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Abstract

Over the past decades, a number of approaches have been proposed to improve
the performances of voice activity detection (VAD) and speech enhancement algo-
rithms which are crucial for speech communication and speech signal processing
systems. In particular, the increasing use of machine learning-based techniques has
led to the more robust algorithms in low SNR conditions. Among them, the deep
neural network (DNN) has been one of the most popular techniques.

While the DNN-based technique is successfully applied to these tasks, the char-
acteristics of VAD and speech enhancement tasks are not fully incorporated to the
DNN structures and objective functions. In this thesis, we propose the novel train-
ing schemes and post-filter for DNN-based VAD and speech enhancement. Unlike
algorithms with basic DNN-based framework, the proposed algorithm combines the
knowledge from signal processing and machine learning society to develop the im-
prove DNN-based VAD and speech enhancement algorithm. In the following chap-
ters, the environmental mismatch problem in the VAD area is compensated by ap-
plying multi-task learning to the DNN-based VAD. Also, the DNN-based framework
is proposed in the speech enhancement scenario and the novel objective function and
post-filter which are derived from the characteristics on human auditory perception

improve the DNN-based speech enhancement algorithm.



In the VAD task, the DNN-based algorithm was recently proposed and outper-
formed the traditional and other machine learning-based VAD algorithms. However,
the performance of the DNN-based algorithm sometimes deteriorates when the train-
ing and test environments are not matched with each other. In order to increase the
performance of the DNN-based VAD in unseen environments, we adopt the multi-
task learning (MTL) framework which consists of the primary VAD and subsidiary
feature enhancement tasks. By employing the MTL framework, the DNN learns the
denoising function in the shared hidden layers that is useful to maintain the VAD
performance in mismatched noise conditions.

Second, the DNN-based framework is applied to the speech enhancement by con-
sidering it as a regression task. The encoding vector of the conventional nonnegative
matrix factorization (NMF)-based algorithm is estimated by the proposed DNN
and the performance of the DNN-based algorithm is compared to the conventional
NMF-based algorithm.

Third, the perceptually motivated objective function is proposed for the DNN-
based speech enhancement. In the proposed technique, a new objective function
which consists of the Mel-scale weighted mean square error, temporal and spectral
variations similarities between the enhanced and clean speech is employed in the
DNN training stage. The proposed objective function helps to compute the gradients
based on a perceptually motivated non-linear frequency scale and alleviates the over-
smoothness of the estimated speech.

Furthermore, the post-filter which adjusts the variance over frequency bins fur-
ther compensates the lack of contrasts between spectral peaks and valleys in the
enhanced speech. The conventional GV equalization post-filters do not consider the

spectral dynamics over frequency bins. To consider the contrast between spectral

ii



peaks and valleys in each enhanced speech frames, the proposed algorithm matches
the variance over coefficients in the log-power spectra domain.

Finally, in the speech enhancement task, an integrated technique using the pro-
posed perceptually motivated objective function and the post-filter is described. In
matched and mismatched noise conditions, the performance results of the conven-
tional and proposed algorithm are discussed. Also, the subjective preference test

result of these algorithms is also provided.

Keywords: Voice activity detection, speech enhancement, deep learning, deep neu-
ral network (DNN), noise suppression, multi-task learning, objective function,
weighted mean square error, temporal and spectral variation similarities, vari-

ance compensation post-filter.
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Chapter 1

Introduction

Recently, voice activity detection (VAD) and speech enhancement algorithms
are playing important roles in many speech signal processing and communication
systems. Since voice presence interval estimation and speech enhancement are closely
related, many studies proposed the algorithms which solve both the VAD and speech
enhancement. While the considerable performance improvements have been achieved
by various approaches, VAD and speech enhancement in realistic noise environments
still remain the challenging problems.

Early studies on this area are mostly based on the minimum mean-square er-
ror (MMSE) criterion [1] which tracks the noise statistics over frames to estimate
the speech presence probability and the clean speech spectrum. In this approach,
the speech and noise powers are modeled by the Gaussian distribution and MMSE
estimator are derived from a priori and a posteriori signal-to-noise ratios (SNRs).
In these algorithms, the generalized likelihood ratio between the speech presence
and absence hypotheses which can decide the voice intervals from the noisy speech

utterances is also obtained [2].



While the algorithms based on this approach can estimate the voice presence
intervals and clean speech waveform with affordable computational cost, they have
difficulties in tracking non-stationary noises which causes the speech quality degra-
dation in real-world applications. Though the noise tracking performance in these
environments can be improved by adopting the minima controlled recursive averag-
ing noise estimation [3], [4], these algorithms still show poor performance in impulsive
or speech-like noise environments.

Instead of tracking the noise statistics estimated from a noisy speech utterance,
recent studies focus on adopting machine learning-based algorithms which learn
the spectral characteristics of speech and noise from a huge amount of exemplars.
Among them, the non-negative matrix factorization (NMF) which approximates a
non-negative input matrix as a product of a basis matrix and an encoding matrix
with non-negative elements is one of most well-known algorithms [5], [6]. The NMF-
based algorithms can separate the speech components from the noisy speech mixture
in non-stationary environments more easily since the NMF' algorithm does not need
to track the noise statistics. However, the NMF algorithm assumes that the speech
and noise subspaces are almost orthogonal to each other. In many real-world ap-
plications where the speech and noise subspaces often overlap, the quality of the
enhanced speech from NMF-based algorithms are usually deteriorated.

In this thesis, motivated by the success of deep neural networks (DNNs) in speech
recognition area, we adopt the deep learning approach to the VAD and speech
enhancement tasks. Compared to the conventional statistical model and machine
learning-based algorithms, the DNN-based algorithm can easily learn nonlinear re-
lationship between the input and output features. Also, a large amount of parameters

of the DNN enable to learn speech and noise subspaces that cannot be represented



by a few parameters. The proposed DNN-based VAD and speech enhancement al-
gorithms are further improved by adopting various techniques that are based on the
knowledge from speech signal processing society.

In Chapter 4, we propose a DNN-based VAD algorithm which adopts the multi-
task learning (MTL) framework. In the MTL framework, the generalization power
of DNN is improved by sharing hidden layers of the DNNs for multiple related
tasks [7]-[10]. In the proposed algorithm, the main task of VAD is jointly trained
with a subsidiary task of feature enhancement. By sharing the hidden layer with
the feature enhancement task, the shared hidden layer of the DNN would learn the
denoising functions of the input feature while the they can still be used to estimate
speech activity status. The performance improvement of the DNN-based VAD with
MTL framework has been confirmed by the experiment on Aurora2 database.

In Chapter 5, we propose a DNN-based technique to estimate the encoding vec-
tors of the NMF framework. Unlike the previous NMF-based speech enhancement
algorithms, the proposed algorithm can deal with the source subspace overlap prob-
lem since the DNN can learn the complicated relationship between speech and noise
that cannot be fully represented linearly. The mapping between the noisy speech
vectors and the corresponding speech and noise encoding vectors is modeled with a
DNN for which the training database is artificially generated by mixing the speech
and noise database for various signal-to-noise ratios (SNRs). To show the perfor-
mance of the proposed algorithm, we measured the speech quality of the enhanced
speech which is generated after Wiener-filter like gain function is applied to the
noisy speech. The performance of the proposed algorithm was evaluated in various
matched and mismatched noise conditions and better results were observed com-

pared to the conventional NMF-based algorithms.
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In Chapter 6, we propose a novel DNN-based speech enhancement algorithm
which is trained to minimize objective function that consists of the Mel-scale weighted
mean square error, temporal and spectral variations between the enhanced and clean
speech. The Mel-scale frequency scale is adopted to the DNN-based enhancement
to emphasize the frequency bands which heavily affects the human auditory percep-
tion and intelligibility than other frequency bands. Also, the short-time temporal
variation of the one-third octave bands and the spectral variation over the magni-
tude spectrum are also considered in the training stage to compensate the lack of
variation of the DNN estimate trajectories. The effect of these sub-cost terms in
the objective function were analyzed in the experiment on matched and mismatched
noise environments.

In Chapter 7, the contrast between spectral peaks and valleys of the enhanced
speech are further improved by a spectral variance (SV) equalization post-filter.
Conventional frequency-dependent and -independent GV algorithms partly allevi-
ate the over-smoothing problem of the DNN with GV factors obtained from the
distribution of the output features. However, these GV factors do not consider the
spectral dynamics over frequency bins. To consider the contrast between spectral
peaks and valleys in enhanced speech frames, the proposed algorithm matches the
variance over spectral coefficients of the enhanced speech in the log-power spectra
domain to that of the clean speech. In the experiment, the perceptual quality of the
enhanced speech using the algorithms proposed in Chapter 6is described in both the
objective and subjective tests.

The rest of the thesis is organized as follows: The next chapter introduces the
conventional speech enhancement and the Chapter 3 introduces the basic structure

of the DNN. In Chapter 4, a DNN-based VAD algorithm with MTL framework is

4



proposed. In Chapter 5, a hybrid DNN-NMF algorithm in which the DNN estimates
the encoding vector of the NMF framework is proposed. In Chapter 6, a novel
objective function which incorporates the non-linear frequency scale, temporal and
spectral variation is introduced. Finally, a post-filter for the DNN-based speech
enhancement algorithm is discussed in Chapter 7. The conclusions are drawn in

Chapter 8.
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Chapter 2

Conventional Approaches for

Speech Enhancement

2.1 NMF-Based Speech Enhancement

In the NMF analysis, an I X [p dimensional matrix V is described by the

product of W and H as follows:
V ~ WH (2.1)

where W is a nonnegative [ X [y dimensional matrix and H is a nonnegative g
x Ip dimensional matrix. In this thesis, W used for the NMF analysis is denoted as
a basis matrix and H is denoted as an encoding matrix.

In the NMF analysis, W and H are iteratively updated while minimizing the
objective function C(V|W H) which measures the distance between an input matrix
V and a multiplication of the basis and encoding matrices W H. The Euclidean

distance and KL divergence can be examples of the objective function. At each

7



iteration of the multiplicative rule for Euclidean distance, W and H are updated as

follows [11]:
Hen o WV (2.2)
WiWH '
VHT

)

where ® and O denote element-wise multiplication and division operations be-
tween the matrices or vectors, and T denotes the transpose of a matrix or a vector.

In the case of the KL divergence, the basis and encoding matrices are updated
as

2om W(m, j)
(4, K)V (i, k) /(W H) (i, )

20 H(G,v)

H(j, k) < H(j, k)

(2.4)

Wi j) Wi, j) =k

(2.5)

where H (j, k) and W (i, j) are the jk-th and ij-th elements of H and W, respectively.
In the source separation task, the KL divergence is more popularly used than the
FEuclidean distance.

Through the NMF analysis, the basis matrix W describes the characteristics of
the data matrix V. Then, for given data vectors, the encoding vectors are derived
and used many tasks, i.e. unsupervised clustering or data compression.

In the NMF analysis, each column of W denotes a basis vector for V. Since
each column of H represents the corresponding column of V' with a weighted sum
of basis vectors in V' independently, the basis matrix from the NMF algorithm can
effectively represent the non-stationary characteristics of a data matrix. By applying
NMF algorithm into speech enhancement task, the speech and noise parameters can

be obtained without the stationary noise assumption.

8
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Figure 2.1: Scheme of the NMF-based speech enhancement.

