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Abstract

In this dissertation, we propose an online and real-time algorithm for tracking

of multiple targets with multiple cameras that have overlapping field of views.

Because of its applicability, multiple target tracking with a visual sensor has

been studied intensively during the recent decades. Especially, algorithms using

multiple overlapping cameras have been proposed to overcome the occlusion and

missing problem of target that cannot be resolved by a single camera. Since the

multiple camera multiple target tracking (MCMTT) problem is more compli-

cated than the single camera multiple target tracking (SCMTT) problem, most

of MCMTT algorithms are based on a batch process which considers a whole

sequence at a time. Although the batch-based algorithms have been achieved

the robust performance, their usability is limited because many practical ap-

plications need an instantaneous result. The objective of this dissertation is

to develop an online MCMTT algorithm that has compatible tracking perfor-

mance compared to the batch-based algorithms, but requires a small amount

of computations.

The proposed algorithm generates track hypotheses (or simply called ‘track’)

with all possible data associations between object detections from multiple cam-

eras through frames. Then, it picks a set of tracks that best describes the track-

ing of targets. To identify a good track, the quality of each track is measured

by our score function. The tracking solution is, then, a set of tracks that has

the maximum total score. To get the solution, we formulate the problem of

finding those track set as the maximum weighted clique problem (MWCP),

which is one of the widely adopted formulations for a combinatorial problem
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that has the pairwise compatibility relationship among the variables. MWCP

is well-known NP-complete problem and its worst-case computation time is

proportional to the exponent of the number of tracks. Thus, solving MWCP

is intractable because the number of candidate tracks exponentially increases

when the tracking progresses. To alleviate the huge computational load, we

propose an online scheme that dynamically formates multiple MWCPs with

small-sized subsets of candidate tracks in every frame. The scheme is moti-

vated by that the tracking solutions from consecutive frames are very similar

because the status of each target is not abruptly changed between one frame.

When we assume that a specific track set is an actual solution of the previous

frame, only a small number of tracks have a possibility to become a solution

track of the current frame. Thus, we can narrow down the size of candidate

track set with the previous solution. However, propagating only the best solu-

tion of each frame can cause irreducible error when a wrong track set is chosen

as the solution because of the tracking ambiguity. To hedge the risk of this

error, we find multiple good solutions at each frame and propagate the K-best

solutions among them to the next frame instead of a single solution. When the

candidate tracks are updated and generated with newly obtained detections at

the next frame, we generate multiple subsets of the entire candidate tracks with

the K-best previous solutions. Each subset consists of candidate solution tracks

with respect to each of the previous solutions, and a small-sized MWCP is for-

mated with the subset. Then, our algorithm finds multiple solutions from each

MWCP and repeats above procedures until the tracking is terminated. Even

the proposed algorithm solves multiple MWCPs, it has lower computational

complexity than solving a single MWCP with the entire candidate tracks be-

cause the overall computational load is mainly affected by the size of the largest

MWCP. Moreover, when an instantaneous result is demanded, our algorithm
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finds better solution than solving a single large-sized MWCP because it finds

more diverse solutions under a limited solving time.

Although our dynamic formulation remarkably moderates the overall com-

putational complexity, it is still challenging to satisfy the real-time capability

of the tracking system. Thus, we apply three more strategies to reduce the

computation time. First, we generate tracklets, robust fragments of a target’s

trajectory, at each camera and generate candidate tracks with those tracklets

instead of detections. This prevents a generation of many absurd tracks. Second,

we adopt a heuristic algorithm called a breakout local search (BLS) to solve

each MWCP. With BLS, multiple suboptimal solutions can be found efficiently

within a short time. Last, we prune the candidate tracks with a probability that

is calculated with the K-best solutions. The probability represents the quality

of each track with respect to the overall tracking situation instead of an individ-

ual track. Thus, utilizing this probability ensures a proper pruning of candidate

tracks.

In the experiments with a public benchmark dataset, our algorithm shows

the compatible performance compared to the state-of-the-art batch-based MCMTT

algorithms. Moreover, our algorithm shows a real-time capability by achieving

a satisfactory performance within a reasonable computation time. We also con-

duct a self-comparison to verify our dynamic MWCP formation with respect

to the tracking performance and solving time. When a sufficient number of so-

lutions are propagated, our algorithm performs better and takes shorter time

than solving a single MWCP considering the entire candidate tracks.

Keywords: visual tracking, multiple camera multiple target tracking, multiple

hypothesis tracking, the maximum weighted clique problem, online tracking,

real-time tracking.

Student Number: 2009-20848
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Chapter 1

Introduction

1.1 Background

Visual tracking (also known as video tracking) is the process of locating a

moving target over time using a visual sensor, a camera. To acheive its objective,

visual tracking algorithm has to identify the same objects from the consecutive

video frames. When a target moves or changes its pose, the appearance of

the target varies severely. This makes impossible to track the target with only

a pixel-based comparison of image patches from candidate locations. Thus,

for a successful visual tracking, the algorithm must inference the motion and

deformation of target with a semantic understanding about the input video

frames, which is challenging work even with a single target. Nowadays, many

successful algorithms have been proposed for a sigle target tracking with respect

to the tracking performance and runtime [1–5]. The algorithms mainly focus on

modeling a target with discriminative features in motion and appearance that

help to distinguish the target region from the background.
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Sports Analytics Social Security Auto Pilot Retail Analytics

Figure 1.1: Applications of visual tracking. In many industrial and entertain-
ment fields, obtaining the locations of objects in interest by visual tracking is
an essential to higher level processings.

Tracking multiple targets can be considered as simultaneously running mul-

tiple single target trackers. However, this approach suffers from the tracking

ambiguities arising from the targets that are closely distributed. Noramlly, the

practical applications using the multiple target tracking (MTT) algorithm have

their own objects in interest such as pedstrians, cells, cars, etc. Therefore, they

detect those objects with classifier-based object detectors and initiate trackers

with each of obtained detections. In this case, detected objects have similar out-

looks that makes difficult to determine which detection is obtained from which

target. For this reason, visual MTT algorithms have evolved to the tracking-by-

detection framework, which tracks the targets with associating the detections

from the same target. A number of online and batch methods based on the

tracking-by-detection framework have been proposed recently that successfully

resolve tracking ambiguities in determining the ownerships of detections by

utilizing the target’s appearance and motion information [6–25]. However, the

state-of-the-art methods mainly suffer from the missed detections of targets

that are occluded by obstarcles or other targets. The missed detections make it

2



hard to maintain the consistent labels on the targets, that critically degrades

the tracking performance. Beacuse our daily life consists of many crowded envi-

ronment such as a classroom, retail store, etc, missed detections by occlusions

are very common in the practical applications. Thus, resolving the occlusion

problem is necessitate for the robust tracking system.

The fundamental way of resolving occlusion problem is to increase the view

points of a surveillance area, which gives more chance to detect unoccluded

targets. Therefore, the tracking methods utilizing multiple cameras with over-

lapping fields of views has been studied intensively [26–44]. In the multiple

camera multiple target tracking (MCMTT) problem, we have to jointly solve

the problems of spatial and temporal association between detections from dif-

ferent camera and different time. In spatial association, the different viewed

and concurrent detections from the same target are associated (i.e., reconstruc-

tion), while in temporal association, each camera’s detections from the same

target are associated through frames (i.e., tracking). Thus, MCMTT is more

complex and difficult than a single camera multiple target tracking which solves

only temporal association. For this reason, most of the recent MCMTT algo-

rithms are based on the batch processing which requires lots of computations

(see Section 1.2, Related Works). Many of practical applications need an online

and real-time processing. Thus, despite their good performance, the existing

MCMTT algorithms have limited applicability. Therefore, the objective of this

thesis is to suggest an online MCMTT algorithm that has real-time capability.

1.2 Related Works

In this section, we briefly introduce algorithms in MCMTT. As mentioned at

the previous section, MCMTT algorithms are composed of reconstruction and

3



planar projection [28]

Volumetric [43]

Reconstruction and trackingTracking and reconstruction Unified framework

track linking [36]

Henkel tracking [41] Hypergraph [34]

multi-layer graph [32]

Figure 1.2: Three categories of existing MCMTT algorithms. All graphic re-
sources are from the original papers.

tracking. According to the order of those two steps, the existing algorithms are

categorized into three groups as depicted in the Figure 1.2: reconstruction-and-

tracking, tracking-and-reconstruction, and unified framework.

1.2.1 Reconstruction-and-tracking methods

The algorithms in this category generate unified measurement in a surveil-

lance space by merging measurements from multiple cameras, to overcome the

missing problem of the object detection, caused by occlusion or background

clutter. Then, the multiple targets are tracked by a single camera-based track-

ing method such as Kalman filter [45] and particle filter [46] with those unified

measurements.

Mittal et al. [35] generated 3D measurements by foreground region detection

with color information and a region-based stereo algorithm. Those 3D measure-

ments were projected onto 3D ground plane and a Kalman filter [45] was applied
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on the projected 2D measurements to track each target. Because they used a

stereo matching based on appearance information such as RGB color, the al-

gorithm only operates when a view angle between cameras is small. Therefore,

a sufficient number of cameras are needed to cover the surveillance region, and

it is the significant limitation of this work.

Fleuret et al. [26] proposed the probabilistic occupancy map (POM) repre-

senting the probability distribution of target’s existence on the ground plane.

They inferred POM by combining the background subtraction result of each

view. POM was used as an input of the tracking method and whole tracking

algorithm worked well on the moderate scenarios. Thus, it was adopted by

many studies [29–31, 33]. Berclaz et al. [30] formulated tracking problem as a

linear programming with the network graph constructed with POM from each

frame. Then, they efficiently solved the linear programming with K-shortest

path (KSP) algorithm. However, [30] is very sensitive to the false positivie

when the prior information about the number of targets does not provided.

Moreover, POM based algorithms cannot avoid the quantization of 3D space

because of their computational complexity.

The alternative of POM is a synergy map [28], which is the stacked projec-

tions of each view’s foreground mask onto the planes that are parallel to the

ground plane. Unlike POM, a synergy map gives a probability distribution of

the target existance in continuous domain. Several studies adopt the synergy

map [39, 47], however, they suffered from the ghost (or phantom) problem of

projected foreground masks which gives strong ambiguity about the localization

of targets.

Possegger et al. [43] proposed an algorithm based on a volumetric density

map, which generalizes the ground plane assumption and moderates the above

two problems. To produce the volumetric density map, which is called a 3D

5



occupancy map, they segmented foreground regions from input frame images

by standard background subtraction method such as [48], and merged those

foreground regions into 3D volumes with an efficient method which they pro-

posed. However, including [43], the three methods mentioned are very sensitive

to the result of background subtraction, which is used in the generation of the

probability maps. Hence, their algorithms suffer from scenes that have dynamic

or complex backgrounds.

1.2.2 Tracking-and-reconstruction methods

In this category, the existing algorithms have attempted to associate trajecto-

ries from a same target at each view. They first generate trajectories at each

view with a single camera-based tracking method, and then formulate a com-

binatorial problem to associate those trajectories. Wu et al. [36] formulated

the trajectory association problem as a multidimensional assignment problem,

which is a well-known NP-hard problem. They solved the problem with a heuris-

tic algorithm named greedy randomized adaptive local search procedure [49].

However, the methods in [36] can only handle short-term occlusion because they

were originally proposed to track hundreds of flying objects observed as point

measurements. Ayazoglu et al. [41] adopted a high order dynamic model in

across view association of trajectories. The algorithm has a robust performance

without calibration information even though targets have similar appearances.

However, the algorithm suffers from a large amount of computations because a

comparison between high order dynamic models needs an operation that finds

the rank of a huge matrix.
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1.2.3 Unified frameworks

Many of the recent studies have proposed a unified framework, which formu-

lates the reconstruction and the tracking problem into one unified global opti-

mization problem, to solve those two problems jointly. The framework achieved

good performance in various scenarios with a batch processing over a whole

input video sequence. Leal-Taixé et al. [32] tried MCMTT algorithm with a

unified framework for the first time. The framework constructs a 2D tracking

graph of each camera with detections from the camera, and constructs a 3D

reconstruction graph with pairs of detections from different cameras. Then, an

optimization problem is solved over two graphs as one unified min-cost flow

formulation. However, the proposed graph structure is too complicated, and

needs a rough estimate about the number of targets as prior information. To

resolve those problems, Hofmann et al. [34] proposed a method based on a hy-

pergraph, which can represent the reconstruction and tracking problem with

a single graph. In this approach, all possible reconstructions between simul-

taneous detections must be enumerated to construct the graph. Furthermore,

the approach solves the graph by a binary integer problem formulation, a well-

known NP-hard problem, and its exact solver. Thus, the algorithm has a severe

computational load. Despite the robust performance on benchmarks, including

crowds of more than ten people, the algorithms in [32, 34, 44] are all batch-

based algorithms, so they cannot provide an instantaneous tracking result at

each frame, and require a huge number of computations. It is a serious limitation

for many applications.
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1.3 Contents of the Research

As mentioned in the previous section, most of the unified framework algorithms

have been proposed in batch schemes, and thus, they have limited applicabil-

ity. In this dissertation, we propose an online MCMTT algorithm in unified

framework. We assume that the object detections from a video sequence are

given. Our algorithm associates input object detections to the corresponding

targets and estiamtes each target’s trajectory in an online manner. An online

scheme has a crucial limitation that it has less chances to resolve ambiguities in

the tracking than a batch scheme because an online scheme cannot utilize the

future detections. To resolve a tracking ambiguity problem arising from densely

distributed targets, we adopt the multiple hypothesis tracking (MHT) frame-

work [50] based on a deferred decision. In MHT, track hypotheses (or simply

called ‘track’), which are the estimated trajectories of targets, are enumerated

with all possible data associations between input detections. Among them, a set

of tracks that best describes the tracking of targets is selected as the tracking

solution. To identify which track is a good track, the quality of each track is

measured by our score function considering motion, appearance, and geometric

information. The tracking solution is, then, a set of tracks that has the maxi-

mum total score. Although Kim et al. [25] showed that MHT performs well the

multiple target tracking at the single camera, it is still challenging to moderate

the computational complexity of MHT with detections from multiple cameras.

In particular, it is an NP-hard combinatorial problem to find a solution in MHT

framework for MCMTT.

To reduce the computational load of MHT for multiple cameras, we use

tracklets—partial fragments of estimated target trajectories—on the two-dimensional

(2D) image coordinates. The tracklets are generated through temporal associ-
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ations between detections from the consecutive frames by utilizing appearance

information. Then, the three-dimensional (3D) candidate tracks are generated

by associating tracklets with their motion and appearance information. The

use of tracklets instead of detections to generate candidate tracks preventes a

generation of many absurd tracks. In the proposed scheme, the tracklets in each

view are assembled in 3D space by a back projection based on a ground plane

assumption. In a ground plane assumption, all targets are assumed to move on

a 3D virtual plane called a ground plane. With this assumption and the camera

network calibration information, we can get the 3D location for each tracklet

without any triangulation. Thus, our 3D association problem is simplified to a

2D association problem on the ground plane.

To get the solution, we formulate the problem of finding the best track set as

the maximum weighted clique problem (MWCP), finding a complete subgraph

(or clique) for an arbitrary, undirected graph with the maximum total weights

of its edges or vertices. MWCP is one of the widely adopted formulations for a

combinatorial problem that has the pairwise compatiblity relationship among

the variables. The corresponding graph of our MHT framework consists of ver-

tices corresponding candidate tracks, and edges representing the compatibility

of two tracks. Compared to the algorithms for a single camera case [51, 52],

our formulation introduces additional compatibility conditions to prevent ID

switches between densely distributed targets. Moreover, the algorithm assigns

the weights on vertices with our carefully designed score function for 3D candi-

date tracks. Our score takes into account not only geometric information, but

also motion and appearance information, while the scores used in state-of-the-

art MCMTT methods [32,34] only consider geometric information.

The MWCP is a well-known NP-hard problem. As Kim et al. [25] showed,

it is hard to find an exact solution during a limited time even when a graph
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is constructed with a single camera. To alleviate the huge compuational load,

we propose an online scheme that dynamically formates multiple MWCPs with

small-sized subsets of candidate tracks in every frame. The scheme is motivated

by that the tracking solutions from consecutive frames are very similar because

the status of each target is not abruptly changed between one frame. When

we assume that a specific track set is an actual solution of the previous frame,

only a small number of tracks have a possibility to become a solution track

of the current frame. Thus, we can narrow down the size of candidate track

set with the previous solution. However, propagating only the best solution of

each frame can cause irreducible error when a wrong track set is chosen as the

solution because of the tracking ambiguity. To hedge the risk of this error, we

find multiple good solutions at each frame and propagate the K-best solutions

among them to the next frame instead of a single solution. When the candi-

date tracks are updated and generated with newly obtained detections at the

next frame, we generate multiple subsets of the entire candidate tracks with

the K-best previous solutions. Each subset consists of candidate solution tracks

with respect to each of the previous solutions, and a small-sized MWCP is for-

mated with the subset. Then, our algorithm finds multiple solutions from each

MWCP and repeats above procedures until the tracking is terminated. Even

the proposed algorithm solves multiple MWCPs, it has lower computational

complexity than solving a single MWCP with the entire candidate tracks be-

cause the overall computational load is mainly affected by the size of the largest

MWCP. Moreover, when an instantaneous result is demanded, our algorithm

finds better solution than solving a single large-sized MWCP because it finds

more diverse solutions under a limited solving time.

