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Abstract

Semantic segmentation, segmenting all the objects and identifying their categories,

is a fundamental and important problem in computer vision. Traditional approaches to

semantic segmentation are based on two main elements: visual appearance features

and semantic context. Visual appearance features such as color, edge, shape and so on,

are a primary source of information for reasoning the objects in an image. However,

image data are sometimes unable to fully capture diversity in the object classes, since

the appearance of the objects presented in real world scenes is affected by imaging

conditions such as illumination, texture, occlusion, and viewpoint. Therefore, seman-

tic context, obtained from not only the presence but also the location of other objects,

can help to disambiguate the visual appearance in semantic segmentation tasks. The

modern contextualized semantic segmentation systems have successfully improved

segmentation performance by refining inconsistently labeled pixels via modeling of

contextual interactions. However, they considered semantic context and visual appear-

ance features independently due to the absence of the suitable representation model.

Motivated by this issue, this dissertation proposes a novel framework for learning se-

mantic context-aware representations in which appearance features is enhanced and

enriched by semantic context and vice versa.

The first part of the dissertation will be devoted to semantic context-aware ap-

pearance modeling for semantic segmentation. Adaptive context aggregation network

is studied to capture semantic context adequately while multiple steps of reasoning.

Secondly, semantic context will be reinforced by utilizing visual appearance. Graph

and example-based context model is presented for estimating contextual relationships
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according to the visual appearance of objects. Finally, we propose a Multiscale Condi-

tional Random Fields (CRFs), for integrating context-aware appearance and appearance-

aware semantic context to produce accurate segmentations. Experimental evaluations

show the effectiveness of the proposed context-aware representations on various chal-

lenging datasets.

keywords: Computer Vision, Object Recognition, Semantic Segmentation, Context

student number: 2009-20799
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Chapter 1

Introduction

A human can recognize and localize the objects instantaneously with their eyes and

brains. Computer vision is a research field that deals with how to give a similar ability

to a machine or computer. Therefore, object recognition problem, identifying all object

instances with their categories, have been a major research topic in computer vision.

Robustly finding various objects from images or videos will have many potential ap-

plications, for instance, automatic inspection, surveillance system, driverless car, and

medical diagnosis.

Many different types of object recognition tasks according to the level of under-

standing has received much attention and studied extensively over recent decades.

Most notably, in image classification task, the goal is to classify a picture, for ex-

ample, sheep as illustrated in Figure 1.1, while object detection additionally finds the

location of the objects. Semantic segmentation labels every pixel in the image with

the corresponding object categories. With the help of recent deep neural networks [5]

and internet-based, large-scale dataset such as ImageNet [6], He et al. [7] reported

that its image classification system had surpassed the human-level performance. How-

1



(a) Input image (b) Image classification (c) Object detection (d) Semantic segmentation

Sheep

Sheep

Sheep
Sheep

Sheep

Background

Figure 1.1: The three most popular object recognition tasks. (a) The given input image,

(b) image classification classify the image as sheep, (c) object detection specify the

bounding boxes of sheep, and (d) semantic segmentation extracts the spatial extent of

sheep.

ever, the accuracy of many object recognition systems is still behind the human-level

intelligence despite several decades of research in this area.

In this dissertation, we explore semantic segmentation problem in greater detail.

Semantic segmentation has many advantages over the other object recognition tasks

such as object detection and image classification. Image classification cannot deal

with scenes composed of multiple objects, and, in object detection task, bounding box

representations of an object typically contain many useless background pixels. The

output of semantic segmentation provides better spatial support of objects, thereby

synthesizing output of image classification and object detection in a straightforward

manner. One drawback of semantic segmentation is relative higher computational cost

than other object recognition tasks due to pixel-level prediction. Nonetheless, with the

recent development of hardware and algorithms, there is a vast improvement in com-

putational performance of semantic segmentation.

2



1.1 Backgrounds

The individual tasks in object recognition problem can be formulated as a labeling

problem in which the object class labels has to be assigned to regions or images. How-

ever, an object class can have many different visual representations depends on imag-

ing conditions such as illumination, texture, occlusion, and viewpoint. What makes this

problem more difficult is that a few class may rely on functional features, for example,

chair class. The way to overcome this challenges and make general object recognition

systems is to capture robust and discriminative representations of each category.

The geometric models of objects played a crucial role in early efforts on object

recognition [8]. The advantages of geometric object descriptions are invariance to

viewpoint achieved by projecting 3D objects onto 2D planes under perspective pro-

jection and invariance to illumination using edge information. Nevertheless, reliable

extraction of geometric information (e.g. lines, circles, etc.) is not straightforward in

an unrestricted environment.

Recently, most attempts on object recognition have been focused on appearance-

based approaches using advanced feature descriptors and machine learning algorithm.

To tell a few representative feature descriptors, Scale-invariant feature transform (SIFT)

for keypoint detection and object matching [9], the eigenface for face recognition [10],

and Histogram of oriented gradients (HoG) for human detection [11] have been pro-

posed and attracted considerable attention. Based on several feature descriptors, dis-

criminative classifiers such as k-nearest neighbors, support vector machine, decision

tree, and neural networks have been applied to various object recognition problem.

More recently, deep neural networks [5] shows efficient extractions of discriminative

features for object recognition problems.

3



bus

background

car

bus

background

car

bicycle
person

train

(a) Input image (b) FCN ([12]) (c) Ground truth

Figure 1.2: The local appearance ambiguity marked with the red box in (a) causes

difficulties in recognizing objects in (b).

1.2 Context Modeling for Semantic Segmentation Systems

Although appearance-based approaches for semantic segmentation have shown its

great performance for challenging datasets such as PASCAL VOC [12] and Microsoft

COCO [13], still there are many unresolved issues. One of the most important topics

is inherent ambiguity in visual information which makes it difficult to identify objects,

as depicted in Figure 1.2. To this end, contextual interactions have been employed for

particular recognition tasks in which simultaneously recognize multiple objects such

as object detection and semantic segmentation. Many recent approaches firstly obtain

object class score maps for each pixel with visual appearance. Then they employ a

probabilistic graphical model with the retrieved score maps where semantic context

information is represented as clique potentials to infer the final segmentation.

However, the learning process of the conventional appearance-based models does

not consider the semantic context information. At the stage of calculating object scores

with the appearance information, visual ambiguity may produce totally unreasonable

4



object likelihoods. However, it is difficult to fix in the probabilistic graphical models

because of the incorrect initial object scores. This problem comes from the disentan-

gled learning process of appearance and semantic context and limits the overall sys-

tems performance. In Figure 1.2, Long et al. [14] performs poorly on the windows of

the bus. Semantic context information cannot resolve it because the large regions of

the image are wrongly labeled.

Researchers in computer vision has widely used the term “context” in object recog-

nition literature, but there is little consensus about what constitutes context. Very basic

types of context representing local windows around pixels or regions are widely used

definition. However, since most of the feature extraction methods use some degree of

context windows, it is difficult to say that the all the appearance-based approaches is

the contextual approaches. In this dissertation, we limit the definition of context to only

the “semantic context”, for example, object class co-occurrence and relative positions

of objects, object-scene interaction, and things-stuff relations. Recently, context-aware

semantic segmentation systems have gained wide attention and use a graphical model

where semantic context are modeled as high-order potentials. In this formulation, the

semantic context is regarded as a priori in understanding an image.

However, the problem of semantic context such as object co-occurrence is that they

do not take into account the visual information. For instance, object co-occurrence ma-

trix only considers the occurrence of the two objects in the scenes. Therefore, as in Fig-

ure 1.3, semantic context information enforces frequently appeared object class instead

of the correct crosswalk. However, while growing the number of labels and different

kinds of semantic contextual information such as building nearby car, pedestrian on

crosswalk and sky over sea, extracting all different context scenarios against all object

classes considering the visual appearance cannot be addressed due to complexity.

5



Building

BuildingBuilding

Building

? ?
Road

Building

Crosswalk

Input image Conventional context model

Our context model

Building

Retrieved training image

Crosswalk

Figure 1.3: One of the problems of semantic context modeling. The ground truth ob-

ject of the unknown regions is crosswalk. Based on the co-occurrence statistics, the

building regions enforce the unknown regions to be road due to the strong correlation

of building and road.

1.3 Dissertation Goal and Contribution

The goal of the dissertation is to learn context-aware representations for proper seman-

tic segmentations which apply to scene understanding and to study the combination of

the context-aware appearances and the appearance-aware context. The contribution of

the dissertations is summarized as follows:

1. Learning context-aware representations for robustness in the semantic context,

as well as the visual appearances, is proposed. The semantic context can help to

disambiguate the appearance features, and the visual information can contribute

to utilizing the semantic context properly.

2. Adaptive context aggregation network where the semantic context are adaptively

captured while multistep reasoning is presented. In this framework, appearance

6



modeling while considering semantic context information is achieved.

3. Graph and example-based context model in which appearance enhances seman-

tic context is presented. With this model, semantic context modeling while con-

sidering appearance information is produced.

1.4 Organization of Dissertation

The main part of the dissertation consists of four chapters. The first chapter deals

with the methods for the context-aware appearance modeling with Deep Convolutional

Neural Networks. Chapter 3 and 4 present the appearance-aware context model with

second-order and high-order potentials, respectively. Chapter 5 proposes the unified

framework to integrating context-aware appearance model and appearance-aware con-

text. The remainder of this dissertation is structured as follows.

In Chapter 2, we present an Adaptive Context Aggregation Network (ACAN) ar-

chitectures for semantic segmentation. We present a method that learns context-aware

representations of the visual object. These latent representations encode contextual in-

formation in a continuous vector space to help overcome major challenges in this task,

including local appearance ambiguity. The proposed network automatically searches

for the semantic context in an image that is related to the accurate semantic segmen-

tation. Our frameworks contain multiple steps of reasoning of semantic segmentation.

Experiments conducted on PASCAL VOC 2012 datasets demonstrate that the pro-

posed ACANs significantly outperform the previous state-of-the-art approaches. The

side-output of multiple reasoning illustrates that the ACAN progressively finds the

semantic context that leads to the correct segmentations.

In Chapter 3, we propose a novel framework for modeling image-dependent con-
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textual relationships using graph-based context model. This approach enables us to

selectively utilize the contextual relationships suitable for an input query image. We

introduce a context link view of contextual knowledge, where the relationship between

a pair of annotated regions is represented as a context link on a similarity graph of re-

gions. Link analysis techniques are used to estimate the pairwise context scores of all

pairs of unlabeled regions in the input image. Our system integrates the learned con-

text scores into a Markov Random Field (MRF) framework in the form of pairwise

cost and infers the semantic segmentation result by MRF optimization. Experimen-

tal results on object class segmentation show that the proposed graph-based context

model outperforms the current state-of-the-art methods.

