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Abstract

One of main goals of computer-generated character animation is to reduce cost to create

animated scenes. Using human motion in makes it easier to animate characters, so motion

capture technology is used as a standard technique. However, it is difficult to get the desired

motion because it requires a large space, high-performance cameras, actors, and a signifi-

cant amount of work for post-processing. Data-driven character animation includes a set of

techniques that make effective use of captured motion data.

In this thesis, I introduce methods that analyze the semantics of motion data to enhance the

utilization of the data. To accomplish this, various techniques in other fields are integrated

so that we can understand the semantics of a unit motion clip, the implicit structure of a

motion sequence, and a natural description of movements. Based upon that understanding,

we can generate new animation systems. The first animation system in this thesis allows the

user to generate an animation of basketball play from the tactics board. In order to handle

complex basketball rule that players must follow, we use context-free grammars for motion

representation. Our motion grammar enables the user to define implicit/explicit rules of

human behavior and generates valid movement of basketball players. Interactions between

players or between players and the environment are represented with semantic rules, which

results in plausible animation. When we compose motion sequences, we rely on motion

corpus storing the prepared motion clips and the transition between them. It is important

to construct good motion corpus to create natural and rich animations, but it requires the

efforts of experts. We introduce a semi-supervised learning technique for automatic gen-

eration of motion corpus. Stacked autoencoders are used to find latent features for large

amounts of motion capture data and the features are used to effectively discover worthwhile

motion clips. The other animation system uses natural language processing technology to

understand the meaning of the animated scene that the user wants to make. Specifically,



Abstract III

the script of an animated scene is used to synthesize the movements of characters. Like

the sketch interface, scripts are very sparse input sources. Understanding motion allows the

system to interpret abstract user input and generate scenes that meet user needs.

keywords: Computer Graphics, Character Animation, Data-driven Motion Synthesis, Mo-

tion Classification, Machine Learning

Student Number: 2008-21005
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Introduction

Character animation plays a crucial role in bringing virtual characters to life. In animated

films, a character takes 24 poses per second situated by animators. Since pose settings

are cumbersome tasks, a skilled animator composes a few seconds of character animation

a week. To reduce the amount of tasks, keyframing methods have been proposed. They

have helped animators by automatically generating the movements of characters between

keyframe poses. However, sometimes they create unnatural movements of characters and

still require a significant amount of tasks.

As a way for generating natural looking scenes, physically-based simulation has been used.

It uses physical laws of the real world to simulate a virtual world. Since physical laws are

inferred from observation of the real world, animation scenes synthesized with physically-

based simulation are realistic therefore widely used to create scenes with fluids such as

water and air. Nevertheless, to control objects in a desired way requires tedious parameter

1
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tuning and considerable computation time for solving space-time optimization problems.

It is much harder to control characters such as biped, quadruped because it yields too com-

plicated problems to solve.

Another approach to bring verisimilitude to the virtual world is using the data observed

in the real world. The motion data acquired in the real world shows valid movement of

characters, so if you combine it carefully, you can get plausible results. This approach is

called data-driven approach. A data-driven approach requires a sufficient amount of data

and methods to utilize the data. A main source for collecting motion data is motion cap-

ture, a process that records the movement of people and objects. With the development

of motion capture system, we can store information from the trajectories of joints to the

minute vibrations of facial muscles. Along the improvement of capture technology, appli-

cation methods have also been advanced. Studies on motion data enables us to cut, stitch

and modify original motion data. We can adapt motion sequences to new environments and

blend two motion fragments to generate motion in-between.

A general data-driven animation system takes user input and generates animated scenes

based on user needs. We can decompose the system into four components; user interface,

interpreter, synthesizer, and motion analyzer. Their relationship is shown in Figure 1.1.

User interface offers a variety of ways to express what the user wants and transforms user

input into machine-readable motion representation. For example, a line drawn on the screen

of a sketch interface is converted to a trajectory constraint that the character must follow

and the handles of a motion editing system are translated as position constraints.

Interpreter forms solvable problems using prior knowledge. Since the motion represen-
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tation generated through the user interface is incomplete and abstract, we should approxi-

mate the rest appropriately to synthesize an animation from it. For example, when drawing

a character’s trajectory, we implicitly expect him to show a natural gait and when editing a

motion, we want the movement of the character not to be very different from the original

motion. Motion graphs [38, 34] model motion corpus as a directed graph and transform

motion synthesis problem into a problem of path finding on the graph.

Synthesizer composes animations with motion specifications provided by the interpreter.

It solves the problem by using various optimizers. The result of solving the problem is a

pose for each time of every character and place it in the environment to create a scene.

Motion preprocessor helps to generate the motion corpus. When the amount of capture

motion data was small, manually created motion corpus was used. With the development of

motion capture technology, obtaining motion data has been relatively easy so the demand

for tools that can support motion corpus generation is growing. Motion preprocessor is not

an integral part of the pipeline, but it reduces the amount of work required to create the

system. For example, we observe the position of the foot to determine the walking cycle of

locomotion. A match web [33] is a matrix that contains the distance of every pair of poses

and from which we can find chains of similar motion clips.

This thesis introduces how to improve each component to create a new animation system. It

is organized into three chapters and each of which focuses on the improvement of a single

component.

Motion Grammar
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Figure 1.1: A general data-driven animation pipeline. It consists of user interface, inter-

preter, synthesizer and motion analyzer.

In Chapter 3, motion grammars are used to interpret the user’s sketch on the tactics board.

A motion grammar is a context-free grammar which is used to define structure of human

movements. It can easily replaces formerly used simpler, finite-state machine based mo-

tion graphs. With the expressive power of context-free grammars, it can effectively deal

with the memory of characters. When a computer animated film were just published, an

animated scene consisting of a small number of characters and a simple environment is

enough to fascinate people. With the development of technology, however, the demand for
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splendid scenes has arisen and we need to deal with multiple characters and interactions

between them. In order to deal with interactions between characters and surroundings, we

define semantics feature which also fills a gap between context-free grammars for formal

languages and motion grammars. Our multi-level MCMC (Markov Chain Monte Carlo)

algorithm deals with the syntax, semantics, and spatiotemporal context of human motions

to produce plausible, highly-structured, animated scenes. To demonstrate the expressive

power of motion grammars, we built an animation system that produces an animation of

basketball plays from drawings on a tactics board.

Motion Embedding

Motion corpus consists of unit motion clips which are processed for reuse. The process

involves cropping and labeling. It is important to determine which frame to crop because we

can concatenate two motion clips to form a motion sequence when their boundary poses are

very similar. Labeling cropped motion clips allows the character to perform certain actions

or to follow the given trajectory. Recent motion capture system allows us to obtain rich

motion data easily, but it still takes a long time to process the captured motion data. Motion

embedding is a method mapping the space of poses to a low-dimensional vector space in

which we can effectively figure out relationship between poses. To achieve fully automatic

system we construct stacked autoencoders. Training autoencoders requires no manual tasks

and it is scalable. Effectiveness of our motion embedding technique is demonstrated in

Chapter 4.

Text to Animation

Natural language is the most natural tool for communication. When we film movies, we
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write a play script which contains the action and speech of characters and according to the

script, actors or virtual characters play their role. In Chapter 5, we propose an automatic

animation system which can generate animated characters directly from the text on a script.

Like an actor has his or her own role in a play, a word in a sentence has its own role. De-

pendency parsers help us to understand semantics of words on a script and to translate them

to actions of characters and their spatiotemporal constraints. Word embedding technique is

used to find correspondence of strange words in scripts and motion clips in motion corpus.
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Figure 1.2: Improving a component of the animation pipeline yields a new animation sys-

tem. Formal grammar theory, machine learning and natural language processing are used

to enhance the interpreter, the motion preprocessor, and the user interface, respectively.
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Background

2.1 Representation of Human Movements

Movements of human are driven by more than 200 bones and 600 muscles in a complicated

way and expressed by the surface of skins. More than dozens of thousands of vertices are

necessary to represent precise movements of those surfaces. Since they yield too many de-

gree of freedoms to deal with, we often use a small number of handles to manipulate them.

One of the most used model is skeletal animation in which a character has a hierarchical

structure of bones and a vertex weight map which determines the positions of vertices of

the character with respect to the positions and orientations of the bones of the character.

With the technique, we can model movements of a character as movement of its bones or

joints. Once a hierarchy of bones and joints and their initial configuration is defined, a pose

8
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of a character can be described as

p = {p,q0,q1, · · ·qN} ∈ P

where p is the position of the root joint and qi is the orientation of the ith joint, respectively.

Since each joint other than the root joint is connected to their parent joint by a rigid bone,

only the root joint has degree of freedoms for position.

Motion of a character is a continuous sequence of poses and we can recognize it as a

mapping which maps time to a pose of the character.

m(t) : T→ P= {p(t),q0(t),q1(t), · · ·qN(t)}

where T⊂ R is a valid range of time on which a pose of the character is defined.

For notational convenience, we note mt = m(t). We are often interested in not the actual

mapping but its sampled values (e.g., m0,m1,m2, . . . ).

Applying various operations on motion data allows us to generate a new motion sequence

which adapts to a strange environment, performs a new task, and achieve a certain objec-

tive. First, a pose is very similar to a point in an affine space and we can define the pose

displacement for two poses of the same character as

pα −pβ = {pα − pβ ,(qβ

0 )
−1qα

0 ,(q
β

1 )
−1qα

1 , · · ·(q
β

N)
−1qα

N}.

Then displacement vectors form the vector space V such that

for vα ,vβ ,v ∈ V ,c ∈ R

vα +vβ = {pα + pβ ,qα
0 qβ

0 ,q
α
1 qβ

1 , · · ·qα
Nqβ

N}

cv = {c · pv,(qv
0)

c,(qv
1)

c, · · · ,(qv
N)

c}
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A pose displacement can be added to a pose to form the new pose.

p+v = {p+ pv,q0qv
0,q1qv

1, · · ·qNqv
N}

Operations above generally extends to be applied on motion data.

