

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Pruning Deep Convolutional Neural
Networks for Fast Inference

빠른추론을위한깊은길쌈형인공신경망의솎아내기

BY

ANWAR SAJID

FEBRUARY 2017

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Pruning Deep Convolutional Neural
Networks for Fast Inference

빠른추론을위한깊은길쌈형

인공신경망의솎아내기

지도교수 성원용

이논문을공학박사학위논문으로제출함

2017년 2월

서울대학교대학원

전기·컴퓨터공학부

안 워 사 지 드

안워사지드의공학박사학위논문을인준함

2017년 2월

Abstract

Deep learning algorithms have recently achieved human level classification per-

formance on several diverse classification benchmarks including object and speech

recognition. However these algorithms are computationally very expensive especially

for resource limited portable machines. Several researches have proposed ideas to

lower this cost and in this dissertation, we have addressed this problem. We have

proposed pruning and fixed-point optimization techniques to reduce the computa-

tional complexity of deep neural networks. Pruning is a promising technique where

a problem is first approximated with a large sized network followed by removing

unimportant parameters.

The proposed work induces sparsity in a deep convolutional neural network (CNN)

at three levels: feature map, kernels, and intra-kernel. Feature map pruning removes a

large number of kernels and directly reduces the width of a layer and does not require

any sparse representation. Thus the resulting network is thinner and runs faster than

the predecessor unpruned network. However, feature map pruning removes all the in-

coming and outgoing kernels and thus affects a large number of parameters. We there-

fore may not achieve higher pruning ratios with feature map pruning. Kernel pruning

eliminates k×k kernels and is neither too fine nor too coarse. It can change the dense

kernel connectivity pattern to a sparse one. Each convolution connection involves

W × H × k × k multiply and accumulate (MAC) operations where W, H and k

represents the feature map width, height and the kernel size, respectively. Further the

i

sparse representation for kernel pruning is also very simple. A single flag is enough

to represent one convolution connection. Intra-kernel pruning removes scalar weights

at the finest scale. The conventional pruning techniques induce irregular sparsity at

the finest granularity by zeroing scalar weights. This sparsity can be induced in much

higher rates but requires sparse representation in order to be translated into computa-

tional speedups in VLSI or parallel computer based implementations. Coarse pruning

granularities demand very simple sparse representation but higher pruning ratios are

comparatively difficult to achieve. On the contrary, fine grained pruning granularities

can achieve higher pruning ratios but the sparse representation is more complicated.

In this dissertation, we propose pruning techniques at the aforementioned three prun-

ing granularities. We further show that various pruning granularities can be applied

in combinations to compress the network size to the maximum limit.

The scalar weights inside a kernel is generally pruned in an irregular pattern. In

this dissertation, we have proposed intra-kernel strided sparsity (IKSS). The IKSS

prunes scalar weights at strided indices. We further impose a condition that all the

outgoing kernels from a feature map must have the same stride and offset for IKSS.

This has a direct impact on the sizes of matrices when convolutions are unrolled for

matrix-matrix multiplications. The sparse representation for the constrained IKSS is

only two numbers (stride, offset) per feature map. During pruning, it is important to

locate the least adversarial pruning candidates. We have proposed three techniques

for pruning candidate selection; particle filter, selecting the best of N random prun-

ing masks, and activation sum voting for feature map pruning. The dissertation exten-

sively discuss the best of N random masks technique and provide detailed analysis.

We obtain more than 80% pruning ratios with various pruning granularities. More-

over, the pruned networks can be further compressed by quantizing the weights and

ii

signals. This dissertation discusses our fixed-point optimization algorithm for deep

convolutional neural network, where the network weights and signals are represented

with 3-8 bits precision. We also discuss the layer-wise sensitivity analysis of deep

convolutional neural networks. Thus we reduce the computational complexity of a

CNN with pruning and fixed-point optimization.

In this dissertation, the proposed pruning techniques fit well to Graphics Process-

ing Units. The IKSS can reduce the size of matrices and GPUs are quite good at multi-

plying matrices. Secondly, FFT based CNN implementations can benefit from kernel

level pruning. For VLSI implementations, the fixed-point optimized techniques re-

duce the memory requirements and hence the networks can be hosted in the on-chip

memory. Thus the proposed techniques can be exploited on a generic set of modern

computing platforms.

Keywords : Convolutional Neural Network, Computational Complexity, Structured

Pruning, Feature Map and Kernel Pruning, Fixed-Point Optimization

Student Number : 2012-31288

iii

Contents

Abstract i

Contents iv

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Convolutional Neural Networks (CNNs) 2

1.2 Computational Complexity of Convolution Layers 5

1.3 Publications Record . 8

1.4 Outline of the Dissertation . 9

2 Background 10

2.1 Introduction to Pruning . 10

2.2 Pruning Candidate Selection . 13

2.2.1 Evolutionary Particle Filter 14

2.2.2 Activation Sum Voting . 17

iv

2.2.3 Absolute Weight Sum Voting 19

2.2.4 Best of N Random Masks 19

2.2.5 The Effect of Retraining on Pruning Masks 25

2.3 Fixed-Point Optimization . 26

3 Structured Pruning 28

3.1 Introduction . 29

3.2 Feature Map and Intra-Kernel Pruning 31

3.2.1 Intra Kernel Strided Sparsity 31

3.3 Experimental Results . 37

3.3.1 Feature Map Pruning . 38

3.3.2 Intra-Kernel Pruning . 40

3.3.3 Pruning Granularities Applied in Combinations 42

3.3.4 SVHN Dataset . 46

3.3.5 Execution Time Savings 47

3.4 Comparison with the Previous Related Works 49

3.5 Conclusions . 50

4 Kernel Pruning 51

4.1 Introduction . 51

4.2 Kernel and Feature Map Pruning 52

4.3 Experimental Results . 57

4.3.1 CIFAR-10 . 57

4.3.2 CIFAR-100 . 62

4.3.3 SVHN . 64

4.4 Related Works . 65

v

4.5 Concluding Remarks . 66

5 Quantizing the Pruned Networks 68

5.1 Introduction . 68

5.2 Retraining Based Quantization . 70

5.2.1 L2 Error Minimization and Direct Quantization 70

5.2.2 Layer Wise Sensitivity Analysis for Non-Uniform Quantization 72

5.2.3 Retraining with the Quantized Weights 73

5.3 Separable Fixed-Point Kernels . 74

5.4 Quantizing the Pruned Networks 77

5.4.1 Feature Map Pruned Networks 79

5.4.2 Kernel Pruned Networks 80

5.5 Concluding Remarks . 80

6 Conclusion 82

Bibliography 85

Abstract in Korean 93

vi

List of Figures

1.1 Sobel edge detector . 2

1.2 Convolutional Neural Network . 3

1.3 Average and max-pooling . 4

1.4 MAC operations in a single convolution 6

2.1 Coarse and fine grained pruning granularities 12

2.2 Example of state vector for particle filter 15

2.3 Activation sum voting . 18

2.4 Absolute weight sum criterion . 20

2.5 MCR with the best of N random masks for CNNCIFAR−10 21

2.6 Distribution of N random evaluations for CNNCIFAR−10 21

2.7 MCR with the best of N random masks for CNNSV HN 22

2.8 Distribution of N random evaluations for CNNSV HN 22

2.9 Weight sum vs. best of N random masks for CNNMNIST 24

2.10 Weight sum vs. best of N random masks for CNNSV HN 24

2.11 In this plot, we prune a CNN network with various masks and com-

pare their pre and post retraining performance. It can be observed that

on the average, pre-retraining masks perform better after retraining. 26

vii

3.1 Intra-kernel strided sparsity . 31

3.2 Convolution unrolling . 34

3.3 Convolution unrolling and IKSS 35

3.4 Feature map pruning . 39

3.5 Intra-kernel pruning . 40

3.6 Feature map and IKSS, CNNsmall 42

3.7 Feature map and IKSS, CNNlarge 43

3.8 Constraint-less and constrained pruning, CNNverylarge 44

3.9 Pruning SVHN network . 46

3.10 Profiling results . 48

4.1 Unconstrained kernel pruning . 53

4.2 Profiling kernel pruning . 55

4.3 GPU function scheduler call . 55

4.4 Best of N random masks vs absolute weight sum 56

4.5 Feature map and constraintless kernel pruning 56

4.6 Feature map and kernel pruning, CIFAR−10 59

4.7 Combinations of feature map and kernel pruning 59

4.8 Pruning CNNCIFAR10.large . 61

4.9 Pruning CNNSV HN . 61

4.10 CIFAR-100 CNN . 63

4.11 Per class error on the SVHN dataset 65

5.1 Direct quantization with L2 error minimization 71

5.2 Layer-wise quantization sensitivity analysis 72

5.3 Retraining with quantized weights 73

viii

5.4 A 3× 3 separable kernel . 75

5.5 Network retraining with separable quantized kernels 78

ix

List of Tables

2.1 Specifications of the three networks 19

3.1 Specifications of the networks . 36

4.1 The CIFAR-10 networks . 57

4.2 Feature map and kernel level pruning (75%) in CNNCIFAR10.small . . 60

5.1 Direct quantization of the MNIST network 71

5.2 Retraining the quantized MNIST network 77

5.3 Quantizing the CNNSV HN network 79

5.4 Quantizing the feature map pruned CNNSV HN network 79

5.5 Quantizing the kernel pruned CNNSV HN network 80

x

Chapter 1

Introduction

Deep learning algorithms have long been known for their ability to approximate

an empirical solution for a complex unknown function from the training examples.

The deep learning research is enjoying a renaissance in recent years. This resur-

gence is mainly due to three reasons. First, the massively parallel Graphics Processing

Units (GPUs) enable a research to experiment with very deep and diverse architec-

tures. Moreover, GPUs also increase the productivity of researchers. Secondly, large

amount of data is available for training deep neural networks. Thirdly, based on the

first two reasons, high performance network architectures have been proposed in re-

cent years. These factors have contributed to the human level performance of deep

neural networks on some vision and speech recognition benchmarks. This develop-

ment will significantly impact a large number of industries. To name a few, driverless

cars, advanced driver assistance systems (ADAS), medical imaging, and intelligent

software applications for smartphones are in the transition stage and rapidly chang-

ing. However, the computational complexity of these algorithms is still very high and

1

Figure 1.1: Sobel edge detector

the power consumption is also a serious concern. Several researches have therefore

proposed ideas to lower the computational cost and this thesis also proposes solutions

to this problem [1, 2, 3, 4, 5].

Network pruning is one promising technique that first learns a function with a

sufficiently large sized network followed by removing less important connections

[1, 2, 5]. This enables smaller networks to inherit knowledge from the large sized

predecessor networks and exhibit a comparable level of performance. We propose

structured pruning and fixed-point optimization techniques to reduce this complexity.

In this dissertation, we will outline our contributions in pruning deep convolutional

neural networks. In Section 1.1, we introduce the basic CNN architecture. The com-

putational complexity of CNN is discussed in Section 1.2. We provide an outline for

the rest of this dissertation in Section 1.4.

1.1 Convolutional Neural Networks (CNNs)

CNN is primarily inspired from the Hubel and Wiesel model of mammal’s brain [6,

7]. They performed experiments on monkeys and studied their vision system. They

2

Input

C1 S2 C3 S4 F6 F7 C5

Feature Extraction classification

Classification output Input samples

Figure 1.2: Convolutional Neural Network

found that the visual area contains two types of cells: simple cells responsible for

feature extraction and complex cells spatially combining these features in a local re-

gion. A CNN can be conceptually divided into two parts. The frontal part, closer to

the input layer, extracts features, while the rear layers (closer to the output layers)

perform classification. The frontal part consists of convolution and pooling layers.

The convolution and pooling layers act as feature extractors. The CNN kernels are

the feature detectors which are not pre-designed like the Sobel edge detector shown

in Fig. 1.1. CNN learns and employs a collection of such feature extractors for clas-

sification. Learning features with CNN is generally a better approach than searching

for optimal hand designed features as CNN can learn problem specific features from

the training data. A sample CNN is shown in Fig. 1.2. A feed forward deep neu-

ral network (FFDNN) ignores the spatial structure as features learnt at one place

are not useful for detecting the same object at another spatial location. Compared

to FFDNN, the learned CNN feature detectors have spatial invariance. The convolu-

tion layer consists of one or more feature maps. Weights in a convolution connection

3

3 2 1 0

1 2 2 1

0 1 1 1

2 1 1 1

3 2 1 0

1 2 2 1

0 1 1 1

2 1 1 1

2 1

1 1

3 2

2 1

Average Pooling
Region = 2 × 2
Stride = 1

Max Pooling
Region = 2 × 2
Stride = 1

Figure 1.3: Average and max-pooling

are shared and receive inputs from a fixed neighborhood (3× 3etc.). The subsam-

pling layer due to pooling from a k × k region enables some degree of invariance

to distortions. Each subsampling unit might take inputs from a k × k region in the

corresponding feature map and compute its average or max vale [8]. An example of

average and max-pooling is shown in Fig. 1.3. Generally, the pooling receptive fields

are non-overlapping but overlapped pooling may perform better.

CNN have been widely used in pattern recognition problems. Yann Lecun et al.

developed handwritten digit recognition CNN called LeNet-5 [7]. CNN have been

widely used for face recognition [9], pedestrian detection [10] and general object

recognition on ImageNet [11] etc. Due to their excellent performance, it is highly

desirable to port the learning capabilities of CNN to resource limited portable devices.

The next Section, discusses the computational complexity of a CNN.

4

1.2 Computational Complexity of Convolution Layers

In this Section, we discuss the computational complexity of a CNN. As earlier

mentioned, a CNN has three types of layers which corresponds to three different

connection types. The three computations are convolution, pooling and vector-matrix

multiplications. The fully connected layers can be implemented as vector-matrix mul-

tiplication where activations from the source layer is arranged in the vector format

and the weights constitute a matrix. The pooling layers have one to one connections

and conventionally the average or max of a 2 × 2 or 3 × 3 region is computed.

Therefore both the pooling and fully connected layers are not the hot-spot for opti-

mization.

The convolution layers have a meshed connectivity pattern and thus are computa-

tionally most expensive. In this dissertation, we propose pruning and fixed-point op-

timization techniques to reduce this complexity. The convolution layer convolves the

k× k kernels with N feature maps of the source layer. If the destination layer has M

feature maps, then N × M convolutions are performed and N × M × H ×W × k × k

multiply-accumulate (MAC) operations are needed, where W and H represents the

feature map width and height of the destination layer, respectively. Thus, the con-

volution layers demand a large number of arithmetic operations in many cases. Fur-

ther, the default memory access pattern of convolution layers is not computationally

friendly [12]. It is therefore highly desirable to reduce the complexity of convolution

layers. In the literature, there have been various works to reduce the computational

complexity of convolution layers and we outline them in 3.4 and 4.4. The work of

[13] and [14] unrolls convolutions into matrix-matrix multiplications and speeds up

the computation by 3-4 times [13]. However, redundant data and kernels storage in-

5

K

K

K/2

K/2C

H

W

W – 2(K/2)

H
 –

2
(K

/2
)

Figure 1.4: MAC operations in a single convolution

curs its own cost of extra memory usage.

Network pruning is a promising technique to solve this problem. However, prun-

ing usually results in irregular network connections that not only demand extra repre-

sentation efforts but also do not fit well on parallel computation. We introduce struc-

tured sparsity at various scales for convolutional neural networks, which are feature

map wise, kernel wise and intra-kernel strided sparsity. This structured sparsity is

very advantageous for direct computational resource savings on embedded comput-

ers, parallel computing environments, and hardware based systems. It is therefore of

prime importance to design high performance low complexity neural networks. This

goal can be achieved by applying the pruning technique to high performance large

sized networks, where the pruning reduces the computational cost. Further, these

lightweight networks can be implemented using only on chip memory for energy sav-

ings as frequent DRAM accesses consume much energy. Pruning induces sparsity in a

network and can be categorized as structured and unstructured. Unstructured pruning

does not follow a specific geometry or constraint. In most cases, this technique needs

6

extra information to represent sparse locations. It leads to irregular sparsity which is

difficult to exploit for efficient computation. On the other hand, structured sparsity

places non-zero parameters at well-defined locations. This kind of constraint enables

modern CPUs and graphics processing units (GPUs) to easily exploit computational

savings. Network pruning has been studied by several researches [2, 3, 15, 16, 17, 18].

