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Abstract

“Homo Faber” refers to humans as controlling the environments
through tools. From the beginning of the world, humans have created
tools for chasing the convenient life. The desire for the rapid
movement let the human ride on horseback, made the wagon and
finally made the vehicle. The vehicles allowed humans to travel the
long distance very quickly as well as conveniently. However, since
human being itself is imperfect, plenty of people have died due to the
car accident, and people are dying at this moment. The research for
autonomous vehicle has been conducted to satisfy the human’s desire of
the safety as the best alternative. And, the dream of autonomous
vehicle will come true in the near future.

For the implementation of autonomous vehicle, many kinds of
techniques are required, among which, the recognition of the
environment around the vehicle is one of the most fundamental and
important problems. For the recognition of surrounding objects many
kinds of sensors can be utilized, however, the monocular camera can
collect the largest information among sensors as well as can be utilized
for the variety of purposes, and can be adopted for the various vehicle
types due to the good price competitiveness. 1 expect that the research
using the monocular camera for autonomous vehicle is very practical
and useful.

In this dissertation, I cover four important recognition problems for
autonomous driving by using monocular camera in vehicular
environment. Firstly, to drive autonomously the vehicle has to recognize
lanes and keep its lane. However, the detection of lane markings under
the various illuminant variation is very difficult. Nevertheless, it must

be solved for the autonomous driving. The first research topic is the



robust lane marking extraction under the illumination variations for
multilane detection. I proposed the new lane marking extraction filter
that can detect the imperfect lane markings as well as the new false
positive cancelling algorithm that can eliminate noise markings. This
approach can extract lane markings successfully even under the bad
illumination conditions. Secondly, the problem to tackle is, if there is
no lane marking on the road, then how the autonomous vehicle can
recognize the road to run? In addition, what is the current lane position
of the road? The latter is the important question since we can make a
decision for lane change or keeping depending on the current position
of lane. The second research is for handling those two problems, and I
proposed the approach for the fusing the road detection and the lane
position estimation. Finally, to drive more safely, keeping the safety
distance is very important. Measuring accurate inter-vehicle distance by
using monocular camera and line laser is the third research topic. To
measure the inter-vehicle distance, I illuminate the line laser on the
front side of vehicle, and measure the length of the laser line and lane
width in the image. Based on the imaging geometry, the distance
calculation problem can be solved with accuracy.

There are still many of important problems remaining to be solved,
and [ proposed some approaches by using the monocular camera to
handle the important problems. I expect very active researches will be
continuously conducted and, based on the researches, the era of

autonomous vehicle will come in the near future.

Keywords: lane marking extraction, road detection, lane position estimation,

inter-vehicle distance measurement.

Student number: 2010-30798

Lo



Contents

Table Of Contents ........................ 1
LlSt Of Figures ........................ iV
List of Tables = « « « = =+« o o e vi

1 Introduction 1
1.1 Background and Motivations - -« - - - - - - oo s e e s 1
1.2 Contributions and Outline of the Dissertation - - - - + - - - 2
1.2.1 Illumination-Tolerant Lane Marking Extraction - - - - - - 2

for Multilane Detection

1.2.2 Fusing Road Detection and Lane Position - - - - - - - - 3
Estimation for the Robust Road Boundary Estimation

1.2.3 Accurate Inter-Vehicle Distance Measurement - - - - - - - 3

based on Monocular Camera and Line Laser

2 Illumination-Tolerant Lane Marking Extraction for 4
Multilane Detection

21 Introduction - - = - « =+ + ¢ e e e e e 4
2.2 Lane Marking Candidate Extraction Filter - - - - - - - - - - 9
2.2.1 Requirements of the Filter - - - - - - - - - - - - - - - - 9
2.2.2 A Comparison of Filter Characteristics - - - - - - - - - - 10
223 Cone Hat Filter + « « + = « + = « « =+ v v oo 12
2.3 Overview of the Proposed Algorithm - - - - - - - - - - - - - 15
2.3.1 Filter Width Estimation - - - - - - - -+« - -« - - 15
2.3.2 Top Hat (Cone Hat) Filtering - - - - - - - - - - - - - - - 16
2.3.3 Reiterated Extraction - - - - - - - e 19
2.3.4 False Positive Cancelling - - - - - - = = - - -+ - - - 21

2.3.4.1 Lane Marking Center Point Extraction - - - - - - - - 21



2.3.4.2 Fast Center Point Segmentation - - - - - - - - - - - -
2.3.4.3 Vanishing Point Detection - - - - - - - - - - - - - -
2.3.4.4 Segment Extraction - -« - - - - - s e e
2.3.4.5 False Positive Filtering - - - - -« - - - -« - - - -
2.4 Experiments and Evaluation - - - - - - - - - - - - - -
2.4.1 Experimental Set-up - « © ¢+ - v s oc s
2.4.2 Conventional Algorithm for Evaluation - - - - - - - - - -
2.4.2.1 Global threshold - - - - - - -« = = o v e
2.4.2.2 Positive Negative Gradient - - - - -« - = - -+« - - -
2423 Local Threshold - - - - = -+ - = - o oo v
2.42.4 Symmetry Local Threshold - - - - - - - - - - - - - -
2.4.2.5 Double Extraction using Symmetry Local Threshold
2.4.2.6 Gaussian Filter - - - -« - = = oo
2.4.3 Experimental Results - - - - - - - = - o0
244 SUmMmary - ¢ ¢ v oc st s s

3 Fusing Road Detection and Lane Position Estimation
for the Robust Road Boundary Estimation
31 Introduction = - - = = « « c - e e e e
3.2 Chromaticity-based Flood-fill Method - - - - - - - - - - - - -
3.2.1 Nlluminant-Invariant Space - - - - - -+« « « = =+« - - -
3.2.2 Road Pixel Selection - - - - - - = - e
3.2.3 Flood-fill Algorithm - - - - - - « -« -+« - = - - o oo e
3.3 Lane Position Estimation - - - « « -« =« -« o coe e e
3.3.1 Lane Marking Extraction - - - - - - - = - - - - -
3.3.2 Proposed Lane Position Detection Algorithm - - - - - - -
3.3.3 Bird’s-eye View Transformation by using - -« - - - - - -
the Proposed Dynamic Homography Matrix Generation

3.3.4 Next Lane Position Estimation based on the Cross-ratio

ii ] =



3.3.5 Forward-looking View Transformation - - - - - - - « « -
3.4 Information Fusion Between Road Detection - - - - - - - - -
and Lane Position Estimation
3.4.1 The Case of Detection Failures - - -« - - - - - -« - - -
3.4.2 The Benefit of Information Fusion - - - - - - - - - - - -
3.5 Experiments and Evaluation - - - - - - - -« - - oo

3.6 Summary ............................

4 Accurate Inter-Vehicle Distance Measurement
based on Monocular Camera and Line Laser
4.1 Introduction - - - « « - - - e e e e e
4.2 Proposed Distance Measurement Algorithm - - - - - - - - -
4.3 Experiments and Evaluation - - - -« - -« - -0
4.3.1 Experimental System Set-up - -« « - = - - c -
4.3.2 Experimental Results - - -« « = = = -« oo
44 SUMMArY =« « e

5 Conclusion

Bibliography

79

79
80
84
84
86
90

91

92



List of Figures

2.1 Some results of the conventional lane marker - - - - - - - - -
extraction approaches
2.2 Top Hat and Cone Hat Filter - - - - - - - - - - - - - - - -
2.3 Filter responses according to the filter width variation - - - -
2.4 Algorithm of the Top Hat (Cone Hat) filtering - - - - - - - -
2.5 Reiterated extraction result - - - - - - - - - e e
2.6 Algorithm of the Reiterated extraction - - - - - - - - - - - -
2.7 Lane marking centre points extraction and clustering result -
2.8 Fast centre points clustering sub-process - - - - - - - - - - -
2.9 Vanishing point detection and segment extraction result - - -
2.10 Vanishing Point detection with the origin relocation - - - -
2.11 The illustration of false positive filtering process = - - - - -
and the FP filtering result
2.12 Final result of the lane marking extraction - - - - - - - -
2.13 False positive filtering algorithm - - - - - - - - - - - - -
2.14 Tllustration of the Gaussian filter - - - - - - - - - - - - -
2.15 Examples of lane marking extraction results - - - - - - -
2.16 Extraction results comparison between MLT-SLT - - - - - -
and RITR-CH
2.17 DSC and ROC graph of the overall experimental results - -
2.18 DSC and ROC graph of scenarios - - - - - - - - - - - - -
2.19 Comparison of DSC among RITR-TH, RITR-CH and RITR-GS
2.20 Comparison of computation delay - - - - - - - - - - - - -
2.21 Some examples of false positives and false negatives - - -
3.1 Ideal log-log chromaticity plot - - - - - - - - -« - - - - -
3.2 Schematic illustration of the entropy calculation - - - - - -

3.3 The result of entropy calculation - - - - - - - - - - - - - -

iii A =

12
14
18
19
20

- 22

24
25
26
28

29
30
37
47
49

51

57
58

59
60
56
58
58



3.4 The snapshot of the road pixel selection - - - -« - - - - -
3.5 Illustration of the flood-fill process - - - - - - - - - - - - -
3.6 The algorithm of the road detection - - - - - - - - - - - - -
3.7 Vanishing point detection by using Hough transform - - - -
3.8 Proposed lane position detection algorithm - - - - - - - - - -
3.9 Homography matrix generation for bird’s-eye view transform
3.10 Bird’s-eye view transform results - - - - - - - - - - -
3.11 The Schematic illustration of cross ratio - - - - - - - - - -
3.12 The case of detection failures - - - - - - - - -« - - - - - -
3.13 The snapshot of the information fusion - - - - - - - - - - -
between road detection and lane position estimation
3.14 The detection result of the current lane position - - - - - - -
and the total number of lanes
3.15 The snapshot of the detection result based on - - - - - - - -
the road detection and the lane position estimation
4.1 Schematic diagram of the imaging geometry - - - - - - - - -
4.2 Distance calculation based on the disparity map - - - - - - -
4.3 Experimental system setup - - - - c oo s e
4.4 The snapshot of the dataset - - - - - - - - - - - - - - - -
4.5 Distance measurement results - - - - - - - - - - o - o e s

4.6 The comparison results of the error in distance measurement

v A =



List of Tables

2.1

2.2
23
24

3.1
32
33

4.1
4.2

The characteristics comparison between the proposed filter - -

and existing filters
Experimental scenarios ....................
Experimental conditions - -« -« -+ c - ¢ - s s s s s e e e e

Implemented algorithms for performance evaluation - - - -

Test environments .....................
Summary of testing sequence statistics - -+ - - - - - - -

Experirnental results ....................

sensor speciﬁcation ....................

