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Abstract 
 

A discontinuous conduction mode (DCM) buck converter, which acts as a volt-

age regulator in battery-free applications, is proposed to maximize the energy deliv-

ery to the load system. In this work, we focus the energy loss problem during start-

up and steady-state operation of the buck converter, which severely limits the energy 

delivery. Especially, the energy loss problem arises from the fact that there is no 

constant power source such as a battery and the only a small amount of energy har-

vested from the ambient energy sources is available. To address such energy loss 

problem, this dissertation proposes optimal inductor current control techniques at 

each operation to greatly reduce the energy losses. First, a switching-based stepwise 

capacitor charging scheme is presented that can charge the output capacitor with 

constant inductor current during start-up operation. By switching the inductor with 

gradually incrementing duty-cycle ratios in a stepwise fashion, the buck converter 

can make the inductor current a constant current source, which can greatly reduce 

the start-up energy loss compared to that in the conventional capacitor charging 

scheme with a voltage source. Second, a variable on-time (VOT) pulse-frequency-

modulation (PFM) scheme is presented that can keep the peak inductor current con-

stant during steady-state operation. By adaptively varying the on-time according to 

the operating voltage conditions of the buck converter, it can suppress the voltage 

ripple and improve the power efficiency even with a small output capacitor. Third, 

an adaptive off-time positioning zero-crossing detector (AOP-ZCD) is presented that 

can adaptively position the turn-off timing of the low-side switch close to the zero-
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inductor-current timing by predicting the inductor current waveform without using a 

power-hungry continuous-time ZCD. To demonstrate the proposed design concepts, 

the prototype battery-free wireless remote switch including the piezoelectric energy 

harvester and the proposed buck converter was fabricated in a 250 nm high-voltage 

CMOS technology. It can harvest a total energy of 246 μJ from a single button press 

action of a 300-mm2 lead magnesium niobate-lead titanate (PMN-PT) piezoelectric 

disc, and deliver more than 200 μJ to the load, which is sufficient to transmit a 4-

byte-long message via 2.4-GHz wireless USB channel over a 10-m distance. If such 

battery-free application does not use the proposed buck converter, the energy losses 

incurred at the buck converter would be larger than the energy harvested, and there-

fore it cannot operate with a single button-pressing action. Furthermore, thanks to 

the proposed energy efficient buck converter, the battery-free wireless remote switch 

can be realized by using a cheaper PZT piezoelectric source, which can achieve a 

10× cost reduction. 

 

Keywords : Buck converter, battery-free application, switching-based stepwise ca-

pacitor charging, variable on-time, adaptive off-time positioning zero-crossing de-

tector, piezoelectric, RF transmitter, battery-free wireless remote switch. 

Student Number : 2010-20852  
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Chapter 1  

 

Introduction 
 

 

 

 

 

1.1 Motivation 

 

With active researches in energy harvesting system [1]–[4], there is a growing 

demand for battery-free applications [4], [26]–[28] such as wireless switches and 

sensors. While these applications utilize the energy existing in environment, for ex-

ample kinetic motion [35], pressure [26]–[30], light [36] and differences in tempera-

ture [38], combining energy harvesters and ultra-low power wireless applications 

creates the battery-free solutions. Such battery-free applications can save mainte-

nance and installation costs for use in buildings, smart home and industrial applica-

tions as well as for the Internet of Things (IoTs). However, the energy harvested 

from such ambient energy sources is limited and the large energy losses incurred 

during the system’s operation make it difficult to supply enough energy to meet the 
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requirements for successful data transmission. This dissertation proposes an energy-

efficient voltage regulator circuit and its optimal inductor current control techniques 

to deliver the largest possible energy while a small amount of energy harvested is 

available. 

A simple schematic of the battery-free system is illustrated in Fig. 1.1. It consists 

of an ambient energy source, energy harvester, storage capacitor (Cin), voltage regu-

lator and load system. When the ambient energy sources such as a solar cell, piezoe-

lectric transducer and thermoelectric generator (TEG) generate the electric charge, 

the energy harvester collect this charge in Cin, instead of the battery. Since the gen-

erated power from the ambient energy sources (i.e, Pin) is smaller than the required 

power of the load system (i.e., Pout) in most cases, the energy should be collected in 

Cin during the sufficient time before operating the voltage regulator. After the 

enough energy is charged in Cin, the voltage regulator begins charging its output ca-

pacitor (Cout) to a desired output voltage using the energy stored in Cin (i.e., start-up 

operation), and then delivers this energy to the load (i.e., RF transmitter) at a 

 

Fig. 1.1. Simple schematic of the battery-free application. 
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steady output voltage. In this study, we focus on the voltage regulator because its 

energy loss is dominant, thereby significantly limiting the energy delivery. 

The challenges in designing such a voltage regulator arise from the energy losses 

incurred during the start-up operation with fully discharged output capacitor (Cout) 

and during the steady-state operation with the large quiescent current in control cir-

cuits. Fig. 1.2 illustrates the specific operation of the voltage regulator and its design 

issues in battery-free applications. Note that the small input capacitor (Cin) is re-

quired to collect the large energy with a high voltage in energy harvesting process 

[35], [40], which calls for the step-down buck converter topology as a voltage regu-

lator to down-convert the voltage. First, the large energy is dissipated at start-up op-

eration of the buck converter. Specifically, to charge Cout from zero to the desired 

 

Fig. 1.2. Specific operation of the voltage regulator and its design issues in battery-

free applications. 
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output 

voltage (Vout), the capacitor charging loss is incurred, which contains two losses; one 

is the energy dissipation at the resistive component (Eloss,st) such as a switch, and the 

other is the stored energy in Cout (i.e. Eloss,Cout = 0.5CoutVout
2). Second, the large ener-

gy loss (Eloss,conv) is also dissipated during steady-state operation. Specifically, to 

regulate Vout at a steady voltage, the large quiescent current of the buck converter’s 

controller is incurred. Especially, the power efficiency of a discontinuous conduc-

tion mode (DCM) buck converter is mainly limited by the precision of its zero-

crossing detector (ZCD), which controls and generates the timing signal to turn off 

the low-side switch MN when the inductor current becomes zero. For instance, the 

timing error between the actual turn-off timing of MN and the zero-inductor-current 

timing can incur a large power loss, either due to the body diode conduction when 

IL

CKP

CKN

MN turns off early

IL

CKP

CKN

MN turns off late

VoutVx

L

Vin

MP

CKP

MN

CKN Cout
Iload

IL

ZCD

 

Fig. 1.3. Schematic of synchronous DCM buck converter and its key waveforms 

when MN turns off early or late. 
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MN turns off too early or due to the inverse inductor current when MN turns off too 

late, as shown in Fig. 1.3. To circumvent these losses, the ZCDs require high preci-

sion in detecting this timing error. However, the high-precision ZCDs employing a 

continuous-time comparator [4], [8]–[11] incur a large static power consumption 

(e.g., ~250 µW [4]) in operation.  
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1.2 Thesis Contribution and Organization 

 

To address the aforementioned challenges in both start-up and steady-state opera-

tion, this dissertation proposes optimal inductor current control techniques for each 

operation.  

First, in order to reduce the resistive loss (Eloss,st) at start-up operation, a switch-

ing-based stepwise charging technique [39] is proposed that can charge the capacitor 

with a current source; this can be realized by keeping the average inductor current 

constant and operating the buck converter in continuous conduction mode (CCM) 

with linearly incrementing duty-cycle ratios in a stepwise fashion.  

Second, in order to minimize the required energy to charge the capacitor (Eloss,Cout) 

at start-up operation, a variable on-time pulse-frequency modulation (PFM) control 

[4] is proposed that can make use of a small Cout without degrading the steady-state 

performance such as voltage ripple and power efficiency; this can be realized by 

adaptively varying the on-time of PFM pulse with inversely proportional to the volt-

age difference between input and output (i.e., Ton ~ 1/(Vin − Vout)), which can keep 

the peak inductor current constant.  

Lastly, in order to reduce the controller loss (Eloss,conv) at steady-state operation, 

an adaptive off-time positioning ZCD (AOP-ZCD) is proposed, which is a sampling-

based ZCD [1]–[3] with an adaptive off-time pulse generator that can achieve both 

high-precision in timing detection and low-power consumption in operation for wide 

ranges of input and output voltage conditions; this can be realized by the inductor 

current waveform prediction aided with the constant peak inductor current control. 
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This thesis is organized as follows. Chapter 2 describes the overall architecture of 

the proposed buck converter for battery-free applications. Specifically, the operation 

mode, overall architecture and building blocks of the proposed buck converter will 

be described. Chapter 3 provides the design concepts of the proposed optimal induc-

tor current control techniques based on the detailed analysis. Specifically, energy 

savings from the switching-based start-up scheme [39], the variable on-time (VOT) 

PFM scheme [4] and the adaptive off-time positioning zero-crossing detector (AOP-

ZCD) scheme will be described. Chapter 4 explains the detailed circuit implementa-

tion of the building blocks and shows their simulation results. Chapter 5 provides the 

measurement results of the proposed buck converter and Chapter 6 demonstrates the 

effectiveness of our approaches by applying the proposed buck converter to the bat-

tery-free wireless switch application. 
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Chapter 2  

 

Operation Mode and Overall Archi-

tecture  
 

After discussing the motivation and design issues of this work in Chapter 1, this 

chapter describes the operation mode and the overall architecture of the proposed 

buck converter for batter-free applications. The proposed buck converter employs 

both a continuous conduction mode (CCM) and discontinuous conduction mode 

(DCM) control schemes at each start-up and steady-state operation, respectively, to 

achieve maximum energy delivery. The principle of each control scheme will be 

discussed in detail in following sections.  

 

 

 

2.1 Topology Selection 

 

To down-convert the voltage, the step-down converter topology is required such 

as a buck converter or buck-boost converter as shown in Fig. 2.1. Considering that 
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the aim of the voltage regulator is delivering the maximum energy stored in the in-

put capacitor to the load, the buck-boost topology could be preferable because it can 

operate even though the input voltage is lower than the output voltage, delivering 

more energy. However, this topology requires additional power switches MP2 and 

MN2 as shown in Fig. 2.1 (a), which incurs the larger conduction loss and switching 

loss. To reduce the conduction loss, the large-sized power switches are required; 

however, they occupy large silicon area. On the other hands, the simple buck topol-

ogy as shown in Fig. 2.1 (b) does not require the additional power switches and 

hence this topology can achieve high efficiency and small silicon area. However, the 

buck topology can deliver the energy only when the input voltage is higher than the 

output voltage. Therefore, the rest of energy in the input capacitor could be wasted.  

 

Fig. 2.1. Topology Comparison; (a) buck-boost, (b) buck. 
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The topology chosen is the buck converter. Because the battery-free applications 

are realized by combining an energy harvester and ultra-low-power wireless appli-

cation as described in Chapter 1.1, low supply voltages of the load systems (e.g., 1.0 

V, 1.2 V) are used in practice. This means that the advantage of energy delivery in 

buck-boost topology is lost when the output voltage is low enough. Although the 

buck topology can deliver slightly smaller amount of energy, this topology can be 

more superior in ultra-low-power battery-free application because it can achieve 

high efficiency and reduce area. 
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2.2 Principle of Operation 

 

The basic operation of the buck converter is stepping down the DC voltage effi-

ciently by switching an inductor. In synchronous buck converter, two switches are 

used to control the inductor current and their switching signals determine the per-

formance of the buck converter. Specifically, according to the duty-cycle ratios and 

switching frequency of switching signals, the performance such as current/voltage 

ripples and power efficiency can be changed and hence the optimal current controls 

should be analyzed first before designing. In buck converter, there are two operation 

modes; continuous conduction mode (CCM) and discontinuous conduction mode 

(DCM). Continuous inductor current mode is characterized by current flowing con-

tinuously in the inductor during the entire switching cycle in steady-state operation. 

Discontinuous inductor current mode is characterized by the inductor current being 

zero for a portion of the switching cycle. The two different modes will be discussed 

in this subsection.   
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2.2.1 Basic Operation in CCM 
 

In continuous conduction mode, the buck power stage assumes two states per 

switching cycle. The ON state is when MP turns on and MN turns off. The OFF state 

is when MP turns off and MN turns on. The circuit diagram for each of the two states 

is shown in Fig 2.2. At ON state, the high-side switch turns on and the applied volt-

age across the inductor is the voltage difference between input and output (i.e., VL = 

Vin − Vout) during DT, where D is a duty-cycle ratio of the switching signal (0 < D < 

1) and T is a switching period. Because the voltage across the inductor VL is a posi-

tive value, the inductor current increases with a slope of (Vin − Vout)/L, where L is an 

inductance. At OFF state, the low-side switch turns on and the applied voltage 

across the inductor is the output voltage (i.e., VL = − Vout) during (1−D)·T. Because 

the voltage across the inductor VL is a negative value, the inductor current decreases 

with a slope of − Vout/L. In steady-state operation, the amount of increase and de-

crease in inductor current should be same as expressed in (2.1). From this equation, 

we can find that the ratio between input and output voltage in CCM is proportional 

to the duty-cycle ratio. 

