
 

 

저 시-동 조건 경허락 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

l 차적 저 물  성할 수 습니다.  

l  저 물  리 적  할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적  허락조건
 확하게 나타내어야 합니다.  

l 저 터  허가를  러한 조건들  적 지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

동 조건 경허락. 하가  저 물  개 , 형 또는 가공했  경
에는,  저 물과 동 한 허락조건하에서만 포할 수 습니다. 

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/


공학박사학위논문 

 

 

The influences of pulse and pulse-reverse electrodeposition 

on the properties of Cu thin films and superfilling for the 

fabrication of Cu interconnection 

 

 

펄스 및 펄스-리벌스 전해 도금이 구리 박막 및 수퍼필링 

특성에 미치는 영향 

 

2013년  2월  

 

 

 

서울대학교 대학원 

화학생물공학부 

김 명 준 



The influences of pulse and pulse-reverse electrodeposition 
on the properties of Cu thin films and superfilling for the 

fabrication of Cu interconnection 
 

 펄스 및 펄스-리벌스 전해 도금이 구리 박막 및 수퍼필링 

특성에 미치는 영향 
 

지도교수  김 재 정 

 

이 논문을 공학박사 학위논문으로 제출함  

2012 년 11 월  

 

서울대학교 대학원  

화학생물공학부  

김 명 준 

 

김명준의 공학박사 학위논문을 인준함  

2012 년 12 월 

 

위 원 장                            

 

부위원장                            

 

위    원                            

 

위    원                            

 

위    원                            



 i 

Abstract 

 

The scale-down of Cu interconnection raises the issues such as the reduction of 

interconnection property and the difficulty in superfilling using electrodeposition. In 

the aspect of the interconnection property, the electrical resistivity and the 

electromigration resistance are the major concerns. In this study, it was attempted to 

improve the properties of Cu by means of pulse and pulse-reverse electrodeposition. 

For the purpose of enhancing the superfilling performance, the pulse-reverse 

electrodeposition was employed.  

Pulse electrodeposition consisted of on-time during which Cu reduction takes place 

and off-time where open circuit potential is applied. The peak potential and the lengths 

of on- and off-times were the important variables determining the film properties. In 

the results of experiments with varying the off-time, it was confirmed that the grain 

growth took place during the off-time, resulting in the enhancement of crystallinity and 

the reduction of resistivity as well. This grain growth seemed to be related to the 

differences of energies originated from the crystal orientation and grain size. With the 

enough off-time, Cu film deposited by pulse electrodeposition exhibited 68% higher 

Cu (111) peak intensity and 22% lower resistivity as compared to constant potential 
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deposition when the film thickness was 260 nm including 60 nm Cu seed layer. 

However, when the organic additives generally used for Cu superfilling, the grain 

growth during the off-time was significantly retarded because the organic additives, 

which strongly adsorbed on Cu surface, changed the energy differences related to the 

orientation and grain size. Therefore, it was decided to additionally apply the anodic 

step to pulse electrodeposition, i.e. pulse-reverse electrodeposition, in order to further 

improve the properties of Cu films. 

Pulse-reverse electrodeposition was performed without and with organic additives to 

clarify the impacts of anodic step and organic additives on the film properties. From 

the variation in the film property according to the anodic conditions in the absence of 

organic additives, it was observed that the selective dissolution took place, originated 

from the energy differences related to the orientation and grain size. The selectivity of 

dissolution depended on the anodic potential which determined the rate of change in 

the film properties. That is, the application of more positive anodic potential reduced 

the selectivity, and it slowly increased the grain size and surface roughness. Regarding 

the electrical resistivity, the impacts of surface roughness and grain size competed with 

each other, and it resulted in the optimum anodic charge showing the lowest resistivity. 

As compared to the pulse electrodeposition, pulse-reverse electrodeposition reduced 
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9% of resistivity in the absence of additives. On the contrary, when the organic 

additives used for Cu superfilling are introduced, the selectivity of dissolution was 

determined by the species of the adsorbates. It was found that Cu covered by SPS was 

much easily dissolved compared to that covered by PEG-Cl-. In this case, the resistivity 

was found to be strongly determined by the surface roughness, which also exhibited 

the optimum point at the relatively low dissolution ratio. Pulse-reverse 

electrodeposition in the presence of organic additives also showed the advantage on the 

electrical resistivity, which reduced 14% of resistivity compared to the pulse 

electrodeposition. Therefore, it can be concluded that the pulse-reverse 

electrodeposition has the merit in the aspect of electrical conductivity. 

Superfilling performance was strongly determined by the adsorption of organic 

additives and their accumulation at the trench bottom produced by the area reduction. 

Prior to applying the pulse-reverse electrodeposition to superfilling, the impact of 

anodic step on the competitive adsorption between SPS and PEG-Cl- was investigated. 

As the results, it was clarified that the anodic step accelerated the displacement of 

preadsorbed PEG-Cl- by SPS, and the extent of displacement was increased with 

longer reverse time and more positive anodic potential. This acceleration of 

displacement has the potential to affect the superfilling, therefore, superfilling 
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performance was assessed with various anodic conditions. As compared to the gap-

filling result of constant potential deposition, the pulse-reverse electrodeposition 

exhibited better bottom-up performance at the trench with 55 nm of width and 300 nm 

of depth. At the corner of low-aspect-ratio trench, the rapid growth of Cu was observed 

with pulse-reverse electrodeposition, implying more accumulation of SPS at the corner. 

These results were understood by the acceleration of displacement with the anodic step.  

Considering the improvement of film properties as well as the superfilling 

performance, the modification of potential waveform, i.e. pulse and pulse-reverse 

electrodeposition, can be a candidate for resolving the current issues. This enables us to 

achieve Cu interconnection in the electronic devices with high speed and superior 

reliability.  

 

Keywords: Cu, interconnection, pulse electrodeposition, pulse-reverse 

electrodeposition, thin film property, superfilling 
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CHAPTER I 

Introduction 
 

1-1. Cu interconnection and Damascene process 

 

Cu has been widely used as the material for metal interconnection in the electronic 

devices, replacing the Al interconnection.1 In order to improve the operation speed, 

increase in the chip integrity, and reduce the production cost, the size of device 

continuously shrinks. This implies that the dimensions of both transistor and conductor 

in the device are reduced.2-4 Until the late 1990’s, the total speed of the microprocessor 

was determined by the signal delay at the gate of transistor related to the time from 

applying the input signal to transistor and obtaining the output signal.5 When the gate 

delay is dominated the total speed of devices, the speed of signal transduction through 

Al interconnection is enough to maintain the total performance. However, the 

resistance-capacitance delay, related to the electrical resistivity of interconnection and 

the capacitance of dielectrics, became more important compared to gate delay as the 

width of metal interconnection was reduced to below 250 nm.5 In addition to that, the 

interconnection has been also lengthened with the increase in the number of metal level. 
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That is, the total speed of microprocessors was strongly determined by the electrical 

property of metal interconnection. In accordance, it was decided to replace Al to Cu, 

which exhibits 1.7 times higher electrical conductivity of bulk (Al: 3.5×107 S/m, Cu: 

5.96×107 S/m at 20°C). In addition, the resistance against the failure formation 

originated from the electromigration was also improved when Cu is employed as the 

interconnection material.6,7 Nowadays, the microprocessor consisted of more than ten 

layers of Cu interconnection, and the flash memory also contained more than two 

layers (Fig. 1.1).4  

The strategy for achieving high speed is to stack the metal layers with the appropriate 

design. In the case of Al, this was obtained by the dry etch of Al thin film and the 

filling of dielectric between patterned Al as shown in Fig. 1.2. After the dielectric 

deposition, the planarization step was applied to expose Al in sublayer to form the 

metal contact. The iteration of this step enabled to get multi-level Al interconnection. 

However, when this method is adopted to the fabrication of Cu interconnection, the dry 

etch step could not be applied because the residue of Cu-Cl complex caused a problem 

in the following steps. From this issue, Damascene process was determined to be 

introduced which consisted of the deposition and patterning of dielectric, the 

deposition of diffusion barrier and Cu seed layers, the gap-filling of Cu in various 
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trenches and vias, and chemical mechanical planarization of overdeposited Cu.1,9 The 

schematic diagram of Damascene process for fabricating Cu interconnection is 

described in Fig. 1.3. The gap-filling of Cu in the pattern was newly adopted, and it 

brought Cu electrodeposition into the one of steps for the metallization of electronic 

devices. 
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Fig. 1.1. The representative cross-sectional images of microprocessor (left), 

application-specific integrated circuit (middle), and flash memory (right) from Ref. 4. 
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Fig. 1.2. The schematic diagram of the fabrication for Al interconnection. 
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Fig. 1.3. Damascene process for the fabrication of Cu interconnection. 
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1-2. Cu electrodeposition and superfilling 

 

The deposition of Cu was enabled by means of physical vapor deposition (PVD), 

chemical vapor deposition (CVD), atomic layer deposition (ALD), electrodeposition, 

and electroless deposition. Among these methods, electrodeposition was superior 

because the electrodeposition process is cheap and fast, forming Cu films with 

excellent properties. Additionally, it is important to note that the most significant 

advantage is feasible to obtain the defect-free filling at the patterns.  

Electrodeposition is the one of metal or metal oxide plating techniques, using the 

externally supplied electrons to reduce the metal ions in the electrolyte. The system of 

electrodeposition consisted of the electrolyte, the electrodes, and the external power 

supply as described in Fig. 1.4. In the three-electrode system, the working electrode (i.e. 

cathode), the counter electrode (i.e. anode), and the reference electrode are employed, 

and the desired material is deposited on the surface of working electrode. The 

oxidation reaction with identical amount of reduction reaction on the cathode surface 

takes place at the counter electrode. The electrolyte is usually composed of the metal 

ions, supporting electrolyte reducing the solution resistance, and the organic additives 

adsorbing on the metal surface and affecting the film properties as well as the evolution 
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of deposit profile. In the Cu electrodeposition, various electrolytes have been employed 

for many applications, and the representative electrolytes are listed up in Table 1.1 

Among them, the combination of Cu sulfate (CuSO4) and sulfuric acid (H2SO4) has 

been the most widely used as the basic electrolytes.  

As mentioned above, the patterned substrates should be filled with Cu by 

electrodeposition, therefore, the additional technique is needed to control the local 

deposition rate with considering the geometric effect of trenches or vias. The 

representative profiles of Cu deposit at the trench are shown in Fig. 1.5. The deposition 

at the trench could be separated into three profiles; (i) subconformal, (ii) conformal, 

and (iii) superconformal.1 The subconformal profile is represented by the void 

formation inside the trench, which resulted from the concentrated deposition of Cu at 

the top corner of the trench. This is usually obtained under the mass-transport limited 

condition of Cu ions. The conformal deposition means the constant electrodeposition 

rate regardless of the position in the trench. The seam is an inevitable result of 

conformal deposition. The superconformal deposition, which is also called superfilling 

and bottom-up filling, is represented by the formation of the bumps at the top of 

deposits without any voids or seams inside the trench. It can be achieved by the local 

enhancement of deposition rate only at the bottom of trench. Since the formation of 
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seam or void inside the interconnection results in the increase in the electrical 

resistivity and the reduction in electromigration resistance, the superfilling of Cu 

without defect formation is necessary to fabricate high speed and reliable 

interconnection.  

The superfilling of Cu is achieved by the addition of organic additives which adsorb 

on the Cu surface and affect the deposition rate as well as the film morphology.10-15 The 

organic additives can be categorized into the accelerator and suppressor based on the 

changes in the deposition rate. The accelerators, which usually contains disulfide bonds 

(-S-S-) or mercapto functional groups (-S-H), enhance the deposition rate.16-24 The 

representative accelerators are listed in Table. 1.2. The rate determining step of Cu 

electrodeposition is the reduction of Cu2+ to Cu+. The accelerators make a complex 

with Cu2+ forming Cu+, and it results in the enhancement of deposition rate. On the 

contrary, the suppressors reduce the electrodeposition rate, and the representative 

suppressor is the combination of polyether and halide ion.25-30 In addition to that, the 

leveler, which contains nitrogen atoms and strongly adsorbs on the Cu surface, also 

suppressing the deposition of Cu. The various suppressors are shown in Table 1.3. The 

representative combination of accelerator and suppressor for Cu superfilling is 

polyethylene glycol (PEG), chloride ion (Cl-), and bis(3-sulfopropyl) disulfide (SPS). 
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The superfilling of Cu with PEG-Cl--SPS has been explained by curvature enhanced 

accelerator coverage (CEAC) model proposed by T. P. Moffat and D. Josell.31-33 The 

schematic diagram of Cu superfilling in the trench is exhibited in the Fig. 1.6. At first, 

when the substrate with the trench is dip into the electrolyte, the relatively large 

amount of suppressor (PEG-Cl-) rapidly adsorbs on the surface. Since the concentration 

of suppressor (i.e. surfactant) is considerably high at the interface between the 

electrolyte and atmosphere, the suppressor adsorption is dominant than the accelerator 

when the substrate passes through this interface. After that, the displacement between 

preadsorbed PEG-Cl- layer and SPS takes place, because the adsorption strength of 

accelerator is higher than that of suppressor and the application of negative potential 

reduces the stability of preadsorbed PEG-Cl- layer. This displacement between 

suppressor and accelerator is easily confirmed by the chronoamperometry with the 

planar electrode, revealing that the current is increased as the deposition progressed.34-

36 The current behavior according to the cathodic potential is shown in Fig. 1.7. Above 

the sufficient concentration level of accelerator, it affects the deposition profile. As the 

electrodeposition progresses, the deposition area is significantly reduced at the bottom 

corner of the trench (i.e. negative surface curvature). The area reduction at the bottom 

results in the accumulation of accelerator, and it follows the local acceleration of 
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electrodeposition. This enables to achieve predominant growth of Cu at the bottom, 

which named this process bottom-up filling. After the gap-filling, the accumulated 

accelerator on the top of deposit continues to enhance the deposition rate, therefore, the 

convex profile (i.e. bump) is observed, which is considered as the significant evidence 

of Cu superfilling with the trench dimension below few hundred nanometers. 

CEAC model for Cu superfilling provides the accurate prediction of deposition 

profile evolution during the electrodeposition. It deals with the competitive adsorption 

between accelerator and suppressor and the accumulation of adsorbed accelerator 

according to the area reduction. The surface coverage change of adsorbed accelerator is 

described in the following equation,33 

 

𝑑𝜃𝑆𝑃𝑆
𝑑𝑡

= 𝑘𝑎𝑜𝑠(1 − 𝜃𝑆𝑃𝑆)𝐶𝑆𝑃𝑆 − 𝑘𝑜𝑛𝑐(𝜃𝑆𝑃𝑆)𝑞 − 𝑣κ𝜃𝑆𝑃𝑆 + 𝐷
∂2𝜃𝑆𝑃𝑆
∂S2

                          (1.1) 

 

where 𝜃𝑆𝑃𝑆 is the surface coverage of adsorbed SPS, 𝑘𝑎𝑜𝑠 is the rate constant of SPS 

adsorption, 𝐶𝑆𝑃𝑆 is the bulk concentration of SPS, 𝑘𝑜𝑛𝑐 is the rate constant of SPS 

incorporation, 𝑣 is the deposition rate which is normal to the surface, κ is the surface 

curvature, 𝐷 is the diffusivity of adsorbed SPS along with the surface. The first term 

in right implies the adsorption of SPS, and it is related to aforementioned displacement 
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between preadsorbed PEG-Cl- layer and SPS. The second term means the deactivation 

of adsorbed SPS through the incorporation, and 𝑞 is experimentally determined. The 

third term deals with the accumulation or deaccumulation of adsorbed accelerator 

according to the surface curvature, which named this model “curvature enhanced 

accelerator coverage”. When the electrodeposition progresses on the surface with 

negative curvature (i.e. bottom of trench), the adsorbed accelerator is accumulated by 

the area reduction. Since the deposition rate is linearly dependent on the surface 

coverage of accelerator, the accumulated accelerator at the bottom of trench implies the 

local enhancement of Cu electrodeposition. The last term treats the diffusion of SPS 

along with the surface. The surface diffusion of adsorbed accelerator also significantly 

affects the superfilling performance because it is related to the maintenance of 

accumulated accelerators by the area reduction. That is, the superfilling becomes more 

difficult when the surface diffusion of accelerator is considerably fast because the 

accumulated accelerators spread out through the diffusion along the surface. On the 

basis of this equation, the dimensionless factor, 𝐷/(𝑤𝑣0)  can characterize the 

superfilling performance where 𝑤 is the width of the trench and 𝑣0 is the deposition 

rate with the initial surface coverage of SPS.33 The CEAC predictions according to this 

dimensionless number are represented in Fig. 1.8 revealing that the superfilling can be 
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achieved with the lower dimensionless number. In the case of Cu superfilling, the 

surface diffusion rate is relatively low compared to the deposition rate, therefore, the 

surface diffusion is not significantly considered.   
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Table 1.1. The Representative Electrolytes for Cu Electrodeposition 

Electrolytes Sulfuric acid Pyrophosphate MSA Cyanide 

Basic 
components 

CuSO4, H2SO4 CuSO4, K4P2O7 
CuSO4, 

CH3SO3H (MSA) 
CuCN, KCN 

Application 
Superfilling 

TSV filling 
Seed repairing 

Superfilling, TSV 

filling 
Cu-Ag deposition 
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Table 1.2. The Representative Accelerators for Cu Electrodeposition 

Representative accelerators Molecular structure 

Bis(3-sulfopropyl) disulfide 
(SPS) 

 

3-mercapto-1-propanesulfonic 
acid (MPSA) 

 

3-N,N-
dimethylamonodithiocarbamoy
-1-propanesulfonic acid (DPS) 
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Table 1.3. The Representative Suppressors for Cu Electrodeposition 

Representative suppressors Molecular structure 

Polyethylene glycol (PEG) 

 

Polypropylene glycol (PPG) 

 

Polyethyleneimine (PEI) 

 

Thiourea 

 

Benzotriazole (BTA) 
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Fig. 1.4. The schematic diagram of Cu electrodeposition. 
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Fig. 1.5. The evolution of Cu deposits with (a) subconformal, (b) conformal, and (c) 

superconformal profiles.  
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Fig. 1.6. The schematic diagram of Cu superfilling with the accelerator and suppressor 

predicted with CEAC model. 
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Fig. 1.7. The current behavior of Cu electrodeposition during the chronoamperometry 

with various cathodic potential. 

  

-50 0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (s)

Cu
rre

nt
 (m

A)

 

 

Overpotential
 150 mV
 200 mV
 250 mV



 ２１ 

 

Fig. 1.8. The CEAC predictions with 0.01, 0.1, 1, and 10 of 𝐷/(𝑤𝑣0) values (left to 

right, Ref. 33) 
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1-3. Current issues and possible solutions 

 

As addressed above, the size of electronic devices has been rapidly reduced, and the 

interconnection has also shrunk to improve the integrity and speed. In the interconnect 

part of international technology roadmap for semiconductor (ITRS), it is announced 

that the metal pitch in the microprocessor is now 32 nm, and it is expected that the 

dimension will be continuously reduced to 17 nm and 9 nm by the year 2017 and 

2022.4 Therefore, the issues related to the significant scaling of the interconnection are 

now addressed in ITRS, and they are listed up in Tables 1.4 and 1.5.4 The challenges 

are classified into the near term (> 16 nm, before 2017) and long term (< 16 nm, after 

2018). The five most critical challenges in the interconnection field with the dimension 

over 16 nm are (i) development of new material with the consideration of conductivity 

and dielectric permittivity, (ii) development of more manufacturable integration, (iii) 

improvement of reliability, (iv) three-dimensional fabrication of interconnect features, 

and (v) reduction of cost. In the dimension below 16 nm, 3D approach and the 

mitigation of the problems from the size effect are predicted. In the aspect of Cu 

electrodeposition, the main concerns are the improvement of interconnection properties 

and superfilling, such as (i) the electrical conductivity and (ii) the resistance against the 
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electromigration and (iii) the enhancement of superfilling performance. The details of 

these issues are explained in the followings.  

As announced by ITRS in 2007, the electrical resistivity of Cu interconnection will be 

significantly increased as the line width is reduced to below few tens of nanometers 

(Fig. 1.9).2 The electrical resistivity of metal is determined by the scattering probability 

of electrons when the electrons pass through the metal. When the dimension of metal is 

reduced below micrometer scale, the impacts of the additional electron scattering 

related to the grain boundary and surface roughness become more significant. That is, 

the electrical resistivity is determined by four kinds of electron scattering; (i) phonon, 

(ii) grain boundary, (iii) surface roughness, and (iv) impurities.37-50 The phonon 

scattering is related to the intrinsic property of metal and it depends on the temperature. 

