
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문

정적분석기사용자편의성증대에관한연구

Improving the Usability of Static Analyzers

2016년 2월

서울대학교 대학원

전기컴퓨터공학부

이 우 석



정적분석기사용자편의성증대에관한연구

지도교수 이 광 근

이 논문을 공학박사학위논문으로 제출함

2015년 10월

서울대학교 대학원

전기컴퓨터공학부

이 우 석

이 우 석의 박사학위논문을 인준함

2015년 12월

위 원 장 허 충 길 (인)

부 위 원 장 이 광 근 (인)

위 원 천 정 희 (인)

위 원 전 병 곤 (인)

위 원 오 학 주 (인)



Abstract

Improving the Usability of Static Analyzers

Woosuk Lee

Department of Electrical Engineering & Computer Science

College of Engineering

Seoul National University

As programs become larger and more complex, users of static analyzers often en-

counter three usability issues. Firstly, static analyzers often produce a large num-

ber of both true and false alarms that are tedious to classify manually. Secondly,

users cannot but wait long time without any progress information during analy-

sis. Lastly, copy-right concerns over software sources hinder extensive uses of static

analyzers.

In this dissertation, we present our solutions to the three usability issues. To

reduce users’ alarm-classification efforts, we propose a sound method for cluster-

ing static analysis alarms. Our method clusters alarms by discovering sound de-

pendencies between them such that if the dominant alarms of a cluster turns out

to be false, all the other alarms in the same cluster are guaranteed to be false.

Once clusters are found, users only need to investigate their dominant alarms.

Next, we present a progress indicator of static analyzers. Our technique first com-

bines a semantic-based pre-analysis and a statistical method to approximate how

a main analysis progresses in terms of lattice height of the abstract domain. Then,

we use this information during the main analysis and estimate the analysis’ cur-

rent progress. Lastly, we present a static analysis of encrypted programs to resolve

users’ copy-right concerns over software sources. Users have purchased expensive

commercial static analyzers or outsource static analyses on their programs to anal-

ysis servers taking the risk of loss of copy-right. Our method allows program own-

ers to encrypt and upload their programs to the static analysis service while the

service provider can still analyze the encrypted programs without decrypting them.



We have implemented all the methods on top of a realistic static analyzer for

C programs and empirically proved that our methods effectively improve the us-

ability.

Keywords : Usability, Progress Estimation, Static Analysis, False

Alarms, Homomorphic Encryption, Abstract Interpre-

tation, Non-statistical Clustering, Pointer Analysis,

Buffer-overflow Detection

Student Number : 2009-20866
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Chapter 1

Overview

1.1 Problems

Static program analysis (or simply “static analysis”) offers static compile-time tech-

niques that safely estimate the program properties observable at run-time. Sound

static analysis captures all possible run-time behaviors of programs. Thus, it can

be used to prove the absence of run-time errors in programs.

As programs become larger and more complex, users of static analyzers often

encounter the following major usability issues:

• Many false alarms : Users of sound static analyzers often encounter false

positives that cause tedious alarm-investigation efforts. To capture all pos-

sible run-time behaviors of programs, any sound static analysis should in-

evitably be incomplete in the sense that it can only provide over-approximate

answers. These over-approximations are often imprecise as target programs

become more complex. For example, to guarantee the termination of fix-

point computation in complex control-flow cycles in a program, extrapolation

(e.g., widening) is often applied. Such extrapolations often lead to imprecise

analysis results.
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• Missing progress indicator : Other than almost syntactic properties, once

the target property becomes slight deep in semantics static analyzers usually

take a long time to analyze real-world complex software.

However, users cannot but wait long time without any progress informa-

tion. For instance, Sparrow [31, 49, 50, 51, 52, 61], our realistic static an-

alyzer for full C, takes more than 10 hours to analyze 400K lines of C code.

Astrée, a domain-aware analyzer for the primary flight-control software, has

also been reported to take over 20 hours to analyze programs of size over

500KLOC [16]. Nonetheless, such static analyzers are silent during their op-

eration.

It is because estimating static analysis progress at real-time has been con-

sidered challenging in general. Static analyzers take most of their time in

fixpoint computation, but estimating the progress of fixpoint algorithms has

been unknown. One challenge is that the analysis time is generally not pro-

portional to the size of the program to analyze. For instance, Sparrow takes

4 hours in analyzing one million lines but require 10 hours to analyze pro-

grams of sizes around 400KLOC [49]. Similar observations have been made

for Astrée as well: Astrée takes 1.5 hours for 70KLOC but takes 40 min-

utes for 120KLOC [16].

• Copy-right concerns : Copy-right concerns over software sources have been

the major cause that prevents extensive uses of commercial static analyzers.

Target programs often require copy-right protections. Also, to handle large

complex programs, static analyzers should be equipped with sophisticated

approximation methods [45, 56] and cost-reduction techniques for better scal-

ability [49, 50, 51, 52]. These techniques necessitate the copy-right protection

of commercial static analyzers.

So far, users should either purchase expensive static analyzers or outsource

static analyses on their programs to analysis servers taking risk of the loss

of copy-right.
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1.2 Solutions

• Sound non-statistical alarm clustering [39] : To reduce users’ alarm-

investigation burden caused by many false alarms, we propose a method of

clustering alarms according to their sound dependence information. We say

that alarm A has sound dependence on alarm B if alarm B turns out to be

false, then so does alarm A as a logical consequence. When we find a set of

alarms depending on the same alarm, which we call a dominant alarm, we

can cluster them together. Once we find clusters of alarms, users only need

to check whether their dominant alarms are false.

Our method automatically discovers sound dependencies among alarms. Our

basic approach is to perform a post-analysis assuming some dominant alarm

candidates to be false and see if the other existing alarms are suppressed by

the assumption.

We prove the effectiveness of our clustering method with a realistic static

analyzer for buffer-overflow detection. On 14 open-source benchmarks, our

clustering method identified 45% of alarms to be non-dominating. This result

amounts to 45% reduction in the number of investigated alarms if the other

55% turns out to be false.

Our framework is general and applicable to any semantic-based static analyz-

ers. It is orthogonal to other methods for reducing alarm-investigation bur-

den such as refining approaches [24, 25, 33, 55] or statistical ranking schemes [31,

35, 36].

• A progress bar for static analyzers [40] : We propose a progress bar for

static analyzers. We estimate analysis progress by calculating lattice heights

of intermediate analysis results and comparing them with the height of the

final analysis result. To this end, we employ a semantic-based pre-analysis

and a machine learning technique. First, we use the pre-analysis to approxi-

mate the height of the fixpoint. This estimated height is then fine-tuned with

the statistical method. Second, because this height progress usually does not

3



indicate the actual progress (speed), we normalize the progress using the pre-

analysis.

We show that our technique effectively estimates static analysis progress in

a realistic setting. We have implemented our idea on top of Sparrow. In our

experiments with various open-source benchmarks, the proposed technique is

found to be useful to estimate the progress of three different kinds of analy-

ses (interval, octagon, and pointer analysis). The pre-analysis overheads are

3.8%, 7.3%, and 36.6% on average in each kind of analyses (interval, pointer,

and octagon analysis), respectively.

• Static analysis with set-closure in secrecy [38] : To resolve the copy-

right concerns, we report that the homomorphic encryption (HE) scheme

can unleash the possibility of static analysis of encrypted programs. A HE

scheme enables computation of arbitrary functions on encrypted data. Our

method allows program owners to encrypt and upload their programs to the

static analysis service while the service provider can still analyze the en-

crypted programs without decrypting them.

As a first step, we propose a pointer analysis in secrecy. As many analyses

depends on the pointer information, we expect our work to have significant

implications along the way to static analysis in secrecy.

To overcome the high complexity of HE operations, we propose two opti-

mization techniques. One is level-by-level analysis. We analyze the pointers of

the same level together from the highest to lowest. The technique decreases

both each ciphertexts size and the cost of each homomorphic operation. The

other is to exploit the ciphertext packing technique in cryptography not only

for performance boost but also for decreasing the total size of ciphertexts

required for the program encryption.

1.3 Outline

The rest of this dissertation is organized as follows:
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• Chapter 2 defines preliminary concepts and static analyses used in our meth-

ods.

• Chapter 3 presents our sound alarm clustering method.

• Chapter 4 presents our progress bar for static analyzers.

• Chapter 5 presents our methods for static analysis with set-closure in secrecy.

• Chapter 6 discusses related works and Chapter 7 concludes the dissertation.
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Chapter 2

Preliminaries

2.1 Concepts

In this section, we define preliminary concepts.

Programs We represent a program P as a transition system (S,→,Sι) where S
is the set of states of the program, (→) ⊆ S × S is the transition relation of the

possible, elementary execution steps, and Sι ⊆ S denotes the set of initial states.

Collecting Semantics We write S+ for the set of all finite non-empty sequences

of states. If σ ∈ S+ is a finite sequence of states, σi denotes the (i+1)-th state of

the sequence, σ0 is the first state, and σ⊣ the last state. If τ is a prefix of σ, we

write τ ⪯ σ.

We say a sequence σ is a trace if σ is a (partial) execution sequence, i.e., σ0 ∈
Sι ∧ ∀k.σk → σk+1. The trace semantics of program P is defined as the set of all

traces of the program:

[[P ]] = {σ ∈ S+ | σ0 ∈ Sι ∧ ∀i.σi → σi+1}
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Note that the set [[P ]] is a least fixpoint of the following semantic function FP :

FP : ℘(S+)→ ℘(S+)
FP (E) = {⟨sι⟩ | sι ∈ Sι}

∪ {⟨s0, · · · , sn+1⟩ | ⟨s0, · · · , sn⟩ ∈ E ∧ sn → sn+1}.

That is, [[P ]] = lfp FP .

Abstract Semantics We obtain the static analyzer by abstracting the trace se-

mantics in two steps. First, we abstract the set of traces (i.e. ℘(S+)) into par-

titioned sets of reachable-states (i.e. Φ → ℘(S) where Φ is a pre-defined set of

partitioning indices). Next, we abstract the set of states associated with each par-

titioning index into an abstract state (Ŝ), leading to the final abstract domain D̂ =

Φ→ Ŝ. The overall abstraction is formalized by the following Galois-connection:

℘(S+) −−−−→←−−−−
α0

γ0
Φ→ ℘(S) −−−−→←−−−−

α1

γ1
Φ→ Ŝ.

We call the first part partitioning abstraction and the second part set of states

abstraction.

1. Partitioning abstraction: Suppose that we have a pre-defined set Φ of indices

and a partitioning function

δ : Φ→ ℘(S+)

which maps partitioning indices (Φ) to a set of traces. We assume that the

partitioning function is well-formed in a sense that it covers all the traces,

i.e.,
⋃

φ∈Φ δ(φ) = S+, and all the associated sets are disjoint, i.e., ∀φ1, φ2. φ1 ̸=
φ2 =⇒ δ(φ1) ∩ δ(φ2) = ∅.

Example 2.1.1. The most popular strategy is the so-called flow-sensitivity

that partitions the set of traces based on the program point of the final state;

when a state is a pair of program point (C) and a memory state (M), i.e.,

7



S = C × M, this final program point partitioning is defined by the parti-

tioning function δp(c) = {σ | ∃ρ.σ⊣ = (c, ρ)}; the set C of program points

forms the partitioning indices Φ and δp classifies the set of traces accord-

ing to their final program points. Other conventional partitioning strategies

such as context-sensitivity, path-sensitivity, loop-unrolling are also obtained

by defining appropriate partitioning indices Φ and function δ.

With a given partitioning function δ, we first define the partitioned reachable-

state domain Φ→ ℘(S), which is defined by the following Galois-connection:

℘(S+) −−−−→←−−−−
α0

γ0
Φ→ ℘(S)

where the abstraction function α0 and the concretization function γ0 are de-

fined as follows:

α0(Σ) = λφ.{σ⊣ | σ ∈ Σ ∩ δ(φ)}
γ0(f) = {σ | ∀τ ⪯ σ.∀φ ∈ Φ. τ ∈ δ(φ)⇒ τ⊣ ∈ f(φ)}.

We write concrete semantics [[P ]] modulo the partitioning function δ as [[P ]]/δ ,

i.e., [[P ]]/δ ∈ Φ→ ℘(S).

2. Set of states abstraction: We further abstract the partitioned reachable states

by the following Galois-connection:

Φ→ ℘(S) −−−−→←−−−−
α1

γ1
Φ→ Ŝ.

The Galois-connection of (α1, γ1) is defined as pointwise lifting of Galois-

connection (αS , γS) of states abstraction ℘(S) −−−−→←−−−−
αS

γS Ŝ.

From this point, we will denote α and γ as α1 ◦ α0 and γ0 ◦ γ1 respectively.

The abstract semantics of program P computed by the analyzer is a fixpoint

ˆ[[P ]] = lfp#F̂ where the function F̂ : (Φ → Ŝ) → (Φ → Ŝ) is a monotone or an

8



extensive abstract transfer function such that α ◦FP ⊑ F̂ ◦α and lfp# is a sound,

abstract post-fixpoint operator which is defined as follows:

⊔
i∈N

F̂ i(⊥̂) = F̂ 0(⊥̂) ⊔ F̂ 1(⊥̂) ⊔ F̂ 2(⊥̂) ⊔ · · · (2.1)

where F̂ 0(⊥̂) = ⊥̂ and F̂ i+1(⊥̂) = F̂ (F̂ i(⊥̂)) and ⊥̂ = ⊥Φ→Ŝ. The analysis’ job is

to compute the above sequence until stabilized. When the chain is infinitely long,

we can use a widening operator
`

: (Φ → Ŝ) × (Φ → Ŝ) → (Φ → Ŝ) to accelerate

the sequence.

The soundness of the static analysis follows from the fixpoint transfer theo-

rem [18].

2.2 Static Analyses We Use

In this section, we define three underlying static analyses. Our methods are im-

plemented on top of the analyses.

Programs as CFGs We consider programs that can be represented by control

flow graphs. A program is a tuple ⟨C, ↪→⟩ where C is a set of program points,

(↪→) ⊆ C×C is a relation that denotes control flows: c ↪→ c′ indicates that c′ is a

next program point of c. Each program point is associated with a command: c(c)

denotes the command associated with program point c.

2.2.1 Interval Analysis

Now we describe a baseline analyzer that is an interval domain-based flow-sensitive

abstract interpreter [2]. The analyzer is a realistic buffer-overflow detector perform-

ing sound and inter-procedural analysis.

To simplify the presentation, we consider a simple language and a program

property. Each variable has an integer value in the simple language. The target

program property we consider is about size relationships between variables.
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Program Commands Each command in a node (or program point) c ∈ C in

the graph has one of the following command, denoted cmd(c):

command c → x := e | {{x ≤ n}} | x := unknown()

expression e → n | x | e + e

An (side-effect-free) expression is either constant integer (n), binary operation (e + e),

or variable (x). The command x := e assigns the value of e into x. The command

{{x ≤ n}} makes the program continue only when the condition evaluates to true.

The command x := unknown() assigns an arbitrary integer into x.

Collecting Semantics Collecting semantics of a program P is an invariant [[P ]]/δp :

C → ℘(S) where δp is the final program point partitioning function described in

§2.1. It represents a set of reachable states at each program point, where the con-

crete domain of states S is the set of finite maps from variables (Var) to integers

(Z).

Abstract Semantics In our analysis, the set of (possibly infinite) concrete mem-

ory states for each program point are abstracted by an abstract memory state

(ŜI = Var
fin→ I), a finite map from variables (Var) to interval values (I) that ab-

stract a set of integers:

I = {⊥} ∪ {[l, u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l ≤ u}.

The pair of functions (αI, γI) forms a Galois connection: ℘(S) −−−→←−−−
αI

γI ŜI.
For each node, we define a transfer function f̂I : C → ŜI → ŜI that, given

an input memory state, computes the effect of the assignment in the node on the

input state:

f̂I c m̂ =


m̂[x 7→ V̂(e)(m̂)] (cmd(c) = x := e)

m̂[x 7→ m̂(x) ⊓ [−∞, n]] (cmd(c) = {{x ≤ n}})
m̂[x 7→ [−∞,∞]] (cmd(c) = x := unknown())
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The effect of node {{x ≤ n}} is to confine the interval value of x according to the

condition. The effect of node x := e is to assign the abstract value of e into vari-

able x. The effect of node x := unknown() is to assign the top interval value into

variable x. Given expression e and abstract memory state m̂, auxiliary function V̂
computes abstract values:

V̂(e) : ŜI → I

V̂(n)(m̂) = [n, n]

V̂(e1 + e2)(m̂) = V̂(e1)(m̂)+̂V̂(e2)(m̂)

V̂(x)(m̂) = m̂(x)

We skip the conventional definition of the abstract binary (+̂) and join (⊔) oper-

ations in interval domain.

The analyzer computes a fixpoint table ˆ[[P ]]
I
∈ C → ŜI that maps each node

in the program to its output abstract memory state. The abstract memory state

at each program point approximates all the concrete memory states occurring at

the node in the concrete executions. The map is defined by the least fixpoint of

the following function:

FI : (C→ ŜI)→ (C→ ŜI)
FI( ˆ[[P ]]) = λc.f̂I c (

⊔
c′↪→c

ˆ[[P ]](c′))

The fixpoint table ˆ[[P ]]
I
is a sound approximation of the collecting semantics of

the program, i.e., ∀c ∈ C. γI( ˆ[[P ]]
I
(c)) ⊒ [[P ]]/δp (c)

Fixpoint Computation with Widening As the interval domain has infinite

height, we need a widening operator to approximate the least fixpoint of FI. The

widening operator is applied at only headers of flow cycles [5]. Let W ⊆ C be the

set of widening points (all loop headers in the program) in the program.
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Example 2.2.1. We use the following widening operator in our interval analysis:

[l, u]▽[l′, u′] = [if (l′ < l) then −∞ else l, if (u′ > u) then +∞ else u].

2.2.2 Octagon Analysis

Now we describe the octagon domain-based analysis. The octagon abstract do-

main [45] captures relational properties between variables. Our design of the oc-

tagon domain-based analysis is based on the same program representation and col-

lecting semantics as in the interval analysis (§ 2.2.1).

Abstract Semantics Octagon domain ŜO represents a set of octagonal con-

straints of the form ±x ± y ≤ k where x, y ∈ Var and k ∈ Z ∪ {+∞}. For an

octagon o ∈ ŜO, oxy = k denotes an octagonal constraint y−x ≤ k. 1 The abstrac-

tion is characterized by the following abstraction function αO:

αO : ℘(S)→ ŜO

αO(S) = ⊥ŜO if S = ∅(
αO(S)

)
xy

= max{s(y)− s(x) | s ∈ S} o.w

The abstract semantics is a fixpoint table ˆ[[P ]]
O
∈ C→ ŜO that maps each program

point to a single octagon. The map is defined by the least fixpoint of the following

function:

FO : (C→ ŜO)→ (C→ ŜO)
FO( ˆ[[P ]]) = λc.f̂O c (

⊔
c′↪→c

ˆ[[P ]](c′))

where f̂O functions as the standard octagon transfer function for the abstract as-

signment or the abstract test [45] according to an associated command.

As the octagon domain also has infinite height, we apply widening at loop

headers in the program as in the interval analysis.

1For brevity, we only consider octagonal constraints of the following form: x− y ≤ k.
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2.2.3 Pointer Analysis

Now we describe a flow-sensitive and context-insensitive pointer analysis.

Program Commands Each command in a node (or program point) c ∈ C in

the graph has one of the following command, denoted cmd(c):

command c → x := &y | x := y | ∗x := y | x := ∗y

Collecting Semantics We use the the final program point partitioning function

described in § 3.2. The concrete domain of states S is the set of finite maps from

variables (Var) to set of variables (℘(Var)).

Abstract Semantics The abstract state is a map from program variables to its

points-to set, i.e., ŜP = Var
fin→ ℘(Var).

For each node, we define a transfer function f̂P : C → ŜP → ŜP that, given

an input memory state, computes the effect of the assignment in the node on the

input state:

f̂P c m̂ =


m̂[x 7→ {y}] (cmd(c) = x := &y)

m̂[x 7→ m̂(y)] (cmd(c) = x := y)

m̂[x 7→
⋃

l∈m̂(y) m̂(l)] (cmd(c) = x := ∗y)
m̂[l1 7→ m̂(l1) ∪ m̂(y)] · · · [ln 7→ m̂(ln) ∪ m̂(y)] (cmd(c) = ∗x := y, m̂(x) = {l1, . . . , ln})

The analyzer computes a fixpoint table ˆ[[P ]]
P
∈ C → ŜP that maps each node

in the program to its output abstract memory state. The abstract memory state

at each program point approximates all the concrete memory states occurring at

the node in the concrete executions. The map is defined by the least fixpoint of

the following function:

FP : (C→ ŜP)→ (C→ ŜP)
FP( ˆ[[P ]]) = λc.f̂P c (

⊔
c′↪→c

ˆ[[P ]](c′))
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Chapter 3

Method 1. SoundNon-statistical

AlarmClustering

3.1 Introduction

3.1.1 Problem

False alarms are the main obstacle to the wide adoption of sound static analysis

tools that aim to prove safety properties about programs. Users of sound static

analyzers suffer from a large number of false alarms, where false alarms often out-

number real errors. For instance, in a case of analyzing commercial software, we

have found only one real error in 273 buffer-overflow alarms, after tedious and

time-consuming alarm investigation efforts [31].