Average error in distance measurement - - - - - - - - - -

vi N =

11

32
34

74
75
75

87
&9



Chapter 1
Introduction

1.1 Background and Motivations

The research for autonomous vehicle has been conducted to satisfy
the human’s desire of the safety as the best alternative. And, the dream
of autonomous vehicle will come true in the near future. For the
implementation of autonomous vehicle, many kinds of techniques are
required, and among them, the recognition of the environment around
the vehicle is one of the most fundamental and important problems. For
the recognition of surrounding objects many kind of sensors can be
utilized, however, the monocular camera can collect the largest
information among sensors as well as can be utilized for the variety of
purposes, and can be adopted for the various vehicle types due to the
good price competitiveness. The research by using the monocular
camera for autonomous vehicle is very practical and useful. In this
dissertation, three important recognition problems for autonomous driving
are proposed by using monocular camera in vehicular environment.

Lane marker extraction is the fundamental process that provides
candidates of lane markers for the lane fitting process in a lane
detection system. Most of the existing approaches extract lane markers
by using either particular filters or heuristic algorithms. In both of
these, the threshold values play a critical role in detectability. The
challenges to conventional approaches are the illumination variance,
such as cluttered shadow and sunset, which may degrade detectability.
The main reason of the detectability degradation is the inaccurate

determination of threshold values under illumination variations.



One of the most difficult parts for road detection based on
monocular images is the road boundary determination under the
illuminant-variant environments since the color of road and the
background outside the road under the shadow is often very similar
thus hard to be distinguished.

Inter-vehicle distance measuring technique is widely used for
Driving Assistance System (DAS) such as Adaptive Cruise Control
(ACC) and Forward Collision Warning (FCW) which are useful for
safety enhancement as well as driving convenience. However, Measuring

distance based on monocular camera is known as a difficult problem.

1.2 Contributions and Outline of the Dissertation

1.2.1 Illumination-Tolerant Lane Marking Extraction for
Multilane Detection

In this paper, a new filter as well as an extraction algorithm that
can determine the threshold values -efficiently was proposed, while
tolerating the illumination variance. As a new filter, named the cone
hat filter, which is a modified top hat filter that provides higher
extraction performance, as compared to the top hat filter in our
experiments. As a new extraction algorithm, the reiterated extraction is
proposed, which is a set of sub algorithms that determine the threshold
adaptively, and filter out false positives accurately. As a result, the
proposed algorithm outperforms other algorithms in more illuminated
scenarios. For overall system performance evaluation, extensive
experiments are conducted by comparing our approach with five
conventional approaches in various scenarios, including not shaded,
shaded, sunset, night-time, curve, up-downhill, urban road and tunnel

passing.



1.2.2 Fusing Road Detection and Lane Position Estimation
for the Robust Road Boundary Estimation

In this paper, the algorithm for robust road detection based on
the information fusion between the road detection and the lane position
estimation is proposed. For the robust road boundary determination, the
initial road detection is conducted by using chromaticity-based flood-fill
method, then the road boundary is estimated by utilizing the results
of lane position estimation based on the cross-ratio. The proposed
algorithm shows more robust detection result as compared to the
original road detection result. In addition, the proposed algorithm can
provide very useful information about the current lane position and the

total number of lanes on the road.

1.2.3 Accurate Inter-Vehicle Distance Measurement based on

monocular camera and line laser

In this paper, a new method providing accurate longitudinal
inter-vehicle distance measurement by using a monocular camera and a
line laser is proposed. By utilizing the proposed imaging geometry
based on the pin-hole model, accurate inter-vehicle distance can be
measured. Experimental results show that the proposed method
outperforms the disparity-based method and the error in distance

measurement is low enough even in nighttime as much as daytime.



Chapter 2

Illumination-Tolerant Lane Marking
Extraction for Multilane Detection

2.1 Introduction

Lane detection systems use visual information to autonomously
detect single or multiple lanes on roads. This method is currently
applied to Autonomous Driving Assistance Systems (ADAS), such as
the Lane Departure Warning (or Prevention) System (LDWS/LDPS),
Overtaking Assistance System (OAS), and Parking Assistance System
(PAS). In addition, in the near future, it will be an important part of
the unmanned autonomous driving system. Lane detection systems are
in general comprised of three main components: the lane marker
extraction function collects lane marker information from input images,
the lane fitting function finds lanes with provided lane marker
candidates based on the lane model, and finally, the lane tracking
function is utilized for robust and stable lane detection. Among these,
lane marker extraction is the most fundamental and important, since the
final lane detection result can vary, depending on how accurate lane
markers are extracted, and to what extent false positives are excluded.

Previous research on lane detection systems deals with the
problem of how to extract lane marker candidates [1-15]. Due to its
simplicity, most research has adopted edge detection, in conjunction
with thresholding. Many well-known algorithms have been applied, from
Sobel/Canny/Prewitt/Roberts’ algorithm[1], to a morphology-based algorithm

[2]. To increase the contrast between lane marker and road intensity in



gray scale images, an RGB combination ratio for converting images
from color to gray scale was proposed by Chang et al[3]. Wu et al
used YIQ space instead of RGB space [4]. Liu et al utilized Otsu’s
binarization algorithm for the histogram-equalized image in HSV space
[5]. A gradient magnitude and orientation based algorithm was proposed
by [6-8]. Since a lane marker basically has a uniform gradient
magnitude and orientation, the gradient-based detection algorithm can
distinguish lane markers from backgrounds fairly well. Satzoda et al.
proposed an edge map generated by using a gradient angle histogram,
and the lane marker is identified based on a Hough line transform [6].
Chen et al. also utilized the gradient orientation, named gradient
direction (GD)) feature and lane markers are detected by conducting
MAP estimation with GD Gaussian distribution [7]. Deusch et al.
adopted a gradient of ridge features (low-high-low intensity patterns),
called double gradients, tensor orientation, and coherence which are
used for thresholding [8]. A steerable filter was used by Shang et al
[11]. The filter has predefined orientations (e.g. 0, 30° 60° 90° and
1209), and each filter only detects lane markers that have the matched
orientation. Though the filter shows a robust and satisfactory
performance, the orientation of lane marking is hard to determine.
Therefore, the authors estimated the orientation of lane markers by
using the vanishing point. Template matching in Inverse Perspective
Mapping (IPM) images was studied by Linarth et al. [14]. They
generated several synthetic lane marking template images, before
comparing the distance of the Histogram of Oriented Gradient’s (HoG)
features between the template and the captured image, by moving the
window. For lane marker identification of the captured image, the PDF
was calculated by using the likelihood function. Borkar et al. proposed

the ground truth image generation by using a time slicing process [9].



The time slicing process collects the lane detection results at
pre-defined positions of input images during given time periods, and
interpolation among the detected points was conducted with IPM
coordinates. This is then regarded as the ground truth image. The
ground truth image is compared with the other lane detection results,
generated by the RANSAC algorithm in the IPM image. A visual
attention-based lane detection algorithm [10], as well as double
threshold (low and high)-based [12], stereo vision-based [13], and
multiple constraints-based algorithms [15], were proposed.

However, while there has not been an abundance of research
conducted to show the performance of the lane marker extraction
function, some research has focused on improving the performance of a
typical lane marker extraction. Pollard et al. proposed a method for
long distance lane markers by wusing a two (low-high) thresholds
combination [12], Popescu et al. proposed a method for double line
detection, by counting transitions between marker and non-marker pixel
sequences [16], and Sun et al. proposed a method for color lane
marker detection based on the HSI color model [17]. We specially
conduct experiments under illumination variations, to measure the
illumination-tolerant characteristic with five conventional lane marking
extraction algorithms. The contribution of this paper can be summarized

as follows:

e Proposing an illumination tolerant lane marker extraction: The
proposed approach is not much degraded under illumination

variations, as compared to the other algorithms.

* Proposing a new filter: The proposed cone hat filter, modified
from the top hat filter [21], provides better performance in our

experiments.



* Proposing a new algorithm for the enhancement of (filter
detectability: The proposed reiterated extraction  algorithm
determines the threshold adaptively, and conducts false positive

cancelling.

¢ Extensive experiments in various scenarios: The performance of the
algorithms are tested in various illuminations (not shaded, shaded,
sunset, night-time, tunnel passing, and rainy day), and geometrical

changes (curve, and up-downhill).

The remainder of the paper is structured as follows. Section II
describes the proposed lane marker extraction filter. Section III outlines
an overview of the proposed lane marker extraction algorithm and
explains the sub-algorithms in detail. Section IV evaluates the

experimental results, and Section V concludes our work.



Figure 2.1. Some results of the conventional lane marker extraction approaches
in challenging illumination scenarios. Dotted circles indicate extraction errors
because of either the illuminative effect, or false lane marking patterns. The
figures at right are the extraction result of the local threshold, positive negative
gradient, and symmetry local threshold algorithm, respectively.



2.2 Lane Marking Candidate Extraction Filter

In this section, both the reason why the top hat filter is chosen,
and the proposed cone hat filter is useful are explained. To do that, we
first define the specification of the filter, and then show, based on the
specification, a comparison of filter characteristics between the proposed
and existing filters. After that, we study the top hat and cone hat filter,
and compare them to each other. We also investigate the optimal

parameters, such as filter width and height.

2.2.1 Requirements of the Filter

Basically, filters must satisfy the following requirements: (1) The
filter has to provide either left/right points, a centre point, or all of
them. (2) The lane marker extraction filter has to meet the hard real
time requirement, since the lane detection system requires processing of
15-30 fps, in general. (3) Extractability decision parameters such as
threshold, filter width and orientation, should be easy to calculate. In
addition, the following conditions are optional. (4) For illumination
tolerant lane marking extraction, the filter is required to extract lane
markings under the conditions of shading, low light sunset, and road
reflections on a rainy day. (5) To improve the robustness of lane
marking extraction against false positives coming from small cracks, tar
patches, and other deformities on the road, the filter is recommended to

have a false positive cancelling function.