The reason why the bulk resistivity of Cu and Ag is different can be found from the 

phonon scattering. The scattering at the grain boundary was dealt by Mayadas-

Shatzkes model, and it predicted the increasing tendency of the resistivity with the 

reduction of grain size.37,38 The relationship of grain size and the resistivity is described 

by the following equations, 

 

ρ𝑔
ρ𝑏

= �3 �
1
3
−

1
2
𝛼 + α2 − ln �1 +

1
𝛼
���

−1
                                                                         (1.2) 
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where α =
λ
𝑑

𝑅
1 − 𝑅

                                                                                                               (1.3) 

 

where ρ𝑔/ρ𝑏 is the grain boundary contribution on the resistivity, λ is the mean free 

path of electrons in bulk at the room temperature, 𝑑 is the average grain size, and 𝑅 

is the reflection coefficient of grain boundary. The contribution of surface roughness on 

the resistivity was investigated by S. M. Rossnagel and T. S. Kuan, and it was 

predicted that the impact of surface roughness becomes more significant in the size 

effect regime and the surface roughness of film tends to increase the resistivity.39 The 

relationship between the roughness and the resistivity is shown in the following 

equation,39  

 

ρ𝑠
ρ𝑏

= 1 + 0.375(1− 𝑝)
𝑆𝑆
𝑡

                                                                                                   (1.4) 

 

where ρ𝑠/ρ𝑏 is the contribution of surface roughness on the resistivity, 𝑝 is the 

scattering parameter in the range from 0 to 1, 𝑆 is the roughness factor, and 𝑡 is the 

thickness of film. It tells us that the impact of the roughness is negligible when the film 

is relatively thick. The both contributions of grain size and surface roughness were also 

combined by T. S. Kuhn, and the following equation describes the result.39  
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ρ
ρ𝑏

= 1 + 0.375(1− 𝑝)
𝑆𝑆
𝑡

+ 1.5
𝑅

1 − 𝑅
𝑆
𝑑

                                                                     (1.5)    

 

The impurities also provide the additional probability of electron scattering. In the case 

of electrodeposited films which showed the low level of impurity, the linear 

relationship between the resistivity and the concentration of impurity was reported.51 

However, the concentration of impurity is too low to dominate the film resistivity, 

therefore, it was usually treated as the minor factor compared to the grain size and 

surface roughness.  

Electromigration of Cu caused by the electrical current stressing is the one of the most 

critical failure, determining the chip life time. The mean time to failure (MTTF) of Cu 

interconnection can be predicted by Black’s equation, as shown in the following 

equations,52 

 

MTTF = A𝑗−𝑛𝑒𝑒𝑝 �
A
𝑘𝑏𝑇

�                                                                                                      (1.6) 

 

where A is the constant, 𝑗 is the current density, n is the model parameter, 𝐸𝑎 is 

the activation energy for the electromigration, 𝑘𝑏 is Boltzmann constant, and T is the 

temperature. As shown in Fig. 1.10(a),4 the current density will be rapidly increased by 
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the reduction of cross-sectional area of interconnection. It accelerates the 

electromigration of Cu and leads to the reduction of chip life time as displayed in Fig. 

1.10(b).4 Since the structure of Cu interconnection is polycrystalline, the 

electromigration occurs along the grain boundaries. Therefore, the control of grain size 

and structure is possible to improve the electromigration resistance. The impacts of 

crystallinity and grain size on MTTF are described in the following equation,53,54 

 

MTTF ∝
𝑑
σ2

log �
𝐼111
𝐼200

�
3

                                                                                                         (1.7) 

 

where σ is the standard deviation of grain sizes and 𝐼𝑥𝑥𝑥 is the peak intensity of xyz 

orientation measured by X-ray diffraction. It can be expected that larger grain size, 

smaller standard deviation of grain size, and more development of Cu (111) orientation 

improve the life time of Cu interconnection.  

Regarding the gap-filling, the continuous scaling of interconnection causes the 

reduction of deposition time and the increase in the probability to close the top of the 

trench originated from the roughness. When the trench with 24 nm width pattern is 

filled under the condition used for Cu superfilling at the trench width over 100 nm, the 

voids were frequently observed, as displayed in Fig. 1.11.  
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There are few candidates for resolving these issues related to conductivity, 

electromigration resistance, and the superfilling. First one is the modification of 

additives. The organic additives, adsorbing on Cu surface, exert superfilling as well as 

significantly affect the properties of Cu. The grain size should be increased to improve 

the conductivity and the electromigration resistance, therefore, the appropriate organic 

additives should be found, which form the Cu film with relatively large grains without 

reduction of superfilling performance. Second candidate is to apply pulse and pulse-

reverse electrodeposition instead of direct current (DC) or constant potential deposition. 

The changes in the waveform of current or potential have the possibility for improving 

the properties as well as the superfilling performance. The final is to find new materials 

to meet the requirements of conductivity, electromigration resistance, and superfilling 

performance. Bimetallic interconnection based on Cu has been reported as the material 

having the higher electromigration resistance compared to pure Cu, however the 

deterioration of electrical conductivity is an inevitable corollary.55-57 Graphene or 

Carbon nanotubes are issued as the new materials, however, the investigations on facile 

alignment, selective growth, and the contact formation are needed to improve the 

practicability of carbon-based materials.4 

In this study, among these candidates, the impacts of pulse and pulse-reverse 
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electrodeposition on both the properties and superfilling performance were investigated. 

The detail introduction of pulse and pulse-reverse electrodeposition is in the following 

section. 
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Table 1.4. The Most Significant Issues in Cu Interconnection with the Dimension over 

16 nm (Ref. 4) 

Five Most Critical Challenges Summary of Issues 

Material 

Introduction of new materials to 

meet conductivity requirements and 

reduce the dielectric permittivity 

The rapid introductions of new materials/processes that 

are necessary to meet conductivity requirements and 

reduce the dielectric permittivity create integration and 

material characterization challenges. 

Manufacturable Integration 

Engineering manufacturable 

interconnect structures, processes 

and new materials 

Integration complexity, CMP damage, resist poisoning, 

dielectric constant degradation. Lack of 

interconnect/packaging architecture design optimization 

tool 

Metrology 

Achieving necessary reliability 

New materials, structures, and processes create new chip 

reliability (electrical, thermal, and mechanical) exposure. 

Detecting, testing, modeling, and control of failure 

mechanisms will be key. 

Metrology 

 Three-dimensional control of 

interconnect features (with its 

associated metrology) is required to 

achieve necessary circuit 

performance and reliability 

Line edge roughness, trench depth and profile, via shape, 

etch bias, thining due to cleaning CMP effects. The 

multiplicity of levels combined with new materials, 

reduced feature size, and pattern dependent processes 

create this challenge.  

Cost & Yield for 

Manufacturability 

Manufacturability and defect 

management that meet overall 

cost/performance requirements 

As feature sizes shrink, interconnect processes must be 

compatible with device roadmaps and meet 

manufacturing targets at the specified wafer size. Plasma 

damage, contamination, thermal budgets, cleaning of 

high A/R features, defect tolerant processes, 

elimination/reduction of control wafers are key concerns. 

Where appropriate, global wiring and packaging 

concerns will be addressed in an integrated fashion 
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Table 1.5. The Most Significant Issues in Cu Interconnection with the Dimension 

below 16 nm (Ref. 4) 

Five Most Critical Challenges Summary of Issues 

Material 

Mitigate impact of size effects in 

interconnect structures 

Line and via sidewall roughness, intersection of porous 

low-k voids with side wall, barrier roughness, and copper 

surface roughness will all adversely affect electron 

scattering in copper lines and cause increases in 

resistivity 

Metrology 

Three-dimensional control of 

interconnect features (with it’s 

associated metrology) is 

required 

Line edge roughness, trench depth and profile, via shape, 

etch bias, thinning due to cleaning, CMP effects. The 

multiplicity of levels, combined with new materials, 

reduced feature size and pattern dependent processes, use 

of alternative memories, optical and RF interconnect, 

continues to challenge. 

Process 

Patterning, cleaning, and filling 

at nano dimensions 

As features shrink, etching, cleaning, and filling high 

aspect ratio structures will be challenging, especially for 

low-k dual damascene metal structures and DRAM at 

nano-dimensions. 

Complexity 

 Integration of new processes and 

structures, including interconnects 

for emerging devices 

Combinations of materials and processes used to 

fabricate new structures create integration complexity. 

The increased number of levels exacerbate 

thermomechanical effects. Novel/active devices may be 

incorporated into the interconnect. 

Practical Approach for 3D 

Identify solutions which address 

3D structures and other 

packaging issues  

3 dimensional chip stacking circumvents the deficiencies 

of traditional interconnect scaling by providing enhanced 

functional diversity. Engineering manufacturable 

solutions that meet cost targets for this technology is a 

key interconnect challenge. 
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Fig. 1.9. The expected resistivity of Cu interconnection according to the line width 

(Ref. 2). 
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Fig. 1.10. (a) The life time of Cu interconnection according to the interconnection 

geometry (Ref. 4) and (b) the predicted current density passing through the 

interconnection (Ref. 4). 
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Fig. 1.11. The failure of Cu superfilling at the trench having 24 nm width and 120 nm 

depth.  
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1-4. Pulse and pulse-reverse electrodeposition 

 

DC or constant potential deposition which is to apply the constant current or potential 

has been generally used for Cu electrodeposition. However, as addressed before, the 

properties of Cu interconnection and superfilling performance should be improved, and 

the pulse and pulse-reverse electrodeposition can be a solution for resolving these 

issues. 

Pulse electrodeposition consists of iterations of deposition and relaxation, the periods 

of which are called on- and off-times, respectively.58-68 The representative waveform of 

pulse electrodeposition is exhibited in Fig. 1. 12(a). Cu ions are consumed during on-

time by the reduction and replenished from the bulk electrolyte during off-time. This 

replenishment of Cu ions during off-time enables to apply a relatively high current (or 

potential) compared to DC deposition, meaning that the extension of the applicable 

range of current for Cu electrodeposition. This improves the filling performance when 

the mass-transport of Cu ions governs the electrodeposition system. Moreover, pulse 

electrodeposition has many advantages in the aspect of film properties like the 

reduction of the film roughness, the formation of uniform grains, and the promotion of 

nucleation on the heterogeneous substrate.60-65 In addition, it was reported that pulse 
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electrodeposition with the addition of thiourea enhances the formation of twin 

boundaries, which improves the mechanical strength even with the increase in the 

ductility.66-68 Pulse electrodeposition can be described by the duty cycle, frequency, and 

the average current density. The following equations are the definitions of duty cycle, 

frequency, and the average current density, 

 

Duty cycle (%) =
𝑡𝑜𝑛

𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜
× 100                                                                                  (1.8) 

Frequency (Hz) =  
1

𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜
                                                                                            (1.9) 

Average current density (mA/𝑐𝑐2)   

                         =
𝑖𝑝𝑝𝑎𝑝 × 𝑡𝑜𝑛
𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜

 for galvanostatic electrodeposition                                  

                            =  
𝐶𝑜𝑛

𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜
 for potentiostatic electrodeposition                       (1.10) 

 

where 𝑡𝑜𝑛 and 𝑡𝑜𝑜𝑜 are the length of on- and off-time, 𝑖𝑝𝑝𝑎𝑝 is applied peak current 

density, and 𝐶𝑜𝑛 is the amount of passed electrons during on-time per unit area. In 

many previous reports, it was attempted to characterize the pulse electrodeposition 

using these terms.  

The anodic step, where an anodic potential (positive potential with respect to the open 
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circuit potential (OCP)) or anodic current is applied, is occasionally added to pulse 

electrodeposition and the resulting process is referred to as pulse-reverse 

electrodeposition.69-78 The representative waveform of pulse-reverse electrodeposition 

is displayed in Fig. 1. 12(b). The time to apply the anodic potential is called to reverse 

time. It has been reported that pulse-reveres electrodeposition is adopted for through 

silicon via (TSV) filling and the formation of alloy films. Furthermore, the protrusions 

formed on the Cu surface and at the side wall of the trench or via can be selectively 

dissolved during the anodic step in pulse-reverse electrodeposition, resulting in the 

enhancement of the superfilling performance and a reduction of the surface roughness.  

Similar to the pulse electrodeposition, the frequency and average current density 

could be defined as described in the following,  

 

Frequency (Hz) =  
1

𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜 + 𝑡𝑟𝑝𝑟𝑝𝑟𝑠𝑝
                                                                     (1.11) 

Average current density (mA/𝑐𝑐2)   

          =
𝑖𝑐𝑎𝑐ℎ𝑜𝑜𝑜𝑐 × 𝑡𝑜𝑛 − 𝑖𝑎𝑛𝑜𝑜𝑜𝑐 × 𝑡𝑟𝑝𝑟𝑝𝑟𝑠𝑝

𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜 + 𝑡𝑟𝑝𝑟𝑝𝑟𝑠𝑝
 for galvanostatic electrodeposition  

          =  
𝐶𝑐𝑎𝑐ℎ𝑜𝑜𝑜𝑐 − 𝐶𝑎𝑛𝑜𝑜𝑜𝑐
𝑡𝑜𝑛 + 𝑡𝑜𝑜𝑜 + 𝑡𝑟𝑝𝑟𝑝𝑟𝑠𝑝

 for potentiostatic electrodeposition                     (1.12) 
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where 𝑡𝑟𝑝𝑟𝑝𝑟𝑠𝑝  is the reverse time, 𝑖𝑐𝑎𝑐ℎ𝑜𝑜𝑜𝑐  (same to 𝑖𝑝𝑝𝑎𝑝  in pulse 

electrodeposition) and 𝑖𝑎𝑛𝑜𝑜𝑜𝑐 are the current density at on- and reverse time, and 

𝐶𝑐𝑎𝑐ℎ𝑜𝑜𝑜𝑐 and 𝐶𝑎𝑛𝑜𝑜𝑜𝑐 are the amount of passed electrons during on- and reverse time 

per unit area. In addition to that, the dissolution ratio can be defined as the ratio 

between the amounts of deposition and dissolution as shown in the following 

equation.79 

 

Dissolution ratio (%) =
𝐶𝑎𝑛𝑜𝑜𝑜𝑐
𝐶𝑐𝑎𝑐ℎ𝑜𝑜𝑜𝑐

× 100                                                                     (1.13)  

 

In this study, the impacts of pulse and pulse-reverse electrodeposition on the 

properties of Cu thin films such as the crystallinity, grain size, surface roughness, and 

resistivity. Especially, the influences of off-time in pulse electrodeposition and the 

anodic step in pulse-reverse electrodeposition were intensively investigated. In Chapter 

III, the film property changes by pulse electrodeposition are introduced. In Chapter IV, 

the influences of pulse-reveres electrodeposition are explained in detail. In Chapter V, 

the impacts of anodic step in the pulse-reverse electrodeposition on the competitive 

adsorption of organic additives and superfilling performance are shown. 

  



 ３８ 

 
Fig. 1.12. The representative waveforms of (a) pulse and (b) pulse-reverse 
electrodeposition. 
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CHAPTER II 

Experimental 
 

2-1. Electrolyte, organic additives, and electrodeposition system 

 

The basic electrolytes consisted of 0.25 M CuSO4 and 1.0 M H2SO4. In order to 

investigate the effects of organic additives, 88 μM of polyethylene glycol (PEG, 

Mw=3,400), 1 mM NaCl, and 50 μM of bis(3-sulfopropyl) disulfide (SPS) were added 

into the electrolyte, which were generally used for Cu superfilling. The temperature of 

electrolyte was precisely maintained at 30°C by a thermostat. 

Electrodeposition was enabled using a PAR 273A potentiostat (EG&G Princeton 

Applied Research Corporation). In the research with galvanostatic deposition, the 

potential was varied over a wide range using both DC and pulse electrodeposition.80 

The differences in the response potential between deposition modes were usually 

sufficient to mask the effects of waveforms. For this reason, the potentiostatic 

electrodeposition was employed for pulse and pulse-reverse electrodeposition, in which 

the cathodic and anodic potentials were controlled, to clarify the effects of the variables 

in pulse and pulse-reverse electrodeposition.  
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Electrodeposition was performed in a three-electrode system. The counter and two 

reference electrodes were a 99.9% Cu wire, saturated calomel electrode (SCE), 

Ag/AgCl (KCl saturated) electrode, respectively. The working electrodes were Cu 

blanket wafer for Cu film deposition, Cu patterned wafer for superfilling, and Cu 

rotating disk electrode (RDE) having 0.196 cm2 of active area for electrochemical 

analyses. In Chapter III, Cu blanket wafer with a structure of Cu seed layer (60 nm, 

PVD) / Ta (7.5 nm, PVD) / TaN (7.5 nm, PVD) / SiO2 was used for pulse 

electrodeposition. In Chapter IV, the blanket wafer with a structure of Cu seed layer 

(40 nm, PVD) / Ta (7.5 nm, PVD) / SiO2 was employed for pulse-reverse 

electrodeposition. In Chapter V, two kinds of patterned wafer were used, of which 

structures were (i) Cu seed layer (7.5 nm, PVD)/Ta (6 nm, PVD)/TaN (1.5 nm, 

PVD)/Si with 300 nm of depth and 55 nm of width, and (ii) Cu seed layer (30 nm, 

PVD)/Ta (7 nm, PVD)/Si with various widths and 240 nm of depth. The wafer was 

loaded in a Teflon holder and 1 cm2 of geometric area was exposed to the stationary 

electrolyte.  

In order to maintain the consistent state of Cu seed layer, the pretreatment for Cu 

blanket and patterned wafers was carried out prior to the electrodeposition by dipping 

into an aqueous solution composed of 0.020 M citric acid and 0.034 M KOH for 2 min. 
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For the patterned wafer with the structure of 300 nm depth and 55 nm width, the 

dipping time was reduced to 30 s because the seed layer was much thinner than the 

others.  

 

2-2. Pulse electrodeposition for Cu film deposition 

 

In Chapter III, the constant potential deposition and pulse electrodeposition were 

performed with the cathodic potentials of -100, -200, and -400 mV with respect to open 

circuit potential (OCP) to deposit Cu films and compare the film properties achieved 

with different cathodic potentials. The reasons for applying this potential with respect 

to the OCP were to control the exact overpotential that is a driving force for 

electrodeposition and to derive a current density of 0 mA/cm2 for 0 mV of cathodic 

potential during the off-time. The duty cycle of pulse electrodeposition was varied over 

the range from 25% to 75%, and the frequency was fixed at 1 Hz. Fig. 2.1 shows the 

potential as a function of time for the constant potential deposition and pulse 

electrodeposition processes. In addition, pulse electrodeposition was conducted while 

varying the on- and off-times with a fixed peak potential of -200 mV to clarify the 

detail effect of the on- and off-times. When the identical cathodic potentials in constant 
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potential and pulse electrodeposition modes were applied, the on- and off-times could 

be treated as the only variable affecting the film properties. The thickness of Cu was 

restricted to 260 nm ± 5%, including the seed layer. 

 

2-3. Pulse-reverse electrodeposition for Cu film deposition 

 

In Chapter IV, pulse-reverse electrodeposition was carried out potentiostatically to 

precisely control the driving force of Cu reduction and dissolution. A waveform of 

pulse-reverse electrodeposition is represented in Fig. 2.2. The cathodic potential 

(Ecathodic), on-time, and off-time were fixed at -200 mV (vs. OCP), 0.25 s, and 1.0 s, 

respectively. These conditions were identical to the optimum of pulse electrodeposition 

determined in Chapter III, which were obtained with the consideration of Cu (111) 

peak intensity measured from XRD and the electrical resistivity. The anodic potential 

(Eanodic) was varied from 25 to 150 mV (vs. OCP), and the reverse time was changed 

from 0.025 to 0.5 s. Pulse electrodeposition under the optimum conditions was also 

performed as a criterion for the pulse-reverse electrodeposition.  

The film thickness including the Cu seed layer was restricted to 150 nm (±5%) by 

controlling the total deposition charge to rule out the effect of thickness on the film 



 ４３ 

properties. Comparing Chapter III, the thickness of Cu film including Cu seed layer 

was reduced from 260 nm to 150 nm in order to reflect the continuous reduction of the 

Cu interconnection dimensions. 

In the experiments with organic additives, the electrochemical behavior of Cu 

dissolution should be investigated prior to the film deposition. Therefore, linear sweep 

voltammetry (LSV) was performed to compare the influences of the additive 

adsorption during the anodic step. The potential was swept from - 300 to 300 mV with 

respect to an Ag/AgCl electrode, and the scan rate was fixed to 10 mV/s. A Cu rotating 

disk electrode (RDE) with an active area of 0.196 cm2 was employed as a working 

electrode and was rotated at a constant speed of 300 rpm. A 99.9% Cu rod and an 

Ag/AgCl electrode were also used as counter and reference electrodes, respectively. 

