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Abstract

Collision-free motion planning has been hierarchically decomposed into two

parts: global and local planners. While the former generates the shortest path

to the goal from global environmental information, the latter modifies the path

from the global one by considering unexpected dynamic obstacles and motion

constraints of mobile robots. In the local navigation problem, robots and obsta-

cles have been approximated by simple geometric objects in order to decrease

the computation time. They have been generally enclosed by circles due to its

simplicity in collision detection. However, this approximation becomes overly

conservative if the objects are elongated, which leads the robots to travel longer

paths than necessary to avoid collisions.

This dissertation presents a velocity-based approach to address the local

navigation problem of anisotropic mobile robots bounded by ellipses. Compared

with the other geometries, Löwner ellipse, the minimum area bounding ellipse,

provides more compact representation for robots and obstacles in a 2D plane,

but the collision detection between them is more complicated. Hence, it is first

investigated under what conditions a collision between two ellipses occurs. To

this end, the configuration space framework and an algebraic approach are

introduced. In the former method, it is found that an elliptic robot can be

regarded as a circular robot with radius equal to its minor radius by adequately

controlling its orientation. In the latter method, the interior-disjoint condition

between two ellipses is characterized by four inequalities.
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Next, a velocity-based approach is suggested on the basis of the collision

detection so that an elliptic robot moves to its goal without collisions with

obstacles. The proposed algorithm is decomposed into two phases: linear and

angular motion planning. In the first phase, the ellipse-based velocity obstacle

(EBVO) is defined as the set of linear velocities of a robot that would cause a

collision within a finite time horizon. Furthermore, strategies for determining

a new linear velocity with the EBVO are explained. In the second phase, the

angular velocity is selected with which the robot can circumvent the obstacle

blocking the path to the goal with the minimum deviation.

Finally, the obstacle avoidance method was extended for multi-robot colli-

sion avoidance on the basis on the concept of reciprocity. The concept of hybrid

reciprocal velocity obstacles is adopted in the part of linear motion planning,

and the collision-free reciprocal rotation angles are calculated in the part of

angular motion planning on the assumption that if one robot rotates, then the

other robot may rotate equally or equally opposite.

The proposed algorithm was validated in simulations for various scenarios in

terms of travel time and distance. It was shown that it outperformed the meth-

ods that enclosed robots and obstacles by circles, by ellipses without rotation,

and by polygons with rotation. In addition, it was shown that the computation

time of the proposed method was much smaller than the sampling time, which

means that it is fast enough for real-time applications.

Keywords: local motion planning, ellipse, velocity obstacles, reciprocal colli-

sion avoidance, multi-robot systems

Student Number: 2011-20924
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Chapter 1

Introduction

1.1 Background of the Problem

Collision-free motion planning has been one of the fundamental problems in

robotics, which is hierarchically decomposed into two parts: high-level and low-

level planners [7]. The higher level planner generates the shortest path to the

goal from global environmental information, whereas the local level planner

modifies the path from the higher level one by considering unexpected dynamic

obstacles and motion constraints of mobile robots. This dissertation deals with

the latter, where a robot selects its new linear and angular velocities in each

sense-plan-act cycle.

There have been three representative approaches to solve the local navi-

gation problem: cellular automata, social forces, and velocity-based method.

First of all, cellular automata are discrete-time dynamical models, where the

workspace of robots is discretized into a cell grid. In this model, a robot must
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occupy at most one cell, and a cell have to contain no more than a single robot

in order to prevent collisions [82]. Approaches based on the cellular automata

have been employed to analyze the traffic flow [29], to reproduce the movement

of pedestrians [14, 15, 16], and to plan the motion of multiple robots in a de-

centralized way [57, 107]. Nevertheless, these approaches exhibited unrealistic

solution because movements of robots were limited due to the discretization, as

mentioned in [67, 126].

Next, the concept of social forces was first introduced in [55] to describe

individual pedestrian behavior. Since social forces were virtual forces that rep-

resented social interaction in nature, people were motivated to move as if the

forces were directly exerted on their body. For instance, a pedestrian felt a

driving force toward its goal and repulsive forces from other pedestrians and

obstacles, accelerated by the resultant force according to Newton’s second law.

To comprehend the behavior of pedestrians more exactly, compression and fric-

tion forces model [54] and centrifugal force model [26, 127] were added. However,

this model ran into some problems when applied to planning collision-free mo-

tions for robots. One was that mobile robots using a social force model suffered

a near miss in even uncrowded situations. Notwithstanding robots preferred

to adjust their paths to a minimum to avert collisions, they did not take any

actions to avoid collisions until they got very close [58, 79]. Another issue was

the overlapping-oscillations duality. In social forces model, if the strength of

the repulsive forces was reduced, robots were overlapped with one another.

Otherwise, they performed an oscillating movement and were forced to move

the opposite direction from their goal. These problems were difficult to solve

without compromising the simplicity of the model, as referred to in [25].
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In contrast, velocity-based approaches have not had problems associated

with the confinement of robots’ motion and the overlapping between robots.

This approach has utilized the robot’s velocity in order to determine potential

collisions on the basis of the concept of the velocity obstacle (VO) [41], which

maps the information of the workspace to the velocity space. The VO is defined

as a set of velocities of the robot that would induce a collision within a finite

time horizon, so that the robot can avoid other robots and obstacles by selecting

its new velocity outside of the VO.

However, robots and obstacles are approximated by simple geometric objects

in the velocity-based approach since the contours of them are quite complicated

in general. There are three criteria in choosing a bounding box: tightness, com-

putational ease, and complexity of describing the shape. The first criterion is

that the area of the bounding box should be as low as possible. If the tightness

is not satisfied, a robot has to travel longer paths than necessary to avoid obsta-

cles and is not allowed to pass an alley even though it is possible in practice. The

second criterion is that the collision avoidance conditions should be calculated

simply and fast. Because the collision avoidance has to be guaranteed while a

robot performs complicated tasks, the algorithm must utilize just a little part

of the computational resources. The final criterion is to reduce the amount of

information used to store a computer model [47]. With compact representation

of the shape, a robot can not only improve the running time for planning a

collision-free path but also model the shape of a newly detected obstacle from

equipped sensors without the risk of overfitting.

In general, both circles and polygons have been typical candidates for en-

closing objects due to its simplicity in collision detection in the 2D plane. For
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example, a collision between two circles (or polygons) is equivalent to that be-

tween a point and an inflated circle (or polygon) in the configuration space

(C-space) introduced in [77]. Then it is easy to test the inclusion of the point

in the configuration space obstacle (C-obstacle). However, there is a trade-off

between the tightness and the complexity. While it is specified by just three vari-

ables (x-position, y-position, and radius), the bounding circle becomes overly

conservative if an object is elongated. To remedy this problem, some authors

approximated the object by a group of several circles in [18, 41, 108]. In case of

the bounding polygon, the convex hull of the object may satisfy the tightness,

but the complexity increases as much as twice of the number of the vertices.

In this respect, approximating an object with the minimum area bounding

ellipse, known as the Löwner ellipse [62], compromises between these two crite-

ria. It has been stated in [19, 23] that far fewer ellipses than circles are required

to enclose a given object with the same degree of the tightness. Also, an ellipse

is characterized by five variables (x-position, y-position, major radius, minor

radius, and orientation), which is lower than that of the simplest polygon—

an triangle. However, collision detection between ellipses is more difficult than

those between circles and between polygons [31]. Therefore, this dissertation

deals with the collision detection problem between two ellipses and exploits it

to plan the motion of elliptic robots based on the velocity-based approach.

Meanwhile, there have been few researches about the local collision avoid-

ance of anisotropic robots with rotation, whereas the velocity-based methods

have mostly been studied on circular robots. A circular robot does not con-

trol its orientation because it is rotationally-invariant. On the other hand, it

is essential for an anisotropic robot to consider its angular motion because its
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collision-free motion depends on its orientation. Hence, it is important to find

out the optimal orientation that enables the robot to avoid collision through

the shortest path possible.

The previous work was about the polygonal robot. [64] suggested the for-

mation velocity obstacles (FVO), where the orientation of a formation was

supposed to be parallel to the direction of motion. In [45], the concept of

reciprocally-rotating velocity obstacle (RRVO) was introduced to solve the

problem of the deadlock, emerged when polygonal robots tried to avoid colli-

sions without rotation. This approach found the range of reachable orientations

by discretizing the set of rotations of the robot and employed a brute-force

search strategy in order to find the optimal orientation. Moreover, the collision

avoidance between elliptic agents was suggested by approximating an ellipse

with multiple piecewise lines in [12]. This method used precomputed Minkowski

sum approximations for practical real-time applications, but instead required

a lot of memory. However, there was a drawback that real-time operation was

difficult when the robot encountered unexpected obstacles.

For the real-time collision avoidance, analytic solutions of the motion plan-

ning of elliptic robots have to be researched. Therefore, this dissertation ad-

dresses the local collision avoidance of elliptic robots so that they reach their

goal efficiently with rotation without collisions.

1.2 Statement of the Problem

The problem of real-time local collision avoidance for elliptic robots is addressed

in this dissertation, where each of them makes a detour to reach its goal without

collisions with other robots and obstacles.
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Consider elliptic robots Ri, i = 1, · · · , NR moving in a planar workspace

W. Each robot Ri has major and minor radii of MRi and mRi . Also, its config-

uration consists of the position pRi ∈ R2 and orientation θRi ∈ (−π, π] since it

has a holonomic and omni-directional movable ability. The position pRi is the

center of the ellipse, and the orientation θRi is the angle between the major axis

and the x-axis. The shape of robot Ri is represented by a symmetric positive

definite matrix SRi ∈ R2×2 whose eigenvalues are squares of the semi-axes and

eigenvectors indicate the principal axes, defined by

SRi (θRi) = RθRi

M2
Ri

0

0 m2
Ri

RT
θRi

, (1.1)

where Rθ is the rotation matrix corresponding to a counter-clockwise rotation

of angle θ. Let f be a function given by

f (x;S,p) = (x− p)T S−1 (x− p)− 1. (1.2)

Then the footprint FRi , the occupied region of its workspace, is defined by

FRi(θRi) = {x ∈ W |f (x;SRi(θRi) ,pRi) ≤ 0} . (1.3)

In addition, each robot Ri moves with its linear velocity vRi and angular veloc-

ity wRi . These two factors satisfy its dynamic constraints such as the maximum

linear speed vmax
Ri

, angular speed wmax
Ri

, linear acceleration amax
Ri

, and angular

acceleration αmax
Ri

. Furthermore, there is no communication between robots, so

a robot have to observe other robots with equipped sensors.

In view of the fact that sensor data is returned at a certain sampling period
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Figure 1.1 Elliptic robots and obstacles in the workspace W. Robot R1 can
sense the other robots and the obstacles within the range of ρ: R2, R3, O1, and
O2. The objective of the robot is to arrive at pgoal

R1
without collisions.

∆t, a discrete-time robot model is employed. At each time instant, each robot

follows a sense-plan-act sequence.

In the first step, a robot detects other robots and obstacles with an omni-

directional range sensor with a detection range up to ρ, as shown in Fig. 1.1.

The detection region Di of robot Ri is defined by

Di = {x ∈ W |∥x− xRi∥ ≤ ρ} . (1.4)

Let NRi denote the sets of robots detected by robot Ri. For any robot Rj ∈
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NRi, it is satisfied that

FRj ∩Di ̸= ∅. (1.5)

Because each robot is assumed to identify all other robots, robot Ri knows

the shape of robot Rj ∈ NRi. Therefore, robot Ri can measure or extract

the information of the position pRj , orientation θRj , linear velocity vRj , and

angular velocity wRj of robot Rj .

On the other hand, each robot does not have any information of obstacles in

advance. If the range sensor detects something other than robots, it is regarded

as an obstacle. Without loss of generality, suppose that there are obstacles

Oj , j = 1, · · · , NO detected by robot Ri. Because it is difficult to measure

the angular velocity without the exact knowledge of the obstacles’ shape, the

obstacles are assumed to move in straight lines without rotation. After some

obstacleOj was first detected by robotRi, it has gathered the sensor data about

the outline of the obstacle. From those data, the robot approximates the shape

of obstacle Oj as the minimum area bounding ellipse of the accumulated points,

represented by a symmetric positive semidefinite matrix SOj . If the obstacle is

rotating, it would be bounded by a circle whose radius is the maximum distance

from the center to its boundary. In addition, both the position pOj and the

linear velocity vOj are measured by robot Ri, and its footprint FOj is defined

by

FOj =
{
x ∈ W

∣∣f (x;SOj ,pOj

)
≤ 0
}
. (1.6)

In the next step, each robot plans a trajectory toward its goal from the

information received by the equipped sensor. At each time instant, robot Ri

determines a control input including its new linear velocity vnew
Ri

and angular
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velocity wnew
Ri

for the next sampling period that guarantee no collision with

other robots and obstacles within a time horizon τ ≥ 0. Moreover, these new

velocities are taken within the dynamic constraints in accordance with its pre-

ferred linear velocity vpref
Ri

and angular velocities wpref
Ri

, respectively. If there

were not other robots and obstacles in the workspace, a robot would move

with its preferred linear velocity without rotation to reach the goal as soon as

possible. When the robot’s goal located at pgoal
Ri

is given by an external global

planner, vpref
Ri

has a magnitude of the robot’s preferred linear speed vprefRi
and

is directed toward pgoal
Ri

. On the other hand, the preferred angular velocity en-

ables the robot to avoid obstacles more efficiently on the basis of its geometric

shape. If there is no other robot and obstacle, the robot does not need to turn

around, that is wpref
Ri

= 0. Otherwise, the robot needs rotating with the pre-

ferred angular velocity so that the robot circumvents others with the minimum

possible deviation from the shortest path.

Finally, each robot Ri executes the determined command and changes its

velocities to vnew
Ri

and wnew
Ri

.

Based on the above descriptions, the problem to be solved in this dissertation

is defined as follows.

Problem 1.1 (Collision Avoidance of Elliptic Robots) For any elliptic

robot Ri, compute the new linear velocity vnew
Ri

and angular velocity wnew
Ri

in

order to generate a trajectory to the goal that circumvents other robots and

obstacles with the minimum possible deviation from

• the measurements of other robots and obstacles in its detection area Di,

• the robot’s goal position pgoal
Ri

.
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1.3 Contributions

The main contributions of this dissertation into three parts.

First, we investigate two methods for the collision detection between two el-

lipses in Chapter 3: a configuration space framework and an algebraic approach.

First of all, the configuration space obstacle (C-obstacle) of an elliptic obsta-

cle with respect to an elliptic robot is defined, and its region is identified by

finding the locus of its boundary points. It is also shown that an elliptic robot

can be regarded as a circular robot with radius equal to its minor radius by

adequately controlling its orientation. This facilitates an efficient framework for

collision avoidance considering the geometric shape of the robot. However, it is

difficult to immediately decide whether the collision occurs with the C-obstacle.

To overcome this drawback, the interior-disjoint of two ellipses is analyzed al-

gebraically. This enables an elliptic robot to determine whether its nonlinear

motion causes a collision in the near future. 1

Second, we present a velocity-based local collision avoidance method for an

elliptic robot in dynamic environments with moving obstacles in Chapter 4. This

method consists of two parts: linear and angular motion planning. In the first

part, the ellipse-based velocity obstacle (EBVO), a set of linear velocities of an

elliptic robot that would induce a collsion with obstacles within a finite horizon,

is derived. Next, a strategy for selecting the new linear velocity closest to the

preferred linear velocity and outside the approximated EBVO is presented. In

the second part, the time to contact is calculated when the robot maintains its

new linear velocity, and the collision-free rotation angles are calculated in the

1This content is reproduced by permission of the Institution of Engineering & Technology
[59].
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time to contact. Next, the preferred angular velocities are calculated that enable

the robot to detour obstacles with the minimum deviation from the straight

path to its goal. Finally, a strategy for selecting the new angular velocity, which

is similar with that of the first part, is presented. The evaluation and comparison

of the proposed method are presented in Chapter 6. 2

Lastly, we extends the above method in multi-robot systems in Chapter 5.

In order to account for reciprocity between robots, the concept of hybrid re-

ciprocal velocity obstacles is adopted in the part of linear motion planning. In

addition, the collision-free reciprocal rotation angles are calculated on the as-

sumption that if one robot rotates by ∆θ, then the other robot may rotate by

∆θ equally or −∆θ equally opposite. Likewise, the evaluation and comparison

of the proposed method are presented in Chapter 6.

1.4 Organization

The rest of dissertation is organized as follows. Chapter 2 reviews relevant liter-

ature in the areas of bounding ellipsoid, collision detection between ellipsoids,

and velocity-based local navigation. Chapter 3 presents two frameworks for col-

lision detection between two ellipses. Chapter 4 addresses the problem of the

local collision avoidance problem for a holonomic elliptic robot in dynamic en-

vironments with multiple elliptic obstacles. Chapter 5 modifies the approach

proposed in Chapter 4 for multi-robot collision avoidance. Chapter 6 discusses

the implementation of the algorithms with simulations. We conclude in Chap-

ter 7 with suggestions for future work.

2This content is reproduced by permission of the Institution of Engineering & Technology
[59] and Springer [73].
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Chapter 2

Literature Review

This chapter outlines literature on bounding ellipsoid (or ellipse), collision de-

tection between ellipsoids (or ellipses), and velocity-based local navigation,

which are related with this dissertation.

2.1 Bounding Ellipsoid

The minimum-volume enclosing ellipsoid (or the minimum-area enclosing el-

lipse) of a given point set has been called the Löwner ellipsoid (or ellipse),

which is named after Karel (or Charles) Löwner who proved the uniqueness of

that ellipsoid, according to [10] and [17]. Afterwards, the proof of the uniqueness

in the general case was first presented in [62]. Here, the uniqueness of the max-

imal volume ellipsoid inscribed to a convex body, called the John ellipsoid, was

also proved. The both extremal volume ellipsoids have been called Löwner-John

ellipsoids. Additionally, the uniquenesses of the minimal enclosing ellipsoids for
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various different size functions was demonstrated in [97].

The classical problem of finding the Löwner ellipsoid for a given set of

points has been studied for a long time. An exact algorithm was suggested

in [89], which ran in O
(
n2
)
in terms of the number n of points. Afterward, a

number of numerical algorithms whose computational complexity is linear in the

number n have been suggested. These algorithms were classified as first-order

algorithms [65, 69, 100, 111, 112, 113], second-order interior-point algorithms

[27, 106], and combination of the both [65]. For small dimensions, the problem

was able to be solved faster by employing randomized [121] or deterministic

[20] algorithm.

More than one ellipsoid has been used to approximate an object of arbi-

trary shape. An ellipsoid decomposition method was suggested for the robust

transmission of a geometric object in [13], which was applied to the human

body modeling and animation in [56]. Also, [101] represented a mesh surface

with multiple ellipsoids by utilizing the Lloyd method on metric spaces endowed

with Euclidean radial distance, surface normals, and curvatures. To calculate

the union of tight bounding volumes and improve the efficiency, a variational

method was proposed to compute the optimal segmentation in [78].

Meanwhile, the Löwner-John ellipsoids were employed to measure the dis-

tance between a robot and its surrounding environment. A conservative esti-

mate method was suggested in [94], where the distance between two convex

polyhedra was approximated with that between the associated Löwner ellip-

soids. After that, it was improved in [63, 98] by computing the upper and lower

bounds with the both Löwner and John ellipsoids.
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2.2 Collision Detection between Ellipsoids

In applications of the bounding ellipsoids, it has been important to detect a

collision between two ellipsoids. For this purpose, conventional methods [37, 75,

123] could be used to find the intersection of two quadric surfaces. If there were

no point of the intersection between them, either these ellipsoids were separated

or one was contained in the other. Nevertheless, these methods were inefficient

to figure out the positional relationship, such as separation, external touching,

and overlapping, because they were designed to determine the structure and

parameterize the intersection curve, as mentioned in [120].

The overlapping condition between ellipsoids has been studied in computa-

tional physics in geomechanics in order to model ellipsoidal particles. There has

been three different algorithms to determine the contact point of two ellipsoids

(or ellipses). First, the contact point was defined in [95] as the mid-point of

the line connecting the intersection points of the two ellipses. However, this

method was not only difficult to be extended to the three-dimensional case, but

also poorly conditioned and inaccurate. Second, more robust algorithms were

presented on the basis of a geometric potential concept in [109, 110], where

they located two specific points, not the intersection points, by minimizing the

geometric potential functions of each ellipsoids. Nevertheless, these methods

had an imperfection that the normal vectors in the specific points might not

be parallel to each other. In view of the fact, the third algorithm exploiting a

common normal concept was proposed in [76, 83].

Some researchers have focused on calculating the distance between two ellip-

soids. [28] suggested an iteration scheme based on the convexity of the ellipsoid

surface in the field of astronautics, where the problem of computing the closest
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distance between a point and an ellipsoid was repeatedly solved. Meanwhile,

[34] explained the procedure of finding the minimum distance between ellipses

by utilizing the Lagrange multipliers, which was a system of four equations in

four variables. This methods were improved to a system of two equations in

two variables in [74, 105]. However, the distance computation has been a more

difficult problem than collision detection because a positive distance implies no

collision between the two.

Several studies have been proposed to deal with just the problem of detect-

ing a collision between two ellipsoids (or ellipses). [125] suggested an iterative

procedure based on a concept similar to the bisection method. He suggested

and proved a theorem that determined whether two ellipsoids intersected at a

point only or not, and then confirmed whether inflated ellipsoids could inter-

sect at a point only for various scale factors. Meanwhile, [35] transformed two

ellipses to a circle centered at the origin and an axis-aligned ellipse using an

affine mapping. Next, the relationship between the ellipse and the circle was

determined by computing the extreme points on the ellipses that were closest

and farthest from the origin.

The collision detection problem also studied in computational physics for

molecule simulation. [87] designed a contact function for two arbitrary ellipsoids

representing molecules. As a result, the numerical value of the function was

less than one if they overlapped, and it was greater than one if they did not.

Afterward, this function was generalized and simplified in [88] with clarifying

the relation of the ellipsoid contact to the Gaussian overlap potentials. Also, it

was extended to predict the time of collision between two moving ellipsoids (or

ellipses) in [32, 33].
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Other studies have connected the problem of collision detection to the liter-

ature on algebra. A simple algebraic condition for the separation between two

ellipsoids was first established in [120]. They defined the characteristic polyno-

mial of two ellipsoids and clarified that the two were separated if and only if

the polynomial had two distinct positive real roots. [22] extended the result of

[120] to take into account the time parameter and then performed the collision

detection using the zero-set of the bivariate characteristic equation of two mov-

ing ellipsoids. This method was modified to devise more accurate and efficient

algorithm in [21]. On the other hand, [23] analyzed the separation of two el-

lipses in a similar way to [120], but they showed that the problem of detection

collisions of the two moving ellipses was reduced to a problem of detecting the

zero of a univariate function due to the simplicity of ellipses. Furthermore, the

concept of a separating plane was adopted in [119] to enhance the efficiency

of collision detection. They utilized the fact that once a plane separating two

ellipsoids was found, there could be no collision between the ellipsoids until one

of them collided with the separating plane.

By using Sturm-Habicht sequences defined in [49], the conditions of the co-

efficients could be determined that the characteristic equation has exactly two

positive real roots. [36] and [51] reflected this result to the cases of ellipses and

ellipsoids, respectively. As a consequence, the collision conditions were summa-

rized into four and six polynomials in each of the cases, and [61] additionally

distinguished the two conditions of external touching and overlapping from the

result of [51].
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2.3 Velocity-based Local Navigation

Velocity-based collision avoidance methods have been widely adopted in real-

world scenarios for tasks such as warehousing [39], autonomous cars [93] and

ships [70], navigating robotic wheelchairs through crowded public environment

[90, 91, 92], animation display with multiple ground robots [4, 5] and aerial

robots [6], and crowd tracking [11, 66].

The concept of a velocity obstacle (VO) was first presented in [40], which

was a set of all the velocities of a robot that would induce a collision within

a finite time horizon. This region was calculated by representing the informa-

tion of static and dynamic obstacles to the robot’s velocity space. With this

representation, the robot did not collide with any obstacles if it moved only at

the velocity outside this region. Hence, an avoidance maneuver that selected

its new velocity outside the VO was proposed and analyzed in [41]. However,

the similar method has been published under different names as mentioned in

[122]: a maneuvering board approach in [114], a collision cone in [18], and a

forbidden velocity map in [30].

Whereas the above methods assumed that trajectories of obstacles were

globally linear, the nonlinear velocity obstacle (NLVO) [99] was suggested to

account for general as well as for linear trajectories. The NLVO of an obstacle

was a warped cone that was its time-scaled map along the trajectory. When

the exact trajectory of a moving obstacle was not available, it was estimated

from the current linear and angular velocity. This method was demonstrated

for realistic traffic scenarios on an expressway junction and a parking lot in [72].

Furthermore, the probabilistic velocity obstacle approach [43] was proposed to

address uncertainty in the future trajectory of obstacles.
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Meanwhile, the determination of a proper time horizon has been essential in

the velocity-obstacle approach. Setting the time horizon too high would be too

prohibitive because maneuvers that cause a collision at a distant time would

be considered dangerous. On the other hand, setting it too small would fall a

robot into an inevitable collision state [42] that is a state where a collision with

an obstacle eventually occurs regardless of the robot’s future trajectory. In view

of the fact, [44] proposed a method that determined the obstacle specific safety

time horizon by considering size of the obstacle, its velocity, and the robot’s

dynamic constraints.

