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Abstract

These days, computer vision technology becomes popular and plays an important role

in intelligent systems, such as augment reality, video and image analysis, and to name a

few. Although cost effective depth cameras, like a Microsoft Kinect, have recently de-

veloped, most computer vision algorithms assume that observations are obtained from

RGB cameras, which make 2D observations. If, somehow, we can estimate 3D infor-

mation from 2D observations, it might give better solutions for many computer vision

problems.

In this dissertation, we focus on estimating 3D information from 2D observations,

which is well known as non-rigid structure from motion (NRSfM). More formally, NRSfM

finds the three dimensional structure of an object by analyzing image streams with the

assumption that an object lies in a low-dimensional space. However, a human body for

long periods of time can have complex shape variations and it makes a challenging prob-

lem for NRSfM due to its increased degree of freedom. In order to handle complex shape

variations, we propose a Procrustean normal distribution mixture model (PNDMM) by

extending a recently proposed Procrustean normal distribution (PND), which captures

the distribution of non-rigid variations of an object by excluding the effects of rigid

motion. Unlike existing methods which use a single model to solve an NRSfM prob-

lem, the proposed PNDMM decomposes complex shape variations into a collection of

simpler ones, thereby model learning can be more tractable and accurate. We perform

experiments showing that the proposed method outperforms existing methods on highly

complex and long human motion sequences.

In addition, we extend the PNDMM to a single view 3D human pose estimation prob-

lem. While recovering a 3D structure of a human body from an image is important, it

is a highly ambiguous problem due to the deformation of an articulated human body.

Moreover, before estimating a 3D human pose from a 2D human pose, it is important to



obtain an accurate 2D human pose. In order to address inaccuracy of 2D pose estimation

on a single image and 3D human pose ambiguities, we estimate multiple 2D and 3D hu-

man pose candidates and select the best one which can be explained by a 2D human pose

detector and a 3D shape model. We also introduce a model transformation which is in-

corporated into the 3D shape prior model, such that the proposed method can be applied

to a novel test image. Experimental results show that the proposed method can provide

good 3D reconstruction results when tested on a novel test image, despite inaccuracies

of 2D part detections and 3D shape ambiguities.

Finally, we handle an action recognition problem from a video clip. Current stud-

ies show that high-level features obtained from estimated 2D human poses enable ac-

tion recognition performance beyond current state-of-the-art methods using low- and

mid-level features based on appearance and motion, despite inaccuracy of human pose

estimation. Based on these findings, we propose an action recognition method using es-

timated 3D human pose information since the proposed PNDMM is able to reconstruct

3D shapes from 2D shapes. Experimental results show that 3D pose based descriptors

are better than 2D pose based descriptors for action recognition, regardless of classifi-

cation methods. Considering the fact that we use simple 3D pose descriptors based on

a 3D shape model which is learned from 2D shapes, results reported in this dissertation

are promising and obtaining accurate 3D information from 2D observations is still an

important research issue for reliable computer vision systems.

Keywords: 3D Shape Recovery, Non-Rigid Structure from Motion, 3D Human Pose Es-

timation, Action Recognition

Student Number: 2010-20902
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Chapter 1

Introduction

1.1 Motivation

The advent of digital cameras and smartphones, and the growth of social networking

technologies, such as YouTube, Flickr, and Facebook, have accelerated making and shar-

ing of a lot of images and videos. According to the research by Cisco Systems, Inc., the

growth of videos in internet is expected as shown in Figure 1.1(a). The volume of videos

would be 50,000,000 terabytes in the year 2015 and video data can be categorized as

shown in Figure 1.1(b). Since the volume of video data is already over the limitation we

can control, technologies for efficiently analyzing contents of data are required in these

days.

When we analyze video data, understanding human actions is one of the impor-

tant things due to its various and useful applications, such as intelligence surveillance,

human-computer interaction, web-video search and retrieval, and to name a few. It is

easy for a person to recognize actions performed by other persons, while current in-

telligent systems still struggle with robustly recognizing human actions in uncontrolled

environments. In order to solve action recognition problems, most of the studies are

1



Chapter 1. Introduction

(a)

(b)

Figure 1.1: Analysis of video data. (a) Video growth in internet, (b) Categorization

of video data. (Source: Cisco Systems, Inc., http://www.reelseo.com/rise-online-video-

break-internet/)
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Chapter 1. Introduction

based on general visual cues like texture, edge, and color in an image.

However, such methods have a limitation due to lack of high-level information inher-

ited from weak visual cues. Since human motion can be interpreted as variations of a

human pose in a physical view, moving information of joints of an articulated human

pose becomes a high-level descriptor on human motion [1]:

• A pose is more invariant than appearance-based cues in the same action. For in-

stance, appearance based features can differ between two persons wearing differ-

ent clothes in color and texture, while poses are similar when they are performing

the same action.

• The pose itself is able to simplify the learning process for action recognition since

a pose is a kind of high-level descriptors on human motion.

Despite a lot of advantages in using human poses, posed-based action recognition has not

received attention over past few decades due to the difficulty of human pose estimation

on an image. However, current great progress in human pose estimation makes it possi-

ble to robustly estimate human poses in images. Yao et al.[2] showed that human pose

estimation from multiple camera views are accurate enough for reliable action recogni-

tion. Although there is still a limitation for pose estimation in a monocular video, several

studies point to that utilizing poses is important for better understanding human motion

and improving the accuracy of action recognition systems [3, 4, 5]. Recently, Jhuang et

al.[4] have shown that high-level features obtained from 2D human poses estimated by

[6], as well as ground truth poses, enable action recognition performance beyond cur-

rent state-of-the-art methods using low- and mid-level features based on appearance and

motion.

Based on current findings about human analysis, we can easily think about that usage

of 3D human poses might be better solutions than 2D human poses in action recognition

3



Chapter 1. Introduction

systems. That is, the real world consists of 3D objects and a 2D human pose is the

perspective of the 3D one. For that reason, cost effective depth sensors, e.g., Microsoft

Kinect, have been recently developed and several researchers have utilized them for 3D

human pose estimation and action recognition. However, a depth camera is an additional

sensor and depth based methods are not general technology which can be applied to

unrestricted environments, such as RGB based systems. To better understand human

motion in 2D images and videos, we need to obtain 3D information from 2D images,

which remains as an unsolved problem.

1.2 Research Issues

In this dissertation, we will focus on estimating 3D information from 2D images and

show an application on usage of a 3D human pose for video based human action recog-

nition. Our research issues are can be summarized as follows.

• Non-Rigid Structure from Motion: Recovering a 3D shape and motion from a

set of 2D observations is a central problem in computer vision, which can be ap-

plied to a number of interesting applications, such as scene understanding, motion

capture and animation, medical imaging, and augmented reality, to name a few.

Structure from motion (SfM) is a popular method to estimate the 3D shape and

motion of a rigid object, which has been well studied. However, non-rigid struc-

ture from motion (NRSfM) has been remained as a challenging problem due to its

increased degree of freedom. There have been significant efforts to solve NRSfM

by introducing additional constraints and many have focused on restricting the

degree of deformation with low-rank assumptions [7, 8, 9, 10]. While the assump-

tion used in many methods helps to handle simple shape variations of a non-rigid

object, e.g., walking and drinking, it is rather restrictive to handle real world shape

4
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variations of complex non-rigid deformations.

• Single View 3D Human Pose Estimation: Estimating a 3D human pose from

a single image has received a significant attention in computer vision due to its

wide range of potentially useful applications, such as human-computer interac-

tion, intelligent surveillance, and scene understanding, to name a few. In general,

3D human pose estimation based on 2D body part locations is done by first detect-

ing body parts from the image and then recovering a 3D pose using a 3D shape

model of a human body. However, currently available 2D part detectors cannot

accurately localize key joints in all cases. In addition, recovering a 3D shape from

its projection in a 2D image is inherently an ill-posed problem because different

3D shapes may generate similar 2D projections [11, 12]. While there has been

many efforts to estimate a 3D human pose from 2D part locations with the prior

information about a 3D human body, developing a sound mathematical model is

still an open issue.

• Action Recognition Using Virtual 3D Pose Based Descriptors: Since Laptev

[13] has introduced space-time interest points by extending the Harris detector,

interest point based local descriptors have been successfully extended from images

to videos, which have achieved state-of-the-art results for action recognition when

combined with a bag-of-features representation. However, weak visual cue based

approaches have a limitation for complex scenes, so 2D human pose based action

recognition has been recently revisited. Moreover, Jhuang et al.[4] have shown

that usage of 2D human poses can improve action recognition in complex scene

when whole body is visible.

5



Chapter 1. Introduction

1.3 Organization of the Dissertation

Chapter 2 describes the study of simple shapes, such as a face, before studying com-

plex shapes, such as a human body. According to Kendall’s definition [14], the shape of

an object is the geometrical information that remains after the effects of the Euclidean

similarity transformations (rigid transforms) are filtered out. In many cases, this informa-

tion can be found by aligning a set of shapes to a common reference using generalized

Procrustes analysis (GPA) [15, 16]. However, a set of shapes has to be aligned with

some missing information in many recent applications [17, 8, 9], which induces several

problems. In particular, since 2D shapes can be consider 3D shapes with missing depth

information, if we can apply GPA to the case with hidden (missing) variables, it will be

very useful as shown in Chapter 2.

In addition, GPA with missing depth information can be considered to be equivalent to

recovering 3D shapes and motion from a set of 2D shapes, i.e., non-rigid structure from

motion (NRSfM). However, a scale constraint in the GPA makes a nonlinear manifold,

which leads difficulty on the NRSfM problem. To make GPA more tractable for NRSfM,

Lee et al.[18] have proposed a new probability distribution, called the Procrustean nor-

mal distribution (PND), which captures the distribution of non-rigid variations of an

object by excluding the effects of rigid motion.

In Chapter 3, we focus on reconstructing the 3D shape of a non-rigid object under

complex shape variations by extending a PND [18] to a mixture of PNDs. We call the

proposed method Procrustean normal distribution mixture model (PNDMM). Unlike ex-

isting methods which use a single model to solve an NRSfM problem, PNDMM decom-

poses complex shape variations into a collection of simpler shape variations, thereby

model learning can be more tractable and accurate.

Chapter 4 extends the PNDMM to a single view 3D human pose estimation problem.

Since it is a highly ambiguous problem caused by large degree of freedom of an artic-

6
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ulated human body and self-occlusion in an image plane, introducing additional knowl-

edge is required to restrict the size of the solution space. In order to solve the ill-posed

problem, we learn a PNDMM proposed in Chapter 3 and adaptively fit it to a new 2D

observation. We have also introduced model transformation which is incorporated into

the 3D shape prior model, such that the proposed method can be applied to a novel test

image.

Finally, Chapter 5 show the possibility of action recognition using estimated 3D hu-

man pose information. To generate 3D human pose based descriptors, we utilize the

single view 3D human pose estimation method proposed in Chapter 4 and show that 3D

pose based descriptors are better than 2D pose based descriptors for action recognition,

regardless of classification methods. Considering the fact that we use simple 3D pose

based descriptors based on a 3D shape model learned from 2D shapes, results in this

dissertation are promising and obtaining accurate 3D information from 2D observations

is a very important research issue for reliable computer vision systems.
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Chapter 2

Preliminary

In computer vision, the study of shape using a set of landmark points is an important

issue which appears in many application, such as image registration [20, 21, 22], gait

recognition [23, 24], shape modeling [25, 26], motion analysis [27, 28, 23, 24], and

stereo reconstruction [29]. According to Kendall’s definition [14], the shape of an object

is the geometrical information that remains after the effects of the Euclidean similar-

ity transformations (rigid transforms) are filtered out. In many cases, this information

can be found by aligning a set of shapes to a common reference using generalized Pro-

crustes analysis (GPA) [15, 16]. GPA performs Euclidean similarity transforms on a set

of shapes to minimize the sum of squared distances between all shapes and a reference

shape.

In this chapter, we extend GPA to the case with hidden (missing) variables by using

the expectation-maximization (EM) algorithm, which will be called EM-GPA hereafter.

In expectation-step (E-step) of EM-GPA, the missing information is modeled as a Gaus-

sian distribution, and in maximization step (M-step) of EM-GPA, the maximum like-

This chapter is based on the paper appeared in Computer Vision and Image Understanding: ‘EM-GPA:

Generalized Procrustes Analysis with Hidden Variables for 3D Shape Modeling [19]’.
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lihood (ML) solution of the parameters is obtained by using the distribution of hidden

variables computed from E-step. During M-step, some constraints that reflect the char-

acteristics of GPA are enforced to resolve the ambiguity. These constraints align shapes

with respect to (w.r.t.) the Euclidean measure, which makes the parameters related to the

rigid transforms less affected by the parameters related to deformation. EM-GPA is not

limited to the case of missing depth information, but it can be easily extended to more

general cases.

In Section 2.4.2 and Section 2.4.3, we show that EM-GPA can find scales, rotations,

the mean and covariance matrix of 3D shapes only with observed 2D facial shapes. The

mean and covariance matrix of 3D shapes obtained by EM-GPA can be used to build a

3D shape model instead of using those trained by a real 3D landmark data, which usually

requires extra efforts to produce.

Relation with other chapters Considering that this chapter estimates 3D information

of shapes from a set of 2D shapes, the goal of EM-GPA is conceptually similar to recov-

ering 3D shapes and motion from a set of 2D shapes (non-rigid structure from motion,

NRSfM), and many studies have solved this by using factorization methods [30, 31, 7, 9].

We conjecture that it is better to put constraints on the rigid transforms so that they are

not affected by the characteristics of the deformation space. Based on this conjecture,

Lee et al.[18] recently proposed a new distribution representing non-rigid shape varia-

tions using the GPA concept, which shows state-of-the-art on NRSfM. In Chapter 3, we

extend a PND into a PND mixture model and show that the PND mixture model can

handle a complex and long shape variations, which results in improving the 3D recon-

struction performances.

10
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2.1 Generalized Procrustes Analysis (GPA)

GPA is one of the most popular algorithms to align shapes to a common reference.

Given a set of shapes Xi ∈ Rm×np , i = 1, . . . , ns, consisting of np landmarks xj ∈

Rm, j = 1, . . . , np, GPA superimposes the shapes to their mean shape X by optimally

translating, rotating and scaling [15, 16]. If shapes are identical, the shapes adjusted

though GPA coincide exactly. When all the shapes Xi’s are translated to have the origin

[0, . . . , 0]T ∈ Rm as a common center, the problem can be formulated to minimize the

shape differences from all shapes Xi’s to the mean shape X w.r.t. scales and rotations,

i.e.,

arg min
Ri,si

∑
i

∥∥∥siRiXi −X

∥∥∥2
F

subject to RT
i Ri = I,

∑
i

∥∥∥siXi

∥∥∥2
F
= 1,

(2.1)

where Ri is an orthogonal matrix, si is a scale factor and ∥·∥F is the Frobenius norm

[32], i.e., ∥A∥2F = tr(ATA). It is noted that the objective function has the minimum

value when all si’s and X are zero, which is not a desired solution. We need the second

constraint in (2.1) to avoid this trivial solution.

The procedure of GPA can be summarized as follows [15]:

1. All the shapes are moved to a common center, the origin [0, . . . , 0]T ∈ Rm.

2. Scale each Xi, i = 1, . . . , ns, by ζ so that

ζ

ns∑
i=1

tr(XiX
T
i ) = 1.

3. To initialize the mean shape, set X = X1. For i = 2, 3, . . . , ns, rotate Xi to fit X,

and re-evaluate X as the mean of (X1,X2, . . . ,Xns). Evaluate initial residual sum-

of-squares Xr = ns(1− tr(XX
T
)) and set si = 1, i = 1, 2, . . . , ns.

11
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4. For i = 1, 2, . . . , ns, rotate the current shape Xi to fit X giving X′
i = RiXi. Here,

Ri = ViU
T
i , where Ui and Vi are obtained by the singular value decomposition of

XiX
T
= UiΓiV

T
i . After setting Xi = X′

i, compute the mean shape X.

5. For i = 1, 2, . . . , ns, scale X′
i = siXi. Here, the scale factor si is

si =

√√√√ tr(XiX
T
)

nstr(XiXT
i )tr(XX

T
)
.

After setting Xi = X′
i, compute X and new residual sum-of-squares X ′

r.

6. IfXr−X ′
r > tolerance, setXr = X ′

r and go to step 4, otherwise the iteration stops.

2.2 EM-GPA Algorithm

2.2.1 Objective function

Before formulating the problem addressed in this chapter, we define notations used in

this chapter. We define the vectorization operator vec(A), which transforms a matrix

A ∈ Rn1×n2 into a vector as

vec(A) = [aT1 aT2 . . . aTn2
]T ,

where ai ∈ Rn1 is the ith column of A. The Frobenious norm can be expressed as

∥A∥2F = vec(A)Tvec(A).

Now, we explain the proposed algorithm that extends GPA to the case with hidden

variables by using the EM algorithm. To make the explanation simple, we describe EM-

GPA only for the case of missing depth information, but this algorithm can be easily

extended to a more general case, where some of the landmarks are missing, as shown in

Section 2.4. Given a set of shapes Xi, i = 1, 2, . . . , ns, GPA finds scales si and rotations

Ri that most closely map the shapes Xi to its mean X [15]. To express shapes including

12
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hidden variables, we define a shape Xi in 3D space, which consists of np landmarks, as

Xi =

Di

hi

 ∈ R3×np ,

where each column of Di ∈ R2×np and hi ∈ R1×np , which correspond to the coordi-

nates (x, y) and z, respectively. Di and hi are translated so that Di1 = 0 ∈ R2 and

hi1 = 0 ∈ R, where 1 = [1, . . . , 1]T ∈ Rnp . When gathering position information

on the landmarks from 2D images, Di is observable whereas hi is not. We name hi as a

hidden vector. Since shape deformation is not dramatic in many cases, such as for human

face, we assume an aligned shape to be a Gaussian distribution, which can be expressed

as

p(Xi) ∝

exp

(
−1

2
vec

(
siRiXi −X

)T
Σ−1vec

(
siRiXi −X

))
,

(2.2)

where si, Ri, X, and Σ are a scale, rotation, mean shape, and covariance matrix, re-

spectively. Note that all the shapes are aligned to have a common center at the origin,

i.e., Xi1 = 0 ∈ R3. In this case, the covariance matrix (Σ) can not be full rank. To

deal with the singularity of the covariance matrix, we reformulate (2.2) as follows. Let

PN = 1√
np
[I3, I3, , . . . , I3]

T ∈ R3np×3 be the basis matrix corresponding to the trans-

lation and let P ∈ R3np×3(np−1) be an orthogonal matrix that satisfies PTPN = 0, then

the reduced covariance matrix can be represented as ΣR = PTΣP ∈ R3(np−1)×3(np−1).

We define the parameter set as Φ = {si,Ri,X,Σ|i = 1, 2, . . . , ns}. Then, the distribu-

tion of shapes (Di,hi) becomes

p(Di,hi|Φ) ∝ exp

(
−1

2
vT
i PΣ−1

R PTvi

)
δ
(
PT

N vi

)
, (2.3)

where vi = vec(siRi[D
T
i hT

i ]
T −X) ∈ R3np which is the shape difference from the

mean shape and δ(·) is a delta function [33].
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We find parameters that maximize the log-likelihood of p(Di,hi|Φ) by using the

EM algorithm under the assumption that all the shapes Xi are independent. Since the

EM algorithm iteratively run E-step and M-step. In E-step, we estimate the distribution

of hidden vector hi in the form of p(hi|Di,Φ
old) where the superscript old denotes

the parameter set obtained from the previous M-step in the EM iteration procedure. In

M-step, the maximum likelihood (ML) solution of the parameters is obtained by using

the distribution of hidden variables computed from E-step and additional constraints as

follows.

