT time correction
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step was integrated. When only using the CUSUM, the location ac-

curacy decreases owing to slow response of CUSUM algorithm.

2.5.2 Medium-scale pipe network with artificial faults

On the other hand, the complex pipe network located at area B

includes hundreds of households and many business districts. Thus,

the experiment is uncontrolled since other causes of pressure change

exist in addition to the burst generation. For example, water usage

is very unpredictable and irregular, which makes burst detection and

location more difficult.

2.5.2.1 Description of pipe network

In area B, the initial nodes are chosen as shown in Fig. 3 and

the initial node matrix A is 26×26 with the minimum and maximum

elements of 2.8840 and 224.351 m; after node division, the final node

matrix A becomes 265× 265 with the minimum and maximum ele-

ments of 2.8840 and 9.9981 m.

2.5.2.2 Measurement strategy and hardware system

Pressure transients are measured by three pressure sensors, named

UNIK 5000 (GE). They are connected to a PC equipped with 12 bit

A/D and D/A converters. The sampling frequency of the pressure sen-

sor is 250 Hz; that is, the pressure is sampled every 0.004 s in this

experiment. Hardware equipment is uniquely designed to deal with

the heavy data load; GPS based auto-synchronization technology to

synchronize the measurement and transmission times and data com-
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Figure 2.5: Medium-scale pipe network

pression technique to reduce communication cost. With this, the raw

data could be compressed by up to 90%. A dual core high-speed mi-

croprocessor has been used to handle the massive data set for online

measurement. The same measurement equipment and hardware were

employed in two test areas.

2.5.2.3 Data acquisition and hydraulic behavior

Fig. 2.6(a)–(b) shows the steady state pressure of medium-scale

pipe network. The average pressures for Sensors 1, 2, and 3 after de-

noised were 304, 424, and 387 kPa, and the standard deviations were

6.96, 3.33, and 4.49, respectively. In the test of area B, raw pressure

data are not clean in comparison with the data of area A which is

a simple network; and also, some biases exist especially at Sensor
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Figure 2.6: Steady state behavior of raw pressure for (a) 1 hr and (b) 30 s,
(c) unsteady state behavior for 30 s, and (d) CUSUM global detection result
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1. This may be attributable to the erratic water usage and hydraulic

phenomena in this area. In this situation, the pressure can hardly be

maintained at constant values. Fig. 2.6(c) shows the unsteady state

behavior of water pressure driven by the burst generation. Overall,

13 burst experiments were performed, 11 experiments of which were

performed at Hydrant 1 and two other experiments were at Hydrant 2.

The water discharge flow rate in this test was 4 L/s and the maximum

normal flow rate was 8.33 L/s. Also by the criteria, the simulation can

be considered as a large burst event.

2.5.2.4 Validation results

Second, the CUSUM based global detection result for Sensor

1 of the first experiment in test area B is shown in Fig. 5(d). As

the NPW was more obscure in rather complex network of area B,

the CUSUM value was much smaller and the detection of the pres-

sure transition was later. Thus, the detection accuracy was reduced.

However, the location error can be considerably improved with the

incorporation of the DWT as demonstrated in Table 2.3. The aver-

age and maximum errors are 22 m and 39 m, respectively, which

are much more improved than using the CUSUM only. The pressure

wave speed in area B was measured 1117 m/s by averaging the wave

speeds for 13 simulated waves.

2.5.3 Large-scale pipe network with natural faults

The distribution network in large-scale pipe network C contains

six sensors and the total length of the pipelines is 7266.44 m with 861

nodes.
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Table 2.3: Burst candidate and minimum nodes and location errors between
integrated algorithm and CUSUM only in medium-scale pipe network

Data set Burst site Candidate nodes Minimum node
Location errors (m)

CUSUM and DWT CUSUM

1

1 102, 103, 104 102 30 39

1 102, 103, 104 103 39 39

1 6, 95, 96 6 11 107

1 102, 103, 104 103 39 58

1 102, 103, 104 103 39 39

1 6, 95, 96 6 11 58

1 98, 99, 100 98 7 58

1 102, 103, 104 103 39 39

1 102, 103, 104 102 30 107

1 102, 103, 104 103 39 39

1 98, 99, 100 98 7 58

2
2 1, 2, 38 1 0 0

2 1, 2, 38 1 0 0

Average error (m) 22 49

Maximum error (m) 39 107

Figure 2.7: Validation result of medium-scale network
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Figure 2.8: Large-scale pipe network

2.5.3.1 Description of pipe network

Large-scale pipe network is described in Fig. The initial nodes

are chosen as shown in Fig. 3 and the initial node matrix A is 26×26

with the minimum and maximum elements of 2.8840 and 224.351 m;

after node division, the final node matrix A becomes 265×265 with

the minimum and maximum elements of 2.8840 and 9.9981 m. The

burst occurring in Yeongwol and the pressure data were measured

at 250 Hz. The pipeline network and the location of each sensor are

shown in Fig. 2.8.
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2.5.3.2 Measurement strategy and hardware system

Pressure transients are measured by three pressure sensors, named

UNIK 5000 (GE). They are connected to a PC equipped with 12 bit

A/D and D/A converters. The sampling frequency of the pressure sen-

sor is 250 Hz; that is, the pressure is sampled every 0.004 s in this

experiment. Hardware equipment is uniquely designed to deal with

the heavy data load; GPS based auto-synchronization technology to

synchronize the measurement and transmission times and data com-

pression technique to reduce communication cost. With this, the raw

data could be compressed by up to 90%. A dual core high-speed mi-

croprocessor has been used to handle the massive data set for online

measurement. The same measurement equipment and hardware were

employed in two test areas.

2.5.3.3 Data acquisition and hydraulic behavior

The raw pressure signal is shown in Fig. 2.9(a)–(b). As shown

in Fig. 2.9(a)–(b), a pipe rupture causes a sudden pressure drop of

the pipeline and the raw data include considerable amount of noise.

Comparing with the experimental data in Figs. 2.3(c) and 2.6(c), it is

noted that the sudden valve opening can similarly reproduce the real

burst event in that they lead to substantial water loss and the pressure

drop. The NPW caused by the burst was not recovered because the

burst size was very large to be noticed quickly. Therefore, immedi-

ate detection and taking measures were required to stop the serious

problem. The pressure transients increased rapidly after 5 min later

the event happened and this stemmed from valve closing action when

the pipe was finished to be repaired.
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Figure 2.10: Validation result of large-scale pipe network

2.5.3.4 Validation results

The proposed burst detection and location algorithm was ap-

plied to the raw burst signal to verify it. Final detection times by

the CUSUM and DWT were 10.112, 9.120, 9.216, 11.904, 11.520,

and 10.816 s for Sensors 1–6, respectively, and it reported the pos-

sible burst site which was different from the actual burst occurrence

location as much as 31 m. Two previous works showed worse per-

formances on the real burst, 64 and 549 m. It is noted that the WT

based detection system would give the false alarms in finding detec-

tion times and the location error would be wrongly estimated.
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2.6 Limitations for applicability to complex networks

The ultimate goal of this work is to implement the proposed sys-

tem online in real complex pipe networks. Until now, however, the

algorithm has several limitations to be addressed. First, if the burst

event is relatively small or the network is very complex, real pres-

sure transient might not be so clear as available for effective detec-

tion because the pressure waves would be reflected, reduced, and at-

tenuated. However, we observed through field test implementations

many times that medium-large burst waves showed obvious signal

changes regardless of other hydraulic phenomena. We consider it is

possible to detect up to 15% of burst ratio in real field even allow-

ing for other pipe actions. Moreover, the robustness of the objective

function for burst location can be an issue because it may give several

burst nodes or incorrect ones. Three pressure sensors at least should

used for robust and reliable implementation and the accuracy would

be improved with more sensors. However, if there are just two sensors

in the network, several nodes are all claimed to the burst nodes and

the actual burst node should be selected by direct inspection. Previous

researches for pipe networks have adopted the objective function as

the location method based on that it would theoretically give an accu-

rate result if the detection times and the wave speed are precise. De-

spite the limitations for applicability to complex networks, the work

has a significance in that it is validated with practical data of the real

field having moderate complexity while the previous works have been

mostly applied to simulation data or lab-scale experiments. The study

has being steadily conducted by implementing a prototype software

program based on the proposed algorithm to the real test bed.
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2.7 Conclusions

In this work, we develop an online burst detection and location

system of water pipe networks based on the CUSUM and the DWT

algorithms, and propose a new node matrix to represent a pipe net-

work with every link less than error bounds. In the monitoring unit,

the CUSUM algorithm gives a robust sum to mean changes of data;

but at the same time, it gives a slow detection, and thus deteriorates

the detection accuracy. While the DWT may not be suitable for global

event detection because of the high false alarm rate, the method al-

lows the sudden transition of data to be exactly found. We combine

these two techniques to take advantage of their properties, and obtain

better location performance than the previous works. In the simple

and controlled network, the average and maximum location errors

were 8 and 31 m. In rather complex and uncontrolled network, the

errors were 22 and 39 m, respectively. The efficacy of the developed

algorithm was validated with both cases, and it shows a better result

among those applied to real water supply systems up to the present.

The pressure data obtained from the real burst accident were also used

to verify the proposed system. In addition, a software program with

the proposed algorithms has been completely developed and a pilot

test is being carried out.
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Chapter 3

Consensus Algorithm for Process Networks

In this chapter, we introduce a consensus algorithm to model

network systems. In particular, flow dynamics model of water pipe

networks is developed based on the consensus algorithm and the pro-

posed model is validated with pressure measurement data obtained

from three different pipe networks.

3.1 Introduction

Water pipe networks are one of the largest public infrastruc-

tures of industrial society and are used to efficiently transport wa-

ter resources throughout cities. As a vital municipal system for water

distribution, these networks require continuous strict and thorough

maintenance. Nevertheless, flow leaks in water pipe networks fre-

quently occur and cause serious problems in terms of safety and cost.

Regarding cost, such leaks cause the loss of water, which results in

an inevitable monetary loss and unnecessary energy usage because

additional pumping energy is required to satisfy the specified carry-

ing capacities. Furthermore, the high maintenance costs attributed to

leaks, including rehabilitation and replacement, lead to a huge finan-

cial waste for society. Leaks are not only an economic issue but also
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a safety and potentially a health issue. This is because leaks may in-

troduce contaminants into the pipeline at a relatively low pressure

when the incident occurs, thus deteriorating water purity and quality.

For these reasons, leaks in water pipe networks must be immediately

identified and repaired after the incident to avoid unnecessary loss of

resources.

Governments and academic communities have devoted consider-

able efforts to developing efficient leak detection and location strate-

gies to reduce leak accidents to an economically optimal level in

water pipe networks. There are numerous conventional methods for

detecting leaks, including transient-based techniques using a nega-

tive pressure wave (NPW), inverse-transient analysis (ITA), and fre-

quency domain techniques. Among them, the NPW-based method is

one of the most popular approaches [79].

In recent years, model-based estimation techniques for leak de-

tection have been intensively studied, and most of them have de-

veloped detection algorithms based on Kalman filter [80]. Emara-

Shabaik et al. [81] proposed a nonlinear multiple model state esti-

mation scheme using a modified extended Kalman filter to detect and

diagnose leaks. This estimation technique, however, requires a dy-

namic process model of the system, and its estimation and detection

performances depend on the corresponding model accuracy.

An appropriate leak dynamics model does not currently exist.

