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Abstract

Recurrent neural networks (RNNs) have shown outstanding sequence to sequence

modeling performance. Thanks to recent advances in end-to-end training approaches

for automatic speech recognition (ASR), RNNs can learn direct mapping functions

from the sequence of audio features to the sequence of output characters or words

without any intermediate phoneme or lexicon layers. So far, majority of studies on

end-to-end ASR have been focused on increasing the accuracy of speech recognition

to the level of traditional state-of-the-art models. However, although the end-to-end

ASR models have reached the accuracy of the traditional systems, their application

has usually been limited to utterance-level speech recognition with pre-segmented

audio instead of online speech recognition with continuous audio. This is because

the RNNs cannot be easily generalized to very long streams of audio when they are

trained with segmented audio.

To address this problem, we propose an RNN training approach on training se-

quences with virtually infinite length. Specifically, we describe an efficient GPU-

based RNN training framework for the truncated backpropagation through time (BPTT)

algorithm, which is suitable for online (continuous) training. Then, we present an

online version of the connectionist temporal classification (CTC) loss computation

algorithm, where the original CTC loss is estimated with partial sliding window. This

modified CTC algorithm can be directly employed for truncated BPTT based RNN

training.
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In addition, a fully RNN based end-to-end online ASR model is proposed. The

model is composed of an acoustic RNN with CTC output and a character-level RNN

language model that is augmented with a hierarchical structure. Prefix-tree based

beam search decoding is employed with a new beam pruning algorithm to prevent

exponential growth of the tree. The model is free from phoneme or lexicon models,

and can be used for decoding infinitely long audio sequences. Also, this model has

very small memory footprint compared to the other end-to-end systems while show-

ing the competitive accuracy.

Furthermore, we propose an improved character-level RNN LM with a hierarchi-

cal structure. This character-level RNN LM shows improved perplexity compared to

the lightweight word-level RNN LM with a comparable size. When this RNN LM is

applied to the proposed character-level online ASR, better speech recognition accu-

racy can be achieved with reduced amount of computation.

Keywords : Automatic speech recognition (ASR), recurrent neural network (RNN),

end-to-end learning, online inference

Student Number : 2010-23300

ii



Contents

Abstract i

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Traditional ASR . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 End-to-End ASR with Recurrent Neural Networks . . . . . 3

1.1.3 Offline and Online ASR . . . . . . . . . . . . . . . . . . . 3

1.2 Scope of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 End-to-End Online ASR with RNNs . . . . . . . . . . . . . 4

1.2.2 Challenges and Contributions . . . . . . . . . . . . . . . . 5

2 Flexible and Efficient RNN Training on GPUs 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

iii



2.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Generalized RNN Structure . . . . . . . . . . . . . . . . . 9

2.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Intra-Stream Parallelism . . . . . . . . . . . . . . . . . . . 15

2.3.2 Inter-Stream Parallelism . . . . . . . . . . . . . . . . . . . 17

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Online Sequence Training with Connectionist Temporal Classification 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Connectionist Temporal Classification . . . . . . . . . . . . . . . . 25

3.3 Online Sequence Training . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Overview of the Proposed Approach . . . . . . . . . . . . . 29

3.3.3 CTC-TR: Standard CTC with Truncation . . . . . . . . . . 31

3.3.4 CTC-EM: EM-Based Online CTC . . . . . . . . . . . . . . 32

3.4 Training Continuously Running RNNs . . . . . . . . . . . . . . . . 37

3.5 Parallel Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 End-to-End Speech Recognition with RNNs . . . . . . . . . 39

3.6.2 Phoneme Recognition on TIMIT . . . . . . . . . . . . . . . 46

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Character-Level Incremental Speech Recognition 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Acoustic Model . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Language Model . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Character-Level Beam Search . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Prefix-Tree-Based CTC Beam Search . . . . . . . . . . . . 57

4.3.2 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Character-Level Language Modeling with Hierarchical RNNs 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Character-Level Language Modeling with RNNs . . . . . . 68

5.2.2 Character-Aware Word-Level Language Modeling . . . . . 69

5.3 RNNs with External Clock and Reset Signals . . . . . . . . . . . . 70

5.4 Character-Level Language Modeling with a Hierarchical RNN . . . 72

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Perplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.2 End-to-End Automatic Speech Recognition (ASR) . . . . . 79

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusion 83

Bibliography 85

Abstract in Korean 98

v



List of Figures

2.1 Generalized representation of an LSTM network with forget gates

and peephole connections . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Feed-forward representation of the LSTM network . . . . . . . . . 16

2.3 Comparison of language model training speeds with Elman and LSTM

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Comparison of GPU processing power utilizations when training LSTM

networks with the three different sizes of LSTM layers . . . . . . . 20

3.1 CTC forward-backward example for the target sequence “CAT” . . 27

3.2 Online CTC(2h′; h′) algorithm depicted for a single sequence . . . . 31

3.3 Forward-backward algorithm of CTC-EM for the target sequence

“CAT” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Online CTC(2h′; h′) training with a continuous stream of sequences 37

3.5 Histogram of the length of the sequences in the WSJ SI-284 training

set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Coverage of the trainable frames with respect to the length of the

sequences in the WSJ SI-284 (NVP) training set . . . . . . . . . . . 41

vi



3.7 Convergence curves in terms of WER on the development set with

the various unroll amounts . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Histogram of the length of the sequences in the TIMIT training set . 47

4.1 Example of character-level random text generation with the RNN LM 57

4.2 Beam search tree consisting of label nodes . . . . . . . . . . . . . . 59

4.3 CTC state transition between two label nodes . . . . . . . . . . . . 59

4.4 Example of depth-pruning . . . . . . . . . . . . . . . . . . . . . . 61

4.5 WER of the proposed online decoding on the evaluation set with re-

spect to the beam depth . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Example of ISR partial results . . . . . . . . . . . . . . . . . . . . 64

5.1 Training an RNN-based CLM . . . . . . . . . . . . . . . . . . . . 68

5.2 Hierarchical RNN (HRNN) . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Two-level hierarchical LSTM (HLSTM) structures for CLMs . . . . 74

5.4 WER of the character-level ASR system with respect to the beam depth 81

5.5 WER of the character-level ASR system with respect to the beam width 82

vii



List of Tables

3.1 Comparison of the CTC-TR coverages, the CER and WERs on the

test set, and the training speeds on the GPU with varying amounts of

unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Comparison of CTC-TR coverages and PERs on the test set after

CTC(2h′; h′) training with the varying amounts of unrolling . . . . . 49

3.3 Comparison of the proposed online CTC algorithm and the other

models in the literature in terms of PER on the test set . . . . . . . . 50

4.1 CER / WER on the evaluation set with online depth-pruning and of-

fline sentence-wise decoding . . . . . . . . . . . . . . . . . . . . . 63

4.2 Comparison of WERs with other end-to-end speech recognizers in

the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Perplexities of CLMs on the WSJ corpus . . . . . . . . . . . . . . . 77

5.2 Perplexities of WLMs on the WSJ corpus in the literature . . . . . . 77

5.3 Perplexities of the HRNN CLMs on the One Billion Word Benchmark 78

5.4 Perplexities of WLMs on the One Billion Word Benchmark in the

literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



5.5 End-to-end ASR results on the WSJ Nov’92 20K evaluation set (eval92) 80

ix



Chapter 1

Introduction

1.1 Automatic Speech Recognition

Automatic speech recognition (ASR) [1] is a sequence to sequence mapping task,

where the input is generally a sequence of acoustic feature vectors that are extracted

from the given waveform, and the output is the corresponding transcription. Finding

this mapping function is a regression problem, in which the model parameters of the

function can be optimized using a speech corpus, which is a set of acoustic data and

ground-truth transcriptions. However, the amount of text data in the transcriptions is

usually not enough for the model to learn the linguistic structure. Therefore, in many

cases, a large amount of additional text data is used to improve the language modeling

performance.
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1.1.1 Traditional ASR

Traditional ASR systems have usually employed a hidden Markov model (HMM) [2]

to compute the probability of observing a given speech utterance for each possible

transcription. In HMM-based systems, the probability of observing the current frame

of the input sequence for a particular hidden state had been modeled with Gaussian

mixture models (GMMs), until it was shown that feed-forward deep neural networks

(DNNs) [3] can replace GMMs for better accuracy [4, 5]. Since the input of GMM

or DNN is an acoustic feature over a short time window, the granularity of the hid-

den states needs to be equal to or smaller than phoneme-level. Therefore, a complete

ASR system requires many levels of hierarchy such as phoneme, lexicon, and gram-

mar networks. A weighted finite state transducer (WFST) [6] is often employed to

represent each network, which allows all the networks to be easily combined into

one with powerful composition and optimization algorithms. However, the resulting

WFST is still very large and computing the probability of observing the given speech

for every possible transcription is intractable in practice. Therefore, the Viterbi beam

search is employed to efficiently find the best hypothesis of transcriptions with a rea-

sonable amount of computation.

There are several drawbacks in the HMM-based model mainly due to its hierar-

chical structure. First, some of valuable information in speech (e.g. prosody) cannot

contribute to the final recognition result, since it is not propagated to the higher level.

Therefore, it is hard to achieve the human-level speech recognition performance with

the traditional ASR system [7], considering that the human uses this information in

many situations, such as for distinguishing homophones [8]. Second, designing and

training this ASR system is complicated and requires a lot of effort for fine-tuning.
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Moreover, there is no guarantee that the model structure optimized for a specific lan-

guage will also work well on other languages. To remedy these issues, there have

been many studies to remove these structural limitations of traditional ASR models

as described in the next section.

1.1.2 End-to-End ASR with Recurrent Neural Networks

Unlike traditional HMM-based ASR models, it has been shown that recurrent neu-

ral networks (RNNs) [9] are capable of directly converting the input speech to the

output text without any explicit phoneme or lexicon modeling [10, 11]. This is pos-

sible because RNNs have internal memory and can learn the long-term dependency

between the input and output sequences. To be specific, RNNs can learn the direct

mapping between the sequences of the input speech features and the output labels,

where the granularity of the output labels can be characters or words. Since there are

no intermediate layers between the speech and the text, these approaches are called

“end-to-end”. With a sufficient amount of training data, the end-to-end ASR systems

have proven to show the human-level speech recognition accuracy on read speech

[11].

1.1.3 Offline and Online ASR

In offline ASR, there is no constraint on the latency between the input speech and the

output text. Therefore, the offline approach is applied to tasks where the accuracy is

more important than the latency. On the other hand, the online ASR, or incremental

speech recognition (ISR) [12], is more focused on the decoding latency, and usually

employed for real-time applications such as spoken dialog systems or real-time auto-

matic captioning. With traditional HMM-based ASR systems, the difference between

3



the offline and the online ASR is mostly in the decoding stage, and the related studies

have been focused on the stability and accuracy of partial decoding results [13, 14].

However, the transition from offline to online systems is more complicated when

it comes to RNN-based ASR. First, it is not trivial to use bidirectional RNNs [15]

for online inference because of the latency problem. The bidirectional RNNs have a

backward layer, where the signal is propagated from the future to the past. Since this

backward signal is originated from the end of the sequence, it is impossible to start

decoding until the input speech reaches to the end. Therefore, unidirectional RNNs

are often employed for the online inference while sacrificing some recognition accu-

racy. Second, hidden states of RNNs are prone to explosion when the input sequence

is very long [16]. This is not a problem for the offline ASR, where the input speech is

pre-segmented. However, the online ASR is generally expected to be able to decode

very long and arbitrary speech without any segmentation of input speech. In this case,

the RNN explosion becomes a problem and should be prevented.

1.2 Scope of the Dissertation

1.2.1 End-to-End Online ASR with RNNs

As described in the previous sections, the online ASR is suitable for the applications

where low-latency is required. However, applying end-to-end models for online ASR

is not trivial due to the characteristics of RNNs. This dissertation tackles these issues

and proposes end-to-end online ASR models that are based on RNNs.

The bidirectional RNNs are not covered in this dissertation, since they are not

suitable for the online ASR due to the decoding latency. Applying the bidirectional

architecture for the online ASR is another research area, where most of the contents
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of this dissertation still apply [17]. Also, note that there has been effort to reduce the

performance gap between the bidirectional and unidirectional RNNs by improving

the architectures of the unidirectional ones [11].

The proposed ASR system in this dissertation consists of an acoustic model (AM)

and a language model (LM), where both models are based on unidirectional RNNs.

The AM is end-to-end trained with connectionist temporal classification (CTC) loss

[18], and converts the input speech to characters. The LM is a character-level gen-

erative model [19], which predicts the probabilities of the next characters using the

history of previous character inputs. By combining these two character-level models

with prefix-tree based beam search, the complete ASR system can naturally handle

out-of-vocabulary (OOV) words. Moreover, it is capable of decoding infinitely long

speech with low latency. Also, the system demands a very small number of param-

eters compared to the WFST based ones while showing the comparable word error

rate (WER).

1.2.2 Challenges and Contributions

Since training RNNs with modern computers generally takes very long time, it is

important to build an efficient training system. However, unlike the stochastic gradi-

ent descent (SGD) [20] based training of feedforward DNNs [21], there is not much

parallelism to utilize in the training algorithms for RNNs. In Chapter 2, a graph-

ics processing unit (GPU) based flexible RNN training algorithm is presented. This

algorithm analyzes a graph-based RNN architecture and automatically utilizes the

parallelism. The training system described in this chapter is suitable for training very

long sequences and used for training AMs and LMs throughout the dissertation.

As presented previously, RNNs have an explosion problem when decoding very
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long sequences. One of the solutions to prevent this problem is also using long train-

ing sequences in the training time. This is very trivial problem for training RNN LMs

when we use the training system presented in Chapter 2. However, to apply CTC loss

for training AMs, the RNNs should be unrolled over the whole frames of the training

sequence, which limits the length of the training sequences due to the memory ca-

pacity of modern GPUs. This problem is solved in Chapter 3 by modifying the CTC

forward-backward algorithm so that the approximate gradients of the CTC loss can

be computed within a sliding-window. Moreover, it is shown that the training time

can be significantly reduced by employing a small sliding window and increasing the

parallelism.

In Chapter 4, the character-level end-to-end online ASR system is described and

analyzed. As described previously, this model is composed of an RNN-based AM and

LM, and is capable of decoding infinitely long speech. Also, the model does not re-

quire lexicon and naturally handles OOV words. Since the beam search is performed

on a prefix-tree, it is important to prevent the indefinite growth of the decoding tree,

especially when the input speech is very long. In this chapter, depth pruning is intro-

duced to solve this problem.

