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Abstract 

Understanding and developing a new sulfur chemistry give great opportunities for 

the synthesis of advanced functional materials, because of the strong relationship 

between sulfur and the environment on the Earth, as well as the economic demands 

to address surplus problem of sulfur from oil refinery industry. Although there are a 

number of superior functionalities with sulfur, such as high refractive index and 

electrochemical activity, its utilization and processing are challenging due to the poor 

physico-chemical properties resulted from its orthorhombic molecular crystalline 

nature. There have been several efforts to incorporate sulfur into amorphous 

polymeric materials, but simple preparation methods for high sulfur content 

polymers are still lacking. 

In this thesis, extremely simple chemistry to prepare high sulfur content 

copolymers is introduced, and various kinds of their applications, including IR 

optical devices and cathodes for Li-S batteries, are demonstrated with the 

significantly improved processibility and performances of the sulfur copolymers. 

Moreover, based on these sulfur copolymers, novel hybridization strategies are 

proposed for the enhanced functionalities, and finally, a couple of conformal coating 

methods are reported to stabilize the surface of sulfur copolymers when they are 

utilized in electrochemical electrodes. 

After a brief introduction on unique characteristics and challenging issues of sulfur, 

in chapter 1, the novel synthetic chemistry of sulfur copolymers, and their properties 
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are discussed in chapter 2, followed by facile processing the polymers for the various 

applications. By the ‘inverse vulcanization’, high sulfur contents copolymers were 

synthesized, and their completely amorphous and viscous nature was analyzed. A 

melt process was conducted with these amorphous polymers using PDMS imprint 

nano pattering technique, and solution process was also possible due to the solubility 

of the copolymers at increased temperature. By using these processing methods, the 

sulfur copolymers were utilized in various applications, such as IR lens, transistors, 

photonic crystals, and Li-S batteries. Superior functionalities of the copolymers were 

attributed to the intrinsic properties of elemental sulfur. 

Hybridization of sulfur copolymers with functional nanomaterials were 

introduced in chapter 3, with a novel bi-functionality of oleylamine which is a 

comonomer for the sulfur copolymeric matrices. Because the double bond in the 

middle of oleylamine links to linear polysulfide, and amine functional group is 

attached the surface of inorganic nanoparticles, the nanocomposites with sulfur 

copolymers were prepared by adding inorganic salts into the copolymer mixture. The 

reaction mechanism facilitating simple one-pot synthesis of the sulfur copolymeric 

nanocomposites were revealed by various characterization tools.  

In chapter 4, the preparation of graphene sulfur copolymeric nanocomposites are 

exhibited based on similar dual reactivity of oleylamine. Especially, significant 

enhancement in battery performance was demonstrated with these nanocomposites 

due to the intense electrical contact facilitated by graphene within the copolymers. 

The surface modification of sulfur copolymers is discussed in chapter 5, more 
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focused on the potential application in Li-S batteries. Because the interface 

interaction between sulfur cathode and electrolyte is a serious problem in Li-S 

batteries, direct deposition of protecting layers on sulfur cathode was demonstrated 

with drastically enhanced cycle performance of the polymer coated sulfur cathodes. 

Polymer conformal coating methods such as layer-by-layer (LbL) deposition on top 

of the sulfur cathode are introduced to further increase the capacity retention of Li-

S batteries. 

 

Keyword : sulfur copolymer, hybridization, surface modification, lithium-sulfur 

battery, conformal coating 
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Chapter 1. Introduction 

 

 

1.1. Utilization of sulfur as an alternative feedstock 

 

Sulfur is everywhere. It is the sixth most abundant element in the Earth.1 Sulfur 

occurs as organosulfur compounds, sulfide, sulfate minerals or elemental sulfur in 

crustal rocks, in the Earth’s mantle, near volcanoes, in ocean water, or in the 

atmosphere.2-4 Sulfur is also an essential ingredient in living things including human 

body, necessary for protein synthesis.5 Because sulfur has variable valence states (i.e. 

S2- (H2S), S6+ (SO4
2-), and S0), it is a common ore former from the deep geological 

fluids, and it continuously circulates through ocean, atmosphere, and living systems 

by thermochemical, or biological reduction/oxidation.6 This global cycle of sulfur 

species is called as “sulfur cycle”, and it strongly affect the environment and the 

ecosystem of the Earth. Therefore the understanding of the sulfur chemistry draws 

general scientific curious. 

The development of new sulfur chemistry is also of great interest to chemists and 

engineers as well, due to the economic importance of sulfur in the relevant industries. 

Nowadays, most of the sulfur produced worldwide is a by-product from petroleum 

refineries, and oil producing countries still have difficulty in figuring out what to do 

with sulfur. Even though it mainly produced from crude oil which is thought to be 



 2

on the brink of depletion, ironically, sulfur itself is currently suffering from excessive 

surplus and low price. Despite the large scale conversion of sulfur as a feedstock for 

sulfuric acid and downstream fertilizers, there typically remains an annual surplus of 

approximately 7 million tons,7 much of which is stored in massive above ground 

deposits as shown in Figure 1.1. These sulfur deposits lead to the serious 

environmental issue, because sulfur sublimes and oxidizes in the atmosphere to form 

SO2, which is the primary cause of acid rain. Therefore the utilization of abundant 

sulfur instead of oil, as an alternative feedstock for the synthesis of advanced 

materials and a higher value-added business provides unique opportunities. 
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Figure 1.1 Example of an exposed deposit of elemental sulfur from hydro-

desulfurization in petroleum refining processes. 
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1.2. Unique properties and application of sulfur 

 

There are numerous useful and superior characteristics of sulfur relevant to 

advanced functional materials, when it is incorporated into organic/inorganic 

compounds, or as elemental sulfur, by itself. Similar to oxygen, sulfur is a common 

heteroatom consisting organic molecules or polymers, and also a popular source for 

inorganic semiconductors (metal chalcogenides) as well. Furthermore, elemental 

sulfur has attracted great attention recently, due to its unique electrochemistry. 

 

1.2.1 Optical and optoelectronic applications 

Sulfur is combined with organic/inorganic compounds for the enhanced optical 

and optoelectronic functionalities. Refractive index (n) is an intrinsic property of 

material, which describe how light propagates through the medium. Higher n means 

larger refraction of light, resulting in more efficient dispersion or focusing of light 

with the same medium path length. Therefore, high n is required in various optical, 

or optoelectronic devices such as LEDs, solar cells, cameras, and sensors.8 Elemental 

sulfur is the lightest solid chalcogen on Earth, and it is highly polarizable on the 

applied electro-magnetic field due to the unpaired electrons in its valent shell.9 

Therefore it exhibits high refractive index (n=1.9-2.1) which is comparable to that 

of ceramics, and much higher than that of typical hydrocarbons or glasses. Therefore 

sulfur is frequently utilized in optical devices, especially in infrared optics, because 

the low phonon energy of sulfur bonds leads to its IR transparency.10 Typically, other 
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inorganic elements, such as As or Se, are combined with sulfur to fabricate into 

glasses for the enhancement of optical functionalities and mechanical stabilities.9, 11-

12 However, because of the difficulties in processing and fabrication of elemental 

sulfur into the well-defined optical devices due to the molecular crystallinity of sulfur, 

in general, these IR glasses based on elemental sulfur are not widely utilized in 

micro/nano scale devices which require a precise control of shapes and thicknesses 

of the glasses.  

In the micro/nano scale devices, hydrocarbon polymers are employed as a high n 

material, due to their various options of processing methods, and capabilities of 

precise morphological control. In these cases, sulfur is often utilized as a heteroatom 

in the polymers, in order to enhance the optical properties of the polymers, because 

the molar refraction of sulfur atom is much higher (Rm=8) than other heteroatoms 

(Rm=1-2).13 Therefore, when the sulfur contents in the polymers increase, the average 

n drastically increase. Although a large number of efforts have been devoted to 

increase n of the polymer by increasing sulfur contents, however, there is still a 

limitation of n below 2 due to the lack of chemical synthetic methods to increase 

sulfur contents.14-15 In order to increase n of the polymers over 2, high-n inorganic 

nanoparticles has been introduced as a filler within the polymeric matrices.15 

Ceramic fillers such as ZrO2 or TiO2 were hybridized with high-n polymeric resins, 

and greatly increased the n values with facile processing methods.16-18 Sulfur 

containing metal chalcogenides (metal sulfides) such as PbS, CdS, and ZnS are also 

included in the high-n nanocomposites as well,19-20 and especially, PbS/polymer 
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nanohybrid materials exhibit ultra-high n due to the superior optical property of PbS 

(n=4.2).21  

Metal sulfides are also well-known semiconductors, which are frequently utilized 

in optoelectronic devices such as LED, solar cells, and photo detectors.22-24 Recently, 

great number of synthetic methods using sulfur for metal sulfide nanocrystals with 

various shape (quantum dots, nanorods, nanowires, and tetrapods) have been 

reported with precise control of their size and shape.20, 25-33 By tuning the bandgap 

and electron/hole mobility of metal sulfides nanocrystals, the performance of the 

optoelectronic devices are optimized. Elemental sulfur was recently turned out to be 

photoactive, and capable of acting as a hole conductor.34 Therefore it was utilized as 

a photo detector,35 and an electrolyte of dye sensitized solar cell. 

 

1.2.2 Electrochemical applications 

Sulfur has superior electrochemical properties because it is the most electro-

negative solid on Earth, and it has unique and variable valent states, so that it is often 

employed in various electrochemical devices including secondary batteries. When 

elemental sulfur (S8) dissolves in electrolytes of galvanic cells, the cascade cathodic 

reduction takes place at -0.48 V (SHE), and S8 converts into polysulfide anions (Sx
2-, 

x=2-8) and is finally reduced into S2-.36-38 These electrochemical process produces 

large amount of electricity when combined with lithium metal as an anode, 

generating 2.57 V vs Li/Li+, and 1675 mAh/g of theoretical discharge capacity, 

which is 7 times higher than those of today’s lithium ion batteries based on LiCoO2 
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cathodes.39 Hence, lithium-sulfur (Li-S) secondary battery has been considered as 

one of the most promising candidates for the next generation energy storages such 

as electric vehicles or large scale electric energy storage systems (ESS). Furthermore 

the unique cascade redox reaction of sulfur was also utilized as an electrolyte in 

electrochemical capacitors40 and photo-electrochemical cells41.  

On the other hand, it is still considered as a daunting task to achieve the theoretical 

capacity from the Li-S batteries because of irreversible loss of polysulfide active 

materials, the low electrical conductivity of sulfur (10-15 Ω·m),42 and the 

mechanically induced damage to electrodes incurred from volumetric expansion of 

lithiated discharge products. In particular, higher order discharge products ranging 

between S8 and Li2S from the electrochemical reaction, polysulfides, are highly 

soluble in the electrolyte medium, thus they are continuously dissolved until Li2S is 

finally precipitated on the cathode during battery operation. When the polysulfides 

are precipitated as Li2S on the cathode during the redox reaction, they easily form 

chalks at the surface of the cathode without electrical contacts. The electrical 

isolation of the precipitated active species results in the serious loss of capacity by 

further impeding the electrochemical reaction. Moreover, the diffusion of these 

polysulfides through the electrolyte phase also leads to the migration onto the Li 

anode side to form inactive deposits on the surface of Li metal, retarding the charging 

back to higher order polysulfides  (i.e., polysulfide shuttle).43  

In order to solve these critical issues, significant efforts have been placed 

particularly on tailoring the morphology of active sulfur species on the nanoscale. 
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Significant improvements have been made by the use of sulfur/carbon composites,44-

50 where nano-sized sulfur was chemically or physically entrapped by carbonaceous 

materials. Carbonaceous encapsulation of sulfur has been reported to preserve the 

polysulfides within the vicinity of the cathode side as well as to enhance the electrical 

conductivity of the cathode. The most representative one among the carbonaceous 

materials is graphene due to its superior electrical conductivity and extremely small 

occupied volume. However, both graphene and sulfur are intrinsically poor materials 

for processing, so the chemically oxidized graphene, graphene oxide (GO), was 

mostly utilized for the preparation of sulfur/GO composites.51-56 Even though the 

reduction of GO was able to recover the original electrical property of graphene, the 

high quality nanocomposites with sulfur and reduced GO for Li-S batteries were 

rarely reported.57-60  

 

1.2.3 Other applications  

Because there is an intimate relation between sulfur and living organisms, sulfur 

has been utilized in biological application since a long time ago. Sulfur is a 

traditional fertilizer due to its anti-bacterial property, which are closely related to the 

cascade electrochemical redox reaction of sulfur, which disturbs the activities of the 

cells in the bacteria.61-62 Various organosulfur compounds, and sulfur nanoparticles 

were developed for the improvement in anti-bacterial function with bio-

compatibility and selectivity.63-65 

Sulfur also works for a mercury capture, when an ionic complex is formed with 
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polysulfide.66-67 The polysulfide dianions associate with metal cations and form a gel 

in organic polar solvents. After supercritical drying of the gel, porous aerosol, named 

as “chalcogel”, was obtained, and it exhibited efficient capability of mercury capture. 

The reason for that is the strong interaction between linear polysulfide chains and 

mercury vapor.68 

Sulfur is known as an insulator, but it is able to response on an applied electric 

field.69-70 Therefore sulfur was utilized as a nano-patterning material, by applying a 

high electric field on the defined regions of sulfur film.71 When electric field is 

applied on sulfur, the S8 rings are opened, and linear chains of sulfur with diradical 

ends initiate the homopolymerization of sulfur. As a result, polymeric sulfur is 

formed according to the nano-pattern by the applied electric field, and further 

modification is possible on the patterned film because polymeric sulfur is insoluble 

in any organic solvent, while as elemental sulfur is removable with solvents. 

The incorporation of sulfur into electro-active organic molecule is able to tune the 

electrical performance. For example, pentacene is known as a common organic 

semiconductor, and it was simply combined with sulfur to form hexathiapentacene, 

which exhibited a modified carrier mobility and on/off ratio when utilized as an 

active material of the organic thin film transistor.72-73 
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1.3. Old chemistry for incorporation of sulfur into polymers 

 

Although there is a number of useful properties with sulfur as shown in chapter 

1.2, the synthesis and fabrication with sulfur for the preparation of functional 

advanced materials are still challenging, due to the intrinsic poor physicochemical 

properties of sulfur. The most stable molecular form of elemental sulfur in the 

atmosphere at room temperature is a ring of S8, and the S8 molecules form 

orthorhombic crystal structure with a weak intermolecular interaction.74 Therefore 

the mechanical strength of sulfur is very weak compared to inorganics and polymers, 

and it easily sublimes even at room temperature. Due to its crystallinity, the 

morphology control of sulfur in a nano-scale is difficult. Furthermore, the solubility 

or miscibility of sulfur is very poor, so the solution processing or melt processing is 

limited. 