Even if we utilize the dynamic formation of small-sized MWCPs, it is still

challenging to solve each problem with an exact algorithm within a reasonable
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time with respect to the practical applications. For further computation reduc-

tion in solving each MWCP, we apply an iterative heuristic algorithm called

breakout local search (BSL) [53], which is a state-of-the-art heuristic algorithm

for MWCP. BLS not only finds a near-optimal solution rapidly but also gener-

ates multiple local optimum solutions for our online scheme when it is slightly

modified.

After finding multiple solutions, the resultant solutions are utilized in our

pruning scheme to remove unreliable tracks. We calculate an approximated

global track probability (AGTP) of each track which represents the quaility of

each track with respect to the overall tracking situation instead of an individual

track. Thus, utilizing this probability ensures a proper pruning of candidate

tracks. We control the total number of candidate tracks according to AGTP.

We also restrict the number of candidate tracks for each target with AGTP.

1.4 Thesis Organization

In this section, we provide an organization and overview of subsequent chapters

of this thesis. In Chapter 2, as for the preliminaries, we briefly review a MHT

framework with its variations. We examine the difference between each MHT

framework and solving schemes for them. We also review a MWCP, which is

a key formulation of our MHT based MCMTT algorithm. In particular, we

introduce BLS, a state-of-the-art heuristic solver for the MCWP. Chapter 3

addresses the proposed MCMTT algorithm based on a MHT framework and a

MWCP formulation. We present how the MHT framework can be extended to

the multi-camera case. And how an an optimal tracking result can be efficiently

found by a MWCP formulation and its heuristic solver, BLS. Chapter 4 presents

experimental details including both quantitative and qualitative results of the
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proposed algorithm. We tested an influence of each component of our tracking

algorithm on the performance by self-comparison. We also compared the track-

ing performance between ours and state-of-the-art methods. In Chapter 5, we

conclude by summarizing the contributions of our work and briefly mentioning

the direction of our future research.
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Chapter 2

Preliminaries

In this chapter, we present the theoretical background of multi-target track-

ing algorithm including the multiple hypothesis tracking (MHT) framework,

which is the baseline of the proposed method. We also present the maximum

weighted clique problem (MWCP) that is utilized in our formulation to realize

MHT framework for multiple camera multiple target tracking (MCMTT). To

provide the concrete concept of our solving procedure, we describe the break-

out local search (BLS) algorithm, which is one of the state-of-the-art heuristic

solving algorithms for MWCP. If the reader who already familiar with these

contents, please skip this chapter and proceed to the next chapter. For details

and theoretical proofs that are not written in this chapter, please refer to the

cited literatures.
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2.1 Bayesian Tracking

In this section, we introduce a Bayesian tracking framework which is most

widely adopted to formulate a tracking problem as a probabilistic inference.

Tracking a target is to know the position of the target at the specific time.

Usually, the information about the target more than a position is needed such

as a target’s speed, acceleration, scale, etc, for a reliable tracking because that

help to predict the target’s position at an upcoming time and validate the

current tracking result. In a Bayesian tracking, that information is represented

by a vector called state. In the field of classical mechanics, a state is a vector

containing all information about what we want to know from the system. This

investigated system is usually a target in a tracking problem.

If we have an ideal localization sensor which can exactly report a target’s

location, we can represent the sequence of target’s state as a deterministic

process which has only one possible ‘reality’ at each time step. However, this

kind of direct measurement cannot be obtained in an ordinary case. Instead,

we have to track the target with indirect and noisy sensor measurements. Thus,

we have to estimate the state sequence of the target with a stochastic process,

or often random process, which represents the target’s state of each time as a

random variable. Inferencing the sequence of target’s state with this stochastic

approach is a classical estimation problem in mechanics and it is called a state

estimation problem.

Let Xt ∈ Rnx denotes the target’s state at time t where nx indicates the di-

mension of the state. Then, state estimation problem is to estimate Xt through

a specific time domain with an assumption that Xt is stochastically generated

by a probability density function p(Xt), and Xt is constant during the mea-

surement obtaining process, which is called a scan. A measurement is another
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fundamental vector of a state estimation problem which represents the obser-

vations related to a target’s state. Let Zt ∈ Rnz denotes the measurement from

the target at time t where nx indicates the dimension of the measurement.

Without any measurements, we can make a joint probability density func-

tion of the states p(X1, ..., XT ) with prior knowledge. For example, in case of a

ship tracking, we know that the ship cannot sail on the ground and it usually

on sea routes. We also narrow down the interval of available velocity of the

ship. In many practical tracking problem, the prior probability p(X1, ..., XT )

is carefully modeled on manual, or by the machine learning techniques with a

number of data. Naturally, the prior probability is not sufficient for a reliable

tracking.

When a set of measurement Z = {Z1, Z2, ..., ZT } is available, we can define a

conditional probability of the sequence of target’s state given the measurements.

This conditional probability is called a posterior of a state sequence, and it can

be obtained with a Bayes rule as

p(X1, ..., XT |Z1, ..., ZT ) = p(Z1, ..., ZT |X1, ..., XT )× p(X1, ..., XT )
p(Z1, ..., ZT ) , (2.1)

where p(Z1, ..., ZT |X1, ..., XT ) is the likelihood function measuring how “likely”

the states are given the measurements that have been made. p(X1, ..., XT ) is

the prior joint probability density function of states which is aforementioned.

p(Z1, ..., ZT ) is the prior joint probability density function of measurement,

often called ‘evidence’. The evidence does not depend on the states and it is

a constant value when the measurements are fixed. Thus, in many cases, it

is regarded as a normalizing constant. For convenience, we use the subscript

notation X1:T to indicate (X1, ..., XT ). Then, the equation 2.1 can be rewritten
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Figure 2.1: Hidden Markov model for the dynamic system. The states are shaded
to represent that they are not observable. Each state depends only on the just
prior state.

as

p(X1:T |Z1:T ) = p(Z1:T |X1:T )× p(X1:T )
p(Z1:T ) . (2.2)

The tracking is, then, to find the most probable state sequence of the target

based on the equation 2.2. It is a batch-based tracking that estimating the

whole sequence of target’s state at once with the measurements from the whole

time domain. However, in case of an online tracking, the state of the target has

to be estimated whenever the new measurement arrives only with the measure-

ments obtained up to the current time. That is, the measurements from later

time cannot be available in an online tracking. In the following section, we will

introduce a recursive Bayesian tracking with a hidden Markov model which is

employed by a number of recent online tracking algorithms.

2.1.1 Recursive Bayesian Tracking

A recursive Bayesian tracking is the tracking via a recursive Bayesian estimation

of a target’s state. A recursive Bayesian estimation is to estimate an unknown

probability density function recursively over time using incoming measurements

and a mathematical process model such as a markov model. A Markov model
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is a stochastic model about a state transition with a Markov assumption. A

Markov assumption is the assumption that the probability distribution over the

possible next states depends on only the current state. That is, the next state

is conditionally independent from all the states at the previous time steps when

the current state is determined. This property is one of the “memorylessness”

property, and called the Markov property.

A hidden Markov model (HMM) is a Markov model with the hidden states,

which cannot be observed directly and only can be estimated by the stochas-

tically generated measurements that are dependent on the hidden states. As

mentioned in the previous section, direct measurements of a target’s state are

not available in the realworld tracking problem. Therefore, an HMM is most

widely adopted by the recursive Bayesian tracking algorithms. The Figure 2.1

depicts the graphical model of HMM. Compared to a simpler Markov model,

an HMM additionally has the conditional probability distribution over the pos-

sible outputs given the hidden states. All random variables in the model are

dependent on each other. However, when a specific hidden state is determined,

its measurement and the next state are conditionally independent from the all

preceding states and measurements. That is, when the previous state is deter-

mined, then the current state can be estimated with the current measurement

which is observable and the previous state which is already determined. Thus,

we can recursively estimate the sequence of target’s state with an HMM as

a Kalman filter [45] which tracks the target in the linear system in an online

manner.

2.1.2 Bayesian Tracking for Multiple Targets

In the case of tracking multiple targets, directly applying aforementioned re-

cursive Bayesian tracking is suffered from the uncertainty in the ownerships of
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measurements caused by the clutters or other targets. The term ‘clutter’ refers

to the detections produced by weather, electromagnetic interference, acoustic

anomalies, nearby objects, etc, that are generally random in number, location,

and intensity [54]. The clutter induces false positives in the measurements,

which degrades the tracking performance. Using the measurements from other

targets to estimate the current target’s state also drops the tracking perfor-

mance down. Thus, recognizing that which measurement from which target is

essential for the multiple target tracking when we track an individual target

with a recursive Bayesian tracking.

A track is a hypothetical trajectory estimated from a set of measurements

that is supposed to be from the same target. To determine the ownership

of measurements in the multiple target tracking is equivalent to solve the

measurement-track association problem. When the measurements are newly

obtained, they are associated to each track and tracks are updated with as-

sociated measurements. There are many robust single target tracking algo-

rithms [45,46] and they operate well with proper measurements. However, when

a wrong measurement is given, their performance is severely degraded. Thus,

the measurement-track association is the most critical phase in the multiple

target tracking with respect to the overall tracking performance.

There are two different approaches to the measurement-track association

problem. One is a stochastical approach called the joint probabilistic data as-

sociation filter (JPDAF) [55]. In JPDAF, the conditional probability of a mea-

surement given a track is calculated with respect to the possibility that the

measurement is from the target. Then, each measurement contributes to the

updating of the track according to its probability. JPDAF performs well in

the moderate tracking scenario, but it is easily degraded when the targets are

densely distributed. In JPDAF, a track is affected by the proximate measure-
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ments that are from other targets. Thus, tracks of JPDAF in the crowded scene

tend to be merged.

The second one is the multiple hypothesis tracking (MHT) [50] framework

which deterministically associates measurements to tracks but in many possible

scenarios. The term ‘hypothesis’ refers to one of the possible measurement-track

association. In each hypothesis, each measurement can be associated with at

most one track and each track can be associated with at most one measurement.

MHT enumerates all possible hypotheses and propagates them to hedge the risk

of the wrong association. At each frame, the MHT selects the best hypothesis

that best describes the tracking of targets. Because MHT considers all possible

measurement-track associations, it performs better than JPDAF in the crowded

scene. Thus, many practical tracking applications have adopted MHT instead

of JPDAF. However, MHT has huge computational complexity. In the next

section, we will present more details of MHT and how the previous works have

reduced the computational complexity of MHT.

2.1.3 Multiple Hypothesis Tracking (MHT)

The multiple hypothesis tracking (MHT) framework was proposed to avoid

the performance degradation caused by a wrong measurement-track association

which instantly occurs when there is an ambiguity in the association. MHT has a

huge computational load but promising practical results and the simple concept.

Moreover, because of the recent dramatic increases in computational capabili-

ties, MHT is the most preferable data association method for modern multiple

target tracking systems. MHT is based on two major assumptions. First, it as-

sumes that the measurement-track association is the matching problem, that

is, each track can have at most one measurement and each measurement can be

associated with at most one track. Second, MHT assumes that the ambiguity

19



T1 T2

M3

M1

M2
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Track gates

Figure 2.2: Example of typical data association conflict situation [56]. Track
gate indicates the possible range of measurement-track association with respect
to each target. When measurements are obtained from the intersection region of
different track gates, MHT enumerates all possible measurement-track associa-
tions and propagates them until the uncertainty of the association is resolved.

in the measurement-track association at the specific time will be resolved with

the future measurements within a small temporal domain. The term ‘hypothe-

sis’ in MHT representing the hypothesis on the measurement-track association

as mentioned in the previous section. Whenever measurement-to-track conflict

situations occur, such as shown in Fig. 2.2, MHT hedges the risk of a wrong

association by generating and propagating alternative measurement-track hy-

potheses, and decides the current tracking result at the future when the un-

certainty is resolved. Because MHT defers to decide the tracking result for a

few time steps, it is called a deferred decision logic. It can be compared to the

semi-batch processes, but in ordinary cases, the processing window’s size of the

semi-batch processes are much larger than the deferred time of MHT.

In HMT framework, there exist two main terminologies which are ‘global

hypothesis’ and ‘track’. A track is a hypothetical estimation of the sequences

of target’ state, as mentioned in the previous section. Tracks are defined to be
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compatible if they do not have any common measurements. A global hypothesis

is a set of compatible tracks that are induced by a measurement-track associa-

tion. There are two alternative frameworks in MHT approach according to the

way of generating global hypotheses: ‘hypothesis-oriented’ MHT (HO-MHT)

and ‘track-oriented’ MHT (TO-MHT).

The first development of a complete algorithmic approach proposed by Reid

et al. [50] is HO-MHT, which generates global hypotheses of the current scan

by enumerating all feasible associations between measurements of the current

scan and tracks in a hypothesis of the previous scan. The generation of global

hypotheses in this manner can be formulated as the matching problem between

tracks in a global hypothesis and newly obtained measurements. In HO-MHT,

the probability of an individual track is obtained through marginalization of

probabilities of hypotheses which contain the track. The probability of hypoth-

esis is defined as different formulations in each methods. But the most favorable

one is based on a log likelihood ratio (LLR) of each track, proposed in the pio-

neering paper by Sittler [57]. A likelihood ratio (LR) of the formation of a given

set of measurements Z into a track can be defined by the recursive form:

LR = P (Z|H1)P0(H1)
P (Z|H0)P0(H0) ,

PT
PF

, (2.3)

where H1 and H0 are hypotheses for each the true target and false positive,

respectively. That is, H1 assumes that the measurements are from an actual

target while H0 assumes that the measurements are all false positives. PT and

PF indicate the probabilities of H1 and H0, respectively. Then, P (Z|Hi) can be

defined as a probability density function evaluated with the received measure-

ments under the assumption that Hi is correct, and P0(Hi) can be defined as a

priori probability of Hi, such as expected density of true targets in a given area.

21



In here, false positive does not mean a measurement from other targets (also

called false target) but from non-persistent clutter. Because the equation 2.3

has a priori probabilities, LR is not a likelihood ratio but a probability ratio.

However, we will refer it as a likelihood ratio for following the original formu-

lation of [57]. For a convenience, a log likelihood ratio (LLR) or a track score

defined as below have been mostly used instead of LR:

LLR = log
(
PT
PF

)
. (2.4)

Then, the probability of a true target can be directly obtained from LLR

PT
PF

= PT
1− PT

= exp(LLR)

PT = exp(LLR)
1 + exp(LLR) .

(2.5)

The probability of a global hypothesis Hi is calculated with the sum of LLR of

all tracks contained in the hypothesis:

P (Hi) =
∑
Tj∈Hi

LLR(Tj)∑
Hj∈H P (Hj)

(2.6)

where Tj represents the jth track and H indicates the union set of global hy-

potheses. With the probabilities, the tracking result of HO-MHT can be found

by the best match between tracks and measurements which induces the global

hypothesis having the maximum probability. Finding a single best match, or

the limited number of best matches have the linear time complexity with a

matching algorithms such as Hungarian method [58] and the K-best Hungarian

method [59]. However, finding all matches is an NP-hard problem and has the

exponential time complexity.

The alternative framework to HO-MHT is TO-MHT which is proposed by
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Kurien et al. [60]. It is proposed to resolve the memory efficiency problem of

HO-MHT. In HO-MHT, a number of identical tracks are generated by multiple

global hypotheses. To avoid this, TO-MHT discards all previous hypotheses

and instead maintains tracks in tree structures (i.e., track trees) and updating

those trees at the every receipt of new measurements. Then, TO-MHT formates

global hypotheses by finding compatible track sets from the entire track trees.

It is certain that TO-MHT consumes less memory than HO-MHT. However,

the combinatorial problem to find compatible tracks from the entire track tree

is an NP-hard problem.

In both frameworks, there is a potential combination explosion in the num-

ber of (global or track) hypotheses [60]. Thus, whichever the framework is used,

the reduction of all the unlikely hypotheses at every scan is essential for the

practical applications. It can be done by screening, which filters out the un-

likely hypotheses before the generation such as gating, clustering, classification.

Otherwise, pruning that removes the unlikely hypotheses after the generation

such as an N -scan back approximation can enforce the reduction of hypotheses.

Hypotheses reduction techniques are varied by each of MHT based tracking al-

gorithms according to their target environment. Please refer to the literature

for more details.

MHT has been adopted by many visual tracking algorithms [25, 52, 61, 62]

Cox et al. [61] proposed HO-MHT algorithm to track feature points in the

video sequence. In their paper, they introduced Murty’s K-best Hungarian

algorithm [59] to approximate the ideal global hypotheses generation. Papa-

georgiou et al. [52] proposed a visual tracking algorithm based on TO-MHT.

They employed the maximum weighted independent set problem, which will

be discussed in the next section, to formulate the problem finding compatible

tracks from the track trees. Because of their formulation, they cannot exactly
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solve their tracking problem in the linear time. However, they did not provide

any approximation method. Ren et al. [62] proposed to solve TO-MHT with a

greedy randomized adaptive search procedure (GRASP) [63]. All of the above

methods are designed to track the targets with a single camera. Up to our

knowledge, there is no MHT for multiple camera cases. When we extend MHT

to the multiple camera case, totally new formulation and track-instantiation

method are required. For instance, finding the best global hypothesis in HO-

MHT is no longer linearly solvable when the measurements are obtained from

multiple cameras. Although the classical tracking area considered MHT with

multiple sensors, they mainly concerned about track-to-track fusion, not the

unified framework, which considers the multi-sensing issue at the measurement

level.

2.2 Maximum Weighted Clique Problem (MWCP)

In this section, we introduce a combinatorial optimization problem of which the

variables have the compatibility between them.

