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ABSTRACT 

Flow Dynamics of Highly Elastic Fluids  

in 4:1 Microcontraction Channel 

 

Lee, Daewoong 

School of Chemical and Biological Engineering 

The Graduate School 

Seoul National University 

 

 The structure of viscoelastic flow through contraction geometry has been 

one of the benchmark problems in rheology. Especially, formation of vortex is 

very important issue. Vortex is not a desirable phenomenon in practical 

applications such as polymer processing. It causes defects in products with the 

residence time of material. So there have been many investigations of dynamics of 

vortex in contraction geometry to understand it. However, there was only little 

attention given to the dynamics of purely elastic flows in contraction channel, 

particularly, unstable flows caused by elasticity. In this thesis, sequence of flow 

patterns developed by elasticity was investigated. Moreover, the phenomenon in 

transition state, before reaching steady state, and the dynamics of flows after steady 

state were studied. 
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 Three main goals have been pursued in this thesis. The first objective of 

this study was to figure out the structure of elastic flow in contraction geometries. 

The flow patterns of viscoelastic fluids flowing inside 4:1 planar contraction 

microchannels were investigated and quantitatively analyzed. Micro-devices 

enhanced the elastic effects with theirs small dimension, and they can also easily 

monitor the flows with high resolution visualization technique. A wide range of 

Weissenberg number (Wi ) flows of poly(ethylene oxide) solutions were observed 

while maintaining low Reynolds number (O(10-2)> Re ). The flow pattern changed 

from a Newtonian-like flow to a flow with a vortex growth region, during which a 

divergent flow and lip vortex were also observed depending on the elasticity 

number ( El ) and aspect ratio. The flow pattern in the contraction microchannel 

was found to be diverse and abundant depending on the aspect ratio and elasticity 

number. (Chapter 3) 

 In the second part of the study, the relationship between transient flow 

behavior at high Wi  and steady state flows at lower Wi  was verified to establish 

time-Wi  superposition experimentally. As the Weissenberg number (Wi ) increased, 

the flow developed from a Newtonian-like flow to vortex growth, and the transient 

start-up flow at high Wi  was found to experience all the steady patterns at lower 

Wi  flows. The flow sequence was different depending on the fluids and channel 

dimensions as above. However, in all of the cases we could reach, the steady 

patterns at each low Wi  flow could be matched 1:1 with the transient patterns at 

each high Wi  flow. The plot of Wi  and time when the two sets (transient and 
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steady) were matched showed a clear functional relationship, from which the time-

Weissenberg number superposition could be confirmed. (Chapter 4) 

 As the last part of thesis, dynamics of unstable flows were examined and 

characterized. In chapter 3 & 4, the flows were stable. However, as the 

Weissenberg number increased, by increasing either the shear rates or the elasticity 

of the fluids, the vortex fluctuated with a certain period. To reach the unstable state, 

highly elastic fluids ( wM =5 106 g mol-1, PEO solutions) were used. In unstable 

flows, the vortex fluctuates constantly. At first it oscillates with certain periods, it is 

oscillating vortex. The oscillating vortex was symmetric at first and became 

asymmetric with various patterns. As the elasticity increased further, the vortex 

randomly fluctuated without any certain time period. The Lyapunov exponent for 

the change in vortex size was positive, meaning that the flow was spatially chaotic. 

(Chapter 5) 

 This thesis systematically analyzed the flow patterns of the elastic fluids in 

the micro-contraction flow, which included; Newtonian-like flow, divergent flow, 

steady vortex growth, oscillating flow with symmetry, oscillating flow with 

asymmetry, and chaotic flow. 

 

 

Keywords: microfluidics, contraction geometry, viscoelastic flow, aspect ratio, 

time-Weissenberg number superposition, unstable flows 

Student Number: 2009-30245 
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1. Introduction 

1.1. Flow dynamics in contraction geometry 

 

 The flow behavior of viscoelastic fluids is important not only in classical 

polymer processing but also in new technologies such as ink jet printing, so the study 

of this topic is motivated largely in processing operations. (Boger 1987) 

Understanding the mechanism of diverse flow dynamics for the non-Newtonian fluids 

depending on their condition (such as flow rate, channel geometry or properties of 

fluid) is an important issue for those processes to control the process. So there are a lot 

of studies about viscoelastic flows to make high quality products with high throughput 

(Hertel & Münstedt 2008). Especially, the contraction flows of viscoelastic fluids are 

one of the benchmark problems in rheology. Contraction and expansion geometry is 

inevitable in most of processing operations, and vortex enhancement is an important 

characteristic of viscoelastic flows in contraction geometry. Vortex formation is 

detrimental to the industrial processes because it causes waste of the resins and 

limitation on the production rates when the materials, particularly polymeric 

materials,rotate in vortex for a long time (Chiba et al. 1995; Haste 2007). 

 Therefore, there have been many studies about viscoelastic contraction flows 

(Boger 1987; White et al. 1987; Chiba et al. 1992; Owen & Phillips 2002; Boger & 

Walters 1993; Nigen & Walters 2002). Vortex could be generated with Newtonian 

fluids in contraction geometry under certain condition (Viriyayuthakorn & Caswell 

1980; Boger et al. 1986), but viscoelastic fluid forms distinctive flow patterns, 
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including vortex, under wider range of flow conditions. When the flow rate or the 

elasticity of a fluid is small, the flow pattern is fairly simple and easy to control. 

However, as the shear rate or the elasticity increases, vortex enhancement is observed, 

and many distinct flow patterns appear (Boger 1997; Nigen & Walters 2002; Cable & 

Boger 1978, 1979; Nguyen & Boger 1979; Walters & Webster 1982). The mechanism 

behind the formation of these diverse flow patterns is still unclear because it is 

affected by number of parameters such as channel geometry, shear rate and fluid 

elasticity. The effect of these parameters have been covered with many experimental 

studies: the rheological properties of the fluids, contraction shape (abrupt, tapered, 

rounded, and hyperbolic), types of contraction (planar, square, and axisymmetric), 

flow rate, contraction ratio (Boger 1986; McKinley et al. 1991; Rodd et al. 2005; 

Rodd et al. 2007; Evans & Walters 1986; Evans & Walters 1989; Rothstein & 

McKinley 2001; Rodd et al. 2005; Schuberth & Münstedt 2008; Alves et al. 2008; 

Yesilata et al. 1999; Yesilata et al. 2000; Cogswell 1972; Yasuda & Sugiura 2008; 

McKinley et al. 2007; Oliviera et al. 2007; Sousa et al. 2009). 

 The main purpose of studying viscoelastic flow dynamics in contraction 

geometry under number of circumstances as above is to predict and understand the 

kinematics of flow, especially, when elasticity increased. Flow patterns, such as vortex 

enhancement, have been observed by various methods like laser-Doppler velocimetry 

(LDV), particle tracking velocimetry, and long-exposure images (Lawler et al. 1986; 

Raiford et al. 1989; Santiago et al. 1998; Raffel et al. 1998; Meinhart et al. 1999; 

Alves et al. 2008; Rodd et al. 2007; Dembek 1982). These flow-visualization methods 

can be divided into nonintrusive method like hot wire or pressure tube and intrusive 
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method using probes, and also can be divided into indirect or direct methods. In this 

study, particle streak image technique, which is intrusive and direct, was used to 

capture exact visual of flow patterns, even in unstable flows. 

 Many of above studies have investigated the viscoelastic flows, and the flow 

instability from the elasticity of fluid has received special attention. Among above 

factors that affect flow conditions, the effect of elasticity has been the focus not only 

for the flow in the contraction geometry but also for many other flows. In particular, 

there has been much interest in flow instability which is caused by purely elastic flow 

characteristics. There have been many studies on the effect of elasticity on flow 

patterns inside contraction channels (Pakdel & Mckinley 1996; Bonn & Meunier 1997; 

Kwon 2012; Kwon & Park 2012). In those studies, polymer solutions were used to 

induce elastic instability. When experiments were performed with elastic fluids with a 

simple shear flow, curved streamlines were observed at a low shear rate unlike 

Newtonian fluids. Depending on the type of polymer, the pattern for the streamline 

changed, from which the effect of elasticity on flow instability could be deduced. 

Groisman reported how the mechanism of flow destabilization by elasticity is 

different from that of inertia (Groisman & Steinberg 1998). 

 Studies on contraction flows have mostly been done with macro scale channels 

(i.e. channel size was on the order of millimeters or larger). Macro channels have 

advantages in dealing with highly viscoelastic fluids. However, it is not easy to 

generate a high shear rate with devices using such a large length scale. In addition, it 

is difficult to observe the purely elastic effect because the Reynolds number also 

becomes large at a high shear rate. It becomes hard to distinguish whether flow 
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instability comes from elasticity or from inertia. 