Since the basis vectors of the NMF analysis can extract the unique character-
istics of the acoustic sources from the given source spectrogram, this approach can
be easily applied into the speech enhancement area. Figure 2.1. shows the scheme of
the NMF-based speech enhancement algorithm. When we assume that the subspace
of the speech and noise basis matrices Wx, Wy, are orthogonal to each other, we
can estimate the speech and noise encoding basis matrices Hx, Hy; without ambi-
guity of the mixed sources from the mixture spectrogram V. The speech and noise
sources can respectively generated by the multiplication of the basis matrices and
encoding matrices. Since the NMF analysis do not rely on the stationary noise as-
sumption, the algorithms with the NMF analysis can be widely applied to realistic
noise environments.

Speech enhancement using NMF algorithm consists of training and test stages. In

9



the training stage, the speech and noise spectral magnitude from training database
are analyzed by the NMF algorithm. Let us denote an g X [x dimensional speech
spectral magnitude matrix as X and an g X [p; dimensional noise spectral magni-
tude matrix as M where [ denotes the number of frequency bins and [ x, s denotes
the number of speech and noise frames, respectively. The NMF algorithm finds the
speech and noise models {Wx, Hx} and {Wus, Hyr} from X and M respectively
through an iterative procedure such as (2.4) and (2.5).

In the test stage, each noisy speech spectral magnitude vector v is separated into
speech and noise components by NMF algorithm with a concatenated basis matrix
of Wx and Wy [6], [12], [13]. The concatenated basis matrix W for speech and noise

is formed by a simple concatenation as follows:
W=[Wx Wyl (2.6)

By applying (2.4) iteratively with fixed W, a corresponding encoding data vector
h(v) in which each element has information for each speech or noise basis from v is

obtained. From W and h(v), v can be factorized as

v = Wh(v) (2.7)
=y g | Y (2.8)
hy(v)
where hx(v) and hys(v) are encoding vectors for speech and noise basis matrices
which are derived by applying (2.4) iteratively.
The estimated spectral magnitudes of speech and noise can be obtained by
multiplying each basis matrix and the corresponding part of encoding vector, i.e.,

Wxhx(v) and Wishjs(v). Instead of using Wxhyx(v) as the estimated speech spec-

tral magnitude x directly, the gain function similar to Wiener filter is usually applied

10



to increase the speech quality [6], [12], [13]. Let us denote the estimated speech and
noise spectral magnitude vectors from NMF algorithm as px(v) and pps(v). From

these parameters, the gain function for v is obtained and x is derived as follows [13]:

px(v) = Wxhx(v) (2.9)
pu(v) = Wahy(v) (2.10)
x = (pX(V))T Qv (211)

(Px (V)" + (P (V)"
where r is a positive constant which controls the order of the filter. Combining x
with the phase information from noisy speech, the speech spectrum is estimated and
can be easily transformed to the estimated speech waveform.

Though the speech enhancement algorithm using NMF technique is simple and
easy to implement, the performance of the NMF-based algorithms usually degraded
when the subspaces of speech and noise overlap. In these noise conditions, the basis
vectors of the speech and noise could be similar and minimizing the objective func-
tion do not secure the perfect separation of source components from their mixture.

This problem will be discussed in Chapter 5 in more detail.

11
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Chapter 3

Deep Neural Networks

3.1 Introduction

In this chapter, the structure of DNN used in this thesis is introduced. The
conventional feedforward network structure are explained and the backpropagation
algorithm and objective functions which are used to train the DNN are introduced.

The DNN consists of an input layer, a few hidden layers and an output layer
which are fully connected to their adjacent layers. For the sake of notation simplicity,
the number of hidden layers is denoted as K and the input and output layers of the
DNN are denoted as the 0-th and (K + 1)-th layers of the DNN, respectively.

The input feature structure of the DNN is decided considering the task of the
DNN. After the features are extracted from the input data, the DNN can estimate
the corresponding output vectors using the feedforward algorithm.

For the k-th hidden layer, the number of nodes in the layer is denoted by ;. The

l)-dimensional activation vector for the t-th frame vF is defined as follows:

vF = g(aF) = g(WFvE—1 £ bk (3.1)

13



where af, WF and b* denote the l;-dimensional excitation vector, I, xI;;_1-dimensional

weight matrix and [i-dimensional bias vector, respectively, and ¢(-) represents an
element-wise activation function. In this thesis, the hidden layers of the DNN use
the element-wise logistic sigmoid function or rectified linear unit (ReLU) functions

which are respectively defined as follows:

. 1
7@ ) =

g(af (i) = max(af (i), 0) (3.3)

where a¥(i) denotes the i-th element of the vector a¥.

For the output layer of the DNN, various activation functions are chosen depend-
ing on the target task. In this thesis, the element-wise logistic sigmoid and linear
activation functions are used for the activation function of the output layer. The

linear activation function is given by

th(‘f‘l — WK+1VtI( + bK+l. (34)

The element-wise logistic sigmoid function for the output layer is the same to that
for the hidden layer.
In the rest of the thesis, we denote the network output feature as x; and the

corresponding target feature as y; for simplicity.

3.2 Objective Function

In this subsection, the conventional objective function for the regression and
classification tasks are introduced. In the regression task, the DNN-based algorithms

usually adopt the linear activation function. Then, the mean square error between

14



Output layer ~ v{*?

(WK+1 bK+1)

Input layer

Figure 3.1: Scheme of the DNN with K hidden layers.
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Figure 3.2: Plot of the ReLU (left) and logistic sigmoid (right) functions for the

hidden layers of the DNN.

the network output and target features is minimized to learn the mapping between

the input and output data. The mean square error is defined as follows:

1 T I
Cmse = 7 DO (xeli) — (i) (3.5)
t=1 i=1

where I denotes the dimension of x;.



In the classification task, the output layer of the DNN is usually estimated
through the softmax function. By applying the softmax function, each output node of
the DNN represents the posterior probabilities of each class given the input feature.

Each output node of the DNN is given by which is defined as follows:

p(Class;|v?) = vET1(5) (3.6)
ag (i)
e
= — 3.7
Z§:1 ea?-ﬂ(j) ( )

When the softmax function is adopted to the DNN, the parameters of the DNN
are optimized by the gradient from the cross-entropy function which is defined as

follows:
I
Cee = — > _ i) Inx (i) + (1 — y2(i)) In(1 — x4(i)) (3.8)
=1

where In(-) denotes the natural log function.

3.3 Stochastic Gradient Descent

From the objective function which are defined in the previous subsection, the
parameters of the DNN are optimized to minimize the objective function. The tra-
ditional approach for the DNN training is based on the stochastic gradient descent
algorithm and the backpropagation algorithm with the chain rule. In this subsection,
the vanilla stochastic gradient descent algorithm is briefly described.

From differentiable objective function C, the gradient of the parameter of the
DNN 6 is given by the derivative of C' with respect to 6. Then, the parameters of

the DNN could be updated as follows:

oC
01 =01 — 7%(15) (3.9)

16



where v is the learning rate. In the mini-batch gradient descent algorithm, the
parameters of the DNNs are modified by the gradient averaged for each mini-batch.

In the conventional stochastic gradient descent algorithm, the gradients of the
parameters would be oscillate in direction of high curvature while the gentle and
consistent gradient would likely to be neglected. In order to damp the oscillation in
direction of the high curvature, the momentum method was introduced [14]. In the

stochastic gradient descent algorithm with the momentum, 6 is updated as follows:

oC
Abp11 = BAG — 7%@)7 (3.10)
9,54,.1 - Ht + A9t (311)

where 3 controls the decay rate of A6;.

17



18

: .--*? ’;ﬂ %E‘H ﬁ‘l.]--l?—

SECRIL WATCeAL LIMNVERSTY



Chapter 4

DNN-Based Voiced Activity
Detection with Multi-Task

Learning Framework

4.1 Introduction

Voice activity detection (VAD) algorithms have been widely applied to speech
communication systems and front-end processing modules for the last few decades.
As discussed in earlier chapters, the traditional VAD algorithms have usually been
designed based on the assumption of stationary background noise and track the noise
power over frames. Meanwhile, by considering the VAD problem as a two-class classi-
fication task, recent papers on VAD adopt several machine learning techniques [15]—
[18] to overcome the disadvantage of the conventional algorithms. The fundamental
idea of these techniques is to learn the mapping between the noisy speech features

and the corresponding voice activity status from a huge amount of exemplars.
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Among a number of machine learning techniques, the deep neural network (DNN)
which learns the mapping between the noisy speech features and the corresponding
voice activity status with its deep hidden structure has been one of the most popular
techniques. The DNN-based VAD algorithm outperformed the traditional and other
machine learning-based VAD algorithms since the DNN is efficient in learning the

complicated inter-dependencies between the input variables [19].

Similar to other machine learning-based algorithms, The DNN-based models
show worse performance in the noise conditions which are not considered in the
training database compared to those in the matched noise conditions. To ameliorate
this performance degradation, the DNN should learn the general mapping between

the input and output features to cover various noise environments.

In this chapter, we propose a novel approach which enhances the robustness of
DNN with the use of the multi-task learning (MTL) framework [20]. Recently, MTL
framework have been widely studied in the various applications including the speech
signal processing system [7]-[10]. Motivated by these studies, we related the feature

enhancement task with the VAD task and jointly train them in the training stage.

By training the DNN with the gradient form the feature enhancement task,
the shared hidden layers are encouraged to learn the denoising mapping from the
noisy speech features while they also extract information that are relevant to the
VAD task. This regularization makes the MTL-DNN to be robust to the environ-
mental mismatches. Experiments performed in the matched and mismatched noise
conditions show that the performance of the DNN-based VAD can be improved by

adopting the MTL framework.
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Figure 4.1: Scheme of the DNN-based VAD.
4.2 DNN-Based VAD Algorithm

Fig. 4.1 shows the scheme of the DNN-based VAD. The DNN-based VAD consists
of three parts: the pre-training, fine-tuning and test stages. In the training stages,
the speech utterances and the background noise waveform are artificially added in
order to build a training database for DNN. Then, the DNN is trained to estimate
the speech presence probability of the given frame from the concatenated feature

vectors.

Fig. 4.2(a) shows the structure of the conventional DNN for the VAD task. In
this chapter, the DNN is constructed by stacking several hidden layers which adopts

the element-wise logistic sigmoid that is introduced in Chapter 3.
For the output layer, the activation vector consists of a single logistic sigmoid

21
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node Z which is given by
5= g(WETIyE L pil, (4.1)

In the binary classification problem, the logistic sigmoid node is identical to the
two-dimensional softmax vector. The network output Z obtained from (4.1) denotes
the speech presence probability of the given frame.

In the pre-training stage, DNN parameters are initialized using stacked restricted
Boltzmann machines trained through greedy layer-wise unsupervised learning [22].
After the pre-training stage, the fine-tuning stage which involves stochastic gradient
descent and backpropagation is carried out with the cross-entropy objective function

C'v 4p which is defined as follows:
Cyap = —zln(2) — (1 —2)in(1 — 2) (4.2)

where z denotes the actual target output value which equals 1 for active voice and
0 for inactive voice, respectively.

In the test stage, the same feature extraction algorithm is applied to obtain
the feature vector sequence from the given noisy utterances. The speech presence
probabilities of the input noisy speech frames are estimated by the conventional
feedforward algorithm. The speech presence interval decision is made for each frame
by following rule:

Hy, ifzZ>e¢g,
Hy = (4.3)

Hy, otherwise

where H; and Hy denote active voice and noise-only hypothesis, respectively, and ¢
is a threshold which is usually set to 0.5.
The post-filters which smooths the output of the DNN over frames or heuristi-

cally modify the output of the DNN for perceptual quality improvement could also
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Figure 4.2: Scheme of the conventional DNN (a) and the MTL-DNN (b) for the VAD

task. The layers in the dotted line in (b) are discarded before the test stage.

be done. In this chapter, we concentrate on the performance of the DNN in the VAD
task. Post-processing techniques such as smoothing the fragile segments [21] could
increase the performance of VADs, but this post-processing techniques are beyond

the scope of this letter.