(mα −mβ )(t) = mα(t)−mβ (t)

(m+v)(t) = m(t)+v for v ∈ V

Now we can introduce advanced applications.

Motion Warping is the process that modifies the give motion data a little so that it can

satisfy desired objectives. For example, we can change the target of a kicking motion or the

height of chair on which a character sits. Let m,p be a given motion and the target pose at

the time s, respectively. Then, the warped motion

Warp(m,p,s)(t) = m(t)+
(
w(t) · (p−m(s))

)
where w(t) : T→ [0,1] is a smooth warping function such that w(s) = 1 and w(t) = 0 for

t /∈N (s). For example,

w(t) =


cos
(

π

2
· t− s

∆

)
if |s− t| ≤ ∆

0 otherwise

can be used as a warping function.

Motion Stitching is concatenating two or more motion clips to form a long motion se-

quence. Assume we want to stitch two motions mα ,mβ where mα is defined on time [0,s]

and mα(s)≈mβ (0). Then, the stitched motion

Stitch(mα ,mβ ,s)(t) =

 mα(t) if t ≤ s

m̃β (t− s) if t > s
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where m̃β = Warp(mβ ,mα(s),0) is the warped motion to adjust their boundaries. Note

that the boundaries of motion clips being stitched should be very similar or the stitched

motion is very awkward.

2.2 Motion Annotation

Motion segmentation is the process that crops captured motion data into motion clips. It

involves determining the boundaries and length of the motion clip, which is important

when stitching motion clips. Decreasing the number of boundaries increases the length of

the motion clip, making it too specialized and generally difficult to use. If the length of the

motion clip is too short, the type of motion clip is too fragmented to control the character as

desired. Motion classification is the task of categorizing cropped motion clips which makes

it easier to find out which action a character should take when controlling a character. For

example, we can jump a character by stitching a motion clip labeld ‘jump’ that matches the

current state of the character.

Constructing a reliable motion corpus requires good quality in both motion segmentation

and classification. Since they are fundamental requirement of character animation, there

have been a lot of studies on developing automatic system. Principal component analysis

have been widely to segment motion capture data [7]. There have been studies using hand-

made features to automatically annotate motion. [6, 35]. Dynamic time warping have been

used to the similarity between two motion clips. [33, 52, 51, 17].

These algorithms are based on comparing poses, that is, that two motion clips that share a



2: Background 12

similar pose sequence are likely to be classified in the same class. Since it is necessary to

construct a similarity matrix and find a path with a high similarity value, it does not scale

to a very large motion database which has more than a million poses. In situations where

public motion databases are available [1, 2], we need a scalable algorithm that can generate

very large motion corpus utilizing a large amount of motion data

Unsupervised learning is to discover knowledge about the data. From unlabeled input

data alone, it figures out intrinsic structure of data and yields meaningful results. It in-

cludes clustering such as k-means clustering, Gaussian mixture model(GMM), and la-

tent Dirichlet allocation(LDA) and latent feature extractions such as principal compo-

nent analysis(PCA), multidimensional scaling(MDS), and Gaussian process latent vari-

able model(GPLVM). In computer animation field, PCA has been used widely to get low-

dimensional feature vectors [3, 63]. GPLVM, a nonlinear generalization of PCA which can

effectively learn input data, has been regarded as an alternative to PCA because of its ex-

pressive power [22, 67, 43]. Nevertheless, due to the the complexity of time and space, it

can not be applied to large amounts of data.

2.3 Motion Grammars

Motion capture is a major source of realism in modern character animation. Data-driven ap-

proaches commonly segment motion capture data into short fragments and splice them in

a novel sequence. Animation techniques based on motion capture can roughly be classified

into three categories. A large class of data-driven methodologies edit individual fragments

subject to new requirements. There exist another class of methodologies that focus on tem-
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poral sequencing and spatial alignment of motion data in space and time. The first category

of techniques tend to make smooth, continuous changes over individual motion fragments

or a family of parameterized motions, while the problems in the second category are dis-

crete and combinatorial. The last category of techniques tried to solve both continuous

editing and discrete planning simultaneously.

The continuous editing of motion is usually formulated as constrained optimization, which

minimizes the deviation from the original motion data subject to user-specified constraints

and requirements. This formulation has been effective for a wide range of problems, such

as retargeting motion to new characters [19], interactive manipulation [39], blending a fam-

ily of similar motions [57], statistical modeling [50, 49], and incorporating physics-based

objectives and constraints [46]. The idea has further been explored to deal with multiple

interacting characters in the context of interactive manipulation [36, 32, 31].

The combinatorial planning of action sequences often requires an efficient data structure to

store and search motion data. The most popular structure is a motion graph [38, 34], which

is essentially a finite state machine encapsulating the connectivity among motion frag-

ments. The concept of motion graphs has further been elaborated to cope with families of

parameterized motions [60]. Good segmentation and clustering of motion fragments are key

ingredients of building effective motion data structures [7, 8]. Provided that such a structure

is built, synthesizing novel motion sequences entails combinatorial searching through the

connectivity among motion fragments. Temporal sequencing of motion fragments has been

addressed by using state-space search [38, 34, 58], dynamic programming [6], min-max

search [62], and policy learning [48, 65]. State-space search methods are closely related to

the path planning of three-dimensional characters in highly-constrained and dynamically-
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changing environments [12, 42].

Naturally, there have been efforts to integrate continuous optimization and combinatorial

planning into a single framework. Motion data and their connectivity can be projected into

a single continuous configuration space via dimensionality reduction [59] and can be re-

trieved from the configuration space by using multivariate regression [41]. Combinatorial

planning problems can be reformulated as continuous optimization in the projected space.

Alternatively, careful design of user interfaces can allow two heterogeneous types (con-

tinuous and discrete) operations to occur seamlessly in interactive manipulation of motion

data [32].

Animating multiple interacting characters is a very challenging problem because the com-

putational complexity of naı̈ve approaches scales exponentially with respect to the number

of characters. Many recent studies exploited motion patches to address the problem. While

Lee et al [40] originally invented motion patches to animate characters in complex vir-

tual environments, subsequent studies adopted motion patches to deal with interactions

among characters and coordinate their actions in the spatiotemporal domain [61, 28]. Won

et al [69] presented a pre-visualization system that generates full-body fight scenes of mul-

tiple characters from a high-level graphical scene description. Our work also addresses

motion synthesis with single and multiple characters, but tackles a new aspect of the prob-

lem with emphasis on understanding, formulating, and animating the structured behavior

of individuals and their interactions using formal grammars.

Formal languages and context-free grammars have previously been explored in the com-

puter graphics community for shape analysis and procedural geometric modeling [45, 10]
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and in robotics for the control of robotic manipulators [13]. Grammar induction from hu-

man motion data has been used to understand the static structure of human movements [53,

24, 23]. To the best of our knowledge, we for the first time demonstrate structured, full-

body motion synthesis for practical applications using motion grammars.

2.4 Natural Language Processing

Natural language processing has drawn attention from many researchers since the birth of

the computer. It emerged with automatic translation and expanded to understanding mean-

ing of human language and generating natural language. In order to derive semantics of

a text, the machine should comprehend the syntax of a language and the usage of a huge

number of words.

A part-of-speech is a grammatical category or a role of words in a sentence. For example

traditional eight parts-of-speech are noun, verb, pronoun, preposition, adverb, conjunction,

participle, and article. The list of parts-of-speech tags is not unique but varies from one

corpus to another. To analyze the syntax of a language, recent corpus uses a more detailed

set of tags; the Penn Treebank project [47] has 45 tags and the Brown corpus [16] brings

87 tags. There have been computational methods for assigning parts-of-speech to words.

Rule-based methods [29] applies hand-written rules on a word and related words in a text.

Learning tagged corpus allowed us to use stochastic methods [11, 14, 68] such as hidden

Markov models, maximum entropy models. Recently, deep learning technology has pro-

duced impressive results [15, 44].
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Natural language generation is the task of generating natural language from machine rep-

resentation. It was used to produce weather forecasts from weather data [20], or to generate

readable text based on sales data [4].Advancement of deep learning technology has affected

also natural language generation. A trained recurrent neural network can be a text sequence

generator which mimics the style of training data and a hand-writing system that follows

the movement of the hand. [21]. Moreover, we can generate a natural language description

of images [30, 66]. The reverse process, imagination from a text is also becoming trendy

research topic [37]. Deep learning is also used to synthesize motion sequences [27], or

control characters in a dynamic environment [54].



3

Motion Grammar

The behavioral structure of human movements is imposed by multiple sources, such as

rules, regulations, choreography, habits, and emotion. Our goal is to identify the behavioral

structure in a specific application domain and create a novel sequence of movements that

abide by structure-building rules. To do so, we exploit the ideas from formal language,

such as rewriting rules and grammar parsing, and adapted those ideas to synthesize the

three-dimensional animation of multiple characters. The structured motion synthesis using

motion grammars is formulated in two layers. The upper layer is a symbolic description

that relates the semantics of each individual’s movements and the interaction among them.

The lower layer provides spatial and temporal contexts to the animation. Our multi-level

MCMC (Markov Chain Monte Carlo) algorithm deals with the syntax, semantics, and spa-

tiotemporal context of human motion to produce highly-structured, animated scenes. The

power and effectiveness of motion grammars are demonstrated in animating basketball

games from drawings on a tactic board. Our system allows the user to position players

17
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Figure 3.1: Our motion grammar reconstructs a structurally-valid 3D animated scene

from a sketch of the basketball tactics board.

and draw out tactical plans, which are animated automatically in virtual environments with

three-dimensional, full-body characters.