2.2.2 A Comparison of Filter Characteristics
We selected the most frequently used algorithms for comparison.
The important characteristics of lane marker extraction filter are

considered in Table 2.1. We summarize a comparison of the above



mentioned filter characteristics. To satisfy the hard real time
requirement, 1D filter can help to reduce the execution time. Since 1D
filter has an independent relationship with the next line, the lane
marking extraction algorithm may skip the extraction of next line, and
jump to the line of next interval. However, we have to consider that
this trick also decreases the total number of true positives. In general,
2D filter shows more accurate and robust extraction performance, but
computation time increases, too. Another important thing to consider is
the extractability decision parameter. Every filter depends on a
threshold. Additionally, filters, except the positive negative gradient,
require other parameters, such as kernel size, orientation and averaging
distance. The more accurate estimation of a parameter generates better
extraction performance. Fortunately, the steerable filter provides a
method for optimal orientation calculation. However, the accurate
estimation of kernel size, filter width, and averaging distance over
various lane marking shape variations is still the open problem. Among
all filters, we chose the top hat (cone hat) filter, since we found these

two filters have some special strong points for extracting lane markings.
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Proposed Edge Pos. neg. Steerable Local
filter detection gradient filter threshold
Lert)"t)/irrll%ht Provided Possible Provided Provided Provided
Embedded Provided N(.)t N(.)t Provided Provided
smoothing provided provided
. . 1D 2D 1D 1D
Dimension (Horizontal) | (1D possible) | (Horizontal) 2D Only (Horizontal)
Extraction Possible
interval Possible (ifonly1D) Possible Limited Possible
controllability Y
Computation . . .
. Medium Low Low High Medium
complexity
Extractability . Kernel Lanp Kernel size, | Averaging
. Filter . marking . . .
decision width size, width Orientation, | distance,
parameter Threshold ’ Threshold | Threshold
Threshold

Table 2.1. The characteristics comparison between the proposed filter and

existing filters.
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2.2.3 Cone Hat Filter

Figure 2.2 illustrates the shape of the top hat and proposed cone
hat filter. The cone hat filter is also symmetrical, and two times wider
than the lane marking width, to extract as well as the top hat filter.
One big difference between them is just the weight; the top hat is
more normalized than the cone hat i.e. the cone hat gives more weight
to the centre point, than the side points. Both top hat and cone hat
filter can detect a ridge feature, which has a low-high-low intensity
pattern very nicely, such as the lane markings. And they extract the
exact point of the left and right, if the filter width is the same as the
lane marking. The important thing here is that if the filter width is
slightly narrower than the lane marking, they still provide the exact
point of left and right, until the filter width is greater than half of the
lane marking. This characteristic greatly improves lane marking
extraction capability, as well as decreasing the dependency on accurate

lane marking width estimation.

| I A
Positive i i Positive
I . "
! ]
| W2\ | h h2/| | h
i |
0 i 0 :
i W2\ k 5 n2il | k
! |
| ; : |
; . A | L),
Negative 0 ; - I w Negative | < * !
we/A w2 w4 Wy A w2 W,

Figure 2.2. The filter is defined by the parameters of width (w,) and height
(h). The top hat filter is more normalized than the cone hat filter, while cone
hat filter gives more weight to the centre point, than the side points.
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Figure 2.3 illustrates filter responses according to the variation of
the filter width. In terms of the optimal filter width and height, two
times the lane marking width is the optimal width, but the height only

affects the magnitude of the filter response, therefore we simply set it to 2.
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Figure 2.3. Filter responses according to the filter width variation. The positive
area is regarded as lane marking candidates. Note that all of them successfully
extract lane markings and provide a correct centre point, and two ((b) and (c))
also give correct left and right points. This characteristic makes the filter easier
for the dynamic lane marking width estimation problem.

The top hat and cone hat filter are defined as follows:

—h, ifk<w,/4k>3w, /4}

h, otherwise

f(k)={

where (D)
0<k< W,

4<w,, (w, is an even number) .
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f(k):{ —h/2+mk)k, ifk<w, /2
hi2+(k—(w,—=1)/2)m(k), otherwise
where
0<k<w,, 2)
3<w,, (w, is an odd number)

2h/(w, =1, if0<k<w, /2
m(k) = .
=2h/(w, =1), otherwise

2.3 Overview of the Proposed Algorithm

In this section, we outline the top hat (cone hat) filtering
procedures, and the proposed reiterated extraction algorithm. Reiterated
extraction uses two different top hat (cone hat) filters, having different
filter widths. The algorithm is composed of lane marking extraction and

false positive cancelling process.

2.3.1 Filter Width Estimation

For the expectation of better extraction performance, a dynamic
estimation of filter width is desirable. However, we adopted a naive
linear filter width estimation method, since the top hat (cone hat) can
still extract lane marking candidates very well, although lane marking
edges are slightly inaccurate. Experimental results for the curve scenario
support the reliability of the mnaive estimation method. For the
estimation, we assumed that both the maximum and minimum lane
marking widths are static and already measured empirically. The
maximum/minimum filter widths are exactly two times those of the lane
marking widths. In addition, we set the minimum lane marking width
to two times greater than the actually measured marking width, since
that provides more robust extraction results. Filter width estimation is

defined as follows:

T oy
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max max min y - y
w,=\Ww, —(W W, )( max min)J
{ Lo Ty y

{wf -1, w, mod2=1 ®)

w, = .
s W, otherwise .

X n

where W™, w/™ y™* and y™" denote the given max./min. filter

widths, and lower and upper limit of ROI, respectively. The filter width
should be an odd number for the symmetricity of the filter.

2.3.2 Top Hat (Cone Hat) Filtering

The filtering process is the combination of a filter generation, a
convolution of the filter with a series of intensities, and a shifting for
an alignment. The filter is generated according to the vertical coordinate
of each line input, by using either (1) or (2), and (3). Convolution and

alignment are defined by:
r(x—w,/2)=f(k)*I(x), 0<k<w, “)

where, wy /2, fik), I(x) and r(x) denote the magnitude of shifting, the
filter, intensities, and the filter responses, respectively. To recover the
empty right-end values because of shifting, we extended the size of the
line input, and reused the right-end pixel intensity. To ' extract lane
marking candidates, we regard positive filter responses are lane

markings. Here, we used the threshold (o) as below:

I, ifr(x)—oc>0
M(x) = Q)

0, otherwise

T Fat |
16 "J“"i 2 i



where, 1 denotes lane markings, while 0 means the background.
Usually, applying the threshold ¢ is very useful to eliminate false
positives (FPs), since some FPs having very weak but positive filter
responses appear. However, FPs are not clearly erased by using the
threshold alone. Therefore, we adopted three constraints for FP

cancelling as follows:

0.5w, <I<12w, I=|p,—p,|
0.2<erin/rRmin<5 (6)
7L+‘T—TC‘/2<TC<7R+‘7—TC‘/2

where /, przy denote the length of lane marking, and right and left-end

n n

point of lane marking, respectively. »,™" and ™" mean the minimum
filter response of the left and right side of lane marking. And finally,

I,,1,,1. and I denote the average intensity of left, right and centre
of lane marking, and the average of average intensities, respectively.
The first constraint prevents the extraction of lane markings having
either too wide or too narrow a length as compared with the estimated
lane marking width. The second and third constrain filter FPs generated
from an abnormal intensity pattern, such as either low-high-high or
high-low-low. Since these kinds of patterns also make positive
responses, these two constraints check the symmetricity of the input
pattern in the filter response and the intensity level, respectively. The

algorithm of the top hat (cone hat) filter is shown as follows:
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Algorithm 1 Top hat (cone hat) filtering

1: for ¥ < Ymax 1O Ymin do

(B

Filter width estimation

[F%]

Top hat (cone hat) filter generation

4: for » < 0 to rpax do

5: r(x —wyp/2) < f(k)*I(x)

6: rle)+—r(r)—o

7: Find a sequence of positive r(x) as a lane marking

8: Checke three constraints

9: If 1t satisfy three constramts then mark it as a lane marking
10:  end for

11: end for

Figure 2.4. Algorithm of the Top hat (Cone hat) filtering.
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2.3.3 Reiterated Extraction

Reiterated extraction is the extended version of top hat (cone hat)
filtering. Reiterated extraction uses two of the same top hat (cone hat)
filters, but having different filter widths. The broader filter firstly
searches lane marking candidates without any constraints, even though
they contain FPs, and then the narrower filter searches lane marking
candidates once again with three constraints, only within the positive
range of filtering result of the broad filter. Recall that the narrower
filter always gives either equal or narrower lane markings than the
broader filter. To reduce FPs, the broad filter narrows the search
ranges, and makes it easier to determine the threshold adaptively. Here,
instead of adopting the user defined threshold to filter out FPs, we
utilized the average of the filter responses of the narrow filter as an
adaptive threshold. Empirically, we found that adopting the average as a
threshold is wuseful, since this does not erase weak lane markings,
though some FPs still remain. The example result and the algorithm of
reiterated extraction are shown in Figure 2.5 and Figure 2.6,

respectively.

(a) Original image (b) Reiterated extraction result

Figure 2.5. Gray and white pixels are the result of broader and narrower filter,
respectively. The narrower filter extracts only within the broader (filter’s
extraction results. Double extraction adopted the average of the narrow filter’s
results in each line as an adaptive threshold.
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Algorithm 2 Reiterated extraction

1: for y < Ymax 10 Ymin do

2: Filter width estimation
3. Two top hat (cone hat) filters generation(w s, wy — 2)
4 forw+wrtowy—2. w+—w-—2 do
s for & + 0 to ey do
6: if w=wy or r(x) > 0 then
T r(x—wys/2) + f(k) = I(x)
8: end if
9 end for
10: 7 + Find an average of r(x)
11: for = + 0 to &, do
12: riz) «r(x) -7
13: if w=wys— 2 then
14: Find a sequence of positive () as a lane marking
15: Check three constraints
16: If it satisfies three constraints then mark it as a lane marking
17: end if
18: end for
190 end for
20: end for

Figure 2.6. Algorithm of the Reiterated extraction.
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2.3.4 False Positive Cancelling

False positive cancelling is the post-processing of double
extraction. The proposed false positive cancelling method is very
effective, and it impressively increases the scores in both the receiver
operating characteristic (ROC), and dice similarity coefficient (DSC)
measures. Since the proposed double extraction algorithm is designed
for illumination tolerant lane marking extraction, the strategy for the
extraction was set up as follows: Lane marking candidates are extracted
as much as possible during the filtering process, and then false
positives are eliminated, by using illumination invariant constraints. The
key idea is checking the direction of each segment, and comparing it
with the direction to the vanishing point, since most of the lane
markings face the vanishing point. For doing that, we divide the false
positive cancelling process into five sub-processes: (1) lane marking
centre point extraction, (2) fast centre point clustering, (3) vanishing

point detection, (4) segment extraction, and (5) false positive filtering.