For a non-holonomic mobile robot, [84] represented the constraints of the

robot in the space of the angular and linear velocities. They assumed that

the robot could move following straight or circular paths and its velocities

were constant during a sampling period. This research was extended in [85]

by imposing compound trajectories to be followed by the robot in order to

maintain a continuous curvature. In a similar way, [60] also represented the

forbidden velocity region in the wheel velocity space of a differential drive robot.

Moreover, [124] accounted for the constraints of a car-like robot and formulated

the velocity obstacle in terms of the set of the controls.

Heretofore, there was only one robot in the environment and all the rest

were obstacles. However, such an approach was not sufficient when the robot

tried to avoid collisions with other robots as reported in [38]. If a robot treated

other robots as passively moving obstacles, undesirable oscillations were gener-

ated in the motion of robots. That was because other robots also perceived it

and adapted its own motion accordingly, which violated the assumption of the

concept of the velocity obstacle.
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Many studies have been conducted on the local collision avoidance in multi-

robot systems. They assumed that all the robots utilized the same decision

making algorithm [46], which enabled robots to predict the motion of other

robots in the near future without explicit communication. In this regard, the

first extension of the VO for multi-robot systems was the common velocity

obstacle map in [1], which was defined in the 4-dimensional space of all combi-

nations of the velocities of two robots. However, it was unclear how this notion

was extended for multiple robots or how well it scaled to more complicated

environments [118].

Next, the reflective navigation method, called recursive probabilistic velocity

obstacles, was proposed in [68]. In this method, the first robot determined

its own velocity based on the expected motion of the second robot, and vice

versa. This recursion continued until some termination condition was satisfied.

Nevertheless, the convergence of the applied iterative method was difficult to

be guaranteed since the chosen velocities might oscillate between odd and even

level of recursion.

In addition, [118] showed the reason why the original VO generated oscilla-

tory motions when used in navigation in multi-robot systems in the chicken sce-

nario. They also suggested the concept of a reciprocal velocity obstacle (RVO)

to remedy the oscillation problem without explicit communication, where each

robot took half of the responsibility for collision avoidance and assumed that

the other robot took the other half. However, robots frequently failed to col-

laborate for collision avoidance due to disagreement on which side to pass each

other. In this case, they ended up in a reciprocal dance [38, 48], which causes

collisions between them.
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To address the reciprocal dance, the hybrid reciprocal velocity (HRVO) was

presented in [102, 104], in which the RVO was expanded on the side that the

robots should not pass. As a result, if a robot attempted to graze on the inap-

propriate side of another robot, it had to take the full responsibility for collision

avoidance. Otherwise, the robot shared the responsibility in half. Additionally,

a strategy for selection of a new collision-free velocity, the ClearPath algorithm,

was described in [53].

However, the HRVO was known not to guarantee collision avoidance be-

tween multiple robots sufficiently in general even though it struggled to prevent

the reciprocal dance. That was because two robots could select their new ve-

locity on the opposite side due to influences of other robots. To overcome this

drawback, the concept of the optimal reciprocal collision avoidance (ORCA) was

presented in [116], which provided a sufficient condition for collision avoidance

in multi-robot systems.

The ORCA was first suggested to apply robots with simple holonomic dy-

namics, but more recently, it has been extended to robots with differential-drive

[3, 103], car-like [2], double-integrator [71, 115], arbitrary-degree integrator [96],

and general linear dynamics [8]. However, these approaches had a major lim-

itation that all robots were assumed to have exactly the same dynamics and

control laws, which caused they did not exploited in non-homogeneous or non-

linear systems. To overcome this problem, [9] not only unified all the previous

approaches in terms of control obstacles, but also extended them to be utilized

in general non-linear or non-homogeneous systems.
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Chapter 3

Collision Detection

3.1 Introduction

In order to plan collision-free paths for elliptic robots, it is necessary to know

under what conditions a collision occurs. A fundamental tool to detect the

collision is the configuration space framework [77]. According to [24], the con-

figuration of a robot is a complete specification of the position of every point

in its footprint. In addition, the configuration space (C-space) of the robot is

defined as the space of all the possible configurations. In the process of trans-

formation from the workspace to the C-space of a particular robot, the robot is

deflated to a point, whereas the others are inflated. The inflated ones are called

configuration space obstacles (C-obstacles), defined as the set of the robot’s

configurations at which a collision occurs. As a result, the problem of the col-

lision detection turns into that of determining the inclusion of a point in the

C-obstacles.
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In general, the C-obstacle region is identified by finding the boundary, where

a robot and an obstacle touch but do not overlap. If a robot and an obstacle

are disks, the boundary of the C-obstacle is a circle whose radius is the sum of

the radii of both the robot and the obstacle. It is straightforward to determine

whether the point robot is contained in the inflated disk by a second-order

inequality. If they are polygons, the C-obstacle is derived by the Star algorithm

[24], so that the region is represented by the intersection of a finite number of

half spaces. Hence, a point located in the C-obstacle satisfies the corresponding

linear inequalities. In this manner, the boundary of the C-obstacle of an elliptic

obstacle to an elliptic robot is derived in Section 3.3.

However, the collision detection between two ellipses with the configuration

space framework has been known to be computationally expensive. That is

because the boundary of the C-obstacle has no simple geometric shape and the

region is not bounded by a finite number of linear inequalities. To remedy this

problem, a simple algebraic condition for checking the separation of two ellipses

was presented in [23, 36]. They changed the problem of the collision detection

to the one of detecting real zeros of the characteristic polynomial of the two

ellipses. Whether the collision occurred for given position and orientation of

the robot or not was determined according to the pattern of the roots of the

polynomial. Nevertheless, it is necessary to clarify the condition for the interior-

disjoint of two ellipses because the two robots do not collide when they are

separated or externally touched.

Therefore, this chapter introduces both the configuration space framework

and the algebraic approach since they are complementary to each other. The

overall shape of the collision condition is uncovered through deriving the C-
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obstacle, and the collision is immediately detected by the algebraic condition.

These two concepts facilitate the collision avoidance for elliptic robots in the

following chapters.

This chapter is organized as follows. The problem of the collision detection

is first formulated in Section 3.2. Next, the C-obstacle of an elliptic obstacle to

an elliptic robot is derived to find the configurations at which the robot and

the obstacle collide with each other in Section 3.3. Section 3.4 introduces an

algebraic condition that two ellipses are interior-disjoint. Finally, the approaches

to the collision detection are summarized in Section 3.5.

3.2 Problem Formulation

Without loss of generality, it is assumed that there are an elliptic robot R and

an elliptic obstacle O, which can be another robot in multi-robot systems. The

robot R with major and minor radii of MR and mR is currently located at pR

with an orientation of θR. Also, the obstacle O has a current position pO and

footprint characterized by a matrix SO.

The objective of this chapter is to find the set of the robot’s configurations

at which it intersects the obstacle O and to determine whether the two ellipses

are overlapped.

3.3 Configuration Space Obstacle

For the collision detection, the robot R and the obstacle O are mapped from

workspace W to the robot’s configuration space Q, which is a subset of R2 ×

SO (2) because ellipses are anisotropic.

Then the C-obstacle of the obstacle O to the robot R is defined as follows:
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Definition 3.1 (Configuration Space Obstacle) The configuration space

obstacle QOR|O of an elliptic obstacle O to an elliptic robot R is the set of

the configurations at which the robot R intersects the obstacle O, which has the

form

QOR|O =

{[
qx

qθ

]
∈ Q

∣∣∣∣ ({qx} ⊕ FR (qθ)) ∩ FO ̸= ∅
}
, (3.1)

where ⊕ is the Minkowski sum operator defined as

A⊕ B = {x+ y|x ∈ A,y ∈ B} . (3.2)

For a fixed orientation θ of the robot R, the curve ∂QOR|O (θ) obtained

as the intersection of the C-obstacle QOR|O with a plane qθ = θ is derived as

follows.

Theorem 3.2 Consider a robot R and an obstacle O in a planar workspace

W. If the orientation of the robot is fixed at θ, the C-obstacle QOR|O is cut out

by a plane qθ = θ. Let QOR|O (θ) denote the slice of the C-obstacle QOR|O at

the orientation of θ. Then the boundary of the slice, ∂QOR|O (θ) is the locus of

all points q =
[
qT
x θ

]T
that satisfy the equation

qx = pO − pR + S
1
2
Ou+

SR (θ)S
− 1

2
O u∥∥∥∥SR (θ)

1
2 S

− 1
2

O u

∥∥∥∥ , (3.3)

where u is a parameter such that ∥u∥ = 1.

Proof. Pick a point q0 =
[
qT
0,x θ

]T ∈ ∂QOR|O (θ). Then two ellipses {q0,x} ⊕

FR (θ) and FO touch each other externally from (3.1), as shown in Fig. 3.1.

The tangential point xc satisfies
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Figure 3.1 The construction process of the C-obstacle: (a) a robot R and an
obstacle O in a workspace W; (b) a contact point xc between two ellipses,
{q0,x} ⊕ FR (θ) and FO, and its trace obtained by sliding the orange ellipse
around the blue ellipse; (c) the slice of the C-obstacle QOR|O (θ) of the obstacle
O with respect to the robot R.
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• xc ∈ ∂ ({q0,x} ⊕ FR (θ));

• xc ∈ ∂FO;

• for some k > 0, ∇f (x;SR (θ) ,q0,x + pR) = −k∇f (x;SO,pO).

From (1.1) and (1.2), the first condition means

xc = q0,x + pR + SR (θ)
1
2 ũ, (3.4)

where ũ ∈ R2 such that ∥ũ∥ = 1. Likewise, the second one implies

xc = pO + S
1
2
Ou, (3.5)

where u ∈ R2 such that ∥u∥ = 1. Then

q0,x = pO − pR + S
1
2
Ou− SR (θ)

1
2 ũ. (3.6)

From the last condition, for some k > 0,

SR (θ)−
1
2 ũ = −kS− 1

2
O u, (3.7)

which can be written as ũ = −kSR (θ)
1
2 S

− 1
2

O u. From ∥ũ∥ = 1, we obtain

k =

∥∥∥∥SR (θ)
1
2 S

− 1
2

O u

∥∥∥∥−1

. Hence,

ũ = −
SR (θ)

1
2 S

− 1
2

O u∥∥∥∥SR (θ)
1
2 S

− 1
2

O u

∥∥∥∥ . (3.8)

Finally, (3.3) follows from (3.6) and (3.8).
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The first two terms in (3.3) represent the relative position of the obstacle

with respect to the robot, and the last two terms describe its shape parameter-

ized by a unit vector u and the robot’s orientation θ, as shown in Fig. 3.1.

Furthermore, the boundary surface of the C-obstacle QOR|O is plotted in

Fig. 3.2 for the parameters u and θ by assuming pR = pO in order to con-

centrate on its shape. Viewed from the front, it takes after a twisted rod or a

screw, of which the pitch between crests is π since ellipses are symmetric with

respect to their major and minor axes. On the other hand, viewed from the

above, it looks like an elongated circle in the direction along the major axis of

the obstacle O.

Theorem 3.2 finds out the forbidden positions by assuming a fixed orienta-

tion of the robot. Hereafter, the prohibited orientation is analyzed for a fixed

position of the robot. To this end, QOR|O is first projected onto the qx-qy plane,

which is equivalent to see the C-obstacle from the above as shown in Fig. 3.2(a).

Lemma 3.3 Consider the C-obstacle QOR|O whose boundary is represented by

(3.3). Then

⋂
θ

QOR|O (θ) = QOD(pR,mR)|O, (3.9)

⋃
θ

QOR|O (θ) = QOD(pR,MR)|O, (3.10)

where D (p, r) is a disk with radius r located at p such that

D (p, r) =
{
x ∈ R2 |∥x− p∥ ≤ r

}
. (3.11)

Because a disk is rotationally invariant, QOD(·,·)|O ∈ R2.
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Figure 3.2 The C-obstacle QOR|O in the C-space Q given by MR = 2.3757,
mR = 0.82, SO = [ 0.9325 0.4028

0.4028 2.2632 ], and pR = pO: (a) a top view; (b) a front view;
(c) a view of azimuth –37.5◦ and elevation 30◦.
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Proof. From (3.1) and (3.2), the C-obstacle of an elliptic obstacle O to an

elliptic robot R with fixed orientation θ is written as follows.

QOR|O (θ) =
{
x− y ∈ R2 |x ∈ FO,y ∈ FR (θ)

}
. (3.12)

Hence, left-hand side of (3.9) is expressed as

⋂
θ

QOR|O (θ) =
⋂
θ

{
x− y ∈ R2 |x ∈ FO,y ∈ FR (θ)

}
=

{
x− y ∈ R2

∣∣∣∣∣x ∈ FO,y ∈
⋂
θ

FR (θ)

}

=
{
x− y ∈ R2 |x ∈ FO,y ∈ D (pR,mR)

}
= QOD(pR,mR)|O, (3.13)

which proves (3.9).

Likewise, (3.10) is written as follows.

⋃
θ

QOR|O (θ) =
⋃
θ

{
x− y ∈ R2 |x ∈ FO,y ∈ FR (θ)

}
=

{
x− y ∈ R2

∣∣∣∣∣x ∈ FO,y ∈
⋃
θ

FR (θ)

}

=
{
x− y ∈ R2 |x ∈ FO,y ∈ D (pR,MR)

}
= QOD(pR,MR)|O. (3.14)

This completes the proof.

Lemma 3.3 furnishes convenient criteria for determining whether the rota-

tion of the robot R causes a collision with the obstacle O, described in Fig. 3.3.
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• If the relative position of the obstacle with respect to the robot is in

QOD(pR,MR)|O, that is pO − pR /∈ QOD(pR,MR)|O, the robot R with

rotation does not collide with the obstacle O.

• If the relative position is not in QOD(pR,mR)|O but in QOD(pR,MR)|O,

that is pO − pR ∈ QOD(pR,MR)|O \ QOD(pR,mR)|O, the robot R can be

overlapped with the obstacle O depending on its orientation.

• If the relative position is located in QOD(pR,mR)|O, that is pO − pR ∈

QOD(pR,mR)|O, the robot R is overlapped with the obstacle O with all

the orientation.

While it is unnecessary to consider the robot’s orientation in the first and third

cases, the orientation decides whether the collision occurs in the second case.

In other words, the second case can be written as the following corollary:

Corollary 3.4 If pO − pR ∈ QOD(pR,MR)|O \ QOD(pR,mR)|O, there exists θ

such that pO − pR /∈ QOR|O (θ).

To find the collision-free orientations for a given the position of the robot

when the relative position is contained in QOD(pR,MR)|O \QOD(pR,mR)|O, the

inclusion of a point in the C-obstacle must be determined immediately. However,

it is difficult to do with only the information of the boundary from Theorem 3.2,

this will be discussed in detail in the next section.
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Figure 3.3 The proposed criteria for determining the overlap between the ob-
stacle O and the robot R with rotation when pR = pO: (a) the boundaries
of the union and intersection of the slice of the C-obstacle, QOR|O (θ) for all
the robot’s orientation; (b) the robot is not overlapped with the obstacle for
all the orientation; (c) the robot can be overlapped with the obstacle for some
orientation; (d) the robot is overlapped with the obstacle for all the orientation.
The red region represents QOD(pR,MR)|O \QOD(pR,mR)|O, and the blue region
represents QOD(pR,mR)|O.
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3.4 Algebraic Condition for the Interior-disjoint of Two

Ellipses

In this section, the homogeneous coordinate is adopted in order to derive an

algebraic condition for the interior-disjoint of a robot R and an obstacle O.

When an ellipse is located at p and has the shape matrix S, its footprint F can

be written as

F =
{
x ∈ R2

∣∣∣[xT 1
]
M
[
xT 1

]T ≤ 0
}
, (3.15)

where M is a 3× 3 symmetric coefficient matrix such that

M =

 S−1 −S−1p

−pTS−1 pTS−1p− 1

 . (3.16)

With respect to a local frame attached to R, the robot R is at the origin

and the obstacle O is located at pR|O = pO − pR. Then the coefficient matrix

of the robot is represented as

MR (θR) =

SR (θR)
−1 0

0 −1

 , (3.17)

and that of the obstacle is expressed as

MO =

 S−1
O −S−1

O pR|O

−pT
R|OS

−1
O pT

R|OS
−1
O pR|O − 1

 . (3.18)

As mentioned in [23, 36], the collision-free condition of two ellipses FR and FO

is associated with the characteristic polynomial, defined as follows:
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Definition 3.5 (Characteristic Polynomial of Two Ellipses) The char-

acteristic polynomial of two ellipses FR and FO is defined as

g (ξ) = det (ξMR +MO) . (3.19)

Since MR,MO ∈ R3×3, the polynomial in (3.19) has a degree of 3 in ξ.

Hence, it can be rewritten as

g (ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0. (3.20)

Let S̄R = SR (0). Put (3.17) and (3.18) into (3.19), then

a3 = −det S̄−1
R , (3.21)

a2 = a22 cos 2θR + a21 sin 2θR + a20, (3.22)

a1 = a12 cos 2θR + a11 sin 2θR + a10, (3.23)

a0 = −detS−1
O , (3.24)

where

a22 = tr
(
S̄−1
R S−1

O
)
− 1

2
tr S̄−1

R trS−1
O , (3.25)

a21 = tr
(
Rπ

2
S̄−1
R S−1

O

)
, (3.26)

a20 =
(
pT
R|OS

−1
O pR|O − 1

)
det S̄−1

R −
1

2
tr S̄−1

R trS−1
O , (3.27)

a12 = pT
R|O

(
S̄−1
R −

1

2
I2tr S̄

−1
R

)
pR|O detS−1

O

+ tr
(
S̄−1
R S−1

O
)
− 1

2
tr S̄−1

R trS−1
O , (3.28)
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a11 = pT
R|ORπ

2

(
S̄−1
R −

1

2
I2tr S̄

−1
R

)
pR|O detS−1

O + tr
(
Rπ

2
S̄−1
R S−1

O

)
, (3.29)

a10 =
1

2
tr S̄−1

R

(
pT
R|OpR|O detS−1

O − trS−1
O

)
− detS−1

O . (3.30)

Lemma 3.6 Consider two ellipses FR and FO defined by (3.15), (3.17), and

(3.18). Then the characteristic polynomial of the two ellipses has a negative real

root.

Proof. This proof is based on [23, 36]. The characteristic polynomial is g (ξ) =

a3ξ
3 + a2ξ

2 + a1ξ + a0 from (3.20). Since a3 = −det S̄−1
R < 0, g (∞) < 0 and

g (−∞) > 0. In addition, g (0) = a0 = −detS−1
O < 0. Therefore, g (ξ) = 0 has

at least one negative real root.

Lemma 3.7 Consider two ellipses FR and FO defined by (3.15), (3.17), and

(3.18). Then the characteristic polynomial of the two ellipses has two positive

and one negative real roots if and only if they are interior-disjoint.

Proof. This proof is based on [23]. Because a0/a3 > 0, the product of the three

roots of the characteristic polynomial is negative. Since one of the roots is

negative from Lemma 3.6, the other two roots are positive if the polynomial

has a positive real roots. Suppose that

ξ =
1− ζ

ζ
, (3.31)

which maps ζ ∈ [0, 1] into ξ ∈ [0,∞). Hence, the characteristic polynomial

g (ξ) = det (ξMR +MO) is transformed into

h (ζ) = det ((1− ζ)MR + ζMO) , (3.32)
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which means g (ξ) = 0 has a finite positive root if and only if h (ζ) = 0 has a

real root in (0, 1). Accordingly, it will be shown that h (ζ) = 0 has a real root

in (0, 1) if and only if the two ellipses are interior-disjoint.

Let us prove the “if” part first by contradiction on the assumption that

h (ζ) = 0 has no real root in (0, 1). Since h (ζ) is a continuous function of ζ and

is negative at ζ = 0 and ζ = 1, we see that h (ζ) < 0 for ζ ∈ [0, 1]. That is why

M̄ (ζ) = (1− ζ)MR + ζMO

=

(1− ζ)SR (θR)
−1 + ζS−1

O −ζS−1
O pR|O

−ζpT
R|OS

−1
O ζpT

R|OS
−1
O pR|O − 1

 . (3.33)

is invertible for all ζ ∈ [0, 1]. Moreover, because the set of symmetric positive

definite matrices is closed under addition and non-negative scaling, the block

matrix expressed as (1− ζ)SR (θR)
−1+ζS−1

O is still symmetric positive definite.

Hence, the region

E (ζ) =
{
x ∈ R2

∣∣∣[xT 1
]
M̄ (ζ)

[
xT 1

]T ≤ 0
}

(3.34)

is an ellipse with the center located at p̄ (ζ) such that P̄ (ζ) =
[
wp̄ (ζ)T w

]
=[

0 0 1
]
M̄ (ζ)−1 for a nonzero real number w and all ζ ∈ [0, 1]. Let us denote

γ (ζ) = P̄ (ζ)T MRP̄ (ζ) . (3.35)

Since p̄ (0) is the center of FR, γ (0) = P̄ (0)T MRP̄ (0) < 0. On the other hand,

p̄ (1) is outside of the ellipse FO because the two ellipses are interior-disjoint,

that is γ (1) = P̄ (1)T MRP̄ (1) > 0. Because γ (ζ) is a continuous function of
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ζ ∈ [0, 1], there exists ζ1 ∈ (0, 1) such that γ (ζ1) = 0, which means that p̄ (ζ1)

is on the boundary of the ellipse FR.

Since the two ellipses are either separated or touching, the point p̄ (ζ1) can

be outside of or on the boundary of FO. If p̄ (ζ1) /∈ FO, there exists ϵ > 0

such that D (p̄ (ζ1) , ϵ) ∩ FO = ∅ and D (p̄ (ζ1) , ϵ) ⊂ E (ζ). On the other hand,

if p̄ (ζ1) ∈ ∂FO, there exists ϵ > 0 such that D (p̄ (ζ1) , ϵ) ⊂ E (ζ). Then we

can find a point x1 ∈ D (p̄ (ζ1) , ϵ) that is exterior to both FR and FO. As a

result, for X1 =
[
xT
1 1

]T
, we have XT

1 M̄ (ζ1)X1 < 0, XT
1 MRX1 > 0, and

XT
1 MOX1 > 0. However, because ζ ∈ [0, 1],

XT
1 M̄ (ζ1)X1 = (1− ζ1)X

T
1 MRX1 + ζ1X

T
1 MOX1 > 0, (3.36)

which is absurd. Therefore, h (ζ) = 0 has a real root in (0, 1) if the two ellipses

are interior-disjoint.

Now for the “only if” part, which also be proved by contradiction on the

assumption that the two ellipses FR and FO overlap. To begin with, let x0

denote a common interior point of FR and FO. Then for X0 =
[
xT
0 1

]T
, we

have XT
0 MRX0 < 0 and XT

0 MOX0 < 0. Let ζ0 ∈ (0, 1) denote a real root of

the equation h (ζ) = 0. Then

XT
0 M̄ (ζ0)X0 = (1− ζ0)X

T
0 MRX0 + ζ0X

T
0 MOX0 < 0. (3.37)

Also, since det M̄ (ζ0) = 0, there exists a point X1 such that M̄ (ζ0)X1 = 0.

Consider a line passing through the points X0 and X1. Because the regions FR

and FO are bounded, there exists a point X2 on the line such that XT
2 MRX2 >
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0 and XT
2 MOX2 > 0. Then

XT
2 M̄ (ζ0)X2 = (1− ζ0)X

T
2 MRX2 + ζ0X

T
2 MOX2 > 0. (3.38)

However, since X2 can be written as X2 = c0X0+ c1X1 for c0, c1 ∈ R such that

c0 + c1 = 1 and M̄ (ζ0)X1 = 0, we get

XT
2 M̄ (ζ0)X2 = c20X

T
0 M̄ (ζ0)X0 + 2c0c1X

T
0 M̄ (ζ0)X1 + c21X

T
1 M̄ (ζ0)X1

= c20X
T
0 M̄ (ζ0)X0 < 0. (3.39)

This is a contradiction. Therefore, the two ellipses do not overlap if h (ζ) = 0

has a real root in (0, 1).

This completes the proof.

From Lemma 3.7, the problem of collision detection between two ellipses

has been shown to be equivalent to the problem of determining the signs of the

roots of the characteristic polynomial. Since the sign behavior of the real roots

depends on the coefficients of the polynomial, it is possible to know under what

conditions it has two positive and one negative real roots without solving the

equation g (ξ) = 0.

To this end, a sign counting function referred to as in [49, 50] is first defined.

Definition 3.8 (Sign Counting Function) Let P and Q be polynomials

with deg (P ) = p for p ∈ N. For ϵ ∈ {−1, 0, 1}, the number of the sign ϵ of the

evaluation of Q on the real roots of P is defined as

cϵ (P ;Q) = card ({α ∈ R|P (α) = 0, sgn (Q (α)) = ϵ}) , (3.40)
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where card (X) is the cardinal number of a set X and sgn (x) is the signum

function of a real number x defined as

sgn (x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(3.41)

According to the above definition, Lemma 3.7 is transformed into the fol-

lowing corollary.

Corollary 3.9 Consider two ellipses FR and FO defined by (3.15), (3.17), and

(3.18) and their characteristic polynomial g (ξ) expressed as (3.20). Then the

two ellipses are interior-disjoint if and only if

c1 (g (ξ) ; ξ) = 1 or 2, (3.42)

c0 (g (ξ) ; ξ) = 0, (3.43)

c−1 (g (ξ) ; ξ) = 1. (3.44)

If the characteristic polynomial g (ξ) has a positive double root, c1 (g (ξ) ; ξ) = 1.