3.1 Overview

Natural human movements are often strongly structured. Behavioral structures may be im-

posed explicitly by rules, regulations, and choreography. Structures may arise implicitly

from habits, cultural heritage, and emotion. For example, the rules of basketball dictate

how many steps the player can take while holding the ball and prevent players from viola-

tions such as double dribbling. Basketball rules and regulations render highly-constrained

structures of players’ movements. Dance choreography is another example of structured

human movements. Each category of dances has established the conventions of its form,

motion, and rhythm. Dance choreographers dictate motion and form in a highly structured

manner based on such conventions.

Motion capture technology is popular in computer graphics and thus large databases of
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high-quality human motion data are readily available on the web. A common goal of data-

driven animation research is to animate computer-generated characters by using a collection

of canned motion data. Efforts for achieving this goal have developed a toolbox of data-

driven techniques that range from low-level data manipulation to higher-level planning of

a sequence of actions in virtual environments. Understanding the syntax and semantics

of human movements would allow even higher-level control over the motion of animated

characters and make it look plausible.

Our goal is to identify the behavioral structure of human movements and create a novel

sequence of movements that abide by structure-building rules. To do so, we exploit formal

language technologies, such as rewriting rules and grammar parsing, developed in com-

puter science and computational linguistics. The underlying assumption is that behavioral

structures can largely be formulated as context-free grammars. In graphics applications, hu-

man motion data have often been stored and maintained in motion graphs [38, 34], which

are equivalent to finite state machines and regular grammars in terms of their expressive

power. The motion graph maintains a collection of motion fragments and encodes the tran-

sitioning possibilities among motion fragments. Transitioning through the graph generates

a sequence of character’s actions. Context-free grammars are more expressive than regu-

lar grammars, so the use of context-free grammars allow us to uncover richer hierarchical

structures, regularities, interactions, and patterns that could not be expressed in motion

graphs. Motion grammars can be easily incorporated into existing animation systems that

are equipped with motion graphs or finite state machines of character’s actions.

The theory of formal language does not generalize easily to deal with human movements.

Human motion data are high-dimensional, continuous, and time-series, whereas a formal
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language is a string of discrete symbols. Human movements take place at specific spatial

locations and specific time instances. The spatial and temporal contexts do not exist in for-

mal languages. Our motion grammar is a set of context-free rewriting rules of quantized

motion symbols and each rule is annotated with semantic context that may evaluate and

trigger actions. We formulate a multi-character motion synthesis problem in two layers.

The structure layer is a symbolic, tree-based description that relates the structure of each

individual’s movements and the interaction among them. The semantic layer provides spa-

tial and temporal contexts to the animated scene and generates full-body animation. Our

multi-level MCMC (Markov Chain Monte Carlo) algorithm deals with the syntax, seman-

tics, and spatiotemporal context of human motion to produce plausible, highly-structured,

animated scenes.

To demonstrate the power of motion grammars, we built an animation system that produces

the animation of basketball plays from drawings on a tactics board. Most basketball coaches

use clipboards to position players and draw out tactical plans. Our system reconstructs the

full-body motion of multiple players dribbling, passing, and shooting balls. Motion gram-

mars are used to describe basketball regulations and the behavioral patterns of offensive

and defensive players.

3.2 Motion Grammar

The theory of formal languages is well-established in computer science. There exists a

hierarchy of formal language classes. A set of languages generated by regular grammars

form the smallest class. Context-free grammars generate a larger class of languages and
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Non-terminals : {S,W,P,B}
Terminals : {walk, pickup,

putdown,carry}

Production Rules :
S → walk† W P W walk‡

W → walk W | ε
P → pickup B putdown
B → carry B| ε

Semantic Rules :
walk† : fpos(start,p0)
walk‡ : fpos(end,p1)

pickup : fdir(object) and
fdist(object,≤ 50cm)

S

PW

pickup

walk

ǫ B

putdowncarry B

walk pickup carry putdown X

ǫ

Y

W walk

ǫ

walk

walk

pickup

carry

putdown

walk

P0

P1

Figure 3.2: A simple example. (Left) The motion grammar for carrying an object. (Right-

top) A parse tree to generate an action string and a series of motion clips corresponding to

the string. (Right-bottom) The motion sequence spliced and situated in the virtual environ-

ment.

the class spanned by context-sensitive grammars is even larger. Regular grammars are

simple, easy-to-implement and thus have frequently been used in many text processing

applications. However, their expressive power is too limited to deal with the general struc-

tures of programming languages and natural languages. Context-sensitive grammars are

the most powerful among them, but computing with context-sensitive grammars is ex-

tremely demanding. For example, parsing general context-sensitive grammars is NP-hard.

Context-free grammars have long been considered a trade-off between two extremes and
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still tremendously popular in designing programming languages and processing natural lan-

guages. Context-free grammars are not powerful enough to express the whole complexity of

human movements and high-level behavioral patterns. However, we believe that context-

free grammars capture a large portion of human behavioral structures that is significant

enough to have practical uses.

The context-free grammar has a finite number of terminal and non-terminal symbols, and

includes a set of rules which rewrites the original string of symbols. Context-free means that

each individual rule replaces a single non-terminal symbol in the string with another string

of terminal and non-terminal symbols. One of the non-terminal symbols serves as a starting

symbol and fully expanding non-terminal symbols (until no non-terminals remain in the

string) generates a string of terminal symbols. Parsing is a reverse process. It begins with a

string of terminal symbols and searches for an ordering of rewriting rules that generates the

input string. The result of parsing is a parsing tree. The internal nodes of the tree correspond

to non-terminal symbols and its leaf nodes correspond to terminal symbols. The grammar

is deterministic if any valid string has a unique parsing tree. Otherwise, the grammar is

non-deterministic.

3.2.1 Instantiation, Semantics, and Plausibility

The motion grammar is a context-free grammar on motion sequences. Terminals are sym-

bolic representations of unit actions, such as “a half cycle of walk” and “jump shoot”.

Each non-terminal symbol has one or more production rules to substitute itself with series

of symbols. For example, non-terminal symbol “Dribble” can produce an arbitrarily long
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sequence of dribbling motions that may include many dribbling skills by recursively apply-

ing the production rules. Each terminal symbol is associated with many motion clips that

perform a specific unit action. The multiplicity of motion clips includes spatial, temporal,

and stylistic variations of acting out the action and thus provides rich connectivity between

actions.

Instantiation. The action represented by a terminal symbol is instantiated in the virtual

environment by picking a motion clip from many available choices associated with the

symbol and locating the clip in the environment at a certain time. Instantiating a string of

terminal symbols, which we call an action string, selects a sequence of associated motion

clips. Splicing them and smoothing out the seams make an extended clip, which will be

situated in the virtual environment. Let X be an action string and Y (X) be an extended

motion clip instantiated by X . X is a symbolic representation of the structure of a character’s

action, while Y (X) is a concrete realization of the action in the spatiotemporal context. The

actual form of Y (X) is a sequence of a character’s full-body poses varying over time.

Semantic Rules. The animated scene includes one or more characters, each of which pro-

duces a course of actions Xi and its instantiation Yi = Y (Xi). Situating and orchestrating

them in the common environment requires careful coordination and synchronization. We

use three types of semantic rules to orchestrate multiple characters. Each individual termi-

nal symbol can be annotated with a set of semantic rules, which are inherited to motion

instances derived from the symbol. The semantic rule of the first type locates a character at

desired position and/or direction (p0,θ0) ∈ R2×R at time t in the environment.

fpos = ‖pos(Yi, t)−p0‖, (3.1)
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fdir = ‖dir(Yi, t)−θ0‖, (3.2)

where pos(Yi, t) and dir(Yi, t) are the position and facing direction, respectively, of the root

segment (pelvis) projected on the ground surface at the t-th frame of Yi. The rule of the

second type synchronizes the action of two (or more) characters.

fsynch =
∣∣(t j− ti)−∆t

∣∣. (3.3)

For example, if one character passes a ball at frame ti so that the other character catches the

ball at frame t j, ∆t is the estimated time of the ball flying between the characters. The last

type coordinates and aligns the motion of a character with respect to other characters and

environment objects.

fdist =


0, if dnear ≤ ‖pos(Yi, t)−p0‖ ≤ dfar,

1, otherwise.
(3.4)

fline = dist
(
pos(Yi, t), line(p1,p2)

)
. (3.5)

For example, the distance rule fdist encourages a defensive player to stay near, but not too

close to an offensive player. The line rule fline locates the defensive player on the line

between the offensive player and the goal rim.

Plausibility. The structural plausibility of an action string Xi is:

P(Xi) ∝ gparse · exp
(
− guser

w1

)
, (3.6)

where gparse is a binary boolean function, of which value is 1 if the string Xi has a parse tree

and 0 otherwise. guser is a user-control term, which we will discuss in Section 3.3, and w1
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is its weight value. The semantic plausibility of action instances Y = {Yi} is:

P(Y ) ∝ exp
(
− ∑

k∈S (Y )

fk

ck
− gsmooth

w2
− gcollision

w3
− geffort

w4

)
, (3.7)

where S (Y ) is a set of semantic rules associated with Y , ck’s are weight values, and

gsmooth is the smoothness of motion concatenation in Y . The smoothness is measured by

the weighted sum of pose and velocity mismatches at the boundaries of two consecutive

motion clips [38]. gcollision is a binary boolean function that penalizes interpenetration be-

tween characters. The function value is 1 if there is any collision, and 0 otherwise. geffort

is an optional term to choose a better animation among many plausible animation samples

based on a secondary goal, which is either the total distance the characters travelled or their

traveling time in the animation.

