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Abstract
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We address the problem of detecting and recognizing the text embedded in

online images that are circulated over the Web. Our idea is to leverage context

information for both text detection and recognition. For detection, we use local

image context around the text region, based on that the text often sequentially

appear in online images. For recognition, we exploit the metadata associated

with the input online image, including tags, comments, and title, which are

used as a topic prior for the word candidates in the image. To infuse such

two sets of context information, we propose a contextual text spotting network

(CTSN). We perform comparative evaluation with five state-of-the-art text

spotting methods on newly collected Instagram and Flickr datasets. We show
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that our approach that benefits from context information is more successful

for text spotting in online images.
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Chapter 1

Introduction

The use of photos in social network sites is growing recently, since the photo

posts often generate more engagement than text-only posts. Interestingly, a

large portion of images that are circulated over the Web embed the text, as

shown in Fig.1.1. Such text embedding on online photos becomes popular for

several reasons. First, it can accompany important information about photos

such as authors, location, and time. Second, text can be used as a caption if

the image is a video frame captured from news clips, movies, or TV episodes.

Finally, text often magnifies the message of the photo by making it funny,

sarcastic, inspiring, or hilarious, which can lead higher engagement from other

users. However, the text embedded in Web images has been largely ignored as a

digital dark matter in the current information retrieval system. For example, in

the reddit, almost identical smiley Obama picture can be used in a completely

opposite way by embedding different text. Moreover, the embedded text often
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conveys the key messages of such visual memes. However, it still remains as

a great challenge to automatically understand such valuable information in

ever-growing online images.

The objective of this work is to detect and recognize the text embedded in

online images. That is, we aim at localizing the regions of text in the image, and

recognize the words in them, as shown in Fig.1.1. This task is generally referred

to as text spotting [5, 21, 11, 50, 80, 105, 109]. To address this problem, we

propose a contextual text spotting network (CTSN), whose major novelty is to

take advantage of context information for both text detection and recognition

tasks. For detection of text regions, we use local image context around the

region of interest, based on that the text often sequentially appear (i.e. a

region near to text is also likely to be text). Such local image neighbors have

been popularly used as a contextual cue in object detection literature such as

[18, 26]. For recognition, we leverage metadata associated with the input online

image, including tags, comments, and title, which are used as contextual topic

prior for the word candidates in the image. To the best of our knowledge, there

has been no convolutional recurrent neural network model for text spotting

that leverages such two sets of context information.

It is worth noting that spotting the text superimposed by users in online

images is different from that in natural images (e.g . house numbers or signs

in street views). In the former task, text is often denser and shows much

variation of font sizes and styles as shown in Fig.1.1, whereas the text in the

latter task may bear severe perspective or illumination challenges. Preferably,

the two tasks need to be tackled with different approaches, although both are
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referred to as the same text spotting. Targeting at the former task, we design

our algorithm to take advantage of additional metadata context, and regional

context from dense text regions, to boost the performance.

For evaluation, we conduct extensive experiments on newly collected In-

stagram and Flickr datasets, consisting of about 2.8K images with 28K words

with a large variety of locations, scales, and fonts. We compare our approach

with five state-of-the-art text spotting methods, and show that our approach is

particularly successful for the online images to perform the three text spotting

tasks of detection, cropped-word recognition, and end-to-end recognition.

Finally, we highlight main contributions of this work as follows. (1) We

design the contextual text spotting network (CTSN) that boosts the text detec-

tion and recognition performance by taking advantage of context information.

Our method is motivated by the fact that general users’ photos often embed

sequential text, and associate with multiple informative metadata to be used

as a topic prior of likely words in the images. To the best of our knowledge,

our work is unique not only in proposing the idea of leveraging context infor-

mation, but also in developing neural network models that incorporate such

two sets of context information into both text detection and word recognition

models. (2) We evaluate our approach on novel Instagram, Flickr and Pinterest

datasets. With comprehensive empirical comparison with five state-of-the-art

text detection and recognition algorithms, we demonstrate that our approach

is more successful for text spotting in the online images of Instagram, Flickr

and Pinterest.
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Figure 1.1 Motivation for detection and recognition of text embedded in online im-

ages. Photos that are circulated over social networks often contain embeded texts.

In many case, consecutive letters are appeared in the photos along with informative

metadata, such as title, comments and tags. Our objective is to propose a novel net-

work model that can take advantage of such context information from subsequent

letters and meta-data in order to improve the performance of detection and recogni-

tion.
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Chapter 2

RelatedWork

The text detection and recognition in natural images have been studied much

in computer vision research. While some recent survey papers [115, 116] present

more comprehensive literature survey on the text spotting research, we here

review a representative selection of previous papers that are closely related to

this work.

The problem of text detection and recognition in natural images have been

studied much in computer vision research. We review a representative selection

of previous papers that are closely related to this work. As a major problem

domain, city and street views have been popularly studied because they include

much informative text in them [11, 105, 75, 118, 101]. Mishra et al . [75] aims

to recognize text from street images by exploiting both bottom-up cues (i.e.

Conditional Random Field (CRF) model on individual character detections)

and top-down cues (i.e. a lexicon-based prior of language statistics). Tian
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et al . [101] also uses the CRF model for text line detection, but the cost of

that CRF model is only for text/non-text score. Zhang et al . [118] uses the

symmetric properties of text lines to localize the text position.

Low Level Vision Approach Some previous work focuses on practicality

with low latency; for examples, Epshtein et al . [21] propose a fast local image

operators called the Stroke Width Transform (SWT), leveraging the assump-

tion that text tends to maintain fixed stroke width in natural images. Some

modified method by using color image is propoesed by [44] Another example

is [80] that proposes to use the Maximally Stable Extremal Region (MSER)

detector as an end-to-end real-time text localization and recognition system,

which is implemented as a part of openCV 3.0. In later work [7], more accurate

and faster stroke-specific keypoints are proposed to replace the MSER features.

The other examples of MSER are [45, 79] The system of Google [5] focuses

on a text extraction from smart phone imagery, for which it achieves a fast

processing time of less than 1 second with help of datacenter-scale distributed

language modelling. There have been several efforts to explicitly identify and

tackle on the key difficulties of text spotting. Some notable examples include

arbitrary orientations in natural images [114], perspective distortion [84], and

different orientations, languages, and fonts [52]. Another interesting work is

spatial transformer networks [49] that leverage CNNs to correct the distortions

of translation, scale, rotation and clutter of characters.

Neural Network A lot of research is being done by the development

of deep learning [38, 39, 63, 62]. Object Detection [25, 33, 24, 87, 4], Ob-

ject Tracking [108, 107, 72, 121], Semantic Segmentation [120, 2, 67, 58, 66,
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42, 76, 68, 32, 91, 3, 91, 9, 10, 83, 8], Classification [95, 59, 35, 100], Im-

age Captioning [54, 19, 104, 12, 22, 112, 61, 85, 86, 60] , Neural Language

Model [73, 51, 99, 57], Machine Translation[71, 90, 70, 64, 110], Speech Recog-

nition [30, 37, 14, 31, 88, 1, 111] and Image Reconstruction [20, 13, 49, 97,

113, 43, 55, 56, 41]. Object detection and neural language model are closely

related to this study.

Neural Network Approach for Text Spotting With the emergence

of deep neural networks, several approaches have been recently proposed to

leverage Convolutional Neural Networks (CNN) for robust text spotting (e.g .

[109, 45, 50, 36, 119, 122, 93, 102]). Our method is closely related to this

group of work because we also take advantage of CNNs and Recurrent Neural

Networks (RNN)s. Wang et al . [109] propose one of the earliest LeNet-based

text detector and character recognizer modules. Huang et al . [45] address a

text detection method in which they first generate text candidate regions using

the low-level MSERs operator, and then apply high-level sliding-window style

CNN classifiers. Jaderberg et al . [50] propose an end-to-end CNN model that

integrates the whole pipeline of character recognition, text detection, and word

recognition. He et al . [36] propose deep-text recurrent networks (DTRN) for

text recognition, which consist of deep CNNs for recognizing the words and

the RNNs for decoding the CNN output sequence into a word string. Zhang et

al . [119] use modified Fully Convolutional Neural Network (FCN)[68] to detect

multi-oriented textlines. Zhu et al . [122] also use CNN to detect text region

pixels followed by connected component analysis. Shi et al . [93] especially aim

irregular shape text caused by perspective distortion or curved placement for

7



graphical apprearance. Tian et al . [102] suggest a neural network architecture

that adapt connectionist concept. Liao et al . [65] suggests fast detection neural

network.