4.3 DNN-Based VAD with MTL framework

The performance of the DNN-based VAD algorithm with the conventional train-
ing procedure is deteriorated in some mismatched noise conditions since the mapping
learned by the DNN is not general enough to cover the environmental mismatches.
When the DNN is trained with the conventional training procedure, the DNN can
learn the mapping between the noisy features and the corresponding voice activity

status in several ways, e.g., relying on trivial characteristics or simply memorizing
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Figure 4.3: Frame accuracies of the DNN-based VAD in matched (solid) and mis-

matched (dash-dotted) noise environments in various SNR values.

the training data [9]. Thus DNNs with these mappings may have difficulties in es-
timating voice activity status when there exists severe mismatch in noise condition.
Fig. 4.3 shows the performance of the conventional DNN in the matched and mis-
matched environments. In this figure, the performance of the DNN in mismatched
noise environments were degraded compared to those in the matched noise environ-
ments.

In this chapter, we introduce the MTL framework which combines the conven-
tional VAD task with a feature enhancement task during the training stage in order
to ameliorate this performance degradation. The DNN with the proposed MTL
framework (MTL-DNN) denoises the noisy speech features in the shared hidden
layers and learns the mapping between the denoised hidden representation and the

corresponding voice activity status in the separated layers for the VAD task. The
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mapping which is learned by the MTL-DNN is more robust against the environ-
mental mismatches since it represents the general denoising function for the speech
features.

Fig. 4.2(b) shows the network structure of the MTL-DNN where the conventional
VAD and feature enhancement tasks share the lower hidden layers of the DNN. The
right part of this network has the same structure with Fig. 4.1(a) which performs
VAD while the left part performs feature enhancement. Both the left and right
parts of the DNN share the lower hidden layers including the input layer but produce
different types of outputs; left part gives the enhanced speech features while the right
part outputs the voice activity status. The left part of the network is treated as a
subsidiary DNN, which means that it is used only for training the DNN parameters
and it is removed after training.

Similar to the conventional DNN-based VAD technique, the MTL-DNN is trained
by passing through the pre-training and fine-tuning stages. In the pre-training stage,
the parameters of the MTL-DNN are initialized by the same layer-wise unsupervised
learning algorithm. In the fine-tuning stage, the objective function for the feature
enhancement task Crp is given by the Euclidean distance between the target clean
feature y and its estimated value x as follows:

Crp = Z(X(@) —y(D)* (4.4)
i
The objective function for MTL-DNN training, Cysrr, is derived by combining Cy 4p
and Crp as given by

Curr = NCyap + (1 = N)Crg (4.5)

where A is a trade-off parameter between the VAD and feature enhancement tasks.

One important characteristic of the MTL framework is that it only increases the
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training complexity. After the fine-tuning stage, the layers for the conventional VAD
task are preserved while those parts that are relevant to only the subsidiary task are
discarded. In the test stage, the same feedforward algorithm and decision rule to the
conventional DNN-based VAD algorithm are applied to estimate the voice activity

status.

4.4 Experimental Results

4.4.1 Experiments in Matched Noise Conditions

In order to evaluate the performance of the proposed algorithm, we conducted a
set of VAD experiments. In the experiments, the { Airport, Babble, Car, Restaurant,
Street, Subway, Train} noisy speech data was taken from the Aurora2 database [23].
Each waveform was sampled at 8 kHz and the frame length was 25 ms with a
frame-shift of 10 ms. The list of features for the DNN input used in the experiments
is shown in Table 4.1. We compared the frame level accuracies of VAD obtained
from the proposed algorithm with those from the conventional DNN-based VAD
algorithm [19].

To train the DNNs, a set of noisy speech utterances with SNRs from -5 to 10
dB were used. 1001 utterances for each SNR and each noise type were randomly
split into 300 utterances of training set, 300 utterances of validation set and 401
utterances of test set, respectively. The input features of the DNNs were normalized
to have zero mean and unit variance. The DNNs were implemented using the Theano
neural network toolkit [24].

The DNN with conventional training procedure was constructed by stacking 2

hidden layers of 1024 nodes. We ran 30 epochs for pre-training of each hidden layer
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Table 4.1: Feature structures extracted from noisy and clean speech waveform.

Feature | Dimension Feature Dimension
Pitch 1 MFCCyg 20
DFT 16 LPC 12
DFTg 16 RASTA-PLP 17

DFTg 16 AMS 135

MFCC 20 Total 273

MFCCg 20

to train the DNN. For Gaussian-Bernoulli RBMs, we fixed the learning rate to
0.001 while for Bernoulli-Bernoulli RBMs we fixed the learning rate to 0.01. For the
fine-tuning stage, the learning rate started at 0.1. At the end of each epoch, if the
frame accuracy on the development set decreased, the parameters of the DNN were
returned to their values at the beginning of the epoch and the learning rate was
exponentially decayed with a decaying factor of 0.8. This procedure was continued
until the learning rate fell below 0.001. For both stages, we fixed the mini-batch size
to 100.

The MTL-DNN was constructed by stacking one shared hidden layer and one
separated hidden layer for each task with 1024 nodes each. The clean features for
the feature enhancement task were normalized to have zero mean and unit variance.
The MTL-DNN was trained with the same training configuration to that of the
conventional DNN except the objective function in the fine-tuning stage was changed
to (4.5). During the fine-tuning stage, we fixed A to 0.9.

Tables 4.2 and 4.3 show the frame accuracies of the DNNs with or without the

MTL framework in matched noise conditions. From the results, we can see that
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Table 4.2: Frame Accuracies (%) of the conventional DNN-based VAD in matched

noise conditions.

SNR (dB)

-5 0 5 10 | Average

Street 73.45 | 81.57 | 87.22 | 90.45 83.17

Airport 76.19 | 84.17 | 89.89 | 93.38 | 85.91

Car 79.18 | 86.84 | 90.91 | 93.74 | 87.67

Babble 73.57 | 83.24 | 89.16 | 93.00 | 84.74

Train 76.22 | 83.98 | 89.92 | 93.09 | 85.80

Restaurant | 69.93 | 80.87 | 87.78 | 92.15 82.68

Subway 69.77 | 79.51 | 87.39 | 91.62 | 82.07

Average 74.04 | 82.88 | 88.9 | 94.49 84.58

the proposed algorithm showed slightly better performance than the conventional
DNN-based VAD. The performance difference between the two DNNs in matched
noise condition was not significant since the DNN can learn the mapping between
the noisy speech features and the corresponding voice activity status without any

denoising function when the background noises match.

4.4.2 Experiments in Mismatched Noise Conditions

We also evaluated the performance of the DNNs when the noises were mis-
matched between the training and test phases. In this experiment, the DNNs were
trained with {Airport, Babble, Car, Train} noisy speech data and tested with
{Street, Restaurant, Subway} noisy speech data. For each SNR and each noise in

{Airport, Babble, Car, Train} data, 600 utterances were assigned to the training set
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Table 4.3: Frame Accuracies (%) of the MTL-DNN-based VAD algorithm in matched

noise conditions.

SNR (dB)

-5 0 5 10 | Average

Street 73.93 | 81.71 | 86.95 | 90.57 | 83.29

Airport 77.35 | 84.68 | 90.10 | 93.46 | 86.40

Car 79.60 | 86.79 | 91.04 | 93.92 | 87.84

Babble 74.72 | 84.07 | 89.78 | 93.28 | 85.46

Train 75.05 | 82.89 | 89.55 | 93.17 | 85.17

Restaurant | 70.61 | 81.20 | 88.14 | 92.36 | 83.08

Subway 69.09 | 78.84 | 86.91 | 91.53 | 81.59

Average 74.33 | 82.89 | 88.92 | 92.61 | 84.69

and 401 utterances were assigned to the validation set. For each SNR and each noise

in {Street, Restaurant, Subway} data, 401 utterances were used as the test data.

Tables 4.4 and 4.5 show the frame accuracies of the DNNs with or without
MTL framework in mismatched noise conditions. From the results, we can see that
the proposed algorithm outperformed the conventional DNN-based VAD algorithm.
These results show that the MTL framework improves the robustness of the DNN

especially in mismatched noise conditions.

Figures 4.4, 4.5, 4.6, 4.7 show the ROC curve of the DNN and MTL-DNN of
various noise environments in each SNR value. In these figures, we can see that the
performance of the DNN-based VAD was also improved in terms of the false alarm

and detection rate.
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Table 4.4: Frame Accuracies (%) of the conventional DNN-based VAD algorithm in

mismatched noise conditions.

SNR (dB)

-10 -5 0 5 10 | Average

Street 61.23 | 68.84 | 80.06 | 87.39 | 91.37 77.78

Restaurant | 58.57 | 62.58 | 72.43 | 82.21 | 89.96 73.15

Subway 56.99 | 57.25 | 58.83 | 63.09 | 70.54 | 61.34

Average 58.93 | 62.89 | 70.44 | 77.56 | 83.96 70.76

Table 4.5: Frame Accuracies (%) of the MTL-DNN-based VAD algorithm in mis-

matched noise conditions.

SNR (dB)

-10 -5 0 5 10 | Average

Street 61.75 | 71.50 | 81.87 | 88.40 | 91.90 79.08

Restaurant | 59.00 | 63.18 | 73.90 | 84.37 | 90.94 74.28

Subway 57.08 | 57.66 | 60.80 | 67.96 | 77.85 | 64.27

Average 09.27 | 64.11 | 72.19 | 80.24 | 86.90 | 72.54

4.5 Summary

In this chapter, we have proposed an MTL framework for robust DNN-based
VAD algorithm in mismatched noise conditions. The gradient from the feature en-
hancement task encourages the shared hidden layers to learn the feature denoising
function as well as the mapping for the VAD task. The experiments on the Aurora2
database have been shown that the proposed algorithm outperformed the conven-

tional algorithm in mismatched noise conditions.
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Chapter 5

NMF-based Speech
Enhancement Using Deep

Neural Network

5.1 Introduction

Dictionary learning has been found to be useful in many classification and regres-
sion tasks of signal processing [6], [11]-[13], [25]-[28]. A crucial part of this approach
is to analyze a given data matrix based on a fundamental basis structure while
minimizing a specific cost function.

Non-negative matrix factorization (NMF) is known as one of the most popular
techniques for dictionary learning [11]. In this approach, a non-negative data ma-
trix is approximated by a product of a basis matrix and an encoding matrix with
non-negative elements. The NMF technique has been applied to a variety of tasks

including object recognition, acoustic signal detection, speech enhancement, speech
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recognition in adverse environment, and acoustic source separation to name just a
few [6], [12], [13], [27], [28].

In [6], [12], [13], NMF is applied to separate a speech source from mixture data. In
this task, the basis matrix for all sources is built by concatenating the basis matrices
for individual sources so that the product of the corresponding parts of the basis
and encoding matrices becomes separated sources. The fundamental assumption
underlying the conventional NMF technique with a concatenated basis matrix is
that the subspaces which the speech and noise sources span are almost orthogonal
to each other.

However, the speech and noise subspaces often overlap, which makes the esti-
mation of an encoding vector and the speech enhancement difficult. This implies
that if a data vector generated by a speech source can be possibly represented by
a linear combination of basis vectors corresponding to additive noises or vice versa,
then the speech source separation is likely to fail. Even though an orthogonality
constraint is employed for the basis matrix in [29], it would not resolve this diffi-
culty as long as the basis matrix for each source is trained independently. Recently,
several discriminative training approaches which aim to achieve low reconstruction
error and high discrimination among different classes at the same time have been
proposed [30], [31]. These approaches could enhance the classification and separation
performances, but the reconstruction error for each source might be compromised
for the vectors which lie in the overlapping regions of the source subspaces.