Hence, in order to enlarge the options of synthetic and processing methods with 

sulfur, the physico-chemical modification of sulfur is required. Since about a half 

century ago, many scientists have attempted to make polymers with sulfur, or 

incorporate sulfur into the polymers.  

 

1.3.1 Homopolymerization of sulfur  

Sulfur (S8) melts at 119 oC, and the S8 ring opens to form linear chains with di-

radical ends at 159 oC. At this point, sulfur di-radicals spontaneously connect each 

other by the free radical polymerization, to form long chain polymeric sulfur. The 
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viscosity of molten sulfur increase abruptly at 159 oC, but when the temperature is 

further increased, the viscosity slowly decrease. On the other hand, the contents of 

polymeric sulfur linearly increase, as a function temperature. These phenomena 

imply that the average chain length of the polymeric sulfur is maximum at 159 oC, 

and it gradually decompose into shorter chain polymers as increasing temperature. 

Therefore this reaction is considered as an equilibrium homopolymerization of sulfur, 

which strongly depends on the temperature.75-77  

The polymeric sulfur depolymerize and slowly come back to S8 when it is cooled 

down to room temperature, because the linear sulfur chains are unstable at lower 

temperature below 159 oC. However, when it is quickly quenched with dry ice or 

liquid nitrogen, the polymeric sulfur remains without depolymerization for a few 

days. The properties of polymeric sulfur are very different from those of elemental 

sulfur. It is absolutely insoluble in any organic solvent, and that is why it is called as 

“insoluble sulfur”. The mechanical strength of polymeric sulfur is much harder than 

elemental sulfur.78-79  

Although polymeric sulfur is not widely utilized for the material synthesis, the 

chemistry behind the polymeric sulfur has been often referred by the researchers who 

has tried to copolymerize sulfur with other monomers. 

 

1.3.2 Vulcanization of rubber 

Vulcanization is one of the most popular and oldest chemistry for the 

copolymerization of sulfur, although the reaction mechanism is still controversy. 
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When sulfur is heated above 140 oC with a natural rubber or synthetic rubbers such 

as polybutadiene or polyisoprene, an elastomer is formed by the cross-linking 

reaction with linear sulfur linkages.  

Vulcanization is often conducted with accelerators, which catalyze the reaction by 

opening the S8 ring, and control the quality of the products by fractionation and 

rearrangement of the sulfur linkages.80-81 Generally, tertiary amines, thiols, and 

organo-metallic compounds are used as accelerators. Therefore there are two 

different types of vulcanization, which are accelerated, and unaccelerated 

vulcanization. The reaction mechanism of vulcanization is explained with two 

different pathways. The first one is a radical reaction near the double bonds of the 

rubber, occurred by sulfur radicals which are formed by a homolytic scission of S8. 

Another one is polar addition to the double bonds by sulfur cations which are formed 

by a heterolytic scission of S8.82 In general, both of them are involved in the reaction 

process, but they depend on the type of the vulcanization, and the accelerator used.  

The chemical stability and mechanical strength of the vulcanizated rubber is 

strongly depends on the sulfur contents.83 With high sulfur contents (32%), linear 

sulfur chain is unstable due to the long chain length, so the crosslinking density is 

poor, and it easily depolymerize to form elemental sulfur on the surface of rubber 

(sulfur blooming). The optimum fraction of sulfur is known to be only 2%, in order 

to achieve high crosslinking density and chemical stability.  
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1.3.3 Copolymerization of sulfur with monomers 

Using a similar chemistry to vulcanization, there has been many synthetic methods 

proposed for the sulfur copolymers with olefinic monomers which have analogue 

molecular structure with synthetic rubbers. The double bonds of olefinic monomers 

such as styrene, butadiene, and cyclohexene react with elemental sulfur, similar to 

vulcanization.84-87 However, in this case, the yield of polymeric species is too small, 

and the main products of the reaction is oligomers or dimers, as a form of bis-alkyl 

akenyl sulfides.88-89 These differences could come from the different reaction 

condition of olefin/sulfur in dilute organic solution, due to the immiscibility of each 

other, in which solvents could suppress the growth of the polymers.  

Sulfur copolymers were synthesized by the oxidative condensation of dithiol 

monomers.90-91 The sulfur contents of these polymers are very low, although they 

exhibit unique self-healing properties due to their dynamic covalent sulfur bonds. 

Furthermore, the addition of elemental sulfur into these disulfide polymers were also 

introduced using liquid sulfur as a reactive medium.92-94 Similar to the vulcanization, 

elemental sulfur associate to the disulfide bonds, and combined with them by 

insertion. However the functionalities of these polymers are limited, and the 

processing methods with them are lacking. 

Sulfur also anionically reacts with olefins in the presence of strong base such as Li 

or Na metal.95-97 Well-defined sulfur copolymers with propylene sulfide were 

reported, and the kinetics of polymerization and the characterization of the products 

were successfully conducted.98-99 However these reactions require very low 
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temperature and inert environment to suppress side reaction.  

Therefore, the facile synthetic method of high sulfur content polymeric materials 

with chemical stability and mechanical strength is still absent, to the best of my 

knowledge. In this thesis, we present extremely simple synthetic method to prepare 

high sulfur content copolymers by bulk reaction of sulfur with olefin monomers in 

melt, and thereby provide various facile processing methods for utilization of sulfur 

in a number of applications as advanced materials. Furthermore, an enhancement of 

the functionalities of the sulfur copolymers is demonstrated by the fabrication of 

sulfur copolymers into hybrid nanocompoistes using unique dual reaction chemistry 

of the olefin monomer. Finally, we report on the surface modification of the sulfur 

copolymers using various polymer coating techniques and a novel chemistry, for the 

enhanced functionalities of sulfur copolymers as well. These efforts are expected to 

address the critical issues on sulfur surplus problem, and to give a meaningful insight 

on understanding chemistry of sulfur, which is closely related to human beings. 
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Chapter 2. Unique Properties & Applications of 

Sulfur Copolymers 

 

 

2.1. Introduction 

 

Since more than one and a half centuries ago, petroleum has been widely 

consumed throughout the world for major resources of energy and chemical products. 

Nowadays, petroleum is no more an attractive resource because it is on the brink of 

depletion and its price keeps rising. Ironically, sulfur itself is suffering from rather 

surplus and its lowering price even though it is mainly produced from petroleum 

refinery process. People still don’t know what to do with abundant and cheap sulfur 

except for little utilization of it in agriculture and some chemical products including 

rubbers. Sulfur exhibits a number of useful properties relevant to advanced materials, 

such as high refractive index for optical devices,8 and electrochemical activity for 

high capacity lithium-sulfur batteries.46, 54, 100 However, due to its inherently poor 

solubility, brittle nature, and being readily subject to sublimation, synthesis and 

processing methods with sulfur to prepare well-defined functional materials are 

currently limited.  

Previous researchers have tried to get polymeric forms of sulfur for easy handling. 

By heating above 159 oC, sulfur transforms from eight-membered ring (S8) into 
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linear polysulfide chains with diradical ends, which subsequently polymerize into 

high molecular weight polymers with plastic behavior.75-79 When the polymeric 

sulfur is stored in ambient condition, however, it readily depolymerizes back to 

polysulfide diradicals and then to S8 ring. When small amount of sulfur is added into 

the polymers such as polybutadiene or polyisoprene at over 140 oC, the double bonds 

of the polymers react with sulfur to form crosslinked elastic polymers. This process 

is known as vulcanization that has been well investigated in the synthetic rubbers 

industry.  

Similarly to this chemistry, there have been lots of efforts to stabilize the linear 

polymeric chains of sulfur by copolymerization with olefin monomers.84-89, 95-97, 101 

Nevertheless, most of the products exhibited poor processability and the low degrees 

of sulfur incorporated into the final copolymer. The reason behind the failure of 

copolymerization is thought to be due to the immiscibility of sulfur with the 

monomers and consequent use of solvent as a reaction medium. The solvents used 

in the copolymerization seemingly suppress the growth of the copolymers by the 

stabilization of radicals or cations of monomers.   

Herein, we report on successful synthesis of sulfur copolymer by using molten 

sulfur as a reaction medium, and by adding miscible comonomers into molten 

sulfur.102-104 This extremely simple method realizes processable high sulfur content 

copolymers. Therefore by using this copolymers various processing techniques are 

demonstrated, and ultimately, a number of applications of the copolymers are 

introduced. 



 17

2.2. Experimental section 

 

2.2.1 Synthesis of sulfur copolymers 

Sulfur (sublimed powder) was purchased from Sigma-Aldrich. 1,3-Diisopropenyl 

benzene (DIB) was obtained from TCI Chemical.  

Poly(S-r-DIB) copolymer (SDIB) was synthesized by adding 10 wt%, 20 wt%, 30 

wt%, and 50 wt% of DIB into molten sulfur in a vial at 185 ºC with vigorous stirring. 

The reaction was stopped by cooling down to room temperature after the reaction 

product solidify, and the stirring stopped by the increased viscosity of the product. 

Differential scanning calorimeter (DSC) data was obtained using a DSC 4000 

(PerkinElmer) at a heating rate of 10 oC/min under nitrogen atmosphere. Thermal 

gravimetric analysis (TGA) was carried out by a TGA Q500 (TA Instruments) at a 

heating rate of 10 oC/min under nitrogen atmosphere. Elemental analysis was 

performed using a Flash1112 (CE Instrument, Italy) with CHNS-Porapack PQS 

columns. X-ray diffraction (XRD) measurements were obtained using a New D8 

Advance model (Bruker) at room temperature with a CuKα radiation source at 18 

kW. 

 

2.2.2 Processing of sulfur copolymers 

1,2-dichlorobenzene (DCB) was purchased from Junsei Chemical. Spin-casting of 

SDIB copolymers was conducted after dissolving 10 wt%, 20 wt%, 30 wt%, and 50 

wt% DIB contents of SDIB copolymers into DCB as a solvent (300mg/ml). The 
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solution was heated at 130 oC for the complete dissolution, and then promptly spun 

at 2000 rpm for 40 sec, followed by 6000 rpm for 2 min, on a glass, or silicon 

substrate, which were pre-heated at 185 oC. As-spun film of SDIB copolymer was 

annealed at 180 oC for 5 min, and then 100 oC for 24 h. 

Nanoimprinting of SDIB copolymers was performed using PDMS mold. Sulfur 

was heated in a vial at 130 oC, and 20 wt% of DIB was added into the molten sulfur 

with vigorous stirring at 130 oC. When the reaction mixture became homogeneous, 

red colored, it was taken from the vial, and then promptly dropped on to a glass, or 

silicon substrate which was pre-heated at 185 oC. A PDMS mold was slowly placed 

on top of the SDIB pre-polymer, and then another glass was placed on top of the 

PDMS mold, followed by pressing the glass with a clip. After 2 h, the fully 

polymerized SDIB copolymer with patterns was cooled to room temperature, and 

the PDMS mold was removed. 

Micro-lens pattern was prepared with SDIB film, casted as described above. A 

PDMS mold was placed on top of SDIB film which was pre-heated at 185 oC. After 

2 h, the film was cooled to room temperature, and PDMS mold was removed. The 

patterned SDIB film was further heated at 185 oC for 24 h. 

Sulfur initiated polymerization was carried out by the dispense of polyethylene 

glycol divinyl ether (PEGDVE) on to the bulk SDIB copolymers, or SDIB cathode, 

and followed by heating at 60 oC for 24 h. 

1H NMR spectra were obtained with a Bruker Avance III 500 MHz spectrometer 

using CDCl3 as a solvent. Differential scanning calorimeter (DSC) data was obtained 
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using a DSC 4000 (PerkinElmer) at a heating rate of 10 oC/min under nitrogen 

atmosphere. Thermal gravimetric analysis (TGA) was carried out by a TGA Q500 

(TA Instruments) at a heating rate of 10 oC/min under nitrogen atmosphere. 

Elemental analysis was performed using a Flash1112 (CE Instrument, Italy) with 

CHNS-Porapack PQS columns. X-ray photoelectron spectroscopy (XPS) was 

conducted using Axis-HSi (Kratos) with Mg/Al dual anode at 15 kV and 10 mA. 

Fourier-transform infrared (FTIR) spectra were obtained with FT-IR/NIR Frontier 

Spectrum 400 (PerkinElmer).  

 Atomic force microscopy (AFM) was carried out with Nanowizard (JPK 

Instruments). Scanning electron microscopy (SEM) images were obtained with JSM-

6701F (JEOL). UV-visible absorption spectra were measured with LS-55 

(PerkinElmer). 
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2.3. Results and discussions 

 

2.3.1 Synthesis of sulfur copolymers 

High sulfur content sulfur copolymers were synthesized by extremely simple 

chemistry by using elemental sulfur in melt and DIB as comonomers with different 

composition (10-50 wt% of DIB) as shown in Figure 2.1. Even only 10 wt% of DIB 

results in homogeneous polymeric materials, which is completely different from 

traditional vulcanization chemistry. This novel chemistry is named as “inverse 

vulcanization”,102, 104 because the composition ratio of sulfur to organics is totally 

reversed. In the chemistry of traditional vulcanization, when sulfur contents increase, 

the linear sulfur chain becomes unstable, which results in decomposition and 

depolymerization of sulfur. In the chemistry of inverse vulcanization, however, very 

long chain (~22 S) of sulfur is stable due to both bi-functionality and miscibility of 

DIB molecule, which strongly interacts and stabilize the linear sulfur chain. 

Moreover, the copolymerization takes place in a bulk state, so the molecular weight 

of the polymer reaches to the maximum without depolymerization, while as the 

solution reaction of sulfur with other olefin monomer results in continuous 

depolymerization. 