2.3.4.1 Lane Marking Center Point Extraction
Lane marking centre points are extracted with the result of reiterated
extraction (Figure 2.5 (b)). Centre points are used for finding the

vanishing point, and false positive cancelling. The result is shown in

Figure 2.7 (a).
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(a) The set of lane marker centre points

(b) Final centre point clustering result

Figure 2.7. Lane marking centre points extraction and clustering result.
Clustering process allows to extract the centre points segments easier in the
segment extraction step.
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2.3.4.2 Fast Center Point Segmentation

Clustering means here, connecting nearby discrete centre points of
a lane marking to be a line segment. It is an essential process, since
the segment having a small number of points can be deleted during the
FP filtering process, even though the segment is a true positive. In
particular, the lane marking centre points on the side of an image are
not actually well connected. To make the process faster, we devised a
simple but effective method. Firstly, we blur the image of the lane
marking centre points, and then extract the centre points again from the
blurred image in both the horizontal and vertical direction, and finally,
combine them together. The result of centre point clustering is shown

in Figure 2.7 (b), and each step is shown in Figure 2.8.

Blurred

(a) Blurred image
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Horizontal

(b) Horizontal extraction result

Vertical

(c) Vertical extraction result

Figure 2.8. Fast centre points clustering sub-process: Horizontal (b) and vertical
(c) extraction results are generated from the centre point detection result of the
blurred image (a) in the horizontal and vertical direction, respectively. Final
centre point clustering result is the addition of two images.
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2.3.4.3 Vanishing Point Detection
For calculation of the vanishing point, we separate the ROI to
two sub sections, as shown in Figure 2.9 (a). In each sub-section, we

conduct a Hough line transform, and find the dominant line.

(a) Vanishing point detection

(b) Segment extraction result

Figure 2.9. Vanishing point detection and segment extraction result. Yellow and
magenta rectangular box in figure 7a indicate two regions for extracting one or
two dominant lines, and the crossing point of them is the vanishing point. The
segments of centre points shown in figure 7b will be checked the direction of
the line segment and filter out if it does not face the vanishing point.
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Additionally, we relocated the origin point from (0,0) to (x™/2, y™),
to find the more accurate vanishing point without the scale adjustment

of angle §. This is illustrated in Figure 2.10.

@
T Origin
J
P P
\\..
2 6"
(a) Vanishing point detection without origin relocation
Origin
L]
y) 2
e -
6" 6"

(b) Vanishing point detection with the origin relocation

Figure 2.10. Dominant line searching in two given search region by using the
Hough transform is shown. Left (a) and right (b) show the voting results
without and with the origin relocation, respectively. The origin relocation gives
more accurate voting result without scale adjustment of angle 6.
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2.3.4.4 Segment Extraction

To extract line segments from the clustered image, we adopted
the contour extraction algorithm based on [19-20]. Thanks to the
contour extraction algorithm, each line segment can be retrieved one by
one, and depending on the following false positive filtering result the
false positive segment will be eliminated. The segment extraction result

is shown in Figure 2.9 (b). Different color indicates different segment.

2.3.4.5 False Positive Filtering

The dominant angle of each segment is calculated based on
Hough voting, and then the decision of false positive is made by
checking the shortest distance between the line of a segment, and the
vanishing point. We also eliminate the relatively too small segment, as
compared to the estimated filter width. The false positive filtering
algorithm is shown in Figure 2.13. The function MAX(a, b) means
finding the bigger value between a and b, and we set the threshold ¢,
g to 80, 50, respectively. The conceptual illustration of false positive

filtering is shown in Figure 2.11.

(a) Illustration of the false positive filtering
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(b) False positive filtering result

Figure 2.11. The illustration of false positive filtering process (a) and the false

positive filtering result (b).

After the false positive filtering process, we can recover lane
markings, by using the set of centre points and the result of reiterated
extraction. The final result of the reiterated extraction and FP cancelling

is shown in Figure 2.12.
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(a) Lane marking recovering using centre points

(b) Final result of the false positive cancelling process

Figure 2.12. Final result of the lane marking extraction is shown in (a) and (b).
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Algorithm 3 FP filtering
I ™™ +— total number of segments

2: for i+ 0 to s™* do

3:  Read a segment

4: ¢+ total number of points i the segment
5. wy +— estimated filter width

6:  if ¢; < MAX(wy,3) then

T Delete the segment
8 else
o @i; +— dominant angle of the segment
10: d; +— shortest distance between the line of the segment and the vamshing point
11: if d; > ¢; then
12: Delete the segment
13: else
14: if —20 < aq; < 20 then
15: if d; = €5 then
16: Delete the sepment
17: end if
18: end if
10: end if
200 end if
21: end for

Figure 2.13. False positive filtering algorithm.
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2.4 Experiments and Evaluation

In this section, we present our experimental results in comparison

with other conventional algorithms in ten scenarios.

2.4.1 Experimental Set-up

To investigate the performance over the illumination changes, we
experimented with eight scenarios, whose lightning conditions are very
different to each other. Additionally, we also tested curve and
up-downhill scenarios, for testing geometrical changes. The images
contain not only road and lane markings, but also cars and barriers.
These objects on the road are the main reason for false positive
generation. The list of experimental scenarios is shown in Table II.
Each scenario has a hundred gray images, and there are rgb and
ground truth images in the database as much as gray images. To make
ground truth images, we used a graphics software to label the lane
markings manually. The specification of the input image is shown in

Table 2.2.
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Perspective Scenario Location Quantity
Not sh 1
ot shaded road Highway, 00
Shaded road Local 100
Sunset Highway 100
o Night time 100
[llumination
changes .
Urban road (daytime) Urban 100
Urban road (rainy day) 100
Tunnel (daytime) 100
Local
Tunnel (rainy day) 100
Curve 100
Geometrical Urban,
changes
g Up-downhill Local 100
Total 1,000
Table 2.2. Experimental scenarios
List Condition
Resolution 752(H) x 480(V)
ROI 752(H) x 260(V)

Color space

Gray(1CH)

Normalization

I(u,v)=1(u,v)/ I™ x255

Table 2.3. Experimental conditions
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To reduce experimental bias, images are normalized by the
maximum intensity of the image. For evaluation, we adopted two
classic measures [12]: the Receiver Operating Characteristic (ROC), and

Dice Similarity Coefficient (DSC). These are defined as follows:

TPR =L, rPR=_ 1P (7
TP+ FN FP+TN
2TP
DSC = ®)
2TP+ FP+ FN

ROC measures the ratio between the true positive rate (TPR) and
false positive rate (FPR). A higher TPR with lower FPR is better. The
quality of the DSC curve is measured by the maximum value and
width of the peak; the higher and larger, respectively, have better

performance. The threshold at the peak point is optimal.

2.4.2 Conventional Algorithm for Evaluation

For evaluation, we implemented an additional seven algorithms as
shown in Table 2.4. For all algorithms except the global threshold, we
apply the same lane marking width estimation, equation (3), and lane
marking width constraint as follows:

O.5><w_/,/2£w,£l.2><wf/2 )

where, w; and wy denote the lane marking width and filter width,

respectively.
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Algorithm Abbreviation
Global threshold GT
Positive negative gradient PNG
Local threshold LT
Symmetry local threshold SLT
Symmetry local threshold + Double extraction MLT-SLT
Top hat TH
Cone hat CH
Gaussian GS
Top hat + Reiterated extraction + FP cancelling RITR-TH
Cone hat + Reiterated extraction + FP cancelling RITR-CH
Gaussian + Reiterated extraction + FP cancelling RITR-GS

Table 2.4. Implemented algorithms for performance evaluation

2.4.2.1 Global threshold

Global threshold simply finds pixels having a higher intensity
than the threshold in a gray image. It does not find the start and end
point of lane markings. As you expect, it is used for a reference, to

quantify how much better the other algorithms work.

2.4.2.2 Positive Negative Gradient

Positive negative gradient finds lane markings having a
low-high-low intensity pattern in the horizontal image line, by using the
consecutive positive and negative gradient; the former is greater than
the positive threshold, and the latter is lower than the negative threshold.

Additionally, the length between the two should satisfy the
expected lane marking width constraint, as shown in (9). Smoothing is

conducted before extracting lane markings, since a noise pixel having
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high intensity can be detected as a lane marking start point, since it
satisfies the positive gradient condition. To achieve better performance,
we applied a five pixel distance gradient, which calculates the gradient
of not the next pixel but the five pixel distanced pixel. It is tricky, but
the strong point is that it is very efficient for lane markings having
very low intensities, such as one in shadows, since the gradient values

become greater than the original gradient values.

2.4.2.3 Local Threshold

Local threshold [18] uses the average image intensity of local
range, which varies, based on the estimated lane marking width. Local
threshold is determined by the sum of the horizontal local average
intensity and the threshold. By using the local threshold, the acceptance

test is defined as below:

I(w,v)>1(u,v)+o (10)

where, I(u,v),I(u,v) and o denote the intensity of the current pixel
position, the local average intensity and the threshold, respectively. All
extracted pixels are saved in the extraction map and the horizontally
connected features satisfying the above mentioned lane marking width

constraint are selected as the lane markings. We set the local range to 2wy

2.4.2.4 Symmetry Local Threshold
Symmetry local threshold [18] adopted the average of left and

right local ranges. For the acceptance test, lane marking pixels should

satisfy two conditions, as below:

I(u,v)>7L(u,v)+O', I(u,v)>1_R(u,v)+O' (11

¥ T [ |
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where, 1, (u,v) and I, (u,v) denote the left and right local threshold,
respectively. The lane marking extraction rule is the same as the local

threshold. We set the left/right local range to 2wf .

2.4.2.5 Double Extraction using Symmetry Local Threshold

Double extraction [12] combines the result of two extractions of
the same algorithm (here, we used the symmetry local threshold), but
those thresholds are different: one is higher, the other is lower. The
result from the higher threshold is transformed by the morphological
dilate operation, which expands the extraction regions. And finally, the
pixels satisfying two conditions at the same time are selected as lane

markings. The conditions are defined as follows:
1, (u,v)y>o, I,(u,v)>o (12)

where, Iy(u,v) and Iy (u,v) denote the result of the symmetry local
threshold, using the high threshold and low threshold, respectively. We

set the local range and threshold difference to 2w, and 5, respectively.

2.4.2.6 Gaussian filter

Gaussian filter is proposed for the evaluation of the detectability
as compared to the proposed cone hat and top hat filter. The shape of
the gaussian filter is illustrated as shown in Figure 2.14. Likewise the
cone hat filter, it is also symmetrical, and two times wider than the
lane marking width. Main difference from cone hat filter is the weight.
Gaussian filter is more normalized than the cone hat filter but less

normalized than top hat filter.
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Figure 2.14. Illustration of the Gaussian filter. Gaussian filter is more

normalized then the cone hat filter but less normalized than top hat filter.