Otherwise, c1 (g (ξ) ; ξ) = 2.

A sequence of polynomials introduced in [49, 50] and called the Sturm-

Habicht sequence has been used to calculate the number of possible positive,

zero, and negative real roots of a given polynomial P . To explain the relationship

between the real roots of P and the polynomials in its Strum-Habicht sequence,

the concept of the polynomial subresultant mentioned in [49] is first introduced

as follows:
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Definition 3.10 (Polynomial Subresultant) Let P and Q be polynomials

with real coefficients such that, for p, q ∈ N,

P =

p∑
k=0

akξ
k, (3.45)

Q =

q∑
k=0

bkξ
k. (3.46)

If i ∈ {0, · · · ,min (p, q)}, the polynomial subresultant associated with P , p, Q,

and q of index i is defined as follows:

Sresi (P, p,Q, q) =
i∑

j=0

M i
j (P,Q) ξj , (3.47)

where M i
j (P,Q) is the determinant of the matrix constructed from the columns

1, 2, · · · , p+ q − 2i− 1, and p+ q − i− j in the matrix

Mi (P, p,Q, q) =

p+q−i︷ ︸︸ ︷

ap · · · a0
. . .

. . .

ap · · · a0

bq · · · b0
. . .

. . .

bq · · · b0


(3.48)

Hence, the subresultant is a polynomial whose coefficients are determinants

of matrices made from the coefficients of the polynomials P and Q. With a

sequence of the subresutlants, the Sturm-Habicht sequence [49] associated with

P and Q is defined as follows:
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Definition 3.11 (Sturm-Habicht Sequence) Let P and Q be polynomials

with degrees p and q, respectively, defined by (3.45) and (3.46). Let us define

v = p+ q − 1 and

δk = (−1)
k(k+1)

2 (3.49)

for every k ∈ Z. Then the Sturm-Habicht sequence associated to the polyno-

mials P and Q is defined as the list of polynomials {StHaj (P,Q)}v−1
j=0 where

StHav+1 (P,Q) = P , StHav (P,Q) = P ′Q and for every j ∈ {0, · · · , v − 1}:

StHaj (P,Q) = δv−jSresj
(
P, v + 1, P ′Q, v

)
. (3.50)

For every j ∈ {0, · · · , v + 1}, the principal jth Sturm-Habicht coefficient is de-

fined as:

sthaj (P,Q) = coefj (StHaj (P,Q)) , (3.51)

where coefk (P ) is the coefficient of ξk in P defined as

coefk (P ) =
dkP

dξk

∣∣∣∣
x=0

. (3.52)

The next definitions are needed to explain how the Sturm-Habicht sequence

of P and Q are exploited to compute the number of real zeros of P .

Definition 3.12 (the Number of Sign Variations) Let {ai}ni=0 be a finite

sequence of nonzero real numbers. Then the number of sign variations in the

sequence is

sv ({ai}ni=0) =

n∑
i=1

H (−ai−1ai) , (3.53)

where H (x) is the unit step function such that H (x) = (1 + sgn (x)) /2.
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Definition 3.13 (the Number of Sign Permanences) Let {ai}ni=0 be a

finite sequence of nonzero real numbers. Then the number of sign permanences

in the sequence is defined as follows:

sp ({ai}ni=0) =
n∑

i=1

H (ai−1ai) . (3.54)

Definition 3.14 Let {ai}ni=0 be a finite sequence of real numbers such that

a0 ̸= 0. By marking all the zero elements of the sequence, it can be written as

follows:

{ai}ni=0 ={a0, · · · , ai1 ,
k1︷ ︸︸ ︷

0, · · · , 0, ai1+k1+1, · · · , ai2 ,
k2︷ ︸︸ ︷

0, · · · , 0, ai2+k2+1, · · · , ai3 ,

0, · · · · · · , 0, aim−1+km−1+1, · · · , aim ,
km︷ ︸︸ ︷

0, · · · , 0}, (3.55)

where im + km = n. Let C ({ai}ni=0) be a function defined as

C ({ai}ni=0) =

m∑
j=1

sp
(
{ai}

ij
i=ij−1+kj−1+1

)
−

m∑
j=1

sv
(
{ai}

ij
i=ij−1+kj−1+1

)

+
m−1∑
j=1

ϵij , (3.56)

where i0 + k0 + 1 = 0 and

ϵij =


0, if kj is odd,

(−1)
kj
2 sgn

(
aij+kj+1

aij

)
, if kj is even.

(3.57)

The following lemma shows that the number of sign variations and perma-

nences in the Sturm-Habicht principal coefficients associated to the polynomials
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P and Q has a close relation to the number of real roots of P .

Lemma 3.15 Let P and Q be polynomials with deg (P ) = p for p ∈ N. Then

C ({sthap (P,Q) , · · · , stha0 (P,Q)}) = c1 (P ;Q)− c−1 (P ;Q) . (3.58)

The proof of Lemma 3.15 can be found in [50]. From the above lemma, the

following corollary and lemma can be derived.

Corollary 3.16 Consider two ellipses FR and FO defined by (3.15), (3.17),

and (3.18) and their characteristic polynomial g (ξ). Then

C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = c1 (g (ξ) ; ξ)−c−1 (g (ξ) ; ξ) . (3.59)

Lemma 3.17 Consider two ellipses FR and FO defined by (3.15), (3.17), and

(3.18) and their characteristic polynomial g (ξ). Then

C ({stha3 (g (ξ) , 1) , · · · , stha0 (g (ξ) , 1)}) = c1 (g (ξ) ; ξ)+c−1 (g (ξ) ; ξ) . (3.60)

Proof. Put P = g (ξ) and Q = 1 in (3.60), so that

C ({stha3 (g (ξ) , 1) , · · · , stha0 (g (ξ) , 1)}) = c1 (g (ξ) ; 1)−c−1 (g (ξ) ; 1) . (3.61)

Since c1 (g (ξ) ; 1) is the number of the real roots of the characteristic polynomial

g (ξ) and c−1 (g (ξ) ; 1) = 0, we get c1 (g (ξ) ; 1) = c1 (g (ξ) ; ξ) + c0 (g (ξ) ; ξ) +

c−1 (g (ξ) ; ξ). This completes the proof because c0 (g (ξ) ; ξ) = 0.

Accordingly, the condition of the coefficients of the characteristic polynomial

that has two positive and one negative real roots is described as follows:
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Theorem 3.18 Consider two ellipses FR and FO defined by (3.15), (3.17),

and (3.18) and their characteristic polynomial g (ξ) expressed as (3.20). Then

the two ellipses are interior-disjoint if and only if


a2 ≥ 0 or 3a3a2a0 − 4a3a

2
1 + a22a1 ≥ 0,

3a3a1 − a22 < 0,

27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 ≤ 0.

(3.62)

Proof. From Corollaries 3.9 and 3.16 and Lemma 3.17, the necessary and suf-

ficient condition that the two ellipses are touching externally or separated is

either

C ({stha3 (g (ξ) , 1) , · · · , stha0 (g (ξ) , 1)}) = 3, (3.63)

C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = 1, (3.64)

or

C ({stha3 (g (ξ) , 1) , · · · , stha0 (g (ξ) , 1)}) = 2, (3.65)

C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = 0. (3.66)

To expand the left-side hands of the above equations, the Strum-Habicht

sequence associated to g (ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0 is expressed as

StHa3 (g, 1) = a3ξ
3 + a2ξ

2 + a1ξ + a0, (3.67)

StHa2 (g, 1) = 3a3ξ
2 + 2a2ξ + a1, (3.68)

StHa1 (g, 1) = −2a3
(
3a3a1 − a22

)
ξ + a3 (a2a1 − 9a3a0) , (3.69)
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Table 3.1 All the possible sign combinations of the sequence of the principal
Sturm-Habicht coefficients associated to g (ξ) and the corresponding results

sgn
(
{sthai (g, 1)}0i=3

) ∑
sp (·)

∑
sv (·)

∑
ϵij c1 (g (ξ) ; 1)

{−1,−1,−1,−1} 3 0 0 3
{−1,−1,−1, 0} 2 0 0 2
{−1,−1,−1, 1} 2 1 0 1
{−1,−1, 0,−1} 1 0 0 1
{−1,−1, 0, 0} 1 0 0 1
{−1,−1, 0, 1} 1 0 0 1
{−1,−1, 1,−1} 1 2 0 -1
{−1,−1, 1, 0} 1 1 0 0
{−1,−1, 1, 1} 2 1 0 1

StHa0 (g, 1) = −a3
(
27a23a

2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1

)
. (3.70)

Hence, the principal Sturm-Habicht coefficients associated to g (ξ) are

stha3 (g, 1) = a3, (3.71)

stha2 (g, 1) = 3a3, (3.72)

stha1 (g, 1) = −2a3
(
3a3a1 − a22

)
, (3.73)

stha0 (g, 1) = −a3
(
27a23a

2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1

)
. (3.74)

Because the a3 < 0, all the possible sign combinations of the coefficients se-

quence {sthai (g, 1)}0i=3 = {stha3 (g (ξ) , 1) , · · · , stha0 (g (ξ) , 1)} are presented

in Table 3.1. As a result, g (ξ) has three different real roots if and only if


3a3a1 − a22 < 0,

27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 < 0.

(3.75)

46



In addition, it has a double real root and another distinct single real root if and

only if 
3a3a1 − a22 < 0,

27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 = 0.

(3.76)

On the other hand, the Strum-Habicht sequence associated to g (ξ) and ξ is

written as

StHa4 (g, ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0, (3.77)

StHa3 (g, ξ) = 3a3ξ
3 + 2a2ξ

2 + a1ξ, (3.78)

StHa2 (g, ξ) = −3a23a2ξ2 − 6a23a1ξ − 9a23a0, (3.79)

StHa1 (g, ξ) = 3a23
(
3a3a2a0 − 4a3a

2
1 + a22a1

)
ξ − 6a23a0

(
3a3a1 − a22

)
, (3.80)

StHa0 (g, ξ) = 3a23a0
(
27a23a

2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1

)
. (3.81)

Therefore, the principal Sturm-Habicht coefficients associated to g (ξ) and ξ are

stha4 (g, ξ) = 0, (3.82)

stha3 (g, ξ) = 3a3, (3.83)

stha2 (g, ξ) = −3a23a2, (3.84)

stha1 (g, ξ) = 3a23
(
3a3a2a0 − 4a3a

2
1 + a22a1

)
, (3.85)

stha0 (g, ξ) = 3a23a0
(
27a23a

2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1

)
. (3.86)

First, the case that g (ξ) = 0 has three different roots is considered. Because

a3 < 0, a0 < 0, and 27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 < 0, we have

stha3 (g, ξ) < 0 and stha0 (g, ξ) > 0. Hence, all the possible sign combinations
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Table 3.2 All the possible sign combinations of {sthai (g, ξ)}0i=3 when g (ξ) has
three different real roots and the corresponding results

sgn
(
{sthai (g, ξ)}0i=3

) ∑
sp (·)

∑
sv (·)

∑
ϵij C

(
{sthai (g, ξ)}0i=3

)
{−1,−1,−1, 1} 2 1 0 1
{−1,−1, 0, 1} 1 0 0 1
{−1,−1, 1, 1} 2 1 0 1
{−1, 0,−1, 1} 0 1 0 -1
{−1, 0, 0, 1} 0 0 1 1
{−1, 0, 1, 1} 1 0 0 1
{−1, 1,−1, 1} 0 3 0 -3
{−1, 1, 0, 1} 0 1 0 -1
{−1, 1, 1, 1} 2 1 0 1

of the coefficients sequence {stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)} are presented

in Table 3.2, where the cases that C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = 1

are highlighted in yellow.

However, since the product of the three roots of the polynomial g (ξ) is

less than 0, there does not exist {stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)} such that

C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = −1, which means the product is

greater than 0. Thus the 4th and 8th cases in Table 3.2, emphasized in red, can

be included in any sets to find the simplest possible form for the expression.

Consequently, the characteristic polynomial has two different positive and

one negative roots if and only if (3.75) and

a2 ≥ 0 or 3a3a2a0 − 4a3a
2
1 + a22a1 ≥ 0 (3.87)

hold.

Next, the case that g (ξ) = 0 has a double root is considered. Because

a3 < 0, a0 < 0, and 27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 = 0, we
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Table 3.3 All the possible sign combinations of {sthai (g, ξ)}0i=3 when g (ξ) has
a double real root and another distinct single one and the corresponding results

sgn
(
{sthai (g, ξ)}0i=3

) ∑
sp (·)

∑
sv (·)

∑
ϵij C

(
{sthai (g, ξ)}0i=3

)
{−1,−1,−1, 0} 2 0 0 2
{−1,−1, 0, 0} 1 0 0 1
{−1,−1, 1, 0} 1 1 0 0
{−1, 0,−1, 0} 0 0 0 0
{−1, 0, 0, 0} 0 0 0 0
{−1, 0, 1, 0} 0 0 0 0
{−1, 1,−1, 0} 0 2 0 -2
{−1, 1, 0, 0} 0 1 0 -1
{−1, 1, 1, 0} 1 1 0 0

have stha3 (g, ξ) < 0 and stha0 (g, ξ) = 0. All the possible sign combinations of

the coefficients sequence {stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)} are presented in

Table 3.3, where the cases that C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = 0

are highlighted in yellow.

However, there does not exist a sign combination of {−1,−1,−1, 0} from

Lemma 3.6. In addition, the combinations of the Sturm-Habicht principal coef-

ficients that satisfy C ({stha3 (g (ξ) , ξ) , · · · , stha0 (g (ξ) , ξ)}) = ±1 are redun-

dant since the number of real roots cannot be a rational number. Hence, the

characteristic polynomial has a positive double root and a negative root if and

only if (3.76) and (3.87) hold.

This completes the proof.

Meanwhile, it was mentioned in the preceding section that the collision-free

orientations of the robot would be derived in this section when the relative

position of the obstacle with respect to the robot is given. This can be done

by substituting (3.21) – (3.30) into the four inequalities in (3.62). If we put
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cos 2θR =
(
1− t2

)
/
(
1 + t2

)
and sin 2θR = 2t/

(
1 + t2

)
, the polynomial in-

equalities of degree 2, 6, 4, and 8 are obtained in regular sequence. Theses

inequalities can be solved by finding the roots of the polynomials. Moreover,

this algebraic condition can be utilized to predict whether an elliptic robot un-

der arbitrary motion collides with obstacles by representing the position and

orientation of ellipses as a function of time.

3.5 Summary

This chapter has introduced two different frameworks to address the problem

of collision detection between an elliptic robot and an elliptic obstacle. In Sec-

tion 3.3, the collision space obstacle has been defined, and its region has been

identified by finding the locus of its boundary points. It also has been shown

that whether the rotation of the robot causes a collision depends on the relative

position of the obstacle with respect to the robot, which inspires the key idea

of the next chapter that the elliptic robot can be regarded as a circular robot

with radius equal to its minor radius by adequately controlling its orientation.

In Section 3.4, an algebraic condition for the interior-disjoint of the robot

and the obstacle is clarified on the basis of the relation between Sturm-Habicht

sequences and real roots of the characteristic polynomial. It was shown that the

condition is obtained from the separation condition by replacing three of four

strict inequalities to their corresponding non-strict ones by following the proofs

in [23] and [36]. As a result, the robot can determine whether its nonlinear

motion causes a collision in the near future, which is described in detail in the

next chapter.
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Chapter 4

Obstacle Avoidance

4.1 Introduction

In the velocity-based motion planning, a robot is assumed to receive a control

command containing its new linear and angular velocities for the next sampling

period. Because this command determines whether the robot collides with other

robots and obstacles, it is important to find out under what conditions the

collisions occur. By selecting the new velocities that do not satisfying those

conditions, the robot can avoid the collisions and reach the goal safely.

To determine the sufficient and necessary condition for the collision between

two moving objects, the following two assumptions are necessary.

• The one can measure the shape, position, and velocity of the other.

• The one can predict the motion of the other in the near future.

As described in Section 1.1, an elliptic robotR can measure the position and the
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velocity of obstacles in its detection range and estimate their shape by gathering

the sensor data. The robot also predicts the motion of the obstacles based on

their current position and velocity. As a result, the collision condition between

a robot and an obstacle can be calculated. However, things are different when

the collision between robots is considered. Since robots change their behavior

based on input from their environment, it is very difficult for a robot to predict

the motion of another robot. In other words, the collision between robots does

not satisfy the second assumption. Therefore, the collision between a robot and

obstacles is only addressed in this chapter.

When it comes to the collision-free motion planning, the smaller a robot is,

the more efficiently it can avoid obstacles. For example, a compact car can take

a shortcut through a narrow street, whereas a cargo truck has to take a long

way around. For an anisotropic and holonomic robot, it is possible to produce

the same effect as the size of the robot decreases because the distance from the

robot to obstacles depends on its orientation. If the orientation of the robot

were able to change instantly, an elliptic robot would be able to follow the same

path as a circular robot with radius equal to the minor radius moves to avoid

an obstacle. Therefore, the objective of this chapter is to suggest a framework

that an elliptic robot efficiently avoids collisions with obstacles with rotation.

This chapter is organized as follows. In Section 4.2, the problem that a

robot avoids collisions with obstacles is explained, and how to divide it into

two subproblems, linear and angular motion planning, is described. Section 4.3

is a preliminary section that derives tangent line equations of the C-obstacle

in Section 3.3 and finds the closest point on the boundary of C-obstacle to a

given point. Section 4.4 and 4.5 deal with the first subproblem. The sufficient
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and necessary condition for the collision between a non-rotating elliptic robot

and an obstacle, called the Ellipse-based Velocity Obstacle (EBVO), is derived

in Section 4.4, and a strategy for how to select the new linear velocity of the

robot based on the EBVO is elucidated in Section 4.5. On the other hand,

Section 4.6 and 4.7 address the second subproblem in a similar way described

in the preceding sections. The interval of collision-free rotation angles of an

elliptic robot moving with a constant linear velocity is derived in Section 4.6,

and a method to select the new angular velocity from the interval is presented

in Section 4.7. Finally, the proposed approach is summarized in Section 4.8.

4.2 Problem Formulation and Approach

In this chapter, the problem of real-time local collision avoidance for an elliptic

robot from obstacles is considered, which is a subproblem of Problem 1.1.

Let R be an elliptic robot in a planar workspace W. The robot has major

and minor radii of MR and mR, and its shape is characterized by a symmet-

ric positive definite matrix SR (θR) ∈ R2×2. It also has a current position pR,

orientation θR, linear velocity vR, and angular velocity wR. In addition, its mo-

bility is limited by the dynamic constraints such as the maximum linear speed

vmax
R , angular speed wmax

R , linear acceleration amax
R , and angular acceleration

αmax
R . The robot R equipped with a range sensor detects the set of obstacles

{O1,O2, · · · ,ONO} and measures their shape matrix SOj , position pOj , and

velocity vOj for j = 1, · · · , NO.

The objective of the robot is to reach the goal position pgoal
R given by an

external global planner through the shortest path possible without collisions.

Because a discrete-time robot model is employed, the robot selects its new
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linear velocity vnew
R and angular velocity wnew

R on the basis of the current po-

sitions and velocities of itself and the observed obstacles at each time step. As

a consequence, the problem to be solved in this chapter is defined as follows.

Problem 4.1 (Obstacle Avoidance of an Elliptic Robot) For an elliptic

robot R, compute the new linear velocity vnew
R and angular velocity wnew

R in

order to generate a trajectory to the goal that circumvents obstacles with the

minimum possible deviation from

• the measurements of obstacles in its detection area D,

• the robot’s goal position pgoal
R .

However, it is infeasible to find both the optimal vnew
R and wnew

R at the

same time with a high enough sampling rate to be used for practical real-time

applications. Although Section 4.3 derives the boundary equation of 3D C-space

by convolving the footprints of obstacles and the robot at each orientation, it is

difficult to determine whether the robot is inside the C-obstacle or not. For this

reason, it takes much computation time to consider both the velocities at the

same time. Consequently, we decompose it into two subproblems: Problem 4.2

and Problem 4.3.

Problem 4.2 (Obstacle Avoidance of an Elliptic Robot Capable of

Only Translational Motion) Identical to Problem 4.1 except that wnew
R = 0

is assumed.

Problem 4.3 (Angular Motion Control for an Elliptic Robot Circum-

venting Obstacles) Compute the new angular velocity wnew
R of an elliptic

robot R moving at vR in order to potentially circumvent an obstacle interrupt-

ing the robot’s path to the goal with the minimum deviation without collisions.
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Figure 4.1 The proposed obstacle avoidance framework for an elliptic robot.

The linear motion is determined in Problem 4.2, and the angular one is

decided in Problem 4.3. At each time step, the two problems are sequentially

solved. Hence, the solution of Problem 4.2 is assigned to vR in Problem 4.3.

The proposed obstacle avoidance framework for an elliptic robot is shown

in Fig. 4.1. The velocity obstacles are generated from the measurements of ob-

stacles in the detection area, and the preferred linear velocity is calculated from

the goal position given by its global motion planner. The new linear velocity is

selected based on the two data. In the angular motion planning, the collision

free rotation angles are computed from the measurements and the goal posi-

tion. To calculate the preferred angular velocities, both the measurement and

the goal position are necessary since they enable the robot circumvent obstacles

with the minimum deviation from the straight-line path to the goal. Afterward,

the new angular velocity is also determined.
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4.3 Preliminaries: Properties of C-obstacles for an El-

liptic Robot

As a preliminary step for the subsequent sections, the tangent lines to the C-

obstacle given a basis vector and a point on the line are computed. In addition,

the closest point on the boundary of the C-obstacle given a point is calculated.

Because the linear and angular motion planning problems are decomposed in

this chapter, the orientation of the robot is assumed to be fixed. Hence, the

slice of the C-obstacle for a given orientation θR, QOR|O (θR) is regarded as

the C-obstacle.

4.3.1 Tangent lines to C-obstacle

When an elliptic robot R adopts the configuration space framework to avoid

an elliptic obstacle O that blocks the robot’s straight-line path to the goal, it is

efficient for a point, which is the configuration of the robot, in the C-space Q to

move tangent to the surface of the C-obstacle QOR|O (θR). In this subsection,

the tangent lines to the C-obstacle are derived under two different conditions

that a basis vector of the line is given and that a point on the line is given, as

shown in Fig. 4.2.

First of all, put u =
[
cosφ sinφ

]T
in (3.3). Then we obtain the tangent

vector to the C-obstacle QOR|O (θR) at a point qx,0 ∈ QOR|O (θR) by taking

the derivative of (3.3) with respect to φ:

dqx

dφ

∣∣∣∣
qx=qx,0

=

(
S

1
2
O + kSR (θR)S

− 1
2

O

)
du

dφ

∣∣∣∣
u=u0

+
dk

dφ

∣∣∣∣
u=u0

SR (θR)S
− 1

2
O u0.

(4.1)
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Figure 4.2 Tangent lines to the C-obstacle: (a) tangent lines with a given basis
vector; (b) tangent lines at a given point.
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Put

du

dφ

∣∣∣∣
u=u0

= Rπ
2
u0, (4.2)

dk

dφ

∣∣∣∣
u=u0

= −k3uT
0 S

− 1
2

O SR (θR)S
− 1

2
O Rπ

2
u0, (4.3)

where Rπ
2
is the rotation matrix corresponding to a counter-clockwise rotation

of the right angle. Then

dqx

dφ

∣∣∣∣
qx=qx,0

=

(
S

1
2
O + kSR (θR)S

− 1
2

O

)
Rπ

2
u0

− k3
(
uT
0 S

− 1
2

O SR (θR)S
− 1

2
O Rπ

2
u0

)
SR (θR)S

− 1
2

O u0. (4.4)

Given a basis vector

The derivation is started with the following lemma concerning about the tangent

line in a given direction.

Lemma 4.4 Consider the C-obstacle QOR|O (θR) whose boundary is repre-

sented by (3.3). If a basis vector d of the tangent line to QOR|O (θR) is given,

then the parameter u∗ of the contact point q∗
x = pO−pR+S

1
2
Ou

∗+kSR (θR)S
− 1

2
O u∗

satisfies

u∗TS
− 1

2
O d = 0. (4.5)

Proof. At the contact point q∗
x, it is satisfied that

dqx

dφ

∣∣∣∣
qx=q∗

x

= md, (4.6)

where m ∈ R− {0}. Substituting (4.4) into (4.6) and left multiplying u∗TS
− 1

2
O
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to both sides of (4.6), we can rewrite the equation as

u∗TRπ
2
u∗ + ku∗TS

− 1
2

O SR (θR)S
− 1

2
O Rπ

2
u∗

−k3
(
u∗TS

− 1
2

O SR (θR)S
− 1

2
O Rπ

2
u∗
)(

u∗TS
− 1

2
O SR (θR)S

− 1
2

O u∗
)

= mu∗TS
− 1

2
O d. (4.7)

Since u∗TRπ
2
u∗ = 0 and k−2 = u∗TS

− 1
2

O SR (θR)S
− 1

2
O u∗, the left-hand side of

(4.7) equals to 0. Because m ̸= 0, we arrive at (4.5).

Lemma 4.5 Consider the C-obstacle QOR|O (θR) whose boundary is repre-

sented by (3.3). The line tangent to QOR|O (θR) at a point q∗
x ∈ ∂QOR|O (θR)

has the form

u∗TS
− 1

2
O (q− pO + pR)−

∥∥∥∥SR (θR)
1
2 S

− 1
2

O u∗
∥∥∥∥− 1 = 0, (4.8)

where u∗ is the parameter of q∗
x in (3.3).

