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Abstract

Establishing image feature correspondences is fundamental problem in computer

vision and machine learning research fields. Myriad of graph matching algorithms

have been proposed to tackle this problem by regarding correspondence problem

as a graph matching problem. However, the graph matching problem is challenging

since there are various types of noises in real world scenario; e.g., non-rigid motion,

view-point change, and background clutter. The objective of this dissertation is

to propose robust graph matching algorithms for feature correspondence task in

computer vision and to investigate an effective graph matching strategy.

For the purpose, at first, two robust simulation based graph matching algorithms

are introduced: the one is based on Random Walks simulation and the other is based

on Markov Chain Monte Carlo sampling simulation. Secondly, two different graph

matching formulations and their transformal relation are studied since equivalence

between two formulations are not well studied in graph matching fields. It is demon-

strated that conventional graph matching algorithms can solve both types of formu-

lations by proposing conversion principle between two formulations. Finally, these

whole statements are extended into hypergraph matching problem by introducing

two robust hypergraph matching algorithms which are based on Random Walks and

Markov Chain Monte Carlo, by relating two different hypergraph matching formu-

lations, and by reinterpreting previous hypergraph matching algorithms into their



ii

counterpart formulations. Throughout chapters in this dissertation, comparative and

extensive experiments verify characteristics of formulations, transformal relations,

and algorithms. Synthetic graph matching problems as well as real image feature

correspondence problems are performed in various and severe noise conditions.

Key words: Graph Matching, Hypergraph Matching, Graph Matching Formula-

tions, Markov chain Monte Carlo, Data-Driven, Random Walks

Student number: 2008-20943
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Chapter 1

Introduction

1.1 Graph Matching Problem

1.1.1 Graph Matching for Computer Vision

Graph matching is one of most widely used tools in computer vision, machine learn-

ing, and pattern recognition [3] research area. It is also essential in various computer

vision problems, such as in object recognition [4, 5], wide-baseline stereo [6], feature

tracking [7], and shape matching [8, 9]. In particular, it has been used for establish-

ing correspondences between two sets of features [1, 2] because a graphical model

can naturally encode features and their relations into node and edge attributes. As

widely known, the correspondence problem is effectively formulated as graph match-

ing [9, 10, 1], where each graph is constructed with nodes that represent the features

and edges that describe the relations between the features. Correspondences are es-

tablished by determining a mapping between the two graphs which best preserves at-

tributes of nodes and edges (see Fig. 1.1(a)). Unlike popular matching techniques for

rigid motion such as RANSAC [11] and the iterative closest points (ICP) [12], graph

1
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matching effectively handles non-rigid deformation with appearance changes, and

finds reliable matches by minimizing distortion between corresponding features and

their relations. This strong advantage enables graph matching to handle challenging

correspondence problems in real-world images. Unlike other popular matching meth-

ods that are based on appearances [13, 14] or strong parametric constraints [15], the

graph matching technique effectively handles both geometric distortion as well as

appearance variation [9, 1]. The recent resurgence of graph matching in computer

vision [10, 16, 17, 1] has settled a general formulation of quadratic assignment that

explicitly considers both local appearances and pairwise geometric relations.

1.1.2 Graph Matching Formulation

The goal of graph matching is to find the best correspondence between two graphs,

G = {V, E ,A} and G′ = {V ′, E ′,A′}, where V is a set of nodes and E is a set of edges.

We denote the node and edge attributes with Aii ∈ Rn+ (on diagonal elements) and

Aij ∈ Rn×n+ (on off-diagonal elements), respectively, where n = |V| is the number of

nodes, Aii is the attribute of i-th node vi ∈ V and Aij is the attribute of directed

edge eij ∈ E .

We analyze two representative formulations in graph matching, i.e. adjacency-

based and affinity-based representations, and show their transformational relations

into equivalent counterparts. We revisit these two families of graph matching for-

mulations, analyze their relations, and propose efficient graph matching strategies.

We propose the efficient way to solve large size graph matching problem by modi-

fying previously introduced matching techniques. In general, the problem of graph

matching belongs to the quadratic assignment problem (QAP), and a myriad of

graph matching algorithms have been proposed with different types of formula-
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tions and characteristics in the literature [3, 28, 29]. In this dissertation, we classify

the most popular families of recent graph matching formulations into two types of

formulations: affinity-based [18, 19, 10, 16, 20, 21, 1, 24, 30] and adjacency-based

[31, 32, 33, 34, 23, 25] formulations. The affinity-based formulation takes a given

affinity score for each candidate correspondence between two graphs as its input,

and adopts any predefined scores for node and edge correspondences. The adjacency-

based formulation only takes an attribute adjacency value for nodes and edges on

each graph. A affinity score for a node correspondence or an edge correspondence

between two graphs is computed on-the-fly using those attributes in the formulation.

In this sense, the affinity-based formulation is more general than the adjacency-based

one. At the cost of losing its generality, however, the adjacency-based formulation

obtains a substantial advantage in optimization efficiency. While these two types

of formulations have existed together for a few decades and cover most of recent

state-of-the-art graph matching methods, a comparative analysis between them has

been rarely done in the literature.

Adjacency-based formulation: Without loss of generality, we assume n ≤ n′.

Adjacency-based formulation finds the optimal mapping X∗, which minimizes the

difference between corresponding node and edge attributes

X∗ = argmin
X

∣∣∣∣A−XA′Xᵀ
∣∣∣∣2
F
, (1.1)

where X ∈ Π = {X|X ∈ {0, 1}n×n′ ,Xᵀ1n ≤ 1n′ ,X1n′ = 1n} is constrained to be a

one-to-one mapping. Simple linear algebra shows that the optimization problem in

Eq.(1.1) is equivalent to the following maximization problem:

X∗ = argmax
X

Tr
(
A(XA′Xᵀ)ᵀ

)
(1.2)

Affinity-based formulation: Affinity-based formulation maximizes sum of
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(a) ordinary graph matching

(b) hypergraph matching

Figure 1.1: Examples of graph and hypergraph matching. (a) Two ordinary (second order) graphs

G and G′ with 4 nodes and an example of their matching. Corresponding attributes of 4 nodes

and 6 edges should be similar for the best matching. (b) Two hypergraphs Gh and G′h with 4

nodes and an example of their matching. Note that e1 connects v1, v2, and v4 simultaneously, and

so on. Corresponding attributes of 4 nodes ({v1, v2, v3, v4} and {v′1, v′2, v′3, v′4}) and 4 hyperedges

({e1, e2, e3, e4} and {e′1, e′2, e′3, e′4}) should be similar for the best matching.



1.1. GRAPH MATCHING PROBLEM 5

affinity scores between corresponding graph attributes. It casts the graph matching

problem into the following optimization problem:

X∗ = argmax
X

∑
(i,j)∈E
(a,b)∈E ′

Xi,aXj,bf(Ai,j ,A
′
a,b) (1.3)

where the affinity function f(·, ·) measures similarity between two attributes. For

node indices, i, j ∈ V, we slightly abuse the notation ia to denote (i+ (a− 1)n)-th

index, which corresponds to the (i, a)-component of X. Since it is assumed that f(·, ·)

is an arbitrary affinity function, affinity-based formulation can solve more general

problems. We can encode affinity score using the affinity matrix:

Mia,jb = f(Ai,j ,A
′
a,b) (1.4)

Then, Eq.(1.3) is equivalent to the following optimization problem:

x∗ = argmax
x

(xᵀMx), s.t. x = vec(X),X ∈ Π (1.5)

1.1.3 Extension to Hypergraph Matching

In the hypergraph matching problem, hyperedges naturally embed high-order re-

lations of features while ordinary graphs can exploit only second order relations.

In order to exploit high-order information beyond pairwise relations, several hyper-

graph matching algorithms are introduced which are based on high-order assignment

formulation [20, 35]. The existing approaches, however, still suffer from severe dis-

tortion of the graphs (e.g., deformation on graph attributes or existence of outliers

nodes). Robustness to such distortion is of particular importance in a practical

sense because real-world graph matching problems are widely exposed to deforma-

tion and outliers. For example, general image matching usually deals with deformed
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shapes and background features. This line of inquiry has further extended to hy-

pergraph matching techniques, which overcome the limitation of pairwise relations

and exploit high-order information [20, 35, 36]. There are several researches which

focus on hypergraph matching problem [20, 35, 36, 2, 37]. Hyperedges are simulta-

neously connecting more than two nodes on hypergrphs, thus, more sophisticated

and robust attributes can be embedded into attribute tensors (see Fig. 1.1(b)). To

our best knowledge, this is the first work which related affinity formulation and

adjacency formulation on hypergraph matching problem. Furthermore, we derive

transformation rule of two formulations and reinterpret conventional hypergraph

matching algorithms for the other type of formulation. Finally, performances of con-

ventional approaches in both formulation are thoroughly compared in experiment

section. Recently, various works are published to address hypergraph matching prob-

lem [20, 35, 36, 2]. Hypergraphs can embed more sophisticated information on their

hyperedges, therefore, produce more robust performances on severe noises. In the

proposed hypergraph matching formulation, multiple tensors of any orders can be in-

tegrated thus the formulation can exploit multiple types of feature relations. Instead

of using the attribute A which is in the form of the matrix, we represent hyperedge

attributes by employing tensor T ∈ Rn×n×n+ . Then we have two hypergraphs to be

matched; Gh = {V, Eh,T} and G′h = {V ′, E ′h,T′}.

1.2 Outline of Dissertation

The main goal of this dissertation can be summarized in three folds. First, two novel

and robust graph and hypergraph matching algorithms are introduced. One is ran-

dom walks based graph matching algorithm and the other is based on stochastic
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sampling technique. Second, two different graph matching formulations are intro-

duces and their relation is verified. Finally, before-mentioned two algorithms, two

different formulations, and their relation are extended to hypergraph matching prob-

lem.

Chapter 2 proposes random walks based graph matching algorithm [1] and ex-

tends the algorithm for hypergraph matching problem [2]. The association graph

is proposed on which nodes represent possible candidate matches between origi-

nal two graphs, then random walks simulation is applied to find a set of nodes

which are supporting each other most. The proposed random walks based algo-

rithm adopt personalized jump scheme by which the 1-to-1 matching constraints are

effectively applied during the simulation. Thorough experiments compares various

graph matching algorithms on various noise conditions and demonstrate that the

proposed algorithm shows state-of-the-art performance. Chapter 3 proposes Markov

Chain Monte Carlo (MCMC) based graph and hypergraph matching algorithm [22].

MCMC theoretically guarantees that distribution of samples convergences to given

target distribution. The proposed MCMC algorithm finds the state with the highest

target energy value, therefore, the algorithm can maximize the objective function of

the graph matching problem. In chapter 4, adjacency based formulation and affinity

based formulation are introduced and their transformal relation is verified. Advan-

tages and disadvantages of two formulations are discussed and reinterpretations of

representative graph matching algorithms are introduced. Throughout Chapter 2–

4, every algorithm, graph matching basic formulations, and transformal relation is

extended to hypergraph matching problem. Random walks based hypergraph match-

ing algorithm and MCMC based hypergraph matching algorithm are introduced in

Chapter 2 and 3, respectively. Pros and cons between adjacency and affinity based
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formulations for hypergraph matching are discussed in Chapter 4.



Chapter 2

Graph Matching via Random

Walks

2.1 Introduction

Establishing reasonable correspondences between two sets of features is one of the

critical issues in machine learning and pattern recognition research fields. The cor-

respondence problem can effectively be formulated as graph matching [9, 10, 1],

where graph nodes represent the features and graph edges represent the relations

between these nodes. After constructing two graphs, correspondences are established

by finding a mapping between the two graphs which best preserves attributes be-

tween nodes and edges. Various approaches [18, 19, 10, 16, 21] are introduced to

solve this graph matching problem, however, they still suffers on severe deformation

and outlier noise conditions. This graph matching problem is extended to hyper-

graph matching problem, which overcome the limitation of pairwise relations and

exploit high-order relation of node or features [20, 35, 36]. The existing hypergraph

9
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matching approaches, however, still have trouble with severe distortion of the graphs

(e.g., deformation noise of graph attributes or existence of outliers graphs). Acquir-

ing robustness to such various types of noises is critical issue in a practical sense

since graph matching problems are with more noise in real-world scenario [1].

This chapter introduces a robust graph matching algorithm which is based on the

Random Walks (RW) model, and generalizes the algorithm for hypergraph match-

ing with any order. The proposed RW-based algorithm adopts reweighting jumps for

enforcing the one-to-one matching constraints which is critical issue in graph match-

ing problem and achieves a noise-robust performance since RW algorithm updates

confidence scores in probabilistic manner.

Three contributions are addressed in this chapter. First, it establishes a novel RW

view on graph and hypergraph matching and provides bases for the RW interpreta-

tions of other methods [10, 16, 18, 35]. Second, in this view, a noise-robust graph

and hypergraph matching algorithm that is inspired by the personalization strategy

of web ranking [38]. Third, the quantitative comparisons are extensively performed

with several state-of-the-art graph matching [10, 16, 21, 18, 19] and hypergraph

matching algorithms [20, 35, 36]. The experiments not only show the performance

of the proposed algorithm but also facilitates a comprehensive study of recent graph

and hypergraph matching algorithms.

2.1.1 Related Works

In general, graph matching problem is proven to be NP-hard, therefore, researchers

have tried to tackle this problem by proposing various relaxed approximations [3].

In [39], the graph matching problem is formulated as a constrained integer quadratic

programming (IQP), however, the complexity of its optimization is non-polynomial.
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Graduated Assignment (GAGM) [18] is proposed by Gold and Rangarajan; GAGM

solves the graph matching problem by a scheduled annealing technique. Successive

Projection (SPGM) [19] iteratively projects the current solution to approximation on

the convex solution space of the graph matching constraints. Leordeanu and Hebert

proposed the Spectral Matching (SM) [10]. They introduce a spectral relaxation of

the graph matching formulation while Cour et al.extend this Spectral Matching re-

laxation for satisfying the Affine Constraint (SMAC) [16]. Integer Projected Fixed

Point (IPFP) [21] algorithm is proposed by Leordeanu et al.. IPFP iteratively op-

timizes the IQP graph matching problem in the discrete solution space. There are

several approaches [20, 35, 36] which extend the ordinary graph matching to hyper-

graph matching problem. Hyper-Graph Matching (HGM) [20] is proposed by Zass

and Shashua. HGM introduces probabilistic interpretation of graph and hypergraph

matching by relating Kronecker product and the hypergraph matching formulation.

Tensor Matching (TM) [35] is introduced by Duchenne et al., and can be interpreted

as an extension of SM for hypergraph matching. Chertok and Keller propose Sin-

gular Value Decomposition based hypergraph matching algorithm (SVD) [36] which

calculates the rank-1 approximation by approximated SVD of the given affinity ten-

sor.

The proposed RW graph matching algorithm in this chapter adopts the IQP

formulation of [18, 10, 16, 22] and its extensions [20, 35, 36]. Our probabilistic inter-

pretation follows an RW view of [40, 41]. Conventional RW-based methods [42, 43]

have limitation that they adopt RW to calculate a signature of each graph and their

objective formulations are not generalized for widely used IQP. However, the pro-

posed algorithm introduces an association graph and interprets the graph matching

problem as a node selection problem. In addition, the matching constraints are sat-
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isfied by adopting the personalized jumps [38] thus noise-robust graph matching

performances are achieved in various conditions.