DSC thermograms of SDIB copolymers were compared with elemental sulfur in 

Figure 2.2. Elemental sulfur undergoes melting transition at 119 oC, and 

crystallization at ~ 21 oC. However, with SDIB copolymers of all composition, there 

is no melting & crystallization peak, that confirms the amorphous nature of SDIB 



 21

 

 

Figure 2.1 Synthesis of Poly(S-r-DIB) copolymers with different composition (10 

wt% to 50 wt% of DIB) 
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Figure 2.2 DSC thermograms of elemental sulfur and SDIB copolymers of 10 wt%, 

20 wt%, 30 wt%, and 50 wt% DIB contents. 
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copolymers. Moreover, the glass transition temperature of these copolymers were 

gradually increase from -10 oC to 25 oC as a function of DIB contents from 10 wt% 

to 50 wt%. That is explained by the increased crosslinking density of the copolymer 

as increasing DIB contents. 

XRD patterns of SDIB copolymers with different DIB contents were 

demonstrated in Figure 2.3. Interestingly, the diffraction pattern of elemental sulfur 

was also observed with 10 wt% SDIB copolymer, which implies that small amount 

of elemental sulfur is included in 10 wt% SDIB copolymer although the melting or 

crystallization peak was hidden in DSC curve in Figure 2.2. 
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Figure 2.3 XRD Patterns of elemental sulfur and SDIB copolymers of 10 wt%, 20

wt%, 30 wt%, and 50 wt% DIB contents. 
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DIB Contents 
Avg. x (Ranks) 

by Calculation 

10 wt% 22.2 

20 wt% 9.87 

30 wt% 5.76 

50 wt% 2.47 

Table 2.1 Average sulfur atoms in the polysulfide chains of SDIB copolymer with 

different DIB Contents. 
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2.3.2 Unique properties of sulfur copolymers 

The synthesized SDIB copolymers are capable of solution processing and melt 

processing due to the thermoplastic, and amorphous property of the copolymers 

which is the significant differences from elemental sulfur. We demonstrate two 

representative processing methods using SDIB copolymers, spin-casting of SDIB 

copolymers for thin film fabrication, and nanoimprinting of the polymers for 

patterning. 

The solubility of SDIB copolymer in 1,2-dichlorobenzene (DCB) as a solvent at 

room temperature is shown in Figure 2.4. 50 wt% SDIB copolymer completely 

dissolves in DCB, while as the other copolymers are partly insoluble, and the 

solubility of the copolymers increases as a function of DIB contents. The reason is 

presumably that shorter sulfur chain in high DIB content copolymers takes 

advantages in miscibility with organic solvents. When the solutions of 10-30 wt% 

SDIB copolymers in DCB are heated up to 130 oC, they become homogenous, and 

the copolymers completely soluble at increased temperature. Therefore, spin-casting 

of these copolymers was possible by dispensing the hot solution on to the hot 

substrates, followed by spinning. However, the spinning step and post-annealing 

process is critical for the high quality uniform surfaces of the SDIB copolymer films. 

Otherwise, the copolymer films get rough, and heterogeneous after a few days as 

shown in Figure 2.5. The reason of these changes is thought to be due to the 

depolymerization of sulfur to form elemental sulfur in the films, which is confirmed  
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Figure 2.4 SDIB copolymers of 10 - 50 wt% DIB contents, dissolved in DCB as a 

solvent. 
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Figure 2.5 a) Optical microscopy of SDIB copolymer (20 wt%) obtained by 

improper spinning and annealing processes. b) AFM image of SDIB copolymer (20 

wt%) obtained by improper spinning and annealing processes. 
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Figure 2.6 XRD pattern of SDIB copolymer (20 wt%), after heating at 130 oC and 

cooling in DCB solvent. 
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by XRD characterization in Figure 2.6. When the SDIB solution is cooled down to 

room temperature and heating at 130 oC, precipitates are formed from the solution, 

which are turn out to be elemental sulfur. Therefore linear sulfur chains in SDIB 

copolymers are instable in the solvent at lower temperature, so complete removal of 

solvent during the spinning, and thorough annealing are required to prevent 

depolymerization sulfur in the films. Figure 2.7. demonstrate the uniform film 

formed after fast and complete removal of solvent, and this film is stable without 

morphological changes after 1 month. UV-vis absorption spectra of the SDIB 

copolymer films and solutions in comparison with elemental sulfur solution is shown 

in Figure 2.8. SDIB copolymers, with all weight fraction range, exhibit a 

characteristic peak at 432 nm, which is absent for elemental sulfur. Therefore it is 

thought to come from the linear sulfur chains. 

Due to the thermoplastic property of SDIB copolymer, it was able to be fabricated 

into nanopatterns using PDMS mold. Simple molding is conducted with pre-

polymers of SDIB, which were synthesized as described in chapter 2.3.1, but lower 

temperature of 130oC to impede the polymerization rate and facilitate controlling the 

polymer viscosity. The pre-polymer was dispensed on to the hot glass substrate, at 

the point between becoming a homogeneous red and solidifying. PDMS mold was 

placed on to the pre-polymer, and after heating for a hour and cooling, it was 

removed. The micrometer sized pillar patterns were uniformly appeared on the 

surface SDIB copolymer films as shown in SEM image (Figure 2.9). Micro lens 

patterns were also prepared with the same PDMS mold and SDIB thin films as shown 
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in Figure 2.10. SDIB thin films were prepared as described above, and PDMS mold 

were placed and heated. After removal of PDMS mold, the pillar shaped patterns of 

SDIB films were further heated at 185 oC to induce flows of the patterned polymers 

to deform from pillars to round lens-like shapes. It was found that post deformation 

of SDIB polymers are possible due to their thermos-plasticity.  
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Figure 2.7 a) Optical microscopy of SDIB copolymer (20 wt%) obtained by 

optimum spinning and annealing processes. b) AFM image of SDIB copolymer (20 

wt%) obtained by optimum spinning and annealing processes. 
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Figure 2.8 UV-vis spectra of SDIB copolymer films (20, 30, and 50 wt%) and

solution (50 wt%) compared with sulfur solution. 

 



 34

 

Figure 2.9 A schematic illustration of PDMS patterning of SDIB copolymers and 

SEM image of patterned SDIB copolymer. 
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Figure 2.10 A schematic illustration of PDMS patterning of SDIB copolymer films 

for micro lens pattern and SEM image of patterned SDIB copolymer. 
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2.3.3 Application of sulfur copolymers 

Due to the improved physico-chemical properties of SDIB copolymers which 

facilitate processing of the polymers, there could be various application to utilize 

SDIB copolymers as advanced materials. 

As mentioned in chapter 1.2.1, sulfur exhibits high refractive index (n), and IR 

transparency, so SDIB copolymers with high sulfur contents are utilized in IR optics 

as a high n lens.105-106 The n of SDIB copolymer decreases as a function of DIB 

contents due to the decrease of sulfur contents. Transmission of SDIB copolymer in 

IR region also decreases with DIB contents, because the C-H bonds in hydrocarbons 

including DIB monomer strongly absorb the IR radiation. Therefore 20 wt% SDIB 

copolymer exhibited superior optical characteristic (n=1.85), due to the high sulfur 

contents, and processability. The IR lens of SDIB copolymer was prepared by PDMS 

molding, and utilized as a lens in IR camera as shown in Figure 2.11. In general, 

polymers with hydrocarbon is impossible to utilize in IR optics due to the IR 

absorption and low refractive index. On the other hand, typical inorganic materials 

for IR optics such as Ge, or GaN is too expensive, challenging to process. Therefore, 

this is the first example of the polymer for IR optics exhibiting superior functionality, 

with low cost, facile processing and extremely simple chemistry. 

Sulfur also exhibit high dielectric constant (ε= 3.2) compared to hydrocarbon 

polymers.69 Therefore, SDIB copolymers are also utilized as a dielectric layer in 

transistors to give high capacitance. SDIB copolymers were simply spin-casted on 

to the substrates followed by annealing, and fabricated into two types of dielectrics,  
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Figure 2.11 (top) IR Transmission spectra of PMMA and SDIB (20 wt%) copolymer 

lens. (left) A picture taken from IR camera with PMMA lens. (right) A picture taken 

from IR camera with SDIB copolymer (20 wt%) lens. 
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for MIM (metal-insulator-metal) capacitors, and thin film transistors (TFT). 

Dielectric constant measured with SDIB copolymer (50 wt%) in MIM was even 

higher (ε=3.45) than elemental sulfur. Furthermore, the leakage current of MIM 

with SDIB copolymers was extremely low compared to the typical polymer 

dielectrics (PMMA), and it is independent on a film thickness. With this superior 

dielectric properties, TFT with SDIB copolymer (50 wt%) also works as comparable 

to typical SiO2 dielectrics as shown in Figure 2.12.  

Combining the high refractive index and facile processability of SDIB copolymers, 

they could be utilized in unique optical devices such as 2-D photonic crystals. When 

hundreds nanometers thin films of two materials with different refractive index are 

stacked alternatively, the multilayered film exhibits unique optical properties known 

as bragg refraction.107-108 By controlling the thickness of the each film, the wave 

length of light passing through the multilayer is determined, by the reflection within 

the films. Specific range of the wave length can’t pass through the films, such like 

the films absorb the range of light, which is called as photonic band gap (PBG).109-

110 using these unique properties, 2-D photonic crystals are utilized in lasers, sensors, 

and IR mirrors.107, 109, 111 For the intense and efficient generation of the PBG, large 

difference in n between two materials are necessary. Using a high n of SDIB 

copolymers (n=1.7 for 50 wt%), 2-D photonic crystals were fabricated in 

combination with cellulose acetate (CA) as low n polymer (n=1.4) as shown in 

Figure 2.13. SDIB/CA multilayers were fabricated by spin-casting up to 10 bilayers, 

with different thickness of SDIB films. The PBG of the multilayer were able to be  
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Figure 2.12 (left) TFT gate dielectric performance of SDIB copolymer (50 wt%). 

(right) MIM leakage current density of SDIB copolymer compared with PMMA as 

a dielectric layer. 

 

 

 

 

 



 40

 

 

Figure 2.13 Schematic description of the preparation of SDIB/CA photonic crystals 

and UV-Vis transmission spectra of SDIB/CA photonic crystals with different 

thickness of SDIB copolymer (50 wt%).  
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tuned by the thickness control (PBG=645nm for 100 nm SDIB film, and PBG=980 

nm for 230 nm SDIB film), and these results are well fitted with the theoretical 

simulation of PBG. 

One of the most important applications of sulfur is cathodes of Li-S batteries. As 

introduced in chapter 1.2.2, utilization of sulfur as a cathode material is challenging, 

in spite of its high theoretical capacity. The main challenging issue is capacity fading 

during the cycles due to the diffusion of soluble polysulfide, which results electrical 

contact loss between carbon framework and active sulfur species. SDIB copolymers 

were utilized as cathode materials, and significantly improve the cyclic stability of 

Li-S batteries compared to the cathode with elemental sulfur (Figure 2.14), by 

retaining the stable cathode structure during cycles.42, 112-114 A proposed 

electrochemical reaction of SDIB copolymer cathode is shown in Figure 2.15, in 

which Li+ reacts with linear sulfur chains of SDIB copolymer during discharge until 

Li2S forms, and DIB molecules bound to sulfur is well mixed with Li2S phase. 

Therefore these DIB moieties act as stabilizers in the cathode, facilitating stable 

redox reaction with electrical contact during the repeated cycles. However, the rate 

capability of SDIB copolymer cathode is poor, due to the absence of electrical 

pathway inside the polymer, and still there is a slight capacity fading on prolonged 

cycles due to the polysulfide dissolution. Therefore, in the next chapters, we will 

focus on the improvement of the SDIB cathodes by addressing these challenging 

issues with strategies of hybridization and surface modification.  
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Figure 2.14 Cyclic performance Li-S battery cells of SDIB copolymer cathode (10 

wt%), in comparison with elemental sulfur cathode. 
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Figure 2.15 Proposed electrochemical reaction of SDIB copolymer cathode during 

charge/discharge of Li-S battery. 
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2.4. Conclusions 

 

In this chapter, we report on the synthesis of SDIB sulfur copolymer with 

extremely simple chemistry to give thermoplastic, amorphous and high sulfur 

contents polymers. With the physico-chemically enhanced properties of this 

copolymers, melt process of PDMS patterning, and solution process of spin-casting 

were described. Finally, with the facile processing methods, various kinds of 

applications were introduced to realize intrinsically superior functionalities of sulfur. 

In the following chapters, we will discuss further on the enhancement of 

functionalities of this sulfur copolymers by introducing novel chemistry and surface 

coating technique for hybridization and surface modification, respectively.  
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Chapter 3. Incorporation of Sulfur Copolymers into 

Nanohybrid Materials 

 

 

3.1. Introduction 

 

The development of chemistry and processing methods for the utilization of 

elemental sulfur into polymeric materials provides a unique opportunity for 

addressing the substantial surfeit of sulfur generated via petroleum refining. Despite 

the large scale conversion of sulfur as a feedstock for sulfuric acid and downstream 

fertilizers, there typically remains an annual surplus of approximately 7 million 

tons,7 much of which is stored in massive above ground deposits. However, there 

exists a paucity of synthetic and processing methods to modify or chemically convert 

elemental sulfur into polymeric materials, primarily due to the limited miscibility 

and solubility of elemental sulfur with a majority of commonly used chemical 

reagents.75-79  

To address the inherent chemical challenges associated with using elemental 

sulfur to prepare polymers, we examined the use of molten liquid sulfur as a reaction 

medium and comonomer. We demonstrated the use of liquid sulfur both as the 

solvent and reducing agent medium for the synthesis of noble metal nanoparticles.103 

These sulfur-colloidal dispersions were then polymerized by treatment with 
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divinylbenzene to prepare the nanocomposite. In chapter 2, chemically stable 

copolymer materials using a methodology, termed, inverse vulcanization, were 

developed via the bulk copolymerization of molten sulfur with 1,3-

diisopropenylbenzene.102, 104 Similar efforts by Block et al.,93 reported the use of 

liquid sulfur as a solvent or a reagent for the synthesis of allyl-terminated 

oligosulfides.  

However, the development of alternative bulk or solution methods to prepare 

novel sulfur-based polymers and nanocomposites remains an important challenge in 

the field. Furthermore, S-S bonds (like the types found in polymeric sulfur) are 

difficult to characterize using conventional spectroscopic methods, which further 

complicates the development of new chemistry and materials based on sulfur.84-89, 95-

97, 101 In particular, symmetrical S-S bonds are largely IR inactive and 33S NMR is 

complicated by the low sensitivity and abundance of 33S nuclei. Hence, the discovery 

of new comonomers that are miscible and reactive with elemental sulfur is an 

opportunity to develop new chemistry and materials utilizing sulfur as a chemical 

feedstock. 