Proof. If a direction d of the tangent line is given, the equation of that line has

the form of
(
d⊥)T (q− q∗

x) = 0. Since d⊥ = S
− 1

2
O u∗ from (4.5),

u∗TS
− 1

2
O (q− q∗

x) = 0. (4.9)

From (3.3),

u∗TS
− 1

2
O (q− pO + pR)− u∗Tu∗ − ku∗TS

− 1
2

O SR (θR)S
− 1

2
O u∗T = 0. (4.10)

Since u∗Tu∗ = 1 and k−2 = u∗TS
− 1

2
O SR (θR)S

− 1
2

O u∗, (4.8) holds.

59



By Lemmas 4.4 and 4.5, we can derive the equation of the tangent line when

its direction is given.

Lemma 4.6 Consider the C-obstacle QOR|O (θR) of an elliptic obstacle O to

an elliptic robot R with orientation θR. If a basis vector d of the tangent line

is given, the equation of the line can be expressed as

±dTRπ
2
(q− pO + pR) +

∥∥∥SR (θR)
1
2 Rπ

2
d
∥∥∥+√detSO

∥∥∥∥S− 1
2

O d

∥∥∥∥ = 0. (4.11)

Proof. Suppose that the direction vector d of the tangent line is given. From

Lemma 4.4, the parameter u∗ is given by

u∗ = ±
Rπ

2
S
− 1

2
O d∥∥∥∥S− 1
2

O d

∥∥∥∥ . (4.12)

Putting u∗ into (4.8) in Lemma 4.5, we obtain

±dTS
− 1

2
O Rπ

2
S
− 1

2
O (q− pO + pR) +

∥∥∥∥SR (θR)
1
2 S

− 1
2

O Rπ
2
S
− 1

2
O d

∥∥∥∥+ ∥∥∥∥S− 1
2

O d

∥∥∥∥ = 0.

(4.13)

Because

S
− 1

2
O Rπ

2
S
− 1

2
O =

1√
detSO

Rπ
2

(4.14)

and detSO > 0, (4.13) can be written as (4.11).

Given a point on the line

The tangent line equation given a point on that line is calculated. Suppose

that the point is given by qx,0. Because the case that qx,0 ∈ ∂QOR|O (θR) is

explained in Lemma 4.5, we focuses on the case that qx,0 /∈ ∂QOR|O (θR). From
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Lemma 4.5, u∗TS
− 1

2
O (qx,0 − pO + pR)−

∥∥∥∥SR (θR)
1
2 S

− 1
2

O u∗
∥∥∥∥−1 = 0 is obtained.

This equation is transformed into the quadratic form

u∗TAu∗ − 2u∗Tb+ 1 = 0 (4.15)

subject to the constraint u∗Tb− 1 > 0, where

b = S
− 1

2
O (qx,0 − pO + pR) , (4.16)

A = bbT − S
− 1

2
O SR (θR)S

− 1
2

O . (4.17)

In order to solve (4.15), the unit vector u∗ is parameterized rationally as

u∗ =
1

1 + t2

1− t2

2t

 . (4.18)

Then the left-hand side of (4.15) is written as a fraction whose numerator is(
1 + t2

)2
and denominator is

pden (t) = (a11 + 2b1 + 1) t4 − 4 (a12 + b2) t
3 + 2 (2a22 − a11 + 1) t2

+ 4 (a12 − b2) t+ a11 − 2b1 + 1, (4.19)

where aij is the element of matrix A in the ith row and jth column and bi is

the ith element of vector b.

The equation (4.19) is solved as mentioned in [80]. First of all, the Frobenius

companion matrix of the polynomial is computed. For a given polynomial p (t) =
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tn + cn−1t
n−1 + · · ·+ c1t+ c0, the companion matrix is defined as

C (p) =



0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1


. (4.20)

Therefore, for (4.19), the companion matrix has the form

C (pden) =



0 0 0 −a11+2b1−1
a11+2b1+1

1 0 0 −4(a12−b2)
a11+2b1+1

0 1 0 −2(2a22−a11+1)
a11+2b1+1

0 0 1 4(a12+b2)
a11+2b1+1


. (4.21)

Next, the eigenvalues of the companion matrix, corresponding to the roots of

the polynomial, are calculated by the QZ algorithm [81].

If the degree of the denominator is equal to that of the numerator, which is

four, the solution of (4.15) is equivalent to the roots of (4.19). If it is less than

four, the solution of (4.15) involves not only unit vectors associated with the

roots of (4.19) but also u∗ =
[
−1 0

]T
, which is the limit as t → ∞. Among

the four solutions of (4.15), only two of them, u∗
1 and u∗

2, satisfy u∗Tb− 1 > 0.

Accordingly, the tangent lines containing a given point qx,0 are represented by,

for i = 1, 2,

u∗T
i S

− 1
2

O (q− qx,0) = 0. (4.22)
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4.3.2 Closest point on the outline of C-obstacle

In the motion planning, robots and obstacles are given sufficient security mar-

gins due to the uncertainty incurred in motion estimation. Therefore, in some

cases, even though a robot R does not collide with an obstacle O, the ori-

gin, the position of the robot in its configuration space, may be contained in

QOR|O (θR), which means that the obstacle breaks into the safe margin of the

robot. At this point, the robot should find the closest point on the outline of

the C-obstacle and move to that point in order to escape the QOR|O (θR) as

soon as possible. In addition to the case that 0 ∈ QOR|O (θR), it is useful in

motion planning to calculate the closest point on QOR|O (θR) to the origin.

The problem to find the closest point on the outline of the C-obstacle

QOR|O (θR) from the origin is formulated as

qc = argmin
q∈∂QOR|O(θR)

∥q∥ . (4.23)

Let qc and uc be the closest point and its parameter. Then the qc is parallel to

its surface normal vector S
− 1

2
O uc from (4.5), as shown in Fig. 4.3 . Thus

uT
c S

− 1
2

O qc = 0 (4.24)

is satisfied. From (3.3), this can be expressed as

uT
c S

− 1
2

O Rπ
2
(pO − pR) + uT

c S
− 1

2
O Rπ

2
S

1
2
Ouc +

uT
c S

− 1
2

O Rπ
2
SR (θR)S

− 1
2

O uc∥∥∥∥S 1
2
R (θR)S

− 1
2

O uc

∥∥∥∥ = 0.

(4.25)
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Figure 4.3 The closest point on the outline of the C-obstacle from the origin.

This implies that

(
uT
c S

− 1
2

O Rπ
2
(pO − pR) + uT

c S
− 1

2
O Rπ

2
S

1
2
Ouc

)2

uT
c S

− 1
2

O SR (θR)S
− 1

2
O uc

=

(
uT
c S

− 1
2

O Rπ
2
SR (θR)S

− 1
2

O uc

)2

. (4.26)

If the unit vector uc is parameterized rationally likewise (4.18), (4.26) is

transformed into an univariate polynomial equation of degree 12. This equation

also can be solved by the QZ algorithm as described in [80]. Although there are

several solutions of (4.26), the one that corresponds to the closest point to the

origin is the solution of (4.25).
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4.4 Ellipse-based Velocity Obstacles

In this section, the ellipse-based velocity obstacle (EBVO) is defined on the

basis of the tangent line equations of the C-obstacle derived in the preceding

section. Because we concentrate on the linear motion planning of the robot R,

its configuration is only characterized by the position, so that Q ∈ R2. Also,

the orientation of the robot, θR is omitted. As a result, QOR|O = QOR|O (θR)

and SR = SR (θR) hereafter.

The velocity obstacle (VO) was defined as the result of the mapping of the

C-obstacle to its velocity space in [40]. When both the robot and the obstacle

are ellipses, the VO formed by them is called the EBVO.

Definition 4.7 (Ellipse-based Velocity Obstacle) The ellipse-based veloc-

ity obstacle V Oτ
R|O for an elliptic robot R induced by an elliptic obstacle O is

the set of all the robot’s linear velocities v that would cause a collision with O

within a time horizon τ > 0, given by

V Oτ
R|O =

{
v ∈ R2

∣∣∣l (0,v − vO, τ) ∩QOR|O ̸= ∅
}
, (4.27)

where l (p,v, τ) = {p+ tv| 0 ≤ t ≤ τ}, which is a line segment starting at p

and ending at p+ τv.

In [18], it was proven that a necessary and sufficient condition for the colli-

sion between R and O was that vO −vR ∈ cone
(
QOR|O

)
, where cone (C) was

the conic hull of a set C, given by

cone (C) =

{
k∑

i=1

αiqi

∣∣∣∣∣qi ∈ C, αi ≥ 0 for all i, k ∈ N

}
. (4.28)
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From the above condition, the EBVO V O∞
R|O with infinite time horizon can be

represented by the translation of the conic hull of the C-obstacle QOR|O by vO:

V O∞
R|O = cone

(
QOR|O

)
⊕ {vO} . (4.29)

As shown in Fig. 4.4, cone
(
QOR|O

)
is bounded by the two tangent lines

lleftR|O and lrightR|O . On the basis of the tangent line equations in Section 4.3, the

points of tangency can be easily obtained. Let qleft
R|O and qright

R|O be the contact

points of the lines that pass through the origin and touch the left and right

side of QO, respectively. Also, let uleft
R|O and uright

R|O be the parameters of qleft
R|O

and qright
R|O . Then cone

(
QOR|O

)
is the intersection of two half-spaces as the

following lemma.

Lemma 4.8 Suppose uleft
R|O and uright

R|O are the parameters of the points qleft
R|O

and qright
R|O on the lines that pass through the origin and tangent to the C-obstacle

QOR|O. Then the conic hull of QOR|O, cone
(
QOR|O

)
has the form

cone
(
QOR|O

)
=

{
q ∈ Q

∣∣∣∣qTS
− 1

2
O uleft

R|O ≤ 0,qTS
− 1

2
O uright

R|O ≤ 0

}
. (4.30)

Proof. Let g denote a function g : Q → R such that g (q) = qTS
− 1

2
O uleft

R|O. Then

a line {q ∈ Q |g (q) = 0} is tangent to the left-side of QOR|O and pass through

the origin by (4.5). Because pO − pR ∈ QOR|O and

g (pO − pR) = (pO − pR)
T S

− 1
2

O uleft
R|O

= −
∥∥∥∥S 1

2
RS

− 1
2

O uleft
R|O

∥∥∥∥− 1 < 0 (4.31)
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Figure 4.4 The conic hull of the C-obstacle QOR|O, cone
(
QOR|O

)
, and the

EBVO V O∞
R|O. Two tangent lines lleftR|O and lrightR|O bound the conic hull and

touch QOR|O at qleft
R|O and qright

R|O , respectively. The normal vectors of the

lines are S
− 1

2
O uleft

R|O and S
− 1

2

R|Ou
right
R|O , where uleft

R|O and uright
R|O is the parameters

of qleft
R|O and qright

R|O in (3.3). Furthermore, the EBVO V O∞
R|O is the translation

of cone
(
QOR|O

)
by the velocity of the obstacle O.
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from (4.8), we see that the region cone
(
QOR|O

)
is contained in the half-space

{q ∈ Q |g (q) ≤ 0}. Hence,

cone
(
QOR|O

)
⊂
{
q ∈ Q

∣∣∣∣qTS
− 1

2
O uleft

R|O ≤ 0

}
. (4.32)

Similarly, it can be proven that

cone
(
QOR|O

)
⊂
{
q ∈ Q

∣∣∣∣qTS
− 1

2
O uright

R|O ≤ 0

}
. (4.33)

Therefore, the left-hand side of (4.30) is a subset of the right-hand side.

Conversely, suppose that there exists a point q ∈ cone
(
QOR|O

)
satisfying

qTS
− 1

2
O uleft

R|O > 0. Since the region QOR|O is convex and q is not on the line

lleftR|O from Lemma 4.4, there exists q1 ∈ QOR|O \ ∂QOR|O such that q = k1q1

for some k1 > 0 and B (q1, ϵ) = {q |∥q− q1∥ ≤ ϵ} ⊂ QOR|O for some ϵ > 0.

Let

q2 = k2 (pO − pR) + (1− k2)q1 (4.34)

be given, where

k2 =
qT
1 S

− 1
2

O uleft
R|O

(q1 − pO + pR)
T S

− 1
2

O uleft
R|O

. (4.35)

Because B (q2, k2ϵ) ⊂ QOR|O, q2 ∈ QOR|O \ ∂QOR|O. However, q2 is a point

of tangency since qT
2 S

− 1
2

O uleft
R|O = 0 from Lemma 4.4, which implies that q2 ∈

∂QOR|O. This contradicts the assumption that q ∈ cone
(
QOR|O

)
satisfies

qTS
− 1

2
O uleft

R|O > 0. The case of qTS
− 1

2
O uright

R|O > 0 can be proven similarly. Thus

the right-hand side of (4.30) is a subset of the left-hand side.

This completes the proof.
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Corollary 4.9 If uleft
R|O and uright

R|O are the parameters of the contact points

between the lines passing through the origin and the C-obstacle QO, then V O∞
R|O

is expressed as

V O∞
R|O =

{
v ∈ R2

∣∣∣∣(v − vO)
T S

− 1
2

O uleft
R|O ≤ 0, (v − vO)

T S
− 1

2
O uright

R|O ≤ 0

}
.

(4.36)

For a finite value of τ , let coneτ (C) is a set of combinations of points in C

such that

coneτ (C) =

{
k∑

i=1

αiqi

∣∣∣∣∣qi ∈ C, ταi ≥ 1 for all i, k ∈ N

}
. (4.37)

Similar to (4.29), the region V Oτ
R|O is expressed as

V Oτ
R|O = coneτ

(
QOR|O

)
⊕ {vO} , (4.38)

As a result, the region in (4.36) is truncated by a curve segment γτR|O satisfying

the following equation:

γτR|O ⊂
{
v ∈ R2

∣∣∣τ (v − vO) ∈ ∂QOR|O

}
. (4.39)

However, the equation of γτR|O is not appropriate for the determination of the

region V Oτ
R|O because it is difficult to know whether a given point is on the

left or right side of the curve. Therefore, the region V Oτ
R|O is represented as

the union of two regions as shown in Fig. 4.5.

The first region is τ−1QOR|O ⊕ {vO}, which can be determined from the

algebraic condition in Section 3.4 as follows. To consider the effect that the
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Figure 4.5 The EBVO V Oτ
R|O that is the union of τ−1QOR|O ⊕ {vO} and the

region bounded by three line segments.

C-obstacle QOR|O is shrunk by a factor τ and to test the inclusion of the

current robot’s velocity vR in that region, the major and minor radii of the

robot and the obstacle decrease by τ , so that S̄R = τ−2SR and S̄O = τ−2SO. In

addition, the relative position of the obstacle with respect to the robot turns into

p̄R|O = τ−1pR|O −vR +vO. If the coefficients of the characteristic polynomial

of the robot and the obstacle for S̄R, S̄O, and p̄R|O are computed by the

equations from (3.21) to (3.30), it can be determined by the four inequalities in

Theorem 3.18 whether the current linear velocity vR is contained in the region

τ−1QOR|O ⊕ {vO} or not .

70



The other region is the truncated cone whose apex is cut off by the line

segment connecting the two points τ−1qleft
R|O + vO and τ−1qright

R|O + vO, which

are the points of tangency between τ−1QOR|O ⊕ {vO} and the boundary of

V O∞
R|O. Let dR|O denote a vector dR|O = qleft

R|O −qright
R|O . Then the line segment

is a subset of the line represented by

τdT
R|ORπ

2
(v − vO)−

(
qleft
R|O

)T
Rπ

2
qright
R|O = 0, (4.40)

as shown in Fig. 4.5. In conclusion, the following theorem is derived.

Theorem 4.10 Consider an elliptic robot R and an elliptic obstacle O in the

planar workspace W. If the robot selects its new linear velocity vnew
R outside of

V Oτ
R|O =

{
τ−1QOR|O ⊕ {vO}

}
∪
{
v ∈ R2

∣∣ (v − vO)
T S

− 1
2

O uleft
R|O ≤ 0, (v − vO)

T S
− 1

2
O uright

R|O ≤ 0,

τdT
R|ORπ

2
(v − vO)−

(
qleft
R|O

)T
Rπ

2
qright
R|O ≥ 0

}
,

(4.41)

then the robot R does not collide with the obstacle O within a time horizon τ .

4.5 Selection of Collision-free Linear Velocity

In this section, a strategy to determine the new linear velocity of the robot is

presented on the basis of the EBVO derived in the preceding section. For the

sake of efficient computation, the region defined in Theorem 4.10 is approx-

imated by the intersection of three half spaces. Next, how to select the new

linear velocity with the approximated EBVOs is explained in detail.
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4.5.1 Conservative Approximation of the EBVOs

In order to avoid a collision with the obstacle O, the robot has to select its

new velocity outside of the EBVO. However, the computation of collision-free

velocities is demanded when multiple obstacles are considered since the region

in (4.41) has the curved boundary γτR|O. Therefore, we will conservatively ap-

proximate V Oτ
R|O to Ṽ O

τ

R|O by replacing γτR|O to its tangent line Γτ
R|O.

There are three methods for calculating the approximated tangent line Γτ
R|O,

which are all equivalent to one another when the robot and the obstacle are

circular, as shown in Fig. 4.6.

• The normal vector of Γτ
R|O is set to pO − pR.

• The line Γτ
R|O passes through the closest point in V Oτ

R|O to vO.

• The direction vector of Γτ
R|O is set to dR|O = qleft

R|O − qright
R|O .

The first method has been suggested in the conventional studies that solve

the local collision avoidance problem of circular robots based on the velocity-

based approach. The line Γτ
R|O is easily obtained from Lemma 4.6.

Lemma 4.11 If pR|O = pO − pR is the normal vector of Γτ
R|O, then the half-

space supported by Γτ
R|O and containing V Oτ

R|O is expressed by

τpT
R|O (v − vO)−

∥∥pR|O
∥∥2 + ∥∥∥∥S 1

2
RpR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O Rπ
2
pR|O

∥∥∥∥ ≥ 0.

(4.42)

Proof. Let d = Rπ
2
(pO − pR) be substituted in (4.11). Then

±
(
pT
R|Oq−

∥∥pR|O
∥∥2)+ ∥∥∥∥S 1

2
RpR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O Rπ
2
pR|O

∥∥∥∥ = 0. (4.43)

72



Ov

|



approximation cost

(a) (b)

(c)

|VO

1

|  p v

1 *

c  q v

|VO

|d

|VO

Figure 4.6 The approximated tangent lines Γτ
R|O for three methods: (a) The

normal vector of Γτ
R|O is set to pO − pR; (b) The line Γτ

R|O passes through

the closest point in V Oτ
R|O to vO; (c) The direction vector of Γτ

R|O is set to

dR|O = qleft
R|O−qright

R|O . The red lines represent the approximated lines Γτ
R|O. The

cost of the approximation is represented by the area of the blue region.
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Among the two lines, Γτ
R|O is associated with the closer one to origin. Hence,

the sign of the first term becomes positive. From (4.39), Γτ
R|O has the form

τpT
R|O (v − vO)−

∥∥pR|O
∥∥2+∥∥∥∥S 1

2
RpR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O Rπ
2
pR|O

∥∥∥∥ = 0. (4.44)

Because vO+τ−1pR|O ∈ V Oτ
R|O and

∥∥∥∥S 1
2
RpR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O Rπ
2
pR|O

∥∥∥∥ ≥ 0,

(4.42) holds.

However, this method does not reflect the geometry of V Oτ
R|O in that the

curve γτR|O is not symmetric about the vector pO−pR. Thus the approximation

error, the area of Ṽ O
τ

R|O \ V Oτ
R|O, is larger than those of the others.

The second method is to find the closest point in the region of V Oτ
R|O from

vO and to define Γτ
R|O as the supporting line of V OR|O at that point. First, the

closest point in QOR|O to the origin is calculated as described in Section 4.3,

and let q∗
c be that point. Then the tangent line pass through q∗

c is represented

from (4.8). By (4.39), the Γτ
R|O has the from of

u∗T
c S

− 1
2

O (τv − τvO − pO + pR)−
∥∥∥∥S 1

2
RS

− 1
2

O u∗
c

∥∥∥∥− 1 = 0. (4.45)

Since vO + τ−1 (pO − pR) ∈ V Oτ
R|O, the half-space supported by Γτ

R|O and

containing V Oτ
R|O is expressed by

u∗T
c S

− 1
2

O (τv − τvO − pO + pR)−
∥∥∥∥S 1

2
RS

− 1
2

O u∗
c

∥∥∥∥− 1 ≤ 0. (4.46)

Although this method consider the asymmetry of γτR|O with respect to the

vector pO − pR, the computation is very expensive because the polynomial

equation of degree 12 should be solved to find the closest point.
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The last method is to denote the direction vector of Γτ
R|O by dR|O = qleft

R|O−

qright
R|O . Not only can the line Γτ

R|O be simply derived from Lemma 4.6 like the

first method, but the resultant line also reflects the asymmetrical characteristic

of γτR|O analogous to the second one.

Lemma 4.12 If dR|O is the direction vector of Γτ
R|O, the half-space supported

by Γτ
R|O and containing V Oτ

R|O is expressed by

sR|Od
T
R|ORπ

2
(τv − τvO − pO + pR)

+

∥∥∥∥S 1
2
RRπ

2
dR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O dR|O

∥∥∥∥ ≥ 0, (4.47)

where sR|O = sgn
(
dT
R|ORπ

2
(pO − pR)

)
.

Proof. From Lemma 4.6, the tangent lines to QOR|O with dR|O are

±dT
R|ORπ

2
(q− pO + pR)+

∥∥∥∥S 1
2
RRπ

2
dR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O dR|O

∥∥∥∥ = 0. (4.48)

Among the two lines, Γτ
R|O is associated with the closer one to origin, which

takes sR|O = sgn
(
dT
R|ORπ

2
(pO − pR)

)
as the sign of the first term in (4.48).

From (4.39), Γτ
R|O has the form

sR|Od
T
R|ORπ

2
(τv − τvO − pO + pR)

+

∥∥∥∥S 1
2
RRπ

2
dR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O dR|O

∥∥∥∥ = 0. (4.49)

Since the line Γτ
R|O supports V Oτ

R|O, the region is entirely contained in one

of the two closed half-spaces bounded by Γτ
R|O. Because vO + (pO − pR)/τ ∈

V Oτ
R|O and

∥∥∥∥S 1
2
RRπ

2
dR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O dR|O

∥∥∥∥ ≥ 0, (4.47) follows.
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Figure 4.7 The EBVO V Oτ
R|O and its conservative approximation Ṽ O

τ

R|O. The
curve γτR|O is approximated to its tangent line Γτ

R|O whose direction vector is

parallel to dR|O = qleft
R|O − qright

R|O . The approximated EBVO Ṽ O
τ

R|O is bounded
by three lines.
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In conclusion, the third method is employed in this dissertation. Hence, the

approximated EBVO Ṽ O
τ

R|O is bounded by three lines lleftR|O, l
right
R|O , and Γτ

R|O:

Ṽ O
τ

R|O =
{
v ∈ R2

∣∣∣sR|Od
T
R|ORπ

2
(τv − τvO − pO + pR)

+

∥∥∥∥S 1
2
RRπ

2
dR|O

∥∥∥∥+√detSO

∥∥∥∥S− 1
2

O dR|O

∥∥∥∥ ≤ 0,

(v − vO)
T S

− 1
2

O uleft
R|O ≤ 0, (v − vO)

T S
− 1

2
O uright

R|O ≤ 0

}
,

(4.50)

where sR|O = sgn
(
dT
R|ORπ

2
(pO − pR)

)
, as shown in Fig. 4.7.

4.5.2 New Linear Velocity Selection with Multiple Obstacles

Because the condition of the forbidden linear velocity of the robot is derived

in the preceding section, it is extended to the case that multiple obstacles are

moving in W. In addition, the dynamic constraints is considered to find the

reachable linear velocities in the next sampling period. Next, the preferred

linear velocity, at which the robot can reach its goal in the shortest path when

there is no obstacle, is calculated. Finally, the new linear velocity is determined

based on the approximated velocity obstacles and the preferred linear velocity.

Combined velocity obstacle

There are NO obstacles O1, O2, · · · , ONO detected by the robot as mentioned

in Section 4.2. For any natural number i ≤ NO, the conservative approximated

EBVO, Ṽ O
τ

R|Oi
, can be derived. If vnew

R ∈ Ṽ O
τ

R|Oi
for some i ≤ NO, the

collision occurs in time τ . Therefore, the combined EBVO is defined by the
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union of Ṽ O
τ

R|Oi
such that

Ṽ O
τ

R =
⋃

i≤NO

Ṽ O
τ

R|Oi
. (4.51)

If the robot does not move with a velocity outside Ṽ O
τ

R, the robot does not

collide with the obstacles.

Reachable avoidance linear velocities

Due to the robot’s dynamic constraints, its available linear velocities during the

next time period are limited by the set of reachable linear velocities

RVR =
{
v ∈ R2 |∥v∥ ≤ vmax

R , ∥v − vR∥ ≤ amax
R ∆t

}
. (4.52)

By subtracting Ṽ O
τ

R from RVR, the set of reachable avoidance linear velocities

is

RAVR =
{
v ∈ R2

∣∣∣v ∈ RVR,v /∈ Ṽ O
τ

R \ ∂Ṽ O
τ

R

}
. (4.53)

Hence, the robot has to select vnew
R in RAVR.