2.2.1 Clique Problems

When an arbitrary undirected graph G = V,E is given with its vertex set V

and edge set E, a clique C is a subset of V which has edges between every pair

of vertices in it. That is,

∀u, v ∈ C, {u, v} ∈ E. (2.7)

A clique C is also called a complete subgraph of G because a complete graph is a

graph consisting of vertices that are all adjacent. There are two important types

of cliques: the maximum clique and the maximal clique. Among the possible
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cliques in G, a maximum clique is a clique has the largest number of vertices.

The number of vertices in the maximum clique is called a clique number of G.

Another important clique, a maximal clique is a clique that cannot be enlarged,

meaning it is not a subset of a larger clique. A maximum clique is always a

maximal clique, but the converse does not hold.

The maximum clique problem (MCP) is to find the maximum clique in a

given graph G. Finding the maximum clique is very difficult because MCP is a

well-known NP-complete problem. In contrary, a maximal clique can be found

easier than the maximum clique. It can be found in the linear time, that is, the

computational time of finding the maximal clique is linearly proportion to the

graph size. However, listing all possible maximal cliques in a given graph is also

NP-complete. Listing all possible maximal cliques and MCP are the famous

instances of the clique problem.

Because of its applicability, the MCP is utilized in many practical appli-

cations such as a social network. Let’s assume that we want to make a social

marketing only with people who know each other because of maximizing the

viral impact. We can define an acquaintance with vertices representing our cus-

tomers and edges indicating whether two customers are acquaintances or not.

Then, the largest targeting group can be found by the maximum clique in the

acquaintance graph. MCP is also adopted in the coding theory. It was utilized

to make the robust codes to an incomplete message transfer.

Given a graph having positive weights on its vertices (or edges), a maximum

weighted clique problem (MWCP) is to find a clique that has the maximum

total weight. It can be regarded as a generalized problem of MCP, which solves

MWCP with a graph having unit weights on its vertices. Back to the social

marketing example, we can score each person with the marketing effect on him

or her. Then, the best marketing group can be found by the acquaintance graph
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with weights, which are defined by the marketing effect. Because MWCP is the

more generalized problem than MCP, its applicability is larger than MCP.

2.2.2 Solving MWCP

There are many formulations for MWCP, but the most famous one is an integer

programming formulation called edge formulation:

max
x

∑
i∈V

wixi,

s.t. xk + xl ≤ 1,∀{k, l} ∈ Ē,

xi ∈ {0, 1}, i = 1, ..., |V |,

(2.8)

where x indicates the vector that contains decision variables determining the

inclusion of each vertex in the solution. The complement edge set Ē is the set of

all vertex pairs that are not adjacent in the original graph. Although MWCP has

a huge applicability, it is hard to apply MWCP to the practical applications be-

cause solving the equation 2.8 is not that easy. It is a well-known NP-complete

problem, which means that the computational complexity exponentially in-

creases when the graph enlarges. Despite the fact that many exact algorithms

have improved the worst-case time complexity of solving MWCP [64–66], they

are easily degraded by the large graphs. For this reason, many powerful heuris-

tic algorithms have been proposed [53, 67–70] and applied to many practical

issues. A breakout local search (BLS) [53] is one of the state-of-the-art heuristic

algorithms for MWCP which outperforms the other competitive algorithms on

the benchmark dataset with respect to the exactness of the solution and the

solving time. We will introduce BLS in the following section because we adopt

BLS to solve our MCMTT problem which is formulated as MWCP.

There is an important mathematical concept called an independent set,
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which is closely related with a clique. An independent set is a set of vertices

in V , no two of which are adjacent. It is an inverse of a clique’s definition.

A maximum independent set problem (MISP) is to find an independent set

with the largest cardinality. Similar to MWCP, there is a generalization of

MISP called a maximum weighted independent set problem (MWISP). Let’s

define a complement graph of G by Ḡ = (V, Ē). By definition, a clique in

G is an independent set in Ḡ and then, MISP and MCP are mathematically

equivalent. When a graph has a large number of edges, solving MWISP with the

complement graph is an efficient alternative from the viewpoint of the practical

implementation. Thus, many applications vary their formulation depending on

their graph’s topology.

Many multi-target tracking algorithms utilzes MWCP or MWISP for their

formulations [51,52,71,72]. In particular, Papageorgiou et al. [52] proposed the

solving scheme of MHT with MWISP formulation. However, Papageorgiou et

al. [52] did not give any practical solving techniques which are necessary for the

practical implementation. In contrary, other methods utilizing MWCP [51, 71,

72] proposed heuristic solving techniques, but their tracking graphs are different

from ours. In this thesis, we construct a tracking graph with tracks while they

build a graph with measurements. Thus, a clique indicates the overall tracking

result in our formulation, but, is an individual track in their formulations.

2.3 Breakout Local Search (BLS)

The breakout local search (BLS) [53] is a heuristic solving algorithm for both

MCP and MWCP. Given an undirected graph G = (V,E), when a positive

weight wv is associated to each vertex v ∈ V , the goal of BLS is to find a clique

C having the largest total weight W (C) = ∑
v∈C wv. Because the maximum
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clique can be considered as a special case of MWCP when a graph has unit

weights on its vertices, our description in this section focuses on how BLS

solves MWCP. In this section, we refer to a subset of V that is currently held

by BLS as the current solution. We say that the solution is feasible when the

set is a clique, that is a complete subgraph of V .

BLS is an iterative algorithm which consists of two phases: local search

procedure and adaptive solution perturbation. The key concept of BLS is an

adaptive perturbation which utilizes the trace of solution searching. When BLS

has an arbitrary feasible solution, it finds a local optimum solution, the maxi-

mal weighted clique, in the vicinity of the holding solution by its local search

procedure. In the local search procedure, the algorithm explores solutions by

adding or replacing vertex whenever the resulting vertex set is a feasible solu-

tion. Then, BLS perturbs the current local optimum solution in an attempt to

discover a better solution through the local search with that perturbed solution.

The term ‘adaptive’ represents that the perturbation strategy varies according

to the solution searching status. When the local search visits an identical solu-

tion repeatedly, BLS gradually increases the strength of its perturbation until it

escapes from the basin of the current local optimum solution. The perturbation

strength is reset when BLS finds another local optimum solution. More details

will be discussed in the following sections.

2.3.1 Solution exploration

There are four movements in BLS to explore the solution space: ‘insert’, ‘switch’,

‘remove’, and ‘perturb’. For these movements, Benlic et al. [53] defined four

vertex sets and one ordered vertex pair set as follows:

C : the current solution.
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N(v) : {i|i ∈ V, {i, v} ∈ E}, neighbors of a vertex v.

PA : {v|v /∈ C s.t. ∀u ∈ C, {v, u} ∈ E}, vertices that are adjacent to all vertices

in C.

OC : {v|v /∈ V \C}, all vertices that are not included in C. ‘\’ indicates the

subtract operation.

OM : {(v, u)|v /∈ C and u ∈ C, |N(v) ∩ C| = |C| − 1, {v, u} ∈ E}. When u is

removed from C, the insertion of v into C yields a feasible solution.

In Benlic et al. [53], the four movement are named as M1, M2, M3, and M4,

respectively, and defined as follows:

M1 : (insertion) Select a vertex v ∈ PA and insert into C. The total weight of

C increases by wv.

M2 : (switching) Select a vertex pair (v, u) ∈ OM . Then, remove u from C and

insert v into C. The total weight of C increases by wv − wv.

M3 : (removing) Select a vertex v ∈ C and remove it from C. The total weight

of C decreases by wv.

M4 : (perturbinb) Select a vertex v ∈ OC such that (wv +∑{v,u}∈E,u∈C wu) ≥

α × f(C), where f(C) indicates the total weight of C and 0 < α < 1.

Then, repair the resulting C to be a clique by removing all vertices x ∈ C

such that {v, x} /∈ E.

In Benlic et al. [53], C ⊕m indicates the new solution induced by the move m

on the current solution C.

During the local search phase, among M1 ∪M2, the best move, which in-

duces the maximum increment of f(C), is taken. When there is no possible

29



movement increasing f(C), the local search is terminated and returns C as the

local optimum solution. Then, BLS compares the best solution Cbest with C

and updates Cbest to C when f(C) is bigger than fbest = f(Cbest). In the adap-

tive perturbation phase, there are two types of perturbations called ‘directed’

and ‘random’ perturbation. The directed perturbation randomly takes a move

among M1∪M2∪M3. The random perturbation randomly takes a move among

from M4. Details about the perturbation strategies will be discussed in the next

section.

2.3.2 Perturbation Strategies

BLS employs random and directed perturbations to escape from the local op-

timum that the algorithm is stagnated. The directed perturbation is based on

the tabu search [73]. The tabu search leverages the exploration of the search

by prohibiting the selection of moves that are recently taken. See [73] for more

details about the tabu search. In the directed perturbation, BLS selects moves

that minimize the total weight decrement, under the constraint that they are

not prohibited by the tabu list TL, which records the prohibition time of each

vertex. BLS manages its tabu list as the following way. Removing a vertex from

C is always allowed. However, when a vertex is removed from C, insert that

vertex into C is prohibited for γ iterations which is determined by

γ = φ+ rancom(|OM |), (2.9)

where φ is a coefficient and random indicates the function that generates the

random number between 1 to |OM |. The remaining iteration number to release

the prohibition of each vertex is recorded in TL. The move prohibition is ignored

only if the move leads to a new solution better than the best solution found so
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far. Benlic et al. [53] defined move set A for the directed perturbation as below

A = {m|m ∈M1 ∪M2 ∪M3, prohibited(m) = false or f(C ⊕m) > fbest},

(2.10)

where prohibited(m) indicates whether m is prohibited by TL or not.

The random perturbation is performing moves randomly selected from M4,

and it is significantly stronger than the directed perturbation. The degree of

perturbation can be adjusted by chaging the value of α(0 < α < 1) because

it affects M4. When α is set to a small number, the random perturbation is

very strong as a random restart. In contrary, α close to 1 induces insignificant

perturbation.

As soon as the stagnation is detected in the search, BLS performs the

random perturbation to escape the local basin. BLS determines the type of

perturbation with the probability defined by ω, which counts the consecutive

non-improving iterations. When ω increases, the probability of using the di-

rected perturbation progressively decreases while that of applying the random

perturbation increases. However, it was empirically found that the minimum

of applications of the directed perturbation guarantees a good performance.

Therefore, the probability of the directed perturbation is defined by

P =


e−ω/T ife−ω/T > P0,

e−ω/T otherwise,
(2.11)

where T is the maximum allowable number of non-improving local optima vis-

ited before triggering a stronger perturbation. The overall procedure of BLS

is summarized in the Algorithm 1. Also, the perturbation procedure and the

perturbation operator are summarized in the Algorithm 2 and Algorithm 3,
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respectively.

2.3.3 Initial Solution and Termination Condition

The initial solution of BLS is generated in the following way. Fisrt, select uni-

formly at random a vertex v ∈ V and insert it to C. Then, insert all of its

neighbors that are also the neighbors of ∀u ∈ C. Repeat above two actions

until there is no more vertices can be inserted into C, giving a valid clique.

The termination condition of BLS in the original works is the hitting of

the maximum iteration number. When BLS reaches the maximum iteration

number, all procedures are terminated and the best solution found so far is

returned as an output. In [53], the maximum iteration number was set to a

huge number such as a billion.
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Algorithm 1 Breakout Local Search for MWCP [53].
Require: Graph G = (V,E), weights {wv|v ∈ V }, initial and maximal jump

magnitud L0 and LMax, number T of non-improving attractors visited be-
fore strong perturbation, coefficients αr and αs for random and strong ran-
dom perturbations.

Ensure: The maximum weighted clique.
1: C ← generate initial solution(G)
2: Creat initial PM,OM and OC vertex sets
3: fc ← f(C) . fc records the objective value of the solution
4: Cbest ← C . Cbest records the best solution found so far
5: fbest ← fc . fbest records the best objective value reached so far
6: Cp ← C . Cp records the last local optimum
7: ω ← 0 . Set counter for consecutive non-improving local optima
8: while stopping condition not reached do
9: Select the best move m ∈M1 ∪M2

10: while f(C ⊕m) > fc do
11: C ← C ⊕m . Perform the best-improving move
12: fc ← f(C ⊕m)
13: Update PM,OM and OC
14: TL← update tabu list(m, Iter)
15: Iter ← Iter + 1
16: Select the best move m ∈M1 ∪M2
17: end while
18: if fc > fbest then
19: Cbest ← C; fbest ← fc . Update the best solution found so far
20: ω ← 0 . Reset counter for consecutive non-improving local optima
21: else
22: ω ← ω + 1
23: end if

/∗Determine the perturbation strenght L to be applied to C ∗/
24: if P then ω > T

/∗Search seems to be stagnating, strong perturbation required ∗/
25: L← LMax

26: else
/∗Search escaped from the previous local optimum, reinitialize perturbation
strength ∗/

27: L← L0
28: end if

/∗Perturb the current local optimum C with perturbation strenght L ∗/
29: Cp ← C
30: C ← Perturbation(C,L, TL, Iter, ω, αr, αs)
31: end while
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Algorithm 2 Perturbation procedure Perturbation(C,L, TL, Iter, ω, αr, αs) [53].
Require: Local optimum C, perturbation strength L, tabu list TL, global

iteration counter Iter, number of consecutive non-improving local optima
visited ω, coefficients αr and αs for random and strong perturbations.

Ensure: A perturbed solution C.
1: if ω = 0 then

/∗Best solution is not improved after a certain number of visited local opti-
mum ∗/

2: C ← Perturb(C,L,M4) . Strong random perturbation with moves
from M4 when α = αs

3: else
4: Determin probability P according to the equation 2.11
5: With probability P , C ← Perturb(C,L,A)

/∗Directed perturbation with moves from set A ∗/
6: With probability (1− P ), C ← Perturb(C,L,M4)

/∗Random perturbation with moves from set M4 when α = αs ∗/
7: end if
8: return C

Algorithm 3 Perturbation operator Perturb(C,L,M) [53].
Require: Local optimum C, perturbation strength L, tabu list TL, global

iteration counter Iter, the set of perturbation moves M .
Ensure: A perturbed solution C.

1: for i := 1toL do
2: Take move m ∈M
3: C ← C ⊕m . Apply move m to C
4: TL← update tabu list(m, Iter)
5: Update PM,OM and OC
6: Iter ← Iter + 1
7: end for
8: return C
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Chapter 3

Proposed Approach

3.1 Problem Statements

The goal of our algorithm is to estimate trajectories of multiple targets from

the given object detections in an online manner. A set of detections from all

cameras is denoted by D = {di|di = (li, si, ci, ti), i = 1, ..., ND} where li, si

indicate image coordinate location and scale, respectively, ci ∈ {1, ..., NC} is a

camera index, and ti represents the time stamp when di is detected. ND is the

total number of input detections. A 2D tracklet is defined by a set of detections

which are regarded as the successive measurements from the same target by the

same camera. We define Yj ∈ Y as a jth 2D tracklet by

Yj = {di|i ∈ IYj}, (3.1)

where IYj is an index set of the detections which belong to Yj . We assume that

each detection cannot be shared by more than one target, which means that
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IYi ∩ IYj = φ is always satisfied for i 6= j. Details on the generation of 2D

tracklets from the given detections will be discussed in Section 3.2.

A track is an estimated trajectory of a target in 3D world coordinates. It

is generated by associating tracklets presumed to be generated from the same

target. When we define ITk
as an index set of the tracklets associated to a track

Tk, the detection set of Tk, Zk ⊂ D, can be defined with the 2D tracklets in ITk

as

Zk =
⋃

j∈ITk

Yj . (3.2)

Let us define Ztk = {di|di ∈ Zk, ti = t} as a set of the track’s detections observed

at time t from all cameras. Letting xtk be the estimated 3D location of target at

time t, a track Tk ∈ T is defined as the sequence of these estimated locations:

Tk = (xt
s
k
k , x

tsk+1
k , ..., x

tek
k ), (3.3)

where tsk = min({ti|di ∈ Zk}) and tek = max({ti|di ∈ Zk}) are the initiating

and the terminating time of Tk, respectively. In Section 3.3, we will describe

the details on the estimation of xtk from Ztk and the design of track Tk’s score

STk
.

A global hypothesis Hn ∈ H is a set of estimated trajectories of multiple

targets, that is, a subset of T. When we define IHn as an index set of the tracks

belong to Hn, then Hn is defined by

Hn = {Tk|k ∈ IHn}. (3.4)

For feasible global hypotheses, any two different tracks Tk, Tl belonging to

the same global hypothesis must satisfy the compatibility conditions given by:

1. no common tracklet in any two tracks:
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ITk
∩ ITl

= φ, (3.5)

2. collision avoidance:

|xtk − xtl | ≥ θs, ∀t ∈ [max(tsk, tsl ),min(tek, tel )], (3.6)

where θs means the minimum distance required in order to avoid a collision

between targets. Here, we define the compatibility set C which consists of un-

ordered index pairs of compatible tracks, that is, {k, l} ∈ C for all k, l satisfying

the above conditions. Multiple target tracking is to find the best global hypoth-

esis H∗ which has the maximum total score among feasible global hypotheses

satisfying the compatibility conditions:

H∗ = arg max
Hn

∑
Tk∈Hn

STk

s.t. {k, l} ∈ C, ∀k, l ∈ IHn .

(3.7)

Since the problem in the equation (3.7) is an NP-hard problem, in this paper,

we aim to propose a novel online scheme to rapidly find a near-optimal solution

of the equation (3.7) at every frame by utilizing the past frame’s solutions. The

Figure 3.1 depicts an overall scheme of the proposed method. It consists of four

parts: tracklet, track, global hypothesis, and pruning.