The major drawback of the model introduced in Chapter 4 is a large amount of

computation required for inference of the character-level RNN LM. This problem is

tackled in Chapter 5, where hierarchical RNN structures are proposed for character-

level LMs. With the proposed hierarchical RNNs, it is shown that a better perplexity

can be achieved with significantly less number of model parameters, which leads to

improved accuracy and reduced amount of computations for the proposed ASR.

Note that large portions of the materials of Chapter 2, 3, 4, and 5 were previously

published by the author in [22, 23, 24, 25], respectively.
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Chapter 2

Flexible and Efficient RNN Training on
GPUs

2.1 Introduction

Deep neural networks have shown quite impressive performances in several pattern

recognition applications [3, 4]. Among the deep neural networks, the feed-forward

networks are suitable for processing input data with a fixed length, and they are usu-

ally used for image and phoneme recognition. On the other hand, recurrent neural

networks (RNNs) employ feedback inside, and they are suitable for processing input

data whose dimension is not fixed. For example, automatic speech recognition (ASR)

systems perform very well with an RNN-based language modeling [26].

Since RNNs contain feed-back loops inside, the past input can be memorized

and affect the current output. If RNNs are properly trained, it is possible to compress

the input history effectively and yield good results even when there are considerable

time delays between the input and output. Especially, the long short-term memory
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(LSTM) RNN is known to solve the problems with long time lag very successfully

[27].

However, the LSTM RNN employs a very complex component known to be the

memory block. It demands much effort even for slight modification of the structure

because of the difficulty in deriving the corresponding training equation. Thus, it is

needed to develop a generalized RNN structure that can be modified easily while

representing LSTM networks perfectly. Previously, a generalized LSTM-like RNN

structure with real-time recurrent learning (RTRL) [28] was proposed in [29] with

special gated connections. However, we propose a much more general structure by

introducing multiplicative layers and delayed connections. Also, we derive a back-

propagation through time (BPTT) [30] based training algorithm for our RNN struc-

ture, which is generally more flexible than the RTRL-based one.

RNNs also demand very long training time, thus efficient implementation with

GPUs or multiprocessors is needed. However, parallelization of the network is diffi-

cult due to dependency induced by the internal feedback loops. The conventional ap-

proach uses independent multiple training streams that employs plural copies of the

network [31]. However, this inter-stream parallelism demands huge memory, which

is a serious bottleneck for GPU based implementations.

In this chapter, we propose a parallelization approach as well as the generalized

RNN structure. For this purpose, we first develop training algorithms for the gen-

eralized RNNs. The training equations of conventional LSTM can be perfectly rep-

resented with the generalized equations. Then, the parallelization approach exposes

single-stream parallelization (intra-stream parallelism) that does not increase the size

of mini-batches as the conventional multi-stream parallelization (inter-stream paral-

lelism). Experimental results show that further speed-up can be achieved by combin-

8



ing both intra-stream and inter-stream parallelization.

This chapter is organized as follows. The generalized LSTM-like RNN struc-

ture is proposed and its training equations are derived in Section 2.2. In Section 2.3,

the intra-stream parallelism of the generalized RNNs is explored and combined with

the conventional inter-stream parallelism. In Section 2.4, experimental results of the

proposed approach on a GPU are presented, followed by concluding remarks in Sec-

tion 2.5.

2.2 Generalization

To apply our parallelization approach to various types of RNNs, we first introduce

a generalized RNN structure that can represent complex RNNs using simple basic

blocks. This generalization fully covers advanced LSTM network structures with for-

get gates and peephole connections, and their BPTT-based training algorithm. Also,

with the generalized RNN, one can easily design a new RNN structure quite easily

since the corresponding equations and the parallelization approach remain the same.

2.2.1 Generalized RNN Structure

The proposed generalized RNN structure is basically a directed graph, which consists

of a set of nodes and edges. Each node represents a layer and each edge makes a con-

nection between two layers. There are two types of connections: delayed or not. A

delayed connection makes a fixed amount of delay on the signal, and is used to con-

struct a recurrent loop. More specifically, the connection m propagates the activation
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of the source layer k at the frame t−dm to the destination layer at the frame t as

zm(t) = Wmyk(t−dm), (2.1)

where zm is the output of the connection m, Wm is the corresponding weight matrix, yk

is the activation of the source layer k, and dm is the amount of delay at the connection

m. The value of dm is 0 for non-delayed connections and larger than 0 for delayed

connections.

In an additive layer, the inputs are summed up and the activation function is ap-

plied on it:

sk(t) = ∑
m∈Ak

zm(t) (2.2)

yk(t) = fk(sk(t)), (2.3)

where sk is the state (input), Ak is the set of the indices of the anterior connections,

yk is the activation, and fk(·) is the activation function of the layer k. In addition to

the normal additive layers, multiplicative layers are employed to represent gate units

of LSTM networks. A multiplicative layer performs element-wise multiplication of

input vectors (or matrices for batched computation) as follows:

sk,i(t) = ∏
m∈Ak

zm,i(t), (2.4)

where the subscript i represents the index of elements in a vector.

For generality, we introduce an aggregation function gk(·) as

10



sk(t) = gk({zm(t)|m ∈ Ak}), (2.5)

where gk(·) is a vector addition function for an additive layer or an element-wise mul-

tiplication function for a multiplicative layer, or it can be other nonlinear functions to

add further nonlinearity to the network.

In the previous approach on the generalized LSTMs [29], the gate units are imple-

mented with gated connections. However, the gated connection has two input layers,

so it cannot be regarded as an edge of the standard directed graph structure, where

each edge has one input and one output.

In our approach, by introducing the multiplicative layers, LSTM gates can be re-

garded as normal nodes in a graph structure, which allows general graph algorithms

to be directly applied in Section 2.3. As an example, Figure 2.1 shows a general-

ized representation of a single-layer LSTM network with forget gates and peephole

connections.

2.2.2 Training

In this section, BPTT [30] based training equations for the generalized RNN are

derived. The objective is to minimize the following total error from t0 +1 to t1:

E total(t0, t1) = ∑
t0<t≤t1

E(t), (2.6)
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Input

LSTM layer

SCC

Softmax output

1

1

1

Figure 2.1: Generalized representation of an LSTM network with forget gates and
peephole connections. Thick arrows represent connections with full weight matri-
ces. On the other hand, connections with thin arrows have identity weight matrices.
The numbers on the dashed lines indicate the corresponding delay amounts. A non-
singleton strongly connected component (SCC) is drawn, of which nodes will be
grouped into a single recurrent node to make the network acyclic.
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where E(t) is the error at frame t. For convenience, we define two derivative variables

as

δk,i(t) =−
∂E total(t0, t1)

∂ sk,i(t)
(2.7)

εm,i(t) =−
∂E total(t0, t1)

∂ zm,i(t)
. (2.8)

These two variables will be back-propagated at the backward pass. If the layer k is

an output layer, δk, j(t) should be initialized by comparing the output with a desired

output dk, j(t) according to the error criterion defined by E(t) and the activation func-

tion of the output layer. Using the minimum cross-entropy criterion with the softmax

activation function,

δk, j(t) = dk, j(t)− yk, j(t). (2.9)

If the layer k is not an output layer,

δk, j(t) =− ∑
n∈Pk

∑
i∈In

∂E total(t0, t1)
∂ zn,i(t +dn)

∂ zn,i(t +dn)

∂yk, j(t)
∂yk, j(t)
∂ sk, j(t)

(2.10)

= ∑
n∈Pk

∑
i∈In

εn,i(t +dn)Wn,i j f ′k(sk, j(t)), (2.11)

where Pk is the set of posterior connection indices of the layer k and In is the set of

element indices of the vector zn. Also, εm, j(t) becomes

εm, j(t) =−
∂E total(t0, t1)

∂ sk, j(t)
∂ sk, j(t)
∂ zm, j(t)

(2.12)

= δk, j(t)
∂

∂ zm, j(t)
gk({zn(t)|n ∈ Ak}), (2.13)
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where k is the index of the destination layer of the connection m. To truncate errors

at t = t ′0, we backpropagate the two derivative variables while t > t ′0 where t ′0 ≤ t0

using (2.11) and (2.13). After the backward pass, the truncated error gradient of the

connection m ∈ Pk can be acquired by

∂E total(t0, t1)
∂Wm,i j

≈ ∑
t ′0<t≤t1

∂E total(t0, t1)
∂ zm,i(t)

∂ zm,i(t)
∂Wm,i j

(2.14)

=− ∑
t ′0<t≤t1

εm,i(t)yk, j(t−dm). (2.15)

In matrix form, (2.11) can be represented as

δ k(t) =
(

∑
n∈Pk

WT
n εn(t +dn)

)
◦ f ′k(sk(t)), (2.16)

where ◦ denotes element-wise vector multiplication. If the layer k is an additive layer,

then (2.13) becomes

εm(t) = δ k(t). (2.17)

Otherwise for the multiplicative layer k,

εm(t) = δ k(t)◦
◦

∏
n∈Ak,n6=m

zn(t), (2.18)

where element-wise multiplications are performed with ∏. The error gradient matrix

for the connection m ∈ Pk is computed by

∇Wm =− ∑
t ′0<t≤t1

εm(t)yT
k (t−dm). (2.19)
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The error gradients can be used for the first order optimization methods such as

stochastic gradient descent.

2.3 Parallelization

Parallelization of RNN computation is quite challenging due to dependencies be-

tween two consecutive frames. The state of an RNN of the frame k cannot be deter-

mined until the computation for the frame k− 1 is finished. In this section, we first

develop a parallelization method for the forward and the backward pass with a sin-

gle stream (intra-stream parallelism), and then extend the approach to a multi-stream

case (inter-stream parallelism).

2.3.1 Intra-Stream Parallelism

The key concept of separating sequential parts from the parallel parts of an RNN

is to determine loops in the RNN and group each loop into a single special node

called a recurrent node. Then, the remaining structure becomes a directed acyclic

graph (DAG), which can be easily parallelized as in a mini-batch based feed-forward

neural network computation. Only the internal computations of the recurrent nodes

are performed sequentially.

More specifically, strongly connected components (SCCs) are found to determine

which nodes should be grouped into a recurrent node. An SCC is a subgraph that is

strongly connected, that is, there are one or more paths between every pair of two

vertices inside the subgraph. An SCC analysis finds a set of SCCs that form a partition

of the vertex set of the original graph. For SCCs that are singletons and do not contain

a self-loop, the original nodes inside the SCCs remain unchanged. Otherwise, the
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Recurrent 
node

Input

LSTM layer

Figure 2.2: Feed-forward representation of the LSTM network that is depicted in
Figure 2.1.

nodes in each SCC are grouped into a single recurrent node. Then, the final graph

becomes a DAG and be ready for parallel computation. An example of an LSTM

network is shown in Figure 2.2. One of the famous algorithms for finding SCCs

is the Tarjan’s strongly connected component algorithm [32]. Tarjan’s algorithm also

provides a reverse topological sort of the resulting DAG, which is useful to determine

the activation order.

Once an RNN is represented as a DAG, the forward computation becomes very

similar to that of feedforward networks. As in the case of feedforward networks,

computations of nodes and edges are performed in a topological order of the DAG.
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These operations can be done in parallel over several frames since the network is

represented as a DAG and there are no dependencies between different frames except

the isolated recurrent nodes.

Recurrent nodes are subgraphs of the original RNN and should be computed se-

quentially. The computation of a recurrent node from frame t0 to t1 in the forward pass

requires t1− t0+1 sequential steps. In each step of the forward pass, delayed connec-

tions are computed first. Then the remaining part excluding the delayed connections

becomes a DAG and can be computed in a topological order. The computation of a

backward pass can be performed similarly with reversed topological orders.

The sequential computations of recurrent nodes are quite expensive and often

become a bottleneck of the overall performance. To speed up these sequential parts,

we need to employ the multi-stream parallelization.

2.3.2 Inter-Stream Parallelism

Inter-stream parallelism can be explored in the multi-stream mode where an RNN

processes N streams with independent contexts. This is equivalent to running N in-

dependent copies of the RNN. Therefore, the multi-stream mode greatly increases

parallelism and the overall execution speed. Recently, this approach was successfully

applied to speed up language model training with an Elman network on a GPU [31].

For training an RNN in the multi-stream mode, the input and target streams are

usually given by connecting randomly ordered training sequences. Since the lengths

of the training sequences are very long, we apply the efficient version of truncated

BPTT(h), denoted as BPTT(h;h′) proposed in [33]. BPTT(h;h′) is similar to the or-

dinary truncated BPTT(h) in that the network is unrolled h times. However, in the

forward pass of BPTT(h;h′), h′ time steps are computed at once. Also, the error
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gradients for the recent h′ output errors are obtained by one iteration. These error

gradients are summed up over the N training streams. Therefore, output errors of

total N× h′ frames affect the error gradients when updating weights after backward

passes. We call the set of these frames as a mini-batch throughout the chapter, as it

is equivalent to a mini-batch in stochastic gradient descent methods of feedforward

neural networks.

Increasing N also speeds up the training. However, we cannot make N very large

since the size of a mini-batch, N× h′, is limited by the physical memory size of a

GPU. Moreover, increasing the size of a mini-batch results in infrequent update of

the weights and may slow down the convergence [34]. Also, the parameter h′ cannot

be easily modified since the training speed is approximately proportional to the ratio

of h′ to h. For simplicity, let us assume h = 2h′ to fix the training speed. In this

case, error propagates through h′ to 2h′−1 previous time steps in the backward pass.

Therefore h′ should be set sufficiently large to solve long time lag problems.

2.4 Experiments

Nvidia Tesla K40 GPU is used for the following experiments. For all experiments,

BPTT(2h; h) is used for simplicity. Since the training algorithm for the generalized

RNN structure is mathematically equivalent to that of Elman or LSTM networks, the

results regarding performance measures such as the accuracy or the perplexity are not

reported.