The works of Han et al. [2, 3] have shown that a much bigger portion of weights can

be set to zero with minimum or no loss in performance. They train a network with an

additional L1/L2 loss function on the weights and gradually prune it. If the weight of

a connection is less than a threshold, the connection is dropped. The authors in [2]

further extend this work by quantizing the finally pruned network [3]. However, both

works have to explicitly locate non-zero weights with sparse representation. Conven-

tionally sparse representation uses the compressed sparse row/compressed sparse col-

umn (CSR/CSC) format which represents m non-zero numbers with 2m+n+1 num-

bers where n represents the number of rows or columns. The work of [3] shows that

half of the AlexNet memory space is required for storing the indices of the non-zero

parameters. This also doubles memory accesses as each weight fetch now becomes

an (index, weight) pair. Our proposed work does not demand such extra representa-

tion. Our work proposes to reduce this complexity with structured pruning. We show

that the proposed intra-kernel pruning is helpful in reducing the size of matrices in

convolution unrolling [13]. Previous related works and discussions on this topic are

provided in Chapter 3. This dissertation has the following important contributions.

• For pruning, it is important to select least adversarial pruning candidates. We

propose three techniques in Chapter 2 in this regard. We particularly provide

detailed discussions on the best of N random pruning masks.

7

• We introduce structured pruning at various granularities for maximum pruning

benefits. The pruned networks are easily accelerated with very simple sparse

representation. Feature map pruning reduces the width of a convolution layer

and directly produces a low complexity network. Detailed explanations and

experimental analysis is provided in Chapter 3.

• We propose constrained intra-kernel stride sparsity (IKSS) where convolutions

are efficiently implemented as matrix-matrix multiplications.

• We propose constraintless kernel level pruning where the sparse representation

is very simple. Moreover, the technique is applied in combination with feature

map pruning to further improve sparsity ratios.

• The weights and signals of deep neural networks are generally saved in 32-bit

floating point precision. We propose fixed-point optimization algorithms for

representing weights and signals with 3-8 bits while keeping the same level

of performance as the floating point network. The algorithms and details are

outlined in Chapter 5.

1.3 Publications Record

• Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of

deep convolutional neural networks. arXiv:1512.08571, 2015. Accepted for

publication in the ACM Journal of Emerging Technologies in Computing Sys-

tems. URL: DOI: http://dx.doi.org/10.1145/3005348

• Coarse Pruning of Convolutional Neural Networks with Random Masks.” [Un-

der review in ICLR 2017]

8

• Anwar Sajid, Kyuyeon Hwang, and Wonyong Sung. ”Fixed-point optimization

of deep convolutional neural networks for object recognition.” In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference

on, pp. 1131-1135. IEEE, 2015.

• Anwar Sajid, Kyuyeon Hwang, and Wonyong Sung. “Learning separable fixed

point kernels with deep CNN.” In Acoustics, Speech and Signal Processing

(ICASSP), 2016 IEEE International Conference on, IEEE, 2016.

1.4 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2 describes the background of

pruning, pruning granularities, and pruning candidate selection. In Chapter 3, we

introduce feature map and intra-kernel pruning. We particularly discuss the proposed

intra-kernel strided sparsity and show its relationship with convolution unrolling. We

provide extensive experimental results in Section 3.3. Chapter 4 proposes that very

high pruning ratios can be achieved when we combine kernel and feature map prun-

ing. The fixed-point optimization algorithms are discussed in Chapter 5. We discuss

direct quantization and layer-wise quantization sensitivity analysis. We provide a re-

training based algorithm for fixed-point optimization. Finally, Chapter 6 concludes

this dissertation.

The material in this dissertation was presented in [19, 5, 20, 21].

9

Chapter 2

Background

This chapter briefly reviews pruning and fixed point optimization. We introduce

pruning in Section 2.1, where we discuss the pruning granularities, pruning ratios,

and sparse representation. We outline three methods for pruning candidate selection

in Section 2.2 along with necessary experimental evaluations. We briefly introduce

fixed-point optimization in Section 2.3.

2.1 Introduction to Pruning

It is of prime importance to design high performance low complexity neural net-

works. This goal can be achieved by applying the pruning technique to high per-

formance large sized networks, where the pruning reduces the computational cost.

Further, these lightweight networks can be implemented using only on chip memory

for energy savings as frequent DRAM accesses consume much energy. Sparsity in

a deep convolutional neural network (CNN) can be induced at various levels. Fig-

10

ure 2.1 shows four pruning granularities. At the coarsest level, a full hidden layer

can be pruned. This is shown with a red colored rectangle in Fig. 2.1(a). Layer wise

pruning affects the depth of the network and a deep network can be converted into a

shallow network. Increasing the depth improves the network performance and layer-

wise pruning therefore demand intelligent techniques to mitigate the performance

degradation. The next pruning granularity is removing feature maps [9, 5].

Feature map pruning removes a large number of kernels and is therefore destruc-

tive in nature. We therefore may not achieve higher pruning ratios with this gran-

ularity. For the depicted architecture in Fig. 2.1 (b)., pruning a single feature map

removes four kernels. Feature map pruning affects the layer width and we directly

obtain a thinner network and no sparse representation is needed. Kernel pruning is

the next pruning granularity and it prunes k× k kernels. It is neither too fine nor too

coarse and is shown in Fig. 2.1(c). Kernel pruning is therefore a balanced choice and

it can change the dense kernel connectivity pattern to a sparse one. Each convolution

connection involves W × H × k × k multiply and accumulate (MAC) operations

where W, H and k represents the feature map width, height and the kernel size, re-

spectively. Further the sparse representation for kernel pruning is also very simple. A

single flag is enough to represent one convolution connection. The conventional prun-

ing techniques induce sparsity at the finest granularity by zeroing scalar weights. This

sparsity can be induced in much higher rates but high pruning ratios do not directly

translate into computational speedups in VLSI or parallel computer based implemen-

tations [2]. Figure 2.1(d) shows this with red colored zeroes in the kernel. Pruning

induces sparsity in a network and can be categorized as structured and unstructured.

Unstructured pruning does not follow a specific geometry or constraint. In most cases,

this technique needs extra information to represent sparse locations. It leads to irreg-

11

(a) Layer-w
ise pruning

C
onv2

L
1

L
2

L
3

C
onv1

(b) Feature m
ap pruning

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

(c) k ×
k

K
ernel-pruning

1
0

2
1

0

1
1

0
3

0

1
0

1
1

1

0
1

0
2

0

1
0

1
0

1

(d) Intra-kernel-pruning

Pruning granularity (coarse (left) to fine grained (right)

Inducible pruning ratios Inside allow
able budget (increasing from

 left to right), (e.g., budget = ↓A
ccuracy)

Sparse representation (increasing com
plexity from

 left to right)
D

epth reduction

Width reduction

Figure
2.1:C

oarse
and

fine
grained

pruning
granularities

12

ular sparsity which is difficult to exploit for efficient computation. On the other hand,

structured sparsity places non-zero parameters at well-defined locations. This kind

of constraint enables modern CPUs and graphics processing units (GPUs) to easily

exploit computational savings. Further Fig. 2.1 summarizes the relationship between

three related factors: the pruning granularities, the pruning ratios and the sparse rep-

resentations. Coarse pruning granularities demand very simple sparse representation

but higher pruning ratios are comparatively difficult to achieve. Similarly fine grained

pruning granularities can achieve higher pruning ratios but the sparse representation

is more complicated. The proposed work prunes then network at three granularities:

feature map, kernel and intra-kernel. In Chapter 3, we demonstrate feature and intra-

kernel strided pruning, while in Chapter 4, we propose pruning full k × k kernels. We

achieve best pruning results when we prune a network with combined granularities.

2.2 Pruning Candidate Selection

The learning capability of a network is determined by its architecture and the num-

ber of effective learnable parameters. Pruning reduces this number and inevitably

degrades the classification performance. The pruning candidate selection is therefore

of prime importance. It is important to select good pruning masks as some of the

masks may be less adversarial than others. Further the pruned network is retrained to

compensate for the pruning losses [1]. For a specific pruning ratio, we search for the

best pruning masks which afflicts the least adversary on the pruned network. Indeed

retraining can partially or fully recover the pruning losses, but the lesser the losses,

the more plausible is the recovery [22]. Further small performance degradation also

means that the successor student network has lost little or no knowledge of the prede-

13

cessor teacher network. If there are M potential pruning candidates, the total number

of pruning masks is (2M) and an exhaustive search is therefore infeasible even for

a small sized network. We therefore propose a simple strategy for selecting prun-

ing candidates. We outline here particle filter, activation sum voting, and best of N

random masks. All the schemes are elaborated and discussed in this Chapter.

2.2.1 Evolutionary Particle Filter

The pruning process needs to select less important connection combinations.

These connections, when pruned, have least adversary on the network performance,

which can be compensated with retraining. Note that considering all the pruning

patterns is too complex in most cases. In this work, we propose to locate pruning

candidate connections with the sequential Monte Carlo (SMC) method also known

as particle filters [23]. Particle (PF) filtering finds its applications in several fields

[24, 25, 26, 27]. With a set of weighted particles, the PF represents the filtering dis-

tribution [28]. Particle filter is usually applied to the system model shown in 2.1 and

2.2.

xk = f(xk−1)+µk (2.1)

zk = h(xk)+vk, (2.2)

where k shows the time step, z represents the observation vector, v denotes the

observation noise and µ is the process noise. The state vector is represented by x. Fig-

ure 2.2 (a) shows the dotted matrices as the pruning masks for weights between two

layers. The x state vector represents the inverse of the pruning mask. Non-existing en-

tries in the state vector are pruned. In Figure 2.2 (b), one example of the state vector

14

…

1

2

3

4

5

6

7

input

(b) x(0)
inp-h1 = [I13, I14, I15, I24]

x(0)
h1-out = [I36, I46, I47, I57] (a) Example of pruning candidates paths

PrevLayerU
nits

PrevLayerU
nits

NextLayerUnits NextLayerUnits

Figure 2.2: Example of state vector for particle filter

is provided. The circles represent the neurons while Ii j shows the index of the weight

going from neuron i to j. The red dotted connections are pruned while the black solid

lines survive through the pruning process. The observation function is represented by

h() whereas f () represents the transition function. When pruning n connections, the

possible combinations are on the order of O(2n), which means that exhaustive search

is not feasible in most cases. With N particles, we simulate several possible connec-

tion combinations. The state vector contains a set of possible connections through

which the input are forward propagated. Thus the likelihood computation is simu-

lated with pruning masks. The trained network is used as the observation function

which is noisy as the classification error rate is greater than 0%. Thus each parti-

cle simulates a set of connections as the possible candidate for the most likely path

through the network. The likelihood to each particle is assigned based on the misclas-

sification rate (MCR) on the validation set. This way importance weight is computed

by 1−MCR and shows the likelihood of keeping. Thus connections with high im-

portance survive while the rest are pruned. The MCR likelihood criterion compares

the network assigned label with the true one which, through iterative pruning, guides

the network learn the true labels. Once all particles are assigned probabilities, then

we construct the cumulative distribution function (CDF) and resample with the se-

15

quential importance resampling (SIR) [24]. The transition function f () is simulated

by perturbing the pruning mask.

Due to the finite number of samples, PF suffers from degeneracy and impover-

ishment problems when the highly likely particles replace the less likely ones [29].

Kwok et al. suggested the evolutionary particle filter (EPF) and proposed a hybrid

approach where genetic algorithm (GA) is combined with PF to solve these prob-

lems. The authors argue that particles are similar to chromosomes and survival of the

fittest has equivalence to the resampling algorithm [30]. With the hybrid approach,

the aim is to increase the fitness of the whole population. An important merit of the

GA augmented approach is that it not only maintains the highly likely genes in its

chromosome but also re-defines particles in the less likely region [30]. EPF reduces

computational cost as it requires fewer particles than conventional particle filters [30].

This property suits us as it will reduce the cost of finding pruning candidates. We also

believe that SMC techniques have more potential usages in exploring the network

parameters space. One usage can be finding a class specific routes in a deep neural

network.

Considering the case of feature map pruning, we explain here the EPF approach

candidate selection with N particles. We represent each particle with P[i] and the state

vector as x(i). Suppose that we are pruning a layer L with F non-pruned feature maps.

Let’s further suppose that the current pruning rate is denoted with pr. We compute the

dimension d of the state vector with d = F×(1− pr). In order to make the likelihood

computation connections count invariant, the state vectors of all the particles have the

same dimension d for a given value of pr. Let’s consider a simple example where F is

10, the pruning rate is 25% and N is 3. The d in this case will be b10× (1−0.25)c=

7. The state vectors x(i) for each particle is randomly assigned and may be as follows:

16

x(1) = [10 2 9 7 1 3 6], x(2) = [10 3 2 7 4 5 9], x(3) = [2 5 1 8 6 7 3]. Each particle

is only allowed to compute the likelihood with the set of feature maps listed in its

state vector. Other feature maps not included in the set are zeroed. For example,

for the particle P[3], the pruning mask is [1 1 1 0 1 1 1 1 0 0] where the feature

maps [4 9 10] are zeroed. This way likelihood is computed for each particle. These N

particles then undergo the GA based SIR as explained in Section 2.3. This way EPF

helps in reducing the adversarial effect of pruning.

There can be a concern regarding the computational cost of this approach. There

are two reasons that we outline here which mitigates this concern. Likelihood compu-

tation only uses the feed forward computation with the validation set. The validation

set is 10-20% of the training set and is thus not very large. Secondly the hybrid ap-

proach (genetic algorithm + particle filter) in particle filtering enables us to select the

pruning candidate with few particles. In all our experiments we used not more than

100 particles. The next subsection introduces a simple pruning candidate selection

scheme and compares it with the EPF based method.

2.2.2 Activation Sum Voting

The activation sum voting and its comparison with the PF based method is shown

here. Suppose there are F feature maps with w, h dimensions and rectified linear

unit as the activation function. We compute the sum for each feature map across the

whole mini-batch of size n on the validation set. Experimental results are shown in

the plot on the right side of the figure with the MNIST [7] dataset. The network

architecture is : 1×16(C5)−MP2−32(C5)−MP2−64(C5)−120−10. It can be

observed that for similar pruning ratios, the particle filter based method selects less

adversarial pruning candidates than the simple method. We propose a simple and low

17

…

…

Batch = 0

Batch = n-1

fmap0

fmapF-1

fmap0

fmapF-1

𝑆0,0 = ∑ 𝑎𝑖
𝑤∗ℎ −1
𝑖=0

𝑆𝐹−1,0 = ∑ 𝑎𝑖
(𝑤∗ℎ)−1
𝑖=0

𝑆0,𝑛−1 = ∑ 𝑎𝑖
𝑤∗ℎ −1
𝑖=0

𝑆𝐹−1,𝑛−1 = ∑ 𝑎𝑖
𝑤∗ℎ −1
𝑖=0

𝐹0 = 𝑆0,0 + … + 𝑆0,𝑛−1

𝐹𝐹−1 = 𝑆𝐹−1,0 + … + 𝑆𝐹−1,𝑛−1

…

Prune Ratio

0 0.2 0.4 0.6 0.8 1

M
C

R
Te

st
 se

t

0

10

20

30

40

50

60

Feature map pruning with activation sum voting

Feature map pruning with Particle filter

Baseline is 0.62%

NW
ActSumVoting

NW
PF

Figure 2.3: Activation sum voting

complexity scheme called the activation sum voting for feature map pruning. This

criterion is inspired from max pooling where the magnitude of a neuronal output

determines its importance. To the best of our knowledge this method has not been

reported earlier and is depicted in Fig. 2.3. Each feature map is summed across the

whole mini-batch on the validation set and the minimum summation feature maps

are pruned. Experimental evaluation for the two methods are reported for the MNIST

dataset [7] in Fig. 2.3. The network is first trained to the baseline MCR of 0.69%. We

then select pruning candidates for various pruning ratios. This plot does not consider

the effect of retraining the pruned networks. The NWPF and NWActSumVoting shows the

pruned network obtained with PF and the activation sum voting method respectively.