Statistical ranking schemes [31, 35, 36] have been proposed to find real er-

rors quickly, but they do not fundamentally reduce alarm-investigation burdens

especially in software verification. The ranking schemes alleviate the false alarm

problem by showing alarms that are most likely to be real errors over those that

are least likely. However, these ranking schemes cannot completely dismiss unlikely

alarms. For example, we still need to examine all alarms to find the real ones in

safety-critical softwares.
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3.1.2 Our Solution

Our solution is to reduce alarm-investigation burden by clustering alarms accord-

ing to their sound dependence information. We say that alarm A has (sound) de-

pendence on alarm B if alarm B turns out to be false, then so does alarm A as a

logical consequence. When we find a set of alarms depending on the same alarm,

which we call a dominant alarm, we can cluster them together. Once we find clus-

ters of alarms, we only need to check whether their dominant alarms are false.

In this paper, we present a sound alarm-clustering method for static analyzers.

Our analysis automatically discovers sound dependencies among alarms. Combin-

ing such dependencies, our analysis finds clusters of alarms which have their own

dominant alarms. If the dominant alarms turn out to be false (true resp.), we can

assure that all the others in the same cluster are also false (true resp.).

3.1.3 Examples

Example 1 through 3 show examples of alarm dependencies and how they reduce

alarm-investigation efforts. These examples are discovered automatically by our

clustering algorithm.

Example 3.1.1 (Beginning Example). Our analyzer reports 5 buffer-overflow alarms

for the following code excerpted from Nlkain-1.3 (alarms are underlined, and dom-

inant alarms are double-underlined).

1 void residual(SYSTEM *sys, double *upad, double *r) {
2 nx = 50;

3 u = &upad[nx+2];

4 ...

5 for (k = 0; k < ny; k++) {
6 u++;

7 for(j = 0; j < nx; j++) {
8 r[0] = ac[0]*u[0] - ax[0]*u[-1] - ax[1]*u[1] - ay[0]*u[-nx-2]

9 - ay[nx]*u[nx+2] - q[0];

10 r++; u++; q++; ac++; ax++; ay++;

11 }
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12 u++; ax++;

13 }
14 }

Note the following two facts in this example:

1. If the buffer access u[-nx-2] at line 8 overflows the buffer, so do the others

since -nx-2 is the lowest index among the indices of all the buffer accesses

on u.

2. If the buffer access u[nx+2] at line 9 does not overflow the buffer, neither

do the others since nx+2 is the highest index among the indices of all the

buffer accesses on u.

Using these two facts, we can cluster alarms in the following way: we can find a

false alarm cluster which consists of all the alarms in the example and the dom-

inant alarm is the one of the buffer access u[nx+2] at line 9. We can also find

a true alarm cluster in the same way; the buffer access u[-nx-2] at line 8 is

the dominant alarm of the cluster. Thus, in order to check the program’s buffer-

overrun safety, it is sufficient to show the safety of the single buffer access u[nx+2],

instead of doing that for all the reporetd alarms. On the other hand, finding the

access u[-nx-2] unsafe will help to spot other potential vulnerabilities accord-

ingly.

Example 3.1.2 (Inter-procedural alarm dependencies). The following code excerpted

from Appcontour-1.1.0 shows inter-procedural alarm dependencies. Our method

finds dependencies among the three alarms at line 3, 4, and 10. In the example,

array invmergerules and invmergerulesnn have the same size 8.

1 int lookup_mergearcs(char *rule) {
2 ...

3 for (i = 1; invmergerules[i]; i++)

4 if (strcasecmp(rule, invmergerulesnn[i] == 0))

5 return (i);
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6 ...

7 }
8 int rule_mergearcs(struct sketch *s, int rule, int rcount) {
9 if (debug)

10 printf("%s count %d", invmergerules[rule], rcount);

11 ...

12 }
13 int apply_rule(char *rule, struct sketch *sketch) {
14 ...

15 if ((code = lookup_mergearcs(rule)))

16 res = rule_mergearcs(sketch, code, rcount);

17 ...

18 }

Note the following two facts in this example:

1. If the alarm of the buffer access invmergerules[i] at line 3 is false, so are

the others because

• the buffer accesses at line 3 and 4 use the same index variable i and

there is no update on the value between the two accesses.

• the value of i at line 3 flows to the variable rule at line 10 through

function calls and returns (5→ 15→ 16→ 10).

2. If the buffer access invmergerules[rule] at line 10 overflows, so do the

others in a similar reason.

We can find false and true alarm clusters in a similar manner as we did in the

example 3.1.1. Instead of inspecting all of the alarms, checking either the alarm

at line 10 true or the alarm at line 3 false is sufficient to decide truth/falsehood

of the remaing alarms.

Example 3.1.3 (Multiple dominant alarms). The following code excerpted from

GNU Chess 5.0.5 shows an example of a cluster with multiple dominant alarms.

Three alarms are reported at line 3, 4, and 9. The arrays cboard and ephash have

the same size 64.
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1 void MakeMove(int side, int *move) {
2 ...

3 fpiece = cboard[f];

4 tpiece = cboard[t];

5 ...

6 if (fpiece == pawn && abs(f-t) == 16) {
7 sq = (f + t) / 2;

8 ...

9 HashKey ^= ephash[sq];

10 }
11 }

Since sq is the average of f and t, if both buffer accesses at line 3 and 4 are safe,

the buffer access at line 9 is also safe. In this example, we have a false cluster

which have multiple dominant alarms (the alarms at line 3 and 4).

Although all the example programs are concerned with buffer-overflow detec-

tion for C programs, all techniques and algorithms which will be described in this

paper can be generalized to other languages and safety properties as well because

we are based on a general model of programs and static analyses.

3.1.4 Contributions

In this paper, we make the following contributions:

• We propose a sound alarm-clustering method for static analyzers. Our frame-

work is general and applicable to any semantics-based static analyzers. It is

orthogonal to both refining approaches and statistical ranking schemes.

• We provide three concrete instance analyses of the proposed framework. We

present design and implementation of our clustering method based on inter-

val, octagon, and symbolic domains.

• We prove the effectiveness of our clustering method with a realistic static

analyzer for buffer-overflow detection. On 14 open-source benchmarks, our
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clustering method identified 45% of alarms to be non-dominating. This result

amounts to 45% reduction in the number of investigated alarms if the other

55% turns out to be false.

3.1.5 Outline

Section 3.2 presents our alarm-clustering framework, which is concerned with how

to find clusters for a given set of dominant alarms. Section 3.3 provides algorithms

to find a good set of dominant alarms. Section 3.4 shows three instances of the

proposed framework. Section 3.5 presents experimental results.

3.2 Alarm Clustering Framework

In this section, we describe our general framework for alarm clustering, which pro-

vides a method to find clusters for a given set of dominant alarms.

3.2.1 Static Analysis

We first define a class of static analyses that we consider in this paper. The analy-

sis is used to prove safety properties about programs. We use the notions described

in §2.1.

3.2.2 Alarm Clustering

Alarms Suppose Ω : Φ → ℘(S) specifies erroneous states at each partitioning

indices (e.g. program points). The static analyzer reports an alarm at partitioning

index φ ∈ Φ if the abstract semantics ˆ[[P ]] involves some error states, i.e.,

γS( ˆ[[P ]](φ)) ∩ Ω(φ) ̸= ∅

In the rest of the paper, we assume we have at most a single alarm at a parti-

tioning index and hence use partitioning index and alarm interchangeably; alarm

φ means the one at the trace partitioning index φ.
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The alarm φ is a false alarm when the static analyzer reports the alarm but

the concrete semantics does not involve any error states at φ:

[[P ]]/δ(φ) ∩ Ω(φ) = ∅

Otherwise, i.e., [[P ]]/δ(φ) ∩ Ω(φ) ̸= ∅, the alarm is true.

Alarm Dependences Our goal is to find logical dependencies between alarms.

The ideal, concrete dependencies between alarms can be defined as follows. Given

two alarms φ1 and φ2, φ2 has a dependence on φ1 if φ2 is always false whenever

φ1 is false, i.e.,

[[P ]]/δ(φ1) ∩ Ω(φ1) = ∅ =⇒ [[P ]]/δ(φ2) ∩ Ω(φ2) = ∅.

Note that the concrete dependence of φ2 on φ1 leads to another dependence as

contraposition:

[[P ]]/δ(φ2) ∩ Ω(φ2) ̸= ∅ =⇒ [[P ]]/δ(φ1) ∩ Ω(φ1) ̸= ∅

That is, if φ2 is a true alarm, so is φ1.

However, because it is in general impossible to find all of such concrete depen-

dencies, our goal is to find abstract dependencies that are sound with respect to

the concrete dependencies. That is, we aim to find a subset of the concrete de-

pendencies. Our idea is to use a sound refinement by refutation; if we can kill the

alarm φ2 from the abstract semantics refined under the assumption that alarm φ1

is false, it means that φ2 has concrete dependence on φ1.

We will describe a simple example that conveys the idea.

Example 3.2.1 (Abstract alarm dependence). Suppose that an interval domain-

based analyzer reports two buffer-overflow alarms in the following code (alarms are

underlined, and the values of variables in intervals are annotated in comments).
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int foo(int* buf, int i) { // buf.size = [11, 21], i = [0, +oo]

φ1 : buf[i] = 10;

φ2 : int j = i / 2; // j = [0, +oo]

φ3 : return buf[j];

}

Under the assumption that alarm φ1 is false, i at φ1 holds [0, 20] after using a

sound refinement by refutation. Note that we consider an underapproximation of

the erroneous states at φ1 to guarantee the soundness of the refinement. After the

refinement, j at φ3 holds [0, 10], which does not overflow buf. We may conclude

φ2 has concrete dependence on φ1. That is, if φ1 is a false alarm, so is φ2. Also, if

φ2 is a true alarm, so is φ1. The soundness is guaranteed by our alarm clustering

framework.

In the rest of the section, we define the notion of sound refinement by refu-

tation and abstract alarm dependence. Then, we define alarm clustering based on

the abstract alarm dependence.

Refinement by Refutation The key idea for computing the alarm dependence

is to refine the original fixpoint by assuming an alarm is false, and then checks

which other alarms are filtered out. Using the assumption of alarm φ being false,

we can obtain a sliced abstract semantics ˜[[P ]]φ. Underlying abstract domain for

the refinement may be different from the one used for computing a fixpoint. But

we consider the same abstract domain for brevity. The definition of ˜[[P ]]φ is,

˜[[P ]]φ = fix#λZ. ˆ[[P ]]¬φ ⊓ F̂ (Z)

where fix# is a fixpoint operator and ˆ[[P ]]¬φ is the same as the original fixpoint ˆ[[P ]]

except that an underapproximation of the erroneous states at partitioning index

φ (Ω̂(φ) ⊑ αS(Ω(φ))) is sliced out:

ˆ[[P ]]¬φ = ˆ[[P ]][φ 7→ ˆ[[P ]](φ) ⊖̂ Ω̂(φ)]
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where F [a 7→ b] is the same as F except that it maps a to b. Abstract slice opera-

tor ⊖̂ depends on the type of alarm and abstract domain. The ⊖̂ operator should

be a sound abstract slice operator such that

αS ◦ ⊖ ⊑ ⊖̂ ◦ αS×S

where the operator ⊖ is the set difference and αS×S is an abstraction lifted for

pairs. We require that the abstract domain Ŝ comes with a meet operator (⊓) and

a sound abstract slice operator (⊖̂).
We can extend this refinement to the case of refuting multiple alarms. Suppose

that we assume that set −→φ of alarms is false. The refinement ˜[[P ]]−→φ of the fixpoint

ˆ[[P ]] with respect to these assumptions is,

˜[[P ]]−→φ = fix#λZ. ˆ[[P ]]¬−→φ ⊓ F̂ (Z)

where ˆ[[P ]]¬−→φ =
d

φi∈−→φ
ˆ[[P ]]¬φi

.

Abstract Alarm Dependence We now define abstract alarm dependence based

on the refinement by refutation. φ1 ⇝ φ2, the dependence between alarm φ1 and

φ2, denotes that alarm φ2 has abstract dependence on alarm φ1.

Definition 1 (φ1 ⇝ φ2). Given two alarms φ1 and φ2, φ2 has an abstract de-

pendence on φ1, iff the refinement ˜[[P ]]φ1
by refuting φ1 kills φ2; i.e.

φ1 ⇝ φ2 iff γS( ˜[[P ]]φ1
(φ2)) ∩ Ω(φ2) = ∅.

The following lemma shows that the abstract alarm dependence is sound with re-

spect to the concrete dependence:

Lemma 1. Given two alarms φ1 and φ2, if φ1 ⇝ φ2, then φ2 is false whenever

φ1 is false.

Proof. Available in Appendix.
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As a contraposition of Lemma 1, we also have a different sense of soundness

of abstract alarm dependence.

Corollary 1. Given two alarms φ1 and φ2, if φ1 ⇝ φ2, then alarm φ1 is

true whenever alarm φ2 is true.

We extend the definition and lemma of the abstract dependence for multiple

alarms. The alarm dependence in Example 3.1.3 is the example of such dependen-

cies.

Definition 2 (−→φ ⇝ φ0). Given set −→φ of alarms and alarm φ0, we write −→φ ⇝
φ0, and say that φ0 has abstract dependence on set −→φ , iff the refinement ˜[[P ]]−→φ by

refuting set −→φ of alarms satisfies

γS( ˜[[P ]]−→φ (φ0)) ∩ Ω(φ0) = ∅.

Lemma 2. Given set −→φ of alarms and alarm φ0, if
−→φ ⇝ φ0, then alarm φ0 is

false whenever all alarms in −→φ are false.

Proof. Available in Appendix.

In fact, the contraposition of Lemma 2 is not quite useful since it specifies only

some alarms among set −→φ of alarms are true when alarm φ0 is true.

Alarm Cluster Using abstract alarm dependencies, we can build false and true-

alarm clusters. Given a set of dominant alarms −→φ , the false-alarm cluster is de-

fined as follows:

Definition 3 (False-Alarm Cluster). Let A be set of all alarms in pro-

gram P and ⇝ be the abstract dependence relation. A false-alarm cluster CF−→φ ⊆ A
with its dominant alarms −→φ is {φ′ ∈ A | −→φ ⇝ φ′}.

The soundness of alarm cluster is directly implied by the soundness of abstract

alarm dependence.
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Theorem 1. Every alarm in CF−→φ is false whenever all alarms in −→φ are false.

Proof. Immediate from Lemma 2.

Now we define the true-alarm cluster as follows:

Definition 4 (True-Alarm Cluster). Let A be set of all alarms in program

P and ⇝ be the abstract dependence relation. A true-alarm cluster CTφ ⊆ A with

its dominant alarms φ is {φ′ ∈ A | φ′ ⇝ φ}

Note that true-alarm clusters are only derived from a single alarm dependence

such as φ′ ⇝ φ. Multiple dependencies, such as −→φ0 ⇝ φ, are not useful to construct

true alarm clusters because the dependencies just mean that one of the alarms in
−→φ0 is true then the dominant alarm is true. This judgement does not tell us exactly

which alarms among set −→φ0 are true. For this reason, we only consider single alarm

dependencies.

Given a dominant alarm φ, the soundness of a true-alarm cluster are defined

as follows:

Theorem 2. Every alarm in CTφ is true whenever alarm φ is true.

Proof. Immediate from Corollary 1.

From this point, we only focus on false-alarm clusters for two reasons. First,

both type of clusters can be found from the same dependence relation, so whether

to make true or false alarm is simply the matter of interpretation. Second, true-

alarm clusters can exploit fewer dependencies than false-alarm cluster, thus they

cluster less alarms. In the rest of the paper, a cluster C−→φ means a false-alarm

cluster CF−→φ .

3.3 Alarm-Clustering Algorithms

In this section, we show how to find the set of dominant alarms (−→φ ). The alarm-

clustering framework ensures that, given a set of dominant alarms −→φ , the refu-

tation method produces sound alarm clusters (Theorem 1 and 2). However, how
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to find a good set of dominant alarms is absent in the framework. This section

presents algorithms to choose the dominant alarms.

Suppose that we are given a set A of alarms reported by a static analyzer. We

can partition A into two disjoint sets, groupable(G) and ungroupable(U) alarms:

A = G ⊎ U .

We say an alarm φ′ is groupable if φ′ can be clustered by some dominant alarms

(−→φ ):

G = {φ′ ∈ A | ∃−→φ ⊆ A. φ′ ∈ C−→φ }

and the ungroupable alarms are those that cannot be clustered by our method no

matter how the dominant alarms are chosen:

U = {φ′ ∈ A | ∀−→φ ⊆ A. φ′ ̸∈ C−→φ }.

Ungroupable alarms exist because the power of the underlying abstract domain

of the clustering analysis is not sufficient to detect alarm dependences for them.

Consider the following example.

Example 3.3.1 (Groupable and ungroupable alarms).

1 // foo.size = [10, 10] and i = [0, +oo]

2 foo[i] = 0;

3 x = foo[i];

4

5 // bar.size = [10, +oo] and j = [0, +oo]

6 bar[j] = 0;

Alarms at line 2 and 3 are groupable because they are dominated by the alarm at

line 2. The refinement by refuting the first alarm yields abstract state {foo.size 7→
[10, 10], i 7→ [0, 9]}. On the other hand, alarm at line 6 is ungroupable since the

alarm is not dominated even by itself. It is because we cannot soundly refute the

alarm using the interval domain. Instead, the alarm may be groupable if the alarm
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clustering process uses richer domain such as the octagon that can express linear

inequalities (i < foo.size).

Given dominant alarms −→φ , the final alarm reports that users have to examine

is as follows:
−→φ ∪ (G \ C−→φ ) ∪ U (3.1)

Instead of inspecting all of the groupable alarms G, our technique allows the users

to inspect only the dominant alarms, plus potentially unclustered ones (G \ C−→φ ).
We present two algorithms, which have different trade-offs between the cost

and the number of final alarm reports. The first algorithm, presented in Section

3.3.1, guarantees to find a set of minimal dominant alarms: the set dominates all

groupable alarms and does not contain unnecessaries. However, the algorithm’s

running time is proportional to the number of alarms to cluster. On the other

hand, the algorithm in Section 3.3.2 quickly finds a dominant alarm set regardless

of the number of alarms. Instead, the set found is not guaranteed to be minimal.

3.3.1 Algorithm 1: Finding Minimal Dominant Alarms

The first algorithm finds minimal dominant alarms so that minimize the number

of final alarms (3.1) for users to inspect. The set of minimal dominant alarms is

defined as follows:

Definition 5 (Minimal Dominant Alarms). Given a set of alarms A and

groupable alarms G ⊆ A, we say −→φ is a minimal set of dominant alarms if

1. −→φ clusters all groupable alarms, i.e., C−→φ = G, and

2. −→φ is a minimal such set, i.e., ∀−→φ ′ ⊆ A. C−→φ ′ = G ∧ −→φ ⊆ −→φ ′ =⇒ −→φ = −→φ ′

After finding such a set of minimal dominant alarms −→φ , the final alarm reports

for users to inspect is −→φ ∪ U .

Basic Algorithm We utilize existing algorithms that are initially developed for

finding minimal abstractions [41]. They proposed algorithm ScanCoarsen and

26



ActiveCoarsen to find a program abstraction that are minimal yet sufficient to

prove target queries. We adapt their idea to the problem of finding a minimal set

of dominant alarms. Below, we explain our adaptation of the algorithms.

Let F : ℘(A)→ {0, 1} be the clustering analysis defined as follows:

F(−→φ ) = (C−→φ = G)

which gives 1 if the false alarm cluster (Definition 3) with the dominant alarms −→φ
is equivalent to the set of groupable alarms, and 0 otherwise. The following lemma

and corollary show that F is monotone, which is a requirement of the algorithms

in [41]:

Lemma 3. −→φ ⊆ −→φ ′ =⇒ C−→φ ⊆ C−→φ ′

Proof. Available in Appendix.

Corollary 2. −→φ ⊆ −→φ ′ =⇒ F(−→φ ) ≤ F(−→φ ′).

Our goal is to find a minimal −→φ such that F(−→φ ) = 1. We first need to par-

tition A into groupable and ungroupable alarms. The following corollary provides

an algorithm to find out ungroupable alarms:

Corollary 3. U = {φ ∈ A | φ ̸∈ CA}

The Corollary 3 means that alarm φ is ungroupable if we cannot cluster it using

the entire set of alarms (A) as dominant alarms. Thus, we can find U by comput-

ing CA. The groupable alarms are computed simply by G = A\U . This method is

given in Algorithm 1.