Unlike the previous approaches, we focus on improving encoding vector esti-
mation for data vectors which are mixtures of speech and interfering sources. To
improve the performance of a speech enhancement algorithm with source subspace

overlap, we propose a novel supervised algorithm to estimate encoding vectors [32].

36



A deep neural network (DNN) is used to estimate the encoding vectors which can
faithfully reconstruct the desired source data vectors. In the proposed approach,
the mapping between the data vectors and the corresponding encoding vectors is
modeled with a DNN for which the training data includes mixture data. DNNs are
widely used in classification [33] and regression [34] problems and found to be ef-
ficient in learning complicated inter-dependencies between the input variables. To
show the performance of the proposed algorithm, we performed experiments on the
matched and mismatched noise conditions. Experimental results demonstrated that

the proposed method outperformed other encoding vector estimation algorithms.

5.2 Encoding Vector Estimation Using DNN

Though simple and easy to implement, the speech enhancement approach with
the concatenated basis matrix has serious problems. These problems come from the
fact that each basis matrix W,, is independently trained and the NMF analysis is
valid only when some orthogonality conditions among {W,,} are satisfied.

To show the performance degradation of the conventional NMF technique for
speech enhancement, we conducted an experiment with the various signal-to-noise
(SNR) conditions. We added clean speech and factory noise samples and recon-
structed the speech and noise magnitude spectra from their mixture using the con-
ventional NMF approach which minimizes the KL-divergence. We measured the
reconstruction error in terms of the log-spectral distance (LSD) [35] and the results
are shown in Fig. 5.1. We can see from the results that the performance of the con-
ventional NMF-based approach degrades severely as the strength of the interfering

source increases.
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In order to minimize the interference of the source subspaces, we propose a novel
approach to estimate the encoding vectors of the NMF analysis. Even though the
proposed approach is applied to NMF, it can be easily employed in other dictionary
learning techniques with only slight modifications.

A major difficulty in speech enhancement with a concatenated basis matrix is
how to estimate the encoding vector h when the orthogonality conditions among
{W™} are not satisfied. In this case, minimizing C(v|I/Wh) does not guarantee the
successful separation of the individual sources.

A simple remedy to this is to learn the mapping from an input data vectors to
the encoding vectors when we are given a set of mixture data. Under this framework,
the problem of estimating the encoding vectors can be treated as a regression task
where the input is the mixture data vectors and the output is the encoding vectors
corresponding to separate sources. In this chapter, we apply the DNN which accom-
modates the inter-dependencies between basis matrices of the speech and interfering
sources with a deep structure to estimate the NMF encoding vectors.

There are several approaches which apply DNN to estimate source data [36]
or source probability [37] from the mixture data directly. Compared with these
approaches, our approach which focuses on the encoding vector estimation of the
dictionary learning can be more easily extended to adopt the advances in the dictio-
nary learning area such as the update of bases [38]. Also, the number of estimated
parameters for the proposed approach is smaller than that for [36].

The proposed technique consists of three parts: NMF training, DNN training,
and speech enhancement stages. In the NMF training stage, the conventional NMF
technique is applied for each source data matrix separately. The trained speech and

noise basis matrix Wx and W), are used in the following stages after forming a
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concatenated basis matrix.

In the DNN training stage, each data vector for the speech and interfering sources
x and m are factorized using the conventional NMF technique with fixed basis
matrices. Since this factorization is applied to each source independently, encoding
vectors for the speech and noise sources are estimated without ambiguity caused
by mixed sources. After obtaining {hg, hys}, we artificially generate a mixture data

vector v with some arbitrary weights {xx,rxar} > 0 as follows:
V=~Kx X+ Ky m. (5.1)

The optimal encoding vector h corresponding to this mixture data is then given by
| f

h=1| kyhx! ' kyhl, (5.2)
where the T denotes the transpose of a matrix or a vector. After generating a collec-
tion of the artificial mixture data vectors, we can train a DNN where v in (5.1) is fed
to the network as an input and h as defined in (5.2) is applied as the corresponding
target output. Before v and h are applied to the DNN, it is useful to normalize them
to be in the range of (0, 1). Multiplying weights {kx, kas} and normalizing v and
h do not hamper the relationship among the separate source components since the
NMF analysis is scale-independent when the KL-divergence is used as an objective
function.

It is widely known that DNNs provide a more proper structure than shallow
neural networks for representing complicated functions or mappings. However, with
randomly initialized parameters, the performance of DNNs is generally worse than
that of shallow neural networks. To initialize DNN parameters, the stacked restricted

Boltzmann machines accompanied with greedy layer-wise unsupervised learning is
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adopted to initialize DNN parameters as in [22], [39]. After this pre-training stage, a
supervised learning algorithm using backpropagation and stochastic gradient descent
is carried out in fine-tuning stage. The Euclidean distance is used as the training
cost function in this stage as in [40]. In this chapter, the activation function used
in each hidden unit of the DNN is the logistic sigmoid function [33]. The nonlinear
activation function is usually used to deal with nontrivial problems with a small
number of nodes [40].

A major weakness of the proposed training algorithm is that the number of pos-
sible source combinations for generating training data may increase rapidly as more
separate sources are taken into account. However, the proposed approach can be con-
sidered to be a useful way if the goal is to extract a few target sources of our interest
and all the remaining sources are treated as interferences. The DNN with enough
number of hidden layers and nodes might learn the inter-dependencies between the
target sources and various composite effect of the interfering sources simultaneously.
From this aspect, the proposed algorithm can be applied to the speech enhancement
or taret source separation tasks in which the number of interested source is one
rather than arbitrary source separation task.

Finally, in the speech enhancement stage, an actual mixture data vector v is
applied to the DNN with the standard feedforward processing. The output vector
of the DNN is re-scaled to h(v) such that the reconstructed mixture data vector
Wh(v) has the same L2-norm as v. The estimate for the n-th separate source is
then given by the product of the basis matrix W,, with the corresponding part of
fl(v) In the case of the speech enhancement task, x and m are estimated by the
Wixhy (v) andWyhps(v), respectively.

To verify the performance of the proposed algorithm, we carried out an experi-
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ment the same as in the previous subsection. Fig. 5.1 also shows the LSD obtained
from the proposed DNN-based approach. From the result, we can see that in all
the tested conditions, the performance was improved compared with that of the

conventional technique.

5.3 Experiments

In order to evaluate the performance of the proposed algorithm, we conducted
experiments on speech enhancement where all the noise components are considered
as a interference source. Similar to the conventional NMF-based approach in the
previous chapter, only the magnitude spectrum of the noisy input signal is modified
to estimate the clean speech spectrum while the phase parts are kept intact. Let v
denote a magnitude spectrum of the noisy input signal. Then the estimate of the

magnitude spectrum of the corresponding clean speech, x, is given by

X — folx(v)
thx(v) + WMhM(V)

(5.3)

()

where ® and ) mean element-wise multiplication and division operations.

In the experiment, clean speech data was taken for the TIMIT database. The
factory, babble, machinegun noises from NOISEX-92 DB [41] were used for training
and test, and buccaneer, {16 noises from NOISEX-92 DB and Cafeteria noise from
ITU-T recommendation P.501 [42] were used additionally for the test in mismatched
condition. Each waveform was sampled at 16 kHz, and a 512-point Hamming window
with 75% overlap was applied. We compared the quality of the enhanced speech
obtained from the proposed algorithm with those from the traditional NMF-based
speech separation algorithm [13] and discriminative NMF (DNMF) [31] in which

the basis matrices are trained jointly to describe mixed as well as separate data
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vectors. The performance of DNN-based separation [36] which estimates the source
data vector directly from mixture data through a DNN is also demonstrated.

In the NMF analysis, Wx was trained based on 10000 frames of the clean speech
data and W), was trained by using 9000 frames of noise data. The number of speech
and noise basis vectors was set to be 40 each. For DNMF analysis, Wx and W,
were jointly trained over 9000 frames of speech and noise data pairs.

To train the DNN;, a set of noisy speech utterances were artificially generated
with SNRs from -5 to 20 dB with 5 dB step. For each SNR in this range, 23 different
utterances of clean speech were added with the noise to generate noisy speech and
corresponding encoding vectors. The DNN was constructed by stacking 3 hidden
layers with 400 nodes each. To compare the separation performance of DNN with
that of a shallow model, we also trained a shallow neural network (SNN) consist-
ing of only one hidden layer with 1200 nodes. We ran 30 epochs for pre-training of
each hidden layer and 300 epochs for fine-tuning to train DNN or SNN. The num-
bers of hidden layers and nodes in each hidden layer were determined empirically
to describe complicated relation between input and output well enough while avoid-
ing over-fitting. The DNN which estimates the source data vector directly [36] was
constructed with the same configuration except the target output.

Ten utterances from 5 male and 5 female speakers were used for performance
evaluation for each SNR value and noise type. The performance of the speech en-
hancement was evaluated in terms of the signal to distortion ratio (SDR), signal
to interference ratio (SIR), signal to artifacts ratio (SAR) [43] and the perceptual
evaluation of speech quality (PESQ) score [44]. Table 5.1 shows the SDR, SIR, and
SAR values and Table 5.2. shows PESQ scores for enhanced speech obtained from

various algorithms averaged over all noise types when each model was trained for
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Table 5.1: SDR, SIR, and SAR values of enhanced speech with various source sepa-

ration algorithms : models trained for a specific type of noise.

SNR|  NMF [13] DNMF [31] DNN [36] SNN-NMF DNN-NMF

(dB)| SDR| SIR|SAR| SDR| SIR|SAR| SDR| SIR|SAR| SDR| SIR|SAR| SDR| SIR| SAR

-5| 2.86| 5.58| 8.43| 4.45| 8.46|8.78| 5.77|10.54| 8.37| 5.42| 10.06| 8.33| 5.88|10.68| 8.61

0 7.17/10.10|11.42) 8.11]11.56{12.04| 9.63|13.85|12.22| 9.45| 13.91|11.93| 9.79/14.06|12.44

11.0815.34|13.58 | 11.73|15.46|14.86 | 13.32|17.63|15.63 | 13.0317.69|15.10 | 13.42| 17.62|15.80

(S

10]14.02|19.57|15.72)14.97|18.73|17.90 | 16.93|21.00|19.30 | 16.60 | 20.98|18.74|17.04|21.00|19.48

Aver.| 8.78|12.65|12.29) 9.81[13.56|13.39|11.41|15.75[13.88|11.13| 15.66|13.5211.53|15.84|14.08

Table 5.2: PESQ scores of enhanced speech with various source separation algorithms

: models trained for a specific type of noise.

SNR (dB) || NMF [13] | DNMF [31] | DNN [36] | SNN-NMF | DNN-NMF
-5 1.92 1.98 2.06 2.04 2.07

0 2.29 2.31 2.48 2.47 2.50

5 2.60 2.65 2.85 2.82 2.87

10 2.92 2.95 3.20 3.17 3.21

Aver. 2.43 2.47 2.65 2.63 2.66

a specific type of noise. From the results, we can see that the proposed algorithm

outperformed the conventional NMF-based techniques and DNN-based separation.

We performed an additional experiment in which the NMF, DNMF, SNN and
DNN models were trained over all types of noises pooled together to examine whether
the proposed algorithm can learn various types of source characteristics simultane-
ously. In this experiment, Wj; was trained from 9000 frames of pooled noise data.