To evaluate the proposed parallelization approach, we evaluate the language model

training speed with the multi-stream mode as in [31]. The RNN architecture is an

Elman network with 38,000 input, 512 hidden, and 20,000 output units. The mini-
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Figure 2.3: Comparison of language model training speeds with Elman and LSTM
networks. The LSTM employs forget gates and peephole connections. The sizes of
the input layer, hidden or LSTM layer, and output layer is 38,000, 512, and 20,000
respectively. The mini-batch size is fixed to 1,024, so the error propagates from
1,024/N to 2,048/N−1 previous steps where N is the number of streams.

batch size is fixed to 1,024 to use the same amount of GPU memory. Hence, with N

streams, h = 1,024/N and the error propagates from 1,024/N to 2,048/N−1 previ-

ous time steps. For comparison, an LSTM version of the network with forget gates

and peephole connections are also evaluated. Note that the LSTM network has no

self recurrent connection from the output of the LSTM layer to the input of that.

The training speeds are compared in Figure 2.3 with varying number of streams.

Since the baseline approaches does not exploit intra-stream parallelism, they show

poor training speeds when the number of streams are small. On the other hand,

the proposed approach employs intra-stream parallelism and shows over 10 times

of speed-up over the baseline approach when a single stream is used. Also, with the

proposed approach, we can obtain almost the maximum speed only with 64 streams.
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Figure 2.4: Comparison of GPU processing power utilizations when training LSTM
networks with the three different sizes of LSTM layers: 1,024, 2,048, and 4,096. The
input and output layers have the same size as the LSTM layer. Also, the theoretical
peak performance of Tesla K40 GPU is shown. The mini-batch size is fixed to 1,024.

This is a nice advantage since using less number of streams allows RNNs to learn

longer time lags when the size of mini-batch is limited, as discussed in Section 2.3.2.

To analyze scalability and GPU efficiency with various size of networks, we per-

form another experiment with LSTM networks with forget gates and peephole con-

nections. All layers of each network have the same size, which is 1,024, 2,048, or

4,096. To examine the GPU utilizations, we present the number of single-precision

floating point operations per second (FLOPS) in Figure 2.4 along with the theoretical

peak performance of Tesla K40 GPU. Note that only the operations for parameters

and error gradients are counted. Compared to the previous experiment where the in-

put and output layers are very large, this example is much closer to the deep RNN

architectures in terms of the ratio of the sequential computations (inside the recurrent
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nodes) to the parallel computations. As shown in the figure, the GPU utilization gets

higher as the layer size or the number of streams increases. Also, the intra-stream par-

allelism further accelerates the training especially with the small number of streams.

2.5 Concluding Remarks

We introduced a generalized structure for RNNs which covers LSTM networks with

forget gates and peephole connections. This generalized structure is represented as a

directed graph where nodes and edges correspond to layers and connections, respec-

tively. Due to the graph representation, we can automatically find loops inside RNNs

using the Tarjan’s strongly connected component algorithm and explore intra-stream

parallelism. The proposed intra-stream parallelism is combined with inter-stream par-

allelism in the multi-stream mode training for further acceleration. The experiments

show that exploiting these two parallelisms greatly speeds up the training task on a

GPU.
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Chapter 3

Online Sequence Training with
Connectionist Temporal Classification

3.1 Introduction

Supervised sequence learning is a regression task where the objective is to learn a

mapping function from the input sequence x to the corresponding output sequence

z for all (x,z) ∈ S with the given training set S, where x and z can have differ-

ent lengths. When combined with recurrent neural networks (RNNs), supervised se-

quence learning has shown great success in many applications including machine

translation [35, 36, 37], speech recognition [38, 39, 10, 40, 41, 42, 43, 44, 45], and

handwritten character recognition [46, 47]. Although several attention-based mod-

els have been introduced recently, connectionist temporal classification (CTC) [18]

is still one of the most successful techniques in practice, especially for end-to-end

speech and character recognition tasks [10, 40, 44, 45, 46, 47].

The CTC based sequence training is usually applied to bidirectional RNNs [15],
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where both the past and the future information is considered for generating the output

at each frame. However, the output of the bidirectional RNNs is available after all of

the frames in the input sequence are fed into the RNNs because the future information

is backward propagated from the end of the sequence. Therefore, the bidirectional

RNNs cannot be employed for low-latency online applications such as incremental

speech recognition (ISR) [48], especially for the character-level ISR system, which

will be proposed in Chapter 4. On the other hand, unidirectional RNNs only make

use of the past information and are suitable for low-latency applications at the cost

of a little accuracy loss. Moreover, the CTC-trained unidirectional RNNs do not need

to be unrolled (or unfolded) at the test time. It is shown by [49] that CTC can also

be employed for sequence training of unidirectional RNNs on a phoneme recognition

task. In this case, the unidirectional RNN also learns the suitable amount of the output

delay that is required to accurately process the input sequence. The work in [50]

reports that when a CTC-trained unidirectional RNN is employed for online spoken

term detection, the detection latency becomes around 200 ms, which is similar to

human response time to speech stimuli [51].

For the CTC training of both unidirectional and bidirectional RNNs, it is required

to unroll the RNNs by the length of the input sequence. By unrolling an RNN N

times, every activations of the neurons inside the network are replicated N times,

which consumes a huge amount of memory especially when the sequence is very

long. This hinders a small footprint implementation of online learning or adaptation.

Also, this “full unrolling” makes a parallel training with multiple sequences inef-

ficient on shared memory models such as graphics processing units (GPUs), since

the length of training sequences is usually not uniform, and thus a load imbalance

problem occurs. This load imbalance problem can be solved by grouping training se-
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quences with similar lengths into buckets [43, 36]. However, it is difficult to achieve

high parallelism with this approach, when the training sequences are very long. For

unidirectional RNNs, this problem can be addressed by concatenating sequences to

make a very long stream of sequences, and training the RNNs with synchronized

fixed-length unroll-windows over multiple training streams, as described in Chap-

ter 2. However, it is not straightforward to apply this approach to the CTC training,

since the standard CTC algorithm requires full unrolling for the backward variable

propagation, which starts from the end of the sequence.

In this chapter, we propose an expectation-maximization (EM) based online CTC

algorithm for sequence training of unidirectional RNNs. The algorithm allows train-

ing sequences to be longer than the amount of the network unroll. Moreover, it can be

applied to infinitely long input streams with roughly segmented target sequences (e.g.

only with the utterance boundaries and the corresponding transcriptions for training

an end-to-end speech recognition RNN). It was shown that the resulting RNN can

run continuously without pre-segmentation or external reset, and is useful for the

continuous spoken term detection [50] and low-latency ISR systems, which will be

described in Chapter 4 in detail, where the input speech is infinitely long. Due to

the fixed unroll amount, we expect that the proposed algorithm is suitable for online

semi-supervised learning or adaptation systems with constrained hardware resource.

Furthermore, the approach can directly be combined with the GPU based parallel

RNN training algorithm described in Chapter 2. For evaluation, we present exam-

ples of end-to-end speech recognition on the Wall Street Journal (WSJ) corpus [52]

with continuously running RNNs. Also, further experiments are performed on TIMIT

[53] and the results are compared with others in literature. Experimental results show

that the proposed online CTC algorithm performs comparable to the almost fully un-

24



rolled CTC training even with the small unroll amount that is shorter than the average

length of the sequences in the training set. Also, the reduced amount of unroll allows

more parallel sequences to be trained concurrently with the same memory use, which

results in greatly improved training speed on a GPU.

The chapter is organized as follows. In Section 3.2, the standard CTC algorithm

is explained. Section 3.3 contains the definition of the online sequence training prob-

lem and proposes the online CTC algorithm. In Section 3.4, the algorithm is extended

for the continuously running RNNs, which is followed by its parallelization in Sec-

tion 3.5. In Section 3.6, the proposed algorithm is evaluated with speech recognition

examples. Concluding remarks follow in Section 3.7.

3.2 Connectionist Temporal Classification

The CTC algorithm [18, 49] uses a many-to-one sequence-to-sequence mapping

function that converts the sequence of labeling with timing information (e.g. frame-

wise output labels from RNNs) into the shorter sequence of labels by removing tim-

ing and alignment information. The main idea is to introduce the additional CTC

blank label, b, for the sequence that has timing information, and remove the blank

labels and merging repeating labels to obtain the unique corresponding sequence.

Specifically, for the set of target labels, L, and its extended set with the additional

CTC blank label, L′ = L∪{b}, the path, π , is defined as a sequence over L′, that is,

π ∈ L′T , where T is the length of the input sequence, x. Then, the output sequence,

z∈ L≤T , is represented by z=F (π) with the sequence to sequence mapping function

F . F maps any path π with the length T into the shorter sequence of the label, z,

by first merging the consecutive same labels into one and then removing the blank
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labels. Therefore, any sequence of the raw RNN outputs with the length T can be

decoded into the shorter labeling sequence, z, with ignoring timings. This enables

the RNNs to learn the sequence mapping, z = G (x), where x is the input sequence

and z is the corresponding target labeling for all (x,z) in the training set, S. More

specifically, the gradient of the loss function L (x,z) = − ln p(z|x) is computed and

fed to the RNN through the softmax layer [54], of which the size is |L′|.

As depicted in Figure 3.1, the CTC algorithm employs the forward-backward

algorithm for computing the gradient of the loss function, L (x,z). Let z′ be the

sequence over L′ with the length of 2|z|+1, where z′u = b for odd u and z′u = zu/2 for

even u. Then, the forward variable, α , and the backward variable, β , are initialized

by

α(1,u) =


y1

b if u = 1

y1
z1

if u = 2

0 otherwise

β (T,u) =


1 if u = |z′|, |z′|−1

0 otherwise
, (3.1)

where yt
k is the softmax output of the label k ∈ L′ at time t.

The variables are forward and backward propagated as

α(t,u) = yt
z′u

u

∑
i= f (u)

α(t−1, i)

β (t,u) =
g(u)

∑
i=u

β (t +1, i)yt+i
z′i

, (3.2)
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Figure 3.1: CTC forward-backward example for the target sequence “CAT”, where
the black and white dots represent the labels and blanks, respectively. The arrows
indicate the allowed transitions.

where

f (u) =


u−1 if z′u = b or z′u−2 = z′u

u−2 otherwise

g(u) =


u+1 if z′u = b or z′u+2 = z′u

u+2 otherwise
(3.3)

with the boundary conditions:

α(t,0) = 0, ∀t , β (t, |z′|+1) = 0, ∀t. (3.4)

Then, the error gradient with respect to the input of the softmax layer at time t, at
k, is

computed as

∂L (x,z)
∂at

k
= yt

k−
1

p(z|x) ∑
u∈B(z,k)

α(t,u)β (t,u), (3.5)
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where B(z,k) = {u : z′u = k} and p(z|x) = α(T, |z′|)+α(T, |z′|−1).

3.3 Online Sequence Training

3.3.1 Problem Definition

Throughout the chapter, the online sequence training problem is defined as follows.

• The training set S consists of pairs of the input sequence x and the correspond-

ing target sequence z, that is, (x,z) ∈ S.

• The estimation model M learns the general mapping z = G (x), where the

training sequences (x,z) ∈ S are sequentially given.

• For each (x,z) ∈ S and at time t, only the fraction of the input sequence up to

time t, x1:t , and the entire target sequence, z, are given, where 1≤ t ≤ |x|. The

length of the input sequence, |x|, is unknown except when t = |x|.

• The parameters of the estimation model M are updated in the manner of online

learning, that is, they can be frequently updated even before seeing the entire

input sequence x.

This online learning problem usually occurs in real world when a human learns

a language from texts and the corresponding audio. For example, when watching

movies with subtitles, we are given the entire target sequence (subtitle for the current

utterance) and the input sequence (the corresponding audio) up to the current time, t.

We cannot access the future audio and even do not know exactly when the utterance

will end (at t = |x|).
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Algorithm 1 Online CTC training with BPTT(h; h′) for a single sequence
1: τ0← 0
2: n← 1
3: while τn−1 < T do
4: τ ′n←max{1,nh′−h+1}
5: τn←min{nh′,T}
6: RNN forward activation from t = τn−1 +1 to τn

7: CTC(h; h′) error computation on the output layer
8: RNN backward error propagation from t = τn to τ ′n
9: RNN gradient computation and weight update

10: n← n+1
11: end while

When RNNs are trained with the standard CTC algorithm, it is difficult to deter-

mine how much amount of unrolling is needed before the entire sequence x is given,

since the length of x is unknown at time t < |x|. Also, it is not easy to learn the

sequences that are longer than the unroll amount, which is often constrained by the

hardware resources.

3.3.2 Overview of the Proposed Approach

We propose an online CTC algorithm where the RNN can learn the sequences longer

than the unroll amount, h. The algorithm is based on the truncated backpropagation

through time (BPTT) algorithm [30] with the forward step size of h′ and the unroll

amount of h, which is called BPTT(h; h′), as proposed in [33]. Algorithm 1 describes

the BPTT(h; h′) algorithm combined with the CTC loss, where T is the length of the

training sequence, x.

However, although BPTT(h; h′) is designed for online training of RNNs, employ-

ing the standard CTC loss function requires full unrolling of the networks. Therefore,

we propose the CTC(h; h′) algorithm for computing the CTC loss in the online man-
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Algorithm 2 CTC(h; h′) at the iteration n

1: τn−1← (n−1)h′

2: τ ′n←max{1,nh′−h+1}
3: τ ′n+1←max{1,(n+1)h′−h+1}
4: τn←min{nh′,T}
5: if n = 1 then
6: Init. CTC forward variable, α , at t = 1
7: end if
8: CTC forward prop. of α from t = τn−1 +1 to τn

9: if τn = T then
10: Init. CTC-TR backward variable, β , at t = T
11: CTC-TR backward prop. of β from t = T to τ ′n
12: CTC-TR error computation on t ∈ [τ ′n,T ]
13: else
14: Init. CTC-EM backward variable, βτn , at t = τn

15: CTC-EM backward prop. of βτn from t = τn to τ ′n
16: CTC-EM error computation on t ∈ [τ ′n,τ

′
n+1−1]

17: Set error to zero on t ∈ [τ ′n+1,τn]
18: end if

ner as in BPTT(h; h′) as in Algorithm 2. The algorithm is also depicted in Figure 3.2

with the example in which the length of the sequence, T = |x|, is 2.5 times as long as

the unroll amount.