Algorithm 2 presents ScanCluster that finds a minimal set of dominant alarms.

The invariant of the algorithm is that L contains alarms that are necessary to clus-

ter all the groupable alarms and U is an over-approximation of the minimal set

to find. The algorithm starts with ScanCluster(∅, A). We repeatedly remove an

alarm φ from U \ L if φ is unnecessary to cluster all groupable alarms (line 5).

If the current dominant alarms no longer cluster all the groupable alarms, we put
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Algorithm 1 Algorithm for finding groupable and ungroupable alarms.

1: procedure Categorize( ˆ[[P ]], A)
2: ⟨U ,G⟩ := ⟨∅, ∅⟩ ▷ ungroupable and groupable alarms

3: for all c ∈ A do

4: if γS( ˜[[P ]]A(c)) ∩ Ω(c) ̸= ∅ then

5: U := U ∪ {c}
6: end if

7: end for

8: G := A− U
9: return ⟨U ,G⟩

10: end procedure

Algorithm 2 Clustering via Scanning

1: procedure ScanCluster(L, U)

2: if L = U then return U

3: end if

4: choose φ ∈ U \ L
5: if F(U \ {φ}) = 1 then ▷ try removing φ

6: return ScanCluster(L,U − {φ}) ▷ φ is not necessary

7: else

8: return ScanCluster(L ∪ {φ}, U) ▷ φ is necessary

9: end if

10: end procedure

φ′ back to the dominant alarm set (line 7). The algorithm requires |A| calls to F

and the following theorem shows the correctness of the algorithm.

Theorem 3. The algorithm ScanCluster(∅,A) returns a minimal set of dom-

inant alarms.

Proof. Similar to the proof of Theorem 1 in [41].

Another method is applying randomization into ScanCluster by using Ac-

tiveCoarsen in [41]. The key idea behind the algorithm is to remove random
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multiple alarms each iteration, as opposed to ScanCoarsen that removes a sin-

gle alarm at a time. Thus, we may need less iterations.

But it is effective only if a small subset of alarms matters for clustering all

groupable alarms. In other words, minimal dominat alarms should be sparse. In

ActiveCoarsen, the expected number of calls to F is O(s log |A|) where s is the

size of the largest minimal set of dominant alarms. If minimal dominant alarms

are dense, the number of calls becomes close to O(|A| log |A|), which is greater

than |A| calls to F in ScanCluster. For this reason, on 14 benchmark programs

in Section 3.5, ActiveCoarsen is several times slower than ScanCluster.

Further Optimization We further improve ScanCluster by considering only

refutable alarms candidates of dominant alarms. Let R be the set of refutable

alarms:

R = {φ ∈ A | T̂ ⊖̂ Ω̂(φ) ⊏ T̂ (φ)}

We say an alarm φ is refutable if some erroneous states at φ can be sliced out in

the underlying abstract domain. A refutable alarm cannot dominate other alarms.

We exclude alarms not refutable from the initial set of alarms (A) in running

ScanCluster. That is, we run ScanCluster(∅, A \ R) instead of ScanClus-

ter(∅, A). Note that refutable alarms are independent from the dichotomy be-

tween groupable and ungroupable alarms; both groupable and ungroupable alarms

may contain refutable alarms. For instance, alarm φ1 in Example 3.2.1 is un-

groupable and refutable. The following lemma shows that we can safely exclude

alarms not refutable in searching for minimal dominant alarms.

Lemma 4. If an alarm φ is not refutable (i.e., T̂ ⊖̂ Ω̂(φ) = T̂ (φ)), φ is not

included in any set of minimal dominant alarms.

Proof. Suppose a dominant alarm set −→φ clusters all groupable alarms, i.e.,

C−→φ = G, and φ ∈ −→φ . Let −→φ ′ = −→φ \ {φ}. Then, ˆ[[P ]]¬−→φ = ˆ[[P ]]¬−→φ ′ (∵ T̂ ⊖̂ Ω̂(φ) =

T̂ (φ)). Therefore, ˜[[P ]]−→φ = ˜[[P ]]−→φ ′ and C−→φ = C−→φ ′ , which menas −→φ ′ is not minimal.

To conclude, φ is not included in any set of minimal dominant alarms.
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In our experiment, we have observed a significant performance boost by con-

sidering refutable alarms only. In 14 benchmark programs, 32% of total alarms

were not refutable. Thus, ScanCluster algorithm becomes approximately 1.5x

(1/0.68) faster than non-optimized.

3.3.2 Algorithm 2: Non-Minimal but Efficient

In this section, we present a more appropriate clustering algorithm in case we have

limited time budgets. The algorithm finds a subset of all abstract alarm depen-

dences by a single fixpoint computation. The idea is to refine the analysis result

as much as possible by refuting all alarms and track which dominant alarm candi-

date possibly kills which alarm. Then, we cluster the alarms which must be killed

by the same dominant alarm candidate. Algorithm 3 describes our method that

clusters alarms based on a (not all) subset of possible dependencies.

We first describe the setting which the algorithm is based on. We assume that

a program is represented by a control-flow graph. Φ is the set of nodes (or program

points) and every node has several predecessors and successors specified by func-

tion pred and succ (line 2). The analyzer computes a fixpoint table ˆ[[P ]] ∈ Φ → Ŝ
that maps each node in the program to its output abstract memory state. The

map is defined by the least fixpoint of the following function:

F̂ : (Φ→ Ŝ)→ (Φ→ Ŝ)
F̂ ( ˆ[[P ]]) = λφ.f̂(φ)(

⊔
p∈predof(φ)

ˆ[[P ]](p))

where f̂(φ) is an abstract transfer function at node φ. For brevity, we also assume

that an alarm can be raised at every program point; i.e. for all φ ∈ Φ, Ω̂(φ) ̸= ⊥
where Ω̂ is abstract erroneous information such that (Ω̂ ⊑ αS ◦ Ω) (line 8).

Our algorithm works in the following way:

• We start by assuming that each alarm is a dominant alarm of a cluster in-

cluding only itself. This can be expressed by slicing out the erroneous states

at every alarm point but not propagating refinement yet.
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• From an alarm point, say φ1, we start building its cluster. We propagate its

sliced, non-erroneous abstract state to another alarm point say φ2 and see

if the propagation further refines the non-erroneous abstract state at φ2.

• If the propagated state is smaller than that at φ2, it means refuting φ1 will

refute alarm φ2, hence dependence φ1 ⇝ φ2 and thus we add φ2 to the φ1-

dominating cluster.

• If the propagated state is larger than that at φ2, then dependence φ1 ⇝ φ2

is not certain hence, instead of adding φ2 to the φ1-dominating cluster, we

start building the φ2-dominating cluster.

• If the propagated state is incomparable to that at φ2, then we pick both

alarms as dominant ones and start building the φ1-and-φ2-dominating clus-

ter by propagating the slicing effect of simultaneously refuting (i.e., taking

the meet of refuting) both alarms.

From line 1 to 9, we give definitions used in the algorithm. Everything other

than function R at line 7 is trivially explained by the comment on the same line.

Function R keeps the information of dominant alarm candidate. As specified in the

comment, if R(φ) = −→φ for some program point φ and set −→φ of dominant alarms,

it means that the abstract state at φ is refined by some dominant alarm candidate
−→φ , thus alarm φ can be a member of the −→φ -dominating cluster. Line 31 shows

that function R initially maps each program point φ to a set that only contains

itself, which means that initially, alarm φ is the only member of the φ-dominating

cluster.

Without considering gray-boxed parts, procedure FixpointIterate in the al-

gorithm is a traditional fixpoint iteration to compute a pre-fixpoint of a decreasing

chain. We pick a work from worklist (line 12), compute a new abstract state (line

14 and 15), and propagate the change to successors if the newly computed state is

strictly less than the previous one (line 22). We repeat this until no work remains.

We start the fixpoint computation from the one obtained by refuting all alarms

(line 30).
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Gray-boxed parts from line 19 to line 21 show how the algorithm tracks which

dominant alarm candidates yield the refined abstract state ŝnew computed from

the new abstract state ŝ′ and the previous one ŝ at line 15. If ŝ′ is smaller than

ŝ (line 19), ŝnew is the same as ŝ′ and thus −→φ ′ is its dominant alarm candidates.

The algorithm similarly handles the case when ŝ is smaller than or equals to ŝ′

(line 20). If ŝ and ŝ′ are incomparable (line 21), the meet of the two corresponds

to the abstract state refined by refuting their dominant alarm candidates at the

same time. Therefore, the resulting dominant alarm candidates −→φ new takes the

union of −→φ and −→φ ′.
As the last step of the clustering algorithm, procedure ClusterAlarms val-

idates the dominant alarm candidates in R based on the refined fixpoint T and

clusters alarms. For each alarm at φ, we validate that the dominant alarm candi-

dates R(φ) really dominates alarm φ by checking that the refined abstract state

T (φ) kills the alarm (line 27). If the alarm is killed, we put alarm φ to the R(φ)-

dominating cluster (line 28 and 29).

The following theorem guarantees the correctness of the algorithm.

Theorem 4. Algorithm 3 computes sound alarm dependences.

Proof. Available in Appendix.

3.4 Instances

In this section, we show how to use our framework to design alarm clustersring

methods. We provide three instances based on the interval, octagon, and symbolic

domains. All of the methods are implemented on top a realistic buffer-overflow

analyzer for C programs [2]. The key component we have to define to use our

framework is the abstract slice operator described in Section 3.2.

We begin with a simple yet general definition of sound abstract slice operators.

Assume that Ŝ is the underlying abstract domain used in our clustering method,

which has a Galois connection ℘(S) −−−−→←−−−−
αS

γS Ŝ with concrete domain S. An element
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y in the domain Ŝ is called precisely complementable [19] if there is a precise com-

plement y, a complement of y (i.e., y ⊓ y = ⊥Ŝ and y ⊔ y = ⊤Ŝ) satisfying

γS(y) = ℘(S) \ γS(y).

Using the notion of precise complements, we define the following simple but gen-

eral abstract slice operator in Ŝ.

Definition 6 (Abstract slice operator). Let Ŝ be an abstract domain de-

fined by the Galois connection ℘(S) −−−−→←−−−−
αS

γS Ŝ. For x, y ∈ Ŝ, x ⊖Ŝ y is defined as

follows:

x⊖Ŝ y =

{
x ⊓ y if y is precisely complementable

x otherwise

where y is a precise complement of y.

In a powerset domain, every element is precisely complementable. Thus the

operator is the same as the set difference operator. Because we simply give up

slicing if y is not precisely complementable, the operator is a simple abstraction

of the set difference. The following theorem guarantees that the abstract operator

in Definition 6 is sound.

Theorem 5. For an abstract domain Ŝ with the Galois connection ℘(S) −−−−→←−−−−
αS

γS

Ŝ, the following holds for all x, y ∈ Ŝ:

αS(γS(x)⊖ γS(y)) ⊑ x⊖Ŝ y

Proof.

x⊖Ŝ y = x ⊓ y ⊒ αS ◦ γS(x) ⊓ αS ◦ γS(y) (αS ◦ γS ⊑ id)

⊒ αS(γS(x) ⊓ γS(y)) (αS is monotone and by def. of glb)

= αS(γS(x) ⊓ γS(y)) (y is precisely complementable)

= αS(γS(x)⊖ γS(y)) (By def. of the set minus operator)
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3.4.1 Setting: Baseline Analyzer

Our baseline analyzer is an interval domain-based flow-sensitive abstract inter-

preter [2] on which our clustering methods are implemented. The analyzer is a

realistic buffer-overflow detector performing sound and inter-procedural analysis.

The design has been presented in §2.2.1. Throughout this chapter, we will use Φ

and C interchangeably because we choose C as the set of partitioning indices. In

addition, we will use φ and c interchangeably.

Alarms We define erroneous states and alarms of the static analysis. We assume

queries, triples in Q ⊆ Φ × Var × Var , are given as input to our static analysis.

A query ⟨φ, x, y⟩ represents an assertion that x should be less than y at program

point φ. Given a query, the set of erroneous states is characterized by the following

function:

Ω : Q→ ℘(S)

Ω(φ, x, y) = {s ∈ S | s(x) ≥ s(y)}

For given query ⟨φ, x, y⟩, our analyzer raises an alarm ⟨φ, x, y⟩ if γI( ˆ[[P ]]
I
(φ)) ∩

Ω(φ, x, y) ̸= ∅ meaning the query ⟨φ, x, y⟩ cannot be proved.

3.4.2 Clustering using Interval Domain

We describe abstract slice operator of the interval domain. Suppose we have an

alarm ⟨φ, x, y⟩. Recall that the refutation of the alarm is defined as follows:

ˆ[[P ]]
I
¬φ = ˆ[[P ]]

I
[φ 7→ ˆ[[P ]]

I
(φ) ⊖̂ŜI Ω̂(φ, x, y)]

where Ω̂(φ, x, y) is an underapproximation of the erroneous states such that Ω̂(φ, x, y) ⊑
αSI(Ω(φ, x, y)). The reason for using an underapproximation is that the interval
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analysis often fails to capture relational properties of variables. The underapprox-

imation of the erroneous states Ω̂(φ, x, y) is defined as follows:

Ω̂(φ, x, y) =


⊥ŜI [x 7→ [ymax,+∞], y 7→ [−∞, xmin]] (ymax ≥ xmin,

ymax ̸= +∞, xmin ̸= −∞)

⊥ŜI (otherwise)

where [xmin, xmax] = ˆ[[P ]]
I
(φ)(x) and [ymin, ymax] = ˆ[[P ]]

I
(φ)(y). And the following

is a precise complement of Ω̂(φ, x, y).

Ω̂(φ, x, y) =


⊤ŜI [x 7→ [−∞, ymax − 1], y 7→ [xmin + 1,+∞]] (ymax ≥ xmin,

ymax ̸= +∞, xmin ̸= −∞)

⊤ŜI (otherwise)

Example 3.4.1.

Consider the following code. The code is simply adapted from Example 3.1.3.

φ1 : sz := 64;

φ2 : f := unknown();

φ3 : t := unknown();

φ4 : sq := (f + t) / 2;

Suppose the following set of queries Q is given.

Q = {⟨φ2, f, sz⟩, ⟨φ3, t, sz⟩, ⟨φ4, sq, sz⟩}

The variable sz refers to the size of cboard and ephash in Example 3.1.3. We will

show the steps of deriving {φ2, φ3}⇝ φ4.

The analysis result at φ4 is as follows:

ˆ[[P ]]
I
(φ4) = {sz 7→ [64, 64], f, t, sq 7→ [−∞,∞]}
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The followings are the underapproximation of the erroneous states:

Ω̂(φ2, f, sz) = ⊤ŜI [f 7→ [−∞, 63], sz 7→ [−∞,+∞]]

Ω̂(φ3, t, sz) = ⊤ŜI [t 7→ [−∞, 63], sz 7→ [−∞,+∞]]

The sliced abstract semantics is:

ˆ[[P ]]
I
¬φ2

(φ2) = ˆ[[P ]]
I
(φ2) ⊖̂ŜI Ω̂(φ2, f, sz) = ˆ[[P ]]

I
(φ2) ⊓ Ω̂(φ2, f, sz)

= {sz 7→ [64, 64], f 7→ [−∞, 63]}

ˆ[[P ]]
I
¬φ3

(φ3) = ˆ[[P ]]
I
(φ3) ⊖̂ŜI Ω̂(φ3, t, sz) = ˆ[[P ]]

I
(φ3) ⊓ Ω̂(φ2, t, sz)

= {sz 7→ [64, 64], f 7→ [−∞,∞], t 7→ [−∞, 63]}

By propagating the refinement, we obtain

˜[[P ]]
I
{φ2,φ3}(φ4) = {sz 7→ [64, 64], f, t, sq 7→ [−∞, 63]}.

Finally, we derive {φ2, φ3}⇝ φ4 because γI( ˜[[P ]]
I
{φ2,φ3}(φ4))∩Ω(φ4, sq, sz) = ∅.

The soundness of the abstract slice operator is guaranteed by the following

theorem:

Theorem 6. ∀φ ∈ Φ.γI( ˆ[[P ]]
I
(φ))⊖ Ω(φ, x, y) ⊑ γI( ˆ[[P ]]

I
(φ)⊖ŜI Ω̂(φ, x, y))

Proof. Available in Appendix.

3.4.3 Clustering using Octagon Domain

Now we present another alarm clustering technique using the octagon abstract do-

main [45] that captures relational properties between variables. Our octagon-based

clustering find abstract dependencies beyond the capability of the interval-based

clustering. Octagon domain ŜO represents a set of octagonal constraints of the

form ±x ± y ≤ k where x, y ∈ Var and k ∈ Z ∪ {+∞}. For an octagon o ∈ ŜO,
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oxy = k denotes an octagonal constraint y−x ≤ k. 1 The design has been presented

in §2.2.2.
For clustering with the octagon domain, we first transform the interval fixpoint

table ˆ[[P ]]
I
into an octagon table ˆ[[P ]]

O
that satisfies the following:

( ˆ[[P ]]
O
(φ)

)
xy

= sup{s(x)− s(y) | s ∈ γI( ˆ[[P ]]
I
(φ))}

The refutation of an alarm ⟨φ, x, y⟩ is similarly defined.

ˆ[[P ]]
O
¬φ = ˆ[[P ]]

O
[φ 7→ ˆ[[P ]]

O
(φ) ⊖̂ αO(Ω(φ, x, y))]

Because the expressiveness power of octagons is good enough to represent the er-

roneous states, we do not have to use an underapproximation, as opposed to the

interval clustering. The precise complement of the erroneous state αO(Ω(φ, x, y))

is defined as follows:

(
αO(Ω(φ, x, y)))

)
ij
=

{
0 if i = y and j = x

+∞ o.w

The following is the precise complement of the erroneous state:

(
αO(Ω(φ, x, y))

)
ij
=

{
−1 if i = x and j = y

+∞ o.w

Example 3.4.2.

Consider the following code, which has been slightly modified from Example 3.4.1.

φ1 : sz := unknown();

φ2 : f := unknown();

φ3 : t := unknown();

φ4 : sq := f;

1For brevity, we only consider octagonal constraints of the following form: x− y ≤ k.
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Suppose we are given the same set of queries as in Example 3.4.1.

Q = {⟨φ2, f, sz⟩, ⟨φ3, t, sz⟩, ⟨φ4, sq, sz⟩}

Because the value of sz is unbounded, we cannot find any dependencies with the

interval domain-based clustering. But we can find φ2 ⇝ φ4 with the octagon do-

main.

Initial octagon table ˆ[[P ]]
O

is ⊤Φ→ŜO because all the interval values would be

unbounded. The erroneous state at φ2 is as follows:

(
αO(Ω(φ2, f, sz))

)
ij
=

{
−1 if i = f and j = sz

+∞ o.w

The sliced abstract semantics is:

ˆ[[P ]]
O
¬φ2

(φ2) = ˆ[[P ]]
O
(φ2) ⊖̂ŜO

(
αO(Ω(φ2, f, sz))

)
= ⊤ŜO ⊓

(
αO(Ω(φ2, f, sz))

)
=

(
αO(Ω(φ2, f, sz))

)
By propagating the refinement, we obtain

( ˜[[P ]]
O
φ2
(φ4)

)
ij
=


−1 if i = f and j = sz

−1 if i = sq and j = sz

+∞ o.w

Finally, we derive φ2 ⇝ φ4 because γO( ˜[[P ]]
O
φ2
(φ4)) ∩ Ω(φ4, sq, sz) = ∅.

The soundness of the abstract slice operator is guaranteed by the following

theorem.

Theorem 7. ∀φ ∈ Φ. αO(γO( ˆ[[P ]]
O
(φ))⊖Ω(φ, x, y)) ⊑ ˆ[[P ]]

O
(φ)⊖ŜOαO(Ω(φ, x, y))

Proof. By the fact that αO(Ω(φ, x, y)) is precisely complementable and The-

orem 5, the theorem holds.
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3.4.4 Clustering using Symbolic Execution

In this subsection, we present a symbolic domain–based clustering. With a reason-

able cost, we perform intraprocedural symbolic execution to find abstract depen-

dencies beyond the capability of interval and octagon-based clustering.

We use a conventional symbolic domain [32]. The set of concrete memory states

are abstracted by a symbolic memory state ŜSE = 2Guard× ˆMem , where the memory

state ˆMem = ˆAddr
fin→ V̂al is a finite map from symbolic addresses ( ˆAddr) to

symbolic values (V̂al):

ˆAddr = Var + Symbol

V̂al = Z+ ˆAddr + (V̂al × Bop× V̂al)

Guard = Guard ∧Guard+ (V̂al × Rel× V̂al) + {true, false}

A guard (Guard) represents a path condition under which the current program

point is reachable from the function entry. Rel denotes a set of comparison op-

erators (e.g., <). Guards may be connected by logical operators (conjuction ∧).
Symbols (Symbol) are used to indicate symbolic values. A symbolic value can be

a number (Z), or an address ( ˆAddr), or a binary value (V̂al × Bop × V̂al). Bop

denotes a set of binary operator symbols.