 

2-4. Pulse-reverse electrodeposition for Cu superfilling 

 

In Chapter V, potentiostatic pulse-reverse electrodeposition only consisting of the 

cathodic and anodic steps were used as displayed in Fig. 2.3. The potential was applied 

with respect to initial OCP to exactly control the driving forces for the cathodic and 

anodic reactions. The cathodic potential was varied from -100 mV to -200 mV (vs. 
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OCP) with fixed on-time of 0.25 s. The anodic potential and reverse time were ranged 

between 25 mV and 100 mV, and 0.05 s and 0.5 s, respectively. The constant potential 

deposition was performed with various cathodic potentials in various electrolytes to 

compare the adsorption state to pulse-reverse electrodeposition. From the current 

transitions from various conditions, the displacement rates of PEG-Cl- by SPS, the 

saturation time, and the saturation current were compared to each other. Processing of 

current profiles and the definitions of initial displacement rate, saturation time, the 

saturation current will be introduced in next section. 

The electrochemical analyses were additionally performed to clarify the detail 

influences of anodic step on the competitive adsorption between PEG-Cl- and SPS, 

such as potential step chronoamperometries in the electrolyte containing PEG-Cl--SPS, 

the chronoamperometries after PEG-Cl- derivatization, LSV in the electrolyte only 

containing PEG-Cl-. More information and the meaning of each electrochemical 

analysis will be explained in Chapter V. 

In order to investigate the superfilling performance based on the electrochemical 

behavior, pulse-reverse electrodeposition was performed with -200 mV (vs. OCP) of 

cathodic potential and 0.25 s of on-time. The anodic potential and reverse time were 

changed from 25 mV to 100 mV and from 0.025 s to 0.5 s, respectively. The constant 
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potential deposition with -200 mV of overpotential was also carried out as a criterion 

for the pulse-reverse electrodeposition.  

 

2-5. Analyses of film properties and deposition profiles 

 

The thickness of Cu film and the deposition profiles at various trenches were 

observed by field emission scanning electron microscopy (FESEM, (i) S-4800, Hitachi, 

and (ii) JSM-6701F, JEOL). The resistivity of Cu film was calculated from the 

thickness and sheet resistance measured by a four-point probe (CMT-SR1000N, Chang 

Min Tech Co.). The film orientation was assessed from the Cu (111) peak intensity 

obtained by X-ray diffraction (XRD, D8 Advance, Bruker). The grain size was 

estimated by the full width at half maximum (FWHM) of the Cu (111) peak from the 

XRD patterns and transmission electron microscopy (TEM, JEM-3000F, JEOL). In 

addition, the grain size at the surface was measured using the FESEM (SUPRA 55VP, 

Carl Zeiss) back-scattering electron (BSE) detector. Atomic force microscopy (AFM, 

XE-150, Park Systems) was used to measure the film roughness. To minimize the 

effect of self-annealing, the samples were analyzed exactly 5 days after the deposition. 
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Fig. 2.1. The waveforms of (a) constant potential deposition and (b) pulse 

electrodeposition with the definitions of cathodic potential, on- and off-times (Chapter 

III). 
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Fig. 2.2. The waveform of potentiostatic pulse-reverse electrodeposition with the 

definitions of anodic potential and reverse time (Chapter IV).  
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Fig. 2.3. The waveform of potentiostatic pulse-reverse electrodeposition consisted of 

cathodic and anodic steps (Chapter V). 
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CHAPTER III 

The characteristics of Cu films deposited by 

pulse electrodeposition 
 

3-1. Pulse electrodeposited Cu films in the absence of additives  

 

Fig. 3.1(a) shows the Cu (111) peak intensities of Cu films deposited by constant 

potential deposition and pulse electrodeposition with various cathodic potentials and 

duty cycles, which were measured by XRD. Peaks other than (111) did not appear 

because the Cu seed layer used in this investigation had a well-developed (111) 

orientation, and the thickness of deposited Cu films was about 250 nm, which was not 

enough to develop the other orientations. Since the differences of thickness were 

controlled within 5%, the intensity of Cu (111) implied the amount of Cu (111) plane. 

Both deposition modes showed a decreasing tendency of Cu (111) intensity as the 

cathodic potential became more negative. Increasing the cathodic potential means the 

application of a higher driving force for Cu reduction. It was reported by Rashkov et al. 

that the cathodic potential had an influence on film orientation based on the calculation 

of the work of formation for particular planes.81 High cathodic potential, and thus a 
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high driving force for Cu electrodeposition and fast deposition rate, promote the 

formation of orientations other than (111). The (200) peak was not observed in this 

investigation, and therefore, the decrease in Cu (111) intensity under high cathodic 

potential was due to the increase in the amount of random orientation in the deposited 

film. In addition, an increase in cathodic potential also decreased the grain size, and 

reduced the Cu (111) intensity. It is significant that the Cu (111) intensity increased as 

the duty cycle decreased, i.e., a decrease in the on-time and an increase in the off-time. 

The significance of these observations is described below. The average current density 

has been used for describing the characteristics of pulse electrodeposition. Fig. 3.1(b) 

shows the dependence of peak intensity on the average current density as the x-axis. 

The average current density was calculated with the equation (1.10). The Cu (111) 

intensity seemed to be well related to the average current density, but the deviations 

from this curve came from changes in on- and off-times. Even though identical average 

current density was applied, shorter on- and longer off-times enhanced the Cu (111) 

intensity. The cathodic potential governed the crystallinity of the electrodeposited Cu 

film, as explained above, and higher potential usually shows lower Cu (111) intensity. 

The surface morphologies of Cu films are represented in Fig. 3.2. It was observed that 

the application of more negative potential reduced the surface roughness regardless of 
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deposition modes or duty cycles. It was widely reported that the Cu film deposited with 

higher overpotential or relatively fast deposition rate showed more smooth film with 

fine grains. Interestingly, it seemed that the duty cycle could not strongly affect the 

surface roughness. From these Cu films, the root-mean-square roughness was 

measured, and the results are displayed in Fig. 3.3. Dissimilar to the Cu (111) peak 

intensity, little difference of surface roughness was observed between the results of 

constant potential and pulse electrodeposition modes. Fig. 3.3(a) shows the decrease in 

roughness corresponding to the increase in the cathodic potential. AFM observations 

showed that the cathodic potential strongly affected the surface roughness, whereas the 

duty cycle did not that much. The relationship between average current density and 

surface roughness was also considered in Fig. 3.3(b). Similar to Fig 3.1(b), the average 

current density was not sufficient to accurately describe the changes in surface 

roughness. Generally, higher average current densities smoothen Cu film because of 

the enhancement of nucleation. However, applied average current densities varied from 

6 to 38 mA/cm2 showed similar surface roughness. 

Fig. 3.4(a) shows the resistivity as a function of the deposition conditions; a slight 

reduction in resistivity occurred as the cathodic potential increased. The resistivity was 

10% - 30% less with pulse electrodeposition than with constant potential deposition, 
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and the resistivity also decreased as the duty cycle decreased. In general, several major 

factors affect the film resistivity, including phonon scattering, grain boundary 

scattering, surface-induced scattering, and scattering at impurity atoms.37-50 In this 

investigation, the effect of changes in the phonon scattering was negligible because the 

phonon scattering was strongly related to the temperature and kinds of material. The 

influence of roughness on the resistivity was also negligible because the degree of film 

roughness was almost identical for the same cathodic potential in both deposition 

modes. The amount of impurities was assumed to be almost constant because the film 

was deposited in the same aqueous electrolyte without any additives. Therefore, any 

differences in resistivity between constant potential deposition and pulse 

electrodeposition could be attributed to scattering at the grain boundary. In order to 

confirm the dependency of resistivity on the average current density, the results were 

re-plotted with the average current as the x-axis (Fig. 3.4(b)). Similar to Cu (111) 

intensity and surface roughness, the film resistivity could not be explained fully by the 

average current density. On the basis of these results, the characterization of pulse 

electrodeposition using the average current density was not sufficient, and the each 

effect of on- and off-times should be separately considered.  

To clarify the details of pulse electrodeposition such as the effects of on- and off-
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times, the experiments were performed with a fixed peak potential of -200 mV with 

respect to the OCP and various on- and off-times. The on- and off-times were varied 

while the peak potential was kept constant to examine the effects of these parameters 

on the film properties. The film properties as a function of the off-time were measured 

with a peak potential of -200 mV and on-times of 0.25, 0.5, and 1.0 s. Figs. 3.5(a) and 

(b) show the Cu (111) intensity and resistivity, respectively. All results indicated that 

the pulse electrodeposition resulted in a higher Cu (111) intensity and lower resistivity 

than with constant potential deposition. Of particular note, the film properties were 

improved by increasing the off-time up to 1.0 s and were not affected by off-times 

greater than 1.0 s. This indicates that the peculiar change during the off-time 

progressed continuously up to 1.0 s and was almost complete at that off-time. After that, 

no further change occurred, and therefore, the film properties were saturated.  

Generally, the pulse electrodeposition is well-known to have an advantage of mass 

transport during the off-time. To confirm the effect of mass transport, the identical 

experiments were conducted using a rotating cell with speed of 500 rpm. The exact 

values of Cu (111) peak intensity could not be compared because of the modification of 

XRD detector, therefore, the experiments without and with rotating were performed at 

the same time. The tendency and saturation according to the on- and off-times were 
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also observed in Fig. 3.6. Consequently, it can be concluded that the changes in the Cu 

ion concentration at the surface during the off-time was not a major factor to determine 

the film properties. 

In addition, judging from the change of film properties as a function of the on-time, it 

is clear that the amount of as-deposited Cu in a unit cycle of pulse electrodeposition 

was a significant variable that affected the film properties because the results with 

various duty cycles (Fig. 3.2 to 3.4) were originated from the summation of on- and 

off-time impacts. To investigate the effect of the on-time which determined the amount 

of deposition per unit cycle at a fixed peak potential, various on-times were tested for a 

fixed off-time of 1.0 s, which was considered sufficient to change the deposited Cu in 

the unit cycle. Fig. 3.7 illustrates these results with the reciprocal of the on-time on the 

x-axis. This figure shows that the film properties were improved by decreasing the on-

time from 1.0 to 0.25 s, but were not improved for on-times of less than 0.25 s. An on-

time of 0.25 s corresponded to 2.0 nm of deposited Cu per unit cycle. This amount of 

deposited Cu should be the maximum thickness that can be fully changed during 1.0 s 

of off-time in the electrolyte. For an on-time, greater than 0.25 s, not all of the 

deposited Cu could be changed because the amount of Cu deposit was greater than 2.0 

nm. Admittedly, the improvement in the film properties achieved by decreasing the on-
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time was due to the increase in the fraction of changed Cu during the off-time. In 

contrast, the film properties were saturated for an on-time of less than 0.25 s because 

the off-time was sufficient to change the deposited Cu fully. Consequently, the change 

during the off-time took place at the surface, and the maximum thickness that could be 

improved was about 2.0 nm. 

As discussed above, the quality of the deposited Cu was improved during the off-time 

through an increase in Cu (111) intensity and decrease in the resistivity. To clarify the 

nature of the change occurring during the off-time, the grain sizes and distribution were 

estimated by TEM. Additionally, it is assumed that the effect of each pulse is not much 

different and the summation of unit pulse determines the whole film property, and the 

changes during the off-time were deduced from the results of grain size. Constant 

potential deposition was compared with pulse electrodeposition for different off-times 

while the peak potential and the on-time were fixed at 0.25 s. Figs. 3.8 and 3.9 show 

representative TEM images captured for each condition and the distributions of grain 

sizes estimated from more than 200 individual grains. The average grain sizes were 

54.0, 63.0, and 72.9 nm for constant potential deposition, pulse electrodeposition with 

an off-time of 0.3 s, and pulse electrodeposition with an off-time of 1.0 s, respectively. 

These results indicate that the grain growth took place during the off-time. The 
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improvements in film properties with increased off-time were well-explained by the 

grain growth. 

Electrodeposited Cu film experiences grain growth after deposition in a process 

referred to as self-annealing.82-88 The incubation time for the start of self-annealing 

increases as the Cu film becomes thinner, and may be several tens or hundreds of 

hours.86-88 The grain growth during the off-time observed in this research was 

significantly different from self-annealing because it was almost complete after 1.0 s of 

off-time. In addition, the grain growth occurred without the addition of additives, 

whereas self-annealing takes place with incorporated additives, especially bis(3-

sulfopropyl) disulfide (SPS).89 Another difference is that grain growth occurred in 

contact with the electrolyte, whereas self-annealing takes place under atmospheric 

conditions. This suggests the possibility of various processes for grain growth during 

the off-time. 

In the case of Cu, the (111)-oriented plane has the lowest surface energy; however, 

electrodeposition progresses with the distribution of energy and does not necessarily 

mean a thermodynamically stable state. The total energy of Cu grains is the surface 

energy related to orientation and the grain boundary energy. The change during the off-

time should take place in the direction of decreasing total energy of the 
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electrodeposited Cu. Specifically, the grains or nuclei with a lower energy grew during 

the off-time to reduce the total energy, resulting in an increased Cu (111) intensity and 

decreased film resistivity. In other words, the driving force for grain growth during the 

off-time was originated from the reduction of total energy. Although dynamic 

equilibrium between electrode and electrolyte was maintained during the off-time, the 

grains having lower energy could grow and the grains having higher energy could be 

dissolved spontaneously, where total current density was zero. The candidate 

mechanism for this grain growth might be ripening through electrolyte and 

recrystallization. In the initial stage of electrodeposition, in particular, the nuclei that 

were not (111)-oriented or relatively small in size could combine with (111)-oriented or 

large-sized nuclei. It was clear from the above results that this process occurred in a 

second while in contact with the electrolyte, not under atmospheric conditions. The 

process seemed to be completed in a second could be found in Fig. 3.5, which was the 

film properties were saturated over 1.0 s of off-time. It implied that any other changes 

did not occur after 1.0 s of off-time, even though 2.0 or 3.0 s of off-time was applied. 

However, determining which process had a greater influence on the grain growth is 

difficult. 

Fig. 3.10 shows the schematic diagrams of constant potential deposition and pulse 



 ５８ 

electrodeposition which were based on the results described in Fig. 3.5. The constant 

potential deposition caused the Cu to accumulate continuously without providing any 

chance for grain growth or recrystallization, and it thus produced a Cu film that could 

be thermodynamically unstable compared to Cu deposited by pulse electrodeposition. 

With pulse electrodeposition, on the other hand, the nuclei or grains deposited during 

the unit cycle experienced grain growth and recrystallization that reduced the total 

energy. Off-times of less than 1.0 s were not sufficient to complete the changes for 

deposited Cu during a unit cycle. Consequently, the Cu deposited during the following 

pulse covered the relatively unstable surface. Similarly, on-times of more than 0.25 s 

deposited Cu too thick, which cannot be improved fully even though enough off-time 

applies. On the other hand, an off-time of 1.0 s was sufficient to change all the 

deposited Cu during the unit cycle, and, therefore, using a succession of pulses, the 

whole film was in the thermodynamically most stable state that could be obtained in 

the electrolyte. As a result, for off-times greater than 1.0 s, the film properties were 

saturated because the film to be changed had already experienced grain growth and 

recrystallization. Additionally, the improvement of film properties by grain growth was 

not affected by the whole film thickness. The total film properties were determined by 

the summation of each effect in unit pulse, and it was confirmed with film with 600 nm.  
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Fig. 3.1. (a) The Cu (111) peak intensities measured from XRD according to the 

cathodic potentials and duty cycles, and (b) re-plotted results with the average current 

density as the x-axis; the points in the each line represent the -100, -200, and -400 mV 

(vs. OCP) in sequence from left to right.   
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Fig. 3.2. Surface morphologies of Cu films deposited by means of (a) constant 

potential deposition, and pulse electrodeposition with (b) 75%, (c) 50%, and (d) 25% 

of duty cycles. The cathodic potentials were exhibited at the upper left corner of each 

image.  
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Fig. 3.3. (a) RMS roughness of Cu films exhibited in Fig. 2.3, and (b) re-plotted results 

with the average current density as the x-axis. 
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Fig. 3.4. (a) The electrical resistivity of Cu films according to the cathodic potentials 

and duty cycles, and (b) re-plotted results with the average current density as the x-axis.  
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Fig. 3.5. The behaviors of (a) Cu (111) peak intensity from XRD and (b) the electrical 

resistivity according to the on- and off-times. 
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Fig. 3.6. Cu (111) peak intensities with and without rotating of substrates during the 

electrodeposition.  
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Fig. 3.7. The behaviors of (a) Cu (111) peak intensity and (b) the electrical resistivity 

according to the on-time with a constant off-time of 1.0 s.  
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Fig. 3.8. TEM images of Cu films deposited by means of (a) constant potential 

deposition, and pulse electrodeposition with an off-time of (b) 0.3 s and (c) 1.0 s.  
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Fig. 3.9. The distributions of grain size measured from Fig. 3.8.  
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Fig. 3.10. Schematic diagrams of constant potential and pulse electrodeposition 

explaining the changes in the film property according to the on- and off-times.  
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3-2. Pulse electrodeposited Cu films in the presence of additives  

 

As mentioned above, the optimum conditions of pulse electrodeposition was found to 

be 0.25 s of on-time and 1.0 s of off-time with -200 mV (vs. OCP) of cathodic potential. 

This was obtained from the electrolyte without any organic additives employed for Cu 

superfilling. The organic additives such as Cl-, PEG, SPS, and JGB easily adsorbed on 

Cu surface, and it has the potential to retard the changes during the off-time. At first, 

pulse electrodeposition in the electrolyte only containing Cl- was performed with 

various off-times. The behaviors of Cu (111) peak intensity and resistivity are 

represented in Fig. 3.11. It was exhibited that the dependency of film properties on off-

time was exactly identical to the results without additives in the aspect of the saturation 

off-time and the direction of film property changes according to the off-time. The 

resistivity and the Cu (111) peak intensity were increased with the off-time below 1.0 s, 

followed by the saturation. This implied that the chloride ion could not strongly affect 

the grain growth during the off-time. 

On the other hand, the application of PEG, SPS, and JGB retarded this grain growth 

during the off-time. The peak intensities of Cu (111) with various combinations of 

organic additives from constant potential deposition and pulse electrodeposition are 
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displayed in Fig. 3.12. The optimum conditions of pulse electrodeposition determined 

by the results without additives were used for this experiment. Comparing the values of 

Cu (111) intensities, it can be found that the addition of organic additives into the 

electrolyte reduced the advantage of pulse electrodeposition. The increments of 

crystallinity resulted from the grain growth during the off-time were 68% without 

additives, 8.9%, 6.5%, and 4.2% with PEG-Cl-, PEG-Cl--SPS, and PEG-Cl--SPS-JGB, 

respectively. The strong adsorption of organic additives on Cu surface reduced the 

impacts of energy differences, resulting in the retardation of grain growth.  

Similar to the Cu (111) peak intensity, the behavior of resistivity was also affected by 

the organic additives. Fig. 3.13 represents the resistivities of Cu films deposited by 

constant potential deposition and pulse electrodeposition with various combinations of 

organic additives. It was observed that the reduction of resistivity with pulse 

electrodeposition was offset by the organic additives, of which degree was in order of 

PEG-Cl- < PEG-Cl--SPS < PEG-Cl--SPS-JGB. The decreases in the resistivity were 22% 

without additives, 6.9%, 4.2%, and 0.4% with PEG-Cl-, PEG-Cl--SPS, and PEG-Cl--

SPS-JGB, respectively. This tendency of resistivity was also identical to the results of 

Cu (111) peak intensity, which implied that the strong adsorption of organic additives 

reduced the grain growth during the off-time.  
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On the basis of these results, the introduction of organic additives used for Cu 

metallization reduced the degree of grain growth during the off-time by the strong 

adsorption on Cu surface. Since it implied that the pulse electrodeposition was not 

sufficient to remarkably improve the electrical resistivity with the organic additives, 

the additional modification of waveform was needed to reduce the resistivity. 

Therefore, in this study, pulse-reverse electrodeposition was employed to achieve 

further improvement of electrical properties with the organic additives. In the 

following chapter, the characteristics of Cu film deposited by pulse-reverse 

electrodeposition in the absence and presence of organic additives are introduced.   
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Fig. 3.11. The changes of (a) Cu (111) peak intensity and (b) the resistivity of Cu films 

deposited with the addition of Cl-. 
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Fig. 3.12. The Cu (111) peak intensities of Cu films deposited by means of constant 

potential and pulse electrodeposition with various combinations of organic additives. 
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Fig. 3.13. The electrical resistivity of Cu films deposited by means of constant 

potential and pulse electrodeposition with various combinations of organic additives. 
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CHAPTER IV 

The characteristics of Cu films deposited by 

pulse-reverse electrodeposition 

 

4-1. Pulse-reverse electrodeposited Cu films in the absence of 

additives 

 

The anodic charge per unit cycle and dissolution ratio could be used for 

characterizing pulse-reverse electrodeposition with the ensemble cathodic conditions. 

