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Abstract 

 

In Burkholderia species, the quorum sensing-dependent production of oxalic 

acid is an indispensable process for bacterial growth during stationary phase. 

Oxalic acid produced plays a central role in maintaining the environmental pH, 

which counteracts inevitable population-collapsing alkaline toxicity in amino 

acid-based culture medium. In B. glumae, two enzymes are responsible for 

oxalic acid production. First, the oxalate biosynthetic component (Obc) A 

catalyzes the formation of a tetrahedral C6-CoA adduct from acetyl-CoA and 

oxaloacetate. Then the ObcB enzyme liberates three products from the C6-CoA 

adduct: oxalic acid, acetoacetate, and CoA. Interestingly, these two stepwise 

reactions are catalyzed by a single bifunctional enzyme, Obc1, from B. 

thailandensis and B. pseudomallei. Obc1 has an ObcA-like N-terminal domain 

and shows ObcB activity in its C-terminal domain, despite no sequence 

homology with ObcB. In this thesis, crystal structure and functional analysis of 

ObcA and Obc1 are reported, revealing structural and functional insights of 

oxalogenesis. Overall structure of ObcA and N-terminal domain of Obc1 

exhibits (β/α)8-barrel fold, with a metal ion coordinated in its active site. In 

catalysis, substrate oxaloacetate serves as a nucleophile by forming an enolate 

intermediate mediated by Tyr residue as a general base, which then attacks the 

thioester carbonyl carbon of a second substrate acetyl-CoA to yield a tetrahedral 

adduct. In many reactions involving tetrahedral CoA intermediate, the presence 

of a negative charge in the intermediate leads to collapse of the intermediate, 

ejecting CoA moiety form the active site. However, the presence of the metal-

coordination shell and absence of general acid(s) could produce an unusual 
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tetrahedral CoA adduct as a stable product. Structure of C-terminal domain of 

Obc1 has an α/β hydrolase fold that contains a catalytic triad for oxalic acid 

production and a novel oxyanion hole distinct from the canonical HGGG motif 

in other α/β hydrolases. Functional analyses through mutagenesis studies 

suggest that His934 is an additional catalytic acid/base for its lyase activity and 

liberates two additional products, acetoacetate and CoA. These results provide 

structural and functional insights into bacterial oxalogenesis; an example of the 

functional diversity of an enzyme to survive and adapt in the environment and 

divergent evolution of the α/β hydrolase fold, which has both hydrolase and 

lyase activity. 

 

Keywords: Quorum sensing, Public goods, Oxalate biosynthetic component, 

Oxalic acid, Acetyl-CoA, Crystal structure, Burkholderia species 

 

Student Number: 2010-23457 
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Bacterial quorum sensing 

Bacterial quorum sensing (QS), a cell-to-cell communication process in many 

Proteobacteria, is mediated by small diffusible molecules called autoinducer 

and the receptor that can specifically bind to autoinducer (Fuqua and Greenberg, 

2002, Miller and Bassler, 2001, Schuster et al., 2013, Waters and Bassler, 2005). 

Through quorum sensing, bacteria can monitor their own population density 

and behave as a group to adapt to a changing extracellular environment. Since 

the binding of an autoinducer to its receptor occurs only when a threshold 

concentration of the autoinducer is reached in the media, bacteria constantly 

produce and secrete autoinducers into their growth medium. However, at low 

cell density, dispersion of the autoinducer is dominant relative to its 

accumulation; therefore, binding does not occur (Fig. 1A). At high cell density, 

accumulation exceeds dispersion and the autoinducer begins to accumulate in 

the media. Once the concentration of the autoinducer crosses the threshold, the 

autoinducer binds to a specific receptor and the resulting complex controls the 

expression of genes involved in several population-wide characteristics, 

including bioluminescence, motility, and virulence-related factors (Fig. 1B) 

(Fuqua and Greenberg, 2002, Waters and Bassler, 2005). In this way, bacteria 

can act in a highly synchronized manner, as in a multicellular organism. This 

type of cooperation in an individual is very efficient when invading the host by 

secreting virulence factors or by eliminating competitors entering the growth 

medium through the biosynthesis of bactericidal molecules (Waters and Bassler, 

2005). Bacteria also produce and secrete a wide range of chemicals or proteins 

that can be beneficial to their survival in different environments (Dandekar et 

al., 2012, Goo et al., 2015, Heilmann et al., 2015, Pai et al., 2012).   
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Figure 1. Bacterial quorum sensing and public goods. 

(A) Bacteria continuously produce and secrete autoinducer molecules into growth 

medium. However, at low cell density, secreted autoinducer molecules are dispersed 

rather than accumulated; therefore, binding of the autoinducer to its receptor does not 

occur. (B) When a threshold concentration of the autoinducer is reached in the media, 

the autoinducer binds to a specific receptor and the resulting complex controls the 

expression of target genes. (C) One example of this phenomenon is public goods. In 

this case, the exoenzyme degrades an unusable complex nutrient to its usable form and 

acts as a public good. Although the quorum sensing-mediated expression of the 

exoenzyme is costly, the production of usable nutrients provides a direct benefit to the 

producer itself and to other group members in the medium, including exploiters who 

do not respond to quorum sensing. 
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Public goods in bacteria 

Recent studies on quorum sensing indicates that quorum sensing also regulates 

production of some molecules often referred to as ‘public goods’. Public goods 

provide a fitness advantage for the whole population, including individuals (i.e., 

exploiters) that lack the ability to synthesize these molecules. For example, 

public goods in a form of extracellular enzyme or small molecule play a role in 

nutrient acquisition, interspecies competition, and response to environmental 

change (Fig. 1C) (Dandekar et al., 2012, Diggle et al., 2007, Pai et al., 2012, 

Sandoz et al., 2007). Population density controls the production of public goods; 

this can be explained by comparing costs and benefits. Specifically, at low cell 

density, the majority of excreted public goods are dispersed before the 

molecules are utilized. This provides a small fitness benefit compared to the 

cost of producing the public goods. However, at high cell density, even if the 

producer of the public goods does not benefit directly, other bacteria in the 

growth medium can benefit from the public goods, thus providing a fitness 

benefit in terms of the whole population. Therefore, the production of public 

goods occurs cooperatively in a population-dependent manner by quorum 

sensing (Darch et al., 2012). Like most other living populations, pursuing the 

maximum benefit for individual bacteria does not always coincide with the best 

strategy for the bacterial community. Therefore, it is very interesting that 

evolution has selected cooperative individuals, even though there is the 

possibility of a ‘tragedy of commons’ arising from free riders who seek to 

exploit their profits without participating in quorum sensing. The quorum 

sensing-mediated production of ‘private goods’ could explain this observation 

(Dandekar et al., 2012).  
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Oxalic acid as a public good in Burkholderia species 

In Burkholderia species, quorum sensing-mediated oxalogenesis is an 

indispensable cellular event for survival during the stationary growth phase. 

Specifically, Burkholderia species deficient in quorum sensing failed to 

proliferate in their population during stationary phase (Goo et al., 2015, Goo et 

al., 2012). Subsequently, it was found that those population collapse results 

from alkalization of growth medium. In rich growth medium, Burkholderia 

species utilizes amino acid as an primary carbon source, producing a large 

amount of ammonia. To counteract ammonia-mediated pH elevation, 

Burkholderia species have been evolved to produce and secrete oxalic acid, a 

highly acidic molecule that serves as a public good and plays a central role in 

maintaining pH homeostasis. Without oxalic acid, the whole population of 

Burkholderia species would collapse due to ammonia-mediated alkaline 

toxicity during the stationary growth phase. 

Oxalic acid is ubiquitously present in humans, plants, as well as many 

bacteria and fungi. Its physiological roles are diverse, including the formation 

of calcium oxalate crystals for kidney stones in humans, calcium regulation in 

plants, and pathogenesis in fungi (Dutton and Evans, 1996, Franceschi and 

Nakata, 2005, Hoppe, 2012). However, a biochemical mechanism and pathway 

for endogenous oxalogenesis remains largely uncharacterized, although 

candidates for oxalate precursors include glyoxylate, glycolate, and glyoxal 

(Dutton and Evans, 1996, Franceschi and Nakata, 2005). Therefore, structural 

and functional interpretation of oxalic acid producing enzymes will provide 

molecular level of information about bacterial oxalogenesis. 
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Oxalate biosynthetic component in Burkholderia species 

Quorum sensing-mediated production of oxalic acid is catalyzed by a two-step 

enzymatic reaction (Fig. 2A) (Li et al., 1999, Nakata and He, 2010). In B. 

glumae, two independent enzymes catalyze each step of reactions. The first 

enzyme, oxalate biosynthetic component (Obc) A, catalyzes the formation of a 

C6-CoA adduct, using acetyl-CoA and oxaloacetate as substrates. Substrate-

labeling experiments further suggested that the C6-CoA adduct produced by 

ObcA differs regiochemically from the citroyl-CoA intermediate catalyzed by 

citrate synthase in the TCA cycle (Fig. 2B) (Li et al., 1999, Wiegand and 

Remington, 1986). Specifically, it has been suggested that, even though these 

two enzymes utilize identical substrates, the reaction mechanism may be 

completely different; to produce the citroyl-CoA intermediate, the acetyl 

moiety of acetyl-CoA should be deprotonated and attack the C2 carbon of 

oxaloacetate (Fig. 2B). However, in the ObcA-mediated reaction, the C3 carbon 

of oxaloacetate should be deprotonated and attack the thioester carbonyl carbon 

of acetyl-CoA (Fig. 2A). A second enzyme, ObcB, is responsible for the 

production of three different products, namely, oxalic acid, acetoacetate, and 

CoA. The C2-C3 and C4-S bonds in the C6-CoA adduct are cleaved by ObcB 

(Fig. 2A). Interestingly, in B. thailandensis, B. pseudomallei and B. mallei, the 

bifunctional enzyme Obc1 catalyzes these two reactions (Nakata, 2011). Given 

that Obc1 functionally complements ObcA and ObcB, it is not surprising that 

it contains activities of both enzymes. The N-terminal domain of Obc1 exhibits 

52% identity with the amino acid sequence of ObcA (Fig. 3); however, the Obc1 

C-terminal domain does not show any sequence homology with ObcB, even 

though it exhibits functional identity with ObcB (Nakata, 2011).  
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Figure 2. The overall reaction scheme of oxalogenesis in Burkholderia 

species. 

(A) In B. glumae, the two enzymes ObcA and ObcB are involved in oxalogenesis, using 

acetyl-CoA and oxaloacetate as substrates, whereas in B. thailandensis, two domains in 

Obc1 mediate oxalogenesis. For convenience, atoms in oxaloacetate are colored 

according to the final products, and carbon atoms in the C6 moiety of the C6-CoA 

adduct are numbered. (B) In citrate synthesis, citrate is produced via the citroyl-CoA 

intermediate. 

 

 

 

 

 

 

 

 

  



- 9 - 

 

 

 

 

  



- 10 - 

 

 

 

 

 

 

Figure 3. The sequence alignment of ObcA with its homologs. 

The amino acid sequences of B. glumae ObcA (residues Met1 to Gly540; Gene 

Accession No. YP_002909440.1) are compared with other homologs, including those 

from B. gladioli (YP_004360639.1), Pseudomonas putida (ZP_19216180.1), B. 

pseudomallei (YP_111366.1), B. mallei (ZP_00438353.1), and B. thailandensis 

(ZP_02384435.1). Note that Obc1 from B. thailandensis is a bifunctional enzyme 

containing both ObcA and ObcB-like domains, and the identical enzymes were also 

identified from B. pseudomallei and B. mallei. Highly conserved residues are shown in 

red and boxed in blue, while strictly conserved residues are shown with a red 

background. Secondary structural elements defined in the apo form of ObcA are shown 

for the corresponding ObcA sequences with the cap and barrel domain in blue and black, 

respectively. Numbers in subscript represent additional structural elements in the 

corresponding region of a canonical (β/α)8-barrel fold, while cap domain structural 

elements are indicated with "C." Residues are indicated with different notations, 

including the metal-coordinating residues (diamond in cyan), ligand-interacting 

residues (triangle in green), and acetyl-CoA interacting residues (circle in gray); in 

particular, the general base Tyr322 is marked with a green asterisk. The sequence and 

structural alignment of C-domain of Obc1 is discussed ant presented at Fig. 18. This 

figure was prepared using ESPript (Gouet et al., 1999). 
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Structural analysis of oxalate biosynthetic components 

Many Burkholderia species are involved in plant or human pathogenesis. For 

example, B. glumae causes bacterial panicle blight in rice (Ham et al., 2011), 

while B. cepacia is an opportunistic pathogen in immunocompromised 

individuals, including those with cystic fibrosis and chronic granulomatous 

disease (Leitao et al., 2010). B. pseudomallei causes melioidosis, a lethal 

infection that leads to the formation of abscesses in internal organs (Galyov et 

al., 2010). Given that the quorum sensing dependent expression of oxalate 

biosynthetic components is an essential cellular event for bacterial proliferation 

during the stationary growth phase (Goo et al., 2012), understanding the 

molecular basis of these enzymes should provide the groundwork for the 

development of novel antibacterial agents for Burkholderia species. 

In my thesis, crystal structure and functional analysis of ObcA and Obc1 

will be discussed. Chapter II contain crystal structures of ObcA from B. glumae, 

including a ligand-free form and its complex with oxaloacetate and with a C4-

CoA adduct and oxalate, the putative degratory products from the C6-CoA 

adduct. Structural analyses along with functional assays show that ObcA 

catalyzes its reaction in a unique manner relative to citrate synthase and other 

acetyl-CoA-dependent enzymes, providing structural insights into the first step 

in oxalogenesis and the mechanistic features of ObcA. In Chapter III, two 

different crystal structures of Obc1 are shown in its apo form and glycerol-

bound form. Using structural and functional analyses, how Obc1 catalyzes the 

production of three different products is discussed. Together with structural 

study on ObcA, these observations provide structural insights into bacterial 

oxalogenesis.  
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Structural and Functional Analysis of ObcA 
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Materials and Methods 

 

ObcA purification 

The gene for ObcA from B. glumae (Goo et al., 2012) was amplified by PCR 

with sequence-specific primers (Table 1). The resulting PCR product was 

subcloned into the NdeI and XhoI restriction sites of a modified pET28b 

expression vector (Merck) containing a TEV protease cleavage site at the 

junction between a His5-tag and a multiple cloning site. The resulting plasmid 

was transformed into Escherichia coli BL21 (DE3). Cells were grown in Luria-

Bertani medium at 37°C and when the optical density of the culture medium 

reached 0.7 at 600 nm, protein expression was induced by adding 0.5 mM of 

IPTG, followed by an additional 12–14 h of growth at 20°C. Cells were 

collected and sonicated in Buffer A containing 50 mM Tris (pH 8.0), 100 mM 

NaCl, and 5% (v/v) glycerol. The N-terminal His-tagged ObcA was purified 

using an immobilized metal affinity column (GE Healthcare) that had been 

equilibrated with Buffer A and then eluted with Buffer A containing additional 

500 mM imidazole. The N-terminal His-tag of ObcA was subsequently 

removed by treatment of TEV protease overnight at 22°C, using a 20:1 molar 

ratio of ObcA to TEV protease. The resulting ObcA protein was further purified 

by immobilized metal affinity and size-exclusion chromatography using 

Superdex-200 (GE Healthcare) with Buffer A (Fig. 4). 