Preferred linear velocity

If the robot cannot reach the goal in the next time period, the preferred linear

velocity vpref
R has a magnitude of the robot’s preferred linear speed vprefR and

is directed toward pgoal
R :

vpref
R =

vprefR

(
pgoal
R − pR

)
max

{
vprefR ∆t,

∥∥∥pgoal
R − pR

∥∥∥} . (4.54)
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New linear velocity selection

Problem 4.2 is equivalent to finding the closest velocity to the preferred one in

RAVR:

vnew
R = argmin

v∈RAVR

∥∥∥v − vpref
R

∥∥∥ . (4.55)

However, solving the problem of (4.55) is computationally demanding because it

has the non-convex domain RAVR. Therefore, the ClearPath efficient geometric

algorithm introduced in [53] is employed.

If vpref
R /∈ Ṽ OR \ ∂Ṽ OR, then vpref

R ∈ RAVR and vnew
R = vpref

R . Otherwise,

vnew
R is contained in ∂Ṽ OR. Since ∂Ṽ OR is the union of line segments, the

candidates of vnew
R is classified into three groups:

• V CA is a set of projections of vpref
R onto ∂Ṽ OR,

• V CB is a set of cross velocities between the line segments of ∂Ṽ OR,

• V CC is a set of cross velocities between ∂RVR and ∂Ṽ OR.

Figure 4.8 presents the combined EBVO Ṽ OR, the region of RAVR, and the

set of candidates of vnew
R , which is V C = {V CA, V CB, V CC}. The white, gray,

and black marks represent V CA, V CB, and V CC , respectively. Among those

points, the closest point to vpref
R is the solution of (4.55).

The candidates are again divided into two parts: V Ch and V Cl. The set

V Ch is defined by

V Ch = V C ∩
⋃

i≤NO

∂V O∞
R|Oi

, (4.56)

and the set V Cl is defined by

V Cl = V C \ V Ch. (4.57)
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Figure 4.8 The selection of the new linear velocity vnew
R in the velocity space.

The red region represents Ṽ O
τ

R, the dotted circles indicate the robot’s dynamic
constraints, and the blue region represents RAV . The yellow mark is vpref

R . The
white, gray, and black marks are included in the groups V CA, V CB, and V CC ,
respectively. In this case, the white mark is selected to vnew

R .

If the robot moves with a velocity in V Ch, the robot grazes the obstacles and

completely avoid the collisions with them. On the other hand, if the robot

moves with a velocity in V Cl, the robot will eventually collide with some of

the obstacles after τ . For this reason, we give a high priority to velocities in

V Ch when vnew
R is determined. As a result, when vpref

R ∈ Ṽ OR \ ∂Ṽ OR, v
new
R

is decided as follows:

vnew
R =


argmin
v∈V Ch

∥∥∥v − vpref
R

∥∥∥ , if V Ch ̸= ∅,

argmin
v∈V Cl

∥∥∥v − vpref
R

∥∥∥ , if V Ch = ∅.
(4.58)
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If the problem of (4.48) is infeasible (for example, due to a short sampling

period or densely packed conditions), the time horizon τ decreases until the

feasible solution is guaranteed.

4.6 Collision-free Rotation Angles

In this and the next sections, we deal with Problem 4.3, where the angular

velocity wnew
R is determined when the robot is moving with the linear velocity

vnew
R computed in Section 4.5. The objective of the rotation is to change its

orientation so that the robot circumvents obstacles with the minimum deviation

from the shortest path to the goal. If vnew
R ∈ RAVR \ ∂Ṽ OR, the rotation is

unnecessary because the robot R already moves along the shortest one. On the

other hand, if vnew
R /∈ RAVR \ ∂Ṽ OR, the robot have to change its orientation

to increase the efficiency of the collision avoidance. Hence, the latter condition

is only considered in this section.

When vnew
R /∈ RAVR \ ∂Ṽ OR, the new linear velocity is selected in order

to avoid the obstacle the robot first grazes when it maintains the current ve-

locity for a period of time. In other words, the objective of the angular motion

planning is to change its orientation until it contacts that obstacle. Hence, the

shortest time the robot takes to contact obstacles is first calculated, and then

the collision-free interval of the rotation angles before the time-to-contact is

computed.

4.6.1 The Shortest Time-to-contact

In this subsection, we find the obstacle OF that the robot first contacts when

it maintains its new velocity vnew
R and the time TF it takes to contact OF .
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Since it is assumed that vnew
R ∈ ∂Ṽ OR, v

new
R belongs to either V CA, V CB,

or V CC defined in Section 4.5. If vnew
R ∈ V CA ∪ V CC , the robot will contact

only one obstacle, which is OF . Furthermore, if vnew
R ∈ ΓR|OF

, the time-to-

contact is TF = τ . Otherwise, without loss of generality, suppose the robot pass

by the left side of OF at a future time, that is vnew
R ∈ lleftR|OF

. Then TF is

TF = min


∥∥∥qleft

R|OF

∥∥∥∥∥vnew
R − vOF

∥∥ , τ
 . (4.59)

Because τ is the maximum time for which the collision is considered, TF is

limited below τ .

If vnew
R ∈ V CB, the robot will contact two obstacles, denoted by OF,1 and

OF,2. For each of them, the time-to-contact TF,i is calculated from (4.59). Af-

terward, OF = OF,i and TF = TF,i for i = argmin {TF,1, TF,2}.

4.6.2 Collision-free Interval of the Rotation Angles

With respect to a local frame attached to R, the robot is rotating at the origin

and the obstacle is moving with the velocity vR|O = vO − vnew
R at pR|O =

pO − pR at time t0. Let ∆θR|O be the rotation angle of the robot and ΘTF

R|O =[
∆θ−R|O,∆θ+R|O

]
be the set of collision-free rotation angles of the robot within

TF . Here, ∆θ−R|O ≤ 0 and ∆θ+R|O ≥ 0 because a collision does not occur when

∆θR|O = 0 since the new velocity is selected on the assumption that the robot

does not rotate. The objective of this subsection is to find out the interval ΘTF

R|O.

As a preliminary step, the collision-free rotation angles are calculated for a

fixed elliptic obstacle and a fixed line segment obstacle. Next, the collision-free

interval induced by a moving elliptic obstacle is calculated based on the results.
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Fixed elliptic obstacle

Suppose that there are a rotating elliptic robot R at the origin and an elliptic

obstacle fixed at pR|O, which are initially separated each other. If pR|O /∈

QOD(pR,MR)|O \ ∂QOD(pR,MR)|O, where MR is the major radius of the robot

and D (p, r) is the disk located at p with radius of r as defined in (3.11),

then ΘTF

R|O = [−π, π]. Otherwise, the collision-free interval is derived from the

algebraic condition in Section 3.4.

The coefficient matrices of the robot and the obstacle are represented by

MR (∆θR) =

R∆θRSR (θR)
−1RT

∆θR
0

0 −1

 , (4.60)

MO =

 S−1
O −S−1

O pR|O

−pT
R|OS

−1
O pT

R|OS
−1
O pR|O − 1

 . (4.61)

Then the characteristic polynomial of the robot and the obstacle is

g (ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0, (4.62)

where

a3 = −detSR (θR)
−1 , (4.63)

a2 = a22 cos 2∆θR + a21 sin 2∆θR + a20, (4.64)

a1 = a12 cos 2∆θR + a11 sin 2∆θR + a10, (4.65)

a0 = −detS−1
O . (4.66)

The values of a22, a21, a20, a12, a11, and a10 are obtained by putting S̄R =
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SR (θR) into (3.25)–(3.30). From Theorem 3.18, they do not overlap if and only

if 
a2 ≥ 0 or 3a3a2a0 − 4a3a

2
1 + a22a1 ≥ 0,

3a3a1 − a22 < 0,

27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 ≤ 0.

(4.67)

In order to solve the four inequalities in (4.67), put

cos 2∆θR =
1− t2

1 + t2
, (4.68)

sin 2∆θR =
2t

1 + t2
. (4.69)

As a result, four polynomial inequalities of degree 2, 6, 4, and 8 are obtained,

respectively. Theses inequalities can be solved by finding the roots of the poly-

nomials, and how to solve them is described in Section 4.2. Among these roots,

even multiple roots are eliminated because the graph does not cross the axis at

those points. For each of the inequalities, all the roots ti are reversely mapped

into the domain of the rotation angles as follows:

∆θR|O,2i−1 =
atan2

(
2t, 1− t2

)
2

, (4.70)

∆θR|O,2i =
atan2

(
2t, 1− t2

)
2

− πsgn (t) . (4.71)

With the above values, the interval of collision-free rotation angles is deter-

mined. For the inequalities 3a3a1 − a22 < 0 and 27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 +

4a32a0 − a22a
2
1 ≤ 0, the intervals have endpoints at the minimum positive and

the maximum negative values because ∆θR|O = 0 is always included. However,

the interval that satisfy a2 ≥ 0 or 3a3a2a0 − 4a3a
2
1 + a22a1 ≥ 0 is determined

84



after monitoring the sign of all the interval.

In conclusion, the interval of the collision free rotation angles of the robot

R induced by the obstacle O, ΘTF

R|O =
[
∆θ−R|O,∆θ+R|O

]
is determined by inter-

secting the three intervals.

Fixed line segment obstacle

Suppose that there are a rotating elliptic robot R at the origin and a line

segment obstacle O whose end points are pR|O and pR|O + TFvR|O, that is

FO = l
(
pR|O,vR|O, TF

)
. Also, suppose that they are initially separated each

other. Then the distance between the line segment and the origin is given by

dR|O =
∥∥pR|O + ζvR|O

∥∥ , (4.72)

where

ζ =



TF if pT
R|OvR|O ≤ −TFv

T
R|OvR|O,

−
pT
R|OvR|O

vT
R|OvR|O

if − TFv
T
R|OvR|O < pT

R|OvR|O ≤ 0,

0 if pT
R|OvR|O > 0.

(4.73)

If dR|O ≥MR, the robot is free of collision and ΘTF

R|O = [−π, π]. Otherwise,

the interval ΘTF

R|O is obtained through the next three steps. First, the interval

of the collision-free rotation between R and the line containing O, which is

dline =

∥∥∥∥∥pR|O −
pT
R|OvR|O

vT
R|OvR|O

vR|O

∥∥∥∥∥ (4.74)

away from the origin, is calculated.
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Lemma 4.13 Consider a rotating ellipse R at the origin and a line dline far

from the origin. Then the point x ∈ ∂FR will contact the line if

xTSR (θR)
−2 x =

1

d2line
. (4.75)

Proof. For x ∈ ∂FR, f (x;SR (θR) ,0) = xTSR (θR)
−1 x − 1 = 0 holds from

(1.2). Suppose the ellipse touches the line when it rotates by ∆θ. Then x∗ =

R∆θx belongs to the line and its normal vector n∗ = R∆θS
−1
R x is perpendicular

to the line, which implies

dline =
x∗Tn∗

∥n∗∥
=

1√
xTSR (θR)

−2 x
. (4.76)

Hence, (4.75) follows.

Since x = SR (θR)
1
2 u can be parameterized by a unit vector u, (4.75)

can be written as uTSR (θR)
−1 u = 1/d2line. This can be solved by putting

u =
[
1− t2 2t

]T
/
(
1 + t2

)
. As a result, we obtain candidate points xi =

SR (θR)
1
2 ui and the corresponding normal vectors ni = SR (θR)

− 1
2 ui for i =

1, . . . , 4. As a result, the robot touches the line when it rotates by angles of ∆θi

such that, for µ > 0,

pR|O −
pT
R|OvR|O

vT
R|OvR|O

vR|O = µRT
∆θi

ni. (4.77)

Let ∆θ− and ∆θ+ be the maximum negative and the minimum positive values

among ∆θi for i = 1, . . . , 4. Hence, the interval ΘTF

R|O,1 =
[
∆θ−R|O,1,∆θ+R|O,1

]
is
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determined as follows:

∆θ−R|O,1 =


∆θ− if R∆θ−x− ∈ FO,

−π otherwise,

(4.78)

∆θ+R|O,1 =


∆θ+ if R∆θ+x+ ∈ FO,

π otherwise.

(4.79)

In the above equations, it is neglected if the robot does not contact with the

obstacle with the rotation of ∆θ− or ∆θ−, which is complemented in the next.

Second, the collision-free intervals induced by the two endpoints are calcu-

lated. For pR|O, it follows that ∥x∥ =
∥∥pR|O

∥∥. Writing x = SR (θR)
1
2 u,

uTSR (θR)u = pT
R|OpR|O. (4.80)

This can be solved in the similar way as before, and we can obtain the interval

ΘTF

R|O,2 induced by the point pR|O. Likewise, we can get the interval ΘTF

R|O,3

induced by the point pR|O + TFvR|O.

Finally, ΘTF

R|O, the collision-free interval induced by O, is computed as

ΘTF

R|O =
⋂

i=1,2,3

ΘTF

R|O,i. (4.81)

Moving elliptic obstacle

Suppose that there are a rotating elliptic robot R at the origin and an elliptic

obstacle O moving with the velocity vR|O at pR|O at time t0. Let SAO denote
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Figure 4.9 The collision-free rotation angles of the robot R in time interval
from t = t0 to t = t0 + TF . The swept region by O is represented by the region
SAO. The obstacle O is SAO,1 at t0 and SAO,2 at t0 + TF . The line segments
SAO,3 and SAO,4 are the boundary lines of SAO. The red region indicates the

collision-free rotation angles, ΘTF

R|O =
[
∆θ−R|O,∆θ+R|O

]
.

the area swept by the obstacle O for [t0, t0 + TF ] such that

SAO =
⋃

t∈[0,TF ]

{
x ∈ R2

∣∣f (x;SO,pR|O + tvR|O
)
≤ 0

}
. (4.82)

As shown in Fig. 4.9, its boundary ∂SAO consists of segments of two ellipses

and two lines. More specifically, the two ellipses are

SAO,1 =
{
x ∈ R2

∣∣f (x;SO,pR|O
)
≤ 0

}
, (4.83)

SAO,2 =
{
x ∈ R2

∣∣f (x;SO,pR|O + TFvR|O
)
≤ 0

}
, (4.84)
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and the two line segments are, for i = 3, 4,

SAO,i = l

(
pR|O ±

SOvR|O

pT
R|OSOvR|O

,vR|O, TF

)
. (4.85)

The collision-free intervals of the rotation angles induced by the fixed elliptic

obstacles SAO,i for i = 1, 2, denoted by ΘTF

R|SAO,i
and those induced by the fixed

line segment obstacles SAOi for i = 3, 4, ΘTF

R|TO,i
, can be derived as mentioned

before. Finally, the collision-free rotation angles induced by O is computed by

ΘTF

R|O =
⋂

i∈{1,...,4}

ΘTF

R|SAO,i
. (4.86)

4.7 Selection of Collision-free Angular Velocity

In this section, a strategy to determine the new angular velocity is presented by

utilizing the interval of the collision-free rotation angles. First, it is explained

how the preferred angular velocities are determined. Next, the selection of the

new angular velocity is described in detail.

4.7.1 Preferred Angular Velocities

In this subsection, it is assumed that vnew
R /∈ RAVR \ ∂Ṽ OR. As mentioned in

Section 1.2, the preferred angular velocities are determined to lead the robot to

potentially circumvent obstacles with the minimum possible deviation. Because

the new linear velocity is selected to avoid the obstacle OF it first contacts when

it maintains the current velocity for a period of time, the robot is expected to

reach its goal with a less traveled path by changing its orientation to make the

robot avoid the obstacle OF more efficiently.
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Figure 4.10 A basic concept of determining preferred angular velocities. (a) An
elliptic robot whose orientation is aligned with vR|O can avoid obstacles with
the same path as (b) a circular robot with radius equal to minor radius of the
elliptic one does.

Corollary 3.4 clarifies the robot R with rotation can circumvent an obstacle

as if it is a circular robot with radius equal to its minor radius, as shown

in Fig. 4.10. Hence, the approximated EBVO Ṽ O
τ

D(pR,mR)|OF
for the circular

robot D (pR,mR) induced by the obstacle OF . If v
pref
R ∈ Ṽ O

τ

D(pR,mR)|OF
, the

closest velocity v∗ to vpref
R is selected outside Ṽ O

τ

RC |OF
. Then the preferred

angular orientations are aligned with the direction of v∗−vOF
. Due to symmetry

of an ellipse, there are two preferred angular orientations: one is positive and

the other is negative. Hence, the preferred angular velocities are defined as

wpref
R,± =

wrapToPi (∠ (± (v∗ − vOF
))− θR)

∆t
, (4.87)

where ∠ (v) is the direction angle of a given vector v and wrapToPi (θ) is a

function wrapping a given value θ to [−π, π].

If vpref
R /∈ Ṽ O

τ

D(pR,mR)|OF
, the robot is expected to move with vpref

R at the

next sampling time provided that its orientation changes adequately. To find

the preferred orientations, the distance dline between the obstacle’s position

pOF
and the line connecting pR and pgoal

R is calculated by substituting vR|O =

vpref
R − vOF

and pR|O = pR − pOF
into (4.74).

90



Next, the preferred angular orientations are calculated from Lemma 4.13.

Among the four angles, the minimum positive and the maximum negative ones,

∆θprefR,− and ∆θprefR,+ , are assigned to the preferred angular orientations. Hence,

the preferred angular velocities are defined as

wpref
R,± =

∆θprefR,±
∆t

. (4.88)

4.7.2 New Angular Velocity Selection

Based on the collision-free interval of the rotation angles in Section 4.6.2 and

the preferred angular velocities in Section 4.7.1, the new angular velocity is

determined.

Combined collision-free angular velocities interval

There are NO obstacles O1, O2, · · · , ONO detected by the robot as mentioned in

Section 4.2. For any natural number i ≤ NO, the collision-free interval ΘTF

R|Oi
,

can be derived. If ∆θnewR /∈ ΘTF

R|Oi
for some i ≤ NO, the collision occurs in time

TF . Therefore, the combined interval of collision-free rotating angles is defined

by the intersection of ΘTF

R|Oi
such that

ΘTF
R =

⋂
i≤NO

ΘTF

R|Oi
. (4.89)

If the robot moves with the velocity vnew
R and rotates through an angle in ΘTF

R ,

the robot does not collide with the obstacles within TF .

Because the objective is to determine the new angular velocity, it is es-

sential to map ΘTF
R to the domain of the robot’s angular velocity. Moreover,
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the determined angular velocity is maintained only in the next sampling pe-

riod ∆t. Therefore, the collision-free interval of the robot’s angular velocities is

calculated by dividing the rotation angles with the sampling period ∆t:

CFWR =
{
w ∈ R

∣∣∣w∆t ∈ ΘTF
R

}
. (4.90)

Reachable avoidance angular velocities

The available angular velocities during the next period are limited as the set of

reachable angular velocities

RWR = {w ∈ R ||w| ≤ wmax
R , |w − wR| ≤ αmax

R ∆t} . (4.91)

By intersecting CFWR and RWR, the set of reachable avoidance angular ve-

locities is denoted as

RAWR = CFWR ∩RWR. (4.92)

Therefore, the robot has to select wnew
R in RAWR.

New angular velocity selection

Problem 4.3 is equivalent to finding the closest to wpref
R in RAWR:

wnew
R = argmin

w∈RAWR

min
i=+,−

∣∣∣w − wpref
R,i

∣∣∣ . (4.93)

If both of the preferred angular velocities wpref
R,± are in RAWR, the closest to

the current angular velocity wR is selected. Figure 4.11 shows the selection of

the new angular velocity through the optimization.
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Figure 4.11 Optimization in the angular velocity space.

4.8 Summary

This chapter has suggested a local navigation algorithm for a holonomic elliptic

robot, decomposed into two parts: linear and angular motion planning.

In the first part, the new linear velocity of an elliptic robot without rotation

is selected in order to generate a trajectory to the goal without collision with

obstacles. To this end, the ellipse-based velocity obstacle, the set of robot’s

linear velocities that would induce a collision with the obstacle within a finite

time horizon, called EBVO, is derived. For the sake of efficiency, the EBVO

is conservative approximated, so that the region of the forbidden velocities

is bounded by three lines. Afterward, a strategy for selecting the new linear

velocity outside of the approximated EBVO is presented.

In the second part, the new angular velocity of the robot moving with the

linear velocity from the first part is selected to avoid obstacles with a less

traveled path. The interval of the collision-free rotation angles is first derived

by taking the swept region the obstacles may move through until it grazes some

obstacle. Next, the preferred angular velocities are calculated that adjust its

orientation to avoid obstacle as if it is a circular robot with radius of its minor

radius. Finally, a strategy for selecting the new angular velocity is also presented

based on the collision-free interval and the preferred angular velocities.
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Chapter 5

Multi-Robot Collision Avoidance

5.1 Introduction

In the preceding chapter, the obstacle avoidance for an elliptic robot is consid-

ered on the assumption that obstacles maintain their velocities for a moment.

In contrast, it is invalid on the collision avoidance between robots since the

motion of robots constantly changes based on the sensor input from their envi-

ronment. If one robot tries to avoid another robot with the prediction that it

keeps moving with its current velocity, an oscillation occurs.

To remedy this problem, the concept of reciprocity was presented in [118],

where robots take half of the responsibility for avoiding collisions with one

another. Since it is assumed that all the robots use the same algorithm to

plan their motions, one robot can predict the next velocities of other robots.

Therefore, the method for obstacle avoidance presented in Chapter 4 is extended

to that for multi-robot collision avoidance.
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Multi-robot Collision Avoidance Framework

Angular Motion Planning

Linear Motion Planning

Preferred Angular 

Velocity Calculation

New Angular
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Velocity Obstacles

Preferred Linear 

Velocity Calculation

New Linear
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The measurments of 
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v

i

neww

i
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Figure 5.1 The proposed multi-robot collision avoidance framework for elliptic
robots. The modified steps from the obstacle avoidance are presented in purple.

Since the model for predicting the movement of others is different from

the previous chapter, the steps of determining potential collisions have been

revised. As a result, the generation of velocity obstacles and the calculation of

collision-free rotation angles are modified to reflect the concept of reciprocity

between robots. The other steps are the same with the previous method, as

shown in Fig. 5.1.

This chapter is organized as follows. Section 5.2 formulates the problem of

collision avoidance between elliptic robots. Section 5.3 adapts the ellipse-based

velocity obstacle to multi-robot collision avoidance scenarios. Section 5.4 calcu-

lates the collision-free reciprocal rotation angles on the basis of the reciprocity

of rotation. Finally, this chapter is summarized in Section 5.5.
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5.2 Problem Formulation

In this chapter, the problem of real-time local collision avoidance for elliptic

robots is considered, which is another subproblem of Problem 1.1.

Consider holonomic elliptic robots Ri, i = 1, · · · , NR moving in a planar

workspace W. Each robot Ri has major and minor radii of MRi and mRi , and

its configuration consists of the position pRi and orientation θRi . In addition,

the shape of robot Ri is represented by a symmetric positive definite matrix

SRi (θRi) ∈ R2×2. Accordingly, a robot Ri occupies the region of FRi (θRi) =

{x ∈ W |f (x;SRi(θRi) ,pRi) ≤ 0} in its workspace. Furthermore, each robot

Ri moves with its linear velocity vRi and rotates with its angular velocity

wRi . Its mobility is limited by the dynamic constraints such as the maximum

linear speed vmax
Ri

, angular speed wmax
Ri

, linear acceleration amax
Ri

, and angular

acceleration αmax
Ri

.

Next, a robot detects other robots in its detection range with an omni-

directional range sensor with a detection range up to ρ, and there is no commu-

nication between robots. Let NRi denote the sets of robots detected by robot

Ri. Since each robot is assumed to identify all other robots, robot Ri knows

the shape of robot Rj ∈ NRi. Thus robot Ri can measure the position pRj ,

orientation θRj , linear velocity vRj , and angular velocity wRj of robot Rj .

The objective of all the robots is to reach their goal position pgoal
Ri

given

by an external global planner through the shortest path possible without colli-

sions. Because a discrete-time robot model is employed, the robots select their

new linear velocity vnew
Ri

and angular velocity wnew
Ri

based on the current posi-

tions and velocities of itself and the observed other robots at each time step.

Therefore, the problem to be solved in this chapter is defined as follows.
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Problem 5.1 (Collision Avoidance for Elliptic Robots) For any elliptic

robot Ri, compute the new linear velocity vnew
Ri

and angular velocity wnew
Ri

in

order to generate a trajectory to the goal that circumvents other robots with the

minimum possible deviation from

• the measurements of other robots in its detection area Di,

• the robot’s goal position pgoal
Ri

.

As explained in Section 4.2, this problem is decomposed into two subprob-

lems: Problem 5.2 and Problem 5.3.

Problem 5.2 (Collision Avoidance for Elliptic Robots Capable of Only

Translational Motion) Identical to Problem 5.1 except that wnew
Ri

= 0 is

assumed.

Problem 5.3 (Angular Motion Control for Elliptic Robots Circum-

venting Other Robots) Compute the new angular velocity wnew
Ri

of an elliptic

robot Ri moving at vRi in order to potentially circumvent other robots inter-

rupting its path to the goal with the minimum deviation from the shortest path.

The linear motions of robots are determined in Problem 5.2, and the angular

ones are decided in Problem 5.3. At each time step, Problem 5.2 and Problem 5.3

are sequentially solved. Hence, the solution of Problem 5.2 is assigned to vRi

in Problem 5.3.

5.3 Ellipse-based Reciprocal Velocity Obstacles

In this section, the concept of reciprocity is applied to the ellipse-based velocity

obstacle. Because the EBVO is only associated with Problem 5.2, the angular

motions are not considered.
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First, the reason why the oscillation occurs is explained from [102] provided

that a robot expects other robots to keep their current velocities for a moment.