CTC(h; h′) consists of two CTC algorithms. The first one is the truncated CTC

(CTC-TR), which is basically the standard CTC algorithm applied at the last itera-

tion with truncation. In the other iterations, the generalized EM based CTC algorithm

(CTC-EM) is employed from t = max{1,nh′−h+1} to max{0,(n+1)h′−h} with

the modified backward variable, βτ . The CTC-TR and CTC-EM algorithms are ex-

plained in Section 3.3.3 and Section 3.3.4, respectively. Note that simply setting h =

2h′ works well in practice. In this setting, we denote the algorithm as CTC(2h′; h′).
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Figure 3.2: Online CTC(2h′; h′) algorithm depicted for a single sequence that is
longer than the RNN unroll amount. The shaded areas indicate the range of the RNN
unrolling at each iteration.

3.3.3 CTC-TR: Standard CTC with Truncation

With the standard CTC algorithm, it is not possible to compute the backward vari-

ables when τn < T , as the future information beyond τn cannot be accessed. There-

fore, we only compute the CTC errors at the last iteration, where τn = T as in Al-

gorithm 2. In this case, however, the gradients are only available in the unroll range.

Since the backward propagation is truncated at the beginning of the unroll range, we

call the CTC algorithm in this range as truncated CTC, or CTC-TR. Also, we call the

range that is covered by the CTC-TR algorithm as the CTC-TR coverage.

The RNN can be trained only with CTC-TR if there are sufficient labels that oc-

cur within the CTC-TR coverage. However, the CTC-TR coverage decreases by mak-

ing the unroll amount smaller. Then, the percentage of the effective training frames,

which actually generate the output errors, goes down, and the efficiency of train-
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Figure 3.3: Forward-backward algorithm of CTC-EM for the target sequence “CAT”,
where the black and white dots represent the labels and CTC blanks, respectively.
The arrows represent the paths with allowed transitions.

ing decreases. Also, the effective size of the training set gets smaller, which results

in the generalization performance loss of the RNN. Therefore, for maintaining the

training performance while reducing the unroll amount, it is critical to make use of

the full training frames by employing the CTC-EM algorithm, which is described in

Section 3.3.4.

3.3.4 CTC-EM: EM-Based Online CTC

Assume that only the fraction of the input sequence, x1:τ , is available. Then, as shown

in Figure 3.3, there are |z|+1 possible partial labelings.1 Let z1:m be the subsequence

of z with the first m labels. Also we define Z as the set that consists of these labeling

sequences:

Z = {z1:m : 0≤ m≤ |z|}. (3.6)

1Although z1:m is not possible by the standard CTC formulation when m > τ , we can still say that
z1:m is a possible labeling with a probability of zero without loss of generality.
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One of the most simple approach for training the network under this condition is to

choose the most likely partial alignment from Z and compute the standard CTC error

by regarding the partial alignment as the ground truth labeling. For example, we

can select z1:m′ where m′ = argmaxm α(τ,m) since α(τ,m) is a posterior probability

p(z1:m|x1:τ ,w(n)) with the current network parameter w(n). This is a well-known hard-

EM approach. This simple idea can easily be extended to the more sophisticated

soft-EM approach as follows. First, select one of the partial labelings in Z with the

probability p(z1:m|Z,x1:τ ,w(n)) estimated by the RNN with current parameters (E-

step). Then, maximize the probability of that labeling by adjusting the parameters

(M-step).

This optimization problem is readily reduced into the generalized EM algorithm.

Specifically, the expectation step is represented as

Qτ(w|x,z,w(n)) = Ez1:m|Z,x1:τ ,w(n) [ln p(z1:m|x1:τ ,w)]

=
|z|

∑
m=0

p(z1:m|Z,x1:τ ,w(n)) ln p(z1:m|x1:τ ,w), (3.7)

where w(n) is the set of network parameters at the current iteration, n. In the max-

imization step of the generalized EM approach, we try to maximize Qτ by finding

new parameters w(n+1) that satisfies Qτ(w(n+1)|x,z,w(n)) ≥ Qτ(w(n)|x,z,w(n)). As

proved below, this is equivalent to the optimization problem where the objective is to

minimize the loss function defined as Lτ(x,z) = − ln p(Z|x1:τ). Then, the gradient

of the loss function with respect to the input of the softmax layer is

∂Lτ(x,z)
∂at

k
= yt

k−
1

p(Z|x1:τ)
∑

u∈B(z,k)
α(t,u)βτ(t,u), (3.8)
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where p(Z|x1:τ) can be computed by

p(Z|x1:τ) =
|z′|

∑
u=1

α(τ,u) (3.9)

and the backward variable, βτ(t,u), is initialized as

βτ(τ,u) = 1, ∀u. (3.10)

The new backward variable is propagated using the same recursion in (3.2), and the

error gradients are computed with (3.5) as in the standard CTC algorithm.

Proof. In the maximization step, the objective is to obtain the derivative of Qτ(w|x,z,w(n))

with respect to the input of the softmax layer, at
k, at time t. We first differentiate Qτ

with respect to yt
k at w = w(n):

∂Qτ(w|x,z,w(n))

∂yt
k

∣∣∣∣∣
w=w(n)

=
|z|

∑
m=0

p(z1:m|Z,x1:τ ,w(n))
∂ ln p(z1:m|x1:τ ,w(n))

∂yt
k

. (3.11)

With Bayes’ rule, we obtain

p(z1:m|Z,x1:τ ,w(n)) =
p(z1:m,Z|x1:τ ,w(n))

p(Z|x1:τ ,w(n))
=

p(z1:m|x1:τ ,w(n))

p(Z|x1:τ ,w(n))
, (3.12)

and with simple calculus,

∂ ln p(z1:m|x1:τ ,w(n))

∂yt
k

=
1

p(z1:m|x1:τ ,w(n))

∂ p(z1:m|x1:τ ,w(n))

∂yt
k

. (3.13)

Then, (3.11) becomes
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∂Qτ(w|x,z,w(n))

∂yt
k

∣∣∣∣∣
w=w(n)

=
1

p(Z|x1:τ ,w(n))

|z|

∑
m=0

∂ p(z1:m|x1:τ ,w(n))

∂yt
k

(3.14)

=
1

p(Z|x1:τ ,w(n))

∂ p(Z|x1:τ ,w(n))

∂yt
k

. (3.15)

If we define the loss function to be minimized as

Lτ(x,z) =− ln p(Z|x1:τ), (3.16)

then its derivative equals to (3.15) with the opposite sign:

∂Lτ(x,z)
∂yt

k
=− ∂Qτ(w|x,z,w(n))

∂yt
k

∣∣∣∣∣
w=w(n)

. (3.17)

From now on, we drop w(n) without loss of generality. Let

βτ,m(τ,u) =


1 if u = 2m,2m+1

0 otherwise
. (3.18)

Following the standard CTC forward-backward equations in [49],

p(z1:m|x1:τ) =
|z′|

∑
u=1

α(t,u)βτ,m(t,u) (3.19)

∂ p(z1:m|x1:τ)

∂yt
k

=
1
yt

k
∑

u∈B(z,k)
α(t,u)βτ,m(t,u). (3.20)
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From (3.19) and (3.20), p(Z|x1:τ) and its derivative become

p(Z|x1:τ) =
|z|

∑
m=0

p(z1:m|x1:τ) =
|z′|

∑
u=1

α(t,u)βτ(t,u) (3.21)

∂ p(Z|x1:τ)

∂yt
k

=
|z|

∑
m=0

∂ p(z1:m|x1:τ)

∂yt
k

=
1
yt

k
∑

u∈B(z,k)
α(t,u)βτ(t,u), (3.22)

where the new backward variable for p(Z|x1:τ) is

βτ(t,u) =
|z|

∑
m=0

βτ,m(t,u), (3.23)

which results in the simple initialization as

βτ(τ,u) = 1, ∀u. (3.24)

Then, the error gradients become

∂Lτ(x,z)
∂yt

k
=− 1

p(Z|x1:τ)

1
yt

k
∑

u∈B(z,k)
α(t,u)βτ(t,u) (3.25)

∂Lτ(x,z)
∂at

k
= yt

k−
1

p(Z|x1:τ)
∑

u∈B(z,k)
α(t,u)βτ(t,u), (3.26)

where

p(Z|x1:τ) =
|z′|

∑
u=1

α(τ,u). (3.27)
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Figure 3.4: Online CTC(2h′; h′) training with a continuous stream of sequences. The
shaded areas indicate the range of RNN unrolling, of which length is 2h′, at each
iteration. The modified segment boundaries for the sequence k, τk,n, are shown.

3.4 Training Continuously Running RNNs

In this section, the proposed online CTC algorithm in Section 3.3 is extended for

training infinitely long streams. The training stream can be naturally very long with

the target sequence boundaries, or can be generated by concatenating training se-

quences in a certain order. When trained on this training stream without external re-

set of the RNN at the sequence boundaries, the resulting RNN can also continuously

process infinitely long input streams without pre-segmentation or external reset. This

property has been proved useful for the low-latency ISR, which will be described in

Chapter 4, or spoken term detection systems [50] since we can remove the frontend

voice activity detector [55] for detecting and pre-segmenting utterances.

The CTC(h; h′) algorithm can directly be applied to the infinitely long training

streams as shown in Figure 3.4. When the sequence boundaries are reached during the
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forward activation, we perform CTC-TR, initialize the forward variable, and process

the next sequence with some frame offset. Also, care should be taken on the transition

of CTC labels at the boundary. Assume that the last label of the sequence k and the

first label of the sequence k + 1 are the same. Then, a CTC blank label should be

inserted between two sequences since the same labels that occur consecutively in

the decoding path are folded into one label. In practice, this folding can easily be

prevented by forcing the blank label at the first frame of each sequence by modifying

the initialization of the forward variable as follows:

αc(1,u) =


y1

b if u = 1

0 otherwise
, (3.28)

where the subscript c indicates the continuous CTC training.

3.5 Parallel Training

In a massively parallel shared memory model such as a GPU, efficient parallel train-

ing is achieved by making use of the memory hierarchy. For example, computing

multiple frames together reduces the number of read operations of the network pa-

rameters from the slow off-chip memory by temporarily storing them on the on-chip

cache memory and reuse them multiple times. For training RNNs on a GPU, this par-

allelism can be explored by employing multiple training sequences concurrently as

explained in Chapter 2.

The continuous CTC(h; h′) algorithm in Section 3.4 can be directly extended for

parallel training with multiple streams. Since the forward step size and the unroll

amount is fixed, the RNN forward, backward, gradient computation, and weight up-
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date steps can be synchronized over multiple training streams. Thus, the GPU based

parallelization approach in Chapter 2 can be employed for the RNN training. Al-

though the computations in the CTC(h; h′) algorithm are relatively fewer than those

of the RNN, further speed-up can be achieved by parallelizing the CTC algorithm

similarly.

3.6 Experiments

3.6.1 End-to-End Speech Recognition with RNNs

For the evaluation of the proposed approach, we present examples of end-to-end

speech recognition with character-level RNN language models (LMs) and tree-based

online decoding, where the details of the system will be described in Chapter 4. The

acoustic RNN is a deep unidirectional long short-term memory (LSTM) network [56]

with forget gates [27] and peephole connections [57], which is trained with the on-

line CTC algorithm on the continuous stream of speech. Also, a character-level RNN

language model [19] is employed for tree-based decoding. The system continuously

recognizes infinitely-long input speech in realtime without pre-segmentation.

Specifically, the acoustic RNN has 3 unidirectional LSTM layers, where each

layer has 768 LSTM cells. The output layer is a 31-dimensional softmax layer. Each

unit of the softmax layer represents one of the posterior probabilities of 26 alpha-

bet characters, two special characters (. and ’), a whitespace character, the end of

sentence (EOS) symbol, and the CTC blank label. The input of the network is a 123-

dimensional vector that consists of a 40-dimensional log Mel-frequency filterbank

feature vector plus energy, and their delta and delta-delta values. The feature vectors

are extracted from the speech waveform in every 10 ms with 25 ms Hamming window
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using HTK [58]. Before being fed into the RNN, feature vectors are element-wisely

normalized to the zero mean and the unit standard deviation, where the statistics are

extracted from the training set.

The character-level RNN LM consists of 2 unidirectional LSTM layers with 512

cells per layer. The input is a 30-dimensional one-hot encoded vector that represents

a current label, and the output is the probabilities of the next labels. The input and

output labels are same as the output labels of the acoustic RNN except the CTC

blank label. The RNN LM considers the past and current inputs for computing the

probabilities of the next labels.

3.6.1.1 Wall Street Journal (WSJ) Corpus

The experiments are performed on the Wall Street Journal (WSJ) [52] corpus. The

RNN LM is trained with the text-based language model training data included in

the WSJ corpus with the resulting bit-per-character (BPC) of 1.167. For the acoustic

RNN training, the subset of the WSJ SI-284 set is used, where only the utterances

with non-verbalized punctuations (NVPs) are included, resulting in about 71 hours

of utterances. The histogram of the length of the sequences in the training set is shown

in Figure 3.5. Note that the average length of the sequences is 772.5 frames. If we

unroll the network over N frames, the sequences longer than N frames will not be

fully covered by CTC-TR.

In Figure 3.6, the CTC-TR coverage is further analyzed with respect to the length

of the sequence and the unroll amount. When the stream of sequences are trained

with the continuos CTC algorithm, the CTC-TR coverage varies depending on the

frame offsets of CTC(h; h′). The average coverage is calculated assuming that the

offset is uniformly distributed. If the probability that a certain frame is included in the
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Figure 3.5: Histogram of the length of the sequences in the WSJ SI-284 training set,
where only the utterances with non-verbalized punctuations (NVPs) are considered.
The feature frames are extracted with the period of 10 ms.
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Figure 3.6: Coverage of the trainable frames with respect to the length of the se-
quences in the WSJ SI-284 (NVP) training set. The average and maximum coverages
of CTC-TR on continuous training streams are visualized for the unroll amount of
512 and 1,024 when CTC(2h′; h′) is applied. Note that the proposed online CTC
algorithm (CTC-TR + CTC-EM) covers the entire training frames.
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coverage is greater than zero, then the frame is included in the maximum coverage.

For the experiments, we only consider CTC(2h′; h′), that is, the unroll amount is

twice as much as the forward step size. Then, unrolling the network 1,024 times

results in the CTC-TR coverage of 79.48 % on average and 95.69 % at maximum.

On the other hand, when the unroll amount is 512, CTC-TR only covers 48.16 %

on average and 63.27 % at maximum. Note that the full coverage is achieved when

CTC-TR is combined with CTC-EM.