 Therefore, it can be advantageous to use microfluidic devices, in which a high 

deformation rates can be attained while maintaining a low Reynolds number. In other 

words, a high Weissenberg number (characteristic time of the fluid ( ) multiplied by 

the characteristic shear rate ( ), Wi  ) flow could be explored while maintaining a 

low Reynolds number due to the small scale length of the microchannel. The effect of 

elasticity on flow could be observed while keeping the inertial effect minimal 

(Groisman & Quake 2004; Mitchell 2001; Whitesides 2006; Rodd et al. 2005; Rodd et 

al. 2007; Gulati et al. 2008). Diverse flow patterns including vortex formation caused 

by elasticity at a high Weissenberg number have been reported by both experiments 

and simulations. (Rodd et al. 2005; Rodd et al. 2007; Alfonso et al. 2011) In addition, 

the Elasticity number ( /El Wi Re ), which is the Reynolds number divided by the 

Weissenberg number, has also been used to explain such a diverse flow development 

in microchannel studies (Rodd et al. 2007). 

 Flow dynamics, especially vortex, in sudden contraction has been also a 

classical benchmark problem in computational studies (Owen & Phillips 2002; Alves 

2008), and many simulations were also performed in an effort to understand the 

dynamics of a highly elastic flow with low Reynolds number (Alfonso 2011). It was 

demonstrated by both experiment and simulation that a vortex is formed with a high 

Weissenberg number even when there is no inertial force. 

 In the contraction flow for the macro-size, also in numerical simulation, a lip 

vortex often appeared as the Weissenberg number increased. However, in planar 
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contraction channels whose width is on the order of tens or hundreds of micrometers, 

there have been many cases where a lip vortex did not appear and a unique flow 

pattern called a divergent flow appeared. A divergent flow is the flow in which the 

location of the maximum flow velocity is not right above the point of the contraction 

but is moved upstream due to fluid elasticity, resulting in a distortion of the flow. This 

phenomenon was also demonstrated in a simulation using the upper-convected 

Maxwell (UCM) model (Alves & Poole 2007). 

 Most of the previous studies have focused on the flow patterns at steady states, 

while experimental studies on the transient behavior have rarely been performed. 

There are some simulations about transient of start-up flow in contraction or 

constriction (contraction-extension) geometry. Bishko et al. calculated how vortex 

formed when the viscoelastic fluid flows though a 4:1 contraction geometry at various 

Weissenberg number. There also exists a study on the transient behavior, in which the 

center of the vortex changes its motion when the pressure drop changes to slow 

growth in the start-up flow (Szabo et al. 1997). Kim et al. performed a numerical 

study and reported that the transient flow at a certain Weissenberg number 

experienced all the steady flow patterns at lower Weissenberg numbers, and suggested 

the principle of superposition of the time and the Weissenberg number. In their graph 

of the time-Weissenberg number superposition, the slope changed at the point where 

the lip vortex and the corner vortex merged. 

 There have been also experimental studies about transient flows in contraction 

geometry. The flow characteristics of polymer solutions were studied experimentally 
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by McKinley et al. in terms of the Deborah number ( /De   ) which is defined as 

the relaxation time of the fluid ( ) divided by the processing time ( ). When the 

velocity profile was measured near the contraction, it fluctuated due to the change in 

elasticity even when no significant external change was observed. Depending on the 

Deborah number and the contraction ratio, the velocity fluctuation was either periodic 

or non-periodic, and a map of the flow regimes could be drawn. They analyzed the 

fluctuation of the velocity profile due to the elasticity. The flow pattern was in a 

steady state with a steady streamline over time, and only the flow velocity fluctuated 

due to elasticity. The unsteady state in which the vortex was fluctuating was not 

studied in detail. In the studies where macro-size contraction geometry was used, the 

flows with high Weissenberg numbers could not be reached due to the limitation of the 

shear rate, and flow dynamics has been studied mostly in steady states. There were 

some reports on the vortex oscillation that arises due to elasticity (Yesilata et al. 1999; 

Alves, et al. 2005; Kwon 2012). 

 In all the above studies, flow dynamics in contraction geometry has been 

studied extensively. However, detailed characteristics or the flow patterns in the 

unsteady region, caused purely by the elasticity of the fluid, have not been explored 

yet even in micro-scale devices. Because flow behaviors like vortex enhancement 

could be observed without using highly elastic liquids, dilute polymer solutions have 

been widely used. While Rodd et al. dealt with the time-dependent diverging flow, 

most researches have not covered unsteady flow dynamics such as the vortex 

fluctuation after the steady vortex. 
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1.2. Outline of the thesis 

 

 The objectives of this study are to examine and characterize diverse flow 

patterns of viscoelastic fluids inside micro-fabricated 4:1 contraction planar channels. 

Not just the flow patterns or the formation of the vortex but also sequence of flow 

enhancement were observed. The flow patterns developed from a Newtonian-like flow 

to a flow with a vortex growth regime in which the corner vortex grew as the 

Weissenberg number increased. The flow development was affected by various flow 

conditions. 

 In section 3, to understand the effects of the channel aspect ratio and elasticity 

number among the many factors, the changes in flow patterns were observed and 

analyzed with various micro-channels of constant height and different sizes and with 

fluids of different elasticity. 

 In section 4, all the transient flow patterns at the initial high Weissenberg 

number flow were compared and matched to the flow patterns at steady states at lower 

Weissenberg numbers by changing the fluid elasticity and the channel dimension. By 

doing this, whether the time-Weissenberg number superposition, which was proposed 

by numerical simulation, was a principle involved in the complexity of this flow or 

simply was just the result of numerical artifact was examined. 

 In section 5, the flow pattern as well as its change over a wide range of 

Elasticity number and Weissenberg number was studied through flow visualization, 

and systematical analysis of the flow profiles was performed. Especially, highly 

elastic fluids and one smaller dimension channel were used to get high Weissenberg 
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number flows, while keeping the Reynolds number small (O(10
-2

)> Re ). With those, 

even unstable flows, caused by elasticity, were quantitatively analyzed. 
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2. Experimental Section 

2.1. Fluids 

 

Polyethylene oxide (PEO) which is a commonly used water-soluble polymer 

was used in this study. Various polyethylene oxide (PEO, Sigma Aldrich, USA) 

solutions were prepared with two different molecular weights: 0.3wt%, 0.4 wt%, 0.5 

wt%, 0.6 wt%, 0.7 wt% and 1.0 wt% (molecular weight of 2 10
6
 g mol

-1
), 0.4wt%, 

0.6wt%, 0.7wt%, 0.8wt%, and 1.0wt% (molecular weight 5 10
6
 g mol

-1
) 

These solutions were applied to 4:1 microcontraction geometries for 

investigating various flow patterns. The steady shear viscosity of each solution was 

measured using a strain-controlled rheometer (ARES, TA Instruments, USA) with 

60mm parallel plates at 25ºC. The viscosity curves as a function of the shear-rate are 

shown in Figure 2.1 and 2,2. Solutions of Figure 2.1 were used for section 3, and 

solutions of Figure 2.2 were used for section 4 and 5. The zero-shear viscosities, 

obtained by fitting with the Carreau model: 

2 ( 1) / 2

0[1 ( ) ] n     ,                                 (2.1) 

The relaxation time was measured using a capillary breakup extensional 

rheometry (CaBER), which is appropriate for the measurement of low viscosity 

polymer solutions. (Rodd et al. 2004) The zero-shear viscosity and the relaxation time 

of each solution are provided in Table 2.1 and Table 2.2. The range of relaxation times 

for the solutions measured by CaBER were 14< <82 ms, and the zero-shear viscosity 

was in the range of 00.009 39 Pa s   . All solutions showed shear thinning at high 
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shear rates. 
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Figure 2.1. Steady shear viscosity data for 0.3 wt%, 0.4 wt%, 0.5 wt%, 0.6 wt%, 0.7 

wt% and 1.0 wt% ( wM =2 10
6
 g mol

-1
) PEO solutions. 
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Figure 2.2. Steady shear viscosity data for 0.4 wt%, 0.6 wt%, 0.7 wt%, 0.8 wt% and 

1.0 wt% ( wM =5 10
6
 g mol

-1
) PEO solutions. 
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Table 2.1. Rheological properties of solutions at 25ºC. (PEO of wM = 2 10
6
 g mol

-1
) 

PEO 

concentration 
0.3 wt% 0.4 wt% 0.5 wt% 0.6 wt% 0.7 wt% 1.0 wt% 

0  (Paㆍs) 0.009 0.015 0.026 0.035 0.055 0.20 

  (s) 14 16 18 20 22 25 

 

Table 2.2. Rheological properties of solutions at 25ºC. (PEO of wM = 5 10
6
 g mol

-1
) 

PEO 

concentration 

5M  

0.4wt

% 

5M  

0.6wt

% 

5M  

0.7wt

% 

5M 

0.8wt

% 

5M 

1.0wt

% 

0 (Paㆍs) 0.81 3.5 7.7 8.2 39 

  (ms) 46 46 50 52 82 
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2.2. Micro devices 

 

The experiments were performed in a 4:1 planar contraction channel with the 

following dimensions. They are six contraction channels, with schematics shown in 

Figure 2.3 (a), and the channel size, listed in Table 2.3, was from 160 μm : 40 μm to 

800 μm : 200 μm. The height of the channels was fixed at 70 μm for all the channels. 