The mathematical modeling of leak dynamics in water pipe networks

is a difficult problem because it involves extremely large system di-

mensions and complexity caused by close-meshed networks and un-

predictable events. From a practical perspective, this makes it difficult

to generate a sufficiently accurate and reliable model in an acceptable
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error range. Therefore, the development of an appropriate model for

leak dynamics in water pipe networks is important for application of

the estimation to detect and locate leaks.

In general, water pressure is constantly maintained under normal

conditions, but when a leak occurs, the water pressure suddenly de-

creases. Taking the pressure before the leak as a reference criterion,

the wave generated by such a leak is called a negative pressure wave

(NPW) [58]. When a leak occurs along the pipeline, it first removes

the confining pressure produced locally by the pipe wall, allowing

an outward flow from the pipe. Consequently, a low-pressure water

hammer wave is generated that propagates from the location of the

leak into the remainder of the system. In water pipe networks, the

NPW continually reflects and attenuates after its formation by a leak.

Therefore, the NPW dynamics should be taken into account since it

represents a faulty state and the propagation of the leak signal in wa-

ter pipe networks. However, this is the most difficult aspect in terms

of model development.

Some early works have attempted to model hydraulic phenom-

ena of water pipe networks. Because of the considerable complexity

of water pipe networks, early mathematical approaches typically re-

lied on substantially simplified network hydraulics by dropping all

nonlinearities, which is often unacceptable in practice [82]. In this

work [82], based on the simplification rage identified in the water net-

work model, the model is linearized around a given point and redun-

dant nodes are eliminated with Gauss-Jordan elimination. Then, the

remaining nodes are re-linked with pipes according to the structure of

the reduced network model. Burgschweiger et al. [83] proposed de-

tailed models suitable for nonlinear optimization of daily network op-
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erations under reliable demand forecasts. Boussafeur-Lamoudi [84]

proposed an automated simplification method of water network mod-

els. These works were all focused on simplifying water pipe network

models that are mathematically sound but only applicable to small

networks. For large networks, however, the models are still very dif-

ficult to solve and not accurate for practical application.

In this work, we propose a dynamic model of flow and NPW

triggered by a pipe break in water pipe networks using a consensus

algorithm and water hammer theory. A consensus means to reach an

agreement regarding a certain quantity of interest that depends on the

state of all agents (or dynamic systems) in networks. A consensus

algorithm (or protocol) is an interaction rule that specifies the infor-

mation exchange between an agent and all of its neighbors on the

network [1]. Consensus algorithms have recently been extensively

studied to describe coordination tasks in various areas of science and

engineering, particularly in the context of cooperative control of mul-

tiple autonomous vehicles, formation control, decentralized task as-

signment, and sensor networks [85]. The flow dynamics in water pipe

networks shows similar dynamics when discrete positions within the

network are modelled as dynamic nodes that interact with their neigh-

bors.

To describe the flow dynamics of a leak, we use water hammer

theory and modify it to represent a negative pressure wave since the

water hammer equations generally describe positive pressure waves.

The mass balance equation of the water hammer is used to represent

the relationship between the fluid velocity and water pressure in pipe

networks. The significance of the proposed model lies in that the flow

dynamics of complex water pipe networks can be represented by a
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simple and linear model within an acceptable error range.

The developed model is validated using experimental data ob-

tained from field tests. A leak event is simulated by quickly opening

a hydrant valve installed in the network. From the validation results,

it is realized that the presented model can effectively describe the leak

flow dynamics of the real water pipe network.

Using the proposed model and distributed state estimation scheme,

we develop a leak detection and location algorithm of water pipe net-

works. The detection algorithm is based on distributed and coopera-

tive H∞-estimation for large-scale interconnected linear systems pro-

posed in Wu et al [12].

Cooperative H∞-estimation combines the benefits of both de-

centralized and distributed estimation in that cooperation between the

local estimators is used to deal with lack of local detectability and the

complexity of local estimators does not grow with the total size of

the system in contrast to the existing distributed estimations. An im-

portant requirement of decentralized estimation approach is that the

local subsystems are detectable from local measurements. In a dis-

tributed estimation, on the other hand, multiple estimators cooperate

with each other and create an estimate of subsystem without local

detectability. Instead, it gives rise to scalability issue where the or-

der of the estimators grows with the size of the network. Therefore,

the proposed method is referred to as Cooperative estimation which

overcomes local detectability and scalability by only reproducing a

desired subset of states for a local estimator. It is an H∞-based de-

sign that provides guaranteed performance with respect to model and

measurement disturbances. The methodology is generally applied to

large-scale linear systems where subsystems may be physically in-
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terconnected and thus also applied to the developed flow dynamics

model of water pipe networks.

The remainder of this paper is organized as follows. Preliminar-

ies are provided in Section 2, and the procedure for modeling the leak

dynamics of water pipe networks is presented in Section 3 based on

a consensus algorithm and water hammer equation. The developed

model is validated using experimental data in Section 4 and leak de-

tection and location algorithm by application of distributed estima-

tion to the developed model is presented in Section 5, followed by

concluding remarks in Section 6.

3.2 Consensus Algorithm based Process Network Model

In this section, we introduce some basic notations and summarize

useful concepts from graph theory to apply to water pipe networks.

General consensus algorithm and properties are introduced.

3.2.1 Consensus in networks

We use a consensus algorithm to model the flow dynamics in

water pipe networks because the nodes in water pipe networks reach

a common value of state (on their own).

When multiple nodes (agents) agree on the value of a variable of

interest, they are said to have reached consensus. To achieve consen-

sus, there must be a shared variable of interest, called the information

state, as well as appropriate algorithmic methods for negotiating to

reach consensus on the value of that variable, called consensus algo-

rithms. Consensus algorithms are designed to be distributed assuming

only neighbor-to-neighbor interactions between nodes and limited in-
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formation about other parts of the system [85].

If the effects of the interconnections are continuous-time, then

the information state update of each node can be modeled using a

differential equation. A scalar information state is updated by each

node using a first-order differential equation [85]. Suppose that there

are n nodes in the network. The most common continuous time con-

sensus algorithm is given by

ẋi(t) =−
n∑

j=1

ai j(t)[xi(t)− x j(t)], i = 1, · · · ,n (3.1)

where ai j(t) is the sum over the number of the neighbors of the i-th

node and xi(t) is the information state of the i-th node at time t. Since

the pipe network topology is time invariant, the gains ai j are constant.

Setting ai j = 0 indicates that the node i is not coupled to the node j. A

consequence of Eq. (3.1) is that the state xi(t) of the node i achieves

to the same state of its neighbors.

3.3 Application to Water Pipe Networks

In this section, we propose a fundamental model of flow dynam-

ics in water pipe networks when a pipe leak occurs. The proposed

model is based on the consensus algorithm and classical water ham-

mer theory, which will be described in the following subsections.

Then, the dynamics at the leak point is described based on the con-

cepts of the water hammer effect, and the complete model is summa-

rized in the last subsection.
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Figure 3.1: Pipeline nodes k = 1, · · · ,N including a leak node kl with veloc-
ity ε

3.3.1 Flow dynamics based on consensus algorithm

From the above consensus algorithm, we propose a flow dynam-

ics model of water pipe networks when a leak occurs. The consen-

sus algorithm can be applied to describe the propagation of a nega-

tive pressure wave in water pipe networks because the phenomena of

the signal transfer to neighboring nodes are similar in both systems.

Therefore, the consensus algorithm can be applied to fluid velocity as

follows
dvk

dt
= Kk

∑
j∈Nk

(v j − vk), k ∈ N (3.2)

where vk is the fluid velocity at node k and Kk is the consensus gain

of node k. The gain Kk can be varied with the network characteristics.

Eq. 3.2 represents the steady-state velocity dynamics of the water

pipe network.

When a leak occurs in the pipeline, the transient signal propa-

gates in the upstream and downstream, and it will affect the veloci-

ties of adjacent nodes. Fig. 3.1 shows an example of a pipeline with

a leak.

Eq. 3.2 should be modified to reflect the leak velocity at the

nodes adjacent to the leak node, kl . When the water flows from left to

right in the pipeline, Eq. 3.2 is changed as follows: at node k which
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is on the left side of the leak kl ,

dvk

dt
= Kk

∑
j∈Nk

(v j − vk + ε), k = kl −1 (3.3)

and at node k, which is on the right side of the leak kl ,

dvk

dt
= Kk

∑
j∈Nk

(v j − vk − ε), k = kl +1 (3.4)

where ε is the leak velocity. When a leak happens, the fluid velocity

decreases as much as ε at the leak point. At the (kl −1)-th node, the

reduced velocity, ε, should be added as in Eq. 3.3 because the flow

at this point is affected by the leak as much as +ε and the velocity at

the neighbor node j would be reduced by ε. Whereas, at the (kl +1)-

th node, the reduced leak velocity should be subtracted as in Eq. 3.4

because the flow at this point is affected by the leak as much as −ε.

3.3.2 Water hammer theory

The water hammer phenomena have been extensively studied

and well established since the early 1900s in this field. With the

ever increasing importance of water hammer phenomena, many re-

searchers have developed water hammer theories from first princi-

ples, and their combined efforts have resulted in the following clas-

sical mass and momentum equations for one-dimensional (1D) water

hammer flows [86]
∂V
∂x

+
1

ρa2
∂P
∂t

= 0 (3.5)
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∂V
∂t

+
1
ρ

∂P
∂x

+
4

ρD
τw = 0 (3.6)

where V is the cross-sectional average velocity, ρ is the fluid density,

a is the acoustic water hammer wave speed, P is the water pressure,

D is the pipe diameter, τw is the shear stress at the pipe wall, x is the

spatial coordinate along the pipeline, and t is the temporal coordinate.

The water hammer wave speed can be calculated using the following

formula:

a =

√√√√ K
ρ

1+φ
K
E

D
e

(3.7)

where K is the bulk modulus of elasticity of the fluid, E is Young’s

modulus of elasticity, e is the pipe wall thickness, and φ is a parameter

that depends on the pipe anchoring.

From the literature [86], we know that friction in the pipe be-

comes negligible and τw can be safely set to zero in some cases. For

example, wall friction is irrelevant as long as the simulation time is

significantly smaller than 4L/a. Then, the classical water hammer

model given by Eq. 3.5 and 3.6 becomes

∂V
∂x

+
1

ρa2
∂P
∂t

= 0 (3.8)

∂V
∂t

+
1
ρ

∂P
∂x

= 0 (3.9)

By using the mass balance of Eq. 3.8, we can obtain the relationship

between fluid velocity and water pressure in the pipe network. At
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node k, Eq. 3.8 is changed into the following form

∂vk

∂x
+

1
ρa2

∂pk

∂t
= 0, k ∈ N (3.10)

The partial derivative of vk with respect to x in Eq. 3.10 should be dis-

cretized to solve it, and we apply a backward finite difference method

(FDM) since the variable does not considerably change in a short

length in the pipeline. Using the first-order FDM, Eq. 3.10 can be

expressed for pressure as follows

d pk

dt
=−L(vk − vk−1), k ∈ N (3.11)

where L = ρa2/∆x and ∆x is the length between nodes.

When a leak occurs, Eq. 3.11 should be modified at the nodes

adjacent to the leak node kl ,

d pk

dt
=−L(vk − vk−1 − ε), k = kl ±1 (3.12)

For the water pressure variable, it does not distinguish the flow direc-

tion because the negative pressure wave is considerably faster than

the fluid velocity.