The WSJ Nov’93 20K development set and the WSJ Nov’92 20K evaluation set

are used as the development (validation) set and the test (evaluation) set, respectively.

For the final evaluation of the network after training, a single test stream is used that

is generated by concatenating all of the 333 utterances in the test set.

3.6.1.2 Training Procedure

The RNN LM is trained with truncated BPTT(512; 256) on infinite training streams

generated by concatenating sentences in the text training data. Note that the EOS

symbols are inserted between sentences. The training is performed on a GPU with

multiple streams. We applied ADADELTA [59] for annealing and early stopping for

preventing overfitting. However, overfitting was not observed in our experiments.

The acoustic RNN are trained on a GPU as in Section 3.5 with the memory us-

age constraint. To maintain the memory usage the same while changing the unroll

amount, we fixed the total amount of unrolling over multiple training streams to

16,384. For example, the number of parallel streams become 8 with the unroll amount

of 2,048 and 32 with 512 times of unrolling. The total amount of GPU memory usage

is about 9.5 GiB in our implementation.

The performance evaluation of the network is performed at every 10,485,760
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training frames (i.e. N continuous training streams with the length of 10,485,760/N

each) in terms of word error rate (WER) on the 128 parallel development streams of

which the length is 16,384 each. For this intermediate evaluation, best path decoding

[18] is employed without the RNN LM for fast computation.

For the online update of the RNN parameters, the stochastic gradient descent

(SGD) method is employed and accelerated by the Nesterov momentum of 0.9 [60,

61]. Also, the network is annealed by combining the early stopping technique as

follows. If the network performance based on the intermediate evaluation is not im-

proved for 11 consecutive times (10 times of retry), the learning rate is reduced by the

factor of 10 and the training is resumed from the second best network. The training

starts from the learning rate of 10−5 and finishes when the learning rate becomes less

than 10−7.

The pre-trained network is used for CTC-TR and CTC-EM combined training be-

cause the expectation step of CTC-EM requires the RNN to align the target labels in

a certain level. The pre-trained networks are obtained by early stopping the CTC-TR

training of the networks when the performance is not improved during 6 consecutive

intermediate evaluations using the learning rate of 10−5. For the CTC-TR and CTC-

EM combined training with the unroll amount of 512, 1,024, and 2,048, the training

starts from the pre-trained network that is trained with the same amount of unrolling.

Otherwise, for the combined training with the unrolling less than 512 times, we use

the pre-trained network with the unroll amount of 512.

3.6.1.3 Evaluation

Figure 3.7 shows the convergence curves in terms of WER on the development set

without the RNN LM using various unroll amounts and training algorithms, where
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Figure 3.7: Convergence curves in terms of WER on the development set with the
various unroll amounts of 256, 512, 1,024, and 2,048, and the fixed learning rate of
10−5.

the unroll amount is twice the forward step size. The convergence speed of the CTC-

TR only training decreases when the unroll amount becomes smaller. This is because

the percentage of the effective training frames becomes smaller due to the reduced

CTC-TR coverage. Also, it can be observed that the performance of the CTC-TR only

trained network with 512 times of unrolling converges to the worse WER than those

of the other networks due to the reduced size of the effective training set. On the other

hand, the convergence curves of the CTC-TR and CTC-EM combined training with

the unroll amounts of 256 and 512 are similar to that of the CTC-TR only training

with 2,048 times of unrolling. Considering that the average sequence length of the

training set is 772.5 frames, the results are quite encouraging.
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Table 3.1: Comparison of the CTC-TR coverages, the CER and WERs on the test set,
and the training speeds on the GPU with varying amounts of unrolling.

# Streams CTC-TR coverage (%) CER / WER (%) Training speed (frames/s)
× # Unroll Average Maximum CTC-TR + CTC-EM + RNN LM CTC-TR + CTC-EM

8 × 2,048 97.84 99.995 - 10.6 / 38.4 4.00 / 9.30 3.81 k 3.80 k
16 × 1,024 79.48 95.69 11.2 / 39.1 10.9 / 38.6 4.13 / 9.52 6.79 k 6.60 k
32 × 512 48.16 63.27 13.9 / 47.2 10.9 / 38.8 3.89 / 8.88 12.58 k 11.70 k
64 × 256 24.82 33.06 - 11.2 / 39.7 4.08 / 9.53 18.03 k 15.99 k

128 × 128 12.43 16.57 - 11.3 / 40.0 3.89 / 9.20 23.64 k 20.54 k
256 × 64 6.21 8.29 - 11.4 / 40.1 4.41 / 9.85 26.98 k 22.24 k

The evidence of the similar convergence curves with the different unroll amounts

implies that the training can be accelerated under the memory usage constraint by

employing more parallel training streams with less unrolling. To examine how much

speed-up can be achieved on a GPU, further experiments are performed as in Ta-

ble 3.1. The training speed is measured on the system equipped with NVIDIA GeForce

Titan X GPU and Intel Xeon E5-2620 CPU. For the final character error rate (CER)

and WER report on the test set, the output of the RNN is decoded by the tree-based

online CTC beam search with and without language models. Note that the experi-

ment with the unroll amount of 2048 is the baseline, where CTC-TR covers most

of the training frames and there is little difference from the standard CTC training.

As shown in the table, we can achieve a great amount of speedup without sacrificing

much WERs. Also, it is possible to train a network with only 64 times of unrolling,

which corresponds to 640 ms window, at the cost of 4.5% relative WER when de-

coded without the RNN LM.

The RNN LM is integrated with a beam width of 512, a beam depth of 50, an

LM weight of 2.0, and an insertion bonus of 1.5. When the RNN LM is applied, the

baseline network shows 9.30% WER. On the other hand, 8.88% WER is obtained
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with the acoustic RNN trained with only 512 times of unrolling. However, we con-

sider this improvement is due to the noise in the experimental results. It is observed

that the early stopping of training based on the intermediate WER evaluation without

the RNN LM does not guarantee the best performance when the decoding is per-

formed with the RNN LM. Nevertheless, it seems there is a slight performance loss

when the network is trained with only 64 times of unrolling. Note that 8.9% WER is

achieved in Chapter 4 with the same network structure. Also, 8.7% and 7.34% WERs

were reported in [10] and [45], respectively, with bidirectional RNNs for sentence-

wise recognition. Our results in Table 3.1 is reported without any regularization tech-

niques, such as weight noise in [10] or dropout [62]. For fair comparison, we also

trained a unidirectional LSTM network with 4 layers, where each layer contains 512

cells, with online CTC(1024; 512) and dropout for RNNs [63]. This model achieves

32.5% WER without LMs, which is comparable to 30.1% WER obtained with a deep

bidirectional LSTM network [10].

3.6.2 Phoneme Recognition on TIMIT

3.6.2.1 TIMIT Corpus

The TIMIT corpus [53] contains American English recordings of 630 speakers from

8 major dialect regions in the United States. The training set contains about 3.1 hours

of 3,696 utterances from 462 speakers after removing the SA recordings, in which

only two sentences are spoken by multiple speakers. Figure 3.8 shows the histogram

of the length of the training sequences, where the feature frames are extracted with

the 10 ms period. The average length of the training sequences is 304 frames. We use

the core test set with 192 utterances as the test set. The development set contains the
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Figure 3.8: Histogram of the length of the sequences in the TIMIT training set (SA
removed), where the feature frames are extracted with the period of 10 ms.

remaining 1,152 utterances that are obtained by excluding the core test set from the

complete test set. The corpus also includes the full phonetic transcriptions.

3.6.2.2 Network Structure

The network structure is a deep unidirectional LSTM RNN with 3 LSTM hidden lay-

ers, where each LSTM layer has 512 cells. The input is the same log Mel-frequency

filterbank feature as in the WSJ experiments. The training procedure is also similar.

The original TIMIT transcriptions are based on 61 phonetic labels. Accordingly, the

RNN output is a 62-dimensional vector that consists of the probabilities of the origi-

nal 61 phonemes and the extra CTC label. However, after decoding, they are mapped

to 39 phonemes for evaluation as in [64].
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3.6.2.3 Training Procedure

For the experiments, the continuous CTC(2h′; h′) algorithm is employed so that the

resulting RNN can run continuously on a infinitely long stream of the input speech.

The networks are pre-trained with ADADELTA [59], where the local learning rates

are adaptively adjusted using the statistics of the recent gradient values. Before the

online CTC training with the unroll amount greater than of equal to 512, the pre-

training is performed for the 8 M (8×220) training frames with the unroll amount of

2,048, the learning rate of 10−5, the Nesterov momentum of 0.9, and the RMS decay

rate of 0.99 for ADADELTA. On the other hand, we pre-trained the network with 12

M frames for the subsequent CTC training with less than 512 unroll steps. Unlike in

the WSJ experiments, it is observed that applying the standard SGD method at the

beginning often fails to initiate the training. We consider this is because the gradient

computed by the SGD method is initially not noisy enough to help the parameters

escape from the initial saddle point.

After the pre-training, the standard SGD is applied with the Nesterov momentum

of 0.9. The training starts with the learning rate of 10−4. The intermediate evaluations

are performed at every 2 M (2×220) training frames on the development set with the

best path decoding. If the phoneme error rate (PER) fails to improve during 6 consec-

utive evaluations, the learning rate decreases by the factor of 2 and the parameters are

restored to those of the second best network. The training finishes when the learning

rate becomes less than 10−6.

The network is regularized with dropout [62] in both the pre-training and the

main training stages following the approach in [63], that is, dropout is only applied

on the non-recurrent connections. The dropout rate is fixed to 0.5 throughout the
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Table 3.2: Comparison of CTC-TR coverages and PERs on the test set after
CTC(2h′; h′) training with the varying amounts of unrolling.

# Streams CTC-TR coverage (%) PER (%)
× # Unroll Average Maximum Mean ± Stdev. Min. Max.

8 × 2,048 100.0 100.0 21.14 ± 0.29 20.91 21.57
16 × 1,024 99.80 100.0 20.82 ± 0.17 20.66 21.03
32 × 512 89.48 99.60 21.18 ± 0.40 20.60 21.48
64 × 256 60.69 79.37 20.77 ± 0.24 20.47 20.97

128 × 128 31.53 42.02 20.73 ± 0.40 20.39 21.25
256 × 64 15.77 21.03 21.00 ± 0.16 20.78 21.15

experiments.

3.6.2.4 Evaluation

The networks are evaluated on the very long test stream that is obtained by concate-

nating the entire test sequences. For the evaluation, the network output is decoded

by the CTC beam search. The experiments are repeated 4 times and the mean and

standard deviation estimates of PERs are reported based on the reduced 39-phoneme

set.

The RNNs are unrolled 64, 128, 256, 512, 1,024, and 2,048 times. As shown in

Table 3.2, the various unroll amounts make little difference to the final PERs on the

test set. When the RNN is unrolled only 128 times, which is less than the average

length of training sequences, the best PER of 20.73±0.40% is obtained. On the other

hand, the training with the unroll amount of 2,048 results in slightly degraded perfor-

mance since it becomes harder for RNNs to catch the dependencies between the input

and output sequences due to the noisy input frames from the consecutive sequences.

The performance of the proposed online CTC algorithm is compared with the
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Table 3.3: Comparison of the proposed online CTC algorithm and the other models
in the literature in terms of PER on the test set.

Model Network (# param) Bi- Test sequence PER (%)

Proposed online CTC LSTM (5.5 M) No Almost infinite stream a 20.73

Attention-based model [42] Conv.b+GRUc Yes Long sequences d About 20
Utterance-wise 17.6

RNN transducer [39] LSTM (4.3 M) Yes Utterance-wise 17.7

Sequence-wise CTC [39] LSTM (3.8 M)
Yes

Utterance-wise
18.4

No 19.6

aGenerated by concatenating all of the 192 test utterances
bConvolutional features
cGated recurrent unit [37]
dGenerated by concatenating 11 utterances

other models in Table 3.3. The other models employ early stopping to prevent overfit-

ting and add weight noise while training for regularization. The bidirectional attention-

based model in [42] shows 17.6% PER with utterance-wise decoding. However, the

PER increases to about 20% with the long test sequences that are generated by con-

catenating 11 utterances. On the other hand, our CTC(128; 64)-trained unidirectional

RNNs show 20.73±0.40% PER with a very long test stream that is made by concate-

nating the entire 192 test utterances. Note that, unlike the CTC-trained unidirectional

RNNs, the bidirectional models require unrolling in test time and have to listen the

entire speech before generating outputs. Therefore, the proposed unidirectional RNN

models are more suitable for realtime low-latency speech recognition systems with-

out sacrificing much performance.
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3.7 Concluding Remarks

Throughout the chapter, the online CTC(h; h′) algorithm is proposed for sequence

to sequence learning with unidirectional RNNs using partial windows. The algorithm

consists of CTC-TR and CTC-EM. CTC-TR is the standard CTC algorithm with trun-

cation and CTC-EM is the generalized EM based algorithm that covers the training

frames that CTC-TR cannot be applied. The proposed algorithm allows the unroll

amount to be less than the length of the training sequence and is suitable for small

footprint online learning systems or massively parallel implementation on a shared

memory model such as a GPU. Also, the online CTC algorithm is extended for train-

ing continuously running RNNs without external reset, and evaluated in the WSJ and

TIMIT experiments. On the WSJ corpus, when the memory capacity is constrained,

the proposed approach achieves significant speed-up on a GPU without sacrificing

the performance of the resulting RNN much. We expect that further acceleration of

training will be possible with lower performance loss when different unroll amounts

are used in the pre-training, main training, and annealing stages.

51



Chapter 4

Character-Level Incremental Speech
Recognition

4.1 Introduction

Incremental speech recognition (ISR) allows a speech-based interaction system to

react quickly while the utterance is being spoken. Unlike offline sentence-wise au-

tomatic speech recognition (ASR), where the decoding result is available after a

user finishes speaking, ISR returns N-best decoding results with small latency during

speech. These N-best results, or hypotheses, gradually improve as the system receives

more speech data. Since ISR is usually employed for immediate reaction to speech,

word stability [13, 14] and incremental lattice generation [12] have been important

topics.

In this chapter, we introduce an end-to-end character-level ISR system with two

unidirectional recurrent neural networks (RNNs). An acoustic RNN roughly dictates

the input speech and an RNN-based language model is employed to augment the
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dictation result through decoding. Compared to a conventional word-level backend

for speech recognition system, the character-level ASR is capable of dictating out

of vocabulary (OOV) words based on the pronunciation. Also, our model is trained

directly from speech and text corpus and does not require external word dictionary or

senone modeling.