The partial order between two symbolic memory states S1,S2 are defined as

follows:

S1 ⊑ S2 ⇐⇒ ∀⟨g,m⟩ ∈ S1. ∃⟨g′,m′⟩ ∈ S2. (g∧
∧

z∈dom(m)

z = m(z)) =⇒ (g′∧
∧

z′∈dom(m′)

z′ = m′(z′))

Therefore, {⟨true, id⟩} is ⊤ŜSE where id = {l 7→ l | l ∈ ˆAddr}.

The abstract semantics is a fixpoint table ˆ[[P ]]
SE
∈ Φ → ŜSE that maps each

program point to a symbolic memory state. The map is defined by the greatest

fixpoint of function FSE (i.e., ˆ[[P ]]
SE

=
d

i∈N
FSE

i(⊤Φ→ŜSE)) :

FSE : (Φ→ ŜSE)→ (Φ→ ŜSE)
FSE( ˆ[[P ]]) = λφ.f̂SE φ (

⊔
p∈predof(φ)

ˆ[[P ]](p))
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where f̂SE is defined as follows:

f̂SE φ S =


{⟨g, m̂[x 7→ [[e]](m̂)]⟩ | ⟨g, m̂⟩ ∈ S} (cmd(φ) = x := e)

{⟨g ∧ (x ≤ n), m̂⟩ | ⟨g, m̂⟩ ∈ S} (cmd(φ) = {{x ≤ n}})
{⟨g, m̂[x 7→ x]⟩ | ⟨g, m̂⟩ ∈ S} (cmd(φ) = x := unknown())

and the evaluation [[e]] of an expression e in a memory m̂ is defined as usual :

[[n]](m̂) = n, [[x]](m̂) = m̂(x), and [[e1 + e2]](m̂) = [[e1]](m̂) + [[e2]](m̂). We apply

a simple widening operator to ensure the termination of the analysis; changing a

symbolic memory state to ⊤ŜSE after some k iterations.

For clustering using symbolic execution, the interval analysis result is embed-

ded in a program control flow graph in the form of conditional commands. In other

words, we add nodes associated with assume commands into the control flow graph

referring to the prior interval analysis result. For example, for a program point φ

and a variable x, suppose ˆ[[P ]]
I
(φ)(x) = [−∞, 3]. Then we insert a node φ′ such

that cmd(φ′) = {{x ≤ 3}} between φ and all nodes in predof(φ).

The refutation of an alarm ⟨φ, x, y⟩ on the fixpoint symbolic state is defined

as follows:

ˆ[[P ]]
SE
¬φ = ˆ[[P ]]

SE
[φ 7→ {⟨g ∧ x < y, m̂⟩ | ⟨g, m̂⟩ ∈ ˆ[[P ]]

SE
(φ)}]

After the refinement resulting in ˜[[P ]]
SE
φ , we check the validity of the following

condition to determine if another alarm, namely ⟨φ′, x′, y′⟩, has been killed by the

refutation:

∀⟨g, m̂⟩ ∈ ˜[[P ]]
SE
φ (φ′). g ∧ (

∧
z∈dom(m̂)

z = m̂(z)) =⇒ x′ < y′

Example 3.4.3. Consider the following code (slightly modified from Example 3.4.1).

φ1 : sz := unknown();

φ2 : f := unknown();

φ3 : t := unknown();

φ4 : sq := (f + t) / 2;
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Suppose we are given the same set of queries as in Example 3.4.1.

Q = {⟨φ2, f, sz⟩, ⟨φ3, t, sz⟩, ⟨φ4, sq, sz⟩}

Because the value of sz is unbounded, we cannot find any dependencies with the

interval domain-based clustering. In addition, because the command at φ4 is be-

yond the expressiveness power of the octagon domain, we cannot find any depen-

dencies with the octagon domain. But we can find {φ2, φ3} ⇝ φ4 with the sym-

bolic domain.

The symbolic memory state at φ4 is:

ˆ[[P ]]
SE
(φ4) = {⟨true, id[sq 7→ (f+ t)/2]⟩}

The refutation results of alarms φ2 and φ3 are as follows:

ˆ[[P ]]
SE
¬φ2

(φ2) = {⟨(f < sz), id⟩}
ˆ[[P ]]

SE
¬φ3

(φ3) = {⟨(t < sz), id⟩}

By propagating the refinement, we obtain

˜[[P ]]
SE
{φ2,φ3}(φ4) = {⟨(f < sz) ∧ (t < sz), id[sq 7→ (f+ t)/2]⟩}

Finally, we find {φ2, φ3}⇝ φ4 because the following holds:

(f < sz) ∧ (t < sz) ∧ (sq = (f+ t)/2) =⇒ sq < sz

3.5 Experiments

We apply our clustering methods on 14 packages from three different categories

(Bugbench [14], GNU softwares, and SourceForge open source projects). Table 3.1

shows the benchmark programs.
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Table 3.1: The overall effectiveness.

# Alarms % Reduc. Time(s)
Program

B I S+I I +S B I S

nlkain-1.3 124 66 66 47% 0% 0.3 2.4 0.6

polymorph-0.4.0 21 15 14 29% 5% 0.1 0.02 0.01

ncompress-4.2.4 82 70 52 15% 22% 1.7 2.6 0.9

sbm-0.0.4 269 231 189 14% 16% 4.3 131.6 3.1

stripcc-0.2.0 190 132 110 31% 12% 3.1 5.3 0.6

barcode-0.9.6 416 355 287 15% 16% 3.3 16 3.6

129.compress 66 49 35 26% 21% 91.6 1167.2 0.2

archimedes-0.7.0 119 24 24 80% 0% 16.6 48.8 2.2

man-1.5h1 287 234 191 18% 15% 31.4 99.3 1.6

gzip-1.2.4 390 325 294 17% 8% 15.6 110.7 6.1

combine-0.3.3 836 485 318 42% 20% 21.8 586.1 123.9

gnuchess-5.05 1040 427 329 59% 9% 67.4 3842.1 41.8

bc-1.06 730 482 337 34% 20% 50.6 1943.3 24.3

grep-2.5.1 948 819 811 14% 1% 35.6 321.6 0.1

TOTAL 5518 3714 3057 33% 12% 343.4 8277.02 209.01

B : Baseline analysis, I: Interval domain-based clustering,

S : Symbolic execution-based clustering.

Effectiveness To evaluate how much our clustering can reduce the alarm-investigation

effort, we measure the number of distinct dominant alarms after clustering and

compare it to the number of original alarms reported by the basline analysis. We

apply interval domain-based clustering and symbolic execution-based clustering.

We do not employ octagon-based clustering because in practice, symbolic execution-

based approach finds alarm dependencies that are detectable by octagon-based

clustering with a cheaper cost. For instance, in our previous work [39], the octagon-

based clustering reduced 8% of alarms, but our new symbolic execution-based clus-

tering reduces 12% with a smaller cost. We use ScanCluster algorithm for in-

terval domain-based clustering and the heuristic algorithm for symbolic execution-

based clustering because each of symbolic executions requires significant overhead.

In Table 3.1, the column labeled “# Alarms” shows the numbers of alarms re-
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ported by the baseline analyzer (B), reduced by clustering using interval domain

(I), reduced further by clustering using symbolic execution (S+I), respectively.

The next columns labeled “% Reduc.” show the reduction ratios of each additional

alarm clustering analysis (I, +S). As shown in Table 3.1, our method identifies

45% of the alarms non-dominating.

We investigate the most effective and the least effective cases of the interval-

based clustering. Our interval domain-based algorithm turned out to be the most

effective for archimedes-0.7.0 and gnuchess-5.05 (reduced by 80% and 59%) be-

cause of the following reasons. First, the sizes of almost all buffers in the pro-

grams are fixed. In this case, we can slice out erroneous state accurately, which

is essential for the refinement by refutation using interval domain. Second, there

were many different buffers of the same size which are accessed using the same

index variable. On the other hand, our interval domain-based clustering is least

effective for sbm-0.0.4 and grep-2.5.1 (reduced by 14%). It is because almost all

buffers in the program are dynamically allocated, thus the sizes of them were hard

to accurately track. Indeed, we found that the interval values of the buffer sizes

were, in most cases, [0,∞] which means the buffer can have arbitrary size. In this

case, we cannot slice out the erroneous states at all.

We also investigate effective cases of the symbolic execution-based clustering.

Programs ncompress-4.2.4, 129.compress, combine-0.3.3, and bc-1.06 contain many

consecutive buffer accesses having relationship of form
∑

i aixi ≤ c where each xi is

a variable and c is a constant. This type of relationship can be precisely expressed

and handled by SMT solvers.

Clustering Overhead We measure the analysis time to assess the overhead of

clustering analysis. All our experiments are performed on a Linux machine with a

2.8 GHz Intel Xeon processor and 24 GB of memory. In Table 3.1, the columns la-

beled “Time” present times for the baseline analysis (B) and the additional alarm

clustering using interval domain (I) and symbolic execution (S).

The overhead of interval domain-based alarm clustering on average surpasses

the baseline analysis time because the ScanCluster algorithm checks whether
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each of alarms is dominating. In spite of the significant overhead, we consider the

interval-based clustering still practical because manual investigation of each alarm

often takes much more than about 5 seconds, which is the amortized time for

identifying a single alarm non-dominating.

On the other hand, the overhead of symbolic execution-based clustering is smaller

than the baseline analysis time by employing the heuristic algorithm and avoiding

inter-procedural analysis.

Comparison Between the Two Clustering Algorithms Furthermore, we in-

vestigate cost and precision of a minimal clustering and the heuristic algorithms

in the interval-based clustering. As the minimal clustering algorithm, we adopt

the ScanCluster algorithm.We expect the latter algorithm to be cheaper than

the former in programs with more sparse dominating alarms. Table 3.2 demon-

strates the comparison. The columns labeled “H” show the number of dominant

alarms, the reduction ratios, and clustering time respectively when the heuristic

algorithm is applied. The columns labeled “M” presents the results when the min-

imal clustering algorithm is applied. The heuristic algorithm finds 12% less alarms

non-dominating, but about 212x faster than the minimal clustering algorithm.
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Table 3.2: Comparison between the minimal and heuristic algorithms.

# Alarms % Reduc. Time(s)
Program LOC

B H M H M B H M

nlkain-1.3 831 124 104 66 16% 47% 0.3 0.06 2.4

polymorph-0.4.0 1357 21 16 15 24% 29% 0.1 0.01 0.02

ncompress-4.2.4 2195 82 71 70 14% 15% 1.7 0.2 2.6

sbm-0.0.4 2467 269 261 231 3% 14% 4.3 1.2 131.6

stripcc-0.2.0 2555 190 156 132 18% 31% 3.1 0.4 5.3

barcode-0.9.6 4460 416 361 355 13% 15% 3.3 0.5 16

129.compress 5585 66 58 49 12% 26% 91.6 0.4 1167.2

archimedes-0.7.0 7569 119 52 24 56% 80% 16.6 1.2 48.8

man-1.5h1 7232 287 244 234 15% 18% 31.4 4.8 99.3

gzip-1.2.4 11213 390 356 325 9% 17% 15.6 2.1 110.7

combine-0.3.3 11472 836 576 485 31% 42% 21.8 3.2 586.1

gnuchess-5.05 11629 1040 693 427 33% 59% 67.4 12.3 3842.1

bc-1.06 12830 730 640 482 12% 34% 50.6 8.9 1943.3

grep-2.5.1 31154 948 839 819 11% 14% 35.6 3.5 321.6

TOTAL 112549 5518 4438 3726 20% 32% 343.4 38.77 8277.02

B : Baseline analysis, H: The heuristic clustering algorithm using interval domain,

M : The minimal clustering algorithm using interval domain
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Algorithm 3 Clustering algorithm

1: w ∈Work = Φ W ∈Worklist = 2Work

2: pred ∈ Predecessors = Φ→ 2Φ

3: succ ∈ Successors = Φ→ 2Φ

4: f̂ ∈ Φ→ Ŝ→ Ŝ ▷ abstract transfer function for each program point

5: T ∈ Table = Φ→ Ŝ ▷ abstract state indexed by program point

6:
−→φ ∈ DomCand = 2Φ ▷ dominant alarm candidate. set of alarms.

7: R ∈ RefinedBy = Φ→ DomCand ▷ {φ 7→ −→φ } ∈ R : T(φ) is refined by −→φ
8: Ω̂ ∈ ErrorInfo = Φ→ Ŝ ▷ abstract erroneous state information

9: C ∈ Clusters = DomCand → 2Φ ▷ alarm clusters indexed by dominant

alarms

10: procedure FixpointIterate(W,T,R)

11: repeat

12: φ := choose(W ) ▷ pick a work from worklist

13: ŝ := T (φ) ▷ previous abstract state

14: ŝ′ := f̂(φ)(
⊔

φi∈pred(φ) T (φi)) ▷ new abstract state

15: ŝnew := ŝ′ ⊓ ŝ

16:

17:
−→φ := R(φ) ▷ previous set of dominant alarm candidates

18:
−→φ ′ :=

⋃
φi∈pred(φ)R(φi) ▷ new set of dominant alarm candidates

19: if ŝ ⊐ ŝ′ then −→φ new = −→φ ′

20: else if ŝ ⊑ ŝ′ then −→φ new = −→φ
21: else −→φ new := −→φ ∪ −→φ ′

22: if ŝnew ⊏ ŝ then ▷ propagate the change to successors

23: W := W ∪ succ(φ); T (φ) := ŝnew; R(φ) := −→φ new

24: until W = ∅
25: procedure ClusterAlarms(T,R)

26: for all φ ∈ Φ do

27: if T (φ) ⊓ Ω̂(φ) = ⊥ then

28: C := C{R(φ) 7→ C(R(φ)) ∪ {φ}}

29: procedure main()

30: T := ˆ[[P ]]¬Φ ▷ ˆ[[P ]] is the original fixpoint

31: R := {φ 7→ {φ} | φ ∈ Φ}
32: FixpointIterate(Φ,T,R)

33: ClusterAlarms(T,R) 46



Chapter 4

Method 2.AProgressBar for

StaticAnalyzers

4.1 Introduction

We aim to develop a progress bar for static analyzers. Realistic semantic-based

static analyzers usually take a long time to analyze real-world software. For in-

stance, Sparrow [2], our static analyzer for full C, takes more than 4 hours to an-

alyze one million lines of C code [49]. Astrée [3] has also been reported to take

over 20 hours to analyze programs of size over 500KLOC [16]. Nonetheless, such

static analyzers are silent during their operation and users cannot but wait several

hours without any progress information.

Estimating static analysis progress at real-time is challenging in general. Static

analyzers take most of their time in fixpoint computation, but estimating the progress

of fixpoint algorithms has been unknown. One challenge is that the analysis time

is generally not proportional to the size of the program to analyze. For instance,

Sparrow [49] takes 4 hours in analyzing one million lines but require 10 hours to

analyze programs of sizes around 400KLOC. Similar observations have been made

for Astrée as well: Astrée takes 1.5 hours for 70KLOC but takes 40 minutes

for 120KLOC [16].
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In this paper, we present an idea for estimating static analysis progress. Our

basic approach is to measure the progress by calculating lattice heights of inter-

mediate analysis results and comparing them with the height of the final analy-

sis result. To this end, we employ a semantic-based pre-analysis and a statistical

regression technique. First, we use the pre-analysis to approximate the height of

the fixpoint. This estimated height is then fine-tuned with the statistical method.

Second, because this height progress usually does not indicate the actual progress

(speed), we normalize the progress using the pre-analysis.

We show that our technique effectively estimates static analysis progress in a

realistic setting. We have implemented our idea on top of Sparrow [2]. In our exper-

iments with various open-source benchmarks, the proposed technique is found to

be useful to estimate the progress of interval, octagon, and pointer analyses. The

pre-analysis overheads are 3.8%, 7.3%, and 36.6% on average in interval, pointer,

and octagon analysis, respectively.

Contributions This paper makes the following contributions:

• We present a technique for estimating static analysis progress. To our knowl-

edge, our work is the first attempt to estimate static analysis progress.

• We show its applicability for numerical analyses (with intervals and octagons)

and a pointer analysis on a suite of real C benchmarks.

Outline Section 4.2 describes the overall approach to our progress estimation

and the remaining sections fill the details. Section 4.3 defines a class of non-relational

static analyses and Section 4.4 gives the details on how we develop a progress bar

for these analyses. Section 4.5 experimentally evaluates the proposed technique.

Section 4.6 discusses the application to relational analyses.

4.2 Overall Approach to Progress Estimation

In this section, we describe the high-level idea of our progress estimation tech-

nique. In §4.4, we give details that we used in our experiments.
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4.2.1 Static Analysis

We consider a static analysis designed by abstract interpretation described in §2.1.
Throughout this chapter, we will let D refer to Φ→ Ŝ.

4.2.2 Progress Estimation

We aim to develop a progress bar that proceeds at a linear rate. That is, the es-

timated progress directly indicates the amount of work that has been completed

so far. Suppose that the sequence in (2.1) requires n iterations to stabilize, and

assume that computing the abstract semantics F̂ (X) at each iteration takes a con-

stant time regardless of the input X. Then, the actual progress of the analysis at

ith iteration is defined by i
n . We aim at estimating this progress.

Basically, our method estimates the progress by calculating the lattice heights

of intermediate analysis results. Suppose that we have a function H : D→ N that

takes an abstract domain element X ∈ D and computes its height. The heights of

domain elements need not be precisely defined, but we assume that H satisfies two

conditions: 1) the height is initially zero. 2) H is monotone. The second condition

is for building a progress bar that monotonically increases as the analysis makes

progress.

The first job in our progress estimation is to approximate the height of the final

analysis result. Let Hfinal be the height of the final analysis result, i.e., Hfinal =

H(
⊔

i∈N F̂ i(⊥)). In §4.4.3, we describe a method for precisely estimating Hfinal with

the aid of statistical regression. This height estimation method is orthogonal to the

rest part of our progress estimation technique. In this overview, let H♯
final be the

estimated final height and assume, for simplicity, that H♯
final = Hfinal .

A Naive Approach Given H and H♯
final , a simple progress bar could be devel-

oped as follows. At each iteration i, we first compute the height of the current

analysis result:

Hi = H(F̂ i(⊥)).
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Figure 4.1: The height progress of a main analysis can be normalized using a pre-
analysis. In this program (sendmail-8.14.6), the pre-analysis takes only 6.6% of
the main analysis time.

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H♯
final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotonically

increases as the analysis makes progress, and has 1 when the analysis is completed.

Problem of the Naive Approach We noticed that this simple method for

progress estimation is, however, unsatisfactory in practice. The main problem is

that the height progress does not necessarily indicate the amount of computa-

tion that has been completed. For instance, the solid line in Figure 4.1(a) de-

picts how the height progress increases during our interval analysis of program

sendmail-8.14.6 (The dotted diagonal line represents the ideal progress bar). As

the figure shows, the height progress rapidly increases during the early stage of

the analysis and after that slowly converges. We found that this progress bar is

not much useful to infer the actual progress nor to predict the remaining time of

the analysis.
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Our Approach We overcome this problem by normalizing the height progress

using the relationship between the actual progress and the height progress. Sup-

pose at the moment that we are given a function normalize : [0, 1] → [0, 1] that

maps the height progress into the corresponding actual progress. Indeed, normalize

represents the inverse of the graph (the solid line) shown in Figure 4.1(a). Given

such normalize, the normalized height progress is defined as follows:

P̄i = normalize(Pi) = normalize
( Hi

H♯
final

)
(4.1)

Note that, unlike the original height progress Pi, the normalized progress P̄i would

represent the actual progress, increasing at a linear rate. However, note also that

we cannot compute normalize unless we run the main analysis.

The key insight of our method is that we can predict the normalize function

by using a less precise, but cheaper pre-analysis than the main analysis. Our hy-

pothesis is that if the pre-analysis is semantically related with the main analysis,

it is likely that the pre-analysis’ height-progress behavior is similar to that of the

main analysis. In this article, we show that this hypothesis is experimentally true

and allows to estimate sufficiently precise normalization functions.

We first design a pre-analysis as a further abstraction of the main analysis.

Let D♯ and F ♯ : D♯ → D♯ be such abstract domain and semantic function of the

pre-analysis, respectively. In §4.4.2, we give the exact definition of the pre-analysis

design we used. Next, we run this pre-analysis, computing the following sequence

until stabilized:

⊔
i∈N

F ♯i(⊥♯) = F ♯0(⊥♯) ⊔ F ♯1(⊥♯) ⊔ F ♯2(⊥♯) ⊔ · · ·
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Suppose that the pre-analysis stabilizes in m steps (m is often much smaller than

n, the number of iterations for the main analysis to stabilize). Then, we collect

the following data during the course of the pre-analysis:

(
H♯

0

H♯
m

,
0

m
), (

H♯
1

H♯
m

,
1

m
), · · · , (

H♯
i

H♯
m

,
i

m
), · · · , (

H♯
m

H♯
m

,
m

m
)

where H♯
i = H(γ(F ♯i(⊥♯))). The second component i

m of each pair represents the

actual progress of the pre-analysis at the ith iteration, and the first represents the

corresponding height progress. Generalizing the data (using a linear interpolation

method), we obtain a normalization function normalize♯ : [0, 1] → [0, 1] for the

pre-analysis.