Gaussian filter 1s defined as follows:
(x—b)?

2 13
flz) =ae * +d (1)

where, a is the height of the curve’s peak, b is the position of the
center of the peak, and ¢ controls the width of the filter. We set 2,

wy/2, wy/5, and —1 for a, b, ¢ and d, respectively.

2.4.3 Experimental Results

To produce a richer and more comprehensive understanding of the
evaluation of experiments, we present both qualitative (Figure 2.15) and
quantitative (Figure 2.17-19) data. Figure 2.15 represents the lane
marking extraction results for each algorithm, over varying illumination

environments.
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P. N. Gradient
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© RITR-GS

RITR-CH

RITR-TH

(h) An example of lane marking extraction results in the “Tunnel (rainy day)” scenario.
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The green pixels represent the lane markings extracted.
Representative examples of each scenario are shown in Figure 2.15
(a-j). We selected the best extraction image of each algorithm over
varying thresholds, for fair comparison. Please remember that these
algorithms are not the lane detection algorithm, but lane marking
candidate extraction algorithm. Taking that into consideration, most
algorithms extract lane marking candidates very nicely, in most cases.
However, we could observe that more false positives appear in both the
worse illuminative environment such as nighttime, urban road (rainy
day), tunnel (daytime) and tunnel (rainy day) scenarios (Figure 2.15 (d),
(), (g) and (h), respectively), and also show on an object, such as
vehicles and barriers (Figure 2.15 (a), (c), (e) and (j), respectively).

Some reasons for FPs generation are considered that firstly, the
lighting conditions, such as cluttered shadows, or reflections on the
road, may produce a dark-bright-dark pattern, and it is easy to be
extracted by the algorithm. Secondly, a pattern like the lane marking on
an object such as vehicles, barriers and curbs, also leads to FP
generation. Finally, the threshold not fully adjusted may either increase
FPs (the lower threshold case), or decrease TPs (the higher threshold
case). From the point of false positive cancelling, one of the most
important observations here is that the false positive cancelling
algorithm being applied to the reiterated extraction of the top hat (cone
hat) impressively eliminates FPs. Some extraction result comparison

between MLT-SLT and RITR-CH is shown in Figure 2.16.

» 1 @& 7]
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(c) Tunnel (daytime) scenario

Figure 2.16. Extraction results comparison between MLT-SLT (first column)
and RITR-CH (second column) in some worst cases is shown above. RITR-CH
provides less FPs and more TPs than MLT-SLT.
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The overall experimental results, including DSC and ROC curves,
are shown in Figure 2.17. The nine algorithms in Table 2.4 were
applied to all the images in the database. In accordance with the
experimental result in [18], symmetry local threshold, local threshold
and positive negative gradient perform well, in decreasing order. And,
double extraction [12] of the symmetry local threshold shows higher
performance than symmetry local threshold.

The fact that double extraction performs better may be due to the
complementary relationship between the lower and higher thresholding
results. In experiments, top hat performs 4.3% higher than symmetry
local threshold and local threshold in DSC measure, and the score is as
high as double extraction of the symmetry local threshold. This result
is different from the result in Ref. [18]. We suppose the reason for the
difference arises from the additional symmetry constraints, equation (6),
applied for the top hat (cone hat) filter. Additionally, due to the
proposed false positive cancelling function, the proposed RITR-TH and
RITR-CH perform better than MLT-SLT, and in the case of RITR-CH,
the peak value was observed to be 15.9% higher than SLT.
Experimental results show RITR-CH has 3.9% higher performance as
compared to RITR-TH. We suppose the main reason may be due to
cone hat being able to extract lane markings better than top hat, when
the lane marking width is not estimated well, since in terms of the
shape of the filter, TH is more normalized than CH, while CH is
weighted more in the centre of the lane marking. Finally, the most
important experimental result is that the value in the DSC graphs of all
the algorithms, except RITR-TH and RITR-CH, is changing, according
to the threshold value. Therefore, the existing conventional algorithms
have to find the peak value with considering the current illumination

condition, while the proposed RITR-TH and RITR-CH algorithm are not
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(b) ROC graph of the overall experimental results.

Figure 2.17. Left and right graph represent the DSC and ROC graph of the

overall experimental results, respectively.
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required to find the optimal threshold. This means that when the
algorithm extracts lane markings against a dynamically changing
illumination environment from a fast-moving vehicle, instead of
depending on the difficulty of the recognition of the illumination
environment and the immanent errors contained in statistics to determine
the optimal threshold, we can utilize the more robust and reliable
reiterated extraction algorithm for the extraction. In ROC graph, due to
the false positive cancelling function, the false positive rate of the
proposed algorithm is much lower than the other algorithm.

Figures 2.18 (a)-(j) show the experimental results of images in
scenarios previously shown in Table 2.2. In DSC graph, we can see
the peak wvalue wvaries, according to each scenario. In a good
illumination environment, such as the not shaded road case, most
algorithms show a similar very high peak value, as shown in Figure
2.18 (a). However, as the illumination environment gets worse (Figure
2.18 (b)-(d)), we can see that the peak value is getting lower. This
means that the performance of the extraction algorithm is affected by
the illumination environment. But, one of the important things is that
the proposed RITR-TH and RITR-CH have a standard deviation of
0.015 and 0.023, respectively, while SLT has that of 0.075, so we can
clearly conclude that they are relatively illumination-tolerant, as
compared to the other algorithms. Figures 2.18 (e)-(f) show how the
geometrical changes (curve and up-downhill) make differences in the
performance of the extraction algorithms. Though the extraction
performance in curve is 10% lower than the one of the not shaded
road case, the performance is acceptable, which is as high as that of
the shaded road case. In addition, as compared to the performance of
SLT, which is not required to estimate the lane marking width

dynamically, and considering that the performance of TH, CH,
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RITR-TH and RITR-CH is not degraded so much, we can conclude
that the estimation of lane marking width applied to the TH and CH
filters works well. Figures 2.18 (g)-(j) show the performance
degradation between daytime and rainy day, in urban road and tunnel
scenarios. Undoubtedly, due to the reflections on the road coming from
the rear lamps, and sunlight on rainy days, we can observe a
performance degradation of 8.7%, as compared to the one of the
daytime case in DSC graph. The important observation here is that
when the weather condition or illumination environment is getting
worse (e.g. rainy day, or in tunnel) the gap of performance between
RITR-TH (CH) and the other algorithms shown above is getting larger,

due to the false positives.
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(c) DSC and ROC graph of the “Sunset” scenario.
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(g) DSC and ROC graph of the “Urban road (daytime)” scenario.
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(h) DSC and ROC graph of the “Urban road (rainy day)” scenario.
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(i) DSC and ROC graph of the “Tunnel (daytime)” scenario.
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Figure 2.18. DSC and ROC graph of scenarios: (a) not shaded road, (b)
shaded road, (c) sunset, (d) night-time, (e) curve, (f) up-downhill, (g) urban
road (daytime), (h) urban road (rainy day), (i) tunnel (daytime), and (j) tunnel
(rainy day)

In terms of DSC, we adopted the K-factor to evaluate the
performance of the reiterated extraction algorithm. As shown in Figure
2.6, the reiterated extraction algorithm finds the average of the filter
response values as a threshold. the K-factor is utilized to differentiate
the threshold value from =zero to the 2.5 times of average. The
experimental result shows that the peak value of DSC is shown at the
point that the K-factor is 1.0 as shown in Figure 2.19. This indicates
that the average of the filter response is appropriate for the threshold

of the reiterated extraction algorithm.
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Figure 2.19. Comparison of DSC among RITR-TH, RITR-CH and RITR-GS.
The peak value is shown at the point of the K factor is 1.0.

In terms of execution time, the proposed top hat (cone hat) filter
is more than two times faster than LT, SLT and MLT-SLT algorithms,
while providing as high a performance as MLT-SLT algorithm. In
addition, the FAST RITR-CH algorithm performs about three times
faster than the MLT-SLT algorithm, which is exactly the same
algorithm as RITR-CH, but the size of the source image is vertically
and horizontally half of the original image. It is over 40 fps in the PC
environment. An overall execution time comparison is shown in Figure

2.20.
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Figure 2.20. Comparison of computation delay. TH and CH are more than two
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2.5 Summary

In this paper, we propose a cone hat filter that provides robust and
reliable lane marking extraction and a reiterated extraction algorithm
that can determine the threshold values adaptively, and filter out false
positives. As a result, the proposed algorithm shows higher performance
in term of DSC peak value, as compared to the five conventional lane
marker extraction algorithms. For our experiments in all the scenarios,
the proposed RITR-CH algorithm performed about 10-15 percent higher
on average. In addition, it is notable that as the illumination conditions
worsened, the gap of the DSC peak value between RITR-CH and the
other algorithms became larger. This fact supports that the proposed
algorithm has illumination-tolerant characteristics. Furthermore, one of
the remarkable benefits of the proposed approach is the easiness of
finding the optimal threshold; it is invariant in all scenarios, no matter
what the illumination, or whether the condition is changed. In terms of
execution time, the proposed top hat (cone hat) filter is over 30 fps,
and the fast RITR-CH algorithm performs over 40 fps.

{a) (13]

(d) (e) (f)
Figure 2.21. Some examples of false positives and false negatives are shown:
(a) Barriers, (b) Characters, (c) Worn-out road markings, (d) Curbs, (e)
Reflections, and (f) Wrong directional lane markings
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Chapter 3

Fusing Road Detection and Lane
Position Estimation for Robust Road
Boundary Estimation

3.1 Introduction

Road detection provides information about the available free space
into which a vehicle can move compared to lane detection which
provides lane information. If there are no lane markings on a road,
such as in an off-road environment, then road detection is a very
useful tool that can replace lane detection. For this reason, road
detection can be regarded as a secondary option for driving assistance
when lane detection is not available to detect lane markings. However,
if we integrate road detection and lane detection into a single system,
the shortcomings of each algorithm can be compensated for to handle
such difficulties more easily. In addition, the combination of the two
different algorithms allows for the investigation of new and useful

information that cannot be retrieved using either system alone.

Existing road detection algorithms can be categorized into moving
camera-based and stationary camera-based algorithms. In this paper, we
focus on moving camera-based algorithms. The moving camera-based
approaches can be classified again based on the type of information
source: (1) monocular image-based, (2) stereo disparity-based, and (3) a
combination of the two algorithms. These approaches can be

characterized as follows.



