creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Flow Dynamics of Highly Elastic Fluids in 4:1 Microcontraction Channel

20143 8¢

Aevjstm ot
35 42 FHE

o] th-&



ol o
%9
ukA}st
3 _?4&-:

<

z
QLN

g

2
| 014d
| 6¥
e
791 \
. 27
) 4
% (2D
(O
)
(o
D)
(o
D)

"]
(o,

(gD




ABSTRACT
Flow Dynamics of Highly Elastic Fluids

in 4:1 Microcontraction Channel

Lee, Daewoong
School of Chemical and Biological Engineering
The Graduate School

Seoul National University

The structure of viscoelastic flow through contraction geometry has been
one of the benchmark problems in rheology. Especially, formation of vortex is
very important issue. Vortex is not a desirable phenomenon in practical
applications such as polymer processing. It causes defects in products with the
residence time of material. So there have been many investigations of dynamics of
vortex in contraction geometry to understand it. However, there was only little
attention given to the dynamics of purely elastic flows in contraction channel,
particularly, unstable flows caused by elasticity. In this thesis, sequence of flow
patterns developed by elasticity was investigated. Moreover, the phenomenon in
transition state, before reaching steady state, and the dynamics of flows after steady

state were studied.



Three main goals have been pursued in this thesis. The first objective of
this study was to figure out the structure of elastic flow in contraction geometries.
The flow patterns of viscoelastic fluids flowing inside 4:1 planar contraction
microchannels were investigated and quantitatively analyzed. Micro-devices
enhanced the elastic effects with theirs small dimension, and they can also easily
monitor the flows with high resolution visualization technique. A wide range of
Weissenberg number (Wi) flows of poly(ethylene oxide) solutions were observed
while maintaining low Reynolds number (O(10%)>Re). The flow pattern changed
from a Newtonian-like flow to a flow with a vortex growth region, during which a
divergent flow and lip vortex were also observed depending on the elasticity
number (El) and aspect ratio. The flow pattern in the contraction microchannel
was found to be diverse and abundant depending on the aspect ratio and elasticity
number. (Chapter 3)

In the second part of the study, the relationship between transient flow
behavior at high Wi and steady state flows at lower Wi was verified to establish
time-Wi superposition experimentally. As the Weissenberg number (Wi) increased,
the flow developed from a Newtonian-like flow to vortex growth, and the transient
start-up flow at high wi was found to experience all the steady patterns at lower
wi flows. The flow sequence was different depending on the fluids and channel
dimensions as above. However, in all of the cases we could reach, the steady
patterns at each low wi flow could be matched 1:1 with the transient patterns at

each high wi flow. The plot of wi and time when the two sets (transient and



steady) were matched showed a clear functional relationship, from which the time-
Weissenberg number superposition could be confirmed. (Chapter 4)

As the last part of thesis, dynamics of unstable flows were examined and
characterized. In chapter 3 & 4, the flows were stable. However, as the
Weissenberg number increased, by increasing either the shear rates or the elasticity
of the fluids, the vortex fluctuated with a certain period. To reach the unstable state,

highly elastic fluids (M,,=5x10° g mol™, PEO solutions) were used. In unstable

flows, the vortex fluctuates constantly. At first it oscillates with certain periods, it is
oscillating vortex. The oscillating vortex was symmetric at first and became
asymmetric with various patterns. As the elasticity increased further, the vortex
randomly fluctuated without any certain time period. The Lyapunov exponent for
the change in vortex size was positive, meaning that the flow was spatially chaotic.
(Chapter 5)

This thesis systematically analyzed the flow patterns of the elastic fluids in
the micro-contraction flow, which included; Newtonian-like flow, divergent flow,
steady vortex growth, oscillating flow with symmetry, oscillating flow with

asymmetry, and chaotic flow.

Keywords: microfluidics, contraction geometry, viscoelastic flow, aspect ratio,
time-Weissenberg number superposition, unstable flows

Student Number: 2009-30245
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1. Introduction

1.1. Flow dynamics in contraction geometry

The flow behavior of viscoelastic fluids is important not only in classical
polymer processing but also in new technologies such as ink jet printing, so the study
of this topic is motivated largely in processing operations. (Boger 1987)
Understanding the mechanism of diverse flow dynamics for the non-Newtonian fluids
depending on their condition (such as flow rate, channel geometry or properties of
fluid) is an important issue for those processes to control the process. So there are a lot
of studies about viscoelastic flows to make high quality products with high throughput
(Hertel & Minstedt 2008). Especially, the contraction flows of viscoelastic fluids are
one of the benchmark problems in rheology. Contraction and expansion geometry is
inevitable in most of processing operations, and vortex enhancement is an important
characteristic of viscoelastic flows in contraction geometry. Vortex formation is
detrimental to the industrial processes because it causes waste of the resins and
limitation on the production rates when the materials, particularly polymeric
materials,rotate in vortex for a long time (Chiba et al. 1995; Haste 2007).

Therefore, there have been many studies about viscoelastic contraction flows
(Boger 1987; White et al. 1987; Chiba et al. 1992; Owen & Phillips 2002; Boger &
Walters 1993; Nigen & Walters 2002). Vortex could be generated with Newtonian
fluids in contraction geometry under certain condition (Viriyayuthakorn & Caswell

1980; Boger et al. 1986), but viscoelastic fluid forms distinctive flow patterns,



including vortex, under wider range of flow conditions. When the flow rate or the
elasticity of a fluid is small, the flow pattern is fairly simple and easy to control.
However, as the shear rate or the elasticity increases, vortex enhancement is observed,
and many distinct flow patterns appear (Boger 1997; Nigen & Walters 2002; Cable &
Boger 1978, 1979; Nguyen & Boger 1979; Walters & Webster 1982). The mechanism
behind the formation of these diverse flow patterns is still unclear because it is
affected by number of parameters such as channel geometry, shear rate and fluid
elasticity. The effect of these parameters have been covered with many experimental
studies: the rheological properties of the fluids, contraction shape (abrupt, tapered,
rounded, and hyperbolic), types of contraction (planar, square, and axisymmetric),
flow rate, contraction ratio (Boger 1986; McKinley et al. 1991; Rodd et al. 2005;
Rodd et al. 2007; Evans & Walters 1986; Evans & Walters 1989; Rothstein &
McKinley 2001; Rodd et al. 2005; Schuberth & Miinstedt 2008; Alves et al. 2008;
Yesilata et al. 1999; Yesilata et al. 2000; Cogswell 1972; Yasuda & Sugiura 2008;
McKinley et al. 2007; Oliviera et al. 2007; Sousa et al. 2009).

The main purpose of studying viscoelastic flow dynamics in contraction
geometry under number of circumstances as above is to predict and understand the
kinematics of flow, especially, when elasticity increased. Flow patterns, such as vortex
enhancement, have been observed by various methods like laser-Doppler velocimetry
(LDV), particle tracking velocimetry, and long-exposure images (Lawler et al. 1986;
Raiford et al. 1989; Santiago et al. 1998; Raffel et al. 1998; Meinhart et al. 1999;
Alves et al. 2008; Rodd et al. 2007; Dembek 1982). These flow-visualization methods

can be divided into nonintrusive method like hot wire or pressure tube and intrusive
-2 -



method using probes, and also can be divided into indirect or direct methods. In this
study, particle streak image technique, which is intrusive and direct, was used to
capture exact visual of flow patterns, even in unstable flows.