The chemistry of oleylamine and elemental sulfur has previously been explored 

in the context of preparing chalcogenide-based semiconductor nanocrystals.28 In 

these nanocrystal synthesises, the reaction of oleylamine and sulfur served to 

generate hydrogen sulfide (H2S) as the sulfur source to promote the metal 

chalcogenide formation. Ozin et al.115 investigated the mechanistic aspects of this 

reaction via model reactions of saturated aliphatic amines and sulfur, which were 
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reported to afford (thio)amide-based compounds. While the reaction of oleylamine 

and sulfur has been investigated for nanoparticle reactions, exploitation of this 

system to prepare high sulfur content polymeric materials has not been fully 

exploited. 

Herein, we report on the copolymerization of sulfur with oleylamine to prepare 

nanocomposite materials consisting of high content sulfur copolymers and lead 

sulfide (PbS) nanoparticles. In the current study, we report on the ability of 

oleylamine to form chemically stable copolymers via the copolymerization with 

elemental sulfur, along with the in-situ formation of PbS nanoparticles (NPs) to 

prepare PbS-sulfur copolymer nanocomposites (Figure 3.1). In this system, the one-

pot reaction of oleylamine and sulfur in the presence of PbS NP precursors enabled 

the in-situ formation of chalcogenide NPs, with efficient dispersion of colloidal 

inclusions throughout the sulfur copolymer matrix. We previously demonstrated that 

the one-pot reactions of sulfur with Au(I) salts, followed by the inverse vulcanization 

of the sulfur phase with styrenic comonomers afforded Au NPs dispersed in a sulfur 

copolymer matrix.103 In the current chapter, this concept was applied using different 

chemistry to prepare dispersed chalcogenide NPs in a poly(oleylamine-random-

sulfur) copolymer (poly(OLA-r-S)) matrix. This one-pot synthetic process highlights 

the ability of both sulfur and oleylamine to react both by free radical and oxidative 

processes to form polymeric and metal chalcogenide materials. 
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Figure 3.1 Proposed overall reaction scheme for the in-situ synthesis of 

PbS/poly(OLA-r-S) nanocomposites. 
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3.2. Experimental section 

 

3.2.1 Materials and Characterizations 

  Sulfur (colloidal powder), oleylamine (OLA, 70%, technical grade), 1,2-

Dichlorobenzene (DCB, 99%, anhydrous), and Lead(II) chloride (PbCl2, 99.99%, 

trace metals basis) were purchased from Aldrich and used as received. It is important 

to note the low purity of the technical grade oleylamine (Aldrich), as reactions 

conducted at larger scales may exhibit different kinetics, or afford unexpected side 

products when acquired from different vendors.  

1H NMR spectra were obtained with a Bruker Avance III 500 MHz spectrometer 

using CDCl3 as a solvent. Gel permeation chromatography (GPC) measurements 

were performed by YL9100 (Young Lin Instrument) using THF (HPLC grade) as a 

solvent with columns (Waters Styragel HR3 and HR4) at a flow rate of 1 mL/min 

with a UV-Vis spectrometer (254 nm). The normalization on the series of trace 

curves were conducted by setting DCB peaks on 22.02 min as a reference. The 

calibration curve was constructed with a series of monodisperse polystyrene 

standards (Shodex). Differential scanning calorimeter (DSC) data was obtained 

using a DSC-Q1000 (TA Instruments) at a heating rate of 10 °C/min under nitrogen 

atmosphere. Thermal gravimetric analysis (TGA) was carried out by a TGA Q500 

(TA Instruments) at a heating rate of 10 °C/min under air atmosphere. Elemental 

analysis was performed using a Flash1112 (CE Instrument, Italy) with CHNS-

Porapack PQS columns. X-ray diffraction (XRD) measurements were obtained using 
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a M18XHF-SRA model (MAC Science Co) at room temperature with a CuKα 

radiation source at 18 kW.  

Transmission electron microscopy (TEM) images were recorded on a JEOL-

JEM2100 at an operating voltage of 200 kV. For the cross-sectional views of TEM, 

the composite films were lifted off from the substrates by immersing in HF solution 

(5 %). The freestanding films were placed on a pre-cured epoxy resin, and then 

embedded by pouring a fresh epoxy resin on the top of the films after drying in a 

vacuum oven. The resin mixture for molding was prepared by mixing 25.6 g of 

Embed 812 resin, 13.51 g of dodecenyl succinic anhydride, 10.9 g of Nadic® methyl 

anhydride, and 1 g of DMP-30. All the components were purchased from Electron 

Microscopy Sciences. The cured resins were sliced with a microtome (Leica 

Microsystems). The 70 nm-thick slices were prepared with a diamond-coated knife 

(DiATOME) at an angle of 6 ° and a cutting velocity of 0.1 mm/s. The slices were 

suspended in water and supported on a Cu grid. 

 

3.2.2 Synthesis of Poly(OLA-r-S) 

 In these reactions, molar feed ratios of 2:1 to 33:1 of [Sulfur]/[Oleylamine] were 

investigated. In a typical preparation, sulfur (1.6 g, 50 mmol) and oleylamine (0.4 g, 

1.5 mmol) were mixed with DCB (4 mL), and heated up to 180 °C with vigorous 

stirring. The color of the mixture became transparent yellow within a minute, and 

slowly converted into black solution within 10 min and allowed to react for 30 min 

at T = 180 °C . For the 1H NMR and GPC measurements, aliquots were removed via 
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syringe and dissolved in deuterated chloroform and THF, respectively. Purification 

of the copolymer was achieved by addition of n-hexane (6 mL) into the reaction 

mixture to induce precipitation of excess sulfur. The precipitated sulfur was removed 

by centrifugation at 3,000 rpm for 5 min, and the remained DCB mixture was poured 

into 20 mL of methanol, followed by centrifugation at 17,000 rpm for 10 min. The 

supernatant in methanol was decanted and the precipitate (black rubbery solid) was 

dried in a vacuum oven at room temperature overnight (yield = 0.43 g).  

 

3.2.3 Synthesis of PbS/Poly(OLA-r-S) nanocomposites 

  A Pb precursor solution was first prepared by the addition of varying amounts of 

PbCl2 (0.04-0.12 g, 0.14-0.43 mmol) was added to oleylamine (0.4 g, 1.5 mmol) and 

heated to 180 °C with vigorous stirring until a white milky dispersion was formed. 

Separately, a poly(OLA-r-S) was synthesized as described above, where sulfur (1.6 

g, 50 mmol) and oleylamine (0.4 g, 1.5 mmol) were mixed with DCB (4 mL) and 

heated up to 180 °C with vigorous stirring. After 30 min, the Pb precursor solution 

was injected into the poly(OLA-r-S)/DCB solution. The mixture was stirred at 

180 °C for 5 min, and then purified by the method described above affording a black 

rubbery solid (yield = 0.36 g). 

The nanocomposites prepared above were dissolved in THF (5 wt%), and the 

solution was spin-coated on a glass substrate at a spin rate of 2,000 rpm for 1 min. 

The films were heated on a hotplate at 180 °C for 5 min. The thickness of the 

resulting films measured by ellipsometry was in the range from 500 to 600 nm. For 
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the preparation of free-standing films, the 5 wt% nanocomposite solution (10 mL) 

was poured into a PTFE mold, and the solvent was evaporated in ambient condition 

for overnight. The resulting film was further heated at 180°C for 5 min and removed 

from the PTFE mold to afford a free-standing film. 

Oleylamine-capped PbS NPs were synthesized as described in the literature.28 

PbCl2 (0.28 g, 1 mmol) was added to 5 mL of oleylamine and was heated to 90 °C 

under vacuum for 5 min. Sulfur (0.016 g, 0.5 mmol) was separately dissolved in 2.5 

mL of oleylamine and the solution was injected into the Pb-oleylamine complex 

solution at 90 °C. The mixture was heated to 220 °C for 1h and 100 mL of ethanol 

was added into the resulting mixture, followed by centrifugation at 7,000 rpm for 5 

min. The precipitate was dried in a vacuum oven.  

For the preparation of blends, the oleylamine-capped PbS NPs (0.004 g) and 0.2 

g of poly(OLA-r-S) were separately dissolved in THF (5 mL) and then mixed 

together. The blends were drop casted on TEM grids or spin-casted on glass 

substrates, followed by heating at 180 °C for 5 min. 
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3.3. Results and discussions 

 

The general synthetic strategy employed for this study was initial investigation 

into the synthesis of poly(oleylamine-random-sulfur) (poly(OLA-r-S)) copolymers, 

followed by the utilization of these conditions to further introduce soluble Pb(II) 

complexes to promote PbS NP formation (Figure 3.2). The key to this one-pot and 

tandem step process was the use of elemental sulfur to react with vinyl bonds of 

oleylamines to form polymers while also reacting with α-protons in oleylamines to 

convert the primary amine groups to (thio)amides. The formation of (thio)amides 

generates H2S which is critical as the sulfur atom source to form PbS NPs. 

 

3.3.1 Synthesis of Poly(OLA-r-S) 

Solution polymerization of S8 and oleylamine was conducted at different molar 

ratios of [S]/[oleylamine] in 1,2-dichlorobenzene (DCB) at T = 180 °C to retain the 

homogeneity of polymeric products and those of Pb(II) complexes used in the one-

pot reaction to form PbS/poly(OLA-r-S) nanocomposites. In these reaction mixtures, 

the color of the solution changed from yellow to red and then to black. UV-Vis 

absorption spectra of the solutions were recorded as a function of reaction time 

(Figure 3.3). As the reaction proceeded, the absorption shoulder moved to longer 

wavelength showing the broader range of absorption wavelength. The reaction 

mixture was then poured into excess n-hexane to remove unreacted sulfur, followed 

by the precipitation of soluble copolymers into methanol to yield a black rubbery  
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Figure 3.2 Schematic illustration of the in-situ synthesis of PbS/poly(OLA-r-S) 

nanocomposites. 
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Figure 3.3 UV-Vis absorption spectra of the solution copolymerization of 

oleylamine and sulfur in DCB at T=180 °C for [oleylamine]:[sulfur] = 1:33 in mole 

ratio taken at different reaction time. 
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solid. The origin of the black color is thought to originate from linear polysulfide 

radicals in the copolymers, as observed in sulfur species at high temperature or those 

dissolved in amine solutions.115-118 

The aliquots of the reaction mixture ([S]/[oleylamine], for 33:1 molar feed ratio) 

were periodically withdrawn for size exclusion chromatography (SEC) and 1H 

nuclear magnetic resonance spectroscopy (NMR) to determine the number average 

molecular weight (Mn) as well as oleylamine conversion. 1H NMR kinetic 

measurements revealed the complex consumption of oleylamines during the 

copolymerization after 30 min of reaction, as noted by a progressive decrease in the 

integration of vinyl and allylic α-CH2 protons at 5.35 and 2.01 ppm, respectively 

(Figure 3.4). In addition, the conversion of S8 in the copolymerization was 

quantitatively determined using UV-Vis spectral detection, set at 254 nm, in SEC 

measurements of reaction mixture aliquots at 24.5 min of S8 elution time (16 % 

conversion of total S8, as shown in Figure 3.5a. A progressive increase in the 

copolymer molar mass determined by SEC characterization was observed with the 

increase in reaction time, confirming the formation of poly(OLA-r-S) copolymers 

(Figure 3.5b). In general, these copolymers exhibited low number average 

molecular weight with broad molecular weight distribution (Mn = 1,130 g/mol; 

Mw/Mn = 1.58). The SEC characterization along with the conversion curves of the 

aliquots with different feed ratios ([oleylamine : sulfur] = 1:2, 1:8, and 1:33 in molar 

ratio were also conducted as shown in Figure 3.6 and Figure 3.7. 

Characterization of poly(OLA-r-S) was further carried out via elemental analysis  
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Figure 3.4 1H NMR spectra of solution copolymerization of oleylamine and S8 

([S]/[oleylamine] : 33) in DCB at T = 180 °C at different reaction times. 
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Figure 3.5 SEC of aliquots from the copolymerization of oleylamine and S8 

([S]/[oleylamine] : 33) in DCB at T = 180 °C at different reaction time: (a) Enlarged 

trace curves for sulfur consumption, (b) Copolymerization trace curves for 

poly(OLA-r-S). Normalization was conducted with solvent (DCB) peaks at 22.02 

min of elution time as a reference. 
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Figure 3.6 Conversion curves of solution copolymerization of oleylamine and sulfur 

in DCB at T = 180 °C at different reaction time. ([oleylamine : sulfur] = 1:2 (black), 

1:8 (blue), and 1:33 (red)). Conversions of oleylamine with different molar ratios are 

shown in colored triangles, which were determined from 1H NMR. Conversions of 

sulfur with different molar ratios are shown in colored circles, which were 

determined by SEC.  
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Figure 3.7 SEC of aliquots removed from the solution copolymerization of 

oleylamine and sulfur in DCB at T=180°C at different reaction time (0 to 30 min) 

with different feed ratios: (a) [oleylamine : sulfur] = 1:2; (b) 1:8; (c) 1:33 in molar 

ratio.  
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and DSC. The composition of the copolymer product measured by elemental 

analysis indicates the following weight percentages: N: 2.772±0.061 %, C: 

53.68±0.10 %, H: 7.954±0.131 %, S: 35.60±0.12 %. From the elemental weight 

percentage data, it was determined that the copolymers prepared consist of 

approximately 4 to 5 S-units on average per oleylamine comonomer units. DSC of 

the poly(OLA-r-S) copolymers were also conducted to confirm that S-units in the 

copolymers are not in the form of crystalline sulfur. During the heating scans thermal 

transitions for elemental sulfur assigned to melting transitions at 108 °C (for 

orthorhombic α-sulfur) and 118 °C (for monoclinic β-sulfur) were observed. During 

the cooling cycles, crystallization of α- and β-sulfur are observed at 28 °C and 42 °C, 

respectively. However, DSCs of poly(OLA-r-S) were found to be largely featureless 

for both heating and cooling scans, indicative of the formation of amorphous 

copolymers despite the presence of a high content (37 wt%) of sulfur (Figure 3.8). 