3.2.2 A Simple Example

A simple example grammar is given in Figure 3.2(left). The motion grammar consists of a

set of non-terminal symbols {S,W,P,B}, a set of terminal symbols {walk, pickup, putdown,carry},

a starting symbol S, production rules, and semantic rules. The animation from the grammar

shows a character starting to walk from p0 ∈ R2 towards an object, picking it up, carrying

it, putting it down, and walking towards the target location p1 ∈ R2. The production rules

generate a valid sequence (in other words, structure) of actions, while the semantic rules

provide spatial context to the motion sequence. The semantic rules specify the start and

target locations, and also declare a condition that the character can pick up an object if it

faces the object and within 50cm from the object. Note that the grammar does not specify

the position of the object to pick up. Its position may be provided by the user to control the
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scenario.

The production rules expand the parse tree
(
Figure 3.2(middle)

)
to generate an action,

which describes how many steps the character will take to get to the object, how many

steps it will take while carrying the object, and how many steps it will take again to get to

the target location after putting down the object. A series of motion clips instantiated from

the action string describe the details of individual walking steps, such as stride length and

steering angle. Many walking motion clips with different strides and steering angles are

available in our motion repertoire, and thus the character’s moving path depends on both

the structure (e.g., the number of steps) of the action string and its instantiation (e.g., a

series of motion clips with different stride lengths and steering angles). The structure and

its instantiation interact with each other in a way that the character may either take a few

steps with long stride or more steps with shorter stride.

Our multi-level MCMC algorithm in Section 3.4 samples the space of plausible animations

with respect to the production and semantic rules. The most plausible animation from the

samples will be chosen
(
Figure 3.2(right)

)
. The final step is motion editing to remove any

mismatches in character coordination and synchronization. The animation is a collage of

canned motion clips, so motion clips may not fit precisely with each other and in the virtual

environment. We use a Laplacian motion editing technique [32] to get rid of any residual

mismatches, foot sliding, and interpenetration.
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3.3 Basketball Tactics Board

Although our motion grammar is a general method that generalizes easily to deal with

various applications, this paper focuses on a single application domain (i.e., basketball)

to discuss the grammar-based modeling process in-depth. The basketball play is highly-

structured and the players move in a highly-coordinated manner. While the structures

of basketball plays are derived from basketball rules and regulations, the semantic rules

emerge from the game context that includes game strategies, coordinated tactics, and ad-

versarial interaction between offensive and defensive players. We found that the motion

grammar is an effective tool for describing the structure and semantics of basketball plays

(see Appendix for the motion grammar with production and semantic rules).

Given the motion grammar for basketball plays, we can generate three-dimensional, full-

body basketball animation from a diagram sketch on the tactics drawing board (Figure 3.3).

Since the diagram is simple, sparse, and abstractive, reconstructing 3D animation from the

diagram is an ill-conditioned problem. The motion grammar is a key to the reconstruction

of structurally-valid, semantically-meaningful plays from a sparse sketch. Our sketch-based

interface for the tactics board includes five elements:

Circle: The circle indicates the location of a player. Offensive players are shown in red-

tones and defensive players are shown in blue-tones.

Solid arrow: A solid arrow from a circle to the goal rim indicates a player shooting a

basketball.

Solid curve with arrow: A solid curve with an arrow end describes a moving path of a
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player who may walk, run, or dribble along the path.

Dashed line with arrow: A dashed line with an arrow end describes one player passing a

basketball to the other player.

Zigzag line: The zigzag lines indicate feint moves and rapid pivot turns.

T-end: A moving path with a T-end indicates an offensive player setting a screen to block

a defensive player.

The tactics diagram in Figure 3.3 implicates the structure and semantics of the play; the

offensive player A2 outside the three-point line runs toward the free throw line to catch

a pass from player A1, and dribbles the ball toward the goal rim to make a shoot. In the

meantime, player A3 sets a screen to block the defensive player D2. A regular expression

X̂ = (walk|run)∗(catch)(dribble)∗(shoot) describes the role of the player A2 in the tactics.

Any action string X fits to the diagram if the regular expression X̂ matches a substring of

X . Here, the substring may not be continuous in X . The actual computation is simple. We

drop the asterisk symbols from the expression X̂ and then the following equation evaluates

how well X matches the description of an individual player.

guser = length(X̂)−LCS(X , X̂), (3.8)

where LCS(X , X̂) is the length of the longest common subsequence of X and X̂ .

The diagram also generates a set of auxiliary semantic rules. The circles locate the char-

acters at desired positions ( fpos). The direction of a character when shooting or passing

a ball is also implied in the diagram ( fdir). Synchronization rules ( fsynch) are set between

reciprocal actions, for example, “passing a ball” and “catching a ball”, or “setting a screen”
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and “pushing against the screen”. Although it is not clearly specified in the diagram who is

holding the ball at the beginning of the animation, the ball holder can be inferred by tracing

the diagram backward from either shoot or pass elements. The diagram is infeasible if it

has more than one ball holders or has a link traversing backward in time.

3.4 Motion Synthesis

The basketball tactics diagram implicates basketball plays governed by a motion grammar

G and auxiliary semantic rules { fk} derived from the diagram. An animated basketball

play is a tuple Z =
(
{Xi},{Yi},{Ti}

)
, where Xi is an action string of the i-th player, Yi

is an instance of Xi, and Ti is a parse tree of Xi. A set of play scenes form a probability

distribution, and a play scene is likely to emerge with probability P(Z) ∝ P(X)P(Y ) in

Equation (3.6) and (3.7), where X = {Xi} and Y = {Yi}. Conceptually, synthesizing an

animated scene from a diagram is to choose the most probable scene from the distribution

with respect to our plausibility measures. The probability distribution of animated scenes

is high-dimensional and very complex. The dimensionality of an animated scene includes

the complexity of full-body poses, the dimension of time, and the coordination of multiple

characters. Therefore, searching the most probable scene in such a high-dimensional space

is computationally demanding.

We formulate the scene reconstruction in the framework of Markov Chain Monte Carlo

(MCMC) methods, which are a class of algorithms for sampling from a high-dimensional

probability distribution from which direct sampling is difficult. Specifically, the Metropolis-

Hastings algorithm is an MCMC method for obtaining a sequence of random samples that
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approximate the target probability distribution. We modified and generalized the Metropolis-

Hastings algorithm to cope with the complexity of animated scenes, including the hierar-

chical structure of parse trees, the symbolic description of actions, and their instances in

the virtual environment. Our formulation separates the structure and semantics of basket-

ball plays into two layers. The structure layer is symbolic and tree-structured, while the

semantic layer is continuous and spatiotemporal. Our novel multi-level MCMC algorithm

can deal with the heterogeneous (structure vs semantics, symbolic vs continuous, and space

vs time) nature of the scene reconstruction problem.

The Metropolis-Hastings algorithm begins with an arbitrary initial sample Z(0) and per-

forms random walk to generates a Markov chain of random samples {Z(1),Z(2), · · ·}. The

random walk requires a proposal density function Q(Z′;Z), which suggests a new proposal

Z′ given the previous sample Z. The proposal is accepted with the ratio

αZ→Z′ = min
(

1,
P(Z′)Q(Z;Z′)
P(Z)Q(Z′;Z)

)
. (3.9)

If the new sample is rejected, the next sample is the previous sample Z. Repeating this pro-

cess generates a chain of samples one by one. Theoretically, the chain of samples converge

to the target probability distribution with an arbitrary proposal density function. Selecting

Q, however, influences heavily the computational performance of the algorithm in practice.

Therefore, defining an effective proposal density function is a key to the application of an

MCMC algorithm.

Random Walks We introduce two types of random jumps to generate a Markov chain.

The first type QI(Y ′;Y ) substitutes a motion clip with another motion clip in Y , leaving the

action strings X and its parse trees T remain unchanged. Note that the scene may have
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multiple characters, each of which has an action string, its instance, and a parse tree. The

proposal density QI selects one of the characters and picks one motion clip among a series

of the character’s motion clips. A new motion clip is instantiated randomly from the same

motion symbol that generated the original motion clip. The probability of suggesting a

particular motion clip for substitution is proportional to the error induced by the motion

clip in − log
(
P(Y )

)
from Equation (3.7). The motion clip will be more likely to be chosen

if it violates semantic rules, involves in a collision, or the connection to its previous or next

motion clip is not smooth.

The second type QS(T
′;T ) makes a larger, structural change to the scene by replacing a

subtree of a parse tree Ti ∈T with a new subtree. The root of any subtree is a non-terminal

symbol T . We generate a new subtree randomly by applying production rules recursively

starting from the root symbol and updating action strings accordingly. Motion clips are

re-instantiated from new action symbols and therefore Y is changed as well. The scope

of the change varies depending on the size of the subtree. The change can be as little as

replacing a single action symbol with another, and as big as replacing the whole scene with

a random scene. The proposal density should make a good balance among jumps of various

sizes. The probability of suggesting a particular subtree for substitution is proportional to

the error induced by the subtree. The error E(T ) is defined recursively:

E(T ) =
(

∏
T ′∈child(T )

E(T ′)
) 1

n+1 (3.10)

which is the geometric mean of errors of the child nodes, and n is the number of child

nodes. The rationale of using the geometric mean is as follows. If the errors in the child

nodes are equally high or equally low, the parent node is equally likely to be suggested for

substitution as its descendants. If error-prone nodes and errorless nodes are mixed in the
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descendants, the parent node is less likely to be suggested than its descendants. In this case,

the proposal density tends to suggest error-prone descendant nodes selectively rather than

make a big jump of substituting the parent node. We used the (n+1)-th root instead of the

n-th root to favor small jumps moderately over larger jumps.

Multi-level MCMC Algorithm. Our algorithm begins with initial scene Z(0) that is structurally-

plausible (i.e., P(X (0)) > 0 in Equation (3.6)). It means that the action strings have valid

parse trees and match the input tactics diagram. The algorithm has two nested loops. The

outer loop is for structural jumps, while the inner loop is for optimizing the instantiation

of the scene. The structural jumps are allowed only between structurally-plausible config-

urations (line 3–6). The semantic-layer MCMC instantiates a new scene from the structure

suggestion X ′ and optimizes the scene with respect to semantic rules and quality measures

in Equation (3.7) (line 7–16). random() is a function drawing a random number in [0,1).