Many of above studies have investigated the viscoelastic flows, and the flow
instability from the elasticity of fluid has received special attention. Among above
factors that affect flow conditions, the effect of elasticity has been the focus not only
for the flow in the contraction geometry but also for many other flows. In particular,
there has been much interest in flow instability which is caused by purely elastic flow
characteristics. There have been many studies on the effect of elasticity on flow
patterns inside contraction channels (Pakdel & Mckinley 1996; Bonn & Meunier 1997,
Kwon 2012; Kwon & Park 2012). In those studies, polymer solutions were used to
induce elastic instability. When experiments were performed with elastic fluids with a
simple shear flow, curved streamlines were observed at a low shear rate unlike
Newtonian fluids. Depending on the type of polymer, the pattern for the streamline
changed, from which the effect of elasticity on flow instability could be deduced.
Groisman reported how the mechanism of flow destabilization by elasticity is
different from that of inertia (Groisman & Steinberg 1998).

Studies on contraction flows have mostly been done with macro scale channels
(i.e. channel size was on the order of millimeters or larger). Macro channels have
advantages in dealing with highly viscoelastic fluids. However, it is not easy to
generate a high shear rate with devices using such a large length scale. In addition, it
Is difficult to observe the purely elastic effect because the Reynolds number also

becomes large at a high shear rate. It becomes hard to distinguish whether flow
-3-



instability comes from elasticity or from inertia.

Therefore, it can be advantageous to use microfluidic devices, in which a high
deformation rates can be attained while maintaining a low Reynolds number. In other
words, a high Weissenberg number (characteristic time of the fluid (1) multiplied by

the characteristic shear rate (y), Wi= 4y ) flow could be explored while maintaining a

low Reynolds number due to the small scale length of the microchannel. The effect of
elasticity on flow could be observed while keeping the inertial effect minimal
(Groisman & Quake 2004; Mitchell 2001; Whitesides 2006; Rodd et al. 2005; Rodd et
al. 2007; Gulati et al. 2008). Diverse flow patterns including vortex formation caused
by elasticity at a high Weissenberg number have been reported by both experiments
and simulations. (Rodd et al. 2005; Rodd et al. 2007; Alfonso et al. 2011) In addition,
the Elasticity number (El =Wi/Re), which is the Reynolds number divided by the
Weissenberg number, has also been used to explain such a diverse flow development
in microchannel studies (Rodd et al. 2007).

Flow dynamics, especially vortex, in sudden contraction has been also a
classical benchmark problem in computational studies (Owen & Phillips 2002; Alves
2008), and many simulations were also performed in an effort to understand the
dynamics of a highly elastic flow with low Reynolds number (Alfonso 2011). It was
demonstrated by both experiment and simulation that a vortex is formed with a high
Weissenberg number even when there is no inertial force.

In the contraction flow for the macro-size, also in numerical simulation, a lip

vortex often appeared as the Weissenberg number increased. However, in planar



contraction channels whose width is on the order of tens or hundreds of micrometers,
there have been many cases where a lip vortex did not appear and a unique flow
pattern called a divergent flow appeared. A divergent flow is the flow in which the
location of the maximum flow velocity is not right above the point of the contraction
but is moved upstream due to fluid elasticity, resulting in a distortion of the flow. This
phenomenon was also demonstrated in a simulation using the upper-convected
Maxwell (UCM) model (Alves & Poole 2007).

Most of the previous studies have focused on the flow patterns at steady states,
while experimental studies on the transient behavior have rarely been performed.
There are some simulations about transient of start-up flow in contraction or
constriction (contraction-extension) geometry. Bishko et al. calculated how vortex
formed when the viscoelastic fluid flows though a 4:1 contraction geometry at various
Weissenberg number. There also exists a study on the transient behavior, in which the
center of the vortex changes its motion when the pressure drop changes to slow
growth in the start-up flow (Szabo et al. 1997). Kim et al. performed a numerical
study and reported that the transient flow at a certain Weissenberg number
experienced all the steady flow patterns at lower Weissenberg numbers, and suggested
the principle of superposition of the time and the Weissenberg number. In their graph
of the time-Weissenberg number superposition, the slope changed at the point where
the lip vortex and the corner vortex merged.

There have been also experimental studies about transient flows in contraction

geometry. The flow characteristics of polymer solutions were studied experimentally



by McKinley et al. in terms of the Deborah number ( De=A/7z) which is defined as
the relaxation time of the fluid (A1) divided by the processing time (7). When the
velocity profile was measured near the contraction, it fluctuated due to the change in
elasticity even when no significant external change was observed. Depending on the
Deborah number and the contraction ratio, the velocity fluctuation was either periodic
or non-periodic, and a map of the flow regimes could be drawn. They analyzed the
fluctuation of the velocity profile due to the elasticity. The flow pattern was in a
steady state with a steady streamline over time, and only the flow velocity fluctuated
due to elasticity. The unsteady state in which the vortex was fluctuating was not
studied in detail. In the studies where macro-size contraction geometry was used, the
flows with high Weissenberg numbers could not be reached due to the limitation of the
shear rate, and flow dynamics has been studied mostly in steady states. There were
some reports on the vortex oscillation that arises due to elasticity (Yesilata et al. 1999;
Alves, et al. 2005; Kwon 2012).

In all the above studies, flow dynamics in contraction geometry has been
studied extensively. However, detailed characteristics or the flow patterns in the
unsteady region, caused purely by the elasticity of the fluid, have not been explored
yet even in micro-scale devices. Because flow behaviors like vortex enhancement
could be observed without using highly elastic liquids, dilute polymer solutions have
been widely used. While Rodd et al. dealt with the time-dependent diverging flow,
most researches have not covered unsteady flow dynamics such as the vortex

fluctuation after the steady vortex.



1.2. Outline of the thesis

The objectives of this study are to examine and characterize diverse flow
patterns of viscoelastic fluids inside micro-fabricated 4:1 contraction planar channels.
Not just the flow patterns or the formation of the vortex but also sequence of flow
enhancement were observed. The flow patterns developed from a Newtonian-like flow
to a flow with a vortex growth regime in which the corner vortex grew as the
Weissenberg number increased. The flow development was affected by various flow
conditions.

In section 3, to understand the effects of the channel aspect ratio and elasticity
number among the many factors, the changes in flow patterns were observed and
analyzed with various micro-channels of constant height and different sizes and with
fluids of different elasticity.

In section 4, all the transient flow patterns at the initial high Weissenberg
number flow were compared and matched to the flow patterns at steady states at lower
Weissenberg numbers by changing the fluid elasticity and the channel dimension. By
doing this, whether the time-Weissenberg number superposition, which was proposed
by numerical simulation, was a principle involved in the complexity of this flow or
simply was just the result of numerical artifact was examined.

In section 5, the flow pattern as well as its change over a wide range of
Elasticity number and Weissenberg number was studied through flow visualization,
and systematical analysis of the flow profiles was performed. Especially, highly

elastic fluids and one smaller dimension channel were used to get high Weissenberg
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number flows, while keeping the Reynolds number small (O(10?)>Re). With those,

even unstable flows, caused by elasticity, were quantitatively analyzed.



2. Experimental Section

2.1. Fluids

Polyethylene oxide (PEO) which is a commonly used water-soluble polymer
was used in this study. Various polyethylene oxide (PEO, Sigma Aldrich, USA)
solutions were prepared with two different molecular weights: 0.3wt%, 0.4 wt%, 0.5
Wit%, 0.6 Wt%, 0.7 wt% and 1.0 wt% (molecular weight of 2x10° g mol™), 0.4wt%,
0.6Wt%, 0.7wt%, 0.8wt%, and 1.0wt% (molecular weight 5x10° g mol™)

These solutions were applied to 4:1 microcontraction geometries for
investigating various flow patterns. The steady shear viscosity of each solution was
measured using a strain-controlled rheometer (ARES, TA Instruments, USA) with
60mm parallel plates at 259C. The viscosity curves as a function of the shear-rate are
shown in Figure 2.1 and 2,2. Solutions of Figure 2.1 were used for section 3, and
solutions of Figure 2.2 were used for section 4 and 5. The zero-shear viscosities,
obtained by fitting with the Carreau model:

n=mll+ (A7) 1", (2.1)

The relaxation time was measured using a capillary breakup extensional
rheometry (CaBER), which is appropriate for the measurement of low viscosity
polymer solutions. (Rodd et al. 2004) The zero-shear viscosity and the relaxation time
of each solution are provided in Table 2.1 and Table 2.2. The range of relaxation times
for the solutions measured by CaBER were 14< 2 <82 ms, and the zero-shear viscosity

was in the range of 0.009 <7, <39Pa-s. All solutions showed shear thinning at high
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shear rates.
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Figure 2.1. Steady shear viscosity data for 0.3 wt%, 0.4 wt%, 0.5 wt%, 0.6 wt%, 0.7
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wt% and 1.0 wt% (M, =2x10° g mol™) PEO solutions.
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Figure 2.2. Steady shear viscosity data for 0.4 wt%, 0.6 wt%, 0.7 wt%, 0.8 wt% and

1.0 wt% (M, =5x10° g mol™) PEO solutions.
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Table 2.1. Rheological properties of solutions at 252C. (PEO of M= 2x10° g mol™)

PEO

| 03wt% | 0.4wit% | 05wWt% | 0.6wWt% | 0.7wit% | 1.0wi%
concentration
7, (Pa+s) | 0.009 0.015 0.026 0.035 0.055 0.20
2 () 14 16 18 20 22 25

Table 2.2. Rheological properties of solutions at 252C. (PEO of M= 5x10° g mol™)

PEO 5M | 5M | 5M | 5M | 5M
concentration 04wt | 0.6wt | 0.7wt | 0.8wt | 1.0wt
ny(Pa « s) 0.81 3.5 7.7 8.2 39
A_(ms) 46 46 50 52 82

- 13 -




2.2. Micro devices

The experiments were performed in a 4:1 planar contraction channel with the
following dimensions. They are six contraction channels, with schematics shown in
Figure 2.3 (a), and the channel size, listed in Table 2.3, was from 160 um : 40 um to
800 pm : 200 um. The height of the channels was fixed at 70 um for all the channels.
In this manner, the aspect ratio of the channels (1), defined by the ratio of the height

to the upstream width (w, ), could be varied from 0.068 to 0.438.

To observe the effect of the aspect ratio of the channel on the change in flow
pattern and universality of time-Weissenberg number superposition, experiments were

performed with channels of different size. The direction of flow is —y . Figure 2.3 (b)

shows a microscopic image of cross-sectional view. Corner angle was nearly 90°with
range of 88°< angle < 91°

The channel was constructed using poly(dimethylsiloxane) (PDMS, Sylgard
184A, Dow Corning), with a mold made with thick photo-resist (SU-8 50,
MicroChem Corp., USA) and high-resolution chrome mask. (McDonald et al. 2000;
Anderson et al. 2000; Whitesides & Stroock 2001; Strook & Whitesides 2002; Rodd
2006) SU-8 was spin coated with a uniform thickness onto a silicon wafer, and the
mold was patterned by soft-lithography of the chrome mask. PDMS was poured over
the pattern and the transparent PDMS channel was obtained after heating in an oven.
The experiments were performed using these channels attached to a cover glass which

was thinly coated by PDMS at a thickness of 5 to 7 um. The ratio of the PDMS to the
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curing agent (Sylgard 184B, Dow Corning) was 10:1. Each part (the channel and the
PDMS-coated cover glass) were baked in oven at 80°C for 30 min, and then baking
bonded channel in oven at 80°C over 24 hours. The adhesive strength of the PDMS
coated cover glass was higher than that of a piece of cover glass with no surface
treatment. Thus, the channel made with the PDMS coated cover glass showed

improved durability, and the four walls in the channel had the same hydrophobicity.

- 15 -



(b)

Figure 2.3. (a) A schematic of the 4:1 sudden contraction geometry: w, = upstream

width of channel, w,

c

= width of contraction, h = depth of channel. (b) Photo of

cross-section of the actual channel 3.
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Table 2.3. Dimensions of the channels.

Aspect ratio

W, T W, h A=h/in, Magnification
Channel 1 160pum:40um 0.34 x20
Channel 2 180pum:45um 0.30 x20
Channel 3 200pum:50pum 0.27 x20
50 -55 um
Channel 4 400pum:100pum 0.13 x10
Channel 5 600pum:150pm 0.091 x10
Channel 6 800pum:200pm 0.068 X4
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2.3. Visualization

To visualize the flows through 4:1 contraction channels, particle streak
imaging method was used. A schematic of the imaging setup was shown in Figure 2.4.
For flow visualization, 0.02wt% red fluorescent particles (Molecular Probes
FluoSpheres, Introvigen Corp., USA) with a 1.0 um diameter (excitation/emission =
520/580 nm) were dispersed throughout the fluid. A mercury lamp (IX-71, Olympus,
Japan) and a filter (XF102-2, Omega optical) were used to continuously illuminate
530 — 590 nm wavelength light. A highly sensitive CCD camera (EM-CCD C9100,
Hamamatsu, Japan) and image processing software (HClmage, Hamamatsu, Japan)
were used to capture images at 1000 x 1000 pixels and 30.00 fps. (Rodd et al. 2005)

In order to adjust the changes in image size due to the variation in channel size,
different magnification lenses were used as described in Table 2.3. To achieve the best
resolution images, magnification from the microscope body was also used when it is
possible. Channel 6 was quite bigger than usual microcontraction channel, (Rodd et al.
2007; Dendukuri et al. 2007; Kang et al. 2005) so 4X objective lens was used for
proper visualization. The flow was from the wide upstream part to the narrow
downstream part. As shown in Figure 2.3, the length of the upstream part from the
inlet to the contraction was 1 cm, and the length of the downstream part was 3 cm.
The length of the downstream part affected the vortex formation in the upstream part,
and the downstream part was designed to be much longer than that of the upstream

part to minimize this effect. (Rodd et al. 2010)
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Figure 2.4. A schematic of fluorescent streak imaging setup.
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2.4. Flow rate control

The fluids were supplied to microchannels with 1 ml or 2.5 ml glass syringe
(GASLIGHT, Hamilton, USA). Syringes were connected to inlet of microchannels
with flexible Teflon tubing (inner diameter 0.5mm) through stainless steel capillary.
There was no treatment for outlet of channels. Flow rate was controlled by syringe

pump (PHD2200, Harvard Apparatus, USA) in range 0f 0.5 — 15 ml/hr.

2.5. Dimensionless numbers

In this thesis, the following dimensionless quantities were defined in order to
characterize the flow dynamics inside the microchannel (Rodd et al. 2005): the
Reynolds number (Re), the Weissenberg number (Wi), and the Elasticity number (EI ).

N Q
W|:ﬂ = t — - 21
e W12 hw2i2 @1

Re= PV:Dn _ 2PQ -(2.2)
o (W, +h)m,

Wi 2ip  An(w,+h)

El=—= = 5
Re pw.D, PW.h

-(2.3)

whered 7. Q w, h p Vv, n, D, represent the relaxation time of the

fluid, the average shear-rate at contraction throat, the volumetric flow rate, the
contraction width, the channel depth, the fluid density, the average flow velocity, the

zero-shear viscosity, and the hydraulic diameter, respectively. D, was defined by
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D, =2w,h(w+h)

Wi is the product of the shear rate at the contraction part and the relaxation
time of the solution. This quantity is a dimensionless number, which represents the
deformation rate that the fluid experiences during the flow. Wi is widely used for
flows, such as the simple shear flow, that have a constant stretch history. In the
microchannel, a high Wi can easily be attained because the shear is large. Re is the
ratio between the inertial force and the viscous force in the flow, and it is much
smaller than 10 in the microchannels which were used in this study. So it does not
affect the flow condition significantly. These two dimensionless numbers are affected

by the flow kinematics and increase with an increase in the volumetric flow rate Q.

However the Elasticity number, EI, which is defined as the ratio of elastic stress and
the inertial stress, is not affected by the flow kinematics and depends only on the fluid
characteristics and channel geometry. When various fluids and different
microchannels are used as in this thesis, the EI can be used to represent different

experimental setups.
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3. Flow dynamics in microcontraction geometry

3.1. Method of experiment

Although different fluids and channels were used in this study, the experiments
could be well-organized using only the El and the aspect ratio of the channel. The
flow dynamics was observed by changing the two parameters mentioned above. The
six different PEO solutions given in Figure 2.1 were allowed to flow at different flow
rates inside six channels of different size as described in Table 2.3. The sequence of
the flow patterns was organized with the increase in flow rates. From this, the entire
flow pattern of the viscoelastic flow in the micro-contraction channels was classified
as we increased the shear rate and fluid elasticity. Although the order of pattern
formation did not change in any of the flow experiments, there were cases where
certain flow patterns did not appear. The effects of the aspect ratio of the channel and

the elasticity number in the flow pattern were analyzed.

3.2. General sequence of flow development

The flow patterns inside the micro-contraction channels were investigated, and
the flow instabilities observed at different shear rates and fluid elasticity were
systematically compared. The resulting flow patterns are shown in Figure 3.1 in the
order of their development. As shown in this figure, the flow inside the 4:1 micro-

fabricated channel exhibited various flow patterns depending on the EI and Wi. In
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the micro-scale devices, it was very difficult to observe Newtonian fluids forming a
complex flow pattern.

The viscoelastic PEO solution also exhibited only a Newtonian-like flow (A)
when the elasticity or the flow rate was low. When the elasticity was slightly increased
from the previous case, a lip vortex (B) appeared. This vortex expanded towards the
side wall and resulted in a corner vortex (C). The corner vortex disappeared as the
flow rate was further increased,so it is called weak vortex. With an increase in flow
rate, a divergent flow (D) was observed in which the flow streamline was distorted to
form a bulbous shape in which the maximum velocity occurred not at the contraction
part but further upstream. (Rodd et al. 2007; Alves & Poole 2007) A schematic of the
divergent flow is shown in Figure 3.2. Divergent flow can be identified with the
centerline velocity. In divergent flow, it shows divergent throat and divergent bulb.
Divergent throat is the part that streamlines became narrow, after that part streamlines
get bulge like a bulb.

When the elasticity was increased further, the vortex growth region (E), in
which the size of the steady corner vortex increased, was reached. The flow regimes
discussed so far were steady states. When the shear rate or the fluid elasticity was
increased further, the flow became unstable. Unstable state will be described minutely

in section 5.
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Divergent Divergent
throat bulb

Figure 3.2. A simple feature of divergent flow.
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3.3. Effect of aspect ratio and El on vortex dynamics

The flow pattern was analyzed from the flows of the different PEO solutions
in different channels with varying aspect ratios. When the flow rate was increased, the
formation of the flow pattern shown in Figure 3.1 was observed in the same sequence
for all the solutions. Some of the flow patterns were not observed in some cases
depending on the aspect ratio of the channel or the elasticity number. However, the
order of the pattern formation never changed. For example, the weak vortex (C)
before the divergent flow was not observed for low aspect ratio channel 5 (600 um :
150 pm). In the channels with a high aspect ratio, such as channel 3 and the smaller
ones, the lip vortex (B) appeared only for very limited flow conditions. However, even
in such a case, a change in the order of sequence, for example a corner vortex
developing first and then turning into a lip vortex, never occurred.

The difference in flow sequence in terms of the aspect ratio of the channel is
shown in Figure 3.3. For the channels with an aspect ratio smaller than 0.13 (channels
4, 5, and 6), the lip vortex always appeared. However, the divergent flow sometimes
did not appear depending on the fluid elasticity, and the corner vortex never appeared.
When the channel aspect ratio was larger than 0.25 (channels 1, 2, and 3), all the flow
patterns were observed. However, except for the Newtonian-like flow and the vortex
growth regime, the flow patterns exhibited a difference dependent on the EIl.

The flow pattern was affected not only by the aspect ratio but also by the

elasticity number. (Rodd et al. 2007) The difference in flow patterns in terms of El is
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shown in Figures 3.4 and 3.5. For the channels with an aspect ratio less than 0.13
(channels 4, 5, and 6), two different sequences were observed as shown in Figure 3.4.
For the case where EI was smaller than 30, the divergent flow was always observed
regardless of the channel size. However, when ElI was on the order of several
hundreds, the lip vortex transformed into a corner vortex and continued to expand. In
other words, the lip vortex disappeared, and the divergent flow appeared for a small
El . However, the lip vortex never disappeared but the vortex just continued to expand
when El was large.

When the aspect ratio was larger than 0.25, the flow developed in more
diverse ways. Figure 3.5 shows the flow sequence in a high aspect ratio channel. All
of the flows showed the same pattern as a Newtonian-like flow at a low Wi and a
vortex growth region where the corner vortex increased in size at high Wi. However,
the flow patterns between these two regions were diverse.

The results are organized into a single map shown in Figure 3.6. As seen in the
figure, there was a critical aspect ratio between 0.13 and 0.25 where the flow sequence
changed significantly. Even for the flows at the same aspect ratio, the change in El

caused a variation in the sequence of the flow patterns.
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4. Time-Weissenberg number superposition

4.1. Method of experiment

The experiment was first performed by letting the three PEO solutions (2M
0.3wt% ( El =90), 0.7wt% ( El =1900), 1.0wt% ( EI =5100)) in Figure 2.2. flow
through Channel 3. In one set of experiments, the flow with a low wi was allowed to
reach steady state, and the flow pattern at the steady state was recorded. The
experiments were repeated as we increased Wi . This set of experiments was named as
the steady set. In another set of experiments, the channel was first filled with fluid and
the flow at the highest wi in the steady set was applied. The change inflow pattern
was recorded until the flow fully developed and reached the steady state. This set of
experiments was named as the transient set. The time when the highest flow rate was
applied after filling the channel was defined as t=0. After performing these two sets
of experiments, the flow pattern from the first set (with the increase in wi) and the
flow pattern from the second set (with the increase in time) were compared, and those
that had the same shape were matched. When these two sets were matched in the
Newtonian-like flow region where there exists no particular flow pattern, it was hard
to compare the steady set and transient set. The time at which the Newtonian-like flow

ended was set to be t, and the graph was shifted by t,. The time was non-

dimensionalized by the relaxation time of the solution.

t—t,
A

, -(41)

T =
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where t is the elapsed time in the start-up flow; t, is the time at which the

Newtonian-like flow ended; 4 is the relaxation time of the solution.

For the 0.3 wt% PEO solution, the steady state experiments were performed
for 5.6 <wi< 167, and the transient flow experiment was performed at Wi =167 from
the time when the fluid began to flow (t=0) to the time when the flow was fully
developed (7 = 160). For the 0.7 wt% PEO solution, the steady state experiments were
performed for 33 <wi< 550, and the transient flow experiment at wi =550 for 7 <
230. The range of experiments is summarized in Table 4.1. The experiments were also
performed using the same procedure with channel 4, 5, and 6 which are larger in size

than the 200 pm: 50pm microchannel used above.
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Table 4.1. Range of experiments in the steady and transient states in channel 3.

Steady (Wi ) Transient (7)
0.3 wt% PEO 5.6 - 167 <160
0.7 wt% PEO 33 - 550 <230
1.0 wt% PEO 14 - 690 < 660
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4.2. Results

When the channel geometry was changed, the flow pattern developed in
different ways with the increase in Wi or with the increase in time at a high wi. For
the 0.3 wt% and 0.7 wt% PEO solutions, there was no vortex with a low Wi or an
early-phase of a high wi flow in Channel 3. The flow was Newtonian-like, in which
the streamlines were smooth as in a creeping flow with no flow separation. As
elasticity increased, the divergent flow, in which the location of the maximum velocity
was not right above the contraction entrance but more upstream, occurred and
distorted the streamlines. Following the divergent flow, the vortex developed at the
corners of the contraction zone. For the 0.3 wt% PEO solution in Channel 3, the flow
was Newtonian-like for wi< 60, a divergent flow for 60 <wi< 120, and a vortex
growth for wi> 120. When a high flow rate of wi= 170 was applied, the flow was
Newtonian-like for < 0, a divergent flow for 0 <z < 50, a vortex growth for z > 50,
and finally reached the fully developed steady state at r = 160. The flow of the 0.7wt%
solution was similar. It was Newtonian-like for wi< 300, a divergent flow for 300 <
Wi < 440, and a vortex growth for wi> 440. The flow was observed up to a wi of
550. For transient flow at wi of 550, the flow was Newtonian-like for < 0, a
divergent flow for 0 <z < 110, and a vortex growth for > 110. A fully developed
steady state was reached ata  of 230.

The steady flows of the 0.7wt% PEO solution with a low wi and the

transient flows with a high wi were compared in Figure 4.2. In the divergent flow,
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the distance between the two streamlines on both sides of the centerline decreased and
then increased as the streamlines entered the contraction region. The narrow part is
called the divergent throat and the wide part is called the divergent bulb. As the Wi
increased or as time passed with a high wi, the divergent throat became narrower and
the divergent bulb widened, leading to the change in the size ratio of these two.

When comparing the steady and transient states shown in Figure 4.2, the
divergent flow region was compared using the ratio of the distance at the divergent
throat and the distance at the divergent bulb between the two streamlines which were
located at the same width with the contraction part. They are +25 pm and -25 um from
the centerline at the far upstream in channel 3. The steady flow with a wi of 380
and the transient flow after =230 with a wi of 550, shown in Figure 4.2, had a
divergent throat of 138 um wide and a divergent bulb of 176 um wide. The ratio was
1.28. For the vortex growth, the size of the vortex increased as the Wi increased or as
time passed for the start-up flow with a high wi. The vortex size was determined by
measuring the length of the vortex in the flow direction at each corner along the

channel side, and non-dimensionalized by upstream channel width. (L, /W,, L, : vortex
length, W, : upstream channel width) The increase in the vortex size for the steady set

and the transient set were also matched. When the wi was equal to 550, the vortex

grew up to 0.5. A schematic of the size of the vortex shown in Figure 4.1.
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Figure 4.1. A schematic of the size of the vortex: L, is the maximum size of the

oscillating vortex in the y direction and L, is the size of the vortex in the x direction.
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Divergent flow

Vortex growth

Steady

Newtonian-like

Wi=380,Re=0.20

Wi=550,Re=0.28

Transient

Wi=110,Re=0.06

7<)

=23

=230

Figure 4.2. Comparison of the steady flows with a low Wi and transient flow with a

high Wi (=550) for 0.7 wt% PEO solution (2M).
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The flow of the 1.0 wt% PEO solution was studied in the same manner, and
the result is shown in Figure 4.3. However, as seen in the figure, the flow development
in this case was different from the flow sequence of the 0.7 wt% solution.
Asmentioned in previous section, the flow patterns in this region were diverse. For
solutions with a concentration of 0.7 wt% or lower, the flow developed in the
following sequence: Newtonian-like - divergent flow - vortex growth, and for the
1.0 wt% solution, a small corner vortex appeared shortly before the divergent flow in
this experiment sets (weak vortex). The corner vortex that did not change in size and
disappeared with a higher wi was named as the small vortex. As the wi increased
or as time passed with a high wi, the small corner vortices disappeared and the
divergent flow occurred. For the divergent flow in this case, the ratio between the
divergent bulb and the divergent throat was 1.31. When wi was 690, the

dimensionless vortex size (L,/W,) was 0.5.

As seen in Table 4.2.(c), the flow was Newtonian-like for wi< 69, a small
vortex flow for 69 <wi< 210, a divergent flow for 210 <wi< 410, and a vortex
growth for wi> 410. The flow was observed until a wi of 690. For the transient
case for a wi of 690, the same sequence as the low wi flows was reproduced. The
flow was Newtonian-like for <0, a small vortex for 0< ¢ <140, a divergent flow for
140< 7 <290, and a vortex growth for > 290. The flow reached a fully developed

steady state at = = 660.
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Newtonian-like

Weak vortex

Divergent flow

Vortex growth

Steady

'l‘

Wi

| |
Wi=140,Re = 0.03

Wi=280,Re=0.05

Wi=690,Re=0.14

Transient

<0

7=110

7 =160

7 =660

Figure 4.3. Comparison of the steady flows with a low Wi and transient flow with a

high Wi (=690) for 1.0 wt% PEO solution (2M).
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Table 4.2. Flow sequence of the steady and transient flows. (a) Channel 3, 2M 0.3 wt%
PEO, (b) channel 3, 2M 0.7 wt% PEO, (c) channel 3, 2M 1.0 wt% PEO, (d) channel 4,
2M 0.3 wt% PEO, (e) channel 5, 2M 0.7 wt% PEO, (f) channel 6, 2M 1.0 wt% PEO.

(a) Channel 3, 2M 0.3 wt% PEO

Newtonian-like

Divergent flow

\ortex growth

Steady

Wi< 60

60 <Wi< 120

Wi> 120

Transient

<0

0<r<50

7>50

(b) Channel 3, 2M 0.7 wt% PEO

Newtonian-like

Divergent flow

\ortex growth

Steady Wi < 300 300 <Wi< 440 Wi > 440
Transient <0 0<7r<110 7> 110
(c) Channel 3, 2M 1.0 wt% PEO
Newtonian-like | Small vortex | Divergent flow | Vortex growth
Steady Wi< 69 69 <Wi< 210 | 210 <Wi<410 Wi> 410
Transient <0 0<7r<140 140 <7< 290 7> 290

(d)Channel 4, 2M 0.3 wt% PEO

Newtonian-like Lip vortex Divergent flow | Vortex growth
Steady Wi< 55 55 <Wi< 100 | 100 <wi< 170 Wi> 170
Transient <0 0<7r<30 30<7r<65 7> 65
(e) Channel 5, 2M 0.7 wt% PEO
Newtonian-like Lip vortex \ortex growth
Steady Wi< 18 18 <Wi< 40 Wi> 40
Transient <0 0<r<45 7> 45
(f) Channel 6, 2M 1.0 wt% PEO
Newtonian-like Lip vortex \ortex growth
Steady Wi< 14 14 <Wi< 45 Wi > 45
Transient <0 0<7r<70 r>70
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Summarizing the results of the experiments performed with Channel 3, it can
be seen that the flow patterns of the early-phase transient flow with a high wi
matched well with the flow patterns of the steady states with a low Wwi. The flow
pattern developed in the same way when the wi increased for the steady flows and
when time passed with a high wi.

In order to check the universality of this observation, larger channels were also
used. When channels larger than Channel 3 were used, a lip vortex was sometimes
observed before the formation of the corner vortex instead of a divergent flow.
However, as the Wi increased, the corner vortex eventually appeared and kept on
growing until the flow became unstable. The results with different polymer solutions
and different flow channels are all summarized in Table 4.2. In this case, a device
time-scale that is caused by the compressibility of the fluid or device may be existed.
Difference in time-scale among the channels was characterized by pressure drop
measurement. Pressure tips were set on the contraction part of the channel, and the
channel and the tube were filled with DI water or PEO solutions. However, even with
channel 6, the biggest, the total pressure drop increased immediately after running the

syringe pump. Therefore, the time scale of the device was not significant.

4.3. Time-Weissenberg number superposition

When the patterns of the two sets of experiments were matched between the

steady flow with a low wi and transient flow with a high wi, we marked a point on
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the graph in Figure 4.4, where the x-axis is the ¢ in the transient set and the y-axis is
the wi in the steady set. As various channel geometries and solutions were used, the
range of wi was large and the y axis was represented in log scale. Through this
graph, the relationship between the flow patterns of the two sets of experiments in the
process of flow development could be examined.

As seen in Figure 4.3, all the curves followed a similar form regardless of the
channel size and fluids. The change in flow patterns was the different for different
flow conditions, but the slope of the curve changed significantly at the point where the
corner vortex first appeared. It is similar to numerical results of Szabo et al. in a way
that the slope of the pressure drop versus time significantly decreased when the
motion of vortex center changed. (Szabo et al. 1997) More important is that we could
plot the curve for all the experiments we performed, which means that there always
exists a relationship between the time and Wi, or between the steady flow patterns
with a low wi and the transient flow patterns with a high wi. From this, it can be
suggested that there exists a relationship between time and wi in vortex dynamics,

which could be named as the time-Weissenberg number superposition.
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Figure 4.4. Time-Wi superposition graphs. 1) El = 30, 2M PEO 0.3 wt% Channel 4,
2) ElI=90, 2M PEO 0.3 wt% Channel 4, 3) El = 200, 2M PEO 0.7 wt% Channel 5,

4) El =560, 2M PEO 1.0 wt% Channel 6, 5) EI = 1900, 2M OPEO 0.7 wt% Channel

3,6) EI=5100, 2M PEO 1.0 wt% Channel 3.
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In the 2-D simulation of the 4:1 planar contraction flow with the Oldroyd-B
model, the time-wi superposition was also confirmed. In the simulation, both the lip
vortex and the corner vortex were observed and they grew as the Wi increased or as
time passed for the start-up with a high wi flow. Eventually, the two vortices
coalesced, forming a big corner vortex. The slope changed significantly at the point
where the lip and corner vortex coalesced. (Kim et al. 2005) The experiments show
different flow sequences compared to the simulation. Unlike the simulation in which
both the lip and corner vortex formed and coalesced, the flow developed to the
divergent flow, which was not observed in the 2-D simulation, and either the corner
vortex or lip vortex eventually grew in size to reach the corner of the microchannel.
Although the process to form a large corner vortex was slightly different compared to
the simulation, the one-to-one matching of the flow patterns between the transient and
steady flows was the same, and the slope in the time-wi graph decreased
significantly at the point of the vortex formation for both cases. As seen from the
experimental results with the various fluids, if a certain flow pattern appears in the
steady state with a low Wi, such a flow pattern will appear in the early-phase of the
transient flow with a high wi, and vice versa.

The time-wi superposition was demonstrated experimentally as shown in
Figure 4.3. Even though different fluids and different channels were used, all the
curves followed a similar form that could be fitted into the equation, Wi=a(l—-e™).
Each point in the figure represents the results of two sets of experiments (steady and

transient), and the lines are the fitted results using the equation above. Table 4.3 lists
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the fitting parameters. The physical meaning of the parameters is yet unclear and more
research will be necessary. However, despite the fact that different fluids and different
channels were used, the time and wi had a special relationship that could be
represented by a single curve. From this, it could be concluded that the vortex
dynamics of viscoelastic fluids in the contraction flow could be dominated by a simple

rule, which is the time-wi superposition.
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Table 4.3. Fitting parameters of each time-Wi superposition graph, following the
equationwi =a(l—e™).

Channel El a b
Channel 2 30 2.66xe’ 1.42xe™
Channel 1 90 1.65xe” 2.13xe™
Channel 3 200 6.83xe’ 1.99xe™
Channel 4 560 8.11xe! 1.30xe™
Channel 1 1900 4.94x¢? 6.39xe™
Channel 1 5100 9.56xe” 1.90xe™
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5. Unstable flows

5.1. Sequence of developing flow pattern of highly elastic fluids

In this section, to observe unstable flows, usually 5,000,000 molecular weight
polyethylene oxide solutions in Figure 2.2 were used, and only one channel geometry
(channel 3, 200um:50pum) was used. Figure 5.1 shows the sequence of developing
flow patterns as as the ElI or Wi increased in this condition. The flow was
Newtonian-like at first where the fluid enters the contraction smoothly without any
unusual flow pattern (Newtonian fluids do not exhibit any unusual flow patterns inside
a microchannel). From the Newtonian-like flow (A), a corner or lip vortex (B) was
formed as the elasticity increased. Because (B) disappears as the flow rate is increased
further, it is called a weak vortex. As the weak vortex disappeared, a divergent flow
(C) was observed, in which the maximum velocity was not at the contraction but in
the upstream region. (Rodd et al. 2007; Alves & Poole 2007) As the elasticity
increased further, a vortex growth region (D) was observed, in which the size of the
steady vortex increased with Wi. When the elasticity was increased further, the flow
transitioned from the steady to the unsteady region, and exhibited continuous
fluctuations. In this region, the vortex fluctuated with a certain period instead of
maintaining a steady vortex. This was called oscillating vortex (E). After that, vortex

fluctuation lost its periodicity, and aperiodic fluctuation regime appeared (F).
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The sequence was identified by mapping the flow patterns as shown in Figure
5.2. The change in the flow pattern from A to F indicates the change with the increase
in Wi, while the change in flow patterns from the left to the right side of the table
indicates the change with the increase in EI. The flow patterns were influenced by
both Wi and EI. (Rodd et al. 2007) For dilute polymer solutions with low EI, it
was difficult to reach the steady vortex region because the shear rate was limited by a
maximum pressure that the micro-fabricated PDMS channel can endure. The
maximum flow rate was dependent on the viscosity of the solution. The viscosity

range of the solutions, in this section, was 0.17 <7,<39 Pa s. The maximum Q was
15 ml/hr for 7,=0.17 Pas, and 2 ml/hr for 7, =39 Pas.

Due to the limitation of the shear rate, solutions with high concentrations and
high molecular weight were used to observe the flow change at low shear rates.
Unlike the case with the dilute polymer solutions, an unusual flow pattern with a
vortex was observed even at low shear rates with these solutions. And it was difficult
to observe the Newtonian-like flow pattern that was observed for the dilute solutions.
As can be seen in Figure 5.2, a weak vortex was observed for 0.4 wt% 5M PEO
solution even at the lowest flow rate allowed by the syringe pump resolution
(approximately 0.05ml/hr). For a 0.7 wt% 5M PEO solution, a vortex growth region
was observed at this flow rate. In these cases, even though a Newtonian-like flow or a
divergent flow could not be observed, the oscillating vortex and aperiodic fluctuation

could be observed.
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5.2. Oscillating vortex

As the elasticity or shear rate increased, the flow transitioned from a steady
vortex to an oscillating vortex where the vortex fluctuated with a period. The flow
pattern is shown in Figure 5.3. The oscillating vortex could be categorized as
symmetric and asymmetric according to its pattern of vortex formation. In the
symmetric oscillating vortex, the maximum and minimum sizes of the corner vortex at
one corner of the channel were the same with those at the other corner. When one
corner vortex was at its minimum, the other was at its maximum size. However, in the
asymmetric oscillating vortex, the maximum size and the minimum size of the two
corner vortices, or the periods of two vortices were not the same. In other words,
symmetric oscillating vortex is equivalently alternating, and asymmetric oscillating

vortex is inequivalently alternating.
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Figure 5.3 shows the oscillating vortices for 3 different solutions of 0.7 wt%,
0.8 wt%, and 1.0 wt% 5M PEO. The fluids were highly elastic with an El range of

2.7 X 10°%<ElI<2.2 X 10°. The flow rate was 0.2<Q<1.0 ml/hr and the Weissenberg

number ranged from 50<Wi<130. The experiments were not completely reproducible
because the flow was in an unstable region with high elasticity, and aperiodic vortex
fluctuation was often observed even at a Wi slightly higher than the Wi region
where oscillating vortices were observed. Therefore, the experiments were repeated
until reproducible results were obtained. For the 0.7 wt% solution, a symmetric
oscillating vortex was easily observed. But as the concentration increased, the
asymmetric vortex was observed. For a 1.0 wt% solution, the symmetric oscillating
vortex was not observed in the controllable volumetric flow rate even though the
experiments were repeated many times. From these results, it can be deduced that the
oscillating vortex had a tendency to transit from a symmetric to asymmetric flow with
anincrease in El or Wi.

In the oscillating vortex region, the vortex fluctuated with a certain period as
described above. In the 200 um:50 um channel system used in this study, the period
was in the range of 2<period<6 s shown in Figure 5.4. This was nearly a hundred

times larger than the characteristic time of the flow (the time to pass through the

Q
W xh

u

upstream channel with an average velocity ( )) or the characteristic time of the

fluids (). The results with the 5M PEO solutions with 0.6<C <1.0 wt% are given in
the figure, with the x-axis as Wi and y-axis as the period. As can be seen in the graph,

all the results were within the range, but no functional relationship could be found
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because it was in the unstable region, and the flow was right before losing its
periodicity.

The vortex size increased with the increase in Wi in the vortex growth region.
Because the vortex size changed constantly in the oscillating vortex region unlike the
steady region, the maximum size of the vortex was measured in Figure 5.5 during
fluctuation. The results are for 5M PEO solutions with the concentration in the range

of 0.6<C<1.0 wt%. As can be seen in the schematic of Figure 4.1, L, is the
maximum size of the oscillating vortex in the y-direction (flow direction) and L, is
the size of the vortex in the x-direction. L, was fixed at 75um. In Figure 5.5, the x-
axis represents Wi, and the y-axis represents the dimensionless vortex size (L,/L,).

In the oscillating vortex region, though the vortex size changed continuously, the
maximum vortex size increased with Wi.

To quantitatively analyze the pattern of the oscillating vortex, the vortex size
at each corner of the channel was measured over time and the results are graphed in
Fiure 5.6. L(i) represents the size of the vortex on the left hand side of the flow
direction and R(i) is that on the right hand side. Figure 5.6 (a) is the result for the 0.7
wt% 5M PEO solution with a Wi of 79 and Q of 0.5 ml/hr. The oscillating vortex
fluctuated symmetrically, with the vortex at each side having the same maximum and
minimum vortex size with the same period. When the size of the vortex was plotted
over time, a periodic curve could be drawn. The change in size of two vortices was
alternated by half of a period. In addition, whether the oscillating vortex was

symmetric or asymmetric, the vortex size did not decrease immediately after reaching
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Figure 5.4. Periods of the oscillating vortex for 0.6, 0.7, 0.8 and 1.0 wt% PEO

solutions (M, =5x10° g mol™)in a wide range of Weissenberg numbers. (The line in

graph is a simple guideline.)

-58 -



e 5MO0.6wt% PEO oa
61 o B5MO0.7wt% PEO
v 5M0.8wt% PEO
51 2 B5M1.0wt% PEO
< 4
2
:I 3
o
2 | A
1 i
0 I J I T
40 60 80 100 120 140

Wi (-)
Figure 5.5. Maximum size of the oscillating vortex for 0.6, 0.7, 0.8 and 1.0 wt% PEO

solutions (M, =5x10° g mol™)
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its maximum. The vortex maintained its maximum size for a few seconds before
shrinking.

Although the symmetric oscillating vortex exhibited only one type of size
change as can be seen in Figure 5.6 (a), the asymmetric oscillating vortex exhibited
different patterns. They could be categorized into two patterns shown in Figure 5.6 (b)
and (c). In one case, one vortex fluctuated significantly while the other rarely
fluctuated shown in (b). In another, shown in (c), the two vortices fluctuated with
different patterns but with a single period. For example, in Figure 5.6 (c), the left
vortex maintained its maximum for 2 seconds and decreased to its minimum size of 30
um while the right vortex stayed at the maximum for 1.2 seconds and decreased to its
minimum size of over 50 um. The asymmetric oscillating vortex showed irregularities
compared to the symmetric oscillating vortex, but still repeated irregular flows with a

constant period.
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Figure 5.6. The patterns of the oscillating vortex with sizing by time (a) Symmetric
(El =2.7x10° Wi = 79): changes in vortex size for L(i) is the reverse of R(i). (b)
Asymmetric 1 (EI = 2.9x10°, Wi = 98): L(i) is fixed and R(i) is oscillating. (c)
Asymmetric 2 (El = 2.9x10°, Wi = 114): oscillating patterns of L(i) and R(i)are

different in a period. (e: L(i), o: R(i) for each graph)
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5.3. Aperiodic fluctuation

When Wi increased further after the oscillating vortex, the aperiodic
fluctuation regime in which the vortex fluctuated randomly without a characteristic
time scale appeared. The vortex at each side changed very rapidly without a pattern.
Sometimes, the two vortices overlapped. When the size of the oscillating vortex was
measured over time and plotted, a specific time periodicity appeared seen in Figure
5.6. However, when the vortex size was plotted in this region, no apparent period
could be observed as shown in Figure 5.7, which shows the vortex size of the left and
right sides versus time for 5M PEO 0.7 wt% solution at El =2.2x10° and Wi
=2.8x10%

In order to check whether the flow in this region was chaotic, the largest
Lyapunov exponent was calculated. (Sprott 2003; Rosenstein et al. 1993) In a 2D

graph, if there exists anarbitrary point X = X andY =Y "that satisfies

oX
e F(X.Y) - (5.1)
and
oY
E=G(X,Y), - (5.2)

the transientsof X and Y are

X _mxF & - (5.3)
ot X o vy oY |- vy
and
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ﬂ =AX @ +AY @
ot Xlixt vy oY

- (5.4)

(XYY
at the point X = X" +AX and Y =Y +AY which are very small distance away from

the point X = X~ and Y =Y. Then, there exists the following relation:

oF oF

- hall oX
OX |, o o= OY | o o= AX T
(X"Y") (X"Y") _ ot . -(55)
oG oG AY ﬂ
oxX (X" oY (XY ot

From the eigenvalue A of the above equation, the behavior of the position
with respect to an infinitesimally small change in location can be determined. If the
eigenvalue is positive, the infinitesimally small change is amplified over time while it
decreases over time when the eigenvalue is negative. The eigenvalues are defined only
at a specific point where X =X"and Y =Y". The Lyapunov exponent is the average
of the eigenvalues for every point that exists over a long time. The number of
Lyapunov exponents is equal to the number of dynamic variables of the system. The
largest Lyapunov exponent signifies how a point that is a certain distance away from
another point gets close or moves away. The largest positive Lyapunov exponent
implies that the change is amplified over time when the system variables are changed
by a small amount. This can be defined as chaotic.

The largest Lyapunov exponents for the vortex size of both left and right hand
side were determined from the data in Figure 5.7. For each vortex, one thousand data

points were analyzed. For the multiple points with j amount of pairs, the pair with

the least distance between the points was selected. The distance between the points of

- 64 -



0Tx8'Z = IM pue ;0T xZ'Z = |3 40 MOJJ 3y} J0} dwibal uolrenioniy d1potiade ay} Ul XaHOA 8y} J0 9zIS “/'G a4nbi4
[s] awn
¢ 0¢ T4 0z Sl 0l S 0
::: -_ ;;f : “ .’: __:___ | 7 , ; ? ‘
| ()} —
(71—

002
&9

05z N
o

-y

00g 2
@)

05t &
X

00r §
3

- 0SY

- 65 -

]
|

f| o}

3

e
-
Ly

—

L

SE



this pair after a certain amount of time was defined as d;(i) where i is the discrete-

time step, and this is the divergence. At is the sampling period, which is 1/30 second
in this experiment. In other words, the time after i steps is iAt. According to

Rosenstein et al., when the largest Lyapunov exponent is 2,, the relationship of

d,(i)~C,e"can be defined, where C, is the initial distance between the pair of

two points that are closest to each other among the j pairs. Taking the logarithm of

this equation, Ind,(i)~InC,; + 4 (iAt) can be derived. The average of j number of

pairs could be plotted in Figure 5.8 for both left and right side of vortex. The x-axis is

iAt (time) and y-axis is the average of Ind,(i) with its slope being 4, the largest

Lyapunov exponent. As shown in Figure 5.8, it initially increases rapidly with the
slope of approximately ten. When the largest Lyapunov exponent is positive as in this
case, the dynamics, the motion of vortex in this case, can be considered be chaotic.

Power spectra of the vortex size at Wi=2.8x10? is given in Figure 5.9. The
large peak in small frequency less than 0.1 is irrelevant to the actual vortex fluctuation.
There is no any characteristic peak, which also supports the flow is chaotic in this
region.

Newtonian fluids did not exhibit distinctive flow patterns such as vortex
formation in micro-contraction channel flow. For viscoelastic fluids, the nonlinear
rheological characteristics caused various flow patterns even at very low Reynolds
numbers. The present work analyzed the overall flow patterns in the contraction
geometry, especially unsteady region with micro-scale devices. In unsteady flows

regime, the oscillating vortex lost its periodicity at high Wi. It is similar to such
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elasticity-induced turbulence which was observed in various flows such as in the
simple shear flow between the parallel plates, Couette-Taylor flow between the two
cylinders, and the curvilinear channel flows. (Groisman & Steinberg 2000; Groisman

& Steinberg 2004; Fardin et al. 2010)
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6. Summary

Dynamics of flow in contraction geometry

First, the flow dynamics of viscoelastic fluids inside 4:1 planar micro-
contraction channels was investigated. The flow showed various flow patterns caused
by elasticity. From the observation of the flow sequence over a wide range of
Weissenberg number (Wi) and elasticity number (El ), the viscoelastic flow developed
starting from a Newtonian-like flow to a flow with a lip vortex region in which small
vortices near the contraction part appeared. The lip vortex grew into a corner vortex.
The corner vortex then disappeared and a divergent flow, in which the maximum
velocity occurred not at the contraction part but further upstream with distorted
streamlines, was formed. Finally, as the Wi was increased further, the corner vortex
formed again, and the flow reached the vortex growth region where the size of the
vortex continued to increase with the increase in Wi. Although the sequence of the
flow development never changed, certain phases of the flow development were
omitted according to the flow conditions. The primary factors affecting the flow
sequence were the aspect ratio of the channel and the elasticity number. Using
multiple channels with different sizes and PEO solutions with varying concentrations,
the effect of the channel aspect ratio and ElI was analyzed. In the case of a low
aspect ratio, the lip vortex always appeared, and the divergent flow occurred only

when ElI was low. When the aspect ratio of the channel was higher, the flow pattern
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prior to the vortex growth region was more diverse. In the case of a high aspect ratio
channel, the flow patterns between Newtonian-like flow and vortex growth region
were diverse. The critical aspect ratio at which the transition from a low aspect ratio
flow to a high aspect ratio flow occurred was between 0.13 and 0.25 for the 70 um

height channels.

Time-Wi superposition

After examining the flow dynamics of viscoelastic fluids inside contraction
geometries, the characteristics of transient state, before reaching steady state, were
studied. The primary purpose of this part was to compare the transient start-up flow at
high wi with the steady state flows at lower wi. The development of the flow
pattern from a Newtonian-like to corner vortex was observed as Wi increased at
steady states. Depending on the type of the fluid and channel size, the flow sequence
was different. However, in all the cases we could cover including the numerical
simulation, the flow patterns of the early-phase transient flow with a high wi
matched well with the flow patterns of the steady states with a low Wwi. In other
words, it was possible to match the steady flow patterns with a low wi flows and the
transient patterns with a high wi flow. The plot of wi and time when the two sets
(steady and transient) were matched followed a similar form regardless of the type of
fluid and channel dimension used, and the slope changed significantly at the point

when the corner vortex first appeared. From this fact, it could be confirmed that there
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exists a special relationship between time and elasticity, called time-wi superposition
in the vortex dynamics of viscoelastic fluids in the contraction flow. It is impressive
that there exists a simple principle that dominates the complex flow behavior of

viscoelastic fluids in the contraction channel flow.

Unstable flows

In the last part, the unsteady state was systemically analyzed. To reach the
unstable states, only one kind of geometry (200 um: 50 um) and highly elastic fluids

(M,,=5x10° g mol™) were used. The development sequence of the flow pattern over

increasing elasticity numbers ( El ) or Weissenberg numbers (Wi) was organized again
with those highly elastic fluids. In the steady state, the sequence of the flow
development started with a Newtonian-like flow, and became a divergent flow where
the streamlines were distorted and the maximum flow velocity occurring not at the
contraction but further upstreamLastly, vortex formation occurred. Depending on the
fluid, small vortices may develop before the divergent flow and disappear. This was
named as a weak vortex while the vortex that occurred after the divergent flow was
vortex growth region. In the vortex growth region, the vortex size increased with the
increase in Wi. As ElI or Wi increased, the flow reached unsteady state. While the
flow patterns were maintained over time in the steady state, it changed continuously in
the unsteady state. The vortex size in the vortex growth region was constant and stable

at a specific Wi. However, as the Wi increased, the vortex started to fluctuate
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periodically. This was called an oscillating vortex. Right after the flow transitioned
into the unsteady state, the vortex on both sides oscillated symmetrically. At a higher
Wi, the asymmetric oscillation was observed. While only one pattern of vortex
dynamics was observed for the symmetric oscillating vortex, the asymmetric
oscillating vortex showed different patterns with a difference in vortex size for the two
vortices but with a single period. When Wi increased over the asymmetric oscillating
vortex region, the periodicity of the vortex fluctuation disappeared. In this aperiodic
fluctuation regime, the largest Lyapunov exponent was positive, which proves that the
vortex behavior is chaotic. The flow patterns in micro-contraction geometry were
systematically analyzed in this study, and the chaotic vortex dynamics were reported

for the first time.
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