There have been efforts to deal with OOV words in conventional HMM based

ASR systems. In [65], graphemes are employed as basic units instead of phonemes.

Also, a sub-lexical language model is proposed in [66] for detecting previously un-

seen words.

RNN-based character-level end-to-end ASR systems were studied in [10, 40, 67,

45, 41]. However, they lack the capability of dictating OOV words since the de-

coding is performed with word-level LMs. Recently, a lexicon-free end-to-end ASR

system is introduced in [44], where a character-level RNN LM is employed. We fur-

ther improve this approach by employing prefix tree based online beam search with

additional depth-pruning for ISR.

The character-level ISR system proposed in this chapter is composed of an acous-

tic RNN and an RNN LM. The acoustic RNN is end-to-end trained with connection-

ist temporal classification (CTC) [18] using Wall Street Journal (WSJ) speech corpus

[52]. The output of the acoustic RNN is the probability of characters, which are de-

coded with character-level beam search to generate N-best hypotheses. To improve

the performance, a character-level RNN LM is employed to augment the beam search

performance. Also, we propose depth-pruning for efficient tree-based beam search.

The RNN LM is separately trained with a large text corpus that is also included in

WSJ corpus. Unlike for word-level language modeling, conventional statistical LMs

such as n-gram back-off models cannot be used because much longer history window
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is required for character-level prediction. Both acoustic RNN and RNN LM have

deep unidirectional long short-term memory (LSTM) network structures [56, 68].

For continuous ISR on infinitely long input speech, they are trained with virtually

infinite training data streams that are generated by randomly concatenating training

sequences.

The proposed model is evaluated on a single test sequence that is generated by

concatenating all test utterances in WSJ eval92 (Nov’92 20k evaluation set) without

any external reset of RNN states at the utterance boundaries. The ISR performance is

examined by varying the beam width and depth. Generally, wider beam increases the

accuracy. Under the same beam width, there is a trade-off between the accuracy and

stability (or latency), where the balance between them can be adjusted by the beam

depth.

The chapter is organized as follows. In Section 4.2, we describe RNN-based

speech and language models. Section 4.3 contains the character-level beam search

algorithm that is augmented by the RNN LM. Our ISR system is evaluated in Sec-

tion 4.4. Concluding remarks follow in Section 4.5.

4.2 Models

4.2.1 Acoustic Model

The acoustic model is a deep RNN trained with CTC [18]. The network consists of

three LSTM layers with 768 cells each, where the network has total 12.2 M trainable

parameters. The model is similar to the one in the previous work about end-to-end

speech recognition with RNNs [10] except a few major differences. In our case, the

RNN is trained by online CTC, which is proposed in Chapter 3, with very long train-
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ing sequences that are generated by randomly concatenating several utterances. There

is no need to reset the RNN states at the utterance boundary. This is necessary for ISR

systems that runs continuously with an infinite input audio stream. Also, our model

has a unidirectional structure since bidirectional networks that are usually employed

for end-to-end speech recognition are not suitable for low-latency speech recognition.

This is because the backward layers in the bidirectional networks cannot be computed

before the input utterance is finished.

The input of the network is a 40-dimensional log mel-frequency filterbank fea-

ture vector with energy and their delta and double-delta values, resulting in an 123-

dimensional vector. The feature vectors are extracted every 10 ms with 25 ms Ham-

ming window. The input vectors are element-wisely standardized based on the statis-

tics obtained from the training set. The output is a 31-dimensional vector that con-

sists of the probabilities of 26 upper case alphabets, 3 special characters, the end-of-

sentence (EOS) symbol, and the CTC blank label.

The networks are trained with stochastic gradient descent (SGD) with 8 parallel

input streams on a GPU using the system described in Chapter 2. The networks are

unrolled 2,048 times and weight updates are performed every 1,024 forward steps.

The network performances are evaluated at every 10 M training frames. The evalu-

ation is performed on total 2 M frames from the development set. The learning rate

starts from 1×10−5 and is reduced by the factor of 10 whenever the WER on the de-

velopment set is not improved for 6 consecutive evaluations. The training ends when

the learning rate drops below 1×10−7.

We trained the networks on two training sets. The first one is the standard WSJ

SI-284 set and the second one, SI-ALL, is the set of all speaker independent training

utterances in the WSJ corpus. Note that the utterances with verbalized punctuations
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are removed from both training sets. Also, odd transcriptions are filtered out, which

makes the final SI-284 and SI-ALL sets contain roughly 71 and 167 hours of speech,

respectively. WSJ dev93 (Nov’93 20k development set) and eval92 (Nov’92 20k

evaluation set) sets are used as the development set and the evaluation set, respec-

tively.

4.2.2 Language Model

An RNN language model (LM) [26] is employed for the proposed ISR system since

conventional statistical LMs such as n-gram back-off models are not suitable for

character-level prediction since they cannot make use of very long history windows.

Specifically, the RNN LM has a deep LSTM network structure with two LSTM layers

where each of them has 512 memory cells, resulting in total 3.2 M parameters.

The input of the RNN LM is a 30-dimensional vector, where the current label

(character) is one-hot encoded. The output is also a 30-dimensional vector which

represents the probabilities of next labels. Although the RNN LM is trained to predict

the next characters with only the current character as the input, the past character

histories are internally stored inside the RNN and used for the prediction. It is well

known that RNN LM can remember contexts for very long time steps.

As for the acoustic RNN, the RNN LM is trained on a very long text stream

that is generated by attaching randomly picked sentences and inserting EOS labels

between sentences. The RNN LM is trained with AdaDelta [59] based SGD method

for accelerated training and better annealing. The WSJ LM training text with non-

verbalized punctuation, which contains about 215 M characters, is used for training

the RNN LM. Randomly selected 1% of the corpus is reserved for evaluation, on

which the final bits-per-character (BPC) of the RNN LM is 1.167 (character-level
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THREE ISSUES ADVANCED MICRO OF AMERICA THE ONLY WAY TO DIVERSIFY INTO

TREATING MODERN ARMIES

LOOKING AHEAD TO MR. LEYSEN WITH AN INTOLERABLE POP CUT WHEN AN ALL

POWERFUL STUDENT SEEKS ITS CORE DRIVING UPJOHN STOVES

AMERICAN EXPRESS HASN’T YET SWORED PARTICULARLY WITH THE RESTRUCTURING IS

A COMMITMENT TO BUY POTENTIAL BUYERS IN THE OPEN MARKET

THE WHITE HOUSE GESTURES CLEAR EMPHASIS WITH NO REASON FOR INSTEAD ABROAD

HE CHANGED TO WHAT WAS DROPPED BY HIM

Figure 4.1: Example of character-level random text generation with the RNN LM.

perplexity of 2.245).

Random sentences can be generated following the method described in [19].

Briefly, the next label is randomly picked following the probabilities of the current

output of the RNN LM and fed back to the RNN in the next step. By iterating these

steps, texts can be sequentially generated as shown in Figure 4.1. From the example,

it is clear that the RNN LM learned the linguistic structures as well as spellings of

words that frequently appear.

4.3 Character-Level Beam Search

4.3.1 Prefix-Tree-Based CTC Beam Search

Let L be the set of labels without the CTC blank label. The label sequence z is a

sequence of labels in L. The length of the label sequence z is less than or equal to

the number of input frames. The objective of the beam search decoding is to find the

label sequence that has the maximum posterior probability given the input features
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from time 1 to t generated by the acoustic RNNs, that is,

zmax = argmax
z

P(z|x1:t), (4.1)

where x1:t is the input features from time 1 to t.

However, the CTC-trained RNN output has one more blank label. Let L′ be the

set of labels (or CTC states) with the additional CTC blank label, and the path π
(i)
t

be a sequence of labels in L′ from time 1 to t. The length of the path π
(i)
t is the same

as t. By the definition of CTC, every π can be reduced into the corresponding z. For

example, π with “aab-c–a” corresponds to z with “abca”, where “-” is the blank label.

There can be many paths, π
(i)
t , that can be reduced into the same z. Let F (·) be

a function that maps a path to the corresponding label sequence, that is, F (π
(i)
t ) = z,

then the posterior probability in (4.1) becomes,

P(z|x1:t) = ∑
{∀i|F (π

(i)
t )=z}

P(π(i)
t |x1:t). (4.2)

Therefore, if the two different paths π
( j)
t and π

(k)
t in the decoding network are mapped

to the same z, then they can be merged by summing their probabilities.

For the beam search, we first represent the lattice with a tree-based structure so

that each node has one of labels in L as depicted in Figure 4.2. Then, backtracking

from any node generates a unique label sequence z. To deal with CTC state tran-

sitions, we need a state-based network that is represented with CTC states, L′. As

shown in Figure 4.3, this can be easily done by expanding each tree node, of which

label is in L, into two CTC states, one with the corresponding label in L′ followed by

the blank CTC label. Since the label-level (L) search network is based on a tree struc-

58



T H I S

N

C

THIN

THIS

THIC

RNN LM

input history

Figure 4.2: Beam search tree consisting of label nodes. The CTC blank label is not
included.

T H
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Figure 4.3: CTC state transition between two label nodes. If the two nodes have the
same label, then a transition between the same CTC state is not allowed.
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ture, two different state-level (L′) paths with different label sequences never meet

each other. This simplifies the problem since there is no interaction between two dif-

ferent sequence labelings (hypotheses) and (4.2) is the only equation that we should

concern.

As proposed in [67, 44], external language models can be integrated by modifying

the posterior probability term in (4.1) into:

log(P(z|x1:t)) = log(PCTC(z|x1:t)) (4.3)

+αlog(PLM(z))+β |z|,

where α is the LM weight and β is the insertion bonus. This modification can be

applied by adding the additional terms with α and β to the log probability of the

destination state when a state transition between two different label nodes occurs.

The probability of the next label is computed using the RNN LM when a new

active label node is added to the beam search tree. For this, the RNN LM context

(hidden activations) is copied from the parent node to the child node and the RNN

LM processes the new label of the child node with the copied context. Therefore,

each active node has its own RNN LM context.

4.3.2 Pruning

Pruning of the search tree is performed by the standard beam search approach. That

is, at each frame, only the active nodes with the top N hypotheses and their ancestor

nodes remain alive after the pruning with the beam width of N. However, this stan-

dard pruning, or width-pruning, cannot prevent the tree from growing indefinitely

especially when the input speech is very long. This gradually degrades the efficiency
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Figure 4.4: Example of depth-pruning with the beam depth of 2. The pruning is per-
formed by selecting a new root node so that the new depth of the best hypothesis
node becomes the beam depth. The shaded nodes indicate the original active nodes.
Also, the path of the best hypothesis is drawn with thick strokes.

of beam search on recent nodes since more and more hypotheses would be wasted to

maintain the old part of the lattice that is already out of the context range of the RNN

LMs.

To remedy this issue, we propose an additional pruning method called depth-

pruning. The procedure is as follows. First, find the M-th ancestor of the node with the

best hypothesis, where M is the beam depth. Then, the ancestor node becomes a new

root node. The pruning is performed by removing the nodes that are not descendants

of the new root node. In this way, a beam can be better utilized for recent hypotheses

rather than older ones. Figure 4.4 shows an example of depth-pruning with the beam

depth of 2. Note that the depth of some nodes can be larger than the beam depth. In

the following experiments, depth-pruning is performed every 20 frames.
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Figure 4.5: WER of the proposed online decoding on the evaluation set with respect
to the beam depth. Experiments are conducted with two acoustic RNNs trained on
SI-284 and SI-ALL and beam search is performed with the beam width (BW) of
128 and 512.

4.4 Experiments

The proposed ISR system is evaluated on a single 42-minute speech stream that

is formed by concatenating all 333 utterances in the evaluation set, eval92 (WSJ

Nov’92 20k evaluation set). We use α = 2.0 and β = 1.5 for the system trained with

SI-284, and α = 1.5 and β = 2.0 for the other one trained with SI-ALL.

The effects of beam depth and width to the final WER are examined in Figure 4.5.

The gap between the beam width of 128 and 512 is roughly 0.5% to 1% WER. How-

ever, there was little difference when the beam width increases from 512 to 2048 in

our preliminary experiments. The best performing beam depths are 50 and 30 for

the SI-284 and SI-ALL systems, respectively. This means the SI-ALL system can
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Table 4.1: CER / WER in percent on the evaluation set with online depth-pruning and
offline sentence-wise decoding. The error rates are reported with two acoustic RNNs
trained on SI-284 (71 hrs) and SI-ALL (167 hrs).

Method Beam width SI-284 SI-ALL

Online (no LM) 512 10.96 / 38.37 9.66 / 35.44
Online 128 4.25 / 9.87 3.56 / 8.56
Online 512 3.80 / 8.90 3.39 / 8.06
Sentence-wise 128 4.46 / 10.30 3.63 / 8.84
Sentence-wise 512 4.04 / 9.45 3.38 / 8.28

recognize speech more immediately than the SI-284 system. We consider this is be-

cause the acoustic model of the SI-ALL system can embed stronger language model

due to increased training data, and can make decision more precisely without relying

on the external language model much. The character error rate (CER) and WER are

reported in Table 4.1 with the optimal beam depths. For comparison, we also report

sentence-wise offline decoding results without depth-pruning.

The proposed ISR system is compared with other end-to-end word-level speech

recognition systems in Table 4.2. The other systems perform sentence-wise offline

decoding with bidirectional RNNs. The best result was achieved by Miao et al. [45]

with a CTC-trained deep bidirectional LSTM network and a retrained trigram LM

with extended vocabulary. The systems with the original trigram model provided with

the WSJ corpus perform worse than our ISR system with character-level RNN LM.

On the other hand, our system is beaten by the other ones with extended trigram

models. However, more precise comparison of the decoding stages should be done

by employing the same CTC model.

Figure 4.6 shows the incremental speech recognition result with the proposed ISR

system. The best hypothesis is reported every 50 frames (500 ms). It is shown that the
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Table 4.2: Comparison of WERs with other end-to-end speech recognizers in the
literature. For reference, WERs of phoneme based GMM/DNN-HMM systems are
also reported. All systems are trained with SI-284 and evaluated on eval92.