At each camera, the tracklet part generates tracklets by associating detec-

tions through frames. To associate detections in an online manner, we formulate

the association problem as a detection-to-tracklet matching problem. Then, we

generate new tracklets or update established tracklets with the matching result.

The resulting tracklets are passed to the track part. Details on the matching

and the tracklet management will be described in Section 3.2.

The track part generates new candidate tracks with associations between
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Figure 3.1: Overall scheme of the proposed method. The arrows indicate the
information flows. The proposed online scheme utilizes the past tracking results
in finding the current frame’s tracking result.

tracklets and manages established tracks in an online manner. To reduce the

number of candidate tracks, we check the proposed validation conditions for

the spatial and temporal association between tracklets. Then, a score of each

track is computed with a carefully designed score function. Details on the track

generation procedure and the score function will be described in Section 3.3.

In the global hypothesis part, we solve the equation (3.7) for Tt, the set of

entire tracks which exist in the current frame. To reduce the computation, we

generate subproblems of the equation (3.7) by referring Ht−1 = {Ht−1
1 , , ...,Ht−1

KH
}

which is the set containing the KH best global hypotheses in the previous frame

according to their total score. Then, we solve the subproblems instead of the

original problem. Each subproblem is MWCP for Tt
n ⊂ Tt, a set of the tracks,

which are candidates of the current best global hypothesis, with an assump-

tion that the previous best global hypothesis was Ht−1
n . To resolve the NP-hard
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issue in solving each MWCP, we adopt BLS with proposing a good initial solu-

tion and a proper iteration number. We also modify BLS to generate multiple

near-optimal solutions. After gathering all global hypotheses found by solving

subproblems, we pick KH best global hypotheses into Ht. Ht is stored in the

global hypothesis part for the next frame and it is conveyed to the pruning

part. Details on the construction of MWCPs and for solving each of them will

be described in Section 3.4.

Table 3.1: Notable notations.

Symbol Description
di ith detection at image coordinates li of camera ci at time ti

with a scale si
D, ND = |D| set of all detections
Dt set of all detections which are detected at time t
Yj ∈ Y jth tracklet
Ytj detection of Yj at time t, i.e., Yj ∩Dt

Yt set of all tracklets continuing until time t
IYj index set of detections in Yj
Tk ∈ T kth track hypothesis
Tt set of all existing tracks at time t
xtk estimated 3D location of Tk at time t
tsk, t

e
k initiating and terminating time of Tk, respectively

STk
score of Tk

Zk ⊂ D set of detections associated to Tk
Ztk set of detections at time t in Zk, i.e., Zk ∩Dt

ITk
index set of tracklets associated to Tk

C compatibility set containing unordered index pairs of all com-
patible tracks in T

Ct compatibility set of Tt instead of T
Hn ∈ H nth global hypothesis
H∗ the best global hypothesis
KH the maximum number of global hypotheses for the subprob-

lem generation and track pruning
Ht set of KH best global hypotheses of time t
IHn index set of tracks in Hn
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In the pruning part, two pruning techniques are applied to tracks, depending

on whether a track is confirmed or not. A track is confirmed when its duration

is longer than a certain length. We compute an approximated global track

probability (AGTP) of each track with Ht and use it in each pruning technique

as a criterion. Then, the pruning information is passed to the track part for

reducing the number of tracks in the next frame. The definition of AGTP and

details on pruning techniques will be described in Section 3.5.

Before proceeding to the following sections, we summarize our notable no-

tations with the Table 3.1. In the table, we also present notations for an online

scheme, which are essential for the rest of this paper. We separate the notations

into four groups related with inputs, tracklets, tracks, and global hypotheses,

respectively.

3.2 Tracklet Generation

A tracklet was widely used as an intermediate solution or a mid-level input

in many previous works [14–16, 22, 51, 74–77]. Ge and Collins [74] generated

tracklets with the single target tracking algorithms such as a mean-shift [78]

tracker and a particle filtering [46] within a small time interval, e.g., 30 frames.

Each tracklet is initialized with an object detection result that is produced

by an edge based head detector or a background subtraction method which

is similar to the manner of Zhao et al. [79]. In the case of tracklets from the

same target, the tracklets are not only temporally overlapped, but also spatially

overlapped. Based on this fact, the final estimation of target’s trajectory is made

by associating tracklets with Monte-Carlo Markov chain data association.

Benfold at el. [75] generated tracklets by data association between consec-

utive detections. At each frame, the matching scores between detections are

40



calculated by the forward and backward feature point tracking with the KLT

feature tracking algorithm [80]. The maximum length of each tracklet is re-

stricted under four seconds to ensure the reliability of them. In their paper,

they do now explicitly describe how the matching is done with the feature

point tracking result. They just revealed that more than four points have to be

successively tracked through the detections in the same tracklet.

Roth et al. [76] proposed a tracklet generation in two states with detection

inputs. Tracklets in the first stage are produced by matching detections from

consecutive frames according to their size, location and pose affinities. Thus,

they are short but very reliable. The resulting tracklets are then fed into the

next stage as an input. In the second stage, tracklets are associated to each

other according to three cues. The first cue is the discrete cosine transform

(DCT) feature which is robust against illumination changes and occlusions. The

second cue is an online learned discriminative appearance model (OLDAM) [81]

that incrementally learns the appearance of a target. To train an OLDAM for

each tracklet, pairs of detections in the tracklet are selected as the positive

samples while pairs of detections that one is from the target tracklet and the

other is from a co-occurring, but spatially distinct tracklet are collected as

the negative samples. Then, the trained classifier determines whether newly

obtained detection (or new tracklet) can be associated to the tracklet or not.

The last cue is the smoothness in the motion and the pose variation. With

matching similarities considering above cues, tracklets are associated with each

other with Hungarian method [58] to generate longer trajectories.

Zamir et al. [51] hierarchically generated trajectories of targets and they

called their intermediate results tracklets. In their work, an input sequence is

segmented into a small number of consecutive frames and detections from each

frame segments are partitioned into sets that all detections in each of them are
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from the same target. This partitioning problem is realized by a generalized

minimum clique problem for those detections. In the clique problem, each edge

has a cost between detections based on appearance and motion similarity. A

color histogram and a constant velocity model were used for appearance and

motion similarity, respectively. Because the association was done by successively

finding minimal cliques in the graph, it cannot be guaranteed that the resulting

tracklets are optimal. However, the algorithm was reliable on moderate scenar-

ios.

Hofmann et al. [22] conservatively grouped a set of detections from consec-

utive frames to generate tracklets with three conditions. First, a tracklet has

at most one detection at each frame. Second, a discontinuity in a tracklet is

not allowed. In other words, each tracklet must have detection at every frame

within its duration. Last, detections in the same tracklet must have the simi-

lar appearance. The appearance similarity between detections is measured by

RGB histograms and Bhattacharyya distance. When detections from different

tracklets are severely overlapped, the tracklets including those detections are

terminated and new tracklets are started at the next frame.

Wen et al. [14] hierarchically generated tracklets by associating tracklets

with solving a hypergraph-based combinatorial problem. Thus, the algorithm

associates tracklets with considering a global relationship between whole track-

lets while the most of the previous works have considered only the pairwise

relationship between tracklets. From a single detection to a target’s whole tra-

jectory, the algorithm iteratively generates the higher level tracklets with affini-

ties based on appearance, motion, and the smoothness that are similar with the

affinities defined in [77]. A 36 dimensional HoG and 8 dimensional intensity his-

togram of each RGB channel are used in an appearance affinity. The motion

affinity between tracklets is defined based on an assumption about a constant
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velocity of a target within a small time interval. For the trajectory smoothness

affinity, the smoothed trajectory is estimated by the moving average of positions

of detections in the trajectory over a small temporal domain. The trajectory

smoothness affinity gets a high value when the difference between the smoothed

and original trajectories is small.

In our framework, we also use tracklets to reduce the number of overall

computations. Because our association algorithm does not have any strategy

to recover from the wrong tracklets, the robustness of tracklets is crucial to

the tracking performance of our algorithm. In this chapter, we present how

we generate tracklets robustly with associating detections through successive

frames at each camera, as defined in Section 3.1. Our tracklet generation is

similar to the method proposed by Benfold at el. [75] that utilizes the KLT

feature tracking algorithm [80] in forward and backward direction. However, to

generate tracklets in an online manner, we reformulate the inter-frame associa-

tion problem to a detection-to-tracklet matching problem with a newly defined

matching score. We also apply matching validations on the matches between

detections and tracklets to enhance the robustness of tracklets.

3.2.1 Detection-to-tracklet Matching

In our method, a tracklet is the set of consecutive detections obtained from

the same camera as aforementioned in Section 3.1 in Chapter 1. Thus, mak-

ing tracklets is equivalent to solving an association problem between detections

from the same camera. In the case of a batch processing, it can be formu-

lated as a single optimization problem with entire detections obtained from a

whole input sequence. However, generating tracklets in an online manner has to

incrementally associate input detections whenever new detections arrive as de-

picted in the Figure 3.2. Thus, we formulate a tracklet generation as a bi-partite
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Tracklet 1

Tracklet 2

Tracklet 3

Tracklet 5
False positives

Tracklet 4

New tracklet

Figure 3.2: Incremental association for the online generation of tracklets. When
detections are newly obtained, each of them is associated with one of the es-
tablished tracklets or regarded as false positive or a new tracklet.

matching problem between established tracklets and newly obtained detections.

A semi-batch approach, which associates detections in a small temporal domain

from scratch, can be an alternative of our formulation. A semi-batch approach

normally performs better than ours from the viewpoint of ordinary tracking

measures such as durability and reliability. However, we discard a semi-batch

approach because of following two reasons.

First, a semi-batch approach would change the previous portion of track-

lets which ruins the efficiency of our whole tracking framework. When tracklets

constituting a track are changed, the track has to be updated with the changed

tracklets. Perhaps the track would not be valid anymore. In such a case, global

hypotheses consisting of that track are also not valid anymore. Therefore, chang-

ing established tracklets yields high computational overhead.

Second, there is no need to consider a matching between detections more

than one frame because our tracking framework needs extremely robust track-

lets. Our tracking framework has no strategy recovering from wrong tracklets,

so, if there is any uncertainty in a match between consecutive detections, those

detections must not be associated into the same tracklet. That is, we only
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Figure 3.3: Example of bi-partite matching for tracklet generation. (a) A bi-
partite graph at time t and its matching solution. The bi-partite graph having
established tracks Yt−1 and new detections Dt its partite. Each edge of the
graph has a matching score defined in the following section as its weight. As an
example, we depict an optimal matching with the bold lines colored by blue.
(b) Result of tracklet management with the bi-partite matching of the graph
in (a). Tracklets having a matched detection are extended by a new detection
while tracklets which do not have any matched detection are terminated. Each
remaining detection initializes a new tracklet.

continue a tracklet when a match between the tracklet and a newly obtained

detection is highly reliable. Under this extremely conservative association rule,

the results of a semi-batch processing and our online matching are very similar.

In our tracklet generation scheme, we formulate a bi-partite matching prob-

lem with established tracklets and new detections as illustrated in the Fig-

ure 3.3(a). In the figure, Dt = {di|ti = t} indicates the set of detections newly

detected at time t and Yt−1 indicates the set of all tracklets of which the last
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detection has a time index t− 1, that is,

Yt−1 = {Yj |max({ti|i ∈ IYj}) = t− 1}. (3.8)

We construct a fully connected bi-partite graph that has Yt−1 and Dt as its

partites. Each weight on the graph is defined by the matching score will be pre-

sented in Section 3.2.2. Then, we solve the matching problem of the bi-partite

graph by Hungarian method [58] which finds an optimal matching in polynomial

time. To ensure the robustness, we additionally validate the resulting matched

between tracklets and detections as described in Section 3.2.3. After the vali-

dation, we update tracklets with valid matches as shown in the Figure 3.3(b).

When a tracklet Yj ∈ Yt−1 is matched with a detection di ∈ Dt, Yj is updated

as below

Yj ← Yj ∪ {di}. (3.9)

If there is no matched detection for a tracklet, the tracklet is terminated. When

there is no tracklet matched to a current detection dl, a new tracklet is generated

with the detection:

Yn ← {dl}. (3.10)

3.2.2 Matching Score with Motion Estimation

In this section, we propose a matching score between a newly obtained detection

and an established tracklet that is used in a bi-partite matching for the tracklet

management as mentioned in the previous section. The matching score between
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a tracklet Yj ∈ Yt−1 and a detection di ∈ Dt is defined by

Sj,i = 1
Lc

(
Sbox(Ŷtj , di) +

Lc−1∑
n=1

Sbox(Yt−nj , d̂t−ni )
)
, (3.11)

Sbox(dp, dq) = − log
(
‖lp − lq‖2

(sp + sq) /2

)
, (3.12)

where Ytj = Yj ∩ Dt is the detection at time t which is included by tracklet

Yj . Lc is the length of the comparison interval. d̂ti and Ŷtj are results of the

bi-directional (forward and backward) tracking which is based on the motion

estimation technique described in the following. d̂t′i is the estimation of di at

time t′ = ti±1 (+1: forward, −1: backward). We assume that the size of a target

does not change abruptly between consecutive frames. Thus, d̂t′i is defined by

d̂t
′
i = (li + δ̃t

′
i , si, ci, t

′), (3.13)

where δ̃t′i indicates the major disparity between ti and t′ that are estimated by

the motion estimation described in the following. In the motion estimation, we

extract feature points from di and track them with the KLT feature tracking

algorithm [80] on the frame at time t′. Let us define δt′i,j , j = 1, ..., qt′i as the

disparity between the jth successfully tracked feature point in di at time ti and

its tracking result at time t′. Then, the disparity set ∆t′
i is defined by

∆t′
i = {δt′i,j |

∥∥∥δt′i,j∥∥∥2
> δmin}, (3.14)

where δmin is a design parameter to reject the disparities from static feature

points. When the cardinality of ∆t′
i is smaller than the half of the number

of all tracked feature points, we determine that di does not move, so δ̃t
′
i =

0. Otherwise, we find the major disparity which has the largest neighbor set
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Current Consecutive Frame

KLT feature tracking Motion estimation

(c)(a) (b) (d)

MOTION ESTIMATION

BI-DIRECTIONAL TRACKING

Forward tracking

𝑌𝑗
𝑡−3

 𝑌𝑗
𝑡𝑌𝑗

𝑡−2 𝑌𝑗
𝑡−1

Backward tracking

𝑑𝑖 𝑑𝑖
𝑡−3  𝑑𝑖

𝑡−2  𝑑𝑖
𝑡−1Figure 3.4: Motion estimation between consecutive frames. The goal of the mo-

tion estimation is to find a major disparity between feature points in consecutive
frames. (a) Extraction of feature points from the detection. (b) Feature points
tracking between the current and the consecutive frame. Green and white points
represent successfully tracked points and lost points, respectively. A dashed box
represents the original detection at the current frame. (c) Disparities between
feature points in consecutive frames. The black cross is the major disparity and
red ones are its neighbors defined by the equation (3.15). (d) The result of the
motion estimation is depicted by the red box.

defined by

N t′
i,j = {δt′i,k|∀δt

′
i,k ∈∆t′

i s.t. ||δt
′
i,j − δt

′
i,k||2 < wδ(si)}, (3.15)

where wδ(si) indicates the neighbor window size which is proportioned to si.

Then, the major disparity is defined by

δ̃t
′
i = arg max

δt′
i,j∈∆t′

i

|N t′
i,j |. (3.16)

By using forward tracking in the above, Ŷtj can be obtained from Yt−1
j ,

i.e., the last detection of the tracklet in the previous frame. We summarize our
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Algorithm 4 Motion estimation
Require: Previous location lp, previous scale sp, disparities of feature points

∆, the minimum movement distance δmin, neighbor window size ratio γw
Ensure: New location ln

1: w ← sp × γw . size of neighbor window
2: ∆m ← φ . set of non-static disparities
3: nµ ← 0 . number of major dispariies
4: δµ ← (0, 0) . major disparity
5: for δi in ∆ do . non-static disparities to ∆m

6: if ‖δi‖2 ≥ δmin then
7: ∆m ← ∆m ∪ {δi}
8: end if
9: end for

10: if |∆m| ≥ 0.5× |∆| then
11: for δi in ∆m do
12: nw ← 0 . number of current neighbors
13: for δj in ∆m do
14: if ‖δi − δj‖2 < w then
15: nw ← nw + 1
16: end if
17: end for
18: if nw > nµ then . update major disparity
19: δµ ← δi
20: nµ ← nw
21: end if
22: end for
23: end if
24: ln ← ln + δµ . Update the new location
25: return ln

motion estimation in the Algorithm 4 and depict an example of the motion

estimation in the Figure 3.4.

3.2.3 Matching Validation

At each frame, we match detections and tracklets by the Hungarian method [58],

with scores defined in the equation (3.11). To enhance the robustness of track-
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Φ(𝑑𝑖)

𝑑𝑖

Ground plane

𝐶𝑘

Figure 3.5: Back projection of a detecion di onto the 3D ground plane. Detec-
tion’s image coordinate li indicates the bottom center of a bounding box of the
detection. Then, a 3D location of the detection is obtained by a back projection
function Φ(di).

lets, we validate each match with two 3D geometric conditions in the following.