Among the monocular image-based approaches, the
chromaticity-based approach shows robust detection results for shaded
areas. It investigates the chromaticity of the road and classifies the
pixels within the range of road chromaticity [22]. The road model
generated by the combination of the many color models seems to be
useful. They classify the road pixels using machine learning such as a
support vector machine based on their own road model [23]. The
chromaticity-based approach can detect the shaded road area very nicely
but has difficulty detecting over-saturated and under-saturated pixels due
to the lack of color information in the pixels. The color model
combination-based approach seems to have difficulty with detection of

shaded areas.

In the case of the stereo disparity-based approaches, the vertical
disparity-based approach is the most frequently used due to its simple
but strong detection capabilities [24]. However, the detectability depends
on the accuracy of the disparity map, and in general, the detection

distance is shorter than that of a monocular image-based algorithm.

Other useful approaches include the occupancy-grid and
stixel-based approaches [25, 26]. The main goal of those two
approaches is to distinguish between objects and free spaces in the
disparity image. In terms of the combination approach in which both
monocular and stereo algorithms are used, a combination of the
chromaticity and v-disparity methods has shown good detection results
[27]. Image segmentation and the v-disparity based classification method
are also presented [28]. The former is effective for shaded road
detection and boundary detection but the computation cost is high. The
latter shows detection results depending on the segmentation results, but

the segmentation is not free from shadows.

1 11
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In this paper, we focus on the monocular image-based approach
because of its price competitiveness when compared to the stereo
disparity-based approach. Among the monocular image-based approaches,
the chromaticity-based approach was chosen due to its shadow-tolerant
characteristics. We propose a hybrid approach that utilizes the results of
road detection and the information from lane position estimation. One
of the challenges that road detection faces is correctly determining the
road boundary. However, the chromaticity-based approach cannot detect
over-saturated and under-saturated areas, which often leads to road
boundary detection failure. Likewise, the lane position estimation
algorithm can calculate the position of proximal lane markings;
however, the verification of the existence of a lane marking is not
easy. Combining the information gained from each algorithm can ease
the difficulty created by this problem. If the initial road boundary
reported by road detection shows correspondence with an estimated lane
marking position, then the estimated lane marking position has a high
probability of being the correct road boundary. The proposed approach
shows very good results for detecting the road boundary. Moreover,
thanks to the combined information, position information about the
current lane can be provided since the proposed approach can provide

information about the total number of lanes in the detected road area.

The remainder of this paper is organized as follows. In Section
II, we introduce how to detect the road wusing the -chromaticity
approach. In Section III, we introduce the proposed lane position
estimation algorithm. In Section IV, the hybridization of road detection
and lane position estimation is explained, and experiments and
evaluation are presented in Section V. Finally, we conclude in Section
VL
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Figure 3.1. Ideal log-log chromaticity plot [22]. The straight lines associated
with each line are obtained by changing the color temperature of the
illuminator. As a result, patches of different chromaticities have different line
associated with them. The main property of /; is preserving differences with
regard to chromaticity but removing differences due to illumination changes.

3.2 The Chromaticity-based Flood-Fill Method

3.2.1 Iluminant-Invariant Space

Under the assumptions of Lambertian reflectance, approximately
Planckian lighting, and fairly narrow-band camera sensors, the RGB

features of an image captured by camera could be represented as:

R =0E(4)S()q,, i=R,G,B (1)

where, s is a Lambertian shading, E(/;) is the spectral power distribution,
S(l)) is the surface spectral reflectance function, and ¢; is the sensitivity

of the camera. The chromaticity is defined as:

3
Ck = R](/{'Hi_] Ri or Ck = Rk/R(3—k) (2)

where, Ry is the channel for red, green and blue and R;.y is the one
channel for the other two colors. Illuminant-invariant space is defined

by taking the logarithm of chromaticity as below:
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p, =log(c,) = log(Sk/S(3—k))9 i=12 . 3)

where, 0;, form a illuminant-invariant space as shown in Figure
3.1. The dotted lines in the middle of Figure 3.1 represent the
chromaticity values varying under the changes the color temperature K.
The important thing is that the values of each colors are laid along
with the lines, i.e. when the illumination conditions are changed, the
axis of color in the log-chromaticity space is invariant. To get this
unique value, we have to calculate ¢, the angle of line [, with the
family of parallel lines Y,. Remember that g is the camera dependent
intrinsic parameter and thus does not need to be recalculate again [22].
To find the correct axis ¢, Shannon’s definition of entropy has been

adopted as below:

&y ==, H,y(i)log(H, (1)) @)

where, e, is the entropy of I, and /, is the gray scale image obtained
from projecting the pixel values of the log-chromaticity space onto a
line /,. L is the number of bins of histogram H,. When the entropy
reaches a minimum value over the range of ¢, the angle is useful in
distinguishing different colors under varying illumination changes. Figure

3.2 illustrates the scheme of the entropy calculation.

Figure 3.3 shows the results of searching the calibration axis
using entropy calculation. As shown in Figure 3.3(b), the angle having
the minimum entropy exists and the difference in gray scale intensity
becomes minimal at the angle having the minimum entropy (refer to
the red box in Figure 3.3(c), (d)).
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log(B/G)
log(B/G)

Higher Entropy
log(R/G)

Lower Entropy
log(R/G)

Figure 3.2. Schematic illustration of the entropy calculation.

AN

Entropy

180°

0° 52°
Angle

(a) Source image (b) Minimum entropy searching

(d) Minimum entropy result

(¢) No minimum entropy result

Figure 3.3. (b) Result of entropy calculation. The red line represents the
minimum entropy. (c¢) and (d) present a snapshot of the minimum entropy
searching process. The chromaticity value under the shadow came very close to
that of the non-shaded road area at the projection angle having minimum entropy.
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3.2.2 Road Pixel Selection

To detect the road pixels, the range of the road color must be
investigated. Therefore, we converted the pixels in the pre-defined four
areas from the RBG color space into the log-chromaticity space as
shown in Figure 3.4. After that, we found the range of the road
chromaticity. For a more accurate range selection, we dropped the
furthest 10% from both the left and right ends.

3.2.3 Flood-fill Algorithm
The flood-fill algorithm [29] finds connected neighbor pixels

starting from a seed pixel with a specific value. To find the road
pixels, we adopted the chromaticity. The connectivity is determined by
the chromaticity closeness of the neighboring pixels. The pixel at (x,y)

is compared to the seed pixel as below:

(c) Road chromaticity range selection in the log-chromaticity space

Figure 3.4. Snapshot of the road pixel selection. The regions of interest for the
road chromaticity selection are predefined as shown in (b). The most frequent
chromaticity in each region is shown in (c).
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(a) Seed points for flood-fill (b) Chromaticity of the seed points

(c) Pixels within the road chromaticity range (d) Flood-fill result

Figure 3.5. [Illustration of the flood-fill process. (a) Predefined seed points.
The blue and red represent the inner and outer area of the seed points
respectively. (b) Seed point validation by checking chromaticity values. (c) The
pixels within the range of the road chromaticity. (d) The result of flood-fill
based on the road chromaticity values.

C(xseed;yseed) - lODUf‘f S C(X,y) S C(xseed;yseed) + ule_ff . (5)

where C(Xseea,Vseea) 18 the value of seed point. loDiff and upDiff are
maximal lower and upper differences between the currently observed
pixel and the seed pixel respectively. The seed points for the flood-fill
are previously defined as shown in Figure 3.5(a) and the acceptance
test for the seed point is conducted using the road chromaticity. Only
accepted seed points can be used for flood-filling to detect the road

pixels. The result of the flood-fill is shown in Figure 3.5(d) and the
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pixels within the range of the road chromaticity are shown in Figure
3.5(c). The pixels in the road chromaticity are used for flood-fill as the
candidates for the road pixels. The chromaticity-based flood-fill

algorithm for road detection is shown in Figure 3.6.

1 BEGIN

2 Define the position of seed points in the image.

3 Find the calibration axis £#1in the log chromaticity space by searching
the minimum entropy.

4 while True do

Read an image.

6 Find the range of road chromaticity ¢€,.

7 while True do

8 Compute the seed point chromaticity C,.

i

9 if (¢, € ¢, ) then

10 Perform the flood-fill from the seed points.
11 Append the flood-filled area to the road area.
12 end

13 if (No seed points) then

14 Break;

15 end

16 end

17 Determine road boundary;

18 if (No images) then

19 Break;

20 end

21 end

22 END;

Figure 3.6. Road detection algorithm made using the chromaticity-based flood-fill.
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3.3 Lane Position Estimation

In this section, we propose a new next lane position estimation
algorithm by utilizing lane marking extraction [30] and a cross-ratio
[31]. During lane position estimation, we continuously generate a
homography matrix using the lane markings positions extracted from the
lane marking extraction algorithm. After that, the coordinates of the
lane markings are converted to bird’s-eye view coordinates using the
homography matrix. The bird’s-eye view coordinates of the lanes are
utilized as the parameters for the next lane position estimation based on
the cross-ratio. Finally, the estimated lane position is then inversely

converted to the forward-looking view coordinate.

3.3.1 Lane Marking Extraction

Lane marking extraction is prerequisite for lane detection
and provides the set of lane marking candidates with false-positive
cancelling results. Since the lane fitting process is not conducted,
lane information is not provided. There are several well-known
lane marking extraction algorithms, including edge/ridge detection,
steerable filter, top hat, family of local threshold, and double
extraction. We selected the reiterated extraction algorithm based on
the cone hat filter since it is known for being illumination tolerant

and false positive cancelling is provided [30].

3.3.2 Proposed Lane Position Detection Algorithm

Reiterated extraction extracts lane markings using the convolution
between a cone hat filter and image intensity. The center points of the
lane markings are used to compute the position of the vanishing point

using the Hough transform as shown in Figure 3.7 [32]. The vanishing
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point is then utilized for cancelling the set of false positives based on
the direction of the lane marking segments. Therefore, the accumulated
convolution values from the vanishing point to the border of the image
are calculated and displayed from left to right as shown in Figure 3.8.
Finally, the position of the lane markings become detectable. The

position of lane markings can be detected by using Equation 6 as below:

SG) =" f(x)*I(x) ©)

where, S(i) is the sum of filter response along with the search line and
f(xi),I(x;) is the kernel of lane marking extraction filter and intensity at
position x;, respectively. x; is the position on the searching line as
shown in Figure 3.8, and i, j, and L; are the number of search line,
the number of pixels on the search line, and the total number of pixels

on the search line respectively.