Φ∗ = argmax
Φ

∑
i

∫
ln p(Di,hi|Φ)p(hi|Di,Φ

old)dhi

subject to Ehi

Ri

Di

hi

X
T

 ∈ S3
+,

Ehi

∑
i

∥∥∥∥∥∥si
Di

hi

∥∥∥∥∥∥
2

F

 = 1,

(2.4)

where S3
+ is a set of three dimensional positive semi-definite matrices (PSDs). The con-

straints in (2.4), which will be called the GPA constraints, force si and Ri to be deter-

mined in a manner that is analogous to GPA in (2.1). Note that the second constraint

is equivalent to the second constraint in (2.1). The first constraint in (2.4), which is a

rotation constraint, can be shown to be equivalent to the solution of the following opti-

mization problem:

min
Ri

Ehi


∥∥∥∥∥∥siRi

Di

hi

−X

∥∥∥∥∥∥
2

F

 ,
whereEhi

[∥siRi[D
T
i hT

i ]
T−X∥2F ] = Ehi

[∥si[DT
i hT

i ]
T ∥2F ]−2Ehi

[tr(siRi[D
T
i hT

i ]
TX

T
)]+

Ehi
[∥X∥2F ]. This is equivalent to maximizing Ehi

[tr(Ri[D
T
i hT

i ]
TX

T
)], and it can be

readily proved that the optimal rotation makes Ehi
[Ri[D

T
i hT

i ]
TX

T
] positive semi-

definite [15]. In fact, the feasible rotation for the constant in (2.4) is unique when [DT
i hT

i ]
TX

T

14
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is full rank, which is true in most of the cases. These constraints make the expectations

of 3D shapes aligned w.r.t. the Euclidean measure, which is the core of GPA.

2.2.2 E-step

Here, we explain how to estimate the distribution of hi in E-step. From Bayes’ theorem,

the distribution of hi can be written as follows:

p(hi|Di,Φ
old) =

p(Di,hi|Φold)∫
p(Di,hi|Φold)dhi

, (2.5)

From now on, we will omit the superscript (old) if no confusion arises. Since we as-

sumed that Xi is Gaussian, hi is also Gaussian, which can be represented as

p(hi|Di,Φ) ∝ exp

(
−1

2
(hi − h̄i)Ci

−1(hi − h̄)T
)
, (2.6)

where h̄i and Ci are the mean and covariance matrix of hi conditioned on Di, respec-

tively. As for shapes Xi in (2.2), the hidden vector hi should have origin at the cen-

ter, i.e., hi1 = 0 and its covariance matrix Ci becomes singular. To address the sin-

gularity of the covariance matrix of hi, we reformulate (2.6) as follows. Let PNh
=

1√
np
[1, 1, , . . . , 1]T ∈ Rnp be the basis vector for the translation of hi and let Ph ∈

Rnp×(np−1) be an orthogonal matrix that satisfies PT
hPNh

= 0, then Ci can be expressed

as PhC
′
iP

T
h and the distribution of hi can be represented as

p(hi|Di,Φ) ∝ exp

(
−1

2
h̃iPhC

′
i
−1

PT
h h̃

T
i

)
δ
(
PT

Nh
h̃i

)
, (2.7)

where h̃i = hi − h̄i, which is the difference of hi from its mean in the kth step. By

comparing (2.3) and (2.7), we obtain the following proposition.

Proposition 1. The mean h̄i and covariance matrix C′
i of hi can be found from (2.3),
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(2.5), and (2.7) as

C′
i =

1

si2
(
Ψi

TPΣR
−1PTΨi

)−1
,

h̄i = sivec
(
X− si[Ri1 Ri2]Di

)T
PΣR

−1PTΨiC
′
iP

T
h ,

Ri = [Ri1 Ri2 Ri3] , Ψi = (Ph ⊗Ri3) ,

(2.8)

where Rij is the jth column of Ri and the symbol ⊗ denotes the Kronecker product

[34].

Proof. See Appendix A.

We will calculate (Ri, si,X, Σ) in M-step.

2.2.3 M-step

In this M-step, the ML solution of parameters Φ is obtained by using the distribution of

hidden variables computed from E-step. The objective function can be expressed as

J(Φ|Φold) = −ns ln |ΣR|

−
∑
i

s2i tr
(
ΨT

i PΣR
−1PTΨiC

′
i

)
−
∑
i

v̄T
i PΣR

−1PT v̄i,

subject to Ehi

Ri

Di

hi

X
T

 ∈ S3
+,

Ehi

∑
i

s2i

∥∥∥∥∥∥
Di

hi

∥∥∥∥∥∥
2

F

 = 1,

(2.9)

where v̄i = vec(siRi[D
T
i h̄T

i ]
T −X), which is the expected value of vi with respect to

hi. Finally, we can obtain the solution by maximizing the objective function (2.9) with

respect to parameters Φ as follows.

Proposition 2. If X[DT
i h̄T

i ] is not singular, the solution that maximizes J(Φ|Φold) in

(2.9) with respect to Ri is

Ri = UiV
T
i , (2.10)
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where Ui and Vi are obtained from the singular value decomposition of the matrix

X[DT
i h̄T

i ].

Proof. Note that Ehi
[Ri[D

T
i hT

i ]
TX

T
] = Ri[D

T
i h̄T

i ]
TX

T
= RiViΓiU

T
i . In order

for this expression to be positive semi-definite, RiVi should be equal to Ui, if Γi is full

rank. Hence Ri = UiV
T
i , which is the only feasible solution.

In most cases, X[DT
i h̄T

i ] is not singular. If Γi has zero diagonal entries, Ri =

UiMVT
i is also feasible, where M is a diagonal matrix whose diagonal elements are 1

for the entries that corresponds to non-zero Γi elements, and ±1 for the other diagonal

entries. In this case, M is chosen so that the likelihood is maximized.

Proposition 3. The solution that maximizes J(Φ|Φold) in (2.9) with respect to si is the

eigenvector of the smallest eigenvalue obtained from the following generalized eigenval-

ues problem:

Gs = λFs subject to sTFs = 1, (2.11)

where

G =


Gii = tr(ΨT

i PΣR
−1PTΨiC

′
i)

+
(
1− 1

ns

)T
qT
i PΣR

−1PTqi

Gij = − 1
ns
qT
i PΣR

−1PTqj for i ̸= j

qi =vec

Ri

Di

h̄i



F =


Fii =

∥∥∥∥∥∥∥∥
Di

h̄


∥∥∥∥∥∥∥∥
2

F

+ tr (C′
i)

Fij = 0 for i ̸= j

(2.12)
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Proof. See Appendix A.

Also the solution that maximizes J(Φ|Φold) in (2.9) with respect to X and Σ is found

by differentiating the objective function in (2.9) w.r.t. X and Σ and equating them to

zero, which are

X =
1

ns

∑
i

siRi

Di

h̄i

 , (2.13)

ΣR =
1

ns

∑
i

PT
(
s2iΨiC

′ΨT
i + v̄iv̄

T
i

)
P.

These E-step and M-step constitute the parameter updating rule for Φ, which are exe-

cuted iteratively until the parameters converge.

2.3 Implementation Considerations for EM-GPA

2.3.1 Preprocessing stage

Here, we investigate the effect of the covariance matrix during the process of parameter

update. The covariance matrix represents the modes for shape variations that is sepa-

rated from rigid transforms. However, if the rotations and scales are not correct, then

the covariance matrix derived from them will also be incorrect, and the separation be-

tween rigid transformation and non-rigid deformation may not be successful. Here, we

want to obtain the covariance matrix that only includes deformation information of the

Procrustes aligned 3D shapes, removing the effect of rotation and scale. However, since

the EM framework is an iterative procedure, we have to align the shapes by using the

rotations and scales estimated from the current step and calculate the covariance matrix

using the misaligned shapes. Therefore, in early iteration steps, the covariance matrix is

usually corrupted by incorrect information on rotations and scales, which may reduce the

need to update the rotations and scales properly in the next steps. That is, in the process
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Figure 2.1: An example of an incorrectly reconstructed mean shape.

of maximizing the log-likelihood, the EM algorithm may adjust the covariance matrix

too much and rotations and scales not properly. It makes EM-GPA fail to estimate the

distribution of hidden vector correctly.

Figure 2.1 shows the estimated 3D mean shape by EM-GPA with randomly selected

initial parameters. We can see that the estimated mean shape is almost two dimensional.

Since this is due to the incorrect estimation of the covariance matrix, which is corrupted

by the information on rotations and scales, we need to obtain relatively accurate rotations

and scales before estimating the covariance matrix. To do this, we introduce another EM

algorithm for preprocessing, where we set the covariance matrix to diagonal with the

same variance, i.e., ΣR = σ2I3(np−1). Then (2.3) can be represented as

p(Di,hi|Φ) ∝ exp

(
− 1

2σ2
vT
i vi

)
δ
(
PT

N vi

)
. (2.14)

where vi = vec(siRi[D
T
i h

T
i ]

T − X) ∈ R3np which is the shape difference from the

mean shape, and δ(·) is a delta function [33]. Although this formulation does not reflect

the modes in shape variation, we can obtain approximate rotations and scales which

minimize the Euclidean measure between all shapes and their mean shape (the Frobenius

norm of the shape differences vi). Using this rotations and scales as initial parameters,

we can perform EM-GPA more effectively. We call this procedure as the preprocessing

stage and it is summarized as follows.
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• E-step

C′
i =

σ2

si2
Inp−1,

h̄i =
1

si
Ri3

T
(
X− si[Ri1 Ri2]Di

)
.

(2.15)

• M-step

Ri = UiV
T
i , X

[
DT

i h̄T
i

]
= UiΓiV

T
i ,

si =

√√√√ f2i∑ns
j=1

f2
j

gj
g2i

,

X =
1

ns

∑
i

siRi

Di

h̄i

 ,
σ =

1

3ns(np − 1)

∑
i

(
s2i tr

(
C′)+ v̄T

i v̄i

)
,

(2.16)

where fj = tr(Rj [D
T
j h̄T

j ]
TX

T
) and gj = ∥[DT

j h̄T
j ]

T ∥2F + tr(C′
j).

We omit the derivation of this procedure, because the solution procedure for (2.14) is

a special case of the procedure for (2.3). The preprocessing stage iterates until ∥X −

X
old∥F becomes less than a prespecified threshold. After convergence, we use the esti-

mated rotation Ri, scale si, 3D mean shape X, and reduced covariance matrix σ2I3(np−1)

as the initial parameters for EM-GPA.

2.3.2 Small update rate for the covariance matrix

For a similar reason as in Section 2.3.1, it is better to update the covariance matrix with

a small update rate. As explain in Section 2.3.1, the rotations and scales must be updated

”with a larger update rate” than the covariance matrix. It can be achieved as follows.

Proposition 4. Let

Z =
1

ns

∑
i

PT
(
s2iΨiC

′ΨT
i + v̄iv̄

T
i

)
P, (2.17)

20



Chapter 2. Preliminary

Figure 2.2: The value of the objective function of the EM-GPA.

then for any 0 ≤ α ≤ 1, ΣR = αZ + (1 − α)ΣR
old increases the log-likelihood of

EM-GPA.

Proof. See Appendix A.

In the experiments in Section 2.4, α was set to 0.01. Figure 2.2 shows an example of

the objective function in (2.9) during the iterative process.

The EM-GPA algorithm is summarized in Algorithm 1.

2.4 Experiments

We perform three experiments to demonstrate the performance of EM-GPA. In the first

experiment, we show that EM-GPA can align 2D shapes by taking the missing informa-

tion into consideration. In the second experiment, we estimated the mean and covariance

matrix of 3D shapes and compared them to the ground truth. In the third experiment, we

constructed a 2D+3D AAM [35, 36] by using a 3D shape model obtained by EM-GPA
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Algorithm 1 EM-GPA
Require: 2D shapes Di ∈ R2×np , i = 1, 2, . . . , ns

Ensure: A set of parameters for EM-GPA Φ = {R, s,X,ΣR}

1: Di = Di − 1
np
Di11

T , i = 1, 2, . . . , ns (Translate to the origin).

2: Initialize a set of parameters Φp = {R, s,X, σ} by using the method in Section 2.4.

3: repeat

4: Calculate h̄i and C′
i using (2.15).

5: Calculate Ri, si, X, and σ using (2.16).

6: until convergence

7: Initialize Φ using Φp, where ΣR = σ2I3(np−1).

8: repeat

9: Calculate h̄i and C′
i using (2.8).

10: Calculate Ri, si, X, and ΣR using (2.10), (2.11), (2.13), and (2.17).

11: until convergence
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and compared it with a 2D AAM [37] and another 2D+3D AAM where the 3D shape

model was constructed using real 3D shapes.

We initialize the parameters of EM-GPA as follows. To initialize Ri, we first gener-

ated a 3 × 3 matrix Rinitial, whose elements were pseudorandom numbers drawn from

the standard normal distribution. Then, by the QR decomposition of Rinitial, we ob-

tained an orthogonal matrix Ri. We initialized the scales si as si = 1
∥nsXi∥F , where

missing (hidden) variables hi’s in Xi were set to zero. X was calculated using si and Ri

as X = 1
ns

∑ns
i=1 siRiXi. The preprocessing stage continues until ∥X−X∥F becomes

less than 10−5, and then the optimization process in EM-GPA iterates for 100 times.

2.4.1 Shape alignment with the missing information

For the experiment, we generated arbitrary rotated 2D shapes as follows. From the FRGC

database, we selected 400 subjects and manually located 62 landmarks in each subject

to construct a set of 3D shapes X∗
i as shown in Figures 2.3(a) and Figure 2.3(b). Note

that the centroid of each 3D shape is moved to the origin. Then, we generated a set of

2D shapes Di by randomly rotating the 3D shapes in the range of
[
0, π4

]
and projecting

them in the z direction as shown in Figure 2.3(c).

We investigate how well EM-GPA aligns 2D shapes by taking the missing informa-

tion into consideration. We calculated the error distances from the aligned 2D shapes

D̂aligned, i by EM-GPA to the ground truth D∗
aligned, i, which was obtained by perform-

ing GPA to real 3D shapes X∗
i and then projecting them in the z direction, i.e.,

D∗
aligned, i =

1 0 0

0 1 0

×X∗
aligned, i.

The reconstructed 3D shape is represented as X̂i = [DT
i h̄T

i ]
T and it can be aligned as

X̂aligned, i = siRiX̂i. However, since there is a rotation ambiguity between the esti-

mated 3D mean shape ˆ̄X and the ground truth 3D mean shape X
∗, we calculated a rota-
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(a) 62 landmarks (b) 3D Shape. (c) Generated 2D Shape.

Figure 2.3: An example of landmark points in a face. 62 landmarks, the correspond-

ing 3D shape and generated 2D shape by projecting a randomly rotated 3D shape in z

direction.

tion Rc between them by using Procrustes analysis (PA) to superimpose these 3D mean

shapes. To obtain the aligned 2D shapes D̂aligned, i, we rotated and projected X̂aligned, i

in the z direction, i.e.,

D̂aligned, i =

1 0 0

0 1 0

×RcX̂aligned, i.

Then, to evaluate alignment performance, we used the alignment error calculated as

ealigned, i =

∥∥∥D̂aligned, i −D∗
aligned, i

∥∥∥
F∥∥∥D∗

aligned, i

∥∥∥
F

.

As can be seen in Figure 2.4, the aligned 2D shape D̂aligned, i is very similar to the

aligned ground truth 2D shape D∗
aligned, i, and the alignment error ealigned is 0.0572 on

average. It demonstrates that EM-GPA can successfully align arbitrary rotated 2D shapes

by taking the missing information into consideration.

2.4.2 3D shape modeling

Here, we check the validity of the estimated mean and covariance matrix. To do this,

we obtained the ground truth 3D mean shape X
∗ and the covariance matrix Σ∗ of
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(a)

(b)

Figure 2.4: Two examples of alignment. The images in the left column are input shapes,

where observed landmarks are marked by ‘o’ and missing landmarks are marked by ‘*’.

The images on the right are the results aligned by EM-GPA, where the ground truth are

marked by ‘o’ and the aligned landmarks are marked by ‘x’, and missing landmarks are

marked by ‘□’.
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(a) EM-GPA (b) Ground truth.

Figure 2.5: The estimated mean shape and the ground truth shape obtained from the

FRGC database.

Figure 2.6: The canonical correlation obtained from the FRGC database.
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vec(X∗
aligned, i) by performing GPA on 3D shapes X∗

i ’s. Since there was a rotation am-

biguity between the estimated 3D mean shape ˆ̄X and the ground truth 3D mean shape

X
∗, we calculated a rotation Rc between them by using Procrustes analysis (PA) to su-

perimpose these 3D mean shapes. The estimation error of ˆ̄X with respect to X̄∗ was

calculated as

e =

∥∥∥Rc
ˆ̄X− X̄∗

∥∥∥
F∥∥∥X̄∗

∥∥∥
F

. (2.18)

As can be seen in Figure 2.5, the estimated 3D mean shape ˆ̄X is very similar to the

ground truth 3D mean shape X
∗, and the estimation error e is 0.0052.

Also, we eliminated the rotation ambiguity between the estimated covariance matrix

Σ̂ and the ground truth Σ∗ by Σ̂c = (Inp ⊗ Rc)Σ̂(Inp ⊗ Rc)
T . The performance of

the estimated covariance matrix Σ̂c was evaluated in terms of the canonical correlations,

which are cosines of principal angles between two linear subspaces L1 and L2 that are

spanned by Σ̂c and Σ∗. The canonical correlation are defined for k = 1, . . . , ne, i.e.,

cosΘk = max
u∈L1

max
v∈L2

uT
k vk

subject to uT
k uk =vT

k vk = 1,

uT
i uk =vT

i vk = 0, i = 1, . . . , k − 1.

(2.19)

Here the vectors in {u1, . . . ,une} and {v1, . . . ,vne} are the principle vectors consti-

tuting L1 and L2 spaces, respectively. The canonical correlations show the proximity

between the vectors that constitute the two linear subspaces. We used the singular value

decomposition (SVD) to solve this problem [38]. We calculated canonical correlations

between the two linear subspaces, which was consisted of the eigenvectors correspond-

ing to the ne largest eigenvalues in descending order. ne was set to 114 to satisfy the

relation (
∑ne

i=1 λ
2
i )/
∑3np

i=1 λ
2
i > 0.99, where λi is the eigenvalues of Σ. About 80% of

the canonical correlations between the eigenvectors of Σ̂c and Σ∗ are bigger than 0.85.
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To see how close Σ̂c is to Σ∗, we also calculated another canonical correlations between

the eigenvectors of two covariance matrices computed from the two sets of 200 real 3D

shapes in the FRGC database. As can be seen in Figure 2.6, the canonical correlations

computed from the covariance matrices of two real data sets show similar characteristics

to the canonical correlation computed between those of EM-GPA and a real data set.

From this result, we conclude that Σ̂ is a reasonable estimate of Σ∗.

2.4.3 2D+3D active appearance models

Although AAM can be used to fit a 2D image of a 3D object, it is a difficult problem and

becomes much more challenging when the 3D object undergoes a large rotation from

the frontal position. This is because 2D AAM can generate model instances that are not

possible in reality [35, 36]. Xiao et al. Xiao et al.[35, 36] proposed 2D+3D AAM, which

constrains the model parameters of 2D AAM based on a 3D shape model. To show how

the virtual 3D shape model constructed by EM-GPA can be applied in AAM fitting, we

constructed a 2D+3D AAM based on the virtual 3D shape model, and compared it to a

2D AAM [37] and a 2D+3D AAM based on a real 3D shape model.