It is noted that the number of basis vectors in Wy, was also fixed to 40 even though

44



Table 5.3: SDR, SIR, and SAR values of enhanced speech with various source sepa-

ration algorithms in matched conditions : models trained for pooled noise data.

SNR|  NMF [13] DNMF [31] DNN [36] SNN-NMF DNN-NMF

(dB)| SDR| SIR| SAR| SDR| SIR|SAR| SDR| SIR| SAR|SDR| SIR|SAR| SDR| SIR|SAR

-5 1.92] 5.34| 7.03| 3.82| 7.35/8.69| 5.38| 9.54| 843| 5.27|10.03| 823| 5.78|11.74| 7.82

0] 599 9.87| 9.84| 7.65/10.97|11.78| 9.43]13.31|12.22| 9.35/13.99|11.83| 9.73|15.05|11.71

5| 9.62/14.9611.90|11.28|14.89|14.58 | 13.18]17.10|15.69|12.95|17.75|15.04| 13.30|18.32|15.19

10]12.36(19.34|13.76 | 14.46 | 18.36|17.29 | 16.78|20.59 | 19.32 | 16.53{21.10|18.66 | 16.85|21.47 | 18.90

Aver.| 7.47|12.38/10.63| 9.30({12.90|13.09|11.19|15.14|13.91|11.03|15.72|13.44}11.41|16.65|13.40

Table 5.4: PESQ scores of enhanced speech with various source separation algorithms

in matched conditions : models trained for pooled noise data.

SNR (dB) || NMF [13] | DNMF [31] | DNN [36] | SNN-NMF | DNN-NMF
-5 1.83 1.94 2.06 2.06 2.06

0 2.16 2.29 2.45 2.45 2.50

5 2.46 2.56 2.83 2.80 2.85

10 2.80 2.88 3.16 3.14 3.21

Aver. 2.31 2.42 2.63 2.61 2.66

we pooled all types of noise together. All the training data used in the previous
experiment were pooled together for the training of the SNN and DNN. In this ex-
periment, we also tested in the mismatched conditions where the noises unseen in

the training were mixed covering wider range of SNR.

Tables 5.3 and 5.5 show the SDR, SIR, SAR values averaged over all noise types
in matched and mismatched conditions when the model was trained for pooled

noise data. Comparing Tables 5.1 and 5.3, we can find that the performance of
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Table 5.5: SDR, SIR, and SAR values of enhanced speech with various source sepa-

ration algorithms in mismatched conditions : models trained for pooled noise data.

SNR|  NMF [13] DNMF [31] DNN [36] SNN-NMF DNN-NMF

(dB)| SDR| SIR|SAR| SDR| SIR| SAR| SDR| SIR| SAR|SDR| SIR|SAR| SDR| SIR|SAR

-10) -7.06| -5.98| 6.62|-6.72|-5.87| 8.52) -6.01|-4.52| 5.54|-5.57|-4.10| 5.56| -5.43| -3.24| 4.01

-5 -1.63| -0.39| 7.82|-0.88| 0.15/10.17| 0.29| 1.97) 7.83) 0.60| 2.40| 7.52| 0.98| 3.46| 6.51

0] 3.53| 5.15| 990 4.04| 5.30]12.53| 5.58| 7.35| 11.25| 5.85| 7.97|10.79| 6.01| 8.55|10.31

5| 7.89| 10.31|12.15| 8.42| 9.84|15.77| 10.05|11.81| 15.25|10.14|12.30{14.64 | 10.38|12.72|14.55

10111.47| 15.69|13.84]12.63|14.57| 18.37| 14.33|16.13|19.20|14.33|16.53|18.64 | 14.46|16.71|18.65

25(16.55]29.35|16.87(21.80127.91| 23.43]26.23|28.76/30.10 | 25.68|29.1828.53 | 26.06| 28.99(29.44

Aver.| 5.13| 9.02(11.20| 6.55| 8.65| 14.80| 8.41(10.24|/14.86| 8.51(10.71|14.28| 8.74|11.20|13.91

NMF and DNMF deteriorated severely when the noise basis was trained over a
pooled noise data. In contrast, there was only slight performance degradation in
the case of SNN and DNN, which confirms the robustness of these techniques in
various noise environments. Moreover, in most test conditions in the Tables 5.3 and
5.5, DNN-based encoding vector estimation showed better performances than other

algorithms.

Table 5.4 and 5.6 also show the PESQ scores averaged over all noise types in
matched and mismatched conditions when the model was trained for pooled noise
data. From these tables, we can see that the enhanced speech with the proposed
algorithm showed slightly better performance than other speech enhancement algo-
rithms. The proposed algorithm showed better PESQ scores than those from other
algorithms especially in high SNR conditions. In these conditions, the small devia-
tion from the speech subspace which is caused by the confusion between the speech

and noise basis matrices are reduced by the proposed algorithm.
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Table 5.6: PESQ scores of enhanced speech with various source separation algorithms

in mismatched conditions : models trained for pooled noise data.

SNR (dB) | NMF [13] | DNMF [31] | DNN [36] | SNN-NMF | DNN-NMF
-10 1.18 1.23 1.18 1.20 1.11

-9 1.51 1.56 1.53 1.59 1.52

0 1.83 1.88 1.97 1.99 1.98

) 2.17 2.20 2.36 2.36 2.38

10 2.52 2.52 2.72 2.71 2.74

25 3.42 3.52 3.66 3.66 3.66

Aver. 2.11 2.15 2.24 2.25 2.23

5.4 Summary

In this chapter, we have proposed a novel approach to estimate the encoding
vectors based on DNN. The DNN-based framework for the speech enhancement is
introduced and the detailed training database configuration and the DNN training
scheme are presented. Through a series of experiments on speech enhancement,
we have proved that the performance of the proposed algorithm outperforms the

conventional NMF-based technique.
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Chapter 6

DNN-Based Monaural Speech
Enhancement with Temporal
and Spectral Variations

Equalization

6.1 Introduction

For a number of decades, monaural speech enhancement using a single micro-
phone has been widely studied to improve various communication and signal pro-
cessing systems [45]. Though considerable performance improvements have been
achieved by various approaches, speech enhancement in realistic noise environments

still remains a challenging problem.
In order to enhance the noisy speech in various noise environments, deep neu-
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Figure 6.1: Scheme of the DNN-based speech enhancement algorithm.

ral networks (DNNs) which can learn complicated inter-dependencies between the
input variables [19], [33], [34], [46] were successfully introduced to the speech en-
hancement area [47]. In these approaches, the DNN provides a mapping between
consecutive noisy speech frames and the corresponding clean speech frame with its
deep hidden structure. Fig. 6.1. shows the basic scheme of the DNN-based enhance-
ment algorithm in which the magnitude spectrum of the noisy speech is modified by
the network. In thisz figure, the DNN estimates the clean log-spectar from the corre-
sponding noisy log-spectra. Furthermore, in [48], global variance (GV) equalization
post-filter, dropout training, and noise-aware training techniques were incorporated
to DNN-based speech enhancement to improve the speech quality in mismatched

noise conditions.

Many studies have applied the DNN-based approach to speech enhancement
and target speaker separation with various new ideas. Huang et al. proposed a

technique to jointly optimize all the sources with a discriminative objective function
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for DNN and recurrent neural network (RNN) [49]. Han et al. applied a DNN-
based method for joint dereverberation and denoising followed by iterative signal
reconstruction [50]. The training targets of the DNNs were studied in [51] and the
complex ratio masking was also proposed by Williamson et al. [52]. Zhang et al.
investigated the performance of the mapping- and masking-based training targets
both theoretically and experimentally in [53] where they also proposed the multi-
context stacking networks for deep ensemble learning.

It is well-known that the estimated speech trajectories obtained from the DNN-
based algorithms are usually over-smoothed compared to those of the clean speech.
Conventional DNN-based speech enhancement algorithms generally apply the ob-
jective functions which are related to the mean square error between the enhanced
and clean speech features. However, since these measures are derived from each
time-frequency bin separately rather than from whole spectral trajectory, the en-
hanced speech obtained from the DNN could be over-smoothed compared to the
original speech. The speech generated from these enhancement algorithms may re-
sult in muffled sound quality and decreased intelligibility [48], [54], [55]. In addition,
the mean square error calculated in the linear frequency scale does not match the
human auditory perception where the sensitivity follows the Mel-frequency scale.
The perceptual quality of the enhanced speech would be improved if the DNN can
calculate the errors based on this non-linear frequency scale.

In this chapter, we propose a novel DNN-based speech enhancement algorithm
which computes the gradients based on a perceptually motivated non-linear fre-
quency scale and alleviates the over-smoothness problem by equalizing temporal
and spectral variations of the enhanced speech to match those of the clean speech.

The main contributions of the proposed algorithm are summarized as follows:
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First, we apply the Mel-scale weight to fit the objective function to the critical
frequency bands of hearing. Similar to the human auditory perception, the network
trained using the Mel-scaled gradients is more sensitive to the perceptually impor-
tant frequency bins. The Mel-frequency scale was adopted to speech enhancement
in [56] to smooth the gain function over spectral coefficients. In contrast, the Mel-
scale is introduced to prioritize the gradients according to the perceptual importance

in the proposed algorithm.

Second, the objective function for DNN training is modified to incorporate the
temporal and spectral variation similarities between the enhanced and clean speech.
By equalizing the temporal and spectral variations, the enhanced speech could have
the spectral peaks and valleys distributed similarly to those of the clean speech.
The proposed objective functions are motivated by the relation between the hu-
man intelligibility and short-time analysis on one-third octave band trajectory [57].
We adopt variation similarity over short-time trajectories and spectral coefficients
into the DNN-based speech enhancement framework and analyze their effect on the

naturalness and intelligibility of the enhanced speech.

The proposed objective function is also related to the sequence-discriminative
training technique originally developed for automatic speech recognition (ASR) [58],
[59]. In these studies, various sequence-discriminative criteria were proposed to train
the DNN-based acoustic models for the speech recognizer. Instead of adopting cri-
teria that are based on mutual information or phone error, the proposed algorithm
targets human auditory perception and introduces the variation similarity which are

found to be closely related to the perceptual quality of the enhanced speech.
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6.2 Conventional DNN-Based Speech Enhancement

The task of DNN-based speech enhancement can be divided into the training
and test stages. In the training stage, the noisy speech features and the correspond-
ing clean speech features are respectively fed to the input and output nodes of the
DNN, and the network is optimized to minimize the mean square error between
the enhanced and clean speech features. After the training stage, the clean speech
features are estimated from the noisy speech features through the DNN and a GV
equalization post-filter is applied to compensate the over-smoothed output trajec-
tory. In this section, we present the feature structures and training scheme of the

conventional DNN-based speech enhancement algorithm.

6.2.1 Training Stage

In the training stage, the input and output features of the DNN are respectively
extracted from the noisy speech utterances and corresponding clean speech utter-
ances. The input and output features of the DNN are usually normalized to have
zero mean and unit variance before being fed to the network.

For the input and output features, we extract log-power spectra of the noisy and
clean speech [48], [50]. Let us denote [p-dimensional normalized log-power spectra
of the noisy speech and clean speech at the t-th frame as z; and y;, respectively.

Then, the input feature vector v¥ is generally constructed as follows:

0
Vi = [ZI—K> ZI—K+17 B ZI-}-K]T (6.1)

where K denotes an input context expansion parameter and zz denotes the transpose

of a vector z;.
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Figure 6.2: Scheme of the DNN with three hidden layers.