The anodic charge is defined as the total amount of passed electrons during the unit 

anodic step and the dissolution ratio is designated as the ratio between the amounts of 

the anodic and cathodic charges. Fig. 4.1 depicts the representative current and charge 

profiles of potentiostatic pulse-reverse electrodeposition as well as the definitions of 

the amounts of the cathodic and anodic charges. In the absence of organic additives, 

the amount of cathodic charge under an identical cathodic potential and on-time is 

nearly constant. Hence, the tendency of the anodic charge and the dissolution ratio are 

completely identical. Thus, the anodic charge was used to compare the film properties. 

The anodic charges as functions of the anodic potential and time are exhibited in Fig. 
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4.2, demonstrating an increasing anodic charge as the reverse time and anodic potential 

increased. The properties of the Cu film were plotted with not only the anodic potential 

and reverse time but also the anodic charge to verify the effects of the anodic step. 

The crystallographic orientations of Cu films deposited with various anodic potentials 

and times were evaluated by XRD. The Cu films were composed of (111) only, as 

shown in the XRD patterns (Fig. 4.3). Similar to the results of pulse electrodeposition, 

this result was ascribed to the highly (111)-oriented Cu seed layer and relatively thin 

Cu films. The peak intensity corresponds to the amount of the (111)-oriented planes at 

an identical thickness. It is important to note that the peak intensity of Cu (111) was 

obviously affected by the anodic potential and reverse time. More details on the 

variation of the peak intensity are displayed in Fig. 4.4(a). It is clear that the anodic 

step enhanced the development of the Cu (111) orientation. However, regardless of the 

anodic potential, similarity in the overall increment according to the reverse time was 

observed. Therefore, the intensity was re-plotted as a function of the anodic charge 

instead of the reverse time in order to clarify the potential dependency and the results 

are presented in Fig. 4.4(b). This led to conclude that a higher anodic potential was less 

efficient in developing the (111)-oriented Cu. This can be explained by the ‘selectivity’ 

of the anodic step. The Cu deposits could have various energy states originating from 
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the crystallographic orientation and grain size. The much higher anodic potential, 

which implies a higher driving force for Cu dissolution, could dominate the energy 

difference. Therefore, it induced relatively regular dissolution and can be called 

‘uniform’. In contrast to this behavior, a lower anodic potential preferentially dissolved 

only the Cu with higher energy, which is referred to as ‘selective’. On the basis of the 

alteration of the peak intensity, it could be deduced that there was selectivity in the 

anodic step, and the anodic potential played a crucial role in determining the selectivity. 

The resistivity of the Cu films was also affected by the anodic potential and time, as 

shown in Fig. 4.5(a). It was observed that the initial decrease in the resistivity was 

followed by a reascent as the reverse time increased. No potential dependency of the 

resistivity was observed analogous to Fig. 4.4(a), and the optimum reverse time 

showing the lowest resistivity was only apparent within the range from 0.05 to 0.1 s, 

regardless of the anodic potential. Similar to the Cu (111) peak intensity, the anodic 

charge enabled the determination of the potential dependency of the resistivity, as 

displayed in Fig. 4.5(b). The resistivity change was considerably slowed down by the 

higher anodic potential. This also provides a clear evidence for the selectivity of Cu 

dissolution. The change rate of the resistivity corresponds to the selectivity determined 

by the anodic potential. In addition to this, it is important to highlight the fact that the 
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higher anodic potential shifted the optimum anodic charge towards a larger value. It 

was also dominated by the selectivity of Cu dissolution, which will be clearly 

explained in the following section. 

Similar to Chapter III, the impacts of phonons, grain boundaries, surfaces, and 

impurities should be considered to understand the behavior of electrical resistivity.37-50 

For Cu films deposited in a CuSO4 and H2SO4-based electrolyte without any organic 

additives, as in this experiment, the influences of phonons and impurities could be 

ruled out as major factors. Therefore, the contributions of the grain size and surface 

roughness should be taken into account in order to clarify the behaviors of the 

resistivity. Subsequent analyses were performed in an attempt to evaluate these factors. 

The peak broadening in the XRD patterns is mainly attributed to the grain size so that 

Scherrer’s equation was used to calculate the relative grain size from the FWHM 

values.90,91 It can be predicted that the much smaller grains resulted in a larger value of 

FWHM. Fig. 4.6(a) shows the changes in the FWHM as functions of the anodic 

potential and reverse time, clearly indicating the gradual enlargement of grains with 

increasing anodic charge. No anodic potential dependency was similarly observed with 

the reverse time, therefore, the anodic charge was employed again instead of the 

reverse time. It was also revealed that the lower anodic potential was considerably 
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more efficient in increasing the grain size. This could be associated with the selectivity 

of the anodic step. As a result of the lower anodic potential, the selectivity of the Cu 

dissolution was enhanced and the Cu grains thereby significantly increased in size. To 

complement this experiment, the sizes of grains at the surface were evaluated by BSE 

and the images are displayed in Figs. 4.7(a)-(d). The results are in agreement with the 

estimated grain size obtained from the FWHM, revealing gradual enlargement of the 

grains. The average grain size of Cu deposited by pulse electrodeposition was 97.8 nm, 

and that from pulse-reverse electrodeposition with reverse times of 0.05, 0.1, and 0.2 s 

were 110.1, 121.8, and 135.8 nm, respectively. Their size distributions are exhibited in 

Fig. 4.7(e). On the basis of grain size, it is logical to suggest that the initial reduction in 

the resistivity, as presented in Fig. 4.5(b), can be explained by the monotonic increment 

of the grain size. From the viewpoint of the change rates, the similarity in behaviors of 

the grain size and resistivity also supports that. 

In addition to the grain size, there is also a contribution from the surface roughness to 

the resistivity. The surface morphologies obtained with different reverse times with an 

anodic potential of 100 mV are represented in Fig. 4.8. The size of surface protrusions 

continuously increased due to the anodic charge. This was attributed to selective 

dissolution during the anodic step in analogy to the enlargement of the grains. The root 
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mean square (RMS) roughness results are depicted in Fig. 4.9, which clearly indicates 

surface roughening by the anodic step. The steeper increment of surface roughness 

with the lower anodic potential was ascribed to the more selective dissolution of Cu. It 

is interesting to note that the behaviors of the grain size and surface roughness were 

similar in regards to their change rate. It can be concluded that this is owing to the 

selectivity of the anodic step, which is determined by the anodic potential. Regarding 

the resistivity, higher surface roughness, which causes additional electron scattering, 

accompanies the increase in the resistivity. Therefore, this led us to deduce that the 

reascension of the resistivity above the optimum anodic charge is attributable to the 

surface roughness. This was also supported by the similar tendency of the change rate 

as a function of the anodic potential. 

On the basis of the grain size and surface roughness, it is more natural to deduce that 

the resistivity behavior was dominated completely by the conflict between these factors. 

In other words, at the optimum anodic charge revealing the lowest resistivity, their 

influences on the increment of the resistivity were minimized. It is important to 

accentuate that the surface roughness at the optimum anodic charge was about 4 - 5 nm 

regardless of the anodic potential, which suggests that the surface roughness influences 

the resistivity considerably more when it is over 5 nm. This was only valid for a film 
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thickness of about 150 nm because the effect of surface roughness is influenced by the 

thickness. The change rate of the resistivity shown in Fig. 4.5(b) can also be explained 

by the grain size and surface roughness. To complement the qualitative explanation, a 

theoretical approach was attempted to understand the behavior of resistivity in terms of 

the grain size and surface roughness. This approach used Kuan’s formalism, presented 

in the following equation,39  

 

ρ
𝜌0

≈ 1 + 0.375(1− p)
𝑆λ
𝑡

+ 1.5 �
𝑅

1 − 𝑅
�
λ
𝑑

                                                                    (3.1) 

 

where ρ is the film resistivity, ρ0 is the bulk resistivity, p is a scattering parameter 

between 0 and 1, S is a roughness factor greater than 1, λ is the electron mean free path 

(39 nm for Cu), t is the thickness of the film, R is the scattering coefficient for the grain 

boundary (approximately 0.3 for Cu), and d is the average grain size. Note that the 

surface roughness affects the values of p and S, however, it is hard to experimentally 

assess their effects.39,92 Hence, this formalism can be applied to these results with three 

methods: (1) changing S with constant p, (2) changing p with constant S, and (3) 

changing both p and S. To simplify the simulation, it was also assumed that the inverse 

of FWHM and surface roughness were linearly dependent on the dissolution amount. 
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Fig. 4.10 represents the change rate of surface roughness and the inverse of FWHM 

according to the anodic potentials measured from Figs. 4.6 and 4.9. In this approach, 

the resistivity from pulse electrodeposition (initial resistivity in Figs. 4.5 and 4.11) was 

first matched to the calculated value for finding the appropriate the values of p and S, 

and the curve from the formalism was matched to the experimental results at 150 mV 

by determining the appropriate change rate of S. It was followed by substitution of the 

change rates according to the anodic potential shown in Fig. 4.10. Regardless of the 

aforementioned methods in the simulation, the simulated curves greatly predicted the 

behaviors including the optimum anodic charge and the change rate of resistivity, 

however, the ranges of p and S were only varied according to the methods. The 

representative results obtained with methods (1) and (2) are shown in Fig. 4.11. Since 

the only variables are the change rates of the grain size and surface roughness 

depending on the anodic charge and potential, it can be concluded that the resistivity 

variation was originated from the conflict between the effects of the grain size and 

surface roughness. 

 In brief, pulse-reverse electrodeposition led to a 9% reduction of the resistivity and 50% 

enhancement of Cu (111) formation at the optimum amount of anodic charge. The 

anodic step gave rise to enlargement of the Cu grains and enhanced the development of 
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Cu (111). It was deduced that the anodic potential determined the selectivity of the 

anodic step, resulting in much steeper changes in the film properties with a lower 

anodic potential. It was revealed that the lowest resistivity at the optimum anodic 

charge was originated from the conflict between the effects of grain size and surface 

roughness, which was also supported by the results of the theoretical approach. Based 

on this, the pulse-reverse electrodeposition in the presence of PEG-Cl--SPS was 

performed, and the results are introduced in the next section. 
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Fig. 4.1. The representative profiles of current density and charge during the 

potentiostatic pulse-reverse electrodeposition, and the definitions of cathodic and 

anodic charge per unit cycle. 
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Fig. 4.2. The anodic charges according to the anodic potentials and reverse times. 
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Fig. 4.3. XRD patterns of Cu films deposited with (a) 25 mV, (b) 50 mV, (c) 100 mV, 

and (d) 150 mV of anodic potentials. 
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Fig. 4.4. (a) Cu (111) peak intensities of each XRD patterns as a function of the anodic 

potential and reverse time, and (b) re-plotted results with the anodic charge per unit 

cycle as the x-axis instead of the reverse time.  

  

(a)

(b)

0.0 0.1 0.2 0.3 0.4 0.5
250000

300000

350000

400000

450000

500000

550000

600000

Anodic potential
 25 mV 
 50 mV 
 100 mV 
 150 mV Cu

 (1
11

) p
ea

k i
nt

en
sit

y (
co

un
ts)

 

 

 

Reverse time (s)

0 1 2 3 4
250000

300000

350000

400000

450000

500000

550000

600000

 

 

Anodic potential
 25 mV 
 50 mV 
 100 mV 
 150 mV Cu
 (1

11
) p

ea
k i

nt
en

sit
y (

co
un

ts)

Anodic charge/unit cycle (mC/cm2)



 ８８ 

 

Fig. 4.5. The changes in the resistivity of Cu films according to the anodic potential 

and reverse time, and (b) re-plotted results with the anodic charge per unit cycle as the 

x-axis instead of the reverse time.  
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Fig. 4.6. (a) The behaviors of FWHM of Cu (111) peak from XRD patterns as a 

function of anodic potential and reverse time, and (b) re-plotted results with the anodic 

charge per unit cycle as the x-axis instead of the reverse time.  
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Fig. 4.7. BSE images of the Cu surface deposited by (a) pulse electrodeposition, and 

pulse-reverse electrodeposition with (b) 0.05 s, (c) 0.1 s, and (d) 0.2 s of reverse time, 

and (e) the distribution of surface grain size; the anodic potential was 100 mV with 

respect to OCP.  
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Fig. 4.8. Surface morphologies of Cu films deposited by (a) pulse electrodeposition, 

and pulse-reverse electrodeposition with (b) 0.05 s, (c) 0.1 s, (d) 0.2 s, and (e) 0.3 s of 

reverse time; the anodic potential was 100 mV (vs. OCP). 
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Fig. 4.9. (a) The changes in RMS surface roughness of Cu films according to the 

anodic potential and reverse time, and (b) re-plotted results with the anodic charge per 

unit cycle as the x-axis instead of the reverse time. 
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Fig. 4.10. The increasing rates of (FWHM)-1 and surface roughness according to the 

anodic potential. 
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Fig. 4.11. The comparison of experimental and simulation results from changing only 

(a) roughness factor (S) and (b) scattering parameter (p), respectively.  
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4-2. Pulse-reverse electrodeposited Cu films in the presence of 

additives 

 

As mentioned above, the tolerance of Cu against the anodic step could be determined 

by the energy difference originating from the crystallographic orientation (surface 

energy) and the grain size (grain boundary energy) in the absence of the organic 

adsorbates. However, when organic additives, such as PEG-Cl- and SPS, are added into 

the electrolyte, this tolerance could depend on the kinds of adsorbates. Before 

clarifying the influences of the anodic step and organic additives on the film properties, 

LSV was attempted to investigate this change in the tolerance against the anodic 

potential, which is shown in Fig. 4.12(a). It can be seen that the anodic currents 

ascended in the following order: PEG-Cl-, PEG-Cl--SPS, without additives, Cl-, SPS, 

and SPS-Cl-. This implies that the SPS-covered Cu could be preferentially dissolved by 

the anodic step as compared to PEG-Cl--covered Cu. The large anodic current in the 

case of PEG-Cl--SPS compared to the PEG-Cl- case in the potential range from 100 to 

around 280 mV indicates the preferential dissolution of SPS-covered Cu, followed by 

subsequent dissolution of PEG-Cl--covered Cu. This was also supported by the 

additional experiments varying initial potential of LSV as shown in Fig. 4.12(b), which 
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revealed an increase of anodic current in the potential range between around 100 and 

280 mV as the initial potential was negatively shifted. Since the application of more 

negative potential reduced the stability of PEG-Cl-, therefore, this current increment 

was ascribable to more adsorption of SPS. This sequential dissolution during LSV 

means that the selectivity of Cu dissolution could be determined by either the SPS or 

PEG-Cl- adsorbates, and the Cu covered by SPS could be preferentially dissolved 

relative to Cu covered by PEG-Cl-.  

Similar to the anodic behavior, the additives also alter the cathodic deposition as 

clearly indicated in previous studies.13,28,32,34 Therefore, it might be more clear to use 

the dissolution ratio as a variable instead of the anodic charge, since it contains the 

effects of the additives on both the anodic and cathodic currents. The dissolution ratio 

can be defined by the equation (1.13). The definitions of the anodic and cathodic 

charges are the total amounts of passed electrons during the unit reverse and on-times, 

respectively. The dissolution ratio in the presence of PEG-Cl--SPS is depicted in Fig. 

4.13, showing a monotonic increment of the dissolution ratio as the anodic potential 

and reverse time is increased. These values were employed to investigate the potential 

dependency of the film properties. Similar to the previous study, it was apparent that 

the usage of the dissolution ratio was much more effective in characterizing the anodic 
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step as opposed to reverse time. 

The electrodeposited thin Cu film (~150 nm) mainly consisted of (111) orientation 

because of the highly-oriented Cu seed layer confirmed in the XRD patterns. The 

thickness of the Cu films were precisely controlled, thus the peak intensity corresponds 

to the amount of (111)-orientated Cu. The changes in the peak intensity according to 

the reverse times are exhibited in Fig. 4.14(a), and clearly indicate the gradual 

increment of the intensity as the dissolution ratio becomes large. When the dissolution 

ratio was adopted as the x-axis instead of reverse time, no apparent potential 

dependency was observed, except for a slightly faster increase in the case of 25 mV in 

contrast to the case without additives. This implies that the presence of the additives 

might offset the effect of surface energy from the crystal orientation. Based on these 

results, it is logical to suggest that the influence of the anodic step on the film 

properties should be understood in terms of the adsorbates and their effects. 

The resistivities of the Cu films with various anodic steps are presented in Fig. 

4.15(a), indicating the existence of the optimum reverse time showing the lowest 

resistivities which were in the range between 0.25 s and 0.1 s. In order to clarify the 

anodic potential dependency, the dissolution ratio was adopted instead of the reverse 

time. Fig. 4.15(b) represents the resistivity behavior according to the dissolution ratio, 
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revealing the dissolution ratios with the lowest resistivities, which are referred to as the 

optimum dissolution ratio. It was obvious that the optimum dissolution ratios were 

shifted to larger values as the anodic potential was increased. As mentioned above, the 

resistivity of a metal thin film is affected by various factors, such as phonons, grain 

size, surface roughness, and the concentration of impurities.37-50 For the conditions 

examined in this study, the influence of phonons is unchanged. As for impurities, it was 

reported that the incorporation of organic additives was dependent on the cathodic 

current, the amounts of which were reduced by pulse-reverse electrodeposition.75,93,94 

The resistivity increment resulting from the influence of the impurities can be 

described by the following equation: f = C·4 + N·7 + O·5.5 + S·9, where f is the total 

effect of dopants (μΩ·cm/atom%) on the resistivity increment; and C, N, O, and S are 

the atomic concentrations of incorporated carbon, nitrogen, oxygen, and sulfur atoms, 

respectively.51 In the previous research with an identical additive combination, the 

concentration of carbon atoms was below 0.02 wt%, and the nitrogen and sulfur atoms 

were not detected based on the results from the elemental analyzer.24 Thus, it was 

apparent that the impact of the impurities on the resistivity can be neglected. Therefore, 

it is natural to conclude that the grain size and surface roughness were the major 

factors for resistivity changes. 
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The grain size was estimated from the FWHM of the Cu (111) peak using Scherrer’s 

equation, which gives that the reduction in the FWHM implies an increment of the 

grain size.90,91 The FWHM values as a function of the anodic potential and reverse time 

are displayed in Fig. 4.16(a), demonstrating an initial reduction of grain size followed 

by re-growth. This was not sufficient to characterize the impact of pulse-reverse 

electrodeposition, therefore, the dissolution ratio was adopted again, and the results are 

shown in Fig. 4.16(b). As represented in Fig. 4.16(b), the application of more positive 

anodic potential showed the sluggish change of grain size, and the maximum values of 

FWHM were also shifted to lower values. In addition to this, the sizes of the surface 

grains were measured from BSE images, as can be seen in Figs. 4.17(a) to (d), which 

supports the aforementioned behavior of grain size estimated from the FWHM. The 

average sizes of the surface grains were 73.4 nm from pulse electrodeposition, and 65.6, 

86.7, and 96.4 nm from pulse-reverse electrodeposition, with 0.05, 0.2, and 0.3 s of 

reverse time, respectively. The size distributions are depicted in Fig. 4.17(e).  

In the case of additive-free electrolyte, the grain size was gradually increased with 

more anodic charge (e.g. the minimum grain size was seen at 0 mC of anodic charge). 

In contrast, in the presence of the additives, the minimum grain size was distinctively 

observed at a non-zero anodic charge. This was ascribable to the effects of the anodic 
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step and the additives. The addition of the organic additives generally reduces the grain 

size, which was confirmed in the previous results (pulse electrodeposition: 97.8 nm 

without additives16 vs. 73.4 nm with additives). The anodic step seemed to enhance 

this grain size reduction, consequently resulting in the smallest grain size at a certain 

dissolution ratio. In Fig. 4.18, it was observed that FWHM of the Cu film deposited in 

the electrolyte containing only SPS-Cl- was lower compared to Cu film deposited with 

PEG-Cl-. Since the inverse of FWHM implied the grain size, the grain size of Cu film 

deposited in the electrolyte containing only SPS-Cl- was significantly larger than that 

containing only PEG-Cl-. It was already confirmed that the Cu grains covered by a 

relatively large amount of SPS could be preferentially dissolved as compared to PEG-

Cl-, which is shown in Fig. 4.12. Combining these two results enables us to suggest 

that the larger grains growing with relatively more SPS could be preferentially 

dissolved during the anodic step because of selective dissolution, finally resulting in a 

reduction of total grain size. The magnitude of the selectivity could be governed by the 

anodic potential, so a lower anodic potential could considerably increase the selectivity 

even more, which led to a shift of the optimum dissolution ratio towards a lower value 

as the anodic potential decreased. In contrast, for dissolution ratios above the ratio 

showing the minimum grain size, it was observed that the grain size was monotonically 
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augmented again with accelerated rates and much lower anodic potential. This seemed 

to be due to the relatively large dissolution amount diminishing the effect of the 

additives. Therefore, the behavior of the grain size above the minimum value could be 

understood as in the additive-free condition. This was supported by the identical 

behaviors of the resistivity, grain size, and surface roughness between the cases with 

and without additives in the range over the optimum dissolution ratio. That is, there are 

two phenomena from the anodic step: (i) below the optimum dissolution ratio, where 

the selective dissolution of Cu covered by SPS occurs, and (ii) above the optimum 

dissolution ratio, where the diminishment of the additive effect occurs. 