To construct a 2D shape model, we used the PF07 database [39], which includes 100

male and 100 female subjects captured in 5 different poses. The pose variation consists

of front, left, right, up, and down, and the angle between the frontal pose and the other

poses is 22.5 degrees. We selected 200 images, one for each subject, allocating 40 images

in each pose, and located 62 landmarks in each image. We also constructed two 3D

shape models (virtual/real) based on the FRGC database. Each 2D+3D AAM was built

by using four 2D shape basis vectors, 122 appearance basis vectors and three 3D shape

basis vectors, which accounted for 85%, 95% and 40% of their corresponding variations,

respectively. In all the cases, each appearance image A(X) [37] used to construct an

appearance model had a resolution of 40 × 40 pixels for each of RGB, resulting in

28



Chapter 2. Preliminary

A(X) ∈ R4800. We tested AAM fitting for 100 test images from the PF07 database,

which were not used in training the three AAMs, and the number of faces in each pose

was 20. Following [40], we used the 2D mean shapes as the initial shape, whose position

was displaced from the ground-truth position by [−20,−10, 0, 10, 20] pixels in the x

direction. Because the 2D mean shape was 40 pixels wide and a face in the test images

was about 160 pixels wide on average, the 2D mean shape was scaled up by 4 times.

The AAM fitting process stopped when the maximum shape displacement between two

consecutive iterations was less than 0.5 pixel. We define the average error of landmarks

from their ground-truth positions as

elandmark =
1

np

np∑
j=1

√
(xj − x∗j )2 + (yj − y∗j )2,

where (xj , yj) is the position of landmark j in the estimated shape, and (x∗j , y
∗
j ) is the

position of landmark j in the ground truth, which was obtained manually. Also, we com-

puted the rate of successful convergence, which corresponds to the case of elandmark

less than 6 pixels. Figure 2.7 shows an example where the model fitting was successful

for 2D+3D AAM/real shape and 2D+3D AAM/virtual shape, but not for 2D AAM. Ta-

ble 2.1 shows the fitting performance of three AAMs. We can see that both of 2D+3D

AAMs are about 17% better than the 2D AAM in the convergence rate. In Table I,

elandmark was computed by using only the data of successful convergence cases. Ta-

ble 2.2 shows the rate of successful convergence of the three algorithms for pose varia-

tions. We can see that the two 3D models show better convergence rate compared to 2D

AAM regardless of pose variation, and the convergence rate of 2D+3D/virtual shape is

almost the same as that using the 2D+3D AAM/real shape. This demonstrates that EM-

GPA can construct an accurate 3D shape model, which can be applied in the algorithms

that need a 3D shape model.
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Table 2.1: AAM fitting performance

Algorithm Successful elandmark Average number

convergence (%) (Final/Initial) of iterations

2D AAM [37] 60.6 4.7/17.9 25.1

2D+3D AAM [35, 36]/real shape 78.0 4.5/18.2 30.6

2D+3D AAM/virtual shape 77.8 4.6/18.1 32.0

Table 2.2: The rate of successful convergence for various poses

Algorithm Front Up Down Left Right

2D AAM [37] 72% 62% 57% 61% 51%

2D+3D AAM [35, 36]/real shape 93% 81% 67% 79% 70%

2D+3D AAM/virtual shape 95% 79% 70% 84% 61%
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(a) 2D AAM

(b) 2D+3D AAM/real shape

(c) 2D+3D AAM/virtual shape

Figure 2.7: Examples of image fitting by the 2D AAM [37], 2D+3D AAM [35,

36]/real shape, and 2D+3D AAM/virtual shape.
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2.5 Chapter Summary and Discussion

In this chapter, we have proposed EM-GPA, which is a way of performing GPA when

some variables are hidden. EM-GPA combines GPA and the EM algorithm to estimate

scales, rotations, and a mean shape and covariance matrix of 3D shapes from multiple

2D shapes. EM-GPA can align rotated 2D shapes successfully by taking the missing

information into consideration. The virtual 3D shape model created by EM-GPA can be

successfully applied to AAM.

Since the E-step of EM-GPA is to calculate the posterior distribution of hidden vari-

able hi which normally corresponds to depth information for a given 2D shape. Hence,

if we want to directly estimate the depth information of a specific 2D shape, rather than

some parameters for constructing a 3D shape model, the posterior mean in E-step can be

used for the estimated depth. It is equivalent to reconstructing 3D shapes form a set of

2D shapes, which are well known as non-rigid structure from motion (NRSfM) and we

will focus on NRSfM in Chapter 3.
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Procrustean Normal Distribution

Mixture Model

In this chapter, we are interested in reconstructing 3D shapes of a non-rigid object un-

der complex shape variations. To address this problem, we propose a Procrustean normal

distribution mixture model (PNDMM) under the assumption that complex shape varia-

tions can be decomposed into a collection of simpler and primitive shape variations. As

can be seen in Figure 3.1, the PNDMM probabilistically models the generative process

of 2D shapes from a mixture of 3D shapes and allows efficient 3D reconstruction.

In addition, we directly estimate the number of non-rigid shape mixture components

using an adaptive PNDMM, which is based on the maximum a posteriori (MAP) princi-

ple with a prior on the number of mixture components derived from the minimum mes-

sage length principle [42]. In order to make the proposed mixture model robust with re-

spect to initialization, the component-wise expectation-maximization algorithm (CEM)

[43] is applied.

This chapter is based on the paper appeared in International Journal of Computer Vision: ‘Complex

Non-Rigid 3D Shape Recovery Using a Procrustean Normal Distribution Mixture Model [41]’.
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Figure 3.1: A graphical illustration of a PNDMM. 2D shapes can be considered as pro-

jections of scaled and rotated 3D shapes, in which 3D shapes are generated by corre-

sponding Procrustean normal distribution (PND) components.
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We have tested the proposed approach extensively on highly complex and long hu-

man motion sequences obtained from the CMU Mocap database1, UMPM dataset [44],

popular benchmark datasets [45] which consist of simple and short motion sequences,

and the Penn Action dataset [46]. Experimental results show that the proposed method

significantly outperforms existing methods. We also show that complex shape variations

can be well modeled by a PNDMM and each component of the learned mixture model

describes primitive non-rigid shape variations.

Relation with other chapters In this chapter, we assume that a set of shapes are given

before estimating 3D shapes. However, if we can apply the PNDMM to a 2D shape

obtained from an image, it is more useful in practical situations. For that reason, we will

utilize the PNDMM to estimate a 3D human pose based on an image in Chapter 4.

3.1 Non-Rigid Structure from Motion

Recovering 3D shapes from a single image or multiple images is one of the fundamental

problems in computer vision. Shape from stereo is to acquire information about the

3D structure and distances to objects from two or more images taken from different

viewpoints [47]. Structure from motion (SfM) finds the three dimensional structure of

an object by analyzing the image streams with the assumption that the object is rigid

[30].

There have been efforts to extend the SfM approach to recover the shape of a non-rigid

object. If an object deforms arbitrarily, it is impossible to reconstruct the shape from a set

of 2D images. However, many non-rigid objects around us deform under a constrained

space. Bregler et al.[31] have extended SfM to a deformable object by assuming that a

3D shape of a non-rigid object lie in a shape space, hence, a 3D shape can be described

1http://mocap.cs.cmu.edu/subjects.php
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by a linear combination of a set of shape basis vectors. However, the bilinear formula-

tion for non-rigid 3D shape recovery makes a solution ambiguous, which remains as a

difficult problem in NRSfM. Hence, many have proposed to solve the NRSfM problem

by introducing additional constraints [7, 8, 9, 45, 48, 10, 19, 18].

Xiao et al.[7] have shown that using only a rotation constraint is not sufficient for

obtaining an unambiguous solution. Since the ambiguity of the solution comes from the

shape basis is not unique, they proposed additional constraints, termed basis constraints,

to derive a closed-form solution. Torresani et al.[8] proposed an approach, called EM-

PPCA, using probabilistic principal components analysis with a Gaussian prior on each

shape in the subspace. Paladini et al.[9] proposed a least-squares approach, called metric

projections (MP), associated with a globally optimal projection step onto the manifold

of metric constraints to recover 3D shapes and motion of deformable and articulated

objects. A large number of existing approaches have focused on restricting the degree of

deformation by fixing the number of shape basis vectors. However, it is difficult to know

the optimal number of shape basis vectors and the choice on the number can greatly

affect the reconstruction performance [31, 8, 9, 18].

A set of new approaches has been introduced to overcome the limitation of shape basis

approaches. Akhter et al.[45] proposed a dual approach, in which 3D point trajectories

are modeled compactly in the domain of the discrete cosine transform (DCT) basis,

instead of estimating a set of shape basis vectors. Hence, there is a significant reduction

in unknowns and it makes the estimation more stable. Gotardo et al.[48] modeled 3D

shape deformation as a single point smoothly moving over time within a linear space

spanned by 3D shape basis vectors and applied a DCT based approach to the smooth 3D

shape trajectory. However, the number of DCT basis vectors must be known in advance,

which is another difficulty. Although Zhu et al.[49], recently, proposed a method using

convolutional sparse coding for NRSfM based on point trajectories, it requires learning
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an over-complete basis of 3D trajectories, prior to performing 3D reconstruction.

Meanwhile, Akhter et al.[50] have shown that the ambiguity of a solution, claimed

by [7], is caused by overlooking of the rank three constraint on rotation matrices. By

imposing the rank three constraint to the general solution given by [7], they have shown

that the ambiguity in orthonormality constraints does not translate to an ambiguity in

structure reconstruction. That is, the orthonormality constraints are sufficient for perfect

structure reconstruction and the real problem in NRSM is the complexity of the under-

lying non-linear optimization. Based on the proof of the uniqueness of the solution, Dai

et al.[10] proposed an algorithm called a simple prior-free method. Under the assump-

tion the measurement is already truncated to a specific rank, i.e., the number of shape

basis vectors K has been estimated, they have shown outstanding performance against

existing non-rigid factorization methods without any prior knowledge on basis vectors.

However, Dai et al.[10] have assumed that the optimal number of shape basis vectors is

known in advance. But it is difficult to estimate the correct number of shape basis vec-

tors in practice. Once an incorrect number of shape basis vectors is used, rotations will

be incorrectly estimated and, consequentially, an NRSfM algorithm fails to find a good

solution. Zhu et al.[51] have shown that complex shape variations involving a sequence

of primitive actions is hard to model in a low-dimensional linear space and represented

a complex motion as a union of linear subspaces using low-rank representation [52]). In

[51]), they assumed existing schemes on NRSfM can sufficiently align 2D projections

in a 3D space but did not provide a particular method for estimating rotation matrices.

However, obtaining right rotation matrices is the main difficulty in NRSfM.

Recently, Cho et al.[19] have proposed EM-GPA for finding a solution to NRSfM

without any rank constraints using generalized Procrustes analysis (GPA) and expectation-

maximization (EM). To make GPA more tractable for NRSfM, Lee et al.[18] have pro-

posed a new probability distribution, called the Procrustean normal distribution (PND),
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which captures the distribution of non-rigid variations of an object by excluding the ef-

fects of rigid motion. Moreover, Lee et al.[18] have shown that NRSfM can be efficiently

solved by learning a PND from 2D point tracks using the EM algorithm. The PND has

been extended to a first-order stationary Markov process, which is called as Procrustean

Markov process [53]), and it has achieved the state-of-the-art performance on a number

of popular benchmark datasets.

Although many successful approaches have been introduced, there is still a limita-

tion. The low-rank assumption is too restrictive to handle real world shape variations of

complex non-rigid deformations. Moreover, while the PND proposed by [18] has shown

outstanding results on non-rigid shape variations for short sequences, it is still difficult

to capture complex shape variations using a PND. For these reasons, existing methods

are not suitable for estimating the 3D shape of a non-rigid object undergoing complex

shape variations.

There are methods designed to handle a complex NRSfM problem [54, 55, 56, 57].

However, these methods are restricted to reconstruct 3D shapes of a surface-like-object,

or using prior information about the object. Unlike the previous work which focus on

local rigidity in the spatial direction, we decompose variations of a non-rigid object into

primitive shape variations and focus on reconstructing 3D shapes with given data for

articulated objects like a human body.

3.2 Procrustean Normal Distribution (PND)

Finding the correct set of rotations is the most important issue in NRSfM. Cho et al.[19]

and Lee et al.[18] have proposed a novel method for modeling rotations by incorporat-

ing GPA, which finds relative motions between similar shapes by aligning them under

the common reference using rigid transformation, i.e., scale, rotation, and translation.

This principle determines rigid motions by minimizing non-rigid variations, which can
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improve the accuracy of NRSfM.

Let Xi ∈ R3×np , si ∈ R, Ri ∈ R3×3, and ti ∈ R3 be the 3D shape, scale, rotation,

and translation, respectively, for the ith sample (or frame), 1 ≤ i ≤ ns, where np and ns

are the number of landmarks in a frame and the number of frames, respectively. Then,

the GPA problem can be written as

min
si,Ri,ti,X

∑
∥siRiXi + ti1

T −X∥2F

subject to RT
i Ri = I, ∥siXi∥F = 1,

(3.1)

where 1 is a vector of ones and X is the mean shape. ∥ · ∥F denotes the Frobenius norm,

i.e., ∥A∥2F = tr(ATA) = ∥vec(A)∥22 with a vectorization operator vec(·). Here, the

scale constraint makes the aligned shapes lie on a Procrustes shape space [58]. However,

the Procrustes shape space is a nonlinear manifold, which makes it difficult to solve the

NRSfM problem using constraints in (3.1). Although Pizarro et al.[59] proposed a new

GPA method by a global optimization and it can handle missing information, it is still

hard to be extended to the NRSfM problem.

Lee et al.[18] addressed this nonlinearity issue by introducing a new scale constraint

so that each shape variation from the mean shape is orthogonal to the mean shape, i.e.,

vec(siRiXi − X)Tvec(X) = 0. Here, if we impose an additional constraint that the

norm of the mean shape is one, i.e., ∥X∥F = 1, then the constraint can be rewritten

as sitr(RiXiX
T
) = 1. Note that this is a linear constraint with respect to si and it

scales the aligned shape such that its projection onto the mean shape is one, i.e., si =

1
vec(RiXi)Tvec(X)

.

Based on this new constraint, Lee et al.[18] made another important observation. The

necessary condition for the optimality of the GPA problem (3.1) can be obtained as

RT
i Ri = I, ∥X∥2F = 1,

sitr(RiXiX
T
) = 1, RiXiX

T ∈ S3
+,

(3.2)
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where S3
+ is a set of three dimensional positive semi-definite matrices (PSDs), which is

convex. The last two constraints in (3.2) can be considered as the convex constraints of

aligned shapes [18]. Since a shape alignment method can be used to extract only non-

rigid variations from a set of shapes, these constraints can concisely describe the convex

set of non-rigid shape variations.

Lee et al.[18] also proposed a new probability distribution, called the Procrustean

normal distribution (PND). It defines the distribution of non-rigid variations of shapes,

by separating rigid variations from non-rigid variations of shapes based on the above

constraints, as follows:

p(Y) ∝ 1

|ΣR|
1
2

exp

(
−1

2
vTQΣ−1

R QTv

)
δ(QT

Nv). (3.3)

where v = vec(Y −Y), Y = X, and Y is an aligned shape expressed as Y = sRX

using s and R satisfying (3.2). Let Σ ∈ RnY ×nY be the covariance matrix of vec(Y) ∈

RnY , where nY = 3np. Then the reduced non-singular covariance matrix is represented

by ΣR = QTΣQ ∈ RnR×nR , which includes only non-rigid shape variations, where

Q ∈ RnY ×nR is a column orthogonal matrix to remove rigid shape variations2 with

nR = nY − 7. Here, 7 is the degree of freedom of rigid shape variations which is

explained in (3.4). The Dirac-delta term in (3.3) is introduced so that p(Y) can be ex-

pressed with the degenerate Σ and makes the PND has zero probability whenever Y has

a component in the subspace of rigid variations. Q and QN satisfy QTQN = 03. QN is

an orthogonal matrix for rigid shape variations, which is derived from (3.2), and can be

expressed as [18]:

QN =
[
vec(Y) QL (1⊗ I)/

√
np
]
∈ RnY ×7, (3.4)

where 7 is the number of basis vectors for rigid variations in a three dimensional space,

i.e., the number of basis vectors for vec(Y) (scale), QL (rotation), and (1 × I)/
√
np

2QTQ = I but QQT ̸= I.
3In this chapter, we use 0 to denote both matrices and vectors of zeros.
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Figure 3.2: A graphical representation of the PNDMM.

(translation) are one, three, and three, respectively. QL is an orthogonalized version of

L(Y) =
[
[y1]×, · · · , [ynp

]×

]T
, where yi is the ith column vector of Y and ⊗ is the

Kronecker product and [y]× ∈ R3×3 is a skew-symmetric matrix [18].

Since the PND does not include any rigid shape variations, it is possible to find rela-

tive non-rigid variations between sample shapes by learning a PND. This has the same

effect as solving a GPA problem. Moreover, we can apply existing statistical estimation

techniques to the PND. A PND random matrix Y is denoted as Y ∼ NP (Y,Σ). If a

distribution satisfies the properties of the PND but its mean is not unit-norm, then it is

called a scaled PND and denoted by N s
P .

3.3 PND Mixture Model

A PND mixture model (PNDMM) is represented as a generative probabilistic model of

an observed 2D shape from a non-rigid object as shown in Figure 3.2. The main idea is

that we observe 2D shapes with missing depth information about 3D shapes, in which

the 3D shapes are represented by a mixture of PNDs and each PND is characterized by

(3.3).

Let Di ∈ R3×np be a matrix representing input landmarks of the ith sample, observed
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by an orthographic camera. The first two rows of Di are filled with observed 2D land-

mark positions and the third row is filled with zeros, since the depth is unknown. Let

Xi be the 3D shape of the ith sample. Also, let ci be a K-dimensional binary random

variable having 1-of-K representation in which a particular element of ci is equal to 1

and all other elements are equal to 0, i.e., cik ∈ {0, 1} and
∑

k cik = 1. Its role is to

indicate which component has generated the ith 3D shape Xi, thus, K is the number of

components. The joint distribution of a PNDMM can be expressed as:

p(D,X, c|π) =
∏
i

∏
k

p(D,X, cik = 1|π)cik

=
∏
i

∏
k

{p(Di|Xi)p(Xi|cik = 1)p(cik = 1|π)}cik .
(3.5)

The generative process for each 2D shape Di can be represented as follows.

1. The distribution of ci is specified in terms of the mixing coefficients, such that

p(cik = 1|π) = πk, k = 1, . . . ,K, (3.6)

where π = {π1, . . . , πK} and πk ≥ 0 is a mixing probability and
∑K

k=1 πk = 1.

Therefore, ci is chosen from the following distribution:

p(ci|π) =
∏
k

πk
cik . (3.7)

2. Since we assume that the 3D shape has a PND, the aligned shape Yik = sikRikXi

has the corresponding PND, where sik is a scale and Rik is a rotation matrix for the

ith sample and the kth PND component obtained from the modified GPA constraints

in (3.2), i.e., Yik ∼ NP (Xk,Σk). Therefore, according to Proposition 2 in [18],

Xi|cik = 1 is chosen from a scaled PND as

Xi|cik = 1 ∼ N s
P

(
s−1
ik RT

ikXk, s
−2
ik Σ′

k

)
, (3.8)

where Σ′
k = (I⊗RT

ik)Σk(I⊗Rik).
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3. Let Bi ∈ R3×np be a mask matrix which indicates whether the corresponding ele-

ments are observed (one) or missing (zero). In case of NRSfM, the last row of Bi

is filled with zeros because the z coordinates are unknown. If there are additional

missing observations, the corresponding elements in Bi are also filled with zeros.

We define a projection matrix Fi to handle missing observations as follows [18]:

Fi = B̂i − B̂i(1 ⊗ I)diag(ai)(1
T ⊗ I)B̂i and F2

i = Fi, where ai is a three di-

mensional vector whose jth element is 1/
∑

l bijl, bijl is the (j, l)th element of Bi,

B̂i = diag(vec(Bi)), and diag(·) denotes a diagonal matrix with elements of a vec-

tor on the main diagonal.