The first condition is about the distance in 3D space between the matched

detection and the matched tracklet’s last detection. We assume that the distance

must be close enough when the match is valid. To measure the 3D distance be-

tween detections, we have to know the 3D position of each detected pedestrian

with a single detection. We resolve the depth ambiguity arises from a single

detection by assuming that all pedestrian move on a specific 3D plane as men-

tioned in Chapter 1 and depicted in the Figure 3.5. With the assumption and

a Tsai camera calibration model [82], we can define a back projection function

Φ(di) transferring the image coordinates li of camera ci to the coordinates on

the 3D ground plane. If the match between the detection di and the tracklet Yj
is valid, di and dk = Yt−1

j , the last detection of Yj , must satisfy the condition

below

|Φ(dk)− Φ(di)| ≤ εΦ, (3.17)

where εΦ is an allowable maximum 3D distance between consecutive detections

in the same tracklet and is a design parameter related with the frame rate of
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an input video and the average moving speed of targets.

The second condition is about the estimated height of a detected object.

We assume that the height of target does not change abruptly, thus di and

dk = Yt−1
j are likely to have similar heights when the match between them is

valid. Let us define ~ as the function that estimates the height of a detected

object. Then, di and dk must satisfy the condition below to ensure the validity

of the match between di and Yj

|~(dk)− ~(di)| ≤ ε~, (3.18)

where ε~ is a design parameter about the maximum allowable variation in tar-

get’s height between consecutive frames.

3.3 Track Hypothesis

As mentioned in Section 3.1, a track (hypothesis) is an estimated trajectory

by combining tracklets from the same target. However, it is very challenging to

determine ownerships of tracklets without any target information, including the

exact number of targets. To resolve this, we generate all possible tracks through

spatial-temporal association of tracklets until the current frame, and find the

optimal tracks among them by solving the optimization problem in Section 3.4.

In this section, we describe an online generation scheme of tracks and propose

a track score representing the quality of each track. Furthermore, we also define

a track tree which represents a hierarchical relationship between tracks.

3.3.1 Tracklet Association

The data association between tracklets is to determine which tracklets are gen-

erated from the same target. Through the associations, the entire tracklets are
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appearance of target

Figure 3.6: Example showing the track generation. (a) (Back-projected) Track-
lets from three cameras during four frames. The gray colored planes represent
the ground plane in the world coordinates at each time. (b) Four track trees
that are generated by associating tracklets in (a). The colored numbers on each
track indicate the tracklets that are assigned to the track (i.e., association set).
The dashed line in T8 represents the time gap in a temporal association, i.e.,
the missing of detections.

partitioned into a multiple number of subsets. Each subset is assumed to be

related to a target or a false alarm. A false alarm is the tracklet which is gener-

ated by non-target clutter. Let {Ω1(Y),Ω2(Y), ...} be the collection of all pos-

sible partitions of an entire tracklet set Y = {Y1, ...,Yq}. Then, the goal of our

MCMTT problem is to find a partition Ωi(Y) which best describes the tracking

of targets. The ith partition is defined by Ωi(Y) = {ωiφ(Y), ωi1(Y), ..., ωini
(Y)}.

ωiφ(Y) is the set of false alarms which we call the false alarm set. ωik(Y), k =

1, ..., ni is the set of tracklets supposed to be from the kth target in the ith

partition, which we call the association set. Note that a track can be generated

in a deterministic way when the corresponding association set is given. Thus,

enumerating all possible association sets is equal to enumerating all possible

tracks.

We define the universe set of all possible association sets without partition
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index as below

Ω(Y) =
⋃

i=1,2,...
Ωi(Y)\{ωiφ(Y)}

= {ω1
1, ..., ω

1
n1 , ω

2
1...}

:= {ω1, ..., ωn1 , ωn1+1, ωn1+2, ...}.

(3.19)

Here, we omit the argument ‘(Y)’ for convenience. We notate the corresponding

track of ωk as Tk and the set of detections associated with ωk as Zk. To describe

our online generation scheme of association sets, we define three operations:

spatial association, temporal association and merge.

Spatial Association

As T2 and T7 in the Figure 3.6(b), spatial association is defined by an associa-

tion between temporally overlapping tracklets, which are supposed to be from

the same target with different cameras. To determine whether tracklet Yl and

Ym are from the same target or not, we propose the spatial association condi-

tion that checks if the distance between simultaneous detections in tracklets is

bounded by ε3D with a back projection function Φ described in Section 3.2.3,

as below
||Φ(Ytl )−Φ(Ytm)||2 ≤ ε3D,

∀t ∈ {ti|∀di ∈ Yl} ∩ {tj |∀dj ∈ Ym}.
(3.20)

Temporal Association

Temporal association is defined by an association between any temporally not

overlapped tracklets in the same camera or from different cameras that are

supposed to be from the same target. For temporal association, the preceding

tracklet Yl and the succeeding tracklet Ym must satisfy following two conditions.
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Condition 1 : According to the fact that each target can generate at most one

detection in each view, Yl and Ym must be temporally non-overlapped. That

is,

{ti|di ∈ Yl} ∩ {tj |dj ∈ Ym} = φ. (3.21)

Condition 2 : A target cannot change its location abruptly, therefore dp, the last

detection of Yl, and dn, the first detection of Ym, are close enough in 3D space.

When vmax is defined as the maximum distance that a target can move during

one frame, the condition is given by

‖Φ(dp)− Φ(dn)‖2 ≤ vmax × |tp − tn|. (3.22)

Merge

According to the fact that each target is assumped to generate at most one

detection in each view at each time, an association set does not allowed to have

temporally overlapped tracklets when they are from the same camera. That is,

if the tracklets Yl,Ym ∈ ωi are generated from the same camera, they must be

temporally non-overlapped. If the union set of two association sets ωi and ωj

satisfies all of spatial and temporal association conditions, and the condition

above, the union set is also an association set. Those two association sets are

called as mergeable sets. Based on this, the merging operation ‘⊕’ between them

is defined by

ωi ⊕ ωj =


ωi ∪ ωj , ωi and ωj are mergeable,

φ, otherwise.
(3.23)

Since tracklets in each ωi and ωj already satisfy all association conditions, we

only have to check the satisfaction of the conditions between a tracklet from
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ωi and a tracklet from ωj to determine whether the two association sets are

mergeable or not. Note that, the meaning of ‘⊕’ is different from that in the

preliminary about BLS (Section 2.3).

3.3.2 Online Generation of Association Sets

In this section, we describe how to generate Ωt with utilizing the set of as-

sociation sets established until the previous frame Ωt−1 and the set of newly

generated tracklets at the current frame Yt
new = {Yi|min{tj |dj ∈ Yi} = t}. At

first, we generate Ωt
new, the set of all possible association sets generated only

with Yt
new. In Ωt

new, there are association sets with a single tracklet in Yt
new

and association sets with at least two tracklets which satisfy the spatial associ-

ation condition in the equation (3.20). After generating Ωt
new, we generate Ωt

⊕

by merging association sets in Ωt−1 with mergeable association sets in Ωt
new.

But to reduce the computational complexity, we do not merge association sets

if the frame gap between them is larger than δa. That is,

Ωt
⊕ = {ωi⊕ωj |∀ωi ∈ Ωt−1,∀ωj ∈ Ωt

new

s.t. ωi ⊕ ωj 6= φ and |tsj − tei | ≤ δa}.
(3.24)

Then, Ωt, the set of association sets established up to the current frame, is

defined by

Ωt = Ωt−1 ∪Ωt
new ∪Ωt

⊕. (3.25)

With Ωt, we generate tracks by the method will be described in in the next sec-

tion. We summarize our online scheme for track generation in the Algorithm 5.

If an association set ωk ∈ Ωt
⊕ is the result of a merge operation with ωi ∈

Ωt−1 and ωj ∈ Ωt
new, then ωk and ωi are two association sets of the same target

but differ in the current measurement association. Thus, their corresponding
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Algorithm 5 Online generation of track hypotheses
Require: Previous track set Tt−1, previous association set Ωt−1, newly gen-

erated tracklet set Yt
new, the maximum distance for the spatial association

ε3D, the maximum velocity of pedestrian vmax.
Ensure: current track set Tt

/∗spatial association with new tracklets ∗/
1: Ωt

new ← φ
2: for Yi ∈ Yt

new do
3: Ωt

new ← Ωt
new{Yi}

4: end for
5: Ω1 ← φ
6: Ω2 ← φ
7: for c ∈ {1, ..., C} do
8: for ωi ∈ Ωt

new do
9: for ωj ∈ Ω1 do

10: if ωi ⊕ ωj 6= φ then
11: Ω2 ← Ω2 ∪ {ωi ⊕ ωj}
12: end if
13: end for
14: end for
15: Ω1 ← Ω2
16: end for
17: Ωt

new ← Ω1
/∗spatial-temporal association for track continuation ∗/

18: Ωt
⊕ ← φ

19: for ωi ∈ Ωt−1 do
20: for ωj ∈ Ωt

new do
21: if ωi ⊕ ωj 6= φ then
22: Ωt

⊕ ← Ωt
⊕ ∪ {ωi ⊕ ωj}

23: end if
24: end for
25: end for

/∗track estimation ∗/
26: Tt ← Tt−1

27: for ωk ∈ Ωt
new ∪Ωt

⊕ do
28: Tk ← estimate track(ωk) . see Section 3.3.3
29: Tt ← Tt ∪ {Tk}
30: end for
31: return Tt
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Association Reconstruction Smoothing

Figure 3.7: Steps for track generation. When an association set ωk is given,
x̂tk is calculated by reconstruction and xtk is estimated by smoothing on the
reconstructed locations.

tracks Tk and Ti are incompatible. That is, they cannot become optimal tracks

at the same time. Ti is called the parent track of Tk whereas Tk becomes the

child track of Ti. A track is incompatible with not only its parent but also

all of its ancestor tracks. Those incompatibilities between tracks are essential

for the global hypotheses formation at Section 3.4 and for the track pruning

at Section 3.5. We depict an example of those relationship with a hierarchical

structure referred to as a track tree in the Figure 3.6(b).

3.3.3 Track Generation

When an association set ωk is given, we can determine the detection set of Tk
at time t, Ztk = {di|ti = t and di ∈ Yj where Yj ∈ ωk}. With Ztk, the location of

track Tk at time t, xtk, is estimated by two steps: reconstruction and smoothing.

Those two steps are depiceted in the Figure 3.7. In this section, the definition

of reconstruction is to generate the estimated 3D location x̂tk of a track Tk at

time t ∈ [tsk, tek]. When Ztk is a non-empty set, x̂tk is defined by the geometric

center point of Ztk as below

x̂tk = 1
|Ztk|

∑
di∈Zt

k

Φ(di). (3.26)
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Reconstruction Interpolation Smoothing

Figure 3.8: Track generation with a time gap. When there is a time gap in the
track, unobserved locations are estimated by interpolation and smoothing.

If the target is not detected by any camera at time t ∈ (tsk, tek), |Ztk| = 0. In

this case, we estimate x̂tk by interpolation of the adjacent two reconstructed

locations as depicted in the Figure 3.8. Let us tp and tn denote the closest

preceding and following time from t, which have a non-empty detection set,

respectively. Then, the reconstructed 3D location at time t is defined by linear

interpolation:

x̂tk = x̂
tp
k + t− tp

|tn − tp|

(
x̂tnk − x̂

tp
k

)
. (3.27)

x̂tk found in the reconstruction step is independent from other 3D locations of

Tk at different time. However, adjacent locations are highly correlated with each

other because the target moves under a specific motion. We do smoothing on

reconstructed 3D locations to consider those dependencies. When all individual

reconstructed 3D locations of Tk are found, xtk, the final 3D location of Tk at

time t, is obtained by

xtk = F((x̂t
s
k
k , ..., x̂

tek
k ), t), t = tsk, ..., t

e
k, (3.28)

where ‘F(·, t)’ is a function which returns the smoothed location at time t. We

used Savitzky–Golay filter [83] for this smoothing in our experiments.
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3.3.4 Track Score

We propose a score for each track while considering five factors. The first one

is a reconstruction score SR (·) representing how the track’s locations are iden-

tical to detections. The second one is a linking score SL (·) which considers

the geometrical suitability of the consecutive locations of the track. The third

and fourth ones are an initiation score SI (·) and a termination score ST (·).

Each of them evaluates the suitability of the starting or the ending location

of the track. When the track starts or ends far from boundaries of the visible

area or entrances, the track has a low initiation or termination score. The last

one is a visual score SV(·) representing the visual similarity between detections

associated to the track. Then, the track score is defined by those factors as

STk
= S (Tk, ωk)

=
tek∑
t=ts

k

SR
(
xtk, Z

t
k

)
+
tek−1∑
t=ts

k

SL
(
xtk, x

t+1
k

)
+ SI

(
x
tsk
k

)
+ ST

(
x
tek
k

)
+ SV(ωk).

(3.29)

Reconstruction Score SR

The proposed reconstruction score is based on PZ(·), a likelihood of detection

set on the target at a specific time. Letting Xt
k be the random variable standing

for the location of the target tracked by Tk at time t, the reconstruction score

is defined by

SR
(
xtk, Z

t
k

)
= log

(
PZ(Ztk|Xt

k = xtk)
)
− log

(
PZ(Ztk|Xt

k 6= xtk)
)
.

(3.30)
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We give a penalty to the score with the second term when the target does not

exist on Ztk at time t. This penalty term helps us to exclude false positive tracks

in solving the MWCP in Section 3.4.

The likelihood is defined as:

PZ(Ztk|Xt
k) = Pvis(Ztk|Xt

k)× Prec(Ztk|Xt
k), (3.31)

where the first term is a visibility term representing the detection probability of

Ztk, and the second term is a reconstruction term representing the error between

Ztk and xtk in 3D space. Here, we assume that the two terms are independent

of each other. The visibility term is defined in two circumstances depending on

the existence of the target on xtk at time t. If the target exists on xtk, detections

in Ztk are all true positives. By contrast, they are all false positives when the

target does not exist on xtk. Letting γfp and γfn be the false positive ratio and

the false negative ratio of the object detector, respectively, the visibility term

of Ztk is defined by

Pvis(Ztk|Xt
k = xtk) = (1− γfp)|Z

t
k|(γfn)n(xt

k)−|Zt
k|, (3.32)

Pvis(Ztk|Xt
k 6= xtk) = (γfp)|Z

t
k|(1− γfn)n(xt

k)−|Zt
k|, (3.33)

where n
(
xtk
)

indicates the number of cameras covering xtk by their field of

views. When |Ztk| > n
(
xtk
)
, the track Tk is regarded as an invalid track. The

reconstruction term Prec(Ztk|Xt
k) is based on the reconstruction error, which is

defined by

εrec(xtk, Ztk) = 1
|Ztk|

∑
di∈Zt

k

∥∥∥Φ(di)− xtk
∥∥∥

2
. (3.34)

To determine how large the allowable reconstruction error is, we borrow the

maximum allowable reconstruction error from [22] which considers a calibration
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error and an object detection error as below

εmaxrec (Ztk) = εdet ·
∑
di∈Zt

k

‖Θ(di)‖+ εcal, (3.35)

where εdet represents the maximum allowable pixel error between the bottom

center of the detection box and the actual grounding location of the target. εcal
is a parameter about calibration error and it represents the maximum allow-

able distance between the back projections of each camera’s image coordinates,

which indicate the common 3D location, onto the 3D ground plane. The pro-

jection sensitivity function Θ(di) [22] indicates the variation of coordinates on

the 3D ground plane, which is induced by one pixel variation around an im-

age coordinates li of the camera ci. Using the equation (3.34) and (3.35), the

reconstruction term of the likelihood is defined by

PRt
k

:=Prec(Ztk|Xt
k = xtk)

=


1
2 erfc

(
4 εrec(xt

k,Z
t
k)

εmax
rec (Zt

k
) − 2

)
, |Ztk| > 1,

1
2 , otherwise,

(3.36)

Prec(Ztk|Xt
k 6= xtk) = 1− PRt

k
. (3.37)

where ‘erfc(·)’ is the complementary error function which is known as one

minus the (Gauss) error function [84]. ‘erfc(·)’ returns a large value on a small

input, so the reconstruction term becomes larger when the reconstruction error

of xtk is small. Here, we give 0.5 for the case of a single detection because it is

impossible to get the reconstruction error, so we do not have any information

about it. Using the equation (3.30) and (3.32)-(3.36), the reconstruction score
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can be rewritten as

SR
(
xtk, Z

t
k

)
= log

(
PZ(Ztk|Xt

k = xtk)
PZ(Ztk|Xt

k 6= xtk)

)

=
(
n
(
Ztk

)
− |Ztk|

)
× log

(
γfn

1− γfn

)

+ |Ztk| log
(

1− γfp
γfp

)
+ log

(
PRt

k

1− PRt
k

)
.

(3.38)

Linking Score SL

The motion of a pedestrian is hard to predict because it is usually non-linear.

Therefore, we consider only the proximity of consecutive locations in the track

to determine whether linking those locations is proper or not. The proposed

linking score is defined to become bigger as the distance between consecutive

locations in the track becomes smaller. That is,

SL
(
xtk, x

t+1
k

)
= log

1
2erfc

4

∥∥∥xtk − xt+1
k

∥∥∥
2

vmax
− 2

 , (3.39)

where vmax is a design parameter modeling the maximum distance that a pedes-

trian can move during one frame. When
∥∥∥xtk − xt+1

k

∥∥∥
2

is bigger than vmax, the

linking is regarded as an invalid linking, so we discard the track.
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Initiation/Termination Score SI, ST

As previously mentioned, a track suddenly initiating or terminating in the mid-

dle of the visible area is less probable. To reflect this tendency, the initia-

tion/termination scores are defined by

SI
(
xtk

)
= log (Ps)− τs ×max

(
0,B

(
xtk

)
−mB

)
, (3.40)

ST
(
xtk

)
= log (Pe)− τe ×max

(
0,B

(
xtk

)
−mB

)
− τl × (tek − tsk) ,

(3.41)

where Ps and Pe are the probability of appearance and disappearance of a

target in the visible area, respectively. τs and τe are coefficients of penalties

with respect to the distance between the target and boundaries of the visible

area. τl is a coefficient of a penalty that prevents the termination of long tracks.