(1 )in out out out

in

V V V V
DT D T D

L L V


              (2.1) 

In other words, since the pulsed voltage Vx is filtered by a low-pass L/C filter to 

generate a DC voltage Vout, the average value of Vx equals to Vout. Ideally, if an in-

ductor (L) and a capacitor (Cout) is large enough, a DC output voltage is generated 

and its voltage level varies with proportional to D. 

However, because the inductance and capacitance values are finite, their non-
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idealities incur the current/voltage ripples. The maximum/minimum current Imax and 

Imin can be induced as (2.2), respectively, where Iavg is an average current (i.e., Iavg = 

Vout/Rload). 

(1 )

2

(1 )

2

in
max avg

in
min avg

V D D T
I I

L

V D D T
I I

L


 


 

                  (2.2) 

Therefore, the current ripple (ΔIL = (Imax − Imin)/2) can be calculated. Since the AC 

component of the inductor current flows through the output capacitor, the capacitor 

 

Fig. 2.2. Equivalent circuit diagrams of CCM buck converter at (a) ON state and (b) 

OFF state and its key waveforms. 
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current (Ic) can be plotted as shown in Fig. 2.3 and it generates the output voltage 

ripple (ΔVout), which can be induced as (2.3). 

2(1 )1

2 8
in

out L

V D D TT
V I

C LC

 
                  (2.3) 

From (2.3), in order to minimize the voltage ripple, a fast switching frequency, a low 

input voltage, and large inductance and capacitance values are required.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. Capacitor current waveform in steady-state operation. 
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2.2.2 Basic Operation in DCM 
 

In discontinuous conduction mode, the buck power stage assumes three states 

per switching cycle as described in Fig.2.4. While the principle of operation of 

DCM buck converter almost same with that of the CCM buck converter as shown in 

Fig. 2.4 (a) and (b), there is an additional states (i.e., zero-inductor-current state) as 

described in Fig. 2.4 (c). When the high-side switch turns on, the inductor current 

increases with a slope of (Vin − Vout)/L and when the low-side switch turns on the 

inductor current decreases with a slope of − Vout/L until the inductor current be-

comes zero. After this time, the stored charge in the output capacitor is transferred 

VoutVx

VL

Cout

IL

load

Vin

(a)

VoutVx

Cout

IL

load

Vin

(b)

VL

Vout

Cout
load

Vin

(c)

IL

tTDT DAT

(d)  

Fig. 2.4. Equivalent circuit diagrams of DCM buck converter and its key wave-

forms. 

. 
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to the load. In steady-state, the amount of increase and decrease in inductor current 

should be same as expressed in (2.4).  

( )in out out out
A

in A

V V V V D
DT D D T

L L V D


              (2.4) 

Actually, the low-side switch turn-on time (i.e., DAT – DT) is determined by the in-

ductor peak current value and discharging slope.  

,L peak

A

out

I L
D T DT

V


                   (2.5) 

From the fact that the charge transferred to the load in one switching cycle equals to 

the area of triangle of inductor current, DA can be induced as (2.6). 

,

2 load
A

L peak

I
D

I
                       (2.6) 

From (2.5) and (2.6), DA can be induced as function of switching period (T), induct-

ance(L), duty-cycle ratio (D) and load current (Iload) as (2.7). 

2 load
A

in

I L
D D

D V T


 

 
                     (2.7) 
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2.3 Operation Mode 

 

To maximize the energy delivery, the proposed buck converter operates in CCM 

and DCM at start-up and steady-state operation, respectively. A simple block dia-

gram of the proposed buck converter and its CCM/DCM controllers are illustrated 

in Fig. 2.5.  

In start-up operation, the controller employs a pulse-width modulation (PWM) 

scheme to keep the average inductor current constant. The key principle of the start-

up controller is that the energy is transferred from the input capacitor (Cin) to the 

output capacitor (Cout) by toggling the power switches (MP and MN) on and off mul-

tiple times, of which duty-cycle ratio linearly increments in a stepwise fashion. 

When the energy harvester collects the sufficient energy in Cin, the buck converter 

operates in the forward direction by turning on the high-side switch MP and building 

up the positive inductor current that charges Cout. By linearly incrementing the duty-

cycle ratio D from zero, the output voltage Vout increases linearly towards a desired 

voltage level, Vout = D · Vin, which maintains the average inductor current constant. 

After the charging Cout completes, the buck converter changes its operation mode 

in pulse-frequency-modulation (PFM) mode. The converter employs a PFM control 

scheme to regulate the output voltage, and to enhance the light-load efficiency by 

dynamically adjusting the switching frequency according to the load current. The 

key principles of the PFM control are that the on-time (Ton) of the high-side switch-

ing signal CKP is adaptively scaled with inversely proportional to Vin − Vout (i.e., Ton 

~ 1/(Vin − Vout)) and the off-time (Toff) of the low-side switching signal CKN is also 
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adaptively scaled with inversely proportional to Vout (i.e., Toff ~ 1/Vout). The generat-

ed Ton can keep the inductor peak current constant regardless of Vin and Vout varia-

tion and the generated Toff can turn off MN with the right timing by predicting the 

zero-inductor-current timing. The detailed design concepts of the proposed inductor 

current control techniques will be described in Chapter 3. 

VoutVx

L

Vin

MN

CKN Cout
Iload

ILMP

CKP

Start-up 
control 

&
PFM 

control

Cin

(a)

(b)

IL,peak

Ton Toff

-Vout/L(Vin-Vout)/L
Vout

Vin

CKP

CKN

IL

start-up 
(CCM)

steady-state 
(PFM)

Vref

Fig. 2.5. (a) Simple block diagram of the buck converter and its controller, and (b)

key operating waveforms. 
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2.4 Overall Architecture 

 

The overall architecture of the proposed buck converter is illustrated in Fig. 2.6. 

It is composed of a power stage of the buck converter, the switching-based stepwise 

charging scheme for start-up operation, the PFM control scheme including the vari-

able on-time and adaptive off-time positioning ZCD, and the load system (i.e., 2.4-

GHz WirelessUSB RF transceiver (CYRF8935)). 

More specifically, during start-up, the switching-based stepwise charging scheme 

charges Cout with a constant inductor current, which is made by switching the buck 

converter with linearly incrementing the duty-cycle ratios. As shown in Fig. 2.6, it 

includes a voltage detector (VD), a duty-cycle controller (DCC), a digital pulse 

width modulator (DPWM), a non-overlap circuit and a 2:1 switched-capacitor (SC) 

converter. When the input capacitor (Cin) is charged to a desired voltage (e.g., 5 V) 

by an energy harvester, an enable signal (en) turns on a switch Men. From this time, 

the input voltage Vin increases from zero to the capacitor voltage of Cin and then the 

proposed start-up controller begins to operate. When Vin reaches a predetermined 

voltage level (i.e., 2.8 V), a voltage detector (VD) generates a reset signal for the 

DCC, which generates pre-programmed 8-bit digital code (DUTY_CTRL). With this 

code, DPWM generates the pulse-width modulated signals (i.e., PWMP and PWMN) 

for both high-side and low-side switches (i.e., MP and MN). To prevent the signifi-

cant power loss due to the crowbar current when both MP and MN turn on, the non-

overlap circuit generate the dead time, where both MP and MN turn off. By linearly 

incrementing DUTY_CTRL from zero, the duty-cycle ratio (D) of the PWM clocks 
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also increase from zero; this can charge the output capacitor (Cout) linearly and step-

wise, and can maintain the average inductor current constant. Note that a 2:1 

switched-capacitor (SC) DC-DC converter is utilized to supply a lower voltage to 

the control circuits; the lower supply can greatly reduce the dynamic power con-

sumption in control circuits. 

The proposed PFM controller employs the variable on-time (VOT) pulse genera-

tor to keep the inductor peak current (IL,peak) constant. When Vout reaches a desired 

output voltage that is determined by the output of a bandgap reference (BGR), an 

output sensing comparator (CMP) sets its output (VCMP) low to high. This event ena-

bles the PFM controller and simultaneously disables the start-up controller to reduce 

the unnecessary power consumption. The VOT pulse generator generates the high-

side switching signal CKP, for which the pulse width (i.e., Ton) is set inversely pro-

portional to Vin − Vout. Because the inductor current is charged from zero to IL,peak 

with a slope of (Vin − Vout)/L during Ton, the variable Ton can keep IL,peak constant for 

various Vin and Vout (i.e., IL,peak = (Vin − Vout)/L · Ton = const).  

To position the turn-off timing of MN near the zero-inductor-current timing by 

predicting the inductor current waveform, the adaptive off-time positioning zero-

crossing detector (AOP-ZCD) is proposed. When Ton ends, this event enables the 

AOP-ZCD, which is composed of an adaptive off-time (AOT) pulse generator and 

digital timing calibration loop. The AOT pulse generator generates the low-side 

switching signal CKN, for which the pulse width (i.e., Toff) is set inversely propor-

tional to Vout (i.e., Toff ~ 1/Vout). Because the inductor current is discharged from 

IL,peak to zero with a slope of −Vout/L during Toff, the generated Toff can ideally turn off 

MN when the inductor current reaches zero and the accurate zero-current switching 
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(ZCS) timing of MN can be predictable. However, the initially generated Toff is not 

enough to guarantee the precise ZCS operation because the timing error can be in-

curred by various non-ideal effects, such as process–voltage–temperature (PVT) var-

iations, device mismatches, or series resistance of the power switches and inductor. 

To compensate for the residual timing error, a digital timing calibration loop in the 

AOP-ZCD adjusts the Toff. 
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Chapter 3   

 

Optimal Inductor Current Controls 

for Maximum Energy Delivery  
 

 

In Chapter 2, the operation mode and the overall architecture of the proposed 

buck converter were described. This chapter will discuss the optimal inductor cur-

rent control techniques for maximum energy delivery in each start-up and steady-

state operation in detail. Specifically, the previously-reported control schemes are 

described first, and then the proposed circuit techniques to reduce the energy losses 

introduced in Chapter 1 (Eloss,st, Eloss,Cout, Eloss,conv) for achieving the best performance 

will be explained based on the detailed analysis. 
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3.1 Constant Inductor Current Control 

with Switching-Based Stepwise Capacitor 

Charging Scheme 

 

In this section, we describe the proposed start-up control scheme and its ad-

vantage compared to those of the previous ones. Before discussing the effectiveness 

of our approach, the previously reported capacitor charging schemes will be de-

scribed first. 

 

3.1.1 Conventional Charging Scheme with a Switch 

 

In previous energy harvesting applications, a simple start-up switch [3], [35] was 

used to charge Cout as shown in Fig. 3.1 because they focused on the steady-state 

operation with a continuous energy source such as vibration or RF input, in which 

the steady-state power efficiency matters than the start-up energy loss. However, 

this method is not proper to the target application because the steady-state condition 

does not last long, which makes the transient energy loss during the start-up phase of 

the buck converter dominant. In this sub-section, we derive the start-up energy loss 

(i.e., Eloss,st + Eloss,Cout) when charging the capacitor with a switch to show that this 

scheme incurs the large energy loss at the switch. 
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Its basic principle of charging Cout is the charge sharing between the input capaci-

tor (Cin) and the output capacitor (Cout) by connecting them with a switch Mstart-up. 

Since it charges Cout to Vout by directly connecting the voltage source (Cin can be 

considered as a voltage source), the large energy loss of CoutVout
2/2 is incurred at the 

switch even if its resistance is an extremely low value. 