The pruning plot shows that the particle filter based method performs better especially

at higher pruning ratios by selecting less adversarial pruning candidates. Further in

the plot, a green arrow shows the difference between the classification performance

of NWPF and NWActSumVoting. Network retraining may recover some of the pruning

18

Table 2.1: Specifications of the three networks
Network Architecture Baseline MCR(%) Data Augmentation

CNNMNIST 1 16(C5)−32(C5)−64(C5)−120−10 0.62 NO
CNNMNIST 2 6(C5)−16(C5)−120(C5)−84−10 0.79 NO

CNNCIFAR10.small 2× 128C3−MP2−2× 128C3−MP2−2× 256C3−256FC−10So f tmax 16.6 NO
CNNCIFAR10.large 2× 128C3−MP2−2× 256C3−MP2−2× 256C3−1× 512C3−1024FC−1024FC−10So f tmax 9.41 YES

CNNSV HN (2× 64C3)−MP2− (2× 128C3)−MP2− (2× 128C3)−512FC−512FC−10So f tmax 3.5 NO

losses. However, NWPF starts better than the NWActSumVoting. This way we show that

the higher computational complexity of the PF based method is justified as it selects

better pruning candidates.

2.2.3 Absolute Weight Sum Voting

Figure 2.4 explains the idea presented in [31] and shows three layers, L1, L2 and

L3. All the filters/kernels from previous layer to a feature map constitute one group

which is shown with similar color. The S1,S2 and S3 is computed by summing the

absolute value of all the weights in this group. In the next sectionSection ??, the

comparison of the proposed method with the absolute weight sum method is shown

for two networks.

2.2.4 Best of N Random Masks

In this Section, we outline one of our main contributions regarding pruning candi-

date selection. We have proposed a simple strategy for the selection of pruning masks.

Generally, in the literature granularity specific pruning strategies are reported [2, 31].

In the previous Section, we demonstrated a guided multi-step pruning method using a

particle filtering approach. This method selects the best pruning mask through N ran-

dom pruning evaluations. This approach enables one to select pruning mask in one

step and is simpler than the multi-step technique. Our proposed algorithm generalizes

19

L1 L2 L3

S1

S2

S3

S1

S2

S3

FM1

FM2

FM3

FM1

FM2

FM3

Figure 2.4: Absolute weight sum criterion

well and can select near-optimal candidates for feature map, kernel and intra-kernel

pruning. Further, the proposed approach is not computationally expensive as it in-

volves N random evaluations on the small sized validation set.

We evaluate N random combinations and compute the MCR for each one. We

then choose the best pruning mask which causes the least degradation to the network

performance on the validation set. However, this further raises the question of how

to approximate N. We report the relationship between pruning ratio and N in Fig. 2.5

and 2.7. This analysis is conducted for feature map pruning but is also applicable to

other pruning granularities. From Fig. 2.5, we can observe that for higher pruning

ratios, high value of N is beneficial as it results in better pruning candidate selection.

For the pruning ratio of no more than 40%, N = 50 random evaluations generate good

selections. For lower pruning ratios, retraining is also more likely to compensate the

losses as the non-pruned parameters may still be in good numbers. The computational

cost of this technique is not much as the evaluation is conducted on the small sized

20

Random Pruning Masks N
0 100 200 300 400 500 600 700 800 900 1000

M
C

R
V

al
id

at
io

n o
n

th
e

B
es

t o
f

N

20

30

40

50

60

70

80

Prune Ratio 88.8672

Prune Ratio 81.4616

Prune Ratio 61.8076

Prune Ratio 34.7005

Figure 2.5: MCR with the best of N random masks for CNNCIFAR−10

MCRValidationSet

20 30 40 50 60 70 80

H
is

to
gr

am

0

20

40

60

80

100

120

140

Prune Ratio 81.4616

Prune Ratio 61.8076

Prune Ratio 34.7005

Figure 2.6: Distribution of N random evaluations for CNNCIFAR−10

21

Random Pruning Masks N
0 100 200 300 400 500 600 700 800 900 1000

M
C

R
V

al
id

at
io

n o
n

th
e

B
es

t o
f

N

0

10

20

30

40

50

60

70

80

Prune Ratio 90.5132
Prune Ratio 83.3969
Prune Ratio 63.6679
Prune Ratio 35.9769

Figure 2.7: MCR with the best of N random masks for CNNSV HN

MCRValidationSet

0 10 20 30 40 50 60 70

H
is

to
gr

am

0

20

40

60

80

100

120

140

160

Prune Ratio 83.3969

Prune Ratio 63.6679

Prune Ratio 35.9769

Figure 2.8: Distribution of N random evaluations for CNNSV HN

22

validation set. By observing Fig. 2.5 and 2.7, we propose that the value of N can

be estimated initially and later used in several pruning passes. Consider that for the

depicted architecture in Fig.2.4, we need to select feature map pruning candidates in

layer L2 and L3 with 1/3 pruning ratio. If N = 4, the following N ordered pairs of

feature maps may be randomly selected for (L2, L3) : (1, 2), (2, 3), (3, 1), and (1,

1). These combinations generate random paths in the network and we evaluate the

validation set MCR through these routes in the network.

We further explain and compare this method with the weight sum criterion pro-

posed in [31] and shown in Fig. 2.4. The set of filters or kernels from the previous

layer constitute a group. This is shown with the similar color in Fig. 2.4. According to

[31], the absolute sum of weights determines the importance of a feature map. Sup-

pose that in Fig.2.4, the Layer L2 undergoes feature map pruning. The weight sum

criterion computes the absolute weight sum at S1, S2 and S3. If we further suppose

that the pruning ratio is 1/3, then the min(S1,S2,S3) is pruned. All the incoming and

outgoing kernels from the pruned feature map are also removed. We argue that the

sign of a weight in kernel plays important role in well-known feature extractors and

therefore ignoring it may not be a good criterion. The network reported in Table 2.1

as CNNSV HN is pruned to generate the pre-retraining plots in 2.10. Figure 2.7 com-

pares the best candidate selected out of N random combinations for various feature

map pruning ratios.

We compare the performance of the two algorithms and Fig. 2.9 and 2.10 shows

the experimental results. These results present the network status before any retrain-

ing is conducted. We report the performance degradation in the network classifica-

tion against the pruning ratio. From Fig. 2.10 and 2.9, we can observe that our pro-

posed method outperforms the weight sum method particularly for higher pruning

23

Feature Map Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
va

lid
at

io
n

se
t

-5

0

5

10

15

20

25

30

35

40

45

50

Baseline MCR 0.62%
Pruning with weight sum voting
Pruning with the best of 10 random masks
Pruning with the best of 20 random masks
Pruning with the best of 50 random masks
Pruning with the best of 100 random masks
Pruning with the best of 200 random masks

Figure 2.9: Weight sum vs. best of N random masks for CNNMNIST

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

0

10

20

30

40

50

60

70

80

90

100

Baseline MCR = 3.93%
FeatureMap Pruning with Weight Sum Voting
FeatureMap Pruning with N = 10 Rand Evaluattions
FeatureMap Pruning with N = 20 Rand Evaluattions
FeatureMap Pruning with N = 50 Rand Evaluations
FeatureMap Pruning with N = 100 Rand Evaluations
FeatureMap Pruning with N = 200 Rand Evaluations

Figure 2.10: Weight sum vs. best of N random masks for CNNSV HN

24

ratios. The best of N Pruning masks strategy evaluates pruning candidates in combi-

nations and provides a holistic view. The criterion in [31] evaluates the importance of

a pruning unit in the context of a single layer while our proposed approach evaluates

several paths through the network and selects the best one. The combinations work

together and matter more instead of individual units. Further, our proposed technique

is generic and can be used for any pruning granularity: feature map, kernel and intra-

kernel pruning.

2.2.5 The Effect of Retraining on Pruning Masks

We further analyze the effect of retraining on the pruning mask selection. We

prune a network with several masks and retrain each pruned network. As several net-

works need to be pruned and retrained many times, we experiment with a small net-

work where the architecture is reported like this: 32(C5)−MP2−64(C5)−MP2−

64(C5)− 64FC− 10So f tmax. The network is trained with the CIFAR-10 dataset

(40,000 training samples) without any data augmentation and batch normalization.

The network achieves the baseline performance of 26.7% on the test set. The results

are reported in Fig. 2.11, where the pre and post-retraining network performance is

shown on the x and y axis, respectively. Further, we superimpose a least-squares (LS)

line fit to each of the scatter plot. It can be observed that the slope of the LS line

decreases for higher pruning ratios. We infer that for high pruning ratios, the final

network performance is dictated by the surviving number of effective parameters. It

can be observed that the overall distribution is noisy. However, in general, the pre-

retraining least adversarial pruning masks perform better after retraining. In the rest

of this work, we therefore use the pre-retraining best mask for pruning the network.

25

MCR with Pre-Retraining Pruning Masks
30 40 50 60 70 80 90

M
C

R
 w

ith
 P

os
t-

R
et

ra
in

in
g

Pr
un

in
g

M
as

ks

25

26

27

28

29

30

31

32

33

Pruning Ratio 31.12 %
Pruning Ratio 56.73%
Pruning Ratio 66.7%
Pruning Ratio 77.13%

Figure 2.11: In this plot, we prune a CNN network with various masks and compare
their pre and post retraining performance. It can be observed that on the average,
pre-retraining masks perform better after retraining.

2.3 Fixed-Point Optimization

The proposed work lowers the hardware complexity by constraining the learned

convolutional kernels to be separable and also reducing the word-length of these ker-

nels and other weights in the fully connected layers. To compensate for the effect of

direct quantization, a retraining scheme that includes filter separation and quantiza-

tion inside of the adaptation procedure is developed in this work. The filter separa-

tion reduces the number of parameters and arithmetic operations by 60% for a 5x5

kernel, and the quantization further lowers the precision of storage and arithmetic

by more than 80 to 90% when compared to a floating-point algorithm. Experimental

results on MNIST and CIFAR-10 datasets are presented. Components in a digital sig-

26

nal processing system may exhibit varying level of sensitivity to quantization noise.

Therefore we use different quantization bits for each layer in accordance to sensitiv-

ity analysis [10] [13]. The results drawn in [10] shows that the rear layers of CNN

are comparatively more sensitive to quantization noise. Each convolution kernel is

treated independently and has its own quantization step size. However each fully

connected layer has one quantization step size. Biases are kept in high precision.

Convolution layers that incur higher computational complexity are hot spots for op-

timizations. The separability constraint greatly reduces the computational cost and

memory requirement. The constraint-less initial learning with floating point weights

enables the network to achieve the baseline performance while the late introduction

of separability constraint and re-training ensures resource efficiency. The fixed-point

optimization further reduces the word-length and results in power efficiency which

may be crucial for embedded systems. Our technique is generic and is useful for both

software and hardware implementations. We will discuss in detail in Chapter 5 about

fixed-point optimization.

27

Chapter 3

Structured Pruning

Real time application of deep learning algorithms is often hindered by high com-

putational complexity and frequent memory accesses. Network pruning is a promis-

ing technique to solve this problem. However, pruning usually results in irregu-

lar network connections that not only demand extra representation efforts but also

do not fit well on parallel computation. We introduce structured sparsity at various

scales for convolutional neural networks, which are feature map wise, kernel wise

and intra-kernel strided sparsity. This structured sparsity is very advantageous for

direct computational resource savings on embedded computers, parallel computing

environments, and hardware based systems. To decide the importance of network

connections and paths, the proposed method uses a particle filtering approach. The

importance weight of each particle is assigned by assessing the misclassification rate

with a corresponding connectivity pattern. The pruned network is retrained to com-

pensate for the losses due to pruning. While implementing convolutions as matrix

products, we particularly show that intra-kernel strided sparsity with a simple con-

28

straint can significantly reduce the size of the kernel and feature map tensors. The

proposed work shows that when pruning granularities are applied in combinations,

we can prune the CIFAR-10 network by more than 70% with less than 1% loss in

accuracy.

3.1 Introduction

Large sized deep convolutional neural networks (CNN) have been successfully

applied to diverse classification problems including speech and image recognition

[32, 11, 33]. These networks can produce state of the art results at a high computa-

tional cost. For resource limited machines and real time applications, it is important

to learn the unknown function with a reduced complexity network. Large networks

are capable of learning complicated problems but may overfit on the training set.

On the other hand, small networks that demand low computational cost usually have

limited learning capabilities. It is therefore of prime importance to design high per-

formance low complexity neural networks. This goal can be achieved by applying

the pruning technique to high performance large sized networks, where the pruning

reduces the computational cost. Further, these lightweight networks can be imple-

mented using only on chip memory for energy savings as frequent DRAM accesses

consume much energy. Pruning induces sparsity in a network and can be categorized

as structured and unstructured. Unstructured pruning does not follow a specific geom-

etry or constraint. In most cases, this technique needs extra information to represent

sparse locations. It leads to irregular sparsity which is difficult to exploit for efficient

computation. On the other hand, structured sparsity places non-zero parameters at

well-defined locations. This kind of constraint enables modern CPUs and graphics

29

processing units (GPUs) to easily exploit computational savings.

Network pruning has been studied by several researches [2, 3, 15, 16, 17, 18].

The works of Han et al. [2, 3] have shown that a much bigger portion of weights can

be set to zero with minimum or no loss in performance. They train a network with an

additional L1/L2 loss function on the weights and gradually prune it. If the weight of

a connection is less than a threshold, the connection is dropped. The authors in [2]

further extend this work by quantizing the finally pruned network [3]. However, both

works have to explicitly locate non-zero weights with sparse representation. Conven-

tionally sparse representation uses the compressed sparse row/compressed sparse col-

umn (CSR/CSC) format which represents m non-zero numbers with 2m+n+1 num-

bers where n represents the number of rows or columns. The work of [3] shows that

half of the AlexNet memory space is required for storing the indices of the non-zero

parameters. This also doubles memory accesses as each weight fetch now becomes an

(index, weight) pair. Our proposed work does not demand such extra representation.

In this work, we explore feature map and intra-kernel sparsities as a means of

structured pruning. In the feature map pruning, all the incoming and outgoing weights

to/from a feature map are pruned. The intra-kernel sparsity prunes weights in a kernel.

The kernel level pruning is a special case of intra-kernel sparsity with 100% pruning.

These pruning granularities can be applied in various combinations and different or-

ders. The proposed work introduces structured pruning at various granularities for

maximum pruning benefits. Feature map pruning reduces the width of a convolution

layer and directly produces a low complexity network. We propose intra-kernel stride

sparsity (IKSS) which reduces the size of matrices in convolution unrolling [13, 14].

The rest of the paper is organized as follows. Section 3.2 briefly introduces CNN

and discusses the pruning granularities. Experimental results are discussed in Section

30

Conv1 Conv2
M = 2 N = 3 O = 3

(a) Feature map and kernel wise pruning

1 1 0 1 1

0 0 0 0 0

0 0 1 1 1

1 1 1 0 0

1 0 1 0 1

1 1 0 0 0

0 0 0 0 0

0 0 1 1 0

0 0 0 0 0

1 0 0 0 1

Sparsity = 50% Sparsity = 75%

Stride = 4 Stride = 2

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

1 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 1

(b) Intra-kernel strided pruning

L1 L2 L3

Figure 3.1: Intra-kernel strided sparsity

3.3 for each pruning granularity and their combinations. Section 3.4 compares this

work with the related woks while Section 3.5 discusses the future research directions

and concludes this article.

3.2 Feature Map and Intra-Kernel Pruning

In this section, the CNN network is briefly introduced in the context of pruning.

The network can be pruned at various granularities which are outlined here. Further,

we present the proposed intra-kernel structured (IKSS) sparsity and its impact on

reducing the dimensions of matrices in convolution unrolling.

3.2.1 Intra Kernel Strided Sparsity

Taking computational advantages using randomly scattered unstructured sparsity

in a network is very difficult. It demands many conditional operations and extra rep-

resentation to denote the indices of zero or non-zero parameters. In this subsection,

31

we describe three levels of structured pruning, which are feature map, kernel and

intra-kernel strided sparsity(IKSS) pruning. Generally, the convolution layers of a

non-pruned network employ fully connected convolution connections. Figure 3.1 de-

picts the pruning granularities and intra-kernel strided sparsity. The red dashed line

shows feature map pruning. When we prune all the incoming kernels to a feature

map, all the outgoing kernels are also pruned. The blue dotted line depicts pruning

k× k kernels. Figure 3.1(b) shows intra-kernel sparsity for both structured and un-

structured cases. Kernel level pruning (blue dotted) is a special case of intra-kernel

pruning, when the kernel level sparsity rate is 100%. In Fig. 3.1(a), the layers L1,

L2 and L3 contain 2, 3, and 3 feature maps, respectively. The number of convolution

connections between L1 and L2 is 2×3 = 6 and that between L2 and L3 is 3×3 = 9.