Let the input landmark Di be initialized, such that Di1 = 0, as follows:

dijl ←


dijl −

∑
m bijmdijm∑

m bijm
if bijl = 1

0 otherwise
, (3.9)

where dijl is the (j, l)th element of Di. Then the 2D observation Di is obtained from

the 3D shape Xi with a Gaussian noise as

vec(Di) = Fivec(Xi) + ui, (3.10)

where ui ∼ N (0, σ2I).

In the following sections, we learn a PNDMM from input data using the EM algorithm

and component-wise EM algorithm, resulting two algorithms: PNDMM and adaptive

PNDMM.

3.4 Learning a PNDMM

The goal of a general EM algorithm is to maximize the log-likelihood function p(D|Φ),

given a joint distribution p(D,X, c|Φ) over observed variables D, hidden variables
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X, membership variables c, and parameters Φ. Since X is a continuous random vari-

able and c is a discrete random variable, if we define the parameter set as Φik =

{σ, sik,Rik,Xk,Σk, πk}, the cost function for the EM algorithm can be represented

as follows:

J(Φ|Φold) =
∑
k

∑
i

wik

∫
ln(p(Di,Xi, cik = 1|Φik))

× p(Xi|cik = 1,Di,Φ
old
ik )dXi.

(3.11)

Here, we use the chain rule as p(Xi, cik = 1|Di,Φ
old
ik ) = p(cik = 1|Di,Φ

old
ik )p(Xi|cik =

1,Di,Φ
old
ik ) and denote p(cik = 1|Di,Φ

old
ik ) by wik, since p(cik = 1|Di,Φ

old
ik ) plays

the role as a weight for the component indicated by ci. The superscript old denotes the

parameter set obtained from the previous M-step in the EM iteration procedure.

3.4.1 E-step

In the E-step, we estimate wik and the distribution of Xi given the current estimates of

parameter Φold
ik and observation Di. From now on, we will omit the superscript (old) if

no confusion arises.

Calculation of wik

Using Bayes’ rule, wik, the posterior distribution of cik, can be written as

wik =
πkp(Di|cik = 1,Φik)∑
l πlp(Di|cil = 1,Φil)

, (3.12)

where πk is a priori probability as shown in (3.6) and p(Di|cik = 1,Φik) is a marginal

distribution over Xi, which can be written as

p(Di|cik = 1,Φik)

=

∫
p(Di|Xi, σ)p(Xi|cik = 1,Φik)dXi.

(3.13)
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From (3.8), (3.10), and (3.13), the conditional distribution of Di given cik = 1 can be

calculated as

Di|cik = 1 ∼ N
(
Fivec

(
1

sik
RT

ikXk

)
, Σ̃ik

)
, (3.14)

where Σ̃ik = 1
s2ik

Fi(I⊗RT
ik)QkΣRk

QT
k (I⊗Rik)F

T
i +σ

2I. Therefore, we can compute

(3.12) using (3.14).

Calculation of p(Xi|cik = 1,Di,Φik)

Using Bayes’ rule, the posterior distribution of Xi is represented as

p(Xi|cik = 1,Di,Φik) ∝ p(Di|Xi, σ)p(Xi|cik = 1,Φik) (3.15)

and after some algebra using facts, such as vec(Xk)
TQk = 0, vec(Di) = Fivec(Di),

and F2
i = Fi, we obtain

p(Xi|cik = 1,Di,Φik) ∝ exp

(
−1

2
ζ +

1

σ2
ξ

)
δ′, (3.16)

where

ζ = vec(Xi)
THikvec(Xi)

ξ = vec(Di)
Tvec(Xi)

Hik = s2ik(I⊗RT
ik)Σ

+
k (I⊗Rik) +

1

σ2
Fi

δ′ = δ
(
QT

Nk
vec(RikXi)−

[
1/sik 0T

]T )
,

in which Σ+
k is the psedudo-inverse of Σk, i.e., Σ+

k = QkΣ
−1
Rk

QT
k , and δ′ comes from

the Dirac-delta term in (3.3). However, since the Dirac-delta term is too restrictive to al-

low a meaningful update in the EM procedure in practice, we ignore the Dirac-delta term

as done in [18]. Since (3.15) is the posterior distribution for an individual PND when the

kth PND is selected for the ith sample, p(Xi|cik = 1,Di,Φik) can be represented by
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the Gaussian distribution as follows (see Chapter B):

p(Xi|cik = 1,Di,Φik)

= p(vec(Xi)|cik = 1,Di,Φik) ∼ N (mik,Ωik) ,

where

mik =
1

σ2
Ωikvec(Di) and Ωik = H+

ik.

(3.17)

3.4.2 M-step

In the M-step, the maximum likelihood solution of parameter Φik is obtained using wik

and the posterior distribution of Xi computed from the E-step. The objective function

(3.11) can be rewritten as

J(Φ|Φold) = −
∑
k

∑
i

wik

(
nBi lnσ

+
1

2σ2
∥vec(Di)− Fimik∥22 +

1

2σ2
tr(FiΩik)− nR ln sik

+
1

2
ln |ΣRk

|+ 1

2
hT
ikΣ

−1
Rk

hik

+
s2ik
2
tr
(
(I⊗RT

ik)QkΣ
−1
Rk

QT
k (I⊗Rik)Ωik

)
− lnπk

)
,

(3.18)

where nBi =
∑

j

(∑
l bijl

)
− sign

(∑
l ail

)
and hik = QT

k (sik(I⊗Rik)mik−vec(Xk)).

Then, the optimization problem for the M-step can be formulated as

max
Φ

J(Φ|Φold)

subject to
∑
k

πk = 1, RT
ikRik = I,

∥∥Xk

∥∥2
F
= 1,

siktr(RikMikX
T
k ) = 1, RikMikX

T
k ∈ S3

+,

(3.19)

where Mik is the expectation of Xi with respect to its posterior distribution, i.e., vec(Mik) =

mik. The last four constraints in (3.19) are the same as the constraints in (3.2) except

that Xi is replaced with its expectation Mik. Since this problem is highly complicated,
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we alternatively update each parameter with the other parameters fixed. From now on,

we explain how to update each parameter.

When updating Xk, there is a difficulty coming from the dependency of Xk on Qk as

well as the constraints in (3.19). To solve it, we regard Qk as an independent parameter

and ignore the constraints in the update of Xk. Then, by differentiating the cost function

with respect to Xk and equating it to zero, and normalizing the solution, we obtain the

following update equation:

Xk =
∑
i

wiksikRikMik

/∥∥∥∑
i

wiksikRikMik

∥∥∥
F
. (3.20)

The scale and rotation are relatively easy to update, since the feasible sik and Rik are

unique according to the constraints in (3.19), if the samples are non-degenerate and the

other parameters are fixed. The corresponding update equations are

MikX
T
k = UikΛikV

T
ik, Rik = VikU

T
ik,

sik = 1/tr(RikMikX
T
k ) = 1/tr(Λik),

(3.21)

where UikΛikV
T
ik is the singular value decomposition of MikX

T
k .

QNk
and Qk can be updated by (3.4) using the new Xk, as described in Section 3.2.

ΣRk
can be obtained by solving the first-order necessary condition of (3.19), i.e.,

ΣRk
=
∑
i

wikΩ̃ik

/∑
i

wik, (3.22)

where Ω̃ik = hikh
T
ik + s2ikQ

T
k (I ⊗ Rik)Ωik(I ⊗ RT

ik)Qk. Notice that, due to Qk in

(3.22), ΣRk
does not include rigid variations.

Accordingly, the covariance matrix is calculated as Σk = QkΣRk
QT

k . σ2 can be

derived in a similar way:

σ2 =

∑
k

∑
iwik(∥vec(Di)− Fimik∥22 + tr(FiΩik))∑

i

∑
k n

B
i wik

. (3.23)
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Finally, we maximize the cost function in (3.19) with respect to πk. Since the sum of

mixing probabilities has to be one, this can be achieved using the following problem:

max
πk

∑
k

∑
i

wik lnπk, subject to
∑
k

πk = 1, (3.24)

and the solution can be easily obtained as

πk =
∑
i

wik

/∑
k

∑
i

wik. (3.25)

We have empirically found that a single iteration of alternating parameter updates in

an M-step is enough for getting a good solution. The E-step and M-step constitute the

parameter updating rule for Φ, which are executed iteratively until convergence. While

the covergence property of the proposed EM algorithm cannot be formalized easily,

we have empirically found that each step of the EM algorithm improves the objective

function (3.18) as shown in Figure 3.3. The complexity of the PNDMM per EM iteration

is O((np)3Kns), where np, K, and ns are the number of landmark points, components,

and samples, respectively, because the dominant operation of the proposed algorithm is

the inverse of a matrix.

3.5 Learning an Adaptive PNDMM

In Section 3.4, we have solved NRSfM by learning a PND mixture model from observed

data Di using the standard EM algorithm. Since we have implicitly assumed that the

correct number of mixture components is known in advance, it has limited applications.

In this section, we address this limitation by extending the adaptive learning method

proposed in [42] to the PNDMM, which can find the number of components. In addition,

the method is less sensitive to initialization.

The PNDMM proposed in Section 3.4 estimates the model parameter using maximum

likelihood (ML). However, the ML of p(D,X, c|Φ) is a nondecreasing function of K
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Figure 3.3: An example of the value of objective function of the PNDMM. An example

showing that the value of objective function (3.18) increases with additional EM steps

(CMU Mocap sequence CMU86 04).

[42], hence, it cannot be used to estimate the number of components. Therefore, we take

the maximum a posteriori (MAP) approach as follows:

ΦMAP = argmax
Φ
{ln p(D,X, c|Φ) + ln p(Φ)}, (3.26)

where p(Φ) is a Dirichlet-type prior proposed by Figueiredo and Jain [42], in which the

prior for π is derived from the minimum message length (MML) principle as:

p(π1, . . . , πK) ∝ exp
(
− nc

2

∑
k

lnπk

)
. (3.27)

Since this prior is only applied to π, it does not change the likelihood term. Hence, the

E-step and M-step are the same as in Section 3.4, except for the update of π. The update

for π in the M-step is now changed to:

max
πk

∑
i

∑
k

wik lnπk −
nc
2

∑
k

lnπk,

subject to
∑
k

πk = 1.

(3.28)
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Unlike Section 3.4, there is an additional term, nc
2

∑
lnπk, due to (3.27). Owing to this

additional term, the solution (3.25) is changed as

πk = max
(
0,
∑
i

wik −
nc
2

)/∑
k

max
(
0,
∑
i

wik −
nc
2

)
, (3.29)

where wik are given by (3.12) in the E-step. Note that any component corresponding to

πk = 0 does not contribute to the log-likelihood, hence, the problem becomes

Φik = argmax
Φik

J(Φ|Φold) for {k|πk > 0}, (3.30)

subject to the same constraints in (3.19).

An important feature of the M-step defined in (3.29) is that it performs component

annihilation: When starting with K which is larger than the optimal number of mixture

components, a component which is fully supported by samples will survive, otherwise,

it will be removed. Thereby, the proposed algorithm becomes more robust with respect

to initialization [42]. However, there is an issue with the initial value of K. If K is too

large, no component will have
∑

iwik >
nc
2 and π will be undetermined. We avoid this

problem by using the component-wise EM algorithm [42], such that each component

is updated sequentially, rather than simultaneously, i.e., update π1 and Φ1, recompute

all weights wik, update π2 and Φ2, recompute all weights wik, and so on. When one

component dies (πk = 0), an immediate redistribution of its probability mass to the other

components can be made and it increases the chance of survival for other components.

This allows initialization with an arbitrarily large K.

3.6 Experiments

3.6.1 Experimental setup

Since the proposed PNDMM is an extension of the PND, we first explain the param-

eter initialization method for the PND in Section 3.6.1 and extend it for PNDMM and
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adaptive PNDMM in Section 3.6.1.

PND initialization

To get initial rotation matrices Ri, we use non-rigid factorization [31, 7, 9, 50, 48, 10]

which decomposes a measurement matrix D̃ ∈ R2ns×np into a product of two matri-

ces R̃ ∈ R2ns×nr and S̃ ∈ Rnr×np using singular value decomposition (SVD), where

D̃ =
[
D̂T

1 . . . D̂
T
ns

]T
and D̂i contains the first two rows of Di. The rank nr for SVD

is determined to keep 99.999 % of the total energy. Based on R̃, we get initial rotations

with the orthonomality constraint as follows [7]:

min
G

∑
i

∥Aivec(GGT )∥22,

where Ai =

R̃2i−1 ⊗ R̃2i−1 − R̃2i ⊗ R̃2i

R̃2i−1 ⊗ R̃2i + R̃2i ⊗ R̃2i−1

 , (3.31)

G ∈ Rnr×3, and R̃i is the ith row of R̃. Instead of directly solving (3.31), we replace

GGT with a positive semidefinite matrix N ∈ Rnr×nr and add a constraint tr(N) = 1

to avoid a trivial solution. After solving this convex semidefinite programming (SDP)

problem, we solve (3.31) again with an explicit rank three constraint, because the true

rank of N = GGT is three [50, 10]. The initial rotation matrices Ri ∈ R3×3 can be

obtained from R̃ and G.4

Given rotation matrices Ri, initial shape matrices Si are obtained so that the trace

norm of the sample shape covariance matrix is minimized:

min
zi

tr

(
1

ns

∑
i

vec(Si)vec(Si)
T − vec(S)vec(S)T

)
,

subject to Si = Ri

Di

zi

 , S =
1

ns

∑
i

Si.

(3.32)

4Let Rf
i be a rotation matrix obtained from the factorization method. Then Ri in (3.32) is a transpose

of Rf .
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The solution of the above problem can be found in a closed-form. After obtaining the

initial 3D shapes X̂i = RT
i Si, we recalculate the scale si and rotation Ri base on (3.21)

so that it is aligned in the GPA manner. The initial 3D mean shape X, null-space Q,

and the reduced covariance ΣR are then calculated accordingly from the aligned initial

shapes. When the observation matrix D̃ has missing elements, we perform a simple

matrix completion to D̃ using the method from [60] and get initial parameters for a

PND. The standard deviation σ of the observation noise is initialized as 10−4. The EM

iteration for a PND is performed until ∥X−X
old∥2F < 10−7 and the maximum number

of iterations was limited by 50, since this threshold gave better results for long and

complex sequences than the threshold used in [18].

Initialization for PNDMM and adaptive PNDMM

Since a PNDMM consists of K PND components, we need K sub-frame sets (Sk, k =

1, . . . ,K) for initialization. The choice of a sub-frame set selection method is discussed

in Section 3.6.2. We independently initialized K PND components using K sub-frame

sets, respectively, and the initial 3D mean shape Xk, null-space matrix Qk, and the

reduced covariance ΣRk
are computed, where the subscript k indicates that Xk, Qk,

and ΣRk
are computed using the corresponding kth sub-frame set. When combining

independentK PND components to a PNDMM, sik and Rik for samples Di with i ̸∈ Sk

are initialized as follows. The rotation Rik is initialized as I and the scale parameter is

initialized so that the norm of Di is 1, i.e., sik = 1
∥Di∥F .

For an adaptive PNDMM, we set the prior parameter nc to 2nR, meaning that the

minimum value of
∑

iwik needed to support component k grows linearly with the di-

mension of the non-rigid space, nR. Since an adpative PNDMM gradually removes PND

components which are not supported by samples, each PND component is required to

have reasonable parameters to compete with other PND components. We run three itera-
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tions of the EM algorithm for a PNDMM and use estimated parameters to initialized an

adpative PNDMM.

The EM or CEM iteration procedure is then performed until max(∥X1−X
old
1 ∥2F , ∥X2−

X
old
2 ∥2F , . . . , ∥XK −X

old
K ∥2F ) < 10−6, and the maximum number of iterations was lim-

ited by 50. After finishing EM or CEM iterations, the final Mik corresponding to a PND

component with the maximum weight wik is used as the reconstructed 3D shape. If a

shape model rather than a reconstructed shape is needed, then Xk and Σk can be used

instead [19]. Similarly, sik and Rik can be used to represent rigid motion.

The performance was evaluated in terms of the average normalized reconstruction

error:

e =
1

ns

∑
i

∥X̂i −X∗
i ∥F /∥X∗

i ∥F , (3.33)

where X∗
i and X̂i are the ith ground truth and the reconstructed shape, respectively.

Since the reconstructed shape has the reflection ambiguity, we also measured the error

for the inverted shape and the smallest error is reported.

3.6.2 CMU Mocap database

Since the proposed algorithm is designed for long and compound human motion se-

quences including several simple motions, we validated it on highly non-rigid and long

human motion sequences obtained from the CMU Mocap database. This database pro-

vides 41 landmark positions corresponding to human motions, however, the raw land-

mark positions are highly unstable, so we converted the raw landmark positions to the

biovision hierarchical data (BVH) format5, which is an easy-to-use motion capture for-

mat in computer graphics. We obtained six human motion sequences with 28 land-

marks from the CMU Mocap database and they are denoted as CMU86 04, CMU86 05,

CMU86 07, CMU86 08, CMU86 10, and CMU86 14. The numbered label is according

5http://vipbase.net/amc2bvh/
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to the CMU Mocap database and the lengths of sequences vary from 6, 055 frames to

10, 078 frames. The provided description for each sequence is as follows (the number in

parentheses is the length of the sequence):

• CMU86 04 (10,078 frames): walking, stretching, punching, chopping, and drink-

ing

• CMU86 05 (8,340 frames): walking, jumping, jumping jacks, jumping on one

foot, punching, and chopping

• CMU86 07 (8,702 frames): walking, swinging arms, stretching, jumping on one

leg, and jumping

• CMU86 08 (9,206 frames): walking, squats, stretching, kicking, and punching

• CMU86 10 (7,583 frames): walk around, sit, stand up, and running

• CMU86 14 (6,055 frames): bouncing basketball, shooting basketball, dribble bas-

ketball, and two handed dribble.

Since sequences in the CMU Mocap dataset are sampled at 120 frames per second (fps)

and they have many redundant frames, we have reduced the frame rate to 40 fps.

Initial sub-frame selection

To split ns frames to K sets of sub-frames with each set containing about ns/K frames,

we tested two different methods on CMU Mocap sequences without any synthetic cam-

era rotations. The first method assigns ns frames in a continuous manner. For example,

when ns = 10 andK = 3, S = {1, 2 . . . , 10} is split into S1 = {1, 2, 3}, S2 = {4, 5, 6},

and S3 = {7, 8, 9, 10}. The second method alternately assigns ns frames in an inter-

leaved manner. For the same example, S = {1, 2 . . . , 10} is split into S1 = {1, 4, 7, 10},
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S2 = {2, 5, 8}, and S3 = {3, 6, 9}. Figure 3.4 shows that the interleaved initialization

method is better than the continuous initialization method. The results can be interpreted

as follows. The interleaved initialization method makes each PND component use di-

verse samples from the whole sequence and it can give a positive effect on longer se-

quences. Based on this result, we have used interleaved sub-frame sets to obtain initial

parameters for PNDMM and adaptive PNDMM.

Effects of synthetic rotations

We also verified the reconstruction stability by adding synthetic camera rotations with 0,

0.1, 0.3, 0.5, 1, and 2 degrees per frame around the y-axis at 40 fps, and compared the

proposed algorithms to PND. Figure 3.5 shows that the proposed PNDMM and adap-

tive PNDMM perform better than the PND, regardless of additional synthetic camera

rotations.

For comparison with other state-of-the-art schemes, we have selected a synthetic cam-

era rotation with 0.3 degrees per frame, which is slow and realistic camera motion [61].

The compared methods are EM-PPCA [8], MP [9], CSF2 [48], SPM [10], PND [18], and

PMP [53]. In the case of CSF2 and SPM, we ran the algorithms with different numbers

of shape basis vectors taken from {2, 3, . . . , 9}6 and reported the best result as in [48].