Origin

(a) Search region separation (b) Hough transformation

Figure 3.7. Vanishing point detection by using Hough transform.
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Figure 3.8. Proposed lane position detection algorithm. The blue line searches
for the lane position from left to right.

3.3.3 Bird’s-Eye View Transformation Using the Proposed
Dynamic Homography Matrix Generation

To estimate the position of the next lane marking, we use the
known positions of the lane markings. However, these positions have to
be transformed into bird’s-eye view coordinates. To do that, a
homography matrix is necessary, but the calculation of a homography
matrix is time-consuming and complex because a checker-board image
is required. Additionally, whenever the direction or position of the
camera changes, recalibration must be conducted. However, we propose
a new homography matrix generation method that can be done on the
fly as it requires no complex calculations. Since the proposed method
uses the position of the lane markings, it guarantees parallel lane
markings after using the bird’s-eye view coordinates. The proposed

homography calculation method is introduced as follows:
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(1) Select four source points to the left and right of the center of
the lane markings as the blue points shown in Figure 3.9(a).

(2) Select four destination points inside of the source points as the
red points shown in Figure 3.9 (a). Note that the shape of the

four red points have to be a rectangle.

(a) Eight-points selection (b) Bird’s-eye view transform

Figure 3.9. Homography matrix generation for bird’s-eye view transform. The
blue points and red points represent the source point and destination point
respectively.

By using the eight points, we can calculate the homography matrix as

below [33]:

X =Hx (7

where X is the vector of the bird’s-eye view coordinates, x is the
vector of forward-looking view coordinate, and H is the homography
matrix. Equation 7 can be rewritten as below:
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where, W = gx + hy + I, and divided Equation 8 by W:

b cllx
d e [f|ly
Y_ghl__l ©)
X
1
¢ » 1]|»
_1

Rearranging Equation 9 according to X and Y produces:

ax+by+c dx+ey+ f
=\ Y=— (10)

gx+hy+1, gx+hy+1

X=ax+by+c+0+0+0—- Xgx— Xhy 1

Y=0+0+0+dx+ey+ f—-Yex—Yhy .

Converting Equation 11 to matrix and applying the eight-points results

in:
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x vy 1 0 0 0 -Xx -Xy|[a] [x]
0 0 0 x y 1 Xx Xy [[b||¥
x, vy, 1 0 0 0 -Xx -X,p|lc X,
0 0 0 X, Y, 1 _szz _Yzyz d _ Y2 (12)
x, y, 1 0 0 0 -Xx -Xy |le X,
0 0 0 3 Y5 1 -Y3x3 _Ysyz f Y3
x, vy, 1 0 0 0 -Xx, -X, |l g X,
[0 0 0 x oy 1 Yy Yy el [v]
Equation 12 is the form of Ax=b, so x can be calculated using a
pseudo-inverse as below:
AA =B
A'42=A4"B (13)
A=(A"A)"'4A"'B

Using the homography matrix, we can transform the coordinate
from the forward-looking view to the bird’s-eye view as shown in
Figure 3.9. In Figure 3.9(a), we see that the source points are relocated
to the position of the destination points. Since the classical homography
matrix generation method doesn’t update periodically, the bird’s-eye
view transformation seems to be erroncous in the uphill/downhill.
However, since the proposed method continuously updates the

homography matrix, it always provides parallel lane markings on the fly.

3.3.4 Next Lane Position Estimation Based on a Cross-Ratio

When generating the homography matrix, we utilize the position

of the lane markings. In most cases, the lane width is identical, as

b o i
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shown in Figure 3.10(a). However, when the vehicle changes lanes, the
width of each lane marking in the bird’s-eye view becomes different
since the position of the source point is not aligned symmetrically as
shown in Figure 3.10(b). In this case, we can estimate the position of

the lanes using a cross-ratio. Given four points x; the cross-ratio is

defined as:
x1x2 x3x4 (14)
C(xl’xz’xs’x4) -
X1X3 X2X4
where,
d xil Jj1
x| = det (15)
i2 ij

(a) Normal case (b) Lane changing case

Figure 3.10. Bird’s-eye view transform results.

76 SR a e e



If each point x; is a finite point then Equation 15 represents the
signed distance from x; to x;. In addition, the value of the cross-ratio
is invariant under any projective transformation of the line: if x'=H, x

then:
C(x,x,,x,x,)=C(x,x,,x,x,) (16)
Based on the assumption that the lane width is unchanging, the

cross-ratio has an invariant value. When the vehicle changes lanes, the

cross-ratio doesn’t change as compared to previous states.

X X X; X,

(a) The schematic illustration of the cross-ratio

(b) Finding unknown width d by using cross ratio

Figure 3.11. Schematic illustration of cross ratio. (a) Definition of symbols (b)

An example of unknown lane width calculation using a cross-ratio.
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Therefore, if we have lane markings for more than three
positions, we can estimate the position of the upcoming lane markings
within the same lane width. For example, if we want to know width d

as shown in Figure 3.11(b), we can use the following calculations:

I1x1
C(x,x,x,x,)= =0.25 (17)
2%x2
C 1.2xd
C(x,x,x,x,)=——=025 (18)
22x(1+d)

According to Equation 16, we can calculate d with Equation 17 and 18

as below:

d=0.84 (19)

As shown above, by using at least three points, we can estimate the

position of the next lane marking with the cross-ratio.

3.3.5 Forward-looking View Transformation

Determining the position of upcoming lane markings using the
next lane position estimation can be transformed from the bird’s-eye
view to the forward-looking view using the inverse matrix of the

homography matrix.
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3.4 Combining the Information Provided by Road

Detection and Lane Position Estimation

The previously introduced method of road detection and lane
position estimation has some drawbacks. In this section, we discuss the
drawbacks of the algorithms and how to combine the two algorithms.

Finally, we introduce the benefits of the hybrid algorithm.

3.4.1 Detection Failures

With regard to the road detection algorithm, when the source
image is either over-saturated or under-saturated, detection failure occurs
due to the lack of color information in the pixels. This case often
happens when sunlight reflects off of road surfaces or when the area
outside of the road is shaded and becomes too dark. The former
happens very rarely but the latter happens quite often as shown in
Figure 3.12(b). In the case of lane position estimation, the position of
the lane can still be estimated. However, it is hard to know for how
long the lanes extend. In addition, the lane markings on the outside
edge of the road are not easy to detect in general. The failure of lane

position estimation is shown in Figure 3.12(d).
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(a) Source image (b) Road detection failure

(c) Source image (d) Lane estimation failure

Figure 3.12. Case of detection failures. (b) Road detection fails due to
under-saturation. (d) Lane position estimation fails due to a lack of lane
existence information. Road detection needs information about the road
boundaries while lane position estimation requires lane existence verification.

The information required to negate the drawbacks for the
algorithms are shown as below:
e Road detection requires road boundary information to prevent

the failure caused by under-saturation.

e Lane position estimation requires lane existence verification

method.
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Fortunately, the two algorithms cover for each other’s drawbacks.
Road detection can provide lane existence information since the
information about the area detected can be utilized to infer the existence
of outer lanes. Likewise, lane position estimation can support the
estimation of the location of the road boundary since lane markings exist
at the boundary of the road and the correspondence between the boundary
of road detection and the position of the estimated lane marking is very

useful information for resolving the boundary decision problem.

Figure 3.13. Snapshot of the combined information from road detection and
lane position estimation. Road detection provides lane existence information
while lane position estimation helps determine where the road boundary exists.
In addition, thanks to the combined information, the two methods can provide
the current lane position and number of lanes on the road.

3.4.2 Benefits of the Combined Information

The two main benefits of joining the two algorithms together are
that (1) it allows for the determination of the total number of lanes on
the road and (2) it facilitates the recognition of the position of the current
lane. These two facts cannot be acquired without the information provided
by both algorithms. The results of combining the information from both
road detection and lane position estimation are shown in Fig. 13. We can

see that the road boundary and lane positions are nicely detected.
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3.5 Experiments and Evaluation

In order to test the proposed hybrid method, road detection and
lane position estimation experiments were conducted in the experimental
environments shown in Table 3.1 and 3.2. For testing in the
under-saturated environments, we selected a location with both sunny
and shaded road sections. In addition, for testing lane position
estimation, we recorded the test video including a lane changing
situation on a highway having four lanes. The general testing

environment is shown in Table. 3.1.

List Specification
Camera MOSS-10 DSP Platform
Resolution 752 * 480
Frame per second 301fps
Total number of frames 1,000 frames
RGB Road detection
Color channel - )
G Lane marking extraction,
ray L o R
ane position estimation

Table 3.1. Test Environments.

A summary of the testing sequence statistics is shown in Table
3.2. The images consisted of shaded and non-shaded images and the
ratio between them is 49% and 51% respectively. The ratio between
the close vehicles and no vehicles are 7% to 93%.
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No shadows Total

List Shadows .
or dim ones
Close  vehicles 4% 3% 7%
No  vehicles or 45% 48% 93%

further away ones

Total 49% 51% 100%

Table 3.2. Summary of Testing Sequence Statistics

For the evaluation, the boundary detection error rate is measured
for road detection, and for the hybrid algorithm, we observed how
much the detection error rate improved. Additionally, the lane
estimation error rate is also measured to observe the performance of the
lane position estimation. The experiment results, as summarized in
Table 3.3, show that when road detection is conducted with lane
position estimation, the boundary detection error rate is fairly high.
However, the hybrid algorithm decreases the boundary detection error
rate by about ten times from 24% to 1.3%. With regard to lane
position estimation, the estimation error rate was slightly higher than
the boundary detection error rate. This implies that these two algorithms

are tightly correlated.