It was initially anticipated at our reaction condition (T = 180 °C) that the 

homolytic ring opening of S8, followed by the addition of sulfur diradicals to vinylic 

groups of oleylamines would be the primary mechanistic pathway to form 

poly(OLA-r-S) copolymers, with retention of primary amines as side chain 

functional groups. However, throughout the copolymerization, it was observed by 

1H NMR that α-CH2 protons adjacent to the amine functional groups at 2.61 ppm 

were also consumed in this reaction indicating the concurrence of additional 

chemistry (Figure 3.4). Hence, these 1H NMR studies confirmed that the conversion 

of amine side chain groups from oleylamines into some other functionality during  
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Figure 3.8 DSC thermograms of purified poly(OLA-r-S) with a feed molar ratio of 

[oleylamine]:[sulfur] = 1:33 and a PbS/poly(OLA-r-S) nanocomposite obtained by 

adding 0.144 M of PbCl2, dissolved in 0.4 g of oleylamine, into poly(OLA-r-S) 

solution after 30 min of copolymerization. 

  

-90 -60 -30 0 30 60 90 120 150

-1.0

-0.5

0.0

0.5

1.0

H
ea

t 
F

lo
w

 (
W

/g
)

Temperature (oC)

 Sulfur
 Poly (OLA-S)
 PbS/ Poly (OLA-S)



 63

the copolymerization, which was consistent with the findings by Ozin et al. as 

previously discussed.115 While 1H NMR, SEC, elemental analysis and DSC of these 

materials confirmed the formation of true copolymers, the structural identification 

of the side chain functionality in the copolymers required more rigorous 

investigation of model reactions and 13C NMR spectroscopy, especially since IR 

spectroscopy did not definitely confirm the presence of a distinct functionality. 

In order to confirm if (thio)amide groups were formed by the proposed mechanism 

of Ozin et al., 13C NMR measurements of crude copolymerization mixtures of 

oleylamine and S8 were conducted in deuterated 1,2-dichlorobenzene-d4. These 

measurements revealed the presence of 13C NMR resonances at δ= 205.4 and 184.9 

ppm, which were in good agreement with assignments from Ozin et al., 

corresponding to thioamide and amide functional groups (Figure 3.9).115 While the 

exact ratio of these functional groups could not be quantified using 13C NMR, these 

experiments nevertheless confirmed that the primary amine groups from oleylamines 

were also converted into chain moieties of the copolymers, presumably consisting of 

the mixtures of thioamides and amide side chain groups. To further support this 

assignment, the cross-coupling reactions with oleylamines and 4-t-butylbenzyl 

amine in the presence of S8 were conducted, followed by the analysis with 13C NMR 

spectroscopy. This additional model reaction revealed the presence of a single 

resonance at δ= 198 ppm, corresponding to the formation of substituted (thio)amides 

from the cross-coupling of benzylic and aliphatic amines (Figure 3.10). The 

reactivity and spectroscopic characterization of a pure substance, such as, 4-t-
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butylbenzyl amine was beneficial for these studies, since the commercially available 

oleylamine contains of number of impurities (technical grade ~ 70% purity, Aldrich). 
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Figure 3.9 13C NMR spectrum of a copolymer consisting of oleylamine and sulfur 

polymerized in 1,2-dichlorobenzene-d4 at T=180 °C for [oleylamine]:[sulfur] = 1:33 

in mole ratio, after 30 min of copolymerization. 
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Figure 3.10 13C NMR spectrum of reaction mixture synthesized from cross-coupling 

reaction of 4-tert-butylbenzylamine and oleylamine with sulfur.  NMR sample was 

prepared by dissolving reaction mixture in chlorobenzene-d5 and peak at δ = 198.4 

ppm corresponds to a single substituted thioamide functional group. 
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3.3.2 Synthesis of PbS/Poly(OLA-r-S) nanocomposites 

Upon the optimization of reaction conditions to prepare poly(OLA-r-S) 

copolymers, the one-pot method to prepare PbS/poly(OLA-r-S) nanocomposites was 

then investigated. The key novelty and advantage of this one-pot process is the 

ability to prepare well-dispersed NPs within high sulfur content polymer matrices. 

Due to the dual reactivity of oleylamines toward both formations of sulfur 

copolymers and PbS NPs, the direct addition of preformed Pb(II)Cl2 complexes with 

oleylamines to reaction mixtures with sulfur in DCB were conducted. An earlier 

report by Hyeon et al.28 demonstrated the preparation of PbS nanocrystals using 

PbCl2 complexes in the presence of sulfur and oleylamine. In this example, the 

reaction of sulfur and oleylamine was solely intended to generate H2S in-situ to 

promote PbS NP formation. Furthermore, it is noted that a low feed ratios of sulfur 

was used in this reaction. 

In the one-pot preparation of these nanocomposites PbCl2/oleylamine complex 

solutions were injected into the copolymerization mixtures of sulfur and oleylamine 

at different initial feed ratios of oleylamine and sulfur ([S]/[oleylamine] 2:1, 8:1, and 

33:1 in molar ratio) to determine optimal conditions to prepare well-dispersed NP 

nanocomposites. The optimal feed ratio was found to be 33:1, as an excess amount 

of sulfur along with higher conversion of oleylamine at the moment of PbS NP 

formation facilitated the stable dispersion of NPs within sulfur copolymer matrices. 

Under these conditions, the Pb(II) precursors were injected in a series of separate 
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reactions after allowing oleylamines and sulfur to copolymerize for 5, 10, 15, 20 and 

30 min to determine the optimal reaction time to induce the PbS NP reaction. TEM 

images of the aliquots taken from different crude reaction mixtures revealed that the 

dispersion of PbS NPs within sulfur copolymer matrices was significantly improved 

when the Pb(II)-oleylamine complexes were injected after a reaction time of 30 min 

in the initial copolymerization step (Figure 3.11d). Due to the in-situ generation of 

H2S from the reaction of oleylamine and sulfur, PbS NPs were observed to form 

within 5 min. Furthermore, the TEM images in Figure 3.5 confirmed that the PbS 

NPs formed were comparable in size (diameter (D) = 7.4±1.9 nm, Figure 3.5d) and 

XRD confirmed the formation of halite (cubic) PbS phases (Figure 3.12). 

To further demonstrate the advantage of our one-pot process to prepare well-

defined and highly dispersed PbS/poly(OLA-r-S) nanocomposites, blending 

experiments with preformed PbS NPs with free poly(OLA-r-S) were conducted. 

Preformed NPs were prepared by the synthesis of PbS NPs using oleylamine as 

capping ligands, as previously described by Hyeon et al.28 Blends with PbS NPs and 

poly(OLA-r-S) were then prepared in solution followed by casting onto carbon-

coated TEM grids. The TEM image confirmed that the preformed oleylamine-

capped PbS NPs tended to aggregate within the poly(OLA-r-S) matrices (Figure 

3.11a). The massive NP aggregation in this case was attributed to both enthalpic 

immiscibility of oleylamine-capped PbS NPs with the copolymer matrices as well as 

the depletion demixing of poly(OLA-r-S) with PbS NP inclusions. Hence, in our one-

pot reactions, by forming PbS NPs in the presence of poly(OLA-r-S) copolymers in  
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Figure 3.11 Plan view TEM images of: (a) blends of oleylamine-capped PbS NPs (2 

wt%) with poly(OLA-r-S) copolymers. The NP size is 8.4±1.1 nm. (b) A 

PbS/poly(OLA-r-S) nanocomposite by the addition of PbCl2-oleylamine solution 

into the oleylamine-sulfur mixture without polymerization of poly(OLA-r-S). The 

NP size is 9.2±1.5 nm. (c) A PbS/poly(OLA-r-S) nanocomposite by the addition of 

PbCl2-oleylamine solution into the poly(OLA-r-S) solution after copolymerization 

for 15 min. The NP size is 8.7±2.2 nm. (d) A PbS/poly(OLA-r-S) nanocomposite by 

the addition of PbCl2-oleylamine solution into the poly(OLA-r-S) solution after 

copolymerization for 30 min. The NP size is 7.4±1.9 nm. All the scale bars are 50 

nm.  
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Figure 3.12 XRD spectra of PbS/poly(OLA-r-S) nanocomposites. Cubic (Fm3m) 

lattice planes of PbS NPs were assigned to the diffraction peak. 
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DCB solution, we propose that the amide/thioamide side chain groups of the sulfur 

copolymers are able to sufficiently associate and stabilize PbS NPs, which are, in 

turn, miscible with the sulfur copolymer matrices when cast as films. 

To further demonstrate the advantages of this synthetic process to prepare NP-

sulfur nanocomposites, the variation of PbS NP loading within poly(OLA-r-S) films 

was demonstrated by varying the concentration of PbCl2 in oleylamine (0.288, 0.576, 

and 0.864 M) injected into the reaction mixtures (Figure 3.13). The TEM images 

confirmed the concurrent increase in number particle density as a direct function of 

Pb(II) precursor loading into the reaction mixtures, where the NP size remain almost 

constant at D = 7.4 nm. The TGA analysis of the nanocomposites revealed PbS NP 

loadings of 1, 3.5, and 14 wt% as a function of different Pb(II) precursor 

concentration of 0.288, 0.576, and 0.864 M, respectively (Figure 3.14). The 

influence of the molar feed ratios ([oleylamine] : [sulfur]) on the internal 

morphologies of the PbS NPs were also demonstrated in Figure 3.15. These 

PbS/poly(OLA-r-S) nanohybrids were found to readily dissolve in THF and toluene, 

enabling facile solution processing of these materials into thin films on glass 

substrates or free-standing films, as demonstrated in Figure 3.16. 
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Figure 3.13 Cross-sectional TEM images of PbS/poly(OLA-r-S) nanocomposites 

with different concentration of PbCl2 ((a), (c), and (e)), and their spin-cast films ((b), 

(d), and (f)): (a) and (b) 0.288 M of PbCl2 added. The NP size is 7.4±1.9 nm. (c) and 

(d) 0.576 M. The NP size is 7.4±1.3 nm. (e) and (f) 0.864 M. The NP size is 7.4±0.1 

nm. All the scale bars are 100 nm.  
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Figure 3.14 TGA curves of PbS/poly(OLA-r-S) nanocomposites obtained by adding 

different amount of PbCl2 (0.288, 0.576, and 0.864 M) dissolved in 0.4 g of 

oleylamine into poly(OLA-r-S) solution with a molar feed ratio of 

[oleylamine]:[sulfur] = 1:33, after 30 min of copolymerization. 
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Figure 3.15 TEM images of PbS/poly(OLA-r-S) nanocomposites by the addition of 

PbCl2-oleylamine solution (0.288 mmol of PbCl2 dissolved in 0.4 g of oleylamine) 

into poly(OLA-r-S) solution (after 30 min of copolymerization) with different molar 

feed ratios: (a) [oleylamine]:[sulfur] = 1:2; (b) 1:8; (c) 1:33. 
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Figure 3.16 Photo images of PbS/poly(OLA-r-S) nanocomposite films: (a) A free-

standing film prepared by solvent evaporation (film thickness = 1 mm). (b) A spin-

cast film on a glass substrate (film thickness = 600 nm). 
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3.4. Conclusions 

 

We report on the first one-pot synthetic method to prepare well-defined NP/sulfur 

nanocomposites containing PbS NPs well-dispersed within high sulfur content 

copolymer matrices by employing oleylamines as a comonomer for sulfur 

copolymers as well as a H2S generating precursor for NP synthesis. We demonstrate 

the dual role or reactivity of oleylamines for the first time toward applications of 

sulfur copolymerization and the synthesis of chalcogenide NPs. Various kinds of 

NP/sulfur nanocomposites are anticipated to be prepared using poly(OLA-r-S). This 

general approach is a new synthetic advance in the emerging area of sulfur utilization 

by the direct modification of elemental sulfur as a novel feedstock for materials 

synthesis. 
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Chapter 4. Reduced Graphene Oxide / Sulfur 

Copolymer Nanocomposites for Li-S Batteries 

 

 

4.1. Introduction 

 

Lithium-sulfur (Li-S) batteries have been attracted much attention for a decade, 

because they are expected to achieve a significant breakthrough in energy storage 

industries including electric vehicles, due to the large specific capacity (1575 mAhg-

1) of sulfur cathodes. However, there are still many challenging problems to 

overcome for the commercialization of Li-S batteries. The most serious issues in 

sulfur cathodes come from the electrically insulating property of sulfur, as well as 

the unique electrochemical reaction in the cathode during the charge/discharge 

cycles. The intermediate products of sulfur, polysulfides, easily dissolve in the 

electrolyte, and they continuously diffuse out from the electrode. Moreover, the fully 

lithiated product of the dissolved polysulfides, lithium sulfide (Li2S), is also 

insulating solid, which irreversibly precipitate on the electrode surface without 

electrical contact. Those electrochemical processes involving liquid and solid phases 

lead to gradual decomposition of the electrical conducting path, reaching to the 

active sulfur species inside the cathode, and that results in rapid capacity fading 

during the repeated charge/discharge cycles. 
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To address these issues, we developed high sulfur content copolymers, poly(S-r-

DIB) (SDIB), via the inverse vulcanization, as new cathode materials for Li-S 

batteries. In these copolymers, the small contents of monomer (DIB), cross-linked 

with linear polysulfide chains, act as a binder to prevent irreversible dissolution of 

polysulfides, and also stabilize the lithiated product phases of the cathode during the 

electrochemical reaction. As a result, homogeneous contact between carbon and the 

copolymers could be retained during the repeated charge/discharge cycles. Therefore 

these polymer cathodes exhibited high capacity retention until more than 500 

cycles.102, 104, 113, 119 However, the enhancement of high C-rate capability with SDIB 

copolymer is still hard to achieve due to the absence of electrically conducting 

pathway inside the copolymers.  

There have been a large number of the strategies developed for the incorporation 

of conductive carbon materials with sulfur to improve the rate capabilities of Li-S 

cells. The most representative methods come along with graphene due to its superior 

electrical conductivity and extremely small occupied volume. However, both 

graphene and sulfur are intrinsically poor materials for processing, so the chemically 

oxidized graphene, graphene oxide (GO), was mostly utilized for the preparation of 

sulfur/GO composites.51-56 Even though the reduction of GO was able to recover the 

original electrical property of graphene, the high quality nanocomposites with sulfur 

and reduced GO for Li-S batteries were rarely reported.57-60 Moreover, the 

macromolecular sulfur/graphene nanocomposite material have not been introduced 

yet, that is expected to afford a variety of options for the electrode fabrication 



 79

methods.  