2.2 Problem Formulation

In this chapter, we follow the formulations of graph and hypergraph matching

from [1, 2]. The goal of graph or hypergraph matching problem is to find the best

correspondences between two attributed graphs (or hypergraphs) G = {V, E ,A} and

G′ = {V ′, E ′,A′}, where V, E , and A represent a set of nodes, a set the edges (or hy-

peredges), and corresponding attributes, respectively. A solution can be represented

by an assignment matrix X ∈ {0, 1}n×n
′
, where n and n′ are the numbers of nodes

in G and G′, respectively. An element the assignment matrix Xi,a = 1 when vi ∈ V

matches to v′a ∈ V ′ and Xi,a = 0 otherwise. In this thesis, column-wise vectorized

replica of X is represented by x ∈ {0, 1}nn′ . Graph matching problems can be math-

ematically formulated by finding the assignment vector (or assignment matrix) x∗

which maximizes an objective score function S(x), as the following equation.

x∗ = argmax
x

S(x)

s.t. X1n′ � 1n, Xᵀ1n � 1n′

(2.1)

where the constraints of Eq.(2.1) indicate the one-to-one matching between G and

G′ and make X an binary assignment matrix.

2.2.1 Graph Matching Formulation

In the ordinary graph G, node vi ∈ V and edge eij ∈ E have their associated node

attribute Aii (on the diagonal elements of A) and edge attribute Aij , respectively.
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Graph matching between G and G′ is to find node correspondences, which best pre-

serve the attribute relations (see Fig. 1.1(a)). The similarity function f(·, ·) measures

compatibility score between two attributes. For example, fv(Ai,A
′
a) measures node

similarity between vi and va and fe(Aij ,A
′
ab) measures edge similarity between eij

and e′ab.

The affinity matrix M is introduced which embeds similarity scores from fv(·)

and fe(·). A non-diagonal element Mia,jb = fe(Aij ,A
′
ab) contains a pairwise simi-

larity of two correspondences (vi, v
′
a) and (vj , v

′
b), whereas a diagonal term Mia,ia =

fv(Ai,A
′
a) represents a unary similarity of a correspondence (vi, v

′
a). With the as-

signment vector x and basic calculations of linear algebra, the objective score func-

tion that accumulates all the relevant similarity values is defined as the following:

S(x) = xᵀMx. (2.2)

2.2.2 Hypergraphs Matching Formulation

Several hypergraph matching algorithms [20, 35, 36] are introduced to overcome the

limitations of second order similarity measure by embedding high-order similarity

information. Hyperedges in a hypergraph are able to connect more than two nodes

simultaneously (see Fig. 1.1(b)). Although all hyperedges in Fig. 1.1(b) are with third

order, there is no limitation on number of connected node for each hyperedge. Same

as the ordinary graph matching, the goal of hypergraph matching is to establish

node correspondences with most similar corresponding high-order attributes.

In this subsection, hypergraph matching formulation is introduced by follow-

ing conventions from [2]. The quadratic formulation in the previous subsection can

be generalized to high-order formulation for hypergraph matching. The kth-order
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similarity function fk is introduced as a generalization of f2 and f1 by defining

fk(Tp1,··· ,pk ,T
′
q1,··· ,qk) measures the similarity between two comparing high-order at-

tributes Tp1,··· ,pk and T′q1,··· ,qk which are attributes of kth-order hyperedges ep1,··· ,pk

and e′q1,··· ,qk . For a simple representation, we define an instance of graph matching

M as M ⊂ V × V ′. Then, without loss of generality, fk(Tp1,··· ,pk ,T
′
q1,··· ,qk) can be

alternatively represented using the correspondences mw1 = (vp1 , v
′
q1), · · · ,mwk =

(vpk , v
′
qk

), as follows [2]:

fk(mw1 , · · · ,mwk)

=

 fk(Tp1,··· ,pk ,T
′
q1,··· ,qk) if ep1,··· ,pk ∈ E and e′q1,··· ,qk ∈ E

′

0 otherwise
(2.3)

which means that the similarity of the k-tuple of correspondences is equivalent to

the similarity of the two kth-order hyperedges, if both of the hyperedges ep1,··· ,pk

and e′q1,··· ,qk exist. Note that fk(mw1 , · · · ,mwk) is an invariant measure under any

permutation of {mw1 , · · · ,mwk}.

For a given hypergraph matching instanceM, the generalized hypergraph match-

ing score function can be formulated as the following [2]:

S(M) = λδ
∑

(mw1 ,··· ,mwδ−1
,mwδ

)

fδ(mw1 , · · · ,mwδ−1
,mwδ)

+ λδ−1
∑

(mw1 ,··· ,mwδ−1
)

fδ−1(mw1 , · · · ,mwδ−1
)

· · ·

+ λ1
∑

(mw1 )

f1(mw1)

(2.4)

where (mw1 , · · · ,mwk) represents a set of k correspondences from M, and λk is

the weight of the kth-order similarity measure. The maximum order δ denotes the

highest order among all the hyperedges involved in hypergraph matching.
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Following the tensor representation [35], kth-order similarity function can be

embedded into the k-dimensional affinity tensor H(k) as the following:

H
(k)
w1,··· ,wk = fk(mw1 , · · · ,mwk). (2.5)

Here, the superscript of H is the dimension of the tensor, and the subscript of H is its

element index. Since fk is invariant under any permutation, H(k) naturally becomes

a super-symmetric tensor, (i.e., invariant under any permutation of {w1, · · · , wk}).

Using an assignment vector x, the score function of Eq.(2.4) is then expressed as

follows;

S(x) = λδ
∑

(w1,··· ,wδ−1,wδ)

H
(δ)
w1,··· ,wδ−1,wδxw1 · · ·xwδ−1

xwδ

+ λδ−1
∑

(w1,··· ,wδ−1)

H
(δ−1)
w1,··· ,wδ−1

xw1 · · ·xwδ−1

· · ·

+ λ1
∑
(w1)

H(1)
w1

xw1

(2.6)

where xwk represents a single correspondence mwk ∈M. The score function denotes

the summation of all similarity values related to the assignment vector x. Using the

n-mode tensor multiplication [35, 44], Eq.(2.6) can be reduced to a simple form:

S(x) =

δ∑
k=1

λkH
(k) ×1 x · · · ×k x

=

δ∑
k=1

λkH
(k) ×1:k x.

(2.7)

where×k means the multiplication along with the k-th dimension. In this chapter, for

simple representation, we define the following: H(k)×ax×a+1x · · ·×bx = H(k)×a:bx.

Eq.(2.7) extends and generalizes Eq.(2.2) for arbitrary orders. Given δ = 2, Eq.(2.7)
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is reduced to Eq.(2.2). Combined with Eq.(2.1), the score function of Eq.(2.7) con-

sists in a generalized hypergraph matching formulation, which effectively embeds

high-level constraints or invariances. In the following, the matching of conventional

graphs is presented in Section 2.3, and it is then generalized for hypergraphs in

Section 2.4.

2.3 Graph Matching via Random Walks

By constructing an association graph G× = (V×, E×,A×), the problem of graph

matching between two ordinary graphs G and G′ can be interpreted in an RW

view [1]. Given the affinity matrix M, each candidate correspondence (vi, v
′
a) ∈ V×V ′

is considered as a node via ∈ V×, and its associated affinity score Mia,jb is consid-

ered as the attribute A×ia,jb ∈ A× of the edge e×ia,jb ∈ E
× (see Fig. 2.1) [1]. With

the definition of the association graph, graph matching between G and G′ can be

interpreted as node selection problem on G×. To solve this problem, the statistics of

the RW is adopted; this is widely used technique for calculating the ranking of cites

in Web [40, 41].

2.3.1 Random Walks for Graph Matching

In conventional RW simulation, random walker on a single node travels to one of

its connected node with the probability that is proportional to its connected edge

weight [45]. Given an edge weight matrix W, row-stochastic transition matrix P can

be derived by P = D−1W, where D is diagonal matrix with all node degrees. Then,

with the current RW distribution probability x(t), RW distribution probability can

be simulated according to the following update rule: x(t+1)ᵀ = x(t)ᵀP. To apply
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Figure 2.1: An example of graph matching and association graph. For given two graphs G and

G′ with two nodes, there are four possible candidate matches. Thus, the association graph G×

becomes a single graph with four nodes, in which each edge encodes the pairwise compatibility of

two candidate correspondences.

Figure 2.2: The augmented association graph for RW. The association graph Grw for the affinity-

preserving RW has an absorbing node that can soak the random walkers from every node. Note

that random walker on vabs is not able to travel to the other node.
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RW on the graph matching problem, the affinity matrix M is used as the weight

matrix W. Therefore, the resulting RW transition matrix is P = D−1M, where

Di,i =
∑

j Mj,i. By applying RW using transition matrix P which is row-stochastic

matrix, random walker on any node has outgoing probabilities which are sum to one;

This phenomenon is so-called internet democracy [41, 46, 1, 2]. This conventional

stochastic normalization, however, has a critical drawback for solving graph match-

ing problems. In association graph G× from Fig. 2.1, for example, there are two

correct nodes (candidate matches in the original problem) as well as two incorrect

nodes. However, all four nodes have the same amount of outgoing probability and

outgoing probabilities from incorrect nodes may cause errors in RW simulation.

To overcome this limitation, an absorbing node vabs is augmented to the associ-

ation graph G× which is defined as Grw in Fig. 2.2. The augmented absorbing node

vabs is designed to soak probability from the node vi with the amount of dmax − di

while di = Di,i and dmax = maxi di. Note that a random walker in vabs is unable

to move toward the other node [47]. A correct node in Grw, for example, has higher

chance to have higher edge weights with other correct nodes, therefore, its corre-

sponding degree di should be with higher value which means that a random walker

on vi has smaller chance to move toward vabs. An incorrect node, on the other hand,

may be with smaller di, therefore, a random walker easily goes to vabs. This is called

affinity-preserving RW and transition matrix P is derived as the following [1, 2]:

P =

M/dmax 1− d/dmax

0ᵀ 1

 ,

(
x(t+1)ᵀ x

(t+1)
abs

)
=

(
x(t)ᵀ x

(t)
abs

)
P, (2.8)

where the degree vector is defined as dia = dia, 1 and 0 represents all 1s and 0s,
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respectively. In the proposed RW simulation, any random walker eventually gets

stuck in the absorbing node vabs which makes the stationary distribution as (0ᵀ 1)ᵀ.

Therefore, it is required to define quasi-stationary distribution [1, 2] to achieve

reasonable probability distribution of x for the graph matching problem.

x̄(t) =
x(t)

1− x(t)abs
, (2.9)

where x is quasi-stationary if x̄(t+1) = x̄(t).

The stationary distribution x of the affinity-preserving RW can be efficiently

calculated by using simple power iteration method. However, x should be an as-

signment vector to be a solution of graph matching problem. One way to make x

satisfying the constraints is a simple greedy manner discretization scheme which is

introduced in [10]. In optimal sense, the Hungarian algorithm [48] is recommended

instead of the greedy way.

2.3.2 Reweighting Jumps for Graph Matching

In the previous subsection, affinity-preserving RW is introduced. However, the match-

ing constraints in Eq.(2.1) is not enforced during iterations of RW procedure. To

reflect the 1-to-1 matching constraints during iterations, personalization approach

is adopted [38, 46]. For a given personalized vector r, a random walker moves along

with its connected edges with probability α or jumps to any other node with proba-

bility 1−α, where α is the weighting factor between walking or jumping. RW update

rule 2.8 is modified for personalization as the following [1, 2]:(
x(t+1)ᵀ x

(t+1)
abs

)
= α

(
x(t)ᵀ x

(t)
abs

)
P + (1− α)rᵀ, (2.10)

where r is the personalized vector which guides a random walker’s jumps in RW

iterations. The proposed RW graph matching algorithm effectively enforcing a ran-
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dom walker to obeying the matching constrains by making the personalized vector

r satisfying the constraints. In the proposed Algorithm 2, the personalized vector r

is updated on every iteration of RW simulation and is named as reweighting vector.

The proposed reweighting procedure consists of two steps: inflation and bistochastic

normalization. The inflation step suppresses small values in x and amplifies large

values in x which makes unreliable correspondences less important in RW iterations.

Bistochastic Sinkhorn [49] normalization is adopted for making inflated state x sat-

isfy one-to-one matching constraints [18]. Sinkhorn step consists of iterative row-wise

normalization and column-wise normalization which leads any non-negative square

matrix to a bistochastic matrix. Finally, reweighting RW update rule becomes as

the following [1, 2]:

(
x(t+1)ᵀ x

(t+1)
abs

)
(2.11)

= α
(
x(t)ᵀ x

(t)
abs

)
P + (1− α)

(
fR(x(t)ᵀM)ᵀ 0

)
,

where fR(·) represents the reweighting function which enforces the 1-to-1 constraints.

Note that the steady state of the proposed reweighted RW can be calculated by

iterative updates by following 2.11 unlike conventional RWs [38, 46]. For producing

a graph matching solution, calculating xabs is not necessary, thus Eq.(2.11) is reduced

for the graph matching problem as the following:

x(t+1)ᵀ =
α

dmax
x(t)ᵀM + (1− α)fR(x(t)ᵀM)ᵀ. (2.12)

The objective of the proposed algorithm is to find quasi-stationary distribution by us-

ing the update rule of Eq.(2.12) and the algorithms is summarized in Algorithm 1 [1].
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Algorithm 1: Reweighted Random Walks for Graph Matching

Input: affinity matrix M, parameter {α}

Output: assignment vector x

Set the maximum degree dmax ← maxi
∑

j Mi,j ;

Initialize the starting probability x as uniform;

repeat

x̄ᵀ ← xᵀM;

y← re-weight x̄ by Algorithm 2;

( Random walking with reweighted jumps )

xᵀ ← α
dmax

x̄ᵀ + (1− α)yᵀ;

x← x/‖x‖1;

until x converges;

Discretize x by the matching constraints;

Algorithm 2: Reweighting for Graph Matching

Input: vector x, parameter {β}

Output: reweighted vector y

( Inflation )

yᵀ ← exp(βx/max x);

( Sinkhorn )

repeat

normalize rows by yai ← yai/
∑

i yai;

normalize columns by yai ← yai/
∑

a yai;

until y converges;

y← y/
∑

yai;
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2.4 Hypergraph Matching via Random Walks

In this section, the proposed algorithm is extended to hypergraph matching based on

a hypergraph RW. As explained in Section 2.2.2, the hypergraph matching problem

aims to maximize the score of Eq.(2.7) under the assignment constraints of Eq.(2.1).

2.4.1 Hypergraph Random Walks

A random walker in an ordinary graph travels along with edges by following the tran-

sition matrix P. In this section, RW transition is generalized for hypergraphs [50].