List Bou.ndary Lane estimation error
detection error
Road detection 24% -
L Road .d.etectlop + 1.3% 1.8%
ane position estimation

Table 3.3. Experimental results
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The accuracy of the new information about the current lane
position and the total number of lanes is plotted as shown in Figure
3.14. The red circle indicates the ground truth while the black square
indicates the detection results. The overall detection error was about

0.4%. A snapshot of the road detection results is shown in Figure 3.15.
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(b) Detection result of the total number of lanes
Figure 3.14. The detection result of the current lane position and the total

number of lanes.
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(a) Non-shaded area (b) Shaded area

Figure 3.15. Snapshot of the detection results based on road detection and
lane position estimation.
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3.6 Summary

In this paper, we proposed a hybrid algorithm that combines road
detection and lane position estimation. For road detection, we adopted
the chromaticity and flood-fill methods. For lane position estimation, we
adopted a reiterated extraction algorithm for lane marking extraction and
proposed a dynamic homography generation method and a
cross-ratio-based next lane position estimation algorithm. The experiment
results showed that the hybrid algorithm provides more robust road
boundary detection and lane position estimation results. Additionally, the
hybrid algorithm provided new wuseful information about the total

number of lanes and the position of the current lanes.
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Chapter 4

Accurate Inter-Vehicle Distance
Measurement based on Monocular
Camera and Line Laser

4.1 Introduction

The inter-vehicle distance is regarded as the critical factor of
safety for many of driving assistant systems, e.g., ACC, FCW,
Collision Avoidance System (CAS), and Overtaking Assistance
System (OAS) since inaccuracies in inter-vehicle distance
measurements may lead to severe accidents. The sensors for vehicle
distance measurement are categorized into two classes [34]: (a)
active depth detection system, e.g., radar, lidar and Time Of Flight
(TOF) sensors (b) passive depth detection system, e.g., CCD camera.
Active sensors can measure the distance very accurately but they are
very expensive and the interference from similar systems is one of
the major drawbacks. Passive sensors require more computation time
and very sensitive to illumination condition. Stereo camera measures
depth based on the disparity and it has some drawbacks; (1) the
errors in distance measurements increase in polynomial manner
proportional to the distance [35], (2) the accuracy of the disparity
can be degraded under the low or high light conditions. Likewise, if
the texture feature is too sparse or too dense, the disparity
calculation problems are very difficult to solve [36]. Monocular
distance measurement typically utilizes prior knowledge [37] and

conducts camera calibration [38]. This approach identifies vehicles
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with already known knowledge such as edges, shapes, shadows. It
assumes the position and the direction of camera is fixed and
estimates the distance by wusing pixel distance and calibration
parameters. However, when the position or direction of the camera
is changed, recalibration is required once again. Due to the inherent
prior knowledge, e.g., when shapes are occluded or illumination
conditions are changed, the performance of the algorithm can be
poor [39].

In this paper, we propose a new method for measuring the
distance to the front vehicle based on monocular camera and a line
laser. The benefits of the proposed method are as follows: (1) Proposed
method is more accurate than disparity-based method. The errors in
distance measurement was less than 4m during the entire experiments.
(2) It performs well even in night since both laser line and lane

markings are visible in the night.

4.2 Proposed Distance Measurement Algorithm

The scheme of the proposed method is as follows: a laser line is
emitted in the near front of the vehicle on the road, and a monocular
camera captures a sequence of images including the scene of the laser
line and the road. We have three assumptions as follows: (1) lane
detection system provides the information about the lane width. (2) the
width of the laser line illuminated on the road is either measured
directly or calculated by using the ratio between the width of the laser
line and the lane width that is already known. It is reasonable since,
depending on the road type, the width of lane markings follows the
traffic regulations in general. The information about the lane width can

be provided by geographic information system for transportation

¥ T [ |
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(GIS-T). (3) the lane width on the laser line is the same as the lane
width on the rear-end point of leading vehicle. Figure 4.1 (a)-(b)
depicts the device set-up and (c) explains the definition of the symbols

and imaging geometry.

Monocular camera

Front vehicle

v

Z,(t)

(a) Device setup (side view)

Front vehicle

AN N DR I S

<«—ILane markings—»

[ ]
Line laser

(b) Device setup (forward-looking view)
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a)RZ (t)

@, (1)

@y (D) -
Iaw) w,
v
v Image plane Focus Laser line Front vehicle
(c) The definition of symbols and imaging geometry
Figure 4.1. Schematic diagram of the imaging geometry.
The pinhole camera model gives [40]:
fW, fW
_ v _ L
o, (1) = . o =—=* )
Z,(1) Z (1)

where, W), and W; mean the width of the vehicle and the lane,
and wi(t) and wi(f) represent the width of the vehicle and the lane
in the image plane, respectively. Zi(f) and Z,(f) are the distances
from the camera to the front vehicle and to the line laser, and
finally, f means the focal length. According to the assumption

Wri=Wr=Wg, we can induce the following equations:

@y,(7) _ @y, (1) _
o, () W, o,() W,
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where, wg/(f) and wg(?) are the lane width of the point R1 and R2

in the image plane. Following equations come from (2) and (4) is
induced from (3):

W. = W, - 0,() W= Wy, (1) 3)
e T a0
v =, Ca0a0 N

@, (o, (1)

Rearranging (1) according to Z(f) and substituting (4) in (1), we
can get (5) comprised of focal length, width of the line laser, and three

measurable variables from the image (wgr/(f), ®g2(f) and wi(f)) as below:

— f‘n'l" _ 7 (OR:(!}
Z,(0=1"L =W, 5
@, (1) @, ()0, (1) (5)
To make units consistent in (5), dividing on the right-hand
side of equation by pixel size (p) gives Z(f) in meters. Finally,
for the enhancement of accuracy, by multiplying the calibration
parameter k we get (7).

@, () 1

Z(D=k-f-Ww, —f~  ~
(D) f-W, o (Do, () P (6)
z,@)="20C o W o

@y (N, (1) )2

Stereo camera-based distance measurement is shown as below

and Figure 4.2 depicts the principle:
Z=B-f/d ®)

where, B represents the base line, the distance between two monocular

cameras, and d means the disparity, the difference between two images
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B=2b v Image plane d=xg —x; : Disparity

Figure 4.2. Distance calculation based on the disparity map.

in the pixel unit. To get the value of Z in meter unit, the right-hand

side of equation should be divided by the pixel size.

4.3 Experiments and Evaluation

4.3.1 Experimental System Setup

For the experiment, we installed a monocular camera and a line
laser in the vehicle as well as a stereo camera to evaluate of the
performance as shown in Figure 4.3. We regarded the data from a lidar

as ground truth, and made all the data synchronized.

92 -':l'w'i 'I':'l: -TH



Figure 4.3. Experimental system setup.

The specification of the sensors used in the experiments
shown in Table 4.1.

is

DF6HA-1B(Lenz)

Sensor Model Specification
M FL3-GE-03S2C-C 648 x 488  (82fps), 7.4um
onocular ;
(Camera) square pixel,
camera

Focal length: 6mm

Line laserl

BLSI65100A-L30

100mW, 30°, red

Line laser2

SEI53100-L50

100mW, 50°, green

1032 x 776 (20fps), 3.8mm,

Stereo BB2-08S2C-38 65-deg HFOV,
cameral 4.65um square pixel,
Baseline: 12cm

Stereo BB2-0852C-38 640 x 480 (20fps)
camera3 Same with stereo cameral
Stereo VSTC-P250 640 x 489 (201ps), ?mm,
camera2 6um square pixel, Baseline: 26cm
Lidar LMS511  outdoor Measurement range : up to 65m,

Field of view: 190°

Table 4.1. Sensor specification
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4.3.2 Experimental Results

We collected two sets of experimental data for daytime and
nighttime in the highway. For nighttime dataset, we used the stereo
cameral and line laserl while stereo camera2 and line laser 2 were
used for daytime dataset. Figure 4.4 is the snapshot of each datasets.
From left to right, monocular camera with line laser image, stereo

disparity image, the distance image generated by using the data from

lidar. We adopted the built-in disparity map provided by the camera.

Figure 4.4. The snapshot of the dataset

According to the experimental results as shown in Fig. 5, the
proposed method provides higher accuracy as compared to the stereco
camera-based method. Figure 4.5 (a) depicts the sequence of
distance measurements in daytime highway while Figure 4.5 (b)
depicts the nighttime highway situation. The distance was not

constantly decreased or increased during the experiments.
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(b) Nighttime distance measurement

Figure 4.5. Distance measurement results
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Average distance measurement error of experiments is shown in
Table 4.2. The results show that the proposed method is more accurate
than stereo camera and the distance measurement error is less about ten
times on average. The results in Table 4.2 show that the average error
in experimentl (1.05m) is lower than in experiment2 (1.79m), though
the illumination conditions in experimentl is better than in experiment2.
This is due to the fact that the resolution of cameral used in
experiment]l is 1.6 times lesser than camera2 used in experiment2.
Since the distance is inversely proportional to the disparity and the

number of pixel is limited, lower resolution has more distance error.

Proposed Stereo camera
Experiment]l  (daytime) 1.05m 15.11m
Experiment2  (nighttime) 1.79m 12.74m
Average 1.42m 13.92m

Table 4.2. Average error in distance measurement

The error in distance measurement-to-distance relationship is shown
in Figure 4.6. For comparison study, we adopted the theoretical distance
measurement error from the datasheets provided by the manufacturer.
Stereo camera3 has the same specification as stereo cameral except the
resolution. But the resolution of stereo cameral is same as monocular
camera (Refer Table 4.1). Comparison results show that the distance
measurement error of the proposed method is lower than the other
methods. In case of lidar, the error is +2.5cm in 1-10m range, £3.5cm

in 10-20m range and +5cm in 20-30m range.
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Stereo Camera 1
—— Stereo Camera 3

Accuracy (m)
(s3]
1

>

—— ——L-J—th—-qﬁ-x
I L 1 - I L
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50

60

Figure 4.6. The comparison results of the error in distance measurement as
compared to the lidar for the distance variations.
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4.4 Summary

In this paper, we proposed a new method for the longitudinal
inter-vehicle distance measurement by using monocular camera and line
laser. Experimental results show that the proposed method exhibits high
accuracy as compared to the stereo camera-based method. The benefits
of the proposed method are in summary: (1) the proposed method still
shows high accuracy in nighttime as compared to the stereo
camera-based method which suffer from low illumination conditions.
Since the proposed method utilized a line laser and lane markings that
are visible well in night. (2) The distance measurement error of the
proposed method 1is lesser in several meters while the stereo
camera-based method increases with distance proportionally to the

square of the distance.
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Chapter 5

Conclusion

In this dissertation, I focused on several important issues for the
monocular image recognition in autonomous environment. In Chapter 2,
I proposed the illumination-tolerant lane marking extraction filter and
effective false positive cancelling algorithm. Experimental results show
that the proposed algorithm outperforms other algorithms in more
illuminated scenarios. In terms of execution time, the proposed filter
achieves over 30fps, and the fast RITR-CH algorithm performs over
40fps. In chapter 3, I proposed the fusing approach between road
detection and lane position estimation. The proposed approach is
able to provide the new information that is the total number of
lanes on the road and the current position of lane. This localization
information is very helpful for autonomous driving. In Chapter 4, I
proposed a new method for measuring inter-vehicle distance by
using a monocular camera and a line laser. The experimental results
show that the accuracy of the proposed method very high and
outperforms the disparity-based method. I wish above researches

would be useful to someone who works for autonomous driving.
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