Compared to a large group of previous deep learning based text recogni-

tion methods, our work is unique in that it proposes contextual text spotting

approach for the first time, and shows that the context information indeed

helps improve text detection and recognition accuracies for online images.
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Chapter 3

Preliminary of Neural Networks

The proposed framework is based on the results of the neural network re-

search. To understand the proposed model, this chapter introduces the basic

knowledge of Neural Networks. Further details can be found in [28].

3.1 Basic of Neural Network

One area of machine learning involves the representation of data as vectors or

graphs that can be processed by a computer and building models to learn them.

For specific learning objectives, such as recognizing facial or facial expressions,

Deep Learning focuses on better representation and better model building for

learning. Many of the methods of expressing deep running are inspired by

neuroscience and are based on the information processing and communication

patterns of the nervous system. Deep Learing succeeded in recognizing Hand-

written Postal Code in [63] by applying Back Propagation algorithm to neural

9



network. After that, computer performance is improved and Geoffrey Hin-

ton successfully training Multi Layer Neural network by adding pre-training

process using Unsupervised learning to Multilayer Neural Network[38], and

applying the improved technique to object recognition shown in [59]. Deep

learing has begun to attract attention again, while it has improved by about

10% compared with the existing method. After that, it started to be used in

various fields. Professor Fei-Fei devised a way to explain images automatically,

and many people are doing research with good results in Natural Language

Processing. Neural Neworks (NNs) are typically organized in layers. Layers

are made up of a number of interconnected nodes which contain an activation

function. Patterns are presented to the network via the input layer, which is

connected to one or more hidden layers. The hidden layers then link to an

output layer. Most NNs contain some form of learning rule which modifies

the weights of the connections according to the input patterns that it is pre-

sented with. Although there are many different kinds of learning rules used

by neural networks, the most popular rule is back propagations. Back prop-

agation is an abbreviation for the backwards propagation of error. With the

backpropagation rule, learning is a supervised process that occurs with each

cycle or epoch (i.e. the cycle of the whole data set is used in training) through

a forward activation flow of outputs, and the backwards error propagation of

weight adjustments. More simply, when a neural network is initially presented

with a pattern it makes a random initialization as to what it might be. It then

sees how far its answer was from the actual one and makes an appropriate

adjustment to its connection weights.
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Backpropagation performs a gradient descent within the solution’s vector

space towards a global minimum along the steepest vector of the error surface.

The global minimum is that theoretical solution with the lowest possible error.

The error surface itself is a hyperparaboloid and smooth, there are numerous

pits and hills in the solution space, though. They may cause the network to

settle down in a local minum which is not the best overall solution.

Since the nature of the error space can not be known a prioi, neural network

analysis often requires a large number of individual runs to determine the best

solution. Most learning rules have built-in mathematical terms to assist in this

process which control the rate and the momentum of the learning. The rate of

learning is actually the one of convergence between the current solution and the

global minimum. Momentum helps the network to overcome obstacles (local

minima) in the error surface and settle down at or near the global miniumum.

Once a neural network is trained to a satisfactory level it may be used as

an analytical tool on other data. To do this, the user no longer specifies any

training runs and instead allows the network to work in forward propagation

mode only. New inputs are presented to the input pattern where they filter

into and are processed by the middle layers as though training were taking

place, however, at this point the output is retained and no backpropagation

occurs. The output of a forward propagation run is the predicted model for

the data which can then be used for further analysis and interpretation. It is

also possible to overfit a neural network, which means that the network has

been trained over to respond to training data.
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Figure 3.1 A fully connected neural network.

3.2 Convolutional Neural Network

As we saw in the previous section, neural networks receive an input, and

transform it through a series of hidden layers. Each hidden layer is made up

of a set of neurons, where each neuron is fully connected to all neurons in

the previous layer, and where neurons in a single layer function completely

independently and do not share any connections. The fully connected neural

nets don’t scale well to full images. If an image has the size of 32 × 32 × 3,

so a single fully-connected neuron in a first hidden layer of a fully connected

neural network would have 3072(= 32 × 32 × 3) weights. This amount still

seems manageable, but clearly this fully-connected structure does not scale to

larger images. For example, an image of more bigger size, e.g. 640 × 480 × 3,

would lead to neurons that have 640×480×3 = 921600 weights. Moreover, we

would almost certainly want to build several layers, so the parameters would
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increase. Clearly, this full connectivity is wasteful and the huge number of

parameters would quickly lead to overfitting. Convolutional Neural Networks

(CNN) take advantage of the fact that the input consists of images and they

constrain the architecture in a more sensible way. In particular, unlike a fully

connected neural network, the layers of a CNN have neurons arranged in 3

dimensions: width, height, depth. (Note that the word depth here refers to the

third dimension of an activation volume, the number of feature to be learned

automatically to represent the given dataset). For example, the input images as

same as previous example are an input volume of activations, and the volume

has dimensions 640×480×3 (width, height, depth respectively). The neurons

in a layer will only be connected to the region of convolutional kernel size of

the layer before it. The total paramter number is kernelsize × kernelsize ×

numberoffeatures. The typical number of kernel size and number of feature

are 7 and 128. The total parameter in this case is 7 × 7 × 128. It seems

manageable, and moreover is scalable.

3.3 Pooling Layer

The pooling layer, is used to reduce the spatial dimensions on a convolution

neural network. By having less spatial information you gain computation per-

formance. Less spatial information also means less parameters, so less chance

to overfit. You get some translation invariance. Some projects don’t use pool-

ing, specially when they want to learn some object specific position. In Fig.

3.2, we show the most common type of pooling, the maxpooling layer, the

minpooling layer, the average pooling layer, which tiles a window and get the
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Figure 3.2 The pooling layer. (a) The diagram of pooling layer with kernel size 2 .

(b) The input of pooling layer. (c) The output of max pooling layer. (d) The output

of min pooling layer. (e) The output of average pooling layer

biggest value on the window as the output. The meaning of the pooling layer

is as follows. Features obtained from the convolutional layer can be recognized

differently when the position of the input image is changed. A pooling layer is

used to reduce the effect of this position change. A feature is recognized as the

same feature in a spatial support. As the layers are increased, then more wide

spatial support make the feature as the same even though the position of the

image is changed. As a result influence of the position movement is reduced

accordingly.
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3.4 Activation Function

A function used to transform the activation level of a unit (neuron) into an

output signal. Typically, activation functions have a ”squashing” effect. To-

gether with the PSP function (which is applied first) this defines the unit type.

Neural Networks supports a wide range of activation functions. Only a few of

these are used by default; the others are available for customization.

Identity. The activation level is passed on directly as the output. Used in

a variety of network types, including linear networks, and the output layer of

radial basis function networks.

Logistic(as known as Sigmoid). This is an S-shaped (sigmoid) curve,

with output in the range (0,1). sigmoid is defined as:

sigmoid(x) =
1

1 + exp (−x)
(3.1)

where x is the input of the neural network.

Hyperbolic. The hyperbolic tangent function (tanh): a sigmoid curve,

like the logistic function, except that output lies in the range (-1,+1). Often

performs better than the logistic function because of its symmetry. Ideal for

customization of multilayer perceptrons, particularly the hidden layers.

Rectified Linear Unit (ReLU)[77]. ReLU is defined as:

ReLU(x) = max(0, x) (3.2)

where x is the input of the neural network.

Exponential Linear Units (ELU) ELU is defined as:
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ELU(x) =


x if x > 0

α(exp (x)− 1) if x <= 0

where x is the input of the neural network and α is hyperparameter.

Softmax. Exponential function, with results normalized so that the sum of

activations across the layer is 1.0. Can be used in the output layer of multilayer

perceptrons for classification problems, so that the outputs can be interpreted

as probabilities of class membership.

3.5 Recurrent Neural Network

(RNN) The elementary building blocks of a RNN are neurons (as known as

units) connected to sequentially next neurons. One typically distinguishes in-

put units, internal (or hidden) units, and output units. At a given time, t, a

unit has an activation. We denote the input units by u(t), of internal units by

x(t), of output units by y(t), for discrete time steps t = 1, 2, 3, ..., shown in

Fig. 3.3(a).

3.6 Back-Propagation Through Time

(BPTT) The feedforward backpropagation algorithm cannot be directly trans-

ferred to RNNs because the error backpropagation pass presupposes that the

connections between units induce a cycle-free ordering. The solution of the

backpropagation approach for RNN is to unfold the recurrent network in time

as shown in Fig. 3.3(b). This gives a feedforward network, which is amenable

to the backpropagation algorithm.
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3.7 Bidirectional Recurrent Neural Networks

(BRNN) Bidirectional Recurrent Neural Networks extend the unidirectional

RNN by introducing a second hidden layer, where the hidden to hidden con-

nections flow in opposite temporal order. The model is therefore able to exploit

information both from the past and the future as shown in 3.3(c)

3.8 Long-Short Term Memory

Long Short Term Memory networks(LSTM) are a special kind of RNN, ca-

pable of learning long-term dependencies. They were introduced in [40, 29],

and were refined and popularized by many people. They work tremendously

well on a large variety of problems, and are now widely used. LSTMs are ex-

plicitly designed to avoid the long-term dependency problem. Remembering

information for long periods of time is practically their default behavior, not

something they struggle to learn. All recurrent neural networks have the form

of a chain of repeating modules of neural network. In standard RNNs, this re-

peating module will have a very simple structure, such as a single tanh layer.