Each feature map in L2 has a k× k convolution connection from each feature map

in L1. Thus, the pruning exploiting the largest granularity is deleting one or more

feature maps. The next level pruning is intra-kernel pruning where each kernel rep-

resents one whole convolution. The kernel level pruning is depicted with blue dotted

lines in Fig. 3.1(a). Figure 3.1(b) shows examples of intra-kernel sparsity for both the

structured and unstructured cases. Kernel level pruning (blue dotted) is a special case

of intra-kernel pruning, when the sparsity ratio is 100%.

The finest pruning granularity is the intra-kernel sparsity, which forces some

weights into zero. In the previous works, the intra-kernel level pruning is usually

conducted by zeroing small valued weights [2, 3]. We particularly explore the intra-

kernel level pruning using the sparsity at well-defined locations, which is called the

intra-kernel strided sparsity (IKSS). Figure 3.1 (b) depicts this idea. The starting

index (offset) for the first non-zero element is randomly assigned in the range of

[0,stride− 1]. Therefore the IKSS associates an offset as the starting index and the

32

stride size with each kernel. The stride size is also randomly sampled and depends

on how well pruning proceeds. In our experiments, we start with a stride size of

two. If, during the gradual iterative pruning, the pruned network has similar or bet-

ter performance when compared with the unpruned network, we use bigger strides

and prune the connections more aggressively (use higher pruning ratios). We mon-

itor how well the pruning proceeds after each prune-retrain step. If the last pruning

increases the misclassification rate (MCR) by more than a small tolerance number,

then we decrease the intra-kernel pruning rate and stride size. In normal pruning

mode, majority of the kernels use small strides. The evolutionary particle filter eval-

uates several possible combinations of the offset, stride, and feature maps and selects

the best combination based on likelihood. This way we induce sparsities in the net-

work. The retraining procedure uses the finally selected pruning mask. We found this

mask with an evolutionary approach and the validation dataset.

The computational complexity of a network is mainly decided by its depth, width

and connectivity pattern. The proposed work does not affect the depth of the net-

work. However, both IKSS and feature map alter the connectivity pattern. Further,

feature map pruning directly reduces the width of a convolution layer. Therefore, it

is quite straightforward to exploit the computational savings of this technique. This

lighter network can then be implemented with convolution unrolling [13], FFTs [4]

or conventional ways. The IKSS can further increase the pruning ratio. As earlier

mentioned, the IKSS associates an offset and a stride with each kernel. These two

numbers are enough to locate the non-zero weights. We further show that if we con-

strain each outgoing convolution connection from a source feature map to have sim-

ilar stride and offset, it will result in only two extra parameters (o f f set,stride) per

feature map. This way the IKSS can be computationally exploited to avoid MAC

33

2 2 1 1 2
1 0 1 1 1
1 0 2 2 1
2 2 1 1 1
2 1 0 2 0

1 1 1 0 0
2 1 2 1 2
1 1 2 1 0
2 2 2 1 2
2 2 2 0 0

2 2 0 2 0
1 1 1 0 1
0 0 2 2 0
1 0 1 0 2
0 0 1 1 2

2 0 1
2 0 2
1 1 0

2 2 1
1 1 2
1 0 1

0 1 1
1 2 1
0 1 0

0 0 0
0 0 1
1 1 2

0 1 0
2 0 0
0 0 0

37 29 28
40 32 35
36 31 36

17 15 18
17 17 21
22 16 17

2
2

1
1

0
1

1
0

2
1

1
1

2
1

2
1

1
2

2
2

0
1

1
1

0
0

2
2

1
1

0
1

1
0

2
2

1
1

0
1

2
1

1
2

1
2

0
2

1
1

0
0

2
2

1
1

2
1

1
1

2
2

1
1

0
0

2
1

2
2

1
0

0
2

0
1

0
1

2
2

0
1

0
1

1
0

2
2

2
1

2
1

2
1

1
2

2
2

2
1

1
1

0
0

2
1

0
1

0
1

1
0

2
2

2
1

1
1

2
1

1
2

1
2

2
1

1
1

0
0

2
2

0
1

0
1

1
1

2
2

1
1

1
1

2
1

2
2

1
0

2
1

2
1

0
1

2
2

0
1

0
2

1
0

2
2

2
1

2
1

0
1

1
2

2
2

2
2

2
2

0
0

2
1

0
1

0
0

1
0

2
2

2
1

1
1

0
2

1
2

1
2

2
1

2
2

0
0

2
2

0
1

0
0

1
1

2
2

1
1

1
1

0
2

0
2

1
0

2
1

2
2

0
0

2
2

0
1

0
2

1
1

2

201202110

011121010

122111011

000001112

221112101

010200000

Input features m
atrix (9 ×

27)

Input
features

C
onvolution
kernels

O
utput features

m
atrix (9 ×

2)

*
=

372928403235363136

171518171721221617

K
ernel m

atrix
(27 ×

2)

C
onventional

convolution

M
atrix product
version of

convolution

(a)

1 2 2
1 1 1
0 1 1

Figure
3.2:C

onvolution
unrolling

34

2
2

 1

1

 2
1

 0

1

 1

 1

1
0

 2

2

 1
2

 2

 1

 1

1
2

 1

 0

 2

 0

1

 1

 1
0

 0

2

 1

 2
1

 2

1

 1
2

1

 0
2

 2

 2

 1

 2

2

 2

 2

 0

 0

2

 2
0

 2

 0

1
1

 1

0

 1
0

 0

2

 2

 0
1

 0

 1

 0

 2

0

 0

 1

 1

 2

2
0

 1

0

 0
0

1
0

 0

0

 0

 2
0

 0

 1

0

 0

 1

0

 2
0

1
0

 2

0

 0
0

0
0

 1

0

 2
0

0
0

 0

0

 0

 0
0

 0

 1

0

 0

 2

0

 1
0

2
0

0

0

 0
0

19

 8

 1
5

19

 1
3

12

17

 1
0

16

11

 8

 1
0

8

 9

 1
3

14

 7

 9

St
rid

e
=

2
O

ffs
et

 =
 0

St
rid

e
=

3
O

ffs
et

 =
 2

St
rid

e
=

2
O

ffs
et

 =
 1

St
rid

e
=

2
O

ffs
et

 =
 0

St
rid

e
=

3
O

ffs
et

 =
 2

St
rid

e
=

2
O

ffs
et

 =
 1

2 1 0 1 0

0 1 2 0 0

2 1 1

0 1 2

2 1 2 0

1 2 0 0

2
1

0
1

2
1

2
2

2
1

1
0

2
1

1
0

2
0

1
1

0
1

0
2

1
2

1
2

1
0

2
0

2
1

1
2

1
1

0
2

1
2

2
2

1
0

2
0

0
1

2
2

1
1

1
1

1
0

2
1

1
1

2
1

1
2

0
2

0
2

0
0

1
2

2
2

0
2

2
2

0
1

1
0

0
2

1
1

2
1

1
0

2
0

0
1

2
1

1
0

0
0

2
0

2
1

2
1

*

19 8 15 19 13 12 17 10 16

11 8 10 8 9 13 14 7 9

=

K
er

ne
l M

at
rix

 (1
2

×
2)

O
ut

pu
t f

ea
tu

re
s

m
at

rix
 (9

 ×
2)

In
pu

t f
ea

tu
re

s
m

at
rix

 (9
 ×

12
)

C
on

vo
lu

tio
n

ke
rn

el
s

In
pu

t
fe

at
ur

es

Tr
ad

iti
on

al

co
nv

ol
ut

io
n

M
at

rix
 P

ro
du

ct

V
er

si
on

 o
f

C
on

vo
lu

tio
n

(b
)

Fi
gu

re
3.

3:
C

on
vo

lu
tio

n
un

ro
lli

ng
an

d
IK

SS

35

Table 3.1: Specifications of the networks
Network Architecture Baseline MCR(%)
CNNsmall 32C5-MP2-32C5-AP2-64C5 -10So f tmax 25.71
CNNlarge 2×128C3−MP2−2×128C3−MP2−2×256C3−256FC−10So f tmax 16.6

CNNverylarge 2×128C3−MP2−2×256C3−MP2−2×256C3−512C3−1024FC−1024FC−10So f tmax 9.41

operations with zeroed weights. The convolution layer can be computed as matrix-

matrix multiplication by unrolling the source layer feature maps and kernels [13, 14].

Figure 3.2 explains this idea with an example in much detail. Figure 3.3 shows how

the proposed IKSS and a simple constraint can reduce the size of feature and kernel

matrices. The constraint bounds each outgoing convolution kernel from the source

feature maps to have the same stride and offset. The constraint is shown with similar

background colors for kernels. Our proposed idea constrains each outgoing convolu-

tion connection for a source feature map to have the same stride and offset. The offset

shows the index of the first non-zeroed weight. The constraint is shown with the sim-

ilar colored background squares. This significantly reduces the size of both features

matrix and kernel matrix. The first 9 columns in row 1 of the input feature matrix

changes from [2 2 1 1 0 1 1 0 2] to [2 1 0 1 2] with the underlined elements pruned.

Only the red colored elements in the feature maps and kernels survive and the rest are

pruned. For this example, the size of feature matrix is reduced from 9×27 to 9×12

and the kernel matrix size is reduced from 27× 2 to 12× 2. These pruning granu-

larities have the potential to bridge the gap between pruning and its computational

advantages.

36

3.3 Experimental Results

The pruning process starts with a pre-trained network. The EPF guided pruning

process may degrade the network performance which is compensated by retraining.

Retraining is important to keep the network performance closer to the non-pruned

network. In the spirit of [2], we train the network with L2 regularization in the ab-

sence of batch normalization [34]. We consider the pruning limit for each layer de-

pending on its parameter count and learning capacity. Usually, the first convolution

layer has fewer parameters than the following layers. Secondly it directly operates

on the input layer and is therefore more sensitive to pruning [2]. We present exper-

imental results with the CIFAR-10 and SVHN datasets [35], [36]. The CIFAR-10

dataset consists of a ten class classification problem [35]. The dataset includes sam-

ples from ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and

truck. The training set consists of 50,000 RGB samples. The test set contains 10,000

samples. Each sample has 32× 32 resolution. During training and pruning, we use

the stochastic gradient descent (SGD) with a mini-batch size of 128 and RMSProp

[37].

We present experimental results with three networks on the CIFAR-10 dataset:

CNNsmall , CNNlarge and CNNverylarge. Details about these three networks are provided

in Table 1 and the network architectures are represented with alphanumeric strings as

reported in [38]. The (2×128C3) represents two convolution layers with each having

128 feature maps and 3× 3 convolution kernels. MP2 and AP2 represent 2× 2 max

and average pooling layers respectively. The CNNsmall is trained with the original

CIFAR-10 dataset without any pre-processing and data augmentation. The CNNlarge

is inspired from [38] and is trained with batch normalization [34]. We pre-process

37

the original CIFAR-10 dataset with global contrast normalization followed by ZCA

whitening. The validation set uses 10, 000 training samples. Batch normalization

accelerates training by normalizing each layer inputs and also reduces the impact

of weight scale [34][38]. The latter property suits pruning as we prefer small sized

weights [2]. CNNsmall has three convolution layers and is smaller than the CNNlarge

which has six convolution layers. Further, CNNsmall applies a bigger receptive field

of 5×5 convolution kernels whereas CNNlarge has 3×3 kernels.

The pruning process is guided by EPF which locates and identifies pruning can-

didates. The EPF evaluates several possible pruning candidates and selects the one

which has the least adversarial effect on the network when pruned. The count of po-

tential pruning candidates is dependent on the pruning rate and granularity. Smaller

pruning rates and the IKSS constraint of similar stride and offset limits this count.

Further, retraining the network can compensate the loss in accuracy due to pruning.

3.3.1 Feature Map Pruning

This plot shows feature map pruning results for CNNsmall and CNNlarge. This

pruning granularity can be induced in higher rates for CNNlarge than CNNsmall due

to bigger width. The pruning ratios are computed for convolutional layers. It is im-

portant to mention that the pruned networks are retrained to compensate the loss

in performance. In this section we present feature map pruning guided by EPF. We

discuss experimental results with CNNsmall and CNNlarge. We do not prune the first

convolution layer in both networks due to fewer convolution connections and higher

pruning sensitivity. Our experiments show that 100 particles are enough to select

the pruning candidates. The pruning plots are provided in Fig. 3.4. For feature map

pruning and the CNNsmall , under a tolerance of 1% increase in MCR, the numbers of

38

Feature Mapprune ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
te

st

10

15

20

25

30

35

40

45

50

1. Baseline for CNNsmall

2. Tolerance (+ 1.0%) for (1)
3. Pruning CNNsmall feature map wise

4. Baseline for CNNlarge
5. Tolerance (+ 1.0 %) for baseline (4)
6. Pruning CNNlarge feature map wise

Figure 3.4: Feature map pruning

convolution connections are reduced to 672(32×21 = 672) and 798 (21×38 = 798)

in the 2nd and 3rd convolution layers respectively. It means that 35% (= (1024−

672)/(32× 32)) and 62%(= (2048− 798)/(32× 64)) of the convolution connec-

tions are dropped with less than 1% increase in MCR. Increasing the feature map

level sparsity beyond this point increase the MCR by more than 1%.

Next, the CNNlarge is feature map pruned. At 57% pruning rate, the CNNlarge

is reduced to (128C3−83C3)-MP2-(83C3−84C3)-MP2-(166C3−166C3)-256FC-

10So f tmax with less than 0.6% increase in MCR. Comparing the feature map prun-

ing of the two networks, we observe that CNNsmall cannot be pruned as much as the

CNNlarge due to modest width. The CNNlarge is wider and has more room for feature

map pruning. Feature map pruning the CNNlarge beyond 62% decreases the network’s

39

IKSS
prune ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
C

R
te

st

15

20

25

30

35

1. Baseline for CNN
small

2. IKSS pruning of CNN
small

3. Baseline for CNN
large

4. IKSS pruning of CNN
large

Figure 3.5: Intra-kernel pruning

baseline performance by more than 1%.

3.3.2 Intra-Kernel Pruning

This plot shows intra-kernel pruning results for CNNsmall and CNNlarge. The

CNNsmall uses 5× 5 kernels while CNNlarge uses 3× 3 kernels. The IKSS can be

induced in higher rates for CNNsmall than CNNlarge due to bigger size kernels. The

pruning ratios are computed for convolutional layers only. It is important to mention

that the pruned networks are retrained to compensate for the loss in accuracy.

In this section we present IKSS for CNNsmall and CNNlarge and discuss the ex-

perimental results shown in Fig. 3.5. It can be observed in Fig. 3.5 that the NWsmall

can achieve more intra-kernel sparsity than the NWlarge which cannot be pruned with

40

higher rates. This is attributed to the difference in kernel sizes. Although NWlarge is

deeper and wider but it uses a smaller kernel size of 3× 3. Therefore we infer that

IKSS is more related to the kernel size than the width of the network.

Next, we discuss the selection of the stride and the offset for IKSS. We introduce

a new term for each feature map, OKFF, which stands for the set of outgoing kernels

from a feature map. Thus each feature map has one OKFF. As earlier mentioned,

all the kernels in an OKFF has the same stride and offset. We further suppose that

the feature maps in layer L has F non-pruned OKFFs and that the pruning rate is

pr. The EPF has to select the pruning candidates with N particles. The state vector

dimension is represented by d = F and contains the stride size for each OKFF. The

OKFFs associated with b(F× (1− pr))c are not pruned and are assigned zero offset

and the stride of 1. If F is 10 and pr is 25%, seven OKFFs are not pruned while the

remaining 3 undergoes pruning. A sample state vector for this example may look like

this: [1 2 1 3 1 1 1 1 2 1]. The strides are assigned from a random distribution but

takes feedback from how well the pruning proceeds. If pruning is proceeding well,

we choose higher strides and induce IKSS more aggressively. Further, the earlier

discussions suggest that the intra-kernel sparsity can be induced at higher rates in 5×

5 kernels compared to 3× 3 kernels. Therefore the stride assignment also considers

the kernel sizes. We experimentally fine tune the hyper parameters with the validation

set. Each particle’s likelihood is also computed with the validation set. The offset

represents the index of the first non-zero weight in a kernel and is randomly assigned

in the range of [0,stride−1]. Thus two OKFFs having similar stride size but different

offsets result in two different intra-kernel pruning masks. This way the EPF guides

the IKSS to approximately select the best pruning candidates.

