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Abstract

A number of surveillance cameras have been installed for safety and security in actual

environments. To achieve a human-level visual intelligence via cameras, there has been much

effort to develop many computer vision algorithms realizing the various visual functions from

low level to high level. Among them, the moving object detection is a fundamental function

because the attention to a moving object is essential to understand its high-level behavior.

Most of moving object detection algorithms in a fixed camera adopt the background-centric

modeling approach. However, the background-centric approach does not work well in a mov-

ing camera because the modeling of moving background in an online way is challengeable.

Until now, most algorithms for the object detection in a moving camera have relied on the

object-centric approach using appearance-based recognition schemes. However, the object-

centric approach suffers from the heavy computational complexity. In this thesis, we propose

an efficient and robust scheme based on the background-centric approach to detect moving

objects in the dynamic background environments using moving cameras. To tackle the chal-

lenges arising from the dynamic background, in this thesis, we deal with four problems: false

positives from inaccurate camera motion estimation, sudden scene changes such as illumi-

nation, slow moving object relative to camera movement, and motion model limitation in a

dashcam video.

To solve the false positives due to motion estimation error, we propose a new scheme to

improve the robustness of moving object detection in a moving camera. To lessen the influ-

ence of background motion, we adopt a dual-mode kernel model that builds two background

models using a grid-based modeling. In addition, to reduce the false detections and the miss-

ing of true objects, we introduce an attentional sampling scheme based on spatio-temporal

properties of moving objects. From the spatio-temporal properties, we build a foreground
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probability map and generate a sampling map which selects the candidate pixels to find the

actual objects. We apply the background subtraction and model update with attention to only

the selected pixels.

To resolve sudden scene changes and slow moving object problems, we propose a situation-

aware background learning method that handles dynamic scenes for moving object detection

in a moving camera. We suggest new modules that utilizes situation variables and builds a

background model adaptively. Our method compensates for camera movement and updates

the background model according to the situation variables. The situation-aware scheme en-

ables the algorithm to build a clear background model without contamination by the fore-

ground.

To overcome the limitation of motion model in a dashcam video, we propose a prior-

based attentional update scheme to handle dynamic scene changes. Motivated by the center-

focused and structure-focused tendencies of human attention, we extend the compensation-

based method that focuses on the center changes and neglects minor changes on the important

scene structure. The center-focused tendency is implemented by increasing the learning rate

of the boundary region through the multiplication of the attention map and the age model.

The structure-focused tendency is used to build a robust background model through the model

selection after the road and sky region are estimated.

In experiments, the proposed framework shows its efficiency and robustness through

qualitative and quantitative comparison evaluation with the state-of-the arts. Through the

first scheme, it takes only 4.8 ms in one frame processing without parallel processing. The

second scheme enables to adapt rapidly changing scenes while maintaining the performance

and speed. Through the third scheme for the driving situation, successful results are shown

in background modeling and moving object detection in dachcam videos.

Keywords: moving object detection, background modeling, moving camera, visual surveil-

lance

Student Number: 2010-20847
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Chapter 1

Introduction

1.1 Background

Many and various types of surveillance cameras are installed and developed for safety and

security in many environments such as a kindergarten, a back street, an airport, and so on.

However, human resources for monitoring these videos are limited compared with many

installed cameras. For this reason, an intelligent visual surveillance system that helps the

monitoring using computer vision technique is one of active research. Although the kind

of intelligent visual surveillance system is diverse along the target application, this system

mainly includes detection, tracking, and understanding tasks. The detection task is the funda-

mental task to find objects of interest, which are mostly moving objects. Next, in the tracking

task, the detected objects are tracked using motion and appearance information of objects.

Finally, in the understanding task, the activity or interaction between objects are modeled,

and the outliers from the learned model are detected as unusual/abnormal events. As shown

in Figure 1.1, when security guards monitor multiple cameras at the same time, the intelligent

visual surveillance system helps them. The region of interest where a moving object appears
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Detection task Tracking task Understanding task

Intelligent Visual surveillance system 

Figure 1.1: The usage of the intelligent visual surveillance system. Because security guards

cannot monitor a number of cameras at the same time, the intelligent visual surveillance

system helps them. From the low-level task (detection) to the high-level task (understanding),

various algorithms help the monitoring to cope with the crime/incident.

is detected, and then this target object is tracked with automatic camera control. Then, when

these objects behave suspiciously or unusually, this system informs security guards that an

abnormal event occurs automatically to cope with the crime/incident. Although the under-

standing task is an ultimate objective for an ideal intelligent surveillance, it is limited to

several scenarios and is not practical in real-environment until now. However, the detection

task is more a general and fundamental work to support other tasks, so we tackle the detection

task that finds moving objects in a video.

Before we introduce the related works, we mention the issues of moving object detec-

tion for a practical application for visual surveillance. First, the detection algorithm should

run in real-time and an online manner. The online algorithm issue means that the detection

algorithm generates an output immediately without future observations. Although there are

retrieval systems that run in a batch manner using whole observations, the instant response

to the crime/incident is important in the visual surveillance system. Second, the algorithm
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should cope with various unimportant scene changes like sudden illumination changes. Be-

cause the surveillance video is influenced by both weather or camera state, and the detection

algorithm should be robust to these disturbances. Third, the algorithm should be applicable

to various surveillance camera platform. Since the platform of monitoring cameras has been

diversified such as drone camera, dashcam on a vehicle, pan-tilt-zoom camera, and a mobile

phone camera, the detection algorithm for moving object should be operated well on these

videos.

3



1.2 Related works

Detecting moving objects in a video is a fundamental problem in image processing and com-

puter vision. There are two main approaches for moving object detection: the object-centric

approach and the background-centric approach. The object-centric approach [2–11] focuses

on modeling the target object using the appearance and motion coherence of the object. An-

driluka et al. [2] tried to build a motion model for target moving object. Jung and Kim [6]

extracted the object using the visual saliency. The other methods [3–5,7–11] are mainly based

on the image segmentation techniques. Since semi-supervised segmentation techniques like

GrabCut have been achieved success in an image, these methods are extended to find objects

in a video. Figure 1.2 shows the example of the object-centric method [9] that preserves a

detailed boundary of the moving object. However, the semi-supervised methods need initial

seed regions that indicate coarse object regions. Therefore, this approach requires the first ob-

ject position as an input or makes some assumptions about the target object such as a primary

object. The object-centric approach shows good performances in that it preserves the object

boundary when the primary object is noticeable. However, this approach performs poorly

when target objects are small and numerous. Figure 1.3 shows fail cases of state-of-the-art

object-centric methods. As shown in the third row of Figure 1.3, the large regions around the

object are falsely detected as a foreground. As shown in the fourth row of Figure 1.3, the

algorithm often misses the small object. Also, it is difficult to handle long videos because

the appearance of the target object is entirely changed in the scene and only short videos can

be tested in the batch manner algorithms. Moreover, it has a high computational complex-

ity, which makes this approach unsuitable for real-time applications. According to the recent

benchmark paper, even the fast algorithm [11] takes 12 seconds, and other method [10] takes

around three minutes.

The background-centric approach focuses on the modeling of background regions that

exclude the target object region. This approach assumes that background pixels have a sim-
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Figure 1.2: The example results from the object-centric method [9].

Input Image

Ground truth

FVS

MoSeg

Figure 1.3: The fail cases of state-of-the-art object-centric methods: each row shows input

frames, ground truths, FVS results [12], and MoSeg results [7], respectively.
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(a) input image (b) mean of the background model

(c) variance of the background model (d) foreground result

Figure 1.4: The example results of background modeling using the Gaussian mixture model

(GMM) [13, 14] in the background-centric approach.
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ilar color (or intensity) over time in a fixed camera, and the background model is built on

this assumption. The background is abstracted from the input image, and the foreground

(moving objects) region is determined by marking the pixels in which a significant difference

occurs. This technique is known as background subtraction. Many background subtraction

algorithms have been proposed and have achieved success in performance with low compu-

tations.

Background modeling schemes can be categorized as those which uses the moving aver-

age [15,16], the Gaussian mixture model (GMM) [17–21], kernel density estimation (KDE) [22],

the codebook model [23, 24], a network approach [25–29], a low-rank representation [30],

and a sample consensus approach [31–34]. Several works [35–37] have evaluated the perfor-

mances of various background subtraction methods with independent benchmark datasets.

Except for the low-rank representation methods that need full frames, most of the back-

ground modeling methods run in an online manner and satisfy the real-time requirement.

Figure 1.4 shows the example result of the background-centric approach in a fixed camera.

The background model is built as shown in Figure 1.4(b)-(c) by an unsupervised method, and

the moving object region is obtained as shown in Figure 1.4(d).

However, in a moving camera situation, the assumption of background modeling is bro-

ken because the background region also moves due to the camera movement. Hence, in order

to build the background model and detect moving objects via a moving camera, an additional

process is required to handle the camera motion. As the first approach for the moving cam-

era, a panorama-based approach has been tried by using a stitched panoramic image captured

by the moving camera [38–43]. This approach generates a large panorama background cov-

ering the entire view of a moving camera and then subtracts the background from an input

image. The advantage of this approach is that we can directly utilize the existing background

subtraction methods developed for a fixed camera without modification for a moving camera.

This panorama-based approach works well with cameras whose range of view is limited,

such as the PTZ camera. However, this approach cannot be applied to cameras mounted

7



(a)

(b)

Figure 1.5: The problems of the panorama-based approach: (a) Localization problem. (b)

Side region distortion after stitching.

on high-mobility units, such as vehicles and drones, because it is impossible to generate a

panorama covering the entire range of movement. Moreover, it suffers error accumulation

problem caused by stitching errors and needs a considerable amount of memory. Figure 1.5

shows the problems of the panorama-based approach. It has the localization problem to find

the matched position in the current view and the stitching distortion problem as shown in the

blue circles of Figure 1.5(b).

Recently, to overcome the problems in the panorama-based approach, a compensation-

based approach has been proposed to utilize the influence of camera motion for the online

learning of the background model without generating a panorama [44–49]. Because camera

motion leads to background motion, this approach finds a transformation matrix that indicates

the displacements of two consecutive frames caused by the camera movement. The back-
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ground models are warped to compensate for the camera motion, after which the foreground

is detected by subtracting the warped background. This approach requires low computation

and a small amount of memory, so it is effective when utilized for moving object detection,

even with a moving camera. Because of these strengths, our method is also developed based

on the compensation-based approach.

However, the simple combining of existing background subtraction methods with mo-

tion compensation is linked to two problems arising from the movement of the camera. The

main problem arises from an inaccurate estimation of camera motion from the image se-

quences, leading to many false positives related to the compensation error. Previous works

on the compensation-based approach attempted to reduce false alarms arising from incor-

rect estimations of camera motions. Kim et al. [44] proposed spatio-temporal learning which

considers neighboring pixels. Yi et al. [45] proposed a block-based dual-mode kernel model

which builds acting and standby model using average block intensity. Kim et al. [46] used

feature clustering and a scatteredness measure to separate the foreground and the background.

López-Rubio and López-Rubio [47] proposed a stochastic approximation method which in-

terpolates full covariance matrices of the background model. Hu et al. [48] combined multiple

object tracking in foreground regions, and Minematsu et al. [49] measured the performances

according to estimation methods for camera motion. Although these advances can reduce

the number of false positives from incorrect estimations of the motion of the camera, several

issues remain unsolved. Therefore, in order to solve remaining issues on the compensation-

based approach, we propose the unified framework containing the dual-modeling with atten-

tional sampling, situation-aware background learning, and prior-based attentional update for

dashcam video.
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1.3 Contributions

In this thesis, we propose a new framework for detecting moving objects in a moving cam-

era to tackle the challenges arising from the dynamic background. First, we propose a new

scheme to accelerate moving object detection using the dual-mode modeling with attentional

sampling that utilizes the spatio-temporal properties of moving objects. We build the fore-

ground probability map which reflects the spatio-temporal properties, then we selectively

apply the detection procedure and update the background model corresponding to the se-

lected pixels using the foreground probability. Through this scheme, the algorithm speed is

accelerated, and the false positives are reduced effectively.

Second, we propose a moving object detection algorithm that adapts to various scene

changes in a moving camera. In the moving camera scene, both backgrounds and objects are

moving while the level of illumination in general varies frequently. To handle these scene

changes, we propose a situation-aware background learning scheme that adaptively updates

the background according to how the scene changes. First, we estimate the three situation

variables of background motion, foreground motion and illumination changes for an aware-

ness of situation changes in the moving scene. We then compensate for the camera move-

ment and update the background model in different ways according to the situation changes.

Lastly, we propose a new foreground decision method with a foreground likelihood map, two

thresholds, and a watershed algorithm to generate a spatially connected foreground region.

This situation-aware background learning scheme enables to adapt dynamic scene changes

while maintaining the performance and speed.

Third, we propose a moving object detection algorithm for a monocular dashcam mounted

on a vehicle. To deal with dynamic changes of the scene from the dashcam, we propose a new

scheme inspired by human-attention inclination for change detection. Humans do not build

a detailed visual representation and perceive a change of the scene based on the structure of

an interesting region. In this perspective, our method focuses on a sky and road region of the
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scene and builds an abstracted background model, which is updated with a spatially adap-

tive learning rate according to the center-focused tendency of the human gaze. Through the

scheme for the driving situation, we have achieved successful results in background modeling

and moving object detection in dachcam videos.

1.4 Contents of Thesis

In chapter 2, as for the problem statements, we explain the background-centric method that

finds a moving object in a fixed camera in chapter 2.1, and mention the problems arising

when the background-centric methods are applied for a moving camera. Chapter 3 addresses

the dual-mode modeling with attentional sampling to make robust and fast moving object de-

tection in a moving camera. In chapter 4, we propose a situation-aware background modeling

for adapting to various scene changes in a moving camera. Chapter 5 presents a prior-based

attentional update to detect moving objects in a monocular dashcam mounted on a vehicle.

In chapter 6, we show the experimental results through both the qualitative and the quantita-

tive comparisons and introduce the application with recognition algorithm. In chapter 7, we

summarize the contributions of this thesis and briefly mention the future research directions.