LSTMs also have this chain like structure, but the repeating module has a

different structure. Instead of having a single neural network layer, there are

four, interacting in a very special way. The key to LSTMs is the cell state. The

cell state is kind of like a conveyor belt. It runs straight down the entire chain,

with only some minor linear interactions. The LSTM does have the ability to

remove or add information to the cell state, carefully regulated by structures

called gates. Gates are a way to optionally let information through. They are
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composed out of a sigmoid neural net layer and a pointwise multiplication

operation. The sigmoid layer outputs numbers between zero and one, describ-

ing how much of each component should be let through. The equation of the

LSTM is shown below.

It = tanh(WxIxt +WhIht−1 + bI) (3.3)

Jt = tanh(WxJxt +WhJht−1 + bJ) (3.4)

Ft = tanh(WxFxt +WhFht−1 + bF ) (3.5)

Ot = tanh(WxOxt +WhOht−1 + bO) (3.6)

Cellt = Cellt−1 � Ft + It � Jt (3.7)

ht = tanh(Cellt)�Ot (3.8)

where � means element-wise product, h means hidden state.

3.9 Optimization

Momentum The Stochastic Gradient Descent method suffers when searching

for a problem space with ravine shapes. In this case, the SGD scheme oscillates

repeatedly in the ravine region, and it is difficult to proceed toward the local

optima. This phenomenon is relieved by the momentum method. The momen-

tum method gives the force to maintain in the previous update direction. This

increases the probability of going to the local optima in the ravine area. Since

momentum keeps the speed at which to proceed, it also speeds up the problem

space search. As a result, we gain faster convergence and reduced oscillation.
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Nesterov accelerated gradient Sutskever[98] propose an algorithm us-

ing the Nesterov momentum method[78]. The conventional method updates

the weight in the direction of momentum in the existing direction and the

gradient direction in the current position. However, Sutskever separated the

existing method into two steps. The first step moves in the direction of the

previous momentum. The second step is to update the weight in the direction

of the gradient descent at the moved position.

Adagrad Adagrad[16] is an algorithm for gradient-based optimization

that does just this: It adapts the learning rate to the parameters, perform-

ing larger updates for infrequent and smaller updates for frequent parameters.

For this reason, it is well-suited for dealing with sparse data.

Adadelta Adadelta[117] is an extension of Adagrad that seeks to reduce

its aggressive, monotonically decreasing learning rate. Instead of accumulating

all past squared gradients, Adadelta restricts the window of accumulated past

gradients to some fixed size w.

3.10 Training Loss

The training loss is a cost fuction in a neural network, also called objectives.

The weight is updated to decrease the training loss. Training losses include

square error, binary cross entropy, and categorical cross entropy.

square error The square error is obtained by squaring the difference

between the target value and the prediction value.

cross entropy Entropy is used to describe the randomness of probability

distributions in information theory. If the probability distribution is uniform,
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it has a low value and vice versa. Cross entropy represents the similarity of

two probability distributions. Cross entropy also has a large value when the

difference is large, and a lower value when the difference between the two is

small. Because of this characteristic, it is suitable as a cost function. Two

distributions represent the distribution of the prediction and the distribution

of the target. Use binary cross entropy if the target and prediction are binomial

distributions. Use categorical cross entropy for mulitnomial distributions.

3.11 Training Process

The process of training Neural Network should consider weight initialization,

learning rate, momentum, overfitting, and weight update method.

Weight Initialization There are many methods of weight initialization,

and many studies have been done on this. Basically, there is a way to initialize

a uniform or gaussian distribution. Glort’s[27] methods is proposed to indicate

initialization methods assuming that input data and weights are independent

and identically distributed, and there are other methods recently proposed[34,

89]. Among these initialization methods, it is reasonable to choose a method

with an experimentally better performance.

Learing Rate The learing rate is a factor that affects the performance of

weight update through backpropagation. If the learning rate is too large, it is

difficult to fine tune to find the optimum solution. If the learning rate is too

small, it will take a long time to converge.

Learning Rate Decay The strategy for speeding up training is to set a

high learning rate at the beginning of the traing and lower it to a lower value.
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The way to enable this is to use learning rate decay.

Momentum The problem space to solve in deep learing is a very high

dimensional space. In order to find the optimal solution in this problem space,

places which has gentle slope must pass quickly. The way to do this is to use

momentum. The momentum method is a method of multiplying the amount

of weight update by a predetermined value and add it to the current weight

update.

Overfittng An important problem in the machine learing approach is the

overfitting problem. It is important to check if the solution obtained is confined

to the data I have, and if it is difficult to generalize, it is difficult to practically

use the solution. However, there is often an error in training a higher-level

problem space for a longer time to achieve higher performance only for the

data I have. A typical way to avoid overfitting is to divide the data into training

and validation set. Only training data is used during training, and validation

data is used when verifying results. In practice, training loss is monitored for

validation data at training time, and when training loss increases for validation

data, the training process must be stopped. When dividing data, it is often

used to divide it several times, to check the method mentioned above, and to

average the values.

Weigh Update There are two ways to update the weight. There is a way

to update the weight for one datum each and a method to update the data

set, called batch, at once. The former is called the stochastic method and the

latter is called the batch update method. The stochastic method is generally

known to find better solutions. However, there is a drawback that it takes a
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longer time. The batch method updates the weight for batch set at a time, so

it can be processed more efficiently by hardware such as the GPU. At present,

the batch method is widely used.

Weight Regularization When training a neural network, the size of the

weight can be larger than the appropriate size of the given problem. The

solution to this problem can be overfitting. One way to prevent this is the

weight regularization method. This has the same purpose and effect as the

regularization of the regression problem. Weight regularization mainly uses

the weight norm. Obtain L1 norm or L2 norm of weight and add a weighted of

it to training loss. This prevents the L1 norm or L2 norm of the weight from

becoming too large. One of the regularizations with the magnitude of the

weight is regularization, which limits the maximum size. This method sets the

weight value to a predetermined reference value when the weight value exceeds

a predetermined reference value. The advantage of this method is that if the

learning rate is set higher than the appropriate value, the weight value will be

restricted automatically, thereby alleviating the failure of the training.
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Figure 3.3 The Diagram for RNN (a) The vanilla RNN. (b) The unfolded RNN. (c)

The bidirectional RNN
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Figure 3.4 The diagram of LSTM.
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Chapter 4

Approach for Contextual Text
Spotting

The text spotting aims at localizing the embedded text with bounding boxes

for an input image, and then recognizing it. We use the context information

in different ways for detection and recognition, which are presented in Sec. 4.2

and in Sec. 4.3 in details.

4.1 Overview of the Proposed Framework

The method proposed in this paper will be outlined as follows. First, we use

the edge box method to generate an object candidate from a given image. For

each proposed box, find the primal box and context boxes, and use these to

obtain the output of the context-aware detection network. Since the output

of the context-aware detection network is degraded in spatial resolution, the

context free detection network output is obtained to compensate for the min-
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pooling. The min-pooling result is converted into a binary image, and a text

box detection result is obtained by combining MSER detection and connected

component analysis method. Word recognition uses the text box detection

result generated in this way. When word recognition is performed, metadata

accompanied by image is used. The metadata is the title, comments, tags, and

so on. In this metadata, except for NLTK stopwords and internet informal

words, it is encoded as one-hot vector and topic modeled by LDA. This is

input to the context bias network and the output of this bias network is

used to improve word recognition performance. How to recognize the word

is here. The image of the text box detection area is rescaled to maintain the

aspect ratio, and is made zero mean. This is entered into the context-aware

recognition network, where the output of context bias network is input as

bias. This network informs the word through the bidirectional recurrent neural

network. Let’s take a closer look at this step from now on.

4.2 Context-Aware Text Detection

For text detection, we first quickly enumerate a large number of candidates

of text-likely regions, and then detect bounding boxes called textline boxes

that are probable to contain individual lines of text. Ideally, each textline box

corresponds to a valid word consisting of multiple characters. Fig.4.2 shows

the pipeline of this stage.
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Figure 4.1 Overview for our contextual text spotting network (CTSN) model to detect

and recognize the text embedded in online images by taking advantage of context

information. To improve text region detection, we use the contextual cues of local

neighborhood around the region of interest as shown in (b)–(d). To enhance word

recognition in the image, we extract the contextual topic bias as prior for likely words

that appear in the image, from the metadata associated with the input image (e.g .

tags, comments, and titles) as shown in (e)–(g).

