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Abstract 
 

Bioinformatic studies  

to identify human genomic features  

based on structural variants  

 

HyoYoung Kim 

Department of Agricultural Biotechnology 

The Graduate School 

Seoul National University 

 

Over the past few years, efforts focused on investigating the effects of copy 

number variations (CNVs) in human disease have been continuing. Genetic 

differences are attributable in part to large-scale structural variations between 

individuals. CNV is a form of structural variation as a DNA segment ≥ 1 kb in 

size when compared to a reference genome. Therefore, CNV was used to 

identify what associated with susceptibility and resistance to diseases. Genome-

wide association studies (GWAS) have been used to investigate novel candidate 

genes associated with complex traits. Many of studies have been reported the 

association between SNPs or CNVs and complex diseases. Also, several GWA 

studies have been applied to a personalized medicine. Data mining provided 

important insights into the data with complicated and huge quantity. These 

semantic networks have given researchers knowledgeable information answers 
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to complex questions through integration of the available data. Therefore, this 

thesis is to identify the genetic variation associated with liver diseases between 

Koreans, construct biological networks to understand the semantic knowledge 

about liver functions or ethnic disparities, and develop the visualization tool to 

explain a biological meaning for CNVs or SNPs.  

In chapter 1, the general background of CNV, GWAS, and biological 

network were summarized. First, for CNV, the general overview, mechanism 

sources, identification methods, various researches in human, and associations 

with complex diseases were presented. Second, for GWAS, the general 

overview, biological background, various methods, result findings, clinical 

application, and limitations were presented. Third, for biological network, the 

general overview and biological network systems were presented.   

In chapter 2, two parts (KARE1 and KARE2) were constituted as 

replication studies of GWA (genome-wide association) for hepatic biochemical 

markers AST or ALT in Korean cohorts. In KARE1, the analysis of CNVs in 

8,842 Koreans reveals thirty-nine genes associated with hepatic biochemical 

markers AST (aspartate aminotransferase) and/or ALT (alanine 

aminotransferase). I genotyped on Affymetrix Genome-Wide Human 5.0 arrays 

for all samples and identified 10,162 CNVs using HelixTree software (ver. 7.0). 

To explain the impact of CNVs on each quantitative trait (AST or ALT), 

univariate linear regression was performed. As the result, 100 CNVs were 

significant for AST and 16 were significant for ALT at the significance level of 

5%. I identified thirty-nine genes located within the significant CNV regions. 
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According to the functional annotation by using DAVID tool, the CNV-based 

genes are likely to be associated with liver diseases. In KARE2, a study of GWA 

for hepatic biomarkers was investigated in 407 Korean cohorts. Affymetrix 

Genome-Wide Human 6.0 array was genotyped for all samples and CNVs were 

identified using HelixTree software. By using univariate linear regression, 32 

and 42 CNVs showed significance for AST and ALT, respectively (p-value < 

0.05). To replication study of GWA for hepatic biomarker, CNV-based genes 

between KARE1 (AST-1885, ALT-773) and KARE2 (AST-140, ALT-172) 

were compared using NetBox software. As a result, nine genes (CIDEB, DFFA, 

PSMA3, PSMC5, PSMC6, PSMD12, PSMF1, SDC4, and SIAH1) were 

overlapped for AST, yet no overlapping genes were found for ALT. Structural 

variation analysis of CNV-based genes is useful to understand the biological 

phenotypes or diseases.  

In chapter 3, to identify knowledgeable biological meanings for complex 

big data, two biological networks were constructed on liver functions or ethnic 

disparities using BioXM software. These semantic networks contained entities 

(Gene, Disease, Pathway, Chemical, Drug, SNP, CNV, ClinicalTrials, GO, drug, 

and SomaticMutation) and relationships between two entities (Gene-GO, Gene-

Pathway, Gene-Disease, Gene-Chemical, Gene-SNP, Gene-CNV, Gene-

SomaticMutation, Pathway-Chemical, Pathway-Chemical, Pathway-Disease, 

Chemical-Drug, ClinicalTrials-Disease, and ClinicalTrials-Drug). The 

application of the semantic liver functions network using the KARE2 data are 

shown in three clusters, including four diseases, one pathway, and seven drugs. 
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Ethnic disparities network was constructed using the ethnic specific SNP-based 

genes. By eliminating the overlapped SNPs from HapMap samples, ethnic 

specific SNPs were identified and the SNP-based genes were mapped to the 

UCSC RefGene lists (ver. hg18). As a result, ethnic specific 22, 25, and 332 

genes were identified in the CEU (USA), JPT (Japan), and YRI (Africa) 

individuals, respectively. The application of ethnic disparities network showed 

interesting results in the three categories, including three diseases, one drug, 

and five pathways. The majority of these findings were consistent with the 

previous studies that an understanding of genetic variability explained ethnic 

disparities. 

In chapter 4, VCS (Visualization of CNVs or SNPs) tool was constructed 

to visualize CNVs or SNPs detected in animals such as mammals, vertebrates, 

insects, and worms. VCS can easily interpret a biological meaning from the 

numerical value of CNVs or SNPs. The VCS provides six visualization tools: 

(ⅰ) the enrichment of genome contents in CNV region; (ⅱ) the physical 

distribution of CNV or SNP on chromosomes; (ⅲ) the distribution of log2 ratio 

of CNVs with criteria of interested; (ⅳ) the number distribution of CNVs or 

SNPs per binning unit (10 kb, 100 kb, 1Mb, and 10Mb); (ⅴ) the homozygosity 

distribution of SNP genotype on chromosomes; and (ⅵ) cytomap of genes 

within CNVs or SNPs.   

By GWAS analyzing between CNVs and hepatic biochemical markers 

AST or ALT, a lot of biological meaning associated with liver diseases in 
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Korean cohorts could be obtained. Also, semantic biological networks for liver 

functions or ethnic disparities could be obtained knowledgeable findings. 

Finally, VCS tool could be achieved by interpreting a biological meaning from 

the numerical value by graphical viewing, and offered more directly insertable 

tip-top figures in study. Therefore, in this thesis, I analyzed replication study of 

GWA for hepatic biomarkers AST or ALT (Chapter 2), constructed the semantic 

biological networks for liver functions or ethnic disparities (Chapter 3), and 

developed the VCS web-tool to visualize the CNVs or SNPs (Chapter 4).  

 

 

Key words: Copy number variation, GWAS, Korean, liver, network, single 

nucleotide polymorphism. 
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General Introduction 

Genetic variations are shown by large-scale structural variants found between 

individuals. Single nucleotide polymorphisms (SNPs) or copy Number 

variations (CNVs) are DNA sequence variation compared to a reference 

genome. While SNP differs in a single nucleotide base, CNV differs about one 

more Kb in size (Wang et al. 2007b). Several studies reported that CNVs or 

SNPs are associated with phenotypic variations or genetic diseases (Freeman, 

et al., 2006; Eichler, et al., 2007). The comprehensive identification of the DNA 

sequence variations would useful the genetic and functional analysis of genome 

variations.  

Liver is a vital reddish brown organ in human body. This organ has 

various functions such as detoxification, filtration of harmful substances, and 

biochemical production for digestion (http://www.mamashealth.com/). Liver 

has several roles in glycogen storage, red blood cells decomposition, and 

hormone production (Gitzelmann et al. 1996; Pocai et al. 2006; Zhang and 

Beynen 2007). Biochemical tests for liver function are usually used to diagnose 

patients with liver diseases. Aspartate aminotransferase (AST) or alanine 

aminotransferase (ALT) is used as the most important biochemical markers to 

detect liver injuries (http://labtestsonline.org/). The AST/ALT ratio is an 

indicator for evaluating liver damages. AST/ALT < 1.0 indicates moderate liver 

disease such as nonalcoholic fatty liver disease (NAFLD) and AST/ALT > 1.0 
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indicates a severe liver disease such as chronic hepatitis or alcoholic fatty liver 

disease (http://en.wikipedia.org/).  

Tremendous efforts have been made to identify ethnic specific SNPs 

associated with human diseases (Delgado et al. 2002; Picornell et al. 2007). 

Ethnic disparities were caused by certain genetic, demographic, or 

socioeconomic factors. These ethnic disparities influence different outcomes in 

people with certain diseases (Gary et al. 2003). Therefore, genetic disparities 

cannot be ignored for its plays an important role in determining ethnic 

disparities.  

Biological network is a semantic knowledgeable network into 

biological big data and help arrive at an adequate interpretation of integrated 

biological systems (Losko and Heumann 2009). Robust and flexible biological 

networks enable researchers to ask scientific questions and answers instead of 

constructing complex biological systems (Mukherjea et al. 2005). The 

combination of data integration and visualization could provide meaningful 

insights into heterogeneous data such as gene, chemical, disease, pathway, drug, 

SNP, or CNV (Shin et al. 2012). 

Information of CNVs or SNPs consisting of numerical values is 

difficult to understand what the number means and how to interpret this value 

biologically (Popova et al. 2009). Visualization of the data is a graphic statistics 

and can help interpret biological meanings from the numerical value, even 
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though it is not an additional step necessary for the analysis (Friendly and Denis 

2008).  



1 

Chapter 1. Literature Review 
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1.1 Copy Number Variation (CNV) 
 

1.1.1 Overview of CNVs 

Copy Number Variations (CNV), a category of structural variation where the 

DNA of a genome changes, is a topic of interest in the field of genomics as it is 

a significant source of genetic and phenotypic variation in humans (Henrichsen 

et al. 2009). CNV includes various forms of DNA structural rearrangements 

such as deletions, insertions, duplication, inversion, and translocation. For 

example, the normal section on chromosome has A-B-C-D instead the variation 

section has A-B-C-C-D as a duplication “C” or A-B-D as a deletion “C” 

(http://en.wikipedia.org/). Approximately 12% of the human genome is 

composed of CNV’s and their size can range from one Kb to several Mb when 

compared to a reference genome. (Stankiewicz and Lupski 2010). This form of 

distinct genetic difference can be used to identify factors associated with 

susceptibility and resistance to diseases.  

 

1.1.2 Sources of CNVs 

CNVs may either be familial inherited or caused by de novo copy number 

mutations. CNVs can be caused by DNA structural rearrangements. Lee et al. 

(2007) proposed that template switching is the cause of some structural 

variation (Lee et al. 2007). Low copy repeats (LCRs), segmental repeat 

sequences, are susceptible to DNA rearrangements. Several studies have 
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reported that differences between copies influence the susceptibility of LCRs 

(Mills et al. 2011). CNVs influence gene expression, phenotypic variation, and 

adaptation by disrupting genes and altering gene dosage (Buckland 2003; 

Nguyen et al. 2006; Repping et al. 2006).  

 

1.1.3 Identification methods of CNVs 

CNV’s can be identified using techniques such as fluorescent in situ 

hybridization (FISH), comparative genomic hybridization, array-based 

comparative genomic hybridization (array-CGH), and SNP genotyping 

platforms (Korbel et al. 2007). Advances in next-generation sequencing (NGS) 

technologies have enabled the fine scale discovery of CNVs (Korbel et al. 2007; 

Mills et al. 2011). 

This is significant, as CNVs have been recognized to associate with 

susceptibility to phenotypic differences and specific diseases (Paudel et al. 

2013). For example, in rapidly growing Escherichia coli cells, the gene copy 

number located near the origin region of DNA sequence replications is 4-fold 

higher than at the termination of DNA replication (Atkinson et al. 2003). 

Elevation of the copy number of the salivary amylase (AMY1) gene can improve 

the protein expression level in human genome. Higher AMY1 protein levels can 

increase the digestion of high-starch foods and buffer against the negative 

effects on fitness of intestinal disease (Perry et al. 2007).  
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1.1.4 CNV researches in human 

The first discovery of genomic variation among humans was made soon after 

the Human Genome Project. Sebat et al. (2004) showed that large-scale 

rearrangements such as copy number polymorphism (CNPs) contribute to the 

human genomic variations (Sebat et al. 2004). Representational oligonucleotide 

microarray analysis (ROMA) detected 221 copy number differences (the 

average length of 465 Kb) comprising 76 unique CNPs among 20 individuals. 

70 genes within these CNPs were identified and several genes previously 

reported to be associated with human diseases (Sebat et al. 2004). 

Approximately 40% of the genome among unrelated humans typically differ 

with copy number (Kidd et al. 2008; Zhang et al. 2009). Kluck et al. (2006) 

observed de novo CNVs between identical twins. The concordance rates for 

autism in monozygotic twins are 70% in contrast to 5% in dizygotic twins 

(Klauck 2006).  

 

1.1.5 CNV roles in disease 

CNVs have been reported associated with disease susceptibility or resistance. 

Variation in the dosage of individual genes can lead to profound phenotype 

differences (Chance et al. 1993). Gene copy number can lead to DNA 

rearrangements that support growth of cancer cells or cause neurological 

disorders such as learning disability, Parkinson (Polymeropoulos et al. 1996), 

Alzheimer (Theuns et al. 2006; Brouwers et al. 2011), Autism (Weiss et al. 2008; 
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Kumar et al. 2008), Schizophrenia (Stefansson et al. 2008; Stone et al. 2008),  

Pancreatitis (Sahin-Tóth 2006), and Glomerulonephritis (Iafrate et al. 2004). 

Deletion of the COH1 gene causes recessive Cohen syndrome (Sebat et al. 

2004). The epidermal growth factor (EGFR) gene showed overexpressed copy 

number in non-small cell lung cancer (NSCLC) (Cappuzzo et al. 2005). In 

addition, a higher copies of CCL3L1 were associated with lower influence to 

HIV susceptibility (Gonzalez et al. 2005) and a low FCGR3B copy number was 

increased susceptibility to systemic lupus erythematosus (SLE) (Aitman et al. 

2006). Duplication of 15q11-q13 was found in 1-3% of humans with autism 

spectrum disorder (ASD) (Cook Jr et al. 1997). Sebat et al. (2007) showed that 

de novo CNVs were identified in 12 out of 118 patients with autism (P = 0.0005) 

(Sebat et al. 2007). However, Craddock et al. (2010) identified several false-

positive CNV differences. Although replication analyses confirmed CNVs were 

associated with complex diseases, common CNVs contribute to the genetic 

basis in causing disease (Craddock et al. 2010). 

Some functional CNVs are favored by positive selection in evolution. 

Therefore CNVs can be adaptive beneficial in some way (Sabeti et al. 2007; 

Nguyen et al. 2008). For example, human salivary amylase gene (AMY1) 

showed two diploid copies compared to chimpanzees. It is thought that this is 

an adaptation on high starch diets that increases the ability to digest and perform 

starchy foods (Perry et al. 2007). Some CNVs involve genes that influence 

normal human phenotypes such as triplication of the neuropeptide-Y4 receptor 
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(PPYR1), a gene that is directly involved in the regulation of food intake 

(Sainsbury et al. 2002).  
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1.2 Genome-wide association study (GWAS) 
 

1.2.1 Overview of GWAS 

Genome-wide association study (GWAS) is a high-throughput examination of 

common human genetic variants in different individuals to see if any variants 

are associated with complex traits. GWAS focus on associations between SNPs 

or CNVs and traits (Hardy and Singleton 2009). GWAS is typically based on 

comparison the DNA of case-control participants: patients with the disease 

(case) and disease-free people from the same population (control) (Pearson and 

Manolio 2008). If one or more alleles of a gene differ in people with a diseases, 

the SNP is said to be significantly associated with the disease. Unlike methods 

which test one or specific genetic regions, GWAS detects the entire genome. 

Therefore, the approach is not ideal for specific candidate-driven studies (Jiang 

2013).  

First successful GWAS from USA was published in March 2005. 

Klein et al. (2005) screened 96 patients with age-related macular degeneration 

(AMD) and identified two SNPs (rs380390 and rs1061170) which had altered 

allele frequency at the significance 5% level when comparing with healthy 50 

controls (Klein et al. 2005). Since then, human GWAS has examined between 

hundreds or thousands of individuals. Several studies of GWA have often 

received criticism for omitting the quality control (QC) procedures gives the 

invalid findings, but modern studies address these problems and concerns.  
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1.2.2 Background of GWAS 

Genomes between any two human may have millions of differences. Sequence 

differences are single nucleotides as well as copy number variations in the 

human genome. Any of these variations may lead to alterations traits or 

phenotypes.  

Before the introduction of GWAS, the major method of analysis was 

through the family investigation of genetic linkage. This method has proved 

highly useful for associations between gene and disorder (Hamosh et al. 2000). 

However, for complex human diseases, the results of genetic linkage and 

specific disease-susceptibility studies has been limited to reproduce (Altmüller 

et al. 2001). Alternative approach to linkage studies in families was the genetic 

association studies. This study approach asks if the one or more alleles of a 

genetic variation is found in individuals with human disease phenotypes. This 

approach for statistical power could be better than genetic linkage analysis at 

detecting small gene effects for complex disorders (Risch and Merikangas 

1996).  

 In addition to the several conceptual framework enabled the GWA 

studies. One was the Biobanks, which are stores of human biological material 

which time-consuming of collecting sufficient samples and information for 

biological study (Greely 2007). Another was the International HapMap Project, 

which had identified a majority of the common variants in the human genome 
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(Gibbs et al. 2003). The haploblock structures identified by the HapMap project 

would explain most of the variation.  

 

1.2.3 Methods of GWAS 

The most common design of GWAS is classifying individuals as the case-

control, healthy group (control) and affected by a disease (case). All samples 

are genotyped for common SNPs. The number of SNPs vary on the microarray 

technology (platforms), yet are generally one million or more markers (Bush 

and Moore 2012). After that, each of these SNPs was analyzed if the allele 

frequency is significantly differ between case and control groups. Here, the 

basic unit for effective sizes is the odds ratios (OR). The OR is a measure of 

association derived from case compared with control. If the OR is higher than 

1, the allele frequencies in the case group with a disease risk is greater than in 

the control group. A significant p-value of the odds ratio is generally calculated 

using a chi-square test. Finding ORs are different from 1 is the goal of the GWA 

study because this signify the SNP is associated with complex disease (Clarke 

et al. 2011).  

 There are several ways in the case-control approach. A common 

approach to case-control GWAS is the analysis of quantitative traits (e.g. height 

or biochemical marker concentrations). Calculations are generally done using 

bioinformatics tools such as PLINK which includes support for genetic-

analysis statistics and convenient manner in big dataset (Purcell et al. 2007). 
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However, association calculation may to accompany several variables which 

can be potentially confused the results. Gender, age, and area are common 

example of these variables. Many variations are associated with the 

geographical patterns (Novembre et al. 2008). Because of this variations 

leading to potentially confusing result, association studies must consider of the 

geographical background of participants.  

 A p-value after adjustment were calculated for all variants, and then a 

common approach is to draw a Manhattan plot. In the GWA study, this plot 

shows the minus logarithm p-values. Therefore the most significant variants 

will remarkable on the plot. The p-value of significance threshold is adjusted 

for multiple testing and varies by studies, yet generally low p-value is 

considered significant in the tested variants (Bush and Moore 2012). 

 

1.2.4 Results of GWAS 

Many of efforts have been create the comprehensive catalog of CNVs or SNPs 

identified from GWA studies (Hindorff et al. 2009). Up to the recently, 

thousands of the variants associated with the complex diseases have reported 

(Johnson and O'Donnell 2009).   

 The first successful GWA study compared 96 individuals with the age-

related macular degeneration (AMD) with 50 healthy controls. AMD is a cause 

of severe visual impairment. This study identified two significant SNPs 

(rs380390 and rs1061170) between the case-control groups. The SNPs were 
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located in the complement factor H (CFH) gene. Therefore, CFH gene can be 

the susceptibility to AMD. The meaningful findings from these GWAS have 

revitalized more functional research towards the complex diseases (Haines et 

al. 2005). Another remarkable GWA study was the Wellcome Trust Case 

Control Consortium (WTCCC) study (case: 14,000 patients with seven 

common diseases; control: 3,000 individuals) published in 2007. This study 

successfully identified many new genes associated with these diseases (Burton 

et al. 2007). Since these remarkable GWA study, two trends have been created. 

One trend has been use more larger scale samples for more reliable detection 

of risk-SNPs (Ioannidis et al. 2009). Another has been towards more concrete 

phenotypes such as blood lipids (Kathiresan et al. 2008), liver biochemical 

markers (Kim et al. 2011), or proinsulin (Strawbridge et al. 2011). A key point 

in the GWAS debates has been that most of risk-SNPs identified by GWA 

studies have smaller predictive value for complex diseases (Ku et al. 2010). 

Generally, modest effective size of GWAS tend to be with the median OR is 

1.33 per the risk allele (Hindorff et al. 2009). 

 

1.2.5 Clinical application of GWAS 

A challenge for GWA study will apply to a way the drug and diagnostic 

developments (Iadonato and Katze 2009). Several studies have investigated 

risk-SNPs improving the predictive value for complex diseases (Muehlschlegel 

et al. 2010). A problem with this approach is the small effective sizes. A small 
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effect only has a small progress of the predictive value accuracy. Therefore, an 

alternative approach is explain pathophysiology for GWA studies. One of these 

alternative approaches was identified using the genetic variation associated 

with hepatitis C virus (HCV) treatment (Ge et al. 2009). For hepatitis C, the 

GWAS has shown that risk-SNPs near the IL28B gene are associated with 

significant twofold differences in response to the hepatitis C treatment (Ge et 

al. 2009).   

Another aim of elucidating the pathophysiology has investigated the 

associations between risk variants and the expression of proximal susceptibility 

genes, the so-called expression as eQTL studies. The reason is that GWA studies 

for specific-genes improve towards target drug developments (Folkersen et al. 

2010). For this reasons, most of GWA studies encompassed comprehensive 

eQTL analysis (Bown et al. 2011; Consortium 2011).  

   

1.2.6 Limitations of GWAS 

GWAS has several important limitations that should be taken into consideration 

and controlled for through quality control (QC) and study design. There are 

common issues such as lack of well-defined case and control participants, 

insufficient sample sizes, correction for multiple testing, population 

stratification, and many of statistical tests leading to a unexpected potential of 

false-positive results (Pearson and Manolio 2008). Ignoring these matters has 

been cited as study with the GWAS methodology problems. For example, a 
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GWAS investigating 1,055 individuals with long life spans to identify SNP-

associated with longevity, was scrutinized due to a discrepancy of the 

genotyping array type between the case-control groups (Sebastiani et al. 2010). 

Therefore, the study was recanted.  