Herein we demonstrate improvements of rate capability and specific energy of 

SDIB polymer cathode by introducing simple nano-scale inclusion of reduced GO 

(rGO) into SDIB polymeric matrix. A facile method to include functional 

nanomaterials within polymeric sulfur matrices were introduced by our group.103, 120 

By using unique dual interaction between oleylamine (OLA) and sulfur, PbS 

NP/sulfur copolymer nanocomposites were synthesized in a one-pot manner. The 

double bond in the middle of OLA chain copolymerized with sulfur diradical to form 

polymeric matrix of the nanocomposites, and at the same time, the amine functional 

group at the end of OLA chain was attached to the surface of PbS NP to stabilize the 

interfaces. In this work, the similar chemistry was employed for SDIB/rGO 

nanocomposites by using dual interaction of OLA, which binds to both sulfur and 

GO (Figure 4.1). For the homogeneous dispersion of rGO in SDIB polymer matrix, 

OLA was attached on to GO, and the OLA modified GO (oGO) was subsequently 

reduced with trioctylphosphine (TOP), as a reducing agent. Lee et al.121 reported that 

these modification and reduction steps afforded good miscibility and processability 

of rGO in 1,2 dichlorobenzene (DCB). Therefore, simple mixing of rGO and SDIB 

polymers at 150 °C resulted in the homogeneous nanocomposite materials after 

purification. Furthermore, the OLA molecules, binding to rGO, copolymerized with 

SDIB in the mixing step, to generate nano-scale electrical contact between rGO and 

SDIB polymer. 

  



 80

 

 

 

 

 

 

 

Figure 4.1 a) overall reaction scheme for the synthesis of poly(S-r-DIB)/rGO 

nanocomposites. b) Schematic illustration of the synthesis of SDrGO. 
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4.2. Experimental section 

 

4.2.1 Materials 

Graphite powder (<45 microns), sulfur, potassium permanganate (KMnO4), 

oleylamine (OLA, 70% technical grade), trioctylphosphine (TOP, 90% technical 

grade), and N,N-dimethylformamide (DMF) were purchased from Sigma-Aldrich. 

Hydrochloric acid (HCl) was provided from Samchun Chemical. Concentrated 

sulfuric acid (H2SO4) was obtained from PFP Chemicals. Hydrogen peroxide (H2O2) 

and 1,2-dichlorobenzene (DCB) was purchased from Junsei Chemical. 1,3-

Diisopropenyl benzene (DIB) was obtained from TCI Chemical.  

 

4.2.2 Synthesis of SDrGO nanocomposites 

GO was prepared from natural graphite by the modified Hummer’s method 

according to the previous reports.122-124 2 g of graphite and 46 mL of H2SO4 were 

added into the flask placed in ice bath with stirring. After 10 min, 6 g of KMnO4 was 

slowly added to the mixture, while being kept below 20 oC. After 16 h, 92mL of 

deionized water was slowly added and heated to 35 oC for 2 h. The reaction was 

terminated with 280 mL of deionized water and 5 mL of H2O2 at 60 oC. The reaction 

product was filtrated and washed several times with 500 mL of 5 % HCl solution. 

The fractionated GO dispersion in water (1 mg/mL) were obtained by ultra-

sonication at 40 % amp. for 30 min in the presence of ice bath. The final product was 

freeze-dried for 3 days for further use. 
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oGO and rGO were prepared following the previous paper by Lee and 

coworkers.121 0.2 g of GO and 2 mL of OLA were added into 50 mL of DMF, and 

the mixture was subjected to sonication for 1 h, followed by heating at 80 oC for 24 

h. For purification, 50 mL of ethanol was added and oGO suspension was 

precipitated by centrifugation at 4500 rpm for 20 min. This process was repeated 

twice after the re-dispersion of the precipitates in 20 mL of n-hexane. The final 

product was dried in vacuum oven overnight. 

For the preparation of rGO, 0.1 g of oGO and 5 mL of TOP were added into 50 

mL of DCB, and the mixture was subjected to sonication for 1 h, followed by heating 

at 100 oC for 24h. The purification and drying process was the same as that for oGO.   

SDIB copolymer was synthesized according to the previous reports.102, 104, 113, 119 

4.5 g of sulfur and 0.5 g of DIB were heated at 185 ºC with vigorous stirring until 

the mixture became homogeneous and vitrified. The reaction was stopped by cooling 

down to room temperature after the reaction product solidify, and the stirring stopped 

by the increased viscosity of the product. 

For SrGO, 0.05 g of rGO and 0.45 g of sulfur were added in 5 mL of DCB, and the 

mixture was subjected to sonication for 1 h, followed by heating at 150 oC for 24 h. 

After the reaction, 10 mL of methanol was added and the product was precipitated 

by centrifugation at 4500 rpm for 20 min. The product was dried in vacuum oven 

overnight. 

SDrGO was synthesized with 0.05 g of rGO and 0.45 g of SDIB copolymer added 

in 5 mL of DCB. The reaction and purification steps were the same as that for SrGO. 
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4.2.3 Electrochemical characterization of SDrGO nanocomposites 

1H NMR spectra were obtained with a Bruker Avance III 500 MHz spectrometer 

using CDCl3 as a solvent. Differential scanning calorimeter (DSC) data was obtained 

using a DSC 4000 (PerkinElmer) at a heating rate of 10 oC/min under nitrogen 

atmosphere. Thermal gravimetric analysis (TGA) was carried out by a TGA Q500 

(TA Instruments) at a heating rate of 10 oC/min under nitrogen atmosphere. 

Elemental analysis was performed using a Flash1112 (CE Instrument, Italy) with 

CHNS-Porapack PQS columns. X-ray diffraction (XRD) measurements were 

obtained using a New D8 Advance model (Bruker) at room temperature with a CuKα 

radiation source at 18 kW.  

X-ray photoelectron spectroscopy (XPS) was conducted using Axis-HSi (Kratos) 

with Mg/Al dual anode at 15 kV and 10 mA. Fourier-transform infrared (FTIR) 

spectra were obtained with FT-IR/NIR Frontier Spectrum 400 (PerkinElmer). 

Atomic force microscopy (AFM) was carried out with Nanowizard (JPK 

Instruments). Raman spectra were taken with T64000 (Horiba) using Ar laser (514 

nm).  

Transmission electron microscopy (TEM) images were recorded on a JEOL-

JEM2100 at an operating voltage of 200 kV. For the cross-sectional views of TEM, 

the samples were placed on a pre-cured epoxy resin, and then embedded by pouring 

a fresh epoxy resin on the top of the films after drying in a vacuum oven. The resin 

mixture for molding was prepared by mixing 25.6 g of Embed 812 resin, 13.51 g of 
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dodecenyl succinic anhydride, 10.9 g of Nadic® methyl anhydride, and 1 g of DMP-

30. All the components were purchased from Electron Microscopy Sciences. The 

cured resins were sliced with a microtome (Leica Microsystems). The 70 nm-thick 

slices were prepared with a diamond-coated knife (DiATOME) at an angle of 6 o and 

a cutting velocity of 0.1 mm/s. The slices were suspended in water and supported on 

a Cu grid. 

The cathodes were fabricated from slurries dispersed in N-methyl-2-pyrrolidone 

(2 ml). The prepared slurry was cast onto an aluminum foil using a doctor blade 

method. The cathodes were transferred to an Ar-filled glove box and were assembled 

in a 2032 type coin cell. The mass loading of all samples was ~1 mg of active 

material. The electrolyte was 1.0 M LiTFSI (lithium bis-

trifluoromethanesulfonimide) and 0.1 M LiNO3 (lithium nitrate) with DOL 

(dioxolane) and DME (dimethyl ether) 1:1 volume ratio (Panax Etec, Korea). The 

separator was supplied from SK Innovation corporation (Korea), and lithium metal 

was used as a counter electrode. Electrochemical properties were measured with a 

WBCS3000 cycler (Won-A Tech, Korea). The voltage window for electrochemical 

measurements was fixed between 1.7 - 2.8 V vs. Li+/Li (all the voltages below are 

vs. Li+/Li).  
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4.3. Results and discussions 

 

4.3.1 Synthesis of SDrGO nanocomposites 

The XRD patterns were obtained to confirm the successive modification and 

reduction of GO (Figure 4.2a). As-synthesized GO has a diffraction peak at 2θ = 

11.7 °, corresponding to 7.56 Å of the basal plane distance (001) due to the oxygen 

containing functional groups in graphene interlayers. After the modification with 

OLA, the interlayer distance increased to 23.4 Å, which is attributed to the length of 

alkyl chains of OLA intercalated between the GO interlayers.125 When oGO reduced 

with TOP (rGO), a new broad peak centered at 20.8 ° (4.27 Å), closer to that of 

natural graphite (3.34 Å), appeared in the XRD pattern as a result of re-stacking of 

reduced graphene interlayers.121 As-synthesized rGO were re-dispersible in DCB and 

other organic solvents, due to the remaining OLA grafted on GO, after the reduction. 

The AFM height images were obtained after spun on silicon wafer using water for 

GO solution, and DCB for oGO and rGO solutions, and that also confirmed the OLA 

grafting on GO after the reduction as shown in Figure 4.2b. The thickness of GO 

measured by AFM was about 1 nm, while as those of oGO and rGO were roughly 2 

to 2.5 nm. The 4 point probe measurement revealed the significant enhancement in 

the electrical conductivity of rGO. The electrical resistivity of GO (7.43 X 105 Ω·cm) 

slightly decreased after OLA modification (3.20 X 104 Ω·cm), and after the 

reduction, it drastically decreased into 6.06 Ω·cm.(Figure 4.3) Further 

characterization of rGO were conducted by XPS (Figure 4.4). 
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Figure 4.2 (a) XRD patterns and (b) AFM height measurements of GO, oGO, and 

rGO 
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Figure 4.3 Electrical resistivity of GO, oGO, and rGO measured by 4-point probe 

(left), and photo image dispersed in water/DCB layered media. 
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Figure 4.4 XPS Spectra (C1s) of GO, oGO, and rGO. 
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As-synthesized rGO was utilized for sulfur/rGO (SrGO) or SDIB/rGO (SDrGO) 

nanocomposites, which were obtained by simply mixing of sulfur or SDIB, 

respectively, with rGO in DCB. The contents of sulfur in SDIB polymer used in the 

synthesis were 90 wt%, which was proved to exhibit the best capacity retention 

behaviour among all the feed ratio ranges,102, 104 and 10 wt% of rGO was additionally 

included in the SrGO and SDrGO nanocomposites. The chemical bonds between 

polysulfides and OLA of rGO were expected to be formed during the mixing step, 

as previously reported.120 The additional experiment with SDIB/OLA mixtures at the 

same condition revealed the consumption of the OLA double bond to afford S-DIB-

OLA copolymers. TGA curves confirmed the 10 wt% of rGO incorporation in the 

nanocomposites after the purification. About 90 wt% and 80 wt% of sulfur was 

contained in the SrGO and SDrGO nanocomposites, respectively (Figure 4.5a). The 

π-π stacking of the reduced graphene layers and OLA intercalation, observed in the 

XRD pattern of the rGO, were disappeared in SrGO and SDrGO, which support the 

homogeneous dispersion of rGO sheets in the sulfur polymeric matrices, The STEM 

images along with the EDS elemental maps were also demonstrated to show identical 

location of both sulfur and carbon signals, and that implies the nano-scale electrical 

contact between active sulfur of SDIB and carbon of rGO (Figure 4.5b).  

The chemical bonds between sulfur copolymer and OLA of rGO were formed 

during the mixing step, as confirmed by FTIR spectrum of SDrGO, in which alkyl 

CH=CH stretching band of OLA in rGO disappeared after the reaction with SDIB 

copolymers (Figure 4.6). The additional experiment of 1H NMR measurement with 
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SDIB/OLA mixtures at the same condition also revealed the consumption of the 

vinyl and allylic α-CH2 protons of OLA to afford SDIB-OLA copolymers (Figure 

4.7). 
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Figure 4.5 (a) TGA curves of Poly(S-r-DIB), Sulfur/rGO nanocomposites, and 

Poly(S-rDIB)/rGO nanocomposites. (b) STEM image and EDS elemental map of 

Poly(S-rDIB)/rGO nanocomposites. 
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Figure 4.6 FTIR spectra of SDrGO nanocomposite in comparison with GO, oGO, 

and rGO. 
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Figure 4.7 1H NMR spectra of SDIB-OLA copolymer with the same reaction 

condition for the synthesis of SDrGO Nanocomposites. 
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4.3.2 Electrochemical Characterization of SDrGO nanocomposites 

The SDIB, SrGO, and SDrGO cathodes for electrochemical analysis were 

separately prepared by mortar mixing of each with super P carbon and PVDF binder. 

In order to fix the total sulfur contents as 72 wt% in each of the cathodes, the addition 

of super P carbon in SDrGO cathode was reduced into 5 wt%, while as 15 wt% of 

super P carbon was added in each of SDIB and SrGO cathodes (Table 4.1). The 

charge-discharge voltage profiles and the cycling performance of the cathodes at 0.5 

C-rate (1C = 1,675 mA/g) are shown in Figure 4.8, and Figure 4.9, respectively. 

Stable capacity retention during 300 cycles was observed with SDIB cathode (850 

mAh/g, at 300 th cycle), although the initial capacity (985 mAh/g) was relatively 

low. On the other hand, the SrGO cathode exhibited high initial capacity (1,219 

mAh/g), but it underwent severe capacity fading during the cycles (598 mAh/g at 

300 th cycle). The SDrGO cathode exhibited not only high initial capacity (1,180 

mAh/g), but also superior capacity retention (960 mAh/g at 300 th cycle) compared 

to the others. Both of the DIB containing composite cathodes (SDIB and SDrGO) 

exhibited great capacity retention, and that is attributed to the role of DIB in the 

cathodes, as reported previously.104 Additionally, the rGO in the composite cathodes 

enhances the electrical conductivity of the cathodes and that is supposed to increase 

the initial capacity of the SrGO and SDrGO by sufficient utilization of active sulfur 

at the initial stage. The rate performances of the composite cathodes on varying C-

rates (0.1, 0.2, 0.5, and 1 C) is shown in Figure 4.9b, that also confirms the 

significant improvement of rate capability of the SDIB cathode, by the incorporation 
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with rGO. More interesting features of the composite cathodes are demonstrated in 

the charge/discharge profiles on varying C-rates as shown in Figure 4.10. The lower 

operating voltages and higher charging voltages, resulted from a severe polarization 

as increasing C-rates, was observed in SDIB cathode, while as SrGO and SDrGO 

cathode exhibited only negligible polarization at increased C-rate. These different 

voltage profiles are directly related to the overall performance of the Li-S cells, 

because the specific energy and specific power of the cells are estimated by the 

integration of the operating voltage values by the generated charges (Figure 4.11). 