3.3.3 Dynamics at leak point

The flow dynamics at the leak point can be described by the wa-

ter hammer effect explained in the previous section because the prop-

agation of a pressure wave is similar except for the negativeness or

positiveness of the pressure wave. Then, the pressure and flow at leak
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node kl have the following dynamics

d pkl

dt
=−L(vkl − vkl−1) (3.13)

dvkl

dt
=−M(pkl − pkl−1) (3.14)

where M = 1/ρ∆x and pkl and vkl are the pressure and velocity at the

leak point, respectively.

3.3.4 Complete model

We summarize the complete model of the leak dynamics of wa-

ter pipe networks in this section. The developed model consists of

Eqs. 3.2–3.4 and Eqs. 3.11–3.14 and it is formulated as a state space

model as follows

ẋ = Ax+Bu+ν (3.15)

y = Cx+η (3.16)

where x = [p1,v1, · · · , pkl , vkl , · · · , pN ,vN ]
⊺ ∈ R2N is the state of the

system, u = ε is the unknown input, y ∈ Rm is the measurement

vector, A ∈ R2N×2N is the system matrix, B ∈ R2N×1 is the input

matrix, C ∈ Rm×2N is the measurement matrix, and ν ∈ R2N and

η ∈ Rm are the noise vectors. The measurement C is defined by

sensor number and location in the networks, with 1 for elements of

C(1,k1), · · · ,C(Ns,kNs) where Ns is the sensor number and zero for

all other entries. The noise should be included in the model to por-

tray the real system since the real water pipe network possesses many
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uncertainties. The system matrices, A and B, can be represented as

A =



0 L 0 −L 0 · · · 0

0 −K1 0 K1 0 · · · 0
. . .

0 · · · 0 L 0 −L 0 · · · 0

0 · · · M 0 −M 0 0 · · · 0
. . .

0 · · · 0 L 0 −L

0 · · · 0 KN 0 −KN


(3.17)

and

B⊺=
[

0 · · · 0 Kkl−1 0 −Kkl+1 0 · · · 0 L 0 L 0 · · · 0
]⊺

(3.18)

A and B can differ depending on the network topology and the loca-

tion of the leak.

It is worthwhile to note that the presented model has a form of

simple and linear interconnected equations even though the system

has highly complex dynamics. This is attributed to the form of con-

sensus algorithm applied to this system and the first-order FDM of

water hammer equation. The first-order FDM is appropriate because

the fluid velocity does not change much in the short length less than

10 m.

3.3.5 Experiment

In this section, the developed dynamic model is validated us-

ing experimental data obtained from a real water pipe network as
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explained in [87]. First, we introduce geometry information of the

water pipe network and present steady and unsteady state water pres-

sures measured from sensors in the test area. Second, the developed

dynamic model is compared with the experimental data, and the re-

lated residuals and errors are calculated in the following subsection.

The developed dynamic model was validated using the field data ob-

tained from a real water pipe network in South Korea. Without any

households or factories near the test area, the experiment could be

controlled for sensors to capture the leak incident only.

Pipe networks shown in Fig. 2.2, 2.5, and 2.8 are used for valida-

tions. Although the pipe network is not as complex as a real-life water

pipe network, it is sufficient to serve as a field test for validation since

it includes sufficient pipe length and two junctions to characterize the

network system. Arcs over 10 m are divided by the node division

strategy proposed in [87]. After the node division, the final node ma-

trix A′ has dimensions of 50× 50, and the minimum and maximum

step sizes of arcs are 9.4841 and 9.6410 m, respectively .

During the field test, there was no other hydrant or pump operat-

ing around the area. The valve opening action may affect the pressure

transient; however, it would be insignificant compared with the influ-

ence of the sudden water release. Additionally, hydraulic phenomena

at pipe junctions or valves may always exist; however, such phenom-

ena appear as the background noise of the system. Therefore, it is

assumed that the pressure transient changes in the experiment were

caused only by the sudden water discharge of the hydrant.

Fig. 3.2(a) and 3.2(b) show the steady state and unsteady state

behaviors of water pressure for 30 s driven by the hydrant valve open-

ing, respectively. In Fig. 3.2(a), the water pressure was maintained
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Figure 3.2: Experimental data of water pressure for (a) steady state and (b)
unsteady state
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at a constant value with background noise under normal conditions

without any incidents. The averaged pressures for Sensors 1, 2, and 3

were 250, 267, and 245 kPa, and the variances were 3.46, 7.40, and

5.20, respectively.

The water pressure was maintained at a constant value at normal

conditions, and when the hydrant valve was opened, it generated the

NPW and sudden pressure drops were clearly observed, as shown in

Fig. 3.2(b). After the pressure dropped, the resulting pressure wave

quickly disappeared after several fluctuations.

We obtained a total of fifteen experimental data sets, which were

generated at Hydrant 1. The water flow was discharged at approxi-

mately 3 L/s at Hydrant 1, and the maximum normal flow rate of this

network was 9.4 L/s. The normal flow rate continuously varied from

4.17 to 8.33 L/s.

3.3.6 Validation

To simulate a complete model for this test area, we assign net-

work nodes, construct system matrices, A, B, and C, according to the

network topology and adjust model parameters. The total node num-

ber N of this network is 50, so the system dimension is R100, and the

leak velocity, ε, is calculated as 0.38 m/s from cross sectional area of

the pipeline. In addition, the system and measurement disturbances,

ν and η, are added as white Gaussian noise (WGN) to mimic the ef-

fect of many random processes that occur in the network. Then, the

simulation results are compared with the experimental data.

The parameter values in the model is presented in Table 3.1.

As in the experimental data shown in Fig. 3.2, the steady state
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Table 3.1: Parameter values of the model
Parameters Values

K 7
Bm 11
∆x 10

ε 2

and unsteady state behaviors of the water pressure are simulated using

the proposed model, as shown in Fig. 3.3. The average pressure values

of three sensors obtained from the measurement are employed in the

simulation as initial values. In Fig. 3.3(a), the water pressures are

constantly maintained with background noise under totally normal

state without any leak as in Fig. 3.2(a).

In Fig. 3.3(b) with the leak simulation, it is observed that the

pressure suddenly drops, and it is recovered with some fluctuations

as in Fig. 3.2(b). However, the proposed model is an ideal case, and

there is a difference between realistic and ideal systems.

If a sensor is located near the leak point, the pressure drop would

be more obvious than ones at other sensors. To show that the pro-

posed model can describe the time delay effect of the negative pres-

sure wave on sensors, the initial parts of the pressure drop for both

the experimental data and simulation results are enlarged as shown in

Fig. 3.4. The pressure decreases in the order of Sensor 1, Sensor 2,

and Sensor 3 for both the experimental and simulation results, and it

corresponds with the network topology in Fig. ?? because Hydrant 1

is close to sensors in the order of Sensor 1, Sensor 2, and Sensor 3.

Thus, the difference in accordance with the sensor location can also

be represented by the proposed model.

We validated the model with 10 data sets obtained from the ex-
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Figure 3.3: Simulation results of water pressure for (a) steady state and (b)
unsteady state
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Figure 3.4: Enlarged pressure transient in the occurrence of a leak for (a)
experiment and (b) simulation
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Figure 3.5: Residual of water pressure from experiment and simulation

periments. Fig. 3.5 shows comparative results of the developed model

for the selected experimental data set. The residual errors for three

sensors are less than 35, and the relative error is calculated to be

16%. As shown in Fig. 3.5, the fluctuation part causes the most severe

deviation between the model and experiment. The average and max-

imum errors for 10 experimental data sets are calculated as 1.62%

and 14.0%, respectively. From this result, although the fluctuation

part generates a relatively large deviation from the experiment, the

developed model shows satisfactory results with high qualitative and

quantitative accuracy and it could be used to develop a leak detec-

tion and diagnosis algorithm with estimation methods that require

the dynamic model of the system. We develop a leak detection and
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diagnosis algorithm using the proposed model and cooperative state

estimation technique in the subsequent section.

The average and maximum errors for 10 experimental data sets

are presented in Table 3.2. As shown, the average and maximum er-

rors are within 2 and 20%, respectively. Although the fluctuation part

generates a relatively large deviation from the experiment, the devel-

oped model shows satisfactory results, and it could be used to develop

a leak detection and location algorithm with estimation methods that

require the dynamic model of the system because if we have the sys-

tem model, then the state estimation algorithms could be applied to

the model to detect and diagnose faults. We will develop a leak de-

tection and diagnosis algorithm using the proposed model and state

estimation technique in a future work.

3.4 Conclusions

The fundamental model of NPW dynamics due to leaks in wa-

ter pipe networks is developed based on a consensus algorithm and

water hammer theory. The leak dynamics model of water pipe net-

works has hardly been considered in the literature thus far because

of the complexity of the water pipe network structure and hydraulics.

The developed model has a form of a simple and linear model of an

interconnected network system. Then, it is satisfactorily validated us-

ing real experimental data obtained from a field test. The average and

maximum errors between the model and experiment are within 2 and

20%, respectively, and a large portion of these errors are attributed

to fluctuations of the NPW propagation through the network, which

is difficult to precisely model. Although the model requires parame-
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Table 3.2: Average and maximum errors from residuals of the experiment
and simulated data for 10 data sets

Data set Sensor number Average error (%) Maximum error (%)

1
1 1.86 10.4

2 1.74 11.6

3 1.51 12.1

2
1 1.76 15.6

2 1.58 13.1

3 1.60 12.4

3
1 1.64 15.7

2 1.58 16.2

3 1.50 11.2

4
1 1.79 15.3

2 1.52 12.4

3 1.56 13.5

5
1 1.88 15.4

2 1.42 11.9

3 1.57 14.8

6
1 1.43 13.7

2 1.56 17.4

3 1.55 10.8

7
1 1.77 16.9

2 1.65 12.3

3 1.23 11.1

8
1 1.35 14.5

2 1.46 16.2

3 1.86 17.3

9
1 1.57 13.6

2 1.46 13.4

3 1.86 12.7

10
1 1.69 14.3

2 1.92 15.1

3 1.77 18.8
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ter adjustment to accurately simulate the real water pipe network, it

can be used for various applications, such as the development of a

leak detection and location algorithm. A leak detection and location

algorithm based on state estimation in water pipe networks will be

developed in a future work.
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Chapter 4

Cooperative State Estimation of Large-scale
Process Networks

In this chapter, we propose a cooperative state estimation based

on Kalman filter for large-scale process network systems. The ba-

sic concepts and ideas are based on cooperative H∞ estimation pro-

posed in Wu et al. [12]. We develop Kalman filter (also called H2

estimation) based cooperative state estimation instead of H∞ type es-

timation and provide theorems and proofs of local detectability and

scalability which are important properties of the proposed coopera-

tive Kalman filter.

4.1 Introduction

There are numerous methods to detect the leak in water pipe

networks including transient based techniques using negative pres-

sure wave (NPW), inverse-transient analysis (ITA), frequency domain

techniques. In recent years, model based estimation techniques have

been studied intensively for its systematic algorithm. Ye et al. [80]

proposes detection method using Kalman filter and Emara-Shabaik et

al. [81] propose a nonlinear multiple model state estimation scheme

using a modified extended Kalman filter. The estimation technique is
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effective, however, it requires a dynamic process model of the system

and the estimation performance depends on the model. In the previ-

ous work, we propose a dynamic model of leak in water pipe net-

work using consensus algorithm and water hammer equations. Using

the previously developed model, we develop a leak detection and lo-

cation algorithm in water pipe networks. The detection algorithm is

based on cooperative H∞-estimation for large-scale interconnected

linear systems proposed in Wu et al [12].