Suppose there are two elliptic robots R1 and R2 at pR1(t0) and pR2(t0) at time

t0, respectively. They are also currently moving with their preferred linear ve-

locities, that is vR1(t0) = vpref
R1

and vR2(t0) = vpref
R2

, which leads to a collision.

In other words, vR1(t0) ∈ V O∞
R1|R2

(t0) and vR2(t0) ∈ V O∞
R2|R1

(t0). Hence, the

robots R1 and R2 select their new linear velocities vnew
R1

and vnew
R2

such that

vnew
R1

/∈ V O∞
R1|R2

(t0) , (5.1)

vnew
R2

/∈ V O∞
R2|R1

(t0) (5.2)

for the time interval (t0, t0 +∆t].

After a very short duration ∆t, the preferred ones remain unchanged be-

cause pR1(t0) ≈ pR1(t0 +∆t) and pR2(t0) ≈ pR2(t0 +∆t). Nevertheless, the

velocities change to vR1(t0 +∆t) = vnew
R1

and vR2(t0 +∆t) = vnew
R2

. Since

vpref
R1

/∈ V O∞
R1|R2

(t0 +∆t) , (5.3)

vpref
R2

/∈ V O∞
R2|R1

(t0 +∆t) (5.4)

hold from (5.1) and (5.2), the two robot move with vpref
R1

and vpref
R2

again,

at which they will collide with each other. As a consequence, regarding other

robots as obstacles decreases the stability and makes the oscillation in their

motion, as shown in Fig. 5.2.

To address this problem, the reciprocal velocity obstacle (RVO) was pre-

sented in [118], where a robot selected the middle point between its current

linear velocity and a velocity outside the EBVO as its new linear velocity.
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Figure 5.2 The oscillation in the motions of two robots that try to avoid each
other based on the obstacle avoidance method on a head-on collision course
[102]. (a) The two robots R1 and R2 are located at pR1 and pR2 and moving
with velocities of vR1 and vR2 at t0. The yellow spark shows that the two robot
will collide in the future. (b)–(c) The new linear velocities of R1 and R2 are
selected at t0. (d) The positions and the velocities of the two robots at t0 +∆t
are presented. (e)–(f) The new linear velocities of R1 and R2 are selected at
t0 +∆t. (g) The two robots are moving at t0 + 2∆t with the same velocities at
t0 that induces a collision.
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Definition 5.4 (Reciprocal Velocity Obstacle) The reciprocal velocity ob-

stacle RV Oτ
Ri|Rj

for a robot Ri induced by another robot Rj is defined as

RV Oτ
Ri|Rj

=
{
v ∈ R2

∣∣∣2v − vRi ∈ V Oτ
Ri|Rj

}
. (5.5)

Hence, the RVO for the infinite time horizon is represented by a cone with

apex at
(
vRi + vRj

)
/2 as follows:

Corollary 5.5 The reciprocal velocity obstacle RV Oτ
Ri|Rj

for a robot Ri in-

duced by another robot Rj is represented by

RV Oτ
Ri|Rj

= coneτ
(
QORi|Rj

)
⊕
{
vRi + vRj

2

}
, (5.6)

where coneτ (C) is from (4.37).

However, the two robots are guaranteed not to collide with each other if

the new velocities are selected on the same side of the RVOs. If their velocities

are on the different sides, a collision may occur because they do not cooperate.

To remedy this problem, the hybrid reciprocal velocity obstacle (HRVO) was

defined in [104]. They defined the preferred side of RV ORi|Rj
as the closer

side to the current velocity vRi . If both robots select the new velocities on

the preferred sides, it means that they avoid each other cooperatively. If a

robot selects the new velocity on the other side, it means that the robot do

not cooperate to avoid collisions, which leads to substitute the boundary of the

original VO. In short, the HRVO is bounded by one line from the RVO and the

other one from the VO, as shown in Fig. 5.3. Therefore, the new apex of the

HRVO is obtained as follows.
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Figure 5.3 Three kinds of velocities obstacles for a robot Ri induced by another
robot Rj : (a) the original velocity obstacle V O∞

Ri|Rj
; (b) the reciprocal velocity

obstacle RV O∞
Ri|Rj

; (c) the hybrid reciprocal velocity obstacle HRV O∞
Ri|Rj

.

First of all, suppose that the left side of RV Oτ
Ri|Rj

is closer to the current

velocity vRi such that

(
vRi − vRj

)T
S
− 1

2
Rj

(
uleft
Ri|Rj

− uright
Ri|Rj

)
≤ 0. (5.7)

Then the apex of the cone, v∗ is the intersection of the left leg of RV Oτ
Ri|Rj

and the right leg of V Oτ
Ri|Rj

:


(
v∗ −

vRi
+vRj

2

)T
S
− 1

2
Rj

uleft
Ri|Rj

= 0,(
v∗ − vRj

)T
S
− 1

2
Rj

uright
Ri|Rj

= 0.

(5.8)

Let ∆v∗ = v∗ − vRj . Then the equation can be written as

∆v∗ =
1

2
S

1
2
Rj

([
uleft
Ri|Rj

uright
Ri|Rj

]T)−1
(vRi − vRj

)T
S
− 1

2
Rj

uleft
Ri|Rj

0

 . (5.9)
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If the right side of RV Oτ
Ri|Rj

is closer to the current velocity vRi ,


(
v∗ − vRj

)T
S
− 1

2
Rj

uleft
Ri|Rj

= 0,(
v∗ −

vRi
+vRj

2

)T
S
− 1

2
Rj

uright
Ri|Rj

= 0.

(5.10)

Hence,

∆v∗ =
1

2
S

1
2
Rj

([
uleft
Ri|Rj

uright
Ri|Rj

]T)−1
 0(

vRi − vRj

)T
S
− 1

2
Rj

uright
Ri|Rj

 . (5.11)

In conclusion, the following theorem is derived.

Theorem 5.6 Consider two elliptic robots Ri and Rj in the planar workspace

W. If one robot Ri selects its new linear velocity vnew
Ri

outside of the region

HRV Oτ
Ri|Rj

= coneτ
(
QORi|Rj

)
⊕
{
vRj +∆v∗} , (5.12)

then Ri does not collide with Rj within a time horizon τ . Here, ∆v∗ is computed

from (5.9) if (5.7) holds and is computed from (5.11) otherwise.

5.4 Collision-free Reciprocal Rotation Angles

With respect to a local frame attached to Ri, the robot is rotating at the origin

at time t0. Also, another robot Rj is located at pRi|Rj
= pRj − pRi and is

moving with

v̂new
Ri|Rj

= vRi + vRj − 2vnew
Ri

, (5.13)

which is the expected relative velocity of Rj with respect to Ri during the next

sampling period from (5.5).
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In this section, it is assumed that the two robots rotate reciprocally. If one

robot rotates by ∆θ, then the other robot may rotate by ∆θ equally or −∆θ

equally opposite as referred to in [45]. If a robot R rotates by an angle of ∆θ,

the shape matrix S(θ) is transformed into

S(θ +∆θ) = R∆θS(θ)R
T
∆θ, (5.14)

where Rθ is the rotation matrix associated with a counter-clockwise rotation

of angle θ. The swept area the robot rotates through from ∆θ− to ∆θ+ and

moves in TF is defined as

SA (Θ) =
⋃

0≤t≤TF

(
{tv} ⊕

⋃
∆θ∈Θ

F(θ +∆θ)

)
, (5.15)

where Θ = [∆θ−,∆θ+]. Because the robot Ri is fixed at the origin within TF ,

SAi (Θi) =
⋃

∆θi∈Θi

Fi(θi +∆θi). (5.16)

On the other hand, the robot Rj is expected to moves with v̂new
Ri|Rj

, so that

SAj (Θj) =
⋃

0≤t≤TF

{tv̂new
Ri|Rj

}
⊕

⋃
∆θj∈Θj

Fj(θj +∆θj)

 , (5.17)

Figure 5.4 shows these areas. The region SAj (Θi) is obtained by rotating

the ellipse by a given set of rotation angles Θ1. However, SAj (Θj) is obtained by

translating a swept area an ellipse rotates through by Θ2. The boundary of the

region SAj (Θj) is decomposed into six parts. Two of them, SAj,1 and SAj,2,

are induced by the rotating ellipses located at pRi|Rj
and pRi|Rj

+ TF v̂
new
Ri|Rj

,
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Figure 5.4 The swept areas SAi (Θi) and SAj (Θj): (a) the swept area robot
Ri rotates through; (b) the swept area robot Rj rotates through and moves in
the time-to-contact TF . The boundary ∂SAj (Θj) is composed of the parts of
the two swept areas SAj,1 and SAj,2 of the ellipses whose centers located at
pRi|Rj

and pRi|Rj
+Tf v̂

new
Ri|Rj

and of four lines SAj,3, SAj,4, SAj,5, and SAj,6.

and the others, SAj,3, SAj,4, SAj,5, and SAj,6, are line-segments. The line

segments SAj,5 and SAj,6 may not be revealed depending on Θj .

The objective of this section is to find the maximal intervals Θi and Θj such

that the two swept areas SAi (Θi) and SAj (Θj) do not collide with each other.

Technically speaking, let L4 denote a lexicographically ordered set of 4-tuples

of positive real numbers between 0 and π, and E4 : I2 → L4 be a function

that maps a pair of the intervals to a 4-tuple with the elements of ascending

sorted absolute values of the endpoints. For instance, suppose Θ1 = [−0.2, 0.3]

and Θ2 = [−0.4, 0.1]. Then E4(Θ1,Θ2) = {0.1, 0.2, 0.3, 0.4}. In conclusion, the

problem in this section is defined as follows:

argmax
Θi,Θj

E4(Θi,Θj) ,

subject to SAi (Θi) ∩ SAj (Θj) = ∅.
(5.18)
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An example of the intuitive approach to the above problem is described in

Fig. 5.5. From (a) to (d), the swept areas gradually expand until contacting

each other at ∆θ = −42.90◦. Because they are still available to rotate in coun-

terclockwise directions, they sweep in those directions until they contact again.

As a result, the collision-free reciprocal rotation angles of the two robots are

determined as shown in Fig. 5.5(e).

However, it is inefficient to find out the intervals by discretizing the rotation

angles and checking whether a collision occurs for each of the angles or not.

Hence, the proposed algorithm finds all the pairs of the rotation angles of the

two robots at which the swept areas may touch each other. Let C ∈ R2 denote

the set of these candidates. Because there are four combinations of the rotation

directions of two robots, the set C consists of four subsets: C−−, C−+, C+−,

and C++. The subscript of the subsets represents the rotation directions of the

robots Ri and Rj . For instance, the set C−+ includes the candidates of the pairs

when Ri rotates in a clockwise direction and Rj rotates in a counterclockwise

direction.

The derivation of these candidate sets is decomposed into two steps. To

begin with, the first contact angle is found from the sets generated on the basis

of reciprocity of rotation. There are two cases that the two swept areas contact

with each other. The one is that the two robots are collided when they rotate by

angles with the same absolute value. Accordingly, both of them can no longer

continue to rotate in the directions they rotated. On the other hand, the other

is that a robot touches a point that the other robot already rotate through. In

this case, one robot can rotate in the direction it rotated, whereas the other

cannot. The calculation of these sets is explained in detail in Section 5.4.1.
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Figure 5.5 An intuitive approach to determining the collision-free reciprocal
rotation angles of the two robots Ri and Rj : (a) the swept areas of the two
robots of ∆θ = 0◦; (b) the swept areas of the two robots of ∆θ = ±15◦; (c)
those of ∆θ = ±30◦; (d) the swept areas contact when ∆θ = ±42.90◦; (e)
the swept areas expand to fill the rest, so that Θi = [−42.90◦, 48.44◦] and
Θj = [−42.90◦, 63.75◦]. The yellow circles indicate the contact points between
the two swept areas.
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After the first contact rotation angle is determined, some of these subsets

should be updated because the decision of the contact point affects them. For

example, suppose that a collision between the two robots occurs when Ri and

Rj rotate by −π < ∆θ−i ≤ 0 and 0 ≤ ∆θ+j < π, respectively, and the swept

areas cannot expand anymore in those directions. This result has to be consid-

ered in C−− and C++ because C−− is concerned with the clockwise rotation of

the robot Ri and C++ is associated with the counterclockwise rotation of the

robot Rj . This is explained in detail in Section 5.4.2.

The proposed algorithm solves the problem by deciding the endpoints of the

rotation about one combination of the directions at a time. Hence, it obtains

the answer by repeating the proccess of the decision and the update four times

after it initializes the four subsets, which is elucidated in Section 5.4.3.

5.4.1 Candidates of the First Contact Rotation Angle

As shown in Fig. 5.4, the boundary of the region SAj (Θj) is classified into two

parts: the segments of swept areas of ellipses and those of the moving lines.

In order to obtain the set C, the candidates of the rotation angles at which

the swept regions of two ellipses touch each other are first investigated. Next,

those at which the swept region and the moving line segments are in contact

are calculated by calculating the distance between the center to the tangent

line of an ellipse.

The swept area of an ellipse

Suppose that there are two elliptic robots Ri and Rj rotating at the origin and

pRi|Rj
, respectively, which are initially separated each other. If

∥∥∥pRi|Rj

∥∥∥ ≥
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MRi + MRj , where MRi and MRj is the major radius of the robots, then

Θi = [−π, π] and Θj = [−π, π]. Otherwise, there are three cases that the swept

areas touch each other:

• the two robots contact when they rotate in the same direction;

• the two robots contact when they rotate in the opposite direction;

• the robot Ri contacts with the disk with radius of MRj or vice versa.

The sets C−− and C++ are generated in the first and third cases, and the sets

C−+ and C+− are produced in the second and third cases. This process is also

repeated for the ellipse located at pRi|Rj
+ v̂new

Ri|Rj
.

First of all, the coefficient matrices of the two robots rotating in the same

direction are represented by

MRi (∆θ) =

R∆θS
−1
Ri

RT
∆θ 0

0 −1

 , (5.19)

MRj (∆θ) =

 R∆θS
−1
Rj

RT
∆θ −R∆θS

−1
Rj

RT
∆θpRi|Rj

−pT
Ri|Rj

R∆θS
−1
Rj

RT
∆θ pT

Ri|Rj
R∆θS

−1
Rj

RT
∆θpRi|Rj

− 1

 . (5.20)

Put

cos 2∆θ =
1− t2

1 + t2
, (5.21)

sin 2∆θ =
2t

1 + t2
. (5.22)

Then the characteristic polynomial of the two robots is

g (ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0, (5.23)
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where

a3 = −detS−1
Ri

, (5.24)

a2 =
a22t

2 + a21t+ a20
t2 + 1

, (5.25)

a1 =
a12t

2 + a11t+ a10
t2 + 1

, (5.26)

a0 = −detS−1
Rj

. (5.27)

Here,

a22 = detS−1
Ri

(
pT
Ri|Rj

Rπ
2
S−1
Rj

RT
π
2
pRi|Rj

− 1
)
− tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
, (5.28)

a21 = 2detS−1
Ri

(
pT
Ri|Rj

Rπ
2
S−1
Rj

pRi|Rj

)
, (5.29)

a20 = detS−1
Ri

(
pT
Ri|Rj

S−1
Rj

pRi|Rj
− 1
)
− tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
, (5.30)

a12 = detS−1
Rj

(
pT
Ri|Rj

Rπ
2
S−1
Ri

RT
π
2
pRi|Rj

− 1
)
− tr

(
Rπ

2
S−1
Ri

RT
π
2
S−1
Rj

)
, (5.31)

a11 = 2detS−1
Rj

(
pT
Ri|Rj

Rπ
2
S−1
Ri

pRi|Rj

)
, (5.32)

a10 = detS−1
Ri

(
pT
Ri|Rj

S−1
Rj

pRi|Rj
− 1
)
− tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
. (5.33)

From Theorem 3.18, the two robots do not overlap if and only if


a2 ≥ 0 or 3a3a2a0 − 4a3a

2
1 + a22a1 ≥ 0,

3a3a1 − a22 < 0,

27a23a
2
0 − 18a3a2a1a0 + 4a3a

3
1 + 4a32a0 − a22a

2
1 ≤ 0.

(5.34)

The above four inequalities can be solved by the same method mentioned in

Section 4.6.2. As a result, we obtains two solutions ∆θ− ≤ 0 and ∆θ+ ≥ 0,
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which may not exist in some cases. If there exists ∆θ− ≤ 0, this result is

inserted in the subset C−− as follows:

C−− ← C−− ∪
{[

∆θ− ∆θ−
]T}

(5.35)

Likewise, if there exists ∆θ+ ≥ 0,

C++ ← C++ ∪
{[

∆θ+ ∆θ+
]T}

. (5.36)

Second, the case that the two robots rotating in the opposite direction is

considered. The coefficient matrices are represented by

MRi (∆θ) =

R∆θS
−1
Ri

RT
∆θ 0

0 −1

 , (5.37)

MRj (∆θ) =

 RT
∆θS

−1
Rj

R∆θ −RT
∆θS

−1
Rj

R∆θpRi|Rj

−pT
Ri|Rj

RT
∆θS

−1
Rj

R∆θ pT
Ri|Rj

RT
∆θS

−1
Rj

R∆θpRi|Rj
− 1

 . (5.38)

From (5.21) and (5.22), the coefficients of the characteristic polynomial are

written as

a3 = −detS−1
Ri

, (5.39)

a2 =
a24t

4 + a23t
3 + a22t

2 + a21t+ a20
t4 + 2t2 + 1

, (5.40)

a1 =
a14t

4 + a13t
3 + a12t

2 + a11t+ a10
t4 + 2t2 + 1

, (5.41)

a0 = −detS−1
Rj

, (5.42)
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where

a24 = detS−1
Ri

(
pT
Ri|Rj

Rπ
2
S−1
Rj

RT
π
2
pRi|Rj

− 1
)
− tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
, (5.43)

a23 = −2 detS−1
Ri

(
pT
Ri|Rj

Rπ
2
S−1
Rj

pRi|Rj

)
+ 4tr

(
S−1
Ri

Rπ
2
S−1
Rj

)
, (5.44)

a22 = detS−1
Ri

(∥∥∥pRi|Rj

∥∥∥2 trS−1
Rj
− 2

)
− 4tr

(
S−1
Ri

S−1
Rj

)
+ 2tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
,

(5.45)

a21 = −2 detS−1
Ri

(
pT
Ri|Rj

Rπ
2
S−1
Rj

pRi|Rj

)
− 4tr

(
S−1
Ri

Rπ
2
S−1
Rj

)
, (5.46)

a20 = detS−1
Ri

(
pT
Ri|Rj

S−1
Rj

pRi|Rj
− 1
)
− tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
, (5.47)

a14 = detS−1
Rj

(
pT
Ri|Rj

Rπ
2
S−1
Ri

RT
π
2
pRi|Rj

− 1
)
− tr

(
Rπ

2
S−1
Ri

RT
π
2
S−1
Rj

)
, (5.48)

a13 = 2detS−1
Rj

(
pT
Ri|Rj

Rπ
2
S−1
Ri

pRi|Rj

)
+ 4tr

(
S−1
Ri

Rπ
2
S−1
Rj

)
, (5.49)

a12 = detS−1
Rj

(∥∥∥pRi|Rj

∥∥∥2 trS−1
Ri
− 2

)
− 4tr

(
S−1
Ri

S−1
Rj

)
+ 2tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
,

(5.50)

a11 = 2detS−1
Rj

(
pT
Ri|Rj

Rπ
2
S−1
Ri

pRi|Rj

)
− 4tr

(
S−1
Ri

Rπ
2
S−1
Rj

)
, (5.51)

a10 = detS−1
Ri

(
pT
Ri|Rj

S−1
Rj

pRi|Rj
− 1
)
− tr

(
S−1
Ri

Rπ
2
S−1
Rj

RT
π
2

)
. (5.52)

Likewise, the interior-disjoint condition of the two robots from (5.34) can be

solved by the same method in Section 4.6.2 by putting the above parameters.

As a result, two solutions ∆θ− ≤ 0 and ∆θ+ ≥ 0 can be obtained, which may

not exist. If there exists ∆θ− ≤ 0,

C−+ ← C−+ ∪
{[

∆θ− −∆θ−
]T}

(5.53)
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Likewise, if there exists ∆θ+ ≥ 0,

C+− ← C+− ∪
{[

∆θ+ −∆θ+
]T}

. (5.54)

The two preceding derivation is related with the case that two ellipses ro-

tating with the same speed touch each other. Finally, the case that an ellipse

touches a point that the other already rotate through. Accordingly, the rotation

angles at which an ellipse touch the disk whose radius is the major radius of

the other are calculated.

First, the rotation angles are derived at which the disk of Ri, which is

D (0,MRi), and the swept region of Rj on the assumption that D (0,MRi) ∩

FRj = ∅. The contact rotation angles of robot Rj are easily calculated by the

method in Section 4.6.2 because this problem is to find the collision-free angles

for a fixed circle. Let ∆θ−j ≤ 0 and ∆θ+j ≥ 0 be the solutions. The contact point

x−
c when the robotRj rotates by ∆θ−j is obtained by finding the boundary point

closest to the origin. Then


C−− ← C−− ∪

{[
−π ∆θ−j

]T}
, if x−

c ∈ SAi

([
∆θ−j , 0

])
,

C+− ← C+− ∪
{[

π ∆θ−j

]T}
, if x−

c ∈ SAi

([
0,−∆θ−j

])
.

(5.55)

Likewise, for the contact point x+
c associated to ∆θ+j , the subsets are updated

as follows:


C−+ ← C−+ ∪

{[
−π ∆θ+j

]T}
, if x+

c ∈ SAi

([
−∆θ+j , 0

])
,

C++ ← C++ ∪
{[

π ∆θ+j

]T}
, if x+

c ∈ SAi

([
0,∆θ+j

])
.

(5.56)
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The rotation angles at which D
(
pRi|Rj

,MRj

)
and the swept region of Ri

can also be derived in a similar way.

The moving line segments

The problem that finds the rotation angles at which an ellipse touches the

moving line segments can be solved based on the distance between the center

to the tangent line. Hence, the derivation is started with the following lemma.

Lemma 5.7 Suppose that there is an elliptic robot R. The distance from the

center to the tangent line that is parallel with a given unit vector v̄ is

d = v̄TS−1
R v̄ detSR, (5.57)

where SR is the shape matrix of the robot.

Proof. Without loss of generality, suppose that the center of R is the origin.

The boundary point x is represented by x = S
1
2
Ru such that ∥u∥ = 1 since

f (x) = xTS−1
R x− 1 = 0. The normal vector at x is n = S−1

R x = S
− 1

2
R u. Let x∗

be the contact point between the boundary and the tangent line that is parallel

with v̄. Then v̄TS
− 1

2
R u = 0, which leads to

u =
Rπ

2
S
− 1

2
R v̄√

v̄TS−1
R v̄

(5.58)

From Lemma 4.13, the distance is written as

d =
1√

uTS−1
R u

=
v̄TS−1

R v̄√
v̄TS

− 1
2

R RT
π
2
S−1
R Rπ

2
S
− 1

2
R v̄

(5.59)
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Because S
− 1

2
R Rπ

2
S
− 1

2
R =

√
detS−1

R Rπ
2
, this is transformed into

d =
v̄TS−1

R v̄ detSR√
v̄T v̄

. (5.60)

Since v̄ is a unit vector, we obtain (5.57).

In this section, the unit vector v̄ is denoted by

v̄ =
∥∥∥v̂new

Ri|Rj

∥∥∥−1
v̂new
Ri|Rj

. (5.61)

Let di : (−π, π] → R be a function that returns the distance from the center

to the tangent line parallel with v̄ when the robot Ri rotates by a given angle

∆θi, expressed as

di (∆θi) = v̄TR∆θiS
−1
Ri

RT
∆θi

v̄ detSRi . (5.62)

Likewise, let dj : (−π, π]→ R be a function of robot Rj , so that

dj (∆θj) = v̄TR∆θjS
−1
Rj

RT
∆θi

v̄ detSRj . (5.63)

Let D be the length of the projection of pRi|Rj
onto a perpendicular vector of

v̄ such that

D =
∥∥∥pRi|Rj

−
(
pT
Ri|Rj

v̄
)
v̄
∥∥∥ . (5.64)

Then if an ellipse R1 touch the line segments which is a part of the swept

regions SA (Θ2) and cannot expand both of the regions in the directions they

rotated,

D = di (∆θi) + dj (∆θj) (5.65)

115



holds. Due to the reciprocity of rotation, the above equation is solved assuming

that ∆θi = ∆θj or ∆θi = −∆θj . By putting cos∆θi =
(
1− t2

)
/
(
1 + t2

)
and

sin∆θi = 2t/
(
1 + t2

)
, (5.65) is transformed into two univariate polynomial of

t with degrees of 4. When the polynomials are solved, the expected contact

points on the rotated Ri are calculated. If these points are on the boundary of

the other area, this results are added into one of the four subsets.

Next, it is possible to the elliptic robot touches a point the other robot

rotates through. This means that di (∆θi) = Mi or di (∆θj) = Mj . This case

can be easily derived by Lemma 4.13. When the solutions are obtained, these

are inserted into four subsets in a similar way in (5.55) and (5.56).

5.4.2 Updating the Candidates Sets

The neighbors of a given candidate subset are defined as the sets of which either

two elements of the subscript is in common. For example, the neighbors of C−+

are C−− and C++. When the limit of rotation in a particular combination of the

directions is determined, the neighbor sets are affected. Suppose that a collision

between the two robots occurs when Ri and Rj rotate by −π < ∆θ−i ≤ 0 and

0 ≤ ∆θ+j < π, respectively, and the swept areas cannot expand anymore in those

directions. This result has to be considered in C−− because it is associated with

the clockwise rotation of the robot Ri. Hence, the rotation angles of robot Rj

is derived at which it contacts with SAi

([
∆θ−i , 0

])
, which is added in C−−.

In a similar way, the rotation angels of robot Ri at which it contacts with

SAj

([
0,∆θ+j

])
, which is added in C++.

The update process can be executed by the method in Section 4.6. When

C−− is updated, the region SAi

([
∆θ−i , 0

])
is regarded as SAi

({
∆θ−i

})
because
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the other area is already considered in the preceding step. Hence, this is equiva-

lent to find the collision-free rotation angles of Rj induced by a moving elliptic

obstacle Fi

(
∆θ−i

)
with −v̂new

Ri|Rj
. On the other hand, when C++ is updated,

the region SAj

([
0,∆θ+j

])
is regarded as SAj

({
∆θ+j

})
. The problem is solved

by finding the collision-free rotation angles of Ri induced by a moving elliptic

obstacle Fj

(
∆θ+j

)
with v̂new

Ri|Rj
.

5.4.3 Calculation of Collision-free Reciprocal Rotation Angles

Suppose that the four subsets are generated as explained in Section 5.4.1. Be-

cause all the candidates have to be considered, the set C is defined as C =

C−−∪C−+∪C+−∪C++ at first. In order to establish the priority order in the set

C, let L2 denote a lexicographically ordered set of pairs of positive real num-

bers between 0 and π, and E2 : R2 → L2 be a function that maps a pair of the

rotation angles to a pair with the elements of ascending sorted absolute values

of the angles. For example, if ck = {0.3,−0.2} ∈ C, then E2(ck) = {0.2, 0.3}. As

a result, the problem that finds the contact rotation angles pair is described as

argmin
ck∈C

E2(ck) . (5.66)

Suppose c∗ is the determined pair. Then the subset containing c∗ is excluded

when the entire set is redefined, and its neighbors are updated as mentioned

in Section 5.4.2. Next, the contact rotation angles pair is determined by (5.66)

again. This process is iterated three times until all the combinations of rota-

tion directions are investigated. The pseudo code of the proposed method is

summarized in Algorithm 5.1.
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Algorithm 5.1 Calculation of the collision-free reciprocal rotation angles

Input: relative position pRi|Rj
, relative velocity v̂new

Ri|Rj
, time-to-contact TF

Output: collision-free reciprocal rotation angels Θi and Θj

1: Θi ← [−ππ]; Θj ← [−π, π];
2: H ← {−−,−+,+−,++};
3: Calculating the four subsets C−−, C−+, C+−, and C++;
4: while card (H) > 0 do
5: C ←

⋃
i∈H Ci;

6: c∗ ← argminc∈C E2 (c);
7: if c∗ ∈ C−− then
8: Θ1 ← Θ1 ∩ [c∗1, π]; Θ2 ← Θ2 ∩ [c∗2, π];
9: H ← H \ {−−};

10: else if c∗ ∈ C−+ then
11: Θ1 ← Θ1 ∩ [c∗1, π]; Θ2 ← Θ2 ∩ [−π, c∗2];
12: H ← H \ {−+};
13: else if c∗ ∈ C+− then
14: Θ1 ← Θ1 ∩ [−π, c∗1]; Θ2 ← Θ2 ∩ [c∗2, π];
15: H ← H \ {+−};
16: else
17: Θ1 ← Θ1 ∩ [−π, c∗1]; Θ2 ← Θ2 ∩ [−π, c∗2];
18: H ← H \ {++};
19: end if
20: Updating the neighbors of the set containing c∗

21: end while

5.4.4 An Example

An example is presented where the proposed method is applied to the situation

described in Fig. 5.5. Let R1 be an elliptic robot rotating at the origin and R2

be another elliptic robot moving at pR2 =
[
0 1.1

]T
with vR2 =

[
1 0

]T
. The

orientations of the two robots are θR1 = 70◦ and θR2 = 60◦. Also, it is assumed

that TF = 2. Without rotation, the swept regions are the same presented in

Fig. 5.5(a).

According to the derivation in Section 5.4.1, the candidates of the first

contact pair of rotation angles can be calculated. These are listed in Table 5.1

118



Table 5.1 The candidates of the first contact rotation angles

Rotation Directions ∆θi ∆θj

−− −42.90◦ −42.90◦
++ 71.96◦ 71.96◦

++ 92.90◦ 92.90◦

(a)

2

1

Contact

2,1 2

1

2

2,4

1

1

2

(b)

(c)

2

1

1

2,1 2

Figure 5.6 The candidates of the first contact rotation angles of the swept
areas SA1 and SA2: (a) the two areas SA1 and SA2,1 touch each other when
∆θ1 = ∆θ2 = −42.90◦; (b) the area SA1 and the line segment SA2,4 touch each
other when ∆θ1 = ∆θ2 = 71.96◦; (c) the two areas SA1 and SA2,1 touch each
other when ∆θ1 = ∆θ2 = 92.90◦.

and presented in Fig. 5.6. Among these three candidates, the first contact pair

is determined as {−42.90◦,−42.90◦} by (5.66). As a result, the intervals are

assigned to Θ1 = [−42.90◦, 180◦] and Θ2 = [−42.90◦, 180◦].
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(a) (b)

2

42.90 

1

2

2,4

Contact 1

22,1

42.90 

(c)

2

2

42.90 

1 1

2,4

(d)

22,1

1

42.90 

1

Figure 5.7 The newly added candidates of the second contact rotation angles of
the swept areas SA1 and SA2: (a) the two areas SA1 and and the line segment
SA2,4 touch each other when ∆θ2 = 63.75◦; (b) the area SA1 and SA2,1 touch
each other when ∆θ2 = 66.07◦; (c) the two areas SA1 and and the line segment
SA2,4 touch each other when ∆θ1 = 48.44◦; (d) the area SA1 and SA2,1 touch
each other when ∆θ1 = 53.92◦.
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Table 5.2 The candidates of the second contact rotation angles

Rotation Directions ∆θi ∆θj

−+ −42.90◦ 63.75◦

−+ −42.90◦ 66.07◦

+− 48.44◦ −42.90◦
+− 53.92◦ −42.90◦
++ 71.96◦ 71.96◦

++ 92.90◦ 92.90◦

Because {−42.90◦,−42.90◦} ∈ C−−, its neighbor sets C−+ and C+− have to

be updated. These are presented in Fig. 5.7. Also, the candidate pairs of the

second contact angles are listed in Table 5.2. The candidates set C is the union

of C−+, C+−, and C++. Among these candidates, the pair of the second contact

angles is determined as {48.44◦,−42.90◦}, which is contained in C+−. As a

result, the intervals are set to Θ1 = [−42.90◦, 48.44◦] and Θ2 = [−42.90◦, 180◦].

Next, the rest subsets are updated from the determination of the second con-

tact angles. Although the neighbor sets of C+− are C−− and C++, C++ is only

updated since the rotation angles in the clockwise directions are already deter-

2

1

2,4

48.44

2

Figure 5.8 The newly added candidate of the third contact rotation angles of
the swept areas SA1 and SA2. The two areas SA1 and and the line segment
SA2,4 touch each other when ∆θ2 = 102.90◦.
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Table 5.3 The candidates of the third contact rotation angles

Rotation Directions ∆θi ∆θj

−+ −42.90◦ 63.75◦

−+ −42.90◦ 66.07◦

++ 48.44◦ 102.90◦

++ 71.96◦ 71.96◦

++ 92.90◦ 92.90◦

mined. The newly added candidate in C++ is presented in Fig. 5.8. Moreover, the

candidate pairs of the third contact angles are listed in Table 5.3. The candidates

set C is now the union of C−+ and C++. Among these candidates, the pair of

the third contact angles is determined as {−42.90◦, 63.75◦}, which is contained

in C−+. As a result, the intervals are determined as Θ1 = [−42.90◦, 48.44◦] and

Θ2 = [−42.90◦, 63.75◦].

Finally, C++ is only updated again. The newly added candidate in C++ is

presented in Fig. 5.9. Moreover, the candidate pairs of the final contact angles

are listed in Table 5.4. Among these candidates in C = C++, the pair of the

final contact angles is determined as {48.44◦, 102.90◦}. However, this result

2

1

2,4

1

63.75

Figure 5.9 The newly added candidate of the fourth contact rotation angles of
the swept areas SA1 and SA2. The two areas SA1 and and the line segment
SA2,4 touch each other when ∆θ1 = 82.90◦.
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Table 5.4 The candidates of the fourth contact rotation angles

Rotation Directions ∆θi ∆θj

++ 48.44◦ 102.90◦

++ 82.90◦ 63.75◦

++ 71.96◦ 71.96◦

++ 92.90◦ 92.90◦

does not affect the resultant intervals. Consequently, Θ1 = [−42.90◦, 48.44◦] and

Θ2 = [−42.90◦, 63.75◦], which is equivalent to the result presented in Fig. 5.5(e).

5.5 Summary

This chapter has suggested multi-robot collision avoidance algorithm for holo-

nomic elliptic robots. Contrary to obstacles, the motion of other robots is diffi-

cult to expect because they continuously sense their surrounding environment

and replan their action based on the input. To overcome this problem, this chap-

ter employed the concept of reciprocity. Asa a result, the two steps are modified:

the generation of velocity obstacles and the calculation of collision-free rotation

angles.

In the first step, the hybrid reciprocal velocity obstacle is adapted in or-

der to prevent the oscillation and the reciprocal dance, by translating the apex

of the cone. Next, the method that calculates the collision-free reciprocal ro-

tation angles have been proposed on the basis of the reciprocity of rotation.

Because there are four combinations of the rotation directions of two robots,

the proposed method defines four candidates set of the end points of the rota-

tion angles. Afterward, the intervals are determined by deciding the endpoints

of the rotation about one combination of the directions at a time.
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Chapter 6

Implementation and Simulations

6.1 Implementation Setups

The proposed algorithm was implemented in Visual Studio C++ on a PC

equipped with Intel Core i7-3770 3.40GHz CPU by adapting the RVO2 library

[117]. Because the library was implemented for circular robots and polygonal

static obstacles, we extended it to deal with elliptic robots and obstacles. In

addition, the Eigen library [52] was utilized to solve the polynomial equations

and perform matrix operations.

In this chapter, the parameters were assigned as follows. The robots were

ellipses whose major and minor radii were 1m and 0.3m. They detected obstacles

and other robots in the range of ρ = 10m with a sampling period ∆t = 0.2s

and avoided them by considering collisions within τ = 5s. The preferred linear

speed was vprefRi
=
√
2/2m/s. Moreover, their motion was limited by the dynamic

constraints: vmax
Ri

= 1m/s, wmax
Ri

= 1rad/s, amax
Ri

= 1m/s2, αmax
Ri

= 1rad/s2.
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On top of that, wmax
Ri

was additionally bounded to fairly evaluate and com-

pare the performance. Since the motion of mobile robots was controlled by their

wheels, the maximum wheel velocity is set to vmax
Ri

. Then

wmax
Ri
≤

vmax
Ri
− ∥vRi∥
Mi

. (6.1)

6.2 Obstacle Avoidance

In order to verify the performance of the proposed algorithm for the obstacle

avoidance, the following algorithms were compared.

• Circle presented in [41] assumed a robot and obstacles were bounded by

circles.

• Ellipse-N assumed they were bounded by ellipses and robots were only

allowed translational motion.

• Ellipse-H1 presented in [59] assumed they were bounded by ellipses and

robots were holonomic. The angular velocity was determined proportional

to the change rate of the boundary line of the EBVO with respect to its

orientation.

• Ellipse-H2 is the proposed algorithm, where robots and obstacles were

bounded by ellipses and robots are holnomic. However, the angular veloc-

ity was determined with which the robot could circumvent obstacles with

the minimum deviation in [73].

• Polygon presented in [45] assumed that a robot and obstacles were bounded

by polygons approximating ellipses and robots were holonomic.
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The radius of robots and obstacles in the Circle algorithm was denoted by the

major radius in the other algorithms, so that r = 1m. In the Polygon algorithm,

the ellipses were approximated with eight piecewise lines by using the method

proposed in [12] and the granularity parameter in [45] was set to δ = 20. Theses

algorithms were implemented and tested in the following three scenarios.

6.2.1 Line scenario of a robot and an obstacle

An elliptic robot R and an circular obstacle O with radius of 0.5m started

at the opposite ends and moved along the same line. At the beginning, R

was stalled at pR = (0.0m, 0.0m) with θR = 45.0 deg, and O moved with

vO = (−0.5m/s, 0.0m/s) at pO = (8.0m, 0.0m). The robot’s goal position pgoal
R

was equal to the initial position of the obstacle pO. The above descriptions are

presented in Fig. 6.1 and summarized in Table 6.1.

Robot Obstacle

goal
p

Figure 6.1 Initial states of a robot and an obstacle in the line scenario. The
orange ellipse represents the robot R, and the blue circle indicates the obstacle
O, which is moving to the left at −0.5m/s. The goal position pgoal

R of the robot
is marked as the yellow star, which is equal to the initial position of the obstacle.
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Table 6.1 The initial parameters of the robot and the obstacle in the line scenario

Position[m] Orientation[◦] Velocity[m/s] Destination[m]

Robot R (0, 0) 45.0 ( 0.0, 0.0) (8.0, 0.0)
Obstacle O (8, 0) (−0.5, 0.0)

The resultant traces of the robot and the obstacle using the five algorithms

are presented in Figs. 6.2–6.6, where the lighter the color of an object is, the

older its trace is. The robot in Fig. 6.2 traveled more distance than that in

Fig. 6.3. That was because the robot’s footprint in Fig. 6.2 was larger than

that in Fig. 6.3, so that it had to take a long way around. Meanwhile, the

difference between which side the robot passed the obstacle on was trivial. In

order to avoid deadlocks due to the perfect symmetry, a small random noise

was added to the preferred linear velocity. This random noise determined which

side the robot avoided the obstacle on.

In addition, the robots in Figs. 6.4 and 6.5 exploited their rotation to de-

crease the traveled distance compared to that in Fig. 6.3. The difference was the

speed of the convergence in the robot’s orientation. Ellipse-H2 calculated the

optimal orientation with a closed form solution, whereas Ellipse-H1 solved the

problem by continuing to find a better approximation than before. Hence, the

orientation changed gradually in Fig. 6.4(d), but it varied quickly in Fig. 6.5(d).

As a result, the proposed algorithm could cope with a change in the environment

more swiftly.

However, the Polygon algorithm suffered from the deadlock because the

robot could not choose the lateral velocity until t = 25.2s in Fig. 6.6. After-

ward, the robot broke the deadlock through rotation and detoured the obstacle.

However, it took so much time since the robot should be close enough to the
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(a)

(c)

(b)

13.4t s

Figure 6.2 The simulation result in the line scenario using the Circle algorithm:
(a) the resultant path; (b)–(c) the robot’s linear velocities with respect to the
time. The robot reached its goal at t = 13.4s.
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(a)

(c)

(b)

12.8t s

Figure 6.3 The simulation result in the line scenario using the Ellipse-N algo-
rithm: (a) the resultant path; (b)–(c) the robot’s linear velocities with respect
to the time. The robot reached its goal at t = 12.8s.
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(a)

(c)

(b)

(d)

12.2t s

Figure 6.4 The simulation result in the line scenario using the Ellipse-H1 algo-
rithm: (a) the resultant path; (b)–(d) the robot’s linear and angular velocities
with respect to the time. The robot reached its goal at t = 12.2s.
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(a)

(c)

(b)

(d)

12.2t s

Figure 6.5 The simulation result in the line scenario using the Ellipse-H2 algo-
rithm: (a) the resultant path; (b)–(d) the robot’s linear and angular velocities
with respect to the time. The robot reached its goal at t = 12.2s.

132



(a)

(c)

(b)

(d)

47.0t s

Figure 6.6 The simulation result in the line scenario using the Polygon algo-
rithm: (a) the resultant path; (b)–(d) the robot’s linear and angular velocities
with respect to the time. The robot reached its goal at t = 47.0s.
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Figure 6.7 The comparison between the paths generated by each of the algo-
rithms in the line scenario. The black circle and x-mark are the start and goal
positions. The green dash-dot, blue dashed, red solid, black doted, and violet
dashed lines represents the paths of Circle, Ellipse-N, Ellipse-H1, Ellipse-H2,
and Polygon, respectively.

Table 6.2 Simulation results in the line scenario

Algorithm Travel distance[m] Travel time[s] Computation time[ms]

Circle 8.460 13.4 0.002
Ellipse-N 8.322 12.8 0.013
Ellipse-H1 8.068 12.2 0.014
Ellipse-H2 8.064 12.2 0.059
Polygon 23.965 47.0 0.692

obstacle to do so. As a result, the robot arrived at the destination later than

when applying other algorithms.

Figure 6.7 compares the paths for each of the algorithms at the same time,

and Table 6.2 presents the numerical results of the simulation. The travel dis-

tance of the proposed algorithm, Ellipse-H2, was almost the same with that of

Ellipse-H1, but 3.11% shorter than that of Ellipse-N and 4.69% shorter than

that of Circle. Similarly, the travel times of the proposed algorithm and Ellipse-
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H1 were equal, but theirs are 4.69% shorter than that of Ellipse-N and 8.96%

shorter than that of Circle. Although the computation time of the proposed

algorithm was about three times longer than those of Ellipse-H1 and Ellipse-N

and thirty times longer than that of Circle, the differences were trivial because

they were far shorter than the sampling period ∆t = 0.2s.

Meanwhile, the Polygon algorithm was performed worse than the others due

to the deadlock in terms of the travel distance and time. In addition, it had the

longest execution time because of multiple computations of Minkowski sum to

calculate the C-obstacle according to the orientation of the robot.

6.2.2 Multiple moving obstacles scenario

An elliptic robot and three elliptic obstacles were moving in the workspace. Sim-

ilar to the previous scenario, the robot and an obstacle O1 started at the oppo-

site ends and moved along the same line. At the beginning, the robot was halted

at pR = (0.0m, 0.0m) with θR = −100◦. The obstacle O1 whose shape matrix

was SO1 =
[

0.20 −0.20
−0.20 0.50

]
moved to the robot with vO1 = (−0.5m/s,−0.5m/s) at

pO1 = (5.0m, 5.0m). The robot’s goal position pgoal
R was also the same with the

initial position of the obstacle O1. The other two obstacles, O2 and O3, were

across the robot’s path to the goal and had the same shape matrix SO2 = SO3 =

Table 6.3 The initial parameters of the robot and the three obstacles in the
multiple moving obstacles scenario

Position[m] Shape[m2] Velocity[m/s] Destination[m]

Robot R ( 0.0, 0.0)
[

0.97 −0.16
−0.16 0.12

]
( 0.0, 0.0) (5.0, 5.0)

Obstacle O1 ( 5.0, 5.0)
[

0.20 −0.20
−0.20 0.50

]
(−0.5,−0.5)

Obstacle O2 ( 4.0, 1.0)
[

0.20 0.20
0.20 0.50

]
(−0.5, 0.5)

Obstacle O3 (−2.0, 10.0)
[

0.20 0.20
0.20 0.50

]
( 0.5,−0.5)
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Figure 6.8 Initial states of the robot and the three obstacles in the multiple
moving obstacles scenario. The orange ellipse represents the robot R, and the
blue circles indicate the obstacles O1, O2, and O3. The goal position pgoal

R is
marked as the yellow star, which is the initial position of the obstacle O1.

[ 0.20 0.20
0.20 0.50 ]. Initially, the obstacle O2 moved with vO2 = (−0.5m/s, 0.5m/s) at

pO2 = (4.0m, 1.0m), and the obstacle O3 moved with vO3 = (0.5m/s,−0.5m/s)

at pO3 = (−2.0m, 10.0m). The above descriptions are summarized in Table 6.3

and presented in Fig. 6.8.

The resultant traces of the robot and the obstacle using the five algorithms

are presented in Figs. 6.9–6.13. The overall results were similar to the preceding

scenario. It was shown again that the enclosing ellipse was more efficient than

the enclosing circle in collision avoidance in Figs. 6.9 and 6.10. Moreover, the
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(a)

(c)

(b)

13.8t s

Figure 6.9 The simulation result in the multiple moving obstacles scenario using
the Circle algorithm: (a) the resultant path; (b)–(c) the robot’s linear velocities
with respect to the time. The robot reached its goal at t = 13.8s.
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(a)

(c)

(b)

12.4t s

Figure 6.10 The simulation result in the multiple moving obstacles scenario
using the Ellipse-N algorithm: (a) the resultant path; (b)–(c) the robot’s linear
velocities with respect to the time. The robot reached its goal at t = 12.4s.
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(b)

(d)

(c)

(a)

11.2t s

Figure 6.11 The simulation result in the multiple moving obstacles scenario
using the Ellipse-HR algorithm: (a) the resultant path; (b)–(d) the robot’s
linear and angular velocities with respect to the time. The robot reached its
goal at t = 11.2s.
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(b)

(d)

(c)

(a)

11.2t s

Figure 6.12 The simulation result in the multiple moving obstacles scenario
using the Ellipse-HO algorithm: (a) the resultant path; (b)–(d) the robot’s
linear and angular velocities with respect to the time. The robot reached its
goal at t = 11.2s.
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(b)

(d)

(c)

(a)

15.4t s

Figure 6.13 The simulation result in the multiple moving obstacles scenario
using the Ellipse-HO algorithm: (a) the resultant path; (b)–(d) the robot’s
linear and angular velocities with respect to the time. The robot reached its
goal at t = 11.2s.
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robots in Figs. 6.11 and 6.12 moved shorter path than that in Fig. 6.10 due

to the rotation. Although the travel times of Ellipse-H1 and Ellipse-H2 are

equivalent, the proposed algorithm outperformed the method presented in [59]

with respect to the travel distance since it struggled to decrease the deviation

from the straight path to the goal by changing actively the orientation.

Meanwhile, the characteristic of the motion generated for obstacle avoid-

ance with the Polygon algorithm was uncovered in this scenario because the

deadlock did not occur contrary to the preceding scenario. First, the robot ro-

tated continuously even when there was no obstacle that blocked the path to

its destination. That was because the robot employing the Polygon algorithm

tried to maximize the distance to obstacles to avoid collisions safely. However,

the robot using the proposed algorithm did not rotate in this situation because

it rotated to decrease the deviation caused by blocking obstacles. Therefore, the

suggested one is more energy-efficient than the Polygon algorithm in uncrowded

situations. Next, the robot with the Polygon algorithm moved slowly when it

avoided obstacles compared to those with the others. As a result, the distance

traveled by the robot was not long, but it took the longest time to arrive at the

destination.

Table 6.4 presents the numerical results of the simulation, and Figure 6.14

Table 6.4 Simulation results in the multiple moving obstacles scenario

Algorithm Travel distance[m] Travel time[s] Computation time[ms]

Circle 8.585 13.8 0.010
Ellipse-N 7.869 12.8 0.031
Ellipse-H1 7.317 11.2 0.033
Ellipse-H2 7.303 11.2 0.080
Polygon 7.414 15.4 2.420
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Figure 6.14 The comparison between the paths generated by each of the algo-
rithms in the multiple moving obstacles scenario. The black circle and x-mark
are the start and goal positions. The green dash-dot, blue dashed, red solid,
black doted, and violet dashed lines represents the paths of Circle, Ellipse-N,
Ellipse-H1, Ellipse-H2, and Polygon, respectively.

compares the paths for each of the algorithms. The travel distance of the pro-

posed algorithm was 14.93%, 7.20%, 0.19%, and 1.50% shorter than those of

Circle, Ellipse-N, Ellipse-H1, and Polygon, respectively. The travel times of the

proposed algorithm and Ellipse-H1 were equal, but theirs are 18.84%, 12.50%,

and 27.27% shorter than those of Circle, Ellipse-N, and Polygon. Also, all the

computation times were still far shorter than the sampling period. However, the

computation of the Polygon algorithm took at least thirty times longer than

the others due to multiple computations of Minkowsiki sum, which causes that

it may not be able to operate in real time if there are a number of obstacles in

the environment.
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6.2.3 Pedestrians avoidance scenario

The proposed algorithm was validated using a real-world dataset. The BIWI

Walking Pedestrians dataset was video data of walking students on the campus

of ETH Zurich filmed from a bird eye view [86], annotated at 2.5 frames per

second. We extracted a sequence about 30 seconds long where the total number

of the pedestrians was 53 and the maximum number of them crossing at the

same time was 18 and carried out experiments in which a robot avoided the

pedestrians in the sequence. Figure 6.15 presents a snapshot of the dataset for

this simulation.

In the simulation, each of the pedestrians was represented by an ellipse

whose major and minor radii were 40cm and 20cm and major axis was per-

pendicular to its heading direction. The robot was also supposed to an ellipse

having the same size of the pedestrians, but it was given a safe margin of 15cm to

compensate the error in assumption that the pedestrians continued their most

recent velocity. In addition, the maximum translational and rotational speed

limits are assigned to vmax
R = 1.5m/s and wmax

R = 1rad/s, but there is no limit

Figure 6.15 A snapshot of the BIWI Walking Pedestrians dataset [86].
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(a) (b)

(c) (d)

(e) (f)

3.2t s

9.6t s

16.0t s

6.4t s

12.8t s

19.2t s

Figure 6.16 An example of robot trajectory in the pedestrians avoidance simu-
lation using the Ellipse-HO algorithm: (a) t = 3.2s; (b) t = 6.4s; (c) t = 9.6s;
(d) t = 12.8s; (e) t = 16.0s; (f) t = 19.2s.
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(a)

(b)

(c)

Figure 6.17 Simulation results in the Pedestrians avoidance scenario. The simu-
lation results of the four algorithms for 1,000 runs were compared with respect
to (a) the percentage of the trials with collision, (b) the average travel distance,
and (c) the average travel time. The distances and times were calculated for the
667 runs where the robot successfully reached the goal with all the algorithms
and were represented by bar plots with error bars of one standard deviation.
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on the accelerations. The robot was initially located at one side of the walkway

and moved to the opposite side while avoiding the pedestrians. The algorithms

were tested in 1,000 repeated runs, where the initial and goal position of the

robot were randomly chosen. Figure 6.16 shows an example of robot trajectory

in the simulation using the proposed algorithm, where the robot with rotation

successfully avoided a number of pedestrians.

The simulation results are presented in Fig. 6.17. Figure 6.17(a) indicates

the percentage of runs where the robot failed to avoid collisions with the pedes-

trians. The Circle algorithm showed the highest success rate because the robot

was most loosely bounded. Among the Ellipse variants, the proposed algorithm

was more effective than the others in decreasing the collision probability since

it exploited the robot’s rotation to efficiently avoid the obstacles. However, the

highest percentage of trials with collisions, 25.9%, was reported when using the

Polygon algorithm due to the deadlock induced by the polygonal robot and the

low speed at which the robot moved when it avoided obstacles. The longer the

robot arrived at its destination, the more obstacles it encountered, increasing

the likelihood of collisions.

In Figs. 6.17(b) and (c), the average travel distances and times were calcu-

lated for 667 runs where the robot successfully reached the goal using all the

algorithms for fairness. As a result, the travel distance of the proposed algorithm

was 2.50%, 2.46%, 2.44%, and 14.67% shorter than those of Circle, Ellipse-N,

Ellipse-H1, and Polygon, respectively. Also, the travel time of the proposed al-

gorithm was 4.83%, 3.17%, 3.10%, and 27.42% shorter than those of the others.

Moreover, it is found that the performance of the Polygon algorithm was unsta-

ble and highly dependent on the environment in that the standard deviation of
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the average travel distance and time were about 2.5 times larger than the Circle

and the Ellipse variants. On the other hand, the proposed algorithm showed

the most stable performance in the simulation.

6.3 Multi-Robot Collision Avoidance

In order to verify the performance of the proposed algorithm for the multi-robot

collision avoidance, the following algorithms were compared.

• Circle assumed that robots were bounded by circles, which was presented

in [104].

• Ellipse-N assumed that robots were bounded by ellipses and allowed only

translational motion.

• Ellipse-H was the proposed algorithm, where robots were bounded by

ellipses and were holonomic.

• Polygon assumed that robots were bounded by polygons approximating

ellipses and were holonomic, which was presented in [45].

Similar to the preceding section, the radius of robots in Circle algorithm

is denoted by the major radius in the other algorithms, so that r = 1m. Also,

the ellipses were approximated with eight piecewise lines by using the method

proposed in [12] and the granularity parameter in [45] was set to δ = 20 in

the Polygon algorithm. However, the maximum rotational acceleration was not

assigned to all the algorithms in order to make the robots change their orienta-

tion quickly according to the surrounding environment. Theses algorithms were

implemented and tested in the following two scenarios.
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6.3.1 Chicken scenario

Two elliptic robot R1 and R2 started at the opposite ends and moved along the

same line. At the beginning, the two robots were stalled at pR1 = (6.0m, 0.0m)

with θR1 = 100 deg and at pR2 = (−6.0m, 0.0m) with θR2 = −80 deg. The

objective was to exchange their positions, so that the goal position of one robot

was equal to the initial position of the other robot. The above descriptions are

presented in Fig. 6.18 and summarized in Table 6.5.

The resultant trajectories of the robots using the four algorithms are pre-

sented in Figs. 6.19–6.22. When comparing the performance of the algorithms of

Circle and Ellipse-N, it is noticed that the former outperformed the latter with

respect to both the travel time and distance contrary to expectations. Because

Table 6.5 The initial parameters of two robots in the chicken scenario

Position[m] Orientation[◦] Destination[m]

Robot R1 ( 6.0, 0.0) 100 (−6.0, 0.0)
Robot R2 (−6.0, 0.0) −80 ( 6.0, 0.0)

Robot 1Robot 2

2

goal
p

1

goal
p

Figure 6.18 The initial and goal positions of two robots in the chicken scenario.

149



(a)

(c)

(b)

5.6t s

8.8t s

18.6t s

Figure 6.19 The simulation result in the chicken scenario using the Circle algo-
rithm: (a) the two robots started to have a velocity component in the y-direction
at t = 5.6s; (b) they passed by each other in the middle at t = 8.8s; (c) they
reached their goals at t = 18.6s.
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(a)

(c)

(b)

6.4t s

9.6t s

18.8t s

Figure 6.20 The simulation result in the chicken scenario using the Ellipse-N
algorithm: (a) the two robots started to have a velocity component in the y-
direction at t = 6.4s; (b) they passed by each other in the middle at t = 9.6s;
(c) they reached their goals at t = 18.8s.
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(a)

(c)

(b)

6.4t s

8.8t s

18.0t s

Figure 6.21 The simulation result in the chicken scenario using the Ellipse-H
algorithm: (a) the two robots started to rotate at t = 6.4s; (b) they passed by
each other in the middle at t = 8.8s; (c) they reached their goals at t = 18.0s.
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(a)

(c)

(b)

13.6t s

15.6t s

24.2t s

Figure 6.22 The simulation result in the chicken scenario using the Polygon
algorithm: (a) the two robots started to rotate at t = 13.6s; (b) they passed by
each other in the middle at t = 15.6s; (c) they reached their goals at t = 24.2s.
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the elliptic robots were enclosed by the circular robots, the Ellipse-N algorithm

was predicted to show better performance than the Circle one. However, the

distance between the robots in the former was larger than the latter, the ellip-

tic robots started to take an avoidance maneuver later than the circular robots

due to the time horizon τ . Actually, the elliptic robots started to have a veloc-

ity component in the y-direction at t = 6.4s, while the circular robots did at

t = 5.6s, as shown in Figs. 6.19(a) and 6.20(a). The robots using the Ellipse-H

algorithm also started to rotate at t = 6.4s, as presented in Fig. 6.21(a).

In addition, it was shown the proposed algorithm decreased the travel time

and distance by efficiently adjusting their orientation. By aligning their orien-

tation with the direction of the relative velocity, they could avoid each other as

if they were circular robots with radius equal to their minor radius. Compared

to the other approaches, Figure 6.21(c) shows that the robots utilized the only

small area in workspace to avoid each other in the proposed algorithm, so that

they were expected to pass safely in even narrow passages.

Although the Polygon algorithm also decreased the travel distance compared

to other algorithms that assumed the robots did not rotate, but it took the

longest time for the robots to reach their destination. That was because the

robots had encountered the deadlock until they started to rotate at t = 13.6s.

The most significant difference between the proposed method and the Polygon

algorithm is that a robot with the former rotated quickly when it could avoid

other robots more efficiently through rotation, while that with the latter rotated

only after it fell a deadlock situation. In addition, the computation time of the

Polygon algorithm was much longer than that of the proposed one since it

required Minkowski sum to be computed multiple times.
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Table 6.6 Simulation results in the chicken scenario

Algorithm Travel distance[m] Travel time[s] Computation time[ms]

Circle 12.152 18.6 0.001
Ellipse-N 12.208 18.8 0.018
Ellipse-H 11.941 18.0 0.216
Polygon 12.031 24.0 21.250

Table 6.6 presents the numerical results of the simulation. The average

travel distance per robot of the proposed algorithm was 1.74%, 2.19%, and

0.75% shorter than those of Circle, Ellipse-N, and Polygon. In addition, the

robots utilizing the Ellipse-H algorithm reached their goal 3.23%, 4.26%, and

25.00% faster than those employing the others. Finally, although the Ellipse-H

algorithm took about 20 and 200 times longer than the Circle and Ellipse-N

algorithms, it was still insignificant because it was still far shorter than the

sampling period ∆t = 0.2s. In addition, it was about 100 times faster than that

of the Polygon method.

6.3.2 Circle scenario

Nineteen elliptic robot Ri for i = 1, · · · , 19 were distributed equally on a circle

with radius of 15.0m, and their goal was to reach their opposite position on

the circle, as shown in Fig. 6.23. In order to avoid the perfect symmetry, the

orientations of the robots were not assigned as perpendicular or parallel to their

direction to the goal. The initial positions, orientations, and goal positions of

the robots are summarized in Table 6.7.

The resultant trajectories of the robots using the four algorithms are pre-

sented in Figs. 6.24–6.27. In the circle scenario, congestion occurred in the
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Table 6.7 The initial parameters of the robots in the circle scenario

Position[m] Orientation[◦] Destination[m]

Robot R1 ( 15.00, 0.00) 95.00 (−15.00, 0.00)
Robot R2 ( 14.19, 4.87) 113.95 (−14.19, −4.87)
Robot R3 ( 11.84, 9.21) 132.89 (−11.84, −9.21)
Robot R4 ( 8.20, 12.56) 151.84 ( −8.20,−12.56)
Robot R5 ( 3.68, 14.54) 170.79 ( −3.68,−14.54)
Robot R6 ( −1.24, 14.95) −170.26 ( 1.24,−14.95)
Robot R7 ( −6.03, 13.74) −151.32 ( 6.03,−13.74)
Robot R8 (−10.16, 11.04) −132.37 ( 10.16,−11.04)
Robot R9 (−13.19, 7.14) −113.42 ( 13.19, −7.14)
Robot R10 (−14.80, 2.47) −94.47 ( 14.80, −2.47)
Robot R11 (−14.80, −2.47) −75.53 (−14.80, 2.47)
Robot R12 (−13.19, −7.14) −56.58 ( 13.19, 7.14)
Robot R13 (−10.16,−11.04) −37.63 ( 10.16, 11.04)
Robot R14 ( −6.03,−13.74) −18.68 ( 6.03, 13.74)
Robot R15 ( −1.24,−14.95) 0.26 ( 1.24, 14.95)
Robot R16 ( 3.68,−14.54) 19.21 ( −3.68, 14.54)
Robot R17 ( 8.20,−12.56) 38.16 ( −8.20, 12.56)
Robot R18 ( 11.84, −9.21) 57.11 (−11.84, 9.21)
Robot R19 ( 14.19, −4.87) 76.05 (−14.19, 4.87)
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Figure 6.23 The initial positions of 19 robots and their straight path to their
goal in the circle scenario. The ellipses represent the robots, and the arrows
indicate the straight paths to their goal.

center because all the robots gathered at the origin to reach the destination.

The bigger the size of the robots was, the more often the congestion occurred.

That was because the free space that the robots were allowed to move without

collisions was reduced if their size increased. For instance, congestion lasted for

90s when using the Circle algorithm, while it lasted for 50s when the Ellipse-N

method was utilized, as shown in Figs. 6.24 and 6.25. As a result, the robots

with the Ellipse-N could arrive at their destination about 40 seconds earlier

than those with the Circle.

However, the possibility of the congestion can be reduced through the ro-

tation of the robots. As described in Section 4.7.1, the robots can avoid other

robots or obstacles as if smaller ones avert collisions by changing their orien-

tation. The Ellipse-H and Polygon algorithms were tested to achieve this goal,

and the results are presented in Figs. 6.26 and 6.27.
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Figure 6.24 The trajectories of the robots in the circle scenario using Circle
algorithm: (a) t = 0s; (b) t = 10s; (c) t = 20s; (d) t = 30s; (e) t = 50s; (f)
t = 70s; (g) t = 80s; (h) t = 100s; (i) t = 110s; (j) t = 120s; (k) t = 130s; (l)
t = 138s. There was congestion near the origin from t = 20s to t = 110s, but
eventually all the robots arrived at their goal at t = 138s.
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(g) (h)

(i) (j)
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80st 
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94.2st 

Figure 6.25 The trajectories of the robots in the circle scenario using Ellipse-N
algorithm: (a) t = 0s; (b) t = 10s; (c) t = 20s; (d) t = 30s; (e) t = 40s; (f)
t = 50s; (g) t = 60s; (h) t = 70s; (i) t = 80s; (j) t = 94.2s. There was congestion
near the origin from t = 20s to t = 70s, but eventually all the robots arrived at
their goal at t = 94.2s.

When using the proposed algorithm, the robots rotated from t = 10s and

t = 20s to adjust their orientation suitable for avoiding collisions. As a result,

there was no congestion in the center and the robots arrived at the goal the

fastest among the four algorithms. They moved at an average speed of 0.643m/s,

which corresponded to about 91% of the preferred speed. he Polygon algorithm

also decreased the average travel time and distance. Nevertheless, since the

robots with the Polygon method moved slowly compared to those with the
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Figure 6.26 The trajectories of the robots in the circle scenario using Ellipse-H
algorithm:: (a) t = 0s; (b) t = 10s; (c) t = 20s; (d) t = 30s; (e) t = 40s; (f)
t = 48s. There was no congestion near the origin because all the robots changed
their orientation adequately, so that they arrived at their goal at t = 48s.
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Figure 6.27 The trajectories of the robots in the circle scenario using Polygon
algorithm:: (a) t = 0s; (b) t = 10s; (c) t = 20s; (d) t = 30s; (e) t = 40s; (f) t =
53.6s. There was no congestion near the origin because all the robots changed
their orientation adequately, so that they arrived at their goal at t = 53.6s.
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Table 6.8 Simulation results in the circle scenario

Algorithm Travel distance[m] Travel time[s] Computation time[ms]

Circle 36.566 138.0 0.125
Ellipse-N 31.911 94.2 0.401
Ellipse-H 30.862 48.0 2.165
Polygon 31.883 53.6 155.981

others when they had to avoid collisions, the travel time was reported 5.6s

later than that of the proposed algorithm. They moved at an average speed of

0.595m/s, which corresponded to about 84% of the preferred speed.

Furthermore, the numerical results of the circle scenario are summarized in

Table 6.8. The average travel distance per robot of the proposed algorithm was

15.60%, 3.29%, and 3.20% shorter than those of the Circle, Ellipse-N, Poly-

gon algorithms. The travel time of the Ellipse-H algorithm was also 65.22%,

49.04%, and 10.45% less than those of the others. Because the computation

times of the Circle algorithm and the Ellipse variants were far shorter than the

sampling period, less than 3%, the algorithms utilized just a little part of the

computational resources. On the other hand, the computation time of the Poly-

gon algorithm accounted for about three fourths of the sampling time. It meant

that the robots could not perform more complicated tasks than just moving,

which was not desirable.
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Chapter 7

Conclusion

This dissertation has proposed a velocity-based algorithm for local collision

avoidance of elliptic robots in three steps. First, the collision detection between

two ellipses was investigated. Next, the velocity-based local collision avoidance

method for an elliptic robot in dynamic environments with moving elliptic ob-

stacles was suggested. Finally, this method was extended for multi-robot colli-

sion avoidance.

In the literature on the velocity-based local navigation, sets of velocities

of a robot that induce collisions were represented in the velocity space, and it

reached its goal position without collision by selecting its velocity outside of

these regions. In order to simplify the computation of the forbidden velocities,

robots and obstacles used to be approximated by simple geometric objects.

The minimum area bounding ellipse, known as the Löwner ellipse [62], is a

good candidate since it can enclose them more tightly than the bounding circle

and it requires a smaller amount of memory than the convex hull to store

165



a computer model. However, the collision detection between two ellipses has

been known to be computationally expensive.

Therefore, we investigated two methods for the collision detection between

two ellipses in Chapter 3, which were complementary to each other. The first

method was to utilize the configuration space framework [77]. The configuration

space obstacle (C-obstacle) of an elliptic obstacle with respect to an elliptic

robot was defined, and its boundary was identified. In addition, it was shown

that an elliptic robot could be regarded as a circular robot with radius equal to

its minor radius by changing its orientation. Nevertheless, it was hard to figure

out whether a point robot was contained in the C-obstacle or not because the

locus of the boundary was presented in the form of a parametric equation. In

order to tackle this problem, an algebraic condition for the interior-disjoint of

two ellipses was derived by following the proofs in [23] and [36]. It was proven

that this condition was obtained from the separation condition by replacing

three of the four strict inequalities to their corresponding non-strict ones. This

result could facilitate the collision avoidance of an elliptic robot by representing

the position and orientation as a function of time.

Next, we presented a velocity-based obstacle avoidance algorithm for an el-

liptic robot in Chapter 4, where the robot changed its orientation to increase

the efficiency of the collision avoidance. This method was composed into two

parts: linear and angular motion planning. In the first part, the ellipse-based

velocity obstacle (EBVO) that was a set of linear velocities of an elliptic robot

that would induce a collsion with obstacles within a finite horizon was derived.

Also, the conservative approximation of the EBVO was suggested for the com-

putational efficiency. Afterward, a strategy for selecting the new linear velocity
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closest to the preferred linear velocity and outside the approximated EBVO was

presented. In the second part, the problem that determined the new angular ve-

locity was considered. If the new linear velocity was selected to avoid obstacles

that blocked the shortest path to the destination, there was an obstacle that

the robot grazed when it maintained the chosen velocity. If the robot efficiently

avoided the first contact obstacle, it could detour obstacles with the minimum

deviation from the straight path to the goal. Hence, the time to contact was cal-

culated when the robot touched the first contact obstacle, and the collision-free

rotation angles were calculated within the time to collision. Next, the preferred

angular velocities were calculated that enabled the robot to detour the first

contact obstacle efficiently. Finally, a strategy for selecting the new angular

velocity, which was similar with that of the first part, was presented.

Lastly, we extended the obstacle avoidance method for multi-robot collision

avoidance. Contrary to passive obstacles, the motion of robots was difficult to

expect because they continuously sensed their surrounding environment and re-

planed their action based on the input. Hence, we assumed that all the robots

in the environment used the same collision avoidance algorithm, so that one

robot could predict the next velocities of other robots. Because the predictive

motion of other robots were different with obstacles, the condition of collisions

changed in both linear and angular motion planning. In order to account for

reciprocity between robots in linear motion planning, the concept of hybrid

reciprocal velocity obstacles (HRVO) was adopted. Also, the collision-free re-

ciprocal rotation angles were calculated on the assumption that if one robot

rotated, then the other robot might rotate equally or equally opposite in the

angular motion planning.
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Both of the collision avoidance methods were evaluated and compared with

other algorithms in simulations for various scenarios in Chapter 6. The obstacle

avoidance was tested for three scenarios, increasing the number of obstacles from

1 to 53. Especially in the last scenario, a real pedestrian dataset was utilized and

1,000 trials were conducted for randomly chosen initial and goal positions of the

robot. The multi-robot collision avoidance was experimented through chicken

and circular scenarios. In the chicken scenario, there were two robots starting

at the opposite ends and moved along the same line to analyze characteristics

of the motion of the robots. On the other hand, in the circle scenario, there

were 19 robots distributed equally on a circle and moving to their opposite

position in order to see if they could avoid congestion efficiently. As a result,

the proposed algorithm decreased the travel time and distance through the

additional computation when compared with the conventional methods that

approximated robots and obstacles with circles, with ellipses without rotation.

Moreover, the proposed method had a computation time that was dozens of

times faster than the algorithm modeling robots as rotating polygons, with the

better results in terms of the travel time and distance.

The future work of this dissertation lies in three aspects. First, the proposed

algorithm for multi-robot collision avoidance can be extended to those based

on the optimal reciprocal collision avoidance (ORCA) [116]. Since the HRVO

generally has a fundamental limitation that it does not provide a sufficient

condition for collision avoidance, increasing the number of robots can lead to

defects in the system.. Moreover, the expected relative velocity used to calculate

the collision-free reciprocal rotation angles may be invalid in that case. Hence,

the proposed algorithm needs to be established on the ORCA for the robustness.
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Next, the proposed algorithm was suggested for holonomic elliptic robots.

Therefore, it is planned to study the kinematic constraints of non-holonomic

robots to expand the application area of the proposed algorithm. In a simi-

lar way to the method studied in [9], the movement of non-holonomic robots

should be calculated numerically through a Runge-Kutta integration because

the velocity of robots changes with time.

Finally, it is necessary to conduct research about predicting human motion

trajectories so that robots navigate around humans without collisions. In order

to estimate a person’s movement exactly, human-robot interaction must be

considered. For instance, if a person does not see a robot, the person keeps the

direction in which he or she has moved. Otherwise, he or she tries to avoid

a collision with the robot. Therefore, the proposed algorithm, which assumed

that dynamic obstacles will continue to maintain their own velocity, should be

extended for human avoidance based on the human-robot interaction.
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초록

다중 로봇의 무충돌 경로 계획은 전역 경로 계획과 지역 경로 계획으로 나뉘어

연구됐다. 전역 경로 계획이 전체 환경 정보를 활용하여 목표 지점까지의 최단

경로를 생성하는 것이라면, 지역 경로 계획은 전역 경로 계획에서 생성한 경로를

주변 동적 장애물과 로봇의 이동 제한 조건을 고려하여 조정하는 것이다. 지역 경

로 계획 방법에서는 효율적인 연산을 위해 로봇과 장애물을 간단한 기하 도형으로

근사해왔는데, 이 중 원은 충돌 감지가 비교적 간단하다는 점 때문에 많이 사용되

었다. 하지만 긴 로봇이나 장애물을 원으로 근사할 시 공간 낭비가 심해 로봇이

장애물과의 충돌을 회피하기 위해 더 먼 거리를 돌아간다는 단점이 있었다.

본 학위 논문에서는 비등방 로봇을 타원으로 근사하고 타원 로봇의 지역 경로

계획 문제를 해결한다. 타원은 다른 도형에 비해 2차원 평면상에서 로봇과 장애

물을 더 효율적으로 근사하지만, 충돌을 감지하는 것은 더 복잡하다. 따라서 어떤

조건에서 두 타원 사이에 충돌이 발생하는지 알기 위해 형태 공간 방법과 대수적

인 접근법을 활용한다. 첫 번째 방법에서는 타원 로봇의 형태 공간 내에서 타원

장애물에 대응하는 형태 장애물의 경계를 매개변수를 활용해 유도한다. 이를 통해

두 타원이 충돌하는 상대 위치 및 방위 조건의 전체 형태를 쉽게 파악하지만, 특정

위치및방위에있는두타원의위치관계를즉시판단할수없다는한계점이있다.

두번째방법에서는충돌조건을네부등식으로나타내어충돌여부를빠르게판단

하지만, 전체 영역을 파악할 수 없다는 단점이 있다. 두 방법은 상호보완적이므로

충돌 회피 문제를 해결할 때 상황에 따라 더 적합한 것을 사용한다.

다음으로타원로봇이동적장애물과충돌하지않고목적지에도달케하는속도

기반의 충돌 회피 방법을 제안한다. 이 방법은 충돌 회피 문제를 속도 공간에서의
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기하학적 최적화 문제로 변환하여 해결하는 것으로, 본 학위 논문에서는 실시간

제어를 위해 로봇의 선형 운동과 회전 운동을 순차적으로 나누어 결정한다. 선형

제어 단계에서는 일정 시간 이내에 장애물과 충돌이 발생하는 로봇의 모든 선속

도 집합을 타원 기반의 속도 장애물이라 정의하고, 이 영역 밖에서 목표 지점으로

가장 빠르게 향하는 선속도를 선택한다. 회전 제어 단계에서는 로봇이 장애물과의

충돌을 회피할 때 회전을 통해 더 짧은 거리를 우회하도록 한다. 이를 위해 로봇이

장애물과충돌하지않는회전각도를구하고,이안에서장애물에대한상대속도와

타원의 장축이 평행하도록 회전시켜 장애물을 효율적으로 회피하도록 한다.

마지막으로 장애물 회피 알고리즘을 다개체 로봇 충돌 회피가 가능하도록 확

장한다.이때모든로봇에같은충돌회피알고리즘이적용되었다는상호성개념을

적용하여 통신 없이 다른 로봇의 향후 움직임을 예측한다. 선형 운동 제어 단계에

는 혼합 상호 속도 장애물 개념을 적용해 앞에서 구한 타원 기반의 속도 장애물을

단순히 평행이동시켜 일정 시간 이내에 로봇 간 충돌이 발생하게 하는 선속도의

집합을 유도하고, 이 영역 밖의 선속도를 선택한다. 회전 운동 제어 단계에서는 한

로봇이 회전하면 다른 로봇도 동일한 각도로 회전한다는 가정하에 충돌하지 않는

회전각의 범위를 구하고, 이 안의 범위에서 로봇의 각속도를 선택한다.

그리고 제안한 알고리즘은 여러 시뮬레이션을 통해 원으로 근사하는 기존 방

법과 타원으로 근사하지만 회전을 고려하지 않은 방법, 회전 가능한 다각형으로

근사하는방법에비해이동시간과거리면에서뛰어남을입증하였다.동적장애물

회피와 관련해서는 보행자 데이터셋을 활용해 1,000번의 몬테카를로 시뮬레이션

을 통해 알고리즘을 검증했다. 그리고 다중 로봇 충돌 회피 방법에서는 로봇이

초기에 원 형태로 배치해 있고 그 반대편으로 이동하도록 지정하여 원의 중심에서

모든 로봇이 만나는 시나리오를 통해 제안한 알고리즘이 뛰어남을 보였다.

주요어: 지역 경로 계획, 타원, 속도 장애물, 상호 충돌 회피, 다중 로봇 시스템
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