For CMU86 04, CMU86 05, CMU86 07, CMU86 08, CMU86 10, and CMU86 14, the

best numbers of shape basis vectors for CSF2 are six, nine, six, nine, two, and eight, and

the best numbers of shape basis vectors for calculating rotations in SPM are nine, eight,

nine, nine, eight, and eight, respectively. Notice that this is the weakness of methods,

such as CSF2 [48] and SPM [10], since in practice the ground-truth shape is not avail-

able and the best case cannot be evaluated.

6The maximum number of shape basis vectors is limited up to ⌊ 28
3
⌋ when the number of landmarks is

28 [48].
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Figure 3.4: A comparison of initialization methods: continuous and interleaved. x-axis

represents tested sequences, where we omit the prefix ‘CMU’. The legend A-PNDMM

indicates adaptive PNDMM.
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Figure 3.5: The effect of an increasing camera rotation on the reconstruction stability.

Synthetic camera motion is added to the reduced sequences with 40 fps. The markers

“◦”, “x”, “+”, “□”, “⋄”, and “*” correspond to the PND, PNDMM with K=2, 3, 4, 5,

and adaptive PNDMM, respectively.
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Table 3.1 shows reconstruction errors of various algorithms, where K is the selected

number of PND mixtures and the top three results are denoted by superscript numbers.

For complex and long human motion sequences, a PNDMM significantly outperforms

the other methods. Unlike a PND, a PNDMM includes a weight parameter for assigning

a sample to the corresponding component, probabilistically. Owing to the weight param-

eter, a PNDMM is able to efficiently represent complex shape variations and achieves

the state-of-the-art results on complex and long sequences.
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Chapter 3. Procrustean Normal Distribution Mixture Model

We also tested an adaptive PNDMM which is initialized with ten mixture compo-

nents. Table 3.1 shows the results, where K̂ is the estimated number of components

by an adaptive PNDMM. The adaptive PNDMM does not give the best results except

for CMU86 08 and CMU86 14, but rather the PNDMM with the optimal number of K

gives the best results. However, the optimal K for a PNDMM is explicitly set in the

reconstruction process and it is hardly the case for real-world applications. Neverthe-

less, an adaptive PNDMM performs the second or third best in some cases and performs

comparable for other cases. Notice that the adaptive PNDMM achieves the smallest rel-

ative average reconstruction error. Considering the fact that all results except for a PND

and an adaptive PNDMM in Table 3.1 were obtained by using the optimal number of

shape basis vectors tuned for the best performance, the gain for an adaptive PNDMM

is significantly meaningful. It shows that the proposed adaptive PNDMM algorithm is

even useful when the optimal number of shape basis vectors is unknown, unlike other

algorithms.

One might ask whether using a temporal smoothing between reconstruction results

could improve the performance. Unfortunately, NRSfM algorithms based on an ortho-

graphic camera model give a sign ambiguity in depth direction. Hence, we applied a

temporal smoothing to reconstruction results of adaptive PNDMM under the assumption

that the sign ambiguity is already solved. In addition, if we apply a temporal smooth-

ing to all consecutive reconstruction results, high reconstruction errors in some frames

could be propagated, thereby reconstruction results may be spoiled. To prevent the risk,

we selected frames which have high variations between two consecutive frames, i.e.,

ev = ∥X̂i−1−X̂i∥F /∥X̂i−1∥F > threshold, and applied a temporal smoothing around

those selected frames as follows. Let i be the frame number of a selected frame. Then

a temporal smoothing was applied from (i − j)th to (i + j)th frames. We used a sim-

ple temporal smoothing which replaces values of a selected frame with average values
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of previous and next frames, i.e., X̂i = (X̂i−1 + X̂i+1)/2. Figure 3.6 shows effects of

the temporal smoothing. The procedure of finding high variational frames and applying

a temporal smoothing is repeated until the variation ev of all frames was below 1e-6.

We experimentally set threshiold and the window size j to 0.3 and 7. For CMU86 04,

CMU86 05, CMU86 07, CMU86 08, CMU86 10, and CMU86 14, the improved results

of adaptive PNDMM are 0.0725, 0.1138, 0.0993, 0.1105, 0.0657, and 0.0793.

For visualization, we provide examples of reconstruction results of different algo-

rithms in Table 3.1. As shown in Figure 3.7, two proposed algorithms show better fits

between the reconstructed points and the corresponding ground truth than other algo-

rithms.
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Figure 3.6: An example of a temporal smoothing (CMU86 04). (a) and (b) show tempo-

ral variations before and after applying a temporal smoothing, respectively. In both (a)

and (b), a black solid line indicates the temporal variations and red squares corresponds

to frames which have high temporal variations.
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Figure 3.7: Reconstruction results from the CMU Mocap dataset experiment. “+” and

“◦” indicate the ground truth and the reconstruction result, respectively. From top to

bottom, results are from CMU86 04, CMU86 05, CMU86 07, CMU86 08, CMU86 10,

and CMU86 14. For a PNDMM, results with the best K are shown.
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Figure 3.8 shows the selected component index for the whole sequence and exam-

ples of 2D input sequences. As can be seen in Figure 3.8, each component captures

simple shape variations. For example, component five and six capture jumping jacks

motions and component one and three capture the punching motion. It demonstrates that

a PNDMM can decompose complex shape variations to simpler ones. As a result, we

can handle them more efficiently. Also, due to these characteristics, a PNDMM may be

used for human motion clustering in an unsupervised manner by assigning Xi according

to a PND component with the maximum weight. Moreover, it may help getting a good

understanding of the temporal structure of complex human motions.
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Figure 3.8: An example of human motion clustering using an adaptive PNDMM

(CMU86 05). As the time progresses in x-axis, we show the most probable cluster index

for each frame.
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In our implementation using MATLAB on a PC with Intel i7-2600 CPU, the computa-

tion time (the number of EM iterations) of PNDMM (K = 5) and adaptive PNDMM on

CMU86 04, which is the longest sequence, were 721.4 sec. (23) and 849.2 sec. (22), re-

spectively. We can conclude that the small number of EM iterations are enough to obtain

good 3D reconstruction results by PNDMM and adaptive PNDMM. Since the PND7 has

only a PND component and it does not calculate the posterior distribution of cik, it is

faster than the proposed methods. The computation time (the number of EM iterations)

of PND on CMU86 04 is 86.4 sec. (50). We also checked the computation time of CSF28

and SPM9 on CMU86 04, which were 3964.3 sec. and 14070.6 sec., respectively.

Effects of measurement noises and missing landmarks

We have analyzed the proposed algorithms under different levels of measurement noises

and missing measurements. To generate noisy data, observation Di is corrupted by a

zero-mean Gaussian noise with standard deviation σnoise = dmaxβ/100, where β is

the noise strength and dmax = maxi,j,l{|dijl|}, where dijl is the (j, l)th element of

Di. We have run experiments for a noise level of up to 3%. To simulate cases with

missing data, each landmark was randomly set to be missing with probability γ = 0,

0.1, 0.2, 0.3, 0.4, and 0.5. With the missing probability over 0.5, the proposed method

sometimes fails to reconstruct 3D shape due to the numerical instability when calculating

the covariance matrix in (3.14), hence, we have reported the experiment results up to 0.5

missing probability. Each case is independently run ten times and the average values are

reported. We have compared the proposed algorithms to the PND method. As shown

in Figure 3.9 and Figure 3.10, the proposed methods significantly outperform the PND

under various conditions. In addition, methods based on a PNDMM are not sensitive to

7http://hosting01.snu.ac.kr/˜cutybug/pnd/
8http://www2.ece.ohio-state.edu/˜gotardop/
9http://users.cecs.anu.edu.au/˜yuchao
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missing data.
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Figure 3.9: Reconstruction errors at three different noise levels. The results were ob-

tained from sequences with a synthetic camera rotation of 0.3 degrees per frame. The

number of PND mixture components for a PNDMM were set as the best K based on

Table 3.1. The markers “◦”, “x”, and “*” correspond to PND, PNDMM, and adaptive

PNDMM.
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3.6.3 UMPM dataset

We have also validated it on the Utrecht Multi-Person Motion (UMPM) dataset10. The

UMPM benchmark is a collection of video recordings together with a ground truth based

on motion capture data [44]. To describe the bone joints, namely head, neck, shoulders,

elbows, wrists, pelvis, tighs, knees, and ankles, the UMPM dataset gives two sets of 15

virtual joint positions derived from the 37 marker positions. One set gives the average

joints and the other set gives joints computed by means of kinematic constraints. Since

the average virtual joints include natural noises like moving markers caused by motion

of clothes and it is more practical, we used the 15 average virtual marker positions. By

orthographically projecting from motion capture data onto a front camera view obtained

by extrinsic parameters provided from the UMPM dataset, we obtained 2D observations.

Since the motion capture data has 100 fps and it is also redundant, we reduced the frame

rate to 50 fps. The UMPM dataset gives marker positions of multiple persons in a se-

quence. However, multiple persons perform similar activities, so we used only a set of

marker positions corresponding to the first person. We used six sequences and they are

denoted as p3 ball 12, p3 chair 16, p3 triangle 11, p4 circle 12, p4 free 11, and

p4 table 11 according to the naming convention of the UMPM dataset.11

We have compared the proposed methods with six algorithms [8, 9, 48, 10, 18, 53].

Note that no synthetic camera motion is introduced in this experiment. For CSF2 and

SPM, we ran the algorithms with different numbers of shape basis vectors taken from

{2, 3, . . . , 5}12 and reported the best result as in [48]. For p3 ball 12, p3 chair 16,

p3 triangle 11, p4 circle 12, p4 free 11, and p4 table 11, the best numbers of shape

basis vectors for CSF2 are three, four, three, five, five, and five, and the best numbers of

10http://www.projects.science.uu.nl/umpm/
11Naming convention: p⟨n⟩ ⟨a⟩ ⟨k⟩, where n is the number of persons, a is the action type, and k is the

take number.
12The maximum number of shape basis vectors is limited up to ⌊ 15

3
⌋ for 15 landmarks [48].
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Figure 3.10: Reconstruction errors at three different missing data ratios. The results were

obtained from sequences with a synthetic camera rotation of 0.3 degrees per frame. The

number of PND mixture components for a PNDMM were set as the best K based on

Table 3.1. The markers “◦”, “x”, and “*” correspond to PND, PNDMM, and adaptive

PNDMM.
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shape basis vectors for calculating rotations in SPM are four, three, five, three, four, and

four, respectively.

Table 3.2 shows reconstruction errors of various algorithms13, whereK is the selected

number of PND mixtures and the top three results are denoted by superscript numbers.

When an algorithm does not converge, its result is denoted by “-”. Figure 3.11 shows

examples of reconstruction results on the UMPM dataset. Although the proposed algo-

rithms give better performance than other methods, the performance gaps between the

PNDMM and the PND are smaller than the case with the CMU dataset.

13In this table, we denote six sequences as only action types.
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Figure 3.11: Reconstruction results from the UMPM dataset experiment. “+” and “◦”

indicate the ground truth and the reconstruction result, respectively. From top to bottom,

results are from p3 ball 12, p3 chair 16, p3 triangle 11, p4 circle 12, p4 free 11,

and p4 table 11. For a PNDMM, results with the best K are shown.
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Table 3.3: Reconstruction errors of NRSfM methods on a complex sequence synthesized

using the UMPM dataset. (Note that (rel. err.) is the relative average reconstruction error

with respect to the PND.)

Data \ Method PND
PNDMM Adaptive

K = 2 K = 3 K = 5 K = 10 PNDMM K̂

error 0.1557 0.1393 0.1067 0.1061 0.1193 0.1217 10

rel. err. 1.0000 0.8945 0.6851 0.6816 0.7664 0.7814 -

Actually, the UMPM dataset contains many natural rotations, whereas the complexity

of human behavior is not high. To test the proposed methods on a more complex se-

quence, we synthesized a long sequence by concatenating all sequences at 50 fps. We

removed the natural rotations by performing the Procrustes alignment for all frames in a

concatenated sequence to the first frame and added a slow camera rotation of 0.3 degrees

per frame. As shown in Table 3.3, the proposed methods using a PND mixture model

show significant improvements over the PND.

3.6.4 Simple and short motions

We have also applied the proposed methods on simple and short motion sequences using

human motion datasets provided in [45]. For simple and short human motion sequences,

a PND shows better performance than a PNDMM as shown in Table 3.4. Since motion

sequences provided in [45] are simple, a PND is sufficient to represent the shape dis-

tribution. Moreover, it seems that favorable results for a PND are attributed due to the

nature of the small number of frames provided in [45]. In other words, the short length

of a sequence makes it difficult to support more than one non-rigid shape component

in a PNDMM. This model selection problem is a common issue with mixture models.
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Nevertheless, the results of a PNDMM is comparable to the other methods and the re-

construction error of an adpative PNDMM on the dance sequence is better than that of a

PND.
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3.6.5 Real sequence - qualitative representation

We have tested the proposed algorithm to the images with a large degree of freedom and

strong self occlusion. We used the Penn Action dataset [46]14, which contains 15 dif-

ferent action types obtained from various online video repositories, such as YouTube15.

This dataset includes manually annotated 2D marker positions, which consist of 13 joint

positions in each video frame and their corresponding visibilities. We randomly selected

two sequences for each action class with two different view points 16 and generated a

long sequence by concatenating them. That is, the concatenated sequence has 15 dif-

ferent types of actions performed by different persons and each action has randomly

selected two different view points performed by different persons.

Since SPM [10] does give not any method to handle missing variables, we cannot ap-

ply it to this experiment. As the ground truth of 3D shapes is not available, the optimal

number of shape basis vectors cannot be determined for CSF2 [48], hence, we tried to use

the CSF2 method [48] by adjusting the number of shape basis vectors. However, CSF2

[48] completely failed to give reconstruction results i.e., the reconstruction results were

quite poor and diverge. We only show reconstruction results obtained from three meth-

ods, PND, PNDMM (K = 4), and adaptive PNDMM in Figure 3.12, Figure 3.13, and

Figure 3.1417, where images (from the left to right) correspond to the 2D input image,

3D reconstruction results of PND, PNDMM, and adaptive PNDMM, respectively. We

cane see that an adaptive PNDMM gives better results than that by PND and PNDMM,

14http://dreamdragon.github.io/PennAction/
15http://www.youtube.com
16The view point of each video sequence is assigned to one of four coarse camera view points, i.e., front,

back, left, and right.
17we select a more plausible result between the reconstructed 3D shape and its depth inverted version

to remove the sign ambiguity. Also, we made two virtual 3D landmarks of a torso, i.e., upper body and

lower body, for visualization using reconstructed results, since the Penn Action dataset does not give torso

landmark positions.
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since the number of components of PNDMM is not set by the optimal number and a PND

uses only one PND component. Failed reconstruction cases are shown in Figure 3.15 and

many cases are due to many missing 2D landmark positions.

3.7 Chapter Summary

In this chapter, we have proposed a Procrustean normal distribution mixture model

(PNDMM), which is a generative probabilistic mixture model to solve an NRSfM prob-

lem for complex and long human motion sequences. Unlike existing methods which use

a single model to solve an NRSfM problem, we have used the fact that complex shape

variations can be decomposed to a collection of simpler shape variations. The decompo-

sition converts a complex problem into a set of simpler ones, thereby the model learning

can be more tractable and accurate. We have solved NRSfM by learning a PNDMM from

2D observations of a non-rigid object using the EM algorithm and component-wise EM

algorithm. Experimental results show that the PNDMM and adaptive PNDMM signifi-

cantly outperform existing methods under various conditions using various datasets.
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(a)

(b)

(c)

(d)

Figure 3.12: Successful reconstruction results from the Penn Action dataset. Images

(from the left to right) correspond to the 2D input image, 3D reconstruction results of

PND, PNDMM, and adaptive PNDMM, respectively. Markers “o” in a 2D input image

correspond to the 2D observations and marker colors correspond to body parts according

to the reconstruction results.
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(a)

(b)

(c)

Figure 3.13: Successful reconstruction results from the Penn Action dataset (continued).

Images (from the left to right) correspond to the 2D input image, 3D reconstruction

results of PND, PNDMM, and adaptive PNDMM, respectively. Markers “o” in a 2D

input image correspond to the 2D observations and marker colors correspond to body

parts according to the reconstruction results.
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(a)

(b)

(c)

Figure 3.14: Successful reconstruction results from the Penn Action dataset (continued).

Images (from the left to right) correspond to the 2D input image, 3D reconstruction

results of PND, PNDMM, and adaptive PNDMM, respectively. Markers “o” in a 2D

input image correspond to the 2D observations and marker colors correspond to body

parts according to the reconstruction results.
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(a)

(b)

Figure 3.15: Failed reconstruction results from the Penn Action dataset. Images (from

the left to right) correspond to the 2D input image, 3D reconstruction results of PND,

PNDMM, and adaptive PNDMM, respectively. Markers “o” in a 2D input image corre-

spond to the 2D observations and marker colors correspond to body parts according to

the reconstruction results.
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Chapter 4

Recovering a 3D Human Pose from

a Novel Image

In this chapter, we handle an extension of the PNDMM for single view 3D human pose

estimation. While there are various approaches for monocular 3D human pose estimation

[62, 63, 64, 65, 66, 11, 67, 68, 12, 69, 70, 71], our work focuses on recovering a 3D

human pose using 2D part locations obtained from an image, since the use of the 3D

shape model with 2D part locations makes the proposed method more robust against

changes in viewpoint.

The overall structure of the proposed method is shown in Figure 4.1. In order to handle

inaccuracies of 2D part detections, we generate a diverse set of 2D part candidates by de-

composing and recombining multiple 2D part detections, and then select the one which

explains the 2D part model and 3D shape model the best. To overcome the complexity

of human shapes and noisy observations, we apply the Procrustean normal distribution

(PND) [18] as a probability model for non-rigid shape variations. Since our goal is to

estimate a 3D human pose from a single image, we learn the prior information about

3D configurations in a form of a mixture of PNDs or a Procrustean normal distribution
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Figure 4.1: An overview of the proposed method.
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mixture model (PNDMM) and fit the mixture model to 2D observations. The PNDMM

plays a role of making a set of specific pose subspaces in unsupervised manner. By re-

stricting 3D pose estimation on a subspace, performances of 3D pose estimation can be

improved.

When a learned 3D shape model is applied to a novel image, a problem can arise since

the test image may contain a human subject which has limb lengths significantly different

from subjects in the training set. When working with a single image, we cannot recover

limb lengths of the new subject. Hence, we propose a model transformation method

which consists of model normalization and model adaptation. In the model normalization

step, we normalize limb lengths of mixture components using their mean limb lengths.

The model adaptation step adjusts the normalized model using the initial 3D human pose

estimated by the proposed method.

From an extensive set of experiments, we show that the proposed method performs

favorably against the state-of-the-art methods by overcoming inaccuracies of 2D part

detections and 3D shape ambiguities. In addition, when the proposed method is applied

to a novel test set, which is different from the training set, the proposed method performs

the best, showing its generalization power.

Relation with other chapters Since a 3D human pose has more information than a 2D

human pose, intuitively, action recognition using 3D human poses would be more robust

in complex scenes. In Chapter 5, we will show an application on action recognition using

estimated 3D human poses.

4.1 Single View 3D Human Pose Estimation

The problem of estimating a 3D human pose from a single image can be considered

as a structured output regression problem based on 2D features, such as silhouettes
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[62, 63, 64, 65, 66]. Agarwal et al.[62] have estimated 3D human poses from 2D silhou-

ettes by using a Relevance Vector Machine (RVM) regressor, which is a sparse Bayesian

nonlinear regression. Sigal et al.[63] have proposed a parameterized triangulated mesh

model for 3D human pose estimation, in which parameters are initialized using a con-

ditional mixture of kernel regressor based on silhouettes. Bo et al.[65] have proposed

a Twin Gaussian process (TGP), which minimizes the Kullback-Leiber divergence be-

tween two Gaussian processes of input and output data. While silhouette-based regres-

sion methods have shown excellent performance, obtaining a body silhouette from a sin-

gle image is difficult in practice. Furthermore, these methods are inherently limited by

the amount and quality of the training data, since they require a large number of training

samples to represent the appearance variability of different people and viewpoints unlike

part detection based methods.