These issues of GWA studies have suffered the criticism for 

assumption that genomic variants perform a central role in explaining the 

disease heritability (Couzin-Frankel 2010). Recently, as the decreasing 

expenditure of whole genome sequencing, the approach has alternated to 

GWAS which genotyping array-based.  
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1.3 Biological network 
 

1.3.1 Overview of semantic network 

Semantic networks represent knowledgeable relations between a concept types. 

Complex Systems are used as a form for representing as computable networks. 

It is a patterns of directed or undirected graphic notation consisting of edges 

and connections (Sowa 1991). A semantic network is used when one concept 

has semantic knowledge related to another. They also consist of arcs and nodes 

which can be organized into a taxonomic hierarchy.  

 However, semantic networks difficult handle for massive number of 

concepts, and they do not identify well-performance. Also, some properties of 

knowledgeable concepts are not easily represented using a semantic network. 

There are common examples–the presence of negation, disjunction, or non-

taxonomic knowledge.  

 

1.3.2 Biological network 

There are several networks in biology such as protein-protein interactions 

(Mashaghi et al. 2004), gene regulatory (Vaquerizas et al. 2009), metabolic 

(Proulx et al. 2005), signaling, neuronal (Stephan et al. 2000), between-species 

interaction (Romanuk et al. 2010), and within-species interaction (Kasper and 

Voelkl 2009).   
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Biological network is representing of a large-scale knowledgeable 

systems. Understanding of principal organizations for biological network can 

be attain knowledgeable findings between network structure and flexible 

system (Prill et al. 2005). There are semantic networks software such as BioXM 

(http://www.biomax.com/), Biograph (http://www.biograph.be/), and 

Coremine (http://www.coremine.com/). Biograph is a data integration platform 

for biological information discovery (Liekens et al. 2011) and Coremine 

Medical is a web resource for seeking health and medicine information (de 

Leeuw et al. 2012). BioXM enables us to create a customizable knowledge base 

management for biological large amount and complex data (Maier et al. 2011).  
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This chapter consists of two parts. 

Both all parts were published in BMB reports  
as a partial fulfillment of HyoYoung Kim’s Ph.D program. 

Chapter 2. A replication study of GWA 
between CNVs and hepatic biomarkers 
AST or ALT in Korean cohorts 
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2.1 Abstract 

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are 

biochemical markers used as indicator for liver diseases and useful for 

diagnosing patients with liver disease. Copy number variation (CNV) play an 

important role in determining complex traits and is an emerging area in the 

study various diseases.  

In this study, I performed replication studies of GWA between CNVs 

and the hepatic biochemical markers AST or ALT in KARE1 (n = 8,842) and 

KARE2 (n = 407) from population-based cohorts in Korea. I genotyped the 

genome-wide variations on an Affymetrix Genome-Wide Human 5.0 array in 

KARE1 and Affymetrix 6.0 in KARE2. CNVs were identified using Helix Tree 

software. And then, to explain the impact of CNVs on each quantitative trait, 

univariate linear regression was performed. As the result, in KARE1, 100 

CNVs were significant for AST and 16 were significant for ALT (p-value < 

0.05 after Bonferroni correction). In KARE2, 32 and 42 CNVs showed 

significance for AST and ALT, respectively (p-value < 0.05). I compared CNV-

based genes between the KARE2 (AST-140, ALT-172) and KARE1 (AST-1885, 

ALT-773) using NetBox to replication studies. Results showed that nine genes 

(CIDEB, DFFA, PSMA3, PSMC5, PSMC6, PSMD12, PSMF1, SDC4, and 

SIAH1) were overlapped for AST, but no overlapped genes were found for ALT. 

Functional gene classification analysis shown four clusters (proteasome 
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pathway, Wnt signaling pathway, programmed cell death, and protein binding) 

using the Visualization and Integrated Discovery (DAVID) tool. Structural 

variation analysis of CNV-based genes is useful to understand of the biological 

phenotypes or disease.  
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2.2 Introduction 

The liver with dark reddish brown color is the second largest glandular organ 

in the human body and is located under the lib on the right side. The organ has 

many functions, including remove and detoxify harmful substances from blood, 

storage of glycogen, filtration of harmful substances such as alcohol, and 

maintenance of normal glucose concentration 

(http://www.britishlivertrust.org.uk; http://www.liverfoundation.org). The liver 

also produces urea and the majority of cholesterol in the body (about 80% of 

the body) (http://www.mamashealth.com/) (Gitzelmann et al. 1996; Pocai et al. 

2006; Zhang and Beynen 2007). Biochemical tests for liver function are 

commonly used to diagnose patients with liver disease (Sattar et al. 2004). 

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are 

biochemical markers widely used as markers for identify the physical state of 

liver or diagnosis of hepatic diseases such as fatty liver and alcoholic hepatitis 

(Bathum et al. 2001; Hanley et al. 2005). ALT is an enzyme mainly found in 

hepatocytes, and AST is another hepatocellular enzyme. The ratio of serum 

levels of AST/ALT is used as an indicator for the evaluation of hepatitis patients 

(Sheth et al. 1998). Typically, an AST/ALT ratio of less than one indicates mild 

liver disease, such as nonalcoholic fatty liver disease (NAFLD), whereas, an 

AST/ALT ratio greater than one implies severe liver disease, such as cirrhosis, 

chronic hepatitis or alcoholic fatty liver disease (Clemenz et al. 2008). Two loci 

(10q24.2 and 22q13.31) have been identified as influencing the plasma levels 
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of ALT in three European populations (Switzerland: n = 5,636, Italy: n = 1,200, 

London: n = 879) (Yuan et al. 2008). 

Over the past few years, efforts focus on investigate the effects of CNV 

in human disease have been continuing (Glessner and Hakonarson 2009; Xu et 

al. 2009; Glessner et al. 2009). Both CNV and SNP were used to identify what 

associated with susceptibility and resistance to diseases. Genetic differences are 

shown by large-scale structural variations in different individuals. Differences 

in copy number contribute to changes in gene expression. Hence, DNA copy 

number variations (CNVs) contribute to genomic variation between humans 

(Wang et al. 1998). Copy number variation (CNV) is a form of structural 

variation as a DNA segment ≥ 1 kb in size when compared to a reference 

genome assembly. Studies on genetic variation contribute to the understanding 

of individual phenotypic differences which can be manifested in drug dosage 

effects and susceptibility to disease (Estivill and Armengol 2007). Many CNVs 

in the human genome have been identified in various populations (Perry et al. 

2008; de Stahl et al. 2008). According to a CNV study from 4 populations with 

different ancestries in Asia, Africa, and Europe, CNVs accounted for ~12% of 

the genome in these populations (Redon et al. 2006). CNVs have been shown 

to comprise 17.7% of the detected variations in gene expression. Consequently, 

CNVs play an important role in determining complex traits (Stranger et al. 2007; 

Beckmann et al. 2007).  
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Genome-wide association studies (GWAS) have been used to 

investigate novel candidate genes of common diseases. Many studies on the 

association between CNVs and complex diseases in humans have been reported 

(Hastings et al. 2009). Recent GWA studies have localized common DNA 

sequence variants associated with hepatic biomarkers AST or ALR (Kim et al. 

2010), and replication of genome-side associations scans revealed common 

variants nine genes that contribute to liver diseases (Kim et al. 2011). However, 

association studies between CNV and diseases have been hindered due to 

incomplete knowledge of CNV detection criterion and lack of a reference CNV. 

Additionally, although most of the CNVs have been identified in various 

populations, the results may not directly apply to CNVs of all ethnicities (Yim 

et al. 2009). 

While many studies have examined the biology of liver disease in 

humans, few have focused on the identification of liver-associated CNVs; 

moreover, CNVs have not been identified in Koreans. I tried to identify liver-

associated CNVs in Koreans and determine their biological significance. Here, 

I studied the replication studies of GWA based on 8,842 (KARE1) and 407 

(KARE2) from population-based cohorts recruited in Korea related to hepatic 

biomarkers AST or ALT. Through a single-CNV analysis for each liver-related 

trait using univariate linear regression, I identified 100 with AST and 16 with 

ALT CNV regions in KARE1 and 32 with AST and 42 with ALT CNV regions 

in KARE2. I compared CNV-based genes in KARE1 and KARE2. Nine genes 

were overlapped for AST. This result has functional implications for CNVs 
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associated with liver function. Data obtained from the Korean Genome 

Association Study of this study provide valuable CNV-related information 

associated with liver disease.   
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2.3 Materials and Methods 
 

2.3.1 Study subjects  

To the genome-wide association (GWA) studies, the Korea Association 

Resource 1 (KARE1) and KARE2 project were established in 2007 and 2009, 

respectively. All study subjects signed an NIH (National Institute of Health)-

approved informed-consent forms.  

KARE1 data is constituted the urban Ansan (n = 5,020) and rural 

Ansung (n = 5,018) two population-based Korean cohorts. The participants 

were aged 40 to 69 (persons born during 1931 – 1963). The genomic DNA were 

isolated from peripheral blood of healthy participants. In KARE1, I chose 8,842 

chips (Ansan = 4,205, Ansung = 4,637) after quality control (QC) of genotyping 

data with high heterozygosity, high missing genotype call rate, gender 

inconsistence and individuals with cancer by Cho et al., (Cho et al. 2009). The 

mean age was 52.2 years. In KARE2, I genotyped 407 unrelated Koreans (men 

= 154, women = 253). Subject ages ranged from 35 to 80 years (mean 62.13 ± 

6.9). For CNV analysis, a 500 ng sample of genomic DNA isolated from the 

peripheral blood of each participant was measured.  

 

2.3.2 CNV discovery 

I assayed the genome-wide variations on an Affymetrix Genome-Wide Human 

5.0 array in KARE1 and Affymetrix 6.0 array in KARE2 (Affymetrix, USA). 
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CEL files containing the intensity-level values were imported into the 

HelixTree software (ver. 7.0) for the discovery of CNV (Golden Helix Inc., 

USA) (Lambert 2005). The Helix Tree analysis software reading the intensity 

data, normalizing on probe intensities against reference sets, and creating 

normalized log2 ratios. CNVs require a reference genome to be compared with 

samples. If a reference consists of imported chips run in different labs or using 

ethnicities, systematic differences represented variability. Therefore, I used the 

mean intensity value of all chips instead of other ethnic or small samples as a 

reference to minimize the variability causing chips or systemic differences as 

much as possible. The copy number analysis module (CNAM) in the HelixTree 

was used to read the intensity files, normalize intensity values against reference 

samples, import log2 ratios and segment CNV region. The analysis parameters 

included a multivariate algorithm, a moving window of 5,000 markers, a 

maximum of 100 segments/window, a minimum of 1 marker/segment, and a 

significance level of p < 0.01 for pair-wise permutations (n = 1,000). The 

multivariate algorithm segmented all samples simultaneously, making it 

possible to perform the CNV association study for all samples. 

 

2.3.3 CNV association study of liver functions 

To explain the impact of CNVs on each quantitative trait, I performed univariate 

linear regression (McMurray et al. 2004). The additive genetic model were 
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corrected for area, age, and gender in KARE1 and corrected age and gender in 

KARE2.  

     For continuous variables in KARE1, 

                              

For continuous variables in KARE2, 

                              

where   is a coefficients p-vector. For multiple corrections, significance was 

determined at the level of Bonferroni p-value < 0.05 in KARE1 and FDR p-

value of < 0.05 in KARE2. The log2 ratio of each CNV associated with 

continuous response variables was analyzed via the following univariate linear 

regression model. All statistical analyses and parsing were performed using the 

statistical software R (http://www.r-project.org/; ver. 2.9) and Python software.  

 

2.3.4 Enrichment analysis of CNV-based genes 

I assembled the genes whose entire sequences were located within the CNV 

region associated with the liver phenotypes. The genes were identified using 

the RefGene (ver. hg18) downloaded from the UCSC genome browser 

(http://genome.ucsc.edu/; ver. hg18). To the functional analysis of the genes, I 

adopted two function sets from the Database for Annotation, Visualization and 

Integrated Discovery tool (http://david.abcc.ncifcrf.gov/) including Gene 

Ontology (Harris et al. 2004) and KEGG (Kyoto Encyclopedia of Genes and 

  GenderAgeAreaCNVY 43210

  GenderAgeCNVY 3210
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Genomes) pathway (Kanehisa et al. 2002) (http://david.abcc.ncifcrf.gov/; ver. 

6.7 Beta). The GO sets include biological process (BP), molecular process (MF), 

and cellular component (CC).  Diseases associated with genes were obtained 

using OMIM (http://www.ncbi.nlm.nih.gov/omim/), the Genetic Association 

Database (http://geneticassociationdb.nih.gov/cgi-bin/index.cgi) and BioGPS 

(http://biogps.org/#goto=welcome). NetBox software 

(http://cbio.mskcc.org/tools/netbox.html) (Cerami et al. 2010) was used for 

replication study of GWA and network modules were visualized using 

Cytoscape (Shannon et al. 2003). All data were parsed using the Python 

programming (ver. 2.5).  
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2.4 Results  
 

2.4.1 Analysis of serum liver enzymes (AST or ALT) 

An association studies of CNV with disease susceptibility or dosage effect have 

become an attractive field since some CNVs were reported to be associated with 

various types of disease (Glessner and Hakonarson 2009; Glessner et al. 2009; 

Walters et al. 2010). From the KARE cohorts, I focused on identifying CNVs 

associated with hepatic biochemical markers AST or ALT in Koreans. In this 

study, the values of AST and ALT were transformed to 1/(y) and 1/square root(y) 

to approximate a normal distribution, respectively. I compared beanplots to 

show the frequency distributions of the AST or ALT in KARE1 and KARE2 

(Figure 2.1). As the results, I did not show differences in distributions between 

the two populations or between genders. Also, I computed Pearson’s correlation 

coefficients to evaluate whether AST and ALT have a conserved relationship. 

The results showed that AST has a significant positive correlation with ALT 

(correlation value of 0.73; p-value < 0.05).  
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(A) 

 

(B) 

  
 

Figure 2.1. Beanplots of the distributions of AST or ALT in KARE1 (A) 

and KARE2 (B). Thick lines denote the average values of AST or ALT.  
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2.4.2 Discovery of CNVs  

I extracted 10,162 CNVs in KARE1 and 3,046 CNVs in KARE2 using the 

multivariate segmenting option provided by HelixTree software 

(Supplementary Figure 2.1). The copy number analysis module (CNAM) is to 

create normalized log2 ratios. The CNAM module reads the Affymetrix CEL 

intensity files, normalizes the intensity values against reference samples, and 

imports the log2 ratios. The CNAM segmenting process is optimized through 

1) subdivision of the chromosomal region of markers into a moving window of 

sub-regions and 2) a permutation algorithm that validates the found cut points. 

Then, the algorithm detects CNV segment boundaries and can properly 

delineate segment boundaries with controllable sensitivity and false discovery 

rate. The multivariate algorithm segments all samples simultaneously. The 

summary of CNVs is given in Table 2.1.  

 

 

Table 2.1. Summary of significant CNVs in KARE1 and KARE2 identified in 

Korean cohorts. 

 KARE1 KARE2 

Total counts 10,162 3,046 

Average size per CNV 727.3 911.0 Kb 

Median size (range) 112 Kb (2 - 31,415 Kb) 548 Kb (1 – 24,744 Kb) 
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2.4.3 Association study between CNVs and hepatic biochemical 

markers  

For each CNV, I analyzed the impact of a single CNV for each quantitative 

phenotype using univariate linear regression. The linear model for the CNV-

trait association study was performed based on continuous value of independent 

variable (CNV log2 ratio). As the result, the positive   of AST and ALT was 

4200 and 5384, and the negative   was 6334 and 5150 in KARE1, 

respectively. In KARE2, the positive   values of AST and ALT were 1,605 

and 1,949, and the negative   values were 1,441 and 1,097, respectively. 

Univariate linear regression analysis identified significant CNVs 100 loci for 

AST and 16 loci for ALT in KARE1 and 32 loci for AST and 42 loci for ALT 

in KARE2 (Figure 2.2; Supplementary Table 2.1). Figure 2.3 shows the 

genome-wide association signals for AST and ALT on all 22 autosomes in 

Manhattan plots. The QQ plot displays for AST and ALT results for the GWAS 

(lambda=1.92 for AST, lambda=1.08 for ALT; Supplementary Figure 2.2). 

I found 39 and 228 genes completely located within significant CNV 

regions for AST or ALT (Supplementary Table 2.2). Table 2.2 summarizes the 

gene lists, beta-coefficients, and liver-associated phenotypes in KARE1.  
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Figure 2.2. Visualization of the physical distribution of significant CNV 

regions for AST or ALT in KARE1 and KARE2. 
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(A) 

(B) 

Figure 2.3. Manhattan plot shows the genome-wide association signals 

between all CNVs and AST or ALT on all 22 autosomes in KARE1 (A) and 

KARE2 (B). Association was assessed using univariate linear regression 

adjusted for gender and age. The X axis shows chromosomal locations, and the 

p-value was plotted on the Y axis using a logarithmic scale. The black dotted 

significant CNVs and the red dotted genes associated with the liver were 

identified in previously studies. 
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Table 2.2. Thirty-nine genes associated with serum liver enzymes AST or ALT. 

Trait Genea 
Βeta-

coefficient
p-value

Liver-associated 

phenotype 

Literature 

(year) 

AST NPY5R* –0.0126 7.43E-04
Dyslipidemia-caused 

fatty liver disease 

Marceau  

et al. (2010) 

 NPY1R* –0.0126 7.43E-04
Neuropeptide Y 

receptor activity 
GO 

 NAF1* –0.0126 7.43E-04 Glycoprotein process GO 

 DKK1* –0.0071 1.38E-02
Wnt signaling 

inhibitor 

Fedi et al. 

(1999) 

 CTSC* –0.0117 1.55E-02
Papillon–Lefèvre 

syndrome 

Almuneef  

et al. (2003) 

 TM7SF4* –0.0126 4.45E-02
Highest expression in 

liver 

Staege et al. 

(2001) 

 DPYS* –0.0126 4.45E-02 Dihydropyrimidinuria

Gennip et al. 

(1997); 

Nyhan 

(2005) 

 SOX14* –0.0113 4.80E-02
Lower level in adult 

liver 

Arsic et al. 

(1998) 

 MAP3K7 –0.0108 5.85E-05   

 TKTL2 –0.0126 7.43E-04   

 
ZNF280

D 
–0.0152 1.22E-03   

 TEX9 –0.0152 1.22E-03   

 MNS1 –0.0152 1.22E-03   

 
HSPC15

9 
–0.0043 1.38E-03   
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 SHC4 –0.0176 8.10E-03   

 COPS2 –0.0176 8.10E-03   

 GALK2 –0.0176 8.10E-03   

 
SECISB

P2L 
–0.0176 8.10E-03   

 CEP152 –0.0176 8.10E-03   

 EID1 –0.0176 8.10E-03   

 
SERPIN

E2 
–0.0123 1.00E-02   

 MRPL44 –0.0123 1.00E-02   

 TNP2 –0.0026 1.11E-02   

 PRM2 –0.0026 1.11E-02   

 PRM3 –0.0026 1.11E-02   

 PRM1 –0.0026 1.11E-02   

 ERGIC2 –0.01 2.62E-02   

 FAR2 –0.01 2.62E-02   

 LRP12 –0.0126 1.45E-02   

AST/ALT PTER* 0.0143 1.50E-02
Low expression in 

liver 

Hou et al. 

(1996) 

 C1QL3 0.0143 1.50E-02   

ALT 
HS3ST3

B1* 
–0.009 4.97E-02 Abundant in liver 

Lyon et al. 

(1994); 

Shworak  

et al. (1999) 

 KCNK10 0.0142 5.18E-03   

 ZC3H14 0.0142 5.18E-03   

 PTPN21 0.0142 5.18E-03   

 SPATA7 0.0142 5.18E-03   
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 EML5 0.0142 5.18E-03   

 CDRT15 –0.009 4.97E-02   

 
MGC129

16 
–0.009 4.97E-02   

a: There are 39 genes (p-value < 0.05) significantly selected for each trait;  
*: The 10 genes encompassed GO identified as liver-associated in previous 
studies are indicated by asterisks (*).  
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2.4.4 Replication study of CNV-based genes associated with AST or 

ALT  

I searched whether some genes were replicated when compared to reported 

previous study. To replication study of GWA associated with AST or ALT, I 

compared CNV-based genes between KARE1 (AST: 1,885 and ALT: 773) and 

KARE2 (AST: 140 and ALT: 172) using the NetBox software. Figure 2.4 shows 

visualized networks as determined using the Cytoscape, which is a popular 

software for visualizing complex interaction networks (Shannon et al. 2003). I 

discovered four large modules, with a network modularity score of 0.004. I 

identified nine genes (CIDEB, DFFA, PSMA3, PSMC5, PSMC6, PSMD12, 

PSMF1, SDC4, and SIAH1) were overlapped for AST (Figure 2.5). 

Unfortunately, no overlapped gene was found for ALT. Notably, seven genes 

except for CIDEB and SIAH1were not included in our gene list, but were 

identified as linker gene because significantly connected to our input gene list. 

A total of 8 genes appeared within the network modules, but SDC4 was not 

present within the network at the shortest path threshold of 2, and the linker p-

value cut-off of 0.05.  
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Figure 2.4. The four largest modules were identified with a network 

modularity score of 0.004. Linker genes, showed as diamond shape, were not 

included in the original gene list, but are significantly connected with list-

altered genes. 
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Figure 2.5. CytoMap view of nine genes associate with liver by replication 

studies of GWA. Green: the total number of genes on each chromosome. 
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2.4.5 Proteasome pathway is enriched in AST 

To probe the functional implications of structural variants, I analyzed the 

functional annotation of the nine genes included in the CNV by the single linear 

regression analysis for hepatic biochemical markers using the DAVID tool 

(Figure 2.6). Among the genes identified, four genes (PSMF1, PSMC6, 

PSMD12, and PSMA3) were enriched in the proteasome biochemical pathway 

(P = 2.20E-07). The proteasome play a role in inhibiting cytokine production 

by liver cells. A decrease of proteasome activity develops during alcoholic liver 

injury and leads to inhibition of cell death. Therefore, chronic ethanol 

consumption suppresses proteasome activity in the liver (Donohue Jr et al. 2007; 

Donohue Jr 2002). Although not detected the significant enrichment groups in 

the KEGG pathway, SIAH1 was found in the Wnt signaling pathway, which 

plays a role in liver development and regeneration (Armengol et al. 2011). 