To generalize RW for hypergraphs, two steps are required: one is hyperedge selec-

tion and the other is node selection (see Fig. 2.3) [2]. In hyperedge selection step, a

random walker selects one hyperedge from its connected hyperedges by considering

weighted of hyperedges. Given a selected hyperedge, one of its node is selected un-

der uniform distribution and the random walker travels to that selected node. The

transition probability matrix P of Eq.(2.8) and RW update rule can be extended for

hypergraph RW as the following [2]:

x(t+1) = P(k) ×2 x(t) · · · ×k x(t)

= P(k) ×2:k x(t). (2.13)

Note that P(k) is kth-oder transition tensor, however, it is assumed that a hyper-

graph consists of hyperedges with any order. Therefore, we defined generalized RW

update as the following:

x(t+1) =
∑
k

λkP
(k) ×2:k x(t). (2.14)

Note that λk is a importance weight for kth-order hyperedge and λ is subject to

λk ∈ [0, 1] and
∑

k λk = 1 [2]. Eq.(2.14) corresponds to higher-order power iteration
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Figure 2.3: An example of RW on a hypergraph. A random walker on v0 first selects one hyperedge

e1 or e2 according to the hyperedge weights. Assume that e2 has higher weight than e1, for example,

the random walker has higher chance to select e2 and travels to v3, v4, or v5.

of [51].

2.4.2 Reweighting Jumps for Hypergraph Matching

As same as in ordinary graph matching, the association graph is constructed for

hypergraph matching. However, in hypergraph matching, the association graph be-

comes hypergraph since more than two nodes (candidate matches in the graph

matching problem) should be compared simultaneously. Thus, the association hy-

pergraph G×h = {V×, E×h ,T
×}. Note that E×h is the set of hyperedges and T× is a

multi-dimensional tensors for embedding attributes of V×, E×h . For a given kth-order

hyperedge e×w1,··· ,wk in G×h which connects {v×w1
, · · · , v×wk}, there are k matches re-

lated: mw1 = (vp1 , v
′
q1), · · · , mwk = (vpk , v

′
qk

). Then, kth-order similarity function

fk(mw1 , · · · ,mwk) measures a compatibility score of k matches which is recorded to

T×w1,··· ,wk in Eq.(2.3). After construction of the association hypergraph G×h , hyper-

graph RW can be simulated, thus it is possible to solve graph matching problem by

selecting nodes from G×h . Note that the attribute tensor T× becomes equivalent to
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the set of affinity tensors {H(1), · · · ,H(σ)} in Eq.(2.5).

As same as in ordinary graph matching problem, the affinity-preserving hyper-

graph RW is realized by augmenting an absorbing node with the same manner in

Section 2.3.1. To calculate the degree dw of the node vw, all affinities which are

associated with vw should be considered [2]:

dw =

δ∑
k=2

∑
w2,··· ,wk

λkH
(k)
w,w2,··· ,wk + λ1H

(1)
w

= (
δ∑

k=1

λkH
(k) ×2:k 1)w, (2.15)

where the subscript (·)w denotes the w-th element value in a vector. With the max-

imum degree dmax = maxw dw, it is able to construct augmented hypergraph RW

as same to the ordinary RW case in which the absorbing node soaks the weight

dmax − dw from each node vw ∈ V× [2].

Extending Eq.(2.8) to generalized hypergraph affinity-preserving RW using Eq.(2.14)

becomes as the following:

x(t+1) =
1

dmax

δ∑
k=1

λkH
(k) ×2:k x(t),

x
(t+1)
abs = 1− 1

dmax
x(t)Td

(2.16)

With the same definition of the quasi-stationary state in Eq.(2.9), it is possible

to discard the second update rule in Eq.(2.16). Similar to [51, 35], the proposed

affinity-preserving RW updates of the affinity tensor H can be considered as rank-1

approximation of the tensor. Eq.(2.16) can be interpreted as power iteration for the

affinity tensor of the hypergraph matching problem and produces an approximated

solution for Eq.(2.7) under ‖x‖ = 1.

The matching constraints of Eq.(2.1) is also imposed on the proposed hyper-

graph affinity-preserving RW by employing the reweighting jump. As the jump is



2.4. HYPERGRAPH MATCHING VIA RANDOM WALKS 25

Algorithm 3: Generalized Reweighted Random Walks Matching

Input: affinity tensors λδH
(δ), λδ−1H

(δ−1), · · · , λ1H(1), reweighting factor α

Output: assignment vector x

Set dmax ← maxw(
∑δ

k=1 λkH
(k) ×2:k 1)w;

Initialize the starting probability x as uniform;

repeat

x←
∑δ

k=1 λkH
(k) ×2:k x;

y← re-weight x̄ by Algorithm 2;

( Random walking with reweighted jumps )

x← α
dmax

x + (1− α)y;

x← x/‖x‖1;

until x converges;

Discretize X by the matching constraints;
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performed on nodes (not on hyperedges), the process of reweighting jumps is exactly

the same as in the case of conventional graphs [1, 2]. Again, the reweighting func-

tion fR(·) is adopted which is already introduced in Section 2.3.2, the reweighted

hypergraph affinity-preserving RW is formulated as the following and summarized

in Algorithm 3:

x(t+1) =
α

dmax

δ∑
k=1

λkH
(k) ×2:k x(t)

+(1− α)fR(

δ∑
k=1

λkH
(k) ×2:k x(t)).

(2.17)

2.5 Experiments

In this section, thorough experiments are performed for demonstrating performances

of the proposed method through four types of experiments [1, 2]: (i) graph matching

on synthetically generated random graphs, (ii) 2D point matching on synthetically

generated random points, (iii) point matching task on the CMU House image se-

quence1, and (iv) feature matching on real images.

On the ordinary graph matching problem, various state-of-the-art algorithms are

compared: SM [10], SMAC [16], HGM [20], IPFP [21], GAGM [18], and SPGM [19].

On the hypergraph matching problem, HGM [20], TM [35], and EHOM [36] are

compared. Since HGM [20] provides generalized graph matching algorithm, HGM is

tested on both ordinary graph matching and hypergraph matching problem. Authors

of TM [35] provide two versions of their algorithm, therefore, both versions are tested

and compared (see details of two versions in [35]2). The proposed algorithm for the

1http://vasc.ri.cmu.edu/idb/html/motion/
2http://www.di.ens.fr/~duchenne/
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ordinary graph matching problem is termed RRWM, and the proposed hypergraph

matching algorithm is named RRWHM. For hypergraph matching algorithms, only

3rd-order affinity tensors are utilized since not all hypergraph algorithms are able

to cover hypergraphs with any order. Note that the proposed RRWHM [2] is able

to cover hypergraphs with any order.

For SM3, SMAC4, HGM5, and TM, the publicly available codes from the authors

were utilized with little adaptation, while GAGM, IPFP, SPGM, EHOM were im-

plemented [1, 2]. MATLAB is used for implementing all algorithms. For every noise

setting, 30 experients are performed and their averages are reported. The same affin-

ity matrix or tensor was shared as the input of each algorithms and the Hungarian

algorithm was commonly used at the final discretization step for all methods [1, 2].

Parameters of RRWM and RRWHM are empirically set to α = 0.2 and β = 30 for

the best performance.

2.5.1 Random Graph Matching

This section presents comparative evaluations on the matching of synthetic random

graph and hypergraphs. Random graphs are synthetically generated to compare

performances of graph and hypergraph matching methods by following the protocol

of [1, 2].

For ordinary graph matching problems, two graphs G, G′ are generated as the

following: At first, the graph attribute A is randomly generated using uniform dis-

tribution U(0, 1); i.e., A ∼ U(0, 1)n×n. Note that n = n′ = nin + nout, where nin

and nout are inlier and outlier numbers, respectively. To synthesize more difficult

3http://86.34.14.245/code.php
4http://www.seas.upenn.edu/~timothee/
5http://www.cs.huji.ac.il/~zass/
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matching problem, we assume that there is no attribute values for nodes so we set

Ai,i = 0. Then, A′ is generated by following A′ = A + N and N ∼ N (0, σ)n
′×n′ for

simulating deformation noises using Gaussian distribution N . Finally, outlier noises

are imposed by overwriting noises to A and A′ with A1:nout,1:nout ∼ U(0, 1)nout×nout

and A′1:nout,1:nout ∼ U(0, 1)nout×nout . For making G and G′ sparse, every edges in

two graphs are deleted with the probability of 1 − ρ [1]. A and A′ are randomly

permuted for preventing one method accidentally achieving high score.

Then, the affinity matrix M is calculated using G and G′ by Mia,jb = exp(−||Ai,j−

A′a,b||2/σs). The scaling parameter σs is empirically set to 0.15 for the best perfor-

mances. The accuracy was measured by the number of detected true matches over

the total number of ground truths, whereas the objective score was measured by

computing S(x) [1, 2]. The results are reported in Figs. 2.4 and 2.5. In Fig. 2.4, the

number of inliers nin, deformation noise σ, and edge density ρ are fixed to 20, 0, and

1, respectively, while the number of outlier nout varies from 0 to 20. In Fig. 2.5(a)

and (b), the number of inliers nin, the number of outliers nout, and edge density ρ

are fixed to 20, 0, and 1, respectively, while deformation noise σ varies from 0 to 0.4.

Finally, in Fig. 2.5(c), the number of inliers nin, the number of outliers nout, and

deformation noise σ are fixed to 20, 10, and 0.1, respectively, while edge density ρ

varies from 0.3 to 1.

Throughout all experiments in Figs. 2.4 and 2.5, the proposed RRWM outper-

forms all the other algorithms under three different types of noises in the sense of

accuracy and objective score. NRWM denotes the proposed algorithm without ab-

sorbing node and reweighting jumps, and shows effects of the proposed augmented

node and reweighting scheme in the graph matching problems. By comparing SM

and RRWM, the effect of reweighting jumps is revealed since RRWM is equivalent
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(a) matching accuracy (b) objective score

(c) execution time

Figure 2.4: Performance comparison according to outlier noises on matching of synthetic ordinary

graphs [1]. The number of inliers nin, deformation noise σ, and edge density ρ are fixed to 20, 0,

and 1, respectively, while the number of outlier nout varies from 0 to 20.
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(a) matching accuracy (b) objective score

(c) matching accuracy

Figure 2.5: Performance comparison according to deformation noises and graph densities on match-

ing of synthetic ordinary graphs [1]. (a)-(b) The number of inliers nin, the number of outliers nout,

and edge density ρ are fixed to 20, 0, and 1, respectively, while deformation noise σ varies from 0

to 0.4. (c) The number of inliers nin, the number of outliers nout, and deformation noise σ are fixed

to 20, 10, and 0.1, respectively, while edge density ρ varies from 0.3 to 1.
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to SM without reweighting jumps (i.e., RW only with the absorbing node). Con-

sidering that RRWM, GAGM, and SPGM are robust algorithms and that they all

commonly focus on incorporating the 1-to-1 constraints during their iterations, the

importance of obeying the matching constraints are revealed.

For hypergraph matching comparison, the experimental setup was almost the

same as that of ordinary graph matching; the main difference was the use of 3rd-

order hyperedges instead of 2nd-order edges. First, attribute tensors are generated

by following T ∼ U(0, 1)n×n×n and T′ ∼ U(0, 1)n
′×n′×n′ . Next, deformation noises

are generated by N ∼ N (0, σ)nin×nin×nin . We overwrite T′ by T′1:nin,1:nin,1:nin =

T1:nin,1:nin,1:nin +N and then permute indices of T′ in the same manner as ordinary

graph case. Then, the affinity tensor H is calculated by Hia,jb,kc = exp(−||Ti,j,k −

T′a,b,c||2/σs) where the scaling parameter σs is again set to 0.15. Since the affinity

tensor H is 3-dimensional tensor, its computational complexity grows to O(n6). This

complexity problem is overcome by following sparsifying strategy from [35]. The total

number of affinity scores are set similar to that of ordinary graph matching problem

for fair comparison.

Throughout all experiments in Figs. 2.6 and 2.7, the proposed RRWHM outper-

forms all the other algorithms under three different types of noises in the sense of

accuracy and objective score. The proposed RRWHM outperformed all other meth-

ods of hypergraph matching in both accuracy and objective score by adopting the

affinity-preserving property and the reweighting scheme which enable the avoidance

of adverse effects from outliers and deformation [2]. In Fig. 2.6, the number of in-

liers nin, deformation noise σ, and edge density ρ are fixed to 20, 0.05, and 0.5,

respectively, while the number of outlier nout varies from 0 to 10. In Fig. 2.7(a) and

(b), the number of inliers nin, the number of outliers nout, and edge density ρ are
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(a) matching accuracy (b) objective score

(c) execution time

Figure 2.6: Performance comparison according to outlier noises on matching of synthetic hyper-

graphs [2]. The number of inliers nin, deformation noise σ, and edge density ρ are fixed to 20, 0.05,

and 0.5, respectively, while the number of outlier nout varies from 0 to 10.
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(a) matching accuracy (b) objective score

(c) matching accuracy

Figure 2.7: Performance comparison according to deformation noises and graph densities on match-

ing of synthetic hypergraphs [2]. (a)-(b) The number of inliers nin, the number of outliers nout, and

edge density ρ are fixed to 20, 0, and 0.5, respectively, while deformation noise σ varies from 0 to

0.4. (c) The number of inliers nin, the number of outliers nout, and deformation noise σ are fixed

to 20, 0, and 0.15, respectively, while edge density ρ varies from 0.3 to 1.



34 CHAPTER 2. GRAPH MATCHING VIA RANDOM WALKS

fixed to 20, 0, and 0.5, respectively, while deformation noise σ varies from 0 to 0.4.

Finally, in Fig. 2.7(c), the number of inliers nin, the number of outliers nout, and

deformation noise σ are fixed to 20, 0, and 0.15, respectively, while edge density ρ

varies from 0.3 to 1.

2.5.2 Synthetic Point Matching

Synthetic random graph matching in the previous subsection is unbiased graph

matching problem, however, has one limitation that graph and hypergraph match-

ing algorithms are unable to be compared simultaneously. To compare graph and

hypergraph matching algorithms with the same problem, this subsection presents

comparative evaluations on random point set matching [10, 16, 20, 35]. To build

synthetic point sets, nin inlier points were randomly generated using N (0, 1) in the

first 2D domain. Then, each point in the first domain was copied to the second do-

main and Gaussian deformation noise N (0, σ2) are added to the second domain. By

adding nout random 2D points from N (0, 1) to each domain, outlier noise is simu-

lated. The resultant points in two domains became nodes in graphs and hypergraphs

G and G′, respectively. In this setup, both graph matching algorithms (SM, RRWM)

and hypergraph matching algorithms (RRWHM, HGM, TM, EHOM) are tested on

the same point set problem.

For calculating 2nd-order affinity matrix M, a difference between the Euclidean

distances [2] of two point pairs was adopted;

Mia,jb = exp(−(‖xi − xj‖ − ‖x′a − x′b‖)2/σs), (2.18)

where the scale parameter σs is set to 0.1. This distance-based measure is widely

utilized in other works [9, 10, 16, 17, 2].
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Figure 2.8: Calculation of 3rd-order similarity for hypergraph matching. Two triangles are formed

from three candidate correspondences (i, a), (j, b), and (k, c). There are three corresponding angles

in each triangle, therefore, it is possible to calculate similarity between two triangles by comparing

three corresponding angles. This measure is invariant to translation, rotation, and scale changes [2].

For calculating 3rd-order affinity tensor H, as illustrated in Fig. 2.8, a sum of

sine value differences between corresponding angles [20, 35, 2] was adopted:

dia = | sin(θi)− sin(θ′a)|,

Hia,jb,kc = exp
(
− (dia + djb + dkc)/σs

)
, (2.19)

where θi and θa denote the node angles of candidate correspondence (i, a). The

scale parameter σs was set to 0.5 for the best performance. Unlike the distance-

based similarity of Eq.(2.18), this angle-based 3rd-order similarity of Eq.(2.19) has

an invariance up to scale as well as translation and rotation.