41

Prune Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
te

st

20

25

30

35

40

45

50

55
Structured Pruning Vs Error Rate (CIFAR10)

1. Feature map (Macro) pruning

2.Feature map (1) followed by Intra kernel

3. Intra-kernle (normal rate)

4. Intra-kernle (aggressive rate)

5. Intra-kernel (3) followed by fmap pruning

6. Intra-kernel (4) followed by fmap pruning

7. Baseline non-pruned network

Figure 3.6: Feature map and IKSS, CNNsmall

3.3.3 Pruning Granularities Applied in Combinations

The plot in Fig. 3.6 shows pruning applied in various combinations to NWsmall .

It is observed that feature map pruning followed by intra-kernel pruning provides the

best result. The pruning ratios are computed for convolutional layers only.

In this section, we evaluate several combinations of pruning granularities applied

to CNNsmall and CNNlarge. We first present experimental results with CNNsmall and

the results are shown in Fig. 3.6. We observe that due to modest depth of the net-

work, higher feature map pruning ratios cannot be achieved. Intra-kernel sparsities

are induced in normal and aggressive rates. Choosing an aggressive rates increases

the pruning ratio with bigger strides but also increases the MCR as shown in Fig. 3.6.

We can find that the MCR does not increase much when IKSS follows the feature

42

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

15

16

17

18

19

20

21

22

23

24

25

Baseline (16.60%)

Baseline MCR + 1.0

FeatureMap Prune

Intra Kernel Pruning (1)

Macro Prune followed by IKSS

IKSS followed by Macro Pruning

Figure 3.7: Feature map and IKSS, CNNlarge

map pruning. In Fig. 3.6, the solid black line extending from the red line shows the

best pruning results. This is achieved with feature map pruning (46%) followed by

IKSS (shown in Fig. 3.6 with a black solid line extending from the red solid line).

Our experimental results show that we can reduce the size of the CNNsmall network

by 72% with less than 1% loss in accuracy.

The plot in Fig.3.7 shows different pruning granularities applied to CNNlarge in

various combinations. For this network, we achieve the best pruning result when

intra-kernel pruning is followed by feature map pruning.

The pruning plots for CNNlarge are provided in Fig. 3.7. It can be observed that

inducing intra-kernel sparsities beyond 55% increases MCR by more than 1%. How-

ever, feature maps can be pruned by more than 62% in the same network. This is

43

PruneRatio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

9

9.5

10

10.5

11

11.5

12

12.5

13

Unconstrained scalar weights pruning

Feature map pruning

Intra-kernel strided sparsity (IKSS)

IKSS to feature map pruning

Baseline MCR = 9.39%

Baseline + Tolerance (1.0%)

Figure 3.8: Constraint-less and constrained pruning, CNNverylarge

due to smaller kernel sizes of 3×3 and higher width of the CNNlarge network. From

the figure, we obtain the best result when intra-kernel sparse network is followed by

feature map pruning. From these results we can infer that wider networks have more

chances of feature map level pruning whereas bigger kernels are suitable for intra-

kernel pruning. In both networks, we achieve the maximum pruning ratio when the

better pruning granularity is applied at the later stage.

The plot shows different pruning granularities applied to CNNverylarge in various

combinations. Further, we also show the case when we apply constraint-less unstruc-

tured pruning the network. The pruning ratios are computed for convolutional layers

only.

We conduct another experiment with the CNNverylarge and achieve better baseline

44

accuracy than the CNNlarge. The CNNverylarge has seven convolution layers and the

architecture is reported like this: (2×128C3)-MP2-(2×256C3)-MP2-(2×256C3)

-(1×512C3)-1024FC-1024FC-10So f tmax. The network is trained with data aug-

mentation where we extract 28× 28 patches and apply random flipping, rotation,

translation and scaling to the input samples. We randomly crop 28×28 regions from

the 32×32 input image. At test time, we crop the sample from the four corners and

the center. We further apply horizontal flips to each sample. This way we obtain 10

samples and take the average of their predictions to decide the final label [11]. This

improves the prediction accuracy and the network obtains 90.61% accuracy on the

test set. We train the network with batch normalization as reported earlier. The corre-

sponding pruning plots are reported in Fig. 3.8.

We attribute the better baseline performance of CNNverylarge to data augmenta-

tion and the bigger network. The pruning plots in Fig. 3.8 shows similar trends as

reported in Fig. 3.7. For this network, we also demonstrate the pruning ratios with

the constraint-free unstructured pruning. It can be observed that higher pruning ra-

tios can be induced if there is no regularity constraint imposed on pruning. However,

higher pruning ratios may not directly translate into reduced complexity. We need

to identify the indices of non-zero weights with CSR/CSC sparse representation as

mentioned earlier. Further, the unstructured pruning is not good for utilizing parallel

architectures, such as SIMD. Thus the effectiveness and cost of sparse representation

also needs to be taken into consideration. The good side of constrained pruning is that

we need very simple sparse representation and we can achieve higher pruning ratios

by pruning the network with mixed granularities as shown in Fig. 3.8. If we compare

the pruning plots of Fig. 3.6, 3.7 and 3.8, it can be observed that higher pruning ra-

tios can be induced with the increasing size of the network. Thus we show that the

45

Prune Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Unstructured pruning

Feature map pruning

IKSS pruning

IKSS followed by feature map pruning

Baseline MCR is 3.41%

Tolerance MCR is 4.00%

Figure 3.9: Pruning SVHN network

proposed pruning techniques have good scalability. In fact, we argue that a large size

network is more resilient to pruning than a small one because the pruning followed

by retraining makes the network learn the adversary effects [39].

3.3.4 SVHN Dataset

The plot shows different pruning granularities applied to SVHN dataset. Further,

we also show the pruning granularities applied in different combinations.

The SVHN dataset consists of 32×32 RGB images of house numbers [36]. This

dataset bears similarity with the MNIST dataset [7] but is more challenging. The goal

is to identify a digit in the center of a patch as there may be more than one digit in

a sample. The dataset consists of 73,257 digits for training, 26,032 for testing and

46

53,1131 extra for training. The extra set consists of easy samples and is used along

with the training set. We generate a validation set consisting of 10×400 samples from

the training set and 10× 200 samples from the extra [40]. This way we have 6,000

validation samples. This criterion is also used in [40]. The network architecture is

reported like this: (2×64C3)-MP2-(2×128C3)-MP2-(2×128C3) -512FC-512FC-

10So f tmax. This network is trained with batch normalization and RmsProp. This

network achieves the baseline MCR of 3.41% on the SVHN test set. The correspond-

ing pruning plots are reported in Fig. 3.9. Due to the small kernel size (3× 3), we

cannot achieve higher pruning ratios with IKSS. However, the constraint-less intra-

kernel pruning can induce more than 70% pruning in the network. The network can

be pruned with feature map granularity by more than 65% and thus the layer width

is reduced. We achieve the best pruning ratio with structured pruning when we first

prune the convolutional layers with IKSS followed by feature map pruning. This way

we show that the network can be pruned by more than 70% with structured sparsity

which requires very simple sparse representation. Thus we infer that the conclusions

drawn in the previous sections generalize well to datasets other than the CIFAR-10.

3.3.5 Execution Time Savings

The plot shows the acceleration due to feature map and intra-kernel pruning gran-

ularities for second convolution layer of CNNsmall . The x-axis shows the batch size

whereas the y-axis shows the per image CPU time. The convolution connections are

reduced from 32× 32(C5) to 32× 20(C5) with feature map pruning. Intra-kernel

sparsity is then induced in the feature map pruned network which further accelerates

the network.

In this section we report and compare the execution time of pruning granular-

47

1 4 16 64 128 256 512 1024

P
er

 Im
ag

e
C

on
v

la
ye

r
2

C
P

U
 T

im
e

(m
ill

is
ec

)

0

0.5

1

1.5
32(14x14)) - 32(10x10) Convolution layer

5x5

Conv as Matrix Multiplication (MM) and MCR 25.71%
Feature Map Pruning (FMP) with MM and MCR 26.8%
(FMP + Intra-Kernel) Pruning with MM and MCR 26.5%

Figure 3.10: Profiling results

ities. For feature map pruning, we conduct convolutions as matrix multiplications

with the BLAS library [13]. We first unroll the feature maps and kernels and con-

duct matrix multiplication on CPU. The execution time statistics are profiled for the

aforementioned CNNsmall network and reported in Fig. 3.10. The execution time for

feed-forward path matters at real time and we profile it with various batch sizes (1, 4,

16, 64, 128, 256, 512 and 1024). We can observe from Fig. 3.10 that the macro prun-

ing causes an acceleration of second convolution layer by 1.3 times where 32× 32

convolution connections are reduced to 32×20. This macro pruned network then un-

dergoes IKSS. This further accelerates the macro pruned network by 2 times. Overall

the matrix-matrix multiplication of the non-pruned network is accelerated by 2.67

times. Further, Fig. 3.10 shows that the speedups are in conformity with the theoreti-

cal numbers.

48

3.4 Comparison with the Previous Related Works

Several previous works have used pruning techniques to reduce the computational

cost of deep neural networks. Computational complexity is reduced with sparse con-

nectivity in convolution and fully connected layers in [16]. [17] pruned multi-layered

feed-forward networks with genetic algorithm and simulated annealing [17]. A sur-

vey on pruning techniques is reported in [18]. These works [15, 16, 17, 18] utilize

unstructured sparsity in feed-forward neural networks. A recently published work in-

duces channel wise sparsity in a network [9]. Compared to [9], the proposed work

explores sparsity at multiple levels using an evolutionary approach. Dropout [41] and

Dropconnect [42] zeroes neuron outputs and weights only during training and the

network architecture does not change at the evaluation time. Both techniques train

different subsets of network parameters during training which results in better gen-

eralization. The proposed work drops parameters permanently and yields network

with fewer parameters at test time. Convolutions are converted to matrix-matrix mul-

tiplication in [13], which follows from the same logic that two bigger sized matrix

multiplications are better than several small sized ones [14]. Units in the hidden lay-

ers are pruned in [15] for a feed-forward deep neural network.

The reference work of [43] bears similarity with the proposed work for the case of

intra-kernel sparsity. [43] is mainly aimed at implementing convolutions as matrix-

matrix multiplications. In our proposed work, we explicitly apply various pruning

granularities and the light weight network obtained from feature map pruning can be

implemented in conventional way, convolution unrolling or convolution with FFTs

[4]. Secondly the group wise sparsification in [43] is not necessarily strided. [43]

learns the pruning mask with group-wise sparsification while our proposed approach

49

finds the pruning mask with an evolutionary particle filter. Further, the same work

states that setting the regularization parameter is complicated.

3.5 Conclusions

In this Chapter, we presented structured sparsity in deep convolutional neural

networks as a means of reducing the computational complexity of the convolution

layers. The sparsity in the feature map and the kernel levels is explained along with

the intra-kernel strided one. The selection of the best pruning mask is guided by the

evolutionary particle filtering algorithm. We found that the feature map level pruning

is limited by the width of a layer while the intra-kernel sparsities are much affected by

the kernel size. The proposed work has further showed that the IKSS along with con-

volution unrolling can significantly reduce the computational complexity of convolu-

tions. Moreover, with three different CNN architectures and baseline performances,

we showed that the proposed approach scales well to various network sizes.

50

Chapter 4

Kernel Pruning

4.1 Introduction

In this chapter, we target to sparsify the meshed convolution connectivity pattern.

Wider convolution layers with dense kernel connectivity patterns increase the compu-

tational cost of inference. We propose feature map and kernel level pruning for reduc-

ing the computational complexity of a deep convolutional neural network. Figure 4.1

depicts this idea where feature map and kernel pruning are shown in Fig. 4.1(a) and

(b) respectively. Pruning feature maps reduces the width of a layer and hence does

not need any sparse representation. Further, kernel pruning changes the dense con-

nectivity pattern into a sparse one. Due to coarse nature, these pruning granularities

can be exploited by GPUs and VLSI based implementations. We propose a simple

strategy to choose the least adversarial pruning masks. The proposed approach is

generic and can select good pruning masks for feature map, kernel and intra-kernel

pruning. The pruning masks are generated randomly, and the best performing one is

51

selected using the evaluation set. The sufficient number of random pruning masks to

try depends on the pruning ratio, and is around 100 when 40% complexity reduction

is needed. The pruned network is retrained to compensate for the loss in accuracy.

We have extensively evaluated the proposed approach with the CIFAR-10, SVHN

and MNIST datasets. Experiments with the CIFAR-10 dataset show that more than

85% sparsity can be induced in the convolution layers with less than 1% increase in

the misclassification rate of the baseline network.

4.2 Kernel and Feature Map Pruning

In this section we discuss feature map and kernel pruning granularities. For a

similar sized network, we analyse the achievable pruning ratios with feature map

and kernel pruning. In terms of granularity, feature map pruning is coarser than ker-

nel pruning. Feature map pruning does not need any sparse representation and the

pruned network can be implemented in a conventional way, convolution lowering

[13] or convolution with FFTs [4]. The main focus of the proposed work is analysing

the unconstrained kernel pruning and feature map pruning. Pruning a feature map

eliminates all the incoming and outgoing kernels because the outgoing kernels are no

more meaningful.

Kernel pruning is comparatively finer. The dimension and connectivity pattern

of 2D kernels determine the computing cost of a convolutional layer. The meshed

fully connected convolution layers increases this cost and can hinder the real-time in-

ference. The unconstrained kernel pruning converts this dense connectivity to sparse

one. Kernel-pruning zeroes k×k kernels and is neither too fine nor too coarse. Kernel

level pruning provides a balance between fine-grained and coarse-grained pruning. It

52

1

Conv2

L1 L2 L3

Conv1

(a) Feature map pruning

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(c) k × k Kernel-pruning

W
idth reduction

Conv2

L1 L2 L3

Conv1

(b) Kernel pruning

Figure 4.1: Unconstrained kernel pruning

is coarser than the intra-kernel sparsity and finer than the feature map pruning. That

is why good pruning ratios can be achieved at very small sparse representation and

computational cost. Each convolution connection represents one convolution opera-

tion which involves Width×Height× k× k MAC operations. In LeNet [7], the sec-

ond convolution layer has 6×16 feature maps and the kernel connectivity has a fixed

sparse pattern. With kernel pruning, we learn this pattern and achieve the best possi-

ble pruning ratios. The pruned network is then retrained to compensate for the losses

incurred due to pruning. Figure 4.5 shows the feature map and kernel level pruning

applied to MNIST [7] network. When pruning ratios increase beyond 60%, feature

map pruning degrades the performance much. However the kernel level pruning can

achieve higher pruning ratios due to finer scale granularity.

As the sparse granularities are coarse, a generic set of computing platform can

benefit from it. One disadvantage of the unconstrained kernel pruning is that convolu-

tions cannot be unrolled as matrix-matrix multiplications [13]. However, customized

VLSI implementations and FFT based convolutions do not employ convolution un-

rolling. Mathieu et. al., have proposed FFT based convolutions for faster CNN train-

ing and evaluation [4]. The GPU based parallel implementation showed very good

53

speedups. As commonly known that the IFFT (FFT (kerenel) × FFT (f eaturemap))=

kernel ∗ f eaturemap, the kernel level pruning can relieve this task. Although the ker-

nel size is small, massive reusability of the kernels across the mini-batch enables the

use of FFT. The FFT of each kernel is computed only once and reused for multiple

input vectors in a mini-batch. In a feed-forward and backward path, the summations

can be carried in the FFT domain and once the sum is available, the IFFT can be

performed [4]. Similarly, a customized VLSI based implementation can also bene-

fit from the kernel level pruning. If the VLSI implementation imposes a constraint

on the pruning criterion, such as the fixed number of convolution kernels from the

previous to the next layer, the pruning criterion can be adapted accordingly. Figure

4.5 shows that the kernel pruning can be induced in much higher rates with minor in-

crease in the MCR of the baseline MNIST network. In the next section, we report and

discuss the experimental results in detail. As the commonly available libraries do not

support masked convolutions, we therefore profile kernel pruning with customized

GPU functions. The profiling results for kernel pruning are reported in Fig. 4.2 and

4.3. It can be observed that the kernel pruning reduces the execution time. The GPU

function call scheduler shows that the call is only for non-masked kernels and passes

the appropriate indices. The experiment is conducted with the CIFAR-10 CNN. In

Fig. 4.3, Fi and Fo shows the input and output feature maps, while pr represents the

pruning ratio. It can be observed that fewer number of convolutions will reduce the

required number of GFLOPs. However, we conjecture that the true benefit of kernel

pruning can be obtained with FFT based masked convolution.