In regard to the resistivity, the reduction of grain size is an increasing factor that 

provides additional probability of electron scattering.37-46 However, the behaviors of the 

grain size, represented in Figs. 4.16 and 4.17, enable us to expect the exact opposite 

trend to the experimental results shown in Fig. 4.15. Therefore, it can be concluded that 

the grain size is a minor factor in determining the resistivity in the case of the 

electrolyte with additives. 

The representative FESEM and AFM images of the Cu surfaces are presented in Fig. 

4.19, and reveal that the surface was not roughened significantly with respect to lower 

reverse time values until 0.1 s, above which a severe increase in surface roughness can 
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be seen. In the results without additives, the surface was monotonically roughened with 

increasing anodic charge, which is dissimilar to this result. The values of RMS 

roughness are shown in Fig. 4.20(a) and (b), demonstrating the optimum reverse time 

and dissolution ratio with the lowest surface roughness. The anodic potential 

dependency was clearly observed with the dissolution ratio again. In Fig. 4.21, the 

surface roughness of Cu film deposited in electrolyte containing only SPS-Cl- was 

much larger than that with PEG-Cl-. Similar to grain size behavior, anodic steps below 

the optimum dissolution ratio resulted in the reduction of surface roughness by the 

selective dissolution of Cu covered by SPS. Note that the optimum dissolution ratios 

showing the lowest resistivity were exactly identical to the ratios with the lowest 

roughness and smallest grains. The selectivity of the lower anodic potential was much 

larger; consequently, there were much steeper changes in the surface roughness. It was 

also logical to deduce that the reincrement of the roughness over the optimum 

dissolution ratio was attributed to the diminishment of additive effects by the relatively 

large amount of dissolution. Considering the roughness in terms of resistivity provides 

reasonable evidence that the resistivity of these films was mainly attributed to the 

surface roughness, because their tendencies depending on the dissolution ratio were 

nearly identical in regard to the optimum dissolution ratios and their rates of change. It 
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is well-known that rough surfaces result in the increment of resistivity due to increased 

scattering of electrons.37-50 This is also supported by the fact that roughness could be a 

decisive factor in determining the resistivity when RMS roughness is over 4 - 5 nm 

(with 150 nm of film thickness) with additive-free electrolyte. 

On the basis of these results, it was clearly confirmed that pulse-reverse 

electrodeposition in the presence of organic additives led to a 14% reduction of 

resistivity at the optimum dissolution ratio compared to the optimum condition of pulse 

electrodeposition. The types of adsorbates were found to play the important roles in the 

selectivity of the anodic step. It was observed that SPS-covered Cu was much more 

preferentially dissolved relative to PEG-Cl--covered Cu. Since the adsorption of SPS 

increases the surface roughness and the grain size, selective dissolution could result in 

a reduction of these qualities below the optimum dissolution ratio. Over the optimum, 

the relatively large amount of dissolution seems to offset the effect of additives, 

leading to the ensemble behavior with additive-free electrolyte. Since the advantage of 

pulse-reverse electrodeposition in the absence and presence of organic additives in the 

aspect of properties is clearly confirmed, the superfilling performance based on the 

impact of anodic step on the competitive adsorption between PEG-Cl- and SPS should 

be clarified. The investigation on the impacts of anodic step on both adsorption state 
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and superfilling performance is introduced in the next chapter.  
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Fig. 4.12. (a) LSV exhibiting the anodic currents in the electrolytes without additives, 

and containing Cl-, SPS, SPS-Cl-, PEG-Cl-, and PEG-Cl--SPS, and (b) LSV with 

various initial potentials in PEG-Cl--SPS-added electrolyte. 
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Fig. 4.13. Dissolution ratios with various conditions of anodic step in the presence of 

PEG-Cl--SPS. 
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Fig. 4.14. (a) Cu (111) peak intensities according to the reverse time and anodic 

potential, and (b) re-plotted results with the dissolution ratio as the x-axis instead of the 

reverse time. 
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Fig. 4.15. (a) The behavior of resistivity as a function of anodic potential and reverse 

time, and (b) re-plotted results with the dissolution ratio as the x-axis instead of the 

reverse time. 
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Fig. 4.16. (a) The changes in FWHM of Cu (111) peak according to the anodic 

potential and reverse time. and (b) re-plotted results with the dissolution ratio as the x-

axis instead of the reverse time. 
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Fig. 4.17. BSE images of Cu films deposited by (a) pulse electrodeposition, and pulse-

reverse electrodeposition with (b) 0.05 s, (c) 0.2 s, and (d) 0.3 s of reverse time, and (e) 

their size distributions of the surface grains; the anodic potential was 100 mV (vs.OCP). 
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Fig. 4.18. FWHM of Cu (111) peak from Cu films deposited in the electrolyte 

containing only PEG-Cl- and SPS-Cl-. 
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Fig. 4.19. Surface morphologies of Cu films deposited by (a) pulse electrodeposition, 

and pulse-reverse electrodeposition with (b) 0.05 s, (c) 0.1 s, (d) 0.2 s, and (e) 0.3 s of 

reverse time; the anodic potential was fixed at 100 mV (vs. OCP).  
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Fig. 4.20. (a) The behavior of RMS roughness according to the anodic potential and 

reverse time, and (b) re-plotted results with the dissolution ratio as the x-axis instead of 

the reverse time. 
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Fig. 4.21. Surface roughness of Cu films deposited in the electrolyte containing only 

PEG-Cl- and SPS-Cl-. 
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CHAPTER V 

The impacts of anodic step on the 

adsorption of additives and superfilling  

 

5-1. The effects of anodic step on the competitive adsorption of 

additives 

 

The representative current profile of potentiostatic pulse-reverse electrodeposition in 

the presence of PEG-Cl--SPS is shown in Fig. 5.1(a) (saw tooth-like line), which was 

from the iteration of -200 mV for 0.25 s and 50 mV for 0.1 s. The current peaks at 

every starting point of cathodic and anodic steps were from the charging and 

discharging of the double layer and the concentration changes of Cu ions near the 

electrode by repeated consumption and replenishment. To exclude the effects of double 

layer and concentration differences, the points at the ends of every cathodic step 

(denoted as stars in the figure) were collected and re-plotted to simplify the overall 

current profile.  

The simplified current profile accumulated for 140 s is presented in Fig. 5.1(b). As 

shown in the figure, the cathodic current was sharply increased at the initial stage 
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followed by the saturation after 100 s. This behavior is very similar to the conventional 

chronoamperometric behavior of constant potential with PEG-Cl--SPS. The increment 

of current was related to the displacement of preadsorbed PEG-Cl- by SPS. To quantify 

this, the saturation current and time were defined from the tangential line, marked as (i) 

and (ii), respectively. at the contact point between the current profile and a straight line, 

which were marked as (i) and (ii), respectively. The initial displacement rate of SPS 

was defined as the initial slope of current increment, marked as (iii). All of the current 

profiles from constant potential and pulse-reverse electrodeposition were characterized 

in the same manner. 

From the saturation currents measured from the cathodic current profiles, the surface 

coverage (θ) of SPS can be calculated using the following equation:13 

 

i(θ, η) =
𝐶𝐶𝐶2+
𝐶𝐶𝐶2+
∞ [𝑘𝑃𝑃𝑃(1− θ) + 𝑘𝑆𝑃𝑆θ]                                                                             (4.1) 

 

where 𝐶𝐶𝐶2+  and 𝐶𝐶𝐶2+
∞  are the surface and bulk concentrations, and 𝑘𝑗  is the 

adsorption rate constant of j species. The ratio of concentrations can be obtained from 

the ratio of deposition and limiting currents,95 
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𝐶𝐶𝐶2+
𝐶𝐶𝐶2+
∞ = 1 −

𝑖
𝑖𝐿

                                                                                                                        (4.2) 

 

where 𝑖𝐿  is the limiting current and 𝑖 is the deposition current. In addition, the 

adsorption rate constant (𝑘𝑗) could be measured from the chronoamperometry in the 

electrolyte only containing PEG-Cl- or SPS (or SPS-Cl- revealing the similar results). 

Combining two equations, the situations with only PEG-Cl- (θ=0) or SPS (θ=1) can be 

described by the following equations which were from equations (4.1) and (4.2): 

 

𝑖𝑃𝑃𝑃−𝐶𝐶− = �1 −
𝑖𝑃𝑃𝑃−𝐶𝐶−

𝑖𝐿
� 𝑘𝑃𝑃𝑃−𝐶𝐶−                                                                                  (4.3) 

𝑖𝑆𝑃𝑆 = �1 −
𝑖𝑆𝑃𝑆
𝑖𝐿
� 𝑘𝑆𝑃𝑆                                                                                                           (4.4) 

 

where 𝑖𝑃𝑃𝑃−𝐶𝐶−  and 𝑖𝑆𝑃𝑆  are the currents from the chronoamperometries in the 

electrolytes only containing PEG-Cl- and SPS, and it provides the adsorption rate 

constant as the function of measured current and the limiting current. To calculate this, 

the chronoamperometries with various overpotentials were performed, and the current 

profiles and average currents were displayed in Figs. 5.2(a) and (b). Taking the 

aforementioned equations together, the surface coverage of SPS can be expressed using 

the terms of currents: 
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θ =
� i(θ, η)
𝑖𝐿 − i(θ, η) −

𝑖𝑃𝑃𝑃−𝐶𝐶−
𝑖𝐿 − 𝑖𝑃𝑃𝑃−𝐶𝐶−

�

� 𝑖𝑆𝑃𝑆
𝑖𝐿 − 𝑖𝑆𝑃𝑆

− 𝑖𝑃𝑃𝑃−𝐶𝐶−
𝑖𝐿 − 𝑖𝑃𝑃𝑃−𝐶𝐶−

�
                                                                                    (4.5) 

 

where i(θ,η) is the experimentally measured current from the constant potential and 

pulse-reverse electrodeposition. 𝑖𝑃𝑃𝑃−𝐶𝐶− and 𝑖𝑆𝑃𝑆 were employed from Fig. 5.2(b) 

and 𝑖𝐿 of these experimental conditions was 26.6 mA measured from linear sweep 

voltammetry. Unfortunately, since the limiting current was changed by the conditions 

of pulse-reverse electrodeposition, the surface coverage from pulse-reverse 

electrodeposition could not be exactly calculated. Therefore, the cathodic potential was 

only determined by this calculation, and the saturation current was investigated with 

various conditions of pulse-reverse electrodeposition. 

Prior to pulse-reverse electrodeposition, the constant potential deposition with various 

cathodic potentials was performed to determine the cathodic potentials of pulse-reverse 

electrodeposition based on the surface coverage of SPS, and the current profiles are 

exhibited in Fig. 5.3. As the overpotential was increased, the increasing rate of current 

at the initial stage and the saturation current were ascended. The increment of current 

was originated from the displacement of preadsorbed PEG-Cl- by SPS, as mentioned 
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above. The initial displacement rates according to the overpotential are represented in 

Fig. 5.4(a) indicating the acceleration of the displacement with higher overpotential. 

On the contrary, the saturation time was not linearly dependent on the inverse of 

displacement rate as displayed in Fig. 5.4(b). This was originated from the changes in 

the saturation current, corresponding to the saturation coverage of SPS. The saturation 

current and surface coverage of SPS are shown in Figs. 5.5(a) and (b). Although the 

displacement rate was monotonically increased with higher overpotential, the surface 

coverage of SPS at the saturation was also increased, lengthening the saturation time. 

In Fig. 5.5(b), it was observed that the surface coverage of SPS was increased with 

more negative potential. This was ascribed to the reduction of stability of PEG-Cl-. 

When more negative potential was applied, the electrode surface and Cl- were repelled 

each other because of the electrostatic repulsion force. Since Cl- acts as the adsorption 

site of PEG, the adsorption strength of PEG-Cl- was decreased. Based on the changes 

of surface coverage of SPS at the saturation, the cathodic potentials of -100, -150, and -

200 mV (vs. OCP) were determined the conditions for pulse-reverse electrodeposition 

because the saturation surface coverages 0.28, 0.43, and 0.62 representing lower, 

intermediate, and higher surface coverage of SPS. In the case of the potential over -200 

mV, the impact of mass transport of Cu ions dominated the electrodeposition system, 
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therefore, the experimental potentials were determined below -200 mV. Contrary to the 

saturation coverage, the surface coverage of SPS at the initial stage was almost 

identical in the range between 0.04 and 0.11 regardless of deposition conditions. Since 

the concentration of PEG (i.e. surfactant) at the interface between the electrolyte and 

the atmosphere was much higher than the inside of electrolyte, the relatively large 

amount of PEG-Cl- layer initially adsorbed on the Cu surface when Cu RDE passed 

through the interface. This did not certainly depend on the conditions of constant 

potential or pulse-reverse electrodeposition because applying the potentials was 

enacted after dipping of Cu RDE.  

The cathodic current profiles of pulse-reverse electrodeposition according to the 

anodic potentials and reverse times were represented in Fig. 5.6. Overall, the initial 

displacement rates (i.e. initial slope of current increment) of SPS were increased with 

more positive anodic potential and longer reverse time regardless of the cathodic 

potential. On the contrary, the saturation current was differently affected by the 

cathodic potential, anodic potential, and reverse time. Particularly, in the case of more 

positive anodic potential (i.e. 100 mV), the saturation current was relatively low even 

the current was much more rapidly increased at the early stage. The saturation currents 

from constant potential deposition with -200, -150, and -100 mV of cathodic potentials 
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were 15.51, 6.26, and 1.94 mA, respectively as shown in Fig. 5.3. Comparing these 

values to the saturation currents of pulse-reverse electrodeposition, it can be found that 

the changes in the values were depended on the cathodic potential, anodic potential, 

and reverse time. Detail relationship between the saturation current and the conditions 

of pulse-reverse electrodeposition will be discussed afterward. 

For more precise understanding of the relationship between anodic step and the 

competitive adsorption of additives, the potential step chronoamperometry was 

performed. In addition, since the cathodic current profiles were obtained by the 

aforementioned simplification method, it could be verified by potential step 

chronoamperometry whether the actual adsorption state of organic additives was 

represented or not. Fig. 5.7(a) shows one of the results; the constant potential of -200 

mV was interrupted by applying 100 mV of anodic potentials for 1 s at different 

moments of 50, 100, 200, and 300 s from the beginning. Since the surface coverage of 

SPS was continuously increased through the displacement, the potential step 

chronoamperometry with varying the moments of applying the anodic step provides 

the relationship between the anodic step and SPS coverage. It was clearly observed that 

the currents after the anodic step were abruptly increased in the case of applying the 

anodic step at 50 and 100 s. However, the currents after the anodic step were decreased 
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in the case of 200 and 300 s. The degree of current increment was much higher with 

lower surface coverage of SPS (earlier interruption at 50 s), and the current decrement 

was intensified with higher surface coverage (latest interruption at 300 s). Similar 

results at different anodic potential were presented in Fig. 5.7(b). The anodic potential 

was reduced to 25 mV, and the revere time was increased from 1 s to 7 s, which gives 

identical anodic charge to the case of 100 mV shown in Fig. 5.7(a). It is obvious that 

the increment in the current after the anodic step was reduced with lower anodic 

potential. On the basis of these results, it is needed to conclude that the competitive 

adsorption and displacement between the additives are obviously affected by the 

anodic potential. In addition, the simplified cathodic current profiles shown in Fig. 5.6 

are figured out to be sufficient to describe the actual state of additive adsorption 

because the tendency of current change by pulse-reverse electrodeposition observed in 

Fig. 5.6 was identical to these potential step chronoamperometries. 

Going back to Fig. 5.6, the initial displacement rates of SPS during pulse-reverse 

electrodeposition according to the cathodic/anodic potentials and reverse time were 

measured from the slope of current increments in Fig. 5.6. The behavior of initial 

displacement rates according to the reverse time, the cathodic and anodic potentials are 

exhibited in Fig. 5.8. Conclusively, the initial displacement rate was accelerated by the 
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anodic step, and it was intensified with more positive potential and longer reverse time. 

Comparing the results according to the cathodic potential, it was also observed that the 

initial displacement rate was in order of -200 mV > -150 mV > -100 mV, which is 

consistent with the results of constant potential deposition shown in Fig. 5.3. The 

saturation time was plotted according to the reverse time at different conditions, and 

the results are presented in Fig. 5.9. The figure indicates that the saturation times 

became short with higher initial displacement rate. 

The enhanced initial displacement by the anodic step is due to several reasons. In 

order to investigate the effect during the cathodic step, pulse-reverse electrodeposition 

with varying the on-time were performed. The cathodic potential and on-time were 

changed from -100 mV to -200 mV and from 0.25 s to 1.5 s, respectively. The anodic 

potential and reverse time were fixed at 50 mV and 0.1 s. The simplified current 

profiles are exhibited in Fig. 5.10 indicating that pulse-reverse electrodeposition with 

longer on-time causes in the slowdown of the displacement. The exact values of 

displacement rate are shown in Fig. 5.11, measured from the initial slope of current 

increment in Fig. 5.10. Since the displacement rate of preadsorbed PEG-Cl- layer by 

SPS was decreased as more on-time was applied, thus, the acceleration of displacement 

rate by pulse-reverse electrodeposition seemed to be the result of anodic step, not the 
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cathodic step. In the case of the anodic step, several reactions happen, such as 

dissolution of metallic Cu to hydrated Cu+ and Cu2+ or Cu+-SPS complex and 2MPS 

→ SPS + 2e-, and the detachment of SPS or PEG-Cl- through the lift-off.12,74,96 As 

shown in Fig. 5.7, the increase in the current step lasted over several hundreds of 

second. This means that the instantaneous modification of surface state such as the 

formation of Cu+-SPS or 2MPS → SPS + 2e- or temporal increment of Cu ion 

concentration may have negligible effects. Therefore, the main reason for the enhanced 

displacement rate was related to the faster detachment of PEG-Cl-. In previous 

researches, it was reported that the adsorbed PEG-Cl- is much stable at more positive 

potential because of the electrostatic attraction between PEG-Cl- and electrode. 

Therefore, it can be speculated that there are competing factors in determining the 

surface coverage of PEG-Cl-; detachment by lift-off vs. stabilization by electrostatic 

attraction. 

The changes in the surface coverage of additives during the anodic step were 

investigated with the chronoamperometry after the derivatization. The derivatization of 

PEG-Cl- at various potentials for 10 s in the electrolyte containing 1.0 M H2SO4, 88 

μM PEG, and 1 mM Cl- was performed, followed by the chronoamperometry in the 

additive-free electrolyte consisted of 0.25 M CuSO4 and 1.0 M H2SO4. As shown in 
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Fig.5.12, the slower current increment after the derivatization at more positive potential 

was observed, and it implies stronger adsorption of PEG-Cl- in the range of potential 

examined. On the contrary, the lift-off of adsorbed PEG-Cl- layer occurs as well, which 

was confirmed by LSV in the electrolyte containing 0.25 M CuSO4, 1.0 M H2SO4, 88 

μM PEG, and 1 mM Cl- (Fig. 5.13). The starting potentials of LSV were intentionally 

varied for more precise understanding. The scan rate of LSV was 100 mV/s, which was 

considerably faster than ordinary LSV. The LSV results with 300 and 1000 rpm of 

RDE rotating speed are presented in Figs. 5.13(a) and (b) indicating that the current in 

the range between 50 and -300 mV was increased when LSV was started at more 

positive potential. Especially, the current increment was noticeable when the starting 

potential was over 100 mV. Since the identical results were observed regardless of 

rotating speed, this was not originated from the impact of Cu ion concentration. 