Chapter 4 presents a novel nonparametric approach for semantic segmentation us-

ing high-order semantic relations. Conventional context models mainly focus on learn-

ing pairwise relationships between objects. Pairwise relations, however, are not enough

to represent high-level contextual knowledge within images. In this paper, we propose

semantic relation transfer, a method to transfer high-order semantic relations of ob-

jects from annotated images to unlabeled images analogous to label transfer techniques

where label information are transferred. We first define semantic tensors representing

high-order relations of objects. Semantic relation transfer problem is then formulated

as semi-supervised learning using a quadratic objective function of the semantic ten-

sors. By exploiting the low-rank property of the semantic tensors and employing Kro-

necker sum similarity, an efficient approximation algorithm is developed. Based on the

predicted high-order semantic relations, we reason semantic segmentation and evalu-

ate the performance on several challenging datasets.

In Chapter 5, We combine the likelihood probability with adaptive context ag-

gregation networks from Chapter 2 and the prior probability with second-order and

8



higher-order context from Chapter 3, 4 for accurate semantic segmentations. Finally,

we conclude the dissertation in Chapter 6.
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Chapter 2

Adaptive Context Aggregation Network

2.1 Introduction

Recent advances on semantic segmentation are achieved by applying Deep Convo-

lutional Neural Networks (DCNNs) to pixel-wise classification on images [15]. To

efficiently utilize DCNNs for semantic segmentation, Fully Convolutional Neural Net-

works (FCNNs) [16, 14] have been advocated instead of patch-by-patch or region-

based classification. Specifically, repurposing convolutional neural network architec-

tures [17, 5, 18] developed for image classification achieves state-of-the-art perfor-

mance. The success of network fine-tuning shows that the Convolutional Neural Net-

works have general representation powers on various computer vision tasks. In conse-

quence, DCNNs have achieved state-of-the-art performance in a broad array of vision

problems, including object detection [19, 20], semantic segmentation [14], and human

pose estimation [21].

Meanwhile, as shown in many previous works on semantic segmentation [22, 23,

24, 25, 1, 26, 27, 28, 29, 30], capturing contextual knowledge of the image is impor-

tant to achieve a high class accuracy and a visually pleasing labeling. In a DCNNs
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architecture, context is implicitly considered to some degree by feeding a sufficiently

large surrounding input patch into DCNNs and predicting the labels of the pixels in

the input patch simultaneously. However, individual responses at the final layer of FC-

NNs of each patch are not locally and globally consistent. To address this problem,

Chen et al. [16] employs refinement step using the conventional Conditional Radom

Fields (CRFs) followed by DCNNs. Also, jointly training DCNNs and CRFs are pro-

posed [31, 32]. They independently learn unary/pairwise potential of CRFs using DC-

NNs [32] or marginalize the probability as a regularized loss.

To this end, we propose a novel approach in which deep convolutional neural net-

work architectures in which appropriately capture semantic context information recur-

sively in this chapter. In our approach, the proposed network has multiple side-output

with deep supervision [33, 34] and each side-output helps to parse the next side-output

by properly sampling semantic context information. Adaptive context sampling mod-

ule is proposed by using convolutional spatial transformer network for learning latent

context space. The proposed method allows us to efficiently and effectively aggregate

context information from networks. This context-aware representation can be general-

ized to any problems with convolutional neural networks.

The key contributions of this chapter include: (1) The use of a latent space repre-

sentation of contextual information; (2) A novel adaptive context aggregation network

for semantic segmentation; and (3) A convolutional spatial transformer networks for

learning the adaptive context aggregation.
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Figure 2.1: Our Network Structure: Our adaptive context aggregation network adds

several feature layers to the end of pretrained networks. Side-output layers are in-

serted after each feature layers. Deep supervision is imposed at each sid-eoutput layer,

guiding the side-outputs. Convolutional spatial transformer layer samples the context

adaptively for accurate semantic segmentation of the next side-output layer.

2.2 Related Works

We now review related works on semantic segmentation and recent Fully Convolu-

tional Network (FCNs) architectures for semantic segmentation tasks.

Before the deep learning era, much of the works on semantic segmentation is based

on hand-crafted features (e.g. SIFT, HoG, etc.) with the swallow classifiers such as

Support Vector Machines, Random Forests, and Boosting. Although these works have

proven its feasibility, the performance was unsatisfactory in practice.

In early deep learning systems on semantic segmentation tasks, the central paradigms

are replacing hand-craft features to deep features. Mainly, deep learning based classi-
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fiers were applied for classifying the regions from the conventional region proposals

or superpixel. Farabet et al. [15] proposed hierarchical features for superpixels based

scene labeling. Girshick et al. [35] presented region-based convolutional neural net-

works for object detection and semantic segmentation. These region-based systems

outperform the previous hand-crafted features, but still largely depends on the regions

generated from the images.

Recently, in conjunction with successful Deep Convolutional Neural Networks ar-

chitectures [17, 5, 18, 36] for image classification, pixel-level dense prediction tasks

such as semantic segmentation achieve a great breakthrough by reusing and fine-tuning

the classification networks [14]. However, image classification networks usually have

the low-resolution prediction. To overcome this problem, for object detection tasks,

shift-and-stitch approach [37] is proposed to make the image classification networks

dense. To address this issue and generate a dense prediction, Long et al. [14] incor-

porated bilinear deconvolution layer and skip connection at the end of the final score

map to achieve the same size of the score map with input images. The dilated convolu-

tion approaches [16] also called astrous [16] or sparse kernel convolution [38] directly

output a middle-resolution score map and apply the dense CRF method [39] to refine

boundaries by leveraging color information. It is a generalization of shift and stitch

techniques of which used for densifying the classification result for pixel-level clas-

sification. [16]. Extending this approaches, simulating the dense CRF with recurrent

layers [40, 41] proposed for end-to-end learning. Meantime, in [42, 43], deconvolu-

tion layers presented to up-sample the low-resolution features. To enlarge the recep-

tive field of neural networks, methods of [44] proposed to use dilated convolution for

context aggregation. Liu et al. [45] use global average pooling with L2 normalization

to improve segmentation result.
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Meanwhile, context plays a crucial role for scene understanding. Many approaches

have been proposed to impose the contextual consistency. [46].

2.3 Proposed Method

In this Section, we present the details of our framework. Our network consists of two

major networks: embedding networks and deeply supervised context aggregation net-

works. The network structure of the adaptive context aggregation network is outlined

in Figure 2.1. The embedding net extract image feature for later inference. Next, deeply

supervised context aggregation net recursively produce semantic segmentation results

the while gathering semantic context from the previous segmentation results.

2.3.1 Embedding Network

The embedding network takes the input image and represents it as a feature map. We

begin by transforming state-of-the-art classification architectures. We use a pretrained

Residual Networks (ResNet) [17] that won ILSVRC16. We pick the 101-layer Resid-

ual Networks (ResNet-101) due to the limitation of the GPU memory size. We remove

the final classification layer and the average pooling layer, and choose the feature maps

from the last remaining convolution layer. However, the repeated combination of strid-

ing in ResNet-101 reduces the spatial resolution of the features map to 1/32 of the input

image. The most archtectures of ImageNet winners [17, 5, 18] suffer from the down-

scaling of the feature maps. To alleviate this problem, we use dilated convolution [44],

also called atrous convolution [16] or sparse kernel convolution [38]. The dilated net-

works strategy allows us to compute the feature maps of any layer at any desirable

resolution without losing the size of receptive fields. Following the conventional ap-
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Figure 2.2: Feature map extraction using pre-trained ResNet-101 with dilation.

proaches [16], we densify the resulting feature maps of ResNet-101 by a factor of

8.

Mathematically, the image feature map f0 is extracted from a raw image I using

ResNet-101:

f0 = CNNResNet−101(I). (2.1)

We firstly take the images at a resolution of 320 × 320 pixels, and obtain the

features of the dimension of 40 × 40 × 2048 as shown in Figure 2.2. 40 × 40 is the

number of regions in the image and 2048 is the feature dimension of each region.

2.3.2 Deeply Supervised Context Aggregation Network

In the proposed deeply supervised context aggregation network, we formulate seman-

tic segmentation as the multiple steps of reasoning. We predict the side-output recur-

sively with the help of the aggregated semantic context from the previous side-output.
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Figure 2.3: The illustration of the process of computing the first side-output g1.

The deep supervision strategy also can improve the directness and transparency of the

hidden layer learning process as pointed out in [33].

Formally, given the image feature maps f0, deeply supervised context aggregation

net predicts the K outputs g1, g2, ...gK sequentially. We first take f0 and compute the

first side-output g1:

f1 = max(0, bn(W1 ∗ f0)) (2.2)

h1 = max(0, bn(H1 ∗ f1)) (2.3)

g1 = G1 ∗ h1 + b1, (2.4)

where the ∗ operator represents a convolution, W1, H1, G1 is the weight matrices, b1

denotes the bias matrix, max(0, ·) corresponds to a ReLU operator, and bn(·) denotes
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Figure 2.4: The illustration of the process of computing the first context memory m1

and the second side-output g2.

the batch normalization operator. f1, h1 denotes hidden layer values. This process is

illustrated in Figure 2.3.

The first side-output is obtained without the help of adaptive context aggregation,

but for the second side-output, we aggregate the semantic context for each neuron and

use this information additionally. From each context windows, we adaptively sample

the semantic context and embeds it to the feature space. Using the first side-output

g1, we compute context memory feature map m1. To compute m1 we utilize the con-

volutional spatial transformer network [47] extending the original spatial transformer

network [48]. We take the input h1 for generating context windows parameters and g1

to sample the appropriate context.
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c1 = C1 ∗ h1 + bc1 (2.5)

s1 = τc1(g1) (2.6)

m1 = max(0, bn(M1 ∗ s1)) (2.7)

where C1,M1 is the weight matrices, bc1 denotes the bias matrix, and τc1(·) represents

convolutional spatial transformer operator. c1, s1 denotes context windows parameters

and sampled context, respectively. This process is illustrated in Figure 2.4.

The computation of the second side-output is consequently as follows:

f2 = max(0, bn(W2 ∗ f1)) (2.8)

h2 = max(0, bn(H2 ∗ f2)) (2.9)

g2 = G2 ∗ [h2,m1] + b2, (2.10)

where the W2, H2, G2 is the weight matrices, b2 denotes the bias matrix, and [·, ·]

represents feature concatenations. This process is illustrated in Figure 2.4. Generally,

the k-th side-output gk with the following formula:

fk = max(0, bn(Wk ∗ fk−1)) (2.11)

hk = max(0, bn(Hk ∗ fk)) (2.12)

gk = Gk ∗ [hk,mk−1] + bk, (2.13)

where the Wk, Hk, Gk is the weight matrices and bk denotes the bias matrix.

Semantic adaptive context aggregation with fixed size of windows can help to seg-

ment an object as shown in Table 2.1. However, which relative position and scale of

semantic context are helpful for each neuron is not known generally. Therefore, we
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Table 2.1: Performance comparison of our algorithm on PASCAL VOC 2012 valida-

tion dataset.

Mean IoU Pixelwise accuracy

Baselin FCN 72.7 93.5

Adaptive context agg. without STN 74.4 93.8

Adaptive context agg. STN 75.0 93.9

train a sptial transformer networks [48] for each neuron and propose a convolutional

version to generate the transformation of side predictions by deep supervision. As

shown in our experiments, this is especially important for properly capture the context

knowledge.