B
(
xtk
)

is the distance between xtk and boundaries of the visible area. mB is the

margin of boundary which is fixed to one meter in our experiments. A track

which starts near the beginning frame is exempt from the initiation penalty,

thus it has log (Ps) as its initiation score. With those initiation/termination

scores, we can avoid the excessive number of fragmentations in the trajectories

of targets.

Visual Similarity Score SV

We assume that a target does not change its appearance abruptly, so adjacent

detections of the same track in each view should have similar appearances. To

ensure this, we check the visual similarity between successive tracklets which

are associated by a temporal association. We assign the scores at every temporal

association in ωk of an arbitrary track Tk. Letting ωck = {Yck1
,Yck2

, ...,Ycknkc
} be

the ordered set of camera c’s tracklets in ωk according to their starting time,
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Ψc
k, the set of ordered pairs of detections is defined by

Ψc
k = {(di, dj)| di = arg max

dq∈Yc
kl

tq, dj = arg min
dp∈Yc

kl+1

tp,

s.t. Yckl
,Yckl+1 ∈ ω

c
k for l = 1, ..., nkc − 1}.

(3.42)

With Ψc
k and the function V(·) extracting the visual feature from a detection,

the visual similarity score is defined by

SV (ωk) = −
C∑
c=1

∑
(di,dj)∈Ψc

k

αv × eτv |tj−ti−1| × ‖V(di)− V(dj)‖2 , (3.43)

where αv and τv are parameters of modeling the declining confidence of visual

similarity as the time gap between the detections increases. Since the goal of

the score is to give a penalty to temporal associations between tracklets having

inconsistent visual features, the visual similarity score is always less than or

equal to zero.

3.4 Global Hypothesis

A global hypothesis is the set of tracks generated by the partition of track-

lets described in Section 3.2. However, as mentioned in Section 3.1, a global

hypothesis also can be defined as the set of compatible tracks. Thus, from a

specific set of tracks, several global hypotheses can be generated by following

compatibilities between the tracks. The goal of our tracking method is to find

the best global hypothesis H∗ among those global hypotheses, according to the

track score defined in the previous section.

In this section, we present the online scheme which findsH∗ rapidly. At every

frame, we formulate MWCP as the optimization problem finding Ht∗ among all
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Corresponding Graph

Figure 3.9: The corresponding graph of tracks in the Figure 3.6 at the frame of
t2 and all possible global hypotheses from the graph. Each vertex corresponds
to a track and edges represent compatibilities between tracks. If there is no
edge, two tracks are incompatible to each other. A global hypothesis is a set of
tracks that are compatible to each other, and a clique is a set of fully connected
vertices. Thus, global hypotheses can be generated by finding the cliques in the
corresponding graph.

possible global hypotheses from Tt, the entire track set of the tth frame. To

reduce computation and enhance performance, we utilize Ht−1
∗ , the optimal

solution from the previous frame. However, it is easy to be trapped in a local

optimum when we propagate only the best solution up to the current frame.

To resolve this problem, we find not only the best solution but also the KH
best solutions Ht = {Ht1, ...,HtKH} at each frame and use them to construct

multiple MWCPs in the next frame. We also describe how we modify BLS, a

state-of-the-art heuristic of solving MWCP, and apply it to our online scheme

for the rapid generation of multiple solutions.

3.4.1 MWCP for MCMTT

At tth frame, we construct KH MWCPs that find global hypotheses which

consist of high scored and compatible tracks. Each MWCP is constructed with

Tt
n, n = 1, ...,KH, a set of tracks which are candidates of the current best

global hypothesis with an assumption that the previous best global hypothesis
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Figure 3.10: Example of a related track set and an unconfirmed track set. Let’s
define Tt3 as a set of all all tracks in the Figure 3.6 at t3. Then, the depicted
graph represents the corresponding graph of Tt3 . By the equation (3.44), the
unconfirmed track set Tt3

uc is defined as written in the below the graph. Then,
the related track set of Ht21 , Tt3

1 can be found by the equation (3.45). We depict
a subgraph defined by Tt3

1 on the corresponding graph with black boundaries.

was Ht−1
n ∈ Ht−1. We call Tt

n a related track set of Ht−1
n . An example of the

related track set is depicted in the Figure 3.10. It contains three types of tracks:

(i) tracks in Ht−1
n , (ii) tracks newly generated at the current frame among the

children of (ii), i.e., Tt
ch(Ht−1

n ), and (iii) unconfirmed tracks defined by

Tt
uc = {Ti|Ti ∈ Tt and |t− tsi | < Nconf}. (3.44)

An unconfirmed track is a track shorter than Nconf frames. An unconfirmed

track is too short to determine whether it is a false positive or not. Thus,

we constantly insert unconfirmed tracks into related track sets, even if those
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unconfirmed tracks are not in the previous solution. Then, Tt
n is given by

Tt
n = Ht−1

n ∪Tt
ch(Ht−1

n ) ∪Tt
uc. (3.45)

MWCP for each Tt
n for n = 1, ...,KH is formulated as

τ ∗ = arg max
τ

∑
Ti∈Tt

n

STi · τi

s.t. τi + τj ≤ 1, ∀{i, j} /∈ Ctn,

τi = 0, ∀Ti /∈ Tt
n,

τi ∈ {0, 1},

(3.46)

where Ctn = {{i, j}|Ti, Tj ∈ Tt
n, {i, j} ∈ C, } is the compatibility set of Tt

n.

The solution of the problem can be represented by the selection variable τi as

Ht∗,n = {Ti|τ∗i = 1}. We solve each MWCP with the extended BLS described in

Section 3.4.2, which quickly generates multiple locally optimal solutions from a

single MWCP. Letting Ht
n be the locally optimal solutions found during solving

MWCP for Tt
n. Then, the entire feasible solutions found from all MWCPs in the

current frame can be obtained by Ĥt = ⋃
n=1,...,KH Ht

n. We pick the KH best

solutions Ht from Ĥt according to their total track scores. Then, the tracking

solution of the current frame is the best one in Ht. That is,

Ht∗ = arg max
Ht

n∈Ht

∑
Tk∈Ht

n

STk
. (3.47)

When Ht−1 = φ as in the starting frame of an input video sequence, we con-

struct and solve a single MWCP with an entire track set Tt.

The computation of solving MWCP is exponentially proportional to the

number of tracks when we solve it exactly. In ordinary cases, |Tt
n| is much
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smaller than |Tt|. When the number of target is η, on average η detections are

obtained by each camera. Thus, the number of possible spatial associations be-

tween detections from C cameras is ηC at the maximum, and then the number

of possible candidate tracks that can be generated within N frames is ηCN at

the maximum. The fastest exact sovling algorithm for MWCP with arbitrary

undirected graph up to now is proposed by Robinson and John M. [85] which

has O(2n/4) = O(1.8888n) as its computation time. Therefore, the time for ex-

actly solving MWCP that is constructed with an entire candidate track |Tt| is

O(1.8888ηCN ). In case of our subproblems, the maximum size of |Tt
n| is deter-

mined by the size of Ht−1
n ∪Tt

ch(Ht−1
n ) and Tt

uc. If the solution Ht−1
n is proper

solution, the size of it will be η. Then, the size of Tt
ch(Ht−1

n ) can be ηC+1 at

the maximum. Thus, |Ht−1
n ∪ Tt

ch(Ht−1
n )| ≤ η + ηC+1 ≈ ηC+1. In our pruning

procedure that will be represented at Section 3.5, the number of tracks in each

unconfirmed track tree is limited below Nuc. Since the tracks are unconfirmed

when their durations are less than Nconf , the number of possible unconfirmed

tracks is

|Tt
uc| ≤ {(Nconf − 1)×Nuc + 1} × ηC . (3.48)

Thus, the maximum size of Tt
uc is

||Tt
n|| ≤ {(Nconf − 1)×Nuc + 1} × ηC + ηC+1 ≈ ηC+1. (3.49)

Hence, the computation time of our subproblem is O(KH × 1.8888ηC+1) =

O(1.8888ηC+1). Compared toO(1.8888ηCN ), it is much smaller compuation time.

Thus, our online scheme has less computational order than solving the original

problem.
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3.4.2 BLS for MCMTT

BLS [53] is a state-of-the-art heuristic algorithm, finding the maximum weighted

clique in an undirected graph. BLS is based on an iteration which consists of a

local search and a random perturbation. When it gets a locally optimal solution

from the local search, it randomly perturbs the current solution to find another

locally optimal solution. If the local search consecutively ends up with a same

solution, BLS gradually increases its perturbation strength to escape from the

local basin. This is called an adaptive perturbation, and is the key concept of

BLS. In our online scheme, BLS is applied to solve each MWCP, with following

three variants:

Multiple Solutions

Originally, BLS only keeps the best solution found at the moment. In contrast,

we keep all the locally optimal solutions found until the algorithm meets the

termination condition. Then, we pack those solutions into Ht
n and return it as

the solving result of nth MWCP.

Termination Condition

BLS uses only the maximum number of iterations as its termination condition

because there is no way to guarantee the global optimality of a found solution.

Thus, in [53], the maximum number of iterations was set to a huge constant

to have more chance to find a better solution. However, it is intractable to

the practical algorithms requiring real time requirements. We assume that the

proper iteration number is in proportion to the complexity of the graph. And

we assume that |Ctn|, a size of compatibility set, reflects the complexity of the
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graph. So, we propose the maximum iteration number ibls as

ibls = αbls × |Ctn|, (3.50)

where αbls is a predetermined parameter and we set it to ten during all of

our experiments. However, the equation (3.50) has to be bounded for practical

applications. Therefore, we saturate the maximum number of iterations with a

predetermined parameter imaxbls .

Initial Solution

In [53], BLS generates an initial solution Htn0 by random selection of compat-

ible tracks. It is natural when there is no prior information. But in an online

MCMTT, the solution from the previous frame can be a strong prior informa-

tion to the current MWCP because targets move smoothly between consecutive

frames. Therefore, we set Htn0 to Ht−1
n and perform a local search to refine an

initial solution. However, the compatibilities between tracks can be changed as

the tracking goes on, so we have to repair Htn0 before the local search when

it is infeasible. The repairing of Htn0 is done in the following way: First, we

set Tcand, the candidate tracks for an initial solution, to Ht−1
n . Then, insert

a track with the highest track score in Tcand into Htn0 and update Tcand to

{Ti|Ti ∈ Tcand\Htn0 s.t. ∀Tj ∈ H
t
n0 , {i, j} ∈ Ctn}. Repeat those insertion and

update until Tcand becomes an empty set.

3.5 Pruning

In this section, we introduce our track pruning scheme to moderate the com-

putational cost of our tracking algorithm. First, we compute each track’s ap-

proximated global track probability (AGTP) which is proposed in the following
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subsection. After that, we apply two different pruning techniques depending on

the confirmation of each track tree. For each unconfirmed track tree, the K-

best method with AGTP is applied. Meanwhile, we adopt a classical pruning

technique called N scan back approach [86] to pruning in each confirmed track

tree.

3.5.1 Approximated Global Track Probability

To score a track in a global view, [56] proposed a global track probability (GTP),

defined with all global hypotheses that includes the track. When we define Ht

as the set of all possible global hypotheses from Tt, the GTP of track Ti ∈ Tt

is defined by

P tT (Ti) =
∑

∀Hj∈Ht,Hj3Ti

P tH (Hj) , (3.51)

where P tH (Hj) represents the probability of global hypothesis Hj ∈ Ht, which

is defined by

P tH (Hj) =
∑
Tk∈Hj

STk∑
Hl∈Ht

∑
Tk∈Hl

STk

. (3.52)

Since finding Ht is intractable in most cases, it is also intractable to calculate

an exact GTP. Therefore, we approximate GTP with Ht, the KH best global

hypotheses mentioned in Section 3.4, as below

P̂ tT (Ti) =
∑

∀Hj∈Ht,Hj3Ti

P̂ tH (Hj) , (3.53)

P̂ tH (Hj) =
∑
Tk∈Hj

STk∑
Hl∈Ht

∑
Tk∈Hl

STk

. (3.54)

We prune tracks having zero AGTPs as the first step of our track pruning. Since

AGTP is defined by the KH best global hypotheses, a zero AGTP means that

the track does not belong to any of the KH best global hypotheses.
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Figure 3.11: Example of N scan back approach with confirmed track tree in the
Figure 3.6(b) at t3. In this example, we set N = 3. Parenthesized numbers are
AGTPs. All branches are discarded except the branch containing a track in the
best global hypothesis.

3.5.2 Track Pruning Scheme

Unconfirmed tracks in a same track tree are similar because their measure-

ments are almost the same. Therefore, it is inefficient to keep all tracks in an

unconfirmed track tree. Thus, we discard all tracks from an unconfirmed track

tree, except the Kuc best tracks in each tree according to their AGTPs. But

to maintain the best global hypothesis, we also keep unconfirmed tracks in the

best global hypothesis, no matter that they are not included in the Kuc best

tracks of their trees.

For the case of confirmed track trees, it is intractable to keep all tracks in

each tree because the number of tracks in each tree increases exponentially.

Thus, we apply N scan back approach [86] to confirmed track trees. It is the

pruning technique based on a deferred decision. After finding the best global

hypothesis, it scans N frames back and fixes locations of targets based on the

current best global hypothesis. It then prunes all tracks incompatible with the

fixed locations of targets. In view of a tree structure, it prunes branches of
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each track tree at N frames before, except the branch containing a track in the

current best global hypothesis. The Figure 3.11 depicts an example of N scan

back approach, with one of the track trees in the Figure 3.6.

We summarize our online scheme by the Algorithm 6.

Algorithm 6 Online scheme of MCMTT
Require: detections from the dataset D
Ensure: tracking result H∗ = {H1

∗, ...,HT
∗ } . T is the number of frames

1: H0 ← φ
2: Y0

c ← φ for c = 1, ..., C . C is the number of cameras
3: for t in {1, ..., T} do
4: for c in {1, ..., C} do
5: Dt

c ← {di|ci = c, ti = t}
6: Yt

c ← generate tracklet(Yt−1
c ,Dt

c) . see Section 3.2
7: end for
8: Yt ←

⋃C
c=1 Yt

c

9: Ωt ← tracklet association(Ωt−1,Yt) . see Section 3.3.1
10: Tt ← track generation(Tt−1,Ωt) . see Section 3.3.3
11: if Ht−1 = φ then
12: Ĥt ← extended BLS(Tt) . see Section 3.4.2
13: else
14: for n in {1, ..., |Ht−1|} do
15: Ht

n ← extended BLS(Tt
n) . see Section 3.4.2

16: end for
17: Ĥt ←

⋃|Ht−1|
n=1 Ht

n

18: end if
19: Ht ← the KH best global hypotheses in Ĥt

20: Ht
∗ ← the best global hypothesis in Ht

21: Pt
T ← calculate AGTP (Tt,Ht) . see Section 3.5.1

22: Tt ← track pruning(Tt,Pt
T ) . see Section 3.5.2

23: Ωt ← update association set(Tt) . collect association sets of
remaining tracks

24: end for
25: H∗ ←

⋃T
t=1{Ht

∗}
26: return H∗
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Chapter 4

Experiments

The proposed method was compared with the state-of-the-art MCMTT algo-

rithms on the PETS 2009 dataset [87], the most widely used public benchmark

dataset having multiple views from overlapping cameras. Also, the proposed

method’s design parameters were examined to see how they affect the trade-off

between computation time and accuracy performance with a newly constructed

PILSNU dataset1. Finally, the influence of the proposed track score’s each term

and the influence of the feedback information in the online scheme were ana-

lyzed with the PILSNU dataset.

Dataset For the performance comparison, we used three sets in the second

scenario of the PETS 2009 dataset. The PETS 2009 dataset is the most widely

used benchmark dataset by the multi-camera based applications such as track-

ing, people counting, and behavior understanding. In particular, the second

scenario (S2) has videos for MCMTT problem. It has three video sequences:
1available on https://sites.google.com/site/neohanju/mcmtt
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S2.L1, S2.L2, and S2.L3. These sets comprise four to seven different views from

overlapping outdoor cameras capturing 10 to 74 pedestrians at 7 fps. S2.L1 is

the easiest one with capturing 10 pedestrians in low density. S2.L2 and S2.L3

has more number of pedestrians densely distributed. Althought S2.L2 has more

number of pedestrians than S2.L3, S2.L3 is the most hardest one becuase the

pedestrians in it move in the same direction with very high density. With test

sequences, the PETS 2009 benchmark dataset also provides intrinsic and ex-

trinsic parameters of each camera with Tsai’s camera model [82]. However, the

dataset does not contain the ground truth trajectories. In our evaluation with

PETS 2009, we used the ground truth provided in [88], which gives locations

of targets in the region of interest in each frame.