The electrochemical reaction kinetics of the composite cathodes were further 

characterized with cyclic voltammetry (CV), and the positive and negative peak 

currents vs. square root scan rates (ν1/2) were plotted. The faster reaction kinetics of 

the rGO containing composite cathodes were shown at all scan rates of CV. The 

electrochemical impedance spectroscopy (EIS), measured before the cycling, also 

support the lower charge transfer resistance of SrGO and SDrGO cathodes compared 

to that of SDIB. These are the clear evidences of the enhanced electrical contact 

between rGO and active sulfur, achieved by the OLA medicated nano-scale inclusion 

of rGO in sulfur matrices. Furthermore, SDrGO cathode preserved high capacity 

retention during the cycles at high C-rate, due to the synergetic effect of DIB 

crosslinker with rGO, which resulted in the drastic improvements in specific energy 

and specific power of the Li-S cells. 
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 SDIB SrGO SDrGO 

Active Material 80 wt% 80 wt% 90 wt% 

Carbon 15 wt% 15 wt% 5 wt% 

Binder 5 wt% 5 wt% 5 wt% 

Sulfur Contents 72 wt% 72 wt% 72 wt% 

 

Table 4.1 Compositions of the cathodes for the electrochemical characterization 
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Figure 4.8 Charge/discharge voltage profiles of the cathodes at 10th cycle, 0.5 C. 
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Figure 4.9 (a) Cycling performances of SDIB, SrGO, and SDrGO cathodes at 0.5 C. 

(b) Rate capabilities of SDIB, SrGO, and SDrGO cathodes at varying C-rates. 
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Figure 4.10 Charge/discharge voltage profiles at constant current (0.1, 0.2, 0.5, and 

1 C) of (a) SDIB, (b) SrGO, (c) SDrGO cathodes. 
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Figure 4.11 Specific energy of the cathodes as a function of C-rate, calculated from 

the charge/discharge voltage profiles at constant current. 
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4.4. Conclusions 

 

We report on significant improvements in rate capability of polymeric sulfur 

cathode for the high energy Li-S batteries. The enhanced electrical contact in the 

cathode by nano-scale inclusion of rGO in SDIB polymers was facilitated by 

employing the dual reactivity of OLA, and that resulted in both faster 

electrochemical reaction kinetics and stable cycling performances at high C-rate. 

 



 102

Chapter 5. Surface Coating Layers on Sulfur 

Copolymers 

 

 

5.1. Introduction 

 

Lithium-sulfur (Li-S) batteries are considered as one of the most promising 

candidates for the next generation energy storage systems due to their high 

theoretical specific capacity (1,675 mAhg-1). However, it is still considered as a 

daunting task to achieve the theoretical capacity from the Li-S batteries because of 

irreversible loss of polysulfide active materials, the low electrical conductivity of 

sulfur (~ 10-15 Ω·m),42 and the mechanically induced damage to electrodes incurred 

from volumetric expansion of lithiated discharge products. In particular, higher order 

discharge products ranging between S8 and Li2S from the electrochemical reaction, 

polysulfides, are highly soluble in the electrolyte medium, thus they are continuously 

dissolved until Li2S is finally precipitated on the cathode during battery operation. 

When the polysulfides are precipitated as Li2S on the cathode during the redox 

reaction, they easily form chalks at the surface of the cathode without electrical 

contacts. The electrical isolation of the precipitated active species results in the 

serious loss of capacity by further impeding the electrochemical reaction. Moreover, 

the diffusion of these polysulfides through the electrolyte phase also leads to the 
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migration onto the Li anode side to form inactive deposits on the surface of Li metal, 

retarding the charging back to higher order polysulfides  (i.e., polysulfide shuttle).43  

In order to solve these critical issues, significant efforts have been placed 

particularly on tailoring the morphology of active sulfur species on the nanoscale. 

Significant improvements have been made by the use of sulfur/carbon composites,44-

50 where nano-sized sulfur was chemically or physically entrapped by carbonaceous 

materials. Carbonaceous encapsulation of sulfur has been reported to preserve the 

polysulfides within the vicinity of the cathode side as well as to enhance the electrical 

conductivity of the cathode. We reported on the chemical modification of elemental 

sulfur (S8) into copolymeric materials to prepare improved cathode materials for Li-

S batteries.112-114, 119 These high sulfur content copolymers were prepared via a 

process termed, inverse vulcanization, where a small amount of organic comonomers 

were copolymerized with elemental sulfur and stabilized the interphases between the 

lithiated and de-lithiated sulfur products during Li-S battery cycling. Highly stable 

capacity retention during several hundred cycles was achieved with this extremely 

simple synthetic chemistry.   

From the macroscopic viewpoint of sulfur cathodes, the polysulfides dissolved 

into electrolyte could remain within the bulk cathode, by adding interlayers between 

the cathode and a separator.126-131 Mostly, layers of carbonaceous materials or 

polymer electrolytes were deposited on the separators with the additional layers 

facing toward the sulfur cathode to prevent or minimize the diffusion of polysulfides. 

When applying the blocking interlayer in the Li-S batteries, conformal contacts 
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between the sulfur cathode and the interlayer should be taken into account, otherwise, 

the dissolved polysulfides could be irreversibly lost. 

Layer-by-layer (LbL) deposition using various polymers132-136 is known as an 

effective technique to produce conformal coating layers on various substrates with 

tunable thickness in the nm scale. There are many options of functional materials for 

the multilayer deposition based on the adsorption of one component on top of the 

other using various interactions such as electrostatic attraction, hydrogen bonding, 

or covalent bonding. Polyethylene oxide (PEO) has frequently been utilized in 

combination with polyacrylic acid (PAA) to form hydrogen-bonded PEO/PAA 

multilayers for ion conductive membranes, exhibiting superior lithium ion diffusion 

characteristics compared to other electrostatic multilayers using cationic 

polyelectrolytes such as polyallylamine hydrochloride (PAH) or polyethylenimine 

(PEI).137-139 However, LBL deposition has not been utilized to modify cathode 

electrodes to improve upon the properties of Li-S batteries which is the effort of the 

currently study. 

Herein, we demonstrate a new strategy enabling the conformal coating that is 

directly deposited onto sulfur cathode for Li-S batteries surface by layer-by-layer 

(LbL) deposition (Figure 5.1). The utilization of surface protecting layers 

conformally coated on the sulfur cathodes has not been reported. In a LbL deposition, 

the polymer multilayers were designed to have a composition of 

PAH/PAA/(PEO/PAA)n (n = 1, 3, and 5), and conformally deposited on the sulfur 

cathodes. We note that the multilayer-coated cathodes effectively prevented the 
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irreversible loss of polysulfides while providing Li ionic conduction without the need 

for lithium nitrate (LiNO3) in the electrolyte. These advances offer a facile, 

inexpensive methodology to improve the performance of sulfur based cathodes that 

can suppress polysulfide shuttling without the aid of electrolyte additives.  
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Figure 5.1 A schematic illustration of the layer-by-layer (LbL) deposition of a 

priming layer and (PEO/PAA) multilayers on sulfur cathodes. 
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5.2. Experimental section 

 

5.2.1 Conformal coatings on sulfur cathodes  

Materials: Polyallylamine hydrochloride (PAH, Mw = 15 000 g mol-1), polyacrylic 

acid (PAA, Mw = 50,000 g mol-1), polyethylene oxide (PEO, Mw = 300,000 g mol-

1), and bis(trifluoromethane)sulfonamide lithium salt (LiTFSI) were purchased from 

Sigma-Aldrich. 

Preparation of substrates: The sulfur powder (325 mesh) was purchased from Alfa 

Aesar. Super P carbon and polyvinylidene fluoride (pvdf) were provided from SK 

innovation. The slurry mixture was prepared by mortar mixing of sulfur (60 wt%) , 

super P (20 wt%), and pvdf (20 wt%), and then casted on an aluminum foil using 

doctor blade method, followed by drying in a vacuum oven for 12 hours. The 

carbon+binder substrates were prepared by the same procedure as described above 

for the sulfur cathode, but without sulfur powder inclusion. The sulfur substrate was 

fabricated by spin-casting of sulfur in carbon disulfide solution on gold substrate. 

Layer-by-layer deposition: The polymer solutions for layer-by-layer deposition 

were prepared by dissolving polymers in 18MΩ Milli-Q wtater (1 mg mL-1), and pH 

of each solution was adjusted using 0.1 M of HCl and NaOH. The rinsing solutions 

corresponding to each polymer solution with the same pH were prepared with Milli-

Q water. LiTFSI (0.1 M) was added to all polymer and rinsing solutions. For the 

deposition of priming layers, the sulfur cathodes were initially dipped into PAH (pH 

= 7.5) solution for 5 min and then spun at 1500 rpm for 30 s, followed by rinsing 
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with the Milli-Q water of the same pH at the same rpm. The PAA (pH = 3.5) solution 

was spun at the same condition, and then washed with the rinsing solution with the 

same pH. The layer-by-layer deposition was conducted on top of the priming layers 

with PEO (pH = 2.5) and PAA (pH = 2.5), by dipping for 5 min in each polymer 

solution and 1 min in rinsing solution, respectively. The cycle was repeated for the 

required number of bi-layers. After deposition, the cathodes were dried overnight in 

vacuum oven at 50 °C.   

 

5.2.2 Characterizations 

Morphology Characterization: Water contact angles were measured using a 

DE/DSA100 contact angle analyzer (Fruss Inc.). Scanning electron microscopy 

(SEM) images were obtained with JSM-6701F (JEOL). X-ray photoelectron 

spectroscopy (XPS) was conducted using Axis-HSi (Kratos) with Mg/Al dual anode 

at 15 kV and 10 mA.  

Electrochemical Characterization: All cathodes were punched into circular disks 

(diameter ~11mm) and assembled in a 2032 type coin cell. The electrolyte was 

prepared with 0.1 M lithium nitrate (LiNO3) and 1.0 M lihtium bistrifluoromethane-

sulfonimide (LiTFSI) in dioxolane (DIOX) and dimethyl ether (DME) 1:1 volume 

ratio mixture (PanaxEtec, Korea). Electrochemical properties were measured with a 

WBC300 cycler (Won-A Tech, Korea). The potential window was fixed to 1.7 V-2.8 

V vs. Li+/Li.  The electrochemical impedance spectroscopy (EIS) was performed 

at open-circuit voltage between 100 kHz to 100 mHz with fluctuations of 10 mV. 
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5.3. Results and discussions 

 

5.3.1 Conformal coatings on sulfur cathodes  

In general, the first adhesion or priming layer was the critical step to enable the 

stable growth of LbL multilayers. Particularly, the direct LbL deposition of 

hydrophilic (PEO/PAA)n multilayers on the sulfur cathodes was challenging due to 

the hydrophobicity and the lack of uniformity of the cathode surfaces coated using 

S8. Therefore, prior to the LbL deposition, PAH/PAA priming layers were first spin-

coated using aqueous solutions of PAH (pH 7.5) and PAA (pH 3.5) with 0.1 M of 

LiTFSI added salt. The molecular causality of the initial  priming of PAH/PAA 

layer on the S8 was attributed to the weak positive/negative charges and high ionic 

strength of these polymer solutions which sufficiently screened the long-range 

electrostatic repulsions and thereby enhanced the hydrophobic attractions of 

adsorbed chains to the cathode surface.144 Furthermore, the spin-assisted 

polyelectrolyte adsorption generated thinner and uniform surfaces compared to those 

formed by the dipping method, because the spinning of the substrates imposed shear 

forces on the adsorbing polymer chains such that they densely cover the surface.145-

147 In this process, the surface of the sulfur cathode is too rough and porous to observe 

the adsorbed priming layer through SEM. 

After the deposition of the priming layer (PAH/PAA) on the sulfur cathode, 

PEO/PAA multilayers were alternatively adsorbed by the dipping method using PEO 

and PAA solutions, both of which were prepared by adding 1 M of LiTFSI and 
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adjusting the solution pH at 2.5 to induce hydrogen bonding between ether oxygens 

of PEO and protonated carboxylic acids of PAA.148-149 By following the multilayer 

deposition procedure mentioned above, we were able to prepare robust conformal 

multilayered polymer coatings (optimally around 1-2 microns from 5-LBL bilayers 

on top of sulfur cathodes (thickness 50 microns deposited on Al foil). 