54

Kernel Prune Ratio
1 2 3 4 5 6 7 8

M
ill

iS
ec

on
ds

0

20

40

60

80

100

120

140

Conv1 3 # 128
Conv2 128 # 128
Conv3 128 # 128
Conv4 128 # 128
Conv5 128 # 256

 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Figure 4.2: Profiling kernel pruning

L1
L2

H

W

…
…

Fi Fo

k × k

dim3 dimGrid (Fi×Fo×pr, BatchSize, 1);
dim3 dimThread (H, W, 1);

Figure 4.3: GPU function scheduler call

55

Feature Map Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
va

lid
at

io
n

se
t

-5

0

5

10

15

20

25

30

35

40

45

50

Baseline MCR 0.62%
Pruning with weight sum voting
Pruning with the best of 10 random masks
Pruning with the best of 20 random masks
Pruning with the best of 50 random masks
Pruning with the best of 100 random masks
Pruning with the best of 200 random masks

Figure 4.4: Best of N random masks vs absolute weight sum

0 0.2 0.4 0.6 0.8 1
Pruning Ratio

0

0.5

1

1.5

2

2.5

3

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g (1). MCR

Baseline
 = 0.79%

(2). Kernel Pruning
(3). FeatureMap Pruning

Figure 4.5: Feature map and constraintless kernel pruning

56

Table 4.1: The CIFAR-10 networks
Network Architecture Baseline MCR(%) Data Augmentation

CNNMNIST 1 16(C5)−32(C5)−64(C5)−120−10 0.62 NO
CNNMNIST 2 6(C5)−16(C5)−120(C5)−84−10 0.79 NO

CNNCIFAR10.small 2× 128C3−MP2−2× 128C3−MP2−2× 256C3−256FC−10So f tmax 16.6 NO
CNNCIFAR10.large 2× 128C3−MP2−2× 256C3−MP2−2× 256C3−1× 512C3−1024FC−1024FC−10So f tmax 9.41 YES

CNNSV HN (2× 64C3)−MP2− (2× 128C3)−MP2− (2× 128C3)−512FC−512FC−10So f tmax 3.5 NO

4.3 Experimental Results

In this section, we present detailed experimental results with the CIFAR-10 and

SVHN datasets [35]. During training and pruning, we use the stochastic gradient

descent (SGD) with a mini-batch size of 128 and RMSProp [37]. We train all the net-

works with batch normalization [34]. We do not prune the network in small steps, and

instead one-shot prune the network for a given pruning ratio followed by retraining.

The experimental results are reported in the corresponding two subsections.

4.3.1 CIFAR-10

The CIFAR-10 dataset includes samples from ten classes: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship and truck. The training set consists of 50,000

RGB samples and we allocate 20% of these samples as the validation set. The test

set contains 10,000 samples and each sample has 32× 32× RGB resolution. We

evaluate the proposed pruning granularities with two networks, CNNCIFAR10.small and

CNNCIFAR10.large. CNNCIFAR10.small has six convolution and two overlapped max pool-

ing layers. We report the network architecture with an alphanumeric string as reported

in [38] and outlined in Table 4.1. The (2×128C3) represents two convolution layers

with each having 128 feature maps and 3× 3 convolution kernels. MP2 represents

3×3 overlapped max-pooling layer with a stride size of 2. We pre-process the orig-

inal CIFAR-10 dataset with global contrast normalization followed by zero compo-

57

nent analysis (ZCA) whitening.

The CNNCIFAR10.large has seven convolution and two max-pooling layers. Fur-

ther, online data augmentations are employed to improve the classification accu-

racy. We randomly crop 28× 28× 3 patches from the 32× 32× 3 input vectors.

These cropped vectors are then geometrically transformed randomly. A vector may

be flipped horizontally or vertically, rotated, translated and scaled. At evaluation time,

we crop patches from the four corners and the center of a 32×32×3 patch and flip

it horizontally. We average the evaluation on these ten 28×28×3 patches to decide

the final label. Due to larger width and depth, the CNNCIFAR10.large achieves more

than 90% accuracy on the CIFAR-10 dataset. The CNNCIFAR10.small is smaller than

CNNCIFAR10.large and trained without any data augmentation. The CNNCIFAR10.small

therefore achieves 84% accuracy.

4.3.1.1 Individual Pruning Granularities

After layer pruning, feature map pruning is the 2nd coarsest pruning granular-

ity. Feature map pruning reduces the width of a convolutional layer and generates a

thinner network. Pruning a single feature map, zeroes all the incoming and outgoing

weights and therefore, higher pruning ratios degrade the network classification per-

formance significantly. Feature map pruning for the CNNCIFAR10.small is shown in Fig.

4.6 with a circle marked red colored line. The sparsity reported here is for Conv2 to

Conv6. We do not pruned the first convolution layer as it has only 3×128×(3×3) =

3456 weights. The horizontal solid line shows the baseline MCR of 16.26% whereas

the dashed line shows the 1% tolerance bound. Training the network with batch nor-

malization [34] enables us to directly prune a network for a target ratio, instead

of taking small sized steps. With a baseline performance of 16.26%, the network

58

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

(1). MCR
Baseline

 = 16.260%

(2). MCR
Baseline + Tol(1.0)

 = 17.26%

(3). FeatureMap Pruning
(5). Kernel Pruning

Figure 4.6: Feature map and kernel pruning, CIFAR−10

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

(1). MCR
Baseline

 = 16.260%

(2). MCR
Baseline + Tol(1.0)

 = 17.26%

(3). FeatureMap Pruning
(4). Feature Map Followed by Kernel Pruning
(5). Kernel Pruning
(6). Kernel Prune Followed by Feature Map Pruning

Figure 4.7: Combinations of feature map and kernel pruning

59

Table 4.2: Feature map and kernel level pruning (75%) in CNNCIFAR10.small
Feature Maps Pruned Feature Maps Feature Maps Prune Ratio Pruned Kernels (%) Conv Connections Kernel Prune Ratio (%)

Conv2(128× 128) 128× 89 30.5 27306/9 = 3034 11392 3034/11392 = 26.6
Conv3(128× 128) 89× 89 51.5 18702/9 = 2078 7921 2078/7921 = 26.2
Conv4(128× 128) 89× 89 51.5 18702/9 = 2078 7921 2078/7921 = 26.2
Conv5(128× 256) 89× 179 51.4 37881/9 = 4209 15931 4209/15931 = 26.4
Conv6(256× 256) 179× 179 51.1 76851/9 = 8539 32041 8539/32041 = 26.6

performance is very bad at 80% feature map pruning. We can observe that 62%

pruning ratio is possible with less than 1% increase in MCR. The CNNCIFAR10.small

is reduced to (128C3−83C3)-MP3-(83C3−83C3)-MP3-(166C3−166C3)-256FC-

10So f tmax. As pruning is only applied in Conv2 to Conv6, therefore the Figure 4.6

pruning ratios are computed only for these layers.

For the same network, we can see that kernel level pruning performs better. We

can achieve 70% sparsity with kernel level pruning. This is attributed to the fact that

kernel pruning is finer and hence it achieves higher ratios. Further kernel pruning

may ultimately prune a feature map if all the incoming kernels are pruned. However

at inference time, we need to define the kernel connectivity pattern which can simply

be done with a binary flag. So although the sparse representation is needed, it is quite

simple and straightforward. Experimental results confirm that fine grained sparsity

can be induced in higher rates. We achieved 70% kernel wise sparsity for Conv2 -

Conv6 and the network is compressed with very simple sparse representation.

4.3.1.2 Combinations of Kernel and Feature Map Pruning

In this section we discuss the various pruning granularities applied in different

combinations. We first apply the feature map and kernel pruning to the CNNCIFAR10.small

network in different orders. With feature map pruning, we can achieve 60% sparsity

under the budget of 1% increase in MCR. But at this pruning stage, the network learn-

60

0 0.2 0.4 0.6 0.8 1
Prune Ratio

Conv2-Conv7

7

8

9

10

11

12

13

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g

FeatureMap Pruning
Kernel Pruning
FeatureMap followed by Kernel Pruning
Baseline MCR = 9.39%
Baseline + Tolerance (1.0%)

Figure 4.8: Pruning CNNCIFAR10.large

Prune Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Feature map pruning

Kernel Pruning

Baseline MCR is 3.5%

Tolerance MCR is 4.00%

Figure 4.9: Pruning CNNSV HN

61

ing capability is affected much. So we take a 50% feature map pruned network, where

the CNNCIFAR10.small is reduced to (128C3−89C3)-MP3-(89C3−89C3)-MP3-(179C3−179C3)-

256FC-10So f tmax. As pruning is only applied to Conv2−Conv6, therefore in Fig.

4.6, pruning ratios are computed only for these layers. This network then undergoes

kernel level pruning. The blue rectangle line in Figure 4.7 shows the pruning results.

We achieve the best pruning results in this case and the final pruned network is re-

ported in detail in Table 4.2. Overall we achieve more than 75% pruning ratio in the

final pruned network.

We further conducted experiments on the CNNCIFAR10.large and the correspond-

ing plots are shown in Fig. 4.8. The CNNCIFAR10.large is much wider and deeper

than the CNNsmall as reported in Table 1. Therefore there are more chances of re-

dundancy and hence more room for pruning. Further we observe similar trends as

CNNCIFAR10.small where the kernel pruning can be induced in higher ratios compared

to the feature map pruning. When the kernel pruning is applied to the feature map

pruned network, we can achieve more than 88% sparsity in the Conv2−Conv7 of the

CNNCIFAR10.large network. This way we show that our proposed technique has good

scalability. These results are in conformity to the resiliency analysis of fixed point

deep neural networks [39].

4.3.2 CIFAR-100

The CIFAR-100 dataset has 50,000 images classified into 100 fine and 20 coarse

labels. The dataset has 50,000 training and 10,000 test set images. The hundred class

classification problem of CIFAR-100 has 500 images for each class. We construct a

validation set for learning rate scheduling during training. The validation set is con-

structed with 100 samples for each class from the training set. This way we are left

62

Prune Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
 o

n
th

e
C

IF
A

R
-1

00
 T

es
t S

et

32

33

34

35

36

37

38

39

40

41

Baseline MCR 33.65%

Baseline + 1.0%

Feature Map Prunning

Kernel Prunning

Feature Map(42%) Followed by Kernel Pruned

Feature Map(50%) Followed by Kernel Pruned

Figure 4.10: CIFAR-100 CNN

with 400 samples per class for training. We train the network with 40,000 images

with data augmentation and batch normalization [34]. We obtain a baseline accuracy

of 33.65% on the CIFAR-100 test set with a VGG styled network. The network ar-

chitecture is reported in Table 2.1 as CNNCIFAR100. The pruning plots for this dataset

are provided in Fig. 4.10. It can be observed that around 60% of the network pa-

rameters can be pruned with less than 1% (absolute) increase in the network perfor-

mance. Moreover, pruning in combinations further improve the pruning ratios. Thus

the lessons learnt generalize well to other datasets.

63

4.3.3 SVHN

The SVHN dataset consists of 32× 32× 3 cropped images of house numbers

[Netzer et al. 2011] and bears similarity with the MNIST handwritten digit recogni-

tion dataset [LeCun et al. 1998]. The classification is challenging as more than one

digit may appear in sample and the goal is to identify a digit in the center of a patch.

The dataset consists of 73,257 digits for training, 26,032 for testing and 53,1131 extra

for training. The extra set consists of easy samples and may augment the training set.

We generate a validation set of 6000 samples which consists of 4000 samples from

the training set and 2000 samples from the extra [Sermanet et al. 2012]. The network

architecture is reported like this: (2× 64C3)-MP2- (2× 128C3)-MP2-(2× 128C3)-

512FC-512FC-10Softmax. This network is trained with batch normalization and we

achieve the baseline MCR of 3.5% on the test set. The corresponding pruning plots

are reported in Fig. 4.9. We can observe a similar trend where kernels can be pruned

by a bigger ratio compared to feature maps. More than 70% pruning ratio can be im-

plemented in the reported network. Thus we show that the lessons learnt generalize

well on various datasets.

There can be a concern that pruning may decrease the accuracy of the original

network when it is deployed in the field for run time classification. For a specific

problem domain, the test set is used as a proxy for the future unseen data. We argue

that to some extent, this question can be answered by comparing the per class error for

the original and pruned networks. This way we can see whether the pruned network is

biased towards a specific class. To anlayse this, we computed the per class error with

the CNNSV HN network as reported in Table 4.1. The results are reported in Fig. 4.11.

It can be observed that the per class error for both validation and test set do not vary

64

Class (0 to 9 Digits)
1 2 3 4 5 6 7 8 9 10

Pe
r

C
la

ss
 M

C
R

V
al

0

0.02

0.04

0.06

0.08

0.1
Non-Pruned
Feature Map Pruned
Kernel Pruned

Class (0 to 9 Digits)
1 2 3 4 5 6 7 8 9 10

Pe
r

C
la

ss
 M

C
R

T
es

t

0

0.02

0.04

0.06

0.08

0.1
Non-Pruned
Feature Map Pruned
Kernel Pruned

Figure 4.11: Per class error on the SVHN dataset

significantly. We therefore infer that the pruning and retraining process is a promising

technique for complexity reduction.

This figure shows the per class MCR for the original, feature map, and kernel

pruned networks. It can be observed that the per class error does not vary much in the

pruned networks. This shows that the pruning method is not biased towards a specific

class. The feature map pruned network has 63.67% sparsity with MCRTest = 3.84%,

MCRVal = 4.16%. The kernel pruned network has 65.01% sparsity with MCRTest =

3.77%, MCRVal = 4.45%. The sparsity are computed for Conv2-Conv6.

4.4 Related Works

In the literature, network pruning has been studied by several researches [2, 3,

1, 15, 16, 17, 18]. [16] have proposed a technique where irregular sparsity is used

to reduce the computational complexity in convolutional and fully connected lay-

ers. However they have not discussed how the sparse representation will affect the

computational benefits. The works of [2, 3] introduce fine-grained sparsity in a net-

work by pruning scalar weights. If the absolute magnitude of any weight is less than

a scalar threshold, the weight is pruned. This work therefore favors learning with

65

small valued weights and train the network with the L1/L2 norm augmented loss

function. Due to pruning at very fine scales, they achieve excellent pruning ratios.

However this kind of pruning results in irregular connectivity patterns and demand

complex sparse representation for computational benefits. Convolutions are unrolled

to matrix-matrix multiplication in [13] for efficient implementation. The work of

[43] also induce intra-kernel sparsity in a convolutional layer. Their target is effi-

cient computation by unrolling convolutions as matrix-matrix multiplication. Their

sparse representation is not also simple because each kernel has an equally sized

pruning mask. A recently published work propose sparsity at a higher granularity

and induce channel level sparsity in a CNN network for deep face application [9].

The work of [15, 16, 17, 18] utilize unstructured fine grained sparsity in a neural net-

work. Fixed point optimization for deep neural networks is employed by [19, 44, 39]

for VLSI based implementations. The reference work of [5] analyzed feature map

pruning with intra-kernel strided sparsity. To reduce the size of feature map and ker-

nel matrices, they further imposed a constraint that all the outgoing kernels from a

feature map must have the same pruning mask. In this work, we do not impose any

such constraint and the pruning granularities are coarser. We argue that this kind of

sparsity is useful for VLSI and FFT based implementations. Moreover we show that

the best pruning results are obtained when we combine feature map and kernel level

pruning.

4.5 Concluding Remarks

In this Chapter, we discussed feature map and kernel pruning for reducing the

computational complexity of deep CNN. We have discussed that the cost of sparse

66

representation can be avoided with coarse pruning granularities. We demonstrated

a simple and generic algorithm for selecting the best pruning mask from a random

pool. We showed that the proposed approach adopts a holistic approach and performs

better than the other methods. We conducted experiments with several benchmarks

and networks and showed that the proposed technique has good scalability.

67

Chapter 5

Quantizing the Pruned Networks

5.1 Introduction

In this chapter, we introduce fixed-point optimization techniques for quantizing weights

and signals. Generally, network parameters are stored in 32-bit floating point preci-

sion and reducing the word length is highly desired, especially for VLSI implementa-

tion. We start with a network pre-trained in high precision, prune it and then quantize

it. This chapter explains the retraining based quantization algorithm and provides

experimental results for fixed-point optimization of the pruned networks.