The structure suggestion is either accepted or rejected based on a structure-layer MCMC

method (line 17–23).

Bootstrapping. The bootstrapping is a process of finding a structurally-plausible initial

configuration (X (0),T (0)) before our multi-level MCMC algorithm starts. Since action

strings are always derived by using production rules and parse trees, X (0) is valid if guser =

0. The bootstrapping is yet another MCMC algorithm that searches for a valid configuration

with probability P(X) and proposal density QS(T
′;T ).

Parallel Tempering. Although MCMC algorithms are theoretically guaranteed to con-

verge even in high dimensional space, the more difficult problem is to make it converge

faster. The speed of convergence is closely related to determining proper size of jump pro-
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Algorithm 1 Multi-level MCMC

1: Z(0)← (X (0),Y (0),T (0))

2: for i← 1 to N do

3: repeat

4: T ′ ∼ QS(T
′;T (i−1))

5: X ′← string(T ′)

6: until P(X ′)> 0

7: Ȳ (0)← instantiate(X ′)

8: for j← 1 to M do

9: Y ′ ∼ QI(Y ′;Ȳ ( j−1))

10: β ←min(1, P(Y ′)QI(Ȳ ( j−1);Y ′)
P(Ȳ ( j−1))QI(Y ′;Ȳ ( j−1))

)

11: Ȳ ( j)←

 Y ′ if random()< β

Ȳ ( j−1) otherwise
12: end for

13: Z′← (X ′,Ȳ (M),T ′)

14: α = min(1, P(Z′)QS(T
(i−1);T ′)

P(Z(i−1))QS(T ′;T (i−1))
)

15: Z(i)←

 Z′ if random()< α

Z(i−1) otherwise
16: end for

17: return {Z(1), . . .Z(N)}
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Action Clips Action Clips Action Clips

screen 9 hold 6 feint 10

block 20 guard 121 push 9

pass 41 fake shot 11 pivot l 10

pivot r 14 dribble 146 shoot 27

catch 41 walk 64 run 72

layup 15 Total 598

Table 3.1: The number of motion clips for each action symbol

posals especially with complex structures such as motion grammars. When jumps are too

big, proposals are easily rejected and thus new samples are rarely accepted. Using small

jumps only, on the other hand, leads to trapping in local extrema. Instead of going through

laborious parameter tuning, we can run different chains simultaneously using a parallel

tempering scheme [18]. We generate multiple copies of Markov chains with target distribu-

tions Pn(Z)∝ P1/Tn(Z) of different temperatures. The chain of high temperatures allows big

jumps, while the chain of low temperature tends to search samples near local extrema with

small jumps. An important feature of parallel tempering is exchanging samples at different

temperatures based on the Metropolis criterion.

αn↔n+1 = min
(

1,
Pn(Zn+1)Pn+1(Zn)

Pn(Zn)Pn+1(Zn+1)

)
(3.11)

This swapping process gradually sends good samples to cool chains to stabilize the op-

timization process and bad examples to hot chains to explore new possibilities more ag-

gressively. The simultaneous generation of multiple chains is easily implemented on multi-

core/multi-thread architectures to parallelize the computation.
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3.5 Results

Our motion grammar for basketball plays is given in Appendix. The grammar has two

sets of production rules; one for offensive players and the other for defensive players. The

grammar has 19 non-terminal symbols and 17 terminal symbols. The offensive players start

with non-terminal symbol SA to expand their action strings, while the defensive players

start with SD. Although we use two starting symbols in the example, the grammar can be

adapted for individual player positions with a slight modification. Our basketball grammar

is deterministic and in the LR(1) class of grammars. It means that any action string can

be parsed sequentially by descending through productions recursively, picking the next

production to expand using a single token of lookahead without backtracking. Even though

our MCMC algorithm does not require deterministic grammars, it is convenient to have a

deterministic parser when we want to use simpler motion synthesis algorithms based on

A*-search, dynamic programming, or reinforcement learning.

The motion grammar can be easily incorporated into existing animation systems that are

equipped with the motion graph or the finite state machine of the character’s action. The

motion grammar facilitates data-driven motion analysis and synthesis in many ways.

Validation: Given any motion data, the grammar parser can check if the motion is feasible

with respect to the grammar governing its behavior. Grammar parsing reveals the

hierarchical process how a sequence of actions are structured.

Action Suggestion: Assuming that a sequence of actions have already been performed,

the parser can suggest a set of structurally-valid, plausible candidates for the next
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Diagram # of # of motion # of animation Computation time (second)

characters instances frames Outer loop Inner loop

Pass and Shoot 4 33 179 25 217

Screen 5 18 132 28 215

Backdoor 4 20 136 17 160

Give and Go 6 36 158 45 309

Double Team 4 22 170 25 244

Passing Drills 3 34 235 103 485

Weave Pass 3 26 245 86 436

Table 3.2: Results and performance.

action. This allows us to choose a series of actions one-by-one sequentially as if we

use a motion graph. It means that the motion grammar can replace a motion graph

seamlessly in existing animation systems.

Interactive Editing: Interactive manipulation of motion data entails continuous deforma-

tion of motion paths and large deformation often leads to structural changes on a

sequence of actions [32]. Discrete, structural editing of motion data may introduce a

new action in the middle of the sequence to cope with user manipulation, remove an

action from the sequence, or reorder the actions to form a novel sequence. Motion

grammars can parse valid structural changes and suggest new plausible sequences.

Motion Planning and Synthesis: Given a collection of motion fragments, there exist a

number of motion planning and synthesis algorithms that can generate a sequence

of motion fragments by splicing them together to satisfy user-specified goals and

constraints. The motion grammar can facilitate any synthesis problem that entails

splicing of actions.
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Motion Data. We collected about 100 minutes’ worth of basketball motion data, which

captured two to four players simultaneously in each session. We segmented and labelled

raw motion data manually to identify 598 motion clips, each of which is associated with

a terminal symbol (Table 3.1). The motion clips are annotated with context information,

including keyframes where important events occur (e.g., the moment of releasing a ball for

shooting/passing and the moment of catching a ball), reciprocal relations between motion

clips (e.g., pass and catch, shoot and block), and the relative pose of interacting players

(e.g., the position and direction of a catcher relative to the passer, and the position and

direction of a shooter relative to the goal rim). Our motion data do not include hand motion.

The gaze direction, hand shapes, and ball trajectories are added to match the scene context

in the post-processing phase.

Tactics Diagram. A number of offensive and defensive tactics/drill plans are available in

basketball textbooks and coaching guides in the form of diagram sketches. We reproduce

3D animated scenes for representative diagram sketches (Figure 3.4) including offensive

tactics (e.g., Pass and Shoot, Backdoor, Screen, and Give and Go), defensive tactics (e.g.,

Double Team), and drills (e.g., Weave Pass). Our algorithm works well with any diagram

sketches as long as a vocabulary of actions are readily available. The interface system is

very easy to use. The user can sketch an arbitrary diagram using a set of predefined elements

(e.g., location, move, pass, shoot, screen, and feint). Then, the system checks the validity

of the diagram and generates a 3D animated scene in a fully automatic manner.

Performance. Reconstructing play scenes from scratch took 3 to 10 minutes depending

on the number of characters, the complexity of interaction among them, and the length of

the animation (Table 3.2). Performance statistics are measured on a desktop PC equipped
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with an Intel Core i7-4820K CPU (8 cores, 3.7 GHz) and and 32 GB main memory, except

for the 20-core parallel tempering example, which runs on another machine with slower

Intel Xeon E7-4870 CPUs (2.4 GHz). The semantic layer sampling (the inner loop in the

algorithm) takes more computation than the structure-layer sampling (the outer loop). The

computation times for bootstrapping and motion editing in the post-processing phase are

negligible comparing to the MCMC sampling. Parallel tempering effectively parallelizes

the sampling procedure. As shown in Figure 3.6, the benefits of parallel tempering are

twofold. It achieves a significant performance gain over single-chain sampling and, more

importantly, finds a better solution effectively avoiding local extrema. The 6-core temper-

ing converges to a better solution than a single Markov chain, and the 20-core tempering

converges to a even better solution.

The optimization performance based on MCMC sampling depends heavily on the choice

of the initial configuration. If the user changes the input diagram slightly, the animation

can be updated incrementally by taking the previous result as the initial configuration for

the subsequent optimization. Our algorithm allows the input diagram to be manipulated

interactively and updates the corresponding animation at interactive rates with up to two

players. The incremental update for a small change is in average two orders of magnitude

faster than the full reconstruction from scratch, so it takes only several seconds to update

the example scenes incrementally.
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3.6 Discussion

We have presented the motion grammar as a general method for designing the behavior

model of characters and generating animated scenes from a simple sketch. The rigorous

formulation of the behavior model made it possible to synthesize the coordination and in-

teraction among multiple characters, which are structurally-valid as well as semantically-

meaningful. Even though our focus has been on animating basketball plays in this paper,

our approach could be easily extended to deal with other types of scenes where there is a

requirement for the structured behavioral patterns and the coordination of multiple inter-

acting characters, such as sports, dancing, and social interactions.

Our motion grammar is a subset of the comprehensive grammar for basketball plays, since

our motion grammar focused on modeling scenarios that are likely to appear in tactics

plans. For example, consider a scenario that a ball is loose on the court and players compete

for the ball. Such a scenario can occur in real basketball plays, but it is unlikely to consider

such an unusual scenario in a tactics plan. An advantage of our grammar-based approach

is its flexibility and scalability. Even though our motion grammar is not comprehensive in

the present form, it is easy to add new production and semantic rules incrementally to deal

with a larger domain of basketball plays, situations, and scenarios.