In order to confirm the uniform polymer layers on heterogeneous surfaces of the 

sulfur cathodes, the LbL multilayer deposition was performed on each of the cathode 

components. The surface of a sulfur cathode is typically composed of 3 different 

materials, sulfur powders (60 wt%), carbon black (20 wt%), and polyvinylidene 

fluoride (pvdf) binders (20 wt%), which are presumably randomly distributed on the 

surface. The cathode components were separated into two different substrates, S8 

substrates and carbon+binder substrates, and the multilayer deposition procedure 

described above for the S8 cathode coating was performed. The polymer adsorption 

behavior on different substrates was investigated by contact angle measurements 

(Figure 5.2g). All of the substrates tested were initially hydrophobic (104.1, 164.9, 

and 144.4 ° for S8, carbon+binder, and sulfur+carbon+binder substrates (i.e., S8 

cathode), respectively), but during the sequential deposition of multilayers up to 

PEO/PAA 5 bilayers, the contact angles of 3 different initial substrates significantly 

decreased to 24.7, 13.4, and 16.2 °, respectively. Even lower water contact angles of 

carbon+binder substrates and S8 cathode, when compared to the sulfur only substrate, 

could be partly explained by much more porous and rough surface morphologies of 

them (Figure 5.3). The surface and cross-sectional SEM images of a bare sulfur  
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Figure 5.2 SEM images and photo images of water droplets on: a) a pristine S8 

cathode, and b) a PAH/PAA/(PEO/PAA)5 multilayer-coated cathode. A cross-

sectional SEM image of: d) a pristine S8 cathode, and e) a PAH/PAA/(PEO/PAA)5 

multilayer-coated cathode. c) A cross-sectional SEM image of a 

PAH/PAA/(PEO/PAA)5 multilayer-coated cathode for EDS analysis. f) An Oxygen 

(orange) elemental map by EDS of the PAH/PAA/(PEO/PAA)5 multilayer-coated 

cathode. g) The changes in contact angle as a function of adsorbed polymer layers 

on the substrates of S8-only, carbon + binder, and S8 + carbon + binder (i.e., S8 

cathode). 
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Figure 5.3 SEM images of a) an as-prepared carbon+binder substrate, b) a 5 bilayer-

coated carbon+binder substrate, c) a bare sulfur substrate, d) a 5 bilayer-coated sulfur 

substrate. 
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cathode confirms the porous and rough surface morphologies, in which carbon black 

particles with approximately 50 nm in diameter mostly cover the electrode surface 

(Figure 5.2b and e). After the PEO/PAA 5 bilayer deposition, the surface is 

conformally passivated by the polymer multilayers of 2 µm in thickness as observed 

in the SEM image, leading us to believe that the polymers deeply penetrated inside 

the cathode through the pores (Figure 5.2c and f). The LbL coatings of PEO/PAA 

deposited in the absence of PAH/PAA priming layers, however, did not show such 

drastic morphological changes, nor uniform increased film thickness (Figure 5.4 

and 5.5). The successful conformal coating on the S8 cathodes with 

PAH/PAA/(PEO/PAA)n multilayers were also confirmed using SEM-EDS and XPS 

(Figure 5.6 and 5.7). 
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Figure 5.4 SEM images of sulfur cathodes showing the morphological changes 

during the deposition of (PEO/PAA)n, n=1, 3, and 5, with and without priming layer 

of (PAH/PAA). 
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Figure 5.5 Multilayer thickness growth as a function of bilayer numbers during the 

LbL deposition of PAH/PAA/(PEO/PAA)n multilayers on Si wafer substrates. 
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Figure 5.6 Elemental maps and EDS spectrafor a pristine sulfur cathode and a 

(PEO/PAA) 5 bilayer-coated sulfur cathode. 
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Element 

[wt%] 

Bare 

Cathode 

PEO/PAA 5 bi-layer 

Cathode 

C 72.41 53.07 

O - 10.72 

F 15.07 18.67 

Al 7.95 16.54 

S 4.24 1.00 

Totals 99.67 100.00 

Table 5.1 Weight fraction of elements estimated from EDS spectra on a pristine 

sulfur cathode and a (PEO/PAA) 5 bilayer-coated sulfur cathode. 
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Figure 5.7 XPS spectra of a pristine sulfur cathode and a (PEO/PAA) 5 bilayer-

coated sulfur cathode. 
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5.3.2 Elctrochemical Characterizations 

The electrochemical stability of the multilayer-coated cathodes was investigated 

integration into 2032 coin cell Li-S batteries and galvanostatic cycling studies of 

these devices at 0.5 C rate (1 C = 1675 mAg-1).  The electrolyte system used in 

these studies were 1M LiTFSI in dioxolane/glyme with 0.33 M LiNO3. The 

charge/discharge voltage profiles of the sulfur cathodes with different numbers of 

polymer bilayers are shown in Figure 5.8a-d. The region of the upper plateau at ~2.4 

V in the discharge profile is believed to originate from the dissolution reaction, 

where solid sulfur is reduced to soluble polysulfides (S8 to Sn
2-, n=8-4) upon 

lithiation (Figure 5.9).150 In this region, the decrease in the specific capacity during 

initial 10 cycles is denoted as “ΔQ”, which mainly results from the irreversible loss 

of active sulfur due to the formation of soluble polysulfides, thus ΔQ is directly 

related to the surface protecting or passivation characteristics of the sulfur cathodes. 

The ΔQ value of the bare cathode without surface passivation is the largest (164 

mAhg-1) and this ΔQ value decreases to 106, 92, and 81 mAhg-1 with 1, 3, and 5 

bilayers of surface coating on the sulfur cathodes. Such decrease in the ΔQ value as 

a function of bilayer number indicates the effective suppression of polysulfide 

dissolution into electrolytes by the (PEO/PAA)n multilayer coatings. Meanwhile, a 

slight increase in the charge-discharge overpotential was found with 5 bilayers 

coated on the cathode in Figure 5.8d. The slight increase in the overpotential is 

believed to be due to the reduction in lithium ion conductivity through the thicker 
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Figure 5.8 a) The charge/discharge voltage profiles of a pristine sulfur cathode and 

b)-d)1, 3, and 5 bilayer-coated sulfur cathodes.  
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Figure 5.9 A schematic description of the specific capacity decrease in dissolution 

region, indicated with the discharge voltage profiles. 
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multilayers deposited on the cathode. In this regard, it is noted that there is a trade-

off point between ΔQ and the overpotential, suggesting that there is an optimum 

number of bilayers for the effective surface passivation. 

The discharge capacities of sulfur cathodes with different number of (PEO/PAA)n 

bilayers are presented in Figure 5.10a. As hinted from the decrease in ΔQ, the 

(PEO/PAA)n multilayer passivated cathodes retain much higher specific capacity up 

to 100 cycles, while the pristine sulfur cathode shows the rapid capacity fading even 

after first 10 cycles. As mentioned above, there is an optimum (PEO/PAA) bilayer 

deposited on the sulfur cathode to reveal the best electrochemical performance. In 

our system, 3 (PEO/PAA) bilayers coated on the cathode exhibit the best capacity 

retention (806 mAhg-1) even after 100 cycles (i.e., 70.27 % capacity retention with 

respect to the initial capacity), while 42.46 %, 48.24 %, and 64.37 % capacity 

retentions were obtained for pristine cathode, 1-bilayer, and 5-bilayer coated 

cathodes, respectively. On the other hands, the cycling performance of (PAH/PAA)n 

multilayer-coated cathodes is worse than (PEO/PAA)n multilayer-coated cathodes, 

presumably due to the slow Li+ diffusion through the electrostatic multilayers of 

(PAH/PAA)n,137-139 compared to that through the hydrogen bonded multilayers of 

(PEO/PAA)n. The structural and surficial stabilities of the (PEO/PAA)n multilayer-

coated cathodes during the cycles were also confirmed using EIS and SEM (Figure 

5.11 and 5.12, respectively).  

The influence of C-rate (0.1 to 2.0 C, 10 cycles for each) on the capacity retention 

behavior of the multilayer-coated cathodes was investigated in Figure 10b. The  
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Figure 5.10 a) Cyclic performance of a pristine sulfur cathode and 1, 3, and 5 

bilayer-coated sulfur cathodes. b) The C-rate capability of a pristine sulfur cathode 

and (PEO/PAA) 1, 3, and 5 bilayer-coated sulfur cathodes.  
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Figure 5.11 Electrochemical impedance spectroscopic (EIS) data on a pristine sulfur 

cathode and 1, 3, and 5 bilayer-coated sulfur cathode measured before cycling, and 

EIS data on a pristine sulfur cathode and 1, 3, and 5 bilayer-coated sulfur cathode 

measured after an initial one cycle and 10 cycles. 
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Figure 5.12 SEM images of: a) a pristine sulfur cathode and b) a 5 bilayer-coated 

cathode after 10 cycles. 
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abrupt decreases in the capacities were observed over 1.0 C with the pristine S8 

cathode, and at 2.0 C with one bilayer-coated cathode. The polysulfide diffusion with 

insufficient protection on the surfaces of these cathodes results in the gradual 

decomposition of electrical contacts between the carbon framework and sulfur 

products during repeated cycles, and that leads to the limited utilization of active 

sulfur, particularly, at high C-rate. On the other hand, three and five bilayer-coated 

cathodes retained high capacity retention, even at 2 C, which was clear evidence of 

the effective protection from the polysulfide diffusion by the sufficient multilayer 

coatings on S8 cathodes.  

The cycling performance of the different cathodes was also tested without the 

addition of LiNO3 in the electrolytes (Figure 5.13), which is known to be the 

common additive to suppress the shuttle effect of polysulfides, although all the other 

electrochemical characterizations in this work were conducted with LiNO3 salts. The 

Li-S batteries without LiNO3 salts are prone to the chemical reaction between 

polysulfides and Li anode,43 thus the cycling in the absence of LiNO3 salts gives us 

insight on the effect of the passivation multilayers on the loss of polysulfides during 

repeated cycles.  Furthermore, recent reports have cited concerns on the long term 

cycling issues using LiNO3 additives, further prompting removal of these salts and 

evaluating device performance with LBL cathode coatings The “bare” S8 cathode 

without passivation bilayers shows a drastic decrease in the specific capacity (141.32 

mAhg-1) as well as poor coulombic efficiency (28.17 % at 84th cycle) and the 

battery function is stopped after 84 cycles due to the polysulfide shuttle effect.  
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Figure 5.13 Cyclic performance and coulombic efficiency at 0.5 C of a pristine 

sulfur cathode and 1, 3, and 5 bilayer-coated sulfur cathodes without LiNO3 salts in 

the electrolytes. (coulombic efficiency = charge capacity/discharge capacity) 
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However, we observe the suppression of polysulfide by the LBL coating of 

PEO/PAA bilayers as evidenced by significant retention of charge capacity out to 

100 cycles (618.5 mAhg-1, 744.9 mAhg-1, and 715.3 mAhg-1 at the 100th cycle for 1, 

3, and 5 (PEO/PAA) bilayers, respectively). Moreover, high coulombic efficiency of 

the multilayer-coated cathodes (77.1 %, 83.83 %, and 86.70 % after 100 cycles for 

1, 3, and 5 bilayers, respectively) is directly attributed to the effective passivation of 

the polysulfide shuttling. 

The suppression of polysulfide dissolution was also confirmed in the experiment 

with excess electrolytes of beaker cells, assembled with a pristine S8 cathode or a 

multilayer-coated cathode (Figure 5.14), where the extent of polysulfide dissolution 

was found to be significantly lowered with the multilayer-coating, as noted by optical 

absorbance spectroscopy (with absorptions at 430 nm (Sx2- (x = 4-8)) and 620 nm 

(S3·-)). 
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Figure 5.14 UV-Vis Spectra and Photo images of the electrolyte solutions, at 5 mins 

after applying a constant voltage at 1.5 V to the beaker cells, assembled with pristine 

sulfur cathode, and 5-bilayer-coated cathode. 
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5.4. Conclusions 

 

In conclusion, (PEO/PAA) multilayers deposited on sulfur cathodes by the LbL 

method effectively improve the capacity retention of lithium-sulfur batteries, by 

successful blocking of intermediate polysulfides dissolving into electrolyte solution.  

We think that these simple and inexpensive cathode passivation methods are quite 

practical and scalable for the large scale production of sulfur copolymer cathodes in 

industry, and expected to be widely utilized in different types of electrochemical 

devices.  
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국문 초록 

 

황은 자연환경과 밀접한 관계 속에서 상호작용하기 때문에 인류의 

삶에 큰 영향을 미친다. 또한 황은 전 세계적인 원유정제 과정 속에서 

폐기물로서 과잉 생산되고 있는 실정이다. 따라서 황을 활용할 수 있는 

화학적 기법을 개발하는 연구의 필요성이 대두된다. 황은 기능성 

신소재로서의 많은 독특한 특성을 지니고 있으나, 기계적 / 화학적으로 

취약한 성질 때문에 가공되어 활용되지 못해왔다.  

본 박사학위 논문은 황의 분자구조 개질 및 내부 나노재료 복합화, 표

면 개질을 통해 기능성 및 가공성을 향상시킴으로써 광학소자 및 차세대 

배터리 양극재 등 다양한 분야로의 활용에 관한 연구로서, 1장에서는 황

의 물리화학적 특성 및 기능성에 대한 소개 및 응용분야 적용을 위한 해

결과제를 제시한다.  

2장에서는 황 본연의 우수한 기능성을 담지하면서 가공성을 획기적으

로 향상시킨 황 공중합체를 합성하였고, 향상된 열가소성 및 용해성 등

에 대해 분석하였다. 황 공중합체의 향상된 물리화학적 특성을 이용한 

용융공정 및 용액 공정 기술을 개발하였고, 이를 광학적, 전기화학적 에

너지 저장 소재 등에 활용하여 기존의 유기 고분자 물질에 비해 획기적

으로 향상된 성능을 구현하였다.    
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3장과 4장에서는 각각, 황 공중합체의 기능성을 한 층 더 향상시키기 

위해, 무기나노입자 및 그래핀과의 하이브리드화를 진행하였다. 올레일 

아민의 독특한 이중 반응성을 활용함으로써, 황-올레일 아민 공중합체

가 형성되는 동시에, 아민 작용기가 무기나노입자나 산화 그래핀 표면에 

결합하여, 나노 규모의 하이브리드 물질을 합성하였다. 특히, 합성된 그

래핀-황 공중합체 하이브리드 재료는 황 공중합체의 전기전도성을 획기

적으로 향상시킴으로써, 리튬-황 이차전지 전극으로 활용하였을 때, 기

존에 비해 개선된 출력성능을 보였다.    

5장에서는, 황 및 황 공중합체 기반의 양극재 표면의 직접적인 개질을 

통한 리튬-황 이차전지 전극의 성능 개선에 대한 연구를 진행하였다. 

다층박막 적층법을 활용하여, 황 양극재 표면에 균질한 박막을 형성하여, 

이에 따른 표면 특성 변화를 분석하였다. 황 표면의 확산방지막 형성을 

통해, 안정적인 전기화학 반응을 지속시킴으로써 리튬-황 이차전지의 

수명 연장에 기여할 수 있음을 보고하였다.        

이러한 일련의 연구 결과들을 바탕으로, 황의 분자구조적 측면과 나노

미터 및 마이크로미터 수준의 복합적 개질을 통해 황을 활용한 광학소자 

및 배터리 전극의 성능을 획기적으로 향상시킬 수 있음을 보였다. 
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주요어 : 황 공중합체, 하이브리드, 표면 개질, 리튬-황 전지, 컨포멀 

코팅 
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