4.2.1 Text Proposals

In order to detect object candidates efficiently, Recent researches propose an

efficient method to find object candidates in contrast to existing sliding win-

dow method. Among them, there are Edge Boxes[123] method and Selective

Search[103] method.

Edge Boxes The edge box method starts from the assumption that the

edge of the image contains a lot of information. Get Edge and Edge Grouping,

and then obtains Affinities Score to determine object candidates. The flowchart

of Edge Boxes is shown in Fig.4.3.

Selective search The Selective Search method uses the primitive seg-

27



(b) 

(d) 

(a) 

(e) 

(f) 

(i) 

min (c) 

(g) (h) 

Figure 4.2 The pipeline of the proposed context-aware detection. (a) An input image.

(b) Extracted Edge Box proposals as yellow boxes. In the right, one selected primal

box (cyan) and its context boxes (green) are shown. (c) A contextual text response

map after processing all the edge box proposals. (d) Context-free text detection using

the side-window approach. (e) A context-free text response map. (f) The final text

response map by pixelwise min-pooling on the two maps of (c) and (e). (g) A bina-

rized image of (f) via Otsu thresholding [82]. (h) Refined textline boxes via MSER

detection [81] followed by geometric property filtering. (i) A final textline detection

result.

mentation regions proposed in [23] segmentation information to meage similar

areas to create an object candidate. When determining similar areas, we use

color, texture, size, and overlapping degree.

4.2.2 Text Detection Network

Our next step is to decide whether each edge box proposal includes text or

not. To do that, we construct the detection network using context. Detection
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Figure 4.3 The flowchart of the Edge Boxes.

network is constructed using local context based on context categorization by

[18]. The following paragraphs describe the local context detection network

and describe additional network structures.

Text detection with local context. As shown in Fig.4.2(b), each edge

box proposal is overlapped with many other proposals; thus it is advantageous

to consider together local context (i.e. neighbor edge boxes) for the decision,

because text is likely to sequentially appear horizontally or vertically (i.e. a

region near to text is also likely to be text). Based on this intuition, we design

the context-aware text detection network in Fig.4.5. We call the edge box of
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Figure 4.4 The flowchart of the Edge Boxes.

interest as a primal box and the proposals overlapped with the primal box

as context boxes. We limit the maximum number of context boxes to K (e.g .

K = 10). We randomly sample if the overlapped edge boxes are more than

this limit.

The context-aware text detection network in Fig.4.5 consists of K + 1 text

feature extractors (TFE), one for the primal box, and the other K for the

context boxes. The text feature extractor is a 10-layer CNN designed based

on VGGNet [95]. Its structure is shown in Fig.4.6, comprising six convolutional

layers, three max-pool layers, and two fully connected layers. The equations
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for the VGG is as follows:

vgg1 = ReLU(Wv1x), (4.1)

vgg2 = MaxPool(Wv2vgg1), (4.2)

vgg3 = ReLU(Wv3vgg2), (4.3)

vgg4 = MaxPool(Wv4vgg3), (4.4)

vgg5 = ReLU(Wv5vgg4), (4.5)

vgg6 = MaxPool(Wv6vgg5), (4.6)

vgg7 = ReLU(Wv7vgg6), (4.7)

vgg8 = ReLU(Wv8vgg7), (4.8)

vgg9 = ReLU(Wv9vgg8), (4.9)

vgg10 = ReLU(Wv10vgg9), (4.10)

vggout = ReLU(Wv11vgg10), (4.11)

where we omit the bias terms for simple notation. The weights for 1,3,5,7,8,9

means the convolutional matrix.

The output dimension is (256×1). The K context box features tc,1, . . . , tc,K

are then concatenated into a single vector tc ∈ RK×256, which is fed into a

fully connected layer with rectified linear units (ReLU) [77]. Its output tc,o is

concatenated with the primal box feature tp, and then inputs to the softmax

layer:

tc,o = ReLU(Wctc + bc), (4.12)

do = softmax(Wd[tp ‖ tc,o] + bd), (4.13)
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where the parameters include Wc ∈ R256×(K∗256), bc ∈ R256×1, Wd ∈ R2×512,

and bd ∈ R2×1. The output of the binary softmax classifier is a distribution

over text or nontext labels: do = [so, 1− so]>, from which we obtain the score

so of text likelihood for the primal box. We compute the score so for all the

edge box proposals.

The contextual text response map. From the output of text detection,

we construct the contextual text response map Mc that has the same size with

the input image and assigns the likelihood of text at every pixel in a range

of [0, 1] (See an example in Fig.4.2(c)). We superimpose the scores so of all

the edge boxes, and then normalize the score at every pixel by dividing the

number of edge boxes in which the pixel involves.

The context-free text response map. In addition to contextual re-

sponse map Mc, we generate another map Mf named as the context-free text

response map that has the same size and the same range of values with Mc, as

shown in Fig.4.2(e). We apply the context-free text detector (CFD) in Fig.4.7,

using a multi-scale sliding window approach with a size of 36×36 and a stride

of 1 pixel. The scale varies from 0.5 to 1.0 at every interval of 0.1. The context-

free text detector (CFD) has the almost similar structure to the text feature

extractor (TFE) in Fig.4.6, only except that the final layer is a two-way soft-

max layer so that it outputs the text likelihood score. We also normalize the

score at every pixel by dividing the number of windows in which the pixel

involves.
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Figure 4.5 The illustration of the proposed context-aware detection.

4.2.3 Extraction of Textline Boxes

. The intuition behind using both contextual Mc and context-free Mf is that

the two maps synergistically help each other to achieve better detection per-

formance. From our observation, the context-aware detection attains a higher

accuracy for text region detection; yet it has a relatively poorer spatial resolu-

tion since it has the same response values for all the pixels inside an edge box

proposal. On the other hand, the context-free detection has a lower accuracy

for text region detection, but it can achieve a better spatial resolution.

To take the advantage of the two text response maps with or without

context, we apply the pixelwise min-pooling between the two maps as illus-
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Figure 4.6 The Text Feature Extractor (TFE) network components.

trated in Fig.4.2(f); M(i, j) = min(Mc(i, j),Mf (i, j)) for i = 1, · · · , h and

j = 1, · · · , v where h and v are the height and width of the image, respec-

tively. After obtaining the final text response map by pixelwise min-pooling

operation (Fig.4.2(f)), we binarize the response map M(i, j) by Otsu thresh-

olding (Fig.4.2(g)). The positive text response regions (i.e. displayed as white

pixels) are refined by Maximally Stable Extremal Regions (MSER) detection

method [81]. And then, we check several geometric criteria to make sure that

the regions are text-likely, including areas, aspect ratios and Euler numbers

(i.e. the total number of objects in the image minus the total number of holes

in those objects). To obtain such geometric properties of the regions, we ap-
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Figure 4.7 The Context-Free Text Detector (CFD).

ply the connected component analysis [17]. If the regions fail to pass all the

geometric criteria, they are removed. The refined binary image is shown in

Fig.4.2(h).

Otsu Thresholding The Otsu thresholding technique is based on the

assumption that the variance of the object’s intensity distribution is less dis-

tributed, and those of the back ground. The optimal threshold is the value that

minimizes the variance within the object and back ground (within class vari-

ance) and maximizes the variance between object and back ground (between

class variance).

Connected Component Analysis The information obtained through
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Connected Component Analysis includes Area, Blob Box, Euler Number, Ex-

tent, and Solidity. Each is defined as follows.

Area : The actual number of pixels in the object.

Bounding Box : The smallest rectangle containing the object.

Euler Number : The total number of objects in the image minus the total

number of holes in those objects.

Extent : The ratio of pixels in the object to pixels in the bounding box.

It can be computed as the Area divided by the area of the bounding box.

Solidity : The proportion of the pixels in the convex hull that are also in

the object

Perimeter : The distance around the edge of the object

Batch Normalization Layer Covariate shift [94] is a phenomenon in

machine learning where the features presented to a model change in distribu-

tion. In order for learning to succeed in the presence of covariance shift, the

model’s parameters must be adjusted not just to learn the concept at hand

but also to adapt to the changing distribution of the inputs. In deep neu-

ral networks, this problem manifests as internal covariance shift [47], where

changing the parameters of a layer affects the distribution of the inputs to all

layers above it. To deal this, in the training phase, the mean and variance are

stored in units of batch, and the correction is made at the time of inference.