Deep convolutional neural networks have shown promising results in image and

speech recognition applications. The learning capability of the network improves

with increasing depth and size of each layer. However this capability comes at the

cost of increased computational complexity. Thus reduction in hardware complex-

ity and faster classification are highly desired. This work proposes an optimization

method for fixed point deep convolutional neural networks. The parameters of a pre-

68

trained high precision network are first directly quantized using L2 error minimiza-

tion. We quantize each layer one by one, while other layers keep computation with

high precision, to know the layer-wise sensitivity on word-length reduction. Then the

network is retrained with quantized weights. Two examples on object recognition,

MNIST and CIFAR-10, are presented. Our results indicate that quantization induces

sparsity in the network which reduces the effective number of network parameters

and improves generalization.

In the literature, fixed point implementations of neural networks have been stud-

ied. A quantized feed-forward DNN and it’s VLSI implementation is introduced

in [45, 44]. However, compared to DNN, CNN has more diverse layer types and

hence quantization is more challenging. The work of [46] uses a directly quan-

tized CNN. However it does not provide a retraining mechanism with low precision

weights. In this Chapter, we outline our important contributions in fixed-point op-

timization and pruning. We provide a training mechanism with quantized weights

which reduces the cost of VLSI hardware implementation. Weights with floating

point precision are reduced to 3 and 4-bit precision, which yields more than 80% sav-

ings. The proposed work shows that quantizing the network to reduced world length

resets 17.3% of network parameters to zero. When we only analyze the convolution

layers, 19.2% parameters of the convolution layers are reset to zero. This leads to

regularization impact on the network, which results in better generalization.

The rest of this Chapter is organized as follows. Section 5.2.1 presents direct

quantization with L2 error minimization. Section 5.2.3 explains network retraining

with quantized weights. Chapter 5.3 introduces separable fixed-point kernels. Quan-

tization of the pruned networks is discussed in Section 5.4.2.

69

5.2 Retraining Based Quantization

The proposed work divides a network into layer-wise signal groups for quantiza-

tion [47]. Throughout this chapter, high precision refers to single precision floating

point. Each convolution kernel is treated independently and has its own quantiza-

tion step size. For example, if the first convolution layer has 1× 6 feature maps and

5 × 5 receptive field, then we have 6 convolutions in total. Each convolution op-

eration shares a single quantization step size among 5 × 5 = 25 weights. However

each fully connected rear end layer has one quantization step size. In uniform quan-

tization, the network is quantized with the same number of quantization levels for

all layers. However our sensitivity analysis shows that better savings can be obtained

with layer-specific quantization levels.

5.2.1 L2 Error Minimization and Direct Quantization

The L2 error minimization quantizes weights with an optimum quantization step size.

The L2 error minimization criterion is the same as reported in [44] and Fig. 5.1.

The approach is similar to Lloyd-Max quantization except that the quantizer is uni-

form [44]. Q(x) represents the quantization function, ∆ shows the quantization step

size, M represents the number of quantization levels and z shows integer membership.

Results with direct quantization are reported in Table 5.2.1. The corresponding float-

ing point misclassification rate (MCR) is 0.81%. We can find that misclassification

rates with directly quantized network are not good. The network performance can be

improved with retraining.

70

Figure 5.1: Direct quantization with L2 error minimization

Table 5.1: Direct quantization of the MNIST network
Conv1 Conv2 Conv3 FC1 FC2 MCR Test Set (%)

3 5 5 7 31 1.68
5 5 5 15 31 1.73
7 7 7 15 31 1.1
7 7 7 15 255 1.02

71

M quantization levels
5 10 15 20 25 30 35

M
SE

T
ra

in

×10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Conv
L a ye r1

Conv
L a ye r3

Conv
L a ye r5

Rear
L a ye r6

Rear
L a ye r7

Figure 5.2: Layer-wise quantization sensitivity analysis

5.2.2 Layer Wise Sensitivity Analysis for Non-Uniform Quantization

In the current context, non-uniformity is layer wise and not in terms of selecting

quantization levels. Uniform quantization means applying the same value of M to

all layers, Mconv = Mrear. In order to squeeze the full benefits of quantized network,

we conduct quantization sensitivity analysis for all convolution and rear layers. The

sensitivity analysis procedure for a general signal processing system is outlined in

[47]. The sensitivity analysis helps in computing the near-optimum value of M for

each layer. We quantize one layer and keep the other layers in high precision. This

process is conducted one by one for all the layers. The sensitivity analysis plot is

shown in Fig. 2. The analysis is conducted for M = 3,5. . .31. Note that M of 31

corresponds to 5 bits quantization. The mean square error (MSE) on training set is

recorded when the network converges. Figure 2 shows that the weights between the

72

1. Obtain quantized

weights from high

precision weights

2. Feed forward with

quantized weights and

compute output error

3. Back propagate the error gradients

with quantized weights and update

the high precision weights

Figure 5.3: Retraining with quantized weights

penultimate and final layer, Rearlayer7 are most sensitive to quantization. This is due

to the addition of quantization noise closer to the network output. In our remaining

experiments we keep this layer with 5 or 8 bit precision. Rearlayer6 is the second most

sensitive layer and we keep it with 4-bit precision. Convolution layers have proved to

be robust to quantization and are kept in 3 bit precision. The next section discusses

the retraining mechanism with quantized weights.

5.2.3 Retraining with the Quantized Weights

Direct quantization reduces the word length at the cost of degraded performance.

Therefore retraining is desired to improve classification. As the theory of error back

propagation [48] is well known, we focus here on explaining error back propagation

in the context of our quantization framework. During training we keep parameters in

both high and low precision. We set aside 5000 training samples for validation. This

set is used to decide the network convergence criterion. We start with a high preci-

sion pre-trained network and obtain a quantized network using L2 error minimiza-

tion. Then the input samples are fed forward via the network with the low precision

73

weights. This way the output error is indirectly driven by the quantization process.

The output error is back propagated via low precision weights. The computed change

in weights is added to the high precision weights. Thus we obtain new high precision

weights. This process is iterated for several mini-batches and epochs. During training

the selection of mini-batch size is important. Generally CNN employs the stochastic

gradient descent (SGD) algorithm.

5.3 Separable Fixed-Point Kernels

Conceptually the convolution layers perform feature extraction while the rear end

fully connected layers conduct classification. Usually most of the computations are

performed in the convolution layers [7, 11]. Further, bigger sized convolution kernels

may have improved representational capacity at the cost of increased processing. It

is therefore highly desired to optimize these convolution layers. It was proposed by

[49] that a 2D matrix can be approximated with the product of two 1D vectors. The

singular value decomposition (SVD) was formally introduced in [50] to approximate

a set of filters with linear combinations of a small number of basis functions.

A 3× 3 Sobel edge detector example is shown in Fig. 1. For a K × K filter, the

count of weights is reduced to K+K and the speedup is K2/2K. The principal of sep-

arability is applied in [51] where two sets of separable and non-separable filters are

first learnt. The non-separable filters are then approximated as linear combination of

separable filters. Jaderberg et al. performs low rank decomposition not only for filters

but also in the channel dimension [52]. In [16], the memory and runtime cost is re-

duced with sparse connectivity in convolution and fully connected layers. Fixed-point

optimization of DNN and CNN is proposed in [45, 44, 19] for reduced memory and

74

K =

−1 0 1
−2 0 2
−1 0 1

𝐾 = 𝑣 ∗ ℎ 𝑤ℎ𝑒𝑟𝑒 𝑣 =
1
2
1

 and ℎ = −1 0 1

Figure 5.4: A 3× 3 separable kernel

runtime costs. However all these kernels are either non-separable or learnt in high

precision (32 bit). In this Section, we outline our important contributions. We first

approximate the separable kernels from non-separable ones using SVD. This is fol-

lowed by quantization with reduced word-lengths for decreasing the computational

and VLSI implementation cost. In order to compensate for the performance loss due

to filter separation and weigh quantization, these operations are conducted inside of

the retraining process so that the network learns the effect of these transforms and

quantization. We first train the network with floating point weights using error back

propagation and mini-batch gradient descent. The network has the freedom to learn

any kinds of filters and no constraint is imposed on it at this stage. Each convolu-

tion kernel is then decomposed into 3 matrices using SV D. Eq. (5.1) and (5.2) show

this relationship. Matrix U and V are orthogonal matrices and S is a diagonal matrix

containing singular values. The reconstructed matrix W will be rank 1 if we only use

S(1,1) in Eq. (5.2).

75

[U,S,V] = SV D(W) (5.1)

W =U × S × V T (5.2)

The SVD kernels and weights in the fully connected layer are then fixed-point

optimized which is explained in the following two subsections. Separability and

quantization can significantly reduce the required memory for storing convolutional

weights. The kernels are only relevant for convolution layers. It is important to note

that SV D computation does not demand any cost at the inference time since it is only

computed during training. We retrain the directly quantized network with our algo-

rithm outlined in Fig. 5.5. We modify the error back propagation algorithm in such

a way that we can learn separable quantized kernels. During retraining we maintain

both high and low precision weights. We initialize the network using the pre-trained

floating point network. Each high precision 2D convolution kernel W is decomposed

into two 1D vertical and horizontal filters (v,h) using SVD. At this stage both v and

h are in high precision. We reconstruct the rank 1 high precision W (s) = v× h. The

difference between W and W (s) depends on the linear independence of columns or

row vectors of W . In our analysis, smoother error gradients are obtained when we up-

date W with W (s). The v and h vectors are then quantized with M quantization levels

and we obtain v(q) and h(q). These two 1D vectors now represent the 2D separable

quantized kernel W (sq). The rear end fully connected layer weights are also quantized

using L2 error minimization. These quantized kernels and weights are then used in

the forward path of the network. This way the network output and the network error

is driven by the quantization and separability constraints. The low precision weights

76

Table 5.2: Retraining the quantized MNIST network
M Quantization Levels

Signal Quantization (bits) Conv1 Conv2 Conv3 FC1 FC2 MCR Test Set (%)

7 7 7 15 15 0.92
5 7 7 7 15 31 0.88

7 7 7 15 255 0.89

7 7 7 15 15 0.91
8 7 7 7 15 31 0.88

7 7 7 15 255 0.91

7 7 7 15 31 0.84
32 7 7 7 15 255 0.77

and separable quantized kernels are used to propagate the output error backwards.

The error is accumulated in high precision and floating point weights are updated.

The newly obtained high precision weights are again made separable and quantized

in the next iteration.

5.4 Quantizing the Pruned Networks

We first show our experimental results with non-pruned networks. MNIST is a

handwritten digit recognition dataset consisting of 60,000 training and 10,000 test

samples. Each sample has 32 × 32 resolutions and is gray scale. We experiment

with CNN architecture having 6(C5)−MP2−16(C5)−MP2−120(C5)−84FC1−

10So f tmax layer wise feature maps. We train the network with rectified linear units

(ReLUs). Table 3 shows the classification results. We can find that higher precision

for the rear layer results in better classification. The quantized network performs bet-

ter, similar or comparable classification with only 10% memory space consumption.

Signal quantization reduces the required hardware but slightly increases the misclas-

77

Figure 5.5: Network retraining with separable quantized kernels

78

Table 5.3: Quantizing the CNNSV HN network
Conv1-Conv6 FC1-FC2 MCR Test Set (%)

3 3 3.59
3 7 3.81
7 7 3.77
7 15 3.78
15 15 3.70

Table 5.4: Quantizing the feature map pruned CNNSV HN network
Conv1-Conv6 FC1-FC2 MCR Test Set (%)

3 3 4.03
3 7 4.12
7 7 4.05
7 15 4.14
15 15 3.98

sification rate. All results are obtained using 2 × 2 max pooling. We also conducted

experiments with the CNNSV HN network described in Chapter 4.

5.4.1 Feature Map Pruned Networks

In this Section, we report fixed-point optimization results for the feature map

pruned networks. The pruned networks are obtained from the algorithms outlined

in Chapter 3. The objective during pruning is to eliminate unimportant units in the

network to reduce the complexity. Here we show that fixed-point optimization can

further compress the network weights and signals. Table 5.4 shows the fixed-point

optimization results for the feature map pruned CNNSV HN network. The architec-

ture of the feature map pruned network is 64(C3)−38(C3)−MP2−2× 76(C3)−

MP2− 2× 153(C3)− 512FC1− 512FC2− 10So f tmax whereas the original net-

work is: 2× 128(C3)−MP2− 2× 128(C3)−MP2− 2× 256(C3)− 512FC1−

79

Table 5.5: Quantizing the kernel pruned CNNSV HN network
Conv1-Conv6 FC1-FC2 MCR Test Set (%)

3 3 3.92
3 7 4.04
7 7 3.87
7 15 4.06
15 15 3.94

512FC2−10So f tmax. The pruned network has 3.84% MCR on the SVHN test set.

From Table 5.4, we can observe that the pruned network can be compressed with

4 bits quantization. We are conducting experiments for fixed-point optimization of

kernel pruned networks.

5.4.2 Kernel Pruned Networks

In this Section, we report fixed-point optimization results for the kernel pruned

networks. The pruned networks are obtained from the algorithms outlined in Chap-

ter 4. The objective during pruning is to remove unimportant kernels in the net-

work. The networ architecture is: 2× 128(C3)−MP2− 2× 128(C3)−MP2−

2× 256(C3)− 512FC1− 512FC2− 10So f tmax. Table 5.5 shows the fixed-point

optimization results for the kernel pruned CNNSV HN network. The pruned network

has 3.81% MCR on the SVHN test set. From Table 5.5, we can observe that 2-3 bits

quantization can approximate the floating-point counterpart network.

5.5 Concluding Remarks

This work provides a training mechanism with quantized weights. We showed that

the feature map and kernel pruned networks can be further compressed by quantiz-

80

ing the weights and signals to reduced precision. The resulting network can perform

accurate classification with reduced word length. Further the induced sparsity helps

the network to generalize well. The proposed work is good for efficient hardware and

software implementations.

81

Chapter 6

Conclusion

In this dissertation, we have proposed techniques for reducing the computational

complexity of convolution layers in a CNN. For this purpose, structured pruning,

coarse pruning, and fixed-point optimization techniques are developed.

In Chapter 2, we introduced the pruning granularities and discussed the pruning

candidate selection. We have proposed three techniques for pruning candidate selec-

tion; particle filter, best of N random masks, and activation sum voting. The best of N

pruning masks is a simple and generic algorithm for selecting the best pruning mask

from a random pool. We showed that the proposed approach adopts a holistic ap-

proach and performs better than the other methods. We analyzed the distribution of N

random masks and discussed the reasonable range for N. We conducted experiments

with several benchmarks and networks and showed that the proposed technique has

good scalability. The proposed algorithm can be used to select pruning candidates for

feature map, kernel, and intra-kernel pruning.

In Chapter 3, we explored structured sparsity in deep convolutional neural net-

82

works as a means of reducing the computational complexity of the convolution layers.

The sparsity in the feature map and the kernel levels is explained along with the intra-

kernel strided one. The selection of the best pruning mask is guided by the evolution-

ary particle filtering algorithm. We found that the feature map level pruning is limited

by the width of a layer while the intra-kernel sparsities are much affected by the ker-

nel size. The proposed work has further showed that the intra-kernel strided sparsity

(IKSS) along with convolution unrolling can significantly reduce the computational

complexity of convolutions. Moreover, with three different CNN architectures and

baseline performances, we showed that the proposed approach scales well to various

network sizes.

In Chapter 4 of this dissertation, we proposed feature map and kernel pruning

for reducing the computational complexity of deep CNN. We discussed that FFT

based implementations can particularly benefit from kernel level pruning. We further

discussed that the cost of sparse representation can be avoided with coarse pruning

granularities. We achieve the best pruning ratios when we prune a network with both

pruning granularities successively.

In Chapter 5, we proposed that weights and signals in a deep neural network

can be represented in 3-8 bits instead of 32-bits precision. The quantized weights

are obtained using L2 error minimization. The network employs quantized weights

in the feed-forward path while errors are collected in 32-bit precision. The resulting

network can perform accurate classification with reduced word length. Moreover, we

showed that fixed-point optimization can further compress the pruned networks.