The proposed transformer network takes input from lower feature maps and ap-

plies independent spatial transformation. The parameters of sampler is convolutionally

trained. Since the independent transformation, the transformed semantic contexts can

be larger or smaller than nearby neuron.

Then, we learn a mapping into a feature space where contexts are represented. The

latent mapping of context windows concatenated with output of convolution layers

and produce the predictions. The mapping function is learnt to optmize only with the

supervised loss of interest for our task, semantic segmentation.

2.4 Experiments

To show the effectiveness of our approach, we perform extensive experiments on two

public datasets, PASCAL VOC 2012 and SiftFlow dataset. The segmentation accuracy

is measured by the intersection-over-union (IoU) score, and the pixel accuracy and the
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Table 2.2: Performance comparison of our algorithm on PASCAL VOC 2012 test

dataset.

Mean IoU

GCRF [49] 73.2

DPN [50] 74.1

Piecewise [32] 75.3

Adaptive context agg. STN 77.2

mean class accuracy over all categories.

Implementation. We apply data augmentation during training. In particular, we per-

form random scaling (ranging from 0.5 to 2.0), random cropping, random rotation

(ranging from -10 to 10) and horizontal flipping. We consider the momentums of batch

normalization layer of residual networks [17] as a constant and fix the learning rate of

scale and bias of the layer. The learning rate of the pre-trained layers starts with to

0.001, and the learning rate of new layers are set to 0.01 initially, futher multiplying

the learning rate by 0.1 every 30k iterations. We also apply test-time multiscale evalua-

tion and use the minibatch of 16 images. We have implemented the proposed methods

by extending the MatConvNet framework [51].

Baseline FCN: Our baseline networks is based on the Dilated version of Fully Convo-

lutional Networks (FCNs). The original FCNs is trained using VGG net [18] and use

skip-connection instead of the dilated filters, but in our experiments, we append the

7× 7 convolutional layer to predic scores for each of the object classes on the feature

maps in Section 2.3.1. Hence, it works similar to the DeepLab proposed in [16].
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(a) Input image (b) Baseline FCN (c) Adaptive context agg. (d) Ground truth

Figure 2.5: Representative results from the PASCAL VOC 2012 validation dataset. (a)

Input images. (b) Baseline FCN results. (c) The proposed adaptive context aggregation

network. (d) Ground truth.

2.4.1 PASCAL VOC 2012 dataset

PASCAL dataset is proposed by Everingham et al. [12] which includes 20 object cate-

gories and on background class. The dataset is split into a training set, a validation set,

and a test set, with 1464, 1449, and 1456 images each. We compare our framework

with Baseline FCN with mean IoU (intersection-over-union) score and pixel accuracy

score. Furthermore, we compare the performance of proposed frameworks without

some of the components as shown in Table 2.3. The selected prediction examples are
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Table 2.3: Effect of each components in the proposed method. In this experiments, we

train only with original 1464 training images and use single scale testing.

Mean IoU Pixelwise accuracy

Baseline FCN 67.3 92.3

Deep supervision 68.9 92.7

Adaptive context agg. without STN 69.8 92.9

Adaptive context agg. with STN 70.6 93.0

shown in Figure 2.5.

As shown in Table 2.1 and 2.2, our system achieves an overall mean IoU scores

77.2% on the test set and outperforms baseline FCN in val set.

Component analysis: In Table 2.3, we analyze each components of the proposed

methods. Continually adding the components we observe performance increasing. In

this experiments, we do not use additional augmentation of the data proposed by [52]

and single-scale evaluation is used.

2.4.2 SIFT Flow dataset

We also compare the proposed method on The SIFT Flow dataset as shown in Ta-

ble 2.4. The SIFT Flow dataset provided by Liu et al. [2] consists of 2,688 images of

outdoor scenes. The dataset provides ground truth labels hand-annotated by LabelMe

users. Liu et al. [2] split this dataset into 2,488 training images and 200 test images,

and selected top 33 object categories as semantic labels. For comparison, the same

training/test split is used as in [2, 4].

Class Balancing: Since the SIFT Flow dataset has heavily unbalanced class distri-
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Table 2.4: Evaluation of the proposed algorithm on SIFT Flow dataset. Our algorithm

achieves state-of-the-art performance in mean class accuracy metric.

Pixel accuracy Mean class accuracy

Farabet et al. [15] 78.5 50.8

Long et al. [14] 85.2 51.7

Adaptive context agg. without STN 85.6 55.3

Adaptive context agg. with STN 85.8 56.0

bution, we compensate the loss with natural class frequency in the dataset. The loss

function of each pixel is normalized by the frequency of the ground truth labels as

follows:

w =
1

log( Pc
mediani(Pi)

+ 1)
, (2.14)

where Pi is # of pixels of class i and c is the ground truth label of the pixel.

As shown in Table 2.4, our system achieves an overall pixel-level accuracy of

85.8% and a per-class accuracy of 56.0%.
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Figure 2.6: Representative results from the SIFT Flow dataset. (a) Input images. (b)

The output of SuperParsing. (c) The output of adaptive context agregation networks.

(d) Ground truth. The number below the image shows pixelwise accuracy.

2.5 Summary

In this chapter, we have proposed adaptive context aggregation module with convo-

lutional neural network for semantic segmentation. In this framework, context infor-

mation adaptively crawled while multistep reasoning process. This Adaptive output

aggregation can be further applied to video object and image segmentation.

25



65.6 94.1
(a) Input image (b) SuperParsing (c) Adaptive context agg. (d) Ground truth

mountain

sky

buidling

road
tree

sky

building

plant

sky

building

tree

9.4 74.4

road

tree

car

mountain

tree

river

mountain

tree

66.7 76.8

building

car

road

car

road

roadcar

fieldtree

river

tree

road

tree

sidewalk
desert

Figure 2.7: Representative results from the SIFT Flow dataset. (a) Input images. (b)

The output of SuperParsing. (c) The output of adaptive context agregation networks.

(d) Ground truth. The number below the image shows pixelwise accuracy.
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Chapter 3

Second-order Semantic Relationships

3.1 Introduction

Recent works [22, 23, 24, 25, 1, 26, 28, 29, 30] have shown that employing contextual

information is extremely helpful for resolving this problem. There are various sources

of context including scene [25, 30], semantic [28, 29], scale [23, 28], and spatial rela-

tion [53, 54]. Recently, many researchers have highlighted the importance of pairwise

relationships between objects [53, 54, 1, 28, 29]. This relationship is commonly rep-

resented by high-level statistics such as the object class co-occurrence which captures

semantic context between object classes. For example, building and road are likely to

co-occur in an image. To incorporate object relationships, traditional approaches often

model such relations as local interactions between pixels or regions. To produce the

final labeling result, the obtained object relationships are combined with pre-learned

unary potentials which are usually learned based on the visual features of the objects.

This scenario, separately learning contextual relationships and visual appearance, has

been successfully used to solve the scene understanding problem.

However, this system tends to prefer frequently appeared objects to enforce object
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Figure 3.1: Comparison of our context model to a conventional context model based

on co-occurrence statistics. We appropriately establish the object relationship depend

on the visual appearance as well as the contextual relation from the matched similar

scene.

label agreement according to semantic relevance. For example, consider the example

illustrated in Figure 3.1, where the ground truth label of the unknown regions is cross-

walk. Notice that the regions labeled as building enforce the unknown regions to be

labeled as road because building and road are more strongly correlated than building

and crosswalk. Furthermore, as pointed out in [55], conventional context models are

not invariant to the number of pixels/regions that an object occupies, which makes

the small objects likely to be eliminated. Our key idea is to utilize context relation-

ships adaptively according to the visual appearance of objects to correctly label such

unknown regions.
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Figure 3.2: Illustration of our approach. The contextual relationship between the pair

of the annotated regions is represented as (building,car)-link between the two corre-

sponding nodes on the similarity graph. No link is constructed between the two re-

gions from the test image because they are unlabeled. By applying link analysis tech-

niques [3], our system predicts the strength of (building,car)-link between them based

on node similarity.

In this work, we present a novel approach for properly capturing the contextual

relationships between two regions by considering the content of an input image. One

difficulty is that learning such relations between all pairs of regions across whole object

classes is computationally challenging. To overcome this problem, we propose a novel

nonparametric exemplar-based context model. This nonparametric context model con-

sists of a bunch of context exemplars which are basically annotated region pairs ex-

tracted from similar training images to the input image. From these context exemplars,

we provide the novel interpretation of context exemplars in a context link view and

relate the problem of learning contextual relationships to the link prediction problem
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on a similarity graph of regions. The configuration of the similarity graph naturally

reflects visual similarity between regions. On this similarity graph, all context exem-

plars can be compactly encoded in the form of context links. Moreover, the similarity

graph is usually sparse, so computation of learning contextual relationships can be

done very efficiently. Although traditional context models for high-level object inter-

action is staying in refinement of local labeling result with co-occurrence statistics,

our context transfer approach provides additional clue for reasonable image labeling

as illustrated in Figure 3.3.

The key contributions of this section are as follows. (1) We establish a novel con-

text link view of contextual knowledge. (2) In this view, we formulate the problem

of learning object relationships as graph-based link prediction problem which can be

efficiently solved via state-of-the-art link analysis techniques [56, 3]. (3) Our system

is nonparametric and exemplar-based, and therefore does not need to see whole train-

ing images to build a context model. Hence, it easily scales to large datasets with the

tremendous number of images and object classes. Our system can also infer contextual

relationships even from a single training image.

The rest of the chapter is organized as follows. In Section 3.2, we review some

relevant works. Section 3.3 presents our context model. Section 3.4 describes a region

labeling algorithm using our context model. Section 3.5 provides experimental results

and related discussion, followed by a conclusion in Section 3.6.

3.2 Related Work

There are two different types of approaches to object relationships. The first type fo-

cuses on the neighborhood interactions that captures the relation of two classes be-
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tween nearby pixels/regions. To obtain it, various approaches have been proposed such

as simple continuity preference [2], training classifier over pairwise features [23], and

penalty term using co-occurrence statistics [4, 57]. However, the adjacent interactions

is limited to modeling local properties of the image. Nevertheless, many existing non-

parametric scene parsing methods [2, 4, 57] have employed neighboring relationships

due to the scalability. The second type, on the other hand, models high-level relation-

ships among objects by considering both long range and neighboring dependencies.

This context model is typically represented by co-occurrence statistics or spatial re-

lationships between object classes. Ravinovich et al. [29] incorporated co-occurrence

statistics into the fully connected Conditional Random Field (CRF). Galleguillos et

al. [53] proposed exploiting the information of relative location such as above, beside,

or enclosed between object classes. Gould et al. [54] designed a more complex and

informative relative location prior among object classes. Parikh et al. [28] differently

learned co-occurrence statistics according to location and scale information. However,

all these existing global context models rely on pixels/regions label prediction and are

unable to incorporate visual appearance information effectively during context learn-

ing stage.

Jain et al. [1] proposed adaptively predicting “what” object relationships to con-

sider and “how” to evaluate these relationships based on local and global image fea-

tures. They learnt class-specific pairwise feature weights in a nonparametric manner,

but they only consider simple relative position, overlap, and brightness. Different to

Jain et al. [1], our approach relies on context link, allowing us to model complex ob-

ject relationships directly associating to object classes.