In decentralized estimation, a set of estimators are employed to

create estimates of local subsystem states with only limited assistance

from each other. An important requirement of this approach is that

the local subsystems are detectable from local measurements. On the

other hand, in a distributes estimation setup, multiple estimators cre-

ate an estimate of the system’s state, while cooperating with each

other. The progress in the area of distributed estimation put forward

issues of scalability of estimator networks, i.e., there is an interest

in distributed estimation methods where the dimension of the local

estimators does not increase with the total size of the system. For in-

stance, this is relevant for multi-agent systems, where the agents are

not able to perform a self-measurement, but only receive relative in-

formation. Direct applications of the existing distributed estimation

algorithms result in the estimators reproducing the entire state of the

complete network, and therefore, the order of the estimators grows

with the size of the network.

Cooperative H∞-estimation combines the benefits of both de-

centralized and distributed estimation and local estimators only re-

produce a desired subset of state variables and their complexity does

not grow with the total size of the system, in contrast to the existing
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methods for distributed estimation mentioned above. Moreover, co-

operation between the local estimators will be used to deal with pos-

sible lack of local detectability. Therefore, the proposed method is re-

ferred to as Cooperative estimation. In particular, it is an H∞-based

design which in addition provides guaranteed performance with re-

spect to model and measurement disturbances. Here, the methodol-

ogy is applied to general large-scale linear systems where subsys-

tems may be physically interconnected which is also applied to flow

dynamics model of water pipe networks.

This chapter is organized as follows. System model under con-

sideration and repartition algorithm are provided in Section 4.2 and

the methodology of cooperative estimation design based on Kalman

filter is presented in Section 4.3. Finally, two applications are pre-

sented in Section 4.4 followed by conclusions in Section 4.5.

4.2 System Model and Repartition

In this section, the system model is introduced in the form of

linear interconnected systems and a repartition algorithm that plays a

key role in developing cooperative state estimation is also provided.

4.2.1 System model

In chemical engineering systems, most processes consist of con-

tinuous processes with discrete measurements. Therefore, for this

work, we choose the discrete stochastic system model in nonlinear

form

xk+1 = F(xk,uk)+wk (4.1)
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yk = h(xk)+ vk (4.2)

The classical theory relies on several assumptions that guarantee

convergence of the Kalman filter. Consider the following discrete-

time linear dynamical system:

xk+1 = Axk +Buk +wk (4.3)

yk =Cxk + vk (4.4)

where xk ∈ Rn is the state vector, yk ∈ Rm the output vector, and

wk ∈ Rp are vk ∈ Rm Gaussian random vectors with zero mean and

covariance matrices Q ≥ 0 and R > 0, respectively. Assume that the

initial state, x0, is also a Gaussian vector of zero mean and covari-

ance Σ0. Under the hypothesis of stabilizability of the pair (A,B) and

detectability of the pair (A,C), the estimation error covariance of the

Kalman filter converges to a unique value from any initial condition

[8].

This work considers the design of observers for a class of linear

dynamic systems in which system uncertainty can be modeled as an

additive unknown disturbance term in the dynamic equation. We con-

sider a large-scale linear time-invariant system, which consists of N

interconnected subsystems that are each described by the differential

equations

ẋk+1 = Akxk +

N∑
j=1

Ak jx j +Bku+wk (4.5)
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yk =Ckxk +
N∑

j=1

Ck jx j + vk (4.6)

for k = 1, · · · ,N, where xk ∈ Rnk is the state variable, yk ∈ Rrk is the

output, and w,v are noise inputs of subsystem k. The scalar compo-

nents of xk will be denoted xk,i. Note that in this system, all sub-

systems are affected by the common disturbance w. This assumption

does not lead to loss of generality since it also captures the case where

the subsystems are affected by different disturbances wk by simply

taking wk into one vector.

The global interconnected system can be written as

ẋ = Ax+Bw, y =Cx+ v (4.7)

with

A =


A1 A12 · · · A1N

A21 A2
...

... . . . ...

AN1 · · · · · · AN

 (4.8)

B⊤ =
[

B⊤
1 · · · B⊤

N

]
(4.9)

C =


C1 C12 · · · C1N

C21 C2
...

... . . . ...

CN1 · · · · · · CN

 (4.10)

by using the stacked state and disturbance vector x=
[
x⊤1 , · · · ,x⊤N

]⊤ ∈
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Rn and v =
[
v⊤1 , · · · ,v⊤N

]⊤.

Assumption 1. The global plant (A,C) is observable.

Assumption 2. The global plant (A,C) is detectable.

Assumption 1 is a sufficient condition in the centralized case.

Assumptions 1 and 2 are to setup a basic framework under which the

state estimation problem under consideration is meaningful.

4.2.2 Repartition of system model

We will re-partition the vector x for designing local estimators.

Associated with the collection of outputs (4) for every k = 1, · · · ,N,

we choose a σk-dimensional partial state vector

x(k) =


xξk(1)

...

xξk(σk)

 (4.11)

where ξk(·) is a selection function that determines which scalar com-

ponents x j,i are included in x(k). It is required that all x j,i which con-

tribute towards yk are included in x(k). This represents a degree of

freedom in the design of the estimators and all elements of the global

state vector x may be chosen that are relevant to subsystem k. For

instance, x(k) may contain xk, but it does not have to include all of

them, if for subsystem k, some parts of its own state are not impor-

tant. In particular, it is required that all x j,i which contribute towards

yk are included in x(k). As a result, every output yk can be equivalently

expressed as

yk =C(k)x(k)+ vk (4.12)
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One possible choice of x(k) is the stacked vector including xk and all

x j with Ck j ̸= 0. In that case,

ẋ = Ax+Bw, y =Cx+ v (4.13)

with

A(k) =


Ak Ak j1 · · ·

A j1k A j1
... . . .

 (4.14)

and the rest of the coefficients are defined in a similar fashion.

The selection function ξk is a discrete injective map

ξi : {1, · · · ,σk}→ Y , σk ≤ n (4.15)

where the set Y ≜ {(k, i)|k = 1, · · · ,N; i = 1, · · · ,nk} is defined as

the combination of all appearing indexes of the subsystem states and

their scalar components xk,i. For the ease of notation, we refer to the

elements of the set Y as λ, i.e., λ = (k, i) ∈ Y .

The image of ξk is denoted as I(k), I(k) ⊂Y , and the inverse map

ξ
−1
k is an enumeration of the elements of I(k),

ξ
−1
k : I(k) →{1, · · · ,σk} (4.16)

which assigns a position in x(k) to selected components xλ of the

global state vector x. In general, partial state vectors x(k) may overlap,

e.g., x(1) and x(2) may contain a common component xλ.

For all k = 1, · · · ,N, the global interconnected system can now
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be written as[
ẋ(k)

ẋ(k)c

]
=

[
A(k) Ã(k)

Ã(k)
c A(k)

c

][
x(k)

x(k)c

]
+

[
B(k)

B(k)
c

][
u(k)

u(k)c

]
+

[
w(k)

w(k)
c

]
(4.17)

y(k) =C(k)x(k)+ vk (4.18)

by permutation of the states. For every k, the composition of the ma-

trices A(k), B(k), etc., is determined by the composition of the partial

state variable x(k), in turn, the latter is determined by the components

of the global state x which estimator k seeks to obtain.

4.3 Cooperative State Estimation Based on Kalman Fil-
ter

In this section, we propose a cooperative Kalman filter of large-

scale system based on the repartitioned model.

4.3.1 Standard Kalman filter

This section reviews unconstrained state estimation via the Kalman

filter, along with some important properties of the Kalman filter that

is used later in this chapter. The Kalman filter was independently in-

vented in the 1950’s by several different researchers and is named

after Rudolph Kalman [29]. The problem is to find an estimate x̂k+1

of xx+1 given the measurements {y0,y1, · · · ,yk}. We use the sym-

bol Yk to denote the column vector that contains the measurements

{y0,y1, · · · ,yk}. We assume that the following conditions are satis-
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fied
E [x0] = x̄0

E [wk] = 0

E [ek] = 0

E [(x0 − x̄0)(x0 − x̄0)
⊺] = Σ0

E
[
wkw⊺

m
]

= Qδkm

E
[
eke⊺m

]
= Rδkm

E
[
wke⊺m

]
= 0

E
[
xke⊺m

]
= 0

E
[
xkw⊺

m
]

= 0

(4.19)

where E[·] is the expectation operator, x̄ is the expected value of x,

δkm is the Kronecker delta function (δkm = 1 if k = m, 0 otherwise).

Q and R are positive semi-definite covariance matrices. The Kalman

filter equations are given by

P−
k = FP+

k−1F⊺+Q (4.20)

Kk = P−
k H⊺ (HP−

k H⊺+R
)−1 (4.21)

x̂−k = Fx̂+k−1 (4.22)

x̂+k = x̂−k +Kk
(
yk −Hx̂k

−) (4.23)

P+
k = (I −KkH)P−

k (4.24)
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for k = 1,2, · · · , where I is the identity matrix. x̂−k is the a priori es-

timate of the state xk given measurements up to and including time

k− 1. x̂+k is the a posteriori estimate of the state xk given measure-

ments up to and including time k. Kk is the Kalman gain, P−
k is the

covariance of the a priori estimation error xk − x̂−k , and P+
k is the

covariance of the a posteriori estimation error xk − x̂+k . The Kalman

filter is initialised with

x̂+0 = E [x0] (4.25)

P+
0 = E

[(
x0 − x̂+0

)(
x0 − x̂+0

)⊺] (4.26)

where E[·] is the expectation operator.

When the noise sequences {wk} and {vk} are Gaussian, uncorre-

lated, and white, the Kalman filter is the minimumvariance filter and

minimises the trace of the estimation error covariance at each time

step. When {wk} and {vk} are non-Gaussian, the Kalman filter is the

minimum-variance linear filter, although there might be nonlinear fil-

ters that perform better [30].

Note that this is the prediction form of the Kalman filter equa-

tions, so xk is estimated on the basis of measurements up to and in-

cluding time k−1. The filter is initialized with x̂0 = x̄0, and Σ0 given

above. It can be shown [12] that the Kalman filter has several attrac-

tive properties. For instance, if x0, {wk}, and {ek} are jointly Gaus-

sian, the Kalman filter estimate x̂k+1 is the conditional mean of xk+1

given the measurements Yk; i.e., x̂k+1 = E[xk+1|Yk]. Even if x0, {wk},

and {ek} are not jointly Gaussian, the Kalman filter estimate is the

best affine estimator given the measurements Yk; i.e., of all estimates

of xk+1 that are of the form FYk +g (where F is a fixed matrix and g
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is a fixed vector), the Kalman filter estimate is the one that minimizes

the variance of the estimation error. It can be shown that the Kalman

filter estimate (i.e., the minimum variance estimate) can be given by

x̂k+1 = ¯̄xk+1 ≡ x̄k+1 +ΣxyΣ
−1
yy (Yk − Ȳk) (4.27)

where x̄k+1 is the expected value of xk+1, Ȳk is the expected value of

Yk, Σxy is the variance matrix of xk+1 and Yk, Σyy is the covariance

matrix of Yk, and ¯̄xk+1 is the conditional mean of xk+1 given the mea-

surements Yk. In addition, we know that the Kalman filter estimate

x̄k+1 and Yk are jointly Gaussian, in which case x̄k+1 is conditionally

Gaussian given Yk. The conditional probability density function of

xk+1 given Yk

P(x|Y ) =
exp
[
−(x− ¯̄x)⊺Σ−1(x− ¯̄x)/2

]
(2π)n/2|Σ|1/2 (4.28)

where n is the dimension of x and

Σ = Σxx −ΣxyΣ
−1
yy Σyx (4.29)

where Σxx is the covariance matrix of xk. The Kalman filter estimate

is that value of x that maximizes the conditional probability density

function P(x|Y ), and Σ is the covariance of the Kalman filter estimate.