The experimental results on the point matching problem are reported in Figs. 2.9.

In deformation test of Fig. 2.9(a), the number of inliers nin and the number of

outliers nout are fixed to 20, and 0, respectively, while deformation noise σ varies

from 0 to 0.2. In outlier noise test of Fig. 2.9(b), the number of inliers nin and

deformation noise σ are fixed to 20, and 0, respectively, while the number of outliers

nout varies from 0 to 20. Finally, in scale variation test of Fig. 2.9(c), the number
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(a) varying deformation without outliers (b) varying outliers without deformation

(c) varying scale differences

Figure 2.9: Performance comparison on point set matching problem according to deformation, out-

lier, and scale changes [1, 2]. (a) The number of inliers nin and the number of outliers nout are fixed

to 20, and 0, respectively, while deformation noise σ varies from 0 to 0.2. (b) The number of inliers

nin and deformation noise σ are fixed to 20, and 0, respectively, while the number of outliers nout

varies from 0 to 20. (c) The number of inliers nin, the number of outliers nout, and deformation

noise σ are fixed to 20, 0, and 0, respectively, while transformation scale varies from 0.5 to 1.5.



2.5. EXPERIMENTS 37

of inliers nin, the number of outliers nout, and deformation noise σ are fixed to 20,

0, and 0, respectively, while transformation scale varies from 0.5 to 1.5. RRWHM

and RRWM performs best in Figs. 2.9(a) and (b), however, RRWM shows fragile

performance on scale variation test in Figs. 2.9(c). Actually, every ordinary graph

matching algorithms are failed to achieve reasonable performances on scale variation

test since the affinity measure of the ordinary graph matching is not robust to scale

changes.

2.5.3 Image Sequence Matching

In this subsection, point matching experiment was performed on the CMU House

image sequence; this is one of the most popular benchmark datasets. To achieve

2D points from image sequence, 30 landmark interest points are manually labeled

along with all frames. In this experiment, as same as the previous point matching

problem, the same similarity measures of Eq.(2.18) and (2.19) were used. Note that

σs for Eq.(2.18) is set to 2500 in this experiment since the range of 2D points

is changed. The performance of algorithms are measure by matching images with

varying sequence gaps: the larger the sequence gap between the frames, the larger

the relative deformation, and the more difficult the matching [1, 2].

The experimental results of CMU point set matching problem is reported in

Fig. 2.10(g). The proposed RRWHM and RRWM shows best performance in this

experiment while TM-2way also records almost perfect performance.
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(a) a test pair example (b) RRWM & RRWHM (30/30)

(c) SM 2nd (20/30) (d) HGM 3rd (17/30)

(e) EHOM 3rd (27/30) (f) TM-2way 3rd (28/30)

(g) the CMU House: accuracy vs. sequence gap

Figure 2.10: Point set matching performance of CMU house images sequence [1, 2]. (a) An example

of image pairs with labeled points. (b) RRWHM finds all 30 point pairs correctly. (c) SM finds

20 correct matches out of 30. (d) HGM finds 17 correct matches out of 30. (e) EHOM finds 27

correct matches out of 30. (f) TM finds 28 correct matches out of 30. (g) Point matching accuracies

according to size of the sequence gap. The sequence gap varies from 10 to 100. These figures are

best viewed in color.
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2.5.4 Image Feature Matching

The final experiment in this chapter is a real image matching problem using local

region features. 30 image pairs are collected from Caltech-1016 and MSRC datasets.

Unlike the previous CMU point matching problem, the MSER features [6] are au-

tomatically detected and two graphs are generated by taking MSER features as

nodes. There is a complexity problem since detected MSER feature are usually

more than 100 in numbers. Therefore, to sparsify the affinity matrix or tensor, can-

didate correspondences are pruned according to their first order similarities (see

details in [1, 2]). To evaluate performance of algorithms in real image matching

experiment, the ground truths correspondences are manually labeled.

Unlike the similarity measures in the previous experiments, robust similarity

measures based on properties of local features are used in this experiment as the

following: For 2nd-order similarity measure between two pairs of features (i, a) and

(j, b), the Symmetric Transfer Error (STE) used in [8] was adopted. The nature of

STE measure is that every feature region has its descriptive ellipse and similarity can

be derived by comparing ellipse transformations [8, 4]. For a feature point pair (i, a),

it is able to calculate ellipse transformation Ti,a which transforms the ellipse of point

i to the that of point a. Then the similarity between two feature correspondences is

calculated as the following (details in [8]):

djb|ia =
1

2

(
‖(x′b − x′a)− Tia(xj − xi)‖+ ‖(xj − xi)− T −1ia (x′b − x′a)‖

)
, (2.20)

where T −1 denote the inverse transformation and x denotes feature location in

images. Based on this, the 2nd-order STE similarity Mia;jb is defined as the follow-

6http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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(a) input images (b) initial matches

(c) RRWM 50/66 (d) RRWHM 49/66

(e) GAGM 45/66 (f) SM 47/66

(g) TM 46/66 (h) HGM 26/66

Figure 2.11: Example results of real image matching on a butterfly image pair. (a) Input image pair.

(b) Initial candidate matches after pruning. (c)-(h) Matching results of RRWM, RRWHM, GAGM,

SM, TM, and HGM. Correct correspondences are with yellow color. This figure is best viewed in

color.
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(a) input images (b) initial matches

(c) RRWM 27/27 (d) RRWHM 26/27

(e) GAGM 25/27 (f) SM 16/27

(g) TM 27/27 (h) HGM 13/27

Figure 2.12: Example results of real image matching on a cube image pair. (a) Input image pair.

(b) Initial candidate matches after pruning. (c)-(h) Matching results of RRWM, RRWHM, GAGM,

SM, TM, and HGM. Correct correspondences are with yellow color. This figure is best viewed in

color.
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ing [8]:

Mia,jb = exp
(
− (djb|ia + dia|jb)/σs

)
, (2.21)

where the resulting Eq.(2.21) is invariant to affine changes.

In [2], the 3rd-order STE similarity measure in introduced which is the extension

of Eq.(2.21). For given three candidate correspondences (i, a), (j, b) and (k, c), the

conditional STE is defined as the following:

djb,kc|ia = (djb|ia + dkc|ia)/2. (2.22)

Based on this, the 3rd-order STE similarity Hia,jb,kc is designed as the following [2]:

Hia,jb,kc = exp
(
−max(djb,kc|ia, dia,kc|jb, dia,jb|kc)/σs

)
. (2.23)

Note that all three conditional STE measures djb,kc|ia, dia,kc|jb, and dia,jb|kc should

be smaller for higher affinity score of Hia,jb,kc.

In this experiment, σs is empirically set to 25 for the best performance. Exam-

ples of feature matching problem are demonstrated in Figs. 2.11 and 2.12. Besides,

in Table 2.1, average accuracies and relative scores along with all 30 image pairs

are reported. 2nd STE stands for 2nd-order STE affinity measure of Eq.(2.21) while

3rd STE stands for 3rd-order STE affinity measure of Eq.(2.23). In addition, the

distance-comparing similarity measure of Eq.(2.18) and the angle-comparing simi-

larity measure of Eq.(2.19) are also compared. In a matching accuracy sense, 3rd

STE is the best measure for the feature matching problem and RRWHM is rec-

ommended as the best hypergraph matching algorithm. In this experiment, because

both the 2nd-order STE and the 3rd-order STE similarities are invariant up to affine

transformation, the accuracy difference between them was not as significant as the

difference between the distance-based and the angle-based similarities. In general,

hypergraph matching could benefit more from better high-order measures.
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Table 2.1: Performances of various graph and hypergraph algorithms on the real image dataset of

30 pairs.

Measure Algorithm

2nd STE RRWM SM SMAC GAGM

Accuracy (%) 69.77 65.20 54.40 66.98

Rel. score (%) 97.54 86.19 70.89 94.18

3rd STE RRWHM HGM TM-1W TM-2W

Accuracy (%) 72.64 46.76 69.13 70.96

Rel. score (%) 95.16 22.60 81.08 80.74

2nd Distance RRWM SM SMAC GAGM

Accuracy (%) 24.00 22.68 24.65 27.96

Rel. score (%) 95.66 87.00 72.80 95.82

3rd Angle RRWHM HGM TM-1W TM-2W

Accuracy (%) 54.08 32.09 54.65 49.80

Rel. score (%) 97.25 10.02 80.75 76.46
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2.6 Conclusion

In this chapter, a general graph matching formulation for graph matching and hy-

pergraph matching is introduced. Also a novel RW view [41, 38] algorithm is pro-

posed. The 1-to-1 matching constraints are critical in robust graph matching problem

and the proposed algorithm effectively incorporates those constraints by adopting

reweighing jumps. For solving the hypergraph matching problem in RW sense, the

proposed method is extended to generalized hypergraph RW. Extensive experiments

on both synthetic and real problems demonstrated that the proposed algorithm out-

performs current state-of-the-art methods for graph matching [10, 16, 21, 18, 19]

and hypergraph matching [20, 35, 36] in the presence of outliers and deformation.



Chapter 3

Graph Matching via Markov

Chain Monte Carlo

3.1 Introduction

Graph matching problem is one of widely used techniques for problems regarding

pattern recognition and computer vision research fields. Usually, correspondence

problem (e.g., feature correspondence between two images) can be interpreted as

graph matching. Recent approaches [18, 19, 10, 16, 20, 21, 22, 1, 24, 23, 25, 26, 27]

try to solve the graph matching problem by formulating it as Integer Quadratic

Programming (IQP).

Since the graph matching problem is proven to be NP-hard problem, various ap-

proaches try to tackle this problem in approximated or relaxed ways. Conventional

graph matching algorithms, however, suffers two major limitations when there ex-

ists large perturbation on the graphs due to outliers or deformation noises. First,

local minima problem arises since most of conventional approaches are deterministic

45



46CHAPTER 3. GRAPH MATCHING VIA MARKOV CHAIN MONTE CARLO

solver which calculates their solution in one-shot. There is no escaping mechanism

in deterministic approaches. Second, relaxations are erroneous IQP graph matching

formulation imposes 1-to-1 and integer constraints. However, most of previous ap-

proaches relax these constraints to acquire their solution, therefore, they produce

erroneous solutions. For example, Spectral Matching (SM) [10] drops 1-to-1 match-

ing constraints to get rank-1 approximation of the affinity matrix and Reweighted

Random Walk Matching (RRWM) [1] drops integer constraints and finds solution

on real number space.

To solve this challenging problem, in this chapter, we adopt data-driven Markov

Chain Monte Carlo (DDMCMC) framework [52] which enables to avoid local min-

ima efficiently. Unlike stochastic graph matching methods in the literature [53, 54],

our work addresses a general graph matching problem and exploits domain knowl-

edges from conventional graph matching approaches by data-driven proposals in a

principled MCMC framework [55].

Recently, various works are published to address hypergraph matching prob-

lem [20, 35, 36, 2]. Hypergraphs can embed more sophisticated information on their

hyperedges, therefore, produce more robust performances on severe noises. We ex-

tend our MCMC based graph matching algorithm to hypergraph matching problem.

Energy function for MCMC framework is modified using hypergraph matching objec-

tive function. Again, we impose domain knowledges onto data-driven proposal distri-

bution by taking solutions from Hyper-Graph Matching (HGM) [20] and Reweighted

Random Walks Hypergraph Matching (RRWHM) [2].

In the experiment section, we demonstrate robustness of our DDMCMC algo-

rithm by performing synthetic random graph and hypergraph matching problems [1].

For revealing effectiveness of our data-driven proposal scheme, we compare three
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different versions of our MCMC algorithm; pure MCMC algorithm and DDMCMC

with two conventional approaches. In ordinary graph matching problems, SM [10]

and RRWM [1] are compared and exploited into data-driven proposals. For solving

hypergraph matching problems, HGM [20] and RRWHM [2] are used for comparison

and data-driven proposals. In both experiments, we demonstrated that our MCMC

algorithm itself outperforms standard (hyper)graph matching algorithms and our

data-driven proposals enable our graph matching algorithm more robust to defor-

mation and outlier noises.

3.2 Graph Matching Formulation

The graph matching problem is formulated by following several conventional publi-

cations including [10, 1, 2]. There are two graphs G = {V, E ,A} and G′ = {V ′, E ′,A′}

to be matched, while V is set of nodes, E = V ×V is set of edges, and A is attribute

values. The attribute A ∈ Rn×n describes characteristics of nodes vi ∈ V (by di-

agonal elements of A) and edges ei,j ∈ E (by off-diagonal elements of A) where

n = |V| is number of nodes in G. To represent node correspondences between G and

G′, the assignment matrix X ∈ {0, 1}n×n′ is adopted where Xi,a = 1 if node vi ∈ V

is matched to v′a ∈ V ′ and Xi,a = 0 if there is no match between two nodes. In

general, the one-to-one matching constraints are imposed which enforce one node to

be matched one node in maximal; X1n′×1 � 1n×1 and Xᵀ1n×1 � 1n′×1.

The goal of graph matching problem is to find the best mapping between elements

of V and V ′ which best preserves attributes between Ai,j and A′a,b when Xi,a = 1

and Xj,b = 1. To measure how similar Ai,j and A′a,b are, similarity functions fv(·, ·)

and fe(·, ·) are introduced where fv(·, ·) and fe(·, ·) measure node and edge attribute
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compatibilities, respectively. For a given assignment X, the graph matching score

S(X) can be defined as follows:

S(X) = λ
∑
i,a

fv(vi, v
′
a)Xi,a

+
∑
ia,jb

fe(ei,j , e
′
a,b)Xi,aXj,b.

(3.1)

Thus, the best mapping X∗ can be obtained by maximizing the matching score:

X∗ = argmaxX S(X).

As in [16, 10, 56], the graph matching problem can be formulated as Integer

Quadratic Programming (IQP) problem. For formulating the graph matching by

IQP, the assignment vector x ∈ {0, 1}nn′×1 is required which is column-wise con-

catenation of X. Additionally, the affinity matrix M is also introduced which embeds

node and edge similarity scores by the following rule:

Mia,jb =


fv(vi, v

′
a) if ia = jb

fe(ei,j , e
′
a,b) otherwise

(3.2)

With simple mathematics, the objective function S(X) can be rewritten as follows;

S(X) = S(x) = xᵀMx. (3.3)

Then, the goal of the problem could be redefined as finding an assignment vector

which maximizes the quadratic objective score function as follows;

x∗ = argmax
x

(xᵀMx),

X1n′ � 1n, Xᵀ1n � 1n′ . (3.4)
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3.3 Algorithm

The proposed graph matching algorithm is based on MCMC sampling technique,

which can efficiently explore high dimensional solution space. To generate effective

samples, data-driven state transition proposal is adopted. In the following subsec-

tions, state transition, energy function, and data-driven proposal distribution are

explained.

3.3.1 State Transition

With one-to-one constraints, a binary assignment vector x can be equivalently in-

terpreted as a permutation vector. In Fig. 3.1(a) and 3.1(b), for example, we can

represent 9-bit current states x and x′ as (a, b, c) and (a, c, b), respectively. Since our

method employs the permutation vector as the state representation, it is natural to

take the switch operation as the state transition move for the MCMC framework.