For the structural determination of ligand-free ObcA, the N-terminal 

His-tagged seleno-L-methionine (SeMet)-substituted enzyme was expressed in 

E. coli B834 (DE3; Merck) using minimal medium supplemented with SeMet. 

The N-terminal His-tagged SeMet-ObcA was purified and the His-tag was 
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removed as described above. The purified SeMet-ObcA was further subjected 

to methylation of the lysine residues using established protocols (Walter et al., 

2006). In brief, 2–5 mg/mL of SeMet-ObcA was subjected to the methylation 

reaction by adding the 50 mM of dimethylamine–borane complex and 80 mM 

of formaldehyde overnight at 4°C. To stop the reaction, 125 mM of Tris (pH 

7.5) was added to reaction mixture. After centrifugation, the soluble fraction 

was further purified by size-exclusion chromatography using a Superdex 200 

column (GE Healthcare) with Buffer A to remove any possible protein 

aggregates.  
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Table 1. Primers for ObcA and its mutants. 

 

  

ObcA 

Forward AGTCCATATGACATCGCTATACATCACG 

Reverse AGTCCTCGAGTCAGCCCGCCGCGGTC 

R127A GTCGAATAAACTGGCAGCCCGGATCGTGCTGCAA 

R128A GAATAAACTGGCACGCGCGATCGTGCTGCAATTG 

K193A GGCAGGCCGGCGCGGCGCGTTCGCC 

H222A GCGGCGGTGGTGGCTCTGCACACGCG 

H224A CGGTGGTGCATCTGGCCACGCGCGATCTCA 

S275A GATCCTGAACCTGGCCACCAGCGTGCG 

S277A GAACCTGTCCACCGCCGTGCGCGGCGAC 

R279K CTGTCCACCAGCGTGAAAGGCGACCGCCACGGC 

R279A GTCCACCAGCGTGGCCGGCGACCGCCAC 

S308A CCGAGGTCGCCGCGCTGAGCCCG 

F316A CCGCGGTGGTGGCCCAGGGCGGCG 

Y322F GCGGCGGCGGCTTCGACAACGCGCC 

Y322A GGCGGCGGCGGCGCCGACAACGCGCC 

E346A GCGTCCCGAGGTGGCAGTGTTCAATCACG 

F348A CCCGAGGTGGAAGTGGCCAATCACGCGATCGT 

V376A GTTCATGCTGGCGGCGGGCGTCG 

V379A GGTGGCGGGCGCCGATCAATACCG 

L447A GAAGATCTCGATCGCGCTGCCGGGGCC 

R469K GGGCTCGACGGCATCAAAGTGGGGCTGGAGGAC 

R469A GCTCGACGGCATCGCCGTGGGGCTGGAG 

E473A GCGTGGGGCTGGCGGACGGCCTGAC 

D474A CGCGTGGGGCTGGAGGCCGGCCTGACCGTCAACG 

Obc1 

Forward CATATGCGCGAATACGGCTACGAC 

Reverse AAGCTTATGCGAGCGCTCGTCGCG 

H227A GGTGGTCCATCTGGCCACGCGCGCGACC 

Y326A GGCGGGCGGCGGCGCTGACAACCCGAAC 

E477A CGCGTCGGCCTCGCCGACGCGCTGAACG 
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Sequences are described from 5’ to 3’. For mutagenic primers, only forward versions 

are listed. Underlined sequences indicate restriction sites used for cloning, and 

boldfaced-underlined sequences indicate mutated sequences. 
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Figure 4. Size-exclusion chromatography of ObcA. 

Elution profile of size-exclusion chromatography for His-tag free ObcA. ObcA was 

eluted at 80.80 ml, which corresponds to 69.6 kD based on size marker. Given that the 

size of His-tag free ObcA is 59.3 kD, ObcA is estimated to be a monomeric protein. 
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Crystallization and data collection 

Crystallization was conducted at 22°C by a sitting drop vapor diffusion method 

using the native or the methylated SeMet-substituted ObcA (10–15 mg/mL). 

The presence of the Co2+ ion in the protein solution caused precipitation of 

ObcA or resulted in crystals diffracting only to a low resolution, although the 

Co2+ ion was the most effective metal ion for the enzyme catalysis (see below). 

Addition of one or both substrates was essential for the formation of crystals 

suitable for a high-resolution structure, but under my experimental conditions, 

the binding of the substrate(s) was not observed in the active site; however, a 

soaking experiment with the substrate(s) exhibited the binding of substrate(s) 

of interest. Therefore, crystallization for high-resolution structure analysis was 

performed using various combinations of ligand(s) and metal ions. 

For the ligand-free ObcA, the methylated form of SeMet-substituted 

ObcA was initially crystallized with 2 mM acetyl-CoA under a crystallization 

solution of 0.1 M Tris (pH 8.0), 0.2 M MgCl2, and 20% polyethylene glycol 

(PEG) 6000 (Fig. 5). Later, I collected higher-resolution data by soaking the 

crystal into the crystallization solution plus 100 mM CoA. To obtain an 

oxaloacetate-bound ObcA structure, the native ObcA crystal was soaked in the 

crystallization solution plus 20 mM oxaloacetate and 2 mM MgCl2, after 

growing the crystal from 5 mM oxaloacetate and 1 mM CoA, with mother 

liquor containing 0.1 M HEPES (pH 7.5), 3% PEG 400, 2 M ammonium sulfate, 

0.1 M MgCl2, and 15% glycerol. The structure of ObcA in complex with the 

tetrahedral C4-CoA adduct was obtained using native ObcA. Specifically, the 

native ObcA crystal was produced by co-crystallizing ObcA with 15 mM 

acetyl-CoA, 20 mM oxaloacetate, and 1 mM CoCl2 using a crystallization 
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buffer containing 0.2 M sodium/potassium tartrate, 0.1 M sodium citrate (pH 

5.6), 2 M ammonium sulfate, and 15% glycerol. Prior to data collection, the 

crystal was soaked in a solution of 7.5 mM acetyl-CoA, 10 mM oxaloacetate, 

and 1 mM CoCl2. 

X-ray diffraction data were collected at 100 K with a 1-degree oscillation 

angle on beamline BL-1A at the Photon Factory (Japan) and 5C at the Pohang 

Accelerator Laboratory (Korea). Glycerol (15–20%) was used as the cryo-

protectant in these experiments. Initially, multiwavelength anomalous 

dispersion data were collected at 2.8 Å using a crystal of the methylated SeMet-

substituted ObcA. Subsequently, higher-resolution single-wavelength data 

became available for the 2.1 Å resolution ligand-free ObcA, the 2.0-Å 

resolution ObcA in complex with oxaloacetate, and the 2.28 Å resolution ObcA 

in complex with the C4-CoA adduct. The collected data were processed using 

the HKL2000 (Otwinowski and Minor, 1997), and all crystals had a space group 

of P43212, with one monomer in the asymmetric unit, consistent with a size-

exclusion chromatographic study demonstrating ObcA to be a monomeric 

protein (Fig. 4). 
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Figure 5. Crystal of SeMet-substituted ObcA. 

Crystals were obtained under a crystallization solution of 0.1 M Tris (pH 8.5), 0.2 M 

MgCl2, 20% PEG 6000, and 20% glycerol. Changing pH (8 to 8.5) and addition of 20% 

glycerol improved crystal size and shape. 

 

 

 

 

 

 

 

 

 

  



- 23 - 

 

 

  



- 24 - 

 

Structure determination and refinement 

The structure of the ligand-free ObcA was determined using the programs 

SOLVE (Terwilliger and Berendzen, 1999) and RESOLVE (Terwilliger, 2000), 

with multiwavelength anomalous dispersion data at 2.8 Å resolution. The 

model was built and refined using the programs COOT (Emsley et al., 2010) 

and PHENIX (Adams et al., 2010). After several cycles of manual inspection 

and refinement, residues ranging from Thr2 to Ile525 were located, except for 

the highly disordered region of Asp71 to Ala91 and Arg96 to Trp100. The 

model was then refined against the 2.1 Å resolution data available. During 

assignment of water molecules in the structure, I noticed the presence of a metal 

ion, based on strong density from the Fo–Fc electron density map, as well as 

its geometry to the nearby residues and other water molecules. I assigned the 

metal ion as a Mg2+ ion because the crystallization solution contained 0.2 M 

MgCl2. The structure for a ligand-free ObcA was used as the starting model for 

determining a structure of the oxaloacetate-bound ObcA. In the middle of 

refinement, the Fo–Fc electron density map showed that oxaloacetate was 

bound to the metal-binding site. Similarly, the structure of ObcA in complex 

with the tetrahedral C4-CoA adduct and oxalate was determined. In particular, 

the Fo–Fc electron density map corresponding to the tetrahedral C4-CoA 

adduct and oxalate was evident. Although initially modeled as a Mg2+ ion, the 

metal ion was found to correspond to a Co2+ ion due to its presence in the 

soaking solution and the strong residual density from the Fo–Fc electron 

density map. Details for the data collected and refinement are listed in Table 2. 
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Table 2. ObcA data collection and refinement statistics. 

 

  

Data set Ligand- 

free 

Oxalo- 

acetate 

C4-CoA 

adduct 

Ligand-free 

PDB ID 4NNA 4NNB 4NNC    

Crystal Methylated    Methylated  Methylated  Methylated  

 SeMet Native Native SeMet SeMet SeMet 

Wavelength (Å) 0.97935 0.97948 0.97948 0.97935 0.97957 0.97167 

    Peak Edge Remote 

Resolution (Å) 50-2.1 50-2.0 50-2.28 50-2.8 50-2.8 50-2.8 

 (2.18-2.10)a (2.07-2.00) (2.36-2.28) (2.90-2.80) (2.90-2.80) (2.90-2.80) 

Unique reflections 40015 49954 33093 19639 19631 19912 

Multiplicity 13.7(14.5) 9.5(9.8) 9.4(9.4) 13.4(13.2) 13.4(13.2) 13.5(13.1) 

R-merge (%) 18.0(59.3) 12.1(49.5) 15.0(94.9) 13.1(51.4) 12.3(50.4) 13.5(62.4) 

Completeness (%) 95.9(99.8) 96.2(100) 99.6(98.8) 99.8(100) 99.7(100) 99.9(100) 

Mean I/sigma(I) 12.1(5.0) 13.3(4.7) 11.4(2.8) 21.4(5.7) 24.2(6.1) 22.2(4.9) 

Wilson B-factor 27.65 30.56 32.93    

Space group P43212 

Unit Cell (Å ) 
a=b, c 173.5, 46.2 177.0, 47.8 174.6, 46.1 178.2, 48.2 178.2, 48.2 178.2, 48.2 

α = β = γ  90 

Refinement 

R workb (%) 19.8 21.0 20.2    

R freec (%) 23.7 24.6 23.5    

No. of atoms 4270 4056 3937    

Protein 3867 3741 3731    

Ligands 1 10 62    

Waters 402 305 144    

 Protein residuesd 498 484 483    

RMS (bonds) 0.007 0.007 0.008    

RMS (angles) 1.08 1.09 1.13    

Ramachandran 

favored (%) 

97 96 96    

Ramachandran 

outlierse (%) 

0 0 0.21    

Clashscore 2.45 2.93 2.78  

 Average B-factor 29.8 35.5 32.4 

  Protein 29.3 35.3 32.1 

 Ligands 19.1 30.5 50.0 

 Waters 34.7 38.2 31.8 
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aNumbers in parentheses refer to data in the highest resolution shell. 

bRwork = Σ ||Fobs|-k|Fcal||/ Σ|Fobs| 

cRfree is the same as Robs for a selected subset (10%) of the reflections that was not 

included in prior refinement calculations. 

dOrdered residues: ligand-free structure (Thr2 to Ile70 and Arg92 to Arg95 and His101 

to Ile525), oxaloacetate bound structure (Thr2 to Ile70 and Ala111 to Ile525), and a C4-

CoA adduct bound structure (Thr2 to Ile70 and Ala110 to Ala523). 

eTwo outliers identified in C4-CoA adduct bound complex, Ser358 and Gly450. 
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Purification of Obc1* and various ObcA mutants 

For the assay, the WT and mutant ObcA enzymes were expressed as described 

above. I also used a mutant enzyme of a bifunctional Obc1 from B. 

thailandensis (hereafter indicated as Obc1*) to replace the function of ObcB in 

the reaction due to an issue with solubility associated with B. glumae ObcB. 

Genes for the mutant ObcA and Obc1* were constructed by site-directed 

mutagenesis using mutagenic primers (Table 1). The N-terminal His-tagged 

enzyme was purified by immobilized metal affinity chromatography followed 

by a desalting step using a column of HiPrep 26/10 (GE Healthcare) and a 

buffer solution containing 50 mM Tris (pH 8.0), 100 mM NaCl, and 5% (v/v) 

glycerol for various ObcA mutants or 50 mM HEPES (pH 7.0), 300 mM NaCl, 

and 5% (v/v) glycerol for Obc1*. The enzymes were used without removing 

the His-tag. For measurement of the metal-dependent activity, purified WT 

ObcA and Obc1* enzymes were dialyzed against Buffer A plus an additional 

10 mM EDTA and subsequently against an EDTA-free buffer A. Absence of 

metal ions, including Co2+, Mn2+, Ni2+, or Mg2+, in ObcA was further validated 

by inductively coupled plasma atomic emission spectroscopy analysis. 
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Activity assay of ObcA 

An enzyme activity assay was performed using two different methods, each 

measuring a different product. First, a steady-state kinetic analysis for ObcA 

was carried out by monitoring the time-dependent production of free CoA using 

DCPIP, a dye that reacts with the sulfhydryl group of CoA to causes a linear 

decrease in absorbance at 600 nm (Raychaudhuri et al., 2005). In a second assay, 

total oxalic acid produced was measured using an oxalate kit (Trinity Biotech). 