The normalization function normalize♯ of such a pre-analysis can be a good es-

timation of the normalization function normalize of the main analysis. For instance,

the dotted curve in Figure 4.1(a) shows the height progress of our pre-analysis (de-

fined in §4.4.2), which has a clear resemblance with the height progress (the solid

line) of the main analysis. Thanks to this similarity, it is acceptable in practice to

use the normalization function normalize♯ for the pre-analysis instead of normalize

in our progress estimation. Thus, we revise (4.1) as follows:

P̄ ♯
i = normalize♯

( Hi

Hfinal

)
(4.2)

That is, at each iteration i of the main analysis, we show the estimated normalized

progress P̄ ♯
i to the users. Figure 4.1(b) depicts P̄ ♯

i for sendmail-8.14.6 (on the

assumption that H♯
final = Hfinal ). Note that, unlike the original progress bar (the

solid line in Figure 4.1(a)), the normalized progress bar progresses at an almost

linear rate.

4.3 Setting

In this section, we define a class of static analyses on top of which we develop our

progress estimation technique. For presentation brevity, we consider non-relational
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analyses. However, our overall approach to progress estimation is also applicable

to relational analyses. In §4.6, we discuss the application to a relational analysis

with the octagon domain.

Programs We consider programs described in § 2.2.

Non-Relational Static Analyses We consider a class of static analyses whose

abstract domain maps program points to abstract states:

D = C→ S

where the abstract state is a map from abstract locations to abstract values:

S = L→ V

We assume that the set of abstract locations is finite and V is a complete lattice.

The abstract semantics of the program is characterized by the least fixpoint of

abstract semantic function F ∈ (C→ D)→ (C→ D) defined as,

F (X) = λc ∈ C.fc(
⊔
c′↪→c

X(c′)) (4.3)

where fc ∈ D→ D is the transfer function for control point c.

Example 4.3.1 (Interval Analysis). The interval analysis described in §2.2.1 is a

non-relational analysis where L = Var , V = I.

Example 4.3.2 (Pointer Analysis). The pointer analysis described in §2.2.3 is a

non-relational analysis where L = Var , V = ℘(Var).

4.4 Details on Our Progress Estimation

As described in §4.2, our progress estimation is done in two steps: (1) we first

run a pre-analysis to obtain an estimated normalization function normalize♯ and an
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estimated final height H♯
final ; (2) using them, at each iteration of the main analysis,

we measure the height progress, convert it to the estimated actual progress, and

show it to users. However, §4.2 has left out a number of details. In this section,

we give the details that we tried:

• In Section 4.4.1, we define our height function H.

• In Section 4.4.2, we describe our pre-analysis design.

• In Section 4.4.3, we present techniques for precise estimation of the final

height.

4.4.1 The Height Function

We first define height function H : (C → D) → N that takes an abstract domain

element and computes its height. Since our analysis is non-relational, we assume

that the height of an abstract domain element is computed point-wise as follows:

H(X) =
∑
c∈C

∑
l∈L

h(X(c)(l)) (4.4)

where h : V→ N is the height function for the abstract value domain (V).

Example 4.4.1. For the interval domain, we use the following height function:

h(⊥) = 0

h([a, b]) =



1 a = b ∧ a, b ∈ Z
2 a < b ∧ a, b ∈ Z
3 a ∈ Z ∧ b = +∞
3 a = −∞ ∧ b ∈ Z
4 a = −∞ ∧ b = +∞

We defined this height function based on the actual workings of our interval analy-

sis. Constant intervals (the first case) have height 1 since they are usually immedi-

ately generated from program texts. The finite intervals (the second case) are often

54



introduced by joining two constant intervals. Intervals with one infinite bound (the

third and fourth cases) are due to the widening operator. Note that our widening

operator (Example 2.2.1) immediately assigns ±∞ to unstable bounds. [−∞,+∞]

is generated with the widening is applied to both bounds.

Example 4.4.2. For the pointer domain, we use the following height function:

h(S) =

{
4 |S| ≥ 4

|S| otherwise

This definition is based on our observation that, in flow-sensitive pointer analysis

of C programs, most of the points-to sets have sizes less than 4.

4.4.2 Pre-analysis via Partial Flow-Sensitivity

A key component of our method is the pre-analysis that is used to estimate both

the height-progress behavior and the maximum height of the main analysis. One

natural method for further abstracting static analyses in §4.3 is to approximate

the level of flow-sensitivity. In this subsection, we design a pre-analysis that was

found to be useful in progress estimation.

We consider a class of pre-analyses that is partially flow-sensitive version of

the main analysis. While the main analysis is fully flow-sensitive (i.e., the or-

ders of program statements are fully respected), our pre-analysis only respects the

orders of some selected program points and regards other program points flow-

insensitively.

In particular, we are interested in a pre-analysis that only distinguishes pro-

gram points around headers of flow cycles. In static analysis, the most interesting

things usually happen in flow cycles. For instance, because of widening and join,

significant changes in abstract states occur at flow cycle headers. Thus, it is rea-

sonable to pay particular attention to height increases occurred at widening points

(W). To control the level of flow-sensitivity, we also distinguish some preceding

points of widening points.
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Formally, the set of distinguished program points is defined as follows. Suppose

that a parameter depth is given, which indicates how many preceding points of

flow cycle headers are separated in our pre-analysis. Then, we decide to distinguish

the following set Cs ⊆ C of program points:

Cs = {c ∈ C | w ∈W ∧ c ↪→depth w}

where c ↪→i c′ means that c′ is reachable from c within i steps of ↪→.

We define the pre-analysis that is flow-sensitive only for Cs as a special in-

stance of the trace partitioning [56]. The set of partitioning indicies Φ is defined

by Φ = Cs ∪ {•}, where • represents all the other program points not included in

Cs. That is, we use the following partitioning function δ : C→ Φ:

δ(c) =

{
c c ∈ Cs

• c ̸∈ Cs

With δ, we define the abstract domain (D♯) and semantic function (F ♯) of the

pre-analysis as follows:

C→ D −−−→←−−−α
γ

Φ→ D

where

γ(X) = λc. X(δ(c)).

The semantic function F ♯ : (Φ→ D)→ (Φ→ D) is defined as,

F ♯(X) = λi ∈ Φ. (
⊔

c∈δ−1(i)

fc(
⊔
c′↪→c

X(δ(c′))) (4.5)

where δ−1(i) = {c ∈ C | δ(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity

by adjusting the parameter depth ∈ [0,∞]. A larger depth value yields a more

precise pre-analysis. In our experiments (§4.5), we use 1 for the default value of

depth and show that how the progress estimation quality improves with higher
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depth values. It is easy to check that our pre-analysis is sound with respect to the

main analysis regardless of parameter depth.

4.4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the

final analysis result. Note that Hfinal cannot be computed unless we actually run

the main analysis. Instead, we compute H♯
final , an estimation of Hfinal . We replace

the Hfinal in (4.2) by H♯
final as follows:

P̄ ♯
i = normalize♯

( Hi

H♯
final

)
(4.6)

Our goal is to compute H♯
final such that |H♯

final−Hfinal | is as smaller as possible,

for which we use the pre-analysis and a statistical method. First, we compute Hpre ,

the final height of the pre-analysis result, i.e.,

Hpre = H(γ(lfpF ♯))

Next, we statistically refine Hpre into H♯
final such that |H♯

final − Hfinal | is likely

smaller than |Hpre − Hfinal |. The job of the statistical method is to predict α =
Hfinal

Hpre
(0 ≤ α ≤ 1) for a given program. With α, H♯

final is defined as follows:

H♯
final = α ·Hpre

We assume that α is defined as a linear combination of a set of program fea-

tures in Table 4.1. We used eight syntactic features and six semantic features. The

features are selected among over 30 features by feature selection for the purpose of

removing redundant or irrelevant ones for better accuracy. We used L1 based re-

cursive feature elimination to find optimal subset of features using 254 benchmark

programs.

The feature values are normalized to real numbers between 0 and 1. The Post-

fixpoint features are about the post-fixpoint property. Since the pre-analysis result
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is a post fixpoint of the semantic function F , i.e., γ(lfpF ♯) ∈ {x ∈ D | x ⊒ F (x)},
we can refine the result by iteratively applying F to the pre-analysis result. In-

stead of doing refinement, we designed simple indicators that show possibility of

the refinement to avoid extra cost. For every traning example, a feature vector is

created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge lin-

ear regression algorithm is known as a quick and effective technique for numerical

prediction.

Table 4.1: The feature vector used by linear regression to construct prediction
models

Category Feature

# function calls in the program

Inter-procedural # functions in recursive call cycles

(syntactic) # undefined library function calls

the maximum loop size

the average loop sizes

Loop-related the standard deviation of loop sizes

(syntactic) the standard deviation of depths of loops

# loopheads

Numerical analysis # bounded intervals in the pre-analysis result

(semantic) # unbounded intervals in the pre-analysis result

Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result

(semantic) # points-to sets of cardinality under 4 in the pre-analysis result

Post-fixpoint # program points where applying the transfer function once

(semantic) improves the precision

height decrease when transfer function is applied once

In a way orthogonal to the statistical method, we further reduce |H♯
final−Hfinal |

by tuning the height function. We reduce |H♯
final −Hfinal | by considering only sub-

sets of program points and abstract locations. However, it is not the best way to

choose the smallest subsets of them when computing heights. For example, we may

simply set both of them to be an empty set. Then, |H♯
final −Hfinal | will be zero,
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but both Hfinal and H♯
final will be also zero. Undoubtedly, that results in a useless

progress bar as estimated progress is always zero in that case.

Our goal is to choose program points and abstract locations as small as pos-

sible, while maintaining the progress estimation quality. To this end, we used the

following two heuristics:

• We focus only on abstract locations that contribute to increases of heights

during the main analysis. Let D(c) an over-approximation of the set of such

abstract locations at program point c:

D(c) ⊇ {l ∈ D̂ | ∃i ∈ {1 . . . n}.h(Xi(c)(l))− h(Xi−1(c)(l)) > 0}

Note that since we cannot obtain the set a priori, we use an over-approximation.

• We consider only on flow cycle headers in the height calculation. This is be-

cause cycle headers are places where significant operations (join and widen-

ing) happen.

Thus, we revise the height function H : D→ N in (4.4) as follows:

H(X) =
∑
c∈W

∑
l∈D(c)

h(X(c)(l)) (4.7)

Because W ⊆ C and ∀c. D(c) ⊆ D̂, the height approximation error for the new H

is smaller than that of the original H in (4.4).

We performed 3-fold cross validation using 254 benchmarks including GNU

softwares and linux packages. For interval analysis, we obtained 0.06 as a mean

absolute error of α, and 0.05 for pointer analysis.

4.5 Experiments

In this section, we evaluate our progress estimation technique described so far. We

show that our technique effectively estimates the progress of an interval domain–

based static analyzer, and a pointer analyzer for C programs.
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4.5.1 Setting

We evaluate our progress estimation technique with Sparrow [2], a realistic C static

analyzer that detects memory errors such as buffer-overruns and null dereferences.

Sparrow basically performs a flow-sensitive and context-insensitive analysis with

the interval abstract domain. The abstract state is a map from abstract loca-

tions (including program variables, allocation-sites, and structure fields) to ab-

stract values (including intervals, points-to sets, array and structure blocks). De-

tails on Sparrow’s abstract semantics is available at [49]. Sparrow performs a sparse

analysis [49] and the analysis has two phases: data dependency generation and fix-

point computation. Our technique aims to estimate the progress of the fixpoint

computation step and, in this paper, we mean by analysis time the fixpoint com-

putation time.

We have implemented our technique as described in Section 4.2 and 4.4. We

used the height function defined in Example 4.4.1 and 4.4.2. To estimate numer-

ical, and pointer analysis progresses, we split the Sparrow into two analyzers so

that each of them may analyze only numeric or pointer-related property respec-

tively. The pre-analysis is based on the partial flow-sensitivity defined in Section

4.4.2, where we set the parameter depth as 1 by default. That is, the pre-analysis

is flow-sensitive only for flow cycle headers and their immediate preceding points.

All our experiments were performed on a machine with a 3.07 GHz Intel Core

i7 processor and 24 GB of memory. For statistical estimation of the final height,

we used the scikit-learn machine learning library [54].

4.5.2 Results

We tested our progress estimation techniques on 8 GNU software packages for each

of analyses. Table 4.2 and 4.3 show our results.

The Linearity column in Table 4.2, and 4.3 quantifies the “linearity”, which

we define as follows:

1−
∑

1≤i≤n(
i
n − P̄ ♯

i )
2∑

1≤i≤n(
i
n −

n+1
2n )2
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Table 4.2: Progress estimation results (interval analysis). LOC shows the lines of
code before pre-processing. Main reports the main analysis time. Pre reports the
time spent by our pre-analysis. Linearity indicates the quality of progress estima-
tion (best : 1). Height-Approx. denotes the precision of our height approxima-
tion (best : 1). Err denotes mean of absolute difference between Height-Approx.
and 1 (best : 0).

Time(s) Height-

Program LOC Main Pre Linearity Overhead Approx.

bison-1.875 38841 3.66 0.91 0.73 24.86% 1.03

screen-4.0.2 44745 40.04 2.37 0.86 5.92% 0.96

lighttpd-1.4.25 56518 27.30 1.21 0.89 4.43% 0.92

a2ps-4.14 64590 32.05 11.26 0.51 35.13% 1.06

gnu-cobol-1.1 67404 413.54 99.33 0.54 24.02% 0.91

gnugo 87575 1541.35 7.35 0.89 0.48% 1.12

bash-2.05 102406 16.55 2.26 0.80 13.66% 0.93

sendmail-8.14.6 136146 1348.97 5.81 0.69 0.43% 0.93

TOTAL 686380 3423.46 130.5 0.74 3.81% Err : 0.07

Table 4.3: Progress estimation results (pointer analysis).

Time(s) Height-

Program LOC Main Pre Linearity Overhead Approx.

screen-4.0.2 44745 15.89 1.56 0.90 9.82% 0.98

lighttpd 56518 11.54 0.87 0.76 7.54% 1.03

a2ps-4.14 64590 10.06 3.48 0.65 34.59% 1.04

gnu-cobol-1.1 67404 32.27 12.22 0.91 37.87% 1.03

gnugo 87575 217.77 3.88 0.64 1.78% 0.97

bash-2.05 102406 3.68 0.78 0.56 21.20% 1.04

proftpd-1.3.2 126996 74.64 11.14 0.82 14.92% 1.03

sendmail-8.14.6 136146 145.62 3.15 0.58 2.16% 0.98

TOTAL 686380 511.47 37.08 0.73 7.25% Err : 0.03

where n is the number of iterations required for the analysis to stabilize and P̄ ♯
i is

the estimated progress at ith iteration of the analysis. This metric is just a simple
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application of the coefficient of determination in statistics, i.e., R2, which presents

how well P̄ ♯ fits the actual progress rate i
n . The closer to 1 linearity is, the more

similar to the ideal progress bar P̄ ♯
i is. Figure 8.1 and 8.2 in appendix present

the resulting progress bars for each of benchmark programs providing graphical

descriptions of the linearity. In particular, the progress bar proceeds almost lin-

early for programs of the linearity close to 0.9 (lighttpd-1.4.25, gnugo-3.8 in

interval analysis, gnu-cobol-1.1, bash-2.05 in pointer analysis). For some pro-

grams of relatively low linearity (gnu-cobol-1.1, bash-2.05 in interval analysis,

gnugo-3.8, proftpd-1.3.2 in pointer analysis), the progress estimation is com-

paratively rough but still useful.

The Height-Approx. column stands for the accuracy of final height approx-

imation
Hfinal

H♯
final

where H♯
final is estimated final height via the statistical technique

described in section 4.4.3. Err denotes an average of absolute errors |Height-

Approx. −1|. To prove our statistical method avoids overfitting problem, we per-

formed 3-fold cross validation using 254 benchmarks including GNU softwares and

linux packages. For interval analysis, we obtained 0.063 Err with 0.007 standard

deviation. For pointer analysis, 0.053 Err with 0.001 standard deviation. These

results show our method avoids overfitting, evenly yielding precise estimations at

the same time.

The Overhead column shows the total overhead of our method, which in-

cludes the pre-analysis running time (Section 4.4.2). The average performance over-

heads of our method are 3.8% in interval analysis, and 7.3% in pointer analysis

respectively.

4.5.3 Discussion

Linearity vs. Overhead In our progress estimation method, we can make trade-

offs between the linearity and overhead. Table 4.2, 4.3 show our progress estima-

tions when we use the default parameter value (depth = 1) in the pre-analysis. By

using a higher depth value, we can improve the precision of the pre-analysis and

hence the quality of the resulting progress estimation at the cost of extra over-
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Figure 4.2: Our method is also applicable to octagon domain–based static analyses.

head. For two programs, the following table shows the changes in linearity and

overhead when we change depth from 1 to 3:

Program Linearity change Overhead change

bash-2.05 (pointer) 0.56 → 0.70 21.2% → 37.5%

sendmail-8.14.6 (interval) 0.69 → 0.95 0.4% → 18.4%

Height Approximation Error In our experiments, we noticed that our progress

estimation method is sensitive to the height approximation error (H♯
final −Hfinal ).

Although we precisely estimate heights of the fixpoints, there are cases where even

small error sometimes leads to unsatisfactory results. For instance, the reason why

the progress for gnu-cobol-1.1 is under-estimated is the height approximation er-

ror (0.09).

We believe enhancing the precision will be achieved by increasing training ex-

amples and relevant features.

4.6 Application to Relational Analyses

The overall approach of our progress estimation technique may adapt easily to

relational analyses as well. In this section, we check the possibility of applying

our technique to the octagon domain–based static analysis [45].
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We have implemented a prototype progress estimator for the octagon anal-

ysis (described in §2.2.2) as follows. For pre-analysis, we used the same partial

flow-sensitive abstraction described in Section 4.4.2 with depth = 1. Regarding

the height function H, we also used that of the interval analysis. Note that, since

an octagon domain element is a collection of intervals denoting ranges of program

variables such as x and y, their sum x+ y, and their difference x− y, we can use

the same height function in Example 4.4.1. In this prototype implementation, we

assumed that we are given heights of the final analysis results.

Figure 4.2 shows that our technique effectively normalizes the height progress

of the octagon analysis. The solid lines in Figure 4.2(a) depicts the height progress

of the main octagon analysis of program wget-1.9 and the dotted line shows that

of the pre-analysis. By normalizing the main analysis’ progress behavior, we obtain

the progress bar depicted in Figure 4.2(b), which is almost linear.

Figure 8.3 depicts the resulting progress bar for other benchmark programs,

and the following table reports detailed experimental results.

Time(s)

Program LOC Main Pre Linearity Overhead

httptunnel-3.3 6174 49.5 8.2 0.91 16.6%

combine-0.3.3 11472 478.2 16 0.89 3.4%

bc-1.06 14288 63.9 43.8 0.96 68.6%

tar-1.17 18336 977.0 73.1 0.82 7.5%

parser 18923 190.1 104.8 0.97 55.1%

wget-1.9 35018 3895.36 1823.15 0.92 46.8%

TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for

the interval analysis, the resulting progress bars are almost linear. This preliminary

results suggest that our method could be applicable to relational analyses.
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Chapter 5

Method 3. StaticAnalysiswith

Set-closure in Secrecy

5.1 Introduction

In order for a static-analysis-as-a-service system[1] to be popular, we need to solve

the users’ copy-right concerns. Users are reluctant to upload their source to anal-

ysis server.

For more widespread use of such service, we explored a method of performing

static analysis on encrypted programs. Fig. 5.1 depicts the system.

Challenge Our work is based on homomorphic encryption (HE). A HE scheme

enables computation of arbitrary functions on encrypted data. In other words, a

HE scheme provides the functions f⊕ and f∧ that satisfy the following homomor-

phic properties for plaintexts x, y ∈ {0, 1} without any secrets:

Enc(x⊕ y) = f⊕(Enc(x),Enc(y)), Enc(x ∧ y) = f∧(Enc(x),Enc(y))

A HE scheme was first shown in the work of Gentry [22]. Since then, although

there have been many efforts to improve the efficiency [6, 7, 13, 59], the cost is

still too large for immediate applications into daily computations.
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Due to the high complexity of HE operation, practical deployments of HE re-

quire application-specific techniques. Application-specific techniques are often demon-

strated in other fields (described in §6.3).