Okabe et al. (2003) found that the expression of SIAH1 was down-regulated in 

all hepatoma cells lines examined when compared with normal liver cells by 

semiquantitative RT-PCR. The decreased expression of SIAH1 plays an 

important role in the development of hepatocellular carcinoma (HCC) (Okabe 

et al. 2003).  
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(A) 
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(B) 

 

Figure 2.6. Tree views of enriched Gene Ontology (GO) categories. 

Enriched GO categories are visualized for 39 and 9 genes found within CNVs 

associated with AST or ALT in KARE1 (A) and KARE2 (B). Numbers in 



42 

 

parentheses at the left denote the gene counts within GO groups. The terms 

identified as liver-associated in previous studies are indicated by the red 

asterisks (*).   
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2.4.6 Programmed cell death and protein binding are enriched in 

AST 

The enriched Gene Ontology terms of biological process included programmed 

cell death (DFFA, CIDEB, and SIAH1; P = 0.04; Figure 3.5). Programmed cell 

death (PCD) plays an important role in liver development (Saad et al. 2009). 

Inohara et al. (1998) identified CIDEB, which is a subunit of the DNA fragment 

factor (DFF) (Inohara et al. 1998). The CIDEB (cell death-inducing DFFA-like 

effector B) is expressed at high levels and plays an important role as a regulator 

of lipid metabolism in the liver (Li et al. 2007; Ye et al. 2009; Li 2007). All nine 

genes demonstrated enriched molecular functions, including protein binding (P 

= 0.0071). Liver disease can affect protein binding and causes impaired plasma 

protein binding of azapropazone (Blaschke; Jahnchen et al. 1981). Kojima et al. 

(1992) isolated SDC4 from a rat endothelial cell (Kojima et al. 1992). Rioux et 

al. (2002) identified SDC4 (Syndecan-4) expressed at high levels in mouse liver 

tissue by Northern blot analysis (Rioux et al. 2002). The SDC4 gene is 

comprised of 5 exons, and located in human chromosome 20q12. Table 2.3 

shows that in previous studies, all nine genes were reported to be associated 

with liver function.  
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Table 2.3. Nine genes identified in the Korean cohorts and previous studies of 

liver. 

Gene 
Liver-associated 

phenotype(s) 

Enriched 

term 
References 

CIDEB Programmed cell death GO_BP Saad et al. (2009) 

 High expression in liver  
Li et al. (2007);  

Ye et al. (2009) 

DFFA Programmed cell death GO_BP Saad et al. (2009) 

PSMA3 Proteasome KEGG 

Donohue (2002);  

Donohue et al. 

(2007) 

PSMC6 Proteasome KEGG 

Donohue (2002);  

Donohue et al. 

(2007) 

 Overexpressed in hepatocytes  Richert et al. (2006) 

PSMD12 Proteasome KEGG 

Donohue (2002);  

Donohue et al. 

(2007) 

 Overexpressed in hepatocytes  Richert et al. (2006) 

PSMF1 Proteasome KEGG 

Donohue (2002);  

Donohue et al. 

(2007) 

SDC4 Abundant in liver  Rioux et al. (2002) 

SIAH1 Wnt signaling pathway  
Armengol et al. 

(2011) 

 Programmed cell death GO_BP Saad et al. (2009) 

PSMC5 Protein binding  GO_MF 
Jahnchen et al. 

(1981) 
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2.5 Discussion  
 

An association study of CNV has been important to understand the effect of 

variations on complex diseases since some CNVs reported association with 

disease (Lee et al. 2012). In this study, I extracted 10,162 and 3,046 CNVs 

associated with hepatic biochemical markers AST or ALT in Korean cohorts. 

AST or ALT are the most common indicators of liver disease. The median size 

of CNVs was 112 kb and 547 kb in KARE1 and KARE2, respectively. This 

result was a little different to distribution size and counts of CNVs compared to 

a previous CNV study using other samples of the same KARE cohorts (Yim et 

al. 2009). It seems that because CNVs are not defining but vary criterion and 

are very diverse depending in technical sources such as platforms or references, 

and by the different statistical analysis algorithms. Especially, a knowledge on 

the association study of CNVs and diseases is still incomplete in statistical 

analysis (Lee et al. 2012). Supplementary Figure 2.3 shows the distribution of 

the number of CNVs in this study KARE1 and KARE2 compare to previously 

found CNVs in same Korean populations by Yim et al., (Yim et al. 2010). The 

average size of per CNV was 727.3 and 911.0 Kb, and the median size of CNVs 

was 112 and 548 Kb in KARE1 and KARE2, respectively. The high density 

SNP genotyping arrays have become more popular for copy number variation 

using a signal intensity measures, however there are limitations to the use of 

SNP genotyping arrays for CNV detection. Generally, SNPs in these arrays are 

not uniformly distributed across the genome. For example, SNP array 5.0 does 
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not have quality control (QC) measure while the SNP array 6.0 (Affymetrix) 

uses MAPD as a QC measure. To overcome these limitations, experimental 

validation would be the best way to confirm the result. Unfortunately, I would 

not be able to do the experimental validation. Instead of a validation, I used a 

simple alternative to decreasing variability to increase the quality of CNV calls 

from a chip. First, chips selected for CNV analysis were from a QC genotyping 

reference of the same samples by Cho et al, (2009) (Cho et al. 2009) in which 

samples with a high missing genotype call rate, high heterozygosity, gender 

inconsistencies, and those obtained from individuals who had developed any 

kind of cancer were excluded, along with related or identical individuals whose 

computed average pairwise identity-by-state value was higher than that 

estimated from first-degree relatives of Korean sib-pair samples. Second, I used 

these all chips as a reference group. If a reference was generated from chips run 

in another lab, such systematic differences inflated apparent variability. 

Therefore, using a reference generated from the same batch was a way to reduce 

chip variability. In addition, instead of using a reference or a small sample of 

references, referencing all of the samples decreased the variability because it 

used a global average value as a reference for each CNV call from a chip. 

Supplementary Figure 2.4 shows the CNV log2 ratio distributions of the 16 

significant. Some of the frequency distribution did not fit with normal 

distribution. However, CNV is independent variable so that normal distribution 

assumption is not necessary condition for the association study. 
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To detect for association between single CNV and each adjusted 

phenotype, genome-wide CNV association studies for AST and ALT have been 

performed. While univariate linear regression used to identify Single 

Nucleotide Polymorphism (SNP) (Cooper et al. 2008), little reported that apply 

single linear regression to discover CNVs. However, dingle linear regression 

model was fitted to explain the impact of single CNV regions on each 

quantitative trait.  

 I identified genes inclusive to CNV regions. Genes fully inclusive to 

a CNV may be explained liver functions by a regression model. I investigated 

the functional implications of the genes using the DAVID functional annotation 

tool (Dennis Jr et al. 2003). The results showed clustering several biochemical 

pathways and Gene Ontology (GO) annotations relevant to AST or ALT. In 

KARE1, four genes (DKK1, DPYS, HS3ST3B1, and MAP3K7) were enriched 

in 10 KEGG pathways, including heparan sulfate biosynthesis, pyrimidine and 

beta-alanine metabolism, and Wnt signaling. The HS3ST3B1 gene is involved 

in the heparan sulfate biosynthesis pathway. The HS3ST3B1 gene was found to 

be involved in the biosynthesis of heparin sulfate, which is a polysaccharide 

complex synthesized in most mammalian cells (Shworak et al. 1999). The 

3OST3B gene shows wide expression of multiple transcripts and is most 

abundant in the liver (Lyon et al. 1994). DKK1 and MAP3K7 were found to be 

involved in the Wnt signaling pathway, which plays an important role in 

developing and regenerating the liver (Armengol et al. 2011). DKK1 expression 

was down-regulated in fetal liver and inhibits Wnt signaling in mammalian 
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cells (Fedi et al. 1999). Also, glycoprotein biosynthetic and neuropeptide Y 

receptor activity showed enrichment relevant to AST and ALT. The liver 

produces the glycoprotein hormone that regulates production of bone marrow 

platelets (http://review-center.net/metabolism/liver-metabolism-pathways-and-

its-disorders/). Several glycoproteins, including fibronectin, hyalurinic, laminin, 

merosin, nidogen, and tenascin, are expressed in fibrotic livers (Kladney et al. 

2000). One such glycoprotein, GP73 (Golgi protein), is up-regulated upon 

hepatitis viral infection (Block et al. 2005). Enriched molecular functions 

involving neuropeptide Y receptor activity were shown in Figure 2.6. (A). 

Neuropeptide Y was identified in human livers where it regulates blood flow 

and secretion in the liver (Ding et al. 1991; El-Salhy 1999). Using the Genetic 

Association Database (GAD), I detected one gene associated with liver disease, 

NPY5R. Neuropeptide Y receptor Y5 (NPY5R) is known to be associated with 

dyslipidemia, a fatty liver disease. Marceau et al. (2010) showed dyslipidemia 

is an important risk factor for fatty liver disease (Marceau et al. 1999). Five 

genes (CTSC, DPYS, HS3ST3B1, PRM3, and SPATA7) were shown to be 

correlated with human disease states using OMIM. The genes annotated using 

OMIM represent nine disease phenotypes, including dihydropyrimidinuria, 

Papillon–Lefèvre syndrome (PLS), and Haim–Munk syndrome. DPYS and 

CTSC were found to be associated with dihydropyrimidinuria, a deficiency in 

dihydropy(Van Gennip et al. 1997) rimidinase (DHP), and PLS phenotypes, 

respectively. The activity of DHP, which is exclusively expressed in the liver, 

is characterized by increased excretion of dihydrothymine (Nyhan 2005) and 



49 

 

dihydrouracil . Mutations in the cathepsin C (CTSC) gene cause Haim-Munk 

syndrome and PLS, a rare autosomal-recessive disease characterized by 

juvenile periodontitis. Pyogeneic liver abscesses are well recognized 

complication of neutrophil dysfunction in PLS(Almuneef et al. 2003). Four 

genes (CTSC, DPYS, GALK2 and PTER) were found to be actively expressed 

in human liver using BioGPS (Wu et al. 2009). This is evident from gene 

expression patterns produced by the GeneAtlas U133A data sets. Further, Pter 

expression was down-regulated in mouse liver tissue (Hou et al. 1996).  

 The NetBox software is based on copy number alteration and 

sequence mutation data, and assembles altered genes. It identifies linker genes, 

connects all altered genes, and then identifies network modules and calculates 

network modularity (Cerami et al. 2010; Ding et al. 2010). Although many 

replication-analysis methods have been reported (Bax et al. 2006), none were 

appropriate for our gene-based CNV data. For replication study of GWA, I 

compared CNV-based genes between the current study and KARE1 using 

NetBox for replication-analysis. Results showed that nine genes (CIDEB, 

DFFA, PSMA3, PSMC5, PSMC6, PSMD12, PSMF1, SDC4, and SIAH1) were 

overlapped for only AST, but none were overlapped for ALT.  
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Regarding functional implications of the 9 genes, I analyzed functional 

classification using the DAVID tool. Our gene lists were clustered into 

functionally related groups. This analysis showed interesting results regarding 

CNV-based genes associated with liver. For AST trait, I identified one enriched 

gene cluster. The four genes (PSMF1, PSMC6, PSMD12, and PSMA3) in this 

cluster were enriched in the proteasome biochemical pathway, which inhibition 

cytokine production by liver cells (P = 2.20E-07), and SIAH1 was shown Wnt 

signaling pathway, which plays a role in liver development and regeneration 

(Armengol et al. 2011). The decrease of proteasome activity causes alcoholic 

liver injury and inhibits liver cell death. Therefore, chronic ethanol 

consumption suppressed proteasome activity in the liver (Donohue Jr et al. 

2007; Donohue Jr 2002). Richert et al. (2006) reported that PSMC6 (ATPase 

activity subunit) and PSMD12 (a non-ATPase subunit) were significantly 

overexpressed in human hepatocytes (Richert et al. 2006).  

The enriched Gene Ontology clusters were programmed cell death 

(DFFA, CIDEB and SIAH1; P = 0.04) and protein binding (all 9 genes; P = 

0.0071). The PSMC6 and PSMD12 genes encode a 403 and 397 amino-acid 

protein, and are located on chromosome 14q22.1 and 17q24.2, respectively. 

Okabe et al. (2003) found the expression of SIAH1 was down-regulated in all 

hepatoma cells lines. The decreased expression of SIAH1 plays an important 

role in the development of hepatocellular carcinoma (Okabe et al. 2003).  

In conclusion, I investigated CNVs associated with the liver biomarkers 

AST and ALT in 407 unrelated Koreans using the Affymetrix Genome-Wide 
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6.0 array. Four genes (PSMF1, PSMC6, PSMD12, and PSMA3) are involved in 

the proteasome biochemical pathway, and SIAH1 was shown to be active in the 

Wnt signaling pathway. The 3 genes (DFFA, CIDEB, and SIAH1) were active 

in programmed cell death, and all 9 genes showed significant enrichment in 

protein binding, based on Gene Ontology. The enrichment of these genes 

suggests susceptibility or resistance mechanisms for liver disease. Analysis of 

specific traits based on genes with CNVs were influenced by the gene 

interactions involved in different processes associated with liver. Overall, our 

CNV-based genes identified in this study will provide a valuable resource for 

further investigations of liver diseases. Additionally, our results require 

validation for candidate genes using quantitative PCR (qPCR).  
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This chapter consists of two parts. 

The liver function network part was published in Molecular and Cellular Toxicology  
as a partial fulfillment of HyoYoung Kim’s Ph.D program. 

The ethnic disparities network part was published in Genomics & Informatics  
as a partial fulfillment of HyoYoung Kim’s Ph.D program. 

Chapter 3. Biological networks to identify 
knowledgeable meanings for liver 
functions or ethnic disparities 
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3.1 Abstract  
 

A semantic network is needed for in-depth understanding of the impacts of 

SNPs, because phenotypes are modulated by complex networks including 

biochemical and physiological pathways. Copy number variations (CNVs) and 

single nucleotide polymorphisms (SNPs) have been emerging out of the efforts 

to research about human health, complex diseases, and ethnic disparities.  

In this study, I focused on constructing semantic networks for liver 

functions or ethnic disparities using the knowledge integration BioXM software. 

Entities for the network represented by “Gene”, “Pathway”, “Disease”, 

“Chemical”, “Drug”, “ClinicalTrials”, “CNV”, “SNP”, “SomaticMutation”, 

and relationships between entity-entity were obtained such as “Gene-SNP”, 

“Gene-Disease”, “Gene-Chemical”, “Gene-Pathway”, “Gene-GO”, “Gene-

SNP”, “Gene-CNV”, “Gene-SomaticMutation”, “Pathway-Disease”, 

“Pathway-Chemical”, “ClinicalTrials-Disease”, “ClinicalTrials-Drug”, 

“Disease-Chemical”, “Chemical-Drug”, and “Disease-Chemical-Drug” 

through curation. To evaluate the two biological networks, KARE2 and 

ethnicity specific SNPs data were applied to liver functions or ethnic disparities 

networks, respectively. KARE2 data were explained in chapter 2. Ethnic 

specific SNPs were identified by eliminating overlapped SNPs from the 

HapMap samples, and the ethnic specific SNPs were mapped to the UCSC 

RefGene lists (ver. hg18). Application of liver diseases network using KARE2 

data was shown three clusters, including four diseases (“Hepatocellular 
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carcinoma”, “Liver neoplasm”, “Liver cell adenoma”, and “Drug-induced liver 

injury”), one pathway (“Hepatitis C pathway”), and seven drugs 

(“Acetaminophen”, “Chlormezanone”, “Stavudine”, “Enflurane”, “isoniazid”, 

“Mebendazole”, and “Nitisinone”). The semantic findings for ethnic disparities 

network showed interesting results in the three categories, including three 

diseases (“AIDS-Associated Nephropathy”, “Hypertension”, and “Pelvic 

Infection”), one drug ("Methylphenidate"), and five pathways ("Hemostasis”, 

“Systemic lupus erythematosus”, “Prostate cancer”, “Hepatitis C virus”, and 

“Rheumatoid arthritis”). 

I found biological implications for liver functions or ethnic disparities 

using the semantic networks, and the majority of our findings was consistent 

with the previous studies that an understanding of genetic variability explained 

liver functions or ethnic disparities. 
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3.2 Introduction  
 

Data mining is provide important insights into the data with complicated and 

huge quantity. Semantic modeling has gained attentions as a powerful tool for 

organizing and integrating biological big data (McCray and Nelson 1995).  

Semantic technology is needed to provide the knowledge generation helping to 

gain an adequate interpretation of integrated biological systems (Losko and 

Heumann 2009). Theses semantic network have given researcher aids to 

semantic information answer about complex questions through integration of 

the available data (Shin et al. 2012). Recent advances in ontology development, 

like the semantic modeling, are considered to contribute to the next-generation 

approach by enabling the researcher to actually ask scientific questions instead 

of constructing complicated databases for scientific questions and answers 

(Mukherjea et al. 2005). This combination of data integration and visualization 

could provide important insights into heterogeneous data on millions of genes, 

chemical compounds, diseases and pathways (Kim et al. 2013; Kim et al. 2014).  

 To model a semantic network-modeling, the BioXM software is a 

customizable knowledge management program for scientific big data, and the 

latest solution is designed to provide meaningful interactions through graphical 

browsing (Maier et al. 2011). Through an advanced query builder, the 

knowledge consisting of many different and connected queries is flexibly 

examined. In this way, models for a research project can be constructed and 

extended effectively. Many data mining studies and software developments 
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have been advanced various fields, but there are relatively few studies have 

focused on data mining about liver diseases or ethnicity disparities.  

 In the past few years, enormous efforts have been made to investigate 

the role of SNPs or CNVs in health and disease (McCarroll and Altshuler 2007). 

Differences of copy number between individuals contribute to alter in 

expression of genes sensitive to a disease susceptibility or dosage effect (Redon 

et al. 2006). GWA studies of SNPs or CNVs are active and fast studying to 

discover the genetic basis of common complex diseases such as cancer, 

cardiovascular disorder, and autism (Zhang et al. 2010). Gerber et al. (2012) 

identified rs6983267 variant was associated with colorectal cancer at a 

significant genome-wide level (Gerber et al. 2012). Peters et al. (2012) found 

eight SNP-based genes (SMAD7, GREM1, EIF3H, 11q23, BMP2, BMP4, 

CDH1, and MYC) to be associated with colorectal cancer using replication 

GWA study (Peters et al. 2012).  

 To investigate the biological knowledgeable findings about liver 

functions or ethnic disparities, in the current study, I constructed semantic 

knowledgeable networks. I expect that this semantic modeling-based studies 

will provide valuable information on CNVs associated with liver functions or 

ethnic specific SNP-based genes, and strongly affects useful knowledge in liver 

functions or ethnic disparities.  
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3.3 Materials and Methods 
 

3.3.1 Semantic networks for liver functions or ethnic disparities 

datasets  

I constructed semantic networks in order to a diverse interactions for human 

liver functions or ethnic disparities using BioXM Knowledge Management 

Environment software, which efficiently knowledge manages, such as complex 

scientific big data (ver. 2.2) (Maier et al. 2011). The BioXM enable to create 

customizable knowledge base management for biological large amount and 

complex data. The modeling provides semantic networks with the useful 

knowledgeable relationship information between participating entities. The 

semantic networks consisted of entities including “Gene (Davis et al. 2009)”, 

“Pathway (Davis et al. 2009)”, “Disease (Davis et al. 2009)”, “Chemical (Davis 

et al. 2009)”, “Drug (Wishart et al. 2006)”, “SNP (Karolchik et al. 2003)” and 

“ClinicalTrials (http://www.clinicaltrials.gov)”, and relations including 

“Pathway-Gene”, “Disease-Pathway”, “Disease-Chemical”, “Gene-Disease”, 

“Gene-Chemical”, “SNP-Gene”, “Chemical-Pathway”, “Chemical-Drug”, 

“ClinicalTrials-Disease”, and “Drug-ClinicalTrials”. Semantic network 

instantly provides semantic objects as well as the connection information 

between participating objects. I generalized this complex semantic network of 

detecting entity and connection for the answer to complex questions. Therefore 

this semantic integration for liver function data enables us to create new 
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knowledge networks with flexible workflow modeling. Conversion of all data 

to entity input format was parsed using the Python software and R package.  

 

3.3.2 Study subjects for ethnic disparities network 

I downloaded the single nucleotide polymorphisms (SNPs) data from 

Haplotype Map (HapMap) phase 3 (http://www.hapmap.org) for CEU (Utah 

residents with Northern and Western European ancestry), JPT (Japanese in 

Tokyo, Japan), and YRI (Yoruba in Ibadan, Nigeria). I focused on the gene-

based SNPs associations in the three ethnicities because ethnicity is a highly 

heritable polygenic quantitative trait of biomedical importance. Ethnicity-

specific SNPs were obtained by eliminating common SNPs. 

 

3.3.3 Enrichment analysis for SNP-based gene associated with ethnic 

disparities 

Ethnic specific SNPs were mapped to genes from the UCSC RefGene 

(http://genome.ucsc.edu/; ver.hg18). For the mapped genes, gene set 

enrichment analysis (GSEA) was performed using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) tool 

(http://david.abcc.ncifcrf.gov/; ver. 6.7) (Dennis Jr et al. 2003) with KEGG 

pathway and Gene Ontology (GO) terms, including biological process (BP), 

cellular component (CC), and molecular function (MF) 
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(http://www.geneontology.org/). The p-values were calculated for the 

probability of getting a set of genes within a given GO group.  
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3.4 Results  
 

3.4.1 Semantic networks for liver functions or ethnic disparities 

I constructed two semantic networks in order to analyze the knowledgeable 

findings for liver functions or ethnic disparities. Overall, network entities were 

used such as “Gene”, “Pathway”, “Disease”, “Chemical”, “Drug”, 

“ClinicalTrials”, and “SNP”, and pairwise relationships between entity-entity 

were curated as “Gene-Pathway”, “Gene-Disease”, “Gene-Chemical”, 

“Disease-Chemical”, “Disease-Pathway”, “Chemical-Pathway”, “Chemical-

Drug”, “SNP-Gene”, “ClinicalTrials-Drug”, and “ClinicalTrials-Disease”. 