To monitor the production of free CoA, enzyme assays were performed 

at 30C using a UV-visible spectrophotometer (Jasco). The reaction mixture 

includes 50 mM Tris buffer (pH 8.0), 100 mM NaCl, 100 μM DCPIP, 100 μM 

CoCl2, and 400–800 μM acetyl-CoA. The mixture was incubated for 20 min at 

30C, followed by the addition of 50–500 nM WT ObcA or its mutant and 800 

nM Obc1*, after which the mixture was incubated for an additional 4 min. 

Enzyme reaction was initiated by adding 1–10 mM oxaloacetate to the resulting 

reaction mixture, and the initial velocity was determined by measuring the 

linear decrease in absorbance at 600 nm from the time range of 60 to 105 s; 

nonlinear decreases in absorbance were observed in the first 60 s. The 800 nM 

Obc1* was confirmed as the saturating concentration for the coupled reaction 

of a steady-state kinetic assay for ObcA. Free CoA concentration produced per 

minute was calculated from the standard reaction curve. Specifically, the initial 

velocity as a function of free CoA concentration was obtained using my assay 

mixture but in the absence of enzymes and substrates. The KM and Vmax values 

were obtained using SigmaPlot, and kcat values were computed by dividing Vmax 

by the ObcA concentration used. 

Total oxalic acid production was measured following the manufacturer’s 
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protocol. The enzyme reaction was also conducted at 30C, and the reaction 

mixture was identical with that in the first method, except for DCPIP, which 

contained 50 mM Tris buffer (pH 8.0), 100 mM NaCl, 100 μM CoCl2, 400 μM 

acetyl-CoA, and 1 mM oxaloacetate. The assay solution containing both 

substrates was incubated for 1 min, and then 50 nM ObcA or its mutant enzyme 

and 800 nM Obc1* were added to the mixture, incubating for another 5 min. I 

found that 5 min is sufficient to complete the reaction when using WT ObcA. 

After the ObcA and Obc1* reactions, 30 μL of the resulting reaction mixture 

was added to 660 μL of the assay reagent from the manufacturer, and the 

absorbance at 590 nm was measured after 5 min. Total oxalic acid produced 

was calculated from the standard curve. Specifically, the standard curve as a 

function of oxalic acid concentration was obtained in the absence of two 

enzymes and two substrates. 
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Results 

 

Structure of ObcA in the ligand-free form 

ObcA (residues Thr2 to Ile525) consists of two structurally distinct domains: a 

small cap and a large barrel domain (Figs. 3 and 6A). The overall structure 

comprises a (β/α)8-barrel fold with the cap domain (Pro15 to Tyr198) inserted 

into a loop between β1 and α1 of the barrel fold (Fig. 6B). This topology 

represents a unique structural architecture. Homologous structure searches 

using DALI (Holm and Rosenstrom, 2010) indicated that despite the abundance 

of (β/α)8-barrel folds in the Protein Data Bank, no other structures resemble the 

overall features of ObcA. In particular, DALI search using the cap domain 

indicates that the most homologous structure found exhibits a Z-score of only 

1.3. The N-terminal 14 residues form β1 in the barrel fold. Other insertions 

occur in the loop regions of the barrel domain, specifically in the loops 

following β2, β6, and β8 (Figs. 3 and 6B). First, two long antiparallel β-strands 

(β21 and β22) following β2 protrude vertically from the barrel domain and 

belong structurally to the cap domain (hereafter, subscripts used in this 

manuscript represent additional structural elements present in the 

corresponding region of the canonical (β/α)8-barrel fold, and the cap domain 

structural elements are indicated by “C”). The second insertion consists of two 

β-strands and one α-helix inserted into the loop connecting β6 and α6. The 

resulting antiparallel β-strands (β61 and β62) protrude horizontally from the 

barrel, and the α61 is packed in an antiparallel orientation to the N-terminal 

region of α6. Additional alterations are seen in a loop following β8, in which 

two antiparallel β-strands (β81 and β82) project horizontally from the barrel. In 
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the successive α8, a loop runs through the bottom of the barrel, and the C-

terminal α9 turns nearly 90° relative to the preceding loop, thus sealing off any 

possible opening in the bottom of the barrel fold. In addition to these obvious 

modifications, an additional helix α51 exists between α5 and β6. 

The cap domain is located along the C-terminal ends of the central β-

strands in the barrel fold. It does not share any structural similarity with the 

known folds and consists of two segments (Fig. 6A). In one segment, two 

antiparallel β-strands (β21 and β22) from the barrel domain and three twisted β-

strands (βC5, βC1, and βC4) are arranged perpendicularly along the long axis of 

the strands, with two helices (αC1 and αC2) filling the open space between them. 

In the second segment, a layer of helices and β-strands is packed on the other 

side of the three twisted β-strands from the first segment, forming a funnel-

shaped fold. The potential small opening in the funnel-like structure is located 

toward the barrel domain but completely occluded by two β-strands (β81 and 

β82) from the barrel fold, while the larger opening at the opposite end comprises 

a highly disordered region. 
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Figure 6. The overall structure and topology of ObcA. 

(A) The overall structure of ObcA in a ligand-free form is displayed, indicating an cap 

domain (blue) and a C-terminal (β/α)8-barrel fold (magenta). Additional structural 

elements from the barrel domain (green), β1 (yellow), and a metal ion (green sphere) 

are also indicated. (B) The topology of ObcA is shown with color coding identical to 

that described in (A). The C-terminus of βC1 to the N-terminus of αC3 is highly 

disordered and not modeled. Those termini are marked with a black dot. Secondary 

structure elements are shown in Fig. 3. 
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The active site in ligand-free ObcA 

The putative active site of ObcA was indicated by the presence of a metal-

binding site in a cavity of the C-terminal barrel fold, consistent with a previous 

observation that ObcA activity requires a metal ion (Li et al., 1999). My 

functional analysis also provided evidence for a metal-dependent activity of 

ObcA, in which the Co2+ ion is the strongest (see below). Given that purified 

ObcA does not contain metal ions characterized by inductively coupled plasma 

atomic emission spectroscopy analysis and that the crystallization condition of 

a ligand-free ObcA requires 200 mM Mg2+, the metal-binding site identified in 

a ligand-free ObcA is likely occupied by the Mg2+ ion. The active site is ~20 Å 

from the surface of the enzyme (Fig. 7, A and B). Three residues, including 

His222 and His224 in β2, and Glu473 in the loop of β8, along with three water 

molecules, ligate the metal ion, representing an octahedral coordination (Fig. 

7C). In particular, His224 and Glu473, as well as two water molecules spanning 

these residues, form a square coordination for the equatorial plane, while 

His222 in the interior floor of the cavity and a water molecule proximal to the 

surface of the enzyme represent the axial ligands. Arg279 on the tip of the loop 

following β3 covers the metal-binding site, but the electron density for the loop, 

particularly Arg279 to Gly284, is relatively disordered, suggesting dynamic 

features of the loop. Many residues are present in the vicinity of the metal-

coordinating ligands. In particular, water molecules present in the shell are 

within a hydrogen bonding distance from the nearby residues, including Ser275 

and Ser308, for one trans to Glu473, and Arg469 for a water molecule across 

from His224 (Fig. 7D).  

Noticeably, a relatively large pocket remained vacant, located adjacent to 
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the metal-binding site and extending from the active site cavity into the enzyme 

surface along the central β-strands of the barrel fold (Fig. 7, A and B). Most 

pocket-forming residues are more than 4.5 Å distant from the equatorial water 

molecule trans to His224, and the wall of the pocket is lined with three ladders 

of residues: Glu346 and Arg469 constituted the bottom floor, and the second 

ladder consisted of Asp474, Phe348, Val376, and Leu447, while the rim of the 

pocket on the surface involved Phe316, Val379, and Pro449. Among those 

residues, the innermost residue Arg469 is within a hydrogen bonding distance 

from the equatorial water molecule. 
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Figure 7. The active site of ObcA in a ligand-free form. 

(A) The active site is shown for ObcA in a ligand-free form with the nearby residues. 

Acetyl-CoA-interacting residues are indicated in gray, while metal-ligating and 

oxaloacetate-interacting residues (defined later) are colored in cyan. An octahedral 

geometry of the metal-coordinating shell is presented. Metal-coordinating water 

molecules (red sphere) and the metal ion (green sphere) are also indicated. (B) The 

cavity of the active site of ObcA is shown as surface representation in a ligand-free 

form, with the cap domain (blue) and barrel domain (gray). Water molecules in the 

metal-coordinating shell are indicated with red spheres. (C) The metal-coordinating 

shell is presented, with water molecules and metal ions overlaid with an Fo–Fc map 

(4σ). (D) A schematic drawing is presented for the interactions in the active site of ObcA 

in the ligand-free form. Dashed lines indicate possible hydrogen bonds within an 

interatomic distance of 3.6 Å. Note that Glu346 is 3.8 Å apart from the water molecule. 
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Structure of ObcA in complex with oxaloacetate 

The structure of ObcA in complex with oxaloacetate shows that oxaloacetate is 

identified in the metal-binding site, with its oxalo group pointing toward 

Arg279 (Fig. 8A). The binding of oxaloacetate caused no noticeable change in 

conformation, relative to a ligand-free ObcA, with an RMSD of 0.41 Å for 484 

Cα atoms. Specifically, the C4 carboxylate of oxaloacetate replaced the metal-

ligating water molecule trans to Glu473 in the ligand-free ObcA, and the O2 

atom in the oxalo group occupied the sixth coordination. The water molecule 

across from His224 is still present in the shell, maintaining its interaction with 

active site residues apparent in a ligand-free ObcA. Thus, the resulting 

interactions represent a typical octahedral coordination to the bound metal. The 

two carboxylates of oxaloacetate are stabilized by the nearby residues, 

including Ser277, Arg279, and Tyr322 for the C1 carboxylate, and Ser275 and 

Ser308 for the C4 carboxylate. 

In addition to these nearby active site residues, possibly facilitating the 

binding of oxaloacetate, Tyr322 was brought into the immediate vicinity of the 

substrate, and the side chain hydroxyl group was placed ~3.3 Å distant from the 

C3 carbon of oxaloacetate (Fig. 8, A and B). In particular, its configuration 

fulfills the stereochemical requirements of an in-line projection to abstract a 

proton from the C3 methylene group, with an angle of 109° connecting the OH 

group in Tyr322, and C3 and C4 atoms of oxaloacetate. The binding of 

oxaloacetate stabilized the loop covering the metal-binding site, presenting a 

well-defined interaction between Arg279 and the C1 carboxylate of 

oxaloacetate. The pocket adjacent to the metal-coordinating shell exhibited no 

major changes, with the exception that the side chain of Glu346 was closer to 
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a metal-ligating water molecule across from His224 (Figs. 7D and 8B). 
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Figure 8. The active site of ObcA in an oxaloacetate bound form. 

(A) The stereoview of the active site of ObcA in complex with oxaloacetate (yellow) is 

shown. The dashed line between Try322 and the C3 group of oxaloacetate does not 

represent a hydrogen bond. (B) The respective interactions are displayed. Dashed lines 

with an interatomic distance indicate possible hydrogen bonds. Oxaloacetate in the right 

of (B) is overlaid with an Fo–Fc map contoured at 2.3 σ. 
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Structure of ObcA in complex with the bisubstrate adduct 

I unexpectedly identified a C4-CoA adduct and oxalate in the active site of 

ObcA at 2.28 Å resolution (Fig. 9). The electron density map in the active site 

indicated that it does not represent an authentic C6-CoA adduct as I had 

anticipated. Rather, the density was separated into two segments, one for a C4-

CoA adduct lacking the oxalo group in the oxaloacetate moiety and a second 

one for oxalate (Figs. 10-12). Given that all three products, including oxalic 

acid, acetoacetate, and CoA, are readily produced only in ObcB-dependent 

reactions (Nakata and He, 2010), it is highly likely that under my experimental 

conditions, the oxalo group was spontaneously released from a C6-CoA adduct, 

forming oxalate, which was then trapped within the active site. Consistent with 

this crystallographic observation, my activity assay in solution indicate that 

oxalate is very slowly and spontaneously produced in an ObcA-dependent 

manner (Fig. 13A). Previous study on ObcA also supports spontaneous 

production of oxalic acid (Nakata and He, 2010). Therefore, I conclude that the 

C4-CoA adduct and oxalate are degradation products from the C6-CoA adduct, 

a proposed ObcA product (Fig. 2A). 

The structure of ObcA in complex with a C4-CoA adduct and oxalate is 

almost identical with a ligand-free ObcA, with an RMSD of 0.40 Å for 483 Cα 

atoms. The resulting C4-CoA adduct and oxalate occupy the metal-coordinating 

shell and its nearby pocket (Fig. 10B). The phosphopantetheine arm of the 

adduct is positioned in the pocket along the central β-strands of the barrel 

domain. Specifically, this arm is bound to a concave region between the cap 

and barrel domain composed of three different loops following β1, β7, and β8 

in the barrel fold. This region was filled with a string of water molecules in the 
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oxaloacetate-bound ObcA complex. Several positively charged residues, such 

as Arg127, Arg128, Lys193, and Lys489, are localized around the phosphate 

group of the arm (Fig. 10C). Noticeably, the side chain of Lys193 underwent 

large changes that prompted its interaction with the phosphate group, while the 

3'-phosphoadenosine monophosphate moiety interacted with few residues (Fig. 

11). In contrast, oxalate is located near the C4-CoA adduct (Figs. 9 and 12, A 

and B), and its binding site is almost identical to the oxalo group in the 

oxaloacetate-bound ObcA but with a different orientation (Fig. 12C). As a result, 

oxalate is at least 2.6 Å away from the C4-CoA adduct. One carboxylate present 

in oxalate is within hydrogen bonding distance to Ser277 and Tyr322, as I 

observed in the oxaloacetate-bound ObcA (Fig. 8A), while the other 

carboxylate is nearly in the same position with the O2 atom present in 

oxaloacetate, occupying a position for the axial water molecule in a metal-

coordinating shell (Fig. 11). 

Notable features exist in the C4-CoA adduct. The carbon atom adjoined 

to the sulfhydryl group of CoA is in the tetrahedral configuration (Fig. 12B). 