Our Results As a first step, we propose a pointer analysis in secrecy. As many

analyses depends on the pointer information, we expect our work to have signifi-

cant implications along the way to static analysis in secrecy.

We first describe a basic approach. We design an arithmetic circuit of the

pointer analysis algorithm only using operations that a HE scheme supports. Pro-

gram owner encrypts some numbers representing his program under the HE scheme.

On the encrypted data, a server performs a series of corresponding homomorphic

operations referring to the arithmetic circuit and outputs encrypted pointer anal-

ysis results. This basic approach is simple but very costly.

To decrease the cost of the basic approach, we apply two optimization tech-

niques. One is to exploit the ciphertext packing technique not only for performance

boost but also for decreasing the huge number of ciphertexts required for the ba-

sic scheme. The basic approach makes ciphertexts size grow by the square to the

number of pointer variables in a program, which is far from practical. Ciphertext

packing makes total ciphertexts size be linear to the number of variables. The

other technique is level-by-level analysis. We analyze the pointers of the same level

together from the highest to lowest. With this technique, the depth of the arith-

metic circuit for the pointer analysis significantly decreases: from O(m2 logm) to

O(n logm) for the number m of pointer variables and the maximal pointer level

n. By decreasing the depth, which is the most important in performance of HE

schemes, the technique decreases both ciphertexts size and the cost of each homo-

morphic operation.

The improvement by the two optimizations is summarized in Table 5.1.
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Figure 5.1: Secure static analysis is performed in 3 steps: 1) target program en-
cryption 2) analysis in secrecy, and 3) analysis result decryption

Multiplicative depth # Ctxt

Basic O(m2 logm) 4m2

Improved O(n logm) (2n+ 2)m

m : the number of pointer variables in the target program

n : the maximum level of pointer in the program,

which does not exceed 5 in usual

Table 5.1: The comparison between the basic and the improved scheme

Although our interest in this paper is limited to a pointer analysis, we ex-

pect other analyses in the same family will be performed in a similar manner to

our method. Analyses in the family essentially compute a transitive closure of a

graph subject to dynamic changes; new edges may be added during the analy-

sis. Our method computes an encrypted transitive closure of a graph when both

edge insertion queries and all the edges are encrypted. Thus, we expect only a few

modifications to our method will make other similar analyses (e.g., 0-CFA) be in

secrecy.

5.2 Background

In this section, we introduce the concept of homomorphic encryption, and describe

the security model of our static analysis in secrecy.
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5.2.1 Homomorphic Encryption

A homomorphic encryption (HE) scheme HE=(KG, Enc, Dec, Eval) is a quadruple

of probabilistic polynomial-time algorithm as follows:

• (pk, evk; sk) ← HE.KG(1λ): The algorithm takes the security parameter λ as

input and outputs a public encryption key pk, a public evaluation key evk,

and a secret decryption key sk.

• c̄← HE.Encpk(µ, r): The algorithm takes the public key pk, a single bit mes-

sage µ ∈ {0, 1},1 and a randomizer r. It outputs a ciphertext c̄. If we have

no confusion, we omit the randomizer r.

• µ ← HE.Decsk(c̄): The algorithm takes the secret key sk and a ciphertext

c̄ = HE.Encpk(µ) and outputs a message µ ∈ {0, 1}

• c̄f ← HE.Evalevk(f ; c̄1, . . . , c̄l): The algorithm takes the evaluation key evk, a

function f : {0, 1}l → {0, 1} represented by an arithmetic circuit over Z2 =

{0, 1} with the addition and multiplication gates, and a set of l ciphertexts

{c̄i = HE.Enc(µi)}li=1, and outputs a ciphertext c̄f = HE.Enc(f(µ1, · · · , µl)).

We say that a scheme HE=(KG, Enc, Dec, Eval) is f -homomorphic if for any set

of inputs (µ1, · · · , µl), and all sufficiently large λ, it holds that

Pr [HE.Decsk (HE.Evalevk(f ; c̄1, · · · , c̄l)) ̸= f(µ1, · · · , µl)] = negl(λ),

where negl is a negligible function, (pk, evk; sk)← HE.KG(1λ), and c̄i ← HE.Encpk(µi).

If a HE scheme can evaluate all functions represented by arithmetic circuits

over Z2 (equivalently, boolean circuits with AND and XOR gates2), the HE scheme

is called fully homomorphic.

1For simplicity, we assume that the plaintext space is Z2 = {0, 1}, but extension to larger

plaintext space is immediate.
2AND and XOR gates are sufficient to simulate all binary circuits.
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To facilitate understanding of HE schemes, we introduce a simple symmet-

ric version of the HE scheme [60] based on approximate common divisor prob-

lems [29]:

• sk← KG(1λ): Choose an integer p and outputs the secret key sk = p.

• c̄← Enc(µ ∈ {0, 1}): Choose a random integer q and a random noise integer

r with |r| ≪ |p|. It outputs c̄ = pq + 2r + µ.

• µ← Decsk(c̄): Outputs µ = ((c̄ mod p) mod 2).

• c̄add ← Add(c̄1, c̄2): Outputs c̄add = c̄1 + c̄2.

• c̄mult ← Mult(c̄1, c̄2): Outputs c̄mult = c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(µ1) and c̄2 ← Enc(µ2), we know each c̄i is of the form

c̄i = pqi+2ri+µi for some integer qi and noise ri. Hence ((c̄i mod p) mod 2) = µi,

if |2ri + µi| < p/2. Then, the following equations hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) + µ1 + µ2︸ ︷︷ ︸
noise

,

c̄1 × c̄2 = p(pq1q2 + · · · ) + 2(2r1r2 + r1µ2 + r2µ1) + µ1 · µ2︸ ︷︷ ︸
noise

Based on these properties,

Decsk(c̄1 + c̄2) = µ1 + µ2 and Decsk(c̄1 × c̄2) = µ1 · µ2

if the absolute value of 2(2r1r2+r1µ2+r2µ1)+µ1µ2 is less than p/2. The noise in

the resulting ciphertext increases during homomorphic addition and multiplication

(twice and quadratically as much noise as before respectively). If the noise becomes

larger than p/2, the decryption result of the above scheme will be spoiled. As long

as the noise is managed, the scheme is able to potentially evaluate all boolean

circuits as the addition and multiplication in Z2 corresponds to the XOR and AND

operations.
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We consider somewhat homomorphic encryption (SWHE) schemes that adopt

the modulus-switching [7, 8, 15, 23] for the noise-management. The modulus-switching

reduces the noise by scaling the factor of the modulus in the ciphertext space.

SWHE schemes support a limited number of homomorphic operations on each ci-

phertext, as opposed to fully homomorphic encryption schemes [12, 60, 22, 58]

which are based on a different noise-management technique. But SWHE schemes

are more efficient to support low-degree homomorphic computations.

In this paper, we will measure the efficiency of homomorphic evaluation by the

multiplicative depth of an underlying circuit. The multiplicative depth is defined

as the number of multiplication gates encountered along the longest path from in-

put to output. When it comes to the depth of a circuit computing a function f ,

we discuss the circuit of the minimal depth among any circuits computing f . For

example, if a somewhat homomorphic encryption scheme can evaluate circuits of

depth L, we may maximally perform 2L multiplications on the ciphertexts main-

taining the correctness of the result. We do not consider the number of addition

gates in counting the depth of a circuit because the noise increase by additions is

negligible compared with the noise increase by multiplications. The multiplicative

depth of a circuit is the most important factor in the performance of homomorphic

evaluation of the circuit in the view of both the size of ciphertexts and the cost

of per-gate homomorphic computation. Thus, minimizing the depth is the most

important in performance.

5.2.2 The BGV-type cryptosystem

Our underlying HE scheme is a variant of the Brakerski-Gentry-Vaikuntanathan

(BGV)-type cryptosystem [7, 23]. In this section, we only provide a brief review

of the cryptosystem [7]. For more details, please refer to [7, 23]. Let Φ(X) be

an irreducible polynomial over Z. The implementation of the scheme is based on

the polynomial operations in ring R = Z[X]/ (Φ(X)) which is the set of integer

polynomials of degree less than deg(Φ). Let Rp := R/pR be the message space for
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a prime p and Rq×Rq be the ciphertext space for an integer q. Now, we describe

the BGV cryptosystem as follows:

• ((a, b); s)← BGV.KG(1λ, σ, q): Choose a secret key s and a noise polynomial

e from a discrete Gaussian distribution over R with standard deviation σ.

Choose a random polynomial a from Rq and generate the public key (a, b =

a · s+ p · e) ∈ Rq ×Rq. Output the public key pk = (a, b) and the secret key

sk = s.

• c̄ ← BGV.Encpk(µ): To encrypt a message µ ∈ Rp, choose a random poly-

nomial v whose coefficients are in {0,±1} and two noise polynomials e0, e1.

Output the ciphertext c = (c0, c1) = (bv + pe0 + µ, av + pe1) mod (q,Φ(X)).

• µ← BGV.Decsk(c̄): Given a ciphertext c̄ = (c0, c1), it outputs µ = (((c0− c1 ·
s) mod q) mod p).

• c̄add ← BGV.Addpk(c̄1, c̄2; evk): Given ciphertexts c̄1 = BGV.Enc(µ1) and c̄2 =

BGV.Enc(µ2), it outputs the ciphertext c̄add = BGV.Enc(µ1 + µ2).

• c̄mult ← BGV.Multpk(c̄1, c̄2; evk): Given ciphertexts c̄1 = BGV.Enc(µ1) and

c̄2 = BGV.Enc(µ2), it outputs the ciphertext c̄mult = BGV.Enc(µ1 · µ2).

5.2.3 Security Model

We assume that program owners and analyzer servers are semi-honest. In this

model, the analyzer runs the protocol exactly as specified, but may try to learn as

much as possible about the program information. However, in our method, since

programs are encrypted under the BGV-type cryptosystem which is secure under

the hardness of the ring learning with errors (RLWE) problem (see [7] for the de-

tails), analyzers cannot learn no more information than the program size.

5.3 A Basic Construction of a Pointer Analysis in Secrecy

In this section, we explain how to perform a pointer analysis in secrecy.
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5.3.1 A Brief Review of a Pointer Analysis

We begin with a brief review of a pointer analysis. We consider flow- and context-

insensitive pointer analyses. To simplify our presentation, we consider a tiny lan-

guage consisting of primitive assignments involving just the operations * and &. A

program P is a finite set of assignments A:

A → x = &y | x = y | ∗x = y | x = ∗y

We present a pointer analysis algorithm with simple resolution rules in a similar

manner to [28]. Given some program P , we construct resolution rules as speci-

fied in Table 5.2. In the first rule, the side condition “if x = &y in P” indicates

that there is an instance of this rule for each occurrence of an assignment of the

form x = &y in P . The side conditions in the other rules are similarly interpreted.

Intuitively, an edge x −→ &y indicates that x can point to y. An edge x −→ y in-

dicates that for any variable v, if y may point to v then x may point to v. The

pointer analysis is applying the resolution rules until reaching a fixpoint.

x −→ &y
(if x = &y in P )

(New) x −→ y (if x = y in P ) (Copy)

x −→ &z
y −→ z (if y = ∗x in P ) (Load)

x −→ &z
z −→ y (if ∗x = y in P ) (Store)

x −→ z z −→ &y

x −→ &y (Trans)

Table 5.2: Resolution rules for pointer analysis.

5.3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a pro-

gram owner derives numbers that represent his program and encrypt them under a

HE scheme. The encrypted numbers will be given to an analysis server. Next, the
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server performs homomorphic evaluation of an underlying arithmetic circuit repre-

senting the pointer analysis with the inputs from the program owner. Finally, the

program owner obtains an encrypted analysis result and recovers a set of points-to

relations by decryption.

Before beginning, we define some notations. We assume a program owner as-

signs a number to every variable using some numbering scheme. In the rest of the

paper, we will denote a variable numbered i by xi. In addition, to express the

arithmetic circuit of the pointer analysis algorithm, we define the notations δi,j

and ηi,j in Z for i, j = 1, · · · ,m by

δi,j ̸= 0 iff An edge xi −→ &xj is derived by the resolution rules.

ηi,j ̸= 0 iff An edge xi −→ xj is derived by the resolution rules.

for variables xi and xj, and the number m of pointer variables.

Inputs from Client

A client (program owner) derives the following numbers that represent his program

P (here, m is the number of variables):

{(δi,j , ηi,j , ui,j , vi,j) ∈ Z× Z× {0, 1} × {0, 1} | 1 ≤ i, j ≤ m}

which are initially assigned as follows:

δi,j ←

{
1 if ∃xi = &xj

0 otherwise
ηi,j ←

{
1 if ∃xi = xj or i = j

0 otherwise

ui,j ←

{
1 if ∃xj = ∗xi
0 otherwise

vi,j ←

{
1 if ∃∗xj = xi

0 otherwise

In the assignment of δi,j , the side condition ∃xi = &xj indicates that there is the

assignment xi = &xj in the program P . The other side conditions are similarly

interpreted.
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The program owner encrypts the numbers using a HE scheme and provides

them to the server. We denote the encryption of δi,j , ηi,j , ui,j , and vi,j by δ̄i,j , η̄i,j ,

ūi,j , and v̄i,j , respectively. Therefore, the program owner generates 4m2 ciphertexts

where m is the number of pointer variables.

Server’s Analysis

Provided the set of the ciphertexts from the program owner, the server homomor-

phically applies the resolution rules. With a slight abuse of notation, we will de-

note + and · as homomorphic addition and multiplication respectively to simplify

the presentation.

We begin with applying the Trans rule in Table 5.2. For i, j = 1, · · · ,m, the

server updates δ̄i,j as follows:

δ̄i,j ←
∑m

k=1 η̄i,k · δ̄k,j

If edges xi −→ xk and xk −→ &xj are derived by the resolution rules for some

variable xk, then the edge xi −→ &xj will be derived by the Trans rule and the

value δi,j will have a positive integer. If there is no variable xk that satisfies the

conditions for all k = 1, · · · ,m, there will be no update on δi,j (∵ ηi,i = 1).

Next, we describe applying the Load rule.

η̄i,j ← η̄i,j +
∑m

k=1 ūi,k · δ̄k,j

If an edge xk −→ &xj is derived and the program P has a command xi := ∗xk
and for some integer k, then the edge xi −→ xj will be derived and ηi,j will have

a positive value. If none of variables xk satisfies the conditions, there will be no

update on ηi,j .

Finally, to apply the Store rule, the server performs the following operations:

η̄i,j ← η̄i,j +
∑m

k=1 v̄j,k · δ̄k,i
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If an edge xk −→ &xi is derived and the program P has a command ∗xk := xj

for some variable xk, then an edge xi −→ xj will be derived and ηi,j will have a

non-zero value.

Note that the server must repeat applying the rules as if in the worst case

since the server cannot know whether a fixpoint is reached during the operations.

The server may obtain a fixpoint by repeating the following two steps in turn m2

times:

1. Applying the Trans rule m times

2. Applying the Load and Store rules

The reason for doing step 1 is that we may have a m-length path through edges

as the longest one in the worst case. The reason for repeating the two steps m2

times is that we may have a new edge by applying the Load and Store rules, and

we may have at most m2 edges at termination of the analysis.

We need O(m2 logm) multiplicative depth in total. Because performing the

step 1 entails m homomorphic multiplications on each δ̄i,j , and repeating the two

steps m2 times performs about mm2
homomorphic multiplications on each δ̄i,j .

Output Determination

The client receives the updated {δ̄i,j | 1 ≤ i, j ≤ m} from the server and recovers

a set of points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄i,j) ̸= 0 and 1 ≤ i, j ≤ m}

Why do we not represent the algorithm by a Boolean circuit?

One may wonder why we represent the pointer analysis algorithm by an arith-

metic circuit rather than a Boolean circuit. As an example of applying the Trans

rule, we might update δi,j by δi,j ←
∨

1≤k≤m
ηi,k ∧ δk,j . However, this representation

causes more multiplicative depth than our current approach. The OR operation

consists of the XOR and AND operations as follows: x∨ y = (x∧ y)⊕ x⊕ y. Note
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that the addition and multiplication in Z2 correspond to the XOR and AND op-

erations, respectively. Since the OR operation requires a single multiplication over

ciphertexts, this method requires m more multiplications than our current method

to update δi,j once.

5.4 Improvement of the Pointer Analysis in Secrecy

In this section, we present three techniques to reduce the cost of the basic ap-

proach described in § 5.3.2. We begin with problems of the basic approach followed

by our solutions.

5.4.1 Problems of the Basic Approach

The basic scheme has the following problems that make the scheme impractical.

• Huge # of homomorphic multiplications: The scheme described in § 5.3.2

can be implemented with a SWHE scheme of the depth O(m2 logm). Homo-

morphic evaluation of a circuit over the hundreds depth is regarded unrealis-

tic in usual. The depth of the arithmetic circuit described in § 5.3.2 exceeds

300 even if a program has only 10 variables.

• Huge # of ciphertexts: The basic approach requires 4m2 ciphertexts, where

m is the number of pointer variables. When a program has 1000 variables, 4

million ciphertexts are necessary. For instance, the size of a single ciphertext

in the BGV cryptosystem is about 2MB when the depth is 20. In this case,

the scheme requires 7.6 TB memory space for all the ciphertexts.

• Decryption error may happen: In our underlying HE scheme, the message

space is the polynomial ring over modulus p. During the operations, δi,j and

ηi,j increase and may become p which is congruent to 0 modulo p. Since we

are interested in whether each value is zero or not, incorrect results may be

derived if the values become congruent to 0 modulo p by accident.
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5.4.2 Overview of Improvement

For the number m of pointer variables and the maximal pointer level n, the fol-

lowings are our solutions.

• Level-by-level Analysis: We analyze pointers of the same level together

from the highest to lowest in order to decrease the depth of the arithmetic

circuit described in § 5.3.2. To apply the technique, program owners are

required to reveal an upper bound of the maximal pointer level. By this

compromise, the depth of the arithmetic circuit significantly decreases: from

O(m2 logm) to O(n logm). We expect this information leak is not much com-

promise because the maximal pointer level is well known to be a small num-

ber in usual cases.

• Ciphertext Packing: We adopt ciphertext packing not only for performance

boost but also for decreasing the huge number of ciphertexts required for the

basic scheme. The technique makes total ciphertext sizes be linear to the

number of variables.

• Randomization of Ciphertexts: We randomize ciphertexts to balance the

probability of incorrect results and ciphertext size. We may obtain correct

results with the probability of (1− 1
p−1)

n(⌈logm⌉+3).

The following table summarizes the improvement.

Depth # Ctxt

Basic O(m2 logm) 4m2

Improved O(n logm) (2n+ 2)m

5.4.3 Level-by-level Analysis

We significantly decrease the multiplicative depth by doing the analysis in a level

by level manner in terms of level of pointers. The level of a pointer is the maximum

level of possible indirect accesses from the pointer, e.g., the pointer level of p in
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the definition “int** p” is 2. From this point, we denote the level of a pointer

variable x by ptl(x).

We assume that type-casting a pointer value to a lower or higher-level pointer

is absent in programs. For example, we do not consider a program that has type-

casting from void* to int** because the pointer level increases from 1 to 2.

On the assumption, we analyze the pointers of the same level together from

the highest to lowest. The correctness is guaranteed because lower-level pointers

cannot affect pointer values of higher-level pointers during the analysis. For exam-

ple, pointer values of x initialized by assignments of the form x = &y may change

by assignments of the form x = y, x = ∗y, or ∗p = y (∵ p may point to x) during

the analysis. The following table presents pointer levels of involved variables in the

assignments that affects pointer values of x.

Assignment Levels

x = y ptl(x) = ptl(y)

x = ∗y ptl(y) = ptl(x) + 1

∗p = y ptl(p) = ptl(x) + 1 ∧ ptl(y) = ptl(x)

Note that all the variables affect pointer values of x have higher or equal pointer

level compared to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic

scheme. Before beginning, we define the notations δ
(ℓ)
i,j and η

(ℓ)
i,j in Z for i, j =

1, · · · ,m by

δ
(ℓ)
i,j ̸= 0 iff An edge xi −→ &xj is derived and ptl(xi) = ℓ

η
(ℓ)
i,j ̸= 0 iff An edge xi −→ xj is derived and ptl(xi) = ℓ.

Inputs from Client

For the level-by-level analysis, a program owner derives the following numbers that

represent his program P (n is the maximal level of pointer in the program):

{(δ(ℓ)i,j , η
(ℓ)
i,j ) | 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n} ∪ {(ui,j , vi,j) | 1 ≤ i, j ≤ m}
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where δ
(ℓ)
i,j and η

(ℓ)
i,j are defined as follows.

δ
(ℓ)
i,j =

{
1 if ∃xi = &xj, ptl(xi) = ℓ

0 o.w.
η
(ℓ)
i,j =

{
1 if (∃xi = xj or i = j), ptl(xi) = ℓ

0 o.w.

The definitions of ui,j and vi,j are the same as in § 5.3.2. We denote the encryption

of δ
(ℓ)
i,j and η

(ℓ)
i,j by δ̄

(ℓ)
i,j , η̄

(ℓ)
i,j , respectively.