Perhaps one of the most similar works to our approach is that of Malisiewicz and

Efros [58]. They developed the Visual Memex graph with similarity and contextual
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edges. In contrast to [58], we build the memex at query time only using matched im-

ages on global similarity level. Furthermore, our system reasons the strength of contex-

tual relationships between regions, while [58] only predicts the category of a hidden

object with some provided objects. This paves new promising way of representing

and embedding higher-level semantic contextual relationships among objects in scene

parsing and understanding.

3.3 Our Approach

3.3.1 Overview

For a query image, we first retrieve its best matched similar scenes in a large dataset

using global descriptors analogous to several nonparametric scene parsing methods [2,

59, 4]. All pairs of the annotated regions in the retrieved scenes can be defined and

exploited as context exemplars. A context exemplar is composed of a pair of regions

and a pair of the corresponding object classes. It represents that a region with its par-

ticular object class supports the paired region to have its corresponding object class.

For example, in Figure 3.2, the contextual relation from the region labeled as building

to the region labeled as car forms a context exemplar. This means, when the former

region is labeled as building, the latter region would be labeled as car. Note that this

context exemplar can capture the global interaction between regions and is not limited

to the local adjacent interaction.

Our goal is to estimate how much each region pair of the query image is consis-

tent with the context exemplars from the retrieved images. For this, we first construct

the similarity graph in which unlabeled regions from the test image and the annotated

regions from the matched scenes are regarded as nodes. Each context exemplar is then
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(a) Query image (b) Oversegmentation (c) Local labeling (d) Baseline MRF
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Figure 3.3: Illustration of image parsing using our context transfer approach. Top row

shows the failure of the baseline context model: (a) the given query image, (b) the

over-segmented regions, (c) the local labeling result based on local features using im-

plementation [4], and (d) the CRF labeling result with baseline context model. Since

the incorrect local labeling dominates the final performance, it is not easy to identify

the window regions correctly. Bottom row: (e) assume that the selected region (encir-

cled with red line) is building, (f) the example of the learned contextual consistency

scorse by our context transfer approach how much each region will be window with the

given region (e) (normalized for visualization), and (g) the CRF final labeling result

combining local labeling in (c) with the learned contextual consistency scores. The

explicitly learned contextual consistency scores successfully corrects the final result

making the window regions appear.
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encoded as a link between two nodes with the corresponding object classes on the sim-

ilarity graph as illustrated in Figure 3.2. By applying the label propagation technique,

a kind of semi-supervised learning method, the links between all nodes of the query

image are constructed with their associated scores. Note that this label propagation

method was originally proposed to solve the node classification problem [60]. After

that, many researchers [56, 3] extended it to predict the relations among the nodes. In

this work, we follow the approach of [3] because it is efficient compared to other meth-

ods [56]. Finally, the learned context scores are incorporated into the MRF framework

for final labeling.

3.3.2 Retrieval System

A confident image set for the input test image is first extracted from a large training

dataset because it is not scalable to consider all context exemplars from whole labeled

training images. What we expect to have in the retrieval set are similar objects with

consistent spatial arrangement compared to the test image. Hence, retrieval is done not

only for computational efficiency but also for more informative region-based context

learning.

Four different types of global image features are used: color histogram, spatial

pyramid [61], gist [62], and tiny image [63]. For each feature, top-scored T/4 images

according to the ranking scores are collected and used as the retrieval set similar to [4].

Having the best matches from each of the global features allows us to take into account

various examples of scene context with the different views. All pairs of annotated

regions in this retrieved set will form the context exemplars and serve as the source of

region-level context learning.
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3.3.3 Graph Construction

The k-nearest neighbor similarity graph is constructed between regions from both

the test image I and the corresponding retrieved image set Î. Each image is seg-

mented into a number of regions based on the fast graph-based segmentation algo-

rithm [64], and then each region is described by its appearance using selective shape,

location, texture, color, and appearance features same as in [4]. The similarity graph

is defined as a weighted graph G = (V, E ,W), where V is a set of vertices that con-

tains a set of regions SU = {s1, ..., sM} from the test image I and a set of regions

SL = {sM+1, ..., sN} from the retrieved images Î. Each vertex is connected to its k-

nearest neighbor. A weight wij ∈ W is assigned to an edge eij ∈ E , and is defined by

the following similarity measure comparing two regions si and sj based on Gaussian

kernel:

wij =
∏
Hk∈H

exp

(
−‖Hk(si)−Hk(sj)‖

σHk

)
, (3.1)

where Hk(si) is the feature vector of the k-th type for si, H represents the set of fea-

tures arranged in Table 3.1, σHk denotes the standard deviation of Hk, and all features

are equally weighted.

3.3.4 Context Exemplar Description

In this step, the contextual relationships within the retrieved scenes are extracted in

the form of contextual exemplars. Instead of counting co-occurrence or voting spa-

tial arrangement between object classes, we simply extract all pairs of the annotated

regions from the retrieved scenes and represent each pair as a context exemplar with

the corresponding pair of object classes. More formally, given a set of classes C =

{c1, c2, ..., cK} (e.g. sky, building, ..) containing all existing classes in the correspond-
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Types Feature Name Dim.

Relative area 1

Shape Shape mask over its bounding box 64

Relative width/height 2

Location Shape mask 64

Relative top height 1

Texture Texton hist 100

Dilated texton hist. 100

SIFT SIFT hist. 100

Dilated SIFT hist. 100

Color RGB color mean 3

RGB color std 3

Appearance Gist over its bounding box 320

Table 3.1: Selected region features for constructing the similarity graph.

ing retrieved image set Î, the set of context exemplars for each class pair (ca, cb) is

represented as

Mab = {(si, sj) : G(si) = ca, G(sj) = cb, si, sj ∈ Îl}, (3.2)

where si, sj ∈ Îl represents two regions si and sj in the same image Îl included

in the retrieved image set Î and G(si) represents the ground truth class of region

si. Note that the order of all pairs (si, sj) should be preserved since each context

exemplar is assumed to have direction. Hence, based on region pair (si, sj) labeled

as (ca, cb), two context exemplars (si, sj) ∈Mab and (sj , si) ∈M ba are constructed.

We holdM = {M11,M12,M13, ...,MKK} for all object class pairs and this contains
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the whole contextual relationships within the retrieved image set Î without loss of

information.

Our key observation is that a context exemplar (si, sj) ∈ Mab can be viewed as

a directional (ca, cb)-type link between two nodes si and sj on the similarity graph.

We will refer to this link as the (ca, cb)-link. To transform all context exemplars into

context link form, let F denote the set of N × N matrices with nonnegative entries.

A matrix Fab ∈ F associates to (ca, cb)-links and [Fab]ij represents the strength of

(ca, cb)-link between two nodes si and sj . The strength close to 1 means high confi-

dence of the existence of a link. On the other hand, the strength close to 0 means the

absence of a link. We define Qab ∈ F to represent the observed (ca, cb)-links within

the retrieved images such that

[Qab]ij =

 1 if (si, sj) ∈Mab

0 otherwise
. (3.3)

Now we have a set of context link Q = {Q11,Q12,Q13, ...,QKK}.

3.3.5 Context Link Prediction

Link prediction problem is a task of predicting how likely a link exists in a network. In

this work, we consider a problem of predicting (ca, cb)-link among the pairs of nodes

of SU based onQab consistent to the configuration of the similarity graph. For this, we

adopt semi-supervised link propagation approach using node similarity similar to [56].

We directly propagate (ca, cb)-links in Qab to the pairs of nodes of SU and estimate

the strength of them. We assume that all Qab is uncorrelated to each other, therefore,

context link prediction problem can be solved by K2 independent link propagation

problems. We drop the ab suffix for clarity.

However, directly applying the approach of [56] to our context link prediction
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Procedure 1 Proposed Context Learning Algorithm
Input: Query image I

Output: Learned context scores L(si, ci, sj , cj)

1: Retrieve the scene-level similar image set Î

2: Generate superpixels SU of the query image I

3: Construct the similarity graph W of regions SU from I and SL from Î

4: Derive the matrix L = D−1/2WD−1/2 in which D is a diagonal matrix with its

(i, i)-element equal to the sum of the i-th row of W.

5: Extract the context exemplarsM from Î

6: Build the context link Q

7: for each object class pair (ca, cb) do

8: Initialize Fc(1) = Fr(1) = 0

9: ( Column-wise link propagation )

10: Iterate Fc(t+ 1) = (1− c)LFc(t) + cQab until convergence

11: ( Row-wise link propagation )

12: Iterate Fr(t+ 1) = (1− c)Fr(t)L + cF̂c until convergence where F̂c indicates

the limit of {Fc(t)}

13: Assign L(si, ci = ca, sj , cj = cb) = [F̂r]ij where 1 ≤ i, j ≤M and F̂r denotes

the limit of {Fr(t)}

14: end for

problem is impractical because it requires O(N4) times for a link propagation. Thus,

we follow the strategy of the constraint propagation for spectral clustering [3]. We

decompose the link propagation problem into two independent label propagation sub-

problems. First, the j-th column Q.j serves as an initial configuration of two-class

label propagation problem with respect to sj . We will refer this process as a column-
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Constructed context link  𝑸𝒃𝒖𝒊𝒍𝒅𝒊𝒏𝒈,𝒓𝒐𝒂𝒅 

Top-scored images using global descriptors 

Query image 

a b 

c d 

b 

c 

d 

a 

Figure 3.4: Example of constructed context link Qbuilding,road from the annotated re-

gions of the top-ranked T = 1 retrieved scenes. Since building is appeared but no road

is presented in image a, no context link Qab is built.

wise link propagation. The work of Zhou et al. [60] is employed to solve the label

propagation problem with respect to sj . All columns of Q are handled separately and

the converged configuration F̂c (Step 10) is obtained. In practice, we observed that

the columns of Q.j within a retrieved image are exactly same as shown in Figure 3.4.

Therefore, only T , the number of retrieved images, of column-wise link propagation

is required not N (T � N ).

Next, the i-th row of [F̂c]i. is set as an initial configuration of two-class label

propagation problem with respect to si. This is a row-wise propagation which works

similar to the column-wise propagation. Practically, only what we want to obtain is

the link information within the query image. Hence, row-wise link propagation with

(M < i ≤ N ) is not necessary. After convergence of the row-wise iteration (Step 12),

the strength of (ca, cb)-link between two nodes si and sj within the query image I is

39



Label propagation

Label propagation
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Figure 3.5: The process of two stage context link prediction. Two individual label

propagation approximate link prediction process.

obtained.

Learning is independently performed for each Qab and repeated K2 times. Each

context learning is solved O(kN2) times on the k-nearest neighbor similarity graph

(k � N ) [3]. Therefore, the overall complexity of learning the context scores using

our approach is O(K2N2).