To examine how the parameters and the terms of cost function affect the

overall tracking performance, we conducted additional experiments with an-

other dataset, the PILSNU dataset. The PILSNU dataset contains 332 frames

from each of four overlapping cameras capturing ten pedestrians whose are

densely distributed in a small indoor environment. Its frame rate is 6 fps. The

dataset also provides Tsai’s camera model for each camera, and a ground truth

which is generated by hand labeled tracking result. It also provides pedestrian

detections obtained by the detector proposed by Nam at el. (LDCF detec-

tor) [89] for each frame of each camera. Since it is believed that Hofmann’s

algorithm [34] has the best performance among MCMTT batch algorithms, we

also present the performance of Hofmann’s on PILSNU to give a reference for

the readers.

Evaluation metrics As the metrics of a quantitative evaluation, we used

the multiple object tracking accuracy (MOTA) and the multiple object track-

ing precision (MOTP) in the classification of events, activities, and relation-
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ships (CLEAR-MOT) metrics [90], the most popular metrics for MCMTT. We

also used identity switches (IDS), fragments (FM), mostly tracked (MT), and

mostly lost (ML), proposed by [91]. For these metrics, a ground truth loca-

tion is matched to the closest one among the estimated locations placed within

one meter. When the ground truth location is not matched to any estimated

locations, it is counted as a false negative. On the other hand, an estimated

location that is not matched with any ground truth locations is regarded as a

false positive. A MOTA is defined by

MOTA =
(

1−
∑T
t=1 (Mt + FP t + log10(IDSt))∑T

t=1Gt

)
× 100, (4.1)

where FP t indicates the number of false positives at time t and Mt indicates the

number of missings at time t. IDSt is the number of identity switches at time

t defined in [91]. The MOTP measures the accuracy of estimated trajectories

from the view point of a distance between a ground truth and an estimation.

The original MOTP proposed in [90] measures the alignment accuracy of the

estimated tracking box with respect to the ground truth bounding boxes. Since

we track the targets in 3D space, we use a MOTP defined in Milan et al. [21]

instead of the original one. In [21], the MOTP is defined by an average distance

between the ground truth locations and the estimated locations, which are

matched to each other. That is,

MOTP =
(

1−
∑T
t=1

∑Nt
i=1 d

i
t∑T

t=1Nt

)
× 100, (4.2)

where Nt refers to the number of matched ground truth locations at time t

and dit indicates the distance between ith pair of matched ground truth and

estimated locations at time t. Here, the unit of distance is meters. When the

average distance is zero, that means we perfectly track the targets, then MOTP

becomes 100. IDS is total identity switches over time, i.e., IDS = ∑T
t=1 IDSt.
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FM counts how many trajectory fragements are matched to the ground truth

trajectories. FM increases whenever any severance of trajectory occurs because

of a identity switch or a false negative. MT is the percentage of ground truth

trajectories which are covered by result tracks for more than 80% in length. ML

is the percentage of ground truth trajectories which are covered by result tracks

for less than 20% in length. Except IDS and FM, all metrics are represented by

percentage values.

Parameter settings In our experiments, the degree and span size of the

Savitzky–Golay filter for smoothing in the eqaution (3.28) were set to one and

nine, respectively. The other parameters of the proposed method were set as

shown in the Table 4.1. Although some parameters were empirically set, there

are intuitions in using these parameters. When pedestrian density increases,

the false negative ratio of a pedestrian detector goes up. In this case, a track’s

initiation or termination far from the boundary must be permitted because

of occlusion. The initiation or termination controlled with Ps, Pe, τs and τe as

shown in the Table 4.1. When a scene is sparse, the confidence of each track

is higher than in a crowded scene. In this case, a smaller value of Pe than

Ps is needed to prevent the impetuous termination of a well continuing track,

which would be better than starting a new track. In the Table 4.2, we listed

the parameters of which the tuned values have the biggest impact on the track-

ing performance. Those parameters directly affect the number of false positives

and false negatives that are also related with the number of ID switches. In

the table, we also presents the adjustment strategies for the parameter tuning.

Except them, most of our parameters do not need any tuning for the specific

surveillance scene. Since tuning the parameters is very tedious work even with

a small number of parameters, we present a simple automatic parameter tuning
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Algorithm 7 Automatic parameter tuning
Require: detections from the dataset D, algorithm A, parameter domain Θ,

initial parameter θ0 ∈ Θ, minimum number of run for each parameter Nmin,
random seed array Γ = {γ1, γ2, ...}

Ensure: best parameter for A, θbest
1: θc ← θ0 . current parameter
2: θbest ← θc
3: fbest ← 0
4: fprevbest ← 0
5: for θ ∈ Θ do
6: fθ = (f1

θ , f
2
θ , ..., f

Nmin
θ )← (0.0, 0.0, ..., 0.0) . evaluation cache for each

parameter
7: f̂θ ← 0
8: Ntheta ← 0 . number of excuted evaluation for each parameter
9: end for

/∗initial parameter evaluation ∗/
10: for i = 1 to Nmin do
11: f iθ0

← evaluation(A, θc, γ1)
12: end for
13: f̂θ0 ← performance estimation(fθc , Nmin)
14: fbest ← f̂θ0

15: while until meet the termination condition do
/∗local search ∗/

16: while fbest > fprevbest do
17: fprevbest ← fbest
18: Θneighbor ← get neighbor parameters(θc)
19: for θi ∈ Θneighbor do
20: while j = Nthetai

to Nmin do
21: f̂θi

← performance estimation(fθi
, j)

22: if f̂θi
< fbest then

23: f̂θi
← 0; break

24: end if
25: f jθi

← evaluation(A, θi, γj)
26: end while
27: if f̂θi

> fbest then
28: fbest ← f̂θi

; θbest ← θi
29: end if
30: end for
31: θc ← θbest
32: end while . continued to the next page
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/∗perturbation ∗/
33: θc ← random perturbation(θc)
34: end while
35: return θbest

procedure in the Algorithm 7. The algorithm is motivated by Hutter et al. [92]

which optimizes a number of parameters with iterated local search (ILS) pro-

cedure [93]. The main differences between our tuning algorithm and ParamILS,

which proposed by Hutter et al. [92], are the definition of local search and eval-

uation procedure. We define the local search as the exploration on parameters

through ordered discrete variables while ParamILS considers the parameters as

the categorical variables. We evaluate each parameter setting with the median

value of MOTA while ParamILS evaluates the parameters with the runtime of

a target algorithm. In the Algorithm 7, evaluation procedure evaluates MOTA

of algorithm A with its parameter θ and the random seed γ. Here, the random

seed ensures to get a statistical result of an algorithm based on the random

procedures. Because BLS in our tracking algorithm randomly operates its per-

turbation step, our algorithm also needs various random seeds for a proper

evaluation. performance estimation procedure calculates the median value of

MOTA. When the number of evaluation of the parameter setting is less than the

required number of evaluation Nmin, performance estimation assumes that

the parameter setting will get 100.0 MOTA at the remaining evaluations. Then,

the result of performance estimation is now the best possible performance of

the parameter in the future. At get neighbor parameters(θc), the parameter

θc is modified to generate its neighbors by changing one of its element to the

values in the parameter domain Θ which are right next to the current value. To

escape from the local optimum, we perturb the parameter with a random selec-

tion at random perturbation procedure. In random perturbation, the number
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of parameters to be changed and the values for those parameters are randomly

selected according to the uniform distribution.

Implementation details We ran the experiments with a single threaded

C++ implementation of our tracking algorithm on an i7 CPU, with 3.4 GHz,

and 32 GB RAM. For the detection input of our algorithm, we used the de-

formable part model (DPM) [94] for PETS 2009 because many exsiting works

have been used DPM as their input. However, we used LDCF for PILSNU since

it is much more faster than DPM while its performance is comparable to DPM.

As the visual feature in the equation (3.43), we used color histograms for RGB

color space with 16 bins for each channel. We concatenated those histograms

into a one vector and used that vector as a visual feature. In the tracklet gen-

eration, feature points were detected by FAST algorithm [95] combined with

a grid adaptation technique to uniformly extract feature points from a target

image.

4.1 Comparison with the State-of-the-art Methods

The proposed method was compared with the state-of-the-art MCMTT meth-

ods on the PEST 2009 dataset and we show the results in The Table 4.3. The

performance of existing works in the table have been cited from their papers.

Since the performance may depend on the detection performance, we have con-

ducted an additional experiment on our own PILSNU dataset including the

detection algorithm for fair comparison. In the experiment on the PILSNU, our

method has been compared with Hofmann’s algorithm [34], which has shown the

best performance on the PETS 2009. For this experiment, we have implemented

and tuned Hofmann’s algorithm to perform comparably as it did in his paper.

The Table 4.4 compares Hofmann’s algorithm and ours on the PILSNU. The as-
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Table 4.2: Important parameters
Symbol Range Tuning strategy Remarks
γfn 0.1 to 0.5 add or subtract 0.1 Higher value makes the algorithm tend to generate each

reconstruction with a small number of detections
Ps 1.0−6 to 1.0−1 multiply or divide by 10 Modification with order of 10 is used beacause the costs

are proportional to the log-scale of these probabilitiesPe 1.0−6 to 1.0−1 multiply or divide by 10
τs 1.0−6 to 1.0−3 multiply or divide by 10 Those parameters determine the distance (in mm unit)

from boundary which makes the half value of probabilitiesτe 1.0−6 to 1.0−3 multiply or divide by 10
τl 1.0−2 to 1.0−1 multiply or divide by 10 When the targets are detected robustly, there are few missed detections, decrease this value

to ensure the consistend labeling

Table 4.3: Quantitative Results for the PETS 2009 Dataset (Scenario 2)

Sequence Method Camera IDs MOTA [%] MOTP [%] MT [%] ML [%] FM IDS

PETS S2.L1
Batch

Berclaz et al. [29] 1+3+5+6+8 82.0 56.0 - - - -
Leal-Taixé et al. [32] 1+5 76.0 60.0 - - - -
Leal-Taixé et al. [32] 1+5+6 71.4 53.4 - - - -
Hofmann et al. [34] 1+5 99.4 82.9 100.0 0.0 1 1
Hofmann et al. [34] 1+5+7 99.4 83.0 100.0 0.0 1 2
Byeon et al. [44] 1+5+6+7+8 99.4 83.0 100.0 0.0 1 2

Online Ours (instant, KH = 25) 1+5+7 98.9 72.9 100.0 0.0 5 1
Ours (deferred, KH = 25) 1+5+7 99.5 78.1 100.0 0.0 0 0

PETS S2.L2

Batch Hofmann et al. [34] 1+2 87.6 73.5 86.0 0.0 128 111
Hofmann et al. [34] 1+2+3 79.7 74.2 69.8 2.3 129 132

Online

Ours (instant, KH = 5) 1+2 78.0 62.7 74.3 2.7 198 249
Ours (deferred, KH = 5) 1+2 81.1 64.9 77.0 2.7 99 163
Ours (instant, KH = 10) 1+2+3 69.5 61.0 75.7 2.7 220 357
Ours (deferred, KH = 10) 1+2+3 72.9 63.1 73.0 2.7 132 246

PETS S2.L3

Batch Hofmann et al. [34] 1+2 68.5 72.3 54.5 20.5 149 156
Hofmann et al. [34] 1+2+4 65.4 73.9 40.9 25.0 88 116

Online

Ours (instant, KH = 20) 1+2 63.6 59.1 43.2 20.5 87 119
Ours (deferred, KH = 20) 1+2 64.4 59.9 40.9 18.2 44 61
Ours (instant, KH = 20) 1+2+4 53.9 55.6 31.8 9.1 143 197
Ours (deferred, KH = 20) 1+2+4 54.5 57.0 34.1 9.1 78 101

terisks next to method names signify that we did the implementation ourselves

and details would be different from the original implementation. Since our algo-

rithm has randomness due to BLS, we ran 30 experiments for each sequence to

get statistical results and present each metric with its median value. In regard

to our results, “deferred” represents ten frame deferred result, and “instant”

represents the instant result without delayed decision. In the parentheses, we

wrote the value of KH used in each sequence.

As shown in the Table 4.4, our deferred result is comparable to Hofmann’s

algorithm. Notably, our deferred result is superior to any other state-of-the-art

batch methods in all metrics on the PETS 2009 S2.L1 except MOTP, which

is significantly affected by a post processing. On S2.L1, our deferred result
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Table 4.4: Quantitative Results for the PILSNU Dataset

Sequence Method Camera IDs MOTA [%] MOTP [%] MT [%] ML [%] FM IDS

PILSNU

Batch Hofmann et al.* [34] 1+2 61.3 77.6 60.0 0.0 8 12
Hofmann et al.* [34] 1+2+3+4 88.2 80.0 80.0 0.0 1 1

Online

Ours (instant, K = 15) 1+2 66.9 54.6 60.0 0.0 62 80
Ours (deferred, KH = 15) 1+2 72.6 61.3 60.0 0.0 28 35
Ours (instant, KH = 10) 1+2+3+4 80.0 64.4 90.0 0.0 32 44
Ours (deferred, KH = 10) 1+2+3+4 85.7 72.5 90.0 0.0 12 18

achieves 100% MT with zero IDS, which means a qualitatively perfect tracking

result. Despite that our deferred result have much more IDS than Hofmann’s

algorithm on S2.L2, on which a pedestrian detector has low recall, the proposed

framework achieves a comparable performance to the state-of-the-art batch

algorithm although the online scheme has less chances to recover the missing

detections than the batch scheme.

4.2 Influence of Parameters

On the PILSNU dataset, the proposed method was ran with KH = 1, 5, 10, 15,

20, 25, 30 and imaxbls = 500, 1,000, 2,000 to examine the effect of KH and imaxbls

on accuracy and computation time. Due to the randomness of the proposed

method, 30 experiments were done at each parameter setting, as mentioned in

the previous section. The Figure 4.1 shows the tendencies of the processing time,

MOTA, and IDS affected by KH in the proposed algorithm. The processing

time depending on KH increased linearly. Thus, a desired processing time can

be achieved by adjusting KH. MOTA increased with KH and converged around

85%. IDS decreased until it touched 18 at KH = 10. Clearly, large values of

KH boost performance. Therefore, KH is a conclusive control variable of the

trade-off between performances in accuracy and computation times. Note that

the PILSNU has 333 frames captured at 6 fps. Thus, processing the whole

dataset within 55.5 seconds is the condition of real-time processing. Since our

result at KH = 1 had a processing time of less than 50 seconds and shows a
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Real-time processing

Figure 4.1: Evaluation results with various values of KH on PILSNU dataset.
Regions between lower quartile and upper quartile are colored sky blue. Dashed
lines represent the range of inlier defined by the maximum Whisker length,
which is about ±2.7 std. deviations from the mean value. In the left figure, we
indicate a range of real-time processing by green.

performance comparable with the state-of-the-art batch algorithms, we believe

that the proposed algorithm has a real-time capability.

The Figure 4.2 shows the tendencies of the processing time, MOTA, varia-

tion at MOTA, and IDS affected by imaxbls . imaxbls is also crucial to the performance

of our algorithm because the equation (3.50) usually hits imaxbls . As shown in the

figure, the processing time also increased linearly depending on imaxbls . However,

the performance was not increased without a sufficiently large value of imaxbls .

The last graph in the Figure 4.2 represents the gap between the maximum and

minimum MOTA in each setting. Following that graph, a small imaxbls caused an

unstable performance while MOTA with a sufficiently large imaxbls was gradually
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1    5        10        15   20

Figure 4.2: Evaluation results with various imaxbls and KH on the PILSNU
dataset. The last graph represents a gap between the maximum and minimum
MOTA in each setting.

stabilized according to KH.

We also conducted additional experiments with various values of KH on

PETS2009 S2.L1. The Figure 4.3 shows the results. As the results of PILSNU

dataset, a large value of KH has better performance and the higher computa-

tional complexity than a small value of KH.
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Real-time processing

Medians
Quartiles (25% and 75%)
Range of inliers

Medians
Quartiles (25% and 75%)
Range of inliers

Medians
Quartiles (25% and 75%)
Range of inliers

Figure 4.3: Evaluation results with various values of KH on PETS2009 S2.L1.
Regions between lower quartile and upper quartile are colored sky blue. Dashed
lines represent the range of inlier defined by the maximum Whisker length,
which is about ±2.7 std. deviations from the mean value. In the left figure, we
indicate a range of real-time processing by green.

4.3 Score Function Analysis

To examine the influence of each term in the proposed score function upon the

performance of our algorithm, score function was evaluated with term varia-

tions: (i) without the visual similarity score in the equation (3.43), (ii) without

the visibility term in the equation (3.31), (iii) without the reconstruction term

in the equation (3.31), (iv) with a constant score instead of the equation (3.40)

and (3.41), (v) with a constant score instead of the equation (3.39). The Ta-

ble 4.5 provides the results and shows that the most crucial term was the linking

score. With a constant linking score, only the visual similarity score measures

the quality of a linkage between tracklets. However, the visual similarity score
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Table 4.5: Quantitative Results of Score Function Variations

Description MOTA [%] MOTP [%] MT [%] ML [%] FM IDS
proposed 85.7 72.5 90.0 0.0 12 18
w/o visual similarity 85.4 72.2 90.0 0.0 15 19
w/o visibility term 84.9 72.9 90.0 0.0 15 17
w/o reconstruction term 81.4 71.2 90.0 0.0 19 29
constant init/term score 75.7 69.9 80.0 0.0 21 45
constant linking score 74.1 71.8 80.0 0.0 35 52

does not work with tracklets from different cameras; hence, the result is trivial.

Except the linking score, the initiation and termination scores were the most

crucial terms. These scores are deeply connected to the false positives and false

negatives of target tracking. Thus, constant initiation and termination scores

dropped down MT as constant linking scores did. The most uninfluential term

was the visual similarity score; it only improved IDS and FM slightly. The

influence of visibility on the performance was also negligible.