In addition, training time is shortened by improving the convergence speed of
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training. The equation is as follows.

µB =
1

m

m∑
i=1

xi (4.14)

σ2B =
1

m

m∑
i=1

(xi − µB)2 (4.15)

x̂i =
xi − µB√
σ2B + ε

(4.16)

yi = γx̂i + β (4.17)

where the yi is the output of batch normalization layer after compensation.

Dropout Layer Deep neural nets with a large number of parameters

are very powerful machine learning systems. However, overfitting is a serious

problem in such networks. Large networks are also slow to use, making it

difficult to deal with overfitting by combining the predictions of many differ-

ent large neural nets at test time. Dropout[96] is a technique for addressing

this problem. The key idea is to randomly drop units from the neural net-

work during training. This prevents units from co-adapting too much. During

training, dropout samples from an exponential number of different “thinned”

networks. At test time, it is easy to approximate the effect of averaging the

predictions of all these thinned networks by simply using a single unthinned

network that has smaller weights. This significantly reduces overfitting and

gives major improvements over other regularization methods.

4.2.4 Text Detection Network Variants

Neural network configuration can be done in various ways. In this section, we

will discuss how to construct a network that has seven layers like LeNet not
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Figure 4.8 Dropout Network

VGG like network.

LeNet LeNet is the typical Convolutional Neural Network for MNIST

Digit Recognition coined by Yann LeCun et al . [63]. LeNet evolved into LeNet1,

LeNet2, ..., LeNet5. Typically it consists of Convolution, Pooling and Fully

Connected layers. The convolution layer is useful for finding patterns in local

pixels. You can find a global pattern by constructing multiple layers. This

pattern is called a feature or feature map. When constructing multiple layers,

put a pooling layer to maintain spatial invariancy. The final layer constitutes

a fully connected neural network suitable for object recognition. Let the input

as X. In this work, we construct 3 convolutiona layers, 2 max pooling layers
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Figure 4.9 The diagram of LeNet.

and 2 fully connected layers.

le1 = ReLU(Wle1x1), (4.18)

le2 = Conv(Wle2le1), (4.19)

le3 = ReLU(Wle3le2), (4.20)

le4 = Conv(Wle4le3), (4.21)

le5 = ReLU(Wle5le4), (4.22)

le6 = ReLU(Wle6le5), (4.23)

le7 = ReLU(Wle7le6) (4.24)

The Max Out Network. When configuring the text detection network,

we try to connect the context boxes to the max out network instead of the fully

connected network. The difference between these two networks is that the fully

connected layer is affected by the order of the context boxes, and the max out

layer has the advantage of not affecting connection order. However, only one

39



Figure 4.10 The illustration of the proposed maxout detection network

contex box feature should be used among several context boxes, which may

cause performance degradation. The max out network equation is as follows:

tc = vggout (4.25)

tc,o = ReLU(Wc ×MaxOut(tc) + bc), (4.26)

do = softmax(Wd[tp ‖ tc,o] + bd), (4.27)

4.3 Context-Aware Word Recognition

We build a lexicon dictionary using all the words in our dataset, excluding

single character words (e.g . I, a, A), and the words longer than 15 characters.

The dictionary size is V = 3, 202.

Once we obtain a set of textline boxes, we perform the word recognition

to find out what words individual textline boxes contain. Since most online
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images have metadata in the form of text, such as title, tags, and comments, we

leverage their topic information as a context prior on the likely word candidates

for the image. In other words, the topics extracted from metadata can scope

down the possible words that are likely to appear in the images. For instance,

if the metadata deals with the travel topic, then the words in the image are

likely to be too. As a result, given that our word dictionary size is 3,202, the

word recognition reduces from 3,202-way classification to fewer-than-it-way

classification.

To this end, we design a context-aware convolutional recurrent network

model for word recognition as shown in Fig.4.11. It consists of three core

components of bias networks for context, character recognition networks, and

bidirectional recurrent networks for word recognition.

Latent Dirichlet Allocation. Latent Dirichlet allocation (LDA), a gen-

erative probabilistic model for collections of discrete data such as text corpora.

In addition, it is unsupervised topic modeling, which is a way to find a topic in

a document. LDA is a three-level hierarchical model, in which each item of a

collection is modeled as a finite mixture over an underlying set of topics. Each

topic is, in turn, modeled as an infinite mixture over an underlying set of topic

probabilities. In the context of text modeling, the topic probabilities provide

an explicit representation of a document. LDA has several advantages: first,

the document is a mixture of topics; the other is a probability model. This

can be used in combination with other areas that utilize existing probability

model models. Another characteristic of the LDA is the generative attribute.

After a topic modei is created, a word can be generated by the topic model
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ZCA Whitening The data has its principal axes. After whitening the

data, the distribution looks round and it also looks rotated. After whitening

the distribution looks round and it’s oriented in the same way as originally.

One can get from PCA whitened data to ZCA whitened data by rotating with

principal axis. ”ZCA” means ”zero phase component analysis”. When applied

to bunch of images, the main axis looks like a Fourier component of increasing

frequency. So they are very global. On the other hand, the ZCA transform row

looks very local. This means that ZCA tries to convert the data as small as

possible, so that each row is closer to the original underlying function. This is

possible because the natural image correlations are mostly very local.

4.3.1 Bias Networks for Context

. We design a compact neural network model that can infuse the context bias

to the word recognition network. Since there is no guarantee that the embed-

ded text in the image includes the exact words in the metadata, we leverage

a topic model that can represent the semantic meaning of the metadata in

a low-dimensional space. We first represent the metadata using the bag-of-

words model, which counts the number of occurrences of each distinct word in

the dictionary. We then use the Latent Dirichlet Allocation (LDA) [6, 73] to

encode the metadata by topic vectors. Thus, we implicitly discover the topic

distribution of the image from its metadata, and assign weights on the candi-

date words according to topic distribution. We denote the topic distribution of

metadata by vm ∈ RD, where D is the topic dimension (e.g . D = 128). Then

vm is fed into the context bias network, consisting of three fully-connected
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layers with ReLU activation, and one softmax layer, as shown in Fig.4.12.

b1 = ReLU(Wv1vm), (4.28)

b2 = ReLU(Wv2b1), (4.29)

b3 = ReLU(Wv3b2), (4.30)

b = softmax(Wv4b3), (4.31)

where the parameters are Wv1 ∈ RD/2×D, Wv2 ∈ RD/4×D/2, Wv3 ∈ RD/2×D/4,

and Wv4 ∈ RD×D/2. The bias network is designed as a structure of autoen-

coder [39]. We apply the dropout regularization with a rate of 0.5 to the three

fully-connected layers. The output b ∈ RD is provided to the recurrent word

recognition network as a bias term. For the image with no metadata, we use

a zero vector for b.

4.3.2 Recurrent Word Recognition Network

. Fig.4.11 illustrates the proposed context-aware word recognition network.

We first resize the input textline box to have its minimum dimension to be 32

pixels while preserving its aspect ratio. If the maximum dimension is smaller

than hmax (e.g . hmax = 192), we zeropad to be hmax. Otherwise, we resize the

image so that the maximum dimension to be hmax with ignoring the aspect

ratio this time. We then input the resized textline box into the textline feature

extractor (TLFE), which is a CNN shown in Fig.4.13. Its output is a sequence

of T feature maps with a size of (4 × 512): p = (p1,p2, ...,pT ) ∈ RT×4×512.

We set T = 24. Then the bidirectional RNN learns the mapping from the

sequence of feature maps to a sequence of likely characters as a word. We use
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the bidirectional RNNs instead of the conventional ones, because it is more

reasonable to exploit both past and future feature maps to recognize a whole

sequence of characters at once as a word. We exploit normal RNNs instead of

LSTMs, due to its better performance in our evaluation.

Given an input sequence of feature maps p, the BRNN updates the forward

and backward hidden states denoted by hf and hb ∈ RD respectively. The

output y ∈ RD×2T is a concatenation of T forward and backward hidden

states, which is fed into a softmax layer over all the words in the dictionary to

predict the index of the most likely word. This formulation is represented by

ht,f = ReLU(Wph,fpt + Whh,fht−1,f + b), (4.32)

ht,b = ReLU(Wph,bpt + Whh,bht+1,b + b) (4.33)

y = [h1,f ,h2,f , ...,hT,f ‖ h1,b, h2,b, ...,hT,b], (4.34)

w = softmax(Wwy + bw) (4.35)

where b is the topic bias computed in Eq.(4.28). The parameters include

Wph,f ,Wph,b ∈ RD×4×512, Whh,f ,Whh,b ∈ RD×D, Ww ∈ RV×D×2T , and

bw ∈ RV×1. The output of the softmax output layer w ∈ RV is the likelihood

over all the words in the dictionary.