In this manner, the aspect ratio of the channels ( Λ ), defined by the ratio of the height 

to the upstream width ( uw ), could be varied from 0.068 to 0.438. 

 To observe the effect of the aspect ratio of the channel on the change in flow 

pattern and universality of time-Weissenberg number superposition, experiments were 

performed with channels of different size. The direction of flow is y . Figure 2.3 (b) 

shows a microscopic image of cross-sectional view. Corner angle was nearly 90º with 

range of 88º < angle < 91º.  

The channel was constructed using poly(dimethylsiloxane) (PDMS, Sylgard  

184A, Dow Corning), with a mold made with thick photo-resist (SU-8 50, 

MicroChem Corp., USA) and high-resolution chrome mask. (McDonald et al. 2000; 

Anderson et al. 2000; Whitesides & Stroock 2001; Strook & Whitesides 2002; Rodd 

2006) SU-8 was spin coated with a uniform thickness onto a silicon wafer, and the 

mold was patterned by soft-lithography of the chrome mask. PDMS was poured over 

the pattern and the transparent PDMS channel was obtained after heating in an oven. 

The experiments were performed using these channels attached to a cover glass which 

was thinly coated by PDMS at a thickness of 5 to 7 μm. The ratio of the PDMS to the 
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curing agent (Sylgard 184B, Dow Corning) was 10:1. Each part (the channel and the 

PDMS-coated cover glass) were baked in oven at 80°C for 30 min, and then baking 

bonded channel in oven at 80°C over 24 hours. The adhesive strength of the PDMS 

coated cover glass was higher than that of a piece of cover glass with no surface 

treatment. Thus, the channel made with the PDMS coated cover glass showed 

improved durability, and the four walls in the channel had the same hydrophobicity. 
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(a)  

(b)  

Figure 2.3. (a) A schematic of the 4:1 sudden contraction geometry: uw  = upstream 

width of channel, cw  = width of contraction, h  = depth of channel. (b) Photo of 

cross-section of the actual channel 3. 
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Table 2.3. Dimensions of the channels. 

 
uw : cw  h  

Aspect ratio 

uΛ=h/w  
Magnification 

Channel 1 160μm:40μm 

50 - 55 μm 

0.34  x20 

Channel 2 180μm:45μm 0.30  x20 

Channel 3 200μm:50μm 0.27  x20 

Channel 4 400μm:100μm 0.13  x10 

Channel 5 600μm:150μm 0.091  x10 

Channel 6 800μm:200μm 0.068  x4 
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2.3. Visualization 

 

 To visualize the flows through 4:1 contraction channels, particle streak 

imaging method was used. A schematic of the imaging setup was shown in Figure 2.4. 

For flow visualization, 0.02wt% red fluorescent particles (Molecular Probes 

FluoSpheres, Introvigen Corp., USA) with a 1.0 μm diameter (excitation/emission = 

520/580 nm) were dispersed throughout the fluid. A mercury lamp (IX-71, Olympus, 

Japan) and a filter (XF102-2, Omega optical) were used to continuously illuminate 

530 – 590 nm wavelength light. A highly sensitive CCD camera (EM-CCD C9100, 

Hamamatsu, Japan) and image processing software (HCImage, Hamamatsu, Japan) 

were used to capture images at 1000 x 1000 pixels and 30.00 fps. (Rodd et al. 2005)  

In order to adjust the changes in image size due to the variation in channel size, 

different magnification lenses were used as described in Table 2.3. To achieve the best 

resolution images, magnification from the microscope body was also used when it is 

possible. Channel 6 was quite bigger than usual microcontraction channel, (Rodd et al. 

2007; Dendukuri et al. 2007; Kang et al. 2005) so 4X objective lens was used for 

proper visualization. The flow was from the wide upstream part to the narrow 

downstream part. As shown in Figure 2.3, the length of the upstream part from the 

inlet to the contraction was 1 cm, and the length of the downstream part was 3 cm. 

The length of the downstream part affected the vortex formation in the upstream part, 

and the downstream part was designed to be much longer than that of the upstream 

part to minimize this effect. (Rodd et al. 2010) 
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Figure 2.4. A schematic of fluorescent streak imaging setup. 
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2.4. Flow rate control 

 

 The fluids were supplied to microchannels with 1 ml or 2.5 ml glass syringe 

(GASLIGHT, Hamilton, USA). Syringes were connected to inlet of microchannels 

with flexible Teflon tubing (inner diameter 0.5mm) through stainless steel capillary.  

There was no treatment for outlet of channels. Flow rate was controlled by syringe 

pump (PHD2200, Harvard Apparatus, USA) in range 0f 0.5 – 15 ml/hr. 

 

2.5. Dimensionless numbers 

 

 In this thesis, the following dimensionless quantities were defined in order to 

characterize the flow dynamics inside the microchannel (Rodd et al. 2005): the 

Reynolds number ( Re ), the Weissenberg number (Wi ), and the Elasticity number ( El ). 

2/ 2 / 2

c
c

c c

V Q
Wi

w hw

 
       - (2.1)

 

0 0

2c h

c

V D Q
Re

(w h )

 

 
 


    - (2.2) 

2

( )2 c

c h c

w hWi
El

Re w D w h



 


      - (2.3) 

where , c , 
Q , cw

, 
h ,  , cV , 0 , hD  represent the relaxation time of the 

fluid, the average shear-rate at contraction throat, the volumetric flow rate, the 

contraction width, the channel depth, the fluid density, the average flow velocity, the 

zero-shear viscosity, and the hydraulic diameter, respectively. hD
 

was defined by 
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2 ( )h cD w h w h 
.
 

 Wi  is the product of the shear rate at the contraction part and the relaxation 

time of the solution. This quantity is a dimensionless number, which represents the 

deformation rate that the fluid experiences during the flow. Wi  is widely used for 

flows, such as the simple shear flow, that have a constant stretch history. In the 

microchannel, a high Wi  can easily be attained because the shear is large. Re  is the 

ratio between the inertial force and the viscous force in the flow, and it is much 

smaller than 10
-1

 in the microchannels which were used in this study. So it does not 

affect the flow condition significantly. These two dimensionless numbers are affected 

by the flow kinematics and increase with an increase in the volumetric flow rate Q . 

However the Elasticity number, El , which is defined as the ratio of elastic stress and 

the inertial stress, is not affected by the flow kinematics and depends only on the fluid 

characteristics and channel geometry. When various fluids and different 

microchannels are used as in this thesis, the El  can be used to represent different 

experimental setups. 
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3. Flow dynamics in microcontraction geometry 

3.1. Method of experiment 

 

 Although different fluids and channels were used in this study, the experiments 

could be well-organized using only the El  and the aspect ratio of the channel. The 

flow dynamics was observed by changing the two parameters mentioned above. The 

six different PEO solutions given in Figure 2.1 were allowed to flow at different flow 

rates inside six channels of different size as described in Table 2.3. The sequence of 

the flow patterns was organized with the increase in flow rates. From this, the entire 

flow pattern of the viscoelastic flow in the micro-contraction channels was classified 

as we increased the shear rate and fluid elasticity. Although the order of pattern 

formation did not change in any of the flow experiments, there were cases where 

certain flow patterns did not appear. The effects of the aspect ratio of the channel and 

the elasticity number in the flow pattern were analyzed. 

 

3.2. General sequence of flow development 

 

The flow patterns inside the micro-contraction channels were investigated, and 

the flow instabilities observed at different shear rates and fluid elasticity were 

systematically compared. The resulting flow patterns are shown in Figure 3.1 in the 

order of their development. As shown in this figure, the flow inside the 4:1 micro-

fabricated channel exhibited various flow patterns depending on the El  and Wi . In 
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the micro-scale devices, it was very difficult to observe Newtonian fluids forming a 

complex flow pattern. 