Table 3.1 summaries of the source, information, and roles of the entities and 

Table 3.2 summaries of entity and relation information such as source DB and 

records. Gene entity was consisted of information, including Gene ID, NCBI 

Accession, position, curated integrating from the UCSC Human Genome 

Browser and the Comparative Toxicogenomics Database (CTD). Entities, 

including “Pathway”, “Chemical”, and “Disease” were collected from the CTD, 

which is a public database to promote the understanding of the interaction of 

genes, chemical compounds, and disease networks in human health. Drug was 

provided information for name, description, CAS number, indication, 

pharmacology, mechanism of action, toxicity, biotransformation, and 

absorption, brands from DrugBank (Wishart et al. 2008), which provides 

detailed drug action information. SNP was mapped against 1000 Genomes 

(Overbeek et al. 2005), and CNV was mapped against TCGA (Higgins et al. 
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2007). After that, to promote understanding about the mechanism of entities, 

the relations between two entities such as Gene-Pathway, Gene-Disease, Gene-

Chemical, Disease-Chemical, Disease-Pathway, and Chemical-Pathway 

associations were curated against from the CTD. In particular, relation data with 

unknown interaction such as Chemical-Drug, Gene-SNP, Gene-CNV, Gene-GO, 

Gene-SomaticMutation, ClinicalTrials-Disease, and ClinicalTrials-Drug was 

parsed using the Python software. Therefore, curated associations are identified, 

and users helpful improve understanding about biological mechanisms. Figure 

3.1 show that the scheme of semantic data integration model for human liver 

diseases or ethnic disparities is dynamic and flexible. Hierarchy structure is 

where the parent can have one child, while in Directed Acyclic Graph (DAG) 

networks, like BioXM is the parent can be has more than one child. For example, 

Gene A is associated with whether Chemical B or Pathway C. Also, Gene A is 

associated with Drug C, because Gene A is a curated interaction with Disease 

B, and Disease B is a curated association with Drug C.   
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Table 3.1. Summaries of the source, information, and roles of the entities.  

Entity Source Information Roles 

Gene 

Ontology 

(GO) 

www.geneontology.

org 

Offer the 

organizational 

functions and 

roles of gene(s) 

Identify the 

similarity and/or the 

functional 

classification of 

genes 

Disease 

Ontology 

(DO) 

disease-

ontology.org 

Offer the 

classification 

system about 

various diseases

Identify similar 

and/or the functional 

classification of 

diseases 

Gene genome.ucsc.edu Offer the in 

silico PCR, Blat, 

and information 

associated with 

genome 

Identify the location 

information of 

human genes (ver. 

hg 19) 

SNP/ 

CNV 

www.1000genomes

.org 

Offer SNPs 

and/or full 

genome 

sequence of the 

thousands 

human 

Identify the location 

and information of 

SNPs in 1,000 

individuals 

Cancer cancergenome.nih. 

gov 

Offer the 

information 

about Cancer 

genomics 

Identify the 

information of 

CNVs associated 

with cancers 

Chemical/

Pathway/ 

ctdbase.org Offer the 

correlation 

association of 

Identify the 

correlation 

association of 
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Disease Chemical, Gene, 

Disease, and 

Pathway 

Chemical, Gene, 

Disease, and 

Pathway 

Clinical 

Trials 

www.clinicaltrials.

gov 

Offer the 

information of 

drugs and 

clinical trials 

used to disease 

treatment 

Identify the 

correlation 

association of 

Disease and Drug 

Drug www.drugbank.ca Offer the detail 

information 

associated with 

drugs 

Identify the 

correlation 

association of Drug 

and Chemical 

Somatic 

Mutation 

www.sanger.ac.uk Offer the 

information of 

Somatic 

mutation 

Identify the 

correlation 

association between 

Disease and Gene 

associated with 

Somatic mutation 
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Table 3.2. Summaries of integrated data sets. 

Entity Source DB Records Relation Records 

Gene 46,354 

Gene-

Disease, 
18,391,755 

Gene-

Pathway, 
62,057 

Gene-

Chemical 
308,405 

Somatic 

Mutation 
 

242,217

Somatic 

Mutation-

Gene 

32,695 

GO 
 

36855 GO-Gene 185,929 

Pathway 
 

362 

Pathway-

Disease 
43,139 

Pathway-

Chemical 
196.073 

Disease 
 

9,647 
Disease-

Chemical 
401,145 

Chemical 153,021
Chemical-

Drug 
1,702 

Clinical 

Trials  

1,273 
ClinicalTrials

-Disease 
1,210 

Drug 
 

6,712 
Drug-

ClinicalTrials
1,419 

CNV 
 

21,591 CNV-Gene 31,740 

SNP 
 

154,84 SNP-Gene 37,060 

Total   518,032 Total 19,498,452 
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Figure 3.1. Scheme of semantic data integration model for human liver 

functions. The color box represents entities with description (white box), such 

as gene, chemical, pathway, disease, drug, GO, CNV, and SNP. The black 

arrows indicated the relations between two entities such as Gene-GO, Gene-

Pathway, Gene-Disease, Gene-Chemical, Gene-SNP, Gene-CNV, Gene-

SomaticMutation, Pathway-Chemical, Pathway-Disease, Chemical-Drug, 

ClinicalTrials-Disease, ClinicalTrials-Drug.  
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3.4.2 Semantic findings using liver functions network 

Using the semantically integrated liver function datasets, I analyzed the 

functional implications of CNV-based genes for hepatic biomarkers AST or 

ALT using KARE2 data. As the result, the genes were showed interactions with 

four diseases (hepatocellular carcinoma, liver neoplasm, liver cell adenoma, 

and drug-induced liver injury), one pathway (hepatitis C pathway), and seven 

drugs (acetaminophen, chlormezanone, stavudine, enflurane, isoniazid, 

mebendazole, and nitisinone).  

Hepatocellular Carcinoma is a primary malignant liver neoplasm. It is 

the six most common cancer and the third leading cause of cancer death in the 

world (Taniguchi et al. 2002). Liver Neoplasms is an another name for 

hepatocellular carcinoma (Liu et al. 2011). Liver Cell Adenoma is a 

hepatocellular benign epithelial tumor (Zucman-Rossi 2011). It occur most 

often in women who take higher dose of estrogen hormone pills. Since 

symptoms were generally not observed in patients, most was never detected. 

When discovered a large adenoma, it is surgically removed 

(http://www.liverfoundation.org). Drug-Induced Liver Injury (DILI) is known 

as hepatotoxicity. It caused by drugs agents and reactions, and more than 1000 

drugs have been associated with significant hepatic injury (Davern 2012). DILI 

is classified into intrinsic and idiosyncratic types; intrinsic DILI is dose 

dependent whereas idiosyncratic DILI is not dose-related (Björnsson and 

Chalasani 2010).  
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Supplementary Table 3.1 summaries four diseases and one pathway 

associated with hepatic biomarkers AST or ALT. Two genes (IRF9 and OAS2) 

were revealed hepatitis C pathway (KEGG:05160). Hepatitis C is a hepatitis C 

virus (HCV)-associated liver disease. HCV causes the liver to prevents its 

functions from working well, and is a main risk factor for hepatocellular 

carcinoma (Farazi and DePinho 2006). About 25% of people with HCV fully 

recover within six months, but about 75% of HCV-infected people develop 

chronic HCV, and chronic HCV can lead to cirrhosis, liver cancer, and liver 

injury (Kampstra 2008). Most acute or chronic HCV-infected people have no 

symptoms, but can occur symptoms such as tiredness, dark urine, itchy skin, 

poor appetite, abdominal pain, muscle soreness, and jaundice (Warrell and 

Anderson 2014). Treating for acute HCV was recommended rest, drinking large 

amount of fluids, eating healthy food, and avoiding alcohol. Patients with 

chronic HCV was treated with taking two oral medicines boceprevir and 

telaprevir, protease inhibitors that binds to the NS3 active site (Steinkühler et 

al. 1998). 

Drug is very clinically important cause of liver injury, and many drugs 

have been reported to cause liver injury (Lee 2003). Gene-Drug interaction was 

established on the semantic integrated human liver disease datasets. Gene A is 

associated with drug D because gene A has a curated interaction with disease 

B, and disease B has a curated association with chemical C, and chemical C has 

a curated association with drug D. By smart query wizards, seven drugs 

(acetaminophen, chlormezanone, stavudine, enflurane, isoniazid, mebendazole, 
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and nitisinone) were associated with AST and ALT (Figure 3.2; Table 3.3). 

Acetaminophen (APAP) is metabolized primarily in the liver, and APAP-

overdose is the predominent cause of hepatic injury (Davidson and Eastham 

1966). Stavudine is an antiviral medication that active against human 

immunodeficiency virus. It can cause severe or often life-threatening effects on 

liver, and can increase risk of liver damage while taking it 

(http://www.drugs.com/mtm/stavudine.html). Isoniazid is an antibiotic, which 

prevents tuberculous bacteria (http://www.drugs.com/mtm/isoniazid.html). 

Mebendazole is an anti-worm medication and used for prevents infections of 

such as pinworm (Kullai Reddy Ulavapalli et al. 2011), whipworm (Miller et 

al. 1974), roundworm (Lubis 2008), and hookworm (De Clercq et al. 1997). 

Nitisinone is used to treat hereditary tyrosinemia type 1. It keeps causing harm 

to liver tissue, and its symptom is liver failure 

(http://www.drugs.com/mtm/nitisinone.html).  
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(A) 

(B) 

 

Figure 3.2. Query wizards: Find drugs associated with liver disease (A). Drug 

selected using CNV-based genes associated with liver disease (B). For example, 

Drug DB00316 (red) is influenced by Chemical MESH:D000082 (blue), and 

MESH:D000082 is caused by diseases MESH:D018248, MESH:D006528, 
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MESH:D056486, MESH:D008114 (green), and 4 diseases is associated with 

genes (yellow) such as 84419, 38115, 123591, and 89927.  
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Table 3.3. Seven drugs related to hepatic biochemical markers ALT or AST. 

Drug name 
Accession 
Number 

Structure
Chemical 
Formula

Toxicity 

Acetaminophen DB00316 C8H9NO2 

Acetaminophen 

is metabolized 

primarily in the 

liver. 

Chlormezanone DB01178 
C11H12Cl

NO3S 

Symptoms of 

overdose 

include liver 

damage. 

Stavudine DB00649 
C10H12N2

O4 

Side effects 

include severe 

liver 

enlargement, 

inflammation of 

the liver, and 

liver failure. 

Enflurane DB00228 
C3H2ClF5

O 

Symptoms of 

chronic 

overdose 

include liver 

dysfunction. 

Isoniazid DB00951 C6H7N3O 

Adverse 

reactions 

include 

abnormal liver 

function tests. 



72 

 

Mebendazole DB00643 
C16H13N3

O3 

Symptoms of 

overdose 

include elevated 

liver enzymes. 

Nitisinone DB00348 
C14H10F3

NO5 

Side effects 

include hepatic 

and liver failure. 
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3.4.3 Discovery of ethnic specific SNP-based genes 

I identified ethnic specific SNPs by eliminating the overlapped SNPs from the 

HapMap samples (CEU, JPT, and YRI), and mapped the SNPs positions to the 

UCSC RefGene lists. As the result, 22, 25, and 332 genes were identified in the 

CEU, JPT, and YRI individuals, respectively (Figure 3.3; Supplementary Table 

3.2). Comparison of the three sets showed that YRI individuals had a biased 

order of SNP-based genes. This result was a consensus among previous 

evolutionary findings. CEU and JPT belong to the same cluster, together with 

Amerindians and Australopapuanr, while YRI belongs to a separate cluster 

showing the first split between Africans and non-Africans (Nei and 

Roychoudhury 1993; Prugnolle et al. 2005). African populations subdivided 

from other sub-Saharan African populations, and a small subset of this 

population migrated out of Africa in the past 100,000 years. African and non-

African populations divided in the past 40,000 years. Phylogenetic analysis of 

Y chromosomal haplotypes, mtDNA, and autosomes are indicative of the 

longest history of population subdivision in Africa. Africans are the most 

ancestral population in human and have fewer sites in linkage disequilibrium 

(LD), compared with non-African populations (Tishkoff and Williams 2002). 
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Figure 3.3. Visualization of the physical location for the ethnic specific 

genes from HapMap samples (CEU: red, JPT: blue, and YRI: green). The 

horizontal axis is the genomic location and the vertical axis is the number of 

chromosomes. The colored figure shows a total number of ethnicity-specific 

SNPs on the chromosome. 
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 To explore the meaningful biological information of structural 

variations, I analyzed gene set enrichment analysis (GSEA) for the SNP-based 

genes using the GO categories (biological process (BP), cellular component 

(CC), and molecular function (MF)) in DAVID tool. The significantly 

categorized functions (p-value < 0.01) of SNP-based genes for YRI are shown 

as pie charts, but none was significantly enriched for CEU and JPT. Six groups 

of BP and four groups of MF had with the significant enrichment score have 

ranges of 1.67~4.85 and 1.9-5.05, respectively (Supplementary Figure 3.1). The 

top pie chart in biological process presents G-protein coupled receptor protein 

signaling pathway, including chemotaxis, and defense response to bacterium 

(Figure 3.4. (A)). In the enriched region, 8% of BP was chemotaxis 

(GO:0006935) with an enrichment score of 3.88. Chemotaxis contributes to 

enhancement of disease aggressiveness in African-Americans (Martin et al. 

2009). The molecular functions that were significantly enriched were G-protein 

coupled receptor activity, binding olfactory receptor activity, and 

transmembrane receptor activity (Figure 3.4. (B)). Enriched functions in 

cellular components were keratin filament (GO:0045095) with an enrichment 

score of 5.86, which contained the KRTAP gene family (KRTAP12-3, 

KRTAP4-11, KRT14, KRTAP4-4, KRTAP9-8, KRTAP10-7, and KRTAP10-8). 

KRTAP family genes that are up-regulated in white hair than in black hair by a 

microarray analysis. Immunoreactivity for KRTP genes in white hair follicles 

was increased compared with black hair. Therefore, Choi et al. (2011) 
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suggested that hair greying hair, a sign of ageing, is associated with hair growth 

rate (Choi et al. 2011).  

 

 

 
 

Figure 3.4. Gene Ontology enrichment analysis for YRI-specific SNP-

based genes. (A) Biological Process and (B) Molecular Function.  
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3.4.4 Semantic findings using ethnic disparities 

To show the biological knowledgeable diseases or drugs associated with ethnic 

disparities, I curated “SNP-Gene-Disease-Chemical-Drug” interactions in the 

ethnic disparities network. Figure 3.5 shows the Venn diagrams of the number 

of disease, drug, and pathway associated with ethnic disparities (Supplementary 

Table 3.3). Using these semantic “Gene-Disease” networks, I analyzed the 

functional implications of ethnic variants. There were 123 diseases associated 

with ethnic specific SNPs in common populations, 3 in CEU-specific, and 46 

in YRI-specific, but JPT had no specified disparity between different ethnic 

populations (Figure 3.5. (C)).  

Table 3.4 summaries of the functions associated with ethnic disparities in 

previous studies. Three diseases associated with CEU-specific SNPs were 

shown as Pantom Limb (MESH:D010591), Trochlear Nerve Diseases 

(MESH:D020432) and Vulvitis (MESH:D014847), while diseases associated 

with YRI-specific SNPs were observed such as AIDS-associated Nephropathy, 

hypertension, primary amyloidosis and pelvic infection. By applying the “SNP-

Gene-Disease-Chemical-Drug” modeling, 2 and 14 drugs were revealed with 

CEU-specific and YRI-specific groups, but JPT-specific drugs had no results 

(Figure 3.5. (B)). Analysis using the semantic modeling for ethnicity-specific 

SNPs identified 5, 7, and 100 CEU-specific, JPT-specific and YRI-specific 

biochemical pathways, respectively (Figure 3.5 (A)). In the current study, the 

pathways shared between all populations were followed by signal transduction 

(REACT:111102), olfactory transduction (KEGG:04740), and metabolic 



78 

 

pathways (KEGG:01100). Theses pathways were reported the common 

disease-pathway interactions in previous studies.  

 

 

 

Figure 3.5. The Venn diagrams of ethnic disparities for pathways (A), 

drugs (B), and diseases (C) between CEU, JPT, and YRI.  
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Table 3.4. Summaries of the three diseases, one drug, and five pathways 

associated with the ethnic disparities in previous studies. 

 Name ID Definition 

Disease 

AIDS-Associated 
Nephropathy 

MESH:D016263 

Renal syndrome in 
human 
immunodeficiency 
virus-infected patients 
characterized by 
nephrotic syndrome. 

Hypertension MESH:D006973 
Persistently high 
systemic arterial blood 
pressure. 

Pelvic Infection MESH:D034161 
Infection involving the 
tissues or organs in the 
pelvic. 

Drug 
 

Methylphenidate 
 

DB00422 
 

For use as an integral 
part of a total 
treatment program 
which typically 
includes other 
remedial measures for 
a stabilizing effect in 
children with a 
behavioral syndrome 
characterized by the 
following 
inappropriate 
symptoms. 

Pathway 

Hemostasis 
REACT:604, REACT:82403, 
REACT:82812, REACT:85674, 
REACT:89750, REACT:92318 

Systemic lupus 
erythematosus 

KEGG:05322 

A prototypic 
autoimmune disease 
characterised by the 
production of IgG 
autoantibodies. 

Prostate cancer KEGG:05215 
A major health 
problem in Western 
countries.  

Hepatitis C  KEGG:05160 
A major cause of 
chronic liver disease.  
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Rheumatoid 
arthritis 

KEGG:05323 

A chronic autoimmune 
joint disease where 
persistent 
inflammation affects 
bone remodeling 
leading to progressive 
bone destruction. 
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3.5 Discussion  
 

As reported an important role of structural variations, CNVs and SNPs have 

become a more attractive field (Lee et al. 2012). Differences of copy number 

between individuals contribute to alter in expression of genes sensitive to a 

disease susceptibility or dosage effect (Redon et al. 2006). Liver function test 

is blood tests to evaluate about patient's liver state (Thapa and Walia 2007). 

Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) are an 

important biochemical markers for evaluating of inflammation degree about 

liver injury (Ruhl and Everhart 2012). Therefore, I focused on constructing on 

liver functions or ethnic disparities.  

 Semantic biological network is an emerging method for 

comprehensively understanding of the complicated biological processes and 

spacious networks (Losko and Heumann 2009). The continuous production of 

increasingly large-scale data in biology field needs for better visualizations of 

complex and biological big data. I constructed semantic networks for liver 

functions or ethnic disparities using BioXM Knowledge Management 

Environment software (http://www.biomax.com). The software efficiently 

modeled such complex and metadata study, and enables researchers to create 

knowledgeable networks with flexible workflows for handling big data (Losko 

et al. 2006). This semantic biological networks provides comprehensive and 

easy to use resource. Also it enables the retrieval of relationship networks such 

as Gene-GO, Gene-Pathway, Gene-Disease, Gene-Chemical, Gene-SNP, Gene-
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CNV, Gene-SomaticMutation, Pathway-Chemical, Pathway-Disease, 

Chemical-Drug, ClinicalTrials-Disease, and ClinicalTrials-Drug. The 

configuration-based approach to semantic integration network is closing the 

gap between public and experimental data. Recently, two studies of semantic 

biological networks have been published, which finding molecular signature of 

chemical l (Shin et al. 2012) and managing toxicogenomic laboratory 

experiment. This work supports to build such as Gene-Disease-Chemical-Drug 

relationship.  

 I investigated gene functional classification about liver functions or 

ethnic disparities using the semantic networks. For liver function network, the 

significant results showed the four diseases (hepatocellular carcinoma, liver 

neoplasm, liver cell adenoma, and drug-induced liver injury), one pathway 

(hepatitis C pathway), and seven drugs (acetaminophen, chlormezanone, 

stavudine, enflurane, isoniazid, mebendazole, and nitisinone).  Liver Cell 

Adenoma is a benign neoplasm occurred from liver cell (hepatocytes) (Leese 

et al. 1988), occur most often in young women (Edmondson et al. 1976). It is 

important to recognize since it can be advanced a hepatocellular carcinoma 

(http://www.medicalgeek.com/). Liver Neoplasm is same name for liver 

(hepatic) cancer, and is an abnormal liver tissue 

(http://www.rightdiagnosis.com). Hepatocellular carcinoma (HCC) is the most 

common liver cancer. It occurs most often in men than women (Beasley et al. 

1981), and is usually seen in people 50 years of age or older 

(http://www.nlm.nih.gov). This cancer in Africa and Asia is more common than 
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North or South America and Europe (Bressac et al. 1991). Drug is very 

clinically important cause of liver injury. Many drugs have been reported to 

cause liver (hepatic) injury (Lee 2003). Stavudine is an antiviral medication, 

which active against human immunodeficiency virus infection (Sommadossi 

1995), and isoniazid is an antibiotic, which resists tuberculous bacteria (TB) 

(Sommadossi 1995), and mebendazole is an anti-worm medication, which used 

for prevents infections of such as pinworm, round worm, and hookworm 

(Sommadossi 1995). Nitisinone is used to treat hereditary tyrosinemia type 1 

(Santra and Baumann 2008). These drugs keep causing harm to liver tissue and 

treated to cause liver injury.  

 Diseases and drugs are very clinically important for understanding 

ethnic disparities. Many diseases and drugs have been reported to be involved 

in ethnic disparities, disease susceptibility, drug response, and disposition (May 

1994; Dransfield and Bailey 2006). For ethnic disparities network, the 

significant results reveal three diseases (“AIDS-Associated Nephropathy”, 

“Hypertension”, and “Pelvic Infection”), one drug ("Methylphenidate"), and 

five pathways ("Hemostasis”, “Systemic lupus erythematosus”, “Prostate 

cancer”, “Hepatitis C virus”, and “Rheumatoid arthritis”). AIDS-associated 

Nephropathy (AIDSAN, MESH:D016263) incidence rates are higher in 

African-Americans than whites. Although the mortality and morbidity from 

AIDS infection are reduced, AIDSAN remains a major complication of AIDS 

infection (http://statgen.ncsu.edu/). Hypertension (MESH:C537095) is a 

disease threatening the public health in sub-Saharan Africa. In some areas, 
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blacks exhibit higher rates of hypertension than whites. Increased salt intake 

and obesity are the leading causes of the prevalence of hypertension in Africa 

(Addo et al. 2007). Pelvic Infection (MESH:D034161) is a kind of 

inflammatory disease that blacks are more prone to take than other ethnic 

groups (Eifel et al. 2002).  

One drug (Methylphenidate, DB00422) was reported to have ethnic 

disparities in previously drug studies. The mean dose of methylphenidate is was 

about 1.5 times higher in the African-American than the Whites (Starr and 

Kemner 2005), and its use is steadily increasing in South Africa (Truter 2005).  