4.3.2 Cooperative Kalman filter

The problem considered here is to design a local estimator for

every subsystem k that creates an estimate for the local partial state

variable x(k) using the local measurements yk described in Eq. 4.17

87



and 4.18. The vector of local estimates will be denoted

x̂(k) =


x̂k

ξk(1)
...

x̂k
ξk(σk)

 ∈ Rσk (4.30)

where x̂(k)
λ

is the estimate for xλ computed at subsystem k.

The local estimation error vector is defined as

ε
(k) = x(k)− x̂(k) =


xk

ξk(1)
− x̂k

ξk(1)
...

xk
ξk(σk)

− x̂k
ξk(σk)

 ∈ Rσk (4.31)

The cooperative estimator determines a collection of estimates

x̂(k)(t), k = 1, · · · ,N, such that the following two properties are satis-

fied simultaneously.

1. In the absence of model and measurement disturbances (i.e.,

when ν = 0, η = 0), the estimation errors decay so that ε(k) → 0

exponentially for all k = 1, · · · ,N.

2. The estimators satisfy Kalman filter performance.

min
L(k),K(k)

P(k) = min
L(k),K(k)

E[ε(k)ε(k)T ] (4.32)

This will be achieved by allowing certain agents to communicate with

each other.
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4.3.2.1 Communication requirements

There are two factors, which influence the required communica-

tion for the cooperative estimation setup: The first one is detectability

of (A(k),C(k)). In the special case of Ã(k) = 0, and (A(k),C(k)) be-

ing detectable for all k = 1, · · · ,N, no communication is necessary

at all, as for every subsystem, an estimator can be designed sepa-

rately. However, these assumptions may not hold in a general case.

In particular, in this paper, we do not require that (A(k),C(k)) are de-

tectable for all k = 1, · · · ,N, which is a major difference compared

to existing methods in literature, In fact, even all (A(k),C(k)) may be

undetectable.

The second factor which influences the required communication

is sparsity of Ã(k). Ideally, when the partial state x(k) is decoupled

from the rest of the system, i.e., Ã(k) = 0, a standard H∞ filter can

be employed to carry out the estimation of x(k) from yk. However, if

x(k) includes a state xλ, which is connected to a state xλ∗ that is not a

component of x(k), then the problem becomes more challenging.

In order to define the required communication channels, we use

an assignment function

ζ : Y →{0,1, · · · ,N} (4.33)

with the property that λ ∈ I(ζ(λ)) if ζ(λ) ̸= 0. Moreover, ζ(λ) ̸= 0 only

if λ /∈ I(k) for all k = 1, · · · ,N. The map ζ(·) assigns responsibilities

in estimating the system’s states to the subsystems and their local

estimators. In general, ζ(λ) is not unique and there is a degree of

freedom in selection of the assignment function. However in the case

when x(k)’s do not overlap, the assignment function ζ(λ) is unique.
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With the definition of the assignment function ζ, we can introduce the

assumption on the communication graph used in this work.

Assumption 3. If a component xλ of x(k) is physically coupled to a

state xλ∗ , where λ∗ ∈ Y \ I(k), then subsystem j = ζ(λ∗) ̸= 0 can

communicate to subsystem k, i.e., ( j,k) ∈ E .

We denote with I(k)c the set of all indexes λ∗ ∈ Y \ I(k) with the

property that for all xλ∗ ∈ I(k)c , there exists a component xλ of x(k),

which is coupled to xλ∗ . Assumption 2 reflects the point made above,

as the more entries Ã(k) has, the more communication between the

subsystems is required. Some remarks on the realization of this as-

sumption are in order:

Lemma 4.1. For all λ ∈ Y there exists a k ∈ {1, · · · ,N}, such that

λ ∈ I(k).

Proof. Suppose there exists a λ ∈ Y , such that λ /∈ I(k) for all k =

1, · · · ,N. By the definition of the partial states x(k) and the selection

function ξk, the column of C which corresponds to xλ is 0. Moreover,

by the definition of ζ, we have ζ(λ) = 0 and thus, it follows from

Assumption 2 that there is no partial state x(k) that is coupled to xλ.

Therefore, xλ is not observable, which contradicts Assumption 1. □

As noted for the repartition, the vectors x(k) may overlap. There-

fore, including a consensus term whenever overlapping estimators

can communicate is able to enhance estimation performance of the

subsystems and in some cases even facilitates feasibility of the de-

sign conditions.
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4.3.2.2 Estimator dynamics

The estimator dynamics are now proposed for each subsystem as

˙̂x(k) = A(k)x̂(k)+B(k)u(k)+L(k)
(

yk −C(k)x̂(k)
)

+
∑

λ∈I(k)c

[
Ã(k)
]

λ

x̂(ζ(λ))
λ

+
∑

λ∈I(k)c

[
B̃(k)
]

λ

u(ζ(λ))
λ

+K(k) ∑
λ∈Nk

 ∑
λ∈I(k)c ∩I( j)

eξ−1(λ)

(
x̂( j)

λ
− x̂(k)

λ

)
(4.34)

where initial condition x0 = 0,
[
Ã(k)
]

λ

is the column of Ã(k) which

corresponds to xλ and the unit vector eξ−1(λ) injects the difference

x̂( j)
λ

− x̂(k)
λ

to the σk-dimensional space.

The problem is to determine estimator gains L(k), K(k) such that

properties 1 and 2 hold in the previous section.

In order to solve this problem, we define the extended graph G̃ ,

which will be used in the analysis of the interconnection structure

between the subsystems. Let every subsystem be represented by a

cluster of σk nodes, where vertex vkλ
represents the estimator state

x̂(k)
λ

. The edges of G̃ are now determined by Algorithm 1 in [12].

The graph generated by Algorithm 1 graphically displays the de-

tailed connection structure of the estimation vectors x̂(k). The out-

degree of vertex vkλ
in the extended graph is denoted by q(k,λ). This

definition will be used to present our main results on the design of the

filter gains, which are given in the next section.
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The estimator error dynamics at node k is

ε̇(k) =
(

A(k)−L(k)C(k)
)

ε(k)+
∑

λ∈I(k)c

[
Ã(k)
]

λ

ε
(ζ(λ))
λ

+K(k) ∑
j∈Nk

( ∑
λ∈I(k)∩I( j)

eξ−1(λ)

(
ε
( j)
λ

− ε
(k)
λ

))
−L(k)η(k)+B(k)v

(4.35)

4.3.2.3 Filter gains

We define the matrices

N(k) =
∑
j∈Nk

 ∑
λ∈I(k)∩I( j)

eξ−1(λ)e
⊤
ξ−1(λ)

 (4.36)

Q(k) = A(k)+A(k)⊤−L(k)C(k)−
(

L(k)C(k)
)⊤

−K(k)N(k)−
(

K(k)N(k)
)⊤

+α+πk


q(k,ξk(1)) 0 0

0 . . . 0

0 0 q(k,ξk(σk))


︸ ︷︷ ︸

Πk

(4.37)

where G(k) ∈Rσk×rk and F(k) ∈Rσk×σk are unknown matrices, P(k) ∈
Rσk×σk is a symmetric positive definite matrix and P(k)

i ∈R is the i-th

diagonal element of P(k). πk and α are positive constants which will

later play the role of design parameters. Furthermore, we define p(λ)

as the diagonal element of P(ζ(λ)) which corresponds to xλ, i.e., the

ξ
−1
ζ(λ)

(λ)’th diagonal element.
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Next, for all k = 1, · · · ,N, we define the matrices

S(k) =
[ [

Ã(k)
]

λ
(k)
1

[
Ã(k)
]

λ
(k)
2

· · ·
]

(4.38)

R(k) =


π

ζ

(
λ
(k)
1

) 0 0

0 π
ζ

(
λ
(k)
1

) 0

0 0 . . .

 (4.39)

for {λ
(k)
1 ,λ

(k)
2 , · · ·}= I(k)c and

T (k)
j =

[
K(k)e

ξ
−1
k (λ1, j) K(k)e

ξ
−1
k (λ2, j) · · ·

]
(4.40)

U (k)
j =


π j 0 0

0 π j 0

0 0 . . .

 (4.41)

where {λ
k j
1 ,λ

k j
2 , · · ·}= I(k)∩ I( j)

With these definitions, we are ready to present following theo-

rem.

Theorem 4.1. Consider a group of interconnected LTI systems with

local outputs. The problem admits a solution in the form of estima-

tors Eq. 4.34 with L(k) and K(k) if the matrices L(k) and K(k) for
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k = 1, · · · ,N are a solution of the following LMIs:



Q(k) −L(k) B(k) S(k) T (k)
j1,k

· · · T (k)
jτk ,k

−L(k)⊤ −I 0 0 0 0 0

B(k)⊤ 0 −I 0 0 0 0

S(k)⊤ 0 0 R(k) 0 0 0

T (k)⊤
j1,k

0 0 0 U (k)
j1,k

0 0
... 0 0 0 0 . . . 0

T (k)⊤
j1,k

0 0 0 0 0 U (k)
j1,k


< 0 (4.42)

with { j1,k, j2,k, · · · , jτk,k}= Nk

Proof. Using the estimator error dynamics at node k, we use a Lya-

punov function

J(k) = E
[
ε(k)⊤ε(k)

]
= E

[
Tr(ε(k)ε(k)⊤)

]
= TrP(k)

(4.43)

V (ε) =
N∑

k=1

ε
(k)⊤P(k)

ε
(k) (4.44)

P(k) = E
[
ε
(k)

ε
(k)⊤
]

(4.45)

TrP(k) = E
[
ε
(k)⊤

ε
(k)
]

(4.46)
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where V (k)(ε(k))= ε(k)⊺P(k)ε(k) are the individual components of V (ε).