More specifically, the total energy loss when the Cin is connected to the Cout with 

the Mstart-up can be derived as follows. Assuming that Cout is initially fully discharged 

and the initial voltage of the storage capacitor Cin is Vin, the final input voltage Vin,f 

after charge sharing can be expressed as:  

,
out out

in f in

in

V C
V V

C
                       (3.1) 

Therefore, the energy usage of Cin during start-up operation (i.e. Eloss,st + Eloss,Cout) 

can be derived as (2): 

 
2 2

2 2
, , ,

1
( )

2 2
out out

loss st loss Cout in in in f in out out

in

V C
E E C V V V V C

C
           (3.2) 

Fig. 3.1. Conventional start-up scheme with a simple switch Mstart-up. 
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  Fig. 3.2 plots the energy losses in change with Cout from (3.2) with a 13.2-μF Cin, 

5 V Vin and 2.5 V Vout. This figure shows that the large energy is lost at the switch 

and its loss increases as Cout increases. For instance, to charge a 2.2-μF Cout to Vout, 

19.5-μJ energy is dissipated at the switch (i.e., Eloss,st), while 6.9-μJ energy is stored 

in Cout (i.e., Eloss,Cout). However, to charge a 10-μF Cout to Vout, 70.1-μJ energy is dis-

sipated at the switch, while 31.3-μJ energy is stored in Cout. Considering that the en-

ergy stored in 13.2-μF Cin was 165 μJ, this charging scheme cannot be used in this 

application due to the excessively large energy loss incurred during charging Cout. 
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Fig. 3.2. Energy losses versus Cout. 
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3.1.2 Adiabatic Stepwise Charging 

 

The energy loss problem incurred when charging capacitor already existed in re-

lated fields. To reduce the resistive loss incurred at the switch, an capacitor charging 

technique called adiabatic switching has previously been researched for their energy 

efficient integrated circuits such as logic [45]–[47], SRAM [48] and clock driver 

networks [49], [50]. Specifically, adiabatic circuits use a stepwise charging method 

[41]–[44] that ideally dissipates no energy when the charging level moves between 

infinitesimal voltage levels as shown in Fig. 3.3. To charge the capacitor to the sup-

ply voltage V using the N-stepwise method, the intermediate reference voltages of 

the tank capacitors (Vi = i · V/N) are connected to the load capacitor C in succession 

using the corresponding switches (T1–TN).  

The effectiveness of adiabatic charging scheme is that charging the capacitor in N 

steps instead of a single step reduces the energy dissipation by a factor of N. To 

charge the capacitor C, each reference voltage level is connected to the capacitor in 

briefly in ascending order, until its voltage reaches the corresponding reference volt-

age level. While each reference voltage supply (i.e., voltage across tank capacitor) 

injects a charge to the capacitor, the energy loss at each switch (ETN) can be ex-

pressed as:  

 
2 2

1
2

( )

2 2
i i

TN

C V V CV
E

N


                      (3.3) 

Therefore, the total energy loss at the switches (T1–TN) can be derived as: 

2

2
T1 TN TN

CV
E E N

N
                          (3.4) 
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Although this scheme can reduce the loss incurred at the switches, it is difficult 

to directly apply this technique to the battery-free applications because this method 

needs N additional tank capacitors to generate N step voltage levels, resulting in de-

sign complexity and increasing cost. Moreover, a large amount of energy is required 

to pre-charge N tank capacitors to their predetermined voltage levels. 

 

 

 

 

 

V

C

T1

T2

TN

V1

V2

T0

T0

T1

T2

TN

Vc

V1

V2

V

Ic

IC

 

Fig. 3.3. Stepwise charging the capacitor with N tank capacitors. 
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3.1.3 Proposed Start-up Scheme 

 

To efficiently charge Cout without incurring the loss at the start-up circuit (i.e., 

Eloss,st), the proposed start-up scheme [39] employs a current charging method as 

shown in Fig 3.4. Charging Cout with a current source can reduce Eloss,st to zero ideal-

ly, while the required energy is only Eloss,cout (i.e., 0.5CoutVout
2). Specifically, to real-

ize the current source, the proposed start-up scheme directly uses the buck converter 

that can make the inductor current as a constant current source by switching the in-

ductor. Note that Eloss,st in the proposed scheme is the required energy to make the 

constant inductor current during the buck converter’s start-up operation. 

To reduce the Eloss,st, the proposed buck converter realizes the stepwise charging 

by digitally incrementing duty-cycle ratios in a stepwise fashion. Specifically, since 

the buck converter can generate an output voltage that is proportional to the duty-

cycle ratio (D) (i.e. Vout = DVin), N voltage levels can be generated without using the 

Fig. 3.4. Design concept of the proposed capacitor charging scheme with a current 

source. 
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N pre-charged tank capacitors. By increasing Vout stepwise, the average inductor cur-

rent can be kept constant and the Eloss,st can be reduced by a factor of the number of 

stepwise voltage levels (N). 

To control the duty-cycle ratio, the proposed start-up controller uses a digital 

pulse width modulator (DPWM) and duty-cycle controller (DCC), as shown in Fig. 

3.5. The DPWM generates a pulse-width modulated (PWM) switching pulse to op-

erate the buck converter in CCM and its duty-cycle ratio is digitally controlled by 8-

bit DUTY_CTRL [7:0] from DCC. By linearly incrementing DUTY_CTRL [7:0], the 

buck converter can charge Cout to Vout in a stepwise fashion with the constant average 

inductor current.  

To verify the effectiveness of this approach, the buck converter losses are derived. 

Fig. 3.6 illustrates the main buck converter losses during the start-up operation in-

cluding the conduction and switching energy losses. First, the conduction loss (Econd) 

is incurred at the resistive components such as the resistance of power switches (Rs) 

and inductor (RL). During stepwise charging, the average inductor current (iavg) can 

 

Fig. 3.5. Schematic of the switching-based stepwise capacitor scheme and its operat-

ing waveforms. 
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be maintained roughly constant due to the linearly increasing duty-cycle ratio, and 

its ripple current (Δi[n]) can be expressed as a function of the n-th duty-cycle ratio 

D[n]. Both iavg and Δi[n] can be expressed as (3.5) and (3.6), respectively, 

out out out out out sw
avg out

ch

dV C V C V f
i C

dt T N
              (3.5) 

[ ] (1 [ ])
[ ] in

C sw

V D n D n
i n

L f

  
 


               (3.6) 

where Tch is the charging time, fsw is switching frequency of the PWM signal and LC 

is the inductance. If the duty-cycle resolution is K, the n-th duty-cycle ratio D[n] can 

be given by: 

Fig. 3.6. Schematic of the loss components in the buck converter: Rs, RL, and the 

parasitic capacitances in the switching nodes. 
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[ ] / ( 1, 2,..., )D n n K n N                (3.7) 

Note that the relationship between N and K is determined by the voltage conversion 

ratio, and hence the value of K can be expressed as: 

in

out

NV
K

V
                      (3.8) 

Assuming that transistors MP and MN have identical series on-resistances Rs and the 

inductor has a series resistance of RL, and the total resistance in the current-

delivering path is R (i.e., Rs + RL), then the total conduction energy loss Econd can be 

expressed as:  

2
2
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2 2 2
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


 
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


     (3.9) 

Note that from (3.9), assuming that Econd is the dominant loss and fsw is high enough 

to ensure that Δi ≅ 0, then charging the capacitor over N steps instead of a single 

step can reduce the energy dissipation by a factor of N. Second, the switching loss 

Eswit is incurred in the internal parasitic capacitors in the switching nodes in the driv-

er and power switches. Assuming that the sum of the internal capacitors is Cint, the 

dynamic energy loss Eswit can be expressed as: 

2 2( / )swit int in sw sw int inE C V f N f C V N             (3.10) 

While Eloss,st is the sum of the energy losses derived in (3.9) and (3.10), we can 

find the optimal values of N and fsw that can minimize the total energy loss for a giv-

en Cout. From the analysis, both Econd and Eswit are highly dependent on the charging 
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time (i.e., Tch = N / fsw). Since iavg is inversely proportional to Tch, as given by (3.5), 

a large Tch can reduce Econd. However, a large Tch incurs a large Eswit from (3.10). Fig. 

3.7 illustrates the sum of the total energy loss in the buck converter (Eloss,st) and the 

stored energy in Cout (Eloss,Cout) with respect to changes in N and fsw when charging a 

4.7 μF and 2.2 μF Cout, respectively. To charge a 4.7-μF capacitor to 2.5 V, the ac-

tion of switching the buck converter at 0.9 MHz and ramping the duty-cycle from 0 

to ~50% over a 0.14-ms Tch can maintain the start-up energy loss below 22 μJ, while 

the buck converter loss (Eloss,st) is only ~5.1 μJ (i.e., stored energy in 4.7-μF Cout 

(Eloss,Cout) is 14.7 μJ). From (3.5), we can find that the optimal inductor average cur-

rent can be 84 mA in this case. In the same way, to charge a 2.2-μF capacitor to 2.5 

V, the action of switching the buck converter at 1.2 MHz and ramping the duty-

cycle from 0 to ~ 50% over a 0.11-ms Tch can maintain the start-up energy loss be-

low 10 μJ, while the buck converter loss (Eloss,st) is only ~1.7 μJ (i.e., stored energy 

in 2.2-μF Cout (Eloss,Cout) is 6.9 μJ). From (3.5), we can find that the optimal inductor 

Fig. 3.7. Start-up energy loss (Eloss,st + Eloss,Cout) in change with N and fsw, when 

charging (a) 4.7-μF and (b) 2.2-μF capacitors. 
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average current can be 50 mA in this case. In both cases, the proposed start-up 

scheme can greatly reduce Eloss,st compared to the conventional charging scheme 

with a switch.  

Fig. 3.8 plots the comparison of the energy loss incurred at the start-up circuit 

Eloss,st between the conventional (i.e., switch) and proposed (i.e., buck converter) 

schemes versus Cout, demonstrating the effectiveness of our approach. For instance, 

the proposed start-up scheme saves the energy by 91.5% at 2.2-μF case and by 77.4% 

at 10-μF case, respectively. 

 

 

 

Fig. 3.8. Eloss,st comparison between the conventional and the proposed start-up 

scheme.  
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3.2 Constant Inductor Peak Current Con-

trol with Variable On-Time PFM Scheme 

 

Although the proposed start-up scheme can reduce the Eloss,st, the PFM buck con-

verter still calls for a large Cout to suppress the voltage ripples. Especially, because 

the input of the buck converter is a capacitor, its voltage decreases as the energy is 

delivered to the load, which demands for a larger Cout to achieve the voltage ripple 

within an acceptable range needed by the application over wide range of input volt-

age conditions. In this sub-section, the design concept of the variable on-time PFM 

scheme will be explained that enables the use of a small Cout to reduce Eloss,Cout, 

while maintaining small voltage ripples and high efficiency over wide range of input 

voltage conditions. 

 

3.2.1 Basic Operation of PFM Buck Converter 

 

The DCM buck converters are widely used in many emerging low-power appli-

cations, including energy harvesting systems [1]–[4], wearable devices [5], medical 

sensors [3], [6], and the Internet of Things (IoT) [4] because they can achieve high 

efficiency at light loads and can extend the battery life. Especially, the buck con-

verter employs a pulse-frequency modulation (PFM) control can save the energy in 

light load condition by adjusting the switching frequency according to the load cur-

rent.  
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The simple schematic of the buck converter with PFM control operating in DCM 

and its key waveforms are illustrated in Fig. 3.9. When the output voltage Vout be-

comes smaller than the reference voltage Vref, an on-time pulse generator generates 

the high-side switching signal CKon, of which the pulse width is Ton. During the on-

time (Ton), the high-side power transistor (MP) turns on and the inductor current in-

creases with a slope of (Vin − Vout)/L. When MP turns off, simultaneously the low-

side switching signal CKoff is generated, of which the pulse width is Toff. During the 

off-time (Toff), the low-side power transistor (MN) turns on and the inductor current 

decreases with a slope of −Vout/L until it reaches zero. At this time, the zero-current 

detector (ZCD) turns off MN to prevent the reverse inductor current, which can incur 

the significant power loss. When both switches turn off, the stored charge in the out-

put capacitor (Cout) is delivered to the load until Vout becomes smaller than Vref again.  