Switch transition move ensures that an arbitrary state x can reach all possible states

in graph matching problem and reach back to x from any other state x′. These reach-

ability and irreducibility are key properties which enable MCMC sampling to follow

the target distribution in the next subsection.

3.3.2 Energy Formulation

Theoretically, MCMC technique samples states which are following given target

distribution [55]. Key idea of the proposed MCMC graph matching algorithm is

to select a sample state with the highest probability among those samples. Thus,

To find the best correspondence in MCMC framework, it is necessary to define the
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(a) state x (b) state x′ (c) deleted matches (d) inserted matches

Figure 3.1: Illustration of state transition. (a)-(b) If we want to move from current state x to

proposed state x′, (c) there are two matches which will be deleted and (d) two matches will be

inserted.

target distribution probability π(x) or the energy E(x) of the state x:

π(x) ∝ exp(xᵀMx/T ), E(x) = −log[π(x)], (3.5)

where T is the temperature for Simulated Annealing (SA) process [55]. T is scheduled

to have start value Ts at first and decrease gradually (with the factor R) to the final

value Tf with certain number of samples Nmax.

The MCMC framework also requires the acceptance ratio [55] r(x → x′) which

is defined as follows;

r(x→ x′) = min

[
π(x′)q(x′ → x)

π(x)q(x→ x′)
, 1

]
, (3.6)

where q(x′ → x) is the proposal probability from state x′ to state x and q(x→ x′) is

from x to x′ (defined in the following subsection). By accepting the proposed state

x′ as a new state with the probability of r(x→ x′), the Markov chain is theoretically

guaranteed to follow its target distribution π(x) [55].
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3.3.3 Data-Driven Proposal

Since our objective in the graph matching problem is to find the best state with

the highest score, it is efficient to design the proposal distribution q(x→ x′) prefers

states with higher scores. To achieve this efficiency by incorporating domain knowl-

edge in proposing new states of the Markov chain, we adopt the data-driven tech-

niques to guide our Markov chain using achievements of previously existing graph

matching approaches. For example, SM algorithm [10] is based on the fact that a

match which has large corresponding element in the principal eigenvector has a great

chance to be a true match. Our method also utilizes this fact in a probabilistic way.

We use data-driven proposal as the state transition kernel. The state transition from

x to x′ enforces two matches to be deleted and two matches to be inserted (see Fig.

3.1(c) and 3.1(d)). The probability of state transition from x to x′ is defined by

q(x→ x′) ∝ xalgib + xalgib − xalgia − xalgjb + C, (3.7)

where xalg denotes rank-1 approximation of a deterministic algorithm alg and in-

dices refer Fig. 3.1. The offset value C is required to prevent a computed value from

becoming a negative value. The value of q(x → x′) becomes greater when the pro-

posed state contains matches with larger confidence score than the current state.

This proposal is likely to include a state which has more chances to contain more

true matches.

Our proposed method can overcome the local minima problem of deterministic

methods (because of the relaxation) by exploring large space with suitable samples

which are generated by the data-driven proposal. This fact enables our algorithm to

find a solution with higher matching score. The proposed DDMCMC graph matching

algorithm is summarized in Algorithm 4.
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Algorithm 4: Data-Driven MCMC Graph Matching

input : an initial state x, parameters {Ts, Tf , R,Nmax}

output: an optimal state x∗

x∗ = x; T = Ts; N = 0;

while T > Tf do

Calculate the proposal distribution: q(x→ x′);

Sample x′ from q(x→ x′);

Increase N by 1;

Calculate the acceptance ratio: r(x→ x′);

if random() < r(x→ x′) then

x = x′;

if π(x) > π(x∗) then

x∗ = x;

end

end

if N = Nmax then

T = T ×R; N = 0;

end

end
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3.4 Hypergraph Extension

In this section, we propose extension of our novel MCMC based graph matching

algorithm into hypergraph matching problem. In this chapter, we discuss only third-

order hypergraph like [2].

3.4.1 Hypergraph Matching Problem

Two hypergraphs are defined as Gh = {V, Eh,T} and G′h = {V ′, E ′h,T′}, where Eh,

E ′h are sets of hyperedges and T, T′ are corresponding attribute tensors. As the

same manner with the ordinary graph matching problem, the goal of hypergraph

matching can be defined as the following:

Sh(X) =
∑

ia,jb,kc

fh(Tijk,T
′
abc)Xi,aXj,bXk,c, (3.8)

where user-defined similarity function fh(Tijk,T
′
abc) measures the compatibility

score between two hyperedges ehijk and e′habc (or two attributes Tijk and T′abc).

By using linear algebra and tensor-product [2], Sh(X) can be represented as the

following:

Sh(x) = H×1 x×2 x×3 x, (3.9)

where the affinity tensor H is defined by Hia,jb,kc = fh(Tijk,T
′
abc). Naturally, the

goal of hypergraph matching problem becomes;

x∗ = argmax
x

(H×1 x×2 x×3 x),

X1n′ � 1n, Xᵀ1n � 1n′ . (3.10)
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3.4.2 Energy Formulation & Data-Driven Proposal

By defining πh(x) using hypergraph matching objective score function, the energy

function for MCMC hypergraph matching is achieved.

πh(x) ∝ exp(Sh(x)/T ),

Eh(x) =− log[πh(x)].

(3.11)

Hypergraph DDMCMC algorithm can be derived by simply replacing π(x) with

πh(x) in Algorithm 4.

At the same way in DDMCMC for ordinary graph matching, proposal distribu-

tion q(x→ x′) can be designed using conventional hypergraph matching approaches.

In our experiments, we are adopting two hypergraph matching methods for demon-

strating effectiveness of the proposed data-driven proposal. One is Hyper-Graph

Matching (denoted by HGM+DDMCMC) [20] which interprets hypergraph match-

ing problem in probabilistic way and marginalizes attribute tensor H to produce

rank-1 approximation of the tensor. The other is Reweighted Random Walks for

Hypergraph Matching (denoted by RRWHM+DDMCMC) [2] which defines random

walks simulation on hypergraph for interpreting hypergraph matching problem and

produces state-of-the-art performance.

3.5 Experiment

3.5.1 Random Graph Matching Problem

In this section, we compare our algorithm with SM [10] and RRWM [1], which

are representative graph matching algorithms in matching problem. RRWM espe-

cially shows state-of-the-art performance on various noise conditions. We also inves-
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(a) accuracy (b) objective Score

(c) execution Time

Figure 3.2: Performance on graph matching problem according to deformation noise changes. From

the left to the right, accuracies, objective scores and execution times are reported. Note that pro-

posed algorithms are with solid lines while conventional algorithms are with dashed lines.
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(a) accuracy (b) objective Score

(c) execution Time

Figure 3.3: Performance on graph matching problem according to outlier noise changes. From the

left to the right, accuracies, objective scores and execution times are reported.
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tigate the effect of data-driven proposal distribution by comparing MCMC results

with DDMCMC results. Two DDMCMC algorithms are compared: one is combined

with SM (denoted by SM+DDMCMC) and the other is with RRWM (denoted by

RRWM+DDMCMC).

Quantitative evaluation of our algorithm is basically similar to the experiment

of [1]. We generate two graphs with n = nin + nout nodes where nin and nout are

number of inliers and outliers, respectively. In one graph, a graph G with n nodes

are generated and attribute A is randomly assigned by A ∼ U(0, 1)n×n. The other

graph G′ to be matched is generated by copying attribute A and adding noises:

A′ = A + σN, where Gaussian noise N ∼ N (0, 1)n×n and σ controls amount of

deformation noises. By overwriting nout node-related elements on A′ with uniform

random numbers, we can simulated both deformation and outlier noises on G′.

To construct affinity matrix M , we have to measure how similar two matches

are for every possible pairs. The following measure is used to construct M as in [1]:

Mia,jb = exp(−‖Aij −A′ab‖2/σd), (3.12)

where σd is empirically set to 0.15 for the best performance.

All experimental results show the average score of 30 trials for each setting.

To fairly compare the effect of proposal distribution, parameters of MCMC and

DDMCMC algorithms are fixed but proposal distribution. The random proposal is

used for MCMC algorithm. In this experiment, Ts and Tf are set to 10 and 0.1,

respectively. The decreasing factor R is set to 0.95. We try to adjust the number

of samples per temperature, thus we assign Nmax = n2. This allows the method to

have more samples when the problem size is larger. Performance of the algorithms

is evaluated with the accuracy of matches and with the matching score S(x∗). The
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accuracy can be obtained with the ratio of correct matches over n inliers.

Quantitative results are shown in Fig. 3.2 and 3.3. The figures in the left col-

umn show the average accuracy of matches, while the figures in the middle column

show the average matching score. Our three methods almost always show better per-

formance than its base algorithm, i.e., SM+DDMCMC shows better performance

than SM and RRWM+DDMCMC outperforms RRWM in outlier experiment. Our

DDMCMC algorithm also show best performance in the sense of objective function

maximizer (or energy minimizer). We can also verify that our data-driven proposal

works as a good proposal since DDMCMC show better performance than MCMC

with the same number of samples.

3.5.2 Random Hypergraph Matching Problem

We also perform experiments on hypergraph matching problem. As a similar manner

with ordinary graphs, hypergraph Gh is generated with n nodes and attributed tensor

T ∼ U(0, 1)(n×n×n). Then the second hypergraph G′h generated by following the

same procedure of previous subsection.

Next, we calculate the affinity tensor H by comparing two corresponding at-

tributes;

Hia,jb,kc = exp(−‖Tijk −T′abc‖2/σd). (3.13)

Again, the sensitivity parameter is set to 0.15 as in the ordinary graph matching

experiment.

We compare our three MCMC algorithms with two conventional hypergraph

matching algorithms; HGM [20] and RRWHM [2]. Experimental results on hyper-

graph matching problem is reported in Fig. 3.4 and 3.5. Throughout both deforma-

tion and outlier test, DDMCMC algorithms show better performance than their base
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algorithm. Again, data-driven proposals are proven to be efficient since DDMCMC

always outperforms MCMC algorithm.

3.6 Conclusion

We proposed a stochastic graph matching algorithm which can avoid local minima

problem of deterministic approaches. It adopts MCMC framework with the data-

driven state transition proposals, which efficiently explores the solution space of

graph matching. Experiments show that our graph matching algorithm is robust to

deformation and outliers arising from the practical correspondence problems, and

outperforms the state-of-the-art graph matching algorithms.
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(a) accuracy (b) objective Score

(c) execution Time

Figure 3.4: Performance on hypergraph matching problem according to deformation noise changes.

From the left to the right, accuracies, objective scores and execution times are reported.
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(a) accuracy (b) objective Score

(c) execution Time

Figure 3.5: Performance on hypergraph matching problem according to outlier noise changes. From

the left to the right, accuracies, objective scores and execution times are reported.
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Chapter 4

Graph and Hypergraph

Matching Revisited

4.1 Introduction

Graph matching is one of most widely used tools in computer vision, machine learn-

ing, and pattern recognition [3] research area. In particular, it has been used for

establishing correspondences between two sets of features [1, 2] because a graphical

model can naturally encode features and their relations into node and edge at-

tributes. Unlike popular matching techniques for rigid motion such as RANSAC [11]

and the iterative closest points (ICP) [12], graph matching effectively handles non-

rigid deformation with appearance changes, and finds reliable matches by minimizing

distortion between corresponding features and their relations. This strong advantage

enables graph matching to handle challenging correspondence problems in real-world

images.

In general, the problem of graph matching belongs to the quadratic assignment

63
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problem (QAP), and a myriad of graph matching algorithms have been proposed

with different types of formulations and characteristics in the literature [3, 28, 29]. In

this chapter, we classify the most popular families of recent graph matching formu-

lations into two types of formulations: affinity-based [18, 19, 10, 16, 20, 21, 1, 24, 30]

and adjacency-based [31, 32, 33, 34, 23, 25] formulations. The affinity-based formu-

lation takes a given affinity score for each candidate correspondence between two

graphs as its input, and adopts any predefined scores for node and edge correspon-

dences. The adjacency-based formulation only takes an attribute adjacency value for

nodes and edges on each graph. A affinity score for a node correspondence or an edge

correspondence between two graphs is computed on-the-fly using those attributes in

the formulation. In this sense, the affinity-based formulation is more general than

the adjacency-based one. At the cost of losing its generality, however, the adjacency-

based formulation obtains a substantial advantage in optimization efficiency. While

these two types of formulations have existed together for a few decades and cover

most of recent state-of-the-art graph matching methods, a comparative analysis be-

tween them has been rarely done in the literature.

We revisit these two families of graph matching formulations, analyze their re-

lations, and propose efficient graph matching strategies. The main contributions of

this chapter can be summarized as follows: (i) we analyze two representative formu-

lations in graph matching, i.e., adjacency-based and affinity-based representations,

and show their transformational relations into equivalent counterparts. (ii) we study

the characteristics of those formulations using recent state-of-the-art algorithms and

popular similarity measures (iii) we propose the efficient way to solve large-size graph

matching problem by modifying previously introduced matching techniques.

There are several researches which focus on hypergraph matching problem [20,
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35, 36, 2, 37]. Hyperedges are simultaneously connecting more than two nodes on

hypergraphs, thus, more sophisticated and robust attributes can be embedded into

attribute tensors. We introduce two types of hypergraph matching formulations and

verify relationships between them. To our best knowledge, this is the first work

which related affinity formulation and adjacency formulation on hypergraph match-

ing problem. Furthermore, we derive transformation rule of two formulations and

reinterpret conventional hypergraph matching algorithms for the other type of for-

mulation. Finally, performances of conventional approaches in both formulation are

thoroughly compared in experiment section.

4.2 Related Works

One of the most popular form is affinity-based formulation [18, 19, 10, 16, 20, 21,

1, 24, 30]. The affinity-based formulation can be represented by maximization on

an affinity matrix under the matching constraints. Another popular approach is

adjacency-based formulation which solves the graph matching by rearranging node

order for minimizing corresponding graph attribute differences [31, 32, 33, 34, 23,

25]. Some researchers are solving the graph matching problem by adopting energy

minimization techniques [53, 17, 22]. Besides these conventional approaches, there

are interesting works using the pooling strategy [26], game theory [57], bottom-up

clustering technique [8] or higher order graph representations [2, 35, 36].

Spectral Matching (SM) [10] interprets QAP using the affinity matrix. SM intro-

duces simple and effective spectral approaches. Matching constraints are not con-

sidered during the optimization step. Balanced Graph Matching (BGM) [16] pro-

posed modified objective function. BGM puts the matching constraints into the
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original objective function thus their optimization produces more constraint satisfy-

ing solution. Integer Projected Fixed Point method (IPFP) [21] is the representative

work which solve QAP while constraining the solution space onto the matching con-

straints. Also IPFP shows outstanding performances with faster convergence speed.

Reweighted Random Walk Matching (RRWM) [1] introduces novel interpretation

of QAP. RRWM solves QAP by node-ranking problem on the association graph.

Also they proposed effective reweighting scheme that enables the matching con-

straints which are well imposed during the optimization. Factorized Graph Match-

ing (FGM) [23, 25] shows powerful performances by introducing convex and concave

relaxation of the original objective function and optimizing them using well-known

Concave-Convex Procedure (CCCP) and modified Frank-Wolfe (MFW) techniques.

Besides, FGM also introduces the way to construct adjacency matrices which lead

to the same result with the affinity matrix.