3.4 Inference

To assign labels to a set of regions SU , the learned context scores L(si, ci, sj , cj) are

incorporated to the fully connected MRF model. The fully connected model is proved

to be effective for encoding the object interactions [53, 28, 29]. Similar to that of

[53, 28, 29], we define the energy function of object class labels C = {c1, c2, .., cK}
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Table 3.2: Performance comparison of our algorithm on Jain et al. [1] dataset and

SIFT Flow dataset [2]. Per-pixel rates and average per-class rates in parentheses are

presented.

Jain et al. [1] Dataset SIFT Flow dataset [2]

Jain et al. [1] 59.0 ( - ) [1] -

Chen et al. [65] 75.6 (45) [65] -

Liu et al. [2] - 74.75 ( - ) [2]

Tighe and Lazebnik [4] - 76.82 (29.38) [4]

Baseline classifier 77.62 (49.45) 73.35 (29.04)

Baseline MRF 76.48 (47.13) 74.08 (26.87)

Our (without ψi) 76.35 (45.72) 71.51 (30.84)

Our (with ψi) 80.14 (53.25) 77.14 (32.29)

as:

J (c) =
M∑
i=1

ψi(ci) + λ
M∑
i,j=1

φij(ci, cj), (3.4)

where M is the number of regions in the test image I . The data term ψi(ci) rep-

resents the negative logarithm of the probability of class ci given the region si. To

obtain ψi(ci), we train discriminative classifiers from training dataset using visual fea-

tures [4]. The smoothness term φij(ci, cj) indicates pairwise contextual cost between

the regions learned by our approach. This can be written as

φij(ci, cj) = −log(
1

Z
L(si, ci, sj , cj)), (3.5)

where Z =
∑M

i=1

∑K
ci
L(si, ci, sj , cj) is the normalization constant. Notice that the

energy function is controlled by λ, which is the influence of the learned context scores.
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To minimize the MRF energy function, we applied α-expansion algorithm [66, 67]

using the Quadratic Pseudo-Boolean Optimization (QPBO) algorithm [68, 69] which

is publicly available 1.

3.5 Experiements

In this section, we report experimental results on two challenging datasets: the dataset

of Jain et al. [1] and SIFT Flow dataset [2]. We evaluate the performance of the learned

context scores and compare the accuracy of our approach both to a baseline and to

recent state-of-the-art results. In each experiments, we evaluate four different models: a

baseline classifier without MRF model; a baseline MRF with convential co-occurrence

prior; our approach without unary potential; our approach. Our implementation is in

MATLAB based on the available SuperParsing code 2. We fix the parameters of our

system with T = 16, k = 10, c = 0.9, λ = 1 in all experiments.

Baseline MRF: We evaluate the performance of the proposed approach against a con-

ventional co-occurrence based model for object interaction. Following the most suc-

cessful approaches [29], we incorporate the object class co-occurrence as local inter-

action into the fully connected MRF model. Hence, we design a baseline MRF model

that has different form of the smoothness term to our model as

φij(ci, cj) = −log(
P (ci|cj) + P (cj |ci)

2
)× δ[ci 6= cj ], (3.6)

where P (ci|cj) is the empirical probability of classes ci and cj co-occurring in the

training images.

Jain et al. [1] Dataset: Jain et al. [1] dataset contains total 350 images randomly se-
1http://pub.ist.ac.at/ vnk/software.html
2http://www.cs.unc.edu/ jtighe/Papers/ECCV10/index.html
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(a) Query (b) Ground truth (d) Baseline MRF (e) SuperParsing(c) Baseline classifier (f) Ours
53.9 55.0 86.0 90.7
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Figure 3.6: Representative results from the SIFT Flow dataset. Column (a) shows the

query image to be labeled and Column (b) represents the ground truth of (a). Col-

umn (c), (d), (e), and (f) show the prediction of the baseline classifier, baseline MRF

models, SuperParsing [4], and our approach, respectively. The numbers under each

image indicates pixel-wise accuracy (%) on that image. Crosswalk is appeared in the

first row, building is removed without smoothing in the second row, and sidewalk and

plant are recovered in the last row. Obviously, implausible baseline classifier results

are appropriately corrected based on the learned context scores. These figures are best

viewed in color.

lected from LabelMe [70] dataset with 19 classes (250 training and 100 test images).

We train boosted decision tree classifiers [25] for computing ψi terms. Per-pixel and

per-class rates are presented in Table 3.2. Our system has an overall pixel-wise accu-

racy of 80.14% and a class-wise accuracy of 53.25%. We achieve pixel-wise 5% and

class-wise 8% improvement over state-of-the-art performance [65]. Compared to the
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Figure 3.7: The per-class recognition rate of our system compared with baseline MRF

on (a) SIFT flow dataset and (b) Jain et al. [1] dataset. Note that categories has 0%

accuracy are not shown in (a).

baseline MRF, our approach improves overall per-pixel rates by about 4% and this

result clearly shows the advantage of our approach. More importantly, baseline MRF

drops per-class rates since the conventional context models smooth away smaller ob-

ject classes. On the other hands, our approach does not suffer from such a problem and

even improves per-class rates by 3%.

SIFT Flow dataset: The SIFT Flow dataset provided by Liu et al. [2] consists of 2,688

images of outdoor scenes. The dataset provides ground truth labels hand-annotated by

LabelMe users. Liu et al. [2] split this dataset into 2,488 training images and 200 test

images, and selected top 33 object categories as semantic labels. For comparison, the

same training/test split is used as [2, 4]. To obtain ψi terms, we employ nonparametric
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(a) (b)

Region feature Rate (%)

SIFT 75.27 (28.29)

+ Texture 75.62 (29.28)

+ Location 76.49 (30.65)

+ Shape 76.82 (30.68)

+ Appearance 76.80 (30.97)

+ Color 77.14 (32.29)

(c)

Figure 3.8: (a): Recognition rate as a function of the number of the retrieved images T

and the influence of our model λ. (b): Recognition rate as a function of the number of

the retrieved images T and the k of the visual similarity graph. (c): Feature evaluation

on the SIFT Flow dataset.

nearest-neighbor classifiers [4, 57]. As shown in Table 3.2, our system achieves an

overall pixel-level accuracy of 77.14% and a per-class accuracy of 32.29%. Figure 3.7

(a) shows that our per-class rate on the SIFT Flow dataset is significantly better than

that of the baseline MRF.

Next, we validate our system by varying the parameters including the number of

retrieved images T , the feature combination, k of k-nearest neighbor, and the influence
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Table 3.3: Average computation time in second.

Jain et al. Dataset SIFT Flow Dataset

Image size 640× 480 (few exception) 256× 256

Average N (# of regions) 4243 1005

Average K (# of object class) 15 11

Time (second)

Graph Construction 23.92 4.22

Context Link Prediction 155.51 18.09

Inference 8.83 0.79

of context scores λ. First, we fix k = 10, use all features, and plot the recognition rate

as a function of T in Figure 3.8 (a) with different λ. The recognition rate increases as

more retrieved images are used. However, the recognition rate slightly drops continue

to add retrieved images. Additionally, it is observed that strongly enforcing contex-

tual consistency increases ambiguities and degenerates the performance. The maximal

performance is achieved when T = 16 and λ = 1. Second, we fix λ = 1, use all fea-

tures, and plot the recognition rate as a function of T in Figure 3.8 (b) with different k.

Clearly, appropriate number of retrieved images is needed to achieve accurate context

consistency. The maximal performance is achieved when T = 16 and k = 10. Finally,

Figure 3.8 (c) shows recognition rates with region features added consecutively. No-

tice that it is arranged in order of increasing per-class rate and the SIFT histogram is

the strongest feature in our system similar to the result of [4].

The computation time of our algorithm is shown in Table 3.3. All experiments

were run on a standard PC with 3.0 GHz Intel quadcore CPU and 8 GB RAM. The
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Figure 3.9: Example results from Jain et al. dataset. Column (a) shows the query image

to be labeled and Column (b) represents the ground truth of (a). Column (c), (d), (e)

shows the prediction of the baseline classifier, SuperParsing [4], and our approach

with unary potential, respectively. The numbers under each image indicates pixel-wise

accuracy on that image.

proposed method was implemented as a MATLAB code without any parallelization

efforts. For both datasets, we fixed our parameters to T = 16, k = 10, λ = 1. It

means that total T + 1 = 17 images are used to construct a similarity graph. Since

our algorithm requires O(K2N2) times, increasing K and N makes our algorithm

significantly slow.
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Original image Groundtruth Baseline (ψi only) SuperParsing Our approach

Figure 3.10: Scene labeling results on Jain et al. Dataset against SuperParsing and our

approach.
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Figure 3.11: Scene labeling results on Jain et al. Dataset against SuperParsing and our

approach.
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Figure 3.12: Scene labeling results on SIFT Flow Dataset against SuperParsing and

our approach.
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Figure 3.13: Scene labeling results on SIFT Flow Dataset against SuperParsing and

our approach.
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3.6 Summary

We have presented a nonparametric exemplar-based context model in which object re-

lationships are explicitly captured. A graph-based context representation is proposed

to efficiently transfer contextual relationships from training images to a query im-

age. This allows jointly modeling visual appearance and context. Our novel approach

helps to overcome the limitation of conventional context models relying on object la-

bel agreement and gives richer appearance-based context information. Moreover, the

learned object relationships can be incorporated into any region-based scene labeling

approaches as an additional cue. One of the main limitations of our model is that it

considers all relations between regions as equally important. Clearly, there might be

implausible or unimportant context exemplars, but our model cannot eliminate them.

Our future work is to overcome this problem and extend our system to the multiple

segmentation framework.
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Chapter 4

High-order Semantic Relationships

4.1 Introduction

Recently, with the increasing availability of large image collections of hand-labeled

images, nonparametric label transfer approaches for this problem have attracted many

computer vision researchers and shows very good performance [65, 71, 2, 4, 57, 72,

73]. Compared to conventional parametric semantic segmentation methods [74, 23,

55, 75], these approaches do not need training model parameters, hence, they can be

scalable to large datasets with an unknown number of object categories. Typical label

transfer approaches start by retrieving similar images for a given test image. After

that, they establish dense correspondence between two images and then warp labels

from the matched annotated images to the test image. In spite of good performances,

these approaches sometimes produce unsatisfactory results because they do not explore

high-level contextual knowledge within the annotated images. Obviously, high-level

semantic relationships between objects within the annotated image are very important

cues to successful semantic segmentation.

To this end, recent approaches have advocated the use of nonparametric context
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Figure 4.1: For a query image (a), our system finds the matched similar images (b) from

a large dataset using global scene descriptors. The high-order semantic relations are

transferred from the annotated images (b) to the query image (a). (We densely estimate

high-order semantic relation across the image, but this figure displays only a few top

scored relations for visualization purposes.) We then infer semantic segmentation (d)

using estimated semantic relation (c).

models [1, 27]. These learn pairwise relationships between objects using global scene

features and local features. However, these methods use only pairwise relationships to

model high-level semantic relationships. Since natural images typically contain more

than three object categories, pairwise relations are not enough to represents high-level

information within images.