Also, we will call our target problem as “moving camera detection” in short or “MCD” as

an abbreviated form. That is, the MCD on the algorithm name indicates the moving object

detection in a moving camera.
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Chapter 2

Problem Statements

2.1 Background-centric approach for a fixed camera

We introduce a surveillance scenario that monitors crossroads as shown in Figure 2.1(a). In

this case, moving objects are of interest and the rest such as a stationary region is not of

interest. Here, the background is defined as a stationary region and the foreground is defined

as a moving region or changing regions in a scene. If an intelligent surveillance system builds

a background image as shown in Figure 2.1(b), we can obtain the regions of moving objects

as shown in Figure 2.1(c) by subtracting the background (Figure 2.1(b)) from the input image

(Figure 2.1(a)). After we give a label to each moving region in Figure 2.1(c), we obtain final

moving object regions as shown in Figure 2.1(d). Mathematically, the foreground image F is

obtained by

F (x, y, t) =


1 if |I(x, y, t)−B(x, y, t)| > T

0 otherwise,
(2.1)

where I(x, y, t) and B(x, y, t) are intensities of input image and background on the position

(x, y) at time t respectively, and T is a threshold parameter.
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(a) (b)

(c) (d)

Figure 2.1: Moving object detection framework using background modeling. When an input

frame is given as (a), the background image is built as (b). By subtracting the input frame (a)

and the background (b), we can obtain the region containing moving objects like (c). After

each moving object is labeled based on (c), we detect the moving object as (d).
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Previous works have focused on how to build a background B(x, y, t) automatically in

a video. The background image is not fixed but should be adapted to illumination changes

(both gradual and sudden), uninteresting changes (such as tree branches), and changes in

background geometry (such as parked cars). Also, the background modeling methods should

consider the complexity, speed, memory, and accuracy. As a simple approach, when the back-

ground B(x, y, t) can be set to a mean of the previous n frames like

B(x, y, t) =
1

n

n−1∑
i=0

I(x, y, t− i), (2.2)

or a median of the previous n frames like

B(x, y, t) = median{I(x, y, t− i)}, i ∈ {0, ..., n− 1}. (2.3)

Although the background B in equation (2.2)-(2.3) can be easily implemented, it requires

high memory to keep the previous frames for handling the background changes over time. To

reduce the memory requirement, the mean background model can be introduced by a running

average as

B(x, y, t) =
t− 1

t
B(x, y, t− 1) +

1

t
I(x, y, t), (2.4)

or more generally,

B(x, y, t) = (1− α)B(x, y, t− 1) + αI(x, y, t), (2.5)

where α is called as a learning rate. As an initial work, Koller et al. [50] suggested a

new update form to update only the background region using previous foreground image

F (x, y, t− 1) as

B(x, y, t) = F (x, y, t−1)B(x, y, t−1)+(1−F (x, y, t−1)((1−α)B(x, y, t−1)+αI(x, y, t)).

(2.6)

When B(x, y, t) indicates the mean background model, we will use µ(t) instead of B(x, y, t)

for convenience in the following.
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The memory issue is resolved through the running average, but the issue for threshold

remains. The threshold T in equation (2.1) that decides a sensitivity of change should be dif-

ferent along the position. For example, the region containing waving trees should be less sen-

sitive to change because the background color of trees itself fluctuate and so these changes are

uninteresting changes. In other words, the sensitivity of the change is decided by the statis-

tical property of background intensity. Therefore, a histogram-based method is first adopted

to estimate the statistical distribution of background intensity changes over time. Wren et

al. [51] fit one Gaussian distribution with mean and variance over the histogram. This distri-

bution gives the probability density function (pdf ) of a background and is updated through

the running average form as

µi
(t) = (1− α)µ

(t−1)
i + αI

(t)
i , (2.7)

σi
2 (t) = (1− α)σ

2 (t−1)
i + α(I

(t)
i − µi

t)T (I
(t)
i − µi

t), (2.8)

where I
(t)
i is an intensity of input image and α is a learning rate. µi

(t) and σi
(t) are a mean

and variance of background model of i-th pixel at time t, respectively. To decide a foreground

fast, the decision is simply done instead of the probability calculation from the Gaussian pdf,

that is,

Fi
(t) =


foreground if (I

(t)
i −µ

(t)
i )

2

σ
2 (t)
i

> T,

background otherwise.
(2.9)

If I
(t)
i is multi-dimensional features like a color, the variance σ

2 (t)
i should be changed to

covariance model
∑(t)

i . However, most works assume that each channel of input is indepen-

dent for a computational efficiency, so we simplify the case as the value of I(t)i is scalar as

equation (2.7)-(2.8).

Then, to cope with multimodal background distributions, the background modeling using

the mixture of Gaussian models (GMM) is proposed [13]. In the GMM method, the observed

features are modeled by a mixture of K Gaussian kernels. For each position in an image, the
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background probability of an input feature (color) x is given by

P (x) =
K∑
k=1

wkη(x, µk,Σk) (2.10)

η(x, µk,Σk) =
1

(2π)n/2|Σk|1/2
e−

1
2
(x−µk)

TΣk
−1(x−µk) (2.11)

where K is the number of Gaussian models, and wk is the weight of k-th Gaussian model.

The k-th model η(x, µk,Σk) is the Gaussian kernel with µk and Σk as a mean and a co-

variance matrix of k-th model, respectively. P (x) is the weighted sum of Gaussian kernels

η(x, µk,Σk). For the computational efficiency, each dimension of features is assumed to be

independent to each other and the covariance has a form of

Σk = σ2
dI, (2.12)

where d indicates each dimension of the feature. Then, by calculating the likelihood of the

learned Gaussian models, we update the parameters of the Gaussian model with the highest

likelihood. The Gaussian model with brings the highest likelihood is called as the matched

Gaussian model. The update for matched Gaussian model is same to equation (2.7)- (2.8).

The mixture weight of the k-th Gaussian is adjusted by

wk ← (1− βk)wk + βk(Mk). (2.13)

where βk is the learning rate of the k-th weight and Mk is the matching indicator which has

1 for the matched model and 0 for remaining models. After weights are updated, the weights

are normalized.

2.2 Problem statements for a moving camera

The background-centric approach in a fixed camera assumes that the background is more

likely to appear, and so mean or median value of previous observations can represent the

background model for each position. However, when the camera is moving, the assumption
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is broken, so we should modify the background model to handle a camera movement. To

compensate the motion of the background, we should estimate the camera motion through

the scene information from the video. If further information is given from the hardware sensor

such as gyro, it can help to calculate the camera movement. In this thesis, we only use video

input to estimate the camera movement. The basic idea for camera motion estimation is

similar to image stitching [52]. From two consecutive images, we can find corresponding

points and stitch two images. In the process of stitching, the relation between two images is

represented a transformation matrix, and this matrix can be regarded as the estimated camera

motion.

For the mathematical description, the input frame converted to a gray scale image is

denoted by I(t) at time t. We calculate the velocity vector of each position based on the

brightness constancy assumption that the projection of the same point looks same in every

frame. It is called as the brightness constancy assumption expressed as

I(t+1)(x+ u, y + v) = I(t)(x, y), (2.14)

where (u, v) is the displacement/velocity of the position (x, y). Although the velocities of all

positions can be calculated by the dense optical flow algorithm [53, 54], it is inefficient due

to the large computations. Therefore, we use the Lucas-Kanade tracker [55] on the uniformly

sampled positions for velocity estimation. However, these velocities are also obtained in a

moving object region, so we assume that the background region is larger than the foreground

region. Therefore, we find a transformation matrix to satisfy equation (2.14) as many sam-

ples as possible. The camera motion (i.e., background motion) is represented by a projective

transform matrix Ht:t−1 obtained by

[X
(t)
1 , X

(t)
2 , ...] = Ht:t−1[X

(t−1)
1 , X

(t−1)
2 , ...], (2.15)

where

X
(t−1)
i = (xi, yi, 1)

T , X
(t)
i = (xi + ui, yi + vi, 1)

T . (2.16)
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Figure 2.2: The conventional framework of the compensation-based approach. Based on the

Single-Mode Kernel background modeling, the camera motion estimation and the motion

compensation are newly added for a moving camera.

In solving (2.15), at least four corresponding points are required, and outliers are removed

using the RANSAC [56] algorithm.

In conclusion, the Ht:t−1 indicates the position mapping between I(t) and I(t−1). In case

of a fixed camera, the Ht:t−1 becomes the identity matrix. Using the Ht:t−1, the background

model at time t− 1 is warped, and the warped background model is used in the background

subtraction.

The clear parts in Figure 2.2 shows the conventional baseline method of the compensation-

based approach for moving camera moving object detection while the hazy parts are the

proposed schemes to cope with the problems stated in the following. In addition to the

background subtraction methods for a fixed camera, the baseline method adopts the cam-

era motion estimation and motion compensation modules to cope with the camera move-
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Figure 2.3: The first problem from the naive extension of background subtraction for fixed

camera: false positives around edges.

ment. Through this motion compensation, most methods of background subtraction can be

extended for a moving object detection in a moving camera.

However, naive extension with background subtraction for moving camera suffers four

problems as shown in Figure 2.3–Figure 2.6. The first problem is many false positives be-

cause of inaccurate camera motion estimation. As shown in Figure 2.3, many false positives

around edges occur. Near the region having strong edges, false positives occur if one pixel is

deviated by the compensation error. The second problem is the detection quality degradation

from sudden scene changes. For example, a sudden change of illumination occurs more fre-

quently with a moving camera than with a fixed camera as shown in Figure 2.4. In this case,

a large portion of the background is falsely detected as foreground during the change. This

situation occurs in most digital cameras when using the auto exposure function to control

the overall brightness. The third problem arises when an object moves slowly relative to the

movement of the camera. The foreground motion is not distinguishable from the background

motion, which causes a severe foreground loss as shown in Figure 2.5. The fourth problem is

the limitation of the homography model when the video is captured by the complex camera

motion such as dashcam. Since the homography motion model cannot represent the forward
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Figure 2.4: The second problem from the naive extension of background subtraction for fixed

camera: sudden scene changes such as illumination.

Figure 2.5: The third problem from the naive extension of background subtraction for fixed

camera: slow moving object relative to camera movement.

motion well, false positives and foreground missing problems occur as shown in Figure 2.6.

To solve the aforementioned problems, we propose the integrated framework as shown in

Figure 2.7. This framework contains three main parts: dual-mode modeling with attentional

sampling (red boxes and arrows), situation-aware background learning (green boxes and ar-

rows), and prior-based attentional update for dashcam video (blue boxes and arrows). The

dual-mode modeling with attentional sampling is proposed to solve the false positive prob-

lem as shown in Figure 2.3 remarked as the first problem. The situation-aware background
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Figure 2.6: The fourth problem from the naive extension of background subtraction for fixed

camera: the limitation of homography model in a dashcam.
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Figure 2.7: The proposed framework of the background-centric method for moving object

detection in moving cameras.
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learning is suggested to adapt sudden scene changes and handle the slow moving object

problem as shown in Figure 2.4 and Figure 2.5. Lastly, the prior-based attentional update is

proposed to cope with the problem in a dashcam as shown in Figure 2.6.
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Chapter 3

Dual-mode modeling with
Attentional Sampling

In the MCD problem, it is important to achieve a computational efficiency as well as detection

accuracy. In terms of accuracy, the object-centric methods are recommended, but they take

a few seconds per frame and sometimes produce total failures. Therefore, the background-

centric approach using motion compensation, which compensates the camera movement to

fit the previous model to the current image, is preferred for practical application. However,

as mentioned as the first issue in the problem statements, most of the background-based al-

gorithms use a simple camera model because of the computation issues, so many false detec-

tions occur at image boundary due to inaccurate estimation of camera movement. While the

existing works [44–46] reduced many false detections and achieved real-time performances,

they also lose a true object region as a side effect and still show poor performance in drastic

frame changes.

In this chapter, we propose a new scheme to improve the robustness of the compensation-

based method. This scheme reduces the loss of true object region and the false detections in

drastic changes as well as maintaining real-time performance by adopting the grid-based
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modeling. Our most important insight is that we can figure out the moving objects and

the compensation errors through the occurrence pattern of the foreground. While errors and

noises flicker in temporal domain and are isolated in the spatial domain, the foreground region

of moving objects appears coherently in the spatio-temporal domain. Therefore, our main

idea is to use these spatio-temporal properties of moving object occurrence. The proposed

scheme is realized by a novel sampling strategy based on the probability of the foreground

occurrence using the spatio-temporal properties. From the assumption that the objects move

smoothly in consecutive frames, we predict the next positions of objects. To keep the com-

putational efficiency in the prediction, we just use the probability of foreground occurrence

that the objects are likely to appear at the spatial and temporal neighbors instead of accurate

velocity estimation. Through this probability of foreground occurrence, we can distinguish

actual objects and false detections as well as reduce the search space to find the actual posi-

tions of objects. The overall scheme is depicted in red shading parts of Figure 3.1. We first

explain the dual-mode kernel model and motion compensation step and then introduce the

combined method with attentional sampling method.

3.1 Dual-mode modeling for a moving camera

Aforementioned in related works, many state-of-the-arts requires heavy computational loads

where they take a few seconds to a few minutes per frame. For the compensation-based meth-

ods, they satisfied a real-time requirement but shows many errors and noises that arise from

inaccurate motion estimation and compensation. This is a critical reason that we cannot just

simply apply background subtraction algorithms for fixed cameras with simple motion com-

pensation techniques. Stationary camera background modeling algorithms usually focus on

building an accurate model for each pixel. But for the non-stationary case, we cannot guaran-

tee that the model used to evaluate a pixel is relevant to that pixel. Also, in case of the moving

camera, the changes in the scene are numerous by the newly appearing/disappearing region.
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Figure 3.1: The framework for the dual-mode modeling with attentional sampling.
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Therefore, we adopt the dual-mode modeling that contains the age model, the grid-based

modeling, the dual-mode kernel modeling, and the motion compensation by mixing models.

In the following subsections, we explain four modules for adapting the moving background

in a moving camera.

3.1.1 Age model for adaptive learning rate

We introduce the adaptive learning rate called as age model. If a fixed learning rate is used,

the first observed intensity of the pixel becomes an initial mean value. In case of the stationary

camera, incoming observations are not different much to first observation, so the background

model becomes mature under a fixed learning rate. However, in case of the moving camera,

the first observation of a pixel is not similar to the mean value, and the background models

in newly appearing/disappearing regions should be changed quickly. Therefore, we need a

different learning rate spatially and temporally. The concept of temporally varying learning

rate is similar to equation (2.4), and spatially varying rate is decided by a camera motion

Ht:t−1 in equation (2.15). So we define age of a pixel to define a variable learning rate,

where the learning rate is defined as 1/(age + 1). As shown in Figure 3.2, the age indicates

how long the region appear by a camera motion, and mathematically the age α(t)
i of i-th pixel

at time t is defined as

α
(t)
i = α̃

(t−1)
i + 1 (3.1)

where α̃
(t−1)
i is the compensated age by Ht:t−1 (The compensation procedure will be de-

scribed in chapter 3.1.4). Along with this adaptive learning rate, the mean and variance equa-

tion is changed as

µ
(t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

µ̃
(t−1)
i +

1

α̃
(t−1)
i + 1

I
(t)
i , (3.2)

σ
2 (t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

σ̃
2 (t−1)
i +

1

α̃
(t−1)
i + 1

(
µ
(t)
i − I

(t)
i

)2
, (3.3)
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Perception and Intelligence Lab., Copyright  © 2016 35Figure 3.2: The graphical description of the age model. The initial age value is 0. In next

frame, the age of newly appearing region becomes 0, and the age of the remaining region is

increased by 1.

where I
(t)
i is the image intensity of i-th pixel at time t. ∼ indicates that the camera motion is

compensated.