Two conventional graph matching formulations are introduced and their trans-

formational relation is discussed in Section 4.3. Then, two affinity measures and

their combination with the formulations are explained in Section 4.4. We introduce

reinterpretation of famous graph matching methods for the two formulations in Sec-

tion 4.5. Finally, performances and characteristics according to formulations, affinity

measures, and algorithms are shown in Section 4.7.

4.3 Two Types of Formulations

We first formulate ordinary graph matching and then expand it to hypergraph case.

Since most of hypergraph matching approaches solve third order hypergraph, we

also assume third order hypergraphs. Previous graph matching algorithms can be
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divided into two streams according to the problem formulation: adjacency-based

(ADJ) formulation [23] and affinity-based (AFF) formulation [19, 10, 21, 1]. We

explain each of the approaches and address the relationship between them in the

following sections.

Basic graph matching notations: The goal of graph matching is to find the

best correspondence between two graphs, G = {V, E ,A} and G′ = {V ′, E ′,A′}, where

V is a set of nodes and E is a set of edges. We denote the node and edge attributes

with Ai,i ∈ Rn+ and Ai,j ∈ Rn×n+ respectively, where n = |V| is the number of nodes,

Ai,i is the attribute of i-th node and Ai,j is the attribute of directed edge (i, j) ∈ E .

Extension to hypergraph matching: Instead of using attributes a and A,

we represent hyper-edge attributes by employing tensor T ∈ Rn×n×n+ . Then we have

two hypergraphs to be matched; Gh = {V, Eh,T} and G′h = {V ′, E ′h,T′}.

Assumptions: For simple description, we assume that all attributes are none-

negative and symmetric (super-symmetric for high order attributes). Additionally,

we assume third order hypergraphs.

4.3.1 Adjacency-based Formulation

ADJ formulation for ordinary graph matching: Without loss of generality, we

assume n ≤ n′. Adjacency-based formulation finds the optimal mapping X∗, which

minimizes the difference between corresponding node and edge attributes

X∗ = argmin
X

∣∣∣∣A−XA′Xᵀ
∣∣∣∣2
F
, (4.1)

where X ∈ Π = {X|X ∈ {0, 1}n×n′ ,Xᵀ1n ≤ 1n′ ,X1n′ = 1n} is constrained to be a

one-to-one mapping. Simple linear algebra (proof in supplementary material) shows

that the optimization problem in Eq.(4.1) is equivalent to the following maximization



68 CHAPTER 4. GRAPH AND HYPERGRAPH MATCHING REVISITED

problem:

X∗ = argmax
X

Tr
(
A(XA′Xᵀ)ᵀ

)
(4.2)

Proof. The following Eq.(4.3) proves how Eq.(4.1) and Eq.(4.2) are equivalent. Thus,

the original minimization problem in Eq.(4.1) can be solved by maximizing Eq.(4.2).

Note that X ∈ Π, where Π is the set of assignment matrices so that XXᵀ = In×n

and XᵀX =

 In×n 0n×(n′−n)

0(n′−n)×n 0(n′−n)×(n′−n)

.

X∗ = argmin
X
‖A−XA′X‖2F

= argmin
X

Tr{(A−XA′X)ᵀ(A−XA′X)}

= argmin
X

Tr(AᵀA−AᵀXA′Xᵀ −XA′
ᵀ
XᵀA

+ XA′
ᵀ
XᵀXA′Xᵀ)

= argmin
X

Tr(AᵀA)− 2 Tr(AᵀXA′Xᵀ)

+ Tr(XA′
ᵀ
A′Xᵀ)

= argmin
X

Tr(AᵀA + A′
ᵀ
A′)− 2 Tr(AᵀXA′Xᵀ)

= argmax
X

Tr(AXA′Xᵀ)

= argmax
X

Tr(A(XA′Xᵀ)ᵀ). (4.3)

It reorders the components of attributes according to the mapping X and mea-

sures the similarity between two attributes as a dot product. We further extend the

objective function in Eq.(4.2) to deal with multiple adjacency matrices as follows:

X∗ = argmax
X

C∑
c=1

Tr
(
Ac(XA′

c
Xᵀ)ᵀ

)
. (4.4)
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It enables informative C-dimensional node and edge attributes, respectively. Note

that we denote the attribute of edge (i, j) ∈ E with Ai,j ∈ RC×1, where its c-th

component is Ac
i,j .

ADJ formulation for hypergraph matching: Eq.(4.1) can be extended

for hypergraph matching with ADJ form by minimizing permuted tensor attribute

differences;

X∗ = argmin
X

∑
k

∣∣∣∣T′ijk −Tπ(i)π(j)π(k)

∣∣∣∣2
F
, (4.5)

where the permutation function π(i) can be derived from the assignment matrix X

by using the relation Xi,π(i) = 1. Eq.(4.5) can be re-written by using n-mode tensor

multiplication [44].

X∗ = argmin
X

∣∣∣∣T′ −T×1 X×2 X×3 X
∣∣∣∣2
F
. (4.6)

X∗ = argmax
X

∣∣∣∣(T×1 X×2 X×3 X)�T′
∣∣∣∣
F
. (4.7)

4.3.2 Affinity-based Formulation

Affinity-based formulation maximizes sum of affinity scores between corresponding

graph attributes. It casts the graph matching problem into the following optimization

problem:

X∗ = argmax
X

∑
(i,j)∈E
(a,b)∈E ′

Xi,aXj,bf(Ai,j ,A
′
a,b) (4.8)

where the affinity function f(·, ·) measures similarity between two attributes.

For node indices, i, j ∈ V, we slightly abuse the notation ia to denote (i+(a−1)n)-

th index, which corresponds to the (i, a)-component of X. Since it is assumed that
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f(·, ·) is an arbitrary affinity function, affinity-based formulation can solve more

general problems than the formulation in Section 4.3.1. We can encode affinity score

using the affinity matrix:

Mia,jb = f(Ai,j ,A
′
a,b) (4.9)

Then, Eq.(4.8) is equivalent to the following optimization problem:

x∗ = argmax
x

(xᵀMx)

s.t. x = vec(X),X ∈ Π (4.10)

AFF formulation for hypergraph matching: In previous hypergraph match-

ing approaches ([20, 35, 36, 2]), the affinity tensor is defined for embedding higher-

order similarities between tensor attributes. Eq.(4.10) can be extended as follows;

Hia,jb,kc = fh(Tijk,T
′
abc) (4.11)

x∗ = argmax
x

(H×1 x×2 x×3 x)

s.t. x = vec(X),X ∈ Π (4.12)

Note that ×i represents tensor multiplication [44] between tensor and vector along

with i-th dimension and d represents tensor dimension.

4.3.3 Relation between Two Formulations

We can always convert the affinity-based formulation into an equivalent adjacency-

based formulation and vice versa. Zhou et al. [23, 25] showed the equivalence by
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decomposing the affinity matrix M into two parts related to graph structure and

affinity values.

From affinity-based to adjacency-based formulation: For a given graph

matching problem in Eq.(4.10), we can always find at least one set of adjacency

matrices, {Ãc}Cc=1 and {Ã′c}Cc=1, which makes the original problem equivalent to

Eq.(4.4). Let us consider a matrix M̃ ∈ Rn2×n′2 , which is a rearranged version of M

that satisfies M̃ij,ab = Mia,jb. Then the objective function in Eq.(4.10) becomes

xᵀMx =
∑
ia,jb

xiaMia,jbxjb =
∑
ia,jb

xiaM̃ij,abxjb. (4.13)

According to the singular value decomposition, we can find at least one set of

uc ∈ Rn2×1 and vc ∈ Rn′
2×1 that satisfies M̃ =

∑C
c=1 uc · vcᵀ. Since M̃ij,ab =∑C

c=1 ucijv
c
ab, if we set Ãc

i,j = ucij and Ã′
c
a,b = vcab, the Eq.(4.13) is equal to the

following:

C∑
c=1

∑
ia,jb

xiau
c
ijv

c
abxjb =

C∑
c=1

∑
i,a,j,b

Xi,aÃ
c
i,jÃ

′c
a,bXj,b

=

C∑
c=1

Tr
(
Ãc · (XᵀÃ′

c
X)ᵀ

)
.

(4.14)

From adjacency-based to affinity-based formulation: For a given graph

matching problem (4.2), if we assume the affinity function as

f(Ai,j ,A
′
a,b) =

C∑
c=1

Ac
i,j ·A′

c
a,b, (4.15)

then it can be easily shown that Eq.(4.10) is equivalent to Eq.(4.4).

From affinity-based to adjacency-based formulation of the hypergraph

matching: Define a matrix H̃ ∈ Rn3×n′3 by re-arranging indices of the tensor H ∈

Rnn′×nn′×nn′ . H̃ijk,abc = Hia,jb,kc.
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H×1 x×2 x×3 x =
∑

ia,jb,kc

Hia,jb,kcxiaxjbxkc

=
∑

ia,jb,kc

H̃ijk,abcxiaxjbxkc. (4.16)

Again, we are able to find at least one set of us ∈ Rn3×1 and vs ∈ Rn′
3×1 that

satisfies H̃ =
∑S

s=1 us · vsᵀ, where S is the rank of matrix H̃ ∈ Rn3×n′3 . Construct

two tensors T̃ and T̃′ by T̃ijk = uijk and T̃′abc = uabc. Then Eq.(4.16) becomes as

the following:

S∑
s=1

∑
ijk,abc

usijkv
s
abcxiaxjbxkc

=
S∑
s=1

∑
ijk,abc

T̃s
ijkXiaXjbXkcT̃′

s
abc

=

S∑
s=1

∣∣∣∣(Ts ×1 X×2 X×3 X)�T′
s∣∣∣∣

F

(4.17)

From adjacency-based to affinity-based formulation of the hypergraph

matching: ADJ formulation can be easily transformed in AFF formulation by ex-

tending of Eq.(4.15) as follows;

fh(Tijk,T
′
abc) = Tijk

ᵀT′abc =

S∑
s=1

Ts
ijk ·T′

s
abc. (4.18)

4.4 Affinity Measures

In Section 4.3, we discussed two ADJ and AFF formulations to define graph match-

ing problem. There are two widely used measures to obtain affinity values; one is

dot-product (DOT) measure and the other is negative exponential (EXP) measure.
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Those formulations and affinity measures generate four combinations and their char-

acteristics are in the following:

ADJ formulation with DOT measure: Adjacency-based formulation aims

at minimizing Frobenius norm of corresponding attribute differences as described

in section 4.3.1. One can directly set attributes as adjacency matrices. A great

advantage using dot-product formulation lies in its computational complexity.

AFF formulation with DOT measure: To encode DOT affinity scores into

an affinity matrix, we can set the affinity function as Mia,jb = f(Ai,j ,A
′
a,b) =

Ai,j
ᵀA′a,b.

ADJ formulation with EXP measure: EXP measure can be encoded into

adjacency matrices by following the technique of Zhou et al. [23, 25]. They construct

Kp and Kq which records pairwise affinity values of node and edge attributes from

two graphs respectively. Applying SVD to Kp, Kq and graph structures, adjacency

matrices can be derived (refer [23, 25] for detail).

AFF formulation with EXP measure: To encode EXP affinity scores into

an affinity matrix, we can set the affinity function as Mia,jb = f(Ai,j ,A
′
a,b) =

exp(−‖Ai,j − A′a,b‖/σs). This approach requires additional scale parameter σs to

be tuned for the best performance.

Discussion: We show that two different objectives yield the same solution un-

der the same affinity measure. Main difference between the two formulations is their

computational complexities since adjacency-based formulation requires O(n2) mem-

ory space while affinity-based formulation requires O(n4). In affinity measure as-

pect, however, main difference is freedom of affinity function one can use. Basically,

adjacency-based formulation only covers DOT measure thus DOT measure shows

its strength when there is enough attribute dimension. Otherwise EXP measure
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becomes more robust choice for the graph matching problem.

4.5 Existing Methods & Re-interpretations

Conventional affinity-based methods utilize the affinity matrix M in two ways; One

is for calculating objective score xᵀMx and the other way is for gradient direction of

objective score Mx. Under the equivalence explained in Section 4.3.3, we can relate

Eq.(4.4) and (4.10);

xᵀMx↔
∑
c

Tr
(
Ac(XA′

c
Xᵀ)ᵀ

)
. (4.19)

By differentiating Eq.(4.19) with respect to assignment vector x and matrix

X, we can derive counterpart of Mx in adjacency-based formulation. Using the

property of matrix calculus [58] ∂
∂X Tr (AXBXᵀ) = AᵀXBᵀ + AXB, we can derive

the following;

Mx↔
∑
c

[
(Ac)ᵀXA′

c
+ AcX(A′

c
)ᵀ
]

(4.20)

In the following subsections, existing representative graph matching techniques

and their counterpart interpretation are discussed.

4.5.1 Spectral Matching

Spectral Matching (SM) of [10] is one of the representative affinity-based method. SM

solves graph matching problem by simple power iteration and greedy discretization

step. The original affinity-based SM is explained in Algorithm 6 and reinterpretation

of adjacency-based SM is described in Algorithm 5 by using Eq. (4.20).
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Algorithm 5: Spectral Matching with Adjacency Matrices

Given A, A′, and an initial X0

repeat

Xt+1 =
∑

c [(Ac)ᵀXtA
′c + AcXt(A

′c)ᵀ] Xt+1 = Xt+1/‖Xt+1‖

until X converges;

Algorithm 6: Spectral Matching with Affinity Matrix

Given M and an initial x0

repeat

xt+1 = Mxt, xt+1 = xt+1/‖xt+1‖

until x converges;

4.5.2 Integer Projected Fixed Point

Leordeanu and Hebert proposed Integer Projected Fixed Point (IPFP) algorithm [21].

They fixed the solution space as Π defined in Section 4.3.1. IPFP iteratively pushes

the current solution by considering both gradient direction and objective score gain.

Note that Pd(·) in Algorithm 7 and 8 is a projection function which enforces input

matrix/vector to satisfy the matching constraints. Especially, IPFP requires com-

putation of xᵀMy. We can derive the counterpart of xᵀMy for adjacency-based

formulation by using the observation that Mia,jb =
∑

c Ac
i,j ·A′

c
a,b.

xᵀMy =
∑
ia,jb

xiaMia,jbyjb =
∑
c

∑
ia,jb

Xi,aA
c
i,jA

′c
a,bYj,b

=
∑
c

Tr(Ac(XA′
c
Yᵀ)ᵀ) (4.21)

xᵀMy↔
∑
c

Tr
(
Ac(XA′

c
Yᵀ)ᵀ

)
(4.22)
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Algorithm 7: Integer Projected Fixed Point with Adjacency Matrices

Given A, A′. Set s =
∑

c Tr (Ac(X0A
′c(X0)

ᵀ)ᵀ)

repeat

B = Pd(
∑

c [(Ac)ᵀXtA
′ + AcXt(A

′c)ᵀ]),

c =
∑

c [Tr (Ac[XtA
′c(B−Xt)

ᵀ]ᵀ)],

d =
∑

c [Tr ((B−Xt)
ᵀAc(B−Xt)A

′c)]

if d ≥ 0 then

Xt+1 = B

else

r = min{−c/d, 1}, Xt+1 = Xt + r(B−Xt)

end

if
∑

c [Tr (Ac(BA′cBᵀ)ᵀ)] ≥ s then

s =
∑

c [Tr (Ac(BA′cBᵀ)ᵀ)], X? = B

end

until Xt+1 = Xt;

4.5.3 Reweighted Random Walks Matching

RRWM finds the solution by simulating page-rank style random walks [38]. RRWM

can be easily reinterpreted only using Eq.(4.20) and two versions of RRWM is ex-

plained in Algorithm 9 and 10. Sinkhorn bistochastic normalization [49, 1] is adopted

for RRWM method as the projection Pd(·).