System Model WER
Proposed ISR Uni. CTC + Char. RNN LM 8.90%
Graves and Jaitly [10] CTC + Trigram (extended) 8.7%
Miao et al. [45] CTC + Trigram (extended) 7.34%
Miao et al. [45] CTC + Trigram 9.07%
Hannun et al. [67] CTC + Bigram 14.1%
Bahdanau et al. [41] Encoder-decoder + Trigram 11.3%
Woodland et al. [69] GMM-HMM + Trigram 9.46%
Miao et al. [45] DNN-HMM + Trigram 7.14%

100: HE’S THE

150: HE’S THE ONLY GU

200: HE’S THE ONLY GUY WHO COULD S

250: HE’S THE ONLY GUY WHO COULD SHOW UP IN THE

300: HE’S THE ONLY GUY WHO COULD SHOW UP IN THE PLAZA I

350: ...PLAZA IN ROCK R

400: ...PLAZA IN DRAW RATE OF SEVE

450: ...PLAZA IN DRAW RATE OF SEVENTY FIVE THO

500: ...PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEO

550: ...PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE S

600: ...PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LA

650: ...PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LATIN DIPLOM

700: ...PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LATIN DIPLOMAT

Ground truth: HE’S THE ONLY GUY WHO COULD SHOW UP IN THE PLAZA AND DRAW

A CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LATIN DIPLOMAT

Figure 4.6: Example of ISR partial results. The best hypothesis is shown at every 50
frames (500 ms). The word “ROCK” is corrected to “DRAW” after hearing “RATE”
and “IN DRAW RATE” to “AND DRAW CROWD” while hearing “PEOPLE”.
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past best result can be corrected by making use of the additional speech input. For

example, the word “ROCK” is changed to “DRAW” in the frame 450 by listening

the word “RATE”. Moreover, the correction of “IN DRAW RATE” to “AND DRAW

CROWD” during hearing the word “PEOPLE” in the frame 500 is a good evidence

that long term context can also be considered.

4.5 Concluding Remarks

A character-level incremental speech recognizer is proposed and analyzed through-

out the chapter. The proposed system combines a CTC-trained RNN with a character-

level RNN LM through tree-based beam search decoding. For online decoding with

very long input speech, depth-pruning is proposed to prevent indefinite growth of the

search tree. When the proposed model is trained with WSJ SI-284, 8.90% WER can

be achieved on the very long speech that is formed by concatenating all utterances

in the WSJ eval92 evaluation set. The incremental recognition result shows the evi-

dence that character-level RNN LM can learn dependencies between two words even

when they are five words apart, which are hard to be caught using conventional n-

gram back-off language models.

Note that the proposed system only requires speech and text corpus for training.

External lexicon or senone modeling is not needed for training, which is a huge ad-

vantage. Moreover, it is expected that OOV words or infrequent words such as names

of places or people can be dictated as they are pronounced.
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Chapter 5

Character-Level Language Modeling
with Hierarchical RNNs

5.1 Introduction

Language models (LMs) show the probability distribution over sequences of words

or characters, and they are very important for many speech and document processing

applications including speech recognition, text generation, and machine translation

[1, 19, 70]. LMs can be classified into character-, word-, and context-levels accord-

ing to the unit of the input and output. In the character-level LM (CLM) [19], the

probability distribution of the next characters are generated based on the past char-

acter sequences. Since the number of alphabets is small in English, for example, the

input and output of the CLM is quite simple. However, the word-level LM (WLM) is

usually needed because the character-level modeling is disadvantaged in utilizing the

long period of past sequences. However, the problem of the word-level model is the

complexity of the input and output because the vocabulary size to be supported can
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be bigger than 1 million.

LMs have long been developed by analyzing a large amount of texts and storing

the probability distribution of word sequences into the memory. The statistical lan-

guage model demands a large memory space, often exceeding 1 GB, not only because

the vocabulary size is large but also their combinations needs to be considered. In re-

cent years, the language modeling based on recurrent neural networks (RNNs) have

been actively investigated [71, 72]. However, the RNN based WLMs still demand

billions of parameters because of the large vocabulary size.

In this chapter, we propose hierarchical RNN based LMs that combine the ad-

vantageous characteristics of both character- and word-level LMs. The proposed net-

work consists of a low-level and a high-level RNNs. The low-level RNN employs

the character-level input and output, and provides the short-term embedding to the

high-level RNN that operates as the word-level RNN. The high-level RNN do not

need complex input and output because it receives the character-embedding informa-

tion from the low-level network, and sends the word-prediction information back to

the low-level in a compressed form. Thus, when considering the input and output,

the proposed network is a CLM, although it contains a word-level model inside. The

low-level module operates with the character input clock, while the high-level one

runs with the space (<w>) and sentence boundary tokens (<s>) that separates words.

We expect this hierarchical LM can be extended for processing a longer period of

information, such as sentences, topics, or other contexts.

This chapter is organized as follows. Section 5.2 describes the background on

character-level language modeling using RNNs and related work. RNN modeling in-

cluding the external clock and reset signals is shown in Section 5.3, and the proposed

language model using a hierarchical RNN is presented in Section 5.4. Section 5.5
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Figure 5.1: Training an RNN-based CLM.

gives the experimental results, and concluding remarks are given in Section 5.6.

5.2 Related Work

5.2.1 Character-Level Language Modeling with RNNs

CLMs need to consider longer sequence of history tokens to predict the next token

than the WLMs, due to the smaller unit of tokens. Therefore, traditional N-gram mod-

els cannot be employed for CLMs. Thanks to the recent advances in RNNs, RNN-

based CLMs has begun to show satisfactory performances [19, 73]. Especially, deep

long short-term memory (LSTM) [56] based CLMs show excellent performance and

successfully applied to end-to-end speech recognition system proposed in Chapter 4.

For training RNN CLMs, training data should be first converted to the sequence

of one-hot encoded character vectors, xt , where the characters include word bound-

ary symbols, <w> or space, and optionally sentence boundary symbols, <s>. Then, as

68



shown in Figure 5.1, the RNN is trained to predict the next character xt+1 by minimiz-

ing the cross-entropy loss of the softmax output [54] that represents the probability

distributions of the next character.

5.2.2 Character-Aware Word-Level Language Modeling

There has been many attempts to make WLMs understand character-level inputs.

One of the most successful approaches is to encode the arbitrary character sequence

to fixed dimensional vector, which is called word embedding, and feed this vector to

the word-level RNN LMs. In [74], convolutional neural networks (CNNs) are used

to generate word embeddings, and achieve the state of the art results on English

Penn Treebank corpus [75]. The similar CNN-based embedding approach is used

by [72] with very large LSTM networks on the One Billion Word Benchmark [76],

also achieving the state of the art perplexity. In [77, 78], bidirectional LSTMs are

employed instead of CNNs for word embedding. However, in all of these approaches,

LMs still generate the output probabilities at the word-level. Although the character-

level modeling approach of the output word probability is introduced using CNN

softmax in [72], the base LSTM network still runs with a word-level clock.

Our approach is different from the above ones in many ways. First, our base

model is the character-level RNN LMs, instead of WLMs, and we extend this model

to enhance the model to consider long-term contexts. Therefore, the output proba-

bilities are generated with a character-level clocks. This property is extremely use-

ful for character-level beam search for end-to-end speech recognition introduced in

Chapter 4. Also, the input and output of our model are the same as those of the

traditional character-level RNNs, thus the same training algorithm and recipe can be

used without any modifications. Furthermore, the proposed models have significantly
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less number of parameters compared to WLM-based ones, since the input and out-

put complexity of our model does not directly depend on the vocabulary size of the

training set. Note that a similar hierarchical concept has been used for character-level

machine translation [79]. However, we propose more general hierarchical unidirec-

tional RNN architecture that can be applied for various applications.

5.3 RNNs with External Clock and Reset Signals

In this section, we generalize the existing RNN structures and extend them with exter-

nal clocks and reset signals. The extended models become the basic building blocks

of the hierarchical RNNs.

Most types of RNNs or recurrent layers can be generalized as

st = f (xt ,st−1) , yt = g(st) (5.1)

where xt is the input, st is the state, yt is the output at time step t, f (·) is the recur-

rence function, and g(·) is the output function. For example, a hidden layer of Elman

networks [9] can be written as

yt = st = ht = σ(Whxxt +Whhht−1 +bh) (5.2)

where ht is the activation of the hidden layer, σ(·) is the activation function, Whx and

Whh are the weight matrices and bh is the bias vector.

LSTMs [56] with forget gates [27] and peephole connections [57] can also be

converted to the generalized form. The forward equations of the LSTM layer are as
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follows:

it = σ(Wixxt +Wihht−1 +Wimmt−1 +bi) (5.3)

ft = σ(Wf xxt +Wf hht−1 +Wf mmt−1 +b f ) (5.4)

mt = ft ◦mt−1 + it ◦ tanh(Wmxxt +Wmhht−1 +bm) (5.5)

ot = σ(Woxxt +Wohht−1 +Wommt +bo) (5.6)

ht = ot ◦ tanh(mt) (5.7)

where it , ft , and ot are the input, forget, and output gate values, respectively, mt is the

memory cell state, ht is the output activation of the layer, σ(·) is the logistic sigmoid

function, and ◦ is the element-wise multiplication operator. These equations can be

generalized by setting st = [mt ,ht ] and yt = ht .

Any generalized RNNs can be converted to the ones that incorporate an external

clock signal, ct , as

st = (1− ct)st−1 + ct f (xt ,st−1) , yt = g(st) (5.8)

where ct is 0 or 1. The RNN updates its state and output only when ct = 1. Otherwise,

when ct = 0, the state and output values remain the same as those of the previous step.

The reset of RNNs is performed by setting st−1 to 0. Specifically, (5.8) becomes

st = (1− ct)(1− rt)st−1 + ct f (xt ,(1− rt)st−1) (5.9)

where the reset signal rt = 0 or 1. When rt = 1, the RNN forgets the previous contexts.

If the original RNN equations are differentiable, the extended equations with
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Figure 5.2: Hierarchical RNN (HRNN).

clock and reset signals are also differentiable. Therefore, the existing gradient-based

training algorithms for RNNs, such as backpropagation through time (BPTT), can be

employed for training the extended versions without any modifications.

5.4 Character-Level Language Modeling with a Hierarchi-

cal RNN

The proposed hierarchical RNN (HRNN) architectures have several RNN modules

with different clock rates as depicted in Figure 5.2. The higher level module employs

a slower clock rate than the lower module, and the lower level module is reset at every

clock of the higher level module. Specifically, if there are L hierarchy levels, then the

RNN consists of L submodules. Each submodule l operates with an external clock

cl,t and a reset signal rl,t , where l = 1, · · · ,L. The lowest level module, l = 1, has the

fastest clock rate, that is, c1,t = 1 for all t. On the other hand, the higher level modules,

l > 1, have slower clock rates and cl,t can be 1 only when cl−1,t is 1. Also, the lower

level modules l < L are reset by the higher level clock signals, that is, rl,t = cl+1,t .
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The hidden activations of a module, l < L, are fed to the next higher level mod-

ule, l +1, delayed by one time step to avoid unwanted reset by rl,t = cl+1,t = 1. This

hidden activation vector, or embedding vector, contains compressed short-term con-

text information. The reset of the module by the higher level clock signals helps the

module to concentrate on compressing only the short term information, rather than

considering longer dependencies. The next higher level module, l + 1, process this

short-term information to generate the long-term context vector, which is fed back to

the lower level module, l. There is no delay for this context propagation.

For character-level language modeling, we use a two-level (L = 2) HRNN with

letting l = 1 be a character-level module and l = 2 be a word-level module. The word-

level module is clocked at the word boundary input, <w>, which is usually a whites-

pace character. The input and softmax output layer is connected to the character-level

module, and the current word boundary token (e.g. <w> or <s>) information is given

to the word-level module. Since this HRNNs have a scalable architecture, we expect

this HRNN CLM can be extended for modeling sentence-level contexts by adding

an additional sentence-level module, l = 3. In this case, the sentence-level clock, c3,t

becomes 1 when the input character is a sentence boundary token <s>. Also, the

word-level module should be clocked at both the word boundary input, <w>, and the

sentence boundary input, <s>. In this paper, the experiments are performed only with

the two-level HRNN CLMs.

We propose two types of two-level HRNN CLM architectures. As shown in Fig-

ure 5.3, both models have two LSTM layers per submodule. Note that each connec-

tion has a weight matrix. In the HLSTM-A architecture, both LSTM layers in the

character-level module receives one-hot encoded character input. Therefore, the sec-

ond layer of the character-level module is a generative model conditioned by the
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context vector. On the other hand, in HLSTM-B, the second LSTM layer of the

character-level module does not have direct connection from the character inputs.

Instead, a word embedding from the first LSTM layer is fed to the second LSTM

layer, which makes the first and second layers of the character-level module work

together to estimate the next character probabilities when the context vector is given.

The experimental results show that HLSTM-B is more efficient for CLM applica-

tions.

Since the character-level modules are reset by the word-boundary token (i.e. <w>

or whitespace), the context vector from the word-level module is the only source for

the inter-word context information. Therefore, the model is trained to generate the

context vector that contains useful information about the probability distribution of

the next word. From this perspective, the word-level module in both HRNN CLM

architectures can be considered as a word-level RNN LM, where the input is a word

embedding vector and the output is a compressed descriptor of the next word proba-

bilities. Although the proposed model consists of several RNN modules with different

timescales, these can be jointly trained by BPTT as described in Section 3.

5.5 Experiments

The proposed HRNN based CLMs are evaluated with two text datasets: the Wall

Street Journal (WSJ) corpus [52] and One Billion Word Benchmark [76]. Also, we

present an end-to-end speech recognition example, where HLSTM CLMs are em-

ployed for prefix tree-based beam search decoding.

The RNNs are trained with truncated backpropagation through time (BPTT) [30,

33]. Also, ADADELTA [59] and Nesterov momentum [60] is applied for weight up-
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date. No regularization method, such as dropout [62], is employed. The training is

accelerated using GPUs by training multiple sequences in parallel as described in

Chapter 2.

5.5.1 Perplexity

In this section, our models are compared with other WLMs in the literature in terms of

word-level perplexity (PPL). The word-level PPL of our models is directly converted

from bits-per-character (BPC), which is the standard performance measure for CLMs,

as follows:

PPL = 2BPC× Nc
Nw (5.10)

where Nc and Nw are the number of characters and words in a test set, respec-

tively. Note that sentence boundary symbols (<s>) are also regarded as characters

and words.