In this chapter, we develop a novel nonparametric approach for semantic segmen-

tation by incorporating high-order semantic relations. Specifically, similar to several
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label transfer methods [71, 2, 4, 72], we first find a set of small retrieved images from

training images. Our goal is to transfer high-order semantic relations of annotated ob-

jects from each matched image to the query image. Since it is not feasible to obtain

dense pixel-wise high-order semantic relations, we utilize “superpixel” regions ob-

tained by oversegmentation of the query image. We define semantic tensors to repre-

sent the higher-order semantic relations of regions. We approach the problem of trans-

ferring the high-order semantic relations by defining a quadratic objective function

of the semantic tensors. To optimize our objective function, we develop an efficient

approximate algorithm based on Kronecker sum similarity and low-rank property of

semantic tensors. To integrate our predicted semantic tensor into a semantic segmen-

tation system, a fully connected Markov random field optimization is employed.

The key contributions of this chapter include: (1) The use of high-order seman-

tic relations for semantic segmentation; (2) A novel tensor-based representation of

high-order semantic relations; and (3) A quadratic objective function for learning the

semantic tensor and an efficient approximate algorithm.

The chapter is organized as follows. We review some relevant works in Section 4.2.

In Section 4.3, we introduce high-order semantic relation transfer algorithm and ex-

plain in detail. Section 4.3.3 presents a semantic segmentation method through se-

mantic relation transfer. The experimental results are given in Section 4.5. Finally, in

Section 4.6, we discuss our approach.

4.2 Related work

We now review related works on label transfer approaches and nonparametric context

models. The problem of label transfer was first addressed recently by Liu et al. [2].
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They first retrieved similar images using GIST matching [62] and constructed pixel-

wise dense correspondence between each retrieved image and test image using SIFT

flow [76]. They then transferred the annotations based on dense correspondence and

reasoned semantic segmentation. Following the idea of label transfer [2], Zhang et

al. [72] employed partial matching between the test image and the retrieved images

to use partial similarity between images. Gould and Zhang [77] constructed Patch-

MatchGraph to reduce complexity of retrieval step. Chen et al. [71] proposed super-

vised geodesic propagation to guide label transfer. Tighe and Lazebnik [4, 57] con-

sidered superpixel-level matching to transfer label information. However, all of these

approaches are restricted to transferring label information from matched images. Al-

though Liu et al. [2] claimed that the label transfer approach naturally embeds con-

textual information in the retrieval/alignment procedure, it is hard to tell how much

contextual knowledge will help or what the effects will be.

On the other hand, recent nonparametric context models [1, 27] for semantic seg-

mentation employed contextual relationships between objects to achieve more accu-

rate results. Jain et al. [1] learned which contextual relationships should be considered

and predicted features weight for each relation in a nonparametric manner. Myeong et

al. [27] formulated a data-driven context learning problem as a graph-based context

link prediction problem. Since our semantic tensor can be viewed as a generalization of

the context link [27], their work is most similar to our own. However, there are several

important differences with respect to our work. First, they only considered pairwise

object relationships. On the contrary, our method focuses on high-order (mostly third-

order) semantic relations, allowing us to model complex contextual relationships. For

example, triplet-wise semantic relations can be found such as (sky,car,road) by our

method as illustrated in Figure 4.2. These relations become important when consid-
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(a) Pairwise semantic relation (b) Third-order semantic relations

Figure 4.2: An example of pairwise and high-order semantic relations. The third-order

semantic relations (b) can model complicated high-level semantic knowledges within

an image compared with the pairwise semantic relation (a).

ering complicated scenes with many object classes. Second, we develop a quadratic

objective function for the high-order semantic relation transfer problem. However,

Myeong et al. [27] did not show how their context link prediction works mathemati-

cally.

High-order models are not well studied in the context of semantic segmentation.

Kohli et al. [78] introduced high-order model to enforce label consistency among re-

gions. However, their high-order model is not related to high-level semantic knowl-

edge. To our knowledge, there are no prior works explicitly considering high-order

contextual relationships between objects in the literature on semantic segmentation.
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4.3 The high-order semantic relation transfer algorithm

4.3.1 Problem statement

We consider two images I1 and I2; the first one is not annotated whereas the sec-

ond one is densely labeled with the corresponding object class. We assume that two

images are closely-related in which the similar objects are present and that objects

roughly maintain their high-order relation. We define high-order semantic relation

transfer problem as a task to predict high-order relation between unlabeled regions

in I1 based on annotated regions in I2. For simplicity, we will focus on third-order

relations from now.

Let S = {S1, S2} be a set of superpixels generated by segmenting the respective

images. n1 and n2 is the number of segments in S1 and S2, respectively, andN = n1+

n2 is the total number of segments. C = {c1, c2, ..., cK} is a given set of object classes.

Third-order semantic relations among region triplets (si, sj , sk) ∈ S×S×S is defined

as a set of N ×N ×N third-order tensors X = {X 111,X 112,X 113, ...,XKKK}. We

refer to each tensor Xαβγ ∈ X as a semantic tensor. A semantic tensor Xαβγ denotes

third-order semantic relations among region triplets on object class triplet (cα, cβ, cγ).

Each element of Xαβγ is defined as

[Xαβγ ]ijk = xαβγijk . (4.1)

The variable xαβγijk indicates confidence score of how likely the region triplet (si, sj , sk)

would be labeled as (cα, cβ, cγ), respectively. xαβγijk is close to 1 if the assigned object

class triplet (cα, cβ, cγ) is reliable. On the other hand, xαβγijk is close to 0 if the assigned

object class triplet (cα, cβ, cγ) is unreliable.

Next, we define another set of N × N × N tensor representing the observed

third-order semantic relations within the image I2. Similar to X, we define Y =
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{Y111,Y112,Y113, ...,YKKK}, and represent each element of Yαβγ as

yαβγijk =


1 if G(si) = cα, G(sj) = cβ, G(sk) = cγ ,

(si, sj , sk) ∈ S2

0 otherwise

, (4.2)

where G(si) denotes the ground truth class of region si and (si, sj , sk) ∈ S2 indicates

that three regions si, sj , and sk are from the same image I2. Since there are no semantic

relations within S1 and across images, all yαβγijk is 0 for (si, sj , sk) /∈ S2. In practice,

each Yαβγ can be compactly generated from label vectors. Let yα be a column vector

of length N , where [yα]i = yαi is 1 if region si belongs to object class cα; and 0

otherwise. Then each element of Yαβγ can be generated by

yαβγijk = yαi y
β
j y

γ
k . (4.3)

Eq. (4.3) can be rewritten as

Yαβγ = yα ◦ yβ ◦ yγ . (4.4)

The symbol “◦” denotes the vector outer product. Since Yαβγ can be represented as the

outer product of three vectors, Yαβγ is a rank-one tensor [79]. This rank-one property

of Y is one of key aspects to approximate the following objective function.

4.3.2 Objective function

Now, the third-order semantic relation transfer problem can be regarded as the prob-

lem of estimating the magnitude of confidence scores xαβγijk for all superpixel triplets

(si, sj , sk) and for all object class triplets (cα, cβ, cγ) based on Y. We assume that

there is no interaction between the semantic tensors. Hence, we separately deal with

the third-order semantic relations transfer problem with respect to Yαβγ . For simplic-

ity, we drop the αβγ suffix from now.
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Following the idea of link propagation [56], we want to enforce that two simi-

lar region triplets are likely to have the same confidence score. Thus, we design the

quadratic objective function with respect to Y as

F (X ) =1

2

N∑
i,j,k,l,m,n

wijk,lmn(xijk − xlmn)2 + λ

N∑
i,j,k

(xijk − yijk)2, (4.5)

wherewijk,lmn is the triplet-wise similarity between two region triplets (si, sj , sk) and

(sl, sm, sn) and λ > 0 is the regularization parameter. The first term of Eq. (4.5) is

the continuity constraint that two triplets should have the same confidence score if two

triplets are similar. The second term is the unary constraint that each region triplet xijk

tends to have their target values yijk. The cost function defined as pairwise and unary

terms is a generalization of the cost function for label propagation [60].

Now, we rewrite Eq. (4.5) using tensors. For that, let L be an N3 × N3 matrix

called a Laplacian matrix defined as

L = D−W, (4.6)

wherewijk,lmn is rewritten as similarity matrix W of sizeN3×N3 and D is a diagonal

matrix whose diagonal elements are [D]i =
∑N3

j [W]ij . Using L, Eq. (4.5) can be

reformulated as

F (X ) = 1

2
vec(X )T L vec(X ) + λ(vec(X )− vec(Y))2, (4.7)

where vec(X ) is the vector constructed by concatenating the mode-1 fibers of the

tensor X [79].

Differentiating Eq. (4.7) with respect to vec(X ), and set to 0, we can get X that

minimizes Eq. (4.7),

∂F (X )
∂vec(X )

= L vec(X ) + λvec(X )− λvec(Y) = 0 (4.8)
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It can be transformed into

(L+ λI)vec(X ) = λvec(Y), (4.9)

where I indicates identity matrix of sizeN3×N3. Since L+λI is positive definite, the

linear equation (4.9) can be solved by matrix inversion. However, computing inverse

matrix of size N3 ×N3 is not realistic in practice.

4.3.3 Approximate algorithm

In this section, we present an efficient optimization scheme for the proposed objective

function. Since providing all of the N6 elements of the triplet-wise similarity matrix

W is intractable, we consider constructing W using the segments-wise similarity ma-

trix WS the same as [56]. As described in Section 4.5, WS is defined as similarity

between two superpixels. Recommended by [56], we define W based on Kronecker

sum similarity. Hence, L can be re-represented as

L = LS ⊕ LS ⊕ LS , (4.10)

where ⊕ indicates the Kronecker sum and LS is defined as LS = DS −WS and

DS is a diagonal matrix whose diagonal elements are [DS ]i =
∑N

j [WS ]ij . Using

Eq. (4.10), the objective function (4.5) can be expressed as

F (X ) = 1

2
vec(X )T vec(X ×1 LS + X ×2 LS + X ×3 LS) + λ(vec(X )− vec(Y))2,

(4.11)
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where ×n represents n-mode product of tensor [79]. Inspired by [80, 3], we approxi-

mate the objective function in three optimization steps:

Ẋ = argmin
X

1

2
vec(X )T vec(X ×1 LS) + λ(vec(X )− vec(Y))2 (4.12)

Ẍ = argmin
X

1

2
vec(X )T vec(X ×2 LS) + λ(vec(X )− vec(Ẋ ))2 (4.13)

X̂ = argmin
X

1

2
vec(X )T vec(X ×3 LS) + λ(vec(X )− vec(Ẍ ))2. (4.14)

That is, we sequentially estimate the semantic tensor for each mode product term. In

a similar way to Eq. (4.9), we can obtain linear system equation for each optimization

step.

X ×1 (LS + λIS) = λY (4.15)

X ×2 (LS + λIS) = λẊ (4.16)

X ×3 (LS + λIS) = λẌ , (4.17)

where IS indicates identity matrix of sizeN×N . For solving each linear equation, let

us consider Eq. (4.15), 1-mode tensor product of Eq. (4.15) can be expressed in terms

of unfolded tensors.

(LS + λIS)X(1) = λY(1), (4.18)

where X(1) denotes the mode 1 matricization of a tensor X (see [79] for more details).