In Algorithm 11, modified RRWM (mRRWM) is introduced for large-size graph

matching problem since Sinkhorn nomalization is not robust when graphs are large.

For faster computation with large graphs, greedy mapping function of [10] is adopt

for Pd(·) and α becomes an adaptive parameter which have high value when Pd(Y)

is similar to Y. Thus, the proposed mRRWM focuses on the discretized solution
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Algorithm 8: Integer Projected Fixed Point with Affinity Matrix

Given M. Set s = xᵀ
0Mx0

repeat

b = Pd(Mxt), c = xᵀ
tM(b− xt), d = (b− xt)

ᵀM(b− xt)

if d ≥ 0 then

xt+1 = b

else

r = min{−c/d, 1}, xt+1 = xt + r(b− xt)

end

if bᵀMb ≥ s then

s = bᵀMb, x? = b

end

until xt+1 = xt;

Pd(Y) only when Pd(Y) is reliable discretized solution.

Algorithm 9: Reweighted Random Walks Matching with Adjacency Matrices

Given A, A′, and parameters {α, β}

repeat

Y =
∑

c [AcXt(A
′c)ᵀ], Z = exp(βY/max Y), Z = Pd(Z).

Xt+1 = αY + (1− α)Z.

until X converges;

4.5.4 Factorized Graph Matching

Zhou et al. introduced factorized graph matching (FGM) [23, 25] method and showed

that FGM outperforms other state-of-the-art methods. FGM calculates the affinity

matrix M̃ (used in Section 4.3.3) then generates attributes A and A′ by using their
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Algorithm 10: Reweighted Random Walks Matching with Affinity Matrix

Given M and parameters {α, β}

repeat

y = Mxt, z = exp(βy/max y), z = Pd(z). xt+1 = αy + (1− α)z.

until x converges;

Algorithm 11: Modified Reweighted Random Walks Matching with Adja-

cency Matrices

Given A, A′ and a parameter {β}

repeat

Y =
∑

c [AcXt(A
′c)ᵀ], Z = Pd(Y).

(Element-wise product) α = ||Z�Y||βF .

Xt+1 = αY + (1− α)Z.

until X converges;

proposed factorization technique [23, 25]. FGM relaxes the original objective into

convex and concave functions. Concave-Convex Procedure (CCCP) and modified

Frank-Wolfe (MFW) method are used for optimizing the relaxed objective function.

However, CCCP and MFW require the gradient of the relaxed function which in-

cludes M̃ terms with O(n4) memories. Therefore, our proposed conversion rules in

Eq.(4.19) and (4.20) cannot interpret ADJ version of FGM. Thus, we briefly explain

the original FGM by Algorithm. 12.

4.6 High-order Methods & Reinterpretations

In the section 4.5, we explained two conversion rules for ordinary graph matching

algorithms. Our rules transforms calculations of the graph matching objective score
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Algorithm 12: Factorized Graph Matching

Given M̃ and parameters {δ, η}

Factorize M̃ and find Ã, Ã′

for α = 0: δ : 1 do

if α ≤ η then

Do Concave-Convex Procedure (CCCP)

else

Do modified Frank-Wolfe (MFW)

end

end

and gradient of it. Some hypergraph matching approaches, as well, are based on the

calculation of those two entities. Therefore, in this section, we will derive another

two conversion principles for the hypergraph matching problem. Note that we will

discuss the case of third order hypergraph since almost high-order approaches focus

on the third order hypergraphs. For simplifying issue, we assume scalar attributes

for T, T′, and H, i.e., C = 1.

Objective score calculation: In the section 4.3.1 and 4.3.2, the graph match-

ing objective score is already derived in both ADJ and AFF types by Eq.(4.7) and

Eq.(4.12). It is straightforward to take them as their counterpart. The first conver-

sion rule becomes;

H×1 x×2 x×3 x↔
∣∣∣∣(T×1 X×2 X×3 X)�T′

∣∣∣∣
F
. (4.23)

Objective gradient calculation: The second conversion rule can be derived

by taking gradient of both side in Eq.(4.23) w.r.t. x and X, respectively. From the

AFF objective score and super-symmetry assumption (Hijk is identical under any
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permutation of i, j, and k),

S(x) = H×1 x×2 x×3 x =
∑
i

∑
j

∑
k

Hijkxixjxk,

∂

∂x
S(x)→ H×2 x×3 x. (4.24)

Meanwhile, gradient of ADJ objective score function S(X) and its gradient become

as the following:

S(X) =
∣∣∣∣(T×1 X×2 X×3 X)�T′

∣∣∣∣
F

=
∑
a

∑
b

∑
c

[
T′abc ·

∑
u

∑
v

∑
w

[TuvwXuaXvbXwc]

]
,

∂

∂X
S(X)i,j =

∑
b

∑
c

[
T′jbc ·

∑
v

∑
w

[TivwXvbXwc]

]

+
∑
a

∑
c

[
T′ajc ·

∑
u

∑
w

[TuiwXuaXwc]

]

+
∑
a

∑
b

[
T′abj ·

∑
u

∑
v

[TuviXuaXvb]

]
,

∂

∂X
S(X)i,j →

∣∣∣∣(T×2 X×3 X)i,:,: �T′j,:,:
∣∣∣∣
F

(4.25)

Note that� represents element-wise product, i.e., Hadamard product and ∂
∂XS(X)i,j

represents (i, j) component ∂
∂XS(X) while ∂

∂XS(X) ∈ Rn×n′ . Unlike the second order

conversion rule, we are unable to find more simpler notation for representing gradient

conversion rule. Again, the super-symmetry assumption of T and T′ explains the

last relation of Eq.(4.25). By combining Eq.(4.24) and Eq.(4.25), we can derive the

second conversion rule for the hypergraph matching:

(H×2 x×3 x)i,j ↔
∣∣∣∣(T×2 X×3 X)i,:,: �T′j,:,:

∣∣∣∣
F

(4.26)
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In the following subsections, four well-known hypergraph matching algorithms

are introduced. Hypergraph matching (HGM) by Zass and Shashua [20], singular

value decomposition based high order matching (SVD) by Chertok and Keller [36],

Tensor power iteration graph matching (TM) by Duchenne et al., Reweighted Ran-

dom Walks Hypergraph Hatching (RRWHM) [2] by Lee et al., and Discrete Hyper-

graph Matching (DHM) [37] by Yan et al.. Those AFF formulation oriented four

techniques are conceptually introduced and then re-interpreted if possible.

4.6.1 Hypergraph Matching by Zass and Shashua

In [20], Zass and Shashua interpret the graph matching problem in probabilistic sense

and proposed an order-free graph matching algorithm. They relax the assignment

X ∈ {0, 1}n×n′ into X ∈ (0, 1)n×n
′

by regarding Xi,a as the confidence score of Vi

being matched to V ′a. In ideal case, Hia,jb,kc = 1 only if Xia = Xjb = Xkc = 1.

This observation leads to a principle that X ⊗X ⊗X should be close to H. Thus,

their objective for solving hypergraph matching problem becomes as the following:

X∗ = argminX

∣∣∣∣H−⊗3X
∣∣∣∣. 1 In Algorithm 13, HGM is conceptually introduced,

however, we are unable to find HGM’s ADJ counterpart since our conversion rule

works only when an algorithm contains calculations of objective or gradient of it.

Algorithm 13: Hypergraph Matching by Zass and Shashua with Affinity Ten-

sor
Given H

Marginalize H by x =
∑

j,k H:,i,j .

Apply successive projection on x for satisfying

x1 = 1 and xᵀ1 = 1.

1⊗3X is used for abbreviating X⊗X⊗X while ⊗ represents Kronecker product.
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4.6.2 SVD-based Hypergraph Matching

Chertok and Keller [36] introduced SVD-based hypergraph matching algorithm.

They interpreted the affinity tensor H and the assignment vector x in probabilistic

manner, similar to HGM [20]. Then, they calculates rank-1 approximation of H by

SVD as an approximation. The tensor unfolding technique is introduced for applying

SVD onto H. Further gradient steps are applied for making their solution nonnega-

tive. A brief algorithm is explained in Algorithm 14. The SVD step in their method

is unable to be converted by our conversion rule thus we only describe AFF version

of the method.

Algorithm 14: Singular Value Decomposition for Hypergraph Matching with

Affinity Tensor

Given H

Unfold H ∈ Rnn′×nn′×nn′ into Hu ∈ R(nn′)2×nn′ .

Calculate the right-leading singular vector x by eigen-decomposition onto

HuHu
ᵀ.

repeat

xt+1 = H×2 xt ×3 xt, xt+1 = xt+1/||xt+1||

until x converges;

4.6.3 Tensor Power Iteration based Hypergraph Matching

Duchenne et al. proposed the tensor power iteration algorithm for hypergraph match-

ing [35]. They extend the concept of power iteration to high order tensor for rank-1

approximation of H. Their simple but powerful technique produces state-of-the-art

performance in hypergraph matching problems. The key concept of TM method is
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explained in Algorithm 16 and its ADJ counterpart is in Algorithm 15. The high

order power iteration step is mainly based on the gradient calculation of the hyper-

graph objective function thus we can easily derive ADJ counterpart of TM.

Algorithm 15: Tensor Power Iteration with Adjacency Tensor

Given T, T′

repeat

Yi,j = ||(T×2 X×3 X)i,:,: �T′j,:,:||F ,

X = Y/||Y||

until X converges;

Algorithm 16: Tensor Power Iteration with Affinity Tensor

Given H

repeat

xt+1 = H×2 xt ×3 xt, xt+1 = xt+1/||xt+1||

until x converges;

4.6.4 Reweighted Random Walks for Hypergraph Matching

Lee et al. proposed high order random walks interpretation for hypergraph match-

ing [2]. By defining random walker’s behavior on hypergraph, they successfully ex-

tend their previous RRWM [1] algorithm to hypergraph matching problems. Their

affinity-preserving random walk transition can be calculated by gradient of the ob-

jective function thus their method can be transformed into ADJ counterpart. The

original RRWHM is explained briefly in Algorithm 17 and our new interpretation is

explained in Algorithm 18.
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Algorithm 17: Reweighted Random Walks Hypergraph Matching with Ad-

jacency Tensor

Given T, T′ and parameters {α, β}

repeat

Yi,j = ||(T×2 X×3 X)i,:,: �T′j,:,:||F , Z = exp(βY/max Y), Z = Pd(Z)

X = αY + (1− α)Z

until X converges;

Algorithm 18: Reweighted Random Walks Hypergraph Matching with Affin-

ity Tensor

Given H and parameters {α, β}

repeat

y = H×2 x×3 x, z = exp(βy/max y), z = Pd(z)

x = αy + (1− α)z

until x converges;
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4.6.5 Discrete Hypergraph Matching

Yan et al. proposed discrete hypergraph matching [37]. In DHM, an adaptive lin-

earized update scheme on discrete domain is proposed. By designing a updating

scheme similar to mth-order Markov Chain and iterating on discrete domain, DHM

achieves robust performance on hypegraph matching problems. The iteration pro-

cedure of DHM is summarized in Algorithm 19, however, DHM is not possible to

be converted into ADJ version since our conversion rule is not able to cover tensor

product with histories of X.

Algorithm 19: Discrete Hypergraph Matching

Given H and a parameter {m}

repeat

xk+1 = Pd(H×1 xk+2−m ×2 · · · ×m−1 xk)

until x converges;

4.7 Experiments & Comparison

In experiment section, we compare existing representative graph and hypergraph

matching approaches. In addition, we demonstrate the equivalence of the two graph

matching formulation as well. For ordinary graph matching problem (or second

order), previously explained SM, IPFP, RRWM, and FGM are compared in various

settings. Meanwhile, the performances of HGM, SVD, TM, RRWHM, and DHM

are demonstrated on hypergraph matching problems. We conduct our experiments

on MATLAB using author provided codes (some methods are modified for fare

comparison). Our novel interpretation to conventional algorithms enable them to

solve large-size (over 1000 nodes) graph matching problem. Every experiments are
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performed 30 to 100 times and their average values are reported.

Synthetic random graph generation: Random graphs are synthetically gen-

erated to compare performances of previously mentioned graph and hypergraph

matching methods. Point-set matching problems are simulated in some literatures

such as [10] or [2]. However, we generated graphs by assigning random attributes

both on nodes and edges, thus we synthesize an unbiased situation [1].

Oridinary random graph: We generate graphs G, G′ by the following proce-

dure. At first, the graph attribute A is randomly generated using uniform distribu-

tion U(0, 1); i.e., A ∼ U(0, 1)n×n. Note that n = n′ = nin+nout, where nin and nout

are inlier and outlier numbers, respectively. To synthesize more difficult matching

problem, we assume that there is no attribute values for nodes so we set Ai,i = 0.

Then, A′ is generated by following A′ = A + N and N ∼ N (0, σ)n
′×n′ for simu-

lating deformation noises using Gaussian distribution N . Finally, outlier noises are

imposed by overwriting noises to A and A′ with A1:nout,1:nout ∼ U(0, 1)nout×nout and

A′1:nout,1:nout ∼ U(0, 1)nout×nout . A and A′ are randomly permuted for preventing

one method accidentally achieving high score.

High-order random graph: Random hypergraphs are synthesized in similar

manner with ordinary random graphs. First, attribute tensors are generated by fol-

lowing T ∼ U(0, 1)n×n×n and T′ ∼ U(0, 1)n
′×n′×n′ . Our conversion rules are based

on super-symmetry thus tensor generation should follow Tijk = Tπ(i)π(j)π(k) while

π is any permutation of {1, 2, 3}. Next, deformation noises are generated by N ∼

N (0, σ)nin×nin×nin (N is also super-symmetric). We overwrite T′ by T′1:nin,1:nin,1:nin =

T1:nin,1:nin,1:nin +N and then permute indices of T′ in the same manner as ordinary

graph case.

Equivalence between two formulations: We theoretically (Section 4.3.3) and
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.1: Performance of DOT measure according to varying deformation noise. Performances of

SM, IPFP, and RRWM are reported in two formulation types. ADJ form is expressed with marker

and AFF form is expressed without marker. Inlier number nin is fixed to 20, while deformation

scale σ varies from 0 to 0.4.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.2: Performance of DOT measure according to varying outlier noise. Performances of SM,

IPFP, and RRWM are reported in two formulation types. ADJ form is expressed with marker and

AFF form is expressed without marker. Inlier number nin is fixed to 20, while outlier number nout

varies from 0 to 20.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.3: Performance of EXP affinity measure according to deformation noise. Performances of

SM, IPFP, and RRWM are reported in two formulation types. ADJ form is expressed with marker

and AFF form is expressed without marker. Inlier number nin is fixed to 20, while deformation

scale σ varies from 0 to 0.4.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.4: Performance of EXP affinity measure according to outlier noise. Performances of SM,

IPFP, and RRWM are reported in two formulation types. ADJ form is expressed with marker and

AFF form is expressed without marker. Inlier number nin is fixed to 20, while outlier number nout

varies from 0 to 20.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.5: Performance on large-size graph matching problem according to deformation noise.