 In Hemostasis (REACT:604) associated with cardiovascular diseases, 

the plasminogen activator inhibitor-1 activity levels of Africans are lower 

compared to the Caucasians. These negative effects can be seen already at a 

young age. If addressed in early life, it is possibly adjustable through behavior 

and optimal dietary changes (Pieters and Vorster 2008). Systemic Lupus 

Activity Meaure (SLAM) (KEGG:05322) scores were higher in African-

Americans (mean = 12.6) and Hispanics (11.0) than in Caucasians (8.5). It 

caused lack of health insurance, onset of abrupt disease, presence of anti-Ro 

(SSA) antibody, absence of HLA-DRB, high levels of helplessness, and 

abnormal illness behaviors. Caucasians lived under less crowded conditions, 

had less abnormal illness behaviors, and had more education. The results of the 

regression analyses were showed significant association between higher SLAM 

scores and higher helplessness, absence of HLA-DRB1*0301, and presence of 

HLA-DRB*0201 (p-value < 0.01) (Alarcón et al. 1998). Prostate cancer 
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(KEGG:05215) is a diagnosed male reproductive system cancer. Incidence of 

prostate cancer in African-Americans men is higher than in the European men 

(1.6 times). Amundadottir et al. (2006) identified that the chromosomal 8q24 

region is most frequently gained in prostate cancers and this gained region has 

been correlated with aggressive tumors (Amundadottir et al. 2006). Estimated 

population attributable risk (PAR) is greater in Africans than in European 

populations. Hepatitis C virus (HCV, KEGG:05160) is a major cause of chronic 

liver disease in humans. Rates of HCV prevalence in sub-Saharan Africa are 

the highest in central African (3.0%) compared with the median (2.2%). 

Conjeevaram et al. (2006) showed that African-Americans with chronic HCV 

have lower response to interferon-based antiviral therapy than Caucasian 

Americans (Madhava et al. 2002; Conjeevaram et al. 2006). Rheumatoid 

arthritis (RA, KEGG:05323) is an autoimmune disease and may affect many 

organs. The RA prevalence in urban South Africans is similar to in Caucasians 

(Solomon et al. 1975).  

Also, 1 common pathway between all populations was showed. 

Although ethnicity-specific genes are identified in each population, it is 

generally observed that genes that are associated with a trait or disease can 

converge to the same pathway (Fu et al. 2011). Those genes are also supposed 

to converge to common pathways shared between all populations. Therefore, a 

pathway-based approach allows us to systematically evaluates multiple 

polymorphic genes from different populations with respect to pathways as a 

biological unit (Wang et al. 2007a). Moreover, the pathway-based approach has 
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more capability to detect rare genetic variants with a small effect that do not 

survived at the stringent significance level (Medina et al. 2009).  

 I constructed semantic networks for liver functions or ethnic 

disparities. Functional studies were analyzed with CNV-based genes associated 

with liver functions or ethnic specific SNP-based genes. These semantic 

networks showed robust interactions between liver-related to CNVs or ethnic 

specific SNPs and public data. I expect that the semantic networks are useful 

for liver functions or ethnic specific SNPs, and the findings will provide 

prioritization of ethnic specific SNP-based candidate genes. Also, I will 

constantly develop more robust and flexible algorithms.  
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4.1 Abstract  
 

Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is 

useful genetic resource to aid in understanding complex phenotypes or 

susceptibility or resistence to deseasess. Although thousands of CNVs and/or 

SNPs are currently avaliable in the public databases, they are somewhat 

difficult to use for analyses without visualization tools. Visualization of CNV 

and/or SNP can assist to easily interpret a biological meaning from the 

numerical value of CNV or SNP. Here I developed a web-based tool called VCS 

(the Visualization of Copy number variation and Single nucleotide 

polymorphism) to visualize the CNV and/or SNP detected in different animals 

such as mammals, vertebrates, insects, and worms. The VCS provides six 

different visualization tools: (ⅰ) the enrichment of genome contents in CNV; 

(ⅱ) the physical distribution of CNV or SNP on chromosomes; (ⅲ) the 

distribution of log2 ratio of CNVs with criteria of interested; (ⅳ) number of 

CNV and SNP per binning unit (10 kb, 100 kb, 1Mb, and 10Mb); (ⅴ) the 

distribution of homozygosity of SNP genotype on chromosomes; and (ⅵ) 

cytomap of genes within CNV or SNP region. VCS application is available 

from http://snugenome.snu.ac.kr/Software/VCS/ and executable examples can 

be downloaded from the same web site as well. The VCS was implemented as 

a program written in PHP (ver.5.3), mysql (ver. 5.1.36), and Python (ver.2.5). 
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VCS use it for free, this tool is user friendly and more offer directly insertable 

tip-top figures in thesis.  
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4.2 Introduction 
 

In genomic research, copy number variation (CNV) and single nucleotide 

polymorphism (SNP) are used to identify the association with complex 

phenotypes or susceptibility or resistance to diseases (Fanciulli et al. 2007; 

Yang et al. 2007). CNV encompasses more DNA than SNP and contains entire 

genes and their regulatory region (Freeman et al. 2006). The type of genetic 

variant can influence gene dosage other than phenotypic variation, which might 

cause genetic diseases. A series of studies using CNV and/or SNP were 

performed to detect the association with different cancer cells or complex 

diseases (Diskin et al. 2009; Shlien and Malkin 2009). Development of whole 

genome sequencing projects of different organisms and the current 

improvement in biotechnologies have contributed to the detection of enormous 

numbers of SNP and CNV in each species. Thousands of CNV or SNP are 

currently available in the public databases, but it is not so easy for local 

researchers to use them for their own analyses. Information regarding CNV 

and/or SNP in general consists of numerical values which are difficult to 

understand and to interpret biologically. Visualization of the data may assist 

researchers to interpret biological meanings from the numerical value, even 

though it is not a necessary step for the analyses. However, few visualizing 

software have been reported for CNV and/or SNP. In this study, I developed a 

web-based visualization tool graphically representing the enrichment of 

genome contents in CNV, the distribution of CNV and/or SNP on chromosomes, 
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the log2 ratio of fluorescence intensities of CNV, the homozygosity of SNP on 

chromosomes, and cytomapping of the genes of interest.  
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4.3 Program overview  
 

I developed a web-based tool called VCS (the Visualization of CNV and SNP) 

to picture the data of your CNV and/or SNP in the genome. The pictures can 

help not only to interpret a biological meaning from the numerical value of 

CNV or SNP but also provide the figures for user’s manuscript. VCS tool 

provides a graphical view of the physical distribution of CNV or SNP on 

chromosomes. Although several web databases have reported annotated CNV 

(e.g. Database of Genomic Variants (DGV; http://projects.tcag.ca/variation/), 

dbSNP 131 (http://www.ncbi.nlm.nih.gov/; (Smigielski et al. 2000)), GWAS 

CENTRAL (http://www.gwascentral.org/ (Fredman et al. 2002), and SNP and 

CNV Annotation Database (SCAN; http://www.scandb.org/) (Gamazon et al. 

2010) or CNV extraction software (e.g. PennCNV (Wang et al. 2007b), 

Aroma.Affymetrix (Bengtsson et al. 2008), CRLMM (Scharpf et al. 2010), and 

Affymetrix Power Tools (Lockstone 2011)), it is often difficult to apply them 

one’s own result. Main features of VCS are as follows:  

 

4.3.1 Visualization of the enrichment of genome contents in CNV 

regions 

VCS shows the enrichment genome contents (gene, LINE (long interspersed 

nuclear element), SINE (short interspersed nuclear element), LTR (long 

terminal repeat), simple repeat, low complexity, miRNA, tRNA, CpG island, 
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and Gene Ontology – Biological Process, Molecular Function, and Cellular 

Component) in region having specific range such as CNV. For cluster analysis, 

the distance matrix was produced by Hamming distance computation 

considering deletion and duplication of copy number (Steane 1996). Then the 

hierarchical cluster and principal component analysis (PCA) were performed 

using the distance matrix. As the result, user can easily show the nearest 

clustered samples about the genome content within CNV region.  

 The input file needs matrix format file formed 0, 1, 2, 3, 4, .. (Figure 

4.1. (A)). Here, 0 and 1 is deletion and more than 2 is duplication. The figure 

represents as user-defined such as deletion or insertion. So the user can show 

the enrichments result figure and table of genome content in a specific region 

(Figure 4.1. (B), (C)), and show hierarchical clustering (Figure 4.1. (D)) and 

PCA cluster (Figure 4.1. (E)) among samples. In addition, user can display all 

the genome contents per sample. If user denotes groups as _A, _B, _C in input 

file, user can easily and clearly show clusters as editing the grouping image 

using other graphic tool such as Adobe photoshop or illustrate.  
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(A) 

 

(B) 

 

(C) 
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(D) 

 

(E) 
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Figure 4.1. Visualization of the enrichment of genome contents in CNV 

region. (A) Input matrix data with the information of physical location and 

figure (deletion and insertion) after CNV analysis; Gives the following output 

is a enrichments result figure (B), a distance matrix (C), a hierarchical 

clustering (D), and a PCA cluster (E) of genome content in specific region. 
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4.3.2 Physical distribution visualization 

VCS provides a graphical distribution on chromosomes. Any marker contained 

information of chromosomal position by point (SNP) or specific ranges (CNV, 

miRNA, and repeat sequence) can be used in this tool. This menu is useful for 

comparing the physical distribution of your own CNV or SNP. In addition, 

comparison among samples is available by adding input files up to five (Figure 

4.2. (B).  

The input file simply needs the information of chromosome number 

and chromosomal position of either CNV or SNP (Figure 4.2. (A). After your 

data are loaded on the website, you can obtain the information in detail on the 

genome where the CNV (SNP) is located by clicking it (Figure 4.2. (C)). User 

can take a look at the information on genes, and repeat sequences such as SINE, 

LINE, LTR, and simple repeat around the CNV.  
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(A) 

 

(B) 

 

(C) 
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Figure 4.2. Visualization of the physical distribution for specific position or 

region. (A) Data with the information of chromosome number and physical 

location; (B) By clicking the physical location where the CNV (SNP), you can 

obtain the information in detail on the genome; (C) Comparing among samples 

is available by adding input files up to five.  
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4.3.3 Log2 ratio distribution visualization 

VCS plots log2 ratio of CNV with insertions and deletions that are more 

conspicuous. The log2 values are plotted at the middle position of CNV regions 

across the chromosome. Several web databases represent the whole log2 ratio 

(e.g. Affymetrix Genotyping Console Browser), but VCS can provide the 

criteria which is the user-adjustable log2 ratio. So a user can create the view of 

CNV filtrated by adjusting the criteria with different log2 ratio values for 

different research purposes. In addition, user can draw a Manhattan plot which 

easily can define appropriate significance value, and can perform the 

comparison among samples selected in this menu.  

 The input file needs matrix format data with the information of 

physical location and the value of plus (+) or minus (-) such as log2 ratio after 

CNV analysis ((Figure 4.3. (A)). VCS then gives the following output as user-

defined criteria, from which you can obtain total counts and median size of gain 

(insertion), loss (deletion), and complex (insertion and deletion) (Figure 4.3. 

(B)). Default of a criteria set up ±0.3 which is widely used in biology research. 

And you can show distribution of visualized log2 ratio and/or ± values (Figure 

4.3. (C)).   
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(A) 

(B) 

 

(C) 

 

 

Figure 4.3. Visualization of the distribution of log2 ratio. (A) Input matrix 

data with the information of physical location and the value of plus (+) or minus 

(-) such as log2 ratio; (B) Gives the following output 1 is a total counts and 

median size of gain (insertion), loss (deletion), and complex (insertion and 
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deletion); (C) Gives the following output 2 is a distribution of visualized log2 

ratio and/or ± values, with red (insertion) and blue (deletion) marks. 
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4.3.4 Variation distribution visualization per binning unit 

VCS calculates the number of CNV or SNP per binning units of 10 kb, 100 kb, 

1 Mb, and 10 M. The goal of this menu is to look at the number of variants 

within the certain ranges of physical distances, which allows researchers to take 

advantage of deciding or selecting the scale of the study area they want to focus 

on. Also, this menu is useful for comparing the numbers per binning unit by 

adding more data. The user selects binning unit by simply clicking on the 

appropriate criteria. 

 The input file is the same input file with the information of 

chromosome number and chromosomal position of either CNV or SNP used for 

the physical location. You can show the visualized distribution per binning unit 

and decide concentrated study region on genome (Figure 4.4). 
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Figure 4.4. Visualization of the distribution of SNP numbers per binning 

unit 10 kb, 100 kb, 1Mb, and 10 Mb on chromosome.  
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4.3.5 Homozygosity distribution visualization for SNP genotypes 

VCS shows the homozygosity of SNP on chromosomes by using the 

information of SNP genotypes of samples, chromosomal position of SNP and 

chromosome number. This menu is useful when comparing homozygosity 

among samples. VCS calculates homozygosity of all SNP located on an entire 

chromosome of interest and plots homozygosity of every unit of 100 SNPs 

along the chromosomes. At the end of the chromosome, the number of SNP is 

usually less than 100 which is added to the previous unit if the number of SNP 

is ≤ 50 or is calculated as another unit if it is > 50. 

For n-100(k-1) > 50, 

 

1
k
቎
1
100

෍෍y୧୨

ଵ଴଴

୧ୀଵ

୩ିଵ

୨ୀଵ

൅
1

n െ 100ሺk െ 1ሻ
෍y୧୩቏ 

 

For n-100(k-1) ൑ 50, 

1
k
቎
1
100

෍෍y୧୨ ൅

ଵ଴଴

୧ୀଵ

୩ିଶ

୨ୀଵ

1
100 ൅ ሾn െ 100ሺk െ 1ሻሿ

ቐ෍y୧

ଵ଴଴

୧ୀଵ

ሺk െ 1ሻ ൅ ෍ y୧୩

୬ିଵ଴଴ሺ୩ିଵሻ

୧ୀଵ

ቑ቏ 

 The input file requires the matrix data with information such as 

genotypes in SNP analysis (Figure 4.5. (A)). User can then display any area that 

has a low homozygosity value, and obtain the probability of the homozygous 

SNP on each chromosome (Figure 4.5. (B)). 
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(A) 

 

(B) 

 

Figure 4.5. Visualization of the distribution of homozygous SNP. (A) Input 

data with the information such as genotypes in SNP analysis; (B) Gives the 

following output is a distribution and probability of homozygous per number 

of SNPs. Irregular zig-zagged lines represent the homozygosity value per unit 

of 100 SNPs. 
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4.3.6 CytoMap 

CytoMap provides the cytomapping figure of your focused-genes (Figure 4.6. 

(B)). The input file needs only the information of the cytoband of your focused-

genes (Figure 4.6. (A)). There are several assembly versions of human genome 

sequences available in public databases such as NCBI 

(http://www.ncbi.nlm.nih.gov/) and UCSC (http://genome.ucsc.edu/). However, 

the physical positions of genes of interest are version-dependant. CytoMap 

provides a gene map by the cytoband position. This menu is useful for genome-

wide view of data.  
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(A) 

 

(B) 

 

 

Figure 4.6. Visualization of the CytoMap for genes located in the CNV or 

SNP subregion. (A) Input data with the information of cytoband; (B) 

Visualization of the cytomap for focused-genes. Blue and green indicate ID of 

input file and the total number of IDs, respectively.  
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4.4 Implementation  
 

VCS is built upon for visualizing data of CNV and/or SNP from local researcher. 

The VCS was implemented as a program written in PHP (PHP Hypertext 

Preprocessor; ver. 5.3), mysql (ver. 5.1.36), R (ver. 2.14), and Python (ver. 2.5). 

All of six menus have a common option to choose a pecies for the analysis. 

Animal species included in this study are human (hg19), rhesus (rheMac2), 

mouse (mm9), rat (rn4), dog (canFam2), horse (equCab2), cow (bosTau4), 

opossum (monDom5), chicken (galGal3), zebrafish (danRer7), D.melanogaster 

(dm3), and C.elegans (ce6). Genomic information of those species was 

downloaded from http://genome.ucsc.edu/.  

By selecting a species from the pop-up menu, basic genomic 

information of the species such as total number of chromosomes and sizes of 

chromosome is set as a default for the analysis. Therefore, a user doesn’t need 

to prepare the information in the input file regardless of any platform such as 

Affymetrix or Illumina for analysis of either CNV or SNP. The input file only 

needs the information of chromosomal position or CNV log2 ratio values or 

SNP genotypes or cytoband after variation analysis. For each menu, input file 

format take the divided by tabs or comma. For output file, you can select 

formats: png or bmp. Also user can edit the image using other graphic tool such 

as photoshop or illustrate.  

A researcher who is interested in CNV or SNP can easily access the 

web site and use it for free without additional steps of downloading and 
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installing it onto their local computer. This tool is user friendly and can be 

simply used without a thick user’s manual. To development of bioinformatics 

usages of the data served in VCS, I are continuously developing and updating. 

I expect to add tool associated with these CNVs and SNPs studies are merged 

into VCS.  
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General Discussion 
 

By analyzing CNVs acquired from array-based genotyping, a lot of biological 

meanings could be obtained through genome-wide association study (GWAS), 

biological networks, and visualization for structural variations.  

 In chapter 2, GWA studies enable me to find the genes associated with 

the hepatic biochemical markers AST or ALT through the CNVs analyses. 

Many CNVs associated with liver disease have been reported in Caucasians, 

Africans, Chinese, and Japanese, but they may not properly reflect the CNVs 

in the genomes of other ethnic groups. Also, univariate linear regression is 

widely used to identify SNPs, but few studies have reported the statistical 

method to discover CNVs. Therefore, I used Korean chips as a reference group. 

Univariate linear regression was performed to examine the impact of single 

CNV regions for each quantitative trait. By using GWA study, I found that the 

significant genes associated with AST or ALT in KARE1. Then by the 

replication studies of GWA, I found the significant nine genes associated with 

hepatic biochemical markers AST or ALT of Koreans.  

 In chapter 3 and 4, two biological networks and a visualization tool 

were constructed. By using the biological semantic networks, I could 

investigated liver functions or ethnic disparities. The semantic biological 

networks enable me to create knowledgeable networks with flexible workflows 

for handling big data. The biological networks provide comprehensive and easy 
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to use resource for human liver functions or ethnic disparities (chapter 3). I 

could easily interpret biological meanings from the numerical value of CNV or 

SNP using the visualization tool (chapter 4).  

 From the Korean cohort data, I could attain useful biological meanings 

associated with liver diseases, construct knowledegeable biological networks 

and the visualization tool for variations. The analysis of CNV/SNP-based genes 

is useful to understand biological phenotypes or diseases, and will provide  

valuable resources for further investigations of liver diseases. I expect that the 

biological networks for liver functions or ethnic disparities will provide 

valuable information and strongly affect useful knowledge. The visualization 

tool for variants will help interpret biological meanings from the numerical 

value.  
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Supplementary Materials 
 

Supplementary Table 2.1. Summaries the significant CNVs associated with 

AST and ALT from KARE1 (A) and KARE2 (B).  