Remind that Y is rank-one, Y can be written as in matricized form [79],

Y(1) = yα(yγ ◦ yβ)T . (4.19)

Hence, Ẋ can be efficiently computed by

Ẋ(1) = (LS + λIS)
−1λyα(yγ ◦ yβ)T . (4.20)
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Figure 4.3: Illustration of the proposed approximate algorithm. The algorithm (b) first

find similar region sl with respect to si while fixing sj and sk, (c) then find similar

region sm with respect to sj while fixing sl and sk, (d) and finally find similar region

sn with respect to sk while fixing sl and sm.

We continue to solve for Ẍ and X̂ similarly. Then we can obtain the approximate

solution of the objective function (4.5) as follows.

X̂ = [(LS + λIS)
−1λyα] ◦ [(LS + λIS)

−1λyβ] ◦ [(LS + λIS)
−1λyγ ]. (4.21)

Note that X̂ also can be represented as the outer product of three vectors, X̂ is a rank-

one tensor. In Figure 4.3, this procedure summarizes schematically. We independently
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Figure 4.4: System overview. For a query image (a), we first retrieve the matched

similar scenes (b). We predict the third-order semantic relations (d) by transferring

semantic relations from each annotated image (c) to the query image (a). We aggre-

gate semantic relations (e) from multiple semantic relation candidates (d) and generate

semantic segmentation (f). (g) is the ground-truth annotation of (a).
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transfer each Yαβγ , hence, this procedure repeats K3 times. Finally, we can get the set

of the predicted semantic tensors X̂ = {X̂ 111, X̂ 112, X̂ 113, ..., X̂KKK}.

4.4 Semantic segmentation through semantic relation trans-

fer

Now that we have the semantic relation transfer algorithm from annotated images to

unlabeled images, we can infer semantic segmentation using estimated semantic ten-

sors.

4.4.1 Scene retrieval

Recall that we assume that each pair of images I1 and I2 roughly agree on the spa-

tial layout of objects. Hence, it is essential to to extract closely-related images from

large dataset with respect to a query image for successful semantic relation transfer.

Unreliable semantic tensors can be predicted between two unrelated images. To find

similar images, we first retrieveM candidate images by color histogram, GIST match-

ing [62], and spatial pyramid [61] from the training dataset. This candidate image set

will be used to transfer its high-order semantic relations into the query image.

4.4.2 Inference

After performing the scene retrieval in section 4.4.1, we transfer high-order semantic

relations from each candidate image to the query image and obtain multiple sets of pre-

dicted semantic tensors {X}u=1:M . Our goal is to assign object class for each region

in the query image. To integrate the sets of predicted semantic tensors with a con-

ventional unary and pairwise potential, we build high-order fully connected Markov
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random field model. The energy function is defined as

E({li}) =
n1∑
i

ED(li) +
∑

(i,j)∈E

EP (li, lj) +

n1∑
i,j,k

EH(li, lj , lk), (4.22)

where li ∈ {1, ...,K} is the index of object class for region si. Since we want to

label the regions in the query image, the energy function is only defined on the regions

of image I1. The first term is data term which represents the negative logarithm of

the probability of class li given the region si. The second term is smoothness term

which encourage two neighboring regions to have the same label. These two terms are

typically used to conventional nonparametric scene parsing approaches [2, 4, 57].

Table 4.1: Performance comparison of our algorithm on the three challenging datasets.

Per-pixel recognition rates and average per-class recognition rates in parentheses are

presented.

Jain et al. [1] LMO [2] Polo [72]

Jain et al. [1] 59.0 ( - ) - -

Liu et al. [2] - 74.8 ( - ) -

Tighe and Lazebnik [4] - 76.8 (29.4) 87.9 (76.1) [72]

Zhang and Quan [72] - - 89.8 (82.5)

Chen et al. [65] 75.6 (45) - -

Myeong et al. [27] 80.1 (53.3) 77.1 (32.3) -

Gould and Zhang [77] - - 94.2 (91.7)

Proposed (max) 81.5 (51.2) 76.1 (28.9) 89.1 (80.6)

Proposed (sum) 81.8 (54.4) 76.2 (29.6) 88.3 (79.3)

However, it is nontrivial how to integrate the sets of predicted semantic tensors to

66



semantic segmentation framework. Hence we develop two third-order clique potential

EHmax and EHsum. The first high-order potential EHmax take the form

EHmax(li = cα, lj = cβ, lk = cγ) = − log(max
u
{x̂αβγijk }u). (4.23)

The first clique potential EHmax take maximum confidence score among M number of

candidate scores for region triplet (si, sj , sk) and for object triplet (cα, cβ, cγ). This

means that we only consider the strongest one from the set of relation candidates. The

second high-order potential EHsum have the form

EHsum(li = cα, lj = cβ, lk = cγ) = − log(
M∑
u

{x̂αβγijk }u). (4.24)

Meanwhile, the second clique potential EHmax takes summation of M number of con-

fidence scores. This potential picks average scores from the set of relation candidates.

These two potential will be examined in the experimental section.

It is very important to effectively minimize the energy function (4.22), but effi-

cient order reduction techniques such as [81] cannot be used due to space and time

complexity. Hence, we apply multistart simulated annealing algorithm.

4.5 Experiements

In this section, we (1) evaluate our method’s semantic segmentation performance and

compare against pairwise semantic segmentation [27] and (2) analyze integration of

our predicted semantic tensors. Now, we validate our approach with three challeng-

ing datasets: the dataset of Jain et al. [1], LabelMe Outdoor (LMO) dataset [2], and

Polo dataset [72]. We evaluate on all sets, but focus additional analysis on the LMO

dataset since it has the largest number of categories. Table 4.1 summarizes our se-

mantic segmentation accuracy compared with the state-of-the-art methods. Proposed
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(max) indicates the accuracy of the semantic segmentation with the max high-order

term Eq. (4.23). Proposed (sum) represents performance with the sum high-order term

Eq. (4.24).

Implementation details. Our implementation is based on the framework of Tighe and

Lazebnik [4, 57]. We use the algorithm of Felzenszwalb and Huttenlocher [64] for seg-

mentation, and fix the parameters σ = 0.8,K = 200,min = 100 on all sets. To form

superpixel-wise weight WS , we use several types of descriptors ak(si) for regions si:

shape, texture, color, and appearance from [4]. Along with appearance features, we

integrate geometric position g(si) (row+column) of the center of the region si. Hence,

each elements of WS are computed as

[WS ]ij = e
−

∑
k

‖ak(si)−ak(sj)‖
σak

−
‖g(si)−g(sj)‖

σg (4.25)

where ak(si) is the feature vector of the k-th type for si and σak denotes the standard

deviation of ak. Note that we densely obtain the weight between regions, it means

that a region is connected to all the other regions with the corresponding weights. We

fix the parameter of the objective function λ = 10. To compute ED, we employ the

nonparametric superpixel parsing [4] for the LMO dataset and the boosted decision

tree classifier [25] for the other datasets. As a pairwise term EP , we adopt simple

Potts model.

Evaluation metric. We use both pixel-wise measure and class-wise measure to quan-

tify the accuracy. The former rates total proportion of correctly labeled pixels, while

the latter indicates the average proportion of correctly labeled pixels in each object

class.

19-Class Jain et al. [1] dataset. Jain et al. [1] randomly collects 350 images of size

640×480 from LabelMe [70] with 19 classes. This dataset is splitted into 250 training
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Figure 4.5: Recognition rate of two different high-order potential as a function of the

number of the retrieved images M on the LMO dataset.

images and 100 test images. The number of similar images M is set to be 16. The

semantic segmentation accuracy on this dataset is 81.8%.

This is relatively good dataset to evaluate high-order semantic relations. The size

of the images is large enough and there are a lot of objects within an image. We achieve

the state-of-the-art performance on this dataset and obtain promising results.

33-Class LabelMe Outdoor (LMO) dataset. This dataset provided by Liu et al. [2]

contains total 2,688 images of size 256× 256 from LabelME [70] with 33 object cate-

gories. Liu et al. [2] randomly split this dataset into 2,488 training images and 200 test
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images. For qualitative comparison with [2, 27, 4], we use the same training/test split.

We set the number of similar images M to 16. The semantic segmentation accuracy of

the proposed method on this dataset is 76.2%.

Our results are below the state-of-the-art methods. We think that this is due to

many images from this dataset with one or two object classes. The number of test

images containing less than two object classes is 43 out of 200. It seems that complex

contextual models such as the proposed method are not crucial to improve performance

on this dataset.

6-Class Polo dataset. The polo dataset consists of 320 images from the web with

keyword polo. Zhang et al. [72] annotated each image into six categories:sky, horse,

person, ground, tree, grass. We set the number of similar images M to 20.

Our results are under the state-of-the-art methods. One reason is that context is

not much important since all images have almost the same object classes. The other

reason is the state-of-the-art method use complex pixel-wise model, on the other hand,

we works on relatively simple region level.

Max vs. Sum. We design two different high-order potential for incorporating the set of

the predicted semantic tensors. As shown in Figure 4.5, sum potential, taking summa-

rization of candidates confidence scores, provides more better semantic segmentation

results at some point. On the other hand, max potential, taking maximum of candidates

confidence scores, is more robust to the number of retrieved images M . As gradually

adding retrieved images, wrong matched images become larger and the performance

of sum potential decreases faster.
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4.6 Summary

We have presented a novel approach to learn high-order semantic relations of regions

in a nonparametric manner. We cast the high-order semantic relation transfer problem

as a quadratic objective function of semantic tensors and propose an efficient approx-

imate algorithm. We develop a novel semantic tensor representation of the high-order

semantic relations. While we have presented this representation in the context of se-

mantic segmentation, it can be applicable to various computer vision problem includ-

ing object detection, scene classification, and total scene understanding.
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Chapter 5

Multiscale CRF formulation

5.1 Introduction

Our final goal of this chapter is combining the context-aware appearance and appearance-

aware context. In Chapter 2, we obtained the object class score map of each pixel with

appearance model enhanced by semantic context. Meanwhile, we extracted the contex-

tual relationships between two regions by utilizing the visual appearances in Chapter

3. Furthermore, we obtained the high-order contextual relationships between three re-

gions similarly in Chapter 4. In each chapter, we generate the semantic segmentation

results and compare them with the state-of-the-art methods. At first glance, each model

seems to work independently. However, the result of the appearance model reinforced

by the semantic context is represented by the probability of the pixels, and the se-

mantic context information enhanced by the visual appearances is represented by the

high-order potentials between the regions. In this chapter, we unify the two represen-

tations in a single optimization framework.

However, the challenge for this task is that the likelihood functions from adaptive

context aggregation networks are pixel-wise, on the other hands, the prior probability
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obtained from graph-based context model is region-wise. To address this problem, we

propose the use of Multiscale Conditional Random Field (mCRF) to infer with cliques

potential over regions and pixels.