The most time-consuming part of the grammar-based modeling is motion data segmen-

tation and labelling. Although there have been significant technical advances recently in

data-driven animation, automating motion segmentation and labelling are still challenging.

Many game developer companies have already built domain-specific motion databases and

finite state machines for character animation using a number of labelled motion clips. The
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motion grammar can be built on top of those readily-available motion databases to have

more structure than a finite state machine can offer.

Recent basketball video games provide rich details of characters’ motion using large, high-

quality motion databases captured from professional players. The character animation al-

gorithms in video games are usually simple and very efficient. The efficiency comes at a

cost of compromising the quality of animation. Typically, game characters are allowed to

slide or change its position or direction suddenly in an implausible manner. Game develop-

ers design finite state machines and character control mechanisms very carefully to make

such artifacts less obtrusive. The goal of this work is different than what game developers

are pursuing. Our MCMC algorithm is a general solution method to address the problem

without compromising structural and semantic constraints.

Won et al [69] also addressed the animation of tightly-coupled multiple interacting charac-

ters from a sparse, high-level description, though their generate-and-rank method is quite

different from ours and their problem domain (scripts-based description for fight scenes)

is also different from our basketball tactics animation. Technically, the generate-and-rank

method based on a motion graph and uniform random sampling is complementary to

our motion grammars, which would provide more structures and better descriptions on

their fight scenes. Uniform random sampling for motion synthesis can be replaced with

our multi-level MCMC sampling to achieve significant performance improvements. Con-

versely, their generate-and-rank method can be a valuable supplement to our MCMC al-

gorithm, which generates a chain of samples. Although generated samples are the best

samples with respect to the plausibility measure, they are similar to each other due to the

Markov property of random walks. The generate-and-rank algorithm would add diversity
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to the system by providing the user with multiple distinct representative samples. Our mo-

tion grammar also improves the flexibility of description. While the relative position and

orientation of characters participating in each interaction event are fixed in their work, our

motion grammar allows the relationships among characters to be flexibly described in rules

so that a range (from tightly-coupled to loosely coupled) of interactions can be dealt with

in our work.

An interesting direction for future research is inferring motion grammars automatically

from a corpus of motion data. In computational linguistics, grammar induction has been an

active research topic to learn a formal grammar from a corpus of texts. Grammar induction

is also called grammatical inference. Learning weak structures and habitual patterns from

loosely organized dance choreography and idling pedestrians seems feasible [53]. However,

learning stronger structures, such as basketball rules, directly from a database of basketball

motions would be challenging even with state-of-the-art grammar induction algorithms.

Probably, semantic reasoning and extra negative samples (violating basketball rules) would

allow us to infer motion grammars from canned motion data.
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Basketball Grammar

Starting symbols : {SA,SD}

Non-terminals : {SA,Moves,Move,Attacks,

Ball,Shoot,Catch,Feint,Runs,

Pivot,PivotL,PivotR,Fake,

Fakes,Dribble,Dribbles,

SD,De f enses,De f ense}

Terminals : {run,walk, idle,screen,hold,catch,

f eint, pivot le f t, pivot right,

dribble, pass,shoot, layup,

f ake shot,guard,block, push}

Production Rules :

Attack

SA → Moves Attacks

SA → Attacks

Moves → Move |Move Moves

Move → run | walk | idle | screen

Ball play

Attacks → Ball pass Moves Attacks

Attacks → Ball Shoot | ε

Ball → Catch Pivot Dribble
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Catch

Catch → hold | catch | Feint catch

Feint → f eint Runs

Runs → ε | run Runs

Pivot

Pivot → ε | PivotL Fake | PivotR Fake

PivotL → pivot le f t | pivot le f t PivotL

PivotR → pivot right | pivot right PivotR

Fake

Fake → ε | Fakes

Fakes → f ake shot | f ake shot Fakes

Dribble

Dribble → ε | Dribbles Pivot

Dribbles → dribble | dribble Dribbles

Shoot

Shoot → layup | shoot

Defense

SD → De f enses

De f enses → De f ense | De f ense De f enses

De f ense → run† | walk† | guard

De f ense → block | push
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Semantic Rules :

pass : fdir(receiver),

fsynch(receiver,catch,∆t)

layup : fdir(rim) and fdist(rim,≤ 2.5m)

shoot : fdir(rim) and fdist(rim,> 1.5m)

f eint : fdist(opponent,< 1m)

f ake shot : fdist(opponent,< 1m)

screen : fdir(receiver),

fsynch(opponent, push,0)

run†,walk† : fdir(opponent), fline(opponent, rim)

guard : fdist(opponent,> 50cm and ≤ 2m)

block : fdir(opponent),

fline(opponent, rim),

fsynch(opponent,{shoot, f ake shot},0)
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Figure 3.3: A sketch-based interface for drawing basketball tactics diagrams
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Backdoor Give and Go

Screen Double Team

Figure 3.4: Diagram sketches
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Figure 3.6: A single Markov chain vs parallel tempering. The X-axis is the computation time in seconds, and the Y-axis is

the error − log(P(Y )). The performance is averaged over 10 trials for each of a single chain, 6-core tempering, and 20-core

tempering.
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Motion Embedding

This chapter introduces a motion embedding technique that can be used effectively for

constructing motion corpus. With the advancement of motion capture technology, we can

easily get the desired motion data. However, motion analysis that generates reusable motion

corpus still focuses on locomotion and does not scale for applying to dynamic motion

data. Analyzing, segmenting and classifying static motion like locomotion is relatively easy

and well studied. Dealing with dynamic motion, however, still involves a large number of

manual tasks. We introduce stacked autoencoders to analyze large amounts of dynamic

motion data and find efficient and meaningful representation of original data for increasing

reusability.

49
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4.1 Overview

Motion data is a record of human action consisting of consecutive poses of a person. In

order to reduce the complexity of human poses, a pose is represented by dozens of joints.

Nevertheless, the motion data is high-dimensional because it is a time series data of poses.

To describe high-dimensional data, we need to use non-linear, non-trivial representations.

Motion corpus is a collection of canned motion data. It stores labeled segmented motion

clips to find the proper motion clip in a given context. Moreover, it considers connections

between motion clips to make smooth animation of a character. Motion capture technology

allows us to own a large amount of motion data, but segmenting and classifying motion

data for reusing is an difficult task that requires expertise in motion data processing.

Semi-supervised learning is a machine learning technique that uses unlabeled data and

labeled data together to train a model. It is used when there is a large amount of unlabeled

data and it is not easy to obtain a large amount of labeled data. First, unsupervised learning

is performed to figure out hidden structure of unlabeled data, and then a small number

of labeled data is used to train the model. Using a stacked autoencoder, we build a semi-

automatic motion corpus generator that discovers meaningful motion clips automatically.

To ensure the usefulness of features learned from the stacked autoencoder, we compare their

expressive power with principal components. We can see that only a few parameters can

effectively represent the key characteristics of specific motion data. Using the learned fea-

tures, our feedforward network proposes candidate motion clips with corresponding labels.

The effectiveness of our system is demonstrated with labeled motion clips automatically
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discovered by the system.

4.2 Motion Data

The character we used in the experiment consists of 25 joints including the root joint. The

position or orientation of joints can be used as input data. For pose reconstruction, we use

local orientation of each joint except for root as the input data and represent the orientation

as 3 × 3 matrix that is 216-dimensional input vector. Matrix representation limits input

vector in [-1, 1] and the dimension of the input(216) greater than the degree of freedom of

a pose(72) helps regularization. We train a stacked autoencoder with about 44 thousands

frames of basketball motion data. Compared to locomotion, basketball motion is much

more dynamic and has more distinct poses.

Traditionally, we use the position and the velocity of end effectors as features for segmen-

tation. For example, a boundary pose of locomotion is a state in which both feet are fully

in contact with the ground. Motion classification is the process determining the class of

motion clips. It measures similarity between two motion clips and makes similar motion

clips belong to the same class.

For segmentation and classification the velocity of end effectors should be considered. In-

stead of calculating velocity of end effectors, we use the vector that concatenate 5 consec-

utive poses.
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4.3 Autoencoders

Artificial neural network is a universal function approximator consisting of layers of neu-

rons. Neuron is a primitive unit that activates other neurons where the output activation is

determined with given input activations. Neurons in the first layer(input layer) get input

and outputs activation to the neurons in the next layer and neurons in the layer pass on

activations to the next layer and so on. We can get output from the activations of the last

layer(output layer). If the network does not contain cycle, the network is called feedforward

neural network.

Autoencoder[25] is an artificial neural network that is used to find efficient encoding of the

given data. It consists of an encoder φ : X → Z , and a decoderψ : Z →X , and find

representation such that

min
ψ,φ
‖X−ψ

(
φ(X)

)
‖

It learns from data to yield compressed representation of a set of data. Main characteristic

of autoencoder compared to general neural network is that the numbers of nodes of input

layer and output layer are the same and the network does not predict output value y but

reconstruct x i.e., the input value. If we have a hidden layer which has fewer nodes than the

input layer, the hidden layer contains compressed representation i.e., code of inputs. When

the hidden layer has more nodes than the input layer, one can expect identity mapping is

learned. However useful features can be still learned from such autoencoders.
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4.3.1 Stacked autoencoders

When linear activations or a single hidden layer is used, the optimal solution is similar to

PCA(Principal Component Analysis), which is limited to represent linear transformation

of bases or principal components. To overcome this we use stacked autoencoders, which

has deep hidden layers where each hidden layer is an autoencoder. Figure 4.1 shows our

neural network hierarchy. While it has deep hidden layers, we can train each layer inde-

pendently since part of it is also autoencoder. When a network is small, backpropagation

algorithm works well in training especially the network is shallow. In order to train large

networks, we can use dropout method[26] or pre-train networks with restricted Boltzmann

machine(RBM).