(A) 

Trait CNVR Estimate t.value P.value P.bon* 

AST chr1.190686383.190745497 -0.00562694 -4.63479301 3.62E-06 0.0378 

 chr1.211104284.211161180 -0.0041324 -5.12260135 3.08E-07 0.0032 

 chr1.212543184.212566377 0.00296302 4.824720614 1.43E-06 0.0149 

 chr1.215574462.215683383 -0.00734297 -5.7181841 1.11E-08 0.0001 

 chr1.216310320.216321229 -0.00269225 -5.10954504 3.30E-07 0.0034 

 chr1.230384738.230395024 -0.00260201 -5.1752873 2.33E-07 0.0024 

 chr1.234226764.234251691 -0.00269874 -5.00763274 5.62E-07 0.0058 

 chr1.33989245.34023033 0.00350787 4.782238893 1.76E-06 0.0184 

 chr2.164793303.164842648 -0.00265892 -4.77319988 1.84E-06 0.0192 

 chr2.178202016.178230257 -0.00287572 -4.90963685 9.29E-07 0.0097 

 chr2.224474138.224753508 -0.01226929 -4.90421362 9.55E-07 0.0100 

 chr2.36375263.36467684 -0.0063179 -4.63885912 3.55E-06 0.0371 

 chr2.42724479.42843096 0.00610118 4.625292922 3.79E-06 0.0396 

 chr2.46733103.46761131 0.00342362 5.447868676 5.23E-08 0.0005 

 chr2.5148726.5223415 -0.00807348 -4.85141196 1.25E-06 0.0130 

 chr2.64521312.64568911 -0.0043106 -5.2815113 1.31E-07 0.0013 

 chr2.76627489.76884533 -0.00971247 -5.39401339 7.07E-08 0.0007 

 chr2.8514325.8536702 -0.0045567 -5.61232065 2.06E-08 0.0002 

 chr3.11981746.11996902 -0.00252449 -4.65851932 3.23E-06 0.0337 

 chr3.122343006.122543714 -0.00673691 -4.8127667 1.51E-06 0.0158 

 chr3.123100746.123177102 -0.0048797 -5.83544121 5.55E-09 5.85E-05 

 chr3.138809756.139122947 -0.01129058 -4.58534504 4.59E-06 0.0479 

 chr3.142851641.142908108 -0.00415276 -5.21904397 1.84E-07 0.0019 

 chr3.149817720.149889489 -0.00529755 -5.00636199 5.65E-07 0.0059 

 chr3.45192647.45198645 -0.00314139 -5.63243663 1.83E-08 0.0001 

 chr3.55324743.55358528 0.00447925 4.729454681 2.29E-06 0.0238 

 chr3.55358671.55371612 -0.00350586 -4.85560177 1.22E-06 0.0127 
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 chr3.56098137.56116883 -0.00292615 -5.15409893 2.60E-07 0.0027 

 chr3.60832659.61018553 -0.01476049 -5.53016395 3.29E-08 0.0003 

 chr3.8233174.8360164 -0.00899059 -4.9889908 6.19E-07 0.0064 

 chr4.154956613.155019392 -0.00801492 -5.25264928 1.53E-07 0.0016 

 chr4.164012707.164647495 -0.01257508 -5.39398421 7.07E-08 0.0007 

 chr4.189999425.190017092 -0.0035088 -4.77164008 1.86E-06 0.0194 

 chr4.42421165.42510046 -0.00615515 -4.71216826 2.49E-06 0.0260 

 chr4.72731411.72791238 -0.00335105 -5.23447336 1.69E-07 0.0017 

 chr5.160090803.160146434 -0.0069839 -5.74841313 9.31E-09 9.80E-05 

 chr5.174836093.174881422 0.002810785 4.617785693 3.93E-06 0.0410 

 chr5.8703331.8715504 -0.00305482 -5.55122252 2.92E-08 0.0003 

 chr5.9885874.9895944 0.002650309 5.056296236 4.36E-07 0.0045 

 chr6.104832382.105058386 -0.01084741 -5.00287341 5.76E-07 0.0060 

 chr6.115556221.115764663 -0.00679112 -4.76273008 1.94E-06 0.0202 

 chr6.143855908.143871871 -0.00372814 -5.79708495 6.98E-09 7.35E-05 

 chr6.156187976.156200183 -0.00332281 -4.82066702 1.45E-06 0.0152 

 chr6.158049703.158072444 -0.0035938 -5.44010751 5.47E-08 0.0005 

 chr6.57728086.57936849 -0.00868077 -5.44164878 5.42E-08 0.0005 

 chr6.66685345.67010174 -0.00796807 -5.40848412 6.52E-08 0.0006 

 chr6.91257342.91444831 -0.01077119 -5.83537264 5.56E-09 5.85E-05 

 chr7.103825729.103849313 -0.00431954 -6.08221051 1.23E-09 1.30E-05 

 chr7.153892749.154018058 0.003747716 4.806661448 1.56E-06 0.0163 

 chr7.154499812.154511611 -0.0034231 -6.20195279 5.83E-10 6.14E-06 

 chr7.31487325.31536072 -0.00745008 -5.19927968 2.05E-07 0.0021 

 chr8.105247995.105727124 -0.01264243 -4.60103467 4.26E-06 0.0444 

 chr8.128084274.128095592 -0.00309333 -4.92730142 8.49E-07 0.0088 

 chr8.138607006.138650961 -0.00665006 -4.63199976 3.67E-06 0.0383 

 chr8.59848863.59867441 -0.00391141 -5.41453008 6.31E-08 0.0006 

 chr9.10338710.10363923 0.004098743 4.619299717 3.90E-06 0.0407 

 chr9.119285724.119462020 -0.00955525 -5.21613482 1.87E-07 0.0019 

 chr9.119632012.119677310 -0.0054962 -4.60643252 4.15E-06 0.0433 

 chr9.13869083.13915424 -0.0047304 -5.33609823 9.73E-08 0.0010 

 chr9.23760626.23940769 -0.00884989 -4.62981974 3.71E-06 0.0387 

 chr10.104845268.104905300 -0.00472968 -5.26769368 1.41E-07 0.0014 

 chr10.10578227.10631958 0.004086376 4.895347001 9.99E-07 0.0104 

 chr10.112430512.112501145 -0.00632071 -5.31112879 1.12E-07 0.0011 

 chr10.113130665.113189385 -0.00654365 -4.74914273 2.07E-06 0.0216 
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 chr10.123529304.123546416 -0.00316959 -5.05765405 4.33E-07 0.0045 

 chr10.132497389.132515518 -0.00306318 -6.12715736 9.33E-10 9.82E-06 

 chr10.132566079.132589354 -0.00258077 -4.58581446 4.58E-06 0.0478 

 chr10.16371836.16615099 0.01434495 4.824009491 1.43E-06 0.0149 

 chr10.26659186.26863275 0.011782458 4.815389409 1.49E-06 0.0156 

 chr10.53731444.53843163 -0.00705414 -4.84109261 1.31E-06 0.0137 

 chr10.728630.762082 -0.00339361 -5.77961849 7.74E-09 8.15E-05 

 chr10.9448261.9709991 -0.00840936 -5.06940222 4.07E-07 0.0042 

 chr11.128850539.128920427 -0.00599481 -5.41055885 6.45E-08 0.0006 

 chr11.22123259.22182561 -0.00477134 -4.86588082 1.16E-06 0.0121 

 chr11.87666857.87892347 -0.01174167 -4.81768894 1.48E-06 0.0154 

 chr11.94541819.94585583 -0.00324551 -4.7652776 1.92E-06 0.0200 

 chr12.29089080.29470913 -0.01000863 -4.71076811 2.51E-06 0.0261 

 chr12.60094390.60212637 -0.00827259 -4.63854106 3.56E-06 0.0371 

 chr12.64360488.64443794 -0.0076391 -5.10966343 3.29E-07 0.0034 

 chr13.45060186.45080021 -0.00350247 -4.67051672 3.05E-06 0.0318 

 chr14.56112557.56137765 -0.00359397 -6.22656391 4.99E-10 5.25E-06 

 chr15.33754494.34067560 -0.00925305 -4.94543895 7.74E-07 0.0081 

 chr15.41680998.41721532 0.003049095 5.084714883 3.76E-07 0.0039 

 chr15.43304465.43329604 -0.00376538 -5.38550437 7.41E-08 0.0007 

 chr15.46811866.47497399 -0.01758909 -4.94576833 7.72E-07 0.0080 

 chr15.54342294.54871765 -0.01517471 -5.30418739 1.16E-07 0.0012 

 chr15.59271321.59333206 -0.00441849 -4.75672187 2.00E-06 0.0208 

 chr15.62084153.62100208 -0.00298471 -4.86240187 1.18E-06 0.0123 

 chr15.97260662.97313771 -0.00338892 -4.78385393 1.75E-06 0.0182 

 chr16.11261998.11292512 -0.00260492 -4.88432404 1.06E-06 0.0110 

 chr16.53867341.53882426 0.00338734 6.042676478 1.58E-09 1.66E-05 

 chr16.55344608.55440939 0.007241801 4.597144391 4.34E-06 0.0453 

 chr17.47587358.47612927 -0.00391375 -6.48345039 9.45E-11 9.95E-07 

 chr17.9800824.9830867 -0.00252485 -4.6600614 3.21E-06 0.0335 

 chr17.9835846.9859734 0.003782784 5.128942324 2.98E-07 0.0031 

 chr18.41464192.41550284 0.006699921 5.023567584 5.17E-07 0.0054 

 chr18.43135458.43184988 0.004991118 5.147293955 2.70E-07 0.0028 

 chr20.58158885.58179582 -0.00323678 -5.4813767 4.34E-08 0.0004 

 chr21.18819915.18895085 -0.00536218 -5.29444057 1.22E-07 0.0012 

AST/ 

ALT 
chr1.211104284.211161180 -0.0041324 -5.12260135 3.08E-07 0.0032 
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 -0.01643616 -4.70023634 2.64E-06 0.0277 

 
chr2.8514325.8536702 

-0.0045567 -5.61232065 2.06E-08 0.0002 

 -0.01662266 -4.72171978 2.37E-06 0.0249 

 
chr3.45192647.45198645 

-0.00314139 -5.63243663 1.83E-08 0.0001 

 -0.01145903 -4.73835734 2.19E-06 0.0230 

 
chr6.158049703.158072444 

-0.0035938 -5.44010751 5.47E-08 0.0005 

 -0.01312749 -4.5830787 4.64E-06 0.0488 

 
chr7.154499812.154511611 

-0.0034231 -6.20195279 5.83E-10 6.14E-06 

 -0.01101853 -4.60195973 4.24E-06 0.0446 

 
chr10.112430512.112501145

-0.00632071 -5.31112879 1.12E-07 0.0011 

 -0.02460858 -4.76987178 1.87E-06 0.0197 

 
chr10.132497389.132515518

-0.00306318 -6.12715736 9.33E-10 9.82E-06 

 -0.01016156 -4.68595299 2.83E-06 0.0297 

 
chr10.16371836.16615099 

0.01434495 4.824009491 1.43E-06 0.0149 

 0.059351689 4.604946411 4.18E-06 0.0440 

 
chr10.728630.762082 

-0.00339361 -5.77961849 7.74E-09 8.15E-05 

 -0.011744 -4.61199984 4.04E-06 0.0425 

 
chr17.47587358.47612927 

-0.00391375 -6.48345039 9.45E-11 9.95E-07 

 -0.01342386 -5.12669489 3.01E-07 0.0031 

ALT chr7.38268982.38353956 0.027888439 4.625996932 3.78E-06 0.0397 

 chr9.13558063.13688019 -0.04373448 -4.85087036 1.25E-06 0.0131 

 chr14.21761956.22004498 0.038342492 6.71252981 2.03E-11 2.14E-07 

 chr14.21518495.21697688 0.042803875 5.8046152 6.67E-09 7.03E-05 

 chr14.87637635.88374957 0.078309677 5.03327452 4.92E-07 0.0051 

 chr17.14014164.14613835 -0.05885667 -4.57958737 4.72E-06 0.0496 

*: p-value after bonferroni correction. 
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(B) 

Trait CNVR Estimate t.value P.value 

AST chr1.72541492.72583724 -0.00252224 -2.24589801 0.025251678 

 chr3.175301024.176121434 -0.04281881 -1.98598239 0.047712383 

 chr3.194317766.194360584 0.036765682 2.326108446 0.020508044 

 chr3.58683409.58684433 -0.0027403 -2.51312433 0.012356015 

 chr4.122501906.122504585 0.004124158 1.998321312 0.046353262 

 chr4.48788531.48849514 0.003911 2.485606105 0.01333764 

 chr5.57361772.57369278 0.002246951 2.099705328 0.036376027 

 chr5.75155872.75479220 0.040766266 2.017344963 0.044321999 

 chr6.119014075.119139790 -0.03279574 -2.31403497 0.021168015 

 chr7.142929078.143198980 0.010337496 2.242334569 0.025484269 

 chr9.104852719.104862217 -0.0031732 -2.0378374 0.042220395 

 chr9.1105998.1315179 0.035575854 2.046601394 0.041347115 

 chr11.79553671.79645152 0.034996344 2.191484375 0.028991318 

 chr12.107007904.107314707 0.038847651 2.182512919 0.029651252 

 chr12.111893559.112564198 0.042190581 2.071007765 0.038997279 

 chr12.52741396.53668999 0.058676793 2.146295691 0.03244886 

 chr16.46036433.47063550 0.08739629 2.004573774 0.04568048 

 chr16.47069610.48586106 0.066291865 2.037393956 0.042266629 

 chr16.72954547.73014090 -0.00417354 -2.12568147 0.034140381 

 chr18.52339709.52856818 -0.05336115 -2.01952796 0.044097107 

 chr18.63110881.63118233 0.002246578 2.217343961 0.027159639 

 chr20.43763418.45210381 0.110809943 2.647422811 0.008431346 

 chr22.24019061.24248709 0.012967419 2.32978956 0.020314153 

AST/ALT chr1.173288426.174429270 0.05531068 2.176667432 0.030085286 

 0.221662139 2.160263457 0.031341173 

 chr2.121450996.123193472 0.086699014 2.177781201 0.030001613 

 0.396768393 2.47249729 0.013829131 
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 chr3.5510570.5514102 0.002872552 2.264579058 0.024069039 

 0.011317978 2.209156225 0.027725623 

 chr3.84782471.84784814 0.003647539 2.539271162 0.01148337 

 0.014967632 2.581347443 0.01019396 

 chr4.172611447.172614496 -0.00385719 -2.92487633 0.00364064 

 -0.01360894 -2.54943512 0.011159253 

 chr7.22702971.22707984 0.013605183 2.427025625 0.015660687 

 0.054183899 2.393449497 0.017147422 

 chr11.4926841.4930593 -0.00187396 -2.11866766 0.0347329 

 -0.00887023 -2.49015039 0.013172931 

 chr13.106183224.106695599 0.055358502 2.053620507 0.040660435 

 0.286113872 2.638843555 0.008643068 

 chr14.23001245.24313152 0.073052483 2.007816106 0.045333154 

 0.300218611 2.044934632 0.04151363 

ALT chr1.199155367.200961788 0.360539082 2.048881351 0.041120852 

 chr1.219016303.223441941 0.385485141 2.117289005 0.03484734 

 chr1.22191576.22210700 0.020790086 2.375220487 0.018005551 

 chr1.230525067.230526526 0.008692195 2.106979393 0.035736815 

 chr2.221471681.221823524 0.301410053 2.583529314 0.010130772 

 chr2.97121236.97236352 -0.04456678 -2.00746587 0.045367233 

 chr3.141976161.142025217 0.070762307 2.280118292 0.023122319 

 chr3.163699311.163709641 -0.01467698 -2.59934102 0.009683221 

 chr3.36258949.36260022 0.010868991 2.284123045 0.022883656 

 chr4.131273681.133796865 0.312804497 2.306821112 0.021571145 

 chr4.162104357.162151102 -0.03474751 -2.52280248 0.012026362 

 chr5.12868768.12873064 0.0123726 2.283787234 0.022903586 

 chr5.158988746.159912305 0.352296656 2.231954329 0.026167009 

 chr6.119818455.119820127 -0.01604655 -2.04022396 0.041979427 

 chr6.67859000.70188705 0.35631135 1.997015926 0.046495485 
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chr6.77073751.77084489 0.021686236 2.364831305 0.018511324 

 chr9.44667843.44795721 -0.02460546 -2.06829006 0.039251753 

 chr10.72716105.73401893 0.244773694 2.02248002 0.043788446 

 chr10.77927055.77930579 0.007544342 2.371988077 0.018162767 

 chr11.25870713.27225055 0.478678528 2.482046133 0.013471597 

 chr11.4931728.4933471 -0.0248949 -2.04532853 0.041474612 

 chr13.36970024.36982745 0.016282382 2.37388628 0.01807216 

 chr13.56656259.56676369 0.017671657 2.276670101 0.02333217 

 chr14.43571666.43600193 -0.01758893 -2.00596218 0.045531477 

 chr14.47477520.47968292 0.174713937 2.208825194 0.027751645 

 chr15.39996964.40459070 0.23001712 2.084990103 0.037702224 

 chr16.14897352.14967222 -0.02578776 -1.99400826 0.046827937 

 chr16.33288255.33680554 -0.02147122 -1.96829647 0.049722414 

 chr16.6838607.7021740 0.131778821 2.612846773 0.009316726 

 chr19.48394861.48448065 0.007010712 2.018375531 0.044217453 

 chr20.48228324.48562412 0.307554806 3.236654039 0.001310124 

 chr21.29429536.31660765 0.30194253 2.144282262 0.03261234 
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Supplementary Table 2.2. Summaries of the genes whose entire sequences 

were located within the CNV region associated with hepatic biochemical 

markers in KARE1 (A) and KARE2 (B). 

(A)  

Trait CNV regions 
No. 

Genes
Genes 

AST Chr1:199155367-200961788 26 

RNPEP,PTPN7,IGFN1,ELF3,PPP1R
12B,UBE2T,SHISA4,SYT2,CACNA
1S,TNNT2,TIMM17A,KIF21B,LAD
1,NAV1,IPO9,GPR37L1,ARL8A,LG
R6,LMOD1,PKP1,PTPRV,CSRP1,P
HLDA3,TNNI1,TMEM9,RPS10P7 

 Chr1:219016303-223441941 24 

HHIPL2,SUSD4,DUSP10,TP53BP2,
CNIH4,TLR5,DNAH14,C1orf65,TA
F1A,MIA3,HLX,AIDA,NVL,WDR2
6,CNIH3,FAM177B,DISP1,FBXO28
,DEGS1,MOSC1,C1orf58,CAPN2,L
OC400804,CAPN8 

 Chr1:22191576-22210700 0  

 Chr1:230525067-230526526 0  

 Chr10:72716105-73401893 4 CDH23,SLC29A3,C10orf54,PSAP 

 Chr10:77927055-77930579 0  

 Chr11:25870713-27225055 5 
MUC15,SLC5A12,FIBIN,BBOX1,A
NO3 

 Chr11:4931728-4933471 0  

 Chr13:36970024-36982745 0  

 Chr13:56656259-56676369 0  

 Chr14:43571666-43600193 0  

 Chr14:47477520-47968292 0  

 Chr15:39996964-40459070 6 
PLA2G4E,VPS39,TMEM87A,PLA2
G4D,PLA2G4F,GANC 

 Chr16:14897352-14967222 1 NPIP 

 Chr16:33288255-33680554 0  

 Chr16:6838607-7021740 0  

 Chr19:48394861-48448065 0  

 Chr2:221471681-221823524 0  

 Chr2:97121236-97236352 0  

 Chr20:48228324-48562412 1 CEBPB 

 Chr21:29429536-31660765 38 

CLDN17,KRTAP26-1,KRTAP27-
1,KRTAP23-1,KRTAP13-
2,KRTAP13-4,KRTAP15-
1,KRTAP19-2,KRTAP19-
3,KRTAP19-4,KRTAP19-
5,KRTAP19-6,KRTAP19-7,KRTAP6-
3,KRTAP6-2,KRTAP22-1,KRTAP6-
1,KRTAP20-1,KRTAP20-
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2,KRTAP21-2,KRTAP21-1,KRTAP8-
1,KRTAP11-
1,GRIK1,C21orf41,BACH1,KRTAP1
3-1,KRTAP13-3,KRTAP19-
8,KRTAP20-3,KRTAP19-
1,KRTAP24-1,CLDN8,KRTAP25-
1,KRTAP20-4,KRTAP7-
1,NCRNA00110,C21orf109 

 Chr3:141976161-142025217 0  

 Chr3:163699311-163709641 0  

 Chr3:36258949-36260022 0  

 Chr4:131273681-133796865 0  

 Chr4:162104357-162151102 0  

 Chr5:12868768-12873064 0  

 Chr5:158988746-159912305 9 
CCNJL,TTC1,SLU7,ADRA1B,FABP
6,C5orf54,C1QTNF2,PTTG1,PWWP
2A 

 Chr6:119818455-119820127 0  

 Chr6:67859000-70188705 1 BAI3 

 Chr6:77073751-77084489 0  

 Chr9:44667843-44795721 0  

AST/
ALT 

Chr1:173288426-174429270 4 
TNN,TNR,KIAA0040,SCARNA3 

 Chr2:121450996-123193472 5 
TSN,CLASP1,MKI67IP,TFCP2L1,R
NU4ATAC 

 Chr3:5510570-5514102 0  

 Chr3:84782471-84784814 0  

 Chr4:172611447-172614496 0  

 Chr4:48788531-48849514 0  

 Chr7:22702971-22707984 0  

 Chr11:4926841-4930593 0  

 Chr13:106183224-106695599 0  

 Chr14:23001245-24313152 48 

REC8,GZMH,NRL,CHMP4A,PSME
2,DHRS2,DHRS4L1,RIPK3,AP1G2,
SDR39U1,PSME1,LTB4R2,RABGG
TA,IRF9,FITM1,C14orf21,NFATC4,
GZMB,THTPA,LTB4R,NGDN,PCK
2,TINF2,TM9SF1,FAM158A,DHRS
4,TGM1,DHRS1,ADCY4,IPO4,GMP
R2,TSSK4,JPH4,CMA1,MDP-
1,RNF31,DHRS4L2,WDR23,LRRC1
6B,CPNE6,CIDEB,KIAA1305,CBL
N3,KIAA0323,NEDD8,CTSG,C14or
f167,C14orf165 

ALT Chr1:72541492-72583724 0  

 Chr3:175301024-176121434 0  

 Chr3:194317766-194360584 0  

 Chr3:58683409-58684433 0  

 Chr4:122501906-122504585 0  

 Chr5:57361772-57369278 0  

 Chr5:75155872-75479220 0  
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 Chr6:119014075-119139790 0  

 Chr7:142929078-143198980 4 
FAM115C,LOC441294,CTAGE6,LO
C154761 

 Chr9:104852719-104862217 0  

 Chr9:1105998-1315179 0  

 Chr11:79553671-79645152 0  

 Chr12:107007904-107314707 2 WSCD2,CMKLR1 

 Chr12:111893559-112564198 13 
OAS2,SDS,SDSL,PLBD2,RASAL1,
TPCN1,DTX1,DDX54,C12orf52,IQ
CD,SLC24A6,LHX5,LOC387885 

 Chr12:52741396-53668999 21 

LOC100240735,ZNF385A,LACRT,I
TGA5,SMUG1,HNRNPA1,DCD,PPP
1R1A,MUCL1,COPZ1,CBX5,GPR8
4,NCKAP1L,KIAA0748,LOC100240
734,PDE1B,NFE2,GTSF1,GLYCAM
1,HNRPA1L-2,LOC400043 

 Chr16:46036433-47063550 5 
SIAH1,ABCC11,LONP2,PHKB,AB
CC12 

 Chr16:47069610-48586106 4 ZNF423,N4BP1,CBLN1,C16orf78 

 Chr16:72954547-73014090 1 CLEC18B 

 Chr18:52339709-52856818 2 WDR7,TXNL1 

 Chr18:63110881-63118233 0  

 Chr20:43763418-45210381 29 

ACOT8,TP53RK,CD40,SNX21,PLT
P,UBE2C,WFDC13,WFDC3,TNNC2
,ZSWIM3,ZSWIM1,NEURL2,NCO
A5,SLC35C2,ZNF334,SLC12A5,SL
C2A10,LOC100240726,PCIF1,CDH
22,C20orf123,ELMO2,SLC13A3,SPI
NT4,DNTTIP1,MMP9,ZNF335,CTS
A,C20orf165 

 Chr22:24019061-24248709 2 IGLL3,LRP5L 

 

(B) 

Trait  Copy Number regions 
No. 