Fig. 6.2 shows the structure of a typical DNN with three hidden layers. The DNN
consists of an input layer, a few hidden layers and an output layer which are fully
connected to their adjacent layers. In this chapter, all hidden layers of the DNN are

assumed to use the rectified linear function which is defined as follows:

9(ai(i)) = maz(aj(i), 0). (6.2)

After all the hidden layer activations are computed, the [ p-dimensional output vector
x; is produced by

x; = Wty 4 pi+t (6.3)

In this chapter, the parameters of the DNN are initialized randomly [60] and

optimized using the stochastic gradient descent algorithm. In the training stage,

the mean square error between the network output x; and the target feature y; is
minimized, which is given by

Cmse = % Z

t=1

(xe(f) = ye(£))? (6.4)

M=

1

~
Il

where T' denotes the total number of frames of the given training data.
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6.2.2 Test Stage

In the test stage, the clean speech estimate x; is obtained from v{ through the
standard feedforward processing. In the speech enhancement algorithm without GV

equalization, x; is de-normalized to X; as follows:
it:Xt®S+d (65)

where d and s are respectively the mean and standard deviation vectors used to
normalize the output feature of the DNN, and ® denotes element-wise multiplication
between two vectors. In this chapter, only the magnitude spectrum of the speech is
estimated while the phase parts of the noisy speech are kept intact.

One of the significant drawbacks of the conventional DNN-based speech enhance-
ment algorithm is that it usually results in over-smoothed spectral trajectories of
the enhanced speech. In order to alleviate this phenomenon, the GV equalization
post-filter which modifies the variance of x; to match that of y; is usually employed.
In this chapter, the frequency-independent GV equalization method which has been
known to perform better than the frequency-dependent approach [48] is applied as
a conventional post-filtering technique.

In the frequency-independent GV equalization, the global variances of x; and y;

are computed as follows:

1 T F 1 T F
ﬁzz ﬁzzxt(f))z, (6.6)
t=1 f=1 t=1 f=1
1 & F 1 I F
T:ZZ - ﬁZZyt(f))Q. (6.7)
t=1 f=1 t=1 f=1

Based on (6.6) and (6.7), the frequency-independent GV factor « is given by

GV(y)
GV(x)’

(6.8)

o =
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and it is multiplied to x; before de-normalization as follows:
it:OéXt@S—i-d. (69)

In the GV equalization post-filter, multiplying the GV factor to the output feature
can be viewed as imposing an exponential factor in the linear spectral magnitude
domain. By this post-filter, the variance of the spectral trajectory is enlarged or
diminished depending on the value of a. In most cases, « is bigger than 1 and the
lack of dynamics in x; is alleviated to some extent.

After the network output is de-normalized, they are transformed to the linear
spectra and the clean speech waveform is generated by the conventional overlap-add

method.

6.3 Perceptually-Motivated Criteria

In this section, we propose a novel speech enhancement algorithm that is based on
DNN. We introduce the proposed objective function which consists of the Mel-scale
weighted mean square error, and the temporal and spectral variation similarities

between the enhanced and clean speech over adjacent frames or frequency bins.

6.3.1 Perceptually Motivated Objective Function

Our framework to incorporate the perceptually motivated criteria is to replace
the conventional mean square error Cp,s given in (6.4) by a modified objective

function C defined as

C = Cumse + M(1 = p1) + Aa(1 — p) (6.10)
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weighted mean square error, temporal and spectral variation similarities.

where A\ and Ao denote the weights controlling the contributions of the three sep-
arate sub-costs, Cymse, (1 — p1), and (1 — p2). Fig. 6.3 shows the procedures for

computing these three sub-costs given {x;} and {y:}.

In the training stage, parameters of the network are optimized so as to minimize
C via the stochastic gradient descent algorithm. The test stage of the DNN remains
the same to that of the conventional DNN approach. Note that the only difference
of the proposed method from the conventional DNN-based speech enhancement al-
gorithm is that it applies a new objective function for DNN training. Now, we will
give the detail on how to derive Cymse, p1, and ps which jointly specify the objective

function.
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6.3.2 Mel-Scale Weighted Mean Square Error C,,s.

We modify the original mean square error Ci,s to take the Mel-frequency scale

into consideration. The Mel-frequency is defined as follows [61]:

@ = 25951og,(1 (6.11)

¢
+ 700)
where w and ( denote the Mel-frequency and the corresponding linear frequency,

respectively. The relative importance of each spectral coefficient can be determined

by the derivative of the Mel-frequency at the corresponding frequency, i.e.,

i) = min( 5 k=ron) (6.12)

where 7 is a constant setting the minimum weight value. Then, the Mel-scale weighted
mean square error Cyymse is defined by multiplying the normalized weight w( f) with

each element of C,,s. as follows:

wif) = —A) 6.13
IS (6.13)
1 T F
Cwmse = T Z Zw(f)(xt(f) - Yt(f))Q' (614)
t=1 f=1

Fig 6.4. shows the values of w( f) over frequency axis. Compared to Cpyse, Cipmse €m-
phasizes the error in the low-frequency bins which are crucial for speech naturalness

and intelligibility.

6.3.3 Temporal Variation Similarity p;

It has been known that the similarity in frequency band trajectories between the
enhanced and clean speech is related to the intelligibility of the enhanced speech [54],
[55]. In [57], a speech intelligibility metric using temporal variation over the one-

third octave band trajectory is presented. Motivated by these studies, we attempt
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Figure 6.4: Results of preference test (%) between the conventional and proposed

algorithms in the speech quality in various SNR values.

to equalize the temporal variation of the one-third octave band trajectory of the

enhanced speech during the DNN training session.

The comparison in temporal variation between the enhanced and clean speech
is performed similarly to [57]. In the DNN training stage, the output feature vec-
tors are transformed into the one-third octave band domain before the short-time
segmentation and variation analysis are performed to obtain the temporal varia-
tion similarity for each slice of frames. Then, we incorporate the temporal variation

similarity values to the objective function and compute the gradients from them.

The enhanced and clean log-power spectra X; and y; are transformed to the
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l-dimensional one-third octave band vectors X; and y; as follows:

X, = /B exp(X), (6.15)

yt = /B exp(§) (6.16)

where B denotes the [p X [p-dimensional one-third octave band matrix, and exp(x)
and /x denote the element-wise exponential and square root functions of a vector
x, respectively. The temporal variation similarity is computed only for the speech
active frames. To remove the speech absence frames from the variation analysis, a
simple decision rule is applied to y; as in [57].

The variation analysis is performed for each one-third octave band and each
slice of NV speech active frames. Let us denote the vectors stacking the h-th one-
third octave band coefficients from the t-th frame to the ¢t + N — 1-th frame of the
enhanced and clean speech as Xt’h and ?t,h- Then, the temporal variation similarity

between Xt,h and ?t,h is defined as follows:

(X — Hf(t’th)T(?t,h - by, ,1n)

pr(tsh) = —2 - (6.17)
IXen = b, NI [ Yen = pg, N
where 15 denotes an N-dimensional vector with all elements being 1 and
XN
PR, = N Z Xin (i), (6.18)
i=1
1
h =N > Y ni), (6.19)
i=1

The proposed objective function incorporates the variation similarity pi(t, h) aver-

aged over a time-frequency window as given by

1 T-N+1 H
P1 = m Z Zpl(t, h). (6.20)
t=1 h=1
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By training the DNN while considering this sub-cost, the short-time trajectories of
the enhance speech would have temporal variation more similar to those of the clean

speech.

6.3.4 Spectral Variation Similarity p,

The speech generated by the enhancement algorithms would suffer from the
muffled effect when the spectral peaks and valleys are over-smoothed [48]. In order to
improve the spectral dynamics of the enhanced speech, we also introduce a variation
over the frequency bins, which results in a better contrast between the spectral peaks
and valleys.

The spectral variation similarity ps is derived in a similar manner to p;. However,
compared to pi, p2 is different in two aspects. First, ps is derived in the spectral
magnitude domain without the one-third octave band analysis. Second, while p;
considers speech trajectory and disregards the variation over different frequency
bins, py aims to adjust the spectral peaks and valleys in the same time frame.

The [ p-dimensional enhanced and clean speech magnitude spectra X, and y; are

obtained as follows:

X, = yexp(X), (6.21)
Vi = Vexp(F). (6.22)

The spectral variation similarity is computed only over the speech active frames.

The variation similarity po(t) computed at the ¢-th frame is given by

L (x- pz 1r) (5, — pgi1r)
1%} — psy 1r|] [¥E — gy L]

p2(t)
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with

1 F
=D %4(0), (6.24)
1 F
ny, = 5 > 9i0). (6.25)
=1

Then, ps is obtained by averaging pa(t) over all frames i.e.,
1 X
P2 = ; pa(t). (6.26)

6.3.5 DNN Training with the Proposed Objective Function

In the training stage with the proposed objective function, the derivative of the
objective function with respect to each network output %?f) is computed and used
to derive the gradient with respect to each parameter through back-propagation. In

Appendix, we provide the details on the derivation of %C(Vf).

6.4 Experiments

In order to evaluate the performance of the proposed algorithm, we conducted
experiments in matched and mismatched noise conditions. In the experiments, 4,620
utterances of clean speech data were taken from the TIMIT training database to
train the DNN. The {con_mono_1, met_mono_1, off mono_1, car_mono_1, rai_mono_1,
res_mono_l, train, traffic} noises from ITU-T recommendation P.501 database [42]
and the {white, factory, babble, machinegun} noises from NOISEX-92 database [41]
were used for training. Each noise waveform was re-sampled to 16 kHz, and we chose
the left channel of the binaural noise recordings in ITU-T recommendation P.501

database. For each pair of the clean speech utterance and noise waveform, a noisy
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speech utterance was artificially generated with an SNR value randomly chosen
from {-5, 0, 5, 10, 15, 20} dB. A 512-point Hamming window with 50% overlap was
applied. F' and 7 were fixed to 257 and 5, respectively (feature vectors extracted
from 11 consecutive frames were concatenated similarly to [48], [50]).

For the test set, 30 utterances of clean speech data were taken randomly from
the TIMIT test database. The {con_mono_1, res_mono_1} noises from ITU-T recom-
mendation P.501 database and the white noise from NOISEX-92 DB were used for
the experiment in matched noise conditions. For the experiment in mismatched noise
conditions, the {cafeteria, kids, street} noises from ITU-T recommendation P.501
DB were chosen. For each pair of the clean speech utterance and the noise waveform,
the noisy speech utterances were artificially generated with the SNR ranging from
-5 to 10 dB with 5 dB step.

The DNNs were implemented using the Theano neural network toolkit [24]. The
DNNSs were constructed by stacking 3 hidden layers with 2048 nodes each. The num-
bers of the input and output nodes were 257 x 11 = 2827 and 257, respectively. All
networks were trained through 50 epochs. The learning rate was fixed to 0.003 in the
first 10 epochs and decreased by 10% after each subsequent epoch. The momentum
rate was 0.5 for the first 5 epochs and increased to 0.9 afterward. The dropout rates
of the input layer and all hidden layers were set to 0.1 and 0.2, respectively. The
mini-batch size was equal to the number of frames in each utterance. The average
value of mini-batch size was 190.6, and IV was fixed to 30.

In the experiments, the enhanced speech signals obtained from DNNs with var-
ious training objective functions and GV equalization post-filter were compared in
both objective measures and subjective test. The performance of the DNN-based al-

gorithm with the proposed techniques was compared to that with the conventional
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mean square error and frequency-independent GV equalization post-filter [48].

The perceptual evaluation of speech quality (PESQ) score [44] and the short-time
objective intelligibility (STOI) value [57] were used for the objective measures. For
the subjective measures, a preference test was conducted with the enhanced speech

obtained in the mismatched noise conditions.

6.4.1 Performance Evaluation with Varying Weight Parameters

First, we evaluated how the variation similarities p; and ps affect the performance
of the enhancement algorithm by varying weight parameters A; and Ay in (6.10). In
this experiment, we measured PESQ scores and STOI values of the enhanced speech
while varying A1 and As.

Table 6.1 shows the PESQ scores and STOI values averaged over all SNR values
and noise types in the matched noise conditions. The results show that both the
PESQ scores and STOI values gradually increased as A; and A2 became larger. From
the results, we can see that the proposed variation similarities are useful for the DNN
to generate more natural and intelligible speech. In all the following experiments,

we fixed A; and Ay to 5 which demonstrated a good performance.

6.4.2 Performance Evaluation in Matched Noise Conditions

In this experiment, the performances of various configurations of the DNN were
compared in the matched noise conditions. Tables 6.2 and 6.3 show the PESQ scores
and STOI values obtained in matched noise conditions. From the results, it is shown
that employing the Mel-scale weighted mean square error improved both the percep-
tual quality and intelligibility of the enhanced speech. This result demonstrates that

adopting perceptually motivated non-linear frequency scale to the objective function
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Table 6.1: Results of average PESQ scores and STOI values of the proposed objec-
tive function C' and GV equalization post-filter with varying weight parameters in

matched noise conditions.

M A\ PESQ STOI

With Cise 0 0 2.55 0.80

0 0 2.64 0.81

0.5 0.5 272 0.84

1 1 2.76 0.84
With Cymse

2 2 2.78 0.85

) 5 2.80 0.85

10 10 2.80 0.85

Without Cyymse 10 10  2.80 0.85

improves the quality of the enhanced speech.

Moreover, incorporating the variation similarities into the DNN training objec-
tive function further improved the performance in terms of both PESQ score and
STOI value. In the case of PESQ score, the performance of the DNN was improved
with the use of p; and ps. On the other hand, it turned out that p; played more
important role to improve the STOI values particularly in low SNR conditions than
p2. These results were consistent with the previous studies which reported that the

temporal variation is more important in speech intelligibility.
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6.4.3 Performance Evaluation in Mismatched Noise Conditions

In this experiment, the performances of various algorithms were compared in the
mismatched noise conditions. Tables 6.4 and 6.5 show the PESQ scores and STOI
values obtained in various mismatched noise conditions. From the results, we can
see that the amount of improvement in both the quality and intelligibility was less
than that achieved in the matched noise condition. However, the DNN-based speech
enhancement algorithm with the proposed objective function still outperformed the
conventional algorithm in unseen noise conditions. The PESQ scores of the enhanced
speech were improved by employing the Mel-scale weighted mean square error and
variation similarities.

It is interesting to see that the incorporation of the spectral variation similarity
po slightly decreased the enhancement performance in the Kids noise environment.
This may be due to the characteristics of the Kids noise which has similar spectral
shape to the target speech. Since py emphasized the spectral peaks and valleys, it
also made the speech-like noise slightly more noticeable after speech enhancement.

As shown in Table 6.5, the STOI values were enhanced by incorporating p; to
the objective function while other techniques did not show any significant effects
on intelligibility prediction score. This result once again confirms that the temporal
variation of the enhanced speech is more crucial than the spectral variation in terms

of the speech intelligibility.

6.4.4 Comparison Between Variation Analysis Method

Next, we compared the performance of the proposed objective function with

Pearson correlation coefficients (6.17) and (6.23) and those with the mean square

66



error which are defined as follows:

) = 1l {(t,h—/if(t,th B Yt,h—ﬂ?t,hlz\/ 2 (6.27)
Xin =g, Nl Yen —pg, 1]l
pa(t) = 1 Sioumle | Viugle (6.28)
1%t — pz 1rll (15— py 1l

where x? denotes the element-wise square function of the vector x. We compared
the average PESQ scores and STOI values of the proposed algorithm with various
analysis method in the mismatched noise environments.

Table 6.6 and 6.7 shows the performance of the proposed algorithm with vari-
ous parameters and analysis methods in the mismatched noise environments. From
the results, we can see that the performance of the proposed algorithm with mean
square error analysis showed similar results with those of the correlation analysis.
Since the derivative of correlation and mean square error functions are similar, the
performances of the objective functions would be also similar when the related pa-
rameters were optimized. However, we chose the correlation function since it showed

slightly better results than the mean square error function.

6.4.5 Subjective Test Results

Finally, we performed a subjective listening test to compare the performance
of the proposed techniques with that of the conventional objective function. Ten
listeners participated and were presented with 45 randomly selected sentences in
the SNR range of {-5, 0, 5} dB corrupted by the {cafeteria, kids, street} noises. In
the test, each listener was provided with speech samples enhanced by the network
with or without the proposed technique. The listeners were asked to choose the
preferred one for each pair of speech samples in terms of perceptual speech quality.

Two samples in each pair were given in arbitrary order.
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Figure 6.5: Results of preference test (%) between the conventional and proposed

algorithms in the speech quality in various SNR values.

The results are shown in Fig. 6.4——. It can be seen that the quality of the speech
enhanced by the proposed algorithm was better than that using the conventional
algorithm in all SNR values. This result implies that the proposed algorithm pro-
vides enhanced speech which is more comfortable to the human listener. From these
experiments, we can conclude that the proposed objective function is effective for

improving not only the objective but also the subjective speech quality.

6.5 Summary

In this chapter, we have proposed a novel objective function for DNN-based
speech enhancement to equalize the temporal and spectral variations of the enhanced

speech. The proposed algorithm incorporates the perceptually motivated non-linear

68



frequency weight and variation similarities between the enhanced and clean speech
spectral trajectories. From the experimental results, it has been found that the
proposed algorithm outperformed the conventional DNN-based speech enhancement
algorithm in terms of the objective measures as well as the subjective listening
quality.

The future work will focus on employing novel model structures and training
techniques. The recent studies show that the performance of the deep learning models
could be further improved by the proper training scheme [62]—[64]. Also, as in speech
recognition, the sequence-to-sequence model such as the long-short term memory
(LSTM) or gated recurrent unit (GRU) [65], [66] may be better to describe the speech
characteristics. Finally, the spatial information of the target and background noise
will be useful to improve the speech quality in the interfering speaker environments

such as the Kids noise.
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Table 6.2: Results of PESQ scores of various algorithms in matched noise conditions.

SNR (dB) 5 0

Objective function Post-filter White Res. Con. White Res. Con.

unprocessed 1.24 132 1.28 1.53 1.64 1.63

Crnse - 1.91 1.70 206 241 214 2.48

Crnse GV 1.91 1.69 207 245 219 254

C (A1 =0,\=0) GV 2.03 177 215 255 231 2.64
C (M1 =5,A=0) GV 213 191 229 258 240 2.72
C (M1 =0,\=05) GV 2.11 1.88 222 262 243 2.71
C (A1 =5, =05) GV 2.18 2.02 2.38 2.65 2.52 2.82

SNR (dB) 5 10

Objective function Post-filter White Res. Con. White Res. Con.

unprocessed 1.87 2.04 2.08 2.23 242  2.39

Crnse - 2.76 255 284 3.03 288 3.04

Crnse GV 2.85 264 295 315 3.01 3.15

C (M1 =0,\=0) GV 291 274 3.04 322 311 325
C (M1 =5,A=0) GV 293 281 307 323 314 3.28
C (M1 =0,\=05) GV 297 284 315 331 322 3.34
C (A1 =5, =05) GV 3.00 292 3.16 3.32 3.24 3.39
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Table 6.3: Results of STOI values of various algorithms in matched noise conditions.

SNR (dB) 5 0

Objective function Post-filter White Res. Con. White Res. Con.

unprocessed 0.58 0.51 0.56 0.71 0.64 0.67

Cse - 0.66 0.61 069 078 074 081

Cse GV 0.66 061 069 079 0.75 0.82

C (M1 =0,\=0) GV 0.68 0.62 070 0.8 0.77 0.83
C (M1 =5,\=0) GV 0.75 071 07 083 0.81 0.86
C (M1 =0,\y=05) GV 071 0.63 072 082 078 0.84
C (M1 =5,\=05) GV 0.75 0.71 0.77 0.84 0.82 0.87

SNR (dB) 5 10

Objective function Post-filter White Res. Con. White Res. Con.

unprocessed 0.82 0.75 0.78 0.91 0.85 0.85

Cse - 0.86 0.83 0.86 091 0.88 0.90

Cse GV 087 084 087 092 0.89 091

C (M =0,\=0) GV 0.88 085 0.89 093 091 0.92
C (M1 =5,\=0) GV 0.90 0.87 090 0.94 0.92 0.93
C (M1 =0,\y=05) GV 0.89 0.86 090 0.94 0.92 0.93
C (M =5,\=05) GV 0.90 0.88 0.91 0.94 0.92 0.94

71



Table 6.4: Results of PESQ scores of various algorithms in mismatched noise condi-

tions.

SNR (dB) 5 0

Objective function Post-filter Cafe. Kids Str. Cafe. Kids Str.

unprocessed 143 127 166 1.75 1.71 1.99

Cse - 1.61 166 186 2.04 198 235

Crse GV 1.63 1.68 187 2.09 2.06 242

C (A =0,\=0) GV 1.69 1.74 195 221 211 251
C (A =5,A=0) GV 1.72 1.78 2.04 224 2.14 2.56
C (A =0,\2=5) GV 1.74 1.72 191 228 2.08 2.5
C (A =5,A =5) GV 1.80 1.73 2.09 2.31 211 2.62

Objective function Post-filter Cafe. Kids Str. Cafe. Kids Str.

unprocessed 213  2.11 225 250 238 2.63

Chnse - 2.50 246 2.63 2.8 2.68 2.96

Cnse GV 259 255 274 297 279 3.08

C (A =0,\=0) GV 267 262 283 3.06 286 3.18
C (A =5,A=0) GV 2.66 2.59 2.87 3.03 2.86 3.20
C (A =0,\2=05) GV 2.73 256 289 3.12 2.85 3.26
C (A1 =5,\=5) GV 2.74 254 291 310 284 3.26
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Table 6.5: Results of STOI values of various algorithms in mismatched noise condi-

tions.

SNR (dB) 5 0

Objective function Post-filter Cafe. Kids Str. Cafe. Kids Str.

unprocessed 0.54 0.57 0.66 0.65 0.70 0.76
Cmse - 0.58 0.65 065 0.72 0.77 0.80
Cmse GV 0.58 065 0.66 0.73 0.78 0.81

) GV 0.59 066 0.67 074 079 0.82
) GV 0.63 0.67 0.74 0.77 0.80 0.85

A1 =0, =5) GV 0.60 065 068 0.76 079 0.83
)

GV 0.64 066 0.74 0.78 0.79 0.86

Objective function Post-filter Cafe. Kids Str. Cafe. Kids Str.

unprocessed 0.77 083 0.83 0.8 0.89 0.90
Cnse - 0.82 086 0.85 0.88 090 0.91
Cnse GV 0.83 088 0.86 0.89 091 0.92

GV 0.84 0.89 088 090 0.93 093
GV 0.86 0.89 089 091 0.93 0.94
GV 0.86 0.89 089 091 0.93 0.94

GV 0.87 0.89 0.90 0.92 0.93 0.94
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Table 6.6: Results of PESQ scores of various analysis methods averaged over various

mismatched noise conditions.

SNR (dB)

Objective function  Post-filter -5 0 5 10

CM=1X=1) MSE 1.81 229 272 3.04
C (M =5,\=5) MSE 1.83 231 272 3.05
C (A =20,y =20) MSE 1.87 233 273 3.06

C (M =5,\=5) Corr. 1.87 2.35 2.73 3.07

Table 6.7: Results of STOI values of various analysis methods averaged over various

mismatched noise conditions.

SNR (dB)

Objective function  Post-filter -5 0 ) 10

C(M=1x=1) MSE 065 0.79 087 0.92
C (M =5,X=5) MSE 067 080 088 0.93
C (A =20,A=20) MSE 0.68 0.80 088 0.93

C (A =5,A =5) Corr.  0.68 0.81 0.89 0.93

74



Chapter 7

Spectral Variance Equalization
Post-filter for DNN-Based

Speech Enhancement

7.1 Introduction

The speech generated from the conventional DNN-based speech enhancement
algorithm is suffered by the muffled effect which is caused by the over-smoothed
spectrum from the network output. In order to improve the perceptual quality of
the enhanced speech, early studies applied the global variance (GV) equalization
post-filter which roughly matches the standard deviation of the DNN output with
that of the original speech [48], [67]. In [67], the authors showed that the GV of the
enhanced feature is lower than that of the original feature and the problem would
get worse in the low-SNR conditions. The enhanced speech generated from the GV

equalization post-filter showed better performance with affordable computational
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cost.

While the GV equalization post-filters partly compensate the lack of variation in
the DNN output, their ability to recover the original contrast between the spectral
peaks and valleys are not fully studied. In this chapter, we propose the spectral vari-
ance (SV) equalization post-filter which directly adjusts the variance over frequency
bins in the log-power spectra domain. By adjusting the variance over frequency bins,
the mismatch in spectral dynamics, the mismatch between spectral contrasts of the
estimated and clean speech which cannot be fully compensated by the perceptually-

motivated objective function is further reduced.

7.2 GV Equalization Post-Filter

As explained in the previous chapter, the GV equalization post-filter can be
divided into the frequency-dependent and the frequency-independent algorithm. In
the frequency-independent GV equalization, the GV factor is defined as (6.6) to
(6.8).

In the frequency dependent GV, the GV for each dimension agep(d) is derived

as follows:
1 <& 1 &
GVdep(X7 d) f Z(Xt(d) - T Xt(d))Qa (7 1)
t=1 =1
1 <& 1 i
GVaep(y, d) = 7 > (yild) — T yi(d))?, (7.2)
=1 =1
o GVdep(Y7 d)
aerl D) =\ GV (. d) (73)

In the case of the frequency-dependent GV, the GV factor vector is multiplied to

the network output element-wisely.
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Since the value of the elements in oy, could be fluctuant especially in the very
high or low frequency bands, the average of the frequency-dependent GV factor aye,
could be used as a GV factor rather than using agep directly. Previous studies on
the GV equalization post-filter evaluated these three GV factors in various SNR
conditions [67]. They showed that while the post-filter with &g, was slightly better
than other post-filters in terms of PESQ scores [44], the performance difference

among these three algorithms were not significant.

7.3 Spectral Variance (SV) Equalization Post-Filter

The conventional frequency-dependent and -independent GV equalization post-
filters enhance the over-smoothed feature trajectory by appropriately scaling the
output vectors. In these post-filter algorithms, the GV factors are obtained from
the frequency-dependent or -independent variances of the output feature. While the
conventional frequency-dependent and -independent GV algorithms partly alleviate
the over-smoothing problem of the DNN [48], these GV factors do not consider the
spectral dynamics over frequency bins. To consider the contrast between spectral
peaks and valleys in each enhanced speech frames, we propose the spectral variance
(SV) equalization post-filter which matches the variance over spectral coefficients in
the log-power spectra domain.

Similar to the procedures for calculating the temporal and spectral variation
similarities in the last chapter, the proposed SV post-filter algorithm discards the
speech absence frames from its derivation for SV factor. The SV factor agy is defined

by the average ratio of the variation in the log-power spectral domain as given by

Z 150 — sz -

|1%e — pis ||
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In the test stage, the proposed post-filter is applied after x; is transformed to

the log-power spectra domain as follows:
Xt = agy (X ® s+ m). (7.5)

Similar to the conventional GV factors, the SV factor in the log-power spectra do-

main operates as an exponential factor in the spectral magnitude domain.

7.4 Experiments

In order to evaluate the performance of the proposed post-filter, we conducted
experiments on the speech generated from the DNN with the perceptually-motivated
objective function proposed in the previous chapter. The enhanced speech without
the post-filter, GV and SV equalization post-filters are compared in terms of the
PESQ scores and subjective preference test.

The DNN structure, training scheme, and the training and test dataset are kept
to be same with the experiment in Chapter 6. In the experiments, the GV and SV
factors of the post-filters are estimated from the DNN training database. We consider
the baseline model as the DNN trained by perceptually-motivated criteria and the
conventional GV equalization filter. The proposed post-filter is compared to the
baseline model to show if further objective and subjective performance improvement

could be achieved by the proposed post-processing algorithm.

7.4.1 Objective Test Results

First, we evaluated the performance of the conventional and proposed post-filters
in the matched and mismatched conditions in terms of the PESQ scores. The STOI

values of the post-processed speech are not presented since both the GV and SV
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Table 7.1: Results of PESQ scores of various algorithms in matched noise conditions.

SNR (dB) 5 0 5 10

Post-filter White Res. Con. White Res. Con. White Res. Con. White Res.

Con.

GV
SV

2.12 198 233 255 245 274 289 281 3.06 319 3.13

218 202 238 265 252 282 300 292 316 332 324

3.28

3.39

2.23 2.03 242 270 254 2.86 3.05 295 3.21 3.36 3.27 3.40

algorithm since they did not enhance the STOI values of the enhanced speech. This
results were consistent with the previous studies [54], [55] that the intelligibility of
the speech is highly related to the temporal variation of the enhanced speech.
Tables 7.1 and 7.2 show the performance of PESQ scores in the matched and
mismatched conditions. From the experiments, we can see that the perceptual qual-
ity of the enhanced speech is increased by adopting post-filters to the DNN-based
enhancement algorithm. Also, the performance of the proposed post-filter outper-
formed the conventional GV equalization post-filter in all SNR values and noise
conditions. From the results, we can see that the proposed SV equalization post-
filter can compensate the lack of spectral variance from the DNN-based algorithm

more effectively.

7.4.2 Subjective Test Results

Next, we performed a subjective listening test to compare the performance of the
proposed techniques with that of the conventional objective function and post-filter.
Ten listeners participated and were presented with 45 randomly selected sentences in

the SNR range of { 0, 5, 10} dB corrupted by the {cafeteria, kids, street} noises. In
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Table 7.2: Results of PESQ scores of various algorithms in mismatched noise condi-

tions.
SNR (dB) -5 0 5 10
Post-filter Cafe. Kids Str. Cafe. Kids Str. Cafe. Kids Str. Cafe. Kids Str.
— 1.78 1.72 2.06 2.26 2.06 254 267 250 281 3.02 278 3.14
GV 1.80 1.73 2.09 231 211 262 274 254 291 310 284 3.26
SV 1.83 1.79 2.11 2.36 2.17 2.66 2.78 2.62 2.96 3.15 2.92 3.31

the test, each listener was asked to compare the speech samples enhanced by network
with the objective function proposed in the previous chapter and SV equalization
post-filter to that with the conventional objective function and GV equalization
post-filter. Two samples in each pair were given in arbitrary order. The listers chose
the perceptually better sound samples or neutral when the quality of two sound

samples are similar.

The results are shown in Fig. 7.1. It can be seen that the quality of the speech
enhanced by the proposed algorithm was better than that using the conventional
algorithm in all SNR values. Also, comparing the results in Figures 6.4 and 7.1,
the proposed post-filter further improved the performance of the proposed algo-
rithm compared to those without the SV equalization post-filter or the perceptually
motivated objective function. This results shows that the improvement from the
perceptually-motivated objective function and the SV equalization post-filter can

be easily combined for perceptually natural enhanced speech.
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Figure 7.1: Results of preference test (%) between the conventional and proposed

algorithms in the speech quality in various SNR values.
7.5 Summary

In this chapter, we have proposed the SV equalization post-filter for DNN-based
speech enhancement algorithm. The proposed post-filter directly matches the vari-
ance over frequency bins in log-spectral domains to recover the spectral variation of
the enhanced speech. In the experiment, the proposed algorithm is compared with
the conventional GV equalization post-filter and showed better performance. The
experiment also shows that combining the perceptually-motivated objective func-
tion and the SV equalization post-filter can further improve the perceptual speech

quality.
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Chapter 8

Conclusions

In this thesis, the deep learning-based approaches for the robust VAD and speech
enhancement have been proposed. The scheme of the DNN-based VAD and speech
enhancement algorithms which estimate the speech presence interval and the corre-
sponding clean speech waveform, respectively, are introduced. In the VAD area, the
performance degradation of the DNN-based VAD in the mismatched noise environ-
ments is compensated by adopting multi-task learning in the training stage. In the
speech enhancement area, the DNN-based algorithm is defined and the knowledge
on the human auditory perception is adopted to the DNN objective function and
post-filter.

Firstly, we have proposed a novel approach to increase the robustness of the
DNN-based VAD in the mismatched noise environments. To learn the general de-
noising function which could be applied to various noise environments, the subsidiary
feature enhancement task is combined to the conventional DNN-based VAD and the
parameters of the DNN are optimized by the gradients from both the conventional

VAD and feature enhancement tasks. From the experiment results, the performance
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of the DNN with the MTL framework showed better performance than the conven-
tional DNN in the mismatched noise environments.

Secondly, we have proposed a speech enhancement algorithm which estimate the
encoding vectors of the NMF analysis using DNN. The noisy speech waveforms are
artificially generated and the corresponding speech and noise encoding vectors are
estimated with the DNN. In the proposed algorithm, the complicated nonlinear rela-
tions between the speech and noise basis vectors are represented by the DNN. From
the experiment results, the performance of the proposed algorithm outperformed
the conventional and discriminative NMF-based algorithms.

Thirdly, we have incorporated the nonlinear characteristics of human auditory
perception in the DNN objective function. Also, we alleviated the over-smoothness
and improved the human intelligibility of the enhanced speech by considering tem-
poral and spectral variations. In the experiments, we showed that the proposed ob-
jective function improved the performance of the DNN-based speech enhancement
algorithm in terms of both the objective and subjective measures.

Finally, we have proposed a novel post-filter algorithm which matches the spec-
tral variance of the enhanced speech to that of the clean speech. The proposed
post-filter emphasizes the spectral peaks and valleys of the enhanced speech to re-
duce the muffled effect. In the experiments, the proposed post-filter showed better
performance than the conventional GV equalization post-filter in terms of the PESQ
scores. The subjective results showed that the proposed perceptually-motivated ob-
jective function and post-filters could be combined to generate more perceptually

comfortable speech.
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Appendix

In this Appendix we present the detail on deriving %(gf) The gradient of the
proposed objective function is given by the sum of the separate gradients of the

three sub-costs as follows:

oC acwmse apl apQ

= - A - A . 8.1
ax(f) oxlh) Vi) o) &
Similar to the conventional mean square error, agg:’(“}s)e is given by
6Cwmse 2
= — — . 2
S = () Gelf) - yi(1) (52)

The gradients of the second and third sub-costs are given by (8.3)—(8.5) and (8.6)—
(8.8), respectively.
After {%%c)} are derived, the gradient of the proposed objective function with

respect to each network parameter 6 is obtained as

T F
0C _ gy~ OC_osill) 9)

and the usual back-propagation algorithm is applied.
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if %4(h) € Xy p,
(8.4)

otherwise.
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