5.2 Proposed Method

In this section, the proposed model for integrating the learned appearance in Chap-

ter 2 and the learned context in Chapter 3, 4 will be discussed. Our goal is to si-

multaneously produce plausible multi-class labeling results Lp = {lpn }n=1,...,N and

Ls = {l sm}m=1,...,M with the given a test image I with N pixels Xp = {xpn}n=1,...,N

and M over-segmented regions Xs = {xsm}m=1,...,M at spatial scale s. The over-

segmentation region Xs is generated by the graph-based segmentation algorithm [64].

In our Multiscale Conditional Random Field (mCRF), the conditional probability

of the label field Lp, Ls given the observation Xp, Xs by combining conditional dis-

tributions that capture different statistical structure at pixels and regions is defined as

follows, similar to [82, 83]:

P (Lp, Ls|Xp, Xs) ∝ P (Lp|Xp)P (Ls|Xs), (5.1)

where P (L|X) is the posterior distributions of L over X . Estimating maximum a pos-

terior (MAP) soltion is formulated as finding Lp∗, Ls∗ that maximizes the following:

Lp∗, Ls∗ = argmaxLp,LsP (L
p, Ls|Xp, Xs). (5.2)

The posterior distribution P (Lp, Ls|Xp, Xs) is a Gibbs distribution from the Hamer-

sley Clifford thereom and can be rewritten as:

P (Lp, Ls|Xp, Xs) ∝ exp(−
∑
c∈C

φc(X
p, Xs)), (5.3)
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where C represents all cliques and φc are the potential functions over the random

variables {Xp, Xs}. We takes the negative logarithms to the probability function and

the Gibbs energy can be written as:

E(Lp, Ls) ∝
∑
c∈C

φc(X
p, Xs). (5.4)

The energy term associates low energy to the right values and high energy to the wrong

values.

5.2.1 Multiscale Potentials

Our Multiscale Conditional Random Field (mCRF) are characterized by the following

energy functions defined on the pixels and the regions.

A. For the pixel layer potentials,

Ep(Xp) =
∑
n

Epunary(x
p
n) +

∑
n

Eppairwise(x
p
n, x

p
n′) (5.5)

+ λ
∑
n

Epregion(x
p
n, X

s) (5.6)

where the clique potentials Eppairwise(x
p
n, x

p
n′) between two pixels xn and xn′ is de-

fined based on the color difference as follows:

Eppairwise(x
p
n, x

p
n′) =


exp

(
−‖gn−gn′‖σg

)
n′ ∈ Nn

0 otherwise ,

(5.7)

where gn indicates the color value at pixel xpn in Lab color space and σg is a constant

that controls the strength of the weight. It provides us with a numerical measure for the

label similarity between two neighboring pixels. The set Nn is the neighboring pixels

at pixel xn, usually 4 neighborhoods. The unary potential Epunary(x
p
n) is defined by

the negative log likelihoods using deep context aggregation networks.
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The term Epregion(x
p
n, Xs) in Equation 5.6 for only pixel labels is the higher-order

region consistency by which a pixel labels should be similar to its corresponding re-

gion labels. Since the regions quite often contain pixels belonging to multiple labels,

it partly enforces the label consistency of regions with a weight λ. In contrast to other

segmentation algorithms which use the hard label consistency in regions on the as-

sumption that all pixels constituting a particular region belong to the same label, our

work uses this soft label consistency constraint by nonparametric learning from the

test image.

B. For the region layer potentials,

Es(Xs) =
∑
n

Esunary(x
s
n) +

∑
n

Espixels(x
s
n, X

p) (5.8)

+
∑
n

Espairwise(x
s
n, x

s
n′) +

∑
n

Esthird(x
s
n, x

s
n′ , x

s
n′′) (5.9)

where the weight Espairwise(x
s
n, x

s
n′) between two regions xsn and xsn′ is defined based

on the learned context scores in Chapter 3 and Esthird(x
s
n, x

s
n′ , x

s
n′′) is obtained from

the learned third-order context scores in Chapter 4.

Pairwise Terms:

The terms Eppairwise(x
p
n, x

p
n′) in (5.6) is the label-continuity pairwise constraints that

two neighboring elements (pixels or regions) in the neighborhood system should have

the same label if their colors are similar. On the other hand, the termEspairwise(x
s
n, x

s
n′)

in (5.9) is the high-order semantic context information extracted in Chapter 3.

Unary Terms:

The terms Epunary(x
p
n) in (5.6) and Esunary(x

s
n) in (5.9) are the unary potentials. For

the initial pixel likelihoods, deep context memory networks in Chapter 2 is used. For
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the initial region likelihoods, region-classifiers is used in Chapter 3 and 4.

The term Espixels(x
s
n, X

p) in (5.9) for only region likelihoods is another refined

unary constraint whereby a region labels should be similar to the weighted average

of inner pixel labels. It gives the effect of refining the region likelihoods from more

informative pixel likelihoods, since it can not guarantee that the reliable regions are

always extracted under complex region boundaries.

5.2.2 Non Convex Optimization

It is very important to effectively minimize the energy function in Equation (5.6)

and (5.9), but efficient order reduction techniques such as [81] cannot be used due

to space and time complexity. Hence, we apply multi-start simulated annealing algo-

rithm for the-order relationships. Without the third-order term the inference can be

achieved by the Quadratic Pseudo-Boolean Optimization (QPBO) algorithm [68, 69].

5.3 Experiments

5.3.1 SiftFlow dataset

The SIFT Flow dataset provided by Liu et al. [2] consists of 2,688 images of outdoor

scenes. The dataset provides ground truth labels hand-annotated by LabelMe users.

Liu et al. [2] split this dataset into 2,488 training images and 200 test images, and

selected top 33 object categories as semantic labels. For comparison, the same train-

ing/test split is used as [2, 4]. As shown in Table 5.1, our system achieves an overall

pixel-level accuracy of 86.4% and a per-class accuracy of 56.4%. However, third-order

information does not show the best performance due to the limited inference tools. For

the second-order case, we use the QPBO optimization instead MCMC inference for
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Table 5.1: Performance comparison of our algorithm on Sift Flow dataset.

Pixel accuracy Mean class accuracy

Adaptive context agg. 85.8 56.0

Adaptive context agg. + second-order 86.4 56.4

Adaptive context agg. + high-order 86.1 56.2

third-order term.
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Figure 5.1: Representative results from the SIFT Flow dataset 1. (a) Input images.

(b) The output of adaptive context aggreagation networks. (c) The output of adaptive

context agregation networks with second-order context. (d) Ground truth. The number

below the image shows pixelwise accuracy.
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Figure 5.2: Representative results from the SIFT Flow dataset 2. (a) Input images.

(b) The output of adaptive context aggreagation networks. (c) The output of adaptive

context agregation networks with second-order context. (d) Ground truth. The number

below the image shows pixelwise accuracy.
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Chapter 6

Conclusion

6.1 Summary of the dissertation

In this dissertation, the semantic segmentation framework with jointly modeling visual

appearance and semantic context have been presented. In particular, the problem of

handling visual ambiguity in appearance modeling and enriching semantic context in

context modeling is addressed. It is apparent that simultaneously learning appearance

and semantic context plays an important role for accurate scene understanding, but the

conventional approaches have rarely been applied to semantic segmentation frame-

works due to the absence of the suitable representation model. The proposed methods

in this dissertation make appropriately representations model in which appearance can

be enhanced and enriched by context, and vice versa. To make an accurate final se-

mantic segmentation result, context-aware appearance model and adaptive semantic

context model are integrated into a Multiscale Conditional Random Fields framework.

Semantic segmentation system with adaptive context aggregation networks is pre-

sented in Chapter 2. Specifically, the use of external adaptive context aggregation have

proposed and recursively refine the segmentation result. Considering that many com-

83



puter vision tasks can be interpreted as dense prediction tasks similar to semantic seg-

mentation, the adaptive context aggregation networks is a general framework for many

computer vision tasks. As recursive understanding of scene progress, we can observe

that the how context helps the understanding of a scene. In Chapter 3 and 4, semantic

context learning with appearance information have presented. Image-dependent se-

mantic context is not easy to learn in the conventional frameworks, but we present

an efficient and effective framework with exemplar-based and graph-based context

model. The second-order relationships play a crucial role in accurately estimating the

semantic segmentation. Furthermore, these high-order relationships have the rich con-

textual knowledge of each image which cannot be learned by conventional classifiers.

In Chapter 5, we consider the combined optimization framework for accurate semantic

segmentation.

6.2 Future Works

The presented adaptive context aggregation networks can be generalized to not only to

classification problems but also regression problem. Low-level image regression prob-

lem such as image super-resolution, deblurring, and optical flow problem can benefit

from the proposed network model. The major difference of image regression problem

is that the loss function for this problem is L2 loss function which is different from the

usual classification loss such as hinge and softmax loss function. Furthermore, more

general context aggregation model for semantic segmentation that can be applied to

any types of visual recognition need to be investigated.

In the current study, a semantic context model which relies on graph and exemplar.

However, due to the limitations of the computing resource, such association-based ap-
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proach needs to be boosted for general applicability. Reducing complexity in semantic

context modeling can have many potential applications in object recognition literature.
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초록

본논문에서는임의의영상내에존재하는물체들을정확히분할하고인식하는

의미론적 영상 분할 기법에 대해 다룬다. 기존의 일반적인 의미론적 영상 분할 기

법은두가지주요요소,시각적인특징과의미론적맥락정보에기반을두고있다.

색,에지,모양등과같은시각적인특징정보는장면으로부터객체를추론하기위한

주요한정보이다.하지만실제장면에서나타나는객체의형상은조명,질감,가리워

짐및시점과같은영상획득조건의영향을받기때문에이미지데이터로는객체의

다양성을완전히포착할수없는경우가많다.따라서,영상내의다른물체의존재

나위치정보로대표되는의미론적맥락정보가의미론적영상분할작업에서시각

정보의 모호성을 해결하는데 매우 중요하다. 의미론적 맥락을 활용한 최신의 의미

론적영상분할기법들은객체들사이의상호작용의모델링을통해잘못인식된영

역들을 수정한다. 그러나 기존의 표현 학습 방법으로는 시각적인 형상과 의미론적

맥락을동시에학습할수없어각각을독립적으로학습하는데그치고있다.따라서

본논문에서는시각적특징을의미론적맥락과함께학습할수있는맥락인식기반

표현방법을제안하였다.

본논문의첫부분에서는맥락기반형상표현방법에대하여다룬다.제안하는

적응형 맥락 집합 네트워크 (Adaptive context aggregation network) 는 여러 단계의

추론과정안에서적절하게의미론적맥락정보를추출할수있도록설계되어있다.
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둘째,시각적형상특징을활용하여의미론적맥락정보를강화하는방안을고안하

였다. 그래프 및 예시 기반의 맥락 모델은 객체의 시각적 특징에 적합하게 객체의

상호작용을학습한다.마지막으로,맥락기반형상표현모델과형상기반맥락모

델을 통합하여 정확한 영상 분할 결과를 얻기 위한 다시점 마르코프 랜덤 필드를

제안하였다.실험을통해제안하는기법이높은정확도로의미론적영상분할을수

행함을보였다.

주요어:컴퓨터비젼,물체인식,의미론적영상분할,맥락인식

학번: 2009-20799
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