The Lie derivative of V (k)(ε(k)) is

J̇(k) = E
[

2ε(k)⊤
(

A(k)−L(k)C(k)
)

ε(k)

+2ε(k)⊤
(
−L(k)η(k)+B(k)v(k)

)
+2ε(k)⊤

∑
λ∈I(k)c

[
Ã(k)
]

λ

ε
(ζ(λ))
λ

+2ε(k)⊤K(k) ∑
j∈Nk

∑
λ∈I(k)∩I( j)

eξ−1(λ)

(
ε
( j)
λ

− ε
(k)
λ

)]
= E

[
2ε(k)⊤

(
A(k)−L(k)C(k)−K(k)N(k)

)
ε(k)

+2ε(k)⊤
(
−L(k)η(k)+B(k)v(k)

)
+2ε(k)⊤

∑
λ∈I(k)c

[
Ã(k)
]

λ

ε
(ζ(λ))
λ

+2ε(k)⊤K(k) ∑
j∈Nk

∑
λ∈I(k)∩I( j)

eξ−1(λ)ε
( j)
λ

]

(4.47)

With the filter gains and the LMIs it can be obtained that

J̇(k) = E
[

ε(k)⊤
(

Q(k)−α−Πk

)
ε(k)+2ε(k)⊤L(k)η(k)+2ε(k)⊤B(k)v(k)

+2ε(k)⊤
∑

λ∈I(k)c

[
Ã(k)
]

λ

ε
(ζ(λ))
λ

+2ε(k)⊤K(k) ∑
j∈Nk

∑
λ∈I(k)∩I( j)

eξ−1(λ)ε
( j)
λ

]
≤ E

[ ∑
λ∈I(k)c

ε
(ζ(λ))⊤
λ

πζ(λ)ε
(ζ(λ))
λ

+
∑

j∈Nk

∑
λ∈I(k)∩I( j)

ε
( j)⊤
λ

π jε
( j)
λ

+w(k)⊤w(k)+ v(k)⊤v(k)−αε(k)⊤ε(k)− ε(k)⊤Πkε(k)
]

(4.48)
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Summing up the V (k)s, it holds for V that

J̇ ≤ E
[

N∑
k=1

πk
∑

λ∈I(k)
q(k,λ)ε(k)⊤

λ
ε
(k)
λ

+
N∑

k=1
w(k)⊤w(k)+

N∑
k=1

v(k)⊤v(k)

−
N∑

k=1
αε(k)⊤ε(k)−

N∑
k=1

ε(k)⊤Πkε(k)
]

≤ E
[
−α

N∑
k=1

ε(k)⊤ε(k)+
N∑

k=1
w(k)⊤w(k)+

N∑
k=1

v(k)⊤v(k)
]

(4.49)

0 ≤ J̇ ≤ 0 → J̇ = 0 (4.50)

Integrating both sides of (14) on the interval [0,T ], we obtain

J(T ) +
N∑

k=1

∫ T
0 ε(k)TW (k)ε(k)

≤
N∑

k=1

∫ T
0

(
ω2||v(k)||2 + γ2||w(k)||2

)
dt +

N∑
k=1

ε
(k)T
0 P(k)ε(k)

(4.51)

As V (ε(T )) ≥ 0 and with the zero initial conditions of the observer

states, it follows that

N∑
k=1

∫ T

0
ε
(k)TW (k)

ε
(k) ≤

N∑
k=1

∫ T

0

(
ω

2||v(k)||2 + γ
2||w(k)||2

)
dt + I0

(4.52)

Letting T → ∞, this satisfies Property (ii) of Problem 1. Furthermore,

if wk = 0 and vk = 0 for all k = 1, · · · ,N, then it follows from (14)

that

V̇ (ε)≤−αV (4.53)

which implies that Property (i) of Problem 1 holds. □

Note that the choice of α determines the convergence speed of
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the estimators, where a larger α enforces faster convergence of the

estimates. However, larger values of α typically lead to higher filter

gain values.

The resulting cooperative estimators are local and their complex-

ity does not increase with the total size of the network. The salient

feature of the resulting cooperative estimators is that these estimators

are local and their complexity does not increase with the total size

of the network. In this sense, the method presented in this work is

scalable and guarantees Kalman-type performance. In contrast, a di-

rect application of the algorithms developed in [8], [9] and [13], [14],

to the problem considered here would result in the order of the esti-

mators growing with the size of the network. Some remarks on the

solution of the LMIs are below.

Remark 1. As it can be seen form the LMIs, the solution to design

problem presented here involves solving coupled LMIs. When the

nature of the application allows for these LMIs to be solved offline,

this can be done in a centralized manner. The resulting gain matrices

L(k), K(k) can then be deployed to the filters and this will ensure that

while the estimation algorithm is running, the estimators are fully

distributed.

Remark 2. As noted before, the choice of the partial state vectors is

not unique. As a special case, the choice x(k) = x for all k = 1, · · · ,N
yields local estimators similar to [13], [14].

Remark 3. If there is no sensor fusion, K(k) = 0 and L(k) is a standard

Kalman filter gain. In case of sensor fusion, K(k) ̸= 0
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4.4 Application I: Water Pipe Networks for Fault De-
tection and Location

Cooperative Kalman filter estimation proposed in the previous

section is applied to the developed model based on consensus algo-

rithm for fault detection and location. The estimation is appropriate

for large-scale interconnected system such as the developed water

pipe network model. Especially, the fact that dimensions of local es-

timators do not grow with the network size can be more useful for

larger system such as water pipe network. Furthermore, another im-

portant point of this estimator is that it does not require local de-

tectability of subsystems and this is particularly suitable for systems

with insufficient sensors.

The cooperative estimator is designed to guarantee Kalman filter-

performance for a class of linear interconnected systems where sys-

tem uncertainty can be modeled as an additive unknown disturbance

term in the dynamic equation. Therefore, it can give asymptotically

stable state estimates in application to the developed water pipe net-

work model that includes disturbance terms.

Fig. 4.1 shows the divided subsystems in the corresponding wa-

ter pipe network shown in Fig. 2.2 and which scalar components are

selected by ξk(·) and included in the partial state vector x(k) (k =

1,2,3). The overall pipe networks is divided into three subsystems

and they receive measurement information from their correspond-

ing sensors and estimate the partial states x(k). The junction node

22 is overlapped in all three subsystems and its state components

[x1,43, x1,44]
⊺ are estimated simultaneously in each subsystem as shown

in Fig. 4.1.
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Figure 4.1: Three subsystems of water pipe network and the partial state
vectors x(k), k = 1,2,3 for each subsystem
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In this section, we propose Algorithm to detect and locate fault

of water pipe networks by using the developed model and cooperative

Kalman filter.

Now we can identify all the states at nodes in the network with

the cooperative and distributed estimation. If faults occur in the pipe

network, a negative pressure wave (NPW) is generated and propa-

gates from the leak point to the entire network. Therefore, the NPW

signals would appear in order of distance and this distance difference

is also displayed on the pressure sensors as in Fig. 3.4. After all the

states are estimated, the leak location is easily identified since the

node having the steepest pressure drop should be nearest to the leak

point. This method does not require any fault location algorithm. We

set up links between nodes are all less than 10 m according to the

node division strategy so that the location error range is within 10 m.

Now we propose the following algorithm.

Algorithm. Fault detection and location algorithm
Data: A(k),B(k),C(k) for subsystem x(k), k = 1, · · · ,N
Result: Fault location

Compute L(k) and K(k) offline

While Fault detection and location

Read pressure measurements

If Fault occurs

Implement estimator Eq. 4.34 and find x̂(k), k = 1, · · · ,N
Give fault location

else
Give no fault sign

The initial conditions of the system and the estimator are set to

250 kPa. Estimation results of the water pipe network under consid-
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eration are shown in Fig. 4.5. Fig. 4.5(a) shows all the estimates of

pressure at the nodes in the network can be estimated using the coop-

erative distributed estimation and the proposed model with only three

measurement information.

The early part of the pressure drop by the leak is enlarged in

Fig. 4.5(b). The line with circle shows the steepest drop of all the

estimates and thus it is the nearest to the actual leak location. Indeed,

it is node 4 which is right next to the leak point and the location error

is 9.55 m. As the pressure wave propagates from the leak to other part

of the network, the pressure drop appears in distance order as shown

in Fig. 4.5(b).

Fig. 4.3 shows the case when initial conditions of the system and

the estimation are different. The initial conditions are set as x0 = 250

and x̂0 = 240 kPa, respectively. Fig. 4.3(a)–(b) indicate the states at

nodes of Sensor 1, Sensor 2, and Sensor 3, respectively. Even with the

difference between initial states, the estimation errors asymptotically

decrease to zero for all subsystems.

We conclude the estimation section with some remarks.

Remark 4. It is found that (A(1),C(1)), (A(2),C(2)), and (A(3),C(3))

defined in Eq. 4.17 and 4.18 are undetectable. We emphasize that

the states of the network can be estimated even without guaranteeing

detectability of individual subsystems.

Remark 5. In water pipe networks considered here, there are three

pressure measurements, subsystems, and local estimators. The com-

plexity of these local estimators does not increase with the total size

of the water pipe network unless the size of each subsystem change.

In this sense, the estimation method presented here is scalable. How-

ever, when the size of the water pipe network increases, more pressure
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(a) State estimation
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(b) State estimation enlarged for 3 s

Figure 4.2: (a) Estimation results of all states in water pipe network and (b)
enlargement of estimation results for 3 s
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Figure 4.3: Dynamics of real and estimated states for three sensors with
different initial conditions
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Figure 4.4: Two reactors in series with separator and recycle

sensors are needed to ensure scalability.

4.5 Application II: Chemical Process Networks with
Recycles

Consider a plant consisting of two reactors and a separator. A

stream of pure reactant A is added to each reactor and converted to

the product B by a first-order reaction. The product is lost by a parallel

first-order reaction to side product C. The distillate of the separator is

split and partially redirected to the first reactor (see Fig. 4.4).

4.5.1 Network model

The model for the plant is

dH1

dt
=

1
ρA1

(
Ff 1 +FR −F1

)
(4.54)

dxA1

dt
=

1
ρA1H1

(
Ff 1xA0 +FRxAR −F1xA1

)
− kA1xA1 (4.55)
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dxB1

dt
=

1
ρA1H1

(FRxBR −F1xB1)+ kA1xA1 − kB1xB1 (4.56)

dT1

dt
=

1
ρA1H1

(Ff 1T0+FRTR−F1T1)−
1
cp

(kA1xA1∆HA + kB1xB1∆HB)+
Q1

ρA1cpH1
(4.57)

dH2

dt
=

1
ρA2

(
Ff 2 +F1 −F2

)
(4.58)

dxA2

dt
=

1
ρA2H2

(
Ff 2xA0 +F1xA1 −F2xA2

)
− kA2xA2 (4.59)

dxB2

dt
=

1
ρA2H2

(F1xB1 −F2xB2)+ kA2xA2 − kB2xB2 (4.60)

dT2

dt
=

1
ρA2H2

(Ff 2T0+F1T1−F2T2)−
1
cp

(kA2xA2∆HA + kB2xB2∆HB)+
Q2

ρA2cpH2
(4.61)

dH3

dt
=

1
ρA3

(F2 −FD −FR −F3) (4.62)

dxA3

dt
=

1
ρA3H3

(F2xA2 − (FD +FR)xAR −F3xA3) (4.63)

dxB3

dt
=

1
ρA3H3

(F2xB2 − (FD +FR)xBR −F3xB3) (4.64)
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dT3

dt
=

1
ρA3H3

(F2T2 − (FD +FR)TR −F3T3)+
Q3

ρA3cpH3
(4.65)

in which for all i ∈ I1:3

Fi = kviHi (4.66)

kAi = kA exp
(
− EA

RTi

)
(4.67)

kBi = kB exp
(
− EB

RTi

)
(4.68)

The recycle flow and weight percent satisfy

FD = 0.01FR (4.69)

xAR =
αAxA3

x̄3
(4.70)

xBR =
αBxB3

x̄3
(4.71)

x̄3 = αAxA3 +αBxB3 +αCxC3 (4.72)

xC3 = (1− xA3 − xB3) (4.73)
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The output and input are denoted, respectively

y = [H1, xA1, xB1, T1, H2, xA2, xB2, T2, H3, xA3, xB3, T3]
T (4.74)

u =
[
Ff 1, Q1, Ff 2, Q2, FR, Q3

]T (4.75)

We linearize the plant model around the steady state defined by Table

4.1 and derive the following linear discrete-time model with sampling

time ∆ = 0.1 s

x+ = Ax+Bu (4.76)

y = x (4.77)

In order to control the separator and each reactor independently,

we partition the plant into 3 subsystems by defining

y1 = [H1, xA1, xB1, T1]
T , u1 =

[
Ff 1, Q1

]T (4.78)

y2 = [H2, xA2, xB2, T2]
T , u2 =

[
Ff 2, Q2

]T (4.79)

y3 = [H3, xA3, xB3, T3]
T , u3 = [FR, Q3]

T (4.80)

Following the distributed model derivation, we form the distributed

model for the plant.