In the PFM controller, the on-time (Ton) determines the various key performance 

such as the inductor peak current (IL,peak), the switching frequency (fsw) and the volt-

Fig. 3.9. Simple schematic of the buck converter with PFM control operating in 

DCM and its key waveforms.  
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age ripple (Vripple). From the amount of increase in the inductor current (IL) during 

the on-period (Ton), the inductor peak current can be derived as: 

,

( ) out offin out on
L peak

V TV V T
I

L L


            (3.11) 

This equation shows that the inductor peak current is determined by the voltage dif-

ference between input and output and the on-time period. Note that the amount of 

the increase and decrease in the inductor current should be same in the PFM control 

from the fundamental inductor current balancing equation and hence the off-time is 

determined by the inductor peak current and output voltage from (3.11). The total 

charge (Qtotal) stored in the inductor is the area under the inductor current waveform 

in one switching period, which can be express as: 

, ( )

2

L peak on off

total

I T T
Q


                (3.12) 

Assuming that the power loss of the buck converter is zero (i.e., resistive compo-

nents in current path assumed to zero) and it regulates the output voltage ideally (i.e., 

the zero-crossing timing of the inductor current is detected at the right timing), the 

charge transferred to the load can be expressed as (3.13), where Tsw is the switching 

period, which is determined by the load current (Iload). 

total load swQ I T                  (3.13) 

Since the total charge stored in the inductor is equal to the charge transferred to the 

load in one switching period (Tsw) from (3.13), the switching frequency (fsw) can be 

derived as: 
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, ( )
load

sw

L peak on off

2I
f

I T T



                (3.14) 

During Ton and Toff, the total charge (Qtotal) stored in the inductor is decomposed into 

the charge transferred to the load and temporarily stored in the output capacitor (i.e., 

Qcap). Especially, Qcap causes the voltage ripple (Vripple). In other words, the area of IL 

− Iload (i.e., Qcap) determines Vripple and, it can be derived as: 

2
,

,

( ) ( )L peak load on off

ripple

out L peak

I I T T
V

2C I

 
             (3.15) 

Consequently, to ensure that the voltage ripple remains within an acceptable range 

needed by the application, the proper value of the on-time (Ton) should be selected. 
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3.2.2 Constant On-Time PFM Scheme 

 

The constant Ton (COT) PFM scheme [14]–[17] have been widely used when the 

buck converter operates in the narrow ranges of input and output voltages. In other 

words, the optimal value of Ton can be a constant when the operating voltages are 

fixed. However, if the input supply varies under the COT control, both the inductor 

peak current value and the charge transferred to the load in each switching cycle can 

also vary, which results in producing a widely varying voltage ripple and an average 

value of the output voltage. 

Especially, in the battery-free applications, the design challenges arise from the 

fact that the input supply voltage decreases as the charge in the input capacitor is 

delivered to the load. In other words, the decreasing input voltage incurs the widely 

varying inductor peak current because its slope during Ton is proportional to Vin − 

Vout from (3.11). Fig. 3.10 (a) shows that the amount of charge transferred decreases 

as the input voltage decreases. This is due to the decrease of the inductor peak cur-

rent from (3.12), which results in the fast switching frequency from (3.14) and de-

feats the power-saving advantage of the PFM control at a low Vin. To alleviate this 

problem, a possible way is to increase the value of the on-time from the start (i.e., 

larger Ton). By increasing Ton, a slow switching frequency at a low Vin can be 

achieved as shown in Fig. 3.10 (b). However, this larger Ton causes the high voltage 

ripple at a high Vin as shown in Fig. 3.10 (c). Therefore, the COT PFM scheme must 

use the large output capacitor (Cout) to suppress the voltage ripple at a high Vin, 

which is not proper to the battery-free application because the large Cout can incur 

the start-up energy loss as illustrated in Fig. 3.8. 



Chapter 3. Optimal Inductor Current Controls for Maximum Energy Delivery   40 

 

 

 

Fig. 3.10. Inductor current waveforms under constant on-time PFM scheme; (a) 

switching frequency increase at low Vin, (b) slow switching frequency with larger 

Ton at low Vin and (c) resulting large voltage ripple at high Vin. 
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3.2.3 Variable On-Time PFM Scheme 

 

To address this problem, the variable on-time (VOT) PFM scheme is proposed 

that enables the use of a small Cout, while maintaining the small voltage ripple and 

the low switching frequency over wide ranges of input voltage conditions. Specifi-

cally, the VOT pulse generator keeps the inductor peak current (IL,peak) by varying 

Ton inversely proportional to the Vin − Vout as shown in Fig. 3.11 (a). At a high Vin, 

the VOT pulse generator generates a small Ton, which enables the use of a small Cout 

by reducing the worst case voltage ripple. In addition, the variable Ton increases as 

the input voltage decreases, which can improve the power efficiency by reducing the 

switching frequency at a low Vin. Consequently, under the VOT PFM control, the 

inductor peak current can be kept constant regardless of Vin variation by adaptively 

varying Ton as shown in Fig. 3.11 (b). Even for the various input and output voltages, 

by adaptively varying the on-time, the variation of the amount of charge transferred, 

 

Fig. 3.11. Proposed variable Ton curve to reduce Cout and improve the power effi-

ciency. 
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which is the area of IL, can be reduced and be kept fairly constant. 

The performance comparison between the variable Ton (VOT) and the constant 

Ton (COT) controls are illustrated in Fig. 3.12. These figures are plotted based on the 

equations derived in Section 3.2.1 If Ton is a constant value, IL,peak can widely vary 

 

Fig. 3.12. Performance comparison between the variable Ton (VOT) and the constant 

Ton (COT); (a) Ton value, (b) inductor peak current (IL,peak), (c) switching frequency 

(fsw) and (d) voltage ripple (Vripple). 
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with Vin; this can incur widely varying Vripple and fsw across the range of Vin. For in-

stance, when Ton has a constant value of 800 ns (i.e., Case 1) with a 10-μH inductor, 

IL,peak is proportional to Vin and varies between 50 mA and 200 mA as Vin changes 

from 3 V to 5 V [see Fig. 3.12 (b)]. This means that it is difficult to operate the buck 

converter at a low Vin because the amount of charge that is transferred to the load 

during one switching period is dramatically reduced as Vin decreases. In addition, 

IL,peak at 3 V Vin is too small, thereby incurring a very high fsw of 1 MHz, which de-

grades the light-load efficiency (see Fig. 3.12 (c)). Since both IL,peak and Toff decrease 

as Vin decreases, fsw is inversely proportional to the square of Vin from (3.14). There-

fore, a larger Ton is required to reduce fsw (i.e., Case 2). For instance, the larger Ton 

of 1.4 μs can reduce fsw to 350 kHz, but this causes an unnecessarily large IL,peak of 

350 mA at 5 V Vin, thereby causing a large Vripple of 200 mV (see Fig. 3.12 (d)). An 

alternative way to suppress Vripple is to use a large Cout, but this incurs the large start-

up loss as mentioned before.  

On the other hands, the variable Ton (VOT) can reduce the worst case Vripple and 

fsw. Specifically, the variable Ton can maintain both IL,peak and Toff constant from (3.9). 

Since these two design parameters are fixed, the variation of fsw and Vripple according 

to Vin can be effectively reduced from (3.14) and (3.15) (see Fig. 3.12 (c) and (d)). 

As a result, the VOT PFM scheme can achieve a reduced worst-case Vripple of 50 mV 

that makes it possible to enable the use of a small Cout (i.e., reducing Eloss,Cout), and a 

reduced worst-case fsw of 400 kHz that improves the power efficiency. 
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3.3 Inductor Current Prediction with 

Adaptive Off-time Positioning ZCD (AOP-

ZCD) 

 

While the VOT pulse generator can improve the power efficiency by reducing 

the worst case switching frequency as described in 3.2.3, the controller power loss is 

still large because the continuous-time ZCDs consume the large static power. To 

reduce Eloss,conv by minimizing the static power consumption of the zero-crossing 

detector, the adaptive off-time positioning ZCD is proposed that can predict the ze-

ro-inductor-current timing without using the power-hungry continuous-time com-

parator. In addition, it can achieve high resolution and fast-tracking time in its tim-

ing detection for wide ranges of input and output voltages. 

  

3.3.1 Previous Sampling-Based ZCD 

 

The energy loss problem due to the large quiescent current of the ZCD circuit in 

steady-state operation have previously been addressed by introducing sampling-

based ZCDs [1]–[3]. Fig. 3.13 (a) and (b) compare the block diagrams of the contin-

uous-time ZCD and the sampling-based ZCD. The continuous-time ZCD can accu-

rately find the zero-inductor-current timing and generate the timing signal CKN to 

turn off MN for wide ranges of input and output voltages, but its comparator dissi-
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pates large static current (e.g., ~100 µA [4]) to achieve high precision. On the other 

hands, the sampling-based ZCD detects the zero-inductor-current timing by using a 

timing error detector such as a clocked comparator [2] and a successive approxima-

tion register analog-to-digital converter (SAR-ADC) [3]. Specifically, because it 

detects whether MN turns off too early or late by sampling the inductor current direc-

tion only once per switching cycle, the static power consumption can be reduced. 

Depending on the polarity of the sampled inductor current direction, the ZCD then 

increases or decreases the digital filter output accordingly and eventually, it con-

 

Fig. 3.13. Block diagram of (a) the continuous-time ZCD and (b) the sampling-

based ZCD. 
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verges to an appropriate value. Controlled by the digital filter output, a pulse genera-

tor can generate an appropriate timing signal for the accurate ZCS operation of MN. 

While the sampling-based ZCD can lower the power consumption by eliminating 

the continuous-time comparator, it cannot be applied to the battery-free applications 

because it cannot operate over wide ranges of input and output voltage conditions 

without degrading either timing resolution or its time to converge to the optimal 

ZCS timing. To cover such a wide range of voltage conditions, the sampling-based 

ZCD must have a wide calibration range of timing because the zero-inductor-current 

timing can widely vary according to the voltage conditions. To extend the calibra-

tion range, a possible way is either to increase the unit step size or to increase the 

number of steps. However, the former sacrifices the precision (i.e. coarse resolution), 

while the latter convergence time. Due to these tradeoffs, the previous sampling-

based ZCDs were used with narrow ranges of input/output voltage conditions. 
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3.3.2 Proposed Adaptive Off-time Positioning ZCD 

 

To achieve both high resolution and short convergence time over wide range in-

put and output voltage conditions, the adaptive off-time positioning ZCD (AOP-

ZCD) is proposed, which is a sampling-based ZCD with an adaptive off-time (AOT) 

pulse generator. The block diagram of the proposed AOT-ZCD including the AOT 

pulse generator and the timing calibration loop is illustrated in Fig. 3.14. While the 

on-time Ton was scaled with inversely proportional to the voltage difference between 

input and output (i.e., Ton ~ 1/(Vin − Vout)) as discussed earlier, now the AOT pulse 

generator generates the off-time Toff scaled with inversely proportional to the output 

voltage (i.e., Toff ~ 1/Vout). Therefore, the AOT pulse generator can always position 

the initial turn-off timing of MN close to the zero-inductor-current timing regardless 

of Vin variation from the fundamental inductor current balancing equation in (3.11). 

Since the initial timing error between the initial turn-off timing of MN and the zero-

inductor-current timing can be always kept small, the ZCD can have a narrow cali-

bration range enough to compensate the residual timing error. Therefore, the timing 

calibration loop can converge quickly with high resolution. 

However, the initially generated Toff by the AOT pulse generator is not enough to 

guarantee the precise ZCS operation because the timing error can be incurred by 

various non-ideal effects, such as process–voltage–temperature (PVT) variations, 

device mismatches, or series resistance of the power switches and inductor. To com-

pensate for the residual timing error, the timing calibration loop adjusts the Toff con-

trolled by the digital filter output. Specifically, this digital calibration loop operates 

in a bang-bang control mode, sampling the inductor current direction at the falling 
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edge of CKN and incrementing or decrementing a 7-bit digital code Cctrl based on the 

sample result UP/DN. 

 

Fig. 3.14. Block diagram of the proposed AOT-ZCD. 
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Chapter 4  

 

Circuit Implementation 
 

While the specific design concepts of the proposed inductor current controls were 

explained in Chapter 3, the detailed circuit implementation to realize the proposed 

control schemes will be described in this chapter.  

 

 

 

4.1 Circuit Implementation of Switching-

Based Stepwise Capacitor Charger 

 

As shown in Fig. 2.2, the proposed switching-based stepwise capacitor charging 

scheme includes the voltage detector (VD), the digital pulse width modulator 

(DPWM), the duty-cycle controller (DCC) and 2:1 switched-capacitor DC-DC con-

verter. In this section, their circuit implementation will be explained. 
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4.1.1 Voltage Detector (VD) 

 

The voltage detector circuit is used as a power-on reset (POR) that detects the 

power applied to the buck converter and generates a reset impulse to place the DCC 

into an initial state. Since it operates only once at first, its static power consumption 

should be minimized. For this reason, the voltage detector circuit is implemented 

based on the subthreshold operation of transistor (i.e., leakage current-based design). 