 The viscoelastic PEO solution also exhibited only a Newtonian-like flow (A) 

when the elasticity or the flow rate was low. When the elasticity was slightly increased 

from the previous case, a lip vortex (B) appeared. This vortex expanded towards the 

side wall and resulted in a corner vortex (C). The corner vortex disappeared as the 

flow rate was further increased,so it is called weak vortex. With an increase in flow 

rate, a divergent flow (D) was observed in which the flow streamline was distorted to 

form a bulbous shape in which the maximum velocity occurred not at the contraction 

part but further upstream. (Rodd et al. 2007; Alves & Poole 2007) A schematic of the 

divergent flow is shown in Figure 3.2. Divergent flow can be identified with the 

centerline velocity. In divergent flow, it shows divergent throat and divergent bulb. 

Divergent throat is the part that streamlines became narrow, after that part streamlines 

get bulge like a bulb. 

 When the elasticity was increased further, the vortex growth region (E), in 

which the size of the steady corner vortex increased, was reached. The flow regimes 

discussed so far were steady states. When the shear rate or the fluid elasticity was 

increased further, the flow became unstable. Unstable state will be described minutely 

in section 5. 
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Figure 3.2. A simple feature of divergent flow. 
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3.3. Effect of aspect ratio and El on vortex dynamics 

 

 The flow pattern was analyzed from the flows of the different PEO solutions 

in different channels with varying aspect ratios. When the flow rate was increased, the 

formation of the flow pattern shown in Figure 3.1 was observed in the same sequence 

for all the solutions. Some of the flow patterns were not observed in some cases 

depending on the aspect ratio of the channel or the elasticity number. However, the 

order of the pattern formation never changed. For example, the weak vortex (C) 

before the divergent flow was not observed for low aspect ratio channel 5 (600 μm : 

150 μm). In the channels with a high aspect ratio, such as channel 3 and the smaller 

ones, the lip vortex (B) appeared only for very limited flow conditions. However, even 

in such a case, a change in the order of sequence, for example a corner vortex 

developing first and then turning into a lip vortex, never occurred. 

 The difference in flow sequence in terms of the aspect ratio of the channel is 

shown in Figure 3.3. For the channels with an aspect ratio smaller than 0.13 (channels 

4, 5, and 6), the lip vortex always appeared. However, the divergent flow sometimes 

did not appear depending on the fluid elasticity, and the corner vortex never appeared. 

When the channel aspect ratio was larger than 0.25 (channels 1, 2, and 3), all the flow 

patterns were observed. However, except for the Newtonian-like flow and the vortex 

growth regime, the flow patterns exhibited a difference dependent on the El . 

 The flow pattern was affected not only by the aspect ratio but also by the 

elasticity number. (Rodd et al. 2007) The difference in flow patterns in terms of El  is 
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shown in Figures 3.4 and 3.5. For the channels with an aspect ratio less than 0.13 

(channels 4, 5, and 6), two different sequences were observed as shown in Figure 3.4. 

For the case where El  was smaller than 30, the divergent flow was always observed 

regardless of the channel size. However, when El  was on the order of several 

hundreds, the lip vortex transformed into a corner vortex and continued to expand. In 

other words, the lip vortex disappeared, and the divergent flow appeared for a small 

El . However, the lip vortex never disappeared but the vortex just continued to expand 

when El  was large. 

 When the aspect ratio was larger than 0.25, the flow developed in more 

diverse ways. Figure 3.5 shows the flow sequence in a high aspect ratio channel. All 

of the flows showed the same pattern as a Newtonian-like flow at a low Wi  and a 

vortex growth region where the corner vortex increased in size at high Wi . However, 

the flow patterns between these two regions were diverse. 

 The results are organized into a single map shown in Figure 3.6. As seen in the 

figure, there was a critical aspect ratio between 0.13 and 0.25 where the flow sequence 

changed significantly. Even for the flows at the same aspect ratio, the change in El  

caused a variation in the sequence of the flow patterns. 
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4. Time-Weissenberg number superposition 

4.1. Method of experiment 

 

The experiment was first performed by letting the three PEO solutions (2M 

0.3wt% ( El =90), 0.7wt% ( El =1900), 1.0wt% ( El =5100)) in Figure 2.2. flow 

through Channel 3. In one set of experiments, the flow with a low Wi  was allowed to 

reach steady state, and the flow pattern at the steady state was recorded. The 

experiments were repeated as we increased Wi . This set of experiments was named as 

the steady set. In another set of experiments, the channel was first filled with fluid and 

the flow at the highest Wi  in the steady set was applied. The change inflow pattern 

was recorded until the flow fully developed and reached the steady state. This set of 

experiments was named as the transient set. The time when the highest flow rate was 

applied after filling the channel was defined as t =0. After performing these two sets 

of experiments, the flow pattern from the first set (with the increase in Wi ) and the 

flow pattern from the second set (with the increase in time) were compared, and those 

that had the same shape were matched. When these two sets were matched in the 

Newtonian-like flow region where there exists no particular flow pattern, it was hard 

to compare the steady set and transient set. The time at which the Newtonian-like flow 

ended was set to be 0t  and the graph was shifted by 0t . The time was non-

dimensionalized by the relaxation time of the solution. 

0t t





 ,  - (4.1) 
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where t  is the elapsed time in the start-up flow; 0t  is the time at which the 

Newtonian-like flow ended;   is the relaxation time of the solution. 

 For the 0.3 wt% PEO solution, the steady state experiments were performed 

for 5.6 <Wi < 167, and the transient flow experiment was performed at Wi =167 from 

the time when the fluid began to flow ( t =0) to the time when the flow was fully 

developed ( = 160). For the 0.7 wt% PEO solution, the steady state experiments were 

performed for 33 <Wi < 550, and the transient flow experiment at Wi =550 for  < 

230. The range of experiments is summarized in Table 4.1. The experiments were also 

performed using the same procedure with channel 4, 5, and 6 which are larger in size 

than the 200 μm: 50μm microchannel used above. 
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Table 4.1. Range of experiments in the steady and transient states in channel 3. 

 Steady (Wi ) Transient ( ) 

0.3 wt% PEO 5.6 - 167 < 160 

0.7 wt% PEO 33 - 550 < 230 

1.0 wt% PEO 14 - 690 < 660 
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4.2. Results 

 

 When the channel geometry was changed, the flow pattern developed in 

different ways with the increase in Wi  or with the increase in time at a high Wi . For 

the 0.3 wt% and 0.7 wt% PEO solutions, there was no vortex with a low Wi  or an 

early-phase of a high Wi  flow in Channel 3. The flow was Newtonian-like, in which 

the streamlines were smooth as in a creeping flow with no flow separation. As 

elasticity increased, the divergent flow, in which the location of the maximum velocity 

was not right above the contraction entrance but more upstream, occurred and 

distorted the streamlines. Following the divergent flow, the vortex developed at the 

corners of the contraction zone. For the 0.3 wt% PEO solution in Channel 3, the flow 

was Newtonian-like for Wi < 60, a divergent flow for 60 <Wi < 120, and a vortex 

growth for Wi > 120. When a high flow rate of Wi = 170 was applied, the flow was 

Newtonian-like for  < 0, a divergent flow for 0 < < 50, a vortex growth for  > 50, 

and finally reached the fully developed steady state at  = 160. The flow of the 0.7wt% 

solution was similar. It was Newtonian-like for Wi < 300, a divergent flow for 300 <

Wi < 440, and a vortex growth for Wi > 440. The flow was observed up to a Wi  of 

550. For transient flow at Wi  of 550, the flow was Newtonian-like for  < 0, a 

divergent flow for 0 < < 110, and a vortex growth for  > 110. A fully developed 

steady state was reached at a   of 230. 

 The steady flows of the 0.7wt% PEO solution with a low Wi  and the 

transient flows with a high Wi  were compared in Figure 4.2. In the divergent flow, 
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the distance between the two streamlines on both sides of the centerline decreased and 

then increased as the streamlines entered the contraction region. The narrow part is 

called the divergent throat and the wide part is called the divergent bulb. As the Wi  

increased or as time passed with a high Wi , the divergent throat became narrower and 

the divergent bulb widened, leading to the change in the size ratio of these two.  