3.1.2 Grid-based modeling

The homography model for camera motion estimation is very efficient, but it has an inevitable

registration error caused by the parallax effect or sub-pixel accuracy. This registration error

makes false positives around motionless edge pixels. As an initial try, these false positives are

removed by considering neighbor pixels in the decision step. Figure 3.3 shows the process

considering neighbor pixels. Originally, the pixel Xt is matched to the pixel Xb by the ho-

mography. Because there is the registration error, we locally find the best-matched pixel X̂b.

In decision and update, X̂b is used instead of Xb for the corresponding point of Xt. This pro-

cedure effectively reduces the false positives from the registration error, but the foreground

loss also occurs as shown in Figure 3.4.
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Figure 3.3: False positive removal by considering neighbor pixels in the foreground decision.

(a) (b) (c)

Figure 3.4: The effect of neighbor pixel consideration. The naive combination of motion

compensation and background modeling produces many false positives as shown in (b). By

considering the neighbor pixels, the false positives can be reduced, but the foreground region

is also eroded as shown in (c).
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Therefore, we adopt the grid-based modeling that builds a coarse and spatially coher-

ent background model. According to the scene representation of human vision [57], human

builds a volatile background that contains overall scene structures. While existing back-

ground modeling builds the pixel-wise detailed background, a compact background is enough

to detect the foreground region. In other words, each grid has a background model and the

pixels in the same grid shares the same background model. It is computationally efficient and

robust to the registration error. First, the input image divided into a same grid of size N ×N .

If the group of pixels in i-th grid at time t is denoted as G(t)
i , the number of pixels in G

(t)
i as∣∣∣G(t)

i

∣∣∣, and the intensity of a j-th pixel at time t as I(t)j , then the mean µ
(t)
i is updated using

the average of pixel intensities in a grid as

µ
(t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

µ̃
(t−1)
i +

1

α̃
(t−1)
i + 1

M
(t)
i , (3.4)

where M
(t)
i is defined as

M
(t)
i =

1

|Gi|
,
∑
j∈Gi

I
(t)
j (3.5)

and µ̃
(t−1)
i indicates the mean model of time t− 1 compensated for use in time t. In case of

the variance, the observation of variance is approximately calculated using the maximum of

the squared deviation from the grid mean as

σ
2 (t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

σ̃
2 (t−1)
i +

1

α̃
(t−1)
i + 1

V
(t)
i , (3.6)

where V
(t)
i is

V
(t)
i = max

j∈Gi

.
(
µ
(t)
i − I

(t)
j

)2
(3.7)

This grid-based model considers the spatial coherence of the pixels and makes an abstracted

background model. Although this model is no longer a Gaussian model, the mean and vari-

ance model play a similar role to a Gaussian model with low computational loads.
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3.1.3 Dual-mode kernel modeling

The background modeling method finds the foreground as the outliers from the trained model.

While the background model becomes mature as time goes on in case of fixed camera, the

background of moving camera changes rapidly for adapting different scenes using high learn-

ing rate. When high learning rates for fast adaptation are used, the data from foreground

pixels can be included, and the background model is contaminated. To solve this problem,

we use a dual-mode kernel model that has a pair of acting and standby model in each grid.

When the observation is given, only one model of a dual-mode kernel model is selected and

updated. The model selection is made by comparing the distance between the average in-

tensity and the mean value of the model. In the update step, the selected model is updated

continually, and its age is increased. Hence, the model with a relatively large age is defined as

the acting model for the grid background, and the other model is defined as a standby model.

However, when a temporal object appears at the grid, the other model is selected and updated

to prevent a corruption due to temporal changes.

Let {µ(t)
A,i, σ

2 (t)
A,i , α(t)

A,i} be the mean, variance, and age for the acting model and {µ(t)
S,i,

σ
2 (t)
S,i , α(t)

S,i} be the mean, variance, and age for the standby model of the i-th grid. Based on

the squared difference between the observed mean M
(t)
i and µ

(t)
A,i, each grid is assigned to

one of three categories. First, i-th grid selects the acting model if the squared difference is

less than a threshold with respect to σ
2 (t)
A,i , i.e.,(

M
(t)
i − µ

(t)
A,i

)2
< θsσ

2 (t)
A,i , (3.8)

where θs is a threshold parameter. In this case, we update the acting model {µ(t)
A,i, σ

2 (t)
A,i ,

α
(t)
A,i} according to equation (3.4), equation (3.6), and equation (3.1). And i-th grid selects

the standby model if the above condition does not hold and if the observed mean matches the

standby background model, (
M

(t)
i − µ

(t)
S,i

)2
< θsσ

2 (t)
S,i , (3.9)
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then we update the standby model {µ(t)
S,i, σ

2 (t)
S,i , α(t)

S,i} according to equation (3.4), equa-

tion (3.6), and equation (3.1). If none of the conditions hold, the standby background model

is initialized with the current observation. The age value of the acting and standby model

indicates the number of selection, if the standby model’s age exceeds the age model’s age,

two models are swapped as

α
(t)
S,i > α

(t)
A,i, (3.10)

and the standby background model is initialized after swapping.

The reason why this swap procedure is used can be explained through the following ex-

ample. When a car is parked on the road, the parked-car region mainly receives the car’s

color information and sometimes gets crossing-pedestrian information in front of the car.

The model having the car’s color becomes the acting model, and the model containing the

pedestrian information becomes the standby model. If the parked car starts to move, new

parking lot information appears, and updates the standby model for a long time, whereas

the acting model stops the update. When the age of the standby model (parking lot) exceeds

that of the acting model (car), the standby model becomes the acting model representing the

new background (parking lot). Figure 3.5 shows the effect of the dual-mode kernel model-

ing. When the conventional single Gaussian model is used, the background is contaminated

by the moving object as shown in Figure 3.5(a). From the dual-mode kernel modeling, the

foreground and background are separated as shown in Figure 3.5(b)-(c).

In the decision step, each pixel is labeled using only the acting model as

l(j) =


foreground if

(I
(t)
j −µ

(t)
A,i)

2

σ
2 (t)
A,i

> θl,

background otherwise,
(3.11)

where j is the pixel index, i is the grid index containing the pixel j, and θl is a thresholding

parameter for the foreground decision.
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(a) background of single Gaussian model

(b) acting model (background) of the dual-mode model

(c) standby model (foreground) of the dual-mode model.

Figure 3.5: The effect of the dual-mode kernel modeling. When the single Gaussian model

is used, the background model is contaminated by the moving object in (a). When the dual-

mode kernel model is used, the background and foreground are separated as (b) and (c).
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3.1.4 Motion compensation by mixing models

From the motion compensation, the background model is warped to align the current frame.

Since the corresponding location at frame t, warped by Ht:t−1 from the location at frame t-1,

can be a floating value, the warped background model at the frame t may not be matched

at the frame t − 1 as shown in Figure 3.6. In this case, the background can be warped by

the nearest neighbor mapping, but the warping by the bilinear interpolation gives an accurate

warped background. For example, we assume that the center location with the grid position

(10, 10) at time t is mapped to the center location with the grid position (5.3, 4.7) at time

t − 1 by the Ht:t−1. When the nearest neighbor warping is used, the model at grid (5, 5) is

used. When the bilinear interpolation is used, the background model of the position (10, 10)

at time t is calculated by the weighted sum of the background model of the neighboring grids

(5, 4), (5, 5), (6, 4), and (6, 5) at time t− 1.

Using equation (2.15) and the matrix inversion, the inverse mapping is obtained by

X
(t−1)
i = H−1

t:t−1X
(t)
i . (3.12)

Let (x, y) be the position of the inversely mapped location at time t − 1 from the i-th pixel

at time t. The black dot in Figure 3.6 shows an example of (x, y). The set of block indices

covering the black dot is defined by

Ri = {(⌊x⌋, ⌊y⌋), (⌊x⌋, ⌈y⌉), (⌈x⌉, ⌊y⌋), (⌈x⌉, ⌈y⌉)}. The warped mean, variance, and age

of the i-th background model at time t are obtained by the weighted sum of those of the four

points in Ri as

µ̃
(t−1)
i =

∑
k∈Ri

wkµk
(t−1), (3.13)

σ̃
2 (t−1)
i =

∑
k∈Ri

wkσk
2 (t−1), (3.14)

α̃
(t−1)
i =

∑
k∈Ri

wkαk
(t−1), (3.15)
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where the weight wk is defined using the rectangle’s area determined by the black dot and

Ri’s points as

w1 =
(⌈x⌉ − x)(⌈y⌉ − y)

(⌈x⌉ − ⌊x⌋)(⌈y⌉ − ⌊y⌋)
, w2 =

(x− ⌊x⌋)(⌈y⌉ − y)

(⌈x⌉ − ⌊x⌋)(⌈y⌉ − ⌊y⌋)
,

w3 =
(⌈x⌉ − x)(y − ⌊y⌋)

(⌈x⌉ − ⌊x⌋)(⌈y⌉ − ⌊y⌋)
, w4 =

(x− ⌊x⌋)(y − ⌊y⌋)
(⌈x⌉ − ⌊x⌋)(⌈y⌉ − ⌊y⌋)

.

(3.16)

The variance is increased at the large gradient region because most false positives arise

due to a misaligned edge from the compensation error. In other words, the warped variance

σ̃
2 (t−1)
i is additionally increased by a squared deviation from the interpolated mean µ̃

(t−1)
i

as

σ̃
2 (t−1)
i = σ̃

2 (t−1)
i +

∑
k∈Ri

wk(µ̃
(t−1)
i −µk

(t−1))2 (3.17)

Figure 3.7 shows the effect of motion compensation by mixing models. When the nearest

neighbor model is selected for a warping the background model, the warped background

becomes a non-smooth background as shown in Figure 3.7(a). As a result, the foreground

result has many false positives due to compensation error as shown in Figure 3.7(b). Through

the motion compensation by mixing models, we can get the smooth background as shown in

Figure 3.7(c) and a clear foreground result as shown in Figure 3.7(d).

3.2 Dual-mode modeling with Attentional sampling

Based on the concept of selective attention [58] for background subtraction in a stationary

camera, we learn the spatio-temporal properties of objects. From the assumption that the

objects appear at the neighbors of the previous detections, we build the probability map of

foreground occurrence as shown in Figure 3.8(e). Then, we restrict the search space using

the sampling map as shown in Figure 3.8(c) obtained from the probability occurrence, and

detect the moving objects as shown in Figure 3.8(d). Lastly, we refine the object region using

foreground probability as shown in Figure 3.8(f), and update the background model and

the next probability of foreground occurrence. In short, our work defines the foreground
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Figure 3.6: Bilinear interpolation for a warping background model. The mean and variance

model of the black dot are calculated by a weighted sum of the neighbor models of quantized

four points. Each weight is proportional to the rectangle area as a bilinear interpolation.

probability based on the occurrence frequency, and utilizes this probability to reduce false

positives and speed up the algorithm through the attentional sampling method.

3.2.1 Foreground probability map based on occurrence

To build a foreground probability map, our assumption is that object movements are smooth

spatially and temporally. According to [58], the foreground pixels tend to have three prop-

erties: temporal, spatial, and frequency properties. The temporal property means that a pixel

is more likely to a foreground if that pixel has been a foreground at the previous time. The

spatial property means that a pixel is highly probable to being a foreground if the neighbor

pixels are a foreground. The frequency property means that if a pixel label is changed too

frequently, this pixel is more like to a background. This frequency property is used to remove

the inconsistent pixels which are changing periodically However, in a moving camera, the pe-

riodic noise issue is not critical, and this frequency property is redundant compared to other

37



(a) (b)

(c) (d)

Figure 3.7: The effect of the motion compensation by mixing models. When the nearest

neighbor match is used for a warping background model, we obtain the inaccurate back-

ground model as (a) and the noisy foreground as (b). When the bilinear interpolation is used

and additionally variance is increased, we get better background model as (c) and clean fore-

ground as (d).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Example images in the proposed procedure for moving object detection. The

background model (b) is selectively updated by using the sampling map (d) which is deter-

mined by considering the foreground probability map (c). The foreground probability map is

estimated from the previous detection results. The current initial foreground (e) is obtained

by using the previous background model and sampling map. The final foreground (f) is fine-

tuned by the foreground probability map.
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(a) (b) (c)

Figure 3.9: The illustration of the foreground properties. When a moving car and pedestrian

appear as (a), the temporal property map MT is obtained as (b) and the spatial property map

MS is obtained as (c).

two properties. Therefore, we adopt temporal and spatial properties among three properties

to express our assumption of moving objects.

Temporal property MT is defined as a recent history of the foreground at each pixel

position as

M t
T (n) = (1− αT )M

t−1
T (n) + αTD

t(n), (3.18)

where t is time index and αT is temporal learning rate. Dt(n) is binary detection map which

means that Dt(n) = 1 if pixel n belongs to foreground and Dt(n) = 0 if pixel n belongs to

background at time t. As shown in Figure 3.9(b), the moving object region has a high value

by accumulating the foreground occurrence through equation (3.18).

The spatial property measures the coherency of nearby pixels of the foreground as

M t
S(n) = (1− αS)M

t−1
S (n) + αS

1

w2

∑
i∈N(n)

Dt(i), (3.19)

where αS is spatial learning rate, N(n) denotes a spatial neighborhood around pixel n, and

w2 is the area of the neighborhood. As shown in Figure 3.9(c), the neighborhood of moving

object region has a high value in the spatial property map through equation (3.19). Then, the

foreground probability P t
FG(n) is defined as multiplication of temporal and spatial proper-
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(a) (b)

Figure 3.10: The illustration of three sampling mask. When an input image is given as shown

in (a), sampling mask is obtained like (b) where white region indicates the M t
RS , blue region

indicates M t
SEI , and red region indicates M t

SP .

ties, i.e.,

P t
FG(n) = M t

T (n)×M t
S(n). (3.20)

3.2.2 Sampling Map Generation

Because we learn the temporal and spatial properties of the foreground, the additional com-

putational loads are inevitable. To keep the efficiency even in the additional loads, we try to

restrict the search space based on the foreground probability without loss of detection perfor-

mance. According to the attentional sampling [58], we extract the candidate pixel positions to

run the background subtraction and model update. The candidate pixel positions are obtained

by combining three sampling masks via a pixel-wise ‘OR (⊕)’ operation as

M t = M t
RS ⊕M t

SEI ⊕M t
SP , (3.21)

where M t
RS , M t

SEI , and M t
SP are sampling masks from randomly scattered sampling, spa-

tially expanding importance sampling, and surprise pixel sampling, respectively.