Fig. 4.1 (a) shows the schematic of the voltage detector (VD) circuit, where the 

number of series diodes determines the detection voltage level. When Vin reaches a 

predetermined level set by the forward voltage of the series-connected diodes, the Vx 

node switches from low to high and turns on M2, which begins to discharge the pre-

charged VY node to ground. Then, the latch formed by M3 and M4 makes a sharp 

transition to switch the output signal rst from low to high. The low-threshold devices 

M5–M8 operate in the subthreshold conduction mode, enabling the circuit to use the 

 

Fig. 4.1. (a) Schematic of the leakage-based voltage detector and (b) the simulation 

result of the detection voltage. 
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leakage current, thereby limiting the loss incurred by the crowbar current. Fig. 4.1 (b) 

shows the simulation result of the turn-on voltage as a function of the number of 

diodes connected in series. To detect 2.4 V, four diodes are used, which consume 

12.4 nW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Circuit Implementation                                      52 

 

4.1.2 Digital Pulse Width Modulator (DPWM) 

 

The digital pulse width modulator (DPWM) is the key building block of the pro-

posed switching-based stepwise capacitor charger that generates the pulse width 

modulated (PWM) signal, of which duty-cycle is controlled by DCC. 

Fig. 4.2 (a) shows the circuit implementations of the proposed DPWM and the 

digitally-controlled capacitor array (DCCA), respectively. Fig. 4.2 (b) shows their 

operating waveforms. The DPWM is composed of two current-integrating stages, 

two crossing detectors, and an SR latch that form a relaxation oscillator. In the cur-

rent-integrating stages, a constant current source Iconst charges the digitally controlled 

on-chip capacitors C1 and C2 in alternating fashion. When the signals PWM and 

PWMB are reset to logic 1 and 0, then Iconst charges C1, and M4 discharges C2 to 

ground. When VC1 reaches the threshold voltage Vth, the crossing detector output 

switches to logic 1, and PWM and PWMB are switched to logic 0 and 1, respectively. 

This time, the current source Iconst charges C2, and M2 discharges C1 to ground, until 

the voltage on C2 reaches Vth. Note that the on-time Ton and off-time Toff are set in 

the time it takes to charge capacitors C1 and C2 to the predetermined level (Vth), re-

spectively. The switching period Tsw is equal to the sum of Ton and Toff, each of 

which is proportional to the capacitances C1 and C2, respectively, and expressed as: 

1 2( )th
sw on off

const

V
T T T C C

I
                 (4.1) 

From (4.1), it can be seen that the duty-cycle ratio D = Ton/Tsw can be set based on 

the ratio between C1 and C1 + C2. 

The proposed DPWM digitally controls the capacitances C1 and C2 via an 8-bit 
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digital code obtained from the set of digitally switchable binary-weighted capacitor 

arrays. To set the PWM output frequency, the digital codes controlling Ci and C2 are 

changed in a complementary fashion to keep C1 + C2 constant at (28−1)C, where C is 

the unit capacitance. The minimum and maximum duty-cycle ratios, Dmin and Dmax, 

are set by the parasitic capacitance Cpar present at nodes VC1 and VC2, respectively, as 

expressed in (4.2): 

 

Fig. 4.2. (a) Circuit implementation of DPWM, (b) its key waveforms, and (c) simu-

lation result of the duty-cycle ratio versus DUTY_CTRL [7:0]. 
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As can be seen from the simulation results in Fig. 4.2 (c), the duty-cycle ratio curve 

is linear with respect to the digital code, and the minimum and maximum duty-cycle 

ratios are 4% and 96%, respectively, by keeping the parasitic capacitance Cpar suffi-

ciently small compared to C1 and C2. Considering that the DPWM dissipates 60 μW, 

and it takes 0.11-ms Tch to charge a 2.2-μF Cout to 2.5 V, this circuit consumes only 

6.6 nJ of energy.  
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4.1.3 Programmable Duty-Cycle Controller (DCC) 

 

The programmable duty-cycle controller (DCC) linearly increments or decre-

ments the pulse-width of the PWM signal at a programmable rate by producing a 

programmable 8-bit digital code pattern DUTY_CTRL. Fig. 4.3 (a) shows the block 

diagram of the DCC. The DCC is essentially a programmable counter that consists 

of 7-bit and 8-bit digital counters and a digital comparator. The rate at which the 

count is incremented or decremented is set by the counting threshold Nth, which in 

turn sets the charging time Tch. 

 

Fig. 4.3 (a) Block diagram of the programmable duty-cycle controller and (b) the 

example trajectory of the duty-cycle during the charging operation when Nth = 1 and 

Nth = 3. 
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The duty-cycle controller operates as follows. First, when the reset signal from 

VD is generated, the PWM clock is configured to have a minimum pulse width Dmin 

and is fed into the 7-bit digital counter. The counter starts to count the number of 

positive edges of the clock. When the count CNT reaches the predetermined value of 

Nth, the comparator output CMP switches to logic 1 and duty_ctrl increments by 1. 

The counter is then reset to 0 and repeats the counting process. In this way, Nth sets 

the charging period Tch (i.e., average inductor current) of the proposed start-up 

scheme. To illustrate this further, Fig. 4.3 (b) shows an example trajectory of the 

duty-cycle during the charging period.  
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4.1.4 Switched Capacitor (SC) Step-Down Converter 

 

Fig. 4.4 describes the circuit implementation of the 2:1 switched-capacitor (SC) 

step-down converter and its key operating waveforms. The SC converter supplies a 

low DC voltage to the controller in order to reduce its dynamic power consumption. 

A switched-capacitor (SC) type converter was selected because the expected load 

power is very low at below 1 mW and precise regulation of the voltage is not critical. 

The SC converter is composed of a frequency divider, a level-shifter, a non-

overlapping pulse generator, and a SC converter power stage. The counter-based 

frequency divider divides the PWM clock frequency by 16 and generates a 50% du-

ty-cycle clock CLK. The level-shifter converts CLK into a clock with a high-voltage 

swing CLK_H, and the non-overlapping pulse generator ensures that the comple-

mentary switching signals Psig and Nsig have sufficient non-overlapping periods be-

tween them to avoid causing crowbar currents in the SC converter. 

Fig. 4.5 shows a simplified schematic of the 2:1 SC converter implemented in 

this work. The converter stage has two power-train capacitors C1 and C2 and a flying 

 

Fig. 4.4 Block diagram of 2:1 switched-capacitor (SC) step-down converter includ-

ing the gate driver circuit and its key waveforms. 
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capacitor Cfly, which are all implemented using off-chip ceramic capacitors. When 

the input voltage is in the range of 3–5 V, the converter produces an output equal to 

half of the input voltage by periodically switching between the two capacitor con-

figurations. When the PMOS power switches turn on, Cfly is charged from the bat-

tery. When the NMOS power switches turn on, Cfly transfers the charge to the output. 

The 2:1 SC converter as designed is over 90% efficient and only uses two 100-nF 

power train capacitors and a 50-nF flying capacitor. 

 

 

 

 

 

 

 

Fig. 4.5 Circuit implementation of the 2:1 switched-capacitor (SC) converter. 
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4.2 Circuit Implementation of Variable On-

Time Pulse Generator 

 

The variable Ton can be realized with the time needed to charge the capacitor C 

from its zero reset state to a predetermined voltage Vth with a variable current source 

Ion (i.e., Ton = C · Vth/Ion). To make Ton inversely proportional to Vin − Vout, the varia-

ble Ion should be scaled with proportional to Vin − Vout. Fig. 4.6 illustrates a simple 

block diagram of the VOT pulse generator and its timing diagram. When Vout be-

comes smaller than the reference voltage Vref, an output voltage sensing comparator 

produces a pulse VCMP and then its falling edge enables the Ton pulse generator by 

 

Fig. 4.6 Simple block diagram of the variable on-time (VOT) pulse generator and its 

key waveforms. 
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Fig. 4.7 Circuit implementations of (a) the previous VOT pulse generator and its key 

waveforms and (b) the proposed ones. 
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resetting CKP to ground. This simultaneously turns on MN1 to discharge C to the zero 

reset state. After MN1 turns off, Ion starts to charge C. When the capacitor voltage VC 

reaches the predetermined threshold voltage Vth, the crossing detector sets the rising 

edge of CKP. 

However, the previously-reported VOT pulse generators [8], [11] illustrated in 

Fig. 4.7 (a) had some design issues such as inaccurate Ton and large power consump-

tion. Specifically, the variable Ion was scaled with proportional to the voltage differ-

ence between input and gate-to-source voltage (i.e., Vin − VGS [8]), while it was de-

termined by the voltage across a sensing resistor R (i.e., Ion = (Vin − VGS) /R). In addi-

tion, the reset time (trst) of the capacitor increased the Ton unnecessarily because VC 

was reset right before charging operation. Hence, the generated Ton in previous VOT 

pulse generators was inaccurate, as expressed below: 

th
on rst

in GS

RCV
T t

V V
 


                (4.3) 

Moreover, during the MN1 turn-on time while C is discharged and the MN2 turn-on 

time while VC is higher than Vth, the current sources of Ion and Iconst were directly 

connected to the ground (i.e., crowbar current) that consumes an unnecessary power. 

The proposed VOT pulse generator illustrated in Fig. 4.7 (b) can address these is-

sues by generating the accurate Ton with an additional op-amp in Ion generator and a 

proper reset timing of the capacitor, and by preventing the crowbar current with ad-

ditional switches. Specifically, in the proposed Ion generator, the op-amp sets the 

voltage across the sensing resistor R to Vin − Vout, which allows Ion to be perfectly 

adjusted by (Vin − Vout)/R. In addition, by feeding CKP to MN1, VC can be reset right 

after when it reaches Vth and hence the reset time does not affect the Ton. By modify-
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ing the Ion generator and changing the reset timing, the accurate Ton can be generated, 

as expressed below: 

   th th
on

on in out

CV RCV
T

I V V
 


             (4.4) 

Moreover, an additional MP1 controlled by CKP can prevent the crowbar current of 

Ion by turning it on only when Ion charges C, and additional switches MP2 and MN3 in 

the crossing detector can reduce the crowbar current of Iconst by preventing both 

switches from turning on simultaneously. 

To verify the circuit performance, the proposed VOT pulse generator was simu-

lated with a 570-kΩ on-chip resistor R and 7-pF on-chip metal–insulator–metal 

(MIM) capacitor C. Fig. 4.8 (a) plots the simulated Ton with both Vin and Vout chang-

ing. The dotted lines represent the ideal Ton curves from (4.4). The proposed circuit 

P
o

w
e
r 

c
o

n
s
u

m
p

ti
o

n
 (

µ
W

)

S
im

u
la

te
d

 T
o

n
(µ

s
)

 

Fig. 4.8 Simulation results of the VOT pulse generator: (a) the simulated Ton and (b) 

its power consumption for various Vin and Vout conditions. 
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generated the accurate Ton that can keep IL,peak constant at (Vin − Vout)·Ton/L ≅ 140 

mA under various Vin and Vout conditions. In addition, a low power consumption of 

less than 30 µW was achieved, as shown in Fig. 4.8 (b). 
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4.3 Circuit Implementation of Adaptive 

Off-time Positioning ZCD 

 

As shown in Fig. 3.14, the proposed adaptive off-time positioning ZCD (AOP-

ZCD) includes the adaptive off-time (AOT) pulse generator, the timing error detec-

tor and the shift-register. In this section, their circuit implementation will be ex-

plained. 

 

4.3.1 Adaptive Off-Time (AOT) Pulse Generator 

 

The AOT pulse generator can be implemented with the almost same principle as 

that of the VOT pulse generator. Fig. 4.9 illustrates the circuit implementation of the 

AOT pulse generator. To make the Toff inversely proportional to Vout, the adaptive 

current source Ioff is scaled with proportional to Vout and hence the generated Toff can 

be expressed as: 

th th
off

off out

CV RCV
T

I V
                      (4.5) 

In addition, a digitally controlled capacitor array Coff is implemented to make Toff 

adjustable by the digital timing calibration loop. Its capacitance value is determined 

by the 7-bit digital code Cctrl[6:0] as expressed in (4.6), where its initial capacitance 

value should be the same with C (i.e., 7 pF) in the VOT pulse generator to meet the 

requirement that the amount of increase and decrease in the inductor current during 
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Ton and Toff must be same. 