 When comparing the steady and transient states shown in Figure 4.2, the 

divergent flow region was compared using the ratio of the distance at the divergent 

throat and the distance at the divergent bulb between the two streamlines which were 

located at the same width with the contraction part. They are +25 μm and -25 μm from 

the centerline at the far upstream in channel 3. The steady flow with a Wi  of  380 

and the transient flow after  =230 with a Wi  of 550, shown in Figure 4.2, had a 

divergent throat of 138 μm wide and a divergent bulb of 176 μm wide. The ratio was 

1.28. For the vortex growth, the size of the vortex increased as the Wi  increased or as 

time passed for the start-up flow with a high Wi . The vortex size was determined by 

measuring the length of the vortex in the flow direction at each corner along the 

channel side, and non-dimensionalized by upstream channel width. ( vL / uW , vL : vortex 

length, uW : upstream channel width) The increase in the vortex size for the steady set 

and the transient set were also matched. When the Wi  was equal to 550, the vortex 

grew up to 0.5. A schematic of the size of the vortex shown in Figure 4.1. 
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Figure 4.1. A schematic of the size of the vortex: vL  is the maximum size of the 

oscillating vortex in the y direction and wL  is the size of the vortex in the x direction. 
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Figure 4.2. Comparison of the steady flows with a low Wi  and transient flow with a 

high Wi  (=550) for 0.7 wt% PEO solution (2M). 
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 The flow of the 1.0 wt% PEO solution was studied in the same manner, and 

the result is shown in Figure 4.3. However, as seen in the figure, the flow development 

in this case was different from the flow sequence of the 0.7 wt% solution. 

Asmentioned in previous section, the flow patterns in this region were diverse. For 

solutions with a concentration of 0.7 wt% or lower, the flow developed in the 

following sequence: Newtonian-like  divergent flow  vortex growth, and for the 

1.0 wt% solution, a small corner vortex appeared shortly before the divergent flow in 

this experiment sets (weak vortex). The corner vortex that did not change in size and 

disappeared with a higher Wi  was named as the small vortex. As the Wi  increased 

or as time passed with a high Wi , the small corner vortices disappeared and the 

divergent flow occurred. For the divergent flow in this case, the ratio between the 

divergent bulb and the divergent throat was 1.31. When Wi  was 690, the 

dimensionless vortex size ( vL / uW ) was 0.5. 

 As seen in Table 4.2.(c), the flow was Newtonian-like for Wi < 69, a small 

vortex flow for 69 <Wi < 210, a divergent flow for 210 <Wi < 410, and a vortex 

growth for Wi > 410. The flow was observed until a Wi  of 690. For the transient 

case for a Wi  of 690, the same sequence as the low Wi  flows was reproduced. The 

flow was Newtonian-like for  <0, a small vortex for 0< <140, a divergent flow for 

140< <290, and a vortex growth for  > 290. The flow reached a fully developed 

steady state at  = 660. 
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Figure 4.3. Comparison of the steady flows with a low Wi  and transient flow with a 

high Wi  (=690) for 1.0 wt% PEO solution (2M). 
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Table 4.2. Flow sequence of the steady and transient flows. (a) Channel 3, 2M 0.3 wt% 

PEO, (b) channel 3, 2M 0.7 wt% PEO, (c) channel 3, 2M 1.0 wt% PEO, (d) channel 4, 

2M 0.3 wt% PEO, (e) channel 5, 2M 0.7 wt% PEO, (f) channel 6, 2M 1.0 wt% PEO. 

 

(a) Channel 3, 2M 0.3 wt% PEO 

 Newtonian-like Divergent flow Vortex growth 

Steady Wi < 60 60 <Wi < 120 Wi > 120 

Transient  < 0 0 < < 50  > 50 

(b) Channel 3, 2M 0.7 wt% PEO 

 Newtonian-like Divergent flow Vortex growth 

Steady Wi < 300 300 <Wi < 440 Wi > 440 

Transient  < 0 0 < < 110  > 110 

(c) Channel 3, 2M 1.0 wt% PEO  

 Newtonian-like Small vortex Divergent flow Vortex growth 

Steady Wi < 69 69 <Wi < 210 210 <Wi < 410 Wi > 410 

Transient  < 0 0 < < 140 140 < < 290  > 290 

(d)Channel 4, 2M 0.3 wt% PEO  

 Newtonian-like Lip vortex Divergent flow Vortex growth 

Steady Wi < 55 55 <Wi < 100 100 <Wi < 170 Wi > 170 

Transient  < 0 0 < < 30 30 < < 65  > 65 

(e) Channel 5, 2M 0.7 wt% PEO  

 Newtonian-like Lip vortex Vortex growth 

Steady Wi < 18 18 <Wi < 40 Wi > 40 

Transient  < 0 0 < < 45  > 45 

(f) Channel 6, 2M 1.0 wt% PEO 

 Newtonian-like Lip vortex Vortex growth 

Steady Wi < 14 14 <Wi < 45 Wi > 45 

Transient  < 0 0 < < 70  > 70 
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 Summarizing the results of the experiments performed with Channel 3, it can 

be seen that the flow patterns of the early-phase transient flow with a high Wi  

matched well with the flow patterns of the steady states with a low Wi . The flow 

pattern developed in the same way when the Wi  increased for the steady flows and 

when time passed with a high Wi . 

 In order to check the universality of this observation, larger channels were also 

used. When channels larger than Channel 3 were used, a lip vortex was sometimes 

observed before the formation of the corner vortex instead of a divergent flow. 

However, as the Wi  increased, the corner vortex eventually appeared and kept on 

growing until the flow became unstable. The results with different polymer solutions 

and different flow channels are all summarized in Table 4.2. In this case, a device 

time-scale that is caused by the compressibility of the fluid or device may be existed. 

Difference in time-scale among the channels was characterized by pressure drop 

measurement. Pressure tips were set on the contraction part of the channel, and the 

channel and the tube were filled with DI water or PEO solutions. However, even with 

channel 6, the biggest, the total pressure drop increased immediately after running the 

syringe pump. Therefore, the time scale of the device was not significant. 

 

4.3. Time-Weissenberg number superposition 

 

When the patterns of the two sets of experiments were matched between the 

steady flow with a low Wi  and transient flow with a high Wi , we marked a point on 
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the graph in Figure 4.4, where the x-axis is the   in the transient set and the y-axis is 

the Wi  in the steady set. As various channel geometries and solutions were used, the 

range of Wi  was large and the y axis was represented in log scale. Through this 

graph, the relationship between the flow patterns of the two sets of experiments in the 

process of flow development could be examined. 

 As seen in Figure 4.3, all the curves followed a similar form regardless of the 

channel size and fluids. The change in flow patterns was the different for different 

flow conditions, but the slope of the curve changed significantly at the point where the 

corner vortex first appeared. It is similar to numerical results of Szabo et al. in a way 

that the slope of the pressure drop versus time significantly decreased when the 

motion of vortex center changed. (Szabo et al. 1997) More important is that we could 

plot the curve for all the experiments we performed, which means that there always 

exists a relationship between the time and Wi , or between the steady flow patterns 

with a low Wi  and the transient flow patterns with a high Wi . From this, it can be 

suggested that there exists a relationship between time and Wi  in vortex dynamics, 

which could be named as the time-Weissenberg number superposition. 

 

 

 

 

 

 



- 44 - 

 

 

 

 

 

Figure 4.4. Time-Wi  superposition graphs. 1) El = 30, 2M PEO 0.3 wt% Channel 4, 

2) El = 90, 2M PEO 0.3 wt% Channel 4, 3) El = 200, 2M PEO 0.7 wt% Channel 5, 

4) El = 560, 2M PEO 1.0 wt% Channel 6, 5) El = 1900, 2M 0PEO 0.7 wt% Channel 

3, 6) El = 5100, 2M PEO 1.0 wt% Channel 3. 
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 In the 2-D simulation of the 4:1 planar contraction flow with the Oldroyd-B 

model, the time-Wi  superposition was also confirmed. In the simulation, both the lip 

vortex and the corner vortex were observed and they grew as the Wi  increased or as 

time passed for the start-up with a high Wi  flow. Eventually, the two vortices 

coalesced, forming a big corner vortex. The slope changed significantly at the point 

where the lip and corner vortex coalesced. (Kim et al. 2005) The experiments show 

different flow sequences compared to the simulation. Unlike the simulation in which 

both the lip and corner vortex formed and coalesced, the flow developed to the 

divergent flow, which was not observed in the 2-D simulation, and either the corner 

vortex or lip vortex eventually grew in size to reach the corner of the microchannel. 