The resulting tetrahedral C4-CoA adduct therefore consists of acetoacetate and 

CoA moieties (Fig. 2A), consistent with the observation that acetoacetate and 

free CoA moieties comprise the two other products in ObcB-dependent 

reactions. However, the adduct differs in chemical structure from a cognate 

acetoacetyl-CoA containing a thioester linkage between the sulfhydryl group of 

CoA and the carboxylate of acetoacetate. The acetoacetate moiety of the C4-

CoA adduct occupies two adjacent positions in the equatorial plane of the metal 

coordination shell (Figs. 9 and 11). The carboxylate in the adduct replaced the 

C4 carboxylate position of oxaloacetate, while the oxygen atom on the 
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tetrahedral carbon occupied a position for the water molecule trans to His224. 

The resulting geometry around the metal ion is essentially identical with those 

of the ligand-free and oxaloacetate-bound ObcA. The binding of the 

phosphopantetheine arm was further stabilized by interactions with the pocket 

residues, for example, the Arg469 interaction with the oxygen atom in the 

adduct’s tetrahedral carbon, the Asp474 and Arg279 interactions with the arm 

of the adduct, and many other hydrophobic interactions. 

Taken altogether, it is concluded that ObcA catalyzes the formation of a 

C6-CoA adduct by joining the oxaloacetate C3 carbon to the thioester carbonyl 

carbon of acetyl-CoA, resulting in a tetrahedral C6-CoA adduct, which in turn 

serves as a substrate for ObcB in the production of oxalic acid, acetoacetate, 

and CoA. Identification of a tetrahedral C4-CoA adduct in this study is unusual, 

considering that the tetrahedral CoA is thought to be a reaction intermediate in 

many CoA-dependent reactions, subsequently collapsing into a free CoA by 

protonating the leaving CoA thiolate anion (Dyda et al., 2000). In contrast, the 

presence of the tetrahedral C4-CoA adduct in ObcA is made possible by the fact 

that no obvious candidates for general acid(s) are positioned around the sulfur 

atom of the adduct in ObcA. Further inspection of the adduct interacting 

residues suggests that the oxygen atom on the tetrahedral carbon is possibly in 

a hydroxyl form rather than a labile anionic form, providing a structural 

foundation for the stability of the tetrahedral adduct. Specifically, the nearby 

Arg469, which is located within a hydrogen bonding distance from hydroxyl 

group of the adduct, likely protonates the oxygen atom on the tetrahedral carbon 

(Figs. 9 and 11; see Discussion). Identification of a bisubstrate adduct in the 

active site also suggests that the reaction proceeds via a ternary complex 
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mechanism requiring the binding of both substrates prior to catalysis. 
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Figure 9. The binding mode of the C4-CoA adduct and oxalate. 

The stereoview of the active site is shown for ObcA in complex with the bisubstrate 

C4-CoA adduct (green) and oxalate (yellow), noting a tetrahedral carbon (black asterisk) 

and Co2+ ion (black sphere). Dashed lines are potential hydrogen bonds within an 

interatomic distance of 3.5 Å, and the schematic drawing for these interactions is shown 

in Fig. 11. 
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Figure 10. The electron density map and binding pocket of the C4-CoA 

adduct and oxalate. 

(A) The model for the C4-CoA adduct, oxalate, and Co2+ is overlaid with an Fo–Fc 

electron density map at 2.3 σ. (B) The binding cavity of the C4-CoA adduct and oxalate 

is displayed in a surface representation of ObcA, with the metal ion indicated in gray. 

(C) The surface charge distribution of the adduct-binding region is shown in an 

orientation similar to Fig. 7C. Positive and negative charge distribution is indicted in 

blue and red, respectively. Note that the adenosine 3’, 5’-diphosphate moiety is placed 

in the vicinity of the positive charge. 
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Figure 11. The schematic representation of a C4-CoA adduct and oxalate 

in the active site of ObcA. 

A schematic representation is shown for the interactions in the active site of the ObcA 

complexed with the C4-CoA adduct and oxalate. Dashed lines indicate possible 

hydrogen bonds within an interatomic distance of 3.5 Å among the metal-coordinating 

shell, ligand, and the nearby residues. Interaction distances between Lys489 and the 

phosphate and between Arg279 and the adduct are 3.8 and 3.6 Å, respectively. Many 

residues are within close enough distance to allow for hydrophobic interactions. Note 

that only a few interactions are identified in the vicinity of the adenosine 3’, 5’-

diphosphate moiety. 
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Figure 12. The binding of a C4-CoA adduct and oxalate in the active site 

of ObcA. 

(A) A magnified view for oxalate (yellow), C4-CoA adduct (green), and Co2+ (black 

sphere) is shown; the asterisk indicates the carbon atom in a tetrahedral configuration. 

In the left panel, the final model is overlaid with an Fo–Fc map (2.3 σ), showing the 

possible connection between the oxalate region and the C4-CoA adduct. However, after 

refinement, the density between the adduct and oxalate is clearly distinguished, which 

is shown in the right panel with a 2Fo–Fc map (1.7 σ). (B) Two different orientations 

with an Fo–Fc map (2.3 σ) are shown to indicate that the carbon atom joined to the 

sulfhydryl group of the adduct is in a tetrahedral configuration. (C) A magnified view 

is displayed for the relative positioning of the ligands, including oxaloacetate (yellow), 

as well as oxalate and the C4-CoA adduct, both in green. The relative positions were 

determined by superposing the two complexes. The C3 of oxaloacetate is ~2.6 Å away 

from the tetrahedral carbon in the C4-CoA adduct, implying that the enolate form of 

oxaloacetate undergoes a direct nucleophilic attack on the thioester carbonyl carbon of 

acetyl-CoA. 
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Figure 13. Activity assay of ObcA. 

(A) Total oxalic acid production was measured using an oxalate kit (Trinity Biotech). 

The presence of either Obc1* or ObcA failed to generate oxalic acid, while production 

of oxalic acid occurred slowly and spontaneously in solution with ObcA, only after 

continuing the reaction for a long time period (hours to days). Note that diffraction data 

was collected from ObcA crystals which were incubated at least two weeks. (B) The 

reaction profile is displayed for CoA production as a function of time. The decrease in 

absorbance at 600 nm resulted from 2, 6-dichlorophenolindophenol, a dye reacting with 

the free sulfhydryl group of CoA. Differences in the color code represent reactions in 

the absence of each component indicated. Initial velocity was determined between 60 

and 105 s. (C) The metal dependency of ObcA activity was assayed but in the presence 

of different metal ion. 

 

 

 

 

 

  



- 55 - 

 

 

 

  



- 56 - 

 

Functional analysis of ObcA 

An enzymatic analysis was performed using the WT and mutant ObcA enzymes. 

In particular, production of a free CoA and oxalic acid was measured in a 

coupled reaction with Obc1*. In the presence of the WT ObcA, Obc1*, and the 

Co2+ ion, the reaction completed in my assay produced oxalic acid as well as 

CoA (Fig. 13, A-C). The Obc1* enzyme essentially lacks in its own ObcA 

activity, but not ObcB function, due to mutations at three residues located 

within the ObcA-like N-terminal domain. Those mutations are H227A, Y326A, 

and E350A, which correspond to His224, Tyr322, and Glu346, respectively, of 

B. glumae ObcA (Fig. 3) and are essential for ObcA function (see below). 

Measurement of the total oxalic acid produced, as well as kinetic analysis of 

CoA production by Obc1*, indicated that Obc1* exhibits less than 0.5% of the 

WT ObcA activity (Figs. 14 and 15A, and Table 3), with 176- and 328-fold 

decreases in the kcat value for acetyl-CoA and oxaloacetate, respectively, 

relative to that of the WT ObcA (Fig. 15B).  

A steady-state kinetic analysis for the production of free CoA and 

measurement of total oxalic acid production indicated that residues interacting 

with the metal ion as well as oxaloacetate or a bisubstrate adduct play an 

essential role in enzyme activity (Fig. 14). Greater activity for total oxalic acid 

production than CoA production is possibly attributable to the experimental 

condition of oxalic acid production in which the measurement was performed 

after 5 min of reaction time for each mutant ObcA. Mutations on metal binding 

residues (Fig. 7A), H222A, H224A and E473A significantly reduced ObcA 

functions; H224A became essentially inactive, although H222A and E473A has 

some marginal activity, suggesting that His224 is most important in metal 
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binding. Similar results were also observed for oxaloacetate-binding residues 

(Fig. 8A); mutants, such as S275A, S277A, S308A, R279K and R279A also 

largely defect ObcA activity, except for R279K. Unlike R279A which exhibits 

less than 5% of the WT ObcA activity, the R279K mutant maintained a nearly 

identical kcat value with the WT ObcA, but with a 35-fold increase in its KM for 

oxaloacetate and only a 3-fold increase for acetyl-CoA (Fig. 8B and Table 3), 

indicating that the positive charge on Arg279 is crucial for the binding of 

oxaloacetate. Other mutations also largely affected the KM value for 

oxaloacetate, consistent with their proposed structural roles. For example, 

S277A and S308A exhibited 8- and 27-fold increases, respectively, in the KM 

value for oxaloacetate, but with much smaller changes (1- to 2-fold) in the KM 

values for acetyl-CoA. 

In additions to residues in the metal-coordination shell and oxaloacetate-

binding environment, several residues in the acetyl-CoA-binding pocket (Fig. 

9) such as Glu346, Leu447, Arg469, and Asp474 were also characterized as 

essential elements for activity (Fig. 14). Mutations on these residues caused 

their activities less than 3% of the WT ObcA, consistent with their proposed 

roles in the binding of acetyl-CoA or adduct. For example, Leu447 is within 

distance of the CoA moiety to mediate hydrophobic interactions, and Arg469 

was suggested in this study to protonate the oxygen atom on the tetrahedral 

carbon of the adduct, resulting in the hydroxyl group (Fig. 11). Asp474 

interacting with Arg469 appears to play a role in positioning of the Arg469 side 

chain toward the adduct and regenerating Arg469 in a catalytically competent 

form (see legend of Fig. 16). 

While most residues described above play a role in the binding of 
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substrate or a possible adduct, I conclude that Tyr322 is a key catalytic residue 

in ObcA reaction, based on its regiospecific location to the C3 atom of 

oxaloacetate (Fig. 8A; see Discussion). Mutation of Tyr322 with either alanine 

or phenylalanine also greatly diminished the enzyme activity (4~10% of the 

WT ObcA activity), suggesting a possible catalytic role of the side chain 

hydroxyl group in the reaction. In particular, further kinetic analysis of Y322F 

indicated that catalytic efficiency (kcat/KM) of the mutant is only 0.3~2.0% of 

the WT ObcA. 
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Figure 14. Relative activity assay of ObcA. 

The CoA (blue) and total oxalic acid (red) production were measured using the WT and 

mutant ObcAs. For the relative activity of the CoA production, the initial velocity was 

determined as shown in Fig. 13B, and those values were compared to that of the WT 

ObcA. Total oxalic acid produced was measured after 5 min of reaction time. In both 

assays, measurements were performed with 400 μM acetyl-CoA, 1 mM oxaloacetate, 

100 μM CoCl2, 50 nM WT or mutant ObcA, and 800 nM Obc1*, and carried out in 

triplicate for each sample; error bars correspond to the SEs. 
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Figure 15. Functional features of ObcA and Obc1*. 

(A) A steady-state kinetic analysis of Obc1* for the production of CoA was performed. 

The KM and Vmax values were obtained using SigmaPlot, with SEs noted in parenthesis. 

(B) A steady-state kinetic analysis of the WT ObcA was performed. The initial velocity 

was corrected by subtracting the value of Obc1* from that of ObcA, and the KM and 

Vmax values were obtained using SigmaPlot, with SEs noted in parentheses. 
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Table 3. Kinetic parameters of ObcA, ObcA mutants, and Obc1*. 

 

 

 

 

 

 

 

 

 

 

 

The values for KM and kcat obtained by CoA production are listed for the WT ObcA and 

four mutant enzymes with marginal activity, with SEs in parenthesis. 

 

 

 

 

 

  

  KM (μM) kcat (sec-1) 

WT acetyl-CoA 58.6 (12.8) 17.6 (1.27) 

 oxaloacetate 135.5 (17.3) 16.4 (0.68) 

Obc1*  260 (10.4) 0.05 (2.1*10-3) 

  81.4 (7.48) 0.10 (1.5*10-3) 

R279K  190 (8.1) 17.0 (0.277) 

  4627 (683) 17.2 (1.19) 

S277A  52.5 (7.2) 3.45 (0.128) 

  1073 (355) 2.88 (0.292) 

S308A  155 (8.0) 6.20 (0.114) 

  3535 (382) 6.09 (0.283) 

Y322F  250 (60.4) 1.54 (0.154) 

  4203 (1206) 1.53 (0.200) 
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Figure 16. The proposed mechanism for ObcA. 

Upon the binding of oxaloacetate, the side chain hydroxyl group of Tyr322 could be 

deprotonated by the C1 carboxylate of oxaloacetate, which is within 3.0 Å. The 

resulting anionic form of Tyr322 likely serves as a general base and abstracts a proton 

from the C3 carbon of oxaloacetate in a regiospecific manner, producing an enolate 

anion intermediate of oxaloacetate. The anion intermediate can be stabilized via 

interactions with a metal ion bound to the active site, followed by a direct nucleophilic 

attack on the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral C6-CoA 

adduct as a product. In an immediate vicinity of the oxygen atom on a tetrahedral carbon, 

Arg469 possibly protonates the oxygen atom. The hydrogen bond network from Arg469 

to the water molecule via Asp474 could regenerate Arg469; in particular, Asp474 is a 

solvent-exposed residue, and the nearby water molecule is located in the binding pocket 

for acetyl-CoA. Note that mutation of either Tyr322, Arg469, or Asp474 greatly affects 

the enzyme activity (Fig.14). 
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Discussion 

 

In Burkholderia, endogenous oxalogenesis occurs using oxaloacetate and 

acetyl-CoA, the substrates also utilized by citrate synthase in the TCA cycle. 