Finally, we select the word of maximum likelihood by argmaxv∈V w(v).

When we consider the word recognition without context bias network

shown in Fig.(4.14). We replace the b in Eq.(4.32) and bvar. This formula-
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tion is represented by

ht,f = ReLU(Wph,fpt + Whh,fht−1,f + bvar), (4.36)

ht,b = ReLU(Wph,bpt + Whh,bht+1,b + bvar) (4.37)

y = [h1,f ,h2,f , ...,hT,f ‖ h1,b, h2,b, ...,hT,b], (4.38)

w = softmax(Wwy + bw) (4.39)

where bvar ∈ RD is the bias for node. The rest of setting is the same as the

previous recognition network.

Variable depth for Recurrent neural network We check the effect

the depth for Recurrent neural network. First, directional recurrent neural

network word recognition formula as follows:

hf = ReLU(Wphpt + Whhht−1 + b), (4.40)

y = [h1,h2, ...,hT ], (4.41)

w = softmax(Wwy + bw) (4.42)

The double bidirectional neural network formula as follows:

h1t,f = ReLU(Wph1,fpt + Wh1h1,fh1t−1,f + b), (4.43)

h1t,b = ReLU(Wph1,bpt + Wh1h1,bh1t+1,b + b), (4.44)

h2t,f = ReLU(Wph2,fpt + Wh2h2,fh2t−1,f + b), (4.45)

h2t,b = ReLU(Wph2,bpt + Wh2h2,bh2t+1,b + b), (4.46)

y = [h21,f ,h22,f , ...,h2T,f ‖ h21,b, h22,b, ...,h2T,b], (4.47)

w = softmax(Wwy + bw) (4.48)

The double bidirectional neural network architecture is shown in Fig.(??)
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Figure 4.11 The illustration of the proposed context-aware recognition network.

Zero Padding The input image are rescaled as the height of it is 32. The

warped image has the same aspect ratio as the ratio of the original image. If

the width of warped image is shorter than the input width of character feature

extractor, we pad the remaining buffer with zero by following the method in

[46].

4.3.3 Recognition Network Variant

Fully Connected bias network. When word recognition is performed, we

will discuss how to use the context bias network at every step. This method

has been actively studied in the field of natural language processing. When

language modeling is used to generate each sentence for given words, if the

fully connected network is used, it is difficult to implement due to the vanishing
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Figure 4.12 Context bias network (CTX in the model),

Figure 4.13 The textline feature extractor (TLFE)

gradient problem. To resolve this problem, a recurrent neural network was

used. In particular, the vanishing gradient problem was solved by inputting

context information to help modeling at every step. This problem is expected

when constructing a fully connected network, but we will experimentally verify
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Figure 4.14 The illustration of the proposed context-aware recognition network with-

out context bias network.

it. The formula for the network is as follows.

ht,f = ReLU(Wph,fpt + Whh,fht−1,f ), (4.49)

ht,b = ReLU(Wph,bpt + Whh,bht+1,b) (4.50)

ch = [h1,f ,h2,f , ...,hT,f ‖ h1,b, h2,b, ...,hT,b], (4.51)

y = Wych + bh (4.52)

w = softmax(Wwy + bw) (4.53)
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Figure 4.15 The illustration of the directional recurrent neural word recognition

network.
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Figure 4.16 The illustration of the double bidirectional recurrent neural word recog-

nition network.
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Figure 4.17 The illustration of the context-aware recognition network for fully con-

nected bias network
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Chapter 5

Experiments

We defer more results and details to the supplementary, including dataset

collection, experimental setting, and a demo code. We plan to make public

our source code and datasets.

5.1 Dataset

We collect three datasets of text embedded images from Instagram, Flickr

and Pinterest. The Instagram dataset consists of 2,233 images with about

22K words in total, the Flickr dataset comprises 424 images with about 4,262

words, and Pinterest data set consists of 206 images We also crawling the

metadata associated with images if available, including tags, comments and

title. The images are challenging for both detection and recognition, due to a

large variation of fonts, sizes, numbers of words even in a single image.

Instagram Dataset. We collect general users’ text embedded images from
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Instagram as follows. We query the keyword caption from the Instagram build-

in search engine, and manually select the 2,233 images, which contain about

22K words in total (i.e. about 10 words per image on average). Then, we let

human labelers to annotate words that can be recognizable and are longer

than a single characters, using the bounding box annotation toolbox1. The

Instagram images are challenging that they show a large variation of fonts and

sizes of words even in a single image.We also crawl the metadata associated

with images, including tags, comments and title if available.We randomly split

the Instagram dataset into 1,786 training and 447 test images. We show the

selected examples in Fig.5.1

Flickr Dataset. We create ohter new dataset by crawling text embedded

images from Flickr. We query the keyword funny and caption from the Flickr

search engine. We collect 424 images containing 4,262 words, and their associ-

ated metadata. We split the image set into 213 training and 211 test images.

We also use the same annotation toolbox. We show the selected examples in

Fig.5.2

Pinterest Dataset. We create the other new dataset by crawling text

embedded images from Pinterest. We query the keyword captions and quotes

from the Pinterest search engine. We collect 206 images, and their associated

metadata. We split the image set into 103 training and 103 test images. We also

use the same annotation toolbox. We show the selected examples in Fig.5.3

Metadata Pruning We mentioned earlier that one-hot encoding of meta-

data is used as input to the context bias network via the LDA topic model.

1http://www.ipb.uni-bonn.de/html pages software/annotation-tool/.
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Figure 5.1 Examples of text embeded online images for Instagram.

However, when topic modeling is performed using all crawled metadata, the

distribution structure of the main words is not revealed due to the word hav-

ing a high frequency, or it can be misinterpreted due to the internet informal

words. To prevent this, we prune the metadata if those are NLTK stop words

or infomal internet words, i.e. loveit, Featuremeinstagood, spam4spam, likefor-

follow, follow4follow, like4like, and followme.

We perform a simple correlation test between image text and corresponding

metadata text in our datasets. We compute LDA vectors from the extracted

TF-IDF vectors, and measure average cosine similarity, which turns out to be

0.125 in a range from -1 to 1. It means that the image and metadata text are

correlated up to the level where predicting one is helped by the other without

severe overfitting.
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Figure 5.2 Examples of text embeded online images for Flickr.

5.2 Experimental Setup

Evaluation. To report the performance, we follow the protocol of ICDAR

2013 competition [53]. For detection evaluation, we first decide whether the

detection is true positive (TF) or false positive (FP). The TF is a detection

whose intersection-over-union (IoU) metric with groundtruth (GT) is larger

than 0.5; otherwise it is a FP. We then compute the F1-score as a balanced

average metric between precision and recall: 2(1/precision+1/recall)−1. For

recognition evaluation, we count the success if the estimated word of a TP

detection is identical to the GT word. Even with a single wrong character,

we count it as a failure. We then compute the recognition accuracy by (#

successes)/(# TP detections).

Baselines. We compare our approach with five state-of-the-art methods,
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Figure 5.3 Examples of text embeded online images for Pinterest.

which are based on object detection of pictorial structure [105] (TPS), extremal

regions detection [80] (TER), stroke-specific keypoints [7] (TFAST), convolu-

tional neural networks [109](TCNN), and convolutional recurrent networks [92]

(TCRNN). For all the baselines, we use publicly available codes provided by the

authors. Some baselines do not deal with both detection and recognition; the

(TFAST) for detection only and the (TCRNN) is for cropped word recognition

only.

5.3 Training

The two key components of our model are context-aware detector and recog-

nizer, each of which is trained in an end-to-end manner. Before learning the

two models, we pretrain various network components as follows.

Context bias network. For each training image, we compute the LDA
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topic distributions of embedded text and associated metadata. The former is

used as groundtruth (GT) of the bias network, and the latter is used as the

input to the network. The loss function is defined by the cosine distance:

d = 1− tTgttp/‖tgt‖‖tp‖ (5.1)

where tp and tgt denote the topic vectors of the prediction and the GT, re-

spectively. The learned weights are used as an initialization, and updated in

an end-to-end way during the training of the recognition network.

Text feature extraction networks. The three text feature networks

(i.e. TLFE, TFE, CFD in Fig.4.6, Fig. 4.7 and Fig.4.13 respectively) shares

not only similar structure based on VGGNet, but also the similar objective as

character recognizers. We pretrain them using the standard character datasets

of Chars74K [15] and IIIT5K [74]. We insert a batch normalization layer [47]

to every convolutional layer except the first one. The pretrained weights are

used as initialization for following end-to-end training of the text detection

network.