Although the process to form a large corner vortex was slightly different compared to 

the simulation, the one-to-one matching of the flow patterns between the transient and 

steady flows was the same, and the slope in the time- Wi  graph decreased 

significantly at the point of the vortex formation for both cases. As seen from the 

experimental results with the various fluids, if a certain flow pattern appears in the 

steady state with a low Wi , such a flow pattern will appear in the early-phase of the 

transient flow with a high Wi , and vice versa. 

 The time-Wi  superposition was demonstrated experimentally as shown in 

Figure 4.3. Even though different fluids and different channels were used, all the 

curves followed a similar form that could be fitted into the equation, (1 )bWi a e   . 

Each point in the figure represents the results of two sets of experiments (steady and 

transient), and the lines are the fitted results using the equation above. Table 4.3 lists 
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the fitting parameters. The physical meaning of the parameters is yet unclear and more 

research will be necessary. However, despite the fact that different fluids and different 

channels were used, the time and Wi  had a special relationship that could be 

represented by a single curve. From this, it could be concluded that the vortex 

dynamics of viscoelastic fluids in the contraction flow could be dominated by a simple 

rule, which is the time-Wi  superposition. 
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Table 4.3. Fitting parameters of each time-Wi  superposition graph, following the 

equation (1 )bWi a e   . 

Channel El  a b 

Channel 2 30 2.66×e
2
 1.42×e

-2 

Channel 1 90 1.65×e
2 

2.13×e
-2 

Channel 3 200 6.83×e
1 

1.99×e
-2 

Channel 4 560 8.11×e
1 

1.30×e
-2 

Channel 1 1900 4.94×e
2 

6.39×e
-2 

Channel 1 5100 9.56×e
2 

1.90×e
-3
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5. Unstable flows 

5.1. Sequence of developing flow pattern of highly elastic fluids 

 

 In this section, to observe unstable flows, usually 5,000,000 molecular weight 

polyethylene oxide solutions in Figure 2.2 were used, and only one channel geometry 

(channel 3, 200μm:50μm) was used. Figure 5.1 shows the sequence of developing 

flow patterns as as the El  or Wi  increased in this condition. The flow was 

Newtonian-like at first where the fluid enters the contraction smoothly without any 

unusual flow pattern (Newtonian fluids do not exhibit any unusual flow patterns inside 

a microchannel). From the Newtonian-like flow (A), a corner or lip vortex (B) was 

formed as the elasticity increased. Because (B) disappears as the flow rate is increased 

further, it is called a weak vortex. As the weak vortex disappeared, a divergent flow 

(C) was observed, in which the maximum velocity was not at the contraction but in 

the upstream region. (Rodd et al. 2007; Alves & Poole 2007) As the elasticity 

increased further, a vortex growth region (D) was observed, in which the size of the 

steady vortex increased with Wi . When the elasticity was increased further, the flow 

transitioned from the steady to the unsteady region, and exhibited continuous 

fluctuations. In this region, the vortex fluctuated with a certain period instead of 

maintaining a steady vortex. This was called oscillating vortex (E). After that, vortex 

fluctuation lost its periodicity, and aperiodic fluctuation regime appeared (F). 
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 The sequence was identified by mapping the flow patterns as shown in Figure 

5.2. The change in the flow pattern from A to F indicates the change with the increase 

in Wi , while the change in flow patterns from the left to the right side of the table 

indicates the change with the increase in El . The flow patterns were influenced by 

both Wi  and El . (Rodd et al. 2007) For dilute polymer solutions with low El , it 

was difficult to reach the steady vortex region because the shear rate was limited by a 

maximum pressure that the micro-fabricated PDMS channel can endure. The 

maximum flow rate was dependent on the viscosity of the solution. The viscosity 

range of the solutions, in this section, was 0.17 < 0 <39 Pa s. The maximum Q  was 

15 ml/hr for 0 = 0.17 Pa s, and 2 ml/hr for 0  = 39 Pa s. 

Due to the limitation of the shear rate, solutions with high concentrations and 

high molecular weight were used to observe the flow change at low shear rates. 

Unlike the case with the dilute polymer solutions, an unusual flow pattern with a 

vortex was observed even at low shear rates with these solutions. And it was difficult 

to observe the Newtonian-like flow pattern that was observed for the dilute solutions. 

As can be seen in Figure 5.2, a weak vortex was observed for 0.4 wt% 5M PEO 

solution even at the lowest flow rate allowed by the syringe pump resolution 

(approximately 0.05ml/hr). For a 0.7 wt% 5M PEO solution, a vortex growth region 

was observed at this flow rate. In these cases, even though a Newtonian-like flow or a 

divergent flow could not be observed, the oscillating vortex and aperiodic fluctuation 

could be observed. 
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5.2. Oscillating vortex 

 

 As the elasticity or shear rate increased, the flow transitioned from a steady 

vortex to an oscillating vortex where the vortex fluctuated with a period. The flow 

pattern is shown in Figure 5.3. The oscillating vortex could be categorized as 

symmetric and asymmetric according to its pattern of vortex formation. In the 

symmetric oscillating vortex, the maximum and minimum sizes of the corner vortex at 

one corner of the channel were the same with those at the other corner. When one 

corner vortex was at its minimum, the other was at its maximum size. However, in the 

asymmetric oscillating vortex, the maximum size and the minimum size of the two 

corner vortices, or the periods of two vortices were not the same. In other words, 

symmetric oscillating vortex is equivalently alternating, and asymmetric oscillating 

vortex is inequivalently alternating. 
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Figure 5.3 shows the oscillating vortices for 3 different solutions of 0.7 wt%, 

0.8 wt%, and 1.0 wt% 5M PEO. The fluids were highly elastic with an El  range of 

2.7 X 10
6
< El <2.2 X 10

6
. The flow rate was 0.2<Q <1.0 ml/hr and the Weissenberg 

number ranged from 50<Wi <130. The experiments were not completely reproducible 

because the flow was in an unstable region with high elasticity, and aperiodic vortex 

fluctuation was often observed even at a Wi  slightly higher than the Wi  region 

where oscillating vortices were observed. Therefore, the experiments were repeated 

until reproducible results were obtained. For the 0.7 wt% solution, a symmetric 

oscillating vortex was easily observed. But as the concentration increased, the 

asymmetric vortex was observed. For a 1.0 wt% solution, the symmetric oscillating 

vortex was not observed in the controllable volumetric flow rate even though the 

experiments were repeated many times. From these results, it can be deduced that the 

oscillating vortex had a tendency to transit from a symmetric to asymmetric flow with 

an increase in El  or Wi . 

 In the oscillating vortex region, the vortex fluctuated with a certain period as 

described above. In the 200 μm:50 μm channel system used in this study, the period 

was in the range of 2<period<6 s shown in Figure 5.4. This was nearly a hundred 

times larger than the characteristic time of the flow (the time to pass through the 

upstream channel with an average velocity (
u

Q

W h
)) or the characteristic time of the 

fluids ( ). The results with the 5M PEO solutions with 0.6< C <1.0 wt% are given in 

the figure, with the x-axis as Wi  and y-axis as the period. As can be seen in the graph, 

all the results were within the range, but no functional relationship could be found 
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because it was in the unstable region, and the flow was right before losing its 

periodicity. 

 The vortex size increased with the increase in Wi  in the vortex growth region. 

Because the vortex size changed constantly in the oscillating vortex region unlike the 

steady region, the maximum size of the vortex was measured in Figure 5.5 during 

fluctuation. The results are for 5M PEO solutions with the concentration in the range 

of 0.6< C <1.0 wt%. As can be seen in the schematic of Figure 4.1, vL  is the 

maximum size of the oscillating vortex in the y-direction (flow direction) and wL  is 

the size of the vortex in the x-direction. wL  was fixed at 75μm. In Figure 5.5, the x-

axis represents Wi , and the y-axis represents the dimensionless vortex size ( vL / wL ). 

In the oscillating vortex region, though the vortex size changed continuously, the 

maximum vortex size increased with Wi . 

 To quantitatively analyze the pattern of the oscillating vortex, the vortex size 

at each corner of the channel was measured over time and the results are graphed in 

Fiure 5.6. ( )L i  represents the size of the vortex on the left hand side of the flow 

direction and ( )R i  is that on the right hand side. Figure 5.6 (a) is the result for the 0.7 

wt% 5M PEO solution with a Wi  of 79 and Q  of 0.5 ml/hr. The oscillating vortex 

fluctuated symmetrically, with the vortex at each side having the same maximum and 

minimum vortex size with the same period. When the size of the vortex was plotted 

over time, a periodic curve could be drawn. The change in size of two vortices was 

alternated by half of a period. In addition, whether the oscillating vortex was 

symmetric or asymmetric, the vortex size did not decrease immediately after reaching  
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Figure 5.4. Periods of the oscillating vortex for 0.6, 0.7, 0.8 and 1.0 wt% PEO 

solutions ( wM =5 10
6
 g mol

-1
)

 
in a wide range of Weissenberg numbers. (The line in 

graph is a simple guideline.) 
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Figure 5.5. Maximum size of the oscillating vortex for 0.6, 0.7, 0.8 and 1.0 wt% PEO 

solutions ( wM =5 10
6
 g mol

-1
) 
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its maximum. The vortex maintained its maximum size for a few seconds before 

shrinking. 