However, ObcA and citrate synthase are structurally unrelated (Wiegand and 

Remington, 1986). Accordingly, apparent functional discrepancies between the 

two enzymes originate from the distinct architecture of the active site. In citrate 

synthesis, acetyl-CoA acts as a nucleophile, in which the general base aspartate 

produces an enolate from acetyl-CoA followed by its direct attack on the C2 

carbonyl carbon of oxaloacetate. The intermediate is then hydrolyzed into 

citrate and CoA (Wiegand and Remington, 1986). In contrast, my structural and 

functional analyses, together with a previous isotope labeling experiment (Li et 

al., 1999), suggest that oxaloacetate is a nucleophile for ObcA. Fig. 16 presents 

a proposed reaction mechanism of ObcA. Specifically, an ObcA-dependent 

reaction requires formation of an enolate anion intermediate of oxaloacetate, 

which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a 

tetrahedral C6-CoA adduct as a product (Li et al., 1999). In particular, Tyr322, 

which is also conserved in other ObcA homologs (Fig. 3), appears to act as a 

general base to form an enolate intermediate of oxaloacetate by regioselectively 

deprotonating the C3 methylene in oxaloacetate (Fig. 8). The resulting enolate 

anion is likely stabilized by coordinating with the bound metal ion. Consistent 

with this proposal, mutation of Tyr322 greatly diminished the enzyme activity 

(Fig. 14 and Table 3). Comparison of the binding mode of oxaloacetate and the 

bisubstrate adduct in this study indicated that the C3 atom of oxaloacetate is 

within 2.6 Å from the tetrahedral carbon of the adduct (Fig. 12C), suggesting 
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that a direct nucleophilic attack of the proposed enolate of oxaloacetate occurs 

on the si-face of the thioester linkage of acetyl-CoA, the trigonal plane facing 

toward a bound oxaloacetate. Mechanistically, the formation of an enolate 

intermediate is similar with members of the enolase superfamily, in which a 

general base abstracts the α-proton of the carboxylate substrate and a metal ion 

stabilizes the enolate anion intermediate (Gerlt et al., 2005). 

Apparently, the proposed ObcA-dependent catalysis (Fig. 16) shares 

some characteristics with other acetyltransferases involved in the acetylation of 

histone lysine, carnitine, chloramphenicol, and choline (Dyda et al., 2000, 

Govindasamy et al., 2004, Jogl and Tong, 2003, Murray and Shaw, 1997, Yuan 

and Marmorstein, 2013). These acetyltransferases using acetyl-CoA as an 

acetyl donor commonly produce an acetylated substrate via a proposed 

tetrahedral intermediate, particularly by employing a general base to 

deprotonate a substrate, either directly or indirectly via a water-mediated proton 

wire, and its subsequent attack on the thioester carbonyl carbon of acetyl-CoA. 

These enzymes containing general acid(s) but lacking metal ions facilitate 

collapse of the resulting tetrahedral CoA intermediate into an acetylated 

substrate and CoA. In contrast, the tetrahedral CoA adduct in ObcA is likely 

stabilized by the bound metal ion and furthermore by the absence of possible 

general acid(s). Therefore, ObcA exhibits combined features from the enolase 

and acetyltransferase superfamily, but the presence of the metal-coordination 

shell and absence of general acid(s) appear to be the key factors for functional 

diversity. The metal-ligating shell has multiple roles in ObcA-dependent 

catalysis, not only dictating the binding mode of oxaloacetate to facilitate 

formation and stabilization of the enolate anion intermediate of oxaloacetate, 
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but also contributing to the polarization and positioning of the thioester group 

of the incoming acetyl-CoA for a nucleophilic attack. Furthermore, the metal-

coordinating shell also serves as a platform for a direct nucleophilic attack, as 

well as stabilization of the resulting tetrahedral CoA adduct. 

In conclusion, I demonstrated that in the Burkholderia species, ObcA 

utilizes two substrates, oxaloacetate and acetyl-CoA, for the TCA cycle and 

forms a tetrahedral C6-CoA adduct in an unprecedented manner compared to 

other acetyl-CoA-dependent reactions. The C6-CoA adduct serves as a 

substrate for ObcB to produce oxalic acid, acetoacetate, and CoA. Current 

genome data indicate that ObcA homologs are predominantly present in 

Burkholderia species (Nakata, 2011). My results provide a structural basis for 

understanding the first step in oxalogenesis using metabolites from the primary 

metabolic pathway, as well as an example of the functional diversity of an 

enzyme for survival and adaptation in the growth environment. 
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Chapter III. 

 

Structural and Functional Analysis of Obc1 
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Materials and Methods 

 

Cloning and purification of WT Obc1 and its mutants 

The gene for Obc1 from B. thailandensis (Goo et al., 2012, Nakata, 2011) was 

amplified by colony PCR and cloned into a modified pET28b expression vector 

(Merck) containing a TEV protease recognition sequence between the His5-tag 

and multiple cloning site. The resulting plasmid containing N-terminal His-

tagged Obc1 was transformed into Escherichia coli BL21 (DE3) cells 

(Novagen). After induction of protein expression with 0.5 mM IPTG, E. coli 

cells were cultured for an additional 14–16 h at 20°C. Cells were sonicated in 

Buffer A containing 50 mM HEPES (pH 7.0), 300 mM NaCl, and 5% (v/v) 

glycerol. N-terminal His-tagged Obc1 was purified using a HisTrap HP column 

(GE Healthcare) and eluted with Buffer A plus 250 mM imidazole. The His-tag 

was subsequently cleaved by treatment with 2 mM dithiothreitol and TEV 

protease overnight at 22°C using a 20:1 molar ratio of Obc1 to TEV protease. 

The resulting tag-free Obc1 protein was further purified using a HisTrap HP 

column and subjected to size-exclusion chromatography using Superdex-200 

(GE Healthcare) with Buffer A. The protein concentration was quantified using 

an extinction coefficient of 129,150 M-1 cm-1 at 280 nm and calculated using 

the ProtParam tool in ExPASy (Gasteiger et al., 2003). 

For the activity assay, Obc1* was constructed as described in previous 

chapter (Table 1). Briefly, Obc1* exhibits ObcB activity but essentially lacks 

ObcA activity due to the introduction of three mutations (H227A, Y326A, 

E350A) into the active site of the N-terminal domain (Fig. 3). Genes for the 

various mutants used in the functional assay were amplified by PCR using 
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Obc1* as a template and mutagenic sequences as primers (Table 4). N-terminal 

His-tagged Obc1*, Obc1* mutants, and WT ObcA were purified using a 

HisTrap HP column and then desalted using a HiPrep 26/10 column (GE 

Healthcare).  
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Table 4. Primers for Obc1 mutants. 

 

Sequences are described from 5’ to 3’. Reverse (R) primers that can be obtained by 

reverse complement of forward (F) primer are not shown. Boldfaced-underlined 

sequences indicate mutated sequences.   

Primers for Obc1 mutagenesis 

R601A_F ACGGCCGCGGCCAGCTTCGGCATCACGATTC 

R601A_R GAAGCTGGCCGCGGCCGTCAGCACGTGCTC 

S609A_F ACGATTCGCGCGTTCGTCGAAGAGCTCGACC 

S609A_R GACGAACGCGCGAATCGTGATGCCGAAGCTG 

F610A_F ATTCGCTCGGCCGTCGAAGAGCTCGACCGCTA 

F610A_R TTCGACGGCCGAGCGAATCGTGATGCCGAAGC 

Y701A_F CCATGTCGCGCTAACAGTGACTATTCGAATGTAGTC 

Y701A_R GTCACTGTTAGCGCGACATGGAATTCCCACCAGATA 

T786A_F CCCTTCTGCTCCGACTACCAATTACCCGTTG 

T786A_R GTCGGAGCAGAAGGGAGAACGACCCAGTCT 

R856K_F GCATAATAAGTTCGCTCTGAATGCCGATCCGAG 

R856K_R GAGCGAACTTATTATGCAGCATCGATGCTTCG 

R856A_F GCATAATGCTTTCGCTCTGAATGCCGATCCG 

R856A_R GAGCGAAAGCATTATGCAGCATCGATGCTTCG 

H934A GTTGAAATGCTTCGCAGCCAGTTCAGGCATTGCA 

S935A GAAATGCTTCGCACACGCTTCAGGCATTGCAACC 

S936A_F GCACACAGTGCAGGCATTGCAACCGCCCAG 

S936A_R GCAATGCCTGCACTGTGTGCGAAGCATTTC 

D997N_F CTTTAACAATGTCCGTTCGCTCGCCGGCAC 

D997N_R CGGACATTGTTAAAGGCTGTTACGTCCACC 

D997A_F CTTTAACGCTGTCCGTTCGCTCGCCGGCAC 

D997A_R ACGGACAGCGTTAAAGGCTGTTACGTCCACC 

R999K_F CGATGTCAAGTCGCTCGCCGGCACCACCTCTC 

R999K_R GCGAGCGACTTGACATCGTTAAAGGCTGTTACG 

R999A_F CGATGTCGCTTCGCTCGCCGGCACCACCTC 

R999A_R CGAGCGAAGCGACATCGTTAAAGGCTGTTACG 

D1061A GTCTTTTTACTGGATGCTCACGCGCGTTTAGATG 

D1067A ACGCGCGTTTAGATGCTGGCCACAGCATTCG 

H1069A GCGTTTAGATGATGGCGCCAGCATTCGCCGTTAC 

S1070A TTAGATGATGGCCACGCCATTCGCCGTTACCTG 

R1073A GCCACAGCATTCGCGCTTACCTGGCAGCGAG 
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Crystallization and data collection 

Crystallization was conducted at 22°C using the sitting drop vapor diffusion 

method. Initial crystals were produced in a buffer containing 0.1 M HEPES (pH 

7.0), 1 M sodium citrate tribasic, and 10 mg/mL protein. Later, I found that co-

crystallization of Obc1 with 5 mM oxaloacetate and 2 mM acetyl-CoA 

improved crystal shape and diffracting quality (Fig. 17). However, the added 

substrates were not bound to the active site. Under these conditions, I obtained 

a crystal for the apo form of Obc1. 

I also report the structure of Obc1 in complex with glycerol in its active site. 

Crystallization conditions for this complex were the same as those used for the 

apo form, except that a pre-grown crystal was soaked in the crystallization 

mother liquor plus 5 mM acetyl-CoA and 10 mM oxaloacetate. During protein 

purification, glycerol was a component of Buffer A; however, for unknown 

reasons, it was only bound to Obc1 when the crystal was soaked in the mother 

liquor containing substrates. 

X-ray diffraction data were collected at 100 K with a 0.5° oscillation angle 

on beamline 7A at the Pohang Accelerator Laboratory (Korea). Ethylene glycol 

(20% v/v) was used as the cryo-protectant during data collection and the 

collected image files were processed using iMOSFLM (Battye et al., 2011). The 

space group of Obc1 crystals is R32, with one monomer in the asymmetric unit 

(Table 5). In particular, a high-resolution cut-off of each data set was based on 

a CC1/2 statistical value of about 0.5. The CC1/2 statistical value is superior to 

the Rmerge or signal-to-noise ratio as a statistical guide for deciding the 

usefulness of data (Diederichs and Karplus, 2013, Evans, 2011, Karplus and 

Diederichs, 2012). In this study, the CC1/2 value-based resolution cut-off indeed 
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provided a higher-quality electron density map, compared to the map calculated 

using data based on the Rmerge value or signal-to-noise ratio. 
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Figure 17. Optimized Obc1 crystals. 

Crystals were obtained under a co-crystallization with 5 mM oxaloacetate and 2 mM 

acetyl-CoA. Co-crystallization with substrates significantly improved crystal size and 

diffraction quality. 
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Table 5. Obc1 data collection and refinement statistics. 

 

  

Data set Apo Glycerol-bound 

PDB ID 5IKY 5IKZ 

Wavelength (Å) 0.9793 0.9793 

Resolution range (Å) 38.8-2.5 (2.6-2.5)a 46.35-2.8 (2.9-2.8) 

Unique reflections 88989 (8845) 63294 (6257) 

Multiplicity 2.0 (2.0) 2.0 (2.0) 

Completeness (%) 99.7 (100.0) 100.0 (100.0) 

Mean I/sigma(I) 10.4 (1.4) 12.7 (1.6) 

Wilson B-factor (Å2) 57.1 57.0 

R-merge 0.040 (0.496) 0.056 (0.492) 

CC1/2
b 0.998 (0.530) 0.997 (0.461) 

CC*c 0.999 (0.832) 0.999 (0.794) 

Space group R 3 2 :H 

Unit cell   a=b, c (Å) 230.8, 253.7 230.0, 253.8 

α=β, γ (°) 90, 120 

Refinement   

R-workd 0.198 (0.306) 0.199 (0.300) 

R-freee 0.227 (0.331) 0.227 (0.332) 

No. of atoms   

protein 7835 7848 

ligand 1 7 

waters 200 207 

Protein residues 1048 1047 

RMS(bonds) (Å) 0.003 0.003 

RMS(angles) (°) 0.72 0.69 

Ramachandran favored (%) 96 96 

Ramachandran outliers (%) 0.6 0.4 

Average B-factor (Å2) 77.9 69.5 

protein 78.2 69.9 

ligand 54.4 79.7 

waters 67.7 54.8 
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aNumbers in parentheses refer to data in the highest resolution shell. 

bThe CC1/2 is the Pearson correlation coefficient (CC) calculated from each subset 

containing a random half of the measurements of unique reflection.  

cCC* = [2CC1/2 / (1 + CC1/2)](1/2), a statistical guide for deciding useful data, as defined 

by Karplus and Diederichs (Karplus and Diederichs, 2012). 

dRwork = Σ ||Fobs|-|Fcal||/ Σ|Fobs| 

eRfree is the same as Robs for a selected subset (2.25% in Apo form, 5% in Glycerol-

bound form) of the reflections that was not included in prior refinement calculations. 
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Structure determination and refinement 

The structure of apo-Obc1 was determined using the molecular replacement 

program MrBUMP (Keegan and Winn, 2007, Winn et al., 2011) with an apo-

ObcA structure (Protein Data Bank code 4NNA) using the N-terminal region 

of Obc1 as a search model. Unlike the N-terminal region, the quality of the 

electron density map for the remaining C-terminal region was relatively poor. 

The initial model was manually built and refined using the programs COOT 

(Emsley et al., 2010), Buccaneer (Cowtan, 2006, Winn et al., 2011), and 

PHENIX (Adams et al., 2010). Several cycles of model building and refinement 

improved the quality of the map, in particular for the C-terminal region. In the 

final model, 1048 residues were located, except for some highly disordered 

residues (Table 5). As seen in the structure of ObcA (Fig. 7C), an electron 

density map for a metal ion was found in the active site of the apo-Obc1 N-

terminal domain, even though no metal ion was added during purification or 

crystallization. Subsequently, the refined structure of apo-Obc1 was used as a 

starting model for refining Obc1 in complex with glycerol. In particular, an 

electron density map corresponding to glycerol was identified in the putative 

active site of the Obc1 C-domain. Further refinement was carried out using 

PHENIX. 
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Steady-state kinetic assay 

Obc1 enzymatic activity was measured in a manner similar to that for ObcA. 