Server’s Analysis

Server’s analysis begins with propagating pointer values of the maximal level n by

applying the Trans rule as much as possible. In other words, for i, j = 1, · · · ,m,

the server repeats the following update m times:

δ̄
(n)
i,j ←

∑m
k=1 η̄

(n)
i,k · δ̄

(n)
k,j

Next, from the level n − 1 down to 1, the analysis at a level ℓ is carried out

in the following steps:

1. applying the Load rule: η̄
(ℓ)
i,j ← η̄

(ℓ)
i,j +

∑m
k=1 ūi,k · δ̄

(ℓ+1)
k,j

2. applying the Store rule: η̄
(ℓ)
i,j ← η̄

(ℓ)
i,j +

∑m
k=1 v̄j,k · δ̄

(ℓ+1)
k,i

3. applying the Trans rule: repeating the following update m times

δ̄
(ℓ)
i,j ←

∑m
k=1 η̄

(ℓ)
i,k · δ̄

(ℓ)
k,j

Through step 1 and 2, edges of the form xi −→ xj are derived where either xi or

xj is determined by pointer values of the immediate higher level ℓ+ 1. In step 3,

pointer values of a current level ℓ are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above

3 steps n times entails maximally mn homomorphic multiplications on a single

ciphertext.
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Output Determination

The client receives the updated {δ̄(ℓ)i,j | 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n} from the server

and recovers a set of points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄
(ℓ)
i,j ) ̸= 0, 1 ≤ i, j ≤ m, and 1 ≤ ℓ ≤ n}

5.4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using fewer

ciphertexts than the basic scheme. Thanks to ciphertext packing, a single cipher-

text can hold multiple plaintexts rather than a single value. For given a vector

of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a ciphertext

c̄← BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-

morphic operations between such ciphertexts are performed component-wise. For

given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),

the homomorphic addition and multiplication in the BGV scheme satisfy the fol-

lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rotation.

For example, we can perform cyclic rotation of vector by any amount on cipher-

texts (e.g., BGV.Enc(µm, µ1, · · · , µm−1) from BGV.Enc(µ1, µ2, · · · , µm)). Using the

homomorphic addition, multiplication, and other operations, we can perform the

matrix addition, multiplication and transposition operations on encrypted matri-

ces.

In this subsection, we describe ciphertext packing and the homomorphic matrix

operations in more detail.
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Principle of Ciphertext Packing

We begin with some notations. For an integer q, Zq = [−q/2, q/2)∩Z and x mod q

denotes a number in [−q/2, q/2)∩Z which is equivalent to x modulo q. Recall that

the message space of the BGV cryptosystem is Rp = Z[X]/ (p,Φ(X)) for a prime

p and an irreducible polynomial Φ(X). We identify the polynomial ring Rp with

{a0 + a1X + · · ·+ adegΦ−1X
degΦ−1 | ai ∈ Zp and 0 ≤ i < degΦ}.

In the basic approach, although the message space of the BGV scheme is the

polynomial ring Rp, we have used only constant polynomials (i.e., numbers) for

plaintexts. Thus, if a vector of plaintexts is represented as a single non-constant

polynomial, a single ciphertext can hold multiple plaintexts rather than a single

value. Therefore we can save the total memory space by using fewer ciphertexts

than the basic scheme. Suppose the factorization of Φ(X) modulo p is Φ(X) =∏m
i=1 Fi(X) mod p where each Fi is an irreducible polynomial in Zp[X]. Then a

polynomial µ(X) ∈ Rp can be viewed as a vector of m different small polynomials,

(µ1(X), · · · , µm(X)) such that µi(X) = (µ(X) modulo Fi(X)) for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ1, · · · , µm) of plaintexts

in
∏m

i=1 Zp into a single ciphertext by the following transitions:

Zp × · · · × Zp −→
∏m

i=1 Zp[X]/ (Fi(X)) −→ Zp[X]/ (Φ(X)) −→ Rq

(µ1, · · · , µm)
id7−→ (µ1(X), · · · , µm(X))

CRT7−→ µ(X)
BGV.Enc7−→ c̄

First, we view a component µi in a vector µ = (µ1, · · · , µm) as a contant poly-

nomial µi ∈ Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique

polynomial µ(X) ∈ Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by

the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a vec-

tor µ = (µ1, · · · , µm) in
∏m

i=1 Zp, we encrypt the polynomial µ(X) ∈ Rp into a

ciphertext c̄ which is denoted by BGV.Enc (µ1, · · · , µm) . For more details to the

ciphertext packing, we suggest that readers see the paper [57].
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Rule Integer form Matrix form

Trans δ
(ℓ)
i,j ←

∑m
k=1 η

(ℓ)
i,k · δ

(ℓ)
k,j ∆ℓ ← Hℓ ·∆ℓ

Load η
(ℓ)
i,j ← η

(ℓ)
i,j +

∑m
k=1 ui,k · δ

(ℓ+1)
k,j Hℓ ← Hℓ + U ·∆ℓ+1

Store η
(ℓ)
i,j ← η

(ℓ)
i,j +

∑m
k=1 vj,k · δ

(ℓ+1)
k,i Hℓ ← Hℓ + (V ·∆ℓ+1)

T

Table 5.3: Circuit expression of the level-by-level analysis

Homomorphic Matrix Operations

Applying the resolution rules in the level-by-level analysis in § 5.4.3 can be re-

written in a matrix form as shown in Table 5.3. In Table 5.3, ∆ℓ = [δ
(ℓ)
i,j ], Hℓ =

[η
(ℓ)
i,j ], U = [ui,j ], and V = [vi,j ] are m × m integer matrices. Let the i-th row

of ∆ℓ and Hℓ be δ
(ℓ)
i and η

(ℓ)
i respectively. And we denote the encryptions as

δ̄
(ℓ)
i = BGV.Enc(δ

(ℓ)
i ) and η̄

(ℓ)
i = BGV.Enc(η

(ℓ)
i ).

We follow the methods in [26] to perform multiplication between encrypted

matrices. We use the Replicate homomorphic operation supported by the BGV

scheme [26]. For a given ciphertext c̄ = BGV.Enc(µ1, · · · , µm), the operation Replicate(c̄, i)

generates a ciphertext BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Using the operation,

we can generate an encryption of the i-th row of (Hℓ ·∆ℓ) as follows:

BGV.Mult
(
Replicate(η̄

(ℓ)
i , 1), δ̄

(ℓ)
1

)
+ · · · + BGV.Mult

(
Replicate(η̄

(ℓ)
i ,m), δ̄

(ℓ)
m

)
.

Note that this method does not affect the asymptotic notation of the multiplicative

depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and cyclic

rotation techniques described in [26]. Algorithms for the homomorphic operations

on encrypted matrices are described in Fig. 8.5 in Appendix C.
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5.4.5 Randomization of Ciphertexts

During the matrix multiplications, components of resulting matrices may become

p by coincidence, which is congruent to 0 in Zp. In this case, incorrect results may

happen. We randomize intermediate results to decrease the failure probability.

To multiply the matrices Hℓ = [η
(ℓ)
i,j ] and ∆ℓ = [δ

(ℓ)
i,j ], we choose non-zero ran-

dom elements {ri,j} in Zp for i, j = 1, · · · ,m and compute H ′ℓ = [ri,j · η(ℓ)i,j ]. Then,

each component of a resulting matrix of the matrix multiplication (H ′ℓ ·∆ℓ) is al-

most uniformly distributed over Zp.

Thanks to the randomization, the probability for each component of H ′ ·∆ of

being congruent to zero modulo p is in inverse proportion to p. We may obtain

a correct component with the probability of (1 − 1
p−1). Because we perform in

total n(⌈logm⌉+3)− 2 matrix multiplications for the analysis, the probability for

a component of being correct is greater than (1 − 1
p−1)

n(⌈logm⌉+3). For example,

in the case where n = 2,m = 1000 and p = 503, the success probability for a

component is about 95%.

Putting up altogether, we present the final protocol in Fig. 8.4 in Appendix C.

5.5 Experimental Result

In this section, we demonstrate the performance of the pointer analysis in secrecy.

In our experiment, we use HElib library [26], an implementation of the BGV cryp-

tosystem. We test on 4 small C example programs including tiny linux packages.

The experiment was done on a Linux 3.13 system running on 8 cores of Intel 3.2

GHz box with 24GB of main memory. Our implementation runs in parallel on 8

cores using shared memory.

Table 5.4 shows the result. We set the security parameter 72 which is usually

considered large enough. It means a ciphertext can be broken in a worst case time

proportional to 272. In all the programs, the maximum pointer level is 2.
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Table 5.4: Experimental Result

Program LOC # Var Enc Propagation Edge addition Total Depth

toy 10 9 26s 28m 49s 5m 58s 35m 13s 37

buthead-1.0 46 17 1m 26s 5h 41m 36s 56m 19s 6h 39m 21s 43

wysihtml-0.13 202 32 2m 59s 18h 11m 50s 2h 59m 38s 21h 14m 27s 49

cd-discid-1.1 259 41 3m 49s 32h 22m 33s 5h 22m 35s 37h 48m 57s 49

Enc : time for program encryption, Depth : the depth required for the analysis

Propagation : time for homomorphic applications of the Trans rule

Edge addition : time for homomorphic applications of the Load and Store rules

Why “Basic” Algorithm?

Many optimization techniques to scale the pointer analysis to larger programs [20,

21, 27, 28, 53] cannot be applied into our setting without exposing much informa-

tion of the program. The details are given in §6.3.

5.6 Discussion

By combining language and cryptographic primitives, we confirm that the homo-

morphic encryption scheme can unleash the possibility of static analysis of en-

crypted programs. As a representative example, we show the feasibility of the

pointer analysis in secrecy.

Although there is still a long way to go toward practical use, the experimental

result is indicative of the viability of our idea. If the performance issue is prop-

erly handled in future, this idea can be used in many real-world cases. Besides

depending on developments and advances in HE that are constantly being made,

clients can help to improve the performance by encrypting only sensitive sub-parts

of programs. The other parts are provided in plaintexts. In this case, analysis op-

erations with the mixture of ciphertexts and plaintexts should be devised. This

kind of operations are far cheaper than operations between ciphertexts because

they lead to smaller noise increases.

A major future direction is adapting other kinds of static analysis operations(e.g., ar-

bitrary ⊔, ⊑, and semantic operations) into HE schemes. For now, we expect other
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analyses similar to the pointer analysis (such as 0-CFA) will be performed in a

similar manner.
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Chapter 6

RelatedWorks

6.1 Sound Non-statistical Alarm Clustering

Non-statistical alarm clustering To our best knowledge, Le et al.’s work [37]

is the first one that proposes non-statistical clustering method. They reduce the

number of faults (alarms) by detecting correlations (dependencies) between them.

By propagating the effects of the error state along the program path, they detect

the correlation of pairs of alarms. They automatically construct a correlation graph

which shows how faults are correlated. Based on the graph, we can reduce the

number of faults to consider.

However, Le et al.’s method is not sound, while our method is sound. Accord-

ing to their experiment results, the dependencies they use to construct the corre-

lation graph can be spurious (false positive), which means that it is not always

safe to rule out faults even though they are correlated to the others.

Statistical approaches Statistical ranking schemes [31, 35, 36] may help to find

real errors quickly, but ranking schemes do not reduce alarm-investigation burdens

as in our work. Since our technique is orthogonal to statistical ranking schemes, we

might combine our technique with them for a more sophisticated alarm reporting

interface.
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Error recovery technique Our work is more general than error recovery tech-

nique that is used for reducing false alarms in many commercial static analysis

tools [3, 43, 44]. For each alarm found, the commercial analyzers recover from

those alarms; i.e. they assume that an alarm is false when they passed the alarm

point. Because error recovery is done within the baseline analysis, possible refine-

ments are bounded by the expressiveness of the abstract domain of the baseline.

As we show in § 3.4.4, we can use more expressive domain for clustering purpose

than the one used in the baseline, which can be more cost-effective than using ex-

pensive abstract domain in the baseline. Additionally, our method can derive true

clusters for which cannot be done by the error recovery technique.

Abstraction refinement Our work resembles to Rival’s work [55] in the sense

that both work refines the abstraction by exploiting the information about error

state. In his work, Rival refines the abstraction by slicing out non-error states and

sees if the initial state after refinement still insists that the erroneous states are

reachable. If the initial state becomes bottom after refinement, the alarm turns out

to be false. On the other hand, in our work, we refine the abstraction by slicing out

erroneous states at one point and see if erroneous states at other points become

non-reachable, which means that we found the dependence between alarms.

Our clustering method can be integrated with other refinement approaches [24,

25, 33, 55]. The goal of them is to remove false alarms by abstraction refinement,

while our work is to reduce the number of alarms to investigate. Our work can

reduce the number of targets to do the refinement.

6.2 A Progress Bar for Static Analyzers

Though progress estimation techniques have been extensively studied in other fields [48,

34, 10, 42, 46, 47], there have been no research for static analyzers. For instance,

a variety of progress estimation techniques have been proposed for long-running

software systems such as databases [34, 10, 42] and parallel data processing sys-

tems [47, 46]. Static analyzers are also a long-running software system but there
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are no progress estimation techniques for them. Furthermore, our method is differ-

ent from existing techniques. Existing progress estimators [46, 42, 47, 10] and al-

gorithm runtime prediction [30] are based solely on statistics or machine learning.

By contrast, we propose a technique that combines a semantics-based pre-analysis

with machine learning.

6.3 Static Analysis with Set-closure in Secrecy

Application-specific optimizations in using HE For practical deployments

of HE, ppplication-specific techniques are often demonstrated in other fields. Kim

et al. [11] introduced an optimization technique to reduce the depth of an arith-

metic circuit computing edit distance on encrypted DNA sequences. In addition,

methods of bubble sort and insertion sort on encrypted data have been proposed [9].

Also, private database query protocol using somewhat homomorphic encryption

has been proposed [4].

Optimization techniques in pointer analysis There are many optimization

techniques to scale the pointer analysis to larger programs [20, 21, 27, 28, 53], but

they cannot be applied into our setting without exposing much information of the

program. Two key optimizations are the cycle elimination and the difference prop-

agation. But neither method is applicable. The cycle elimination [20, 27, 28, 53]

aims to prevent redundant computation of transitive closure collapsing each cycle’s

components into a single node. The method cannot be applied into our setting be-

cause cycles cannot be detected and collapsed as all the program information and

intermediate analysis results are encrypted. The other technique, difference prop-

agation [21, 53], only propagates new reachability facts. Also, we cannot consider

the technique because analysis server cannot determine which reachability fact is

new as intermediate analysis results are encrypted.

88



Chapter 7

Conclusions

We have presented our solutions to the major usability issues in using sound static

analyzers: many false alarms, missing progress indicator, and copy-right concerns

over software sources.

• We have presented a new, sound non-statistical alarm-clustering method. We

proposed an abstract interpretation–based framework of alarm-clustering, which

is generally applicable to any semantics-based static analyses. We formally

proved the soundness of the framework, presented practical algorithms to

find the set of dominant alarms, provided three instance clustering algorithms

(based on interval, octagon, and symbolic domains), and showed that the

combination of the interval and symbolic clustering method considerably re-

duces the number of final alarm reports of a realistic C static analyzer.

• We have proposed a technique for estimating static analysis progress. Our

technique is based on the observation that semantically related analyses would

have similar progress behaviors, so that the progress of the main analysis can

be estimated by a pre-analysis. We implemented our technique on top of a

realistic C static analyzer and show our technique effectively estimates its

progress.

89



• We report that the homomorphic encryption scheme can unleash the pos-

sibility of static analysis of encrypted programs. As a representative exam-

ple, we have described an inclusion-based pointer analysis in secrecy. In our

method, a somewhat homomorphic encryption scheme of depth O(logm) is

able to evaluate the pointer analysis with O(logm) homomorphic matrix mul-

tiplications for the m number of pointer variables. We also show the viability

of our work by implementing the pointer analysis in secrecy. A major future

direction is adapting other kinds of static analysis operations (e.g., arbitrary

⊔, ⊑, and semantic operations) into HE schemes.
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Chapter 8

Appendix

A Proofs of Theorems

Lemma 1. Given two alarms φ1 and φ2, if φ1 ⇝ φ2, then φ2 is false whenever φ1

is false.

(Stated in § 3.2.)

Proof.

αS([[P ]]/δ(φ1)⊖ Ω(φ1)) ⊑ ˆ[[P ]](φ1) ⊖̂ αS(Ω(φ1)) (αS ◦ ⊖ ⊑ ⊖̂ ◦ αS×S)

αS([[P ]]/δ(φ1)) ⊑ ˆ[[P ]]¬φ1
(φ1) ([[P ]]/δ(φ1) ∩ Ω(φ1) = ∅)

Because ∀φ ̸= φ1. ˆ[[P ]](φ) = ˆ[[P ]]¬φ1
(φ), α([[P ]]) ⊑ ˆ[[P ]]¬φ1

.

α([[P ]]) = α(
⊔

i∈N FP
i⊥) ⊑ ˆ[[P ]]¬φ1⊔

i∈N FP
i⊥ ⊑ γ( ˆ[[P ]]¬φ1

) (id ⊑ γ ◦ α)
∀i ∈ N. FP

i⊥ ⊑ γ( ˆ[[P ]]¬φ1
) (By definition of lub)

Because γ ◦ α ⊑ id,

∀i ∈ N. α(FP
i⊥) ⊑ ˆ[[P ]]¬φ1

(8.1)

Let Ĥ = λX̂. ˆ[[P ]]¬φ1
⊓ F̂ (X̂). We will show α([[P ]]) ⊑ fix# Ĥ = ˜[[P ]]φ1

.

For the purpose, we first show ∀i ∈ N. α(FP
i⊥) ⊑ Ĥ i(⊥̂).
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• Basis :

α(FP (⊥)) ⊑ ˆ[[P ]]¬φ1
(By 8.1)

α(FP (⊥)) ⊑ F̂ (⊥) (α ◦ FP ⊑ F̂ ◦ α)
∴ α(FP (⊥)) ⊑ ˆ[[P ]]¬φ1

⊓ F̂ (⊥̂) = Ĥ(⊥̂)

• Induction step :

IH : α(FP
k⊥) ⊑ Ĥk(⊥̂)

α(FP
k+1⊥) = α(FP ◦ FP

k⊥)
⊑ α(FP ◦ γ ◦ α ◦ FP

k⊥) (α ◦ FP is monotone,

and id ⊑ γ ◦ α)
⊑ α ◦ FP ◦ γ(Ĥk(⊥̂)) (By IH)

⊑ F̂ (Ĥk(⊥̂)) (α ◦ FP ⊑ F̂ ◦ α)

α(FP
k+1⊥) ⊑ ˆ[[P ]]¬φ1

(By 8.1)

∴ α(FP
k+1⊥) ⊑ ˆ[[P ]]¬φ1

⊓ F̂ (Ĥk(⊥̂)) = Ĥk+1(⊥̂)

Therefore ⊔
i∈N α(FP

i⊥) ⊑
⊔

i∈N Ĥ i(⊥̂)
α(

⊔
i∈N FP

i⊥) ⊑
⊔

i∈N Ĥ i(⊥̂) (α is continuous.)

∴ α([[P ]]) ⊑ fix# Ĥ = ˜[[P ]]φ1

[[P ]]/δ(φ2) ⊆ γS( ˜[[P ]]φ1
(φ2)) (α([[P ]]) ⊑ ˜[[P ]]φ1

)

∴ [[P ]]/δ(φ2) ∩ Ω(φ2) = ∅ (γS( ˜[[P ]]φ1
(φ2)) ∩ Ω(φ2) = ∅)

Lemma 2. Given set −→φ of alarms and alarm φ0, if −→φ ⇝ φ0, then alarm φ0 is

false whenever all alarms in −→φ are false.

(Stated in § 3.2.)
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Proof. Similar to the proof of Lemma 1.

∀φ ∈ −→φ . αS([[P ]]/δ(φ)⊖ Ω(φ)) ⊑ ˆ[[P ]](φ) ⊖̂ αS(Ω(φ)) (αS ◦ ⊖ ⊑ ⊖̂ ◦ αS×S)

∴ ∀φ ∈ −→φ . αS([[P ]]/δ(φ)) ⊑ ˆ[[P ]]¬φ(φ) (∀φ ∈ −→φ .[[P ]]/δ(φ) ∩ Ω(φ) = ∅)
∴ ∀φ ∈ −→φ . αS([[P ]]/δ(φ)) ⊑ ˆ[[P ]]¬−→φ (φ) ( ˆ[[P ]]¬−→φ =

d
φ∈−→φ

ˆ[[P ]]¬φ)

Because ∀φ ∈ Φ−−→φ . ˆ[[P ]](φ) = ˆ[[P ]]¬−→φ (φ), α([[P ]]) ⊑ ˆ[[P ]]¬−→φ .