Consider the performance of distributed control with the parti-
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Table 4.1: Nominal parameters

Parameters Values Units Parameters Values Units

H1 29.8 m A1 3 m2

xA1 0.542 wt% A2 3 m2

xB1 0.393 wt% A3 1 m2

T1 315 K ρ 0.15 kg/m3

H2 30 m cp 25 kJ/kgK
xA2 0.503 wt% kv1 2.5 kg/ms
xB2 0.421 wt% kv2 2.5 kg/ms
T2 315 K kv3 2.5 kg/ms
H3 3.27 m xA0 1 wt%
xA3 0.238 wt% A2 3 m2

xB3 0.570 wt% A3 1 m2

T3 315 K ρ 0.15 kg/m3

Ff 1 8.33 kg/s EA/R -100 K
Q1 10 kJ/s EB/R -150 K
Ff 2 0.5 kg/s ∆HA -40 kJ/kg
Q2 10 kJ/s ∆HB -50 kJ/kg
Ff 3 66.2 kg/s αA 3.5
Q3 10 kJ/s αB 1.1

αC 0.5

tioning defined above. The tuning parameters are

Qy1 = diag(1, 0, 0, 0.1)

Qy2 = diag(1, 0, 0, 0.1)

Qy3 = diag(1, 0, 103, 0)

Qi =CT
i QyiCi +0.001I, ∀i ∈ I1:3

Ri = 0.01I, ∀i ∈ I1:3

(4.81)

The input constraints are defined in Table 4.2.
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Table 4.2: Input constraints

Parameters Lower bound Steady state Upper bound Units

Ff 1 0 8.33 10 kg/s
Q1 0 10 50 kJ/s
Ff 2 0 0.5 10 kg/s
Q2 0 10 50 kJ/s
Ff 3 0 66.2 75 kg/s
Q3 0 10 50 kJ/s

4.5.2 Simulation results

We simulate the process network in the output product weight

percent xB3 at t = 0.5 s. Estimation results are shown in Fig. 4.5. In

Fig. 4.5, the performance of the distributed estimation strategies are

compared to the centralized one. For this example, noncooperative

estimation is an improvement over decentralized estimation.

4.6 Conclusions

In this chapter, we develop cooperative Kalman filter for large-

scale network systems based on the previous result in [12]. The de-

veloped estimation algorithm combines decentralized and distributed

manners to compensate conventional problems which are local de-

tectability and scalability in network systems. A leak detection and

location algorithm based on the presented state estimation in water

pipe networks is subsequently developed. We apply the developed

cooperative estimation scheme to the developed model in Chapter 3

since its complexity does not grow with the total size of the network

and thus it can be applied to large-scale systems where subsystems

may be physically interconnected such as water pipe networks. We
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Figure 4.5: Estimation results of cooperative KF
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propose an algorithm that can detect and locate the leak based on the

cooperative state estimators and from the estimation result, we can

find a possible leak location where the corresponding node has the

steepest pressure drop and the location error is 9.55 m.
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Chapter 5

Cooperative Model Predictive Control of
Large-scale Process Networks

Process systems with material and energy recycle are well-known

to exhibit complex dynamics and to present significant control chal-

lenges, due to the feedback interactions induced by the recycle streams.

Chemical plants consist of reaction and separation processes, typ-

ically interconnected through material and energy recycle. Recycle

can significantly alter the dynamics of a process network, ”slowing

down” its overall response, causing high sensitivity to disturbances

and giving rise to strongly nonlinear ”overall” dynamics (manifested

in the form of multiple steady states, limit cycles etc.). These studies

illustrate clearly the challenges caused by the feedback interactions

in such networks within a conventional linear control framework. In

a broader context, the strong coupling between the control loops in

different process units in a chemical plant has been recognized as

a major issue that must be addressed in a plant-wide control setting.

The motivation arises from (i) the increasing demands for highly inte-

grated chemical plants, tight product quality specifications and tough

environmental regulations, and (ii) the inherent complexity and sensi-

tivity of nonlinear controllers designed on the basis of detailed mod-
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els of entire process networks [88].

5.1 Introduction

Model predictive control (MPC) has been widely adopted in the

petrochemical industry for controlling large, multi-variable processes.

MPC solves an online optimization to determine inputs, taking into

account the current conditions of the plant, any disturbances affect-

ing operation, and imposed safety and physical constraints. Over the

last several decades, MPC technology has reached a mature stage.

Closed-loop properties are well understood, and nominal stability has

been demonstrated for many industrial applications [89]. Chemical

plants usually consist of linked unit operations and can be subdi-

vided into a number of subsystems. These subsystems are connected

through a network of material, energy, and information streams. Be-

cause plants often take advantage of the economic savings available

in material recycle and energy integration, the plantwide interactions

of the network are difficult to elucidate. Plantwide control has tradi-

tionally been implemented in a decentralized fashion, in which each

subsystem is controlled independently and network interactions are

treated as local subsystem disturbances [90]. It is well known, how-

ever, that when the inter-subsystem interactions are strong, decentral-

ized control is unreliable [91].

Centralized control, in which all subsystems are controlled via

a single agent, can account for the plantwide interactions. Indeed,

increased computational power, faster optimization software, and al-

gorithms designed specifically for large-scale plantwide control have

made centralized control more practical [91]. Objections to central-
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ized control are often not computational, however, but organizational.

All subsystems rely upon the central agent, making plantwide control

difficult to coordinate and maintain. These obstacles deter implemen-

tation of centralized control for large-scale plants [44].

As a middle ground between the decentralized and centralized

strategies, distributed control preserves the topology and flexibility

of decentralized control yet offers a nominal closed-loop stability

guarantee. Stability is achieved by two features: the network inter-

actions between subsystems are explicitly modeled and openloop in-

formation, usually input trajectories, is exchanged between subsys-

tem controllers. Distributed control strategies differ in the utilization

of the open-loop information. In noncooperative distributed control,

each subsystem controller anticipates the effect of network interac-

tions only locally [92]. These strategies are described as noncoopera-

tive dynamic games, and the plantwide performance converges to the

Nash equilibrium. If network interactions are strong, however, nonco-

operative control can destabilize the plant and performance may be, in

these cases, poorer than decentralized control. A more extensive and

detailed comparison of cooperative and noncooperative approaches is

also provided. Alternatively, cooperative distributed control improves

performance by requiring each subsystem to consider the effect of lo-

cal control actions on all subsystems in the network. Each controller

optimizes a plantwide objective function, e.g., the centralized con-

troller objective [44].
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5.2 System Model and Repartition

We use the same linear interconnected system model and repar-

titioned model in Chapter 4 as follows

ẋk+1 = Akxk +
N∑

j=1

Ak jx j +Bku+wk (5.1)

yk =Ckxk +
N∑

j=1

Ck jx j + vk (5.2)

and the global system can be described as

ẋ = Ax+Bw, y =Cx+ v (5.3)

with

A =


A1 A12 · · · A1N

A21 A2
...

... . . . ...

AN1 · · · · · · AN

 (5.4)

B⊤ =
[

B⊤
1 · · · B⊤

N

]
(5.5)

C =


C1 C12 · · · C1N

C21 C2
...

... . . . ...

CN1 · · · · · · CN

 (5.6)
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The resulting repartitioned system is presented as

[
ẋ(k)

ẋ(k)c

]
=

[
A(k) Ã(k)

Ã(k)
c A(k)

c

][
x(k)

x(k)c

]
+

[
B(k)

B(k)
c

]
w (5.7)

yk =C(k)x(k)+ vk (5.8)

Also, two assumptions of controllability and stabilizability are

used as duality of Assumption 1 and 2.

Assumption 4. The global plant (A,B) is controllable.

Assumption 5. The global plant (A,B) is stabilizable.

Assumption 4 and 5 are to setup a basic framework under which

the control problem under consideration is meaningful.

5.3 Cooperative Model Predictive Control

In this section, cooperative model predictive control (MPC) is

developed. The standard MPC is first provided to be used in the co-

operative MPC form.

5.3.1 Centralized MPC

We briefly introduce a standard form of MPC for large-scale sys-

tem. We consider deterministic, nonlinear, continuous-time systems

with state x and control u described by [93]:

ẋ = f (x(t),u(t)), y = h(x), x(0) = x0 (5.9)
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subject to input and state constraints of the form:

u(t) ∈ U, ∀t ≥ 0 (5.10)

x(t) ∈ X, ∀t ≥ 0 (5.11)

where x(t) ∈Rn and u(t) ∈Rm denote the vector of states and inputs,

respectively. Furthermore, the input constraint set U is assumed to be

compact and X is connected. For example, U and X are often given

by box constraints of the form:

U := {u ∈ Rm|umin ≤ u ≤ umax} (5.12)

X := {x ∈ Rn|xmin ≤ x ≤ xmax} (5.13)

with the constant vectors, umin, umax and xmin, xmax.

In MPC, the input applied to the system is usually given by the

solution of the following finite horizon open-loop optimal control

problem which is solved at every sampling instant:

min
ū(·)

J (x(t), ū(·)) (5.14)

subject to
˙̄x(τ) = f (x̄(τ), ū(τ)) , x̄(t) = x(t) (5.15)

ū(τ) ∈ U, ∀τ ∈ [t, t +Tc] (5.16)
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ū(τ) = ū(t +Tc), ∀τ ∈ [t +Tc, t +Tp] (5.17)

˙̄x(τ) ∈ X, ∀τ ∈ [t, t +Tp] (5.18)

with the cost functional

J(x(t), ū(·)) :=
∫ t+Tp

t
F(x̄(τ), ū(τ))dτ (5.19)

where Tp and Tc are the prediction and the control horizon with Tc ≤
Tp. The bar denotes internal controller variables and x̄(·) is the solu-

tion of Eq. 5.15 driven by the input signal ū(·) : [t, t +Tp]→ U under

the initial condition x(t). The distinction between the real system vari-

ables and the variables in the controller is necessary since even in the

nominal case the predicted values will not be the same as the actual

closed-loop values. The difference in the predicted and the real val-

ues in due to determination of the applied input via a re-optimization

over a moving finite horizon Tc at every sampling instant.

The cost functional J is defined in terms of the stage cost F which

specifies the performance. The stage cost can for example arise from

economical a ecological considerations. Often, a quadratic form for

F is used:

F(x,u) = (x− xs)
T Q(x− xs)+(u−us)

T R(u−us) (5.20)

where xs and us denote a desired reference trajectory that can be

constant or time-varying. The deviation from the desired values is

weighted by the positive definite matrices Q and R. In the case of
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a stabilization problem (no tracking), i.e., xs = ux = const, one can

assume, without loss of generality, that (xs,ux) = (0,0) is the steady

state to stabilize.

The state measurement enters the system via the initial condition

in Eq. 5.15 at the sampling instants, i.e., the system model used to

predict the future system behavior is initialized by the actual system

state. Since all state information is required for the prediction, the full

state must be either measured or estimated. Eq. 5.17 fixes the input

beyond the control horizon to ū(t +Tc).

In the following, optimal solutions of Eq. 5.14 are denoted by

ū∗(·;x(t)) : [t, t +Tp] → U. The open-loop optimal control problem

is solved repeatedly at the sampling instants t j = jδ, j = 0,1, · · · , and

the input applied to the system is given by the sequence of optimal

solutions of Eq. 5.14:

u(t) := ū∗(t;x(t)) (5.21)

where t j is the closest sampling instant to t with t j ≤ t. Thus, the

nominal closed-loop system is given by

ẋ(t) = f (x(t), ū∗(t;x(t))) (5.22)

The optimal cost of Eq. 5.14 as a function of the state is referred to

as value function V and is given by

V (x) = J(x, ū∗(·;x)) (5.23)

The value function plays a critical role in the stability analysis of
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NMPC since it often serves as a Lyapunov function candidate.