Large-size graph matching problem can be solved only with adjacency-based formulation with dot-

product affinity measure. Performances of SM, IPFP, RRWM, and mRRWM are reported. Inlier

number nin is fixed to 1000, while deformation scale σ various from 0 to 0.1.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.6: Performance on large-size graph matching problem according to outlier noise. Large-size

graph matching problem can be solved only with adjacency-based formulation with dot-product

affinity measure. Performances of SM, IPFP, RRWM, and mRRWM are reported. Inlier number

nin is fixed to 200, while outlier number nout varies from 0 to 300.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.7: Performance according to the graph size. Adjacency-based formulation with dot product

is used. Inlier number nin varies from 10 to 50, while outlier number nout and deformation noise σ

is fixed to 0 and 0.05, respectively.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.8: Performance according to the attribute dimension. Adjacency-based formulation with

dot product is used. Inlier number nin, outlier number nout, and deformation scale σ is fixed to

200, 0, and 0.025, respectively while the attribute dimension varies from 1 to 19.
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experimentally (Figs. 4.1, 4.2, 4.3, and 4.4) demonstrate that both adjacency-based

formulation and affinity-based formulation produces the same solutions. For SM,

IPFP, and RRWM, users can notice that each method shows the same performance

with both ADJ (with marker) and AFF (without marker) form. As mentioned in

Section 4.5.4, FGM solves the problem with its original form (AFF form).

Affinity measure comparison: DOT and EXP measures solve the same graph

matching problem but produce different results. Comparing Figs. 4.1 and 4.3 reveals

that EXP measure is more robust than DOT measure under deformation noise.

FGM, surprisingly, shows almost the same performance on both measures under

deformation noises. Similarly, we can compare the performances of the two measures

under outlier noises by checking Figs. 4.2 and 4.4. With outlier noises, performance

gap between the two measures is more severe than deformation noises.

Synthetic problem with large graphs: Applying graph matching techniques

in computer vision fields inevitably handles image features which are usually more

than hundreds or thousands. To our best knowledge, there is no reported work

handling fully connected graph matching problem with node size n more than 1000.

We tested previously mentioned graph matching algorithms on huge graphs.

FGM is omitted in large-size graph matching problem since we are unable to get

adjacency-based FGM method. IPFP method originally performs Hungarian algo-

rithm [48] in every iteration for satisfying one-to-one constraints. However the com-

putational complexity of Hungarian algorithm is O(n3) which makes runtime of

IPFP impractical. Instead, we modify IPFP to perform greedy manner projection

for speed-up. In addition, the proposed mRRWM is also compared in large-size graph

matching experiment.

Performances of the three methods (SM, IPFP, RRWM, mRRWM) on the large-
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size graph matching problem are reported in Figs. 4.5 and 4.5. Note that, for

all methods, parameters are fixed throughout all experiments. For outlier tests in

Fig. 4.6, we set the attribute dimension C as 10 since outlier noises dramatically

decrease performances. Thus, we increase attribute dimension C which makes at-

tributes more informative and robust to noises. Scalar attribute is not informative

for large-size graph matching, thus we increase the dimension of attributes to 10. It

is remarkable that IPFP and mRRWM show reasonable performances on the large-

size graph while SM and RRWM fail to find correct matches. IPFP and mRRWM

methods (among the four methods discussed) which restrict their solution space

satisfying the matching constraints during iterations. Other methods relax their so-

lution space on real numbers and we analyze that this is the reason why IPFP shows

the best performances with large graphs.

We also examine when the graph matching problem becomes large one. In

Fig. 4.7, RRWM loses its strength when the inlier number nin exceeds 20. How-

ever, IPFP shows reasonable performances throughout various sizes of graphs. This

performance loss can be prevented by using more robust affinity measure such as

exponential measure, or increasing the attribute dimension C.

Effect of the attribute dimension: We tested effect of the attribute dimension

C in Fig. 4.8. As attribute dimension increases, attributes become more informative

which results better performances. IPFP surely outperform others and it is consis-

tent with Figs. 4.5 and 4.6. We can observe that increasing attribute dimension is

recommended strategy for overcoming deformation noises. For outlier noises, how-

ever, higher attribute dimension is not appropriate solution for SM and RRWM. We

can conclude that IPFP is the only solution for solving large-size graph matching

problem under various noise conditions.
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Performance on the hypergraph matching problem: Finally, performances

of hypergraph matching algorithms [20, 35, 36, 2, 37] are compared and reported in

Figs. 4.9, 4.10, 4.11, and 4.12. As mentioned in Section 4.6, HGM, SVD, DHM meth-

ods are unable to solve ADJ formulation, thus, only TM and RRWHM are compared

for ADJ formulation which is reported in Figs. 4.9 and 4.10. In memory aspect, ADJ

formulation surely has advantage than AFF formulation, however actual execution

times of ADJ are reported longer than AFF formulation since we optimize our imple-

mentation of AFF formulation part by using C-MEX. We assume that ADJ form is

faster and requires less memories in the same implementation environment. In perfor-

mance aspect, AFF formulation clearly outperforms ADJ formulation. Among four

representative algorithms, TM and RRWHM show state-of-the-art performances.

Performance on image feature correspondence problem: Performances

of both graph and hypergraph algorithms for real image experiments are also eval-

uated and report. For constructing graphs and hypergraphs for feature matching

experiment, Willow object class dataset from Cho et al. [59] is utilized. In Willow

dataset, about 300 images from 5 different categories are manually annotated with

10 distinct points. In total, there are more than 10,000 images pairs for the same

category. 5 graph matching and 5 hypergraph matching algorithms conduct image

feature correspondence tasks and their average performances are reported in Ta-

ble 4.1 and Table 4.2. For calculating 3rd-order affinity tensor H, as illustrated in

Fig. 2.8, a sum of sine value differences between corresponding angles [20, 35, 2] was

adopted:

dia = | sin(θi)− sin(θ′a)|,

Hia,jb,kc = exp
(
− (dia + djb + dkc)/σs

)
, (4.27)
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.9: Performance of DOT measure on hypergraph matching problem according to defor-

mation noise. Performances of RRWHM and TM are reported. Inlier number nin and attribute

dimension C are fixed to 15 and 2, respectively, while deformation scale σ varies from 0 to 0.4.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.10: Performance of DOT measure on hypergraph matching problem according to outlier

noise. Performances of RRWHM and TM are reported. Inlier number nin and attribute dimension

C are fixed to 10 and 1, respectively, while outlier number nout varies from 0 to 7.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.11: Performance of EXP affinity measure on hypegraph matching problem according to

deformation changes. Performances of RRWHM, TM, HGM, SVD, and DHM are reported. Inlier

number nin and attribute dimension C are fixed to 15 and 2, respectively, while deformation scale

σ varies from 0 to 0.4.
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(a) matching accuracy (b) objective score

(c) execution time

Figure 4.12: Performance of EXP affinity measure on hypegraph matching problem according to

outlier numbers. Performances of RRWHM, TM, HGM, SVD, and DHM are reported. Inlier number

nin and attribute dimension C are fixed to 10 and 1, respectively, while outlier number nout varies

from 0 to 7.



102 CHAPTER 4. GRAPH AND HYPERGRAPH MATCHING REVISITED

Table 4.1: Performances of various graph matching algorithms according to different affinity mea-

sures on image feature matching problem.

DOT measure EXP measure

SM [10] 0.4133 0.4030

IPFP [21] 0.4405 0.5296

RRWM [1] 0.5100 0.6279

FGM [23] 0.6263 0.6699

DDMCMC 0.5237 0.6612

where θi and θ′a denote the node angles of candidate correspondence (i, a). The scale

parameter σs was set to 0.5 for the best performance.

4.8 Conclusion

In this chapter, we investigate two conventional graph matching formulations and

their transformational relation, where users are recommended to adopt adjacency-

based algorithms since it has computational advantages without performance loss.

Note that adjacency and affinity based formulations show different performances.

Two affinity measures and their combinations with the formulations are explained.

When users have large graphs to be matched, adjacency-based formulation with

dot-product measure is essential since only adjacency formulation allows us O(n3)

computational complexity while others require O(n4). In other scenarios, however,

negative exponential measure is more robust choice under both deformation and

outlier noises. Converting AFF algorithm into ADJ version decreases complexity of
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Table 4.2: Performances of various hypergraph matching algorithms according to different affinity

measures on image feature matching problem.

DOT measure EXP measure

HGM [20] 0.2003 0.1801

SVD [36] 0.2409 0.2324

TM [35] 0.2489 0.3248

RRWHM [2] 0.3427 0.3659

DHM [37] 0.2574 0.1985

optimizing iterations, however, converting AFF formulation into ADJ version re-

quires singular value decomposition which might be computationally heavy. We in-

troduced reinterpretation of famous graph matching approaches according to the two

formulations. It is revealed that IPFP and mRRWM show their strength on large-size

graph matching problem compared to ordinary size problem. For hypergraph match-

ing problem, we also introduce two different (affinity-based and adjacency-based)

formulations and relate them together. Four representative hypergraph matching

algorithms are reinterpreted and their performances are thoroughly compared in

synthetic experiments. Once again, adjacency-based formulation takes advantages

in computational complexity sense while affinity-based formulation shows robust

performance on severe noise conditions.
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Chapter 5

Conclusion

5.1 Summary and Contribution of Dissertation

In Chapter 2, a general graph matching formulation for graph matching and hyper-

graph matching is introduced and a novel algorithm from an Random Walks view

is proposed. The proposed algorithm effectively solve graph matching by Random

Walks with reweighting jumps, and achieves noise-robust (hyper)graph matching

by updating and exploiting the confidences of candidate correspondences simulta-

neously. Extensive experiments on both synthetic and real problems demonstrated

that the proposed algorithm outperforms current state-of-the-art methods for graph

matching [10, 16, 21, 18, 19] and hypergraph matching [20, 35, 36] in the presence

of outliers and deformation. The proposed method could be useful for real-world

matching problems in a wide range of fields.

In Chapter 3, a novel stochastic Markov Chain Monte Carlo based graph match-

ing algorithm which can avoid local minima problem of deterministic approaches

is proposed. It adopts Markov Chain Monte Carlo framework with the data-driven

105
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state transition proposals, which efficiently explores the solution space of graph

matching. The proposed Markov Chain Monte Carlo graph matching algorithm is

extended to hypergraph matching problem by re-defining the energy function using

hypergraph matching objective score function. Experiments show that our graph

matching algorithm is robust to deformation and outliers arising from the practi-

cal correspondence problems, and outperforms the state-of-the-art graph matching

algorithms.

In Chapter 4, two conventional graph matching formulations and their trans-

formational relation are investigated. Two representative affinity measures (dot-

product and negative-exponential) and their combinations with two formulations are

explained. When users have large graphs to be matched, adjacency-based formula-

tion with dot-product measure is essential since only adjacency formulation allows

us O(n3) computational complexity while others require O(n4). In other scenarios,

however, negative exponential measure is more robust choice under both deforma-

tion and outlier noises. We introduced reinterpretation of famous graph matching

approaches according to the two formulations. It is revealed that IPFP shows its

strength on large size graph matching problem compared to ordinary size problem,

and modified RRWM is proposed for solving large graph matching problem. For

hypergraph matching problem, we also introduce two different (affinity-based and

adjacency-based) formulations and relate them together. Four representative hyper-

graph matching algorithms are reinterpreted and their performances are thoroughly

compared in synthetic experiments. Once again, adjacency-based formulation takes

advantages in computational complexity sense while affinity-based formulation shows

robust performance on severe noise conditions.
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5.2 Future Works

First, the proposed conversion rule between adjacency formulation and affinity for-

mulation is limited since there are only two rules are derived; objective score and

gradient of objective score. If one algorithm requires computation of another quan-

tity except those two, it is impossible to find counterpart of this algorithm. SVD

based hypergraph matching algorithm of Chertok and Keller [36], for example, it is

required to find adjacency version of SVD operation for convert this algorithm into

adjacency formulation. Thus, additional conversion principles should be derived for

our equivalence statement being more general.

Second, in Chapter 2, IPFP of Leordeanu and Herbert [21] shows outstanding

robust performance on large size (over 100 nodes) graph matching problem. In fact,

IPFP is the only algorithm which can be applied to large size problem. However,

there are much of graph matching algorithms [18, 1, 23, 25, 24] which show supe-

rior performances on adequate size (under 100 nodes) of graph matching problems.

Considering these facts, therefore, it is natural to expect that the performance on

large graph matching is not saturated and previous state-of-the-art algorithms can

be adjust, tuned, or modified to be robust to large graph matching.

Third, outlier handling graph matching algorithm is necessary. Usually, in real

world situation, there exists outlier nodes on both graph G and G′. Conventional

graph matching formulations, however, does not account the presence of outliers

nodes in objective score function sense. For example, Suh et al. [24] proposed a

novel objective function which finds a trade-off between matching size and matching

quality by using the following objective function:

x∗ = argmax
x

xᵀMx− λ‖x‖. (5.1)
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Therefore, expanding or modifying the proposed algorithms to theoretically cover

outliers might be a reasonable future work.
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국문초록

그래프정합은컴퓨터비전및패턴인식분야의근본적인문제인두집합간의대응관

계를 도출하는 대표적인 기법이다. 많은 알고리즘들이 그래프의 꼭짓점으로 특징점을

표현하고변으로꼭짓점간의관계를나타내는것으로대응관계문제를그래프정합으로

다루었지만, 실제 발생하는 여러 가지 노이즈로 인하여 그래프정합은 도전적인 문제로

남아있다. 본 학위논문에서는 노이즈에 강인한 그래프정합 알고리즘들을 제안하고 컴

퓨터비전에 있어서 효과적인 그래프정합 전략을 조사하도록 한다.

이를위하여첫째로,시뮬레이션을기반으로한강인한두그래프정합알고리즘들을

제안한다. 하나의 알고리즘은 랜덤워크 시뮬레이션을 기반으로 하였으며, 다른 하나의

알고리즘은 마르코프체인몬테카를로를 기반으로 한다. 둘째로, 그래프정합을 위한 두

수식과 그래프정합 분야에서 분석이 제대로 이루어지지 않은 두 수식간의 상호호환

관계에 대하여 분석한다. 본 학위논문에서 제안하는 변환공식을 통하여 기존의 그래

프정합 알고리즘들이 다른 형태의 수식을 기반으로 한 그래프정합 문제를 풀어낼 수

있음을보인다.마지막으로,주장하는내용을고차그래프정합문제로확장하여,각각랜

덤워크와 마르코프체인몬테카를로를 기반으로 하는 두 고차그래프정합 알고리즘들을

제안하고, 두 고차그래프정합 수식의 상호호완 관계에 대하여 분석하며, 기존의 고차

그래프정합 알고리즘들이 다른 형태의 고차그래프정합 수식을 다룰 수 있도록 변환이

가능함을보인다.본학위논문각각의장을통하여철저한비교실험을수행하였고,이를

통하여 그래프정합 수식, 상호호환관계, 알고리즘들의 특성을 분석하였다. 합성그래프

실험과 실제 이미지 특징점 정합 실험을 통하여 다양하고 강도 높은 노이즈에 대한
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특성을 분석하였다.

주요어: 그래프정합,고차그래프정합,그래프정합수식화,마르코프체인몬테카를로,데

이터기반, 랜덤워크

학번: 2008-20943
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