In brief, two different assays were employed, each measuring the production of 

different products. First, a steady-state kinetic assay was performed in the 

presence of DCPIP, which is reduced by the free sulfhydryl group of CoA, 

causing a linear decrease in absorbance at 600 nm (Jones and Hirst, 2013, 

Nakamura et al., 2008, Raychaudhuri et al., 2005). Second, total oxalic acid 

production was measured using an oxalate assay kit (Trinity Biotech), 

following the manufacturer’s protocol. In both assays, the reaction mixture 

contained Co2+ ion as the most effective ion for ObcA activity (Fig 13C). 

Using DCPIP, a steady-state kinetic assay was performed at 30°C in a 

reaction mixture containing 50 mM HEPES (pH 8.0), 100 mM NaCl, 120 μM 

DCPIP, 100 μM CoCl2, and 7.8–500 μM acetyl-CoA and oxaloacetate. Then 

250 nM ObcA was added to the reaction mixture and pre-incubated for 10 min 

at 30°C to produce C6-CoA adducts that served as substrates for the Obc1 C-

terminal domain. After pre-incubation, 1002000 nM Obc1* or its mutant was 

added to the reaction mixture for adduct cleavage to free CoA, acetoacetate, 

and oxalic acid. A decrease in absorbance at 600 nm was measured using a UV-

Vis spectrophotometer (Jasco) and the initial velocity was determined from 70 

to 130 s. The initial velocity was used to determine the CoA production per 

minute based on a standard reaction curve. Km and Vmax values were obtained 

by fitting initial velocity versus substrate concentration data to the Michaelis–

Menten equation using SigmaPlot. In this analysis, I assumed that the 

concentration of the C6-CoA adduct produced was equal to the concentration 

of the substrates acetyl-CoA and oxaloacetate. Unlike the kinetic assays, to 
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determine the relative activity of the Obc1* mutants, the assays were performed 

using 500 μM substrate and 100 nM Obc1* or its mutants, and the initial 

velocity was determined. 

Total oxalic acid production was measured at 30°C using the reaction 

mixture for kinetic analysis in the presence of 500 μM acetyl-CoA and 500 μM 

oxaloacetate but without DCPIP. In brief, 500 nM ObcA was added to the 

reaction mixture and incubated for 5 min. Cleavage of the C6-CoA adduct was 

initiated and incubated for another 5 min after the addition of 100 nM Obc1*. 

The resulting reaction mixture was mixed with an oxalate assay reagent and the 

absorbance at 590 nm was measured after 5 min. The concentration of oxalic 

acid was calculated from a standard curve.  



- 82 - 

 

Results 

 

Overall structure of apo Obc1 

The bifunctional enzyme Obc1 has two structurally and functionally distinct 

domains (Fig. 2A): an N-domain consisting of an ObcA-like N-terminal region 

(residues Val2 to Ser528) and a C-domain consisting of an ObcB activity-

exhibiting C-terminal region (residues Arg529 to Gln1106). These two domains 

are arranged in an elongated manner (i.e., 110 Å long and 56 Å wide); therefore, 

there are no extensive interactions between the two domains. The active sites 

of the two domains are separated by 47 Å and oriented in an opposite direction 

(Fig. 18). 

Monomeric Obc1 was identified in an asymmetric unit and no obvious 

oligomeric structure was identified by crystallographic symmetry, consistent 

with chromatographic analysis that Obc1 is monomeric. The N-domain of Obc1 

exhibits 52% sequence identity with ObcA (Fig. 19) and therefore its structure 

is essentially identical to that of ObcA (PDB code 4NNA-C). Specifically, the 

(β/α)8-barrel fold of the Obc1 N-domain is superimposable with ObcA (Fig. 20), 

within a root-mean square deviation of 1.0 Å for 482 Cα atoms and a Z-score 

of 51.2 using the structure-similarity search program DALI (Holm and 

Rosenstrom, 2010). Structural analysis revealed the presence of a metal-

binding site and the relative locations of residues in the active site. Given that 

detailed structural and functional features of ObcA have been reported, I 

decided to focus on C-domain features. 
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Figure 18. The overall structure of Obc1. 

The overall structure of Obc1 in apo form is shown with its N-domain (green). The C-

domain consists of two regions: a cap domain (cyan) and an α/β hydrolase fold 

(magenta). For clarity, β-strands are indicated in blue, except β1 (red) in the N-domain. 

The proposed active sites of the C-domain are located in a crevice between the cap 

domain and the α/β hydrolase fold, and the position of the catalytic Ser935 residue near 

helix α30 is marked with an asterisk in black. In this orientation, the active site of the 

C-domain is directed out of the page, directly toward readers, but an opening to the 

active site of the N-domain is oriented by 180° relative to the C-domain. The active site 

of the N-domain is indicated with a metal ion in a black sphere. 
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Figure 19. Sequence alignment of Obc1 with its homologs. 

The amino acid sequence of Obc1 from B. thailandensis (WP_009896555.1) is 

compared with that of other homologs, including those from B. mallei 

(WP_004188532.1), B. pseudomallei (YP_111366.1), B. andropogonis 

(WP_046153766.1), B. glumae (WP_015877888.1), and B. cepacia 

(WP_048244856.1). Note that unlike the other homologs, B. glumae and B. cepacia 

(red diamonds) require two enzymes for oxalogenesis, but only ObcA, and not ObcB, 

shows sequence homology with the Obc1 N-domain. Highly conserved residues are 

shown in red and boxed in blue, while strictly conserved residues are shown with a red 

background. Secondary structural elements defined in the Apo form of Obc1 are shown 

for the corresponding Obc1 sequences. Selected residues are indicated with different 

notations, including the metal-coordinating residues and catalytic residue of the N-

domain (His225, His227, Tyr326 and Glu350; green triangle), catalytic triad (Ser935, 

Asp997 and His1069; blue inverted triangle), and putative oxyanion hole-forming 

residues (Arg856 and Arg999; green circle). In particular, His934, a proposed catalytic 

residue for lyase activity, is marked with a gray star. This figure was prepared using 

ESPript (Robert and Gouet, 2014). 
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Figure 20. The N-terminal domain of Obc1. 

The N-domain is shown in a different orientation from that of Fig. 18. The (β/α)8-barrel 

fold is within a circle. 
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C-domain of apo Obc1 

The Obc1 C-domain (residues Arg529 to Gln1106) extends from the bottom of 

the N-domain (β/α)8-barrel fold and forms an independent domain that does not 

interact extensively with the N-domain. The core structural region adopts an 

α/β hydrolase fold, in which the central β-sheet is packed with flanking α-

helices on both sides (Fig. 18). The C-domain has structural features common 

to canonical α/β hydrolases (Kourist et al., 2010). From the topological view, 

the C-domain consists of two structural subdomains (Fig. 18). The first region 

includes Ser740 to Gln1106 and forms an α/β hydrolase fold (Fig. 21). The 

second subdomain (Arg529 to Ala739) is located over a concave region formed 

by an α/β hydrolase fold, resulting in a crevice between the two regions. 

Residues Arg529 to Ala739 (hereafter, I will call this region the cap domain) 

predominantly form an α-helical fold, with two layers of anti-parallel helices. 

Specifically, just after the N-domain, two long adjacent α-helices α19 and 

α20/21 are oriented in an anti-parallel fashion and form a surface layer of cap 

domain. Underneath this surface layer, other anti-parallel helices α24 and α25 

are located in a perpendicular orientation relative to the surface layer helices. 

In addition to these elements, helices α22, α23, and η3 form a four-helix bundle-

like fold with the C-terminal region of α21. Due to a kink in the middle of the 

surface layer α-helices, the cap domain exhibits a convex surface and a concave 

interior. This cap domain is oriented such that a concave region sits on the edge 

of the β-sheet in the α/β hydrolase fold, resulting in the formation of a crevice 

on one side of the β-sheet that serves as the active site of the C-domain (see 

below). 

Following the cap domain α25, a long loop connects a β-strand (i.e., β25) 
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to form an α/β hydrolase fold including Ser740 to Gln1106 (Figs. 19 and 21). 

In the α/β hydrolase fold, nine β-strands (β26, β25, β28, β27, β29, β30, β31, 

β33, β32 in order) constitute a central β-sheet, in which β32 is the innermost 

strand near the N-domain, and β26 is located farther from the N-domain and 

forms the surface of Obc1. In the middle of the central β-sheet, six strands (β28, 

β27, β29, β30, β31, and β33) are in a parallel orientation, with each C-terminal 

end pointing to the concave interior of the cap domain. At the ends, the other 

three β-strands are in an anti-parallel orientation (Fig. 21). Helices α26, α29, 

α30, α31 are located on the backside of the β-sheet where the cap domain 

surface helices α19 and α20/21 are stretched out; this leaves this side of the 

central β-sheet inaccessible from the solvent. In particular, helix α28 on this 

side is located under the surface layer of the cap domain. The remaining helices 

are positioned at the other side of the central β-sheet in an arrangement that 

generates a crevice on the C-terminal end of the central β-sheet. 
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Figure 21. Topology diagram of C-terminal of Obc1. 

The topology of the α/β hydrolase fold in the Obc1 C-domain is shown. Color codes 

are the same as those in Fig. 18, and the catalytic triad is indicated. This figure was 

prepared using TopDraw (Bond, 2003). Given that the Obc1 N-domain is essentially 

identical to that of ObcA, its topology was not presented. 
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Active site of Obc1 C-domain 

The crevice on the Obc1 C-domain suggested the location for putative ObcB 

activity in the bifunctional enzyme Obc1. Moreover, a DALI-based structure 

similarity search indicated the presence of a catalytic triad (Ser-His-Asp) in the 

Obc1 crevice. Specifically, the search revealed that the most similar α/β 

hydrolase was pancreatic lipase-related protein 2 (PDB code 2PVS) (Eydoux et 

al., 2008); however, this protein only had a Z-score of 9.3 and 8% sequence 

identity. Due to low similarity in structure and sequence, these two α/β 

hydrolases exhibited limited structural conservation in the positions of the 

central β-strands, with large differences in the location of the flanking α-helices. 

Despite these differences, structural superposition of the Obc1 C-domain with 

pancreatic lipase-related protein 2 showed conservation of the catalytic triad 

(Ser-His-Asp) in both position and relative orientation. In Obc1, the putative 

catalytic triad consists of Ser935, Asp997, and His1069 located in a loop region 

between β29 and α30, β31 and α32, and β33 and α36, respectively (Figs. 21 

and 22A). Not surprisingly, these residues are clustered in a crevice in the C-

domain, and their relative locations are conserved in other α/β hydrolases, 

consistent with members of this superfamily (Nardini and Dijkstra, 1999). 

The Obc1 C-domain displays unique features in its active site, in addition 

to many structural features conserved in the α/β hydrolase family of proteins 

(Kourist et al., 2010). First, a GxSxG sequence motif (x; any residue) 

containing a nucleophilic serine residue was not found; instead, an AH-S935-SG 

sequence motif was observed in the Obc1 C-domain. Second, an HGGG motif, 

a tetrapeptide conserved in many α/β hydrolases for an oxyanion hole, was not 

found. In general, the HGGG motif is located in a part of the loop region that 
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is near a nucleophilic serine residue. In this motif, the main chain nitrogen 

atoms from glycine stabilize the binding of a tetrahedral reaction intermediate 

by forming a hydrogen bond with negatively charged oxygen atoms in the 

intermediate. In this study, structural superposition indicated that a proposed 

oxyanion hole conserved in the α/β hydrolase fold corresponded to a loop 

region including Ser785-Thr786-Pro787 that connects β27 and α27 in the 

immediate vicinity of Ser935 (Fig. 22A). In other α/β hydrolases, the HGGG 

motif has been found to be oriented in such a manner that the side chain of 

histidine points to the inner side of the loop, and the main chain nitrogen atoms 

of glycine are exposed to nucleophilic serine. However, the side chain hydroxyl 

group of Thr786 in the Obc1 C-domain protrudes from the corresponding loop 

and is located 2.5 Å from Ser936, a residue next to nucleophilic Ser935, and 

2.5 Å from a water molecule that also forms a hydrogen bond with Ser935, a 

putative catalytic nucleophile (Fig. 22A). Given this structural feature and the 

presence of proline at amino acid number 787, the main chain nitrogen atoms 

in the loop region are unavailable for hydrogen bonding, suggesting that this 

loop may not serve as an oxyanion hole in Obc1. Instead, positively charged 

Arg856 and Arg999 are in the vicinity of nucleophilic Ser935. In particular, 

Arg999 appears to be very dynamic based on its disordered electron density. 
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Figure 22. The active site of Obc1. 

(A) The catalytic triad and a putative oxyanion-binding site are shown in the apo 

structure of Obc1, with the same color codes as in Fig. 18. Possible hydrogen bonds are 

indicated with a dashed line. A loop of Ser785-Thr786-Pro787 (green) and two arginine 

residues (Arg856 and Arg999) are presented. A water molecule (red sphere) near 

Ser935 mediates possible hydrogen bonds to nearby residues. Note that the side chain 

of Thr786 points outward and its hydroxyl group interacts with the water molecule, and 

Ser785 and Pro787 are removed for clarity. (B) Zoomed-out view of the active site 

showing the stereoview of Obc1 in glycerol-bound form. Bound glycerol (green) is 

overlaid with a Fo-Fc electron density map contoured at 3.0 σ. Other residues crucial 

for activity are also indicated. Note that His934 forms a possible hydrogen bond with 

the hydroxyl group of glycerol. (C) Active site interactions in glycerol-bound Obc1. 

Putative hydrogen bonds (dashed lines) and corresponding interatomic distances (Å) 

are shown. One exception is the interatomic distance between glycerol (green) C2 and 

NE2 in His934. 
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The binding of glycerol in the Obc1 C-domain 

In my experimental conditions, I was unable to detect the binding of a C6-CoA 

adduct in the Obc1 C-domain. Instead, I characterized glycerol bound to the 

Obc1 C-domain. The resulting electron density map suggested that the glycerol-

binding site is located at the proposed crevice surrounded by an α/β hydrolase 

fold and a cap domain (Fig. 22B). Specifically, glycerol was found at the 

entrance of the crevice, near the catalytic triad. In fact, glycerol is about 3.4–

4.0 Å from the side chains of His1069 and Ser935. Based on the current binding 

environment, it is chemically sensible in glycerol that the C2 carbon and 

hydroxyl group on pro-S C1 is located near the side chain nitrogen of His934, 

and that the hydroxyl groups at pro-R C3 positions are located near the main 

chain carbonyl oxygen of His1069 (Fig. 22C). 
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Functional analysis of Obc1 

There is no direct structural evidence for the existence of a true substrate-

binding site, and functional roles of residues near the proposed active site have 

been elusive. Therefore, I selected 19 residues in the C-domain for site-directed 

mutagenesis to explore their functional roles. These residues form the putative 

catalytic triad (Ser935, Asp997, and His1069), possible oxyanion-binding sites 

(Ser785, Thr786, Arg856, Ser936, and Arg999), and the putative binding site 

for a C6-CoA adduct along the crevice and on the surface of the cap domain 

(Arg601, Ser609, Phe610, Tyr701, His934, Asp1061, Asp1066, Asp1067, 

Ser1070, Arg1072, and Arg1073).  