 Although the symmetric oscillating vortex exhibited only one type of size 

change as can be seen in Figure 5.6 (a), the asymmetric oscillating vortex exhibited 

different patterns. They could be categorized into two patterns shown in Figure 5.6 (b) 

and (c). In one case, one vortex fluctuated significantly while the other rarely 

fluctuated shown in (b). In another, shown in (c), the two vortices fluctuated with 

different patterns but with a single period. For example, in Figure 5.6 (c), the left 

vortex maintained its maximum for 2 seconds and decreased to its minimum size of 30 

μm while the right vortex stayed at the maximum for 1.2 seconds and decreased to its 

minimum size of over 50 μm. The asymmetric oscillating vortex showed irregularities 

compared to the symmetric oscillating vortex, but still repeated irregular flows with a 

constant period. 
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(a)  

(b)  
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(c)  

Figure 5.6. The patterns of the oscillating vortex with sizing by time (a) Symmetric 

( El  = 2.7×10
5
, Wi  = 79): changes in vortex size for ( )L i  is the reverse of ( )R i . (b) 

Asymmetric 1 ( El  = 2.9×10
5
, Wi  = 98): ( )L i  is fixed and ( )R i  is oscillating. (c) 

Asymmetric 2 ( El  = 2.9×10
5
, Wi  = 114): oscillating patterns of ( )L i  and ( )R i are 

different in a period.  ( : ( )L i , : ( )R i  for each graph) 
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5.3. Aperiodic fluctuation 

 

 When Wi  increased further after the oscillating vortex, the aperiodic 

fluctuation regime in which the vortex fluctuated randomly without a characteristic 

time scale appeared. The vortex at each side changed very rapidly without a pattern. 

Sometimes, the two vortices overlapped. When the size of the oscillating vortex was 

measured over time and plotted, a specific time periodicity appeared seen in Figure 

5.6. However, when the vortex size was plotted in this region, no apparent period 

could be observed as shown in Figure 5.7, which shows the vortex size of the left and 

right sides versus time for 5M PEO 0.7 wt% solution at El =2.2×10
6
 and Wi

=2.8×10
2
.  

 In order to check whether the flow in this region was chaotic, the largest 

Lyapunov exponent was calculated. (Sprott 2003; Rosenstein et al. 1993) In a 2D 

graph, if there exists anarbitrary point *X X and *Y Y that satisfies 

( , )
X

F X Y
t




  
    - (5.1) 

and 

( , )
Y

G X Y
t





,    - (5.2) 

the transients of X  and Y  are  

* * * *( , ) ( , )X Y X Y

X F F
X Y

t X Y

  
  

  
  - (5.3) 

and 
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* * * *( , ) ( , )X Y X Y

Y G G
X Y

t X Y

  
  

  
 

- (5.4) 

at the point *X X X   and 
*Y Y Y   which are very small distance away from 

the point
*X X  and *Y Y . Then, there exists the following relation: 

* * * *

* * * *

( , ) ( , )

( , ) ( , )

X Y X Y

X Y X Y

F F X
X Y X t

Y YG G

tX Y

     
                   
        

.  - (5.5) 

 From the eigenvalue   of the above equation, the behavior of the position 

with respect to an infinitesimally small change in location can be determined. If the 

eigenvalue is positive, the infinitesimally small change is amplified over time while it 

decreases over time when the eigenvalue is negative. The eigenvalues are defined only 

at a specific point where *X X and *Y Y . The Lyapunov exponent is the average 

of the eigenvalues for every point that exists over a long time. The number of 

Lyapunov exponents is equal to the number of dynamic variables of the system. The 

largest Lyapunov exponent signifies how a point that is a certain distance away from 

another point gets close or moves away. The largest positive Lyapunov exponent 

implies that the change is amplified over time when the system variables are changed 

by a small amount. This can be defined as chaotic. 

 The largest Lyapunov exponents for the vortex size of both left and right hand 

side were determined from the data in Figure 5.7. For each vortex, one thousand data 

points were analyzed. For the multiple points with j  amount of pairs, the pair with 

the least distance between the points was selected. The distance between the points of 
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this pair after a certain amount of time was defined as ( )jd i
 
where i  is the discrete-

time step, and this is the divergence. t  is the sampling period, which is 1/30 second 

in this experiment. In other words, the time after i  steps is i t . According to 

Rosenstein et al., when the largest Lyapunov exponent is 
1 , the relationship of 

1 ( )
( )

i t

j jd i C e
 

 can be defined, where 
jC
 

is the initial distance between the pair of 

two points that are closest to each other among the j  pairs. Taking the logarithm of 

this equation, 
1ln ( ) ln ( )j jd i C i t    can be derived. The average of j  number of 

pairs could be plotted in Figure 5.8 for both left and right side of vortex. The x-axis is 

i t (time) and y-axis is the average of ln ( )jd i  with its slope being 1 , the largest 

Lyapunov exponent. As shown in Figure 5.8, it initially increases rapidly with the 

slope of approximately ten. When the largest Lyapunov exponent is positive as in this 

case, the dynamics, the motion of vortex in this case, can be considered be chaotic. 

 Power spectra of the vortex size at Wi =2.8×10
2
 is given in Figure 5.9. The 

large peak in small frequency less than 0.1 is irrelevant to the actual vortex fluctuation. 

There is no any characteristic peak, which also supports the flow is chaotic in this 

region. 

 Newtonian fluids did not exhibit distinctive flow patterns such as vortex 

formation in micro-contraction channel flow. For viscoelastic fluids, the nonlinear 

rheological characteristics caused various flow patterns even at very low Reynolds 

numbers. The present work analyzed the overall flow patterns in the contraction 

geometry, especially unsteady region with micro-scale devices. In unsteady flows 

regime, the oscillating vortex lost its periodicity at high Wi . It is similar to such 
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elasticity-induced turbulence which was observed in various flows such as in the 

simple shear flow between the parallel plates, Couette-Taylor flow between the two 

cylinders, and the curvilinear channel flows. (Groisman & Steinberg 2000; Groisman 

& Steinberg 2004; Fardin et al. 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 68 - 

 

 

 

 

 

 

Figure 5.8. Plot of <ln(divergence)> vs. time for the vortex size of the aperiodic 

fluctuation. ( : ( )L i , : ( )R i  for each plot) 
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Figure 5.9. Power spectra of change of vortex size in the aperiodic fluctuation regime. 

( El  = 2.2×10
6
 and Wi  = 2.8×10

2
) 
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6. Summary 

 

Dynamics of flow in contraction geometry 

 

 First, the flow dynamics of viscoelastic fluids inside 4:1 planar micro-

contraction channels was investigated. The flow showed various flow patterns caused 

by elasticity. From the observation of the flow sequence over a wide range of 

Weissenberg number (Wi ) and elasticity number ( El ), the viscoelastic flow developed 

starting from a Newtonian-like flow to a flow with a lip vortex region in which small 

vortices near the contraction part appeared. The lip vortex grew into a corner vortex. 

The corner vortex then disappeared and a divergent flow, in which the maximum 

velocity occurred not at the contraction part but further upstream with distorted 

streamlines, was formed. Finally, as the Wi  was increased further, the corner vortex 

formed again, and the flow reached the vortex growth region where the size of the 

vortex continued to increase with the increase in Wi . Although the sequence of the 

flow development never changed, certain phases of the flow development were 

omitted according to the flow conditions. The primary factors affecting the flow 

sequence were the aspect ratio of the channel and the elasticity number. Using 

multiple channels with different sizes and PEO solutions with varying concentrations, 

the effect of the channel aspect ratio and El  was analyzed. In the case of a low 

aspect ratio, the lip vortex always appeared, and the divergent flow occurred only 

when El  was low. When the aspect ratio of the channel was higher, the flow pattern 
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prior to the vortex growth region was more diverse. In the case of a high aspect ratio 

channel, the flow patterns between Newtonian-like flow and vortex growth region 

were diverse. The critical aspect ratio at which the transition from a low aspect ratio 

flow to a high aspect ratio flow occurred was between 0.13 and 0.25 for the 70 μm 

height channels. 