Genes
Genes 

AST Chr1:199155367-200961788 25 

RNPEP,PTPN7,IGFN1,ELF3,PPP1R
12B,UBE2T,SHISA4,SYT2,CACNA
1S,TNNT2,TIMM17A,KIF21B,LAD
1,NAV1,IPO9,GPR37L1,ARL8A,LG
R6,LMOD1,PKP1,CSRP1,PHLDA3,
TNNI1,TMEM9,RPS10P7 

 Chr1:219016303-223441941 21 

HHIPL2,SUSD4,DUSP10,TP53BP2,
CNIH4,TLR5,DNAH14,C1orf65,TA
F1A,MIA3,HLX,AIDA,NVL,WDR2
6,CNIH3,FAM177B,DISP1,FBXO28
,DEGS1,CAPN2, CAPN8 

 Chr10:72716105-73401893 4 CDH23,SLC29A3,C10orf54,PSAP 

 Chr11:25870713-27225055 5 
MUC15,SLC5A12,FIBIN,BBOX1,A
NO3 
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 Chr15:39996964-40459070 6 
PLA2G4E,VPS39,TMEM87A,PLA2
G4D,PLA2G4F,GANC 

 Chr16:14897352-14967222 1 NPIP 
 Chr20:48228324-48562412 1 CEBPB 

 Chr21:29429536-31660765 33 

CLDN17,KRTAP26-1,KRTAP27-
1,KRTAP23-1,KRTAP13-
2,KRTAP13-4,KRTAP15-
1,KRTAP19-2,KRTAP19-
3,KRTAP19-4,KRTAP19-
5,KRTAP19-6,KRTAP19-
7,KRTAP6-3,KRTAP6-2,KRTAP22-
1,KRTAP6-1,KRTAP20-
1,KRTAP20-2,KRTAP21-
2,KRTAP21-1,KRTAP8-
1,KRTAP11-
1,GRIK1,BACH1,KRTAP13-
1,KRTAP13-3,KRTAP19-
8,KRTAP20-3,KRTAP19-
1,KRTAP24-1,CLDN8,KRTAP25-1 

 Chr5:158988746-159912305 9 
CCNJL,TTC1,SLU7,ADRA1B,FAB
P6,C5orf54,C1QTNF2,PTTG1,PWW
P2A 

  Chr6:67859000-70188705 1 BAI3 

AST/
ALT 

Chr1:173288426-174429270 3 TNN,TNR, SCARNA3 

Chr2:121450996-123193472 5 
TSN,CLASP1,MKI67IP,TFCP2L1,R
NU4ATAC 

Chr14:23001245-24313152 43 

REC8,GZMH,NRL,CHMP4A,PSME
2,DHRS2,RIPK3,AP1G2,SDR39U1,
PSME1,LTB4R2,RABGGTA,IRF9,F
ITM1,C14orf21,NFATC4,GZMB,TH
TPA,LTB4R,NGDN,PCK2,TINF2,T
M9SF1,FAM158A,DHRS4,TGM1,D
HRS1,ADCY4,IPO4,GMPR2,TSSK4
,JPH4,CMA1,RNF31,DHRS4L2,LR
RC16B,CPNE6,CIDEB,CBLN3,NE
DD8,CTSG,C14orf167,C14orf165 

ALT Chr7:142929078-143198980 1 FAM115C 
 Chr12:107007904-107314707 2 WSCD2,CMKLR1 

 Chr12:111893559-112564198 12 
OAS2,SDS,SDSL,PLBD2,RASAL1,
TPCN1,DTX1,DDX54,C12orf52,IQ
CD,SLC24A6,LHX5 

 Chr12:52741396-53668999 16 

ZNF385A,LACRT,ITGA5,SMUG1,
HNRNPA1,DCD,PPP1R1A,MUCL1,
COPZ1,CBX5,GPR84,NCKAP1L, 
PDE1B,NFE2,GTSF1,GLYCAM1 

 Chr16:46036433-47063550 5 
SIAH1,ABCC11,LONP2,PHKB,AB
CC12 

 Chr16:47069610-48586106 4 ZNF423,N4BP1,CBLN1,C16orf78 
 Chr16:72954547-73014090 1 CLEC18B 
 Chr18:52339709-52856818 2 WDR7,TXNL1 

 Chr20:43763418-45210381 27 

ACOT8,TP53RK,CD40,SNX21,PLT
P,UBE2C,WFDC13,WFDC3,TNNC2
,ZSWIM3,ZSWIM1,NEURL2,NCO
A5,SLC35C2,ZNF334,SLC12A5,SL
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C2A10,PCIF1,CDH22,C20orf123,EL
MO2,SLC13A3,SPINT4,DNTTIP1,
MMP9,ZNF335,CTSA 

  Chr22:24019061-24248709 1 LRP5L 
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Supplementary Table 3.1. Summaries of the four diseases and one pathway 

associated with hepatic biomarkers AST or ALT.  

 Name ID Definition 

Diseases 

hepatocellular 

carcinoma 
MESH:D006528

A primary malignant 

neoplasm of 

epithelial liver cells. 

liver neoplasm MESH:D008113
Tumors or cancer of 

the liver. 

liver cell adenoma MESH:D018248
A benign epithelial 

tumor of the liver. 

drug-induced liver 

injury 
MESH:D056486

A spectrum of 

clinical liver 

diseases ranging 

from biochemical 

abnormalities to 

acute liver failure, 

caused by drug 

metabolites. 

Pathway 
hepatitis C 

pathway 
KEGG:05160 

A major cause of 

chronic liver disease. 
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Supplementary Table 3.2. Summaries of non-redundant 22, 25, and 332 genes 

identified in the CEU, JPT, and YRI individuals.  

Chromosome CEU JPT YRI 
Chr1  CREG1,REG4

,LOC1001295
34,CKS1B,PR
AMEF4 
 

RBP7,EIF3I,LAMTOR2,ANKR
D65,IFI6,VWA1,ISG20L2,KTI12
,RPS27,FAM46B,TACSTD2,MI
XL1,MIR181B1,PYCR2,LOR,IE
R5,IVL,CCDC28B,C1orf63,S100
A2,AMIGO1,PITHD1,SNAPIN,
FAM58BP,ZNF436,OR6K3,NUD
T17,OR6N1,APOBEC4,LOC100
506801 

Chr2 PCBP1  MZT2A,MRPL53,CYP4F30P,H
OXD8,ABHD1,PROM2,GPR148
,UCN,ZFP36L2,TLX2,LIMS3,L
OC100130451,SNORD94,FOXI3
,LOC647012,NMUR1,RETSAT,
ARL4C,LOC401010,GPR75,RD
H14,PCGF1,HOXD12,GDF7,FE
R1L5,RESP18,PREB,LIMS3L,D
QX1,BOLA3-AS1,CCDC74B 

Chr3 PIGZ  MYNN,RTP2,FLJ42393,OXSM,
SERP1,CYB561D2,SSR3,TLR9,
ABHD14B,DNAJB8-
AS1,C3orf71,GHSR,RPL35A,O
R5H15,PAQR9,LOC401074 

Chr4  LOC10028732
7 

NAA11,PABPC4L,SFRP2,CXCL
10,IL2,BBS12,MIR3138,DKFZP
434I0714,LOC644248,CXCL6 

Chr5 LOC10013
3050 

PCDHB17 NPY6R,HIGD2A,APBB3,HINT
1,LOC100132356,GPR151,MIR4
803 

Chr6 BAK1, 
TSPYL4 

 GGNBP1,NOL7,CAHM,RRP36,
HIST1H3H,LOC100289495,CLP
SL2 

Chr7 HSPB1, 
HYALP1 

GSTK1,GATS
L2,TRIP6 

GAL3ST4,ZNF394,C7orf34,EPH
B6,GTF2IRD2,ATP6V1F,DLX5,
ZNF467,FABP5P3,WBSCR28,H
OTTIP,SNORA15,PRSS3P2,MP
LKIP,SOSTDC1,ARHGEF35,ST
AG3L3 



147 

 

Chr8 SCXB, 
SCXA 

SNHG6 LOC100133267,NUDT18,DKK4
,SPAG11B,GPT,SPAG11A,MFS
D3,DEFB4B,PROSC,FABP9,RE
XO1L2P,C8orf73,PMP2,DEFB1
07B,DEFB130,DEFB107A,PCA
T1,C8orf69 

Chr9 AQP7P3 LCN15,EXD3 TOMM5,LOC100128593,ASB6,
LCN6,LINC00092,DPM2,IFNA1
6,HSPA5,CREB3,FAM122A,AN
KRD20A3,LOC100129722,ANK
RD20A2,LOC286297,C9orf173 

Chr10  PGAM1,MRP
S16 

CHCHD1,SYCE1,PLAU,UTF1,
TFAM,MIR603,FAM21C,MARK
2P9 

Chr11 OR5M1, 
OR4C6 

ARL1 TIMM10,CTSW,TMEM133,LO
C120824,C11orf1,LAMTOR1,C
LP1,NUDT22,GYLTL1B,B3GA
T3,LOC221122,SCGB1D4,C11or
f24,APOC3,JRKL,APOA4,KCN
A4,OR10A3,NUDT8,TRIM64C,
OR9G4,OR8H1,OR52N2,OR52
B6,OR51F2,OR5L2,OR10A2,PO
LD4 

Chr12 LOC10050
6451,NAN
OGNB,LO
C1005059
78,LOC10
0131733 

 
 

MMP19,OR10AD1,C3AR1,CLE
C1B,SLC9A7P1,C12orf39,AVPR
1A,SP7,MYF5,SELPLG,DCD,C
12orf68 

Chr13   LINC00460 

Chr14  SIVA1 MIR154,INF2,SNORD114-
6,BCL2L2,OR10G3,LINC00523,
RD3L 

Chr15 NDNL2  LOC283663,SCARNA14,OR4N
3P,RHOV,LOC100289656,SPAT
A8,LINC00593,C15orf59,ISLR,
LOC253044,MEX3B 

Chr16 NPW,BCL
7C 

 ZNF688,VPS35,NAGPA,CMTM
2,MT4,IRX6,RRN3,ATP6V0C,P
SMB10,NME4,LOC653786,ASP
HD1,PSMD7,ZNF785,CCDC101
,LOC100128788,HCFC1R1,PRS
S8,C16orf59,FOXC2,NRN1L,U
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BE2MP1,NTN3,NTAN1,ZNF689
,EXOC3L1,SPN,PKD1P1,MAR
VELD3,MIR328,ELMO3,DDX1
1L10 

Chr17  HIGD1B,KCT
D11 

KRT14,TMEM93,MRPS23,WN
K4,MRPL27,CSF3,TSEN54,HA
P1,CYB5D1,KRT33A,TBC1D3P
2,SAT2,SPDYE4,PIPOX,C17orf
102,GRB7,KRTAP4-
4,RNASEK,KRTAP9-
8,CSH1,KRTAP4-
11,TUBG1,ORMDL3,MIR4726,
LIMD2 

Chr18   LOC644669,SLC25A52 

Chr19 SIRT6 CIRBP,ICAM
4 

CCDC8,GCDH,TRAPPC2P1,CE
BPG,SWSAP1,LRFN3,KIR2DL
1,LOC100288123,DMRTC2,DN
ASE2,VN1R2,CALR,FPR1,RPL
13AP5,SIGLEC16,LIN37,ZNF58
0,CLEC11A,RPL13A,MIR519B,
LOC100134317,PPP1R15A,CEB
PA 

Chr20   FRG1B,LOC100131496,SPAG4,
SCAND1,DEFB116,C20orf202,S
UMO1P1 

Chr21 OLIG2  LINC00163,KRTAP10-
8,KRTAP12-3,TFF1,KRTAP10-
7,LINC00162 

Chr22 P2RX6P C22orf29,DN
AJB7 

CHCHD10,ARVCF,CBX6,LGA
LS1,GALR3,C1QTNF6,FAM109
B 
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Supplementary Table 3.3. Summaries of the pathways (A), drugs (B), and 

diseases (C) associated with ethnic disparities. 

(A) 

Ethnic 
Total 

numbers 
Pathway ID Pathway name 

CEU-
JPT-YRI 

3 

REACT:111102 Signal Transduction 

KEGG:04740 Olfactory transduction 

KEGG:01100 Metabolic pathways 

CEU-
YRI 

6 

KEGG:04141 
Protein processing in 
endoplasmic reticulum 

REACT:71 Gene Expression 

KEGG:00563 
Glycosylphosphatidylinositol-
anchor biosynthesis 

REACT:21257 Metabolism of RNA 

REACT:1675 mRNA Processing 

REACT:578 Apoptosis 
CEU-
JPT 

0  

JPT-YRI 5 

KEGG:05200 Pathways in cancer 

REACT:111217 Metabolism 

REACT:115566 Cell Cycle 

KEGG:04146 Peroxisome 

REACT:6900 Immune System 

CEU 
 5 

KEGG:00531 
Glycosaminoglycan 
degradation 

KEGG:04010 MAPK signaling pathway 

KEGG:04370 VEGF signaling pathway 

KEGG:05146 Amoebiasis 

KEGG:03040 Spliceosome 

JPT 

7 

KEGG:00980 
Metabolism of xenobiotics by 
cytochrome P450 

 KEGG:05222 Small cell lung cancer 

 
KEGG:00982 

Drug metabolism - cytochrome 
P450 

 REACT:115655 Metabolism 
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KEGG:04621 

NOD-like receptor signaling 
pathway 

 KEGG:00480 Glutathione metabolism 

 KEGG:00010 Glycolysis / Gluconeogenesis 

YRI 100 

KEGG:03013 RNA transport 

REACT:11123 Membrane Trafficking 

KEGG:04145 Phagosome 

KEGG:03060 Protein export 

KEGG:00250 
Alanine, aspartate and 
glutamate metabolism 

KEGG:00230 Purine metabolism 

KEGG:04144 Endocytosis 

REACT:604 Hemostasis 

KEGG:04650 
Natural killer cell mediated 
cytotoxicity 

REACT:383 DNA Replication 

REACT:78 
Post-Elongation Processing of 
the Transcript 

KEGG:04020 Calcium signaling pathway 

KEGG:04940 Type I diabetes mellitus 

KEGG:05016 Huntington's disease 

KEGG:00520 
Amino sugar and nucleotide 
sugar metabolism 

KEGG:03018 RNA degradation 

KEGG:05144 Malaria 

KEGG:00330 
Arginine and proline 
metabolism 

KEGG:03440 Homologous recombination 

REACT:1788 Transcription 

KEGG:00532 
Glycosaminoglycan 
biosynthesis - chondroitin 
sulfate 

KEGG:04140 Regulation of autophagy 

KEGG:04310 Wnt signaling pathway 

REACT:75800 Meiotic Synapsis (mouse) 

KEGG:05332 Graft-versus-host disease 

REACT:17015 Metabolism of proteins 

REACT:116125 Disease 
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REACT:111155 Cell-Cell communication 

KEGG:00061 Fatty acid biosynthesis 

KEGG:05150 
Staphylococcus aureus 
infection 

KEGG:04962 
Vasopressin-regulated water 
reabsorption 

KEGG:05320 Autoimmune thyroid disease 

KEGG:05110 Vibrio cholerae infection 

KEGG:03320 PPAR signaling pathway 

KEGG:05322 Systemic lupus erythematosus 

KEGG:05120 
Epithelial cell signaling in 
Helicobacter pylori infection 

KEGG:03420 Nucleotide excision repair 

KEGG:04623 
Cytosolic DNA-sensing 
pathway 

KEGG:04620 
Toll-like receptor signaling 
pathway 

REACT:13505 
Proteasome mediated 
degradation of PAK-2p34 

KEGG:04916 Melanogenesis 

KEGG:04350 TGF-beta signaling pathway 

KEGG:04977 
Vitamin digestion and 
absorption 

KEGG:04610 
Complement and coagulation 
cascades 

KEGG:03010 Ribosome 

KEGG:04360 Axon guidance 

KEGG:04672 
Intestinal immune network for 
IgA production 

KEGG:04612 
Antigen processing and 
presentation 

KEGG:04914 
Progesterone-mediated oocyte 
maturation 

KEGG:04966 Collecting duct acid secretion 

KEGG:04062 Chemokine signaling pathway 

REACT:6850 
Cdc20:Phospho-APC/C 
mediated degradation of Cyclin 
A 

KEGG:04660 
T cell receptor signaling 
pathway 

KEGG:00190 Oxidative phosphorylation 
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KEGG:00380 Tryptophan metabolism 

KEGG:00534 
Glycosaminoglycan 
biosynthesis - heparan sulfate 

KEGG:05330 Allograft rejection 

KEGG:04975 Fat digestion and absorption 

KEGG:00310 Lysine degradation 

KEGG:00510 N-Glycan biosynthesis 

KEGG:00561 Glycerolipid metabolism 

KEGG:04622 
RIG-I-like receptor signaling 
pathway 

KEGG:04114 Oocyte meiosis 

KEGG:05215 Prostate cancer 

KEGG:05020 Prion diseases 

KEGG:03030 DNA replication 

KEGG:00760 
Nicotinate and nicotinamide 
metabolism 

KEGG:04080 
Neuroactive ligand-receptor 
interaction 

KEGG:05152 Tuberculosis 

KEGG:00260 
Glycine, serine and threonine 
metabolism 

REACT:216 DNA Repair 

REACT:1762 
3' -UTR-mediated translational 
regulation 

KEGG:04270 
Vascular smooth muscle 
contraction 

KEGG:00240 Pyrimidine metabolism 

KEGG:03015 mRNA surveillance pathway 

REACT:27166 
Transcriptional Regulation of 
Adipocyte Differentiation in 
3T3-L1 Pre-adipocytes 

KEGG:05162 Measles 

KEGG:05142 
Chagas disease (American 
trypanosomiasis) 

REACT:111183 Meiosis 

KEGG:03430 Mismatch repair 

KEGG:04640 Hematopoietic cell lineage 

REACT:115492 Developmental Biology 

KEGG:00564 
Glycerophospholipid 
metabolism 
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REACT:111045 Developmental Biology 

REACT:27235 
Meiotic Recombination 
(mouse) 

REACT:89750 Hemostasis 

KEGG:05160 Hepatitis C 

KEGG:04630 Jak-STAT signaling pathway 

KEGG:03410 Base excision repair 

KEGG:03050 Proteasome 

KEGG:00071 Fatty acid metabolism 

KEGG:00830 Retinol metabolism 

KEGG:04060 
Cytokine-cytokine receptor 
interaction 

REACT:15518 
Transmembrane transport of 
small molecules 

KEGG:05323 Rheumatoid arthritis 

KEGG:05221 Acute myeloid leukemia 

KEGG:04514 
Cell adhesion molecules 
(CAMs) 

REACT:13685 Neuronal System 

KEGG:05143 African trypanosomiasis 

KEGG:04142 Lysosome 
 

(B)  

Ethnic 
Total 
numbers 

Drug ID Drug name Indication 

CEU-
JPT-
YRI 

42 

DB00250 Dapsone 

For the treatment 
and management 
of leprosy and 
dermatitis 
herpetiformis. 

DB00943 Zalcitabine 

For the treatment 
of Human 
immunovirus 
infections. 

DB00648 Mitotane 

For treatment of 
inoperable 
adrenocortical 
tumours. 
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DB01356 Lithium 

Lithium is used as 
a mood stabilizer, 
and is used for 
treatment of 
depression and 
mania. 

DB01169 
Arsenic trioxide 

 

For induction of 
remission and 
consolidation. 

DB00369 Cidofovir 
For the treatment 
of CMV. 

DB01060 Amoxicillin 

For the treatment 
of infections of 
the ear, nose, and 
throat, the 
genitourinary 
tract, the skin and 
skin structure.  

DB00544 Fluorouracil 

For the treatment 
of superficial 
basal cell 
carcinomas. 

DB01101 Capecitabine 

For the treatment 
of patients with 
metastatic breast 
cancer.  

DB00126 Vitamin C 

Used to treat 
vitamin C 
deficiency, 
scurvy, delayed 
wound and bone 
healing, urine 
acidificatio.  

DB00563 Methotrexate 
For the treatment 
of gestational 
choriocarcinoma. 

DB00459 Acitretin 
For the treatment 
of severe psoriasis 
in adults. 

DB00091 Cyclosporine 

For treatment of 
transplant 
rejection, 
rheumatoid 
arthritis. 
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DB00290 Bleomycin 
For palliative 
treatment in 
lymphomas. 

DB01206 Lomustine 

For the treatment 
of primary and 
metastatic brain 
tumors.  

DB01262 Decitabine 

For treatment of 
patients with 
myelodysplastic 
syndromes 
French-American-
British. 

DB01234 Dexamethasone 

For the treatment 
of endocrine 
disorders, 
rheumatic, 
dermatologic 
diseases, allergic 
statesc. 

DB00262 Carmustine 

For the treatment 
of brain tumors, 
multiple 
myeloma, 
Hodgkin's disease 
and Non-
Hodgkin's 
lymphomas. 

DB04690 Camptothecin 
Investigated for 
the treatment of 
cancer. 

DB00928 Azacitidine 

For treatment of 
patients with the 
following French-
American-British 
myelodysplastic 
syndrome 
subtypes. 

DB01008 Busulfan 

For use in 
combination with 
cyclophosphamide
. 

DB00997 Doxorubicin 
For the treatment 
of Koposi's 
sarcome 
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connected to 
AIDS. 

DB00977 Ethinyl Estradiol 

For treatment of 
moderate to 
severe vasomotor 
symptoms. 

DB00381 Amlodipine 

For the treatment 
of hypertension 
and chronic stable 
angina. 

DB00787 Aciclovir 

For the treatment 
and management 
of herpes zoster, 
genital herpes, and 
chickenpox 

DB01143 Amifostine 

For reduction in 
the cumulative 
renal toxicity in 
patients with 
ovarian cancer. 

DB00678 Losartan 
May be used as a 
first line agent to 
treat hypertension.  

DB00681 Amphotericin B 

Used to treat 
potentially life 
threatening fungal 
infections. 

DB00322 Floxuridine 

For palliative 
management of 
gastrointestinal 
adenocarcinoma 
metastatic to the 
liver. 

DB00900 Didanosine 

For use the 
treatment of HIV-
1 infection in 
adults. 

DB00640 Adenosine 
Used as an initial 
treatment for the 
termination. 

DB00515 Cisplatin 
For the treatment 
of metastatic 
testicular tumors. 

DB00970 Dactinomycin 
For the treatment 
of Wilms' tumor, 
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childhood 
rhabdomyosarcom
a. 

DB00851 Dacarbazine 

For the treatment 
of metastatic 
malignant 
melanoma.  

DB00959 Methylprednisolone

Adjunctive 
therapy for short-
term 
administration. 

DB00482 Celecoxib 

For relief and 
management of 
osteoarthritis, 
rheumatoid 
arthritis. 

DB06151 Acetylcysteine 

Acetylcysteine is 
used as a 
mucolytic and in 
the management 
of paracetamol 
overdose. 

DB00297 Bupivacaine 

For the production 
of local or 
regional 
anesthesia or 
analgesia for 
surgery. 

DB00163 Vitamin E 

Vitamin E is 
protective against 
cardiovascular 
disease. 

DB00317 Gefitinib 

For the continued 
treatment of 
patients with 
locally advanced 
platinum-based or 
docetaxel 
chemotherapies. 

DB00987 Cytarabine 

For the treatment 
of acute non-
lymphocytic 
leukemia, acute 
lymphocytic 
leukemia. 