α([[P ]]) = α(
⊔

i∈N FP
i⊥) ⊑ ˆ[[P ]]−→φ⊔

i∈N FP
i⊥ ⊑ γ( ˆ[[P ]]¬−→φ ) (id ⊑ γ ◦ α)

∀i ∈ N. FP
i⊥ ⊑ γ( ˆ[[P ]]¬−→φ ) (By definition of lub)

Because γ ◦ α ⊑ id,

∀i ∈ N. α(FP
i⊥) ⊑ ˆ[[P ]]¬−→φ (8.2)

Let Ĥ = λX̂. ˆ[[P ]]¬−→φ ⊓ F̂ (X̂). We will show α([[P ]]) ⊑ fix# Ĥ = ˜[[P ]]−→φ .

For the purpose, we first show ∀i ∈ N. α(FP
i⊥) ⊑ Ĥ i(⊥̂).

• Basis :

α(FP (⊥)) ⊑ ˆ[[P ]]¬−→φ (By 8.2)

α(FP (⊥)) ⊑ F̂ (⊥̂) (α ◦ FP ⊑ F̂ ◦ α)
∴ α(FP (⊥)) ⊑ ˆ[[P ]]¬−→φ ⊓ F̂ (⊥̂) = Ĥ(⊥̂)

• Induction step :
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IH : α(FP
k⊥) ⊑ Ĥk(⊥)

α(FP
k+1⊥) = α(FP ◦ FP

k⊥)
⊑ α(FP ◦ γ ◦ α ◦ FP

k⊥) (α ◦ FP is monotone,

and id ⊑ γ ◦ α)
⊑ α ◦ FP ◦ γ(Ĥk(⊥̂)) (By IH)

⊑ F̂ (Ĥk(⊥̂)) (α ◦ FP ⊑ F̂ ◦ α)

α(FP
k+1⊥) ⊑ ˆ[[P ]]¬−→φ (By 8.2)

∴ α(FP
k+1⊥) ⊑ ˆ[[P ]]¬φ1

⊓ F̂ (Ĥk(⊥̂)) = Ĥk+1(⊥̂)

Therefore ⊔
i∈N α(FP

i⊥) ⊑
⊔

i∈N Ĥ i(⊥̂)
α(

⊔
i∈N FP

i⊥) ⊑
⊔

i∈N Ĥ i(⊥̂) (α is continuous.)

∴ α([[P ]]) ⊑ fix# Ĥ = ˜[[P ]]φ1

[[P ]]/δ(φ0) ⊆ γS( ˜[[P ]]−→φ (φ0)) (α([[P ]]) ⊑ ˜[[P ]]−→φ )

∴ [[P ]]/δ(φ0) ∩ Ω(φ0) = ∅ (γS( ˜[[P ]]−→φ (φ0)) ∩ Ω(φ0) = ∅)

Lemma 3. −→φ ⊆ −→φ ′ =⇒ C−→φ ⊆ C−→φ ′

(Stated in § 3.3.1.)

Proof.

˜[[P ]]−→φ ⊒ ˜[[P ]]−→φ ′ (By Lemma 5)

∀φ ∈ Φ. γS( ˜[[P ]]−→φ (φ)) ∩ Ω(φ) = ∅ =⇒ γS( ˜[[P ]]−→φ ′(φ)) ∩ Ω(φ) = ∅ (γS is monotone.)

Thus, C−→φ = {φ ∈ A | −→φ ⇝ φ} ⊆ C−→φ ′ = {φ ∈ A | −→φ ′ ⇝ φ}

Lemma 5. −→φ ⊆ −→φ ′ =⇒ ˜[[P ]]−→φ ′ ⊑ ˜[[P ]]−→φ
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Proof. Note that ˆ[[P ]]¬−→φ =
d

φi∈−→φ
ˆ[[P ]]¬φi

⊒ ˆ[[P ]]¬−→φ ′ =
d

φi∈−→φ ′
ˆ[[P ]]¬φi

.

Let H = λZ. ˆ[[P ]]¬−→φ ⊓ F̂ (Z) and H ′ = λZ. ˆ[[P ]]¬−→φ ′ ⊓ F̂ (Z). Then

H ⊒ H ′ ( ˆ[[P ]]¬−→φ ⊑ ˆ[[P ]]¬−→φ ′)

˜[[P ]]−→φ = fix#λZ. ˆ[[P ]]¬−→φ ⊓ F̂ (Z)

⊒ fix#λZ. ˆ[[P ]]¬−→φ ′ ⊓ F̂ (Z) = ˜[[P ]]−→φ ′ (By the fixpoint transfer theorem [17])

Theorem 4. Algorithm 3 computes sound alarm dependences.

(Stated in § 3.3.2.)
Proof. At line 28, an abstract dependence R(φ)⇝ φ is added if T (φ)⊓Ω̂(φ) =

⊥. It is correct because T = ˜[[P ]]R(φ).

Now we show T = ˜[[P ]]R(φ). At line 33 after the function FixpointIterate

is called, T = ˜[[P ]]Φ. In addition, by Lemma 6, ˜[[P ]]Φ = ˜[[P ]]R(φ). Therefore T =

˜[[P ]]R(φ).

2

Lemma 6. In algorithm 3, after the function FixpointIterate is called, ˜[[P ]]Φ =

˜[[P ]]R(φ).

Proof. We first show that the loop invariant in the function FixpointIterate

is

∀φ ∈ Φ. ˜[[P ]]R(φ)(φ) ⊑ T (φ). (8.3)

At the first entrance to the loop, T = ˆ[[P ]]¬Φ and ∀φ ∈ Φ.R(φ) = {φ}.

∀φ ∈ Φ. ˜[[P ]]R(φ)(φ) =
˜[[P ]]φ(φ)

∀φ ∈ Φ. ˜[[P ]]φ(φ) ⊑ ˆ[[P ]]¬φ(φ) (By def. of ˜[[P ]]φ)

∀φ ∈ Φ. ˆ[[P ]]¬φ(φ) =
ˆ[[P ]]¬Φ(φ)

Thus, ∀φ ∈ Φ. ˜[[P ]]R(φ)(φ) ⊑ ˆ[[P ]]¬Φ(φ). Finally, we derive ∀φ ∈ Φ. ˜[[P ]]R(φ)(φ) ⊑
T (φ) because T = ˆ[[P ]]¬Φ.
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Next, assuming the loop invariant (8.3) holds, we show the invariant still holds

after a single iteration.The following table shows the values of −→φ new and ŝnew

respectively at the begin of line 22 for each of cases in line 19-21.

Case −→φ new ŝnew

ŝ ⊐ ŝ′
⋃

φi∈pred(φ)R(φi) f̂(φ)(
⊔

φi∈pred(φ) T (φi))

ŝ ⊑ ŝ′ R(φ) T (φ)

otherwise R(φ) ∪
⋃

φi∈pred(φ)R(φi) T (φ) ⊓ f̂(φ)(
⊔

φi∈pred(φ) T (φi))

Because −→φ new and ŝnew will be assigned to T (φ) and R(φ) respectively at line 23,

now our goal is to show that ˜[[P ]]−→φ new
(φ) ⊑ ŝnew in each case.

• Case ŝ ⊐ ŝ′ : Let R′ =
⋃

φi∈pred(φ)R(φi) and Ĥ = λZ. ˆ[[P ]]¬R′ ⊓ F̂ (Z).

˜[[P ]]R′(φ) = Ĥ( ˜[[P ]]R′)(φ) ( ˜[[P ]]R′ = fix#Ĥ)

⊑ F̂ ( ˜[[P ]]R′)(φ) (Ĥ ⊑ F̂ )

= f̂(φ)(
⊔

φi∈pred(φ)
˜[[P ]]R′(φi)) (By def. of F̂ )

⊑ f̂(φ)(
⊔

φi∈pred(φ)
˜[[P ]]R(φi)

(φi)) (By Lemma 5 and the monotonicity of f̂(φ))

By the inductive hypothesis, ∀φi ∈ pred(φ). ˜[[P ]]R(φ)(φ) ⊑ T (φ). Because

f̂(φ) is monotone,

f̂(φ)(
⊔

φi∈pred(φ)
˜[[P ]]R(φi)

(φi)) ⊑ f̂(φ)(
⊔

φi∈pred(φ) T (φi))

Therefore, ˜[[P ]]−→φ new
(φ) ⊑ ŝnew.

• Case ŝ ⊑ ŝ′ : immediate from the inductive hypothesis (8.3).

• Case ŝ ̸⊐ ŝ′, ŝ ̸⊑ ŝ′ :

Let R′ =
⋃

φi∈pred(φ)R(φi) and ŝ = f̂(φ)(
⊔

φi∈pred(φ) T (φi)). So far, we have

derived that the followings hold:

˜[[P ]]R′(φ) ⊑ ŝ

˜[[P ]]R(φ)(φ) ⊑ T (φ)
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By Lemma 7, ˜[[P ]]R(φ)∪R′(φ) ⊑ T (φ) ⊓ ŝ. Because R(φ) ∪ R′ = −→φ new and

T (φ) ⊓ ŝ = ŝnew, we conclude ˜[[P ]]−→φ new
(φ) ⊑ ŝnew.

At the exit of the loop, T = ˜[[P ]]Φ by the correctness of the worklist algorithm.

On the other hand, ∀φ ∈ Φ. ˜[[P ]]Φ(φ) ⊑ ˜[[P ]]R(φ)(φ) by Lemma 5. Because ∀φ ∈
Φ. ˜[[P ]]R(φ)(φ) ⊑ T (φ) = ˜[[P ]]Φ(φ) and ∀φ ∈ Φ. ˜[[P ]]Φ(φ) ⊑ ˜[[P ]]R(φ)(φ), we conclude

∀φ ∈ Φ. ˜[[P ]]Φ(φ) =
˜[[P ]]R(φ)(φ). 2

Lemma 7. If ˜[[P ]]R(φ) ⊑ s, ˜[[P ]]R′(φ) ⊑ s′ then ˜[[P ]]R∪R′(φ) ⊑ s ⊓ s′.

Proof.
˜[[P ]]R∪R′(φ) ⊑ ˜[[P ]]R(φ) ⊑ s (By Lemma 5)

˜[[P ]]R∪R′(φ) ⊑ ˜[[P ]]R′(φ) ⊑ s′

˜[[P ]]R∪R′(φ) ⊑ s ⊓ s′ (By definition of glb.)

2

Theorem 6. ∀φ ∈ Φ. γI( ˆ[[P ]]
I
(φ))⊖ Ω(φ, x, y) ⊑ γI( ˆ[[P ]]

I
(φ)⊖ŜI Ω̂(φ, x, y))

(Stated in § 3.4.2.)

Proof. We first show γI(Ω̂(φ, x, y)) ⊆ Ω(φ, x, y).

• Case Ω̂(φ, x, y) = ⊥ŜI : trivial.

• Case Ω̂(φ, x, y) = ⊥ŜI [x 7→ [ymax,+∞], y 7→ [−∞, xmin]] :

∀s ∈ γI(Ω̂(φ, x, y)). s(x) ≥ s(y) because ymax ≥ xmin.

Therefore, Ω̂(φ, x, y) is an underapproximation of the erroneous states.

Next, we show Ω̂(φ, x, y) is precisely complementable. In other words,

γŜI(Ω̂(φ, x, y)) = ℘(S) \ γŜI(Ω̂(φ, x, y)).

γŜI(Ω̂(φ, x, y)) = {x 7→ nx, y 7→ ny | nx ≥ ymax, ny ≤ xmin}
γŜI(Ω̂(φ, x, y)) = {x 7→ nx, y 7→ ny, z 7→ nz | z ∈ Var ,nz ∈ Z,nx < ymax ,ny > xmin}
∴ γŜI(Ω̂(φ, x, y)) = ℘(S) \ γŜI(Ω̂(φ, x, y))
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In addition,

∀φ ∈ Φ. γI( ˆ[[P ]](φ))⊖Ω(φ, x, y) ⊑ γI( ˆ[[P ]](φ))⊖γI(Ω̂(φ, x, y)) (∵ γI(Ω̂(φ, x, y)) ⊆ Ω(φ, x, y))

By the fact that Ω̂(φ, x, y) is precisely complementable and Theorem 5, the theo-

rem holds.

B Progress Graphs

In this appendix, progress graphs are presented. Figure 8.1, 8.2, and 8.3 present

the resulting interval, pointer, and octagon analysis progress bars respectively. Dot-

ted diagonal line denotes the ideal progress bar.
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Figure 8.1: Our progress estimation for interval analysis (when depth = 1).
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Figure 8.2: Our progress estimation for pointer analysis (when depth = 1).

109



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
g
h
t
p
ro
gr
es
s

httptunnel-3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
g
re
ss

combine-0.3.3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
g
re
ss

bc-1.06

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

tar-1.17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

parser

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

actual progress

h
ei
gh

t
p
ro
gr
es
s

wget-1.9

Figure 8.3: Progress estimation for octagon analysis.

C Algorithms for the Pointer Analysis in Secrecy

Fig. 8.4 describes the protocol. Fig. 8.5 describes the homomorphic matrix opera-

tions and necessary sub algorithms.
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Main Protocol

Client Input: There are m pointer variables in the client’s program with the maximal pointer level

n. The sets
{
(δ

(ℓ)
i,j , η

(ℓ)
i,j ) | 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n

}
and {(ui,j , vi,j) | 1 ≤ i, j ≤ m} are initialized

as described in Section 5.3.2 and 5.4.3. For a security parameter λ, the client generates the

parameters (pk, evk; sk)← BGV.KG(1λ) of the BGV scheme.

Sub-algorithms: In this protocol, we use the sub-algorithms in Fig. 8.5.

– Program Encryption (Client’s work)

1. for ℓ = 1 to n and for i = 1 to m do

2. δ̄
(ℓ)
i ← BGV.Enc(δ

(ℓ)
i,1 , · · · , δ

(ℓ)
i,m), η̄

(ℓ)
i ← BGV.Enc(η

(ℓ)
i,1 , · · · , η

(ℓ)
i,m)

3. ūi ← BGV.Enc(ui,1, · · · , ui,m), v̄i ← BGV.Enc(vi,1, · · · , vi,m)

4. for ℓ = 1 to n do

5. ∆̄ℓ ←
〈
δ̄
(ℓ)
1 | · · · |δ̄

(ℓ)
m

〉T
, H̄ℓ ←

〈
η̄
(ℓ)
1 | · · · |η̄

(ℓ)
m

〉T
// the i-th row of ∆̄ℓ is δ̄

(ℓ)
i .

6. Ū ← ⟨ū1| · · · |ūm⟩T , V̄ ← ⟨v̄1| · · · |v̄m⟩T // the i-th row of Ū is ūi.

7. Client sends the sets
{
(∆̄ℓ, H̄ℓ) | 1 ≤ ℓ ≤ n

}
and

{
(Ū , V̄ )

}
to server.

– Analysis in Secrecy (Server’s work)

1. ∆̄n ← HE.MatMult
(
HE.MatPower(H̄n,m), ∆̄n

)
2. for ℓ = n− 1 to 1 do

3. Ā← HE.MatMult(Ū , ∆̄ℓ+1), B̄ ← HE.MatTrans
(
HE.MatMult(V̄ , ∆̄ℓ+1)

)
4. H̄ℓ ← HE.MatAdd

(
HE.MatAdd(H̄ℓ, Ā), B̄

)
// apply Load and Store rules

5. ∆̄ℓ ← HE.MatMult
(
HE.MatPower(H̄ℓ,m), ∆̄ℓ

)
// apply Trans rule

6. Server sends the ciphertext set
{
δ̄
(ℓ)
i | 1 ≤ ℓ ≤ n and 1 ≤ i ≤ m

}
to client.

– Output Determination (Client’s work)

1. for i = 1 to m and for ℓ = 1 to n do

2. Client computes (δ
(ℓ)
i,1 , · · · , δ

(ℓ)
i,m)← BGV.Dec(δ̄

(ℓ)
i ).

3. Client determines the set
{
xi −→ &xj | δ(ℓ)i,j ̸= 0, 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n

}
.

Figure 8.4: The Pointer Analysis in Secrecy
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// We assume that m is the same as the number of plaintext slots in the BGV scheme.

// A prime p is the modulus of message space in the BGV-type cryptosystem.

// We denote the encryption of the matrix A = [ai,j ] ∈ Zm×m
p by Ā.

// The i-th row āi of Ā is the ciphertext BGV.Enc(ai,1, · · · , ai,m) for i = 1, · · · ,m.

// For ciphertexts c̄1, · · · , c̄m, we denote the matrix whose rows are c̄i by ⟨c̄1| · · · |c̄m⟩T

HE.MatAdd(Ā, B̄)

// Input : Ā, B̄ are encryptions of A = [ai,j ], B = [bi,j ].

// Output : A+B is an encryption of A+B = [ai,j + bi,j ].

1 for i = 1 to m do z̄i ← BGV.Add(āi, b̄j)

2 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

HE.MatMult(Ā, B̄)

// Input : Ā, B̄ are encryptions of A = [ai,j ], B = [bi,j ].

// Output : RA ·B is an encryption of RA ·B =
[∑m

k=1 ri,k · (ai,kbk,j)
]
,

// where ri,j
$←− [−p/2, p/2) ∩ Z with ri,j ̸= 0.

1 R̄← HE.MatRandomize(Ā)

2 for i = 1 to m do z̄i ←
∑m

j=1 BGV.Mult
(
HE.Replicate(r̄i, j), b̄j

)
// ciphertext additions

3 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

HE.MatPower(Ā, k)

// Input : Ā is an encryption of A.

// Output : Aw is an encryption of Aw, where w = 2⌈log k⌉.

1 Z̄ ← Ā; for i = 1 to ⌈log k⌉ do Z̄ ← HE.MatrixMult
(
Z̄, Z̄

)
2 return Z̄

HE.MatTrans(Ā)

// Input : Ā is an encryption of A = [ai,j ].

// Output : AT is an encryption of AT = [aj,i].

1 for i = 1 to m do

2 for j = 1 to m do z̄i,j ← HE.Masking(āj , i)

3 z̄i ←
∑i−1

j=1 HE.Rotate(z̄i,j , j − i+m) +
∑m

j=i HE.Rotate(z̄i,j , j − i) // ciphertext additions

4 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

HE.MatRandomize(Ā)

// Input : Ā is an encryption of A = [ai,j ].

// Output : RA is an encryption of RA = [ri,j · ai,j ], where ri,j
$←− Zp with ri,j ̸= 0.

1 for i = 1 to m do

2 Choose a vector ri = (ri,1, · · · , ri,m)
$←− Zm

p with ri,j ̸= 0 mod p.

3 z̄i ← BGV.multByConst(ri, āi)

4 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

// The following algorithms are in the library HElib. Here, we only give preview of the algorithms.

// In the following functions, c̄ refers to the encryption of (µ1, · · · , µm)

HE.Replicate(c̄, k)

return the ciphertext BGV.Enc(µk, · · · , µk)

HE.Masking(c̄, k)

return the ciphertext BGV.Enc(0, · · · , 0, µk, 0 · · · , 0) // µk is the k-th plaintext slot.

HE.Rotate(c̄, k)

return the ciphertext BGV.Enc(µm−k+2, · · · , µm, µ1, · · · , µm−k+1)

BGV.multByConst(r, c̄)

// The constant vector r = (r1, · · · , rm) ∈ Zp × · · · × Zp.

return the ciphertext BGV.Enc(r1µ1, · · · , rmµm)

Figure 8.5: Pseudocode for the Homomorphic Matrix Operations
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초 록

정적 분석기의 사용자들이 흔히 겪는 세 가지 문제들 - 허위 경보, 진행정도 예측

불가, 대상 프로그램의 저작권 침해 우려 - 각각에 대한 해결책들을 제시한다. 첫

번째로, 분석기가 발생시킬 수 있는 다수의 허위 경보들을 보다 쉽게 걸러낼 수

있는 방법을 제시한다. 이 기술은 같은 발생 원인을 공유하는 경보들을 묶어, 그

중 대표 경보만을 사용자에게 제시함으로써 사용자가 허위여부를 판별해야 하는

경보 숫자를 줄인다. 둘째로, 복잡한 프로그램들에 대해서 분석이 오래 걸림에도

불구하고 진행율을 알 수 없었던 기존 문제에 대한 해결책을 제시한다. 마지막으

로, 암호화된 대상 프로그램에 대해 분석을 수행할 수 있는 방법을 제시함으로써

분석 서비스 사용시 발생할 수 있는 저작권 침해 가능성을 차단하는 해결책을 제

시한다. 본 논문에서는 위의 기술들을 엄밀히 정의하고 그 기술들이 실제 C 프로

그램 분석에서 성공적으로 적용될 수 있음을 실험적으로 보인다.

주요어 : 프로그래밍 언어, 요약 해석, 정적 분석, 사용자 편의성,

동형 암호, 허위 경보, 진행율 예측, 버퍼오버런 탐지, 포

인터 분석, 비통계적 클러스터링

학 번 : 2009-20866
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