Two different assays were performed using various Obc1 mutants. 

Previously, I constructed Obc1* that has three mutations (H227A, Y326A, 

E350A) in the N-domain to eliminate any possible ObcA activity (Table 3). All 

Obc1 mutants used for functional analysis in this study were engineered to have 

a mutation at a designated residue in the C-domain, as well as three mutations 

in Obc1*. One assay was used to detect the formation of product CoA, and 

another assay was used to measure oxalic acid production. Preliminary 

experiments indicated that the maximal initial velocity of Obc1 could be 

achieved in the presence of ObcA, and under these conditions there were no 

differences in the initial velocity between WT Obc1 and Obc1* (Fig. 23A, red 

and black curve). Under my kinetic assay conditions, I also found that a C6-

CoA adduct produced from ObcA was stable and could not be converted into 

CoA in the absence of Obc1 or Obc1* (Fig. 23A), validating that the formation 

of CoA from the adduct is enzyme-dependent (Fig. 2A). 

Among the Obc1 mutants, the activities of three mutants (S785A, D1066A, 
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R1072A) were essentially identical to that of Obc1*, but other mutants 

exhibited reduced activities (Fig. 23B). Putative catalytic triad mutants (S935A, 

D997N, D997A, or H1069A) had significantly impaired enzyme activities, 

indicating that Ser935, Asp997, and His1069 do indeed form a catalytic triad. 

Specifically, the production of CoA in these four catalytic triad mutants was 

approximately 1.8% of Obc1* activity, and oxalic acid production was 5.9–8.3% 

relative to that of Obc1*. Putative oxyanion-binding site mutants provided 

interesting results. Compared to Obc1*, T786A and S936A mutants exhibited 

about 8.5% and 21.0% CoA production, and 12.2% and 34.9% oxalic acid 

production, respectively. These results suggest that an interaction between 

Thr786 and Ser936 (Fig. 22A) may be important for maintaining the structural 

integrity of a Ser785-Thr786-Pro787 loop near catalytic Ser935. Interestingly, 

two arginine residues, Arg856 and Arg999, were crucial for activity, further 

supporting my proposal that these two residues could serve as an oxyanion-

binding site in Obc1 (Fig. 22A). Specifically, R856A and R999A mutants 

essentially lost their enzymatic features, but their activities were somewhat 

restored in R856K and R999K mutants (Fig. 23B). Subsequent steady-state 

kinetic analyses on R856K and R999K mutants indicated that Arg856 and 

Arg999 are likely critical catalytic residues, given that these mutants had 

significant decreases in kcat but not Km (Fig. 24A and Table 6). Specifically, 

the Km values of the R856K and R999K mutants were 44.2 and 67.1 µM, close 

to the Km of Obc1*; however, their kcat values were 3.9% and 15.7% of Obc1*, 

respectively. Therefore, relative to Obc1*, their catalytic efficiency was 6.0% 

for R856K and 15.7% for R999K. These results show that a positive charge in 

these two residues is crucial for catalysis. 
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Mutations of residues along the crevice or on the surface of the cap domain 

suggest that residues along the crevice of the α/β hydrolase fold, but not the 

surface of the cap domain, play an important role in catalysis (Figs. 23B and 

24B). Specifically, mutation of Tyr701, Asp1061, Asp1067, Ser1070, or 

Arg1073 resulted in significant loss of activity despite the fact that these 

residues are far away from the catalytic Ser935 residue or the glycerol-binding 

site. In particular, four residues (Asp1061, Asp1067, Ser1070, and Arg1073) 

are clustered in a loop and a helix between β42 and α36 (Figs. 20 and 24B), 

indicating that this protruding region can serve as a binding site for a CoA 

moiety. Cap domain residues including Arg601, Ser609, and Phe610 were 

relatively tolerant to mutation, indicating that these regions do not participate 

in catalysis (Figs. 23B and 24B). I further found that His934, a residue adjacent 

to catalytic Ser935, is crucial for activity (Fig. 22B). An H934A mutant 

exhibited 5.3% CoA production and 16.8% oxalogenesis relative to Obc1* (Fig. 

23B). Further kinetic analysis of H934A indicated that kcat was largely affected 

by mutation, and its value was 7.3% of Obc1*, but no significant change in Km 

was observed (Fig. 24A and Table 6), resulting in a catalytic efficiency of 

approximately 6.5% of Obc1*. These functional data and the vicinity of His934 

to catalytic Ser935 lead me to propose that His934 serves as a catalytic 

base/acid for cleavage of the C4-S bond in the C6-CoA adduct (Fig. 2A; see 

Discussion), resulting in the formation of acetoacetate and CoA. Consistent 

with this, His934 in Obc1 is conserved in other homologs among Burkholderia 

species (Fig. 19).  
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Figure 23. Obc1 activity assay. 

(A) Reaction progress curve showing the production of CoA as a function of time. 

Reaction mixtures containing 500 μM acetyl-CoA and oxaloacetate were identical to 

those of the kinetic assays, as described in Materials and Methods. Measurements 

were initiated by adding 100 nM WT Obc1 or Obc1*. However, in the five independent 

assays in the figure, only the enzyme(s) indicated were included in the assay. (B) 

Relative activity of Obc1* and its variants. For Obc1* activity, the initial velocity for 

CoA production was 72.2 μM/min (blue), as determined in panel (A), and the total 

oxalic acid produced was 347.6 μM for 5-minute reaction (red). These values were 

compared with the values obtained for each mutant. For both assays, measurements 

were performed in triplicate (n=3), with 100 nM Obc1* or its mutants, and values are 

reported as means with SE. Specifically, three independent enzyme purifications were 

performed. The activities of the mutants, such as S785A, R1066A, R1072A, were 

identical to that of Obc1*; therefore, these residues were not included in this figure. 
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Figure 24. Kinetic analysis and surface representation of Obc1. 

(A) A steady-state kinetic analysis of CoA production from Obc1* and three mutant 

enzymes. In this assay, the concentration of the C6-CoA adduct was assumed to be 

equal to that of acetyl-CoA or oxaloacetate. The regression curve was prepared using 

SigmaPlot, and the kinetic parameters of the enzymes are indicated in Table 6. (B) 

Surface representation of the Obc1 C-domain. Color codes are as follows: N-domain 

(green), cap domain (cyan), α/β hydrolase domain (gray), and catalytic Ser935 (red). 

The surface of residues is indicated in magenta if they significantly affected Obc1 

activity. Residues relatively tolerant to mutation are indicated in white. Buried residues, 

such as Phe610, Thr786, Arg856, Ser936, and Asp997, are not labeled. 
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Table 6. Kinetic parameters of Obc1* and its mutants. 

 

 kcat (sec-1) Km (μM) kcat/Km (sec-1mM-1) 

Obc1* 13.07 (0.17) 67.0 (8.5) 194.9 

R856K 0.51 (0.03) 44.2 (3.8) 11.6 

R999K 2.05 (0.14) 67.1 (9.7) 30.6 

H934A 0.95 (0.10) 74.7 (9.2) 12.7 

 

Numbers in parentheses refer to SE (n=3). Specifically, three independent 

purifications and measurements of Obc1* or mutant were performed. 
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Discussion 

 

Structure determination and in vitro functional analyses unraveled details about 

Obc1. Specifically, I found that the Obc1 C-domain exhibits ObcB-like 

function. It is unusual that functionally identical proteins have a completely 

different amino acid sequence and number of residues (i.e., approximately 600 

residues for the Obc1 C-domain vs. 176 residues for ObcB). In addition, 

sequence analyses of ObcB using BetaWrap (Bradley et al., 2001) and Phyre2 

(Kelley et al., 2015) suggested that ObcB has a β-helix structure, in which 

parallel β-strands are associated in a helical pattern. Therefore, the Obc1 C-

domain and ObcB are dissimilar in all aspects of protein features including 

sequence, length, and structure. However, a lack of structural information on 

ObcB precludes further discussion about these unusual discrepancies. 

Recent structural studies also revealed another example of a bifunctional 

enzyme. In Arabidopsis thaliana and the parasitic nematode Haemonchus 

contortus (Lee and Jez, 2013, Lee and Jez, 2014), there is a phosphobase 

methylation pathway. In A. thaliana, a bifunctional enzyme with N- and C-

terminal domains catalyzes the successive methylation of 

phosphoethanolamine to form phosphocholine. Interestingly, these reactions 

are catalyzed by two monofunctional enzymes in H. contortus, with each 

enzyme exhibiting identical catalytic activity to that of a corresponding domain 

of the A. thaliana bifunctional enzyme.  

Based on the structural and biochemical data presented here, the following 

reaction mechanism for Obc1 is proposed (Fig. 25). With high identity both in 

sequence and structure to ObcA, the Obc1 N-domain should catalyze its first 
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reaction by following the previously reported mechanism for ObcA (Fig. 16). 

In the Obc1 N-domain, two different substrates, acetyl-CoA and oxaloacetate, 

are converted into a C6-CoA adduct (Fig. 2A). Tyr326, a proposed key catalytic 

base, and other active site residues including metal-coordinating residues are 

conserved in the Obc1 N-domain (Fig. 19). Given that the C6-CoA adduct from 

the first reaction is not chemically labile and the liberation of CoA occurs in 

Obc1*-dependent catalysis (Fig. 23A), the second step should occur in the C-

domain and involve the release of three products, namely, oxalic acid, 

acetoacetate, and CoA. This second enzyme reaction requires cleavage of two 

different bonds, the C2-C3 bond and the C4-S bond in the C6-CoA adduct (Fig. 

2A). From a chemical structure perspective, C2-C3 bond cleavage accounts for 

oxalic acid production, and C4-S bond cleavage is responsible for the release 

of acetoacetate and CoA. It is highly evident that within the C-domain crevice, 

the catalytic triad is responsible for C2-C3 bond cleavage in a manner identical 

to other serine hydrolases that cleave C-C bonds between trigonal and 

tetrahedral carbon atoms (Buller and Townsend, 2013, Nardini and Dijkstra, 

1999). Specifically, given that C2 in the C6-CoA adduct is the only sp2-carbon, 

Ser935, upon activation by His1069, performs nucleophilic attack on the C2 

carbonyl carbon, forming a tetrahedral reaction intermediate (Fig. 25, steps I 

and II). The negative charge on the enolate oxygen atom of the tetrahedral 

intermediate could be stabilized by the presence of Arg856 or Arg999 (Fig. 23B 

and Table 6). Subsequent collapse of the tetrahedral intermediate by His1069 

as a proton donor cleaves the C2-C3 bond and leaves an acyl moiety covalently 

attached to Obc1 (Fig. 25, step III). The resulting acyl-Obc1 complex is 

subsequently hydrolyzed by a water molecule, leading to the release of one 
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molecule of oxalic acid (Fig. 25, steps IV and V). The two other products, 

acetoacetate and CoA, should be liberated from the remaining CoA adduct (Fig. 

25, steps II and III).  

My analyses suggest a catalytic role for His934 in the cleavage reaction of 

the C4-S bond, leading to the production of acetoacetate and CoA. First, the 

presence of a hydrogen-bonding network supports that His934 acts as a 

catalytic base during an initial stage of catalysis and later as a catalytic acid 

(Fig. 25, steps II and III). Specifically, the ND1 atom (nitrogen near Cα) in the 

His934 side chain likely forms a hydrogen bond with the main chain carbonyl 

oxygen of Phe974 (Fig. 22, B and C), allowing the NE2 atom (nitrogen far from 

Cα) to exist in a deprotonated state for a catalytic base. Furthermore, the 

binding mode of glycerol could provide a clue to that of a C6 moiety in the C6-

CoA adduct (Fig. 25, step I). If I assume that the C6-CoA adduct, whose 

structure is based on a C4-CoA adduct previously identified (Figs. 9-12), is 

bound to the active site of the Obc1 C-domain, then the C2 atom of the adduct 

should be placed toward the catalytic Ser935 residue (Fig. 25, step I). This 

placement suggests that the pro-S C1 and C2 atoms in glycerol correspond to 

the C4 and S atoms in the C6-CoA adduct, respectively. Under these structural 

circumstances, His934 is proximal to the hydroxyl group at C4 in the C6-CoA 

adduct. In fact, His934 is within 3.6 Å from the hydroxyl group at the pro-S C1 

and C2 carbons of glycerol (Fig. 22, B and C). Moreover, my kinetic analysis 

indicated a significant role for His934 in catalysis, in particular kcat, not Km 

(Table 1). Taken together, His934 could accept a proton from the C4 hydroxyl 

group of the C6-CoA adduct and then donate a proton back to the sulfur atom 

of an intermediate (Fig. 25, steps II and III), cleaving the C4-S bond and 
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producing acetoacetate and CoA. 

However, it is unknown whether cleavage of the C2-C3 and C4-S bonds in 

the C6-CoA adduct are performed in a sequential or concerted manner. In this 

study, I did not detect any mutant enzymes that liberated only one product, 

suggesting that these two bonds are likely cleaved in a concerted manner (Fig. 

23B). 

The crystal structure of Obc1 in its apo form and a glycerol-bound form 

provides the first structural insights into the second step of oxalogenesis. This 

study provides insight into an unusual enzymatic feature, the dual catalytic role 

of the Obc1 C-domain. Specifically, the C-domain has hydrolase activity 

mediated by a well-known catalytic triad, and lyase activity mediated by a 

single histidine residue. Given that the overall structural features of the Obc1 

C-domain are similar to that of α/β hydrolase containing a catalytic triad, this 

suggests that the presence of additional lyase activity is an example of divergent 

evolution. Consistent with this, oxalogenesis in Burkholderia species is 

indispensable for their survival in the stationary phase. 
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Figure 25. Proposed mechanism for C6-CoA adduct degradation in the 

active site of the Obc1 C-domain. 