Recently, methods based on a 2D part detection algorithm are proposed to fit detected

2D joint locations to a 3D shape model [11, 12, 69]. While the accuracy of 2D body part

detection can greatly affect the performance of 3D pose estimation, currently available

part detection algorithms frequently report incorrect body parts. In order to overcome

inaccuracies in a part detection algorithm, Simo-Serra et al.[11] used a stochastic sam-

pling strategy which propagated 2D observation noises to the 3D shape space. Radwan

et al.[12] generated 2D part locations in synthetic views by regressing a set of 2D part

locations from the input view to multiple oriented views. Then the pose was estimated

using multi-view geometry. Wang et al.[69] minimized the l1-norm error between the

projection of an estimated 3D pose and corresponding 2D detections, in which the 3D

pose was represented as a linear combination of a sparse set of basis vectors of human

poses.

Our work addresses this issue by utilizing a diverse set of 2D pose candidates and a

sound 3D shape prior model.
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4.2 Candidate Generation

4.2.1 Initial pose generation

Yang and Ramanan [6] have proposed a 2D human pose estimation method by represent-

ing human body parts as a mixture of pictorial structures. Let G = (V,E) be a relational

tree, where V is a set of body parts and E is a set of edges connecting body parts. Then

the score of a specific pose configuration is represented as follows [6]:

S(I, z) =
∑
j∈V

Φj(I, zj) +
∑

(i,j)∈E

Ψji(zj , zi), (4.1)

where zj = (lj , tj)

Φj(I, zj) = w
tj
j · ϕ(I, lj) + b

tj
j

Ψji(zj , zi) = w
tj ,ti
ji · ψ(lj − li) + b

tj ,ti
ji .

For an edge (i, j), i denotes a parent node and j denotes a child node. Here, lj is the loca-

tion of part j and tj is the configuration type for part j, e.g., different hand appearances

due to its orientation. The first sum represents the sum of local appearance scores com-

puted by pre-trained template wtj
j and HOG [72] descriptor ϕ(I, lj) extracted at location

lj in image I . The second sum encodes shape deformations by wtj ,ti
ji , which is often in-

terpreted as a spring between adjacent parts, and ψ(lj− li), which is the relative location

of part j with respect to part i. btjj and btj ,tiji are trained offsets. We can efficiently find

z∗ which maximizes S(I, z) using dynamic programming [6] by sequentially optimiz-

ing from leaf nodes to the root node. The method has been extended to generate N -best

candidates [73], which can be used to find multiple detections anchored at the same root.

Since 3D pose estimation using a single image can be highly ambiguous, it is impor-

tant to use accurate 2D part detection results. To avoid reconstructing 3D poses based

on incorrect part detection results, we utilize 2D pose candidates with high scores. After
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performing part specific non-maximum suppression, we select nc 2D pose candidates

with the highest pose detection scores. Additional pose candidates are generated from

nc candidates using the part recombination step described below.

4.2.2 Part recombination

For each pose candidate selected from the N -best extension [73], we decompose a pose

into four segments: a left arm, right arm, left leg, and right leg (see Figure 4.1). All

generated segments share the common neck and head and the positions of the neck and

head are obtained from the part detection with the highest score. For each segment, a

new segment is generated using corresponding segments from all candidates by solving

a shortest path problem (see Figure 4.1 under Part Recombination).

For each segment, if there is an edge eui,uj = (ui, uj), we introduce new directed

edges eui,vj for all candidates u and v, where ui and vj are the ith and jth joints from

the uth and vth candidates, respectively (see Figure 4.1). For segment s, let Es be a set

of all edges introduced for the segment. Let Ps be a set of all possible paths in Es. Then

we solve the following shortest path problem:

min
path∈Ps

∑
(ui,vj)∈path

f(eui,vj ), (4.2)

where f consists of a part cost and neighborhood cost.

Part cost: We define the part cost for part i using the detection score of appearance,

i.e., Si = Φi(I, zi) in (4.1). We look for a path in Es with high part detection scores,

hence, we define an edge cost as follows:

fp(eui,vj ) = −Su
i − Sv

j , (4.3)

where Su
i is the score for part i of candidate u.

Neighborhood cost: The neighborhood cost introduces constraints on limb lengths
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and it is defined as

fn(eui,vj ) =
∣∣∣dist(lui , lvj )− ltrainij

∣∣∣ , (4.4)

where dist(a, b) is the Euclidean distance between a and b, lui is the location of part i

of candidate u, and l
train
ij is a reference length of the limb obtained from the 2D part

training data.

Since ranges of the part cost and neighborhood cost are not the same, we normalize

their values between 0 and 1 using costs from the candidate poses. Let f ′p and f ′n be

the normalized part cost and neighborhood cost, respectively. The shortest path problem

(4.2) is solved with

f(eui,vj ) = f ′p(eui,vj ) + f ′n(eui,vj ). (4.5)

When all segments are generated by solving (4.2), we combine them to make an addi-

tional candidate pose with the common neck position.

Candidate generation: Since the discussed part recombination step gives a single

candidate pose, we generate a diverse set of candidate poses by performing the part

recombination step repeatedly with a different set of initial candidates. The first recom-

bined candidate is found using all nc initial candidates and the second recombined can-

didate is found using nc−1 initial candidates by removing the candidate with the highest

detection score. We repeat the process until at least two initial candidates are remained.

In total, nc − 1 recombined candidates are generated and will be considered for 3D

reconstruction along with nc initial candidates.

4.3 3D Shape Prior Model

4.3.1 Procrustean mixture model learning

To model the deformation of 3D shapes, we use the Procrustean normal distribution

(PND) [18], which makes 3D shapes closely aligned in a linear subspace. The PND
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can be extended to a mixture of PNDs and the resulting Procrustean normal distribution

mixture model (PNDMM) can be expressed as:

p(X) =

K∑
k=1

πkp(X|ck = 1), (4.6)

where X ∈ R3×np is a 3D shape satisfying X1 = 01, np is the number of landmarks, and

K is the number of mixture components. The mixing probability for the kth component

is defined as πk = p(ck = 1|πk), where πk ≥ 0, such that
∑

k πk = 1 and ck ∈

{0, 1} indicates which mixture component has generated the sample. p(X|ck = 1) is a

PND corresponding to the kth component, which is defined asNP (Y|Xk,QkΣRk
QT

k ),

where Xk, ΣRk
, and Qk are the mean of aligned 3D shapes, the covariance matrix for

non-rigid variations, and the projection matrix to the linear subspace of non-rigid shapes,

respectively [18]. In addition, Y = sRX is an aligned shape using scale s and rotation

R.

Since we do not know the true number of mixture components, we introduce a Dirichlet-

type prior on π based on the minimum message length (MML) principle [42]: p(π) ∝

exp
(
−nl

2

∑
k lnπk

)
. Then the parameters of a PNDMM can be learned with N train-

ing 3D shapes, similar to Chapter3, by maximizing the following expected complete

log-posterior using the expectation-maximization (EM) algorithm:

Υ(Φ|Φold) =
∑
i

∑
k

wik ln(p(Xi, cik = 1|Φ))

+
∑
k

ln(p(πk)),

(4.7)

where Φ = {sik,Rik,Xk,ΣRk
,Qk, πk|i = 1, . . . , N, k = 1, . . . ,K} are model pa-

rameters for a PNDMM, and the indeces i and k correspond to the ith training sample

and kth PND component, respectively. The superscript old denotes the parameter set

obtained from the previous M-step in the EM iteration procedure.
1In this chapter, we use 0 to denote both a matrix and a vector of zeros and 1 denote a vector of ones.
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We denote p(cik = 1|Xi,Φ
old) as a weight wik, since the posterior distribution of cik

plays the role as a weight for the component indicated by ci. Note that wik are computed

in the E-step of the EM algorithm. The optimization in the M-step can be done similar to

[18] and the learned parameters (Xk,ΣRk
,Qk) of PND components using 3D training

data are used as the parameters (Xtrain
k ,Σtrain

Rk
,Qtrain

k ) of a 3D prior model when we

fit a PNDMM to a 2D pose candidate from a single image. (For more details, please see

the Chapter C.)

4.3.2 Procrustean mixture model fitting

Unlike the prior model learning step discussed in the previous section, observations for

our problem is not a 3D shape X, but a 2D shape D ∈ R2×np . We treat X as a hidden

variable and estimate X and regard the observation as a sample obtained by a noisy

orthographic projection of X with a zero mean Gaussian noise with variance σ2 in each

coordinate. The fitting problem can be solved by using the EM algorithm based on the

trained PNDMM. (For more details, please see the Chapter C.)

The overall EM procedure is similar to that in Chapter 3. However, in our case, the

contribution of a single data sample has little effects on calculating the PND model

parameters (Xtrain
k , Σtrain

Rk
, Qtrain

k ). Hence, we fix those parameters and only update sk,

Rk, πk, and σ2 in the M-step, as done in Chapter 3. If πk = 0, the kth PND component is

removed. After finishing EM iterations, the final posterior mean shape corresponding to

the PND component with the maximum weight wk is used as a reconstructed 3D shape

X̂.
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4.4 Model Transformation

4.4.1 Model normalization

Given a novel image, the limb length of a subject may differ from the limb lengths of

subjects in the training set. To handle this issue, we normalize the limb length infor-

mation in the trained PNDMM model. Let lkij = ∥Xk(i) −Xk(i)∥2 be the limb length

between part i and part j, where Xk(i) is the ith column vector of Xk. We calculate

mean lengths between body parts as lij = 1
K

∑
k l

k
ij and adjust lengths lkij between body

parts to lij in all components of the trained PNDMM. The length adjustment process

uses the following fact.
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Proposition 5. Let J be an np × (np − 1) full column rank matrix satisfying 1TJ = 0.

Then JJ+ = I− 1
np
11T . 2

Proof.

J = USVT (sinular value decomposition). (4.8)

JJ+ = USVTVS−1UT = UUT . (4.9)

Since 1TJ = 0, 1 is in the null space of JT . Then

[
U 1√

np
1

]T [
U 1√

np
1

]
=

I 0

0 1

 = I, (4.10)

where U is a left-singular vector of J. Therefore,
[
U 1√

np
1

]
is a full rank orthogonal

matrix. Then

I =

[
U 1√

np
1

] [
U 1√

np
1

]T
= UUT +

1

np
11T .

Hence, we have JJ+ = UUT = I− 1
np
11T .

2J+ is the Psedudo-inverse of J.
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Figure 4.2: An example of a tree structure and the corresponding part different matrix J.

Proposition 5 shows that JJ+ only removes a translation component of a given shape

and preserves angles between body parts, thereby preserving the pose, i.e., XJJ+ =

X(I− 1
np
11T ).

Let J be a part difference matrix defined by a tree structure (an example is shown in

Figure 4.2). Then J is a full column rank matrix.

Let Tk
d ∈ R(np−1)×(np−1) be a diagonal matrix, where each diagonal entry is a length

scale between lij and lkij with appropriate indices i and j given by J. Let Tk
s be a swapped

matrix of Tk
d by swapping entries based on physically symmetric pairs of a human body

(in Figure 4.2, l23 and l25 can be swapped with l34 and l56, respectively). Then we can

obtain a physically symmetric diagonal matrix Tk =
Tk

d+Tk
s

2 . Finally, the normalized

mean shape for the kth PND is X
nor
k = X

train
k (JTkJ+). Since the new mean shape

matrix X
nor
k does not satisfy the scale constraint of the modified generalised Procrustes

analysis of the PND [18], we correct Tk by a scale factor skc = 1/∥Xnor
k ∥F and use

Tk
c = skcT

k instead. Using the transformation matrix Tk
c , we obtain the normalized

mean shape X
nor
k = X

train
k (JTk

cJ
+) and the normalized covariance matrix for non-

rigid variations Σnor
Rk

= Qnor
k

T
(
(JTk

cJ
+)T ⊗ I

)
Σtrain

k

(
(JTk

cJ
+)⊗ I

)
Qnor

k , where
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Σtrain
k = Qtrain

k Σtrain
Rk

Qtrain
k

T and Qtrain
k is calculated from X

train
k and Qnor

k is calcu-

lated from X
nor
k according to the definition of the PND [18]. The limb length adjustment

is explained in Algorithm 2.

Algorithm 2 Limb Length Adjustment
Require:

1: Part difference matrix J

2: Transformation matrix T

3: Model parameters: X, ΣR, and Q

Ensure: Adjusted model parameters: X′, Σ′
R, and Q′

1: X
′
= X(JTJ+)

2: Tc = scT, where sc = 1/∥X′∥F
3: X

′
= X(JTcJ

+) and calculate Q′ using [18]

4: J′ = (JTcJ
+)T ⊗ I

5: Σ′
R = Q′TJ′QΣRQ

TJ′Q′

4.4.2 Model adaptation

While the model normalization step adjusts limb lengths among PNDMM components,

we also need to adjust limb lengths when reconstructing from a novel test image. While

a PNDMM has sk and Rk for rigid motion and Σtrain
Rk

to handle non-rigid variations,

they cannot effectively handle the limb length difference problem. We address this issue

using Algorithm 2 as a pre-processing step by adjusting model parameters Xnor
k , Σnor

Rk
,

and Qnor
k to a reconstructed 3D shape X̂ obtained from the first iteration of the EM

algorithm described in Section 4.3.2.
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4.5 Result Selection

We perform 3D reconstruction for (2nc − 1) 2D pose candidates and select the best

reconstruction result among them using three measures described below.

Score of a reprojected 2D shape (rS): Since the 3D reconstruction algorithm in-

cludes a parameter σ to handle the observation noise, it allows a reprojected 2D shape

to differ from an input 2D shape. (Dot lines in the selection of Figure 4.1 are reprojected

2D part locations.) To check whether a reconstructed 3D shape is explained by a 2D

part detector, we calculate scores of reprojected 2D shapes obtained from reconstructed

3D shapes using (4.1) and the score is denoted as rS . A higher score means that the

reprojected 2D shape is well explained by the 2D part detector and the 3D model.

Normalized reprojection error (rR): We use different datasets to train a 2D part

detector and a 3D model, moreover, the test dataset can be different from the training

datasets. Therefore, there can be a bias caused by differences in landmark locations

among datasets. It can cause a large reprojection error, even if the 3D reconstruction is

close to the ground truth. To address such problem, we propose a normalized reprojection

error as follows:

rR(D,X) =
1

np

∑
i

√
Γ(i)TPT

orthΣ
−1
ri PorthΓ(i), (4.11)

where i is a body part index, Γ(i) = D(i) − PorthX(i), D(i) is the ith column vector

of D, X(i) is the ith column vector of X, Porth =

1 0 0

0 1 0

 is an orthographic pro-

jection matrix. That is, rR corresponds to the mean of Mahalanobis distances calculated

using 2D part reprojections. Since we are interested in reprojection errors only, we align

the body part positions in training data to body part positions detected in a test image, i.e.,

Dtrain is aligned to Dtest. The aligned 2D shapes and its 3D reconstruction result are de-

noted as D̃train and X̃train, respectively. Since the error between D̃train and the projec-
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tion of X̃train corresponds to an error caused by the bias, (D̃train(i)−PorthX̃
train(i))

is used to compute the sample covariance matrix Σri .

Model transformation error (rT ): Since we use a 3D model which is normalized by

the mean limb lengths as discussed in Section 4.4.1 and it is adapted to a 2D shape, we

calculate the model transformation error, which is defined by the Mahalanobis distance

between the mean transformation matrix Tc = 1
K

∑
k T

k
c obtained from model nor-

malization and a transformation matrix Ta obtained from the current 3D model adap-

tation process of Section 4.4.2. Since the transformation matrix is a diagonal matrix,

in which each element is a length scale, the Mahalanobis distance between diag(Tc)

and diag(Ta) can be calculated, where diag(A) denotes a column vector consisting of

diagonal elements of a matrix A.

rT (Ta,Tc) =
√

diag(Ta −Tc)TΣ
−1
Tc

diag(Ta −Tc), (4.12)

where ΣTc is the sample covariance of Tk
c from training samples.

Result selection: We again normalize each error between 0 and 1. The normalized

errors are denoted as r′S , r′R, and r′T and the final error can be represented as

error = (1− r′S) + r′R + r′T . (4.13)

This normalized sum can be interpreted as error voting and we choose a candidate with

the lowest error for the final 3D reconstruction.

If there are significant biases in part locations between training and testing sets, a

weighted sum of the 2D shape and projected 3D shape further improve the result:

Dnew = ηD+ (1− η)PorthX̂, (4.14)

where 0 ≤ η ≤ 1 is a relative weight for emphasizing observation D and X̂ is a 3D re-

construction result. With the new observation Dnew, we do 3D reconstruction described

in Section 4.3 and Section 4.4, again. The observation correction and 3D reconstruction
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can iteratively proceed. If we select a big value for η, the correction will be slow and the

3D reconstruction result becomes close to the observation.

4.6 Experiments

4.6.1 Implementation details

There are some implementation issues that need to be addressed. One issue is related

to the part detection. Since the part detector [6] was trained with twisted 2D shapes to

capture appearance of poses consistently, i.e., some left and right legs were swapped in

the training set, it gives detections with twisted positions of legs. Since such a detection

is not suitable for accurate 3D reconstruction, we detect twisted detections by comparing

an angle θl between a left shoulder-neck and a left hip-neck with an angle θr between a

left shoulder-neck and a right hip-neck. If θl > θr, we swapped two leg positions.

Another issue is related to 3D reconstruction. Since we use a single image, wk has a

small value, which makes proper PND components removed due to incomplete align-

ment parameters s and R. If proper PND components are removed at the early stage of

the EM iteration, the fitting process cannot give an accurate 3D reconstruction result. To

solve this problem we performed the power normalization: wk =

√
πkp(D|ck=1,Φ)∑

l

√
πlp(D|cil=1,Φ)

.

The weight does not affect PND parameters X
train
k and Σtrain

Rk
and the role of weight

parameter wk during the fitting process in Section 4.3.2 is to select a reconstruction re-

sult with the highest posterior. Since the power normalization does not change the order

of weights among PND components, it does not affect the result. The sigma parameter

to handle noisy observations in Section 4.3.2 was initialized 10−6, which was updated

using (3.23) when the 2D human poses is not ground truth, i.e., Section 4.6.2 and Sec-

tion 4.6.3.
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4.6.2 Evaluation of the joint 2D and 3D pose estimation

Unlike other approaches [11, 69], we use different datasets to train a 2D part detector

and a prior 3D model. The part detector [6] was trained using the PARSE dataset [74].

From N -best extension, we generated five initial candidates (nc = 5) and four addi-

tional candidates were generated using recombination. The part detection results were

converted from 26 part locations to 14 part locations. The 3D shape prior model was

leaned using the CMU Mocap dataset3 with 14 landmark points to match the number of

landmark points between the PARSE and CMU Mocap datasets. We randomly selected

five frames from each sequence of all available motion sequences for learning the 3D

shape prior model, similar to [12]. The parameter nl for a PNDMM were set to 2nR,

where nR is the dimension of a non-rigid shape space defined by a PND. The number of

PND mixtures in Section 4.3.1 was initialized to K = 120 and reduced to K = 88 after

training.

We calculated the sample covariance matrix of (4.11) using the nearest three samples

after alignment, since samples far away are less predictive on the current observation.

The post iteration was performed with η = 0.9 until the current reprojected score is

less than the previous reprojected score and the minimum and maximum number of post

iterations are 10 and 30, respectively. The 3D pose errors were evaluated using the mean

error and its standard deviation inmm after the Procrustes alignment as done in [12]. We

compared the proposed method to part detection based methods [11, 12, 69]. Following

the experiment setup in [11, 12, 69], we evaluated our algorithm on the walking and

jogging actions in the HumanEva dataset [75] with the same sequences used in [12].