Therefore, it can be suggested that the detachment of PEG-Cl- through lift-off certainly 

occurred during the anodic step. On the basis of two electrochemical analyses, it is 

natural to suggest that there were two competing effects of anodic step as has been 

previously mentioned; (i) the enhancement of adsorbed PEG-Cl- and (ii) the 

detachment of PEG-Cl- through lift-off. The former one dominated in the anodic 

potential range less than 100 mV, while the later happens at over 100 mV. However, the 
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results of pulse-reverse electrodeposition as previous introduced were from the anodic 

potential less than 100 mV, therefore, the influences of SPS should be additionally 

considered to explain the changes in the initial displacement. 

The impact of SPS was investigated by using the potential step chronoamperometry 

after the derivatization of PEG-Cl-. The derivatization was performed by dipping Cu 

RDE into the electrolyte containing 1.0 M H2SO4, 88 μM PEG, and 1 mM Cl- for 30 s. 

After the derivatization, the chronoamperometry was carried out in the electrolyte 

composed of 0.25 M CuSO4, 1.0 M H2SO4, 1 mM Cl- without and with 50 μM SPS. As 

revealed in Fig. 5.14(a) in the absence of SPS, the current after the anodic step was 

rather decreased. This was identical to previous result observed in Fig. 5.12. On the 

contrary, when SPS is added into the electrolyte (Fig. 5.12(b)), the current was 

remarkably increased after the anodic step. The degree of current increment was 

enhanced with more positive potential. Since the current increment after the anodic 

step was only observed with SPS addition, the main reason for the promotion of 

displacement could be originated from the additional SPS adsorption on Cu surface 

where PEG-Cl- was detached.  

The changes of saturation current measured from Figs. 5.6 and 5.10 are displayed in 

Figs. 5.15 and 5.16, and the tendency of saturation current was summarized in Table. 
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5.1. from the figures and table, it was found that the saturation current was increased 

with lower anodic potential and shorter reverse time, while it was reduced with higher 

anodic potential and longer reverse time as compared to constant potential deposition. 

Considering the lower surface coverage of SPS at more positive cathodic potential, it 

can be concluded that the surface coverage of SPS at its saturated state tends to be 

reduced when the anodic step is applied. The degree of decrease in the saturation 

current was intensified by higher cathodic potential, higher anodic potential, and longer 

reverse time. Dissimilar to the initial displacement rate, the electrode surface was 

covered by considerably large amount of SPS. Therefore, the reactions accompanied 

with both the electrons and SPS should be considered to explain this behavior. During 

the anodic step, both the change such as 2MPS → SPS + 2e- and the detachment of 

MPS, SPS, or Cu+-SPS complex possibly took place. However, it was hard to separate 

each contribution on the behavior of surface coverage using the electrochemical 

analyses. The supplemental experiments are needed to exactly figure out this 

phenomenon. 

In summary, the influence of pulse-reverse electrodeposition on the competitive 

adsorption between PEG-Cl- and SPS was investigated in detail. In order to easily 

compare the current profiles with various pulse-reverse electrodepositions, the 
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simplification method was introduced, and its validity was confirmed by potential step 

chronoamperometries. From the simplified current profiles, it was observed that the 

application of anodic step accelerated the displacement of preadsorbed PEG-Cl- layer 

by SPS, and the extent of displacement was increased as the anodic potential became 

more positive or the reverse time lengthened. It was speculated that this enhancement 

of displacement was due to the detachment of PEG-Cl- layer through lift-off, followed 

by additional SPS adsorption. On the contrary, the saturation current showed the 

different tendency to the initial displacement rate. The application of more positive 

potential and longer reverse time reduced the saturation current. Unfortunately, the 

main cause of this behavior remained to be investigated. In the next section, the 

superfilling performance of pulse-reverse electrodeposition was investigated, and it 

was attempted to explain the performance change based on these electrochemical 

analyses. 
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Table 5.1. The Behaviors of Saturation Current According to the Cathodic Potential, 

Anodic Potential, and Reverse Time 

      Eanodic 

Ecathodic 
25 mV 50 mV 100 mV 

-200 mV ↑ ↓ ↓ 

-150 mV ↑ ↑ (0.1 s)* → ↓ ↑ (0.05 s)* → ↓ 

-100 mV ↑ ↑ ↑ (0.1 s)* → ↓ 

*The reverse time where the tendency of the saturation current was changed. 
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Fig. 5.1. (a) The representative current profile of pulse-reverse electrodeposition (black 

line) and the simplified current profile (straight line) by collecting the final values in 

the on-time (stars) for 3 s and (b) for 140 s with the definitions of (i) saturation current, 

(ii) saturation time, and (iii) initial displacement rate of SPS. 
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Fig. 5.2. (a) Chronoamperometries in the electrolyte containing PEG-Cl- or SPS-Cl- 

with changing the overpotential, and (b) the average current with overpotential 

dependence. 
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Fig. 5.3. The current profiles of constant potential deposition as the function of 

overpotential; the electrolyte contained PEG-Cl--SPS. 
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Fig. 5.4. (a) Initial displacement rate of SPS and (b) saturation time measured from Fig. 

5.3. 
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Fig. 5.5. (a) Saturation current measured from Fig. 5.3, and (b) the surface coverage of 

SPS calculated from the saturation current represented in (a). 
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Fig. 5.6. The simplified current profiles of pulse-reverse electrodeposition with -200 

mV of cathodic potential and (a) 25 mV, (b) 50 mV, and (c) 100 mV of anodic potential, 

-150 mV of cathodic potential and (d) 25 mV, (e) 50 mV, and (f) 100 mV of anodic 

potential, and -100 mV of cathodic potential and (g) 25 mV, (h) 50 mV, and (i) 100 mV 

of anodic potential.  

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.25 s
 0.5 s

Cu
rre

nt
 (m

A)

Time (s)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.25 s
 0.5 s

Cu
rre

nt
 (m

A)

Time (s)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

 

 

Time (s)

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.15 s

Cu
rre

nt
 (m

A)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.25 s
 0.5 s

Cu
rre

nt
 (m

A)

Time (s)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.25 s
 0.5 s

Cu
rre

nt
 (m

A)

Time (s)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s  0.25 s  0.5 s

Cu
rre

nt
 (m

A)
Time (s)

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.25 s
 0.5 s

Cu
rre

nt
 (m

A)

Time (s)
0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

6

7

 
 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.25 s
 0.5 s

Cu
rre

nt
 (m

A)

Time (s)
0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

6

7

 

 

 Constant potential deposition
Pulse-reverse electrodeposition

 0.05 s of reverse time
 0.1 s
 0.15 s

Cu
rre

nt
 (m

A)

Time (s)

Ecathodic= -200 mV
EAnodic = 25 mV

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

-200 mV
50 mV

-200 mV
100 mV

-150 mV
25 mV

-150 mV
50 mV

-150 mV
100 mV

-100 mV
25 mV

-100 mV
50 mV

-100 mV
100 mV



 １３６ 

 

Fig. 5.7. Potential step chronoamperometries with applying (a) 100 mV of anodic 

potential for 1 s at 50 s, 100 s, 200 s, and 300 s, and (b) 25 mV of anodic potential at 

50 s and 300 s for 7 s; the cathodic potential was fixed at -200 mV (vs. OCP). 
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Fig. 5.8. Initial displacement rates of SPS as the function of the anodic potential and 

reverse time with (a) -200 mV, (b) -150 mV, and (c) -100 mV of cathodic potential; all 

of values were measured from Fig. 5.6. 
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Fig. 5.9. The changes in the saturation times according to the anodic potential and 

reverse time with (a) -200 mV, (b) -150 mV, and (c) -100 mV of cathodic potential; all 

of values were measured from Fig. 5.6. 
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Fig. 5.10. The current profiles of pulse-reverse electrodeposition with (a) -200 mV, (b) 

-150 mV, and (c) -100 mV of cathodic potential; the anodic potential and reverse time 

were fixed at 50 mV and 0.1 s, and the on-time was varied from 0.25 s to 1.5 s. 
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Fig. 5.11. Initial displacement rates of SPS according to the cathodic potential and on-

time; all of the values were measured from Fig. 5.10. 
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Fig. 5.12. Chronoamperometries with -200 mV (vs. OCP) of cathodic potential after 

the derivatization of PEG-Cl- at various potentials. 
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Fig. 5.13. LSV in the electrolyte only containing PEG-Cl- with various initial potential; 

the rotating speeds of Cu RDE were (a) 300 rpm and (b) 1000 rpm, and the scan rate 

was fixed to 100 mV/s. 
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Fig. 5.14. Potential step chronoamperometries (a) in the absence of additives, and (b) 

in the presence of SPS-Cl- after the derivatization of PEG-Cl-. 
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Fig. 5.15. The changes in the saturation current as the function of anodic potential and 

reverse time with (a) -200 mV, (b) -150 mV, and (c) -100 mV of cathodic potential; all 

of the values were measured from Fig. 5.6. 
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Fig. 5.16. The saturation current with various cathodic potential and on-time; all of the 

values were measured from Fig. 5.10. 
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5-2. The effects of anodic step on the superfilling performance 

 

In order to clarify the impacts of the anodic step on the superfilling performance, 

pulse-reverse electrodeposition was performed with various anodic potentials and 

reverse times. In previous section, it was confirmed that the anodic step accelerated the 

displacement of preadsorbed PEG-Cl- by SPS. Since the superfilling of Cu is the 

results from the adsorption and accumulation of SPS at the bottom of trench by the 

area reduction, the changes in the surface coverage of SPS at the initial stage of 

electrodeposition can modify the superfilling performance. 

The representative deposition profiles with various anodic conditions are shown in 

Fig. 5.17. The deposition amount was fixed at 250 mC/cm2, therefore, the height of Cu 

from the bottom could represent the superfilling performance. As observed in the 

figure, the height from the anodic step with relatively short reverse time was higher 

compared to the case of constant potential deposition. The average heights according to 

the anodic potential and reverse time are shown in Fig. 5.18(a), which which were 

measured at over 20 trenches. The optimum reverse times showing the relatively high 

thickness were observed, and these values were in the range between 0.025 s and 0.1 s. 

When the dissolution ratio is employed as the x-axis instead of reverse time, the 
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optimum dissolution ratios were also highlighted as displayed in Fig. 5.18(b). It was 

also revealed that the optimum dissolution ratio was slightly shifted to relatively large 

values with more positive anodic potential. 

The reasons for the revelation of optimums and its shift according to the anodic 

potential can be found from the surface roughness. To achieve the superfilling without 

any void formation, the bottom-up (i.e. the deposition rate with the normal direction to 

the bottom surface) should overcome the closure of trench top by the surface roughness. 

That is, the impacts of organic additives competed with the surface roughness for 

obtaining successful superfilling. Therefore, it can be naturally surmised that the 

formation of rough surface is not suitable for the superfilling, and the optimum reverse 

time can be originated from the competition between the effects of additives and 

surface roughness. 

In Chapter IV, it was confirmed that the surface roughness was significantly increased 

with relatively high dissolution ratio, and the increasing rate of surface roughness 

depended on the anodic potential. The application of more positive anodic potential 

exhibited relatively slow increase in the surface roughness. To confirm the effect of the 

surface roughness, the dissolution ratios were compared when the bottom thickness 

(Fig. 5.18(b)) and the surface roughness (Fig. 4.20(b)) of pulse-reverse 
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electrodeposition are identical to the results of constant potential deposition after the 

optimum dissolution ratio. The comparison results are displayed in Fig. 5.19, revealing 

the similar trend between surface roughness and the thickness at the bottom. Therefore, 

it can be concluded that the reduction of superfilling performance above the optimum 

dissolution ratio is originated from the surface roughness.  

More information on the superfilling characteristics was obtained from the evolution 

of deposit profiles according to the deposition amount. Among various conditions of 

pulse-reverse electrodeposition, 25 mV of anodic potential and 0.05 s of reverse time 

were adopted, which exhibited the most superior bottom-up performance. The changes 

in the deposition profiles from constant potential deposition and the representative 

pulse-reverse electrodeposition according to the deposition amount are depicted in Figs. 

5.20(a) to (h), and the average thicknesses at the center of trenches are summarized in 

Fig. 5.20(i). It was observed that the thicknesses were almost similar and the conformal 

deposition was progressed with the deposition amount below 150 mC/cm2. This 

implies that the accumulation of SPS was not remarkably produced in this region. On 

the other hand, the bottom-up filling was observed over 200 mC/cm2 of deposition 

amount, and the pulse-reverse electrodeposition exhibited faster bottom-up compared 

to constant potential deposition. The local acceleration of Cu deposition at the bottom 
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corresponded to the accumulation degree of SPS, therefore, it can be concluded that 

pulse-reverse electrodeposition exerted quick accumulation of SPS compared to 

constant potential deposition.  

This phenomenon was also observed from the deposition profile at the corner of low-

aspect-ratio trenches. Similar to the thickness from the bottom of high-aspect-ratio 

trenches, the corner of wide trench could be used for the investigation on the 

accumulation of SPS. The deposit profiles from constant potential and pulse-reverse 

electrodeposition are shown in Fig. 5.21. It can be found that the constant potential 

deposition exhibited only round profiles at the corners, however, the pulse-reverse 

electrodeposition formed the sharp diagonal profiles meaning more concentration of 

Cu deposition at the corner. The lengths of diagonal arrows marked in Figs. 5.21(c) to 

(f) are 90, 96, 125, and 119 nm, respectively, even though the thicknesses at the top of 

trenches were 102 nm for (c) and (d) (i.e. constant potential deposition), 89 nm for (e) 

and (f) (i.e. pulse-reverse electrodeposition). The point that the pulse-reverse 

electrodeposition resulted in more deposition at the corner of trench with relatively low 

thickness of Cu at the top naturally suggested that pulse-reverse electrodeposition 

produced high accumulation of SPS more quickly compared to constant potential 

deposition as analogous to Fig. 5.20. 
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From now on, the reason why the pulse-reverse electrodeposition can improve the 

superfilling performance is discussed. There are the factors from pulse-reverse 

electrodeposition to influence on the superfilling characteristics such as the promotion 

of displacement between preadsorbed PEG-Cl- and SPS, the replenishment of Cu ions 

inside the trench during the reverse time, and the selective dissolution of Cu at the side 

walls. The effect of changes in the Cu ion concentration can be excluded because the 

deposition potential was too low to develop the considerable concentration gradient 

within 40 s of deposition time. In addition, the selective dissolution at the side wall was 

also negligible because the similar thickness of Cu at the side wall was observed 

regardless of filling conditions. Therefore, it can be carefully speculated that the 

improvement of superfilling is related to the promotion of displacement between PEG-

Cl- and SPS which was introduced in the previous section. 

In previous CEAC prediction, it was reported that the superfilling could occur with 

the sufficient surface coverage of SPS and the incubation period showing conformal 

profile could be observed. The incubation of superfilling originating from insufficient 

coverage of SPS was clearly confirmed in Fig. 5.20 indicating the conformal profiles 

with the deposition amount less than 150 mC/cm2. That is, the initial displacement of 

SPS is important to exert successful and rapid superfilling, and it became more 
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significant when the time for superfilling is reduced due to the small dimension of 

filling features. Therefore, it is naturally concluded that pulse-reverse electrodeposition 

reduced the incubation period through promoting the displacement, and it finally 

improves the superfilling performance. The more concentrated deposition at the corner 

of low-aspect-ratio with pulse-reverse electrodeposition was also understood by the 

shortening of incubation period.  

On the basis of these results, it can be concluded that the acceleration of displacement 

between two organic additives with pulse-reverse electrodeposition has an advantage in 

the aspect that the superfilling phenomenon appeared at the initial stage of 

electrodeposition. It was originated from the rapid accumulation of large amount of 

SPS at the bottom of trench. As observed in Chapter IV, the resistivity with low 

dissolution ratio was lower than pulse electrodeposition with the optimum condition, 

therefore, the merit in the aspect of film property was also obtained by the pulse-

reverse electrodeposition. 
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Fig. 5.17. The profiles of Cu deposited by (a) constant potential deposition, and pulse-

reverse electrodeposition with 25 mV of anodic potential and (b) 0.05 s, (c) 0.1 s, (d) 

0.25 s, (e) 0.5 s of reverse time, 50 mV of anodic potential and (f) 0.05 s, (g) 0.1 s, (h) 

0.25 s, (i) 0.5 s of reverse time, and 100 mV of anodic potential and (j) 0.025 s, (k) 

0.05 s, (l) 0.1 s, and 0.25 s of reverse time. 
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Fig. 5.18. (a) The changes in the thickness of Cu at the center of trench according to 

the reverse time, and (b) the re-plotted results with the dissolution ratio as the x-axis 

instead of reverse time. 
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Fig. 5.19. The dissolution ratios when the surface roughness (Fig. 4.20(b)) and the 

thickness at the center of trench (Fig. 5.18(b)) with pulse-reverse electrodeposition are 

identical to the results of constant potential deposition. 
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Fig. 5.20. The deposition profiles of Cu by means of constant potential deposition with 

(a) 50 mC/cm2, (b) 150 mC/cm2, (c) 200 mC/cm2 and (d) 250 mC/cm2, and pulse-

reverse electrodeposition with (e) 50 mC/cm2, (f) 150 mC/cm2, (g) 200 mC/cm2, and (h) 

250 mC/cm2, and (i) the thickness of Cu at the center of trenches measured from the 

images. 
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Fig. 5.21. The profiles of trenches with (a) 290 nm and (b) 260 nm of width, and the 

deposition profile of Cu by constant potential deposition at the trenches with (c) 290 

nm and (d) 260 nm of width, and by pulse-reverse electrodeposition at the trenches 

with (e) 290 nm and (f) 260 nm of width. The depth of the trench was 240 nm, and the 

deposition amount was fixed to 200 mC/cm2. 
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CHAPTER VI 

Conclusions 
 

The continuous reduction of Cu interconnection dimensions raises the problems 

related to the interconnection properties and the difficulty in the superfilling. The 

modification of organic additives, the application of new material, and the changes in 

the waveform of current or potential can be the candidates to resolve these issues. 

Among various candidates, the modification of potential or current waveform was 

investigated in this study with the aspect of Cu property and superfilling performance.  

Pulse electrodeposition was found to reduce the electrical resistivity and more 

develop (111) crystal orientation compared to constant potential deposition. This was 

originated from the grain growth during the off-time, which was totally different to 

self-annealing. However, the grain growth was retarded with the organic additives 

which strongly adsorbed on Cu surface reducing the energy differences.  

The anodic step in the pulse-reverse electrodeposition considerably affected the film 

properties such as the grain size, crystallinity, and surface roughness. The dissolution 

during the anodic step also reflected the energy differences, and the anodic potential 

determined the degree of reflection. The competition of surface roughness and grain 
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size caused the optimum anodic charge showing the lowest resistivity, which was also 

lower than the optimum of pulse electrodeposition. On the contrary, when the organic 

additives are introduced, the selective dissolution was determined by the kinds of 

adsorbates. That is, Cu covered by SPS-Cl- was much easily dissolved compared to Cu 

covered by PEG-Cl-. Dissimilar to the results without additives, the electrical 

resistivity of Cu film was determined by the surface roughness. At the optimum 

dissolution ratio, the electrical resistivity of Cu film deposited by pulse-reverse 

electrodeposition was considerably lower compared to pulse electrodeposition. On the 

basis of the results, it was obviously confirmed that pulse-reverse electrodeposition 

exhibited the significant advantage in the aspect of film properties, therefore, the 

superfilling performance of pulse-reverse electrodeposition was also investigated. 

Superfilling of Cu was strongly related to the adsorption of organic additives and their 

accumulation according to the area reduction. Prior to gap-filling, the impacts anodic 

step on the competitive adsorption was investigated, and it was observed that the 

anodic step accelerated the displacement of preadsorbed PEG-Cl- layer by SPS and its 

degree was increased with more positive anodic potential and longer reverse time. 

Based on this, pulse-reverse electrodeposition was applied to Cu superfilling, and it 

was confirmed that pulse-reverse electrodeposition exhibited superior superfilling 
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performance compared to constant potential deposition at the trench with 55 nm of 

width.  

In conclusion, pulse and pulse-reverse electrodeposition has various merits compared 

to constant potential deposition. Especially, pulse-reverse electrodeposition showed the 

improvement of Cu properties as well as excellent superfilling performance. Therefore, 

it can be concluded that pulse and pulse-reverse electrodeposition enables us to achieve 

Cu interconnection with high speed, high integrity and superior reliability.  
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국문 초록 

 

구리 배선의 크기 감소는 배선의 특성 저하와 도금을 이용한 수퍼필링의 

어려움과 같은 문제를 제기하였다. 특히 배선의 특성 관점에서 전기 저항 

증가와 일렉트로마이그레이션에 따른 결함 발생이 가장 큰 이슈이다. 본 

연구에서는, 펄스와 펄스-리벌스 전해 도금을 이용하여 구리 박막의 물성 

및 수퍼필링 특성 향상을 시도하였다.  