Text detection network. We obtain positive examples from the edge

boxes that have an overlap area ratio larger than 0.9 with the groundtruth

(GT) textline boxes, and negative samples from the ones that have no inter-

section. We randomly sample N(= 10) positive and negative examples per

training image. During training, we minimize the negative log-likelihood of

conditional probability of prediction. We use Nesterov momentum [98] as an

optimizer with a learning rate of 1e−4, a momentum of 0.9, and a decrease

ratio of 0.9 every 20 epochs.

Word recognition network. We first pretrain the recognition network of
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Fig.4.11 using the synthetic word data2 of [48], consisting of 8M training im-

ages for 90K lexicons. We use the negative log-likelihood as the cost function,

and the Nesterov momentum with a learning rate of 3e−3 and a momentum of

0.9. We use three batch normalization for all the convolutional layers except

the first one. We then finetune the recognition network for our dataset using

the same optimizer with a learning rate of 5e−4 and a decrease ratio of 0.9

every epoch.

Synthetic Data When we train a Recurrent Word Recognition Neural

Network, we can learn many different data by using synthetic data to improve

training performance. Also, since many words are generated by people in a

program in natural environment, we can get the same type word by program.

Againg, considering that much of the text found in natural scenes needs the

imaging process variations(e.g. camera, viewpoint, illumination, clutter). To

know about that in detail, we summarize as follows: 1. Font rendering – a font

is randomly selected from a catalogue of over 1400 fonts downloaded from

Google Fonts. The kerning, weight, underline, and other properties are varied

randomly from arbitrarily defined distributions. The word is rendered on to

the foreground image-layer’s alpha channel with either a horizontal bottom

text line or following a random curve. 2. Border/shadow rendering – an inset

border, outset border or shadow with a random width may be rendered from

the foreground. 3. Base coloring – each of the three image-layers are filled

with a different uniform color sampled from clusters over natural images. The

clusters are formed by k-means clustering the three color components of each

2http://www.robots.ox.ac.uk/∼vgg/data/text/.
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image of the training datasets. 4. Projective distortion – the foreground and

border/shadow image-layers are distorted with a random, full-projective trans-

formation, simulating the 3D world. 5. Natural data blending – each of the

image-layers are blended with a randomly-sampled crop of an image from the

training datasets of ICDAR 2003[69] and SVT [106]. The amount of blend and

alpha blend mode (e.g. normal, add, multiply, burn, max, etc.) is dictated by

a random process, and this creates an eclectic range of textures and composi-

tions. The three image-layers are also blended together in a random manner,

to give a single output image. 6. Noise – Gaussian noise, blur, and JPEG com-

pression artefacts are introduced to the image. The word samples are generated

with a fixed height of 32 pixels, but with a variable width. Since the input to

our CNNs is a fixed-size image, the generated word images are rescaled so that

the width equals 100 pixels. Although this does not preserve the aspect ra-

tio, the horizontal frequency distortion of image features most likely provides

the word-length cues. We also experimented with different padding regimes to

preserve the aspect ratio, but found that the results are not quite as good as

with resizing. To further detail, refer the paper[48]

5.4 Hyperparameters of Contextual Model

Neural networks have a wide variety of hyperparameters. In this section, sev-

eral important parameters are selected and their effects are examined such as

the number of K, the activation function and the effect of the optimization

method.

the effect of K numbers We train the context-aware detection network
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Figure 5.4 The trained weights for context-aware detection network.

Figure 5.5 The trained weight for context free detection network

for varous number of K. The training loss is shown in Fig. 5.7 through Fig.

5.12. The validatiaon loss is minimum for 12, we set the number of K to 12. We

set Batch Number to 200, and set learning rate to 0.001, and we use nesterov

momentum method as optimization method for this experiment.

the effect of Activation Function We also examine the training loss of

the context-aware detection network for varous types of activation function.

The kinds of activation function is Rectified Linear Unit(ReLU), sigmoid, tanh,
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Figure 5.6 The trained weight for textline feature extractor

exponential ReLu. The training loss is shown in Fig. ?? through Fig. 5.17. The

validatiaon loss is minimum for ReLU, we set the activatio type to ReLU.

the effect of Optimization We also examine the training loss of the

context-aware detection network for varous types of optimization. The kinds of

optimization is Nesterov Momentum, Adadelta, Adagrid, Adam. The training

loss is shown in Fig. 5.19 and Fig. 5.21.

the effect of Weight Initialization We also examine the training loss for

the various weight initialization. The training/validation loss and validation

accuracy is shown in Fig. 5.23 through Fig. 5.28.
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Figure 5.7 The training loss for various number of K(Instagram)

Figure 5.8 The validataion loss for various number of K(Instagram)
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Figure 5.9 The training loss for various number of K(Flickr).

Figure 5.10 The validataion loss for various number of K(Flickr).
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Figure 5.11 The training loss for various number of K(Pinterest).

Figure 5.12 The validataion loss for various number of K(Pinterest).
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Figure 5.13 The training loss for various activation functions(Instagram).

Figure 5.14 The validataion loss for various activation functions(Instagram).
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Figure 5.15 The training loss for various activation functions(Flickr).

Figure 5.16 The validation loss for various activation functions(Flickr).
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Figure 5.17 The training loss for various activation functions(Pinterest).

Figure 5.18 The validation loss for various activation functions(Pinterest).
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Figure 5.19 The training loss of according to optimization method(Flickr)

Figure 5.20 The validation loss of according to optimization method(Flickr)
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Figure 5.21 The training loss of according to optimization method(Pinterest)

Figure 5.22 The validation loss of according to optimization method(Pinterest)
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Figure 5.23 The training loss for Glorot Uniform Initialization vs. Glorot Nor-
mal Initialization(Instagram)
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Figure 5.24 The validation loss for Glorot Uniform Initialization vs. Glorot
Normal Initialization(Instagram)

5.5 Neural Network Architecture Variants

Comparison VGG and LeNet for TFE In this section, we will examine the

results when the Text Feature Extractor part of detection module is composed

of LeNet and when it is composed of VGG Net. As shown in Fig.5.29, it is

2.3% higher for VGG Net when the epoch number is 30 for Instagram dataset.

The training loss is shown in Fig. 5.30, Fig. 5.33 and Fig. 5.36 for Instagram,

Flicrk and Pinterest, respectively.
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Figure 5.25 The validation accuracy for Glorot Uniform Initialization vs. Glo-
rot Normal Initialization(Instagram)

Figure 5.26 The training loss for Glorot Uniform Initialization vs. Glorot Nor-
mal Initialization(Flickr)
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Figure 5.27 The validation loss for Glorot Uniform Initialization vs. Glorot
Normal Initialization(Flickr)

Figure 5.28 The validation accuracy for Glorot Uniform Initialization vs. Glo-
rot Normal Initialization(Flickr)
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Figure 5.29 The validation score difference between VGG and LeNet for
TFE(Instagram)

Comparison Infusing RNN and Fully Connected Architecture

Our RNN inputs contextual information at every step of RNN to mitigate

the vanishing gradient problem. Its effectiveness was also reported in different

domains; Mikolov et al . [73] shows that language modeling performance is

improved by continuous input of real-valued vectors to every step of RNN

models. We also tested a variant as the context is fed into the fully-connected

layer and observed a decrease of validate accuracy by 6.7%p.

5.6 Results

We summarize the results of three tasks of text detection, cropped-word recog-

nition, and end-to-end recognition in Table 5.1 through Table 5.9. We test two

variants of our CTSN with or without the context to quantize the performance

gain by the use of context. We observe that the context indeed helps enhance

the performance.
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Figure 5.30 The comparison of training loss for TFE(Instagram)

Detection. For text detection, our approach with context significantly

outperforms other state-of-the-art baselines with large margins (e.g . a higher

F1 score by 9.2%p than the best baseline (TER) for Instagram). The improve-

ment by our CTSN comes from using the local context, which suppresses false

positives significantly with a little loss of detection sensitivity. This property

coincides with the result that the CTSN relatively attains a higher score for

precision than recall.

Cropped Word Recognition. The goal of cropped-word recognition is

to recognize the word for a given clearly cropped word image. This evaluation

quantifies the recognition ability of each method. Our approach achieves better

performance than all the baselines, as shown in Table 5.4 through Table5.6.

We summarizes the comparative results between our method and three state-

of-the-art baselines. As the CTSN can handle variable lengths of words, the

words can preserve their aspect ratio and it will help the get higher response

from neural network which is trained by the standard character set. The con-
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Figure 5.31 The comparison of validation loss for TFE(Instagram)

text information improves performance by excluding the out-of-topic words

from the algorithm’s consideration. In other words, the metadata of an online

image provide topic-level information, which is useful in predicting the words

embedded in the image. The performance increase of recognition by the con-

text is less significant (3.1% for Instagram) than that of detection (26.3%). It is

partly due to that our word recognizer already achieves high accuracy (87.3%),

and thus the context has less room for the improvement of recognition than

detection.