The randomly scattered sampling means that about 5% of entire pixels are extracted and
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tested. The resulting mask from the randomly scattered sampling looks like a salt and pepper

noise as shown in the white region of Figure 3.10(b). Obviously, since only this random

sampling mask is not enough to detect a foreground due to its sparsity, the spatially expanding

importance sampling is introduced. The basic idea for the spatially expanding importance

sampling is that if a sampled position has a high foreground probability, we also extract the

neighbor pixels of a sampled position. Also, the neighborhood area is proportional to the

foreground probability. Mathematically, for each random sampled pixel (i.e., M t
RS(i) = 1),

M t
SEI(j) =


1 if j ∈ N(i),

0 otherwise,
(3.22)

where N(i) is a rectangular region centered at pixel i with size ςt(i)×ςt(i). This ςt(i) is

determined using the probability of foreground occurrence in equation (3.20) as

ςt(i) = round(P t
FG(i)× we), (3.23)

where we is an expanding parameter. As a result, the blue region in Figure 3.10(b) is obtained

through the spatially expanding importance sampling.

Although these two sampling methods reduce the search space efficiently, it is a highly

probable to miss a newly appearing object. If new moving object appears in a scene, this

region should be attended in a short time. Therefore, the neighbor of the newly detected

region are sampled to catch the newly appearing foreground, and it is called as the surprise

pixel sampling. The surprise pixels are decided when a pixel belongs to a foreground among

the randomly sampled pixels with low probability of foreground occurrence as

ξ(t)(i) =


1 if (lt(i) = foreground)&(M t

RS(i) = 1)&(P t−1
FG (i) < θsp),

0 otherwise,
(3.24)

For each surprise pixel i (i.e., ξ(t)(i) = 1), we widen the sampling area to cover neighboring
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pixels as

M t
SP (j) =


1 if j ∈ N(i),

0 otherwise,
(3.25)

where N(i) is a rectangular region centered at pixel i with size ws×ws. Then, we widen the

sampling area around the surprise pixel as shown in the red region of Figure 3.10(c).

3.2.3 Model update with sampling map

We use the grid-based modeling and the dual-model kernel method as a baseline, and modify

the updating part by utilizing the sampling map. The mean µ
(t)
i and variance σ

2 (t)
i of a grid

i at time t are updated by the weight sum of previous model {µ(t−1)
i , σ2 (t−1)

i } and current

observation {M (t)
i , V (t)

i } as

µ
(t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

µ̃
(t−1)
i +

1

α̃
(t−1)
i + 1

M
(t)
i , (3.26)

σ
2 (t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

σ̃
2 (t−1)
i +

1

α̃
(t−1)
i + 1

V
(t)
i , (3.27)

where 1/(α̃
(t−1)
i + 1) is time-varying learning rate at time t− 1 from the age model.

In our scheme, background subtraction is applied to only a small portion selected by the

sampling map. That is, we modify the updating rules and the observation {M (t)
i , V (t)

i } to use

only sampled pixels. When a grid contains selected pixels, the mean and variance observation

of the model on the corresponding to the grid, M (t)
i and V

(t)
i are calculated as

M
(t)
i =

1

|Gs(i)|
∑

j∈Gs(i)

I
(t)
j , (3.28)

V
(t)
i = max

j∈Gs(i)
(µ

(t)
i − I

(t)
j )2 (3.29)

where i, j, I(t) denote grid index, pixel index, and intensity map of image at time t respec-

tively, whereas Gs(i) denotes the group of selected pixels in the i-th grid. In other words, we

calculate the mean and variance observations by using only the selected pixels in a grid.
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On the other hands, when a grid does not contain any selected pixels, we keep the mean

unchanged and initialize the variance to a high value. If the camera is static, we can just keep

the previous model, but, in case of a non-stationary camera, we get many false detections

when the previous models are kept. Because pixel intensity changes drastically in a non-

stationary camera due to rapid illumination change, we initialize the variance to a high value

for a fast model adaptation.

In conclusion, the sampling method reduces the computation time and also reduces tran-

sient false positives from a compensation error. In addition, for this combination, the pixel-

based model is not suitable, but the grid-based method is suitable. Because the grid-based

model already tries to build a rough background model, observations from only sampled

pixels are enough to build a background model. However, in case of the pixel-based model,

many not updated regions are generated from the sampling. Although the naive solution such

as keeping the previous background is valid in a stationary camera, this solution is not effec-

tive in a moving camera due to the severe background changes in a moving camera.

3.2.4 Probabilistic Foreground Decision

The initial foreground region is decided by comparing current observation and acting model

{µ(t)
A,i, σ

2 (t)
A,i } in a dual-mode kernel model as

linit(j) =


1 if (I(t)j − µ

(t)
A,i)

2 > θlσ
2 (t)
A,i ,

0 otherwise,
(3.30)

where j is the pixel index, i is the grid index containing the pixel j, and θl is a threshold-

ing parameter for the foreground decision. When the foreground decision relies on only the

background, many false detections occur due to illumination change and inaccurate estima-

tion of camera movement as shown in Figure 3.8(e). However, we can refine the foreground

using foreground occurrence probability in section 3.2.1. First, we multiply the foreground

probability map to the initial foreground obtained by the background subtraction. We can de-
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(a) input image (b) Initial foreground

(c) Foreground occurrence probability (d) Final foreground

Figure 3.11: Effect of probabilistic foreground decision.

termine the detection map by a simple thresholding method to the multiplied map. However,

in this case, foreground regions include inner holes and noisy detection regions. To cope with

this problem, we use the watershed algorithm [59] which effectively segments the foreground

regions. We cut the foreground probability map to a high threshold, and then apply the wa-

tershed algorithm with the seed points remaining after thresholding. This refinement reduces

false detections and fills the foreground clearly with low computation.

3.3 Benefits

By adopting the spatio-temporal properties of moving objects, the dual-mode model with

attentional sampling reduces the loss of true objects and the false detections, We build a

foreground probability map and generate a sampling map which selects the candidate pixels

to find the actual objects. Then, by applying the background subtraction and model update
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to only the selected pixels, the algorithm speed is accelerated, and the false positives are

reduced. In the experiment chapter, it is verified that the proposed scheme can solve the

raised issues and outperforms the state-of-the-art methods in the detection quality and speed.
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Chapter 4

Situation-aware Background Learning

In this chapter, we focus on the developing of a moving object detection algorithm adapting

to various scene changes in a moving camera. The compensation-based method with camera

motion compensation is linked to three problems arising from the movement of the camera.

The first problem arises from an inaccurate estimation of camera motion from the image

sequences, leading to many false positives related to the compensation error. The second

problem arises when an object moves slowly relative to the movement of the camera. In this

situation, the foreground motion is not distinguishable from the background motion, which

causes a contaminated background model. This contaminated background model results in

severe problems, such as foreground loss. Lastly, because a sudden change of illumination

occurs more frequently with a moving camera than with a fixed camera, a large portion of

the background is falsely detected as foreground during the change. This situation occurs in

most digital cameras when using the auto exposure function to control the overall brightness.

Previous works on the compensation-based approach [44–48] mainly focused on the first

problem and attempted to reduce false alarms arising from incorrect estimations of camera

motions. Although these advances can reduce the number of false positives from incorrect
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(a) input frame (b) foreground result

(c) input frame (d) foreground result (e) background mean

Figure 4.1: The failure examples of previous works that do not consider the scene situation.

The first row shows that the existing method has a weakness in the illumination change.

The second row shows the missing problem when the object moves slowly relative to the

movement of the camera.
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estimations of the motion of the camera, they overlook the remaining two problems, i.e., fore-

ground loss caused by a slow foreground and false positives caused by illumination changes.

Figure 4.1 shows the failure examples of previous works. The first row of Figure 4.1 shows

that the existing method has a weakness in the illumination change. The second row of Fig-

ure 4.1 shows the missing problem when the object moves slowly relative to the movement of

the camera. Because the foreground motion is not distinguishable from the background mo-

tion, the foreground cannot be detected as Figure 4.1(d) and the background is contaminated

as Figure 4.1(e).

In this chapter, to solve all of three problems at the same time, we propose a situation-

aware background learning that updates the background model adaptively depending on the

situation in the video scenes. To be aware of situations, we define three situation variables:

background motion, foreground motion, and illumination changes. The situation variables

are estimated at each frame and utilized for the situation-aware warping and updating of

the background model. When warping the background model, we compensate for the back-

ground model with the background motion. Depending on the situation variables, the vari-

ance model of the background is additionally modified to reduce false positives (the details

are described in section 4.2.1). In the updating of the background model, the mean model is

additionally adjusted using the illumination change variable, and the background model is

updated differently depending on the foreground motion variable. With the new background

model, we calculate a foreground likelihood map based on the Gaussian distribution with the

mean and variance of the background model. By thresholding the foreground likelihood map

with a high threshold and a low threshold, we obtain an initial foreground region and ex-

pand the initial foreground region using the watershed segmentation method. To evaluate the

performance of the proposed method, we test the robustness of the method using ten videos

with various scene situations. Our method qualitatively and quantitatively outperforms the

state-of-the-art algorithms in this test.

Figure 4.2 depicts the overall scheme of the proposed method. From a video captured
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Figure 4.2: The overall scheme of the proposed method. First, we estimate the situation vari-

ables: background motion, foreground motion, and illumination change (yellow lines). Then,

we adaptively update the moving background model differently (red lines) depending on sit-

uations determined by the situation variables (blue lines). Finally, we decide the foreground

region through the post processing based on the foreground likelihood map.
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by a moving camera, we estimate the situation variables to indicate the scene status. We

measure three properties of the scene: background motion caused by the camera motion,

foreground motion in the scenes, and illumination change between consecutive frames. We

propose the situation-aware background learning method which adaptively updates the back-

ground model according to the situation. To compensate for the background motion, the

background model is warped to align itself with the current frame using the background

motion and foreground motion. In the background update, the warped background model

is adaptively updated by the input image based on the foreground motion and illumination

changes. The new input frame is compared to the updated background model, and then the

foreground likelihood map is calculated. We find an initial foreground region by thresholding

the foreground likelihood map, and generate the final foreground region by connecting the

initial foreground region and the foreground candidate region through the watershed segmen-

tation [60] method.

4.1 Situation Variable Estimation

In our situation-aware background learning method, the situation is determined by the three

situation variables. In the following, we describe how to estimate the situation variables.

4.1.1 Background Motion Estimation

Using the assumption that the background region is larger than the foreground region, we can

estimate the background motion using the velocities of local feature points except for outliers

in velocities. Although recent methods using multiple motion models have been proposed to

estimate the background motion [61–63], the computational complexity is heavy, and the

estimation becomes inaccurate in a texture-less region. For fast computation, in this paper,

we use a single projective model to represent the background motion.

First, the input frame is converted to a grayscale image which is denoted by I(t) at time
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t. The corresponding locations between I(t−1) and I(t) are found by using the KLT [55]

algorithm. For computational efficiency, we sparsely sample the center pixels at 10 × 10

grids. Letting (xi, yi) be the i-th grid center point, its velocity (ui, vi) is calculated by

I(t)(xi + ui, yi + vi) = I(t−1)(xi, yi), (4.1)

under the assumption that the intensity does not change between the consecutive frames.

Then, the background motion is represented by a projective transform matrix Ht:t−1 obtained

by

[X
(t)
1 , X

(t)
2 , ...] = Ht:t−1[X

(t−1)
1 , X

(t−1)
2 , ...], (4.2)

where

X
(t−1)
i = (xi, yi, 1)

T , X
(t)
i = (xi + ui, yi + vi, 1)

T . (4.3)

In solving equation (4.2), outliers are removed using the RANSAC [56] algorithm.

4.1.2 Foreground Motion Estimation

To estimate the foreground motion variable without additional computation, we use Ht:t−1

obtained in (4.2). The foreground regions are not fitted with the background motion model,

so the i-th grid point which does not satisfy X
(t)
i = Ht:t−1X

(t−1)
i becomes the foreground

pixel. The i-th grid velocity (ûi, v̂i) relative to the background is obtained by subtracting the

warped image from the current image as

(ûi, v̂i, 1) = X
(t)
i −Ht:t−1X

(t−1)
i . (4.4)

When the i-th grid point is background, the velocity (ûi, v̂i) becomes 0 from equation (4.2),

otherwise (ûi, v̂i) is the foreground velocity. Figure 4.3(b) shows an example of a foreground

velocity from the input frame in Figure 4.3(a). The color indicates the moving direction

along a color circle in Figure 4.3(b). As shown in Figure 4.3(b), the foreground velocity
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(a) (b) (c)

Figure 4.3: Foreground velocity estimation. (a) Input image. (b) Foreground velocity map.

Color indicates the direction of foreground velocity according to the right-bottom color circle.

(c) Foreground region in the previous frame.

map includes noises arising from the grid-based rough estimation. To remove the influence

of noisy regions, we mask the foreground velocity map using the previous foreground map

FG(t−1). That is, the average foreground speed s(t) at time t is estimated by

s(t) =
1

P

∑
p∈FG(t−1)

√
û2p + v̂2p. (4.5)

4.1.3 Illumination Change Estimation

The basic idea to estimate illumination change is to measure the difference between the mean

intensity of the background model and the average intensity of the current frame. That is, the

illumination change b(t) is obtained by

b(t) =
1

N

N∑
j=1

I
(t)
j −

1

M

M∑
i=1

µ̃
(t)
i , (4.6)

where N is the number of pixels, and M is the number of grids. This b(t) is used in updating

the background model in section 4.2.2.
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4.2 Situation-Aware Background Learning

As mentioned in the introduction, the critical situation is the case in which the target ob-

ject (foreground) is moving slowly relative to the camera movement (background motion).

In our grid-wise modeling, the target moving less than a grid size during a frame period is

not distinguishable from the background grid. In this situation, the grid-wise learning yields

a contaminated background model. To avoid this contamination, a scheme is required to be

aware of this situation and to stop the updating of the background model. It can be a situation-

aware scheme to check whether the foreground speed s(t) in equation (4.5) is less than the

grid size B or not. However, if the foreground always moves less slowly than the grid size

B per each frame, the background model may not be updated for a long time, which leads

to a performance degradation from under-learning of the background. To solve this problem,

we define a count variable c(t) which increases by one whenever the situation occurs. The

final situation-aware scheme is to check whether c(t) · s(t) is less than grid size B. The count

variable c(t) is initialized by one. When c(t) · s(t) is smaller than the grid size B, c(t+1) is

increased by one; otherwise, c(t+1) is reinitialized, i.e.,

c(t+1) =


c(t) + 1 if c(t) · s(t) < B,

1 otherwise.
(4.7)

As to be described in the following, the warping of the previous background model and the

update of the current background model will be performed in different ways depending on

the value of situation-aware variable c(t) · s(t).

4.2.1 Situation-Aware Warping of the Background Model

From section 4.1, we obtain the background motion Ht:t−1 which gives the location mapping

between frame t − 1 and frame t. The mean µ(t−1) and variance σ(t−1) of the background

model are warped using Ht:t−1. Since the warped location corresponding to each grid can be

a floating value, the warped background model of a grid at the frame t may not be matched to
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a grid at the frame t− 1. Therefore, we use the bilinear interpolation to warp the background

model. The warped mean and variance of the i-th background model at time t are obtained

by the weighted sum of those of the nearest four points as

µ̃
(t−1)
i =

∑
k∈Ri

wkµk
(t−1), (4.8)

σ̃
2 (t−1)
i =

∑
k∈Ri

wkσk
2 (t−1), (4.9)

where the Ri indicates the set of nearest four points after warping and weight wk is the

coefficient of bilinear interpolation.

Most false positives arise at the region having a large gradient due to a misaligned edge

from the compensation error. We can reduce these false positives by increasing the variance at

the large gradient region for dulling the background probability distribution (see Section 4.3

for details). Since the foreground region also has a large gradient, we increase the variance

only when the background is not contaminated by the foreground. In other words, the warped

variance σ̃
(t−1)
i in equation (4.9) is additionally modified depending on the situation-aware

variable c(t) · s(t). When the situation-aware variable c(t) · s(t) is smaller than the grid size

B, we maintain the variance to prevent foreground loss. When c(t) · s(t) > B, the variance

is increased as much as the weighted sum of squared differences between the warped mean

µ̃
(t−1)
i and the means of its neighboring models, i.e., µk

(t−1), k ∈ Ri. That is, the final

variance is obtained by

σ̃
2 (t−1)
i =


σ̃
2 (t−1)
i if c(t) · s(t) < B,

σ̃
2 (t−1)
i +

∑
k∈Ri

wk(µ̃
(t−1)
i −µk

(t−1))2 otherwise.
(4.10)

4.2.2 Situation-Aware Update of the Background Model

The mean and variance of the background model are updated using the situation-aware vari-

able c(t) ·s(t), the warped mean and variance of the (t−1)-th background model, the intensity
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of the t-th frame image, and the illumination change b(t). Therefore, when the situation-aware

variable c(t) · s(t) is smaller than the grid size B, the current background model adopts the

warped mean and variance of the previous background model until c(t) · s(t) becomes larger

than B. To adapt to the illumination change, the mean model is additionally adjusted by b(t)

as given in equation (4.11). When the situation-aware variable becomes larger than the grid

size B, the mean and variance are updated using the new intensity information of the current

frame. This situation-aware update formula is given by

µi
(t) =


µ̃
(t−1)
i + b(t) if c(t) · s(t) < B,

α
(t−1)
i

α
(t−1)
i +1

(µ̃
(t−1)
i + b(t)) + 1

α
(t−1)
i +1

M
(t)
i otherwise,

(4.11)

σ
2 (t)
i =


σ̃
2 (t−1)
i if c(t) · s(t) < B,

α
(t−1)
i

α
(t−1)
i +1

σ̃
2 (t−1)

i + 1

α
(t−1)
i +1

V
(t)
i otherwise,

(4.12)

α
(t)
i = α

(t−1)
i + 1, (4.13)

where M
(t)
i is the average intensity of the i-th grid Gi given by

M
(t)
i =

1

|Gi|
∑
j∈Gi

I
(t)
j , (4.14)

and V
(t)
i is defined as

V
(t)
i = max

j∈Gi

(µi
(t) − I

(t)
j )2. (4.15)

The α
(t)
i is a parameter for time-varying learning rate where it is set to one as an initial

value for the newly appearing region and is increased by one in every updating. The learning

rate is designed as 1/(α(t)
i + 1), which drives fast adaptation for the newly appearing region

and low adaptation for the old region. This α
(t)
i has a maximum limit αmax to preserve a

minimum learning rate.
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(a) (b)

(c) (d)

Figure 4.4: Probabilistic foreground decision: (a) Input image (b) Foreground likelihood map

(c) Thresholded image (d) Final foreground.
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4.3 Foreground Decision

Using the updated background model with mean µ(t) and variance σ(t), each pixel of the

input image is decided whether it belongs to background or foreground. The background

probability is given by

PBG(j) =
1√

2πσ
2 (t)
i

exp

−1

2

(I
(t)
j − µ

(t)
i )

2

σ
2 (t)
i

 , (4.16)

where j is the pixel index and i is the grid index containing the pixel j. To calculate the

exact background probability in equation (4.16), many computations are needed, such as the

square-root and exponential function. Hence, the log-likelihood of the probability is used for

simplicity. The background likelihood is proportional to the minus of the normalized distance

between the input intensity and mean of the background model, i.e.,

LBG(j) = −
(I

(t)
j − µ

(t)
i )

2

σ
2 (t)
i

. (4.17)

Then the foreground likelihood is proportional to the minus of the background likelihood. In

our algorithm, hence, the foreground likelihood map is obtained by

LFG(j) =
(I

(t)
j − µ

(t)
i )

2

σ
2 (t)
i

. (4.18)

In our scheme, to consider spatial connectivity within foreground and background re-

gions, additional processing is introduced. Like the canny edge detection [64] method, two

thresholds are used to decide the foreground and background. The initial foreground/background

labels are determined by using high threshold Thigh and low threshold Tlow as

linit(j) =


Background if LFG(j) ⩽ Tlow,

Candidate if Tlow ⩽ LFG(j) ⩽ Thigh,

Foreground if LFG(j) ⩾ Thigh.

(4.19)
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Then, for the candidate region, a spatial connectivity to the initial foreground is checked with

the watershed segmentation method [60] and the final foreground is determined by propa-

gating the foreground label according to the connectivity. Figure 4.4 shows the intermediate

result of our foreground decision method. The foreground likelihood map LFG is obtained

as Figure 4.4(b), and the initial label is obtained using two threshold parameters. In Fig-

ure 4.4(c), the white region is the initial foreground region, the black region is the candidate

region, and the gray region is the initial background region. Using the watershed algorithm

with linit as an input, the final foreground map lfinal is obtained as Figure 4.4(d) which shows

a clear foreground.

4.4 Benefits

Through the proposed situation-aware background learning method, the background model-

ing for moving object detection can handle dynamic scenes captured by a moving camera.

Because this method compensates for camera movement and updates the background model

according to the situation variables, it enables the algorithm to build a clear background

model without contamination by the foreground. In addition, a new foreground segmentation

method helps to obtain more accurate foreground region by the two thresholds. In the exper-

iment chapter, it is verified that the proposed scheme can cope with the raised problems and

is effective compared to the state-of-the-art methods on various moving camera videos.
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Chapter 5

Prior-based Attentional Update for
dashcam video

Recently, the demand for detection in a moving camera has increased since camera sensors

are starting to be mounted on vehicles or drones for smart mobility. This smart mobility,

such as detection of unexpected or abruptly moving objects for driverless cars, can provide

great benefits to people. In this case, panorama-based approach [40–42] cannot be applied

to cameras mounted on high-mobility units, such as vehicles and drones, because it is im-

possible to generate a panorama covering the entire range of movement. On the other hand,

the compensation-based approach is more suitable because it keeps the current background

model updated together with camera motion compensation in an online and real-time man-

ner [44, 45, 47, 65]. Until now, this approach has been efficient for application to systems

with high mobility because it has a low computational complexity and carries a small scene

model relative to the registered panoramic model. However, this approach still has many re-

search issues that need to be overcome for actual application to a system with high mobility

where it is extremely difficult to get an estimation of camera motion. Figure 5.1 shows the

problems of the previous methods when using a dashcam for the moving object detection. As
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shown in Figure 5.1(b), the performance of the conventional foreground detection methods

in a dashcam is not satisfactory because the built background model cannot represent the

actual background. This problem is caused by the limitation of the homography model. Fig-

ure 5.1(d) shows the model warping map that indicates the camera motion by displaying the

newly appearing region as the black region. Due to the plane assumption of the homography

model, we cannot infer this motion between the forward motion and the upward motion. This

limitation makes it difficult to detect moving objects in a dashcam video.

In this chapter, in order to cope with issues arising when detecting moving objects using

a monocular dashcam with high mobility, we propose an attention-inspired approach by ex-

tending the compensation-based approach. In biological studies [57, 66, 67], human beings

tend to build an abstract representation of scenes and perceive changes in a region of in-

terest. The human-attention inclination comprises two innate characteristics: center-focused

and structure-focused tendencies. First, the center-focused tendency [68, 69] can be easily

observed in an experiment where vehicle drivers concentrate on the road around the center

of their view. Inspired by this tendency, we propose a scheme to emphasize changes in the

center area more than the boundary region by controlling the learning rates depending on the

region. The structure-focused tendency means that humans focus on an overall composition

of the scene (sky, road, etc.) and neglect detailed information such as the texture of the road.

To reflect this tendency to our method, the sky and road regions are estimated as the im-

portant structures in dashcam scenes, and these regions are assigned to apparent background

regions in order to prevent false detection caused by minor changes in the sky and road re-

gions. In addition, the final detection map is refined to emboss the foreground object region

by combining the detection result with the foreground detected from the median-filtered im-

age. While the foreground detected from median-filtered image can create false alarms due

to strong edges in the background, the median filter can remove small noises, so it yields a

clear foreground map. This combining procedure would reduce false alarms and enhance the

clearness of the detection region.
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(a) input frame (b) foreground result

(c) background (d) model warping map

Figure 5.1: The problems caused by the difficult camera motion in a dashcam. When an input

frame is given as (a), the foreground result is obtained as (b). The background model does not

represent the actual background well as shown in (c) due to the limitation of the homography

model. The black area in model warp map as shown in (d) indicates the newly appearing

region.
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Figure 5.2: Functional scheme of the proposed method. The block with yellow color is newly

added or modified in order to cope with dashcam video.
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To detect a moving object in a dashcam video, we extend the dual-mode kernel model,

which consists of the acting model and the standby model–in which the acting model is

trained to contain clear background information, and the standby model is trained to take in

other information, such as foreground or image noise. As illustrated in Figure 5.2 (yellow-

colored boxes indicate the new or modified modules), the structure estimation module is

newly introduced, and the background model update module is modified in the age adaptation

scheme as well as foreground decision scheme. In each frame, the sky and road regions

are estimated for the important scene structure in dashcam videos. The regions are used as

important clues in selecting the model (acting or standby model) to be updated in the dual-

mode model. Depending on the selection, we control the learning rate of each pixel to update

the background model accordingly. Our algorithm works in twin processes where one is

applied to the original image and the other to the median-filtered image. To acquire the final

foreground pixels, we combine the foreground detection results from the original image and

the median-filtered image, which is described in section 5.4.

5.1 Camera Motion Estimation

Let I(t) denote the single channel input image at time t. Using the KLT [55] algorithm, the

corresponding locations are found between the previous frame I(t−1) and the current frame

I(t). Let (xi, yi) be the i-th sampled point at time t − 1 and (xi′, yi′) be the corresponding

point at time t. The camera motion is represented by a projective transform matrix Ht:t−1

obtained by

[X
(t)
1 , X

(t)
2 , ...] = Ht:t−1[X

(t−1)
1 , X

(t−1)
2 , ...], (5.1)

where

X
(t−1)
i = (xi, yi, 1)

T , X
(t)
i = (xi

′, yi
′, 1)T . (5.2)

To estimate the camera motion matrix Ht:t−1, the RANSAC [56] is used for robust estima-

tion.
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(a) (b)

Figure 5.3: Road estimation cue where h refers to the vertical maximum position of image,

(a) road confidence map R, (b) road confidence function versus y.

5.2 Road and Sky region estimation

In our algorithm, road and sky regions are estimated with the geometric cue. Without using

complex methods [70,71], we propose a simple and effective method based on location priors

of road and sky. The estimated region in this step is passed to the model selection module,

and pixels in this region are assigned to the acting model for updating since sky and roads

must be in the background.

Road region estimation. In a dashcam, the road is generally below the horizon line,

which means that the road is predominantly detected at the lower part of the scene. Although

there is a variation in the location of the horizon line, we assume that the horizon line is

located at the middle position of the image, which is reasonable in a dashcam scene. A pixel-

wise road confidence map R is generated as Figure 5.3(a), and the value of road confidence

map R is determined along the y-position as Figure 5.3(b). The confidence value is designed

to increase linearly as it goes to the bottom part of the image, i.e., inversely proportional to

the y-position. Different slopes are used in the upper and lower parts, respectively, where we
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(a) (b)

(c) (d)

Figure 5.4: Road region estimation: (a) input image, (b) blurred image after multiplying road

confidence map R and original frame, (c) overlaid image with blurred image and input, (d)

final road region.
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Figure 5.5: Sky estimation cue where h refers to the maximum vertical position of image, (a)

Sky confidence map S, (b) sky confidence function versus y.

use a relatively large slope above the horizon line to decrease the road confidence rapidly. The

load confidence at the horizon line is set to γ which has been set to 0.75 in our experiment.

To make the pixels in the lower part have a higher probability of road, we multiply this

road confidence map R to the input image. Then, a blurring filter with a large window is ap-

plied in order to eliminate the details and to leave only structures, as shown in Figure 5.4(b).

For the blurring filter, opening and closing function are used in morphological process-

ing [72]. Because this blurring process affects the overall shapes, we overlay this blurred

image on the original input image, as shown in Figure 5.4(c). Then, the final road region is

obtained by segmenting this overlaid image through thresholding, as shown in Figure 5.4(d).

Sky region estimation. In opposition to the road, the values of sky confidence map S are

increased along the y-position. Using the same idea in the road case, we design a pixel-wise

sky confidence map S using the same γ as in Figure 5.5. Similar to a road region estimation,

we multiply this sky confidence map S to the input image, and then apply a blurring filter.

Contrary to road detection, the blurring filter has a small window that is applied because the

sky region has a low variance compared to other regions. After the blurred result is obtained,
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(a) (b) (c)

Figure 5.6: Sky region estimation to the input image: (a) input image (b) blurred image after

multiplying sky confidence map S, (c) final sky region.

as shown in Figure 5.5(b), the final sky region is obtained by thresholding this filtered image,

as shown in Figure 5.5(c).

5.3 Background learning

As mentioned previously, our approach has twin processes where one is for the original image

and the other is for median-filtered image as shown in Figure 5.2. The twin processes have

the same procedure to each other except the input image and so we describe the procedure

without any distinction between them in the following. The background learning is performed

to update the Gaussian model with image intensity and an age model for learning rates. The

mean and variance of the Gaussian model represent the temporal average and deviation of

the image intensity after camera motion compensation. The age model indicates the lifetime

that determines a learning rate as 1/(age+ 1) for fast learning in a newly appearing region.

The baseline method uses grid-based modeling that a modeling unit is a grid with multiple

pixels. Since this modeling makes neighboring pixels have similar models, it enables us to

reduce false detections from minor changes such as alignment errors in motion compensation.

Except for the foreground decision based on a pixel unit, the model updating is conducted on

each grid.
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To build a background model, only one of the dual models in each grid is selected and

updated depending on the average intensity of the corresponding grid. The model selection

is made by comparing the distance between the average intensity and the mean value of the

model. In the update step, the selected model is updated continually, and its age is increased.

Hence, the model with a relatively large age is defined as the acting model for the grid back-

ground, and the other model is defined as a standby model. However, when a temporal object

appears at the grid, the other model is selected and updated to prevent a corruption due to

temporal changes. The foreground is decided by the acting model only which contains pure

background information.

Motion Compensation. To deal with vehicle motion of dashcam, the motion compensa-

tion between the background model and the current frame is required. The mean, variance,

and age of both model and standby models at time t− 1 are warped by Ht:t−1 to align with

the current frame I(t). Since the center of the warped model usually does not move in a grid

unit and is not located at the center of any grid of the new frame, each model in the new grid

is interpolated with the neighboring warped models using bilinear interpolation. In the case

of the newly appearing region, we set the age value of this region to 0.

Model Selection. Let {µ(t)
A,i, σ

(t)
A,i, α

(t)
A,i} be the mean, variance, and age for the acting

model and {µ(t)
S,i, σ

(t)
S,i, α

(t)
S,i} be the mean, variance, and age for the standby model of the

i-th grid. Our goal is for an acting model to contain apparent background information, and a

standby model to contain latent background information. In the original dual-mode modeling,

the appropriate model is selected between the acting model and the standby model using the

likelihood of each Gaussian. Since the sky and road regions are apparent backgrounds in a

dashcam video, these regions are first assigned to update the acting model. Figure 5.7 shows

the model selection process using the scene structure information. From this process, the

unimportant changes are reduced by prior semantic cues such as illumination changes on the

road and variations of the sky regions.
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Acting model
: major background

Standby model
: candidates

Figure 5.7: The model selection using scene structure information of a dashcam video. Be-

cause the sky and road regions are apparent backgrounds, these regions are assigned to the

acting model directly.

Let M (t)
i be the average intensity of the i-th grid Gi given by

M
(t)
i =

1

|Gi|
∑
j∈Gi

I
(t)
j , (5.3)

where I
(t)
j is the input image’s intensity of pixel j. Based on a normalized distance by each

mean and variance, each grid is assigned to one of the three categories; the i-th grid selects

the acting model if

(M
(t)
i − µ

(t)
A,i)

2

σ
2 (t)
A,i

< θm, (5.4)

and selects the standby model else if

(M
(t)
i − µ

(t)
S,i)

2

σ
2 (t)
S,i

< θm, (5.5)

otherwise, the standby model is initialized. Here θm is a thresholding parameter for the model

selection.
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If the current i-th grid selects the acting model, {µ(t)
A,i, σ

2 (t)
A,i , α(t)

A,i} are updated accord-

ing to equation (5.6)-(5.9). If it selects the standby model, {µ(t)
S,i, σ

2 (t)
S,i , α(t)

S,i} are updated

according to equation (5.6)-(5.9). If it does not select both the acting and standby model, the

standby model is initialized with current i-th grid intensity.

Model Update. The baseline method does not consider the large illumination change due

to the auto-exposure control in the camera. This happens frequently in a moving camera and

needs to be solved. Therefore, the overall change of illumination is additionally compensated

in the mean update step. Let µ(t−1)
i , σ2 (t−1)

i , and α
(t−1)
i be the mean, variance, and age model

at (t− 1) frame of the i-th grid after the camera motion is compensated. The update formula

of µi
(t) is given by

µi
(t) =

α
(t−1)
i

α
(t−1)
i + 1

(µ
(t−1)
i + b(t)) +

1

α
(t−1)
i + 1

M
(t)
i , (5.6)

where M
(t)
i is the average intensity of the i-th grid in equation (5.3) and b(t) is the overall

change of scene illumination defined as

b(t) =
1

N

N∑
j=1

I
(t)
j −

1

M

M∑
i=1

µ
(t−1)
i . (5.7)

In (5.7), N is the number of pixels and M is the number of grids. Through the b(t), the mean

model is adjusted to compensate for an illumination change. σ2 (t)
i , and α

(t)
i are updated by

σ
2 (t)
i =

α
(t−1)
i

α
(t−1)
i + 1

σ
2 (t−1)

i +
1

α
(t−1)
i + 1

V
(t)
i , (5.8)

α
(t)
i = α

(t−1)
i + 1, (5.9)

where V
(t)
i is defined as

V
(t)
i = max

j∈Gi

(µi
(t) − I

(t)
j )2. (5.10)

In (5.6) and (5.8), the learning rate is designed as 1/(α(t−1)
i + 1), which drives rapid adapta-

tion for the newly appearing region and slow adaptation for the old region.
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Figure 5.8: The change of acting model age when camera moves forward.

In the case of the dashcam video, however, age values of the entire region are consis-

tently increased when the camera moves forward, as shown in Figure 5.8. It makes for a

very small learning rate and obstructs the adaptation of scene change by a moving camera.

In our method, the age model is modified to accommodate the change at the boundary region

inspired by human attention, since humans usually do not recognize the details around the

boundary because they tend to pay attention to the center. To mimic this scheme, the learn-

ing rate (age) is designed to increase (decrease) for the rapid learning of the changes around

the boundary region. To design this scheme, the attention map A is utilized to decrease the

age by multiplying the attention map to the age map α(t). As a result, the rapidly trained

background model tends to accept the various changes at the boundary region and reduce

the false foreground detections even various changes at the boundary region. The attention

map is designed as a clipped-off pyramid, as shown in Figure 5.9(b). The attention map A is

decomposed into x-axis attention Ax and y-axis attention as

A(p, q) = Ax(p)×Ay(q), (5.11)
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Figure 5.9: Age modification using attention map A: (a) 2D view of A, (b) 3D view of A, (c)

modified age map after multiplication with A.

where

Ax(p) =


p/bx if 0 ≤ p ≤ bx,

1 if bx ≤ p ≤ w − bx,

(w − p)/bx if w − bx ≤ p ≤ w,

(5.12)

Ay(q) =


q/by if 0 ≤ q ≤ by,

1 if by ≤ q ≤ h− by,

(h− q)/by if h− by ≤ q ≤ h,

(5.13)

where (w, h) is the image size, and (bx, by) is a design parameter indicating the length of the

boundary in each axis. Then, the maximum age αmax is set to guarantee a minimum learning

rate to adapt a background change as

α(t) ← min(A · α(t), αmax), (5.14)

where · and min are both grid-wise operation.

Model Switching. If the age of the standby model exceeds that of the acting model, the

standby model becomes a new acting model as

{µ(t)
A,i, σ

2 (t)
A,i , α

(t)
A,i} ← {µ

(t)
S,i, σ

2 (t)
S,i , α

(t)
S,i}, (5.15)
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and the new standby model is initialized as

α
(t)
S,i ← 0. (5.16)

Foreground Decision. To decide the background and foreground regions, we calculate

the background probability of each pixel through the acting model as

PBG(j) =
1√

2πσ
2 (t)
A,i

exp

−1

2

(I
(t)
j − µ

(t)
A,i)

2

σ
2 (t)
A,i

 , (5.17)

where j is the pixel index and i is the grid index containing the pixel j. To reduce computa-

tions for calculating the equation (5.17), we simply decide the label through thresholding the

normalized distance as

l(j) =


foreground if

(I
(t)
j −µ

(t)
A,i)

2

σ
2 (t)
A,i

> θl,

background otherwise,
(5.18)

where θl is a thresholding parameter for the foreground decision.

5.4 Foreground Result Combining

Our model has twin processes using an original image and a median-filtered image. The me-

dian filter helps detect an entire foreground without loss of parts, but it creates false alarms

near the background edges. Therefore, the final foreground is obtained combining the fore-

ground results from the twin processes. Figure 5.10 shows the intermediate results of the

foreground combining. Two foreground maps are obtained from (5.18); lorig is the fore-

ground map from the original image as shown in Figure 5.10(b), and lmed is that from the

median-filtered image as shown in Figure 5.10(c). First, two foregrounds are multiplied, and

the multiplied result is used as seed regions to get a reliable foreground, as shown in Fig-

ure 5.10(d). As in Figure 5.10(e), the connected blobs in lmed are generated by the blob

analysis [72]. Among these blobs, we remove the blobs not containing the obtained seed

regions. Last, the noises in the road and sky region are removed in the final foreground.
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Figure 5.10: Foreground result combining: (a) Input image, (b) Foreground lorig from input

image, (c) Foreground lmed from median-filtered image, (d) Multiplied image by lorig and

lmed, (e) lmed with connected blobs, and (f) Refined foreground using removing noisy blobs.
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5.5 Benefits

In this chapter, a human attention-inspired background learning method is proposed to handle

dynamic scene changes for moving object detection in a dashcam. Motivated by the center-

focused and structure-focused tendencies, the prior-based attentional update method focuses

on the center changes and neglects minor changes on the important scene structure. As a

result, the unimportant noise such as road crack and light reflection is removed, and the

background model fastly adapts itself to the side changes. In the experiment chapter, it is

verified that the proposed scheme is robust against to the various changes of a dashcam

compared to the existing state-of-the-art methods. Also, it is shown that our method can

be used as an efficient algorithm for the object proposal through the combination with the

recognition algorithm.
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Chapter 6

Experiments

In this chapter, the experimental results and the effect of each proposed scheme are shown

via the qualitative and quantitative results. Then the unified method covering all issues are

verified through the comparison with the state-of-the-art methods. In addition, the combined

work of recognition and our method is introduced for the future application of the moving

object detection.

We tested our method with 22 video sequences captured by moving cameras on various

platforms. Moving object detection in these videos is a challenging problem due to sudden

camera movements, slowly moving objects, large illumination changes, dashcam videos, and

the other issues. The information of each video is described in Table 6.1. In case of dashcam

sequences, although we extracted ten sequences for the quantitative result, we tested a long

single video having 12, 243 frames in the Daimler dataset [73].

To evaluate the performance quantitatively, we created the binary ground truth mask by

hand at a constant sampling rate. Figure 6.1 shows the examples of the ground truth mask.

Based on the ground truth mask G and the final foreground map, we measured the pixel-wise
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Table 6.1: Characteristics of the employed videos. All videos were

acquired at 30 FPS.

no. name # of frame Description

1 walking 332 a fast moving object

2 skating 185 a dynamic object

3 woman 596 illumination change

4 woman2 557 a large object

5 mountainbike 228 illumination change

6 cycle 300 fast moving multiple objects

7 fence 1,309 various object speeds

8 ground1 1,466 various object sizes

9 ground2 1,666 various object sizes

10 ground3 933 a slow object

11 ground4 428 a small object, illumination change

12 ground5 781 illumination change

13 sequence− 1 31 a pedestrian in dashcam video

14 sequence− 2 21 a vehicle in dashcam video

15 sequence− 3 22 a vehicle in dashcam video

16 sequence− 4 18 a vehicle in dashcam video

17 sequence− 5 16 a vehicle in dashcam video

18 sequence− 6 26 a pedestrian in dashcam video

19 sequence− 7 31 a pedestrian in dashcam video

20 sequence− 8 26 a pedestrian in dashcam video

21 sequence− 9 36 a pedestrian in dashcam video

22 sequence− 10 31 a pedestrian in dashcam video

Note: The skating sequence is from [3], the woman is from [74], and the

woman2 is from [47]. The mountainbike is from [75], and the ten se-

quences of a dashcam video are from the Daimler dataset [73]. The other

sequences are our videos.
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Figure 6.1: The examples of the dataset image and the ground truth mask. First row shows

the example of skating video and its ground truth mask. Second row shows the example of

fence video and its ground truth mask. Third row shows the example of sequence− 6 video

and its ground truth mask.
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precision and recall. The precision and recall are calculated at

precision =
TP

TP + FP
, recall =

TP

TP + FN
(6.1)

where TP is the number of true positives, FP is the number of false positives (false alarms),

and FN is the number of false negatives (missing) in each video. As for an overall per-

formance measure, we used the F -measure representing a harmonic mean of precision and

recall.

The proposed method was implemented using C++ and the OpenCV library. For the pa-

rameters, the grid size B is 4, αmax is 100, Thigh is 3.5, and Tlow is 1.0. For the experiments,

we fixed parameters that the size of grid Gi is 4×4, the road & sky confidence map parameter

γ = 0.75, the threshold for model selection θm = 3, the threshold for label decision θl = 4,

the boundary length for attention map (bx,by) = (40, 40), and the maximum age αmax = 10.

6.1 Qualitative Comparisons

6.1.1 Dual modeling with attentional sampling

We compared our method to the state-of-the-art methods: segmentation-based method [3]

and compensation-based methods [31, 44, 45]. For ViBe [31] that is originally designed for

a stationary camera, we added the motion compensation for non-stationary camera as shown

in the author’s websites.1

Figure 6.2 shows the qualitative results of the compared methods. General BS [3], as

a segmentation-based method, does not assume the specific camera model, so they can re-

move false detections and shows the best performance in the cycle sequence. However, the

resulting detection region contains large neighbor backgrounds, like the case of woman and

walking sequences. Moreover, General BS sometimes miss the object completely as shown

in the Mountain bike sequence when a foreground is not distinguished from a complex back-

1http://www2.ulg.ac.be/telecom/research/vibe/
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Input Image

ViBe w. 
motion comp.

MCD 5.8ms

General BS

MCD NP

DMAS

Figure 6.2: Qualitative results by the dual-mode model with attentional sampling. From left
to right: woman, walking, mountain bike, and cycle. First row shows input images, and the
other rows show the results of the compared methods: General BS [3], ViBe [31] with motion
compensation, MCD NP [44], MCD 5.8ms [45], and dual mode with attentional sampling
(DMAS). All datasets shown are non-commercial and publicly available.
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ground. In [31] as shown in Figure 6.2(c), many false detections arise in the image edge be-

cause they do not consider the inaccurate estimation of camera movements. Non-panoramic

moving object detection in moving camera (MCD NP) [44] produces an incomplete fore-

ground with inner hole and noise in Figure 6.2(d). Our method detects the objects clearly

without foreground missing (woman sequence) and drastic noise (cycle sequence) unlike the

result in MCD 5.8ms [45]. We uploaded a supplementary video to YouTube to illustrate the

distinctive comparison on the compared methods2.

6.1.2 Situation-aware background learning

We qualitatively compared our method with the following state-of-the-art methods for mov-

ing object detection in a moving camera: MCD NP [44], MCD 5.8ms [45], and Stochastic

approx [47]. Figure 6.3 and Figure 6.4 show the qualitative results on critical frames from a

couple of video sequences.

The videos as shown in Figure 6.3 contain large illumination changes and a fast mov-

ing object. As shown in this figure, MCD NP reduces false positives, but the silhouette of

the moving object is exaggerated near the edges. MCD 5.8ms is vulnerable to illumination

changes showing many false positives over a wide area. Although Stochastic approx. detects

the moving object well, false positives occur near the object, as shown in the second row. Our

method shows a clear and robust foreground result against illumination changes. The video

sequences as shown in Figure 6.4 contain slowly moving people. In this case, MCD NP, MCD

5.8ms, and Stochastic approx. cannot handle the slow motion of the foreground effectively.

Compared with other methods, our method can segment clear foregrounds as shown in the

figure. The video results for all methods are provided on YouTube.3.
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Input Image

MCD NP.

Stochastic 
approx.

Ground truth

MCD 5.8ms

SABL

Figure 6.3: Qualitative results on critical frames by the situation-aware background learn-
ing. From left to right: skating, woman, woman2. The first row shows input images, and
the other rows show the results of the compared methods: input image, ground truth, MCD
NP [44], MCD5.8ms [45], Stochastic approx [47], and the situation-aware background learn-
ing (SABL).
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Input Image

MCD NP.

Stochastic 
approx.

Ground truth

MCD 5.8ms

SABL

Figure 6.4: Qualitative results on critical frames by the situation-aware background learning.
From left to right: fence, ground3, ground4 and ground5. The first row shows input images,
and the other rows show the results of the compared methods: input image, ground truth,
MCD NP [44], MCD 5.8ms [45], Stochastic approx [47], and the situation-aware background
learning (SABL).
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(a)
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(c)

(d)

Figure 6.5: The qualitative effect of situation-aware background learning: first row shows
input frames in (a), the other rows show the result of baseline method in (b), baseline +
SABL in (c), and baseline + SABL + WS in (d), respectively.
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6.1.2.1 Effect of Situation-aware Background Learning

Figure 6.5 shows the effect of situation-aware background learning (SABL) as introduced

in section 4.2 and the watershed segmentation (WS) described in section 4.3. The result for

the baseline in Figure 6.5(b) performs poorly when objects move slowly, and when illumi-

nation changes occur. By applying SABL, the detection results are enhanced as shown in

Figure 6.5(c). With WS as a post-processing step, small instances of noise are removed, and

foreground losses are restored.

6.1.3 Prior-based attentional update

To validate the prior-based attentional update, we compared our method with four state-

of-the art methods in the compensation-based approach; MCD NP [44], MCD 5.8ms [45],

FP Sampling [65], and Stochastic approx [47]. MCD NP [44] uses spatio-temporal learn-

ing, which considers neighboring pixels to reduce false positives. MCD 5.8ms [45] is the

baseline method that builds a dual-mode background model consisting of the acting model

and the standby model. FP Sampling [65] uses a sampling method to focus on the apparent

foreground region based on foreground probability. Stochastic approx [47] builds the full

covariance matrices of the background model using the multi-channel feature.

Figure 6.6 and Figure 6.7 show the qualitative results on critical frames. MCD NP has

false positives around image boundaries and road textures. MCD 5.8ms reduces these false

positives but loses the foreground as shown in the top row. FP Sampling also suffers from

the foreground loss problem because FP sampling focuses on detecting a reliable foreground.

Stochastic approx has some fail cases when their background is reinitialized due to complex

camera motion. From Figure 6.6 and Figure 6.7, the result from the prior-based attentional

update outperforms the compared methods for segmentation of foregrounds in a dashcam

video. The comparison video for all 12,243 frames can be seen on YouTube.4.

2http://youtu.be/2UOu4OuBYUs
3https://youtu.be/ZNFZzhQgjkc
4https://youtu.be/tk3m7z0S8vE
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Input Image

MCD 5.8ms.

Stochastic 
approx.

MCD NP

FP Sampling

PBAU

Figure 6.6: Qualitative results on moving pedestrian detection of Daimler dashcam video. The
first row shows input images, and the other rows show the results of the compared methods:
input image, MCD NP [44], MCD 5.8ms [45], FP Sampling [65], Stochastic approx [47],
and the prior-based attentional update (PBAU).
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Input Image
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Figure 6.7: Qualitative results on moving vehicle detection of Daimler dashcam video. The
first row shows input images, and the other rows show the results of the compared methods:
input image, MCD NP [44], MCD 5.8ms [45], FP Sampling [65], Stochastic approx [47],
and the prior-based attentional update (PBAU).
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Figure 6.8: Quantitative results for the dual-mode modeling with attentional sampling
(DMAS) using pixel-wise precision, recall, F -measure.

6.2 Quantitative Comparisons

6.2.1 Dual modeling with attentional sampling

Figure 6.8 shows the quantitative results of dual modeling with attentional sampling. Since

the false positives are reduced significantly through the attentional sampling, the precision

values of the proposed scheme are highest over all sequences. Although Generalized BP [3]

marked best performance in cycle sequence, it marked the worst in mountain bike sequence.

6.2.2 Situation-aware background learning

We quantitatively compared our method with the following state-of-the-art methods: SOBS [25],

ViBe [31], FIC [21], BMRI-ViBe [33], MCD NP [44], MCD 5.8ms [45], and Stochastic ap-

prox [47]. SOBS and ViBe are standard background subtraction (BS) methods, and FIC and
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Figure 6.9: The pixel-wise F -measure results for the first 12 videos in Table 6.1, where x-
axis indicates the video sequence no. in Table 6.1. * indicates that the background model
was warped to compensate the camera motion for the algorithm which was designed for the
stationary camera. Since SOBS was provided as a binary file, we could not attach the motion
compensation.

BMRI-ViBe are BS methods modified to cope with sudden illumination changes. However,

because these methods are designed for a fixed camera, we also used a simple motion com-

pensation procedure to adapt them to a moving camera. In Figure 6.9, the asterisk(*) indicates

the combined method with motion compensation. MCD NP, MCD5.8ms, and Stochastic ap-

prox were proposed for a moving camera.

Figure 6.9 shows the performance of each method on each video. It is clear that the ex-

isting methods for a fixed camera perform poorly in a moving camera video. Although the

performances improve slightly through motion compensation, these methods remain inferior

to methods developed for a moving camera. Specifically, FIC* and BMRI-ViBe*, which were

designed to deal with illumination changes, were ineffective because illumination change ten-

dencies which arise with a moving camera differ from those with a fixed camera. While the

performances of the existing methods were unstable and degraded depending on the situa-

tions in the test video sequences, the proposed method showed robust performance in such

situations. Our method outperforms state-of-the-arts in tested videos with situation changes
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Table 6.2: The pixel-wise average precision, recall, and F -measure results for the contri-
butions of each module.

Method precision recall F -measure

baseline 0.5943 0.5068 0.4394
baseline + SABL 0.6757 0.6598 0.6339
baseline + SABL + WS 0.7572 0.9134 0.8173
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Figure 6.10: Quantitative results for dashcam videos listed, where x-axis indicates the video
sequence no. in Table 6.1 using pixel-wise F -measure.

and is comparable to Stochastic approx with typical videos.

Table 6.2 shows the contributions of SABL and WS for the average precision, recall,

and F -measure. Through SABL and WS, the overall performances are improved.

6.2.3 Prior-based attentional update (PBAU)

In the F -measure graph in Figure 6.10, the proposed PBAU outperforms state-of-the-art

methods in ten dashcam videos listed in Table 6.1. For the sequence-2 and sequence-4,

‘Stochastic approx’ shows a good performance because it builds the detailed background

model. However, when the scene changes dynamically, this method fails to detect the fore-

ground. On the contrary, our method shows a robust performance against changes in a dash-

cam video.
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Table 6.3: The average computational loads of each algorithm. * indicates that the back-
ground model was warped to compensate the camera motion for the algorithm which was
designed for the stationary camera. DMAS means the dual-mode with attentional sampling,
SABL means the situation-aware background learning, and PBAU means the prior-based
attentional update.

Methods Time per frame frame/section

Generalized BP [3] 35.3s 0.028 fps
ViBe* [31] 11.23ms 89.05fps

MCD NP [44] 16.08ms 62 fps
MCD 5.8ms [45] 5.74ms 174 fps

DMAS 4.80ms 208 fps
SABL 7.36 ms 136 fps
PBAU 16.58 ms 60.3 fps

6.2.4 Runtime evaluation

To evaluate the computational efficiency, we measured the computation loads of the com-

pared methods on Intel Core i5-3570 3.4GHz PC with 320 × 240 image without parallel

processing. Table 6.3 shows the run-time comparisons using average computation time. Gen-

eralized BP [3] takes about 30 seconds to per one frame. Moreover, it also needs the optical

flow calculation. DMAS is the fastest algorithm among the compared methods owing to the

attentional sampling method. SABL also shows high efficiency in terms of the computation

time comparable to MCD5.8ms. In case of PBAU, although it slightly takes more time than

MCD NP [44] (16.08ms) and MCD 5.8ms [45] (5.74ms) due to the scene structure estimation

and the twin processes, it still has a high efficiency in computation.

6.2.5 Unified framework

The unified framework covering all of the proposed schemes is evaluated over 22 video se-

quences described in Table 6.1, comparing it with the proposed individual schemes and the

existing state of the arts. Figure 6.11 shows the pixel-wise F -measure for all videos, and Fig-
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Figure 6.11: The pixel-wise F -measure results for all of 22 videos where x-axis indicates the
video sequence no. listed in Table 6.1. * indicates that the background model was warped
to compensate the camera motion for the algorithm which was designed for the stationary
camera. DMAS means the dual-mode model with attentional sampling, and SABL means
the situation-aware background learning.

ure 6.12 shows the averaged pixel-wise F -measure of each algorithm. Our approach showed

good performance compared to the state-of-the-art methods, and the performance is improved

with the addition of the proposed schemes (DMAS and SABL).

For the better visualization, we categorized 10 methods into four groups and drew the

average F -measure plot for each group as shown in Figure 6.13: background subtraction

for stationary camera + motion compensation (ViBE* [31], FIC* [21], BMRI-ViBe [33]),

Object-centric approach (Generalized BS [3]), Background-centric methods (MCD NP [44],

MCD 5.8ms [45], Stochastic approx [47]), and proposed methods (DMAS, DMAS+SABL,

Unified framework). Although the object-centric approach (green line) show the best perfor-

mance for three videos, this approach showed the unstable result in other videos. However,

our unified framework showed the robust performance along the various videos (red line).

The first three methods which belong to stationary + motion compensation showed poor per-

formances because they did not consider the issues of the moving camera. The object-centric

method showed good performance slightly, but it needs many computations and several as-

sumptions for the target object. Our approach showed robust performance on various videos
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Figure 6.12: The average F -measure of each algorithm: ViBe* [31], FIC* [21], BMRI-
ViBe [33], Generalized BS [3], MCD NP [44], MCD 5.8ms [45], Stochastic approx [47],
Dual-mode model with attentional sampling (DAS), Situation-aware background learning
(SABL), and Unified framework.
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Figure 6.13: The average F -measure of each group: Stationary + motion compensation
(ViBe* [31], FIC* [21], BMRI-ViBe* [33]), Object-centric approach (Generalized BS [3]),
Background-centric methods (MCD NP [44], MCD 5.8ms [45], Stochastic approx [47]), and
the unified framework.
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compared to the state-of-the-art methods.
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6.3 Application: combining with recognition algorithm

In the research for object detection and recognition, the numerous methods for extracting ob-

ject candidates have been proposed to reduce a search space and computations [76–81]. This

approach is based on a single image, and at least 1, 000 candidates are used. In a video case,

however, these methods are ineffective because the redundant candidates can be effectively

removed by using the temporal clue. Therefore, we combine the recognition algorithm with

our foreground result, which enables to recognize a moving object with only a few candidates

(about 10). Figure 6.14 shows the framework for moving object recognition. From the final

foreground, we generate several boxes as the moving object proposals. The image patch of

each box is tested by a pre-trained recognition network. Finally, this network gives both the

class label and corresponding segmentation.

Before extracting patches in the foreground, we first apply the blob analysis [72] and

remain large blobs whose area is greater than 100. Then, we extract the patch of which area

is 1.5 times bigger than its original size to cover a missing region. Extracted patches are re-

scaled as a 224 × 224 image to fit an input size of the pre-trained network. In the choice of

recognition network, we choose the fully convolutional network (FCN) [82] that produces

both the class label and the segmentation result. Although there are so many famous net-

works for the recognition such as AlexNet [83], VGGNet [1], and ResNet [84], they do not

generate a realistic recognition because they are trained using 1, 000 classes. Figure 6.15

shows the recognition result through VGGNet. Although we expect a pedestrian or man for

the input image in Figure 6.15(a), the algorithm recognizes this input as a duck. As shown

in Figure 6.15(b) is tested, the network generates wrong classes like a device though it looks

like a small blur or noise. Fortunately, the FCN adopted in our experiment is the fine-tuned

network using more practical classes such as a bicycle, boat, car, person, dog, etc. Also, the

FCN class can remove the noise or non-object because FCN is fine-tuned using the ‘back-

ground’ class. Therefore, the inevitable noises from the foreground can be filtered out in the
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Figure 6.14: The framework for moving object recognition in a dashcam video. From the
foreground result, the candidate regions of moving object are extracted. Then, patches on the
candidate regions are tested by the pre-trained deep neural network.
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(a)

(b)

Figure 6.15: The recognition result from the VGGNet [1]. Although the VGGNet showed a
good performance in the ImageNet classification with 1000 class, it is far from the realistic
classification.

recognition step.

Figure 6.16 and Figure 6.17 show the qualitative results of the recognition based on

our foreground result. Contrary to the pre-trained networks based on ImageNet, the FCN

produces the realistic class label as a person or car as shown in Figure 6.16. As shown in

Figure 6.17, the network does not find a precise boundary such as a pedestrian leg, but it

finds a quite reasonable region according to the class. Lastly, we compare the baseline FCN

that uses an entire image to the FCN with a few candidates from our foreground. Figure 6.18

shows the comparison result. Of course, the baseline FCN finds a static object such as a

parked car in Figure 6.18(a). However, the baseline misses small objects because the image
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Figure 6.16: The recognition result of FCN combined with our foreground through the red
box with a class label.

Figure 6.17: The recognition result of FCN combined with our foreground with segmentation.
Along the class, the color of the segmented region is changed.
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(a) baseline FCN (b) FCN with our foreground

Figure 6.18: The comparison result with baseline FCN and FCN based on our foreground.

data used in training contain a large object near the image center. On the contrary, the FCN

with our foreground detects and recognizes the moving objects because the object proposals

of our method enable to focus on the object of interest.

6.4 Discussion

The proposed framework showed a good performance compared to the state-of-the-art meth-

ods and needed the low computations. However, the videos capture by moving cameras

are numerous, and our framework cannot guarantee the good performance for entire cases.

Therefore, we consider several issues and summarize the strength and weakness of our frame-

work in this section.

6.4.1 Issues

As a naive approach, if the moving video is converted to the stationary video through the

video stabilization, we can think that the background subtraction method for the stationary

camera is enough to find the moving object. However, the video stabilization also has a lim-

itation to remove the camera motion effect. Figure 6.19 shows the moving object detection

result when the background subtraction for the stationary camera is applied to the stabilized

video. These detection results have many false positives around edges because the stabiliza-
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(a) (b)

(c) (d)

Figure 6.19: The detection result when stationary background subtraction is applied to the
stabilized video: (a) stabilized frame by [85], (b) detection result of (a), (c) stabilized frame
by [86], (d) detection result of (c).

(a) (b)

Figure 6.20: The detection result when the proposed method applied without stabilization:
(a) input frame (b) detection result.
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tion algorithm does not remove the effect of camera motion. On the contrary, the proposed

framework works well as shown in Figure 6.20 because it is designed by considering the

properties of the moving videos.

The other issues are the unimportant moving pixels. Our framework detects the moving

pixels as the counterpart of the built background. Therefore, the foreground from our frame-

work contains the unimportant moving objects such as the rain and the windscreen wipers in

a dashcam. Several predefined rules can be applied to remove these unimportant moving pix-

els, but it is impossible to define the rules for the numerous videos. Instead, we think that the

combining with recognition algorithm is a good solution as described in Section 6.3. When

a human perceives a moving object, human first recognizes that something is moving in a

very short time. Then human understands what is the object and pays attention to it when the

object is interesting. Our framework can operate as fast detection of the change and give the

location cues to recognize the important moving object.

6.4.2 Strength

Our framework consists of three main schemes: dual-mode modeling with attentional sam-

pling, situation-aware background learning, and prior-based attentional update. Although we

showed the effect of each scheme in the qualitative results, we mention the situations to pro-

duce the good result for each scheme empirically. The dual-mode modeling with attentional

sampling is well operated when the target object is determined such as tracking situation.

Because the spatio-temporal properties are used to build the sampling map, these properties

are based on the foreground occurrence. Since the camera is moved to focus the target object

in the tracking video, the probability of foreground occurrence is well established.

Second, the situation-aware background learning is effective when the camera monitors

the wide area. When the camera monitors the wide area such as PTZ camera, the overall

brightness of scene is changed by the auto exposure function and the situation-aware back-

ground learning is useful. When the object is moved vertically, the situation-aware back-
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ground learning is effective. In the perspective of background modeling, since the verti-

cal movement produces small change region, it can be ignored by the noise. However, the

situation-aware background learning controls the update frequency to discriminate the noise

and small moving object and enable to detect the moving object.

Third, the prior-attentional update is obviously effective to dashcam videos. Although it

is designed to find the sky and road region, the detection result is not degraded when there

are no sky or road region in the scene. The center-focus tendency is more powerful to build

the background for dashcam video, and the road and sky region play a role to reduce the

unimportant changes in those regions.

6.4.3 Limitation

Since our method is based on the background-centric approach, the background region should

be larger than the foreground region. In case of the webcam, if a person occupies more than

half of the scene, our method fails to model the background because the motion estimation is

severely affected by the foreground. This problem occupies in case of other vision algorithms

that contain the camera motion estimation step. If we utilize other sensors such as gyro as

well as the vision sensor, the accurate camera motion can be estimated, and this problem can

be effectively solved.

Another limitation is the foreground loss problem caused by the grid-based modeling and

intensity modeling. Although the grid-based modeling enables to build a coarse background

fast, it sometimes misses the small moving pixels when the moving distance is smaller than a

grid size. Figure 6.21 shows the limitation of the grid-based modeling. When the car moves

far away, the observed moving distance becomes short and the small part of the foreground

is detected. The intensity modeling also causes the foreground loss as shown in Figure 6.22.

Though the background in Figure 6.22(b) does not contain the pedestrian, the foreground

suffers from the part loss problem as shown in Figure 6.22(c). This problem occurs because

the intensity is not discriminative in finding the difference between the input image and back-
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(a) (b)

Figure 6.21: The limitation caused by the grid-based modeling. By the perspective of the
image, the moving distance on the image is short when the object moves from a distance.
Thus, the changed area becomes small, so only a part of the object is detected.

(a) input frame (b) background (c) detection result

Figure 6.22: The limitation caused by the intensity modeling. Even if the background is
built clearly as shown in (b), if the intensity of the object is similar to the intensity of the
background, the loss of object region occurs as shown in (c).
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ground. In other words, the intensities of pedestrian’s upper part of the input image are sim-

ilar to that of the corresponding location in the background. To solve this foreground loss

problem, we can consider the combination with the high-level knowledge for the object. As

shown in section 6.3, the high-level knowledge like the recognition can be the solution for

the imperfect foreground result. As human perceives the changes on the scene and recog-

nizes the moving object, the ultimate moving object detection should be combined with the

recognition based on the high-level knowledge. We will describe this future approach in the

chapter 7.
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Chapter 7

Concluding remarks and Future works

In this thesis, we tackled the detection problems and developed efficient and robust methods

for finding moving objects in a moving camera video. In chapter 3, based on the spatio-

temporal properties of moving object, we accelerated the algorithm and reduced false posi-

tives using the attentional sampling. After the spatio-temporal properties was modeled by the

foreground occurrence probability, a sampling map that selects the candidate pixels to find

the actual objects was generated based on this probability. The background subtraction and

dual-mode model update were applied to only the selected pixels. Lastly, the foreground was

refined to reduce false detections and fill the foreground hole clearly using the foreground

occurrence probability.

In chapter 4, the situation-aware background modeling was proposed to adaptively update

the background model along the scene situation. In this a new scheme, the situation variables

was estimated and the background model was adaptively updated. As well as the background

update, the compensation of camera movement was modified according to the situation vari-

ables. Through the situation-aware scheme, a clear background model was obtained without

contamination by the foreground. Also, a new foreground segmentation method was pro-
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posed using the watershed segmentation with two thresholds. This situation-aware scheme

showed robust performance under various situations such as sudden illumination changes.

In chapter 5, the modified background modeling was proposed for dashcam video that

has received the attention for smart mobility like an autonomous vehicle. From the moti-

vation of the center-focused and structure-focused tendencies of human attention, the back-

ground modeling was extended to focus on the center changes and neglect minor changes

on the scene structure. By increasing the learning rate of the boundary region, the center-

focused tendency was implemented through the multiplication of the attention map and the

age model. To implement the structure-focused tendency, the road and sky region which give

scene structure information in a dashcam were estimated. Then, estimated scene information

was used to build a robust background model through the model selection. Lastly, the final

foreground was obtained by combining two foregrounds from twin processes using origi-

nal image and the median-filtered image to emboss the foreground region. Also, through the

combination with the recognition algorithm using the deep neural network, we showed the

application of our method for the efficient moving object proposal method.

The unified framework, even covering all of the proposed schemes, satisfies the real-

time performance which is important to an actual application for a pre-processing. Moreover,

since our framework run in an unsupervised and online manner, it is a less constrained and

less sensitive than other methods. Due to the usability of our methods, our detection method

was used in the PTZ tracking [87]. We expect that our methods can be widely utilized of

many applications in the moving camera.

Even though the proposed methods showed good performances in videos captured from

various moving cameras, there are still many future works to improve the performance. First

of all, because only the vision-based camera motion estimation has an inevitable estimations

error, this motion estimation can be improved by other sensors. That is, additional sensor in-

formation to estimate camera motion will help to overcome the limitation of the homography

model. Although we keep the homography model due to the algorithm efficiency, the forward

110



motion in a dashcam and the rise motion in a drone cannot be represented well by the single

homography model. However, if the additional cues of camera motion from other sensors

are given, we can use more suitable motion model for representing the camera motion and

reduce the false detections as a result.

Another future approach is the combination with a deep neural network. In chapter 6.3,

we showed that our foreground could be used as a moving object proposal for the recognition

algorithm. In this combination, the detection module and recognition module of the moving

object were independently operated. If an integrated algorithm is developed to detect and

recognize the moving object simultaneously, it produces the successful synergy. In other

words, the current moving object detection is based on the pixel-wise detection that does not

use the high-level information such as object class and scene structure. Through the deep

neural network which extracts and builds the high-level knowledge, many problems on the

moving object detection can be solved. That is, the false positives from the compensation

error can be easily removed because the trained neural network discriminates the objectness

using the high-level knowledge. Although the issues for the network design and the dataset

with ground truths, the integrated work of detection and recognition will be a good future

work.
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초록

본연구에서는다양한동적카메라에서촬영된영상에서동적물체탐지를위한배경

중심접근의프레임워크를제안한다.이방법은기존의객체중심접근법의큰문제인

연산량 문제를 크게 개선하여, 실용적으로 사용할 수 없던 기존의 방법들에 비해 효

율적이고성능도우수한새로운방법이다.기존의정지카메라에서사용되어온배경

중심접근방법은부정확한카메라움직임추정으로인해오탐지문제,카메라시야의

변화로인한조명변화와같은급격한변화,카메라움직임과물체의움직임을구별하

기어려운상황에서놓침문제,그리고자동차에설치된카메라에서의문제등다양한

문제가 발생한다. 이러한 어려움들을 극복하기 위하여, 크게 세가지 부분으로 이루

어진 하나의 프레임워크가 제안되었고 이를 통해 다양한 움직이는 카메라 영상에서

효율적이고강인하게물체를탐지할수있게하였다.

첫번째로카메라움직임보상과정에서부정확한카메라움직임추정으로인해발

생하는오탐지를줄이기위해서,듀얼모델링과선택적영역탐지알고리즘을이용해

알고리즘을가속화하고전경영역의훼손을막는모듈을제안하였다.듀얼모델링은

전경 정보의 배경 모델 간섭을 방지하는 효과를 내고, 선택적 영역 탐지 알고리즘은

알고리즘을 더욱 가속화시켜준다. 선택적 영역 알고리즘은 영상에서 움직이는 물체

가나타나면다음시간에는물체가나타난주변에서물체가나타날것이라는특성을

이용하여물체가나타날확률맵을정의하고,이를기반으로하여선택적탐색방법을

적용하여매우빠른탐지가가능하도록하였다.

두 번째로는 영상의 급격한 변화나 카메라의 움직과 객체 움직임을 구별하기 어

려운 경우와 같이 특정 상황에서 성능이 급격하게 떨어지는 현상을 개선하기 위한

방법을 제안하였다. 이 방법은 장면의 변화에 따라서 스스로 상황을 인지하여, 이에

맞게 가변적으로 배경을 학습함으로서 움직이는 물체를 안정적으로 탐지할 수 있게

한다. 현재 영상에서 나타나는 상황을 인지하기 위해서 먼저 상황 변수라고 정의된
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카메라움직임,전경움직임,그리고조명변화를추정하고,이에따라배경을가변적

으로업데이트해나간다.이를통해기존의성능과속도는유지하면서,변화가급격한

영상에서도눈에띄게성능이개선되는결과를얻었다.

마지막으로기존프레임워크가자동차에부착된카메라에서잘동작하지못하는

점을해결하기위한사전정보기반의선택적업데이트방법을제안하였다.카메라움

직임모델의한계로인해서블랙박스영상등에서는움직이는물체탐지가쉽지않은

데,본방법에서는자동차카메라에서나타나는사전정보를이용하여이한계를극복

하고자하였다.주행상황에서사람이영상의전체적인구조를파악하고중심부분에

집중하여 상황을 인지하는 것에서 아이디어를 얻어 배경 모델링을 개선하고 영상의

측면부분에서발생하는급격한변화를대응하는방법론을제안하였다.이를통해,기

존대부분의방법이주행영상에서배경모델링과움직이는물체탐지에실패한것과

달리본방법은주행영상에서도배경모델링과움직이는물체탐지에서성공적인결

과를보여주었으며,또한인식방법과의결합을통해자율주행을위한활용처로서의

가능성도확인하였다.

이통합된프레임워크는움직이는카메라영상에서발생하는다양한문제를해결

하면서동작하게설계되었고또한매우빠르게동작하여실제최신방법들과의정성

적, 정량적 비교 평가를 통해 그 효율성을 검증하였다. 첫 번째 모듈들로 인해서 한

프레임 처리에 4.8ms밖에 걸리지 않는 효율성을 보여주었고, 두 번째 모듈들로 인해

기존의 일반적인 상황에서의 성능과 속도는 유지하면서, 변화가 급격한 영상에서도

눈에 띄게 성능이 개선되는 결과를 얻었다. 마지막 주행 상황 영상을 위한 모듈들을

통해주행영상에서도배경모델링과움직이는물체탐지에서성공적인결과를보여

주었으며,또한인식방법과의결합을통해자율주행을위한활용처로서의가능성도

확인하였다.

주요어:움직이는물체탐지,움직이는카메라,배경모델링,영상감시

학번: 2010-20847
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