5.5.1.1 Wall Street Journal (WSJ) Corpus

Dataset The Wall Street Journal (WSJ) corpus [52] is designed for training and

benchmarking automatic speech recognition systems. For the perplexity experiments,

we used the non-verbalized punctuation (NVP) version of the LM training data inside

the corpus. The dataset consists of about 37 million words, where one percent of the

total data is held out for the final evaluation and does not participate in training. All

alphabets are converted to the uppercases.
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Table 5.1: Perplexities of CLMs on the WSJ corpus

Model Size # Params BPC Word PPL

Deep LSTM 2x512 3.23 M 1.148 99.5
Deep LSTM 4x512 7.43 M 1.132 93.3
Deep LSTM 4x1024 29.54 M 1.101 82.4

HLSTM-A 4x512 7.50 M 1.089 78.5
HLSTM-B (no reset) 4x512 8.48 M 1.080 75.7
HLSTM-B 4x512 8.48 M 1.073 73.6
HLSTM-B 4x1024 33.74 M 1.058 69.2

Table 5.2: Perplexities of WLMs on the WSJ corpus in the literature

Model # Params PPL

KN 5-gram (no count cutoffs) [80] - 80
RNN-640 + ME 4-gram feature [80] 2 G 59

Experimental results Table 5.1 shows the perplexities of traditional mono-clock

deep LSTM and HLSTM based CLMs on the held-out set. Note that the size NxM

means that the network consists of N LSTM layers, where each layer contains M

memory cells. The HLSTM models show better perplexity performanes even when

the number of LSTM cells or parameters is much smaller than that of the deep LSTM

networks. Especially, HLSTM-B network with the size of 4x512 has about 9% lower

perplexity than deep LSTM (4x1024) model, even with only 29% of parameters.

Importance of reset It is important to reset the character-level modules at the

word-level clocks for helping the character-level modules to better concentrate on the

short-term information. As observed in Table 5.1, removing the reset functionality of

the character-level module of the HLSTM-B model results in degraded performance.
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Table 5.3: Perplexities of the HRNN CLMs on the One Billion Word Benchmark

Model Size # Params BPC Word PPL

HLSTM-B 4x512 9.06 M 1.228 83.3
HLSTM-B 4x1024 34.90 M 1.140 60.7

Comparison with WLMs The non-ensemble perplexities of WLMs in the litera-

ture are presented in Table 5.2. The Kneser-Ney (KN) smoothed 5-gram model (KN-

5) [81] is a strong non-neural WLM baseline. With the standard deep RNN based

CLMs, it is very hard to beat KN-5 in terms of perplexity. However, it is surpris-

ing that all HLSTM models in Table 5.1 shows better perplexities than KN-5 does.

The RNN based WLM model combined with the maximum entropy 4-gram feature

[82, 80] shows much better results than the proposed HLSTM based CLM models.

However, like most of the WLMs, it also needs a very large number (2 G) of param-

eters and cannot handle out-of-vocabulary (OOV) words.

5.5.1.2 One Billion Word Benchmark

Dataset The One Billion Word Benchmark [76] dataset contains about 0.8 billion

words and roughly 800 thousand words of vocabulary. We followed the standard way

of splitting the training and test data as in [76]. Each byte of UTF-8 encoded text is

regarded as a character. Therefore, the size of the character set is 256.

Experimental results Due to the large amount of training data and weeks of train-

ing time, only two HLSTM-B experiments are conducted with the size of 4x512 and

4x1024. As shown in Table 5.3, there are large gap (22.5) in word-level perplexity be-

tween the two models. Therefore, further improvement in perplexity can be expected

with bigger networks.
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Table 5.4: Perplexities of WLMs on the One Billion Word Benchmark in the literature

Model # Params PPL

Sigmoid RNN-2048 [83] 4.1 G 68.3
Interpolated KN-5, 1.1B n-grams [76] 1.76 G 67.6
LightRNN [84] 41 M 66
Sparse non-negative matrix LM [85] 33 G 52.9
RNN-1024 + ME 9-gram feature [76] 20 G 51.3
CNN input + 2xLSTM-8192-1024 [72] 1.04 G 30.0

Comparison with WLMs The perplexities of other WLMs are summarized in Ta-

ble 5.4. The proposed HLSTM-B model (4x1024) shows better perplexities than the

interpolated KN-5 model with 1.1 billion n-grams [76] even though the number of

parameters of our model is only 2% of that of the KN-5 model. Also, our model

performs better than LightRNN [84], which is a word-level RNN LM that has about

17% more parameters than ours. However, much lower perplexities are reported with

sparse non-negative matrix LM and the maximum entropy feature based RNN model

[76], where the number of parameters are 33 G and 20 G, respectively. Recently, the

state of the art perplexity of 30.0 was reported in [72] with a single model that has 1 G

parameters. The model is basically a very large LSTM LM. However, a convolutional

neural network (CNN) is used to generate word embedding of arbitrary character se-

quences as the input of the LSTM LM. Therefore, this model can handle OOV word

inputs, however, still the model runs with a word-level clock.

5.5.2 End-to-End Automatic Speech Recognition (ASR)

In this section, we apply the proposed CLMs to the end-to-end automatic speech

recognition (ASR) system to evaluate the models in more practical situation than

just measuring perplexities. The CLMs are trained with WSJ LM training data as
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Table 5.5: End-to-end ASR results on the WSJ Nov’92 20K evaluation set (eval92)

Model Size # Params Word PPL WER

Deep LSTM 4x512 7.43 M 93.3 8.36%
Deep LSTM 4x1024 29.54 M 82.4 7.85%

HLSTM-B 4x512 8.48 M 73.6 7.79%
HLSTM-B 4x1024 33.74 M 69.2 7.78%

in Section 5.5.1.1. Unlike WLMs, the proposed CLMs have very small number of

parameters, so they can be employed for real-time character-level beam search.

The incremental speech recognition system proposed in Chapter 4 is used for

the evaluation. The acoustic model is 4x512 unidirectional LSTM and end-to-end

trained with the online connectionist temporal classification (CTC) loss proposed in

Chapter 3. To train the acoustic model, the non-verbalized punctuation (NVP) portion

of WSJ SI-284 and SI-ALL training set is used as in Chapter 4. The acoustic features

are 40-dimensional log-mel filterbank coefficients, energy and their delta and double-

delta values, which are extracted every 10 ms with 25 ms Hamming window. The

ASR models are evaluated on the WSJ Nov’92 20K evaluation set (eval92).

The results are summarized in Table 5.5, where the acoustic model is trained on

SI-284. The beam-search decoding is performed on a prefix-tree with depth-pruning

and width-pruning. The insertion bonus is 1.6, the LM weight is 2.0, and the beam

width is 512. It is observed that the perplexity of LM and the word error rate (WER)

have strong correlation. As shown in the table, we can achieve a better WER by

replacing the traditional deep LSTM (4x1024) CLM with the proposed HLSTM-B

(4x512) CLM, while reducing the number of LM parameters to 30%.

Further analysis is performed by redrawing Figure 4.5 with our best acoustic

model trained on SI-ALL and two different CLMs: LSTM 2x512, which is used in

80



0 20 40 60 80 100 120 140
4

5

6

7

8

Beam depth (characters)

W
E

R
(%

)
LSTM 2x512 HLSTM-B 4x512

Figure 5.4: WER of the character-level ASR system with respect to the beam depth.
Two different CLMs are used: LSTM 2x512 and HLSTM 4x512. The experiments are
conducted with the acoustic RNN trained on SI-ALL and beam search is performed
with the beam width of 512.

Chapter 4, and the proposed HLSTM-B 4x512. We used the fixed beam width of

512 and various beam depths from 10 to 150. As shown in Figure 5.4, the HLSTM

based CLM leads to the reduction of WER roughly by 1% except when the beam

depth is 10. This result is also consistent in Figure 5.5, which is drawn by fixing

the beam depth to 50 and varying the beam width from 8 to 512. Note that the two

CLMs have different number of parameters and this experiment is not intended for

fair comparison of the two different RNN architectures.

5.6 Concluding Remarks

In this paper, hierarchical RNN (HRNN) based CLMs are proposed. The HRNN

consists of several submodules with different clock rates. Therefore, it is capable
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Figure 5.5: WER of the character-level ASR system with respect to the beam width.
Two different CLMs are used: LSTM 2x512 and HLSTM 4x512. The experiments are
conducted with the acoustic RNN trained on SI-ALL and beam search is performed
with the beam depth of 50.

of learning long-term dependencies as well as short-term details. The experimen-

tal results on One Billion Benchmark show that HLSTM-B networks significantly

outperform Kneser-Ney 5-gram LMs with only 2% of parameters. Although other

RNN-based WLMs show better performance than our models, they have impracti-

cally many parameters. On the other hand, as shown in the WSJ speech recognition

example, the proposed model can be employed for the real-time speech recognition

with less than 10 million parameters. Also, CLMs can handle OOV words by nature,

which is a great advantage for the end-to-end speech recognition and many NLP

tasks. One of the interesting future work is to train the clock signals, instead of using

manually designed ones. Also, it would be interesting to see how this hierarchical

architecture will perform when the level of hierarchy increases.
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Chapter 6

Conclusion

In this dissertation, we have discussed the design of RNN-based end-to-end online

ASR, efficient training algorithm and system for it, and the improved character-level

RNN LM for performance enhancement.

Specifically, a flexible and efficient GPU-based training system for RNN is de-

scribed in Chapter 2. This training system is equipped with truncated BPTT algorithm

and capable of training unidirectional RNNs with very long sequences for preventing

the RNN explosion during online decoding. RNNs are represented by directed graph

structures, and automatically parallelized for GPU-based training. The system was

used for training all the RNNs in this dissertation. Especially, the RNN LMs were

trained with this system without further modification.

In Chapter 3, the CTC forward-backward algorithm is also modified and inte-

grated with the truncated BPTT algorithm and the training system in the previous

chapter. As a result, the trained RNN AM can decode infinitely long input speech

without any RNN explosion problem. Moreover, the training time is significantly re-
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duced due to increased parallelism.

The proposed character-level online ASR model is introduced in Chapter 4. The

model employs a character-level RNN AM, which is trained with CTC loss, and a

character-level RNN LM for augmenting the speech recognition results. The best hy-

pothesis is found by prefix-tree based beam search. To prevent monotonic growth of

the decoding tree, “depth” pruning is applied as well as conventional “width” prun-

ing. The proposed character-level online ASR system does not require lexicon, natu-

rally handles OOV words, and is capable of decoding infinitely long stream of input

speech.

In Chapter 5, the character-level LM is improved with hierarchical RNN struc-

tures and applied for the proposed online ASR system. As a result, the amount of

computation is significantly reduced while achieving improved speech recognition

accuracy. Also, it has been shown that this character-level LM with hierarchical

RNN architecture outperforms a lightweight word-level RNN LM with a comparable

amount of parameters.
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국문초록

재귀형 인공신경망(recurrent neural network, RNN)은 최근 시퀀스-투-시퀀스

(sequence-to-sequence)방식의여러모델에서좋은성능을보여왔다.최근의음성

인식에서사용하는종단간(end-to-end)훈련방식의발전으로인해, RNN은일련의

오디오특징(feature)을입력으로하고일련의글자(character)혹은단어들을출력

으로하는단일한함수를학습할수있게되었다.이함수는중간에음소단위혹은

발음 사전(lexicon) 단위의 변환을 거치지 않는다. 지금까지, 대부분의 종단간 음

성인식은 기존 방식으로 얻은 높은 정확도를 따라가는 데 초점이 맞춰져 있었다.

하지만, 비록 종단간 음성인식 모델이 기존 음성인식 모델만큼의 정확도를 달성

했음에도,이모델은보통미리잘라진오디오데이터를사용하는발화단위의음

성인식에사용되었고,실시간으로연속적인오디오데이터를받아사용하는음성

인식에는 잘 사용되지 않았다. 이것은 미리 잘라진 데이터로 학습한 RNN은 매우

긴오디오입력에대해서도잘동작하도록일반화(generalization)가되기어려웠기

때문이다.

위 문제를 해결하기 위해, 본 논문에서는 무한히 긴 시퀀스를 사용하는 RNN

훈련 방법을 제안한다. 먼저, 이를 위한 효과적인 그래픽 프로세서(graphics pro-

cessing unit, GPU) 기반 RNN 훈련 프레임워크(framework)를 설명한다. 이 프레

임워크는제한된시간축역전파(truncated backpropagation through time, truncated

BPTT)를 사용해 훈련되며, 덕분에 실시간으로 들어오는 연속적인 데이터를 사

용하여 훈련할 수 있다. 다음으로, 연결성 시계열 분류기(connectionist temporal

classification, CTC) 알고리즘의 손실(loss) 계산 방식을 변형한 실시간 CTC 학습
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알고리즘을 선보인다. 새롭게 선보인 CTC 손실 계산 알고리즘은 truncated BPTT

기반의 RNN훈련에바로적용될수있다.

다음으로, RNN만으로구성된종단간실시간음성인식모델을소개한다.이모

델은크게 CTC출력을사용하는음향(acoustic) RNN과글자단위 RNN언어모델

(language model)로 구성된다. 그리고, 접두사 트리(prefix-tree) 기반의 새로운 빔

탐색(beam search)이사용되어무한한입력오디오에대해디코딩(decoding)을수

행할 수 있다. 이 디코딩 방식에는 새로운 빔 가지치기(beam pruning) 알고리즘이

도입되어트리구조의크기가지수적으로증가하는것을방지한다.위음성인식모

델에는별도의음소모델이나발음사전이포함되어있지않고,무한히긴일련의

오디오에대해디코딩을수행할수있다는특징이있다.위모델은또한다른종단

간모델에비해매우적은메모리를사용하면서도비견될만한정확도를보인다.

마지막으로, 본 논문에서는 계층형 구조(hierarchical structure)를 이용해 글자

단위 RNN언어모델의성능을향상시켰다.특히,이글자단위 RNN모델은비슷한

파라미터수를갖는단어단위 RNN언어모델보다개선된예측복잡도(perplexity)

를달성하였다.또한,이글자단위 RNN언어모델을앞서설명한글자단위실시간

음성인식 시스템에 적용하여 더욱 적은 연산을 사용하면서도 음성인식 정확도를

향상시킬수있었다.

주요어 :음성인식,재귀형인공신경망,종단간학습,실시간추론

학번 : 2010-23300
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