End-to-End. The end-to-end task involves both word localization and

recognition from input images. That is, algorithms should accomplish both

tasks, to be counted as a success. Table 5.7 assures that our method outper-

forms all the baselines for both datasets (e.g . higher by 17.1%p than the best

(TER) for Instagram).

Repeatability Table 5.10, Table 5.11 and Table 5.12 summarizes the re-

sults of detetion, cropped word recognition, and end-to-end repetition exper-
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Figure 5.32 The validation score difference between VGG and LeNet for the
TFE(Flickr)

Method
Instagram

Rec. Prec. F1

(TER)[80] 37.3 60.1 46.3
(TFAST)[7] 64.7 8.0 14.2

CTSN w/o context 45.0 21.6 29.2
CTSN w context 65.2 48.3 55.5

Table 5.1 The results of text detection with precision, recall, F1 scores for Instagram
datasets.

iments. Detection is compared with TER, cropped word recognition is com-

pared with TCRNN, and end-to-end result is compared with TER. An ex-

periment is performed on the Instagram dataset. In the case of detection, the

proposed method averages 5.1%p higher. The standard deviation is 1.5. The

average cropped word recognition is 1.6%p higher. The standard deviation is

1.3. The end-to-end test result is 9.5%p higher.

Qualitative Results. Fig.5.1 illustrates some selected examples of text

spotting, with a high variation of locations, fonts, and sizes of text. We depict

successful detections with green boxes and failures with blue boxes. As shown
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Figure 5.33 The comparison of training loss for TFE(Flickr)

Method
Flickr

Rec. Prec. F1

(TER)[80] 54.9 37.5 44.6
(TFAST)[7] 70.1 10.1 17.6

CTSN w/o context 51.2 25.5 34.0
CTSN w context 55.1 55.9 55.5

Table 5.2 The results of text detection with precision, recall, F1 scores for Flickr
datasets.

in the examples, online images often contain a long sequence of words embed-

ded by users with a high variation of locations, fonts, and sizes. The failure

cases include word splitting errors, part-only detections, missed detections of

low-contrast fonts, and wrong word recognition.
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Figure 5.34 The comparison of validation loss for TFE(Flickr)

Method
Pinterest

Rec. Prec. F1

(TER)[80] 37.9 72.7 49.8
(TFAST)[7] 67.7 12.0 20.4

CTSN w/o context 42.2 23.2 29.9
CTSN w context 46.2 57.7 51.3

Table 5.3 The results of text detection with precision, recall, F1 scores for Pinterest
datasets.

Method Instagram

(TPS) [105] 23.4
(TCNN) [109] 50.6
(TCRNN) [92] 87.1

CTSN w/o context 87.3
CTSN w context 90.4

Table 5.4 The accuracy of cropped word recognition for Instagram datasets.

Method FLICKR

(TPS) [105] 38.2
(TCNN) [109] 55.3
(TCRNN) [92] 88.7

CTSN w/o context 90.3
CTSN w context 93.0

Table 5.5 The accuracy of cropped word recognition for Flickr datasets.
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Figure 5.35 The validation score difference between VGG and LeNet for the
TFE(Pinterest)

Figure 5.36 The comparison of training loss for the TFE(Pinterest)

Method Pinterest

(TPS) [105] 20.1
(TCNN) [109] 47.4
(TCRNN) [92] 86.2

CTSN w/o context 88.5
CTSN w context 90.3

Table 5.6 The accuracy of cropped word recognition for Pinterest datasets.
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Figure 5.37 The comparison of validation loss for the TFE(Pinterest)

Method
Instagram

Rec. Prec. F1

(TPS)[105] 15.3 7.8 10.3
(TER)[80] 23.4 29.8 26.2

(TCNN)[109] 4.1 18.7 6.8

CTSN w/o context 40.7 12.3 18.9
CTSN w context 39.2 48.3 43.3

Table 5.7 The results of end-to-end recognition with precision, recall, F1 scores for
Instagram datasets.

Method
FLICKR

Rec. Prec. F1

(TPS)[105] 19.6 10.2 13.4
(TER)[80] 23.6 27.2 25.3

(TCNN)[109] 7.7 16.7 10.5

CTSN w/o context 29.9 15.0 20.0
CTSN w context 32.5 50.9 39.7

Table 5.8 The results of end-to-end recognition with precision, recall, F1 scores for
Flickr datasets.
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Method
Pinterest

Rec. Prec. F1

(TPS)[105] 12.8 10.5 11.5
(TER)[80] 16.2 31.0 21.3

(TCNN)[109] 4.5 15.2 6.9

CTSN w/o context 22.3 17.9 19.9
CTSN w context 23.4 57.7 33.3

Table 5.9 The results of end-to-end recognition with precision, recall, F1 scores for
Pinterest datasets.
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go 
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never 
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make 
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Figure 5.38 Examples of text detection and recognition for Instagram with
true positives in green, detection successes but recognition failures in blue,
and detection failures in yellow.
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Figure 5.39 Examples of text detection and recognition for Flickr with true
positives in green, detection successes but recognition failures in blue, and
detection failures in yellow.

Figure 5.40 Examples of text detection and recognition for Pinterest with true
positives in green, detection successes but recognition failures in blue, and
detection failures in yellow.
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Count
TER CTSN

Rec. Prec. F1 Rec. Prec. F1

(1) 37.7 60.1 46.3 48.3 65.2 55.5
(2) 40.9 65.2 50.2 47.2 71.6 56.9
(3) 41.6 62.2 49.9 51.8 60.4 55.8
(4) 38.7 62.7 47.9 46.1 65.5 54.1
(5) 39.3 63.4 48.5 48.7 58.0 52.9

mean 41.6 62.2 49.9 48.2 64.1 55.0
std 1.6 1.9 1.6 2.1 5.2 1.5

Table 5.10 The repeatability of text detection with precision, recall, F1 scores for
Instagram datasets.

Count
TCRNN CTSN
Accuracy Accuracy

(1) 87.1 90.4
(2) 87.0 87.9
(3) 90.4 90.9
(4) 88.4 89.6
(5) 89.2 91.0

mean 88.4 90.0
std 1.4 1.3

Table 5.11 The repeatability of cropped word recognition for Instagram datasets.
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Count
TER CTSN

Rec. Prec. F1 Rec. Prec. F1

(1) 23.4 29.8 26.2 39.2 48.3 43.3
(2) 30.2 39.7 34.3 30.7 57.3 40.0
(3) 26.8 42.1 32.8 33.7 51.3 40.7
(4) 23.0 40.5 29.3 30.0 55.7 39.0
(5) 27.1 39.1 32.0 31.7 49.3 38.6

mean 26.1 38.2 30.9 33.0 53.1 40.4
std 3.0 4.9 3.2 3.7 3.9 1.9

Table 5.12 The repeatability of end to end with precision, recall, F1 scores for In-
stagram datasets.
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Chapter 6

Conclusion

We proposed the contextual text spotting network (CTSN) model to detect

and recognize of text embedded in online images. We designed a neural network

model that takes advantage of context information: local neighbor patches for

detection and metadata associated with images for recognition. With quanti-

tative evaluation on newly collected Instagram and Flickr dataset, we showed

that our CTSN achieved better performance than other state-of-the-art meth-

ods. One important future direction that go beyond this work is to improve

detection accuracies for natural scene images that include fewer and less dense

words. Another future work is to detect and recognize the embedded text in

videos.
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요약

본 논문은 mobile 영상 촬영기기 및 휴대폰의 증가에 따라 급격히 늘어나고 있는

Internet 상의 영상에서, 사용자가 전하고자 하는 의미나 메시지를 더 잘 표현

하고자 추가한 Text를 검출하고 인식하는 문제를 다루고 있다. 검출을 위해서는

Text내의 연속적인 Character 들을 Context 정보로 활용하고, 영상에 동반되는

metadata, 즉, title, tag, comment 등을 Context 정보로 활용하여 인식한다. 이

러한두가지 Context정보들이 Neural Network Frame내에서활용될수있도록

Contextual Text Spotting Network을 제안하였다. 제안된 방법의 검증을 위해

서 Internet 상 Social Network Service의 영상 및 관련 metadata를 수집하였고,

이러한 영상들에 대해서 제안된 방법으로 검출 및 인식 실험을 수행한 결과 기존

방법들보다 우수한 성능을 보였다.

주요어: 텍스트 검출, 텍스트 인식, 문맥 모델, 딥러닝

학번: 2013-30218
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