4.4 Motion Corpus

Feature vectors obtained from the stacked autoencoder are used to construct a motion cor-

pus. For segmentation and classification, we prepare each feed-forward neural network.

The segmentation network is to find the boundary poses and proposes candidate motion

clips and the classification network classifies the class of a motion clip.

4.4.1 Training

We train the segmentation network such that

fs(mi) = sin
i
N

π
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Figure 4.1: Neural network hierarchy used in the experiment.

where i is the frame index within the labeled motion clip and N is the length of the motion

clip. That is, fs(p) = 0 if a pose p is boundary.

The classification network learns one-hot encoding of motion class.

fc(p)i =

 1 if p belongs to the class i

0 otherwise

Two networks share the feature learned from the stacked autoencoder. During the training,

the weights for generating feature is fixed. Fine-tuning the networks give poor results.

When the amount of labeled data is small, overfitting easily occurs. Thanks to features
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Figure 4.2: Finding candidate motion clips. A sequences of consecutive poses between

two local minima is a candidate.

learned from the stacked autoencoder, we can avoid overfitting. Figure 4.4 shows the val-

idation error during training. Although the fine-tuned neural network converges faster, our

features allow us to obtain more accuracy for the validation set.

4.4.2 Finding Motion Clips

In order to find a candidate motion clip, we first search for boundary pose. Poses that are

local minima of segmentation become candidate boundaries. (See Figure 4.2) Consecutive

poses between two boundary poses form a candidate motion clip. Once a candidate motion

clip is proposed, its class is determined based on the results of classification network.

4.5 Results

Reconstruction of a single pose



4: Motion Embedding 56

Stacked autoencoders (2 nodes) 0.388566
PCA (2 components) 0.775257
PCA (6 components) 0.417552
PCA (7 components) 0.357886

PCA (10 components) 0.255322

Table 4.1: Reconstruction error of autoencoder and PCA.

For comparison, we perform PCA on the same data and use 2 principal components to rep-

resent data. We also obtain 2-dimensional feature vector using stacked autoencoders. Table

4.1 shows reconstruction error which is calculated with mean squared error. We can no-

tice that 2 coefficients of the stacked autoencoder can cover about 6 principal components.

Stacked autoencoders are not only good for reconstruction but also good for classification.

Figure 4.5 shows the scatter plot of the two-dimensional feature of the labeled motion.

Please note that training data includes unlabeled data such as pivot, feint and dribble. We

can notice that autoencoders can separate different actions well with only 2-dimensional

feature and similar actions (shoot and pass) have close relationship in feature space.

Motion Indexing For unsupervised training, 179309 frames of basketball motion are used

without labels and 14331 frames of labeled motion data are used to train the segmentation

and classification network. Our algorithm automatically discovers meaningful motion clips.

Dribbling and shooting motion discovered through our algorithm are shown in Figure 4.6.
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4.6 Discussion

We introduced a powerful dimension reduction technique that can be applied to raw motion

capture data including dynamic motion data and generate motion corpus automatically. It

was possible to find meaningful features by applying stacked autoencoders to the motion

data that has characteristics different from the data that was handled with deep learning.

The features are then used to segment and classify motion data. With a small number of

training data, our system can automatically find meaningful motion clips automatically.

We capture motion data every day in the world, and the amount of motion data is increasing

day by day. If we can generate motion corpus automatically from a large motion database

and find the motion clip we need easily, it will help us to increase the usefulness of ani-

mation systems. In a situation where a large amount of motion data can be obtained from

public motion databases [1, 2], our corpus generator will provide endless source of motion

corpus.
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Figure 4.3: Feedforward neural networks for segmentation and classification. Two net-

works share the feature learned from autoencoder.



4:M
otion

E
m

bedding
59

Figure 4.4: Segmentation error of validation data.
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Figure 4.5: Comparison between PCA and stacked autoencoders. Catch, shoot, and pass

are marked as green x, red cross and blue circle, respectively. (top) PCA (bottom) Stacked

autoencoders
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5

Text to Animation

In this chapter, we demonstrate an application which based upon understanding on human

behavior. Movement of characters can be described in many ways. A high-level descrip-

tion of animated characters is using natural languages. Natural language processing tech-

niques are used to figure out semantics of sentences. Then a MCMC based optimization

process is performed to synthesize plausible animates scenes. Our system allows the user

to write scripts to describe actions of characters, their surroundings, and relationships be-

tween them, then from which animated scenes with full-body characters interacting each

others are automatically generated.

62
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5.1 Overview

When we create character animations, we describe movements of characters in many ways.

Animators controls their characters by setting keyframe poses. Sketch interfaces have been

introduced to provide an intuitive interface. To deal with multiple characters, we have to

involve interactions between characters that are hardly represented in the sketch interface.

We choose natural language as tool for communication between humans and computers.

Our goal is to provide a high-level user interface that uses natural language for describing

character animation and create appropriate motion sequences that abide by the text. To do

so, we employ natural language processing techniques, such as part-of-speech tagging and

dependency parsing which allow us to understand meaning of the text and locate characters

in the right place.

Many filmmakers have recently used previsualization to save budget and time. Previsual-

ization visualizes the complex scene in a movie before shooting, allowing the director to

design the scene and the actor to understand the shape of the final scene. The script is pre-

pared at the stage of creating previsualization and our system can automatically generate

the previsualization from the script. The author can also edit the script and see the results

of the previsualization at the same time.

We use a stochastic approach to synthesize character animation from a script. Once our

dependency parser finds the role of each word, each character has its own action chain.

Actions in the chain are associated to represent interactions between characters. In order

to generate scene, our system assign the corresponding motion clip to each action such
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that motion clips with a label similar to the given action word are likely to be selected.

Spatiotemporal constraints coming from the script, the plausibility of behavior are taken

into account when creating the scene. To get the desired scene, we define probability dis-

tribution of the scene space and sample from the distribution using MCMC (Markov Chain

Monter Carlo).

5.2 Understanding Semantics

In order to synthesize animated scenes from a script, the first step is to understand sen-

tences in the script. Understanding a sentence is to figure out roles for each word in the

sentence. Part of speech(POS) tagging is the process of labeling a word in a text as a cat-

egory of words such as noun, verb, adjective, adverb based on it and related words in the

text. Consider the below six words sentence.

Alice punched Bob at the restaurant
NOUN VERB NOUN ADP DET NOUN

NNP VBD NNP IN DT NN

The tags directly below the sentence are coarse-level POS tags that encode the basic gram-

mar category and tags in the last line are fine-level POS tags which allow us to distinguish

further details. For example, ‘Alice’, ‘Bob’, and ‘restaurant’ have the same NOUN tag at

the coarse-level, but at the fine-level ‘Alice’ and ‘Bob’ are proper nouns(NNP). Although,

the POS tags provide information about what happened(VERB) in the scene, they don’t tell

who did it or who was the object. For example, we can not distinguish who punched in the

above sentence with only POS tags. It is necessary to figure out grammatical relationships
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Figure 5.1: Dependency graph for the example sentence

between words to comprehend meaning of the sentence. A dependency parser generates a

directed graph of word with annotated arrows. Each arrow represents the role of the word

such as subject, object, conjunct.

Figure 5.1 shows the dependency graph for the above sentence. With the dependency graph,

we can notice that ‘Alice’ is the nominal subject(nsubj), ‘Bob’ is the direct object(dobj) and

‘restaurant’ is the object of the preposition(pobj) of ‘at’ which is the preposition(prep) of

the root ‘punched’. Now we can prepare a punch motion for Alice and a punched motion for

Bob, synchronize two motions, and add a spatial constraint to locate them on a restaurant.

5.3 Action Chains

Figure 5.2 shows our workflow. To generate animated scenes from a script, we first gen-

erate an action chain for each character. An action chain is a sequence of actions obtained

from the dependency parser. If a single verb in the script represents an interaction, it can

contribute to more than one action chain.

We formulate the problem as a sampling problem from the conditional distribution P(X |Y )
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where X ∈X is a scene, Y is the given script and the conditional probability distribution

is calculated as factorization of factors.

P(X |Y ) ∝ ∏ fi(X ,Y )

5.3.1 Word Embedding

In scripts a wide variety of words are used to represent characters. For example, Shake-

speare used 31,534 different words in his writings. Moreover, kinds of motion clips vary

for motion databases so it is very difficult to map a word which will appear on a script to a

motion clip in motion database. There are also words that can be mapped to more than one

motion clip. For example, ‘hit’ can be either mapped to ‘punch’ or ‘kick’.

To alleviate this problem, we evaluate similarity between words using pre-trained global

vectors for word representation(GloVe) [55] to find the corresponding motion clip. Global

vectors are trained such that their dot product equals the logarithm of the words’ probability

of co-occurrence on corpora. In order to achieve a many-to-many relationship, we introduce

a stochastic approach that maps words to a probability mass function of motion clips. So

the likelihood that a verb w is used in the script to describe a motion m is defined using

softmax function,

P(w|m) =

exp
(

mT w
τ

)
∑

m̃∈M
exp
(

m̃T w
τ

)
where w and m are vector representations of words w and m, respectively and τ > 0 is the

temperature which control uniformity of the distribution. Then the posterior probability is
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push run walk punch kick point bump
jog 0.3577 0.3716 0.5707 0.2181 0.2808 0.2067 0.3127

touch 0.4560 0.2726 0.2726 0.3548 0.3389 0.3632 0.3756
crush 0.4127 0.2368 0.2120 0.4063 0.3398 0.2253 0.3837
knock 0.5059 0.4235 0.3855 0.5417 0.5680 0.3738 0.4855
bounce 0.4559 0.3192 0.2741 0.3405 0.4435 0.3371 0.5194

Table 5.1: Cosine similarity between word vectors

given as

P(m|w) = P(w|m)P(m)

P(w)
=

P(w|m)P(m)

∑
m̃

P(w|m̃)P(m̃)

where P(c) is the prior belief that reflects our preferences. By setting P(c) appropriately,

we can adjust the characteristics of each character such as aggressiveness and activeness.