158 

 

DB00855 
Aminolevulinic 

acid 

For the treatment 
of moderately 
thick actinic 
keratoses of the 
face or scalp. 

CEU-
YRI 

9 

DB00499 Flutamide 

For the 
management of 
locally confined 
Stage B2-C and 
Stage D2. 

DB01248 Docetaxel 

For the treatment 
of patients with 
locally advanced 
or metastatic 
breast cancer after 
failure of prior 
chemotherapy.  

DB00668 Epinephrine 
Used to treat 
anaphylaxis and 
sepsis.  

DB00248 Cabergoline 

For the treatment 
of 
hyperprolactinemi
c disorders.  

DB00305 Mitomycin 

For treatment of 
malignant 
neoplasm of lip, 
oral cavity.  

DB00242 Cladribine 
For the treatment 
of active hairy cell 
leukemia. 

DB00958 Carboplatin 

For the initial 
treatment of 
advanced ovarian 
carcinoma. 

DB00254 Doxycycline 

Doxycycline is 
indicated for use 
in respiratory tract 
infections. 

DB01167 Itraconazole 

For the treatment 
of the fungal 
infections 
pulmonary. 

CEU-
JPT 

0   
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JPT-
YRI 

5 

DB00295 Morphine 
For the relief and 
treatment of 
severe pain. 

DB00158 Folic Acid 

For treatment of 
folic acid 
deficiency, 
megaloblastic 
anemia. 

DB00196 Fluconazole 
For the treatment 
of fungal 
infections. 

DB00783 Estradiol 
For the treatment 
of urogenital 
symptoms. 

DB00898 Ethanol 
For therapeutic 
neurolysis of 
nerves or ganglia. 

CEU 2 

DB01177 Idarubicin 
For the treatment 
of acute myeloid 
leukemia. 

DB00996 Gabapentin 

For the 
management of 
postherpetic 
neuralgia. 

JPT 0   

YRI 14 

DB00281 Lidocaine 
For production of 
local or regional 
anesthesia. 

DB00603 
Medroxyprogestero

ne 

Used as a 
contraceptive and 
to treat secondary 
amenorrhea. 

DB01592 Iron 

Used in 
preventing and 
treating iron-
deficiency 
anemia. 

DB01042 Melphalan 

For the palliative 
treatment of 
multiple 
myeloma.  

DB00523 Alitretinoin 
For topical 
treatment of 
cutaneous lesions. 
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DB00422 Methylphenidate 

For use as a 
treatment for a 
stabilizing with a 
behavioral 
chidren. 

DB01119 Diazoxide 
Used parentally to 
treat hypertensive 
emergencies.  

DB01225 Enoxaparin 

For the 
prophylaxis of 
deep vein 
thrombosis. 

DB00724 Imiquimod 
For the topical 
treatment of 
clinically typical. 

DB00224 Indinavir 
Indinavir is an 
antiretroviral drug 
of HIV infection. 

DB00333 Methadone 

For the treatment 
of dry cough, drug 
withdrawal 
syndrome. 

DB01181 Ifosfamide 

Used as a 
component of 
chemotherapeutic 
regimens. 

DB00448 Lansoprazole 
For the treatment 
of acid-reflux 
disorders. 

DB00813 Fentanyl 
For the treatment 
of cancer patients 
with severe pain. 

 

(C) 

Ethnic 
Total 

numbers 
Disease ID Disease name 

CEU-JPT-
YRI 

123 
MESH:D009382

Neoplasms, Unknown 
Primary 

MESH:D003557 Phyllodes Tumor 
MESH:D000386 AIDS-Related Complex 
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MESH:D055756
Meningeal 
Carcinomatosis 

MESH:D020202
Cerebral Hemorrhage, 
Traumatic 

MESH:D000754
Anemia, Refractory, with 
Excess of Blasts 

MESH:D055623 Keratosis, Actinic 
MESH:D045262 Reticulocytosis 

MESH:D015620
Histiocytic Disorders, 
Malignant 

MESH:D002389 Catatonia 
MESH:D009188 Myelitis, Transverse 
MESH:D005134 Eye Neoplasms 

MESH:C535533
Intrahepatic 
cholangiocarcinoma 

MESH:D009894 Opportunistic Infections 
MESH:D051346 Mobility Limitation 
MESH:D006192 Haemophilus Infections 

MESH:D007968
Leukoencephalopathy, 
Progressive Multifocal 

MESH:D002921 Cicatrix 

MESH:D019968
Sexual and Gender 
Disorders 

MESH:D013899 Thoracic Neoplasms 
MESH:D013086 Spermatic Cord Torsion 
MESH:D011349 Proctitis 
MESH:D014987 Xerostomia 
MESH:D013832 Thiamine Deficiency 
MESH:D054138 Sinus Arrest, Cardiac 

MESH:D011529
Protozoan Infections, 
Animal 

MESH:D054537 Atrioventricular Block 
MESH:D006102 Granuloma, Laryngeal 
MESH:D005356 Fibromyalgia 
MESH:D014134 Tracheal Neoplasms 

MESH:C535648
Familial primary gastric 
lymphoma 

MESH:D004679 Encephalomyelitis 
MESH:D009182 Mycosis Fungoides 

MESH:D004695
Endocardial 
Fibroelastosis 
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MESH:D010997 Pleural Neoplasms 

MESH:D015840
Oculomotor Nerve 
Diseases 

MESH:D016919 Meningitis, Cryptococcal 

MESH:D007232
Infant, Newborn, 
Diseases 

MESH:D012872
Skin Diseases, 
Vesiculobullous 

MESH:D005185
Fallopian Tube 
Neoplasms 

MESH:D011252
Pregnancy Complications, 
Neoplastic 

MESH:D011832 Radiation Injuries 
MESH:D020434 Abducens Nerve Diseases 
MESH:D004483 Ectropion 
MESH:D013924 Thrombophlebitis 
MESH:D018785 Tricuspid Atresia 
MESH:D015866 Uveitis, Posterior 
MESH:D057896 Striae Distensae 

MESH:D006646
Histiocytosis, 
Langerhans-Cell 

MESH:D000757 Anencephaly 

MESH:D010255
Paranasal Sinus 
Neoplasms 

MESH:D006562 Herpes Zoster 
MESH:D007019 Hypoproteinemia 
MESH:D003139 Common Cold 

MESH:D054438
Leukemia, Myeloid, 
Chronic, Atypical, BCR-
ABL Negative 

MESH:D020232 Kluver-Bucy Syndrome 

MESH:D016411
Lymphoma, T-Cell, 
Peripheral 

MESH:D020828 Pseudobulbar Palsy 

MESH:C535668
Adrenocorticotropic 
hormone deficiency 

MESH:D007638
Keratoconjunctivitis 
Sicca 

MESH:D013684 Telangiectasis 
MESH:D000381 Agraphia 

MESH:D018268
Adrenocortical 
Carcinoma 
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MESH:D014328 Trophoblastic Neoplasms 
MESH:D045745 Scleroderma, Limited 

MESH:C538525
Mitochondrial 
encephalopathy 

MESH:D001762 Blepharitis 
MESH:D004172 Diplopia 
MESH:C536495 VACTERL association 
MESH:D003218 Condylomata Acuminata 
MESH:D002283 Carcinoma, Bronchogenic 
MESH:D009006 Monosomy 
MESH:D002291 Carcinoma, Papillary 
MESH:D019559 Capillary Leak Syndrome 

MESH:D010236
Paraganglioma, Extra-
Adrenal 

MESH:C538370
Retroperitoneal 
liposarcoma 

MESH:D013952 Thymus Hyperplasia 
MESH:D007829 Laryngostenosis 
MESH:D004379 Duodenal Neoplasms 
MESH:D004407 Dysgerminoma 
MESH:D044504 Enterocolitis, Neutropenic 
MESH:D018236 Carcinoma, Embryonal 

MESH:D002494
Central Nervous System 
Infections 

MESH:D025242 Spondylarthropathies 

OMIM:146850 
IMMUNE 
SUPPRESSION 

MESH:D060831 Hand-Foot Syndrome 
MESH:D010307 Parotid Neoplasms 
MESH:D011128 Polyradiculopathy 
MESH:D020237 Alexia, Pure 
MESH:D055154 Dysphonia 

MESH:C537844
Nonseminomatous germ 
cell tumor 

MESH:D005533 Foot Dermatoses 
MESH:D002357 Cartilage Diseases 
MESH:D004933 Esophageal Atresia 
MESH:D012811 Sigmoid Neoplasms 
MESH:D020240 Apraxia, Ideomotor 
MESH:D018325 Hemangioblastoma 
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MESH:D001984 Bronchial Neoplasms 
MESH:D013122 Spinal Diseases 

MESH:D016543
Central Nervous System 
Neoplasms 

MESH:D020149 Manganese Poisoning 
MESH:D008480 Mediastinitis 

MESH:D010257
Paraneoplastic 
Syndromes 

OMIM:613290 
HEARING LOSS, 
CISPLATIN-INDUCED, 
SUSCEPTIBILITY TO 

MESH:D014523 Urethral Neoplasms 
MESH:D004443 Echinococcosis 
MESH:D016918 Arthritis, Reactive 

MESH:D004701
Endocrine Gland 
Neoplasms 

MESH:D016781 Toxoplasmosis, Cerebral 
MESH:D020069 Shoulder Pain 

MESH:D016400
Lymphoma, Large-Cell, 
Immunoblastic 

MESH:D010192 Pancreatic Pseudocyst 
MESH:D009442 Neurilemmoma 

MESH:D012817
Signs and Symptoms, 
Digestive 

MESH:D007007 Hypohidrosis 
MESH:D015490 HTLV-I Infections 
MESH:D005155 Facial Nerve Diseases 

MESH:D054038
Posterior 
Leukoencephalopathy 
Syndrome 

MESH:D015477
Leukemia, 
Myelomonocytic, Chronic 

MESH:C538011 Eales disease 

MESH:D008664
Metal Metabolism, Inborn 
Errors 

MESH:D007939 Leukemia L1210 
MESH:D010304 Paronychia 

CEU-YRI 39 

MESH:D007953
Leukemia, Radiation-
Induced 

MESH:D015448 Leukemia, B-Cell 
MESH:D014719 Vesicovaginal Fistula 
MESH:D014627 Vaginitis 
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MESH:D007499 Iris Diseases 
MESH:D002528 Cerebellar Neoplasms 
MESH:D018227 Sarcoma, Clear Cell 
MESH:D001025 Aortitis 
MESH:D007943 Leukemia, Hairy Cell 
MESH:D004940 Esophageal Stenosis 
MESH:D018410 Pneumonia, Bacterial 
MESH:D015422 Scleral Diseases 
MESH:D019462 Syncope, Vasovagal 
MESH:D010167 Pallor 
MESH:D001747 Urinary Bladder Fistula 
MESH:D012912 Sneezing 
MESH:D013492 Suppuration 
MESH:D051302 Paroxysmal Hemicrania 
MESH:D001661 Biliary Tract Neoplasms 
MESH:D002828 Choristoma 
MESH:D048550 Hepatic Insufficiency 

MESH:D020518
Focal Nodular 
Hyperplasia 

MESH:D017714
Community-Acquired 
Infections 

MESH:D010390
Pemphigoid, Benign 
Mucous Membrane 

MESH:D010034
Otitis Media with 
Effusion 

MESH:D007500 Iritis 
MESH:D002575 Uterine Cervicitis 

MESH:D009209
Myofascial Pain 
Syndromes 

MESH:D010033 Otitis Media 
MESH:D034321 Hyperamylasemia 
MESH:C536783 T-Lymphocytopenia 
MESH:D017577 Cutaneous Fistula 
MESH:C538268 Auditory neuropathy 
MESH:D057112 Corneal Perforation 
MESH:D015792 Retinal Dysplasia 
MESH:D015441 Leprosy, Tuberculoid 

MESH:D014262
Tricuspid Valve 
Insufficiency 
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MESH:D020516
Brachial Plexus 
Neuropathies 

MESH:D014550
Urinary Incontinence, 
Stress 

CEU-JPT 0   

JPT-YRI 24 

MESH:D014009 Onychomycosis 

MESH:D018302
Neoplasms, 
Neuroepithelial 

MESH:D013978 Tibial Fractures 
MESH:D001206 Ascorbic Acid Deficiency 
MESH:D006558 Herpes Genitalis 
MESH:D016388 Tooth Loss 
MESH:D018677 Tooth Injuries 

MESH:D020277
Polyradiculoneuropathy, 
Chronic Inflammatory 
Demyelinating 

MESH:D001657 Biliary Dyskinesia 
MESH:D014008 Tinea Pedis 

MESH:C535464
Conotruncal cardiac 
defects 

MESH:D020268
Alcohol-Induced 
Disorders, Nervous 
System 

MESH:D014860 Warts 
MESH:D006560 Herpes Labialis 

MESH:D001028
Aortopulmonary Septal 
Defect 

MESH:D027601 Polyomavirus Infections 
MESH:D005242 Fecal Incontinence 
MESH:D012614 Scurvy 

MESH:D020918
Complex Regional Pain 
Syndromes 

MESH:D006819
Hyaline Membrane 
Disease 

MESH:D013182 Sprue, Tropical 
MESH:C531767 Edema of the optic disc 
MESH:D048949 Labor Pain 
MESH:D000267 Tissue Adhesions 

CEU 3 
MESH:D010591 Phantom Limb 
MESH:D020432 Trochlear Nerve Diseases 
MESH:D014847 Vulvitis 



167 

 

JPT 0   

YRI 46 

MESH:D011528 Protozoan Infections 

MESH:C535700
Malignant mesenchymal 
tumor 

MESH:D001759 Blastomycosis 
MESH:D003291 Conversion Disorder 
MESH:D008172 Lung Diseases, Fungal 
MESH:D004184 Dirofilariasis 
MESH:D004454 Echolalia 
MESH:D046350 Porphyria, Variegate 
MESH:C538542 Sexual precocity 

MESH:C537095
Brachydactyly with 
hypertension 

MESH:D018746
Systemic Inflammatory 
Response Syndrome 

MESH:D006944
Hyperglycemic 
Hyperosmolar Nonketotic 
Coma 

MESH:D023981 Sarcoma, Myeloid 
MESH:D003440 Croup 
MESH:D000377 Agnosia 

MESH:D020206
Subarachnoid 
Hemorrhage, Traumatic 

MESH:C531616 Primary amyloidosis 
MESH:D045602 Steatorrhea 
MESH:D016460 Granuloma Annulare 
MESH:D056650 Vulvodynia 
MESH:D053120 Respiratory Aspiration 

MESH:D016574
Seasonal Affective 
Disorder 

MESH:D020220 Facial Nerve Injuries 

MESH:D015673
Fatigue Syndrome, 
Chronic 

MESH:D006491 Hemothorax 
MESH:D008946 Mitral Valve Stenosis 
MESH:C536855 Fanconi like syndrome 
MESH:D006660 Histoplasmosis 
MESH:D003874 Dermatitis Herpetiformis 

MESH:C536610
Familial cerebral 
cavernous malformation 

MESH:D004842 Epispadias 
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MESH:C537372
Multi-centric Castleman's 
Disease 

MESH:D008260 Macroglossia 

MESH:D020433
Trigeminal Nerve 
Diseases 

MESH:D002279 Carcinoma 256, Walker 
MESH:D014010 Tinea Versicolor 
MESH:D017789 Granuloma, Pyogenic 
MESH:D006551 Hernia, Hiatal 
MESH:D001988 Bronchiolitis 
MESH:D000274 Adiposis Dolorosa 

MESH:D016263
AIDS-Associated 
Nephropathy 

MESH:D018437
Brown-Sequard 
Syndrome 

MESH:C538169 Acitretin embryopathy 
MESH:D017499 Porokeratosis 
MESH:D034161 Pelvic Infection 
MESH:D021081 Chronobiology Disorders 
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(A) 

 

(B) 

 

 

 

Supplementary Figure 2.1. Bar graph of the total number of the significant 

CNVs on each chromosome in KARE1 (A) and KARE2 (B).  

 

  



170 

 

(A) 

 
(B) 

 
 

Supplementary Figure 2.2. Quantile-quantile (QQ) plot for AST or ALT 

results for GWAS in KARE1 (A) and KARE2 (B). In the QQ plot, the 

horizontal and the vertical axis indicates expected and observed p-values, 

respectively. The lambda values (median[obs]/median[exp]) is shown. 
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Supplementary Figure 2.3. The distribution of the number of CNVs in this 

study compare to previously found CNVs in same Korean populations. 
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Supplementary Figure 2.4. The log2 ratio distributions of the 16 significant 

CNVs.  
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(A) 

(B) 

 

 

Supplementary Figure 3.1. Gene functional classifications for AST or ALT 

based on the DAVID tool. All categories are with the significant enrichment 

groups, with ranges of 1.67-4.85 (A: Biological Process) and 1.9-5.05 (B: 

Molecular Function).  
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요약(국문초록) 
 

구조 변이 기반 인간 게놈 특성  

규명을 위한 생물정보학 연구 

 

김효영 

농생명공학부 동물생명공학전공 

서울대학교 대학원 농업생명과학대학 

 

지난 몇 년 동안 질병 관련 유전체 구조적 변이 (단일염기 

다형성과 유전자 복제 수 변이) 연구에 대한 노력이 계속되고 있다. 

단일염기 다형성은 참조유전체와 비교하여 DNA 염기서열에서 

하나의 염기서열의 차이를 가지고 유전자 복제 수 변이는 1,000 개 

이상의 구조적 변이이다. 전장유전체연관분석은 유전체 구조적 

변이와 질병에 관한 후보유전자를 찾는데 많이 연구되고 있다. 

데이터 마이닝은 복잡하고 많은 양의 정보를 통찰하는데 중요하다. 

이러한 생물학적 네트워크는 연구자가 정보를 통하여 복잡한 

문제에 대한 의미론적 해답을 찾는데 도움을 준다. 따라서, 이 

논문의 목표는 한국인에서 간 질병과 관련된 유전적 변이를 찾고, 

간 기능이나 인종 차이에 영향을 미치는 생물학적 네트워크를 
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구축하여 이에 대한 의미론적 해답을 찾고 유전체 구조적 변이에 

대한 시각화 툴을 구축하는데 있다.  

제 1 장에서는 유전자 복제 수 변이, 전장유전체연관분석과 

생물학적 네트워크에 관하여 기술하였다. 1) 유전자 복제 수 변이에 

대한 개요와 원천 및 찾는 방법을 기술하였고 연구동향과 

질병에서의 역할을 정리하였다. 2) 전장유전체연관분석에 대한 

개요와 배경을 정리하였고 방법 및 결과를 요약하였다. 3) 생물학적 

네트워크에 관한 개요 및 연구동향을 정리하였다.  

제 2 장에서는 한국인에 관한 간 형질과 유전자 복제 수 변이의 

메타연관분석을 수행하였다. KARE1 파트에서는 1) 한국인 8,842 명에 

대해 총 10,162 개의 유전자 복제 수 변이를 찾았고, 2) 간 형질에 

대한 유전자 복제 수 변이의 영향을 보기 위하여 단일 선형 회귀 

분석을 수행하였다. 그 결과, AST 와 ALT 에 대해서 각각 100 개와 

16 개가 유의하게 나왔다. 3) 그 유의한 유전자 복제 수 변이의 

지역에 39 개의 유전자가 위치해 있었고 4) 그 유전자에 대해 

기능적 분류 분석 결과, 간 관련 후보유전자로서 인정이 되었다. 

KARE2 파트에서는 KARE1 파트의 반복 유전체연관분석을 

수행하였다. 1) 한국인 407 명에 대해 총 3,046 개의 유전자 복제 수 

변이를 찾았고, 2) 단일 선형 회귀 분석을 이용하여 유전자 복제 수 

변이와 간 형질과의 연관분석을 수행하였다. 그 결과, AST 와 ALT 에 

대해서 각각 32 개 (140 개의 유전자)와 42 개 (172 개의 유전자)가 

유의하게 나왔다. 3) 반복분석결과, 한국인의 유전자 복제 수 변이와 

간 관련하여 총 9 개의 유전자가 유의하게 나왔다. 



178 

 

제 3 장에서는 간 기능과 인종 차이를 나타내는 유전자 복제 수 

관련 생물학적 네트워크를 구축하였다. 노드는 유전자, 질병, 대사, 

화학물질, 약, 임상정보, 변이 등으로 구성되어있고, 연결은 유전자-

질병, 유전자-변이, 유전자-화학물질, 대사-질병, 대사-화학물질, 

화학물질-약, 질병-임상정보, 임상정보-약 등으로 구성되어있다. 

생물학적 네트워크 분석을 통해 한국인 간 기능 유전자 복제 수 

변이 관련 총 4 개의 질병과 1 개의 대사회로 및 7 개의 약을 

밝혀내었고, 인종 차이 유전자 복제 수 변이 관련 총 3 개의 질병과 

1 개의 약 및 5 개의 대사회로를 밝혀내었다.   

제 4 장에서는 유전자 복제 수 변이와 단일염기다형성의 

시각화를 위한 툴을 구축하였다. 총 6 개의 메뉴로 1) 유전자 복제 

수 변이나 단일염기다형성의 위치에 풍부한 요소 검사와 2) 

염색체상의 변이 위치 분포 3) log2 ratio 분포 4) binning 단위 당 변위 

분포 5) homozygosity 분포 6) cytomapping 시각화로 구성되어있다. 이 

툴은 값으로 나타나는 변이로부터 생물학적 의미를 쉽게 

이해하는데 도움을 주고, 또한 어떤 설치나 다운로드 없이 쉽게 

이용 가능하다.  

 전장유전체 연관분석을 통해 한국인의 유전자 복제 수 

변이와 간 형질 관련 유력한 후보유전자를 찾을 수 있었고, 간 

질병과 인종차이 유전자 복제 수 변이관련 의미론적 생물학 

네트워크를 구축할 수 있었다. 또한 다양한 유전자 복제 수 변이 

연구를 함으로써 축적되어온 변이 시각화를 위한 총집합적 툴을 

개발하였다. 이러한 네트워크와 시각화 툴은 질병이나 인종 관련 
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유전자 복제 수 변이의 의미론적 생물학 의미 발견이 가능하고 

시각화 툴은 값으로 나타나는 유전자 복제 수 변이로부터 생물학적 

해석에 도움이 된다.  

 

주요어: 생물학적 네트워크, 시각화, 유전자 복제 수 변이, 

전장유전체연관분석, 한국인. 

 

학번: 2007-30877 
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