5.3.2 Cooperative MPC

The objective function is in the same form as Eq. 5.20 of standard

MPC as follows

• Objective:

min
∆u

J(k) = min
∆u

p∑
j=1

(
r(k)(k+ j|k)− y(k)(k+ j|k)

)⊤
Q(k)

×
(

r(k)(k+ j|k)− y(k)(k+ j|k)
)

+
m∑

l=1
∆u(k)⊤(k+ l|k)R∆u(k)(k+ j|k)

(5.24)

by using the repartitioned model for subsystem k and substituting y

and r for x and xs, respectively.

After ∆u is calculated from the objective function, u(k) is updated

as follows to include overlapped input variables

• Input update:

u(k)new = u(k)+K(k)
∑

λ∈Nk

 ∑
λ∈I(k)c ∩I( j)

eξ−1(λ)

(
u( j)

λ
−u(k)

λ

) (5.25)

The control gain K should be chosen properly to satisfy certain con-

trol performance.

The dynamics at the next sample time is obtained by using u(k)new

of Eq. 5.25. Then, the state should be updated to incorporate the phys-

ically interconnected states in other subsystems.

• State update:
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ẋ(k) = A(k)x(k)+B(k)u(k)+
∑

λ∈I(k)c

[
Ã(k)
]

λ

xζ(λ)
λ

+
∑

λ∈I(k)c

[
B̃(k)
]

λ

uζ(λ)
λ

(5.26)

With the proposed cooperative MPC, the decentralized MPC perfor-

mance can be compensated by updating the state of Eq. 5.26. We

demonstrate the performance of cooperative MPC in the following

section.

5.4 Application to Chemical Process Networks with Re-
cycles

We use the same chemical process model introduced in Section

4.5 and the control results are shown in Fig. 5.1. As shown in Fig. 5.1,

cooperative MPC shows a similar performance of the centralized one.

The performance difference is 0.007 at steady state. It is also noticed

that decentralized MPC cannot follow the overall process dynamics

since it does not involve the dynamics of other subsystems which

interact with.

5.5 Conclusions

In this paper we present a novel cooperative distributed controller

in which the subsystem controllers optimize the same objective func-

tion in parallel without the use of a coordinator. The control algorithm

is similar to a centralized MPC controller. The cooperative MPC im-

proves conventional issues in decentralized and distributed MPC in

that it does not require local controllability of subsystems and does

not grow with the overall system size in the network. These prop-
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Figure 5.1: Cooperative MPC results

erties lies with the cooperative Kalman filter developed in Chapter

4. Furthermore, the cooperative MPC can improve performance of

plants over traditional decentralized control and non-cooperative con-

trol, especially for plants with strong open-loop interactions between

subsystems. A Process network example is given showing this per-

formance improvement.
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Chapter 6

Concluding Remarks

Overall summary and concluding remarks of the thesis are pro-

vided below and future works in the subsequence of the thesis also

provided.

6.1 Concluding Remarks

In this thesis, we develop an online burst detection and location

system of water pipe networks based on the CUSUM and the DWT

algorithms, and propose a new node matrix to represent a pipe net-

work with every link less than error bounds. In the monitoring unit,

the CUSUM algorithm gives a robust sum to mean changes of data;

but at the same time, it gives a slow detection, and thus deteriorates

the detection accuracy. While the DWT may not be suitable for global

event detection because of the high false alarm rate, the method al-

lows the sudden transition of data to be exactly found. We combine

these two techniques to take advantage of their properties, and obtain

better location performance than the previous works. In the simple

and controlled network, the average and maximum location errors

were 8 and 31 m. In rather complex and uncontrolled network, the

errors were 22 and 39 m, respectively. The efficacy of the developed
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algorithm was validated with both cases, and it shows a better result

among those applied to real water supply systems up to the present.

The pressure data obtained from the real burst accident were also used

to verify the proposed system. In addition, a software program with

the proposed algorithms has been completely developed and a pilot

test is being carried out.

The fundamental model of NPW dynamics due to leaks in wa-

ter pipe networks is developed based on a consensus algorithm and

water hammer theory. The leak dynamics model of water pipe net-

works has hardly been considered in the literature thus far because

of the complexity of the water pipe network structure and hydraulics.

The developed model has a form of a simple and linear model of an

interconnected network system. Then, it is satisfactorily validated us-

ing real experimental data obtained from a field test. The average and

maximum errors between the model and experiment are within 2 and

20%, respectively, and a large portion of these errors are attributed

to fluctuations of the NPW propagation through the network, which

is difficult to precisely model. Although the model requires parame-

ter adjustment to accurately simulate the real water pipe network, it

can be used for various applications, such as the development of a

leak detection and location algorithm. A leak detection and location

algorithm based on state estimation in water pipe networks is subse-

quently developed. We apply cooperative and distributed estimation

scheme to the developed model since its complexity does not grow

with the total size of the network and thus it can be applied to large-

scale systems where subsystems may be physically interconnected

such as water pipe networks. We propose an algorithm that can de-

tect and locate the leak based on the cooperative state estimators and
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from the estimation result, we can find a possible leak location where

the corresponding node has the steepest pressure drop and the loca-

tion error is 9.55 m.

In this thesis, we presented a Kalman filter-based approach to

cooperative state estimation for linear interconnected large-scale sys-

tems, such as multi-agent systems. In order to achieve scalability of

the estimation setup, we required the local estimators to estimate lo-

cal states only. We establish an algorithm for interconnecting the lo-

cal estimators, whereby both physical couplings and detectability is-

sues can be handled. Moreover, design conditions are presented to

guarantee Kalman filter-performance with respect to both model and

measurement disturbances. The developed estimation algorithm com-

bines decentralized and distributed manners to compensate conven-

tional problems which are local detectability and scalability in net-

work systems. A leak detection and location algorithm based on the

presented state estimation in water pipe networks is subsequently de-

veloped. We apply the developed cooperative estimation scheme to

the developed model in Chapter 3 since its complexity does not grow

with the total size of the network and thus it can be applied to large-

scale systems where subsystems may be physically interconnected

such as water pipe networks. We propose an algorithm that can de-

tect and locate the leak based on the cooperative state estimators and

from the estimation result, we can find a possible leak location where

the corresponding node has the steepest pressure drop and the loca-

tion error is 9.55 m.

Finally, we present a novel cooperative distributed controller in

which the subsystem controllers optimize the same objective function

in parallel without the use of a coordinator. The control algorithm is
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similar to a centralized MPC controller. The cooperative MPC im-

proves conventional issues in decentralized and distributed MPC in

that it does not require local controllability of subsystems and does

not grow with the overall system size in the network. These prop-

erties lies with the cooperative Kalman filter developed in Chapter

4. Furthermore, the cooperative MPC can improve performance of

plants over traditional decentralized control and non-cooperative con-

trol, especially for plants with strong open-loop interactions between

subsystems. A Process network example is given showing this per-

formance improvement.

6.2 Future Directions

Future works include plant-wide cooperative economic model

predictive control (EMPC) based on the same concepts and network

framework used to develop cooperative KF and MPC in the thesis.

Also, stochastic cooperative MPC and stochastic cooperative EMPC

will be considered in the future work.
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초록

본 연구는 대규모 공정 네트워크의 협동 추정 및 제어에 관한

연구이며 기존 대규모 공정의 추정 및 제어 알고리즘의 단점을 보

완한 새로운 알고리즘을 제안한다. 또한 대규모 시스템의 한 가지

예로주로대규모상수관망을대상으로하여모델링및추정을통해

이상진단및감지알고리즘을개발한다.

상수관망에서 누수, 파열 등의 이상이 발생할 경우 시스템의

크기및복잡성으로인해이를감지및진단하는것이매우어렵다.

또한상수관망의이상으로인해발생한압력전파모델이존재하지

않기 때문에 시스템 모델 없이 효과적으로 이상감지 및 진단하는

기법을제안하고자하였다.기존에화학공정에서이상감지를위해

많이 쓰이는 통계적 기법인 cumulative sum(CUSUM)과 특이점을

빠르고 정확하게 감지할 수 있는 discrete wavelet transform(DWT)

을 통합한 새로운 감지 알고리즘을 제안하였고, 이상감지 결과를

이용하여대규모상수관망에서간단한최적화해법으로이상의위

치를진단하는알고리즘을제안하였다.실제상수관망의이상실험

데이터를사용하여제안된알고리즘을검증하였고진단오차가 30

m 이내로 기존 기술 대비 이상 진단 오차를 현저히 줄임을 확인하

였다.

상수관망의 압력 전파 모델이 존재한다면 상태추정(state esti-

mation)을 이용하여 데이터 기반의 알고리즘에 비해 쉽고 빠르게

이상감지 및 진단을 할 수 있기 때문에 상수관망의 이상으로 인한

압력 전파 모델을 개발하고자 하였다. 모델링을 위해 consensus 알

고리즘이라는, 네트워크에서의 노드 간의 상태(state)를 나타내는

알고리즘을이용하였고 consensus알고리즘을상수관망에맞게수

정하여 복잡한 압력 전파 모델을 선형의 간단한 형태로 나타낼 수
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있었다. 이를 실제 실험 데이터와 비교하여 제안한 consensus 알고

리즘기반모델이실제압력전파다이나믹스를 15%이내의오차로

나타낼수있음을보였다.

다음으로위에서개발한모델을이용하여대규모네트워크시

스템에서의 상태추정 기법을 적용한 새로운 이상 감지 및 진단 알

고리즘을제안하였다.기존의칼만필터(Kalman filter)등의상태추

정 방법은 상수관망과 같은 대규모 시스템에 적용될 경우 시스템

의 규모가 매우 크기 때문에 계산량 등의 문제가 발생한다. 이를

해결하기 위해 전체 시스템을 여러 개의 서브시스템으로 나눈 de-

centralized추정방법이연구가되었다.그러나이는서브시스템간

상호작용을 고려하지 않기 때문에 이를 보완하기 위해 distributed

추정이 연구되었지만 이 방식은 전체 시스템의 크기가 커짐에 따

라서 서브시스템의 estimator의 크기 또한 커지는, 즉 scalability가

없다는 단점이 있다. 본 연구에서 이러한 기존의 방법들을 보완한

새로운 cooperative estimation알고리즘을제안하였다. Cooperative

state estimation을 상수관망 뿐만 아니라 대규모 화학공정에도 적

용하여 decentralized 그리고 distributed 방식의 단점을 보완하면서

centralized estimation과유사한성능을가짐을보였다.

마지막으로, cooperative estimation개발에사용한핵심아이디

어를 제어 알고리즘에 똑같이 적용하여 cooperative model predic-

tive control(cooperative MPC)을 제안하였다. Cooperative MPC 또

한대규모공정네트워크의제어에있어기존의 decentralized또는

distributed MPC의 단점을 보완하는 새로운 알고리즘으로, 대규모

화학공정에 적용하여 centralized MPC와 유사한 성능을 보임을 증

명하였다.본박사논문에서제시한대규모공정의추정및제어를

위한 cooperative KF 그리고 cooperative MPC를 사용하여 기존의

centralized의 계산량 문제, decentralized의 상호작용 문제, 그리고

distributed의 scalability문제를해결한새로운추정및제어가가능
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하다.

주요어 : 상수관망,대규모공정,네트워크시스템,분산협동칼만

필터,분산협동모델예측제어

학번 : 2013-30285
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