0 1 6[0] [1] [6]off offset ctrl ctrl ctrlC C C C C C C C               (4.6) 

To verify the circuit performance such as the accuracy of Toff, the power con-

sumption and the timing resolution, the AOT pulse generator was simulated with the 

same value of R (i.e., 570 kΩ) in that of the VOT pulse generator. However, the ini-

tial value of Coff was intentionally designed to be slightly smaller (i.e., 6.7 pF) than 

that of the VOT pulse generator (i.e., 7 pF) to avoid the significant power loss from 

the reverse inductor current when MN turn off late. Fig. 4.10(a) plots the simulated 

Toff with both Vin and Vout changing. The dotted lines represent the ideal Toff curves 

for various output voltage conditions from (4.5). The simulated Toff curves matched 

well with them and were roughly constant. A low power consumption less than 18 

µW was achieved, as shown in Fig. 4.10(b). Fig. 4.10(c) plots the simulated Toff with 

a changing Vout and the digital code Cctrl [6:0] from 0 to 127. Each Toff curve in 

 

Fig. 4.9 Circuit implementation of the proposed AOT pulse generator and its key 

waveforms. 



Chapter 4. Circuit Implementation                                      66 

 

creased linearly according to the digital code, where the slope represents the unit 

step size of the timing calibration. For instance, when Vout was 3.3 V, the minimum 

and maximum Toff were 0.25 µs at Cctrl = 0 and 0.55 µs at Cctrl = 127, respectively, 

and hence the step size was approximately 2.3 ns. Considering that the required Toff 

at 3.3 V Vout was approximately 420 ns, within 0.6% timing error can be achieved 

after the timing calibration. In addition, each resolution at Vout = 1.2 V, 1.8 V and 2.5 
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Fig. 4.10 Simulation results of the AOT pulse generator: (a) the simulated initial 

Toff, (b) its power consumption for various Vin and Vout conditions, and (c) the simu-

lated Toff with a changing digital code Cctrl [6:0]. 
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V was 5.5 ns, 3.9 ns and 2.9 ns, respectively. Despite such a fine resolution, the pro-

posed AOP-ZCD can compensate for the initial timing error quickly thanks to the 

adaptive setting of initial Toff close to the accurate ZCS timing. 
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4.3.2 Timing Error Detector and Shift-Register 

 

The timing error detector was implemented by using a clocked comparator and 

an auxiliary switch ML, which determines whether to increase or decrease the ca-

pacitance value of Coff by sampling the inductor current direction [2] as shown in Fig. 

4.11. At the negative edge of CKN, MN turns off, and simultaneously the positive 

edge of CKS is generated, which turns on ML. While both MP and MN are turned off, 

the inductor current flows through ML. If MN turns off early (i.e., ZCS-early case) as 

 

Fig. 4.11 Timing error detector and the timing calibration waveforms when (a) MN

turns off early (i.e., ZCS-early case) and (b) MN turns off late (i.e., ZCS-late case). 
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shown in see Fig. 4.11(a), the positive inductor current flows through ML, which 

makes Vout higher than Vx. On the other hands, if MN turns off late (i.e., ZCS-late 

case) as shown in see Fig. 4.11(b), the negative inductor current flows through ML, 

which makes Vout lower than Vx. The polarity of the voltage difference between Vout 

and Vx that represents the inductor current direction is sampled by the clocked com-

parator, which produces the 1-bit UP/DN signal. 

The shift-register was digitally implemented with the 7-bit counter. For every 

switching cycle, the shift-register increments or decrements 1-bit based on the sam-

pled result UP/DN. Eventually, the digital code Cctrl [6:0] is converged to the appro-

priate value that corrects the timing error. Note that since the timing calibration loop 

operates in a bang-bang control mode, the UP/DN signal toggles in locking state. 
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Chapter 5  

 

Measurement Results of Proposed 

Buck Converter 
 

To demonstrate the proposed design concepts, a prototype buck converter IC was 

fabricated in 250-nm high-voltage (HV) CMOS technology. The die photograph of 

the proposed buck converter is shown in Fig. 5.1. The entire system occupied an 

effective area of 1.2 mm2 including the power switches (MP and MN) and control 

circuits. The prototype IC was measured with an off-chip 10-µH inductor (L) and a 

2.2-µF output capacitor (Cout). In this chapter, the measurement results will be 

shown and discussed.  

 

Fig. 5.1 Die photograph. 
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5.1 Measurement Results of Switching-

Based Stepwise Capacitor Charger 

 

The switching-based stepwise Cout charging scheme was measured with the vari-

ous setting Nth in the DCC, which can control the charging time Tch. This is because 

the charging time directly affects the losses incurred during start-up operation such 

as conduction and switching losses as discussed in subsection 3.3.3. 

Fig. 5.2 plots the measured start-up energy loss (i.e., Eloss,st + Eloss,Cout) in change 

with Tch, demonstrating the energy loss reduction in the proposed switching-based 

stepwise charging method. When charging 2.2-μF Cout, the optimal Tch was 0.12 ms, 

at which the minimum energy loss of 9.4 μJ can be achieved. If Tch is smaller than 

0.12 ms, the average inductor current increases, which incurs a large conduction en-

ergy loss. If Tch is larger than 0.12 ms, the number of switching cycle increases, 

which incurs a large switching energy loss. From the energy loss curve, it is more 

sensitive to the conduction energy loss. Considering that the required energy to 

charge 2.2-μF Cout to 2.5 Vout is 6.9 μJ, the energy loss incurred at the buck converter 

is only 2.5 μJ. In the same way, when charging 4.7-μF Cout, the optimal Tch was 0.2 

ms, at which the minimum energy loss of 22 μJ can be achieved. Considering that 

the required energy to charge 4.7-μF Cout to 2.5 Vout is 14.7 μJ, the energy loss in-

curred at the buck converter is only 7.3 μJ. Note that a small Cout of 2.2 μF can be 

used in this work thanks to the VOT pulse generator as described in subsection 3.2.3. 
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Fig. 5.3 the measured key waveforms during the start-up operation, showing that 

the constant average inductor current charges 2.2-μF Cout in a stepwise fashion. The 

duty-cycle ratios of the switching signals CKP and CKN were gradually modulated to 

charge the capacitor to 2.5 V Vout in a linear and stepwise manner. By switching the 

buck converter at a high frequency of 1.6 MHz, the average inductor current was 

held constant during the charging time Tch. At first, the inductor current was slightly 

higher than the average value of iavg, because the initial value of the duty-cycle ratio 

was not zero. When Vout was matched with its corresponding duty-cycle ratio, the 

average inductor current maintained a constant value of 50 mA. After Vout reached 

 

Fig. 5.2 Measured start-up energy loss in change with Tch. when charging 2.2-μF 

Cout and 4.7-μF Cout. 
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the target output voltage of 2.5 V, the start-up circuits were disabled, and the buck 

converter began to operate in PFM mode. 

 

 

 

 

 

 

 

 

Fig. 5.3 Measured key waveforms during start-up operation. 
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5.2 Measurement Results of Steady-State 

Performance with VOT Pulse Generator 

and AOP-ZCD 

 

The steady-state performance of the proposed buck converter was measured with 

various input and output voltages to demonstrate that the variable on-time (VOT) 

pulse generator can keep the inductor peak current constant and the adaptive off-

time positioning ZCD (AOP-ZCD) can turn off the low-side switch when the induc-

tor current becomes zero by predicting it, regardless of change in operating voltage 

conditions. The prototype buck converter IC was measured at input and output volt-

ages ranging 2.5−5.0 V and 1.2−3.3 V, respectively. 

Fig. 5.4 plots the measured on-time (Ton) of the VOT pulse generator over wide 

ranges of input and output voltage conditions. While the dotted lines represent the 

theoretical on-time curve from (4.4) that can maintain the inductor peak current con-

stant, the measured points were well matched to them. In other words, the measured 

on-times are inversely proportional to the voltage difference between input and out-

put voltage. To demonstrate the constant peak inductor current, the measured wave-

forms are shown in Fig. 5.5 by varying the input voltage from 3.5 V to 5.0 V at 2.5 

V Vout. This figure shows that the peak inductor current can be kept constant at 140 

mA by adaptively varying on-time from 1.3 µs to 0.5 µs. 
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Fig. 5.4 Measurement of the generated on-time (Ton) from the variable on-time pulse 

generator over wide ranges of input and output voltage conditions. 

 

 

Fig. 5.5 Measured waveforms at difference input voltages (Vin = 3.5V, 5V) and at 

2.5 V Vout. 
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Fig. 5.6 plots the measured off-time (Toff) of the AOT pulse generator over wide 

ranges of input and output voltage conditions. While the dotted lines represent the 

theoretical off-time curve for ZCS operation from (4.5), the measured points were 

well matched to them. Since the off-time is solely determined by Vout while the peak 

inductor current is maintained at a constant value, the measured off-time at each Vout 

case is a constant value. However, the measured points are slightly smaller than the 

theoretical values. In practice, the initial value of Coff in Fig. 4.9 was intentionally 

designed to be slightly smaller than 7 pF to avoid significant power loss from the 

reverse inductor current when MN turn off late. As shown in Fig. 5.5, the Toff values 

are same at 0.5 µs regardless of change in Vin, showing the adaptive off-time posi-

tioning. 

 

Fig. 5.6 Measurement of the generated off-time (Toff) from the adaptive off-time 

pulse generator over wide ranges of input and output voltage conditions. 



Chapter 5. Measurement Results of Proposed Buck Converter           77 

 

Fig. 5.7 plots the measured initial timing error (Terr) before timing calibration 

over wide ranges of input and output voltage conditions. The timing error can be 

expressed with the measured Toff before and after Terr calibration (i.e., Toff_before and 

Toff_after), respectively: 

(%) 100off_after off_before

err

off_before

T T
T

T


                (5.1) 

The positive and negative values of Terr represent the ZCS-early and ZCS-late cases, 

respectively. For various Vin and Vout values, the measured Terr (%) was always small 

value in the range of −2.0% to 6.0%. the worst-case Terr (%) in each case was 6% at 

Vin =5 V and Vout = 1.2 V and −2% at Vin =3.5 V and Vout = 2.5 V, respectively. 

 

Fig. 5.7 Measured timing error (Terr) over wide ranges of input and output voltage 

conditions. 
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Fig. 5.8 and 5.9 show the transient waveforms of the Terr calibration at the worst 

ZCS-early and ZCS-late cases, demonstrating that the proposed AOP-ZCD can 

achieve the fast convergence time even with high resolution. Before calibration in 

the ZCS-early case (see Fig. 5.8), when both the high-side and low-side power 
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Fig. 5.8 Measured transient waveforms of Terr compensation for the worst ZCS-early

case when converting 5.0 V to 1.2 V. 
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switches MP and MN were turned off, the positive inductor current flowed through 

the body diode of MN that incurred the loss. To compensate for this Terr, the clocked 

comparator produced the UP signal to increase Toff over 15 switching cycles with 4.4 

ns resolution. After calibration, MN turned off at the right timing that eliminates its 

 

Fig. 5.9 Measured transient waveforms of Terr compensation for the worst ZCS-late 

case when converting 3.5 V to 2.5 V. 
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body diode conduction. When the calibration ended, the binary signal UP/DN tog-

gled repeatedly. Before calibration in the ZCS-late case (see Fig. 5.9), the negative 

inductor current incurred the power loss. To compensate for this Terr, the clocked 

comparator produced the DN signal to decrease Toff over six switching cycles with 2 

ns resolution. After calibration, MN turned off at the right timing that eliminates the 

flow of a reverse current. 
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Fig. 5.10 Measured power efficiency at the steady state for various load currents 

Iload, Vin, and Vout: (a) Vout = 3.3 V, (b) Vout = 2.5 V, (c) Vout = 1.8 V, (d) Vout = 1.2 V. 
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Fig. 5.10 plots the measured power efficiencies, showing that the designed DCM 

buck converter achieves the high efficiencies over wide ranges of input voltage and 

output voltage conditions. While the PFM control has the advantage of reducing the 

switching power loss by dynamically adjusting the switching frequency according to 

Iload, the proposed AOP-ZCD can further enhance the power efficiency. Compared to 

the power consumption of continuous-time ZCDs (i.e., ~100 µW [4]), the proposed 

AOP-ZCD dra matically reduced the power consumption and dissipates only 1–18 

µW. In addition, compared to previous sampling-based ZCDs, the AOP-ZCD 

achieved high power efficiencies for various Vin and Vout values. The prototype buck 

converter IC achieved a 96% peak efficiency at Iload = 25 mA, Vin = 3.5 V, and Vout = 

TABLE 5.1 

PERFORMANCE COMPARISON WITH PRIOR WORKS 
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2.5 V and more than 80% at the 1–25 mA load condition. 