 

Time-Wi superposition 

 

 After examining the flow dynamics of viscoelastic fluids inside contraction 

geometries, the characteristics of transient state, before reaching steady state, were 

studied. The primary purpose of this part was to compare the transient start-up flow at 

high Wi  with the steady state flows at lower Wi . The development of the flow 

pattern from a Newtonian-like to corner vortex was observed as Wi  increased at 

steady states. Depending on the type of the fluid and channel size, the flow sequence 

was different. However, in all the cases we could cover including the numerical 

simulation, the flow patterns of the early-phase transient flow with a high Wi  

matched well with the flow patterns of the steady states with a low Wi . In other 

words, it was possible to match the steady flow patterns with a low Wi  flows and the 

transient patterns with a high Wi  flow. The plot of Wi  and time when the two sets 

(steady and transient) were matched followed a similar form regardless of the type of 

fluid and channel dimension used, and the slope changed significantly at the point 

when the corner vortex first appeared. From this fact, it could be confirmed that there 
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exists a special relationship between time and elasticity, called time-Wi  superposition 

in the vortex dynamics of viscoelastic fluids in the contraction flow. It is impressive 

that there exists a simple principle that dominates the complex flow behavior of 

viscoelastic fluids in the contraction channel flow. 

 

Unstable flows 

 

 In the last part, the unsteady state was systemically analyzed. To reach the 

unstable states, only one kind of geometry (200 μm: 50 μm) and highly elastic fluids 

( wM =5 10
6
 g mol

-1
) were used. The development sequence of the flow pattern over 

increasing elasticity numbers ( El ) or Weissenberg numbers (Wi ) was organized again 

with those highly elastic fluids. In the steady state, the sequence of the flow 

development started with a Newtonian-like flow, and became a divergent flow where 

the streamlines were distorted and the maximum flow velocity occurring not at the 

contraction but further upstreamLastly, vortex formation occurred. Depending on the 

fluid, small vortices may develop before the divergent flow and disappear. This was 

named as a weak vortex while the vortex that occurred after the divergent flow was 

vortex growth region. In the vortex growth region, the vortex size increased with the 

increase in Wi . As El  or Wi  increased, the flow reached unsteady state. While the 

flow patterns were maintained over time in the steady state, it changed continuously in 

the unsteady state. The vortex size in the vortex growth region was constant and stable 

at a specific Wi . However, as the Wi  increased, the vortex started to fluctuate 
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periodically. This was called an oscillating vortex. Right after the flow transitioned 

into the unsteady state, the vortex on both sides oscillated symmetrically. At a higher 

Wi , the asymmetric oscillation was observed. While only one pattern of vortex 

dynamics was observed for the symmetric oscillating vortex, the asymmetric 

oscillating vortex showed different patterns with a difference in vortex size for the two 

vortices but with a single period. When Wi  increased over the asymmetric oscillating 

vortex region, the periodicity of the vortex fluctuation disappeared. In this aperiodic 

fluctuation regime, the largest Lyapunov exponent was positive, which proves that the 

vortex behavior is chaotic. The flow patterns in micro-contraction geometry were 

systematically analyzed in this study, and the chaotic vortex dynamics were reported 

for the first time. 
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국문 요약 

4:1 수축 미세 유로를 흐르는 

탄성 유체의 흐름에 관한 연구 

 

이대웅 

서울대학교 대학원 

화학생물공학부 

 

 수축 유로를 흐르는 점탄성 유체의 구조는 유변학의 관심 

연구 분야 중 하나이다. 특히, 와류의 형성은 매우 중요한 문제이다. 

와류는 고분자 가공 공정과 같은 실용적인 사용에 있어서 

바람직하지 않은 현상이다. 이는 물질의 체류 시간을 

증가시킴으로써 최종 제품 불량을 초래하기 때문이다. 따라서 이를 

이해하기 위해 와류 거동에 대한 많은 연구가 있어 왔다. 그러나 

수축 유로에서 순수하게 탄성으로 인해 발생하는 흐름 거동에 대한 

관심은 적었으며, 특히 탄성으로 인한 비정상상태 흐름에 대해서는 

더욱 그러했다. 본 논문에서는 탄성으로 인해 발생하는 흐름의 

형태가 어떻게 변화하는지를 살폈다. 그에 더해 정상상태에 
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도달하기까지의 전이 상태에서 발생하는 현상과 탄성의 증가로 

인하여 정상상태에서 벗어났을 때 흐름이 어떻게 거동하는지를 

연구하였다. 

 본 연구는 세 가지 목적이 있다. 첫 번째 목적은 수축 유로를 

흐르는 탄성 흐름의 구조를 알아내는 것이다. 이에 4:1 평면 직각 

수축 미세 유로를 흐르는 점탄성 유체의 흐름 형태를 관찰하고 

정량적으로 분석하였다. 미세하게 제작된 장치의 경우 그 작은 

크기로 인해 탄성으로 인한 효과를 증가시키며, 또한 고해상도의 

가시화 기법을 이용하여 흐름을 관찰하기에 용이하다. 폴리에틸렌 

옥사이드 용액으로 낮은 레이놀즈 수(Re)를 유지하면서도(O(10-

2)>Re) 넓은 범위의 와이젠버그 수(Wi)에서 그 흐름을 관찰하였다. 

흐름 형태는 특별한 특징이 없는 흐름에서부터, divergent 흐름, lip 

와류, corner 와류 등의 과정을 지나 와류가 자라나는 것이 

관찰되었으며, 이는 탄성 수(El)와 채널의 종횡비에 영향을 받는다. 

탄성 수와 채널 종횡비에 따라서 수축 미세유로를 흐르는 흐름의 

형태는 다양한 형태로 발전한다는 것이 발견되었다. (3 장) 

 두 번째 목적은 높은 Wi 를 갖는 흐름의 초기 전이 흐름과 

그보다 낮은 Wi 를 갖는 흐름의 정상 상태 흐름의 관계를 파악하여 
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시간- Wi 중첩을 실험적으로 수립하는 것이다. Wi 가 증가하면서 

흐름은 뉴턴유체와 같은 흐름에서부터 발전하여 와류가 성장하게 

되는데, 높은 Wi 를 갖는 흐름의 초기 전이 상태 흐름은 정상 

상태에 도달하기까지 그보다 낮은 Wi 를 갖는 흐름이 보이는 모든 

정상 상태 흐름 형태를 경험한다. 상술했던 것처럼 흐름의 발전 

과정은 유로나 유체에 영향을 받지만, 그 모든 상황에서도 높은 

Wi 의 초기 흐름과 그보다 낮은 Wi 의 정상 상태 흐름들은 1:1 로 

비교 가능하다. 이러한 비교를 통해 Wi 와 시간으로 (전이 상태 

흐름 대 정상 상태 흐름) 그래프를 그리면, 독특한 패턴이 

나타나며, 이로써 시간- Wi 중첩을 증명할 수 있다. (4 장) 

 논문의 마지막 장에서는, 비정상상태 흐름의 성질을 

분석하였다. 3 장과 4 장에서는 정상 상태 흐름을 다루었다. 하지만 

전단 속도의 증가 혹은 유체의 탄성의 증가로 인해 Wi 가 증가하면, 

와류는 특정한 주기를 가지고 출렁이게 된다. 이러한 비정상 

상태에 도달하기 위하여 높은 탄성을 가진 유체를 (분자량 

500 만의 폴리에틸렌 옥사이드 용액) 사용하였다. 비정상상태 

흐름에서 와류는 끊임없이 출렁인다. 먼저 이는 특정한 주기를 

가지고 출렁이는데, 이를 주기성 와류라고 한다. 이런 주기성 
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와류는 처음에 대칭으로 출렁이다가 탄성이 증가하면서 다양한 

형태를 갖는 비대칭 주기성 와류가 된다. 탄성이 더욱 증가하면 

주기성은 사라지고 무작위로 출렁이게 된다. 이렇게 무작위로 

출렁이는 영역에서 와류의 크기로 그래프를 그려 리야프노프 

지수를 구한 결과 양수이며, 이는 와류의 출렁임이 공간적으로 

무질서함을 나타낸다. (5 장) 

 본 논문에서는 미세하게 제작된 수축 유로를 흐르는 탄성 

유체의 흐름 형태를 세밀하게 분석하였다. 분석한 흐름 형태에는 

뉴턴 유체와 같이 별다른 특징이 없는 흐름, divergent 흐름, 

정상상태에서의 와류 성장, 대칭형 주기성 와류, 비대칭형 주기성 

와류, 무질서한 흐름 등이 있다. 
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