Unlike the pose estimated from a single 2D pose candidate, our algorithm select the

result that is well explained by both 2D and 3D models and it reduces the effects of

inaccuracies in 2D part detection results, thereby improving the performance as shown

3http://mocap.cs.cmu.edu/subjects.php
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in Table 4.1. In Table 4.1, ‘N -best’ is the case when N candidates from the N -best

algorithm [73] are used and ‘Recomb.’ indicates the case which uses a combination of nc

best candidates from theN -best algorithm and nc−1 candidates from the recombination

step of the proposed method. In our experiments,N = 9 and nc = 5. In this table, we can

see that the reconstruction results based on multiple 2D candidates are better than those

based on a single detection. Moreover, the Table 4.1 shows that the results including

recombined candidates are better than those using N -best algorithm alone.

We compared our results with the reported performance in [12, 11, 69]. Since [12]

have evaluated their algorithm on the HumanEva dataset [75] with a model trained the

CMU Mocap dataset, we first compared our algorithm with [12] in Table 4.2, which

shows that our algorithm performs favorably compared to [12]. Since the results of ‘Re-

comb. w/ MT’ in Table 4.1 are obtained without post iterations and the results of ‘Ours

(CMU)’ in Table 4.2 are obtained with post iterations, the difference corresponds to the

error reduced by post iterations. Figure 4.3 shows examples of 3D pose estimation re-

sults obtained from the proposed method. The figure shows that we can better estimate

3D pose from a single image by considering multiple 2D pose candidates with a good

3D shape model.

Since [11, 69] are trained from the HumanEva dataset and tested on the same Hu-

manEva set, the learned 3D models are biased toward subjects in the HumanEva dataset,

resulting in smaller reconstruction errors. To confirm this, we tested the proposed method

trained by the HumanEva dataset [75]. As shown in Table 4.3, the reconstruction errors

are significantly reduced. Here, our algorithm shows excellent reconstruction results in

all cases and performs favorably compared to [11, 69].
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Table 4.1: Reconstruction errors (mm) according to multiple candidates (training set:

CMU Mocap, test set: HumanEva).

Walking S1 S2 S3

Single w/ MT † 75.1 (19.4) 87.7 (26.5) 114.6 (36.9)

Single w/o MT † 73.4 (15.4) 83.5 (23.8) 103.2 (29.4)

N -best w/ MT † 66.7 (20.0) 83.5 (23.5) 93.9 (14.9)

N -best w/o MT † 75.3 (22.1) 88.9 (31.6) 100.6 (27.8)

Recomb. w/ MT † 66.0 (16.3) 84.7 (20.7) 87.7 (19.0)

Recomb. w/o MT † 70.3 (17.4) 80.1 (20.3) 86.1 (19.5)

Jogging S1 S2 S3

Single w/ MT † 95.2 (24.2) 92.2 (25.7) 111.9 (32.9)

Single w/o MT † 101.3 (23.4) 99.8 (25.7) 116.4 (33.4)

N -best w/ MT † 96.8 (27.9) 96.2 (23.3) 104.1 (32.1)

N -best w/o MT † 99.5 (20.7) 97.7 (24.9) 110.0 (30.0)

Recomb. w/ MT † 96.0 (27.0) 94.5 (25.7) 100.8 (29.3)

Recomb. w/o MT † 98.2 (22.7) 89.1 (17.2) 112.5 (29.7)

† Without post iterations.
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Table 4.2: Reconstruction errors (mm) on the HumanEva dataset (training set: CMU

Mocap).

Walking S1 S2 S3

Ours (CMU) w/ MT ‡ 66.3 (17.0) 80.9 (22.1) 83.9 (17.3)

[12] 75.1 (35.6) 99.8 (32.6) 93.8 (19.3)

Jogging S1 S2 S3

Ours (CMU) w/ MT ‡ 95.2 (26.9) 90.6 (20.3) 96.3 (26.6)

[12] 79.2 (26.4) 89.8 (34.2) 99.4 (35.1)

‡ With post iterations.

Table 4.3: Reconstruction errors (mm) on the HumanEva dataset (training set: Hu-

manEva).

Walking S1 S2 S3

Ours (HumanEva) ‡ 49.9 (24.0) 64.5 (30.5) 77.9 (24.7)

[11] 99.6 (42.6) 108.3 (42.3) 127.4 (24.0)

[69] 71.9 (19.0) 75.7 (15.9) 85.3 (10.3)

Jogging S1 S2 S3

Ours (HumanEva) ‡ 66.3 (30.0) 55.8 (25.1) 72.7 (33.6)

[11] 107.2 (41.5) 93.1 (41.1) 115.8 (40.6)

[69] 62.6 (10.2) 77.7 (12.1) 54.4 (9.0)

‡ With post iterations.
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(a) Walking, S1, #400, Single (b) Walking, S1, #400, Proposed

(c) Jogging, S3, #225, Single (d) Jogging, S3, #225, Proposed

Figure 4.3: Examples of 3D pose estimation results from the Human Eva dataset. (a)

and (c) are single detection based results without model transformation and post itera-

tion. (b) and (c) are results from the proposed method using multiple candidates, model

transformation, and post iterations. ‘#’ denotes the frame number.
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Table 4.4: 2D Part Detection Performance on LSP Dataset [76]

Method Torso Head ULeg LLeg UArm LArm Total

Yang [6] 82.9 79.1 61.9 53.2 46.0 29.8 54.4

Ours 84.1 79.4 62.7 54.8 45.9 30.7 55.2

4.6.3 Evaluation of the 2D pose estimation

We evaluated the performance of 2D part detections obtained by the proposed 2D candi-

date selection on 1,000 test samples of the Leed Spart (LSP) dataset [76]. Note that the

2D part detector is trained on the PARSE dataset [74]. The performance measure is the

percentage of correct parts (PCP) which is the standard evaluation metric [77]. Table 4.4

shows the performance of 2D part detections selected by the proposed method is better

than [6]. We can conclude that the proposed 2D candidate selection improves the 2D part

detection performances by considering 3D information. Figure 4.4 shows examples of

reconstruction results for qualitative representation 4, where (a)–(f) show two success-

ful cases and (g)–(i) show a failed case. Failed cases are mostly due to incorrect part

detections. If we assume that the part detections are correct, the estimated 3D pose is

plausible.

4To remove the sign ambiguity [50], we select a more plausible result between the reconstructed 3D

shape and its depth inverted version and we made one virtual 3D landmark in a lower body for visualization.
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(a) Detection (b) View 1 (c) View 2

(d) Detection (e) View 1 (f) View 2

(g) Detection (h) View 1 (i) View 2

Figure 4.4: Examples of reconstruction results from the LSP dataset. (a)–(f) are suc-

cessful cases and (g)–(i) show a failed case. Marker colors correspond to body parts

according to the reconstruction result.
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4.6.4 Evaluation of the 3D pose estimation

To check 3D reconstruction performances of the proposed method, we have performed

additional experiments with known 2D landmark positions. In the CMU Mocap database,

we randomly selected a subset of 3D human poses from five different action categories

by 23 subjects: walking, jumping, running, boxing, and climbing with 14 landmark

points. For the generalizability evaluation of the proposed method, we performed 23

rounds of experiments by selecting a subject as testing data and using the remaining sub-

jects for training data. We excluded climbing from training and only use it for testing,

since climbing is performed by a subject like in [70]. For testing, we generated 2D land-

mark positions by orthogonally projecting 3D data into a 2D image plane with a random

camera motion and reduced the frame rate to 20 frame per second (fps), since sequences

in the CMU Mocap dataset have many redundant frames, i.e., 120 fps. We compared our

algorithm with a state-of-the-art algorithm developed by Ramakrishna et al.[67], which

was retrained on the same training and testing data. For the performance evaluation of

the 3D pose estimation, we performed the Procrustean alignment to the estimated 3D

pose and ground truth and calculated the Euclidean distance at each landmark point and

took the maximum reconstruction error over all the 14 landmark positions and normal-

ized it over the distance between the chest and waist of the ground truth, where the waist

landmark point was calculated as a middle value of left and right hip landmark points.

We denote this measure as a normalized reconstruction error and Figure 4.5 shows that

the proposed method outperforms [67].
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Figure 4.5: Normalized reconstruction error. (a) and (b) show the normalized reconstruc-

tion errors in CMU Mocap databse and HumanEva dataset, respectively. ‘MT’ denotes

model transformation. (c) The differences of mean limb lengths between training and

testing data. ‘CMU-CMU’ denotes both training and testing data come from the CMU

Mocap database. ‘CMU-HumanEVA’ denotes training and testing data come from the

CMU Mocal databse and HumanEVA dataset, respectively. ‘U’ and ‘L’ in x-axis mean

‘Upper’ and ‘Lower’, respectively.
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We also tested the 3D model trained by the five action categories of the CMU Mo-

cap dataset to the walking and jogging actions in the HumanEva dataset [75] with the

ground truth 2D landmark positions. The model transformation made negative effects on

3D posse estimation in Figure 4.5(a), while Figure 4.5(b) shows that the model trans-

formation significantly decreases 3D pose estimation errors. To investigate what makes

two different results, we analyzed differences of mean limb lengths between training

and testing data after scale normalization. As can be seen in Figure 4.5(c), differences of

limb lengths in the CMU Mocap database are significantly smaller than that between two

different datasets, i.e., the CMU Mocap database and HumanEva dataset. While in the

same dataset, the limb lengths are varied by different subjects, in two different datasets,

the different landmark setting of datasets makes a large amount of bias of limb lengths.

We can conclude that the model transformation is useful in cases that there is a large

amount of bias between training and testing data and the proposed model transformation

method is useful in heterogenous datasets with different joint setting.

4.7 Chapter Summary

We have proposed a method for estimating a 3D human pose from a single novel image.

The problem is challenging due to inaccuracies of 2D part detectors and the complex-

ity of human poses. To address these issues, we consider multiple 2D pose candidates

with respect to a sound 3D shape model using a Procrustean normal distribution mixture

model (PNDMM). We have also introduced model transformation which is incorporated

into the 3D shape prior model, such that the proposed method can be applied to a novel

test image. Experimental results have shown that the proposed method can provide ex-

cellent 3D reconstruction results when tested on a novel test image, despite inaccuracies

of 2D part detections and 3D shape ambiguities.
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Application to Action Recognition

Action recognition is an important problem in computer vision, which can be ap-

plied to many interesting applications, such as automatic video indexing and retrieval,

human-computer interaction, and intelligent surveillance. Since Laptev [13] has intro-

duced space-time interest points by extending the Harris detector, many classical de-

scriptors [79, 72, 80, 81] used in object recognition have been extended from images to

videos, e.g., 3D-SIFT [82], HOG3D [83], extended SURF [84], and local trinary patterns

[85]. With these local descriptors, bag-of-features (BoF) based methods of object recog-

nition can be directly used for action classification and they have shown to be successful

on many datasets [86, 87, 88, 89]. However, since an action in a video occupies in a joint

space of 2D spatial domain and 1D time domain unlike an object in a 2D image, descrip-

tors based on 2D spatial domain have many limitations to represent a human action in

real world videos [90, 91].

To overcome limitations of 2D appearance based descriptors, many works have tried to

enforce motion information using trajectories obtained from point trackers [92, 93, 94].

This chapter is based on the paper appeared in Pattern Recognition: ‘Robust Action Recognition Using

Local Motion and Group Sparsity [78]’.
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Messing et al.[92] proposed velocity history features based on a sophisticated latent

velocity model and side information, such as appearance, position, and high level se-

mantic information. They have demonstrated the superiority of velocity history features

on high resolution video sequences of complicated activities. Sun et al.[93] proposed

an approach which hierarchically models the spatio-temporal context information about

trajectories obtained by matching SIFT descriptors between consecutive frames and

showed impressive results on realistic action and event recognition. Wang et al.[94] pro-

posed a dense trajectory-based approach by combining point tracking and dense inter-

est point sampling and achieved state-of-the-art results for action recognition compared

to sparse interest point sampling techniques, such as the Kanade-Lucas-Tomasi (KLT)

tracker [95].

Despite promising results on action recognition, low- and mid- level descriptors have

still limited discriminative power in handling large and complex data. Recently, Jhuang

et al.[4] have systematically analyzed a recognition algorithm to better understand the

limitations and found that descriptors based on human poses estimated from [6], even

without the ground truth pose, outperform low- and mid-level descriptors for action

recognition where the full body is visible. Based on these findings, we extend pose de-

scriptors from 2D spatial domain to 3D spatial domain as shown in Figure 5.1. Since

real world consists of 3D objects, 2D observations including 2D human poses are per-

spectives of 3D objects and amount of information obtained from 3D observations is

more than 2D observations. Usage of 3D human pose might give better features than 2D

human poses in action recognition systems.

In addition, there is another issue to be solved, i.e., the large variability in actions.

When different subjects are performing the same action, they do not have the same ap-

pearance and their movements can be quite different for the same action. Even for a

person performing the same action multiple times, each performance can be quite dif-
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Figure 5.1: Overview.

ferent from the previous one. Therefore, robust classification is an important issue in the

human action recognition problem and it is necessary to develop a more robust alterna-

tive.

Recently, the concept of sparse representation has received significant attention and

demonstrated promising performance in signal processing and computer vision [96, 97,

98]. It has been discovered in neuroscience [99] that the human vision system seeks a

sparse representation of an incoming image using an overcomplete dictionary. In addi-

tion, recent studies go beyond sparsity and take into account additional information about

the underlying structure of solutions [97]. Namely, the solution has a natural grouping

of its components and the use of this group sparsity can reduce degree of freedom in

a solution, thereby leading to a better solution [100]. In [97], a group sparsity method

has been successfully applied to object recognition by kernelizing the accelerated prox-

imal gradient (APG) method [101]. As shown in Figure 5.1, we classify action classes

using the group sparse representation with the multiple kernel method, instead of a sup-

port vector machine (SVM), a popular classifier which is widely used in many action

recognition algorithms. Our experimental results show that the proposed action recogni-

tion method with 3D pose based descriptors and group sparsity outperforms the baseline
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method using motion descriptors or 2D pose based descriptors with an SVM classifier

[94].

5.1 Appearance and Motion Based Descriptors

We adopt the dense trajectory approach by Wang et al.[94] to generate motion descrip-

tors and it is briefly introduced in this section. Feature points are sampled in eight spatial

scales with a grid spaced by W pixels and each point Pt = (xt, yt) at frame t is tracked

to the next frame t+ 1 by median filtering of a dense optical flow field ωt = (ut, vt).

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)|(x̄t,ȳt), (5.1)

where M is the median filtering kernel whose size is Nω ×Nω pixels and (x̄t, ȳt) is the

rounded position of Pt. Points of subsequent frames are concatenated to form a trajectory

T = (Pt, Pt+1, Pt+2, . . .). To extract a dense optical flow, the algorithm by Färneback

[102] is adopted.

In the point tracking process, the effects of noise, light conditions, and other factors

appear in the form of a drift which is an accumulation of small errors. To avoid this drift-

ing problem, the maximum length of a trajectory is limited to L. Also, trajectories with

sudden large or small displacements are removed, since trajectories with small displace-

ments do not contain significant motion information and trajectories with sudden large

displacements are most likely to be erroneous. A trajectory is considered to have a small

displacement, if the diameter of the smallest region containing the trajectory is less than

Nmin pixels. A trajectory has a large displacement, if the diameter of the smallest region

containing the trajectory is larger than Nmax pixels or the displacement vector between

two consecutive frames is larger than a threshold α.

After tracking feature points, the shape of a trajectory, called TrajShape, is described

by concatenating a set of displacement vectors ∆Pt = (Pt+1−Pt) = (xt+1−xt, yt+1−
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yt). In order to make a trajectory shape descriptor invariant to scale changes, a concate-

nated vector is normalized by the overall magnitude of motion displacements:

s =
[∆Pt, · · · ,∆Pt+L−1]∑t+L−1

i=t ∥∆Pi∥
. (5.2)

Also, the local motion and appearance in a video volume around a trajectory are de-

scribed by a histogram of oriented gradients (HOG) [72], a histogram of optical flow

(HOF), and a motion boundary histogram (MBH). HOG encodes the local appearance

information, while HOF and MBH capture local motion patterns. A 3D video volume,

which has the size of N ×N pixels and L frames, is subdivided into nσ ×nσ ×nτ cells

and each feature is computed at each cell. For HOG, gradient orientations are quantized

into eight bins. HOF has nine bins in total, with one extra bin for zero angle. Both de-

scriptors are normalized with their l2 norm. MBH computes a histogram based on the

derivatives of optical flows on both horizontal and vertical components. Like HOG, eight

bins are used to quantize orientations and values are normalized using the l2 norm.

5.2 2D Pose Based Descriptors

Despite the insight that human poses are more high-level cues than weak visual cues for

representing human actions, low- to mid-level descriptors have received more attention

so far because pose estimation is a difficult problem. However, recent progress in pose

estimation makes human pose revisited [103, 104, 105] as a descriptor for action recog-

nition. We, here, introduce 2D pose descriptors used in [4], since we extended these 2D

pose descriptors into a 3D pose space.

For action recognition with pose features, Jhuang et al.[4] used various types of de-

scriptors derived from joint locations.

• NTraj: Given the x- and y- coordinates of 15 joints for each frame, they normal-

ized the joint positions with respect to (w.r.t.) the scale obtained from [106] and
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pose based descriptors are designed as follows: the translation of the normalized

joint positions along the x- and y- coordinates (cartesian trajectory), the direction

of the translational vector (radial trajectory), and the relative positions of normal-

ized joint positions w.r.t a torso joint position (norm positions). The dimension of

descriptors are 30 for translations, 15 for directions, and 30 for positions. Here,

the translation is considered as the difference of positions between two adjacent

frames along a trajectory. Since trajectories might have jitter caused by imperfect

2D pose estimation, they used differences between frame t and t+ s, i.e., the fea-

ture of type f is a sequence (ft+s − ft, . . . , ft+ks − ft+(k-1)s), where k = T -t
s

where a small s is to handle noise. The user parameters T and s are set to 7 and 3,

respectively, based on their experiments.

• NTraj+: Since relational features describing geometric relations between joints

perform better than using normalized joint positions [2], Jhuang et al.[4] also ex-

tracted a set of relational features: 15C2 = 105 distances between all the pairs

of 15 joints (dist relations), 105 orientations of the vector connecting two joints

(ort relations), and 3 ×15 C3 = 1365 inner angles spanned by two vectors con-

necting all the triples of joints (angle relations). All possible relational features are

computed for each frame, yielding 1,575 descriptor dimensions. In addition to us-

ing relational features, they also used the differences of relations between frame t

and t+s as described inNTraj, i.e., dist relation trajectory, ort relation trajectory,

and angle relation trajectory.

5.3 Bag-of-Features with a Multiple Kernel Method

We use a Bag-of-Features (BoF) approach which represents a video as an orderless dis-

tribution of visual words. We separately create a visual vocabulary for each descriptor
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type and fix the number of visual words per descriptor to 4,000 for appearance and mo-

tion based descriptors and 50 for posed based descriptors. In the case base on appearance

and motion based descriptors, we cluster a subset of 100,000 randomly selected train-

ing descriptors using k-means to limit the complexity. We perform k-means eight times

with random initials and keep the result with the lowest error. Descriptors are assigned

to their closest vocabulary word using the Euclidean distance. The resulting frequency

histograms of visual and pose word occurrences are used as features for action classifica-

tion of a video clip. To combine multiple frequency histograms, we use a multiple kernel

method from [107]. Each frequency histogram for each descriptor type corresponds to

one channel. We compare feature distributions using the exponential χ2 distance with

the multiple kernel method [107] as follows:

K(xi,xj) = exp

(
− 1

Nc

Nc∑
c=1

1

Ωc
Dc(xi,xj)

)
, (5.3)

where Dc(xi,xj) is χ2 distance [108] for channel c, and Ωc is the mean value of χ2

distances between training samples for the c-th channel.