In summary, the proposed IKSS and kernel pruning fits well on Graphics Process-

ing Units (GPUs) while fixed-point optimized networks are helpful for VLSI based

implementations. Thus techniques proposed in this dissertation, have wide applica-

83

bility.

84

Bibliography

[1] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in deep neural

networks for large vocabulary speech recognition,” in 2012 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2012, pp. 4409–4412.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections

for efficient neural network,” in Advances in Neural Information Processing

Systems, 2015, pp. 1135–1143.

[3] S. Han, H. Mao, and W. J. Dally, “A deep neural network compression pipeline:

Pruning, quantization, huffman encoding,” arXiv preprint arXiv:1510.00149,

2015.

[4] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks

through ffts,” arXiv preprint arXiv:1312.5851, 2013.

[5] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional

neural networks,” arXiv preprint arXiv:1512.08571, 2015.

85

[6] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of

monkey striate cortex,” The Journal of physiology, vol. 195, no. 1, pp. 215–243,

1968.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

[8] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi,

J. Schmidhuber, and L. M. Gambardella, “Max-pooling convolutional neural

networks for vision-based hand gesture recognition,” in Signal and Image Pro-

cessing Applications (ICSIPA), 2011 IEEE International Conference on. IEEE,

2011, pp. 342–347.

[9] A. Polyak and L. Wolf, “Channel-level acceleration of deep face representa-

tions,” Access, IEEE, vol. 3, pp. 2163–2175, 2015.

[10] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata, “Pedestrian detection

with convolutional neural networks,” in IEEE Proceedings. Intelligent Vehicles

Symposium, 2005. IEEE, 2005, pp. 224–229.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[12] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability of gpu-

based convolutional neural networks,” in 2010 18th Euromicro Conference on

Parallel, Distributed and Network-based Processing. IEEE, 2010, pp. 317–

324.

86

[13] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional neural

networks for document processing,” in Tenth International Workshop on Fron-

tiers in Handwriting Recognition. Suvisoft, 2006.

[14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and

E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint

arXiv:1410.0759, 2014.

[15] G. Castellano, A. M. Fanelli, and M. Pelillo, “An iterative pruning algorithm for

feedforward neural networks,” Neural Networks, IEEE Transactions on, vol. 8,

no. 3, pp. 519–531, 1997.

[16] M. D. Collins and P. Kohli, “Memory bounded deep convolutional networks,”

arXiv preprint arXiv:1412.1442, 2014.

[17] S. W. Stepniewski and A. J. Keane, “Pruning backpropagation neural networks

using modern stochastic optimisation techniques,” Neural Computing & Appli-

cations, vol. 5, no. 2, pp. 76–98, 1997.

[18] R. Reed, “Pruning algorithms-a survey,” Neural Networks, IEEE Transactions

on, vol. 4, no. 5, pp. 740–747, 1993.

[19] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep convolu-

tional neural networks for object recognition,” in Acoustics, Speech and Signal

Processing (ICASSP), 2015 IEEE International Conference on. IEEE, 2015,

pp. 1131–1135.

87

[20] ——, “Learning separable fixed-point kernels for deep convolutional neural

networks,” in 2016 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2016, pp. 1065–1069.

[21] S. Anwar and W. Sung, “Compact deep convolutional neural networks with

coarse pruning,” arXiv preprint arXiv:1610.09639, 2016.

[22] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint

arXiv:1511.06422, 2015.

[23] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to

nonlinear/non-gaussian bayesian state estimation,” in IEE Proceedings F-Radar

and Signal Processing, vol. 140, no. 2. IET, 1993, pp. 107–113.

[24] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking,” Signal Processing,

IEEE Transactions on, vol. 50, no. 2, pp. 174–188, 2002.

[25] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-based par-

ticle filter,” Image and vision computing, vol. 21, no. 1, pp. 99–110, 2003.

[26] K. Nakamura, R. Yoshida, M. Nagasaki, S. Miyano, and T. Higuchi, “Param-

eter estimation of in silico biological pathways with particle filtering towards

a petascale computing.” in Pacific Symposium on Biocomputing, vol. 14, 2009,

pp. 227–238.

[27] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter for non-

linear problems,” in Radar, Sonar and Navigation, IEE Proceedings-, vol. 146,

no. 1. IET, 1999, pp. 2–7.

88

[28] J. Vermaak, A. Doucet, and P. Pérez, “Maintaining multimodality through mix-

ture tracking,” in Computer Vision, 2003. Proceedings. Ninth IEEE Interna-

tional Conference on. IEEE, 2003, pp. 1110–1116.

[29] T. Li, S. Sun, T. P. Sattar, and J. M. Corchado, “Fight sample degeneracy and

impoverishment in particle filters: A review of intelligent approaches,” Expert

Systems with applications, vol. 41, no. 8, pp. 3944–3954, 2014.

[30] N. M. Kwok, G. Fang, and W. Zhou, “Evolutionary particle filter: re-sampling

from the genetic algorithm perspective,” in Intelligent Robots and Systems,

2005.(IROS 2005). 2005 IEEE/RSJ International Conference on. IEEE, 2005,

pp. 2935–2940.

[31] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for

efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[33] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acous-

tic modeling in speech recognition: The shared views of four research groups,”

Signal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,

2015.

89

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009.

[36] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading

digits in natural images with unsupervised feature learning,” 2011.

[37] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude,” COURSERA: Neural Networks for

Machine Learning, vol. 4, p. 2, 2012.

[38] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in Neu-

ral Information Processing Systems, 2015, pp. 3105–3113.

[39] W. Sung, S. Shin, and K. Hwang, “Resiliency of deep neural networks under

quantization,” arXiv preprint arXiv:1511.06488, 2015.

[40] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied

to house numbers digit classification,” in Pattern Recognition (ICPR), 2012 21st

International Conference on. IEEE, 2012, pp. 3288–3291.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” The Jour-

nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[42] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of neural

networks using dropconnect,” in Proceedings of the 30th International Confer-

ence on Machine Learning (ICML-13), 2013, pp. 1058–1066.

90

[43] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,”

arXiv preprint arXiv:1506.02515, 2015.

[44] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network design

using weights+ 1, 0, and- 1,” in Signal Processing Systems (SiPS), 2014 IEEE

Workshop on. IEEE, 2014, pp. 1–6.

[45] J. Kim, K. Hwang, and W. Sung, “X1000 real-time phoneme recognition vlsi

using feed-forward deep neural networks,” in 2014 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp.

7510–7514.

[46] Y. Farabet, LeCun and E. Culurciello, “Hardware accelerated convolutional

neural networks for synthetic vision systems,” in Proceedings of 2010 IEEE

International Symposium on Circuits and Systems. IEEE, 2010, pp. 257–260.

[47] W. Sung and K.-I. Kum, “Simulation-based word-length optimization method

for fixed-point digital signal processing systems,” IEEE transactions on Signal

Processing, vol. 43, no. 12, pp. 3087–3090, 1995.

[48] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[49] S. Treitel and J. L. Shanks, “The design of multistage separable planar filters,”

IEEE Transactions on Geoscience Electronics, vol. 9, no. 1, pp. 10–27, 1971.

[50] P. Perona, “Deformable kernels for early vision,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 17, no. 5, pp. 488–499, 1995.

91

[51] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning separable filters,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2013, pp. 2754–2761.

[52] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural

networks with low rank expansions,” arXiv preprint arXiv:1405.3866, 2014.

92

국문초록

최근딥러닝알고리즘은사물과음성인식등다양한분류문제에서인간수준

의성능을보이게되었다.그러나딥러닝은많은계산이필요하기때문에리소스가

제한된 환경에서는 실행하기 어렵다. 따라서 이러한 계산 비용을 줄이기 위한 연

구가 꾸준히 진행되고 있다. 본 논문에서는 인공 신경망의 계산 복잡도를 줄이기

위해솎아내기와고정소수점최적화기법을제시한다.솎아내기는큰크기의신경

망에서중요하지않은변수들을제거하는유망한기술이다.본논문에서는길쌈형

신경망 (convolutional neural network, CNN)의 솎아내기 정도를 특징 맵 (feature

map),커널 (kernel),커널내부 (intra-kernel)의세단계로나눈다.특징맵솎아내기

는많은수의커널을제거하고층의너비를직접감소시킨다.또한추가적인구조의

표현 (sparse representation)이 필요하지 않다. 따라서 신경망은 솎아내기 전 신경

망보다 크기가 작고 빠르게 계산될 수 있다. 하지만 특징 맵 솎아내기는 연결된

모든커널을제거하기때문에많은수의변수에영향을준다.따라서특징맵솎아

내기는 높은 솎아내기 비율을 얻지 못할 수 있다. 커널 솎아내기는 k× k 커널을

제거하는중간정도의솎아내기방식이다.밀도높은커널연결패턴을성긴것으

로 바꿀 수 있다. W, H, k가 각각 특징 맵 너비, 특징 맵 높이, 커널 크기를 나타낼

때 각 길쌈형 연결은W × H× k× k번의 곱셈과 덧셈 연산을 필요로 한다. 또한

커널 솎아내기의 구조 표현은 간단하다. 한 개의 길쌈형 연결을 나타내는 데 한

개의 표시로 충분하다. 커널 내부 솎아내기는 가장 미세한 정도의 솎아내기 방식

으로스칼라가중치들을제거한다.기존의솎아내기방식은불규칙적인패턴으로

스칼라 가중치들을 0으로 만든다. 이러한 방식은 높은 솎아내기 비율을 얻을 수

93

있지만 VLSI나 병렬처리 컴퓨터 구현을 위해서 추가적인 표현 방식을 필요로 한

다. 거친 정도의 솎아내기는 간단한 표현 방식을 필요로 하지만 상대적으로 높은

솎아내기비율을얻기가어렵다.미세한정도의솎아내기는높은솎아내기비율을

얻을 수 있는 반면 표현방식이 더 복잡하다. 본 논문에서는 언급한 세 개의 정도

에 해당하는 솎아내기 기법을 제시한다. 또한 다양한 솎아내기 정도를 조합하여

신경망의크기를최대한계까지줄일수있음을보인다.커널내부의스칼라가중

치는일반적으로불규칙적인패턴으로솎아내어진다.본논문에서는커널내부의

건너뛰는 솎아내기 방식 (intra-kernel strided sparsity, IKSS)을 제시한다. IKSS는

일정 간격에 위치한 스칼라 가중치들을 솎아낸다. 또한 IKSS를 적용할 때 한 특

징 맵으로부터 나오는 모든 커널에 같은 간격과 출발 지점을 갖도록 제한하였다.

이는 길쌈형 연산이 행렬-행렬 곱셈으로 나타내어 질 때 행렬의 크기에 직접적인

영향을준다.위조건을가지는 IKSS의구조표현은특징맵당간격과시작지점에

해당하는 2개의수로나타내어진다.본논문에서는파티클필터,임의의솎아내기

마스크에서 최선을 선택하는 방법과 특징 맵 솎아내기를 위해 활성화 값의 합을

비교하는방법을사용하여솎아낼곳을선택하는방법을제시한다.임의의마스크

를 사용하는 기법에 대한 논의와 상세한 분석을 다룬다. 제시된 방법으로 다양한

정도의솎아내기를함께사용하여 80%이상의솎아내기비율을얻었다.

또한, 솎아내어진 신경망은 가중치와 입출력 값을 양자화함으로써 추가적인

압축이가능하다.본논문에서는 CNN의가중치와입출력값을 3-8비트로나타내

는 고정 소수점 최적화 알고리즘을 논의한다. 또한 CNN의 층 별 비트 수에 대한

민감도를분석한다.이와같이솎아내기와고정소수점최적화를적용하여 CNN의

계산복잡도를줄인다.본논문에서제시된방법은 graphics processing unit (GPU)

구현에 적합하다. IKSS는 행렬의 크기를 줄일 수 있으며 GPU는 행렬 곱셈에 좋

은성능을보인다.또한 FFT기반 CNN구현은커널수준의솎아내기에서이득을

얻는다. VLSI구현의경우고정소수점최적화는메모리사용량을줄여신경망을

94

칩 내 메모리에 저장할 수 있게 해준다. 이와 같이 제시된 방법은 포괄적인 현대

컴퓨팅플랫폼에사용할수있다.

주요어 : CNN, Structured sparsity, Pruning, Fixed-point optimization

학번 : 2012-31288

95

	1 Introduction
	1.1 Convolutional Neural Networks (CNNs)
	1.2 Computational Complexity of Convolution Layers
	1.3 Publications Record
	1.4 Outline of the Dissertation

	2 Background
	2.1 Introduction to Pruning
	2.2 Pruning Candidate Selection
	2.2.1 Evolutionary Particle Filter
	2.2.2 Activation Sum Voting
	2.2.3 Absolute Weight Sum Voting
	2.2.4 Best of N Random Masks
	2.2.5 The Effect of Retraining on Pruning Masks

	2.3 Fixed-Point Optimization

	3 Structured Pruning
	3.1 Introduction
	3.2 Feature Map and Intra-Kernel Pruning
	3.2.1 Intra Kernel Strided Sparsity

	3.3 Experimental Results
	3.3.1 Feature Map Pruning
	3.3.2 Intra-Kernel Pruning
	3.3.3 Pruning Granularities Applied in Combinations
	3.3.4 SVHN Dataset
	3.3.5 Execution Time Savings

	3.4 Comparison with the Previous Related Works
	3.5 Conclusions

	4 Kernel Pruning
	4.1 Introduction
	4.2 Kernel and Feature Map Pruning
	4.3 Experimental Results
	4.3.1 CIFAR-10
	4.3.2 CIFAR-100
	4.3.3 SVHN

	4.4 Related Works
	4.5 Concluding Remarks

	5 Quantizing the Pruned Networks
	5.1 Introduction
	5.2 Retraining Based Quantization
	5.2.1 L2 Error Minimization and Direct Quantization
	5.2.2 LayerWise Sensitivity Analysis for Quantization
	5.2.3 Retraining with the Quantized Weights

	5.3 Separable Fixed-Point Kernels
	5.4 Quantizing the Pruned Networks
	5.4.1 Feature Map Pruned Networks
	5.4.2 Kernel Pruned Networks

	5.5 Concluding Remarks

	6 Conclusion
	Bibliography
	Abstract in Korean

<startpage>14
1 Introduction 1
 1.1 Convolutional Neural Networks (CNNs) 2
 1.2 Computational Complexity of Convolution Layers 5
 1.3 Publications Record 8
 1.4 Outline of the Dissertation 9
2 Background 10
 2.1 Introduction to Pruning 10
 2.2 Pruning Candidate Selection 13
 2.2.1 Evolutionary Particle Filter 14
 2.2.2 Activation Sum Voting 17
 2.2.3 Absolute Weight Sum Voting 19
 2.2.4 Best of N Random Masks 19
 2.2.5 The Effect of Retraining on Pruning Masks 25
 2.3 Fixed-Point Optimization 26
3 Structured Pruning 28
 3.1 Introduction 29
 3.2 Feature Map and Intra-Kernel Pruning 31
 3.2.1 Intra Kernel Strided Sparsity 31
 3.3 Experimental Results 37
 3.3.1 Feature Map Pruning 38
 3.3.2 Intra-Kernel Pruning 40
 3.3.3 Pruning Granularities Applied in Combinations 42
 3.3.4 SVHN Dataset 46
 3.3.5 Execution Time Savings 47
 3.4 Comparison with the Previous Related Works 49
 3.5 Conclusions 50
4 Kernel Pruning 51
 4.1 Introduction 51
 4.2 Kernel and Feature Map Pruning 52
 4.3 Experimental Results 57
 4.3.1 CIFAR-10 57
 4.3.2 CIFAR-100 62
 4.3.3 SVHN 64
 4.4 Related Works 65
 4.5 Concluding Remarks 66
5 Quantizing the Pruned Networks 68
 5.1 Introduction 68
 5.2 Retraining Based Quantization 70
 5.2.1 L2 Error Minimization and Direct Quantization 70
 5.2.2 LayerWise Sensitivity Analysis for Quantization 72
 5.2.3 Retraining with the Quantized Weights 73
 5.3 Separable Fixed-Point Kernels 74
 5.4 Quantizing the Pruned Networks 77
 5.4.1 Feature Map Pruned Networks 79
 5.4.2 Kernel Pruned Networks 80
 5.5 Concluding Remarks 80
6 Conclusion 82
Bibliography 85
Abstract in Korean 93
</body>