펄스 전해 도금은 구리 전착이 진행되는 온타임과 개방 회로 전압를 

인가하는 오프타임으로 구성되며, 피크 전압, 온타임과 오프타임의 길이가 

중요한 변수이다. 오프 타임을 변화시켜가면서 구리 박막을 전착한 결과를 

바탕으로 오프 타임 동안 그레인의 성장이 일어나는 것을 밝혔으며, 이는 

결정성의 향상과 전기적 저항의 감소를 가져왔다. 오프 타임 동안의 그레인 

성장은 결정면의 종류와 그레인의 크기에 따라 결정되는 표면 에너지와 

그레인 경계 에너지의 차이에 의한 결과로 생각된다. 충분한 오프 타임을 

인가하여 구리 박막을 전착한 경우, 정전압 도금에 비해 68% 높은 (111) 

결정성과 22% 낮은 저항을 얻을 수 있었다. 하지만, 구리 수퍼필링에 

사용되는 유기 첨가제를 전해질에 첨가한 경우, 오프타임 동안의 그레인 

성장이 급격히 줄어드는 것을 알 수 있었으며, 이는 유기 첨가제가 구리 
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표면에 강하게 흡착하여 그레인의 에너지를 변화 시키기 때문이다. 따라서 

구리 박막의 특성을 좀더 향상시키기 위해 앞서 연구된 펄스 전해 도금에 

구리 용해가 일어나는 양극 과정을 추가한 펄스-리벌스 전해 도금을 

도입하였다.  

펄스-리벌스 전해 도금의 양극 과정과 유기 첨가제 각각의 영향을 

알아보기 위해 첨가제의 유무와 용해 과정의 양극 전압, 리벌스 타임의 

길이에 따른 박막 특성 변화를 확인하였다. 첨가제가 없는 경우의 박막 

특성 변화에서 펄스 전해 도금과 마찬가지로 열역학적 에너지 차이에 따른 

선택적인 용해가 일어남을 알 수 있었다. 선택적 용해는 양극반응의 전압에 

따라 변화하였으며, 이는 다양한 박막 특성의 변화 속도를 결정하였다. 즉, 

상대적으로 높은 양극 전압의 인가는 구리 용해의 선택성을 저해하였으며, 

이는 양극 반응의 증가에 따라 그레인의 크기 및 표면 거칠기가 천천히 

변화하는 결과를 가져왔다. 펄스-리벌스 전해 도금의 경우, 펄스 도금과 

달리 구리 박막의 전기적 저항은 표면 거칠기와 그레인의 크기의 경쟁에 

따라 결정되었으며, 이 결과, 가장 낮은 저항을 나타내는 최적 조건이 

존재하였다. 첨가제가 없는 경우, 최적 조건에서 펄스 전해도금 대비 9% 

낮은 저항을 나타내었다. 하지만 구리 수퍼필링을 위한 첨가제가 전해질에 

공급된 경우, 용해의 선택성은 표면 그리고 그레인 경계 에너지가 아닌 
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흡착질에 의해 결정되었다. SPS로 덮힌 구리가 PEG-Cl-이 흡착한 구리에 

비해 훨씬 쉽게 용해되는 것을 확인하였다. 또한, 첨가제가 있는 경우, 

박막의 저항은 표면 거칠기에 크게 관계함을 알 수 있었으며, 최적 조건 

역시 표면 거칠기에 의해 결정되었다. 펄스 전해 도금 대비, 첨가제가 있는 

경우의 펄스-리벌스 전해 도금 역시 구리 박막의 저항을 14% 감소시켰다. 

위의 결과는 펄스-리벌스 전해 도금을 이용하여 전착된 구리가 전기 

전도성 측면에서 큰 장점이 있는 것을 의미하기 때문에, 펄스-리벌스 전해 

도금을 구리 수퍼필링에 적용해 보았다.  

수퍼필링의 특성은 유기 첨가제의 흡착과 트렌치 바닥에서 면적 감소에 

따른 첨가제의 축적에 의해 결정된다. 따라서 펄스-리벌스 전해 도금을 

수퍼필링에 적용하기 전에 양극 과정이 SPS와 PEG-Cl-의 경쟁 흡착에 

어떠한 영향을 미치는지 확인하였다. 양극 과정이 선흡착된 PEG-Cl-을 

빠르게 SPS로 치환하는 것을 확인하였고, 상대적으로 긴 리벌스 타임과 

높은 양극 전압이 인가될 때 가속화 정도가 증가하는 것을 알 수 있었다. 

구리의 수퍼필링은 첨가제의 흡착에 기인한 결과이므로 첨가제 치환반응의 

가속화는 수퍼필링 특성을 변화시킬 수 있다. 따라서 양극 과정의 조건과 

수퍼필링 특성의 관계에 대해 알아 보았다. 그 결과, 55 nm의 폭을 가지는 

트렌치에서 정전압 도금에 비해 펄스-리벌스 전해 도금이 훨씬 우수한 
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수퍼필링 특성을 나타내는 것을 확인하였다. 또한, 낮은 종횡비를 가지는 

트렌치의 모서리 부분에서도 펄스-리벌스 전해 도금이 훨신 빠른 구리의 

전착을 나타내는 것을 알 수 있었다. 이와 같은 결과는 첨가제 치환 반응의 

가속화로 인한 SPS의 농도 증가에 기인한 결과로 해석된다.  

박막 특성 및 수퍼필링의 특성 향상을 고려해보면, 전압 파형의 변화, 즉 

펄스 및 펄스-리벌스 전해 도금은 현재 구리 배선공정에서 이슈가 되는 

다양한 문제를 해결할 후보로 생각된다. 이는 더욱 빠르고 신뢰성 높은 

전자 소자의 형성을 가능하게 해줄 것으로 예측할 수 있다.  

 

주요어: 구리, 배선, 펄스 전해 도금, 펄스-리벌스 전해 도금, 박막 특성, 

수퍼필링 

학  번: 2007-21174 
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Appendix-Superfilling of Cu-Ag 

 

I. Introduction 

 

As mentioned in Chapter I, damascene process has been widely used for fabricating 

Cu interconnection, and the concerns originated from the reduction of interconnection 

dimension are issued.1 In the aspect of electromigration and mechanical stress, the 

introduction of secondary metal to Cu is one of the candidates for resolving this issue.2-

5 Since the co-deposited secondary metal provides the additional probability of electron 

scattering, the reduction of electrical conductivity is an inevitable corollary. Therefore, 

the secondary metal should be precisely chosen by considering the conductivity when 

Cu and secondary metal are co-deposited. Among various metals, Ag-containing Cu 

film showed the lowest resistivity of about 2.4 μΩ·cm which was comparable to pure 

Cu.6 On the other hand, the electrical resistivity of other bimetallic films such as Cu-Co, 

Cu-Mg, and Cu-Ag, ranged between 3.2 and 6.4 μΩ·cm.6 

In general, Cu-Ag films have been prepared by electron beam evaporation, 

electrodeposition in supercritical fluid, and the deposition from the melted stage in 

vacuum.4,5,7,8 Regarding to the application in the fabrication of interconnection, low 
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temperature and wet-process of Cu-Ag co-deposition is the most appropriate and 

controllable. Therefore, the determination of the electrolyte was the most important 

aspect in developing the electrodeposition of Cu-Ag. General Cu electrodeposition was 

conducted in sulfuric acid-based electrolyte, which consistently contained halogen ions 

to achieve better film properties and superfilling. However, Ag could not be deposited 

with the halogen ions because the precipitation was easily formed by the spontaneous 

reaction between Ag and halogen ions in the electrolyte. Therefore, cyanide-based 

aqueous solution was chosen as a basic electrolyte instead of sulfuric acid-based 

electrolyte. In addition, it has been reported that the superfilling of Ag was enabled by 

the use of cyanide-based electrolyte.9-11 By using this electrolyte, Cu-Ag film was 

successfully deposited by the electrodeposition, and it showed comparable resistivity to 

pure Cu after the annealing.12 However, the bimetallic superfilling of Cu-Ag using 

electrodeposition and its mechanism are not investigated. 

Superfilling of Ag or Au using KSeCN, Pb(NO3)2, TlNO3, thiourea (TU), and 

benzotriazole (BTA) in cyanide-based electrolyte has been previously reported.9-11 TU 

is the only additive known as a suppressor for Ag reduction, whereas the other 

additives act as accelerators for both Ag and Au electrodeposition. One of the 

distinctive characteristics of the Ag or Au superfilling in cyanide-based electrolyte is 
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the relatively faster surface diffusion of the accelerator compared to Cu superfilling in 

sulfuric acid-based electrolyte, implying high value of D/wv0 for Ag or Au superfilling. 

This resulted in the reduction of superfilling performance, therefore, the additional 

additive which could retard the surface diffusion of accelerator should be introduced to 

improve the superfilling performance. 

In this research, the superfilling of Cu-Ag was attempted with KSeCN and TU in 

cyanide-based electrolyte. Chronoamperometry with various concentrations of KSeCN 

and TU was carried out to clarify the effects of each additive. The changes in the 

superfilling phenomenon with various concentration of KAg(CN)2 were investigated. 

The mechanism of Cu-Ag superfilling was clarified by tracing the atomic distribution 

of Cu and Ag within the filling feature. Finally, the properties of Cu, Cu-Ag, and Ag 

films were compared, which were deposited under the superfilling conditions. 
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II. Experimental 

 

2-1. Superfilling of Cu-Ag 

 

Superfilling of Cu-Ag was conducted with the three-electrode system consisted of the 

patterned wafer, Cu wire, and Ag/AgCl electrode as the working, counter and reference 

electrodes, respectively. The structure of the patterned wafer was Cu seed layer (60 nm, 

PVD) / Ta (7.5 nm, PVD) / TaN (7.5 nm, PVD) / SiO2. The width of trench with Cu 

seed layer was in the range between 120 nm and 4.5 μm, and the depth was 400 nm. 

The electrolyte contained 0.3 M of CuCN, 0.6 M of KCN. The concentration of 

KAg(CN)2 was changed from 0 to 10 mM. KSeCN and TU were additionally put into 

the electrolyte, and their concentrations were 5 μM and 0.1625 mM. The deposition 

potential was fixed at -1.3 V with respect to Ag/AgCl reference electrode. The 

superfilling was performed by a PAR 273A potentiostat (EG&G Princeton Applied 

Research Corporation). 

The profile of gap-filling was inspected by field emission scanning electron 

microscope (FESEM, S-4800, Hitachi). The distribution of Cu and Ag at the corner of 

low-aspect-ratio trench was analyzed by FESEM (JSM-6701F, JEOL)-energy 
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dispersive X-ray spectrometer (EDS, INCA Energy, Oxford Instruments Analytical 

Ltd.). In addition, the distributions and the atomic contents of Cu and Ag inside the 

high-aspect-ratio trench were surveyed by transmission electron microscope (TEM, 

JEM-2100F, JEOL) after the sample preparation using focused ion beam (FIB, Nova 

600 NanoLab, FEI). 

 

2-2. Electrochemical analyses 

 

The chronoamperometry was performed with the Cu rotating disk electrode (RDE) 

having 0.1256 cm2 of the active area. The rotating speed was fixed at 300 rpm. To 

clarify the role of each additive on either Cu or Ag reduction, the chronoamperometries 

were carried out in two kinds of electrolyte; (i) CuCN, KCN, (ii) CuCN, KCN, and 

KAg(CN)2. The concentrations of KSeCN and TU were varied from 0 to 20 μM and 0 

to 0.65 mM, respectively. The applied potential was kept to -1.3 V and the average 

current for 100 s was investigated. 

 

2-3. Electrodeposition of Cu, Cu-Ag, and Ag films 
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The electrodeposition of Cu, Cu-Ag, and Ag films was also conducted in three-

electrode system. Instead of patterned wafer, the planar substrate was employed as the 

working electrode, and its structure was Cu (PVD, 40 nm) / Ta (PVD, 7 nm) / Si. In the 

case of Cu and Cu-Ag electrodeposition, Cu wire was used as the counter electrode. On 

the contrary, Ag electrodeposition was performed with Ag wire. The deposition 

amounts for Cu, Cu-Ag, and Ag films were 380, 300, and 250 mC/cm2 respectively. 

Cu-Ag film was deposited in the aqueous electrolyte containing 0.3 M CuCN, 0.6 M 

KCN, 5.0 mM KAg(CN)2, 5 μM KSeCN, and 0.1625 mM TU by applying -1.3 V (vs. 

Ag/AgCl reference electrode). The electrodeposition of Cu film was carried out in the 

aqueous electrolyte including 0.25 M CuSO4, 1.0 M of H2SO4, 88 μM polyethylene 

glycol (PEG, Mw=3,400), 1 mM NaCl, and 50 μM bis(3-sulfopropyl) disulfide (SPS) 

with applying -0.2 V (vs. Ag/AgCl reference electrode). Ag film was electrodeposited 

in the electrolyte containing 0.23 M KAg(CN)2, 3.4 M KCN, and 5 μM KSeCN by 

applying -0.2 V (vs. open circuit potential). All of the electrodeposition was carried out 

using a PAR 273A potentiostat (EG&G Princeton Applied Research Corporation). The 

annealing was carried out at 350°C for 1 hr in N2-atmosphere.   

 

2-4. The characterization of film properties 
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The crystal information was investigated by X-ray diffraction (XRD, D8 Advance, 

Bruker). The grain sizes were calculated from the full width at half maximum (FWHM) 

of each peak from XRD patterns using Scherrer’s formula. The surface morphology 

and RMS roughness were obtained by atomic force microscope (AFM, XE-150, Park 

Systems). The electrical conductivities of these films were calculated from the 

thickness and sheet resistance measured by FESEM and 4-point probe (CMT-SR1000N, 

Chang Min Tech Co.) respectively. The oxidation resistance was characterized from the 

resistivity changes before and after oxidation, and the oxidation was performed at 

250°C for 30 min in the atmosphere. The mechanical hardness was measured by 

nanoindenter (MTS XP, MTS Systems Corporation). 
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III. Results and discussion 

 

3-1. Superfilling of Cu-Ag and its mechanism 

 

The representative profiles of electrodeposited Cu-Ag at various trenches are shown 

in Fig. 1. The successful superfilling without void formation inside the filling feature 

was clearly observed with TU and KSeCN, showing the apparent bumps and the 

convex deposits at the corners of low-aspect-ratio trenches. Under the condition in the 

absence of TU and KSeCN represented in Figs. 2(a) and (b), the rough surface and the 

voids inside the trenches were observed. On the other hand, each addition of TU (Figs. 

2(c) and (d)) or KSeCN (Figs. 2(e) and (f)) improved the surface roughness, however, 

the voids and seams were formed. Especially, KSeCN reduced the overall uniformity 

although it improved the surface roughness. That is, the co-addition of TU and KSeCN 

is essential to obtain successful superfilling. As KSeCN is known as the accelerator to 

Ag electrodeposition, it can be speculated that the superfilling was produced by its 

accumulation according to the area reduction. In addition to that, TU improved the 

uniformity of Cu-Ag electrodeposition.  

To determine the effects of TU and KSeCN, the deposition profiles at low-aspect-ratio 
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trenches with TU and the combination of TU and KSeCN were investigated as depicted 

in Fig. 3. As can be seen in Figs. 3(a) and (b), TU slightly enhanced the deposition at 

the corner of the trench. The profile in Fig. 3(b) was almost identical to the Au gap-

filling at the low-aspect-ratio trench. This implied that TU has the potential to produce 

bottom-up filling. However, its effect was not sufficient to induce perfect superfilling 

at the relatively narrow trenches as shown in Figs. 2(c) and (d). On the other hand, the 

combination of TU and KSeCN interestingly resulted in the formation of remarkable 

bumps (Fig. 3(c)) as well as convex profiles at the corners of the low-aspect-ratio 

trench (Fig. 3(d)). These results enable us to surmise that there is an additional factor 

retarding the surface diffusion of accelerators based on the fact that the continuous 

growth of bumps and the formation of convex deposits could be obtained by highly 

accumulated and stationary accelerators, originated from the area reduction at the 

bottom of high-aspect-ratio trench and the corner of low-aspect-ratio trench. 

The electrochemical impacts of each adsorbate on Cu and Cu-Ag electrodeposition 

can be clarified from the variations of average current measured from 

chronoamperometry with varying the concentrations of TU and KSeCN, and the results 

are shown in Fig. 4. It was apparent in Fig. 4(a) that TU did not make continuous 

acceleration on both Cu and Cu-Ag electrodeposition regardless of KSeCN addition. 
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The average current with the addition of TU increased below 0.8125 mM, followed by 

the saturation. Considering this behavior based on CEAC model, the increment of TU 

surface coverage according to the area reduction could not produce the local 

acceleration of deposition rate. By contrast, it was observed in Fig. 4(b) that KSeCN 

continuously resulted in the acceleration of Cu-Ag reduction as the concentration of 

KSeCN increased even though the average current of Cu reduction was almost constant 

regardless of its concentration. This implied that KSeCN had no impact on Cu 

reduction, and its effect was limited to Ag. This suggested that the limited acceleration 

of KSeCN on Ag reduction can be strongly associated with the superfilling of Cu-Ag. 

Furthermore, this limited acceleration has the potential to change the distribution of Cu 

and Ag within the filling features because the degree of area reduction corresponding 

to the accumulation of KSeCN was different according to the location in the trench. 

The degree of area reduction at the bottom of trench was much higher compared to the 

top or side of trench. Therefore, relatively high concentration of KSeCN at the bottom 

can be expected, locally accelerating the electrodeposition with higher concentration of 

Ag. 

From the results of deposit profile and electrochemical analyses, it can be speculated 

that the superfilling performance is also affected by the concentration of KAg(CN)2 
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corresponding to the amount of co-deposited Ag because the main driving force of 

superfilling is the acceleration of KSeCN limited to Ag reduction. The deposition 

profiles with changing the concentration of KAg(CN)2 are represented in Fig. 5, and 

the atomic concentration of Ag was measured from Cu-Ag films deposited on the non-

patterned substrates. As represented in Fig. 5(a), superfilling of Cu without Ag failed, 

and voids could be observed at the top of the trench. Below 5 mM of KAg(CN)2, the 

superfilling of Cu-Ag was successfully achieved using a combination of KSeCN and 

TU. At 10 mM, the gap-filling failed due to the irregular growth of Cu-Ag. It is 

important to highlight that a considerable bump was formed with 5 mM of KAg(CN)2. 

In contrast, only vague bumps were observed with 2.5 mM, even though defect-free 

filling was obtained. The deposit profiles at the corner of low-aspect-ratio trenches 

were also changed by the concentration of KAg(CN)2, as displayed in Fig. 6. Based on 

these results, it is clearly confirmed that the concentration of co-deposited Ag also 

affects the superfilling phenomenon through altering the effect of additives.   

From the point that the acceleration of KSeCN was limited to Ag reduction, it can be 

speculated that the concentration of co-deposited Ag was changed by the extent of 

accumulated accelerators. Therefore, the atomic distributions of Cu and Ag provide the 

information on Cu-Ag superfilling.  
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The evolution of deposit profile at the corner of low-aspect-ratio trench was first 

predicted based on CEAC model with local acceleration of Cu-Ag electrodeposition at 

the corner induced by the accumulated KSeCN, and the schematic diagram of profile 

evolution is displayed in Fig. 7(a). As the electrodeposition progressed, the area at the 

corner was shrunken resulting in the accumulation of KSeCN. Since KSeCN 

continuously accelerated Ag reduction, the deposition rate was locally increased at the 

corner, consequently forming the convex profile. The prerequisite of the convex profile 

is to maintain the acceleration effect throughout the electrodeposition by confining 

adsorbed KSeCN, which might be originated from the co-adsorbed TU. Comparing the 

electrodeposition rate of Cu, Ag, and Cu-Ag on the planar surface (Fig. 8), the 

electrodeposition of Cu-Ag exhibited 16.6% and 15.0% of Cu and Ag deposition rate, 

respectively. Based on the consideration of dimensionless factor, D/wv0, implying the 

superfilling ability, the surface diffusion of KSeCN should be strongly retarded to 

produce the similar superfilling ability. Since the continuous bump formation at the 

corner of the trench has not been reported in Cu and Ag superfilling, it was simply 

expected that the surface diffusion of KSeCN was reduced more than 5 times. In order 

to certify local acceleration of KSeCN, the atomic distribution of Cu and Ag was 

analyzed, and the results are represented in Fig. 7(b). It clearly indicated that the 
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deposition of Ag was concentrated at the corner although Cu was almost uniformly 

distributed in whole deposit. The Cu-Ag deposited with only TU addition was also 

inspected, however, both Cu and Ag were uniformly distributed as exhibited in Fig. 

7(c). On the basis of this, it can be concluded that the accumulation of KSeCN 

according to the area reduction resulted in the evolution of convex profile with more 

Ag. 

The investigation on the superfilling of Cu-Ag and the atomic distribution within the 

filling feature with relatively high-aspect-ratio was attempted by TEM. Successful 

superfilling without any void formation was also observed in Figs. 9(a) and (b). In 

addition, it was interesting that the deposits can be divided into three regions (▲, ●, 

and ◆) based on the brightness in dark field TEM images represented in Figs. 9(c) 

and (d). Note that the brightness of the regions was in order of ▲ < ● < ◆. Since 

the brightness in dark field image is depending on the atomic number, the contrast 

difference was the result from the distribution of Cu and Ag. The atomic number of Ag 

was higher than that of Cu, thus the relatively bright region could contain more Ag. In 

addition, it was important to highlight that the shape of boundary almost coincided 

with the interface where the line density was sharply changed in the CEAC prediction 

(Fig. 10). Therefore, this strongly suggested that the investigation on the three regions 
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with different brightness could provide considerable information on superfilling of Cu-

Ag.  

Line scanning of atomic distribution was attempted to precisely determine the 

distribution of Cu and Ag in three regions, and the results were represented in Fig 11. It 

was performed at four different locations which were marked in Fig. 11(a); each line 

crossed (i) only ◆, (ii) ▲, ●, and ◆, and (iii), (iv) ▲ (relatively thin), ●, and ◆ 

and Si. Since the contrast was almost constant along line (i), Kα1 intensities of Cu and 

Ag were not varied according to the positions as shown in Fig. 11(b) (upper left). On 

the contrary, the intensities were remarkably changed with the other lines covered the 

regions with different contrast. The interfaces between the regions were marked in Fig. 

11(b); between ▲ and ●: red dotted, between ● and ◆: blue dotted, and between 

Si and ▲: black dotted lines. From line (ii) (upper right in Fig. 11(b)), it was 

confirmed that the region ▲ was fully composed of Cu meaning Cu seed layer 

deposited by physical vapor deposition prior to Cu-Ag electrodeposition. Ag peak 

observed at the interface between the regions ▲ and ● is originated from the 

displacement reaction before initiating the electrodeposition. In addition, it was 

ascertained that the region ◆ contained more Ag compared to the region ● (lower 

left and right), which was well-matched to the previous expectation from the contrast 
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difference. On the basis of the results, the enhancement of Ag electrodeposition was 

limited to inside of the trench where KSeCN was accumulated by the area reduction. 

That is, the superfilling of Cu-Ag followed CEAC model, and its driving force was 

came from the acceleration effect of KSeCN on Ag electrodeposition. 

The evolution of deposition profile and the superfilling ability was depending on the 

ratio between the deposition rate and surface diffusion of adsorbed accelerator D/wv0 

as mentioned above. The simulations of deposition profile according to D/wv0 are 

revealed in Fig. 10. In CEAC predictions, the inverse of line density corresponded to 

the local deposition rate, reflecting the degree of accelerator accumulation. As the 

surface diffusion became considerably rapid shown in the right of Fig. 10, the 

deposition rate was almost constant within the trenches. On the contrary, when the 

adsorbed accelerators are strongly confined, the deposition rate was locally enhanced at 

the center of the trench as shown in the left of Fig. 10. Comparing the boundary in Fig. 

9(c) and these CEAC predictions, the boundary between the regions ◆ and ● was 

nearly identical to the interface where the line density in CEAC prediction was sharply 

changed (left two predictions in Fig. 10). Note that the regions with more Ag (◆) and 

less Ag (●) correspond to that with lower and higher line density, respectively. Since 

the considerable surface diffusion could result in the flat profile at the top of region 
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with higher line density as well as the continuous distribution of Cu and Ag, the domed 

profile at the top of region ● and the obvious division of Cu-Ag deposit with 

different Ag content supported that the surface diffusion of KSeCN was restrained. As 

mentioned above, the kinetics of Cu-Ag electrodeposition was much lower than that of 

Cu or Ag, therefore, the surface diffusion of KSeCN during Cu-Ag electrodeposition 

was more retarded compared to Cu and Ag. From the point that the region with 

relatively low line density contained more Ag implying high degree of KSeCN 

accumulation, it can be suggested that Cu-Ag superfilling greatly followed CEAC 

model. 

The impact of the acceleration in the region ◆ should be also dependent on the 

position in the trench predicted by the line density change as displayed in Fig. 10. This 

is originated from the difference in the degree of accelerator accumulation. When the 

surface diffusion is strongly restrained, the accumulation degree can be continuously 

increased. From the left of Fig. 10, the acceleration, i.e. the inverse of line density, was 

increased from the bottom of trench, and it was maximized at the region where the 

distance between the growing surfaces from two side walls was minimized. After this, 

the acceleration was reduced again because the deposition area was extended. The 

validity of CEAC model to Cu-Ag superfilling can be determined by tracing the 
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content of Ag in the region ◆. The locations where the atomic concentrations of Cu 

and Ag were inspected are marked in Fig. 12(a). Note that the points from 1 to 5 were 

in the region ◆ and the point 6 and 7 were located in the region ●. The atomic 

concentrations of Cu and Ag are represented in Fig. 12(b). As identical to the results of 

line scanning, the region ◆ has more Ag compared to the region ●. The atomic 

concentration of Ag in the region ● was in the range between 7.73 and 9.28 atom% 

as shown in Fig. 12(b). These values were comparable to 7.9 atom% from Cu-Ag 

electrodeposition on the planar surface meaning no impact of surface curvature. This 

implied that the deposition from the top and side walls could be treated as similar to 

the flat surface. In contrast, it was figured out that the atomic concentration of Ag was 

dependent on the position in the region ◆, and it was in the range between 12.6 and 

17.9 atom%. The content of Ag was increased from point 1 to 3, followed by the 

decrease in the values from point 3 to 5. The schematic diagram indicating the atomic 

distribution of Ag according to the locations is represented in Fig. 12(c). Since the 

atomic concentration of Ag reflected the acceleration effect of KSeCN, it enabled us to 

estimate the accumulation degree of accelerator as mentioned above. That is, the 

maximized content of Ag at point 3 corresponded to the maximum acceleration by 

KSeCN. Comparing the atomic distributions and the expectation from CEAC 
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prediction, it is natural to suggest that the acceleration effect changed by the degree of 

KSeCN accumulation was exactly identical to CEAC prediction. This leads us to 

finally conclude that Cu-Ag superfilling definitely follows CEAC model with low 

surface diffusion of adsorbed accelerator. In addition, it was interesting to note that the 

superfilling of Cu-Ag was achieved with the limited acceleration on the co-deposited 

Ag below 17.9 atom%, implying that the bimetallic superfilling does not need the both 

acceleration effects on two metal components. Based on this, the various bimetallic 

interconnections with bifunctionality such as Cu-Ni can be achieved with the limited 

acceleration of adsorbates on the one metal component. 
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Fig. 1. The profiles of Cu-Ag deposited with KSeCN and TU at the trenches with 

various aspect ratios. 
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Fig. 2. The profile of Cu-Ag electrodeposited (a), (b) without additives, (c), (d) with 

TU, and (e), (f) with KSeCN. 
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Fig. 3. The gap-filling profiles of Cu-Ag with (a), (b) 0.1625 mM TU, and (c), (d) 5 

μM KSeCN and 0.1625 mM TU at the low-aspect-ratio trenches. 
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Fig. 4. The changes in the average current of chronoamperometry according to the 

concentrations of (a) TU and (b) KSeCN. 
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Fig. 5. The gap-filling profiles of Cu-Ag with (a) 0 mM, (b) 2.5 mM, (c) 5.0 mM, and 

(d) 10.0 mM of KAg(CN)2 in the presence of 5 μM KSeCN and 0.1625 mM TU; the 

deposition amount was fixed at 400 mC/cm2. 
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Fig. 6. The deposition profiles of Cu-Ag with (a) 2.5 mM, and (b) 5.0 mM of 

KAg(CN)2 in the presence of 5 μM KSeCN and 0.1625 mM TU. 
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Fig. 7. (a) The prediction of deposition profile evolution at the corner of low-aspect-

ratio trench and the distributions of Cu, Ag, and Si in the deposits with (b) KSeCN and 

TU, and (c) TU. 
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Fig. 8. (a) The current profiles of Cu, Cu-Ag, and Ag electrodeposition and (b) the 

average current densities. 
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. 

Fig. 9. (a), (b) Bright field and (c), (d) dark field TEM images of Cu-Ag in the trenches. 
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Fig. 10. CEAC predictions of Cu superfilling with various dimensionless diffusion 

coefficients D/wv0 (left to right): 0.01, 0.1, 1, and 10. 
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Fig. 11. (a) The positions of line profiling measurement by TEM EDS and (b) the 

distributions of Cu and Ag. 
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Fig. 12. (a) The positions of EDS measurement, (b) the atomic concentrations of Cu 

and Ag according to the positions, and (c) the schematic diagram of Cu and Ag 

distributions. 
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3-2. The characteristics of Cu-Ag film 

 

From now on, the properties of Cu, Ag, and Cu-Ag films deposited on planar surfaces 

are introduced. It is hard to compare the properties of Cu, Ag, and Cu-Ag deposited 

within the trenches, therefore, the properties were investigated after the 

electrodeposition on planar substrate. Since the superfilling of Cu and Ag has been 

reported from previous researches, the electrodeposition was performed under the 

condition where the superfilling was achieved. The impact of annealing on the 

properties was also clarified. The detail conditions are introduced in experimental 

section. 

XRD patterns of Cu, Cu-Ag, and Ag films before and after the annealing are depicted 

in Figs. 13(a) and (b), respectively. XRD patterns with the normal intensity instead of 

log scale are also represented in Figs. 14(a) and (b). It revealed that Cu and Ag films 

only consisted of (111) planes, and the intensities were increased after the annealing 

implying the grain growth. On the contrary, the four peaks corresponding to pure Ag, 

pure Cu and Ag-rich and Cu-rich Cu-Ag solid solutions were observed in the as-

deposited Cu-Ag film (Fig. 15). From the peak position and Vegard’s law, the 

composition of Ag-rich and Cu-rich Cu-Ag solid solutions were Cu29Ag71 and Cu91Ag9 
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even though thermodynamically allowed composition of Ag was below 0.08 atom% at 

room temperature. It was speculated that the driving force of the solid solution 

formation with higher degree of mixing than thermodynamically allowed miscibility 

was the relatively high applied potential. That is, the results implied that the electrical 

force could form the metastable state between Cu and Ag. It was reported that Cu-Ag 

solid solution with uniform composition could be obtained by applying the mechanical 

energies such as the ball milling and mechanical torsion to Cu-Ag films. From the 

point that the considerable amount of pure Cu and Ag was deposited, the electrical 

force, i.e. applied potential, was not enough to obtain the uniform solid solution. The 

intensity of each peaks were considerably low compared to Cu and Ag films (Table 1). 

It was originated from the inhibition of grain growth and development of each crystal 

orientation by the co-deposition of Cu and Ag. In general electrodeposition, the 

sluggish electrodeposition with low overpotential more developed the orientation with 

relatively large grain size. Although the kinetics of Cu-Ag electrodeposition was the 

slowest revealed in Fig. 8, the impact of co-deposition was dominant to reduce both the 

development of orientation and the grain size. After the annealing, the peaks 

corresponding to the Cu-Ag solid solutions disappeared and the intensity of both Cu 

and Ag (111) peaks were enhanced. This change was ascribed to the segregation of Cu 
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and Ag and the grain growth during the annealing. The grain sizes of those films can be 

simply calculated by Scherrer’s formula providing the relationship between full width 

at half maximum (FWHM) of each peak observed in XRD patterns and the average 

grain size. The calculated grain sizes were listed up in Table 2. It was confirmed that 

the grain size of Cu-Ag film was much smaller than Cu or Ag films, and it was 

enlarged by the annealing process. The grains in Cu or Ag films also grew during the 

annealing, however, the degree of grain growth was the highest with Cu-Ag films. The 

surface morphologies of Cu, Cu-Ag, and Ag films and their average root-mean-square 

(RMS) roughness are represented in Fig. 16. The size of surface protrusion of the films 

were in order of Ag > Cu > Cu-Ag, corresponding to the behavior of grain size. Similar 

to grain size, its size was increased after the annealing. On the contrary, the tendency of 

RMS roughness shown in Fig. 16(g) was not identical to the grain size behavior. It was 

observed that Cu film has the lowest surface roughness among these films regardless of 

annealing. This was originated from the relatively large groove formation of Cu-Ag 

film. The size of surface protrusion is exactly reflected the grain size, however, the 

groove is not because it is composed of few grains. The electrical conductivity, 

oxidation resistance, and mechanical hardness of Cu, Cu-Ag, and Ag films were 

investigated and understood based on the grain size and crystal structure. 
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The electrical conductivity of Cu, Cu-Ag, and Ag films before and after the annealing 

is represented in Fig. 17. It was observed that the conductivity of as-deposited Cu-Ag 

films was relatively low compared to Cu or Ag, however, it was increased to 

comparable values to Cu or Ag after the annealing. The electrical conductivity of metal 

films is inversely depending on the probability of electron scattering related to phonon, 

grain boundary, surface roughness, and impurities. The impact of impurity with 

electrodeposited film is not major factor to determine the electrical conductivity in 

general. In addition, the surface roughness can be treated as the minor factor when the 

thickness of film is over few hundred nanometers because the impact of the surface 

roughness on the resistivity is inversely depending on the thickness. That is, the effect 

of surface roughness is diminished as the film thickness is increased. In the aspect of 

phonon, it was related to intrinsic property also depending on the temperature and the 

kind of metal, which can be found from the difference of the bulk conductivities of Ag 

and Cu. Based on Mayadas-Shatzkes equation, the enlargement of grains is the 

increasing factor of electrical conductivity. From Table 2, the grain sizes of as-

deposited and annealed Cu and Ag films were almost similar, the electrical 

conductivity difference between Cu and Ag can be found from the characteristics of 

phonon. Regarding to Cu-Ag film, both impacts from phonon and grain size affected 
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the electrical conductivity regardless of annealing. In detail, since the conductivity of 

annealed Cu-Ag film with enlarged grains was comparable to Cu or Ag, which showed 

97.9% of Cu and 88.3% of Ag conductivities, the major factor determining the 

resistivity of as-deposited film was the grain size. On the basis of these results, it can 

be suggested that the demerit of Cu-Ag in the aspect of electrical property is not 

considerable, although the most important problem of bimetallic film consisting of Cu 

and secondary metal is the severe deterioration of conductivity. Since the resistance 

against electromigration of Cu-Ag higher than monometallic Cu or Ag, therefore, it can 

be highlighted that the realization of Cu-Ag interconnection without severe decrease in 

the conductivity maintains the advantage and makes up for the weakness compared to 

Cu interconnection. 

The oxidation resistance was measured from the resistivity change before and after 

the oxidation (ρafter oxidation/ ρbefore oxidation). The oxidation was performed at 250°C in the 

atmosphere, thus, the grain growth could be progressed similar to the impact of 

annealing, which can be observed in Fig. 18 revealing the reduction of resistivity after 

the oxidation, especially as-deposited Cu-Ag film. Therefore, the annealed films are 

suitable in order to compare the oxidation resistance, and the results are shown in Fig. 

18. It was confirmed that the resistivity of Cu-Ag and Ag films were not increased 
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implying no oxidation. On the contrary, 14% of resistivity of Cu film was ascended by 

the oxidation at the surface. As can be seen in Fig. 19, the surface of Cu-Ag film was 

composed of more Ag compared to the concentration inside the film. This was 

originated from the displacement reaction after the electrodeposition. The reduction 

potential of Ag is more positive than Cu, thus the displacement reaction is spontaneous. 

In addition, the atomic concentration of Cu-Ag film after the annealing was increased 

at the surface, which was ascribed to the Ag segregation to the surface through the 

grain boundaries. Therefore, high oxidation resistance of Cu-Ag film is ascribed to the 

surface with considerable large amount of Ag. The additional advantage of Cu-Ag 

interconnection can be found in the oxidation resistance.  

The mechanical hardness of these films was finally investigated by nanoindentation.  

The bulk hardness of Cu is 1.47 times higher than that of Ag, therefore, it can be easily 

expected that Cu film has much higher hardness compared to Ag.16 In the case of Cu-

Ag film, the impact of Ag co-deposition reduced the grain size as explained above, thus, 

it could increase the mechanical hardness through both precipitation and grain 

boundary hardening mechanisms, which can be described by Hall-Petch relation.17,18 

The measured hardness of as-deposited film is represented in Fig. 20. Same to the 

expectation, the hardness of these films is in order of Cu-Ag > Cu > Ag. Cu-Ag film 
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showed 15.9% and 222.9% higher hardness compared to Cu and Ag films, respectively. 
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Table 1. The Peak Intensities Measured from XRD Patterns Before and After 
Annealing. 

Peak intensity (counts) 
Ag 

(111) 

Ag-
rich 

Cu-Ag 

Cu-
rich 

Cu-Ag 

Cu 
(111) 

Cu 
(200) 

Cu film 
As-deposited 

n.a. n.a. n.a. 
65033 

n.a. 
Annealed 344459 

Cu-Ag film 
As-deposited 1446 64 13173 10531 n.a. 

Annealed 30326 n.a. n.a. 141637 250 

Ag film 
As-deposited 108349 

n.a. n.a. 
3325 

n.a. 
Annealed 111991 4651 
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Table 2. The Grain Sizes of Cu, Cu-Ag, and Ag Films Calculated using Scherrer’s 
Formula from the Peaks Observed in XRD Patterns. 

Grain size (nm) 
Ag 

(111) 
Ag-rich 
Cu-Ag 

Cu-rich 
Cu-Ag 

Cu 
(111) 

Cu film 
As-deposited 

n.a. n.a. n.a. 
36.1 
73.5 Annealed 

Cu-Ag film 
As-deposited 9.8 12.2 21.2 26.8 

Annealed 32.4 n.a. n.a. 59.9 

Ag film 
As-deposited 40.0 

n.a. n.a. n.a. 
Annealed 86.0 
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Fig. 13. XRD patterns of Cu, Cu-Ag, and Ag films deposited with the conditions of 

superfilling (a) before and (b) after the annealing (★: Si substrate, ●: Ag (111), ▲: 

Ag-rich Cu-Ag, ▼: Cu-rich Cu-Ag, ■: Cu (111), ◆: Cu (200)). 
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Fig. 14. XRD patterns of (a) as-deposited and (b) annealed Cu, Cu-Ag, and Ag films; 

with the normal intensity as the y-axis instead of log scale. 
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Fig. 15. The deconvolution of peaks corresponding to (a) pure Ag and Ag-rich Cu-Ag 

and (b) pure Cu and Cu-rich Cu-Ag. 
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Fig. 16. Surface morphologies of (a) as-deposited and (b) annealed Cu, (c) as-deposited 

and (d) annealed Cu-Ag, (e) as-deposited and (f) annealed Ag, and (g) root-mean-

square roughness. 
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Fig. 17. Electrical conductivities of as-deposited and annealed Cu, Cu-Ag, and Ag 

films. 
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Fig. 18. Oxidation resistance of as-deposited and annealed Cu, Cu-Ag, and Ag films. 
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Fig. 19. The depth profiles of (a) as-deposited and (b) annealed Cu-Ag films measured 

by AES. The sputtering rate was 16.2 nm/min with respect to SiO2. 
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Fig. 20. The average hardness of as-deposited Cu, Cu-Ag, and Ag films. 
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IV. Conclusion 

 

In summary, Cu-Ag superfilling for the fabrication of interconnection was 

successfully achieved by the electrodeposition. From the electrochemical analyses and 

the investigation on the atomic distribution of Cu and Ag, superfilling of Cu-Ag was 

clearly explained by CEAC model. Even though the acceleration was limited to Ag of 

which maximum atomic composition was only 17.9 atom%, the bimetallic superfilling 

was obtained. Regarding the fabrication of multifunctional nanostructures containing 

more than two metals, this research provides the one of strategies, which is the 

superfilling of previously patterned features. Using Damascene process and 

superfilling technique, the array of multifunctional materials can be easily achieved, 

that is, the targeted position of deposition can be accurately determined by the 

patterning of the desired substrates. In the aspect of Cu-Ag film properties, it was 

observed that Cu-Ag film exhibited superior oxidation resistance and mechanical 

hardness without severe reduction of electrical conductivity compared to pure Cu. 

Since the one of the current issues in the metal interconnection was the 

electromigration failure, therefore, Cu-Ag interconnection expected to be more 

resistive against the electromigration could be a candidate to solve this problem. 



 ２２０ 

However, the environmental problem caused by using cyanide-based electrolyte still 

remains, therefore, the researches on the superfilling of Cu-Ag in the environmentally 

friendly electrolytes should be proceeded. 
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