5.4 Classification - Kernel Group Sparse Representation

A work on image-based face recognition [96] has shown that the sparse representation

is naturally discriminative as it selects only a small number of basis vectors that can

most compactly represent the given signal. In [96], a single overcomplete dictionary is

formed by concatenating vectorized training samples of all classes. Given a test image,

its sparsest representation over the dictionary is found by l1 minimization. The underly-

ing assumption of this method is that a good number of training samples are available

per class and they span the sample space well. Guha et al.[98] also explored the effec-

tiveness of sparse representation obtained by learning a set of overcomplete dictionaries

in the context of action recognition in videos. They proposed three different dictionary

115



Chapter 5. Application to Action Recognition

training frameworks:

(1) one dictionary for all classes (shared),

(2) one dictionary per class (class-specific), and

(3) a concatenation of class-specific dictionaries (concatenated).

When analyzing their experimental results, we find that the shared method shows lower

performance than other two methods. It illustrates the fact that the solution has a certain

group sparse structure. It is a motivation for the proposed classification method based on

group sparsity.

5.4.1 Group sparse representation for classification

Let X = [X1, . . . ,XJ ] ∈ Rm×p be a training feature matrix which is generated by

concatenating training samples of J classes, i.e., X1 ∈ Rm×p1 , . . . ,XJ ∈ Rm×pJ ,

where m is the dimensionality of a training sample, pj is the number of training samples

in class j, and
∑J

j=1 pj = p is the total number of training samples. Given a test sample

y ∈ Rm, the classification can be considered as the reconstructing problem of a test

sample using training samples, which is represented as

min
wj

1

2
∥y −Xjwj∥22 , j = 1, 2, . . . , J, (5.4)

where wj ∈ Rpj is the coefficient of training samples in the j-th class. The classification

label can be assigned by a class with the minimum reconstruction error. However, it

is often the case that X is ill-conditioned in many applications, regularization methods

are required for stabilized the solution. The l1 and l2,1 norm have attracted increasing

interest and shown promising performance in many application, such as face recognition

[96] and object recognition [97].
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We extend the group sparse representation approach to action recognition using the

multiple kernel method. With group sparse representation, (5.4) can be formulated with

l2,1 norm regularization term as

min
w

1

2
∥y −Xw∥22 + µ∥w∥2,1, (5.5)

where w = [w1
T , . . . ,wJ

T ]T ∈ Rp and ∥w∥2,1 =
∑J

j=1 ∥wj∥2 is definition of l2,1

norm and µ is a regularization parameter. The coefficient vector wj for the j-th class in

training samples makes one group in (5.5).

The l2,1 norm is indeed a general version of the l1 norm since if w has only one group

structure, then ∥w∥2,1 = ∥w∥1. In addition, ∥w∥2,1 is equivalent to ∥d∥1 by construct-

ing a new vector d ∈ RJ with dj = ∥wj∥2. Although there exist general optimization

algorithms for solving (5.5), such as a subgradient based algorithm, the convergence rate

can be quite slow since ∥w∥2,1 is non-smooth. Recently, Beck et al.[101] proposed an

efficient algorithm for solving a nonsmooth convex optimization problem with a guar-

anteed convergence rate of O(1/K2), where K is the number of iterations. Following

the framework of [101], let us consider f(w) = ∥y−Xw∥2F and g(w) = µ∥w∥2,1 and

apply a proximal regularization of the linearized function of f(w) at a given point z:

Qη(w, z) := f(z) + ⟨∇f(z),w − z⟩+ η

2
∥w − z∥2F + µ∥w∥2,1, (5.6)

which has a unique minimizer pη(w) := argminw{Qη(w, z)}. With simple algebra

(ignoring constant terms in z), we can obtain

pη(w) = argmin
w

{
1

η
g(w) +

1

2

∥∥∥∥w − (z− 1

η
∇f(z)

)∥∥∥∥2
F

}
, (5.7)

where η is a Lipschitz constant of the gradient ∇f(z) and plays a role as a step size

in optimization. We set η to 2λmax(X
TX) according to [101], where λmax(A) is the

maximum eigenvalue of A. Finally, by representing
(
z− 1

η∇f(z)
)

as a vector r =
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[rT1 , r
T
2 , . . . , r

T
J ]

T ∈ Rp according to the group structure and µ
η as τ , the solution of (5.7)

can be obtained as the following [109]:

wj =
[
(1− τ/∥rj∥)rj

]
+
, (5.8)

where wj is the coefficient of the j-th group and [·]+ = max(·, 0). The optimization for

(5.5) is summarized in Algorithm 3.

Algorithm 3 Proximal Gradient Algorithm
Require: X,w0, η, µ > 0,

Ensure: w

1: Initialize z0 = r0, t0 = 1, k = 0.

2: for k = 0, 1, 2, . . . ,K − 1 do
3: Calculate wk+1 by (5.7) and (5.8).

4: tk+1 =
1+
√

1+4t2k
2

5: zk+1 = wk +
(

tk−1
tk+1

)
(wk+1 −wk)

6: end for

5.4.2 Kernel group sparse (KGS) representation for classification

Sparse representation is developed for a feature, while we have multiple features, i.e.,

appearance, motion, and pose descriptors. Hence, it requires a method to combine mul-

tiple features. For the purpose of combining multiple features, we modify the general

APG method using the kernel trick as done in [97] for object recognition.

A kernel approach uses a non-linear kernel function ϕ(·) to map training and test

samples from the original space to a higher dimensional feature space. The kernel trick

enable us to operate in the feature space by computing inner products using a kernel

function, instead of performing operations in the high-dimensional feature space, i.e.,

K(xi,xj) = ϕ(xi)
Tϕ(xj) for a given kernel function K. Many algorithms, such as

a nonlinear SVM [110] and kernel principal component analysis [111], have used this

kernel trick and demonstrated better performance compared to non-kernel methods. In
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this chapter, we also apply the kernel trick to (5.5) with a kernel function ϕ(·). It can be

represented as

min
w

1

2

∥∥∥∥∥∥ϕ(y)−
J∑

j=1

ϕ(Xj)wj

∥∥∥∥∥∥
2

2

+ µ

J∑
j=1

∥wj∥2 , (5.9)

where ϕ(Xj) = [ϕ(Xj,p1), . . . , ϕ(Xj,pj )]. When solving (5.9) using APG, there is a

gradient mapping step, i.e.,∇f(·) = −ϕ(X)Tϕ(y)+ϕ(X)Tϕ(X) which involves inner

products of features. We can straightforwardly apply the kernel trick here. Let G =

ϕ(X)Tϕ(X) with ϕ(X) = [ϕ(X1), · · · , ϕ(XJ)] be the training kernel matrix, and h =

ϕ(X)Tϕ(y) be the test kernel vector. Then we can have ∇f(·) = −h + G instead of

inner products of features.

Using only the optimal coefficients ŵj associated with the j-th class, one can approx-

imate y of a test sample as ϕ(y) = ϕ(Xj)ŵj and the reconstruction error using training

samples in the j-th class is determined as

Ej = ∥ϕ(y)− ϕ(Xj)ŵj∥22

= Kmax − 2hjwj +wT
j Gjwj ,

(5.10)

where Kmax is the maximum value of the kernel function, hj = ϕ(y)Tϕ(Xj) indicates

elements of h associated with the j-th class, and Gj = ϕ(Xj)
Tϕ(Xj) is the block

diagonal of G associated with the j-th class.

To use the spare representation method for video indexing and retrieval, we need a

score function for a positive decision [78]. We define the score function as

f(Ej ;El ̸=j , γ) =
Kmax −min(Ej , γ)∑J

l=1(Kmax −min(El, γ))
, (5.11)

where min(Ej , γ) is a truncated error function with 0 < γ < Kmax for limiting the

maximum error and robust classification. The score function returns a relative score on

the j-th class compared to all classes in training samples. That is, the decision score of

the j-th class increases if the reconstruction error of the j-th class, Ej , decreases or the
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Figure 5.2: An example of a score function (5.11) for a binary classification. A binary

classification can be done by thresholding the score. EP is the reconstruction error us-

ing positive training samples and EN is the reconstruction error using negative training

samples.

reconstruction error of the remaining classes, El ̸=j , increases, and vice versa. Figure 5.2

shows an example of the score function for the positive class in a binary classification

problem. As shown in this figure, the score is proportional to the reconstruction error of

a negative class, EN , and inversely proportional to the reconstruction error of a positive

class, EP , as expected. For a multi-class problem, the class with the highest score is

chosen as a solution, i.e., j∗ = argmaxj f(Ej ; ·).

5.5 Experiment on sub-JHMDB Dataset

5.5.1 Experimental setup

In this section, we show that 3D pose based descriptors can improve action recognition

performances and a group sparse representation with the multiple kernel method out-

performs a nonlinear SVM method in most cases. We followed the experiment setup of
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Figure 5.3: Examples of the sub-JHMDB dataset. There are twelve actions: catch, climb

stairs, golf, jump, kick ball, pick, pull up, push ,run, shot ball, swing baseball, and walk.

[94] and compared our method to [94] (appearance and motion based descriptors) and

[4] (2D pose based descriptors). For experiments, we used default parameters for dense

trajectory as Nω = 3, Nmin = 3, Nmax = 50, L = 15, N = 32, nσ = 2, nτ = 3,

and the threshold α for removing a large displacement between two consecutive frames

is 70% of the overall displacement of the trajectory. The sampling step size was set to

W = 5 and W = 10 pixels. The regularization parameter µ in (5.5) was set to 0.001,

and γ in (5.10) was set to 0.99.

To evaluate pose based features, we needed videos where the full body is visible and

used the sub-JHMDB benchmark dataset. The sub-JHMDB Dataset [4] contains twelve

human actions as shown in Figure 5.3: catch, climb stairs, golf, jump, kick ball, pick, pull

up, push ,run, shot ball, swing baseball, and walk. The dataset consists of 216 video clips

which show a large intra-class variability. We followed the three fold cross validation

setting in [4]. For each action classes, video clips were randomly divided into two sets
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with a constraint that clips from the same video belong to the same set. The grouping

was iterated until the ratio of the number of clips in the two sets were both close to 7:3.

The 70% set was used for training and the 30% set for testing.

5.5.2 3D pose based descriptor

To generate 3D pose based descriptors, we perform the following procedure which is

shown in Figure 5.4.

Obtaining a 2D human pose and its descriptor: We used human pose detector pro-

posed in [3] with the N -best extension [73] and refined poses using dynamic program-

ming. Given human poses obtained from a video clip, we generated nine types of 2D

pose descriptors explained in Section 5.2, which are our baseline 2D pose based descrip-

tors.

Obtaining a 3D human pose: Figure 5.4 shows the extension of 2D human pose

based descriptors to their 3D version. Since using ground truth 3D human poses for

video clips is not available, we estimated 3D human poses using ground truth 2D human

poses in a training set before learning a 3D shape model by a PNDMM as shown in the

leftmost of Figure 5.4:

(1) For each action we collect a set of ground truth joint locations of 2D human poses

and learn a PND using [18], which makes twelve PNDs, i.e., twelve actions.

(2) We generate a PNDMM by combining twelve PNDs in which a mixing probability

of PNDMM is assigned to 1
N for each component, where N is the number actions.

(3) With estimated 2D human poses, we estimate 3D human poses using the learned

PNDMM as done in Chapter 4.

3D human pose based descriptor: After estimating a 3D human pose from each

frame, we projected a 3D human pose to x-y, y-z, and z-x image planes, respectively,
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Figure 5.4: A graphical illustration of 3D human pose based descriptor.

which generates three 2D human poses as shown in the rightmost of Figure 5.4. Since

a 3D human pose makes three 2D human poses on different image planes, we can ob-

tain three sets of 2D human pose based descriptors from three image planes and they

can be used as 3D pose based descriptors. We empirically found projected 2D human

poses on y-z and z-x image planes were discontinuous in the temporal direction due

to inaccurate 2D and 3D pose estimation. We only used four types of pose descriptors

(norm positions, dist relations, ort relations, and angle relations) on y-z and z-x planes

by excluding trajectory based pose descriptors. Therefore, 3D pose based descriptors

consist of nine types of 2D pose based descriptors in the x-y image plane and four types

of 2D pose based descriptors in the y-z and z-x image planes. All different descriptors

were used with multiple kernel method in (5.3) in classification.

5.5.3 Experimental results

As explained in Section 5.2, 2D pose based descriptors used in [4] are the scale nor-

malized version so that all human poses have the same scale. Since knowing the scale
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factor is difficult in real situations, we tested both of scale unnormalized pose based

descriptors and scale normalized pose based descriptors, which are shown in Table 5.1

and Table 5.2. Regardless of the scale normalization, 2D pose based descriptors out-

perform dense trajectory based descriptors. Also, 3D pose based descriptors outperform

2D pose based descriptors in most cases excepting experimental results for specific split

sets. Even when we combined the appearance and motion based descriptors with pose

based descriptors, 3D pose based descriptors still outperform 2D pose based descriptors.

It shows that estimated 3D poses have more information than 2D poses and they can

give positive impacts to action recognition. Looking at the impact according to classi-

fication methods, in most cases the KGS is better than an SVM. We also investigated

performances according to the sampling step size of dense trajectory [94], i.e, W = 5

and W = 10. As you can see in Table 5.1 and Table 5.2, performance gaps between 3D

pose based descriptors and 2D pose based descriptors increased when we combined with

dense trajectory based descriptors at the lower sampling step size. It is also evidence that

the amount of information of 3D pose based descriptors is larger than 2D pose based

descriptors.

Figure 5.5 shows the confusion matrices on action classes with scale normalized

poses. We can find that 3D information can be useful for classifying actions which have

quite different shapes from other action in three dimensional space such as ‘catch’ and

‘push’, while the shapes of poses obtained from some action like ‘climb stairs’ and ‘run’

may be included to other actions and there is a risk that performance decreases by 3D

pose based descriptors. With more strong classifier, the risk can be reduced as shown

in Figure 5.6, which shows the kernel group spare representation is better than an SVM

classifier. We also compared the performance on ground truth 2D poses with their 3D

poses estimated from ground truth 2D human poses. As you can see in Table 5.3, de-

spite using 2D ground truth poses for action recognition, estimated 3D poses give still
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Table 5.1: Evaluation of the proposed method on the sub-JHMDB dataset with estimated

2D and 3D human poses (w/o scale normalization)

Descriptor Split 1 Split 2 Split 3 Total

SVM

Dense Trajectory based descriptors (DT with W = 10) 32.6 47.5 45.7 41.8

Dense Trajectory based descriptors (DT with W = 5) 39.3 51.3 48.9 46.4

2D Pose based descriptors (2D Pose) 49.4 42.5 45.3 49.0

3D Pose based descriptors (3D Pose) 57.3 50.0 52.2 53.3

DT with W = 10 + 2D Pose based descriptors 59.6 51.3 60.9 57.5

DT with W = 10 + 3D Pose based descriptors 68.5 58.8 58.7 62.1

DT with W = 5 + 2D Pose based descriptors 64.0 52.5 63.0 60.2

DT with W = 5 + 3D Pose based descriptors 70.8 60.0 59.8 63.6

KGS

Dense Trajectory based descriptors (DT with W = 10) 41.6 45.0 47.8 44.8

Dense Trajectory based descriptors (DT with W = 5) 46.1 52.5 51.1 49.8

2D Pose based descriptors (2D Pose) 56.2 45.0 51.1 51.0

3D Pose based descriptors (3D Pose) 60.7 50.0 51.1 54.0

DT with W = 10 + 2D Pose based descriptors 62.9 56.3 60.9 60.2

DT with W = 10 + 3D Pose based descriptors 67.4 60.0 59.8 62.5

DT with W = 5 + 2D Pose based descriptors 66.3 58.8 62.0 62.5

DT with W = 5 + 3D Pose based descriptors 67.4 61.3 60.9 63.2
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Table 5.2: Evaluation of the proposed method on the sub-JHMDB dataset with estimated

2D and 3D human poses (w/ scale normalization)

Descriptor Split 1 Split 2 Split 3 Total

SVM

2D Pose based descriptors (2D Pose) 52.8 47.5 50.0 50.2

3D Pose based descriptors (3D Pose) 61.8 48.8 56.5 55.9

DT with W = 10 + 2D Pose based descriptors 60.7 53.8 55.4 56.7

DT with W = 10 + 3D Pose based descriptors 65.2 53.8 59.8 59.8

DT with W = 5 + 2D Pose based descriptors 62.9 52.5 56.6 57.5

DT with W = 5 + 3D Pose based descriptors 68.5 55.0 60.9 61.7

KGS

2D Pose based descriptors (2D Pose) 53.9 50.0 48.9 51.0

3D Pose based descriptors (3D Pose) 57.3 48.8 53.3 53.3

DT with W = 10 + 2D Pose based descriptors 65.2 56.3 59.8 60.5

DT with W = 10 + 3D Pose based descriptors 68.5 56.3 59.8 61.7

DT with W = 5 + 2D Pose based descriptors 65.2 56.3 60.9 60.9

DT with W = 5 + 3D Pose based descriptors 69.7 60.0 62.0 65.0
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Figure 5.5: Confusion matrix obtained from a support vector machine. (a) Confusion

matrix with 2D human poses. (b) Confusion matrix with 3D human poses.

127



Chapter 5. Application to Action Recognition

.33 .05 .29 .10 .14 .10

.53 .13 .13 .07 .13

.92 .03 .06

.04 .78 .04 .09 .04

.14 .09 .32 .14 .05 .18 .09

.04 .04 .08 .12 .04 .69

.04 .89 .07

.04 .07 .04 .78 .04 .04

.05 .05 .05 .11 .21 .21 .05 .26

.08 .08 .25 .08 .08 .42

.11 .42 .05 .42

.08 .08 .08 .08 .23 .08 .38

catch

climb_stairs

golf

jump

kick_ball

pick

pullup

push

run

shoot_ball

swing_baseball

walk
catch

climb_stairs

golf
jump

kick_ball

pick
pullup

push
run shoot_ball

swing_baseball

walk

(a)

.38 .10 .24 .14 .10 .05

.53 .20 .07 .07 .13

.94 .06

.04 .04 .74 .04 .09 .04

.05 .09 .09 .32 .18 .18 .05 .05

.04 .12 .08 .04 .69 .04

.04 .93 .04

.04 .04 .85 .04 .04

.05 .11 .05 .16 .16 .11 .26 .11

.17 .08 .08 .25 .08 .17 .08 .08

.21 .11 .68

.08 .08 .08 .23 .08 .46

catch

climb_stairs

golf

jump

kick_ball

pick

pullup

push

run

shoot_ball

swing_baseball

walk
catch

climb_stairs

golf
jump

kick_ball

pick
pullup

push
run shoot_ball

swing_baseball

walk

(b)

Figure 5.6: Confusion matrix obtained from kernel group sparse representation. (a) Con-

fusion matrix with 2D human poses. (b) Confusion matrix with 3D human poses.
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Table 5.3: Evaluation of the proposed method on the sub-JHMDB dataset with ground

truth 2D human poses and estimated 3D human poses

Descriptor Split 1 Split 2 Split 3 Total

SVM
2D Pose based descriptors (2D Pose) 74.2 75.0 76.1 75.1

3D Pose based descriptors (3D Pose) 77.5 80.0 80.4 79.3

KGS
2D Pose based descriptors (2D Pose) 69.7 76.3 82.6 76.3

3D Pose based descriptors (3D Pose) 78.7 76.3 78.3 77.8

positive impacts in most cases. Considering the fact that the ground truth 2D poses are

very strong descriptors and we use simple 3D pose based descriptors, using estