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Abstract 

Wrinkles can be defined as sinusoidal topography with ridge and valley 

structures, and they commonly exist in various organisms like human skins. Many 

scientists have studied to understand the fundamental principles of the natural 

wrinkling phenomenon in various material systems. Moreover, engineers have also 

paid attention to these spontaneously generated wrinkle patterns found in nature, 

even with complex structures in micro/nano scale, because it is hard to fabricate 

them with conventional lithography technologies. Therefore, various bottom-up 

patterning methods based on the mechanical instability have been developed as 

alternatives to top-down patterning approaches. 

To utilize wrinkling as patterning purposes, appropriate control mechanisms are 

required in the fabrication processes due to the random nature of it. Although 

numerous patterning technologies with controllability have been developed by pre-

patterning the substrates or films, engineering the stress states, and others, it was 
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elusive to achieve both the flexible pattern design (e.g., precise control of in 

individual ridge to any geometry) and the high-throughput production of 

heterogeneously patterned structures, simultaneously. In this dissertation, a new 

wrinkle patterning platform based on the microparticle substrate is presented, which 

is able to realize them and thus to extend utility of the wrinkle patterns. 

For this purpose, polymeric microparticles coated with silica film were utilized 

for the unit structure, because the parameters to program the resulting wrinkle 

patterns (e.g., elastic modulus, film thickness, and geometry of the microparticle) 

could be dynamically tuned in each microparticle during the fabrication processes. 

By shrinking the homogeneously or heterogeneously programmed silica-coated 

microparticles, a few thousands of wrinkled microstructures could be constructed in 

a single fabrication process. 

First, the random wrinkle patterns were generated on plane, disk-type 

microparticles, and they were utilized as unclonable codes analogous to human 

fingerprint for anti-counterfeiting purposes. Using conventional fingerprint 

identification algorithms, the authentication system of these artificial fingerprints 

was demonstrated, and the uniqueness, individuality, and durability of them were 

verified. This application was the first functionalization of random wrinkle patterns. 

Next, several control techniques were applied to tune the degree of the pattern 

randomness or the directionality of ridges in low-level. Further, an elaborate wrinkle 
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control mechanism was developed by pre-patterning the ridge guiding structures 

consisting of small grooves on the surface of the polymeric microparticles. This 

slightly modified patterning method allowed the self-organization of microstructures 

with precise control of the individual ridge orientation over the randomness. Not 

only the anisotropic, orthogonal, and hexagonal ridge patterns, but also the letter-

shaped ridge patterns were realized. 

Although this dissertation focused on the polymeric microparticles covered by 

silica, the presented programmable wrinkle patterning concept could be also applied 

to other materials or substrates systems. It is expected that this patterning technology 

and the resulting structures could be utilized for various purposes other than the 

presented applications, including those for useful experimental platforms in studying 

mechanical instability. 
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Chapter 1 

Introduction 

In this chapter, the wrinkling phenomenon in a general two-layer system and the 

related basic theory will be briefly explained. The previously studied wrinkle 

patterning technologies on planar and curved substrates will then be reviewed with 

their various applications. Finally, the idea of a new wrinkle patterning method on 

the microparticle-based substrate and main claims of this dissertation will be 

presented. 
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1.1 Principle of Wrinkling 
Wrinkles are frequently found in nature, for example, in human or animal skins, fruit 

peels, and leaves of plants. To understand the underlying principle of wrinkling, 

many scientists have studied the mathematics of buckling in two-layer systems and 

have established basic theoretical models for them [1]-[5]. 

When a compressive force is applied on the bilayer structure consisting of a 

hard thin film on a soft substrate, surface wrinkles are formed if the force exceeds a 

critical value. The compressive force can result from various mismatched 

deformations between the film and the substrate, including differential growth, 

thermal expansion mismatching, swelling or dehydration mismatching, and osmotic 

pressure [6]. According to the theoretical studies [1, 2, 7], if we assume that the 

shear stress between the film (f) and the substrate (s) is negligible, and consider only 

the elastic moduli (Es and Ef) and the Poisson’s ratios (vs and vf ), the compressive 

force on the skin is expressed by 

( ) ( )
2 3

2 23 1 4 1
s

f
f s f

E wwtF E
E

π λ
λ πν ν

   = +  − −   
       (1.1) 

where t is the film thickness, w is the film width, and λ is the wavelength of the 

wrinkle pattern along the applied compressive force direction (Figure 1.1). 

Wrinkling only occurs when this compressive force is larger than the critical value, 

Fc. The corresponding critical wavelength is then expressed by 
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Figure 1.1 Schematic illustration of wrinkling by compressive stress in a bilayer 
system [8]. 
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when (dF/dλ) = 0. Also, the amplitude, A, generally satisfies the following relation  

1 2

A
W

λ ∆ 
 
 

                        (1.3) 

where ∆/W is an imposed compressive strain [4].  

The equation (1.2) reveals that the wavelength of the wrinkle pattern is 
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determined by the material properties of the film and the substrate, and the thickness 

of the film. Therefore, the engineering of wrinkle patterns have conventionally been 

achieved by changing the combination of materials, the elastic modulus in a fixed 

material, or the thickness of the film. In this dissertation, the wavelength will be 

focused on as an engineering parameter rather than the amplitude of the wrinkle 

pattern. 

The morphology of wrinkle patterns is determined by the ratio of the two stress 

values in x and y directions on the plane (e.g., uniaxial or biaxial stress) and by the 

ratio of the applied stress to the critical stress value. Specifically, the anisotropic and 

the herringbone or random (labyrinth) patterns are generated by the uniaxial and 

equibiaxial stress, respectively, at the high overstress condition. On the contrary, the 

dimple or bump patterns are generated at the low overstress conditions [9]. 

 

1.2 Wrinkle Patterning Methods 
Patterning technologies of nano- and microstructures based on various lithographic 

techniques have received significant attention in various fields including optics, 

biology, and material sciences because of the value of engineered substrates. 

However, these top-down based processes usually have limitations in terms of cost, 

pattern resolution, and compatibility with various materials. Therefore, the bottom-

up fabrication processes have become significantly important because of their high 
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scalability and inexpensive fabrication costs compared to the top-down processes. 

Among various bottom-up approaches, mechanical instability, particularly wrinkling, 

has been widely utilized in order to fabricate periodic patterns in large areas with 

low cost since N. Bowden et al. pioneered this field. In this section, some 

representative research about engineering wrinkles with controllability will be 

selectively reviewed according to the substrate geometry. 

 

1.2.1 Planar Substrates 

Most wrinkle patterning studies have been performed using planar substrates. 

According to the control mechanism, previous research can be classified into four 

categories; i) pre-patterning of substrates or films, ii) control of stress states, iii) 

direct wrinkle patterning, and iv) others. 

First, a number of research work has achieved controlled wrinkle patterns by 

pre-patterning the substrate or film with specific structures. N. Bowden et al. 

fabricated ordered wrinkle patterns by pre-patterning polydimethylsiloxane (PDMS) 

substrates with bas-relief structures [10]. After heating the patterned PDMS 

substrate, they deposited metal film onto it and cooled it down to induce 

spontaneous buckling. Consequently, ordered wave patterns were generated on the 

surface between the elevated structures (Figure 1.2(a)). N. Bowden et al. also 

demonstrated aligned wrinkles using similar bas-relief structures (Figure 1.2(b)).  
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Figure 1.2 Examples of controlled patterning through pre-patterning of substrates or 
films: (a-c) Pre-patterning substrates with bas-relief structures [10], [11], [12]; (d) 
Modification of a substrate surface with different elastic modulus [13]; Pre-
patterning films using (e) templates [14] or (f) photolithography [15]. 
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However, they utilized different film material (silica by oxidizing the PDMS 

surface) in order to obtain a shorter wavelength [11]. After this pioneering work, 

various techniques were developed. D. B. H. Chua et al. fabricated ordered periodic 

structures by exposing the PDMS substrate pre-patterned with grooves to oxygen 

plasma (Figure 1.2(c)) [12]. W. T. S. Huck et al. achieved differently ordered 

wrinkle patterns by selectively modifying the PDMS surface before depositing the 

metal film [13]. The modified and the unmodified areas then presented different 

directionalities of wrinkles (Figure 1.2(d)). C.-M. Chen et al. pre-patterned one-

dimensional (1D) structures on SU-8 film by capillary imprint lithography (Figure 

1.2(e)). The wrinkles were generated by swelling the patterned film, and the pattern 

morphology was controlled by changing the pitch and height of the 1D pre-pattern 

[14]. Similarly, Q. Du et al. controlled patterns by swelling the pre-patterned 

hydrogel films (Figure 1.2(f)) [15]. 

Second, in order to tune the directionality of wrinkles, the compressive stress 

was controlled by using mechanical clamps. P.-C. Lin and S. Yang fabricated 

uniformly ordered herringbone structures by sequentially stretching and releasing 

the PDMS along each axis [16]. The simultaneously stretched and released substrate 

showed rather random wrinkle patterns due to equibiaxial stress (Figure 1.3(a)). C.-

C. Fu et al. also controlled the release of stress in order to obtain biaxial and uniaxial 

wrinkle patterns (Figure 1.3(b)) [17]. Similarly, E. Lee et al. fabricated anisotropic  
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Figure 1.3 Examples of controlled patterning by regulating stress states: (a) Control 
the stretching and releasing of the prestress in sequential manner [16]; (b-c) Control 
the prestress state biaxially or uniaxially [17], [18]; (d) Control the magnitude of the 
applied stress [9]. 
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PDMS wrinkles using the same method in order to control the tilting angles of pillar 

arrays atop the wrinkled substrate for optical applications (Figure 1.3(c)) [18]. In 

addition, D. Breid and A. J. Crosby controlled wrinkle morphologies by 

manipulating the magnitude of applied stress in both equibiaxial and non-equibiaxial 

stress states [9]. They applied swelling stress on the thin films fabricated by the UV-

ozone oxidation of PDMS substrates. The magnitude of the stress was controlled by 

changing the UV-ozone treatment time and the concentration of solvent vapor. They 

achieved a morphology transition from the dimple to the herringbone or random 

patterns as the overstress (applied stress above the critical buckling stress) increased 

(Figure 1.3(d)). Although these pre-patterning or stress control techniques allowed 

the ordering of ridge orientation in the overall pattern, they could not provide the 

precise control of individual ridges in specific regions. 

On the contrary, some research demonstrated more flexible patterning by 

directly generating ridges on the substrate. For example, M.-W. Moon et al. 

irradiated a focused ion beam (FIB) on the PDMS sheet to selectively generate 

wrinkles on the exposed area [19]. They controlled the pattern morphology by 

changing the relative velocity between the beam and the PDMS sheet, the ion beam 

spot diameter, the ion beam spot spacing, or the ion beam fluences (Figure 1.4(a)). C. 

F. Guo et al. utilized a laser with a gold/polystyrene bilayer system in order to 

precisely control the location and geometry of wrinkle patterns [20]. They locally  
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Figure 1.4 Representative direct wrinkle patterning methods: (a) Creating spatially 
controlled wrinkles with FIB irradiation [19]; (b) Path-guided wrinkling with laser 
direct writing method [20]. 
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modified the elastic modulus of the gold film using a laser whose feature size was 

smaller than the wavelength scale. These modified regions then served as a guiding 

path and they became ridges under the heating condition. Various wrinkle patterns 

were demonstrated using this method (Figure 1.4(b)). Although these direct wrinkle 

patterning approaches successfully achieved diverse patterning with controllability 

compared to the previous control mechanisms, they also have limitations in 

scalability and throughput, because they cannot utilize the bottom-up nature of 

wrinkling in bulk scale. 

In addition to these methods, various wrinkle patterning methods were 

developed with different material systems. P. J. Yoo et al. utilized external mold in 

order to guide surface wrinkles and fabricated anisotropic patterns (Figure 1.5(a)) 

[21, 22]. M. Guvendiren et al. utilized elastic modulus gradients of hydrogel film 

and the corresponding change of osmotic pressure under the swelling process, in 

order to control wrinkle morphologies (Figure 1.5(b)) [23]. S. J. Ma et al. selectively 

patterned wrinkles by illuminating UV light with photomasks (second 

polymerization) on the pre-stretched polymer network (first polymerization) [24]. 

The ordered wrinkle patterns were then fabricated only on the UV exposed region 

(Figure 1.5(c)). However, these patterning methods also lacked the ridge orientation 

control mechanisms independently applicable at the individual ridge level 

throughout the entire pattern region. 
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Figure 1.5 Other various wrinkle patterning techniques: (a) Guiding of wrinkles 
using a mold [21]; (b) Morphology control using elastic modulus gradient of films 
[23]; (c) Spatially controlled patterning using two-stage polymerization [24]. 

 

1.2.2 Curved Substrates 

Studies about mechanical instability in curved substrates have not received sufficient 

attention compared to those in planar substrates. Specifically, although theoretical 

studies (including numerical simulations) were performed by many scientists [6], 

[25]-[27], experimental platforms for verifying the simulation results or for 

investigating parameters on curved substrates (e.g., curvature) were lacking. Here, 

several experimental demonstrations for studying the buckling phenomenon on 

various three-dimensional (3D) structures are briefly introduced. 
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G. Cao and X. Chen studied the effect of curvature on spherical substrates [28]. 

Using a spherical Ag core/SiO2 shell microparticle, they experimentally verified the 

relationship between the morphology of wrinkle patterns and the curvature or the 

film stress (Figure 1.6(a)). J. Yin et al. studied spontaneous buckling patterns in 

disk-type microstructures both analytically and experimentally [29]. They 

demonstrated the fabrication of various kinds of cylindrical gears by controlling the 

geometry and the elastic modulus of the substrate and film (Figure 1.6(b)). A. C. 

Trindade et al. presented Janus particles by partially generating random wrinkle 

patterns on one half of an elastomeric sphere [30]. They controlled the pattern 

wavelength by changing the thickness of the shell, the particle diameter, and degree 

of swelling (Figure 1.6(c)). D. Breid and A. J. Crosby also investigated the effect of 

the radius of curvature on wrinkle morphology in spherical PDMS surfaces [31]. 

They found that wrinkle morphology changed from hexagonal dimples to long ridge 

patterns as the radius of the curved substrate increased (Figure 1.6(d)). They also 

experimentally examined the effect of the film thickness and applied swelling stress 

at a constant radius. Most recently, M. Li et al. developed a fabrication method for 

wrinkled 3D structures with various shapes [32]. By controlling the polymer 

monomer concentration with UV exposure time at the photopolymerization step for 

3D post construction, they tuned the wavelength of wrinkle patterns on the base and 

post surfaces (Figure 1.6(e)). 
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Figure 1.6 Studies of wrinkling on curved substrates: (a) The effect of substrate 
curvature and the film stress in a microparticle [28]; (b) Wrinkling in cylindrical 
structures [29]; (c) Partial wrinkling in spherical particles [30]; (d) The morphology 
change in a spherical PDMS substrate [31]; (e) Wrinkle patterning on 3D posts [32]. 
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1.3 Applications 
Spontaneously generated wrinkle patterns have been widely utilized for various 

purposes due to their useful function. Some representative applications of wrinkle 

patterns or wrinkling phenomenon were selected and summarized in Table 1.1.  

In biology, the unidirectionally ordered wrinkle patterns can be utilized as a cell 

culture environment, providing mechanical or topographical cues to cells. Therefore, 

these patterns were applied to analyze cell morphology [33] or to control the 

differentiation of stem cells based on the wrinkle morphology [34, 35]. Also, the 

highly periodic wrinkle patterns are useful in optics including optical gratings [36] 

or microlens arrays [37]. The characteristic wavelength of wrinkle patterns in soft 

material films can be used to extract elastic modulus from the film material, which is 

difficult to obtain using the conventional nanoindentation method [38]. Moreover, 

controlled wrinkle patterns can be utilized to fabricate microfluidic channels [39], to 

print small molecules by stamping with wrinkled structures [40], or to prevent the 

fouling of marine organisms [41]. Meanwhile, random wrinkle patterns can also be 

applied to enhance adhesion of the surface [42]. In addition to wrinkle patterns, the 

buckling concept has been widely adopted for fabricating conformal devices in the 

flexible or stretchable electronics field [43, 44]. 
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Table 1.1 Various applications of wrinkle patterns 

Application Control method References 

Biology 
Cell guidance Stress state control [33] 

Stem cell control Stress state control [34], [35] 

Optics 
Phase grating Stress state control [36] 

Microlens Pre-patterning film [37] 

Metrology Stress state control [38] 

Microfluidics Stress state control [39] 

Microcontact printing Stress state control [40] 

Anti-fouling 
Stress state control 

& Pre-patterning film 
[41] 

Adhesive -  [42] 

Stretchable electronics -  [43], [44] 
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1.4 Main Concept: Wrinkle Patterning on Microparticles 
As examined in previous sections, most wrinkle patterning technologies and their 

applications were focused on two-dimensional (2D) planar substrates. Although 

these approaches are advantageous in fabricating homogeneous wave patterns in 

large scale, they generally lack flexibility or diversity in pattern design due to the 

absence of precise ridge control mechanisms, or have limited fabrication throughput 

in fabricating a number of heterogeneous structures. In this dissertation, a new 

wrinkle patterning platform based on a 3D microparticle substrate is developed in 

order to provide a flexible design scheme and heterogeneous patterning in a high-

throughput manner. 

 

 

Figure 1.7 Schematic illustration of the whole process for wrinkle patterning on the 
microparticle-based substrate. This consists largely of two parts; the polymeric 
microparticle synthesis and the subsequent silica-coating and drying [45].  
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For this purpose, a two-layer structure with the elastic polymeric microparticle 

substrate and the hard silica film was constructed (Figure 1.7). This was achieved by 

photopolymerizing a polymer solution to microparticles with a certain shape and 

coating them with silica. For inducing compressive stress, the silica-coated 

microparticles were shrunk during the drying step. The resulting wrinkles were 

spontaneously generated on both the top, bottom and side surfaces (Figure 1.8). As a 

result, the heterogeneously patterned microstructures were able to be generated from 

the identical microparticles in a single batch. This platform provided a flexible 

pattern design strategy with high-throughput fabrication because the mechanical 

properties or geometry of the individual microparticles could be dynamically 

controlled during the fabrication process. 

 

 
Figure 1.8 Fabricated wrinkled microparticle: (a) Confocal laser scanning 
microscopy (CLSM) image of the bottom surface of the particle; (b) CLSM image 
of curved side surface of the particle. 
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In chapter 2, the fabrication processes for wrinkled microparticles with random 

patterns will be explained in detail. In chapter 3, an advanced anti-counterfeiting 

microtaggant platform will be demonstrated using these wrinkled microparticles. In 

chapter 4, several pattern-control mechanisms will be presented by developing the 

random wrinkle patterning method, and I finally conclude in chapter 5. 
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Chapter 2 

Patterning Random Wrinkles 

In this chapter, a general wrinkle patterning method on a particle-based substrate is 

presented. First, the microparticle substrate synthesis process will be explained 

along with the material compositions that are required. The fabrication process of 

the shell layer for constructing a bilayer system will then be described. Finally, the 

wrinkling process and the conditions for surface wrinkle generation will be detailed. 
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2.1 Microparticle Synthesis 
To induce wrinkling in the microparticle, it requires two different material layers 

with a core-shell structure. For the core substrate, we utilized polymeric 

microparticles that were synthesized through photopolymerization of polymer 

monomers using the optofluidic maskless lithography (OFML) system that was 

developed by our research group [46].  

First, the prepolymer mixture was prepared to a 7:3 volume ratio of 

trimethylolpropane ethoxylate triacrylate (ETPTA, Mn~428) and 3-(trimethoxysilyl) 

propyl acrylate (TMASPA) as a alkoxysilane-grafted photocurable resin with 10 

vol% of the photoinitiator. Additionally, 0.025 wt% of methacryloxyethyl 

thiocarbamoyl rhodamineB was added to this prepolymer mixture for fluorescence 

imaging of the particle surface (Figure 2.1). 

 

 
Figure 2.1 Composition of the photocurable prepolymer resin. Photoinitiator was 
added to this for photopolymerization. 
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Acrylate groups in both ETPTA and TMSPA were crosslinked by the ultraviolet 

(UV) light illumination, resulting in polymeric microstructures. RhoB molecules 

were also crosslinked within the polymer network because it had an acrylate group. 

This is essential for stable fluorescence imaging of the microparticles, because 

general RhoB molecules without acrylate groups are washed out from the 

microparticle during the following steps after the synthesis process. TMSPA serves 

the functional group for silane coupling that enables silica formation on the surface 

of poylermic microparticles. This silica layer will be utilized as a hard shell in our 

core-shell structure, and the detailed methods for the silica formation will be 

described in the following section. 

Next, microparticles with various shapes were synthesized using this 

prepolymer resin with the OFML system. This OFML system consists of a UV light 

source, a digital micromirror device (DMD), a motorized stage, and a microscope 

with objective lenses (Figure 2.2). The prepolymer resin was loaded between PDMS 

coated slide glasses, and these slides were placed on the motorized stage. In order to 

fabricate microparticles with a certain shape, UV light must be modified into this 

shape. The DMD allowed shaping of UV light by reflecting a specific part of the 

illuminated UV light, based on the photomask pattern loaded onto the DMD. As a 

result, we were able to synthesize various shapes of microparticles by dynamically 

changing the DMD mask with the appropriate design.  



 

 ２３ 

 
Figure 2.2 Schematic illustration of the microparticle synthesis process using the 
optofluidic maskless lithography (OFML) system. Ultraviolet (UV) light was 
directed at the prepolymer resin after being shaped by the digital micromirror device 
(DMD). 
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By synchronizing the UV light source, the DMD, and the motorized stage, we 

were able to automatically fabricate approximately 7,000 microparticles (100 µm 

size) with different shapes in a single batch. We usually used a 20x (NA 0.45) 

objective lens for particles less than 250 µm in size and a 10x (NA 0.3) objective 

lens for 250 ~ 500 µm sized microaprticles. The synthesized microparticles were 

washed a few times with ethanol and immersed in ethanol overnight in order to 

remove the uncured polymer monomers. 

 

2.2 Silica-Coating 
After synthesizing the inner substrate, we needed to fabricate the outer shell for the 

wrinkle patterning. For this purpose, we coated the polymeric microparticle surface 

with silica nanoparticles through a modified Stöber process [47, 48]. Typically, the 

synthesized microparticles were collected in a glass vial. Then they were immersed 

in a mixture consisting of ethanol (20 ml), DI water (3.2 ml), ammonium hydroxide 

(0.8 ml), and tetraethyl orthosilicate (TEOS, 0.1 ml), and the vial was agitated using 

a vortexer. Every 20 minutes, 0.1 ml of TEOS was additionally injected into the 

solution until the total amount of TEOS reached 0.4 ml. The microparticles were 

then washed two times with the same mixture solution, only lacking the TEOS. This 

fresh coating mixture was applied in order to prevent any shrinking of the 

microparticles before completing the entire coating process during the washing steps. 
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Next, the entire procedure was repeated until the silica-coating time reached a 

targeted duration [45]. 

 

 
Figure 2.3 Schematic illustration of the silica-coating process. The condensation of 
tetraethyl orthosilicate (TEOS) on the particle surface formed a thin silica film.  

 

Specifically, this silica-coating process is a kind of sol-gel method. The 

colloidal nanoparticle solution (TEOS) develops into a solid silica layer on the 

surface of microparticles through hydrolysis and condensation processes (Figure 

2.3). Amonium hydroxide catalyzes this reaction, and its concentration affects the 

speed of the coating process. 

Developed silica-coated microparticles can be applied for various purposes, and 
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as an example, we demonstrated multiplex bioassays using shape-encoded silica 

microparticles [49]. This platform has advantages over other bead-based bioassay 

platforms for the following reasons; i) the encoding capacity based on graphical 

codes is higher than that on spectral codes, ii) the silica layer provides good physical 

durability, and iii) silica-based chemistries for conjugation of biomolecules are 

stable. Using these silica-coated microparticles, we performed multiplexed human 

papilloma virus (HPV) genotyping analysis (Figure 2.4). The silica surfaces were 

functionalized with the carboxylic acid groups by treating (3-

Aminopropyl)triethoxysilane (APTES) and succinic anhydride. Then 10 different 5’ 

amino-terminated HPV type-specific oligonucleotide probes were immobilized on 

the surfaces of carboxylated microparticles with 10 different shape codes, 

respectively. After the hybridization of biotin-labeled target HPV genes with 

complementary probes, R-phycoerythrin (PE)-conjugated streptavidin was added to 

detect fluorescent signals. Among the 10 kinds of microparticles, only those 

containing complementary probes for a certain target gene showed fluorescent 

signals. This result revealed that shape-coded silica microparticles can serve as 

multiplex bioassay platforms that provide high multiplexity and allow conventional 

chemistries for the conjugation of biomolecules, such as DNAs and proteins. 
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Figure 2.4 Application of encoded silica microparticles for multiplex bioassays: (a) 
Schematic illustration of HPV genotyping processes using silica-coated 
microparticles; (b) A bright-field and a fluorescent image after the hybridization 
assay. Only particles with probes complementary to the target HPV 33 sequences 
showed fluorescent signals [49]. 
.  
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2.3 Wrinkling Process 
To generate wrinkles on the particle surface, we utilized shrinking of the silica-

coated microparticles. Since the silica-coated microparticles consist of an elastic 

polymer substrate with an inelastic silica shell, the mismatched strain is induced 

between the shrinking core and the stiff shell when they shrink. As a result, the 

biaxial in-plane stress resulting from this mismatched strain spontaneously generates 

surface wrinkles.  

In order to verify the self-organization of surface wrinkles, we observed the 

moment of wrinkling by continuously scanning individual microparticles using the 

CLSM. After the silica-coating process, the microparticles were rigorously washed 

with ethanol to remove debris of silica nanoparticles attached on the surfaces.  

Washed microparticles immersed in ethanol were then dispensed on a well in a 96-

well plate. To reduce the time required for the evaporation of the solvent, we sucked 

out the ethanol using a pipette. A few minutes later, we observed that the edge of the 

evaporating solvent was moving toward the microparticle region. By setting this 

moment to t = 0, Figure 2.5 shows the evolution of surface wrinkles at intervals of 

five seconds. The planar bottom surface of the microparticle was transformed into a 

random topography through the wrinkling process. Also, we found that the particle 

size had been decreasing as time went by. Overall, we can conclude that random 

wrinkle patterns were spontaneously generated on the particle surface by the 

shrinkage of the microparticle through the drying process.  
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Figure 2.5 Sequence of time lapse images at the moment of wrinkling (scale bar: 25 

µm) [45]. 

 

However, it is poorly understood why this labyrinth of wrinkle patterns are 

formed differently from one microparticle to another, and what factors govern this 

randomness. It seems that the resulting ridge patterns are sensitive to small 

geometrical perturbation on the silica-layer. The variation of the silica layer structure 

(e.g., local thickness deviation) in each microparticle may result in the different 

ridge distributions on the particle surface, even under the same wrinkling conditions 

[50]. 

We also observed the cross-section of the wrinkled surface using a scanning 

electron microscope (SEM). For this purpose, we prepared dry wrinkled 

microparticles on a carbon tape, and they were loaded into the FE-SEM device. Next, 

a focused ion beam was used to mill the particle surface along the z-axis after the 

deposition of thick platinum, for the protection of the structure. From the resulting 

SEM images (Figure 2.6), we were able to distinguish the polymer substrate from  
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Figure 2.6 Cross-sectional view of the wrinkled microparticle (scale bar: 1 µm). In 
the magnified image, the silica film and the polymer substrate are distinguishable 
and the delamination of the silica was not observed (scale bar: 200 nm) [45]. 

 

the silica shell, and found that periodic waves were generated on the interface of the 

both. Also, we verified that there was no delamination of the silica layer from the 

polymer substrate. Moreover, we observed some cracks in ridges, which seemed to 

appear when the generated ridges were sharp, but did not appear when the generated 

ridges were smooth. However, we could not control the sharpness of the ridge shape 

with the current wrinkle patterning method. 

To generate wrinkle patterns on the entire surface of the silica-coated 

microparticles through the drying process, silica nanoparticles must completely 

cover the particle surface during the coating process for an adequate amount of time. 

To verify this, we analyzed the particle surface characteristics based on the silica-

coating duration (Figure 2.7). We performed random sampling of the microparticles 
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during the silica-coating reaction at different stages (0, 40, 80, 120, 160, 240, 320, 

and 480 minutes after starting the coating reaction). Then, we observed the surfaces 

of these microparticles using a microscope. First, the wrinkles were not generated 

before the drying process was complete, regardless of the coating duration. Next, we 

dried the sampled microparticles and imaged them again. The wrinkles began to 

appear when the reaction time was longer than 120 minutes. To closely investigate 

the surface conditions, we also imaged dried microparticle samples using SEM. For 

up to 80 minutes of coating, the growth of the silica-nanoparticles was not enough to 

cover the polymer surfaces. In other words, shrinking of the particle with or without 

an incomplete silica shell could not generate surface wrinkles. This revealed that a 

complete silica layer on the polymeric microparticle is required for wrinkle 

patterning. Also, an excessive coating process duration resulted in unclear wrinkle 

patterns with large characteristic wavelengths (over 480 minutes). From this analysis, 

we were able to conclude that the appropriate silica coating time for wrinkle 

patterning ranges from 120 to 320 minutes, and thus we utilized this range for the 

following experiments. 
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Figure 2.7 Surface characteristics before and after the drying process, depending on 
the silica-coating time. The bright-field images and FE-SEM images were obtained 
by sampling microparticles at various times during the silica-coating reaction (scale 

bars: 25 and 1 µm, respectively) [45]. 
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Chapter 3 

Application: Artificial Microfingerprints 

In this chapter, an application of the wrinkled microparticles as microtaggants for 

anti-counterfeiting of products will be presented. First, counterfeit goods market 

trends and various efforts to prevent forgery will be briefly introduced. Second, the 

concept of an artificial microfingerprint will be presented using wrinkled 

microparticles as analogous to human fingerprints. Then, the feasibility of this 

artificial fingerprint for a novel unclonable microtaggant will be verified by 

investigating the characteristics of wrinkled microparitcles in terms of security level, 

code capacity, individuality of the code, and durability. Finally, the authentication 

process of artificial microfingerpints will be demonstrated with commercial products. 
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3.1 Anti-Counterfeiting Technologies 
The enormous counterfeit market has been aggressively threatening markets 

worldwide in finance, fashion, pharmaceuticals, electronic devices, and more 

(Figure 3.1). Globally, the total economic value of counterfeit goods is estimated at 

about $650 billion per year, and about 10% of global goods are estimated as 

counterfeited according to statistics. However, the real value is more likely much 

larger than this, because it is difficult to precisely estimate the amount of all fake 

products in the market. Moreover, the total value has been increasing every year. In 

addition to economic loss, job loss due to counterfeits is not negligible [51]. Notably, 

counterfeit drugs cause significant social problems because they are directly related 

to public health, even human life. According to statistics, 10% of medicines in the 

United States and 25% in developing countries are fake drugs [52]. Another statistic 

shows that 100,000 people die due to counterfeit drugs in Africa each year. As 

shown by this statistic, people in developing countries are more susceptible to 

counterfeits [53].  

To prevent and stop counterfeiting, governments, industries, and researchers 

around the world have been striving to provide solutions and have been developing 

various anti-counterfeiting technologies. Here, as part of these efforts, we present a 

powerful anti-counterfeiting strategy using wrinkled microparticles. Before 

introducing our technology, the latest anti-counterfeiting methods will be reviewed 

in two different categories (taggant and physical unclonable function). 
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Figure 3.1 Current state of global counterfeit market and the threat of counterfeit 
drugs in developing countries [51]-[53]. 

 

3.1.1 Taggant Systems 

A microtaggant is a microscopic and traceable particle which is added to materials 

or products for authentication. For example, covert microparticles with unique 

information can be embedded on a product surface in order to authenticate it (Figure 

3.2(a), ARmark Authentication Technologies, LLC, and Colorcon, Inc.) [54]. This 

method is powerful because the micrometer-scale physical identifiers in the 

individual item cannot be easily detected, while other authentication methods such 

as barcode or RFID tags are more obvious.  
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Figure 3.2 Taggant-based technologies for anti-counterfeiting purposes: (a) A 
commercial microtag for the drug authentication [54]; (b) Color-barcoded magnetic 
microparticles with structural colors [55]; (c) Color-barcoded microparticles with 
rare-earth upconversion nanocrystals [56]; (d) QR-coded microparticles for drug 
authentication [57]; (e) Encoded microcarriers by photobleaching [58]; (f) Digitally 
encoded microfiber for drug authentication [59]. 
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Microtaggant encoding methods can be generally classified into two different 

categories; spectral encoding and graphical encoding. Fluorescent materials are 

usually incorporated into microparticles for spectral encoding with different 

emission spectrums. However, fluorescent-based encodings have critical limitations 

in encoding capacity, because the number of types of fluorescent dye is limited and 

thus cannot be applied to various products. In this context, our group developed a 

novel encoding method by constructing structural colors (resulting from one-

dimensionally aligned superparamagnetic colloidal nanocrystal clusters) with 

barcode shapes (Figure 3.2(b)). Using this method, billions of different physical 

identifiers can be fabricated and these microparticles can be utilized as 

microtaggants [55]. As another approach, P. S. Doyle group developed a robust 

encoding method using rare-earth upconversion nanocrystals (Figure 3.2(c)). In 

addition to providing a large encoding capacity, they demonstrated authentication 

process with portable microscope devices by incorporating fabricated microtaggants 

on products [56]. 

Graphically coded microtaggants have also been widely studied, and they can 

provide virtually unlimited unique codes. Stefaan C. De Smedt et al. presented a 

new approach to increase their encoding capacity while utilizing fluorescence 

(Figure 3.2(e)). They generated graphical codes by selectively bleaching fluorescent 

regions with specific patterns [58]. Meanwhile, there are also needs for 
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microtaggants that are able to be ingested, because the incorporation of 

microtaggants in drugs has attracted attention as an on-dose authentication (ODA) 

technology for drug authentication. In this context, Stefaan C. De Smedt and co-

workers developed similar technologies based on spatial selective photobleaching 

with FDA approved materials for oral medicines (Figure 3.2(f)) [59]. Our group also 

developed edible microtaggants that can be utilized for the anti-counterfeiting of 

drugs as an advanced ODA method (Figure 3.2(d)). In order to contain more 

information about simple identification in microtaggants, we lithographically 

encoded Quick response (QR) codes on the microparticle surface. This encoding 

scheme not only provides a high encoding capacity, but also an error correction 

function for the damage of the codes. We demonstrated the drug authentication 

process in the drug formulation with QR-coded microtaggants by using a simple QR 

code reader application on a smartphone. The information about the drug was 

successfully retrieved from the QR code on the microtaggant [57]. 

 

3.1.2 Physical Unclonable Function (PUF) 

Previously examined microtaggant systems could be a solution for preventing 

counterfeiting crimes due to their high encoding capacity and wide applicability as 

well as their covert characteristics. In terms of security, however, such technologies 

also have limitations because their encoding mechanism is predictable, allowing 
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codes to be copied with the same manufacturing system and process used initially to 

create them. Therefore, more unpredictable encoding mechanisms are required to 

effectively realize the prevention of counterfeiting.  

In this context, physical unclonable function (PUF) gained substantial 

recognition because it can provide irreplicable features by utilizing intrinsic 

randomness embodied in a physical structure. Although PUFs have mainly been 

studied in the field of hardware security, these concepts can be utilized as an 

encoding scheme by combining with microtaggants [60]. I will briefly introduce 

representative examples of these PUFs or PUF-like approaches for security 

applications. 

First, R. Pappu et al. presented an optical PUF [61]. They fabricated optical 

tokens by incorporating glass spheres of 500 µm size in epoxy plates. Then, speckle 

patterns were obtained by illuminating laser beams on this token as a result of the 

random scattering of the beam by the glass spheres. These speckle-pattern images 

were transformed into binary strings (unique identity of the pattern) through hashing 

for further analysis (Figure 3.3(a)). Since the speckle pattern varies depending on the 

incidence angle of the laser beam, it should be precisely controlled to obtain 

reproducible outputs in practical applications.  

Next, J. D. R. Buchanan et al. presented a paper PUF concept [62]. They 

directly utilized the structural randomness of the material itself rather than inducing 
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randomness from outside of the material. The laser scanning of random fiber 

networks on the surface of the paper resulted in a unique reflection intensity profile, 

which was different and clearly distinguishable from other papers (Figure 3.3(b)). 

However, this method lacks applicability to a wide range of products.  

 

 

Figure 3.3 Examples of PUF technologies: (a) Optical PUF with random speckle 
patterns [61]; (b) Paper PUF with random fiber networks [62]; (c) Random 
distribution of nanowires coated with fluorescent dyes [63]; (d) Coating PUF with 
random capacitances [64]; (e) Randomized self-assembly of carbon nanotubes to 
two-dimensional arrays [65]. 
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H. Ihee group presented a PUF-like approach using fluorescence-tagged silver 

nanowires [63]. They cast the nanowire solution (a mixture of dye coated nanowires 

with red and green fluorescence and different lengths) on the prepared substrate and 

utilized their random distribution patterns (Figure 3.3(c)). This approach can provide 

an unlimited number of unclonable patterns with simple processes by means of the 

unpredictable fabrication mechanism. However, the short lifespan of fluorescent 

materials can be a drawback in practical applications. 

P. Tuyls et al. developed coating PUFs by fabricating protective coating layers 

on integrated circuits [64]. The method randomly distributed dielectric particles with 

different types, shapes and sizes on the aluminophosphate matrix. Then, the array of 

sensors measured local capacitance values within integrated circuits (Figure 3.3(d)). 

These kind of PUFs provide a high level of security in integrated circuits, because 

duplication of these capacitance values is impossible. However, this method is not 

appropriate to apply to the authentication of general products. 

Recently, Z. hu et al. developed a new kind of PUF-like approaches directly 

applicable in conventional semiconductor processes for the protection of hardwares 

using carbon nanotubes (CNTs) [65]. This has great advantages for commercial 

applications. The dimensions of the trench arrays for the CNT were designed to 

maximize the randomness of the allocation of individual CNT inside the trenches, 

and the resulting 2D random bit arrays were utilized as unclonable identities (Figure 
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3.3(e)). This study was the first meaningful demonstration using nanotechnologies in 

PUF fields, but this was also not appropriate for applications in the authentication of 

general products, like in the previous paper PUF and coating PUF results. 

 

3.2 Concept of Artificial Fingerprints 
As reviewed in the previous section, current microtaggant technologies are 

unsatisfactory as anti-counterfeiting tags due to their predictable and deterministic 

encoding mechanisms, despite their versatile applicability to various products. On 

the contrary, PUF approaches have practical constraints, including noise sensitivity 

and their limited range of suitable applications, although they guarantee unique and 

irreproducible codes. Moreover, previously developed PUF-based encoding methods 

could not provide configurable features, such as code control mechanisms and 

various decoding strategies. Conclusively, microtaggants and PUF-based methods 

have not been sufficiently adaptable for anti-counterfeiting strategies at the industry 

level. 

Meanwhile, human fingerprints have been widely used as reliable forensic 

evidence for criminal investigation. Recently, they have also been used as biometric 

authentication signatures using scanners or sensor arrays. The unmatched 

uniqueness of human fingerprints, or epidermal ridges, has been recognized for 

more than 2000 years, and fingerprint authentication remains the most widely 
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approved method for identifying individuals. Inspired by this valuable function, we 

mimicked the human fingerprint by patterning random wrinkle patterns on 

microstructures. Using a PUF-like nondeterministic mechanism, by encoding 

microparticles with intrinsically random wrinkling, we developed an unclonable and 

universally-adaptable anti-counterfeiting technology that overcame the discussed 

limitations of each microtaggant and PUF-based approach. We call this wrinkled 

microparticle, “the artificial microfingerprint”. 

Fingerprints of individual people can be characterized by features called the 

“minutiae”. The representative types of minutiae are ridge ending (an abrupt ending 

of the ridges) and ridge bifurcating (a single ridge dividing into two separate ridges). 

We can also find these minutiae in wrinkled microparticles, because wrinkle patterns 

consist of a number of ridges (Figure 3.4(a)). Consequently, these patterns can be 

identified by directly applying conventional fingerprint identification methods. 

Therefore, for robust product fingerprinting, this new technique earns a distinct 

advantage due to the already-certified decoding procedures (e.g., error-correction, 

reconstruction, pattern matching) accumulated over the past 100 years by 

governments and forensic organizations. Analyzed ridge information of each 

artificial microfingerprint can be transformed to a binary string, and stored in a 

server. This data can then be utilized as reference data during the authentication 

process (Figure 3.4(b)). 
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Figure 3.4 Schematic illustration of the authentication system using an artificial 
fingerprint: (a) Concept of the artificial fingerprint. Wrinkled microparticles possess 
minutiae points like human fingerprints; (b) Fingerprint analysis process. The ridge 
distribution of each artificial fingerprint can be stored as a binary string in a server 
for authentication processes [45]. 
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Figure 3.5 Ridge pattern analysis. Ridge ending (green dot) and ridge bifurcation 
(red dot) points and their angular orientation were extracted from CLSM images of 
the wrinkled microparticles. 70% of the entire particle surface (yellow dashed line) 
was utilized for minutiae extraction to avoid inappropriate effects resulting from 

inhomogeneous strain distribution near the edges (scale bars: 100 and 25 µm, 
respectively) [45]. 

 

Figure 3.5 shows extracted ridge information from an artificial fingerprint. First, 

the surfaces of wrinkled microparticles were imaged with CLSM. We usually used a 

20x lens (NA 0.7) with a 543 nm laser for excitation and a 575 to 600 nm emission 

filter. Also, we used a 100 Hz or 10 Hz scanning speed for high quality imaging of 

the wrinkled surfaces. Scanned images were exported to 512 by 512 pixel images 

with a TIF format. Next, we performed image processing for efficient ridge 

detection. Then, minutiae information was extracted from the processed images by 

directly applying conventional fingerprint identification algorithms [66].  

In order to maximize the randomness of the ridge patterns, we needed to select 

appropriate data extraction regions where biaxial in-plane stress dominated wrinkle 

generation. Therefore, we did not utilized ridges near the edge regions and extracted 
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minutiae from the central area of the surfaces. Moreover, artificial fingerprints were 

usually synthesized to form a circular disk shape to minimize effect of edges on the 

wrinkle patterns. When we observed minutiae distribution extracted from several 

wrinkled microparticles, enough number of minutia points was shown in each 

microparticle. As a result, we expected the wrinkled microparticles to exhibit 

significant heterogeneity comparable to human fingerprints. 

Figure 3.6 shows the details of the minutiae extraction process. First, we 

enhanced the ridge pattern in gray scale from the original CLSM images. Next, the 

particle was moved to the center and was angularly aligned so that the alignment 

marker faced north. Here, we utilized a sharp indentation as the alignment marker. 

This kind of structure helps with the robust decoding of the artificial fingerprints 

with isotropic particle shapes. The varying ridges were then thinned into lines with 

single pixel widths. This thinning step was required for accurate ridge detection 

because the minutiae extraction process was sensitive to the width variation of the 

ridge patterns. Finally, we extracted the positions of the minutia points (ridge 

endings and ridge bifurcations) and their orientation information. 

In summary, wrinkled particles possess PUF-like irreproducible codes that can 

be decoded using general fingerprint identification processes. Therefore, we 

expected these wrinkled microparticles could function as biomimetic fingerprints for 

robust authentication and anti-counterfeiting purposes like biometric systems. 
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Figure 3.6 Ridge analysis process for artificial microfingerprints. 

 

3.3 Security Level Control 
The basic requirement for a smart encoding system is an active mechanism to 

control codes to tune their capacity or security level. Generally, when we decrease 

the dimensions of the unit cells of the codes (e.g., the module size in QR codes), 

data storage capacity increases, while decoding accuracy decreases. In order to 

implement practical anti-counterfeiting microtaggants, the data capacity and reading 

accuracy should be flexibly adjusted according to the application purposes (track-

and-tracing or forensic authentication) or the decoding conditions (decoder 
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resolution and user experience). However, nondeterministic encoding approaches 

generally lack this kind of control, resulting in limited applications. Here, our 

artificial microfingerprints allow the flexible design of the security level by tuning 

characteristic wavelengths of random wrinkle patterns. 

The characteristic wavelength of biomimetic microfingerprints (the average 

distance between two adjacent ridges) was obtained using the Fast Fourier transform 

(FFT) analysis on the ImageJ software (Figure 3.7). After importing the original 

CLSM image, we set the scale with the scale bar information from the image. Then, 

we performed FFT on the central area of the pattern and found the maximum point 

with the appropriate noise tolerance. Finally, we were able to obtain distance 

information. Using this process, we extracted the characteristic wavelengths of the 

individual artificial microfingperints. 

 

Figure 3.7 Extraction of characteristic wavelength (λ) from the wrinkle pattern. Fast 
Fourier transform (FFT) analysis was used to measure the wavelength from CLSM 
images. 
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The wavelengths of artificial fingerprints can be actively tuned during the 

fabrication process (Figure 3.8). As explained in Equation (1.1), the wavelength of 

the wrinkle pattern is proportional to the film thickness t and inversely proportional 

to the elastic modulus of substrate Es. We can neglect Poisson’s ratios if their effect 

is smaller than that of the thickness and elastic modulus. Then, the wavelength can 

be tuned by changing two parameters: t and Es, which are related to the silica-

coating time and the UV light dose for the photopolymerization of substrates, 

respectively. First, it was reported that the thickness of the silica layer was 

proportional to the silica-coating reaction time in the Stöber method-based process 

[67]. Therefore, we verified that the wavelength of wrinkle patterns increased as the 

coating time increased at the fixed UV light dose. When the coating time was less 

than 120 minutes, however, wrinkles were not generated. This was because the silica 

layer formation was incomplete as explained Figure 2.7.  

Next, the elastic modulus of substrates is proportional to the cross-linking 

density of the polymer network. When we illuminated a higher dose of UV light for 

synthesizing polymeric microparticles, they became denser due to the increased 

polymerization of monomers, resulting a higher value of elastic modulus. As a result, 

the characteristic wavelength was decreased as the UV light dose increased. We 

expected that the presented wavelength range (about 2 to 15 µm) would expand 

through the further optimization of the parameters and other experimental conditions. 
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Figure 3.8 Control of the wavelength. The characteristic wavelength of the wrinkle 
pattern was proportional to silica-coating time and inversely proportional to UV 

light dose (scale bars: 25 µm). Each data point was obtained from 15 wrinkled 
microparticles. The error bars represent the standard deviation of the wavelength 
[45]. 
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The configurable property of the wavelength can be directly applied to the 

design of security levels on artificial microfingerprints. When we plotted the 

distribution of minutia densities (the number of total ridge endings and bifurcations 

per unit area on each wrinkled microparticle) based on the wavelength using 

microparticles databased in Figure 3.8., the density was inversely proportional to the 

wavelength (Figure 3.9). Since the security level of the artificial fingerprint is 

proportional to the minutia density, we can classify the artificial fingerprints 

according to their characteristic wavelength. For example, we can divide the 

fabricated artificial fingerprints to three different levels, H, M, and L. Although the 

representative images of the artificial fingerprints in Figure 3.9 clearly show 

different security levels or code complexities, it seems to be ambiguous to define the 

boundary of the security level in the graph, because the dispersion of the density was 

large at some wavelengths. However, we need to provide more distinct 

classifications of the security levels on artificial fingerprints for practical 

applications. We expected the overlap of the density distribution would be reduced 

by confining the wavelength of artificial microfngerprints to specific values with 

enough distance, like microparticles in the representative images. Then the security 

level could be classified more clearly. 
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Figure 3.9 Control of the security level. The security level, or minutiae density, can 
be classified by the wavelength of the wrinkle pattern. The right images show 
representative images of the artificial fingerprint in each security level (H, M, and L) 
[45]. 
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In addition to the security level, the code capacity of the artificial fingerprints 

was configurable by changing the particle size. We calculated the producible 

numbers of artificial fingerprints. First, we assumed that the particle diameter was 

100 µm and the minimum characteristic wavelength was 2.5 µm. Then, we divided 

the 100 µm circle using orthogonal grids with a spacing of 2.5 µm. As we 

considered only the inner 70% of the entire circle area, approximately 600 

intersections corresponded to the possible number of minutia points. Also, we 

assumed that there was one type of producible minutia (e.g., only ridge ending), and 

the maximum number of producible minutia was approximately 130, based on the 

repetitive experimental results. Consequently, we were able to calculate the code 

capacity as 600C130 + 600C129 + 600C128… ≈ 10135, which is virtually infinite. This 

estimated code capacity is the maximum value of the circular particle with a 

diameter of 100 µm, and can be changed if we confine the wavelengths of fabricated 

artificial fingerprints to specific values. 

In this context, we were able to tune the code capacity by changing the size of 

the artificial fingerprints (Figure 3.10). The code capacity increased with size at 

fixed wavelengths, due to the increased number of minutia points in the artificial 

fingerprints. In addition, we can further expand the code capacity by utilizing other 

minutia types (like bifurcation and island) and their unique spatial distributions.  
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Figure 3.10 Control of the code capacity based on the particle size: (a-c) CLSM 

images of wrinkled microparticle surfaces. The particle size is 53, 80, and 113 µm, 
respectively while the wavelength is approximately fixed to 4 µm: (d-f) Extracted 
minutia distribution. Green dots and red dots represent ridge endings and ridge 
bifurcations, respectively. The total number of minutia was 53, 90, and 212, 
respectively [45]. 
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We verified that the security level and the code capacity of the artificial 

fingerprints can be flexibly designed by tuning their wavelength and size. In 

addition, our artificial fingerprints can provide code categorization according to the 

shape of artificial fingerprints (Figure 3.11). The wrinkled microparticles can be 

fabricated with any shapes using the OFML system, unlike human fingerprints. We c 

generated artificial fingerprints with alphabet letters as well as basic geometries. 

Although these particle shapes possess reduced code randomness compared to the 

circular shape, we can provide additional information using these shape codes in 

addition to random topographical codes, at the expense of the security level. This 

capability enables the creation of numerous classes of artificial fingerprints and the 

categorical labeling of numerous products on user demand.  

Overall, we presented randomized, but configurable authentication 

microtaggants by implementing wrinkle patterns on microparticle substrates. This 

biomimetic microfingerprint platform provides not only unclonable codes with a 

nondeterministic encoding mechanism, but easy manipulation of the security level 

and the taggant class, that were infeasible in most previously developed PUF-based 

anti-counterfeiting methods.  
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Figure 3.11 Classification of the artificial fingerprint by its shape: (a) Simple shapes. 

Square, star, and triangle shape of the particle (scale bars: 50 µm); (b) Various 
shapes. Wrinkled microparticles can also have shapes like letters or numbers. (scale 

bars: 100 µm) [45]. 
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3.4 Individuality Analysis 
Although we recognize the presented wrinkling-based encoding produces 

unclonable codes, we still need to verify the uniqueness of the fabricated artificial 

fingerprints. In this section, I present the analysis results performed to study the 

individuality of the artificial microfingerprints. 

First, the uniqueness of artificial fingerprints was evaluated by observing the 

cross-correlation values between them. For a large scale analysis, we fabricated 

several thousand polymeric microparticles with the alignment key and coated them 

with silica in a single batch process. We then dried the silica-coated microparticles 

in several wells of a 96-well plate to fabricate artificial microfingerprints. We 

controlled the number of microparticles in a single well in order to minimize 

overlapping. After discarding damaged, contaminated, or un-wrinkled microparticles, 

we imaged the individual artificial fingerprints and obtained 200 fingerprint patterns 

using CLSM (Figure 3.12) and obtained the first scanned image set. Each artificial 

fingerprint was also imaged a second time after a routine task to obtain the second 

scanned image set. 

From the obtained images, we extracted the locations of ridge endings and 

ridge bifurcations. This spatial distribution information of each image was 

transformed to a minutia matrix with the same size as the original image (512 by 

512). The positions where minutia points existed were stored as 1 and the others as 0. 

However, if we set ridge ending points or bifurcation points to one pixel, a small  
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Figure 3.12 CLSM imaging of wrinkled microparticles for large scale data analysis. 
Sharp indentations shown in the magnified image were utilized for angular 

alignment keys (scale bars: 200 µm) [45]. 
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rotation or distortion of the pattern images can result in different cross-correlation 

values. In order to minimize these kind of pixel errors in cross-correlation analysis, 

we provided reasonable tolerance by using a two-dimensional Gaussian distribution 

from the minutia-located coordinates within a given pixel range. After this filtering, 

we calculated the cross-correlation values between two image sets by performing 

sliding inner-product of every combination of two minutia matrices (Figure 3.13). 

The intra-correlation (correlation between different images from the same artificial 

fingerprint) showed higher values than the inter-correlation (correlation between 

different artificial fingerprints), and they were clearly distinguishable. This revealed 

that each artificial fingerprint possessed a distinct wrinkle minutia pattern.  

 

 
Figure 3.13 Evaluation of performances of the artificial microfingerprint for the 
authentication system. The cross-correlation values were calculated using extracted 
minutia distribution information from 200 artificial fingerprints [45], [68]. 
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Next, we investigated the level of individuality of artificial fingerprints using 

image-hashing-based correlation analysis, which is commonly adapted in human 

fingerprint analysis. For this purpose, we converted minutia information to a binary 

string and obtained the corresponding hash key by modifying the previously 

developed minutia hashing algorithm [69]. Figure 3.14(a) shows a schematic 

illustration of the analysis process. For each ridge point, we extracted the distance 

from the particle center to the point d, the radial angle of the point θ, and the radian 

angle of the ridge orientation α. For ridge bifurcations, we defined α as the radian 

angle of the vector dividing the smallest angle among three angles in half. Then, for 

each minutia point, these values were transformed into binary numbers and joined to 

a new binary number. This joined binary number was again converted into a decimal 

number as an address where “1” is stored at its corresponding address in a large 

binary string. Finally, this large binary string was converted into a hash key, which is 

a unique ID of an artificial fingerprint. In order to measure the individuality of 

artificial fingerprints, we calculated correlations using the 200 artificial fingerprints 

databased in Figure 3.13 and their hash keys (Figure 3.14(b)). The inter-class 

distribution (correlations between different artificial fingerprints) and the intra-class 

distribution (correlations between different hash keys from the same artificial 

fingerprint) were well separated like previous cross-correlation analyses, which 

verified the uniqueness of the artificial fingerprints. 
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Figure 3.14 Individuality analysis of artificial microfingerprints using a hashing 
method: (a) Generation of hash keys from minutia information [68]; (b) Distribution 
of hashing-based correlation values obtained from hash keys of the artificial 
fingerprints. The mean correlation values and the standard deviation of the inter-
class distribution (green) were 0.16 and 0.039, respectively. The mean correlation 
values and the standard deviation of the intra-class distribution (light green) were 
0.66 and 0.092, respectively [45]. 
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Finally, the level of individuality of artificial fingerprints was investigated by 

comparing them with that of human fingerprints. For this purpose, we analyzed the 

degree of randomness of minutiae distribution from both artificial fingerprints and 

human fingerprints. Since we could not directly utilize human fingerprints due to 

privacy issues, we purchased a license for an official fingerprint generation software, 

SFinGe, and generated synthetic human fingerprints for the analysis [70]-[73]. The 

representative images of synthetic human fingerprints and artificial fingerprints are 

shown in Figure 3.15(a) and (b), respectively. The minutia extraction area (orange 

circled region) was selected to satisfy the same ratio of the characteristic wavelength 

(average of all samples) to the data collection area diameter in both synthetic human 

fingerprints and artificial fingerprints groups. Also, in order to control the total 

minutia number in both groups to similar values, we obtained minutia data from 

1,000 synthetic fingerprints and 300 artificial fingerprints, because the number of 

minutia in artificial fingerprints were 3.5 times higher than that of synthetic 

fingerprints on average. 

When we compared the spatial distribution of minutia points, both synthetic 

human fingerprints and artificial fingerprints showed uniform distribution in the 

code extraction area (Figure 3.16). This revealed that minutia points were randomly 

located in both fingerprints and they possessed similar individuality in terms of 

spatial distribution. 



 

 ６３ 

 
Figure 3.15 Comparison of individuality between artificial fingerprints and human 
fingerprints: (a) Representative image of a synthetic human fingerprint; (b) 
Representative image of an artificial fingerprint; (c) Vector field display of average 
orientations of ridge endings from synthetic fingerprints. Each vector presents the 
averaged orientation data in the corresponding bin. The color map at the bottom-
right corner defines the orientation coordinate; (d) Vector field display of average 
orientation of ridge endings from artificial fingerprints; (e) Normalized distribution 
of vector orientations in (c); (f) Normalized distribution of vector orientations in (d) 
[45]. 
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Figure 3.16 Spatial distribution of minutia within the collection area for both 
synthetic fingerprints and artificial fingerprints. The color bars indicate the relative 
density of ridge points. Darker colors represent higher densities [45]. 

 

On the contrary, when we compared the angular orientation of ridge ending 

points, both synthetic human fingerprints and artificial fingerprints showed different 

distributions. When the averaged vector fields of the ridge ending orientation were 

plotted, the synthetic fingerprints showed biased distribution (Figure 3.15(c), (e)). 

This may have resulted from the fact that human fingerprints are limited to a few 

common categories such as loops, whorls, and arches. Therefore, the orientation of 
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ridge endings were similar within each category. On the other hand, the artificial 

fingerprints showed unbiased and even orientation distribution (Figure 3.15(d), (f)). 

In addition, we plotted the Lorenz curves of minutia orientations for both 

fingerprints and extracted Gini coefficients to investigate the statistical dispersion. 

Then, the artificial fingerprints showed a smaller Gini coefficient, which verified a 

more uniform and randomized distribution of the ridge orientation in artificial 

fingerprints.  

In summary, based on the performed individuality analyses, we can conclude 

that the biomimetic microfingerprints possess unique codes, and contain a more 

randomized distribution of the minutia orientation than the synthetic fingerprints, 

thus providing a higher level of individuality, even compared to human fingerprints 

 

 
Figure 3.17 Lorenz curves of the histograms in Figure 3. 15. The Gini-area values 
were 0.390 for artificial fingerprints and 0.734 for synthetic fingerprints [45]. 
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3.5 Demonstration 
In this section, the applications of the biomimetic fingerprints will be demonstrated 

as microtaggants for anti-counterfeiting purposes. First, we found appropriate 

coating materials for attaching the artificial fingerprints on the surface of products. 

After generating wrinkles on microparticles, we dispensed several candidate 

materials on wrinkled microaprticles and observed their surfaces in order to check 

whether the wrinkle patterns could be imaged or not (Figure 3.18). After dispensing  

the ETPTA and norland optical adhesive (NOA) on the surface of microparticles, 

they were illuminated with a UV light. For the super glue and liquid glue, we waited 

until they were completely solidified. For PDMS, we prepared PDMS bases mixed 

with a curing agent and heated PDMS coated microparticles inside an oven heated to 

80 oC for 20 minutes. As shown in Figure 3.18, some constituents of the super glue 

severely disturbed the imaging of the patterns as well as the ETPTA and NOA 

fabricated layers covering certain pattern regions. Also, wrinkle patterns were not 

observable after coating with the liquid glue. It seemed that the liquid glue 

percolated through the cracks on the silica surface and modified the surface pattern. 

However, the PDMS-coated wrinkled microparticles showed clear wrinkle patterns 

like the untreated wrinkled microparticles had. Therefore, we decided to utilize 

PDMS coatings as the protection layer of the artificial fingerprints on the product 

surfaces.  
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Figure 3.18 Candidate materials for protection layer of artificial fingerprints. After 
coating the artificial fingerprint surface with each material, the surface was imaged 
using CLSM. 

 

Generally, the security level of codes correlated with the decoding accuracy or 

required decoder resolutions. In the previous sections, we verified that the security 

level of our artificial microfingerprints could be tuned by changing the characteristic 

wavelengths of the wrinkle patterns at the fixed particle size. In order to practically 

utilize these configurable microtaggants, we also need to provide appropriate 

decoding strategies according to the code complexity, determined by application 

properties or user demands. For example, high-performance devices like a confocal 

laser scanning microscope are available for lab-oriented forensic authentication, 

whereas field-oriented authentications like track-and-tracing require decoders to be 

user-friendly and portable.  

To validate the universal applicability of the artificial fingerprinting approach, 

we attached the biomimetic fingerprints to common products and tested out various 
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Figure 3.19 Demonstration of artificial fingerprints as anti-counterfeiting 
microtaggants for commercial products. Right image shows authentication of the 

taggants attached on the product surface using CLSM (scale bars: 50 µm) [45]. 
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optical decoding methods. First, we fabricated the artificial fingerprints with a high 

level of security by generating wrinkle patterns with wavelengths of a few microns. 

After locating these artificial fingerprints on appropriate locations of the product 

surfaces, we dispensed one drop of PDMS and heated the taggant-attached products 

in an oven (Figure 3.19). Detection of the artificial fingerprints was not easy with 

the naked eye after the formation of the PDMS protection layer. Because the pattern 

wavelength was only a few microns, topographical codes in the attached artificial 

fingerprints were detectable only with CLSM. We successfully scanned the artificial 

fingerprints even on curved surfaces by appropriately placing the products on CLSM. 

Consequently, we verified that the presented biomimetic microtaggants can be 

applied for powerful anti-counterfeiting purposes including forensic science.  

On the other hand, the artificial fingerprints with large wavelength patterns (up 

to 20 µm) were readable using a commercially available portable microscope (200x) 

that was attached to a smartphone (iPhone 6). Although we did not develop the 

minutia extraction algorithms for bright-field images here, these artificial 

fingerprints with lower security levels suggest the possibility of a field 

authentication (e.g., track-and-tracing) requiring optical decoders with low 

resolution. Overall, our designable artificial fingerprinting would expand the 

applicability of PUF-based taggants to a broad-range of optical authentication 

methods. 



 

 ７０ 

 
Figure 3.20 Decoding of artificial fingerprints using portable microscope that can be 

attached on a smartphone (200x) (scale bars: 100 µm) [45]. 

 

For practical applications, it is imperative that the artificial fingerprints be 

stable in various environments. We performed several tests in order to evaluate the 

durability of our biomimetic microfingerprints. 

First, we examined whether the artificial fingerprints were able to retain their 

wrinkle patterns when re-immersed in solvent. Figure 3.21 shows that the wrinkle 

pattern was preserved after the re-swelling process in ethanol, although the particle 

size and the characteristic wavelength of the wrinkle pattern slightly increased due 

to the swelling of the polymer substrate. As a result, patterns encrypted on the silica-

layer could not undergo a reverse process once the wrinkle patterns appeared on the 

microparticle. In this regard, protecting microparticles from exposure to air before 

completing the silica-coating process is important to achieve configurable encoding. 
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Figure 3.21 CLSM image after swelling wrinkled microparticles in ethanol (scale 

bars: 25 µm). 

 

To clarify further, we repeatedly performed shrinking and swelling processes 

and calculated the cross-correlation values using the images of five artificial 

fingerprints taken at each cycle. As shown in Figure 3.22(b), the artificial 

microfingerprint seemed to preserve its code even after the re-swelling had subsided. 

We then extracted minutia information from the obtained images of different 

artificial microfingerprints (P1 ~ 5) in their dried state, and calculated the cross-

correlation values between the images. As a result, high intra-correlation values (for 

example, P1 – P1, diagonal steps of the heat map) were clearly distinguishable with 

relatively low inter-correlation values (for example, P1 – P2) as shown in the Figure 

3.22(a). This revealed that each artificial fingerprint maintained its unique code from 

the repeated swelling and shrinking. Overall, we could conclude that our artificial 

microfingerprint-based authentication system was robust enough to prevent a 

counterfeit attack, even under the swelling conditions. 
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Figure 3.22 Stability test in repetitive swelling and shrinking processes: (a) Heat 
map of normalized cross-correlation values obtained from five different dried 
artificial fingerprints; (b) CLSM images of the representative artificial 

microfingerprint in each swelling and shrinking step (scale bars: 25 µm) [45]. 
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Second, the stability of the artificial fingerprints was tested under a high 

temperature condition because artificial microfingerprints can be damaged and lose 

their unique wrinkle codes from excessive heat. Although the silica shell of the 

artificial fingerprint has strong thermal stability because the melting point of silica is 

higher than 1,500 °C, the core polymeric substrate can be damaged under harsh 

conditions. In order to verify the thermal stability of our artificial microfingerprint, 

we heated them on a 200 °C hot plate. After beginning to heat, we imaged several 

artificial fingerprints (P1 ~ 5) every 6 hours for a day. We then extracted minutia 

information from the obtained images (0, 6, 12, and 24 hour heating) for these 

artificial fingerprints, and calculated the cross-correlation values between images. 

As shown in Figure 3.23(b), damage of the particle was not observed during the 24 

hour heating period and the minutia were successfully extracted. Furthermore, we 

found higher intra-correlation values (for example, P1 – P1, diagonal steps of the 

heat map) compared to inter-correlation values (for example, P1 – P2) as shown in 

the heat map (Figure 3.23(a)). This verified that each minutia pattern encoded in the 

artificial fingerprints were preserved by the heating process. However, relatively low 

correlation values were observed in the first column of each intra-correlation region. 

The shrinkage of the polymer substrates after heating resulted in lower correlations 

between the unheated and the heated artificial microfingerprints. However, these 

kind of decoding errors can be avoided by preheating the artificial fingerprints for a 



 

 ７４ 

few hours before the initial scanning of the codes, because the degree of the particle 

shrinkage was insignificant after a few hours of heating. Overall, we can conclude 

that our artificial microfingerprint-based authentication system is robust under high 

temperature conditions. 

 

 
Figure 3.23 Stability test under thermal damage: a) Heat map of normalized cross-
correlation values obtained from heated five different artificial fingerprints. 
Artificial fingerprints were heated on a 200 °C hot plate; (b) CLSM images of the 
representative artificial microfingerprint after different heating periods (scale bars: 

25 µm) [45]. 
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Figure 3.24 Stability test under physical damage using sonication. CLSM images of 
artificial fingerprints before and after 12 hours of sonication show no evidence of 
physical damage [45]. 

 

Finally, the stability under mechanical stress was tested using sonication 

(Figure 3.24). For this purpose, artificial microfingerprints on a cover glass were 

coated with PDMS and then were sonicated in a sonicator bath. Damages to particles 

and wrinkle patterns were not detected during the sonication process for a period of 

12 hours. 

In summary, wrinkled microparticles were presented as artificial fingerprints 

that were the first taggants utilizing human fingerprint technology. We identified that 

human fingerprint-like features, the minutiae, were abundant in randomized wrinkle 
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patterns. These biomimetic fingerprints possessed considerable individuality and 

physical unclonability, which forbade the reproduction of existing taggants even for 

the original manufacturer. Furthermore, we developed unique fingerprint designing 

mechanisms that allowed the security level and code capacity of these random codes 

to be controlled. Therefore, our approach provided mature code controlling 

mechanisms to match the technical specifications of various products and their 

corresponding read-out architectures. These low cost taggants also guaranteed a long 

lifespan and environmental inertness. Therefore, this new type of taggant fulfills the 

most demanded requirements for an industry-suitable, unclonable authentication 

strategy. We believe the artificial fingerprint would find applications in various 

fields, including track-and-trace and forensic authentication. Furthermore, this 

highly secure and flexible authentication strategy can become a definitive solution to 

the enormous counterfeit market and have positive impacts on the field of 

authentication and anti-counterfeiting. 

However, it is still possible that the topographical codes of the artificial 

fingerprints can be copied by molding their surface structures using soft lithography 

methods or printing using a 3D printer, despite the non-deterministic encoding 

scheme. In order to prevent the duplication of the taggant itself, the wrinkle 

patterned surface can be coated again with other materials, such as ceramics or 

metals using thermal spraying or e-beam deposition. The post-coating process after 
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the registration of the artificial fingerprint can prevent the replication of the unique 

topographical code by modifying the original topography, while users can decode 

the correct wrinkle pattern at the original polymer and silica interface through 

fluorescent dye incorporated into the polymer substrate on the CLSM. In addition, 

several wrinkle patterns fabricated from different wavelengths (from submicron to 

micron) can be generated in one microparticle in order to impede duplication of the 

multiple ridge patterns in various length scales using molding or printing methods 

within one material system. 
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Chapter 4 

Patterning Controlled Wrinkles 

In this chapter, several control methods for random wrinkles are presented. First, the 

tuning of the degree of randomness will be demonstrated based on the particle 

shapes or ratio of the particle size to the pattern wavelength. Also, the partial 

alignment of the ridge orientation will be demonstrated by changing the internal 

structure of the particle. Second, an elaborate wrinkle control technique allowing 

precise guiding of individual ridges to intended directions will be introduced.  
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4.1 Rough Control Methods 
In this section, some low-level wrinkle control mechanisms in the particle-based 

substrates are briefly discussed. The shape of the particle, or the geometry of the 

particle edge, has an influence on the ridge pattern near that edge region. 

Consequently, the area governed by equibiaxial stress is changed according to the 

edge geometry. Using these fundamentals, we could control the pattern randomness 

on microparticles (Figure 4.1). At the similar surface area and characteristic 

wavelength conditions, the randomness was at its maximum in the circular shape. In 

rectangular shapes, the ridges tended to converge at the corners and ran parallel at 

the sides, which decreased the pattern randomness.  

 

 

Figure 4.1 Control of orientation randomness by changing the particle shape while 
maintaining similar surface area and characteristic wavelength at each microparticle 

(scale bar: 25 µm) [74]. 
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Figure 4.2 Control of orientation randomness by changing the ratio of the short side 

length to the wavelength in anisotropic shape of microparticles (scale bar: 25 µm). 
Data at each point were obtained from 10 wrinkled microparticles. The average 
value was 8.21, 11.03, and 13.47, respectively. The error bars represent the standard 
deviation, 0.59, 1.37, and 0.94, respectively [74]. 
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We then tried to control and increase the pattern randomness in anisotropic 

particles, specifically in rectangles that showed a relatively low level of orientation 

randomness compared to the isotropic circular particles. For this purpose, we tuned 

the ratio of the short side length to the characteristic wavelength (L/λ) as a 

dimension parameter (Figure 4.2). As shown in the graph, the degree of randomness 

increased as the L/λ increased. The tuning of L/λ value was achieved by changing 

the λ while maintaining the particle size (L) to a specific value. As explained in 

section 3.3, the characteristic wavelength value was controlled by changing the UV 

light dose for the photopolymerization of the microparticles. The higher UV light 

dose resulted in a smaller wavelength due to the increased crosslinking density and 

elastic modulus in the polymer substrate, and thus a larger L/λ value. Therefore, we 

could provide random ridge patterns to some degree in microparticles with shape 

anisotropy, by controlling the L/λ value. 

In addition to the randomness, we could control the orientation of wrinkles to a 

particular direction by designing the internal structure of the particle. For this 

purpose, we fabricated holes in microparticles in order to direct ridges toward the 

hole (Figure 4.3). When the hole was located at the particle center, ridges were 

patterned with radial direction compared to the regular particle without a hole. In 

contrast, when the hole was not located in the center region, some ridges at the 

opposite side of the hole were not guided and exhibited random orientations. When 
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there were more than two holes, including the hole-array, ridges between holes were 

connected in straight lines. These results were very similar to the wrinkle patterns 

controlled by pre-patterned substrates with bas-relief structures [10, 11]. In summary, 

despite the random nature of the wrinkles, we could control the level of randomness 

of wrinkle patterns by designing the particle shape or the dimension parameters. 

Moreover, we could align ridges to a specific direction by punching holes on the 

microparticle.  

 

 

 

Figure 4.3 Control of ridge orientation using internal hole structures: (a) Without 
hole; (b) One hole at the particle center; (c) One hole at the off-center region; (d) 
Two holes; (e) Three holes; (f) Holes with an array pattern. 
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4.2 Sophisticated Control Method: Guided Wrinkling 
We presented several simple, controllable wrinkle patterning techniques in the 

previous section. However, they still lack elaborate ridge control mechanisms, such 

as control of the ridge orientation to any intended direction in an individual ridge 

level. Therefore, the generable wrinkle patterns were restricted to similar outcomes 

achievable by other previously developed patterning methods. To increase the 

flexibility of the patterning with wrinkles, and consequently expand the application 

field of the wrinkling-based patterning, we developed a novel wrinkle control 

method based on guided wrinkling. 

In the guided wrinkling, we utilized the ridge guiding structures in order to 

align ridges to specific directions. The overall process of the guided wrinkling is 

shown in Figure 4.4. First, we pre-patterned the guiding structures on one surface of 

the microparticle during the photopolymerization process. The guiding structure was 

fabricated as an organization of small grooves by blocking the UV light on specific 

sites using 1 by 1 pixel size black dots in the photomask (Figure 4.4(a)). These 

grooves were only patterned on the surface where the photopolymerization of the 

particle first occurred by precisely focusing the UV light on that layer. As an 

example, we pre-patterned groove arrays with a checkerboard pattern. The cross-

section view shows the patterned grooves on the top surface (Figure 4.4(b)). Then, 

we coated these pre-patterned microparticles with silica and dried them to induce 

wrinkling on the particle surface. During this wrinkling process, the ridges were  
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Figure 4.4 Schematic illustration of the whole process for controlled wrinkle 
patterning using ridge guiding structures. 

 

generable only outside the guiding grooves (orange dash lines in the Figure 4.4(b)) 

because the grooves could only be transformed into valleys, not into ridges. As a 

result, the ridges were generated with orthogonal directionality (dark blue lines in 

the Figure 4.4(c)). In other words, we could control the orientation of ridges by 

changing the geometry of the ridge guiding structures or the arrangement of groove 

arrays. 

Interestingly, although we could control the ridge orientation using the guiding 

structure, the type of ridge (ridge ending, bend, straight line, or bifurcation) at each 

ridge decision-point was randomly determined due to the intrinsic random nature of 

wrinkling. For example, a ridge decision-point depicted in Figure 4.4(b) was 

converted to the ridge bifurcation after wrinkling. As a result, even wrinkled 
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microparticles with the same guiding structures showed different wrinkle patterns 

while maintaining the overall orthogonal directionality.  

 

 
Figure 4.5 SEM image of a wrinkled microparticle with orthogonally guided wrinkle 

patterns (scale bar: 10 µm) [75]. 

 

When we observed the fabricated wrinkled microparticles using SEM, we 

verified highly uniform ridge patterns with controlled directionality throughout the 

entire particle surface (Figure 4.5). In addition, when we imaged using CLSM, the 

ridge patterns were not observed in pre-patterned particles (Figure 4.6(a)). However, 

the wrinkle patterns were clearly imaged after wrinkling the pre-patterned 
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microparticles (Figure 4.6(b)). This verified that the controlled ridge patterns were 

spontaneously generated by mechanical instability, not by the direct patterning with 

photolithography. Overall, the presented programmable wrinkle patterning method 

provides simple, but powerful design strategy for controlled wrinkle patterns by 

requiring only corresponding photomask for the guiding structure, without any 

external devices for the stress control or additional chemical processes. 

 

 
Figure 4.6 CLSM images of surfaces before and after wrinkling: (a) Before 
wrinkling. The pre-patterned microparticle was immersed in ethanol for imaging 

(scale bar: 10 µm); (b) After wrinkling. The wrinkled microparticle was in the air 
condition after drying for imaging (scale bar: 10 µm) [75]. 
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4.3 Analysis of Orthogonal Ridge Patterns 
In this section, the organizing principle of the orthogonal wrinkle patterns will be 

briefly discussed by comparing the experimental results to the computational 

simulation results. For this purpose, we assumed several hypothesis models for the 

ridge formation based on the probability of the ridge type determination at each 

ridge decision-point. Then, we generated artificial patterns consisting of orthogonal 

straight lines (visualization of ridges) according to these models, and compared them 

to experimentally fabricated patterns. Also, the control of the ridge density in this 

orthogonal pattern will be demonstrated. 

First, we performed an additional image processing process to extract 

orthogonal ridge patterns with straight lines from the original CLSM images. We 

introduced this process for more precise extraction of ridge information and thus for 

a reliable comparative analysis with simulated patterns. To transform imperfect ridge 

lines (“analog”) into perfect straight lines (“digital”) in the CLSM images, we 

utilized the Hough transform method that is generally adapted to detect straight lines 

from the given features (Figure 4.7). After converting the original CLSM image to 

the binary image, we detected straight lines from all ridges by applying the Hough 

transform, and defined the length of each straight line by multiplying the transform 

result with the binary image. Then, for every crossing points (the intersection 

between the vertical lines and the horizontal lines), the adjacent two cross points 

were connected if they were in the same ridge in the binary image. As a result, we 
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were able to obtain digitized 2D line patterns. Finally, we extracted minutia 

information (ridge endings, bifurcations, bends, straight lines) using these digitized 

images from the 20 different wrinkled microparticles (Figure 4.8(a)). Here, we 

utilized central 16 by 16 lines as the minutia extraction area, and applied the same 

size in the following simulations. 

 

 
Figure 4.7 Analog to digital conversion process of orthogonally guided ridges for the 
reliable ridge analysis. 

 

Next, we generated this kind of line patterns using two model algorithms. In the 

first model, the probability of the ridge type resulting in either an ending, a bend, a 

straight line, or a bifurcation was assumed as the same value (0.25) at every ridge  
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Figure 4.8 Comparative analysis of the orthogonal ridge pattern in different 
generation methods: (a) Experimental results; (b) Even probability model; (c) 
Modified probability model; (d) Distribution of the ridge number at each ridge type. 
Each data point was obtained from 20 ridge patterns. The error bars represent the 
standard deviation of the ridge number. 
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Table 4.1 Conditions for even and modified probability models 

Model Ending Bifurcation Bend Straight 

1. Even probability 0.25 0.25 0.25 0.25 

2. Modified probability 0.1434 0.1295 0.4617 0.2635 

 

decision-point (Even probability, Table 4.1). In addition, by observing the wrinkling 

moment using the confocal microscope, we found that the ridge determination 

occurred first at the first dried region, usually at the edge of the microparticles, and 

spread to neighboring regions. Reflecting this observation, we assumed that the 

ridge generation began at the farthest points from the pattern center and spread to the 

center in a concentric manner by satisfying boundary conditions to neighboring 

regions with the designated probabilities. We then simulated 20 times and obtained 

minutia information from these different patterns (Figure 4.8 (b)). 

In the second model, we utilized different determination probabilities for each 

ridge type (Table 4.1). These probabilities were derived from previously analyzed 

experimental data by considering the proportion of the ridge endings, bifurcations, 

bends, and straight lines in the total accumulated number of ridge types. The reason 

that the sum of these probabilities were less than one was that there was another 

ridge type, an island (isolated dot), in experimentally fabricated patterns. However, 

we ignored this island type because the number of the cases was extremely low 
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compared to that of others. We then inversely used this probability distribution for 

simulating the orthogonal patterns (Figure 4.8(c)). 

The graph in Figure 4.8(d) summarizes the distribution of the number of ridge 

types in each group. When we compared the experimental result to the model 1, we 

could conclude that the orthogonal ridge patterns were determined by biased 

probabilities rather than by completely random processes. Moreover, although the 

number distribution was nearly the same between the experimental result and the 

model 2, the pattern architecture was slightly different. The simulation model 

showed a few closed-loop patterns, while the experimental result hardly showed 

them. From this observation, we could also conclude that there were some other 

factors to determining the overall ridge patterns, like existence of energetically 

unfavorable patterns, in addition to the probability. 

The presented ridge analysis process based on the ridge digitization is also 

useful as a decoding method when we utilize the orthogonal ridge patterns as 

topographical codes like the artificial fingerprint. Because digitized ridge images did 

not contain ambiguous ridge lines that could be detected as unintended minutia 

points in error, we could reduce decoding errors. For example, we verified that the 

security level and code capacity could be easily tuned in orthogonal wrinkle patterns 

by changing the interval between the guiding grooves (Figure 4.9). Compared to 

artificial fingerprints, these highly periodic structures provided more obvious 
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classifications of the security level when we extracted minutia density information 

after digitizing the original CLSM images. The decoding process based on the 

digitized pattern also provided a robust code-reading system. 

 

 
Figure 4.9 Control of the ridge density in the orthogonal wrinkle pattern: (a-c) 
Representative images of the wrinkled microparticle with different guiding structure 
dimension. The green and red dots show ridge endings and bifurcations, respectively 

(scale bar: 25 µm); (b) Minutia density distribution according to the guiding 
structure dimension. 
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4.4 Programming Ridge Directionality 
Thus far, we have demonstrated the generation of orthogonal ridges throughout the 

entire microparticle surface using the guiding groove array with the checkerboard 

pattern. By modifying the architecture of the guiding structure, we were able to 

expand the diversity of controlled wrinkle patterns with the arbitrary direction. 

First, we achieved self-organization of unidirectionally and hexagonally aligned 

ridge patterns by changing the arrangement of groove arrays for the guiding 

structure. For the highly anisotropic ridge pattern, we decreased the distance 

between the grooves along one axis from the checkerboard pattern, and 

consequently confined the individual ridge along the guiding structure (Figure 

4.10(a)). To verify the controllability and reproducibility of the programmed patterns 

based on this control mechanism, we analyzed the distribution of ridge orientation 

accumulated from 20 microparticles. In this analysis, we did not use the digitizing 

process, but extracted the ridge orientation from the gray scale images. The peak 

values were clearly observed near 90 degrees for the anisotropic patterns (Figure 

4.10(d)) and near 90 and 180 degrees for the orthogonal patterns (Figure 4.10(e)), 

which verified that the programmed wrinkle patterns were fabricated with reliable 

reproducibility. Interestingly, the anisotropic wrinkles could usually be generated by 

means of mechanical clamps in order to apply uniaxial stress to samples. However, 

our ridge guiding structure allowed the simple generation of highly anisotropic 

patterns through the isotropic shrinking process, without any external devices.  
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Figure 4.10 Control of ridge orientation: (a-c) Representative CLSM image of a 
unidirectionally, an orthogonally, and a hexagonally ordered wrinkle pattern, 
respectively. The inset image represent design of the photomask corresponding to 

the pattern (scale bars: 25 µm); (d-f) Distribution of the ridge orientation in 
unidirectional, orthogonal, and hexagonal wrinkle patterns. Each histogram was 
obtained from 20 microparticles [75]. 
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Moreover, we modified the groove array arrangement to form a hexagonal shape 

(Figure 4.10(c)). The ridges were intended to align along 30, 90, and 150 degree 

directions. However, the hexagonal ridge patterns showed rather indistinct peak 

values in the orientation histogram, compared to the orthogonal patterns (Figure 

4.10(f)). We believe this resulted from higher complexity in the process determining 

the ridge types at the ridge decision-point, because the hexagonal shape possessed 

one more orientation degree of freedom and two more kinds of ridge decision-points 

than the orthogonal shape.  

 
Figure 4.11 Inscribing letters with ridges: (a) CLSM images of wrinkled 

microparticles with programmed patterns (scale bar: 25 µm); (b) Corresponding 
photomasks [75]. 
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Figure 4.12 Examples of flexible patterning with wrinkles: (a) Patterning Seoul 
National University symbol; (b) Patterning “Hello Kitty” symbol. 

 

Second, by expanding the guiding structure over the array architecture, we 

could fabricate ridge patterns with arbitrary shapes. As an example, we wrote letters 

with wrinkles on the surface of microparticles (Figure 4.11). The photomask for the 

guiding structure was designed using letter shapes with different inter-groove 

distances (Figure 4.11(b)). The letter pattern in the programmed region then became 

clear as the inter-groove distance decreased, and the other region showed 

uncontrolled random patterns (Figure 4.11(a)). 

Furthermore, we demonstrated the patterning of specific symbols with wrinkles 

(Figure 4.12). The sophisticated wrinkle control and flexible pattern design was 

possible using the direct wrinkle patterning methods with lasers or FIB [19, 20]. 

However, our patterning approach can simultaneously generate random wrinkle 
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patterns with the programmed patterns. These heterogeneously patterned 

microparticles can be applied as microtaggants for anti-counterfeiting purposes 

because they can provide additional information with easily differentiable patterns, 

as well as unclonable properties like the artificial fingerprint. 

In summary, we developed various wrinkle control methods on the 

microparticle substrate. We were able to roughly control the level of randomness 

with the particle shape or the wavelength to the particle size ratio in anisotropic 

particles. To handle random wrinkles with a high degree of flexibility, we pre-

patterned the designed ridge guiding structure on the particle substrate and 

controlled the ridge orientation based on the geometry of this guiding structure. The 

highly regular and periodic wrinkle patterns with orthogonal directionality were 

generated by pre-patterning guiding grooves with a checkerboard pattern. These 

kind of orthogonal ridge patterns were then analyzed after transforming original 

curved ridges into perfect straight lines, which can reduce decoding errors of the 

ridge patterns. Furthermore, we demonstrated ridge orientation control to any 

direction by confining individual ridges inside the guiding structure. We expect the 

presented elaborate self-organization approach would extend to applications of 

wrinkled microstructures in various fields due to its flexible pattern design scheme. 
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Chapter 5 

Conclusion 

In this dissertation, a wrinkle patterning technology on microparticle-based 

substrates was presented. First, random wrinkles were patterned on the surface of the 

inelastic silica film covering an elastic polymeric substrate using biaxial in-plane 

stress. These wrinkled microparticles were then applied to the microtaggant-based 

anti-counterfeiting strategy as artificial microfingerprints. The unclonability and 

high level of individuality of the artificial fingerprints provided a powerful 

authentication system similar to PUF, and the reliable decoding process was 

provided by utilizing conventional fingerprint identification algorithms. Flexible 

code control mechanisms were also achieved in terms of the security level, the code 

capacity, and additional information for the taggant classification, by tuning the 

wavelength of the wrinkle pattern or the particle shape. The entire authentication 
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process and the stability of the artificial fingerprint system integrated on the 

products were then demonstrated. In this study, the randomness of wrinkle patterns 

was functionalized for the first time, and a new axis of security application was 

provided to wrinkle patterning. Irreplicable anti-counterfeiting strategies such as our 

biomimetic microfingerprints could become excellent solutions to the trillion-dollar 

counterfeit market. Additionally, the stochastic wrinkle patterns as fingerprint 

analogs could inspire researchers in wrinkle patterning applications and provide 

experimental tools to resolve unproven theories in morphological instabilities and 

fingerprint generation studies. 

Next, controlled wrinkle patterning methods were developed to expand 

application fields of the bottom-up based patterning technology. Random wrinkles 

were roughly controlled in terms of the orientational randomness of ridges through 

particle geometries or the dimension ratio between the wavelength and the particle 

shape. Beyond these basic approaches, the sophisticated control mechanism was 

developed using the ridge guiding structure. By designing the arrangement of the 

guiding grooves, the periodic, ordered, but random patterns were generated. 

Moreover, the single ridges to any direction were able to be generated by confining 

them inside the guiding structure. 

For future work, the long-term stability of the artificial fingerprint can be tested 

in terms of pattern conservation in order to realize commercial applications. Also, 
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the length scale of the wrinkle pattern can be reduced from microscale to nanoscale 

with the goal of expanding applications of the wrinkled microparticles to different 

fields, including optics, the behavioral study of cells or microorganisms, and anti-

counterfeiting. Moreover, although this dissertation focused on the polymeric 

microparticle substrate, the presented guided wrinkling approach can be generalized 

to various materials or substrate systems, in order to increase its practicality. 

Ultimately, the technology described here will inspire researchers developing 

transformation methods of 2D structures into 3D structures as well as those studying 

mechanical instabilities. 
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국문 초록 

주름은 마루와 골로 이루어진 지형적 구조로 사람의 피부나 과일의 껍질 등 

자연계에 존재하는 생물체에서 어렵지 않게 발견할 수 있다. 오래 전부터 이러한 

주름이 형성되는 원리를 규명하기 위해 서로 다른 물리적 특성을 가지는 여러 

물질 시스템에서 이론적인 연구들이 진행되어왔다. 이론적 접근뿐 만 아니라 

기존의 상하향식 리쏘그래피 기술을 이용해 만들어 내기 힘든 마이크로 또는 

나노스케일의 복잡한 삼차원 구조물을 주름이 만들어지는 현상을 활용하여 

하상향식 방식의 패터닝 기술로 만들고 이를 응용하고자 하는 공학적인 

연구들도 활발하게 진행되어 왔다. 

주름이 생기는 방식은 본질적으로 랜덤한 특성에 기반하기 때문에 링클링을 

통해 패턴을 만들어내기 위해서는 랜덤한 주름 구조를 조절할 수 있는 방법들이 

필요하다. 주름을 인공적으로 만들어 내기 위해서는 서로 다른 물리적 특성을 

가지는 기판과 필름으로 이루어진 이중층 구조물이 필요한데, 이러한 기판과 

필름에 특정한 패턴을 미리 만들어 놓거나 여기에 가해지는 압축 응력을 

조절하는 등의 방식들을 활용하여 주름을 조절하는 기술들이 개발되어 왔다. 

하지만 기존의 대부분 기술들은 개별적인 마루들을 원하는 방향과 모양으로 

자유자재로 패터닝 하거나, 한 번에 서로 다른 패턴을 지닌 구조물들을 대량으로 

만들어 내는 것을 동시에 할 수는 없었다. 본 논문에서는 미세입자 기판에 



 

 

주름을 패터닝하는 새로운 플랫폼을 개발하여 이를 가능하도록 하고, 이 

플랫폼을 활용한 새로운 어플리케이션을 제시하여 주름 패턴의 활용성을 

높이고자 한다. 

이를 위해서 먼저 폴리머를 코어로 하고 단단한 실리카 층을 셀로 하는 

코어셀 형태의 미세입자를 만들고, 이를 건조과정을 통해 수축시켜 자발적으로 

입자 표면에 주름을 만드는 공정 과정을 개발하였다. 이러한 제작 과정 중에 

폴리머입자의 탄성계수, 실리카 층의 두께, 미세입자의 형태 등 주름 패턴을 

조절할 수 있는 변수들을 동적으로 변경할 수 있기 때문에, 서로 다른 조건을 

가지는 다양한 주름진 미세입자 구조물을 효율적으로 만들어 낼 수 있다. 

기본적으로 위아래 면이 평평한 디스크 모양의 미세입자에 실리카 코팅을 

하고 건조시키면 2 축 응력에 의해 랜덤한 형태의 마루 패턴이 만들어 지는데, 

이 형상이 사람마다 가지고 있는 고유한 지문과 유사하다는 점에 착안하여 

주름진 미세입자를 복제 불가능한 인공 지문으로서 위조방지용 태건트로 활용 

할 수 있음을 보였다. 전통적인 지문 인식 알고리즘을 이용하여 인공 지문의 

인증 과정을 데모하였으며, 주름 패턴의 고유한 정도와 인공 지문의 내구성 등을 

분석하여 실제 물건에 부착하여 활용 가능함을 증명하였다. 이를 통해 랜덤한 

주름 패턴도 기능적으로 활용할 수 있다는 것을 입증하였다. 

다음으로는 주름 패턴을 대략적으로 조절할 수 있는 방법으로, 미세입자의 

외형이나 입자 사이즈 대비 주름 패턴 파장의 비율을 변형하여 랜덤한 정도를 

조절하거나, 입자 내부에 구멍을 내어 그 주변에서 마루들의 방향성을 조절할 수 



 

 

있음을 보였다. 더 나아가 폴리머 입자 합성시 표면에 아주 미세한 홈들을 미리 

형성하여, 이를 통해 링클링 과정 동안 마루들이 생성될 수 있는 영역을 가이드 

함으로써 패턴을 자유자재로 디자인 할 수 있는 정교한 주름 조절 방식을 

개발하였다. 기존의 랜덤한 패턴을 형성하는 공정 과정에서 단지 폴리머 입자 

합성 시 마스크 패턴만 바꿈으로써 마루들의 방향성을 개별적으로 정확하게 

조절 할 수 있었다. 이 방식을 이용하여 입자 전체에 걸쳐 한 방향, 수직 방향, 

그리고 육방으로 정렬된 주름 패턴을 가지는 구조물을 자가 조직화 하였으며, 더 

나아가 글자 모양 등 임의의 패턴도 구현하였다.  

이 논문에서는 폴리머 입자에 실리카 층이 씌워진 구조물만 활용하여 

주름을 패터닝 하였지만, 개발된 주름을 조절하기 위한 접근 방식들은 다른 

물질이나 형태로 이루어진 구조물에도 적용될 수 있을 것으로 보인다. 또한 

개발된 미세입자 기반의 조절 가능한 주름 패터닝 기술과 이를 이용해 만든 

구조물들은 기계적 불안정성을 연구하기 위한 플랫폼 등 이 논문에서 제시된 것 

외에도 다양한 곳에 활용될 수 있을 것으로 기대한다. 

 

 

 

주요어 : 주름 패터닝, 주름 조절, 미세입자, 위조방지, 자가 조직화 

학번 : 2013-30238 


	Chapter 1  Introduction 
	1.1 Principle of Wrinkling 
	1.2 Wrinkle Patterning Methods 
	1.2.1 Planar Substrates 
	1.2.2 Curved Substrates 

	1.3 Applications 
	1.4 Main Concept: Wrinkle Patterning on Microparticles 

	Chapter 2  Patterning Random Wrinkles 
	2.1 Microparticle Synthesis 
	2.2 Silica-Coating 
	2.3 Wrinkling Process 

	Chapter 3  Application: Artificial Microfingerprints 
	3.1 Anti-Counterfeiting Technologies 
	3.1.1 Taggant Systems 
	3.1.2 Physical Unclonable Function (PUF) 

	3.2 Concept of Artificial Fingerprints 
	3.3 Security Level Control 
	3.4 Individuality Analysis 
	3.5 Demonstration 

	Chapter 4  Patterning Controlled Wrinkles 
	4.1 Rough Control Methods 
	4.2 Sophisticated Control Method: Guided Wrinkling 
	4.3 Analysis of Orthogonal Ridge Patterns 
	4.4 Programming Ridge Directionality 

	Chapter 5  Conclusion 
	Bibliography 
	Abstract in Korean 


<startpage>19
Chapter 1  Introduction  1
 1.1 Principle of Wrinkling  2
 1.2 Wrinkle Patterning Methods  4
  1.2.1 Planar Substrates  5
  1.2.2 Curved Substrates  12
 1.3 Applications  15
 1.4 Main Concept: Wrinkle Patterning on Microparticles  17
Chapter 2  Patterning Random Wrinkles  20
 2.1 Microparticle Synthesis  21
 2.2 Silica-Coating  24
 2.3 Wrinkling Process  28
Chapter 3  Application: Artificial Microfingerprints  33
 3.1 Anti-Counterfeiting Technologies  34
  3.1.1 Taggant Systems  35
  3.1.2 Physical Unclonable Function (PUF)  38
 3.2 Concept of Artificial Fingerprints  42
 3.3 Security Level Control  47
 3.4 Individuality Analysis  57
 3.5 Demonstration  66
Chapter 4  Patterning Controlled Wrinkles  78
 4.1 Rough Control Methods  79
 4.2 Sophisticated Control Method: Guided Wrinkling  83
 4.3 Analysis of Orthogonal Ridge Patterns  87
 4.4 Programming Ridge Directionality  93
Chapter 5  Conclusion  98
Bibliography  101
Abstract in Korean  109
</body>