It is noteworthy that the pro-S C1 and C2 atoms in glycerol could correspond to their 

positions to C4 and S atoms in the C6-CoA adduct (step I). In brief, catalytic Ser935 

performs a nucleophilic attack on the trigonal C2 atom to generate a tetrahedral 

intermediate (step II). The resulting oxyanion intermediate can be stabilized by 

positively charged Arg856 and Arg999. I further propose that His934 acts first as a base 

to deprotonate the hydroxyl group at C4, and subsequently acts as a catalytic acid to 

cleave the C4-S bond in the adduct, liberating acetoacetate and CoA (step III). The 

resulting acyl-Obc1 intermediate would be subject to hydrolysis by a water molecule, 

generating oxalic acid as a product (step IV and V). This final step is a well-known 

reaction by a catalytic triad in the α/β hydrolase fold. 

 

 

 

 

 

 

  



- 111 - 

 

 

  



112 

 

References 
 

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N et al. (2010) 

PHENIX: a comprehensive Python-based system for macromolecular structure 

solution. Acta Crystallogr D Biol Crystallogr 66, 213-221. 

Battye TG, Kontogiannis L, Johnson O, Powell HR, and Leslie AG (2011) iMOSFLM: 

a new graphical interface for diffraction-image processing with MOSFLM. Acta 

Crystallogr D Biol Crystallogr 67, 271-281. 

Bond CS (2003) TopDraw: a sketchpad for protein structure topology cartoons. 

Bioinformatics 19, 311-312. 

Bradley P, Cowen L, Menke M, King J, and Berger B (2001) BETAWRAP: successful 

prediction of parallel β-helices from primary sequence reveals an association 

with many microbial pathogens. Proc Natl Acad Sci USA 98, 14819-14824. 

Buller AR and Townsend CA (2013) Intrinsic evolutionary constraints on protease 

structure, enzyme acylation, and the identity of the catalytic triad. Proc Natl 

Acad Sci USA 110, E653-661. 

Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing 

protein chains. Acta Crystallogr D Biol Crystallogr 62, 1002-1011. 

Dandekar AA, Chugani S, and Greenberg EP (2012) Bacterial quorum sensing and 

metabolic incentives to cooperate. Science 338, 264-266. 

Darch SE, West SA, Winzer K, and Diggle SP (2012) Density-dependent fitness 

benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci USA 109, 

8259-8263. 

Diederichs K and Karplus PA (2013) Better models by discarding data? Acta 

Crystallogr D Biol Crystallogr 69, 1215-1222. 

Diggle SP, Griffin AS, Campbell GS, and West SA (2007) Cooperation and conflict in 

quorum-sensing bacterial populations. Nature 450, 411-414. 

Dutton MV, and Evans CS (1996) Oxalate production by fungi: its role in pathogenicity 

and ecology in the soil environment. Can J Microbiol 42, 881-895. 

Dyda F, Klein DC, and Hickman AB (2000) GCN5-related N-acetyltransferases: a 

structural overview. Annu Rev Biophys Biomol Struct 29, 81-103. 

Emsley P, Lohkamp B, Scott WG, and Cowtan K (2010) Features and development of 

Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501. 

Evans PR (2011) An introduction to data reduction: space-group determination, scaling 

and intensity statistics. Acta Crystallogr D Biol Crystallogr 67, 282-292. 

Eydoux C, Spinelli S, Davis TL, Walker JR, Seitova A, Dhe-Paganon S et al. (2008) 

Structure of human pancreatic lipase-related protein 2 with the lid in an open 

conformation. Biochemistry 47, 9553-9564. 

Franceschi VR and Nakata PA (2005) Calcium oxalate in plants: formation and 

function. Annu Rev Plant Biol 56, 41-71. 

Fuqua C and Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone 

signalling. Nat Rev Mol Cell Biol 3, 685-695. 

Galyov EE, Brett PJ, and DeShazer D (2010) Molecular insights into Burkholderia 

pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 64, 

495-517. 

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, and Bairoch A (2003) 



113 

 

ExPASy: The proteomics server for in-depth protein knowledge and analysis. 

Nucleic Acids Res 31, 3784-3788. 

Gerlt JA, Babbitt PC, and Rayment I (2005) Divergent evolution in the enolase 

superfamily: the interplay of mechanism and specificity. Arch Biochem Biophys 

433, 59-70. 

Goo E, An JH, Kang Y, and Hwang I (2015) Control of bacterial metabolism by quorum 

sensing. Trends Microbiol 23, 567-576. 

Goo E, Majerczyk CD, An JH, Chandler JR, Seo YS, Ham H et al. (2012) Bacterial 

quorum sensing, cooperativity, and anticipation of stationary-phase stress. Proc 

Natl Acad Sci USA 109, 19775-19780. 

Gouet P, Courcelle E, Stuart DI, and Metoz F (1999) ESPript: analysis of multiple 

sequence alignments in PostScript. Bioinformatics 15, 305-308. 

Govindasamy L, Pedersen B, Lian W, Kukar T, Gu Y, Jin S et al. (2004) Structural 

insights and functional implications of choline acetyltransferase. J Struct Biol 

148, 226-235. 

Ham JH, Melanson RA, and Rush MC (2011) Burkholderia glumae: next major 

pathogen of rice? Mol Plant Pathol 12, 329-339. 

Heilmann S, Krishna S, and Kerr B (2015) Why do bacteria regulate public goods by 

quorum sensing?—How the shapes of cost and benefit functions determine the 

form of optimal regulation. Front Microbiol 6, 767 

Holm L and Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic 

Acids Res 38, W545-549. 

Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 8, 467-475. 

Jogl G and Tong L (2003) Crystal structure of carnitine acetyltransferase and 

implications for the catalytic mechanism and fatty acid transport. Cell 112, 113-

122. 

Jones AJ and Hirst J (2013) A spectrophotometric coupled enzyme assay to measure 

the activity of succinate dehydrogenase. Anal Biochem 442, 19-23. 

Karplus PA and Diederichs K (2012) Linking crystallographic model and data quality. 

Science 336, 1030-1033. 

Keegan RM and Winn MD (2007) Automated search-model discovery and preparation 

for structure solution by molecular replacement. Acta Crystallogr D Biol 

Crystallogr 63, 447-457. 

Kelley LA, Mezulis S, Yates CM, Wass MN, and Sternberg MJ (2015) The Phyre2 web 

portal for protein modeling, prediction and analysis. Nat Protoc 10, 845-858. 

Kourist R, Jochens H, Bartsch S, Kuipers R, Padhi SK, Gall M et al. (2010) The α/β-

hydrolase fold 3DM database (ABHDB) as a tool for protein engineering. 

Chembiochem 11, 1635-1643. 

Lee SG and Jez JM (2013) Evolution of structure and mechanistic divergence in di-

domain methyltransferases from nematode phosphocholine biosynthesis. 

Structure 21, 1778-1787. 

Lee SG and Jez JM (2014) Nematode phospholipid metabolism: an example of closing 

the genome-structure-function circle. Trends Parasitol 30, 241-250. 

Leitao JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN, and Moreira LM (2010) 

Pathogenicity, virulence factors, and strategies to fight against Burkholderia 

cepacia complex pathogens and related species. Appl Microbiol Biotechnol 87, 

31-40. 



114 

 

Li HQ, Matsuda I, Fujise Y, and Ichiyama A (1999) Short-chain acyl-CoA-dependent 

production of oxalate from oxaloacetate by Burkholderia glumae, a plant 

pathogen which causes grain rot and seedling rot of rice via the oxalate 

production. J Biochem 126, 243-253. 

Miller MB and Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55, 

165-199. 

Murray IA and Shaw WV (1997) O-Acetyltransferases for chloramphenicol and other 

natural products. Antimicrob Agents Chemother 41, 1-6. 

Nakamura H, Mogi Y, Hattori H, Kita Y, Hattori D, Yoshimura A et al. (2008) 

Absorption-based highly sensitive and reproducible biochemical oxygen 

demand measurement method for seawater using salt-tolerant yeast 

Saccharomyces cerevisiae ARIF KD-003. Anal Chim Acta 620, 127-133. 

Nakata PA (2011) The oxalic acid biosynthetic activity of Burkholderia mallei is 

encoded by a single locus. Microbiol Res 166, 531-538. 

Nakata PA and He C (2010) Oxalic acid biosynthesis is encoded by an operon in 

Burkholderia glumae. FEMS Microbiol Lett 304, 177-182. 

Nardini M and Dijkstra BW (1999) α/β hydrolase fold enzymes: the family keeps 

growing. Curr Opin Struct Biol 9, 732-737. 

Otwinowski Z and Minor W (1997) Processing of X-ray diffraction data. Methods 

Enzymol 276, 307-326. 

Pai A, Tanouchi Y, and You L (2012) Optimality and robustness in quorum sensing 

(QS)-mediated regulation of a costly public good enzyme. Proc Natl Acad Sci 

USA 109, 19810-19815. 

Raychaudhuri A, Jerga A, and Tipton PA (2005) Chemical mechanism and substrate 

specificity of RhlI, an acylhomoserine lactone synthase from Pseudomonas 

aeruginosa. Biochemistry 44, 2974-2981. 

Robert X and Gouet P (2014) Deciphering key features in protein structures with the 

new ENDscript server. Nucleic Acids Res 42, W320-324. 

Sandoz KM, Mitzimberg SM, and Schuster M (2007) Social cheating in Pseudomonas 

aeruginosa quorum sensing. Proc Natl Acad Sci USA 104, 15876-15881. 

Schuster M, Sexton DJ, Diggle SP, and Greenberg EP (2013) Acyl-homoserine lactone 

quorum sensing: from evolution to application. Annu Rev Microbiol 67, 43-63. 

Terwilliger TC (2000) Maximum-likelihood density modification. Acta Crystallogr D 

Biol Crystallogr 56, 965-972. 

Terwilliger TC and Berendzen J (1999) Evaluation of macromolecular electron-density 

map quality using the correlation of local r.m.s. density. Acta Crystallogr D Biol 

Crystallogr 55, 1872-1877. 

Walter TS, Meier C, Assenberg R, Au KF, Ren J, Verma A et al. (2006) Lysine 

methylation as a routine rescue strategy for protein crystallization. Structure 14, 

1617-1622. 

Waters CM and Bassler BL (2005) Quorum sensing: cell-to-cell communication in 

bacteria. Annu Rev Cell Dev Biol 21, 319-346. 

Wiegand G and Remington SJ (1986) Citrate synthase: structure, control, and 

mechanism. Annu Rev Biophys Biophys Chem 15, 97-117. 

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR et al. (2011) 

Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol 

Crystallogr 67, 235-242. 



115 

 

Yuan H and Marmorstein R (2013) Histone acetyltransferases: Rising ancient 

counterparts to protein kinases. Biopolymers 99, 98-111. 

 

 

 

 

 

  



116 

 

Abstract in Korean 

 

Quorum sensing에 의하여 매개되는 옥살산 생합성은 Burkholderia의 

정체기 생존에 필수적인 역할을 한다. 생성된 옥살산은 배양 환경

의 pH를 유지하는 데에 중심적인 역할을 하는데, 옥살산이 생성되

지 않을 경우 아미노산 대사로 인해 생성된 암모니아의 알칼리성 

독성에 의해 전체 세균 집단이 붕괴, 사멸된다. 식물 병원성균 B. 

glumae의 경우, 두가지 효소에 의하여 옥살산이 생성된다. 첫 번째 

효소는 oxalate biosynthetic component (Obc) A로써 acetyl-CoA와 

oxaloacetate를 기질로 이용하여 tetrahedral C6-CoA 부가체를 생성한

다. 생성된 부가체는 두 번째 효소인 ObcB에 의하여 oxalic acid, 

acetoacetate, CoA로 분해된다. 흥미롭게도, B. thailandensis와 B. 

pseudomallei의 경우 이러한 두 단계의 반응이 두 효소 기능을 동시

에 가지는 Obc1에 의하여 매개된다. Obc1은 N-말단에 ObcA와 서열

과 구조가 유사한 도메인을 가지고 있으며, C-말단에 서열은 다르지

만 기능은 ObcB와 동일한 도메인을 가지고 있다. 본 학위논문에서

는 ObcA와 Obc1의 단백질 결정 구조 및 기능 분석을 통해 옥살산 

생합성의 구조적, 기능적 특성을 밝히고자 한다. 먼저 ObcA와 

Obc1의 N-말단 도메인은 (β/α)8-barrel 접힘 구조를 가지고 있으며, 

활성 부위에 금속 이온이 결합되어 있다. 반응 기작의 측면에서는 

타이로신 잔기에 의해 활성화된 oxaloacetate가 친핵제로 작용하여 

acetyl-CoA의 thioester carbonyl carbon을 공격함으로써 tetrahedral 부가

체를 형성한다. CoA가 관여되는 대부분의 tetrahedral 중간체 형성 

반응은 음전하의 축적에 의하여 중간체가 붕괴되며, 결과적으로 
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CoA moiety가 중간체로부터 해리된다. 하지만 ObcA의 경우 이러한 

중간체의 붕괴를 야기하는 general acid로 작용할 잔기가 활성부위에 

없고, 마그네슘 이온이 coordination shell을 제공하여 tetrahedral CoA 

부가체를 안정적인 결과물로 형성하고있다. Obc1의 C-말단 도메인

의 경우 catalytic triad를 가지는 α/β hydrolase로 이루어져 있다. 일반

적인 α/β hydrolase는 반응 중간체의 불안정한 음전하를 안정화 시켜

주는 “oxyanion hole”로써 HGGG motif를 가지고 있는데, Obc1은 이러

한 부분에 특이한 구조를 가지고 있다. 또한 단백질 돌연변이를 이

용한 기능 분석을 통하여 His934 잔기가 lyase 활성을 가지게 해주

는 추가적인 general acid/base로 작용함을 밝혔고, 이를 통해 

acetoacetate와 CoA의 형성 메커니즘을 제안하였다. 이러한 결과는 

세균의 옥살산 생합성을 구조적, 기능적으로 이해할 수 있는 기반

을 제공하며, 이미 단백질 삼차구조가 많이 알려진 α/β hydrolase fold

를 구성함에도 불구하고 hydrolase와 lyase 활성을 둘 다 가짐으로써, 

환경에서 살아남고 적응하기 위해 기능적 다양성을 가지게 되는 

분기진화의 한 예시를 제공한다. 

 

주요어: Quorum sensing, Public goods, Oxalate biosynthetic component, 

Oxalic acid, Acetyl-CoA, Crystal structure, Burkholderia species 
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