Table I compares the performance with that of recently presented DCM convert-

ers. Although the previous works achieved high peak power efficiencies of over 90% 

at each optimal condition, their results were measured under their maximum load 

condition, at which the effect of efficiency degradation due to the controller power 

loss is relatively small. Therefore, we compare the power efficiencies at more light 

load condition (e.g., 1 mA Iload). In addition, we benchmarked an efficiency en-

hancement factor (EEF) [19] that represents the power efficiency benefit of a buck 

converter over that of a linear regulator for fair comparison because their input and 

output voltages are different each other. This is expressed below: 

 

Fig. 5.11 Efficiency Enhancement Factor (EEF) comparison. 
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lin

buck buck

EEF 1-
k




                       (5.2) 

where ηbuck and ηlin are the power efficiencies of the buck converter and the ideal 

linear regulator, respectively, at the same voltage conversion ratio kbuck. Fig. 16 plots 

the comparison of the EEF. Because the continuous-time ZCD [3] has high power 

consumption, EEF was the lowest among them at 1 mA Iload. On the other hands, the 

Ref. [2] that used the sampling-based ZCD can achieve a higher EEF value of 14.5 % 

at 1 mA Iload. Our buck converter exhibited the highest EEF among them (i.e., EEF = 

18.8% at 1 mA Iload and 25.8 % at 25mA Iload when converting 3.5 V to 2.5 V). 
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Chapter 6  

 

Realization of Battery-free Wireless 

Remote Switch 
 

In this chapter, the realization of battery-free wireless remote switch (BWS), 

which is a wireless remote controller that can operate without batteries [26]–[29], is 

presented. Such BWSs reduce the need to install wiring within buildings, or reduce 

the costs of periodically recharging or replacing batteries. To supply the energy in-

stead of battery, a disc-type piezoelectric (PE) transducer is used that can generate 

the energy from the button-pressing actions of users. Especially, the energy benefit 

will be highlighted when the proposed buck converter applied to the BWS, which is 

demonstrated by the measurement results.  
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6.1 Key Building Blocks of Battery-free 

Wireless Remote Switch 

 

Basically, the key building blocks consisting the battery-free wireless switch 

(BWS) are a piezoelectric (PE) device, an energy harvester, a voltage regulator and a 

RF transmitter as illustrated in Fig. 6.1. When a disc-type PE source [5] is pressed, it 

generates the electrical energy in a form of bipolar current IPZ. The energy harvester, 

which includes a rectifier circuit, collects this energy in storage capacitor Cin. Next, 

the buck converter begins charging output capacitor Cout to the desired output volt-

age Vout using the energy stored in Cin (i.e, start-up), and then delivers this energy to 

the load at a steady Vout. To demonstrate the energy benefits when applying the pro-

posed buck converter, a piezoelectric-based power management solution for BWS 

was realized by using a 300-mm2 lead magnesium niobate-lead titanate (PMN-PT) 

piezoelectric disc and a 2.4-GHz WirelessUSB RF transceiver (CYRF8935) that 

transmits a 4-byte message to control a target device (e.g., lighting).  

 

Fig. 6.1 Key building blocks of the battery-free wireless remote switch (BWS). 
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6.2 Piezoelectric Energy Harvester with P-

SSHI Rectifier 

 

While various rectifier circuits as a piezoelectric energy harvester have previous-

ly been reported in literature [32]–[35], a rectifier based on synchronized switch 

harvesting on inductor (SSHI) technique is employed to maximize the amount of 

energy harvested. Specifically, the rectifier with a switch S1 and an inductor LH, 

called P-SSHI rectifier [32]–[33], is used to minimize a CPZ discharging loss when 

the AC current IPZ is inverted from positive to negative [32]. To rectify the single-

pulsed AC current IPZ, the FBR is required (see Fig. 6.2 (a)); however, this incurs a 

large loss at CPZ when IPZ changes in polarity. This is because the negative IPZ is not 

Fig. 6.2 Three examples of piezoelectric energy-harvesting circuits and their key 

waveforms: (a) FBR, (b) switch-only rectifier (SOR), and (c) P-SSHI rectifier.  
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used for charging Cin, but for discharging the remaining charge in CPZ instead. To 

minimize this loss, the switch-only rectifier (SOR) [30] that discharges VPZ to 

ground by switch S1 (see Fig. 6.2 (b)) and the P-SSHIR that flips VPZ to a negative 

voltage using an inductor (LH) (see Fig. 6.2 (c)) are both good candidate circuits to 

reduce this energy loss. 
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6.2.1 Analysis on Single-Pulsed Energy Harvesting 

 

In this subsection, we derive the optimal conditions for the energy harvester that 

are required to harvest the maximum amount of energy from the single-pulsed ener-

gy that arrives from the PE source pressed by a user. All three rectifier topologies 

presented in Fig. 6.2 can be analyzed simultaneously by assuming the presence of an 

arbitrary voltage changer, as shown in Fig. 6.3. That is, this arbitrary voltage chang-

er can change the voltage VPZ across CPZ when the polarity of IPZ is inverted as:    

( ) ( )PZ PZV t V t                        (6.1) 

where t– and t+ represent the times before and after IPZ is inverted, respectively, and 

γ is the “flipping coefficient” (–1≤ γ ≤1). For instance, the FBR case has a γ value 

of 1 because this topology does not have any additional circuit to change VPZ. In the 

SOR case, γ = 0 because VPZ is connected to ground through a switch. In the P-

SSHIR case, γ = –1 because an ideal LH–CPZ resonance circuit can invert VPZ to –VPZ. 

By using this general rectifier topology, we can derive the total harvested energy 

when only a single pulse of energy is available. In this analysis, the initial voltage of 

both capacitors CPZ and Cin is assumed to be zero. In addition, the sinusoidal current 

 

Fig. 6.3 General rectifier topology with an arbitrary voltage changer.  
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IPZ is assumed to be IPZ (t) = IPZ sinωt for time T, where ω = 2π/T and T is the period 

in which the PE source is excited. Note that the actual IPZ waveform is not perfectly 

sinusoidal (the measured waveform will be presented in section 6.3), but is assumed 

to derive and compare the harvested energy according to the values of γ and Cin. 

During the first-half period, the positive IPZ charges both CPZ and Cin; hence, the ac-

cumulated voltage VPZ (t–) can be expressed as: 

/2

0
( sin ) 2

( )
( )

T

PZ
PZ

PZ

PZ in PZ in

I t dt I
V t

C C C C




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 


           (6.2) 

When IPZ begins to change in polarity, the arbitrary voltage changer changes VPZ as:  

2
( ) ( )

( )
PZ

PZ PZ

PZ in

I
V t V t

C C





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
, where 1 1           (6.3) 

If VPZ (t–) is not perfectly inverted to –VPZ (t–) (i.e., γ≠–1), then IPZ starts to dis-

charge CPZ alone until VPZ (t+) reaches –VPZ (t–), while the voltage across CS is main-

tained at VPZ (t–). The amount of charge QPZ required to discharge CPZ to –VPZ (t–) 

can be calculated as:  

2(1 )
( ( ) ( ( )))

( )
PZ PZ

PZ PZ PZ PZ

PZ in

I C
Q C V t V t

C C






     


           (6.4) 

After CPZ is discharged to –VPZ (t–), the other pair of diodes in the rectifier turn on 

and then IPZ resumes charging both CPZ and Cin again. When charging is completed, 

the final voltage of VSTOR across Cin can be calculated as:  

/2
2

( ) 2 ((1 ) 2 )
( )

( )

T

PZ PZ
T PZ PZ in

STOR PZ

PZ in PZ in

I t dt Q I C C
V V t

C C C C





  
   

 

      (6.5) 

A general expression for the total harvested energy ESTOR stored in CPZ and Cin from 

a single pulse of energy can be derived as a function of Cin/CPZ in (6.6).  
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Fig. 6.4 (a) plots ESTOR versus γ and Cin/CPZ with a disc-type 300-mm2 PE source 

that has an internal capacitance CPZ of 150 nF and a peak current IPZ of 150 μA. 

Theoretically, the maximum achievable energies are approximately 180 μJ at Cin = 

2CPZ in the FBR (γ = 1) case, 360 μJ at Cin = 0.5CPZ in the SOR (γ = 0) case and 

1200 μJ at Cin = 0 in the P-SSHIR (γ = -1) case, respectively. However, each optimal 

loading produces an excessively high voltage, while the allowable voltage limit is 40 

V in the given CMOS process. For instance, the final voltages in both the SOR and 

P-SSHIR cases are approximately 56 V and 128 V, respectively (see Fig. 6.4 (b)). 

While the P-SSHIR can harvest the highest energy among these three circuits, we 

use Cin = 2.4CPZ while considering the acceptable voltage range, and the maximum 

theoretical energy is approximately 350 μJ. 

 

Fig. 6.4 (a) Theoretical harvesting energy, and (b) post-harvesting-voltage VSTOR ac-

cording to the value of flipping coefficient (γ) and the capacitor ratio Cin/CPZ of ex-

ample topologies of an FBR (γ = 1), SOR (γ = 0), P-SSHIR (γ = -1).  
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6.2.2 Proposed Piezoelectric Energy Harvester 

 

Although the aforementioned rectifier circuits can achieve the maximum energy 

harvested under each set of optimal conditions, the final voltage of VSTOR can be too 

high for the subsequent buck converter to use directly. This imposes a large burden 

on the subsequent buck converter, causing a high voltage conversion ratio, thereby 

reducing the energy delivery. However, if VSTOR is limited to a low voltage (e.g. 5 V) 

by using a large Cin, the amount of energy harvested is dramatically reduced. 

To alleviate this tradeoff between maximum energy extracted and the final volt-

age, the proposed energy harvester employs a 6:1 series-parallel switched-capacitor 

(SC) converter with a P-SSHIR as shown in Fig. 6.5. At first, all of the switches are 

turned off, and the six capacitors CS1–CS6 are initially aligned in series through di-

odes, which provides an effective capacitance of CS/6 if it is assumed that all storage 

capacitors have the same value of CS. When the PE button is pressed, the positive IPZ 

begins charging both CPZ and the series-connected CS1–CS6 (see Fig. 6.5 (a)). When 

IPZ is inverted, the switch S1 turns on to invert the voltage across CPZ by forming the 

LH–CPZ resonant circuit (see Fig. 6.5 (b)). Then, the other pair of diodes in the recti-

fier turns on and the negative IPZ resumes charging the capacitors (see Fig. 6.5 (c)). 

By activating the switches that re-align the storage capacitors in parallel, the 6:1 SC 

converter efficiently down-converts the resulting voltage VSTOR (see Fig. 6.5 (d)). 
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6.2.3 Circuit Implementation 

 

All of the components for the energy harvesting circuit, including the switches 

and timing control circuit, are integrated into a single chip, except for the passive 

components, such as the inductor and storage capacitors. A detailed schematic of 

the circuit implementation is shown in Fig. 6.6. The circuit uses a 470-μH inductor 

for the P-SSHIR and six 2.2-μF capacitors for the 6:1 SC converter. To tolerate high 

source-to-drain voltages, which can typically exceed 30 V, all of the switches and 

diodes in the P-SSHIR and 6:1 SC converter circuits are designed using 40 V HV 

transistors, of which the gate-source voltage allows 5 V, and on-chip HV Schottky 

diodes. Pull-up resistors are used to protect each gate node in the HV-PMOS switch, 

and maintain the voltage difference between the gate and source at < 5 V when the 

HV-NMOS switch is turned on. A diode D1 is in series with switch S1 in order to 

prevent a subsequent flipping action. Since voltage flipping only occurs once due to 

the action of a single button-press, diode D1 can replace the zero-current sensing 

circuit to turn off the switch S1 in [6], thereby reducing the complexity of the design 

and saving energy. In addition, since the stored energy in the lowermost capacitor 

Fig. 6.6 Detailed circuit implementation of the proposed harvesting circuit. 
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CS1 in the SC converter is used as a power source for the control circuits, the control 

circuits are designed using 5 V transistors. 

To activate S1 and the parallel connection switches with each accurate timing, it 

is necessary to detect VCS1 across CS1. The timing control circuit and the voltage 

waveform of VCS1 are depicted in Fig. 6.7. When the voltage VCS1 reaches 0.6 V un-

der the positive IPZ, the voltage detector VD1 generates an enable signal EN that ac-

tivates a comparator CMP and an oscillator OSC. When VCS1 peaks at the inversion 

of IPZ, the sensing circuit monitors the first peak point of VCS1 and then generates S1 

by comparing VCS1 with the delayed version Vdel. When VCS1 reaches 3.5 V under the 

negative IPZ, the voltage detector VD2 turns on CMP again. When VCS1 peaks after 

IPZ has completed charging, the timing control circuit detects the second peak point 

of VCS1 and generates Φ1. Note that the voltage detector circuit was described in sub-

section 4.1.1. To implement VD1 and VD2, one diode and six diodes are used, re-

spectively. 

 

Fig. 6.7 Timing control circuit including a clocked comparator, an oscillator, and 

two voltage-level detectors. 
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Fig. 6.8 (a) illustrates the ultra-low-power relaxation OSC [38]. A leakage cur-

rent source Ileak by M1 and M2 operating in the subthreshold region charges the on-

chip capacitors C1 and C2 in an alternating fashion. Once Ileak charges C1 to the 

threshold voltage Vth, the output of the corresponding crossing detector is set to a 

high value that resets C2 to ground, and sets CLK and CLKB to high and low, respec-

tively. In the same way, Ileak begins charging C2 to Vth, which sets CLKB to high, and 

CLK to low. The period of CLK is set by the sum of the number of times needed to 

charge capacitors C1 and C2; hence, the frequency of CLK can be expressed as: 

2
leak

sw

th

I
f

V C
 , where 1 2C C C               (6.6) 

The simulation result in Fig. 6.8 (b) shows that the OSC can provide a 21-kHz clock 

signal with 270-nW power consumption at VCS1 = 5 V. 

 

 

 

 

Fig. 6.8 (a) Schematic of ultra-low-power relaxation oscillator and (b) simulation 

result of frequency and power consumption. 
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6.3 Measurement Results of Battery-free 

Wireless Switch  

 

Fig. 6.9 (a) illustrates the disc-type piezoelectric source and shows the measured 

IPZ when the 300-mm2 PMN-PT piezoelectric (PE) disc button was pressed and re-

leased. In contrast to a stick-type PE source [6], the disc-type PE button does not 

output a decaying sinusoidal current because its movement is suppressed after the 

button is released. Since the pressing action is performed by a human, the length of 

time during which the PE source is excited can vary, and was in the range of approx-

imately 300–400 ms. A bipolar AC current IPZ was generated and the measured posi-

tive and negative peak values were 160 μA and -210 μA, respectively. 

Fig. 6.9 (b) illustrates the measured voltage waveforms of VSTOR and VCS1 at the 

uppermost and lowermost capacitors in the 6:1 SC converter, respectively, showing 

the timing detections for harvesting the maximum amount of energy and the down-

converted voltage of 6.1 V. The timing circuit of the PE harvester can detect the first 

and second peaks of VCS1 to invert the voltage across CPZ to a negative value by S1 

and to parallelize the 6:1 SC converter by Φ1, respectively. When six 2.2-μF capaci-

tors (CS1–CS6) are used, the PE harvester can charge the series-connected capacitors 

to 38 V and down-convert voltage to 6.1 V by changing its configuration in parallel, 

respectively. Since five HV Schottky diodes were required to connect the six storage 

capacitors in series, this caused an additional voltage drop of approximately 1.5 V, 

which then caused the down-converted voltage to be slightly smaller than VSTOR 
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divided by 6 (i.e. 6.3 V). The measured energy harvested was 246 μJ. 

Fig. 6.10 shows the energy flows and losses while the buck converter delivers the 

energy stored in capacitor to the load. This figure compares the energy losses such 

as Eloss,st, Eloss,Cout and Eloss,conv of the proposed buck converter with those of the con

 

Fig. 6.9 (a) Measured IPZ when a 300-mm2 PMN-PT piezoelectric disc button is 

pressed and released by a user, and (b) measured voltage waveforms. 
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ventional buck converter to show the energy benefits of the proposed buck converter. 

The conventional one considered in this comparison uses a simple start-up switch 

(Mstart-up) [3], [35] for start-up operation, and a constant on-time PFM control [2], [14] 

and a continuous-time analog ZCD for steady-state operation. Both buck converters 

can deliver the enough energy over 45 μJ to operate the RF transmitter. This is be-

cause the PMN-PT piezoelectric disc can generate a large energy, but it is costly. In 

addition, the proposed PE energy harvester can maximize the energy harvested of 

246 μJ. However, the energy losses such as Eloss,st, Eloss,cout and Eloss,conv were 53 μJ, 

 

Fig. 6.10 Energy flows and losses during start-up and conversion operation of the (a) 

conventional and (b) proposed buck converter.  
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21 μJ and 23 μJ, respectively, in the conventional buck converter. On the other 

hands, their values were 2.5 μJ, 6.9 μJ and 12.6 μJ, respectively, in the proposed 

buck converter. Considering that the rest of energy after start-up operation in the 

proposed buck converter is much larger than that in the conventional one, the con-

version energy loss Eloss,conv of 12.6 μJ in the proposed buck converter is a greatly 

reduced value. In other words, if the same energy with the conventional case would 

be transferred to the load, only 7.8 μJ would be incurred. As a result, the total energy 

loss of the proposed buck converter can be reduced over 4×, which allows that the 

BWS application can use a cheaper PE disc such as PZT-5H. Note that a PZT-5H 

was $5-cost while the PMN-PT was $50-cost. 

Fig. 6.11 illustrates the energy flows and losses when using a PZT-5H PE disc. 

The proposed buck converter can deliver the enough energy of 55 μJ to the RF 

transmitter while the available energy stored in Cin was 68 μJ. Fig. 6.12 illustrates 

the measured key waveforms of the buck converter when the RF transmitter was 

operating in active mode. After the charging process completes in the harvesting 

stage, which took approximately 300 ms, the buck converter began charging Cout to 

 

Fig. 6.11 Energy flows and losses during start-up and conversion operation of the 

proposed buck converter with PZT-5H piezoelectric disc.  
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2.5 V Vout during the 0.12 ms long start-up period. Once Vout reached 2.5 V, the buck 

converter began operating in PFM mode to deliver a steady 2.5 V output, while Iload 

abruptly changed from 4 to 16 mA during data transmission. The CYRF8935 Wire-

less USB transmitter consumed 4 mA during the 3 ms long stand-by period and 16 

mA during the following 0.3 ms period when transmitting on/off messages to the 

target device (e.g., lighting), and consuming a total energy of 45 μJ for data trans-

mission. 

 

Fig. 6.12 Measured waveforms for RF transmitter operating in active mode with 

PZT-5H. 



Chapter 7. Conclusion                                          101 

 

Chapter 7  

 

Conclusion 
 

This work proposes energy-efficient inductor current controls of the buck con-

verter to maximize the energy delivery in battery-free applications. Minimizing the 

energy losses incurred during start-up and steady-state operations of the buck con-

verter is crucial because there is no constant power source in the target applications. 

To address this problem, three inductor current control techniques have been pre-

sented that can greatly reduce the energy losses by minimizing the unnecessary en-

ergy consumption.  

Chapter 3 described the proposed design concepts in detail based on the analysis. 

In start-up operation, the switching-based stepwise capacitor charging scheme was 

employed to keep the average inductor current constant. By using the constant cur-

rent source and by charging the capacitor in a stepwise fashion, the loss incurred at 

the start-up circuit can be greatly reduced. In addition, the variable on-time PFM 

scheme was employed to keep the peak inductor current constant at steady-state op-

eration. By adaptively varying the on-time as the input voltage decreases, it can keep 

the voltage ripple small within an acceptable range needed by the application over 

wide ranges of input voltage conditions even with a small output capacitor and im-

prove the power efficiency by reducing the switching frequency. Finally, the adap-
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tive off-time positioning zero-crossing detector (AOP-ZCD) was employed to pre-

dict the inductor current waveform and then adaptively position the turn-off timing 

of the low-side switch in the vicinity of the zero-inductor-current timing without 

using a power-hungry continuous-time ZCD. 

While Chapter 4 presented the detailed circuit implementation for realizing the 

proposed circuit techniques, Chapter 5 demonstrated the performance of the proto-

type buck converter fabricated in 250 nm CMOS technology. To charge a 2.2-μF 

output capacitor to 2.5 V, the action of switching the buck converter at 1.6 MHz and 

ramping the duty-cycle from 0 to ~50% over a 0.12-ms Tch can maintain the start-up 

energy loss below 10 μJ. In addition, it achieved a peak efficiency of 96% at 25 mA 

load, over 80% efficiency for 1–25 mA load, and efficiency enhancement factor 

(EEF) of 25.8% at 25 mA load, which is the highest EEF reported to date. 

By using the proposed buck converter, the battery-free wireless remote switch 

(BWS) was realized in Chapter 6. To supply the energy instead of battery, a disc-

type piezoelectric (PE) transducer was used that can generate the energy from the 

button-pressing actions of users. Thanks to the proposed energy-efficient buck con-

verter, the prototype BWS can have energy benefit, which allows to transmit a 4-

byte-long message via 2.4-GHz wireless USB channel over a 10-m distance even 

with a low cost 300-mm2 PZT-5H piezoelectric disc. 

Finally, the proposed inductor current control methods can be applied not only to 

battery-free application but also to various other applications such as wearable de-

vices, medical sensors, and the Internet of Things (IoT) because it can always 

achieve high efficiency for wide ranges of input / output voltage. 
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초 록 
배터리가 없는 어플리케이션에서 에너지를 최대한 로드 시스템으로 전

달하기 위해 벅 컨버터 전압 레귤레이터를 제안한다. 본 연구에서는 에너

지 전달을 제한하는 벅 컨버터의 초기 구동 및 정상상태 동작에서 발생하

는 에너지를 최소화 하는 것을 목표로 한다. 특히, 배터리 같은 일정한 파

워 공급원이 없고, 오직 주위의 에너지로부터 적은 에너지를 수확하여 동

작해야 하기 때문에, 에너지 부족 문제는 매우 심각하다. 이런 문제를 해

결하기 위해서, 본 논문은 각각의 동작에서 발생하는 에너지 손실을 줄이

기 위해 최적화된 인덕터 전류 제어 방식들을 제안한다. 첫 번째는, 스위

칭 기법을 이용한 단계적 캐패시터 충전 방식으로, 벅 컨버터가 초기 구

동할 때 인덕터의 평균 전류 값을 일정하게 만들어준다. 인덕터를 스위칭

하여, 인덕터 전류를 일정한 전류원으로 만드는 방식으로, 이를 이용해 캐

패시터를 단계적으로 충전하면 회로에서 발생하는 많은 에너지 손실을 줄

일 수 있다. 두 번째는, 펄스 주파수 변조 (PFM) 방식에서 온타임을 동작

하는 전압에 따라 변화시키는 방법으로, 벅 컨버터가 정상 상태에서 구동

할 때 인덕터 최대 값을 일정하게 만들어준다. 이를 통해 작은 출력 캐패

시터를 가지고도 출력 전압 리플을 줄일 수 있을 뿐만 아니라, 효율을 증

가시킬 수 있다. 세 번째는, 기존의 파워를 많이 소비하는 영전류 검출회

로 (ZCD) 를 사용하지 않고도, 인덕터 전류의 파형을 예측하여, 영전류 

시점에 스위치를 꺼주는 방식으로, 벅컨버터가 정상 상태로 동작할 때 제

어회로에서 소비하는 파워 소모를 효과적으로 줄일 수 있다. 제안하는 전

류 제어 방식의 효과를 확인하기 위해, 250 나노 CMOS 공정으로 무전원 

무선 스위치 칩을 제작하였다. 스위치 버튼을 누르는 힘을 이용해 PMN-
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PT 압전소자가 에너지를 발생시키고, 그 중 246 μJ 에너지를 수확하였으

며, 제안하는 벅 컨버터를 이용해 200 μJ 이상의 에너지를 로드로 전달하

였다. 이 에너지를 이용해 2.4-GHz wireless USB channel 을 통해 4-bype 메

시지를 성공적으로 전달 할 수 있었다. 만약 이 어플리케이션이 제안하는 

벅 컨버터를 사용하지 않았다면, 수확한 에너지는 대부분 전달하는 회로

에서 손실되고 말았을 것이며, 한 번 스위치 버튼을 누르는 동작으로는 

시스템에 충분한 에너지가 전달 되지 않았을 것이다. 즉, 제안하는 벅 컨

버터를 사용함으로써 에너지 손실을 최소화 함으로써, 기존에 사용하는 

비싼 PMN-PT 압전소자를 쓰지 않고, 값이 10 배 싼 PZT-5H 소자를 사용

해도 구현 가능함을 확인 하였다. 

 

주요어 : 벅 컨버터, 무전원 어플리케이션, 스위칭 방식을 이용한 단계적 

캐패시터 충전, 온타임 변환, 오프타임을 적응적으로 위치시키는 영전류 

검출회로, 무선 송신기, 무전원 무선 스위치. 

학 번 : 2010-20852  
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