Table 5.1 shows similarities between word vectors, for example the word jog has a high

probability of being translated into walk and sometimes run is used.

The word factor that measures the correspondence between motions in the scene X and

actions in the script Y is defined as

fword(X ,Y ) = ∏
w∈A (Y )

P(m|w)

where A (Y ) are the set of actions in the script Y and m is the corresponding motion of w

in the scene X .

5.3.2 Motion Plausibility

When motions of the characters are determined, we plot motion sequences of characters

according to the constraints that occurs in the action chains. Motion editing [32] is per-
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formed to satisfy those constraints and errors returned from the procedure can be used to

measure plausibility of the scene. However, motion editing takes considerable time and

hinders generating many enough scenes to compare. Instead of measuring plausibility of

the scene with motion editing, we approximate the error for quick computation.

Local Alignment If there are multiple paths between two interactions, they should be syn-

chronized. Let m,m be motions for two paths and τ,τ ′ be length of each motion, respec-

tively. Then for each pair of paths,

δ (c) = wv‖v−v′‖+wr|θ −θ
′|+wt |τ− τ

′|

where v,θ are the translation and rotation of the transform of m(τ)−m(0), respectively.

The local alignment factor is defined as negative exponent of the error sum.

flocal(X) = exp
(
−∑

c
δ (c)

)
= ∏

c
exp
(
−δ (c)

)
Global Alignment Pairs of a preposition(prep) and an object of the preposition(pboj) gives

global constraints. For example, the phrase ‘at the restaurant’ situates a motion at the restau-

rant. When we deal with global constraints, it is hard to We only consider two adjacent

actions with global constraints to approximate error due to global constraints. First, we

compose the graph in which a node is an action with global constraints and an edge is is

the shortest paths between two nodes. Two actions are adjacent if the edge between two

actions belongs to the minimum spanning tree of the graph. The approximate error for an

edge is defined as

η(e) = wv‖v−v′‖+wr|θ −θ
′|

where v,θ are the translation and rotation the transform of the path and v′,θ ′ are the trans-

lation and rotation of the transform between two global constraints. The global alignment
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factor is the negative exponent of the approximate error sum.

fglobal(X ,Y ) = exp
(
−∑

e
η(e)

)
= ∏

e
exp
(
−η(c)

)

5.4 Scene Generation

By sampling from the probability distribution defined in section 5.3, we can generate an-

imated scenes. However, sampling is not straightforward because the probability distribu-

tion is high-dimensional and the normalization constant is intractable. We use multi-level

MCMC used in Chapter 3 to sample scenes.

The Metropolis-Hastings algorithm begins with an arbitrary sample X0 and at each time

propose a new sample X ′ dependent on the current sample X ′ is accepted with the proba-

bility

α = min
(

1,
P(X ′)Q(X ;X ′)
P(X)Q(X ′;X)

)
where Q(X ′;X) is the probability that X ′ is proposed when X is the current sample. If the

new sample X ′ is accepted, it is the next sample, otherwise the current sample is the next

sample.

Random walks We propose two types of random jumps to create a Markov chain. The first

type QW (X ′;X) tries to change the content of the scene by replacing the label of a motion

clip in X . The motion clip is selected randomly and the proposal density function is defined

as

QW (X ′;X) ∝ flocal(X ′) fword(X ′)
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. Since flocal is defined per cycle, when calculating QW , we only need to check the error of

cycles including the motion clip.

Since global features cost .. we only consider local error and word embeddings. Please note

that dropping global error out affect but convergence speed.

The second type QM(X ′;X) substitutes a motion clip with another motion clip in Y . The

jump takes a random motion clip which is either an action motion or a transition motion

and replaces it with another motion clip with the same label. Since we do not change the

type of motion clip, the proposal density is defined as

QM(X ′;X) ∝ flocal(X ′)

5.5 Results

Figure 5.3 shows the results of our work. Our algorithm effectively generates scenes from

a script.

We use NLTK [9] and Gensim [56] to deal with natural languages. SyntaxNet [5] is used

as a dependency parser.

5.6 Discussion

We have presented a pipeline that transforms motion describing text into animated scenes.

Although we demonstrated our system with English, the methods used in the pipeline are
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language-independent and can be applied to other languages.

One possible future direction is to obtain natural language description of animated char-

acters. In the case of images, there were studies that generate natural language descrip-

tions [30, 66]. The stochastic approach of suggesting words from motion annotation tech-

niques and writing sentences from the words probably allows us to generate storytellers

that can describe animated scenes in natural language.
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Figure 5.2: Workflow of our system. The action chains for characters extracted from the dependency parser synthesize animated

scenes for which word embedding is used to find correspondence
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Figure 5.3: Result Scenes.



6

Conclusion

Through this thesis, I introduce how to break up the data-driven animation pipeline and

improve each component to make new animation systems. The methods used to enhance

are different for each component; natural language processing for user interface, formal

language for representation, and machine learning for preprocessing. Since different fields

formulate different types of problems, it is not straightforward to import tools from other

field and apply them to create a new system. It is an effective way for resolving problems

to break down the process components, analyze the component to be improved, and en-

hance components by introducing appropriate tools. The proposed pipeline is not limited

to data-driven character animation, but can also be applied to computer graphics applica-

tions. A computer graphics application that interacts with the user includes user interface,

interpreter, solver, and preprocessor. When solving computer graphics problems, a strategy

that focuses on a single component and improves it will be effective.

74
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Because the grammar of a language is fixed, manually-written rules can approximate the

syntax of the language. However, since the motion grammar is context-dependent, the

grammar can change depending on the situation and it is even harder to define implicit

rules. Recently, unsupervised learning techniques have been attempted to train models from

huge corpus to generate natural language [64, 21]. They used more than hundreds of mil-

lions of characters or words to train the models. We have a lot of motion data, but currently

captured motion data is not enough to train a model that automatically derives the gram-

mar from the given data, and since motion data is high-dimensional, continuous data, much

more data is required to train the model. Fortunately, as the amount of motion capture data

is increasing day by day, and the method of processing time series data is evolving day by

day, we will achieve automatic or semi-automatic grammar induction in the near future.

We can get words of the motion of characters by motion corpus generation in Chapter 4.

By adding words that represent the spatial and temporal relationships between characters

or characters and the environment, we can get a set of words that describes the animation

scene. Arranging these words in a grammatical order is a natural language description of

the scene. Studying storybooks of animated movies or scripts of taken films will lead to

successful generation of natural description.
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초 록

캐릭터애니메이션분야의가장큰주요목표중하나는애니메이션을만들기위한비용

을 줄이는 것이다. 사람의 움직임을 이용하면 보다 쉽게 캐릭터를 움직일 수 있어 동작

캡쳐 기술은 표준적인 기술로 사용된다. 그러나 사람의 동작을 기록하기 위해서는 고

가의카메라들을다수갖춘스튜디오,동작을수행할연기자가필요하며기록된동작의

후처리도 필요하기 때문에 원하는 동작을 구하는 것은 쉬운 일이 아니다. 데이터 기반

캐릭터애니메이션은기록된사람의동작데이터를보다잘활용하기위한다양한기법

들을일컫는다.

이논문에서는동작데이터의활용도를높히기위하여동작의의미를분석하고이를이

용해새로운애니메이션시스템을만드는방법들을소개한다.최소의단위가되는단위

동작의 의미를 파악하거나, 단위 동작들이 연결되는 구조적인 의미를 파악하기도 하고

사용자가동작을서술하는의미를파악하기도한다.동작의의미에대한폭넓은이해를

위해 다양한 분야의 최신 기술들을 고루 사용하였다. 먼저 일련의 동작의 의미를 파악

하기 위하여 먼저 형식 문법의 일종인 문맥 자유 문법을 이용한다. 문맥 자유 문법의

일종인동작문법을정의하여농구선수의동작을선언하고이를이용해농구작전판위

에그린스케치로부터농구장면을만들어낼수있다.농구선수들이따라야하는복잡한

농구의규칙을정의하여항상올바른애니메이션을생성할뿐만아니라,선수들사이의

또는선수와환경사이의상호작용을효과적으로표현할수있어자연스러운장면을만
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들어낼수있다.캐릭터의동작을구성할때는잘정제되어있는단위동작들과동작들을

연결할 수 있게 해주는 동작 뭉치를 이용한다. 동작 뭉치를 잘 구성하는 것은 자연스럽

고풍부한애니메이션을만드는데중요한일이지만,숙련된인력의고된노력이필요한

일이다. 캡쳐된 동작 데이터로부터 자동으로 동작 뭉치를 생성할 수 있는 준지도학습

방법을 소개한다. 여러층의 오토인코더를 이용해 동작 데이터의 의미를 파악하고 사용

자가 입력한 적은 갯수의 단위 동작들로부터 비슷한 단위 동작들을 자동으로 찾아내어

동작 뭉치를 생성하게 된다. 그리고 사용자가 만들고 싶어하는 동작의 의미를 이해하

기위하여자연어처리기술을이용한다.구체적으로애니메이션장면을서술한대본을

이해하여캐릭터들의움직임을합성한다.스케치인터페이스처럼대본은굉장히추상적

인입력수단이지만,동작에대한폭넓은이해는추상적인입력을잘이해하여사용자가

원하는애니메이션장면을생성할수있게한다.

주요어: 컴퓨터 그래픽스, 캐릭터 애니메이션, 데이터 기반 모션 생성, 모션 분류, 기계

학습

학번: 2008-21005
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