4.4 Solving Scheme Analysis

To verify the effectiveness of our proposed solving scheme, we compared our

scheme to its variation and its baseline scheme. The Figure 4.4 shows the quan-

titative result of each solving schemes. “MHT+BLS” indicates the baseline

solving scheme that used only one MWCP for solving the equation (3.46) with-

out feedback information on the previous global hypotheses. Therefore, we plot

the result of “MHT+BLS” with a single point at KH = 1. “Ours (w/o initial

solution)” indicates the solving scheme that constructed multiple MWCPs with

the feedback information, but used a randomly generated initial solution as the

original BLS. Except the baseline scheme, the maximum iteration number imaxbls

was set to 2,000. For a fair comparison, imaxbls in the baseline scheme was set to

5× 2, 000 = 10, 000. With imaxbls = 10,000, the computation time of the baseline
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Figure 4.4: Quantitative results with various solving schemes. “MHT+BLS” in-
dicates the baseline scheme that solves the equation (3.46), one MWCP with
entire candidate tracks, without utilizing any feedback information on the pre-
vious global hypothesis. “Ours (w/o initial solution)” indicates the proposed
scheme, but without the initial solution decribed in Section 3.4.2. Instead, it
uses a random initial solution as the original BLS.

exceeded that of the other schemes.

As shown in the Figure 4.4, the baseline scheme was superior to the other

schemes when KH = 1. This, however, is trivial because the other schemes solve

smaller graphs than the baseline scheme, signifying that they cannot escape

from the local optimum solution near or around the previous solution. However,

despite solving smaller graph rather than the baseline scheme, performance

increased when KH had a large value. The proposed scheme performed better
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than the baseline scheme when KH = 5 or greater. “Ours (w/o initial solution)”

also achieved a comparable performance to the baseline scheme when KH = 5

or greater. Since the computation time of the proposed scheme is much smaller

than the baseline scheme, it is certain that our problem dividing strategy is

beneficial to performance when the computation time is limited. Compared to

“Ours (w/o initial solution)”, the performance of the proposed solving scheme

improved MOTA by 5.5% and IDS by 61.6% on average. Thus, the effectiveness

of the proposed initial solution is verified. Note that this result shows that the

solutions for consecutive frames are closely related.

4.5 Qualitative Results

In this section, we illustrate qualitative results of our algorithm and discuss

those results. The Figure 4.5, 4.6, and 4.7 show the result of our algorithm

on PETS2009 S2.L1, S2.L2, and S2.L3, respectively. The Figure 4.8 shows our

result on PILSNU dataset. In all figures, each column represents each camera

view, and each row is the input frames with the same frame index. The tracking

result of each pedestrian is depicted by a colored line that ends up at the current

position of the pedestrian. To avoid a complicated visualization, we only draw

the recent 30 locations of each trajectory instead of an entire trajectory. The

numbers at the center of each box indicate a tracking label, which has to be

constant for the same pedestrian. A number at the left top corner of each box

indicates a tracklet ID.

PETS2009 : As shown in the quantitative result, our algorithm produced a

nearly perfect tracking result of S2.L1. In particular, closely standing pedestri-

ans at frame 168 and pedestrians that were missed in a specific view at frame

315 were successfully tracked by our algorithm. Moreover, the pedestrian at
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# 315

# 729

# 791

Figure 4.5: Qualitative result of the proposed algorith on PEST2009 S2.L1.

frame 729 who works backward was also robustly tracked despite his abrupt

trajectory. The pedestrian labeled with 31 at frame 791 had not been detected

several frames before that frame because he was occluded by the telegraph pole

in the middle of the first view. Although there exists a time gap, our algorithm
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# 171

# 068

# 364

# 428

Figure 4.6: Qualitative result of the proposed algorith on PEST2009 S2.L2.

successfully associated his tracklets and reconstructed his trajectory by the in-

terpolation and the smoothing procedure. In the case of S2.L2, our algorithm

missed some pedestrians because they were not detected by a pedestrian de-

tector. When the density of pedestrian increases, the miss rate of a pedestrian

detector also increases. Although our algorithm can handle a short-term occlu-

sion, the performance of our algorithm drops down when there are the pedes-

trians have not been detected for a long period. The performance degradation

is most severe in the result on S2.L3. In S2.L3, many pedestrians were merely

detected during the whole sequence because they stuck together and moved in
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# 157

# 209

# 236

Figure 4.7: Qualitative result of the proposed algorith on PEST2009 S2.L3.

the same direction. Notably, the pedestrians in the middle of the crowd were

not detected since they were occluded by other pedestrians in all views. Thus,

tracks for those pedestrians were not initialized and it caused missing of many

pedestrians in our tracking result. Although our tracking result heavily depends

on the detection input, our algorithm successfully associated tracklets for the

same target through frames and cameras.
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Figure 4.8: Qualitative result of the proposed algorith on PILSNU dataset.

PILSNU : The density of pedestrians in PILSNU is higher than S2.L1 and

S2.L2, but lower than S2.L3. The real challenging point of this dataset is that

the pedestrians stand aslant at the verge of views. When the pedestrian stands

aslant, the bottom centers of detection box bounding the pedestrian badly

align with the real grounding points of the pedestrian. This bad alignment

problem induces the performance degradation since it increases the ambiguity of

data association. However, our algorithm properly associated the tracklets and

generated the satisfying results. As shown in the Table 4.4, our algorithm found

more trajectories than the state-of-the-art method. Although our algorithm
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produced more IDS than the comparing method, ours is more proper to the

practical applications since the lost of the whole trajectory costs more than the

occurring of IDS.
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Chapter 5

Concluding Remarks

5.1 Conclusions

In this dissertation, we presented an online multiple camera multiple target

tracking (MCMTT) algorithm based on the multiple hypothesis tracking (MHT)

framework. Our MHT framework was realized by MWCP for the association of

input detections through frames and cameras to find 3D trajectories of multi-

ple objects until the current frame. Through the dissertation, our goal was to

achieve a robust tracking performance with a small amount of computations.

The first trial of reducing the computational load was generating and using

a tracklet as a unit of associations. The use of tracklets instead of detections

to generate candidate tracks prevents the generation of many absurd tracks

while minimizing the performance drop down. We introduced our own tracklet

generation scheme that rapidly produces highly reliable tracklets.

To efficiently solve MWCP in an online manner, we proposed an online

scheme which dynamically formates multiple small-sized MWCPs by utilizing
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the previous tracking result. The solution spaces of those MWCPs are much

smaller than the original MWCP considering the entire tracks at a time. Thus,

the proposed scheme significantly reduced the time to find reliable tracking so-

lutions. Moreover, the proposed scheme also found better solutions than solving

MWCP with entire tracks because it can explore more various solutions under

a limited solving time. To resolve the NP-hard issue in solving each MWCP,

we applied a heuristic solver named BLS to solving our MWCP with a proper

adaptation. Owing to our adaptation, BLS found near-optimal solutions within

a few iterations.

We also proposed the track pruning scheme utilizing the previous solutions.

In our pruning scheme, an approximated global track probability (AGTP) of

each track is calculated and tracks are pruned according to their AGTP. Because

AGTP represents the quality of each track with respect to the overall track-

ing situation instead of an individual track, we could prevent the performance

degradation from a hard track pruning.

As shown in the experiments, our online MCMTT algorithm showed the

state-of-the-art performance on the public benchmark dataset, and also showed

the capability of real-time processing. With our own dataset, we carefully ex-

amined the effect of our solving scheme, an adaptation of BLS, and each term in

our score function on the tracking performance. As a result, they all contributed

to the performance of our method.

5.2 Future Works

Even though we proposed the online MCMTT algorithm showing a state-of-the-

art performance, there are still many future works to improve the performance

of our algorithm. The most conspicuous weakness of the proposed algorithm is

on the tedious parameter tuning. Our algorithm has a number of parameters
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and some of them severely affect the overall performance. However, all param-

eters were manually set by intuitions and tuned with the dataset. Recently, the

opening researches to learn of data association in the tracking problem has been

proposed [96,97]. They adopt deep learning techniques such as a convolutional

neural network and a recurrent neural network. The important issue of the deep

learning technique is obtaining a sufficient number of training dataset. For this

issue, an approach that makes the synthetic dataset with 3D CAD program [98]

would be a good participant. Another future work issue is related with a vi-

sual cue for temporal association for which we only utilized a color histogram.

Nowadays, many robust and efficient appearance modeling techniques have been

proposed ant they can be better alternatives of our color histogram-based vi-

sual feature. Owing to deep learning, there is much of possibility about utilizing

appearance information into inter-camera association (i.e., spatial association).

Our most urgent future work might be enhancing the utility of advanced ap-

pearance modeling techniques in our algorithm. Another future work can be

an issue that is related to the diversity of global hypotheses. We empirically

showed that our solving scheme rapidly finds better solutions than existing

works. That means our algorithm searches more various solutions than other

algorithms. However, we have not examined the diversity among founded solu-

tions. It might be beneficial for finding a better solving strategy to explicitly

measure the diversity of resulting solutions. It can be also a good direction for

reducing the computation time to monitor the population of pedestrians at the

processing time. Recently, many reliable people counting methods have been

proposed. Instead of generating and maintaining all possible tracks from input

measurements, selecting tracks in a small number, which is decided by the peo-

ple counting method, surely reduce the computational load. Applying parallel

processing to our algorithm is an another issue for our future work. Nowa-
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days, many excellent hardwares such as GPU have been invented for parallel

processing. When an algorithm is properly implemented for those hardwares,

a computation time is remarkably smaller than that of serial processing. Our

global hypothesis generation scheme has a suitable structure for parallel pro-

cessing because it solves multiple MWCP independently. Thus, to increase the

practical value of our algorithm, it is trivial to provide an implement of our al-

gorithm with parallel processing techniques such as multi-threading. As shown

in the experiments, the performance of an object detector severely affects the

overall tracking performance. In particular, pedestrians are frequently missed

by an object detector when a scene is crowded. That is, low recall of an object

detector is a bottleneck of overall tracking performance. Therefore, studying

a pedestrian detection in crowded scenes is also a good future work even it is

beyond the tracking algorithm.
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초록

본 학위 논문에서는 시야각이 겹치는 여러 대의 카메라를 이용하여 실시간으로

온라인하게 다중 물체를 추적하는 알고리즘을 제안한다. 영상을 이용한 다중 물체

추적은 그 실용적 효용성 때문에 지난 수십 년 동안 매우 집중적으로 연구되어 왔

으며 특히, 한 대의 카메라로는 해결하기 어려운 물체 가려짐이나 미탐지 문제의

해결 방안으로 시야각이 겹치는 다중 카메라를 사용하는 방식이 제안되었다. 허나

다중카메라다중물체추적방식은단일카메라를사용하는방식에비하여문제의

복잡도가 높기 때문에 최근에 발표된 대부분의 연구들은 온라인 방식이 아닌 일괄

처리방식에 기반하고 있다. 일괄 처리 방식은 입력 영상의 처음부터 마지막까지

모두활용하여물체를추적하기때문에,그성능이온라인방식보다훨씬뛰어나지

만 즉각적인 결과를 요구하는 다양한 실용 분야에서는 사용하기 어렵다는 단점이

있다. 그러므로 본 학위 논문의 목적은 적은 계산량에도 불구하고 일괄 처리 방식

을 기반으로 하는 최신 다중 카메라 다중 물체 추적 알고리즘에 버금가는 성능을

유지하는 온라인 다중 카메라 다중 물체 추적 알고리즘을 제안하는 것이다.

제안하는 알고리즘은 다중 카메라로부터 탐지된 입력 디텍션(detection)들 사

이의 가능한 모든 조합에 대해 트랙 가정(track hypothesis) (혹은 줄여서 ‘트랙

(track)’)을 생성하고 이 중에서 현재의 추적 상황을 가장 잘 표현하는 트랙들을

선택하는 방식을 취한다. 이 때, 어떠한 트랙이 좋은 트랙인지를 판별하기 위해

모든 트랙들에 대해 우리가 제안하는 트랙 스코어(score)를 계산하는데, 이럴 경우

추적 결과를 찾는 것은 결국 합산 스코어가 가장 큰 트랙의 집합을 구하는 것이다.

우리는생성된트랙중에서합산스코어가가장큰트랙집합을구하는문제를최대

가중 클릭 문제(The maximum weighted clique problem)으로 변환하여 풀었다.

최대 가중 클릭 문제는 변수들 간 서로 공존/불공존 관계가 있는 조합문제를 풀

때 많이 차용되는 문제 형식이다. 최대 가중 클릭 문제는 잘 알려진 NP-Complete
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문제이기 때문에 우리의 추적 문제를 최대 가중 클릭 문제로 변환하였을 경우,

이를 풀기 위해 소요되는 최대 계산 시간은 트랙의 총 수에 지수적으로 비례한다.

추적이 진행됨에 따라 생성되는 트랙의 개수 역시 지수적으로 증가하기 때문에

이러한 상황에서 최대 가중 클릭 문제를 푸는 것은 매우 어렵다.

우리는이렇게폭발하는계산량을완화하기위해매프레임적은수의트랙들로

이루어진최대가중클릭문제들의동적으로생성하는방법을제시한다.우리는연

속되는두프레임사이추적대상들의움직임이급격하지않기때문에추적결과들

역시유사할것이라고가정하였다.이러한가정에기반하여,만약이전프레임에서

어떠한 추적 결과가 추적 대상들을 제대로 잘 표현했다면 그 다음 프레임에서는

해당 추적 결과에 포함된 트랙과, 그로부터 파생된 트랙들 외 몇몇 유관 트랙들만

이 제대로되 추적 결과에 포함될 수 있다는 결론을 얻을 수 있다. 이러한 정보를

이용하면, 매 프레임 해답 탐색의 영역을 대폴 줄일 수 있다. 허나, 이렇게 하나의

정답만을 계속하여 전달할 경우, 중간에 잘못된 추적 결과를 채택한 이 후, 이로

부터 복원할 수 있는 방법이 요원하다. 우리는 이러한 문제를 해결하기 위해 매

프레임 찾은 여러 개의 추적 결과 중, 가장 좋은 최대 K개의 추적 결과를 다음 프

레임으로 전달하였다. 전달받은 프레임에서는 K개의 추적 결과 각각을 이용하여

최대 가중 클릭 문제들을 생성하고, 각 문제에서 또다시 복수 개의 추적 결과를

탐색한다. 우리가 제안하는 알고리즘은 위에서 설명한 과정을 추적이 종료되는

시점까지 반복하여 수행한다. 이러한 방식을 사용하면 여러 개의 최대 가중 클릭

문제를 동시에 풀어야 함에도 하나의 큰 최대 가중 클릭 문제를 푸는 것에 비해

소요되는 연산 시간이 적어지는데, 이는 앞 서 언급한 바와 같이 최대 가중 클릭

문제의 전체 연산량이 한 번에 고려되는 트랙의 개수에 지수적으로 비례하기 때

문이다. 뿐만 아니라, 우리가 제안하는 알고리즘은 제한된 시간에 더 많은 탐색

영역을 고려할 수 있기 때문에 성능 면에서도 우월하다.

비록 최대 가중 클릭 문제를 동적으로 생성하는 방법을 사용한다 하더라도, 각

문제를 푸는 것은 여전히 많은 계산량을 요구한다. 우리는 이러한 계산량 문제를

보다 완화하기 위해 세 가지 추가적인 전략을 사용하였다. 첫째로, 트랙을 생성할
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시, 디텍션들을 사용하는 것 대신에 짧은 구간 신뢰성 높은 경로 조각인 트랙렛

(tracklet)을 사용하였다. 이를 통해 실존 가능성이 많은 트랙들만을 생성하여, 결

과적으로 후보 트랙의 개수를 줄일 수 있다. 두 번째로, 각각의 최대 가중 클릭

문제를 정확하게 풀지 않고 발견적 탐색 방법 중 하나인 Breakout Local Search

(BLS) 알고리즘을 기용하였다. BLS를 이용하면 짧은 시간 안에 다수의 좋은 해답

들을 효과적으로 구할 수 있다. 마지막으로, K개의 최선 추적 결과들을 이용하여

각 트랙이 다른 트랙들과의 관계에서 얼마나 좋은 트랙인지를 확률로써 측정하고,

이를 반영하여 트랙들을 가지치기하였다. 이러한 확률은 보다 적합한 가지치기를

보장해준다.

수준 기표가 되는 실험 데이터(benchmark dataset)에서 진행한 실험에서는

우리가 제안하는 알고리즘이 최신의 추적 성능을 달성하였다. 특히, 제안하는 알

고리즘은 온라인하게 추적을 진행함에도 불구하고 일괄 처리에 기반을 둔 최신

다중 카메라 다중 물체 추적 알고리즘에 비견되는 성능을 보여주었다. 더욱이, 제

안하는 알고리즘은 매우 빠른 시간 내에 만족할 만한 추적 결과를 도출하였기에

실시간 성능을 가짐을 확인하였다. 우리는 제안하는 최대 가중 클릭 문제의 동적

생성법이실제로추적성능및계산속도에어떠한영향을미치는지도자체비교를

통해 확인하였고, 특정 숫자 이상의 K 값을 사용하였을 때, 모든 트랙을 고려하는

하나의 최대 가중 클릭 문제를 푸는 것에 비하여 더 좋은 성능을 훨씬 빠른 속도로

도출하는 것을 확인하였다.

주요어: 영상 추적, 다중 카메라 다중 물체 추적, 다중 가정 추적, 최대 가중 클릭

문제, 온라인 추적, 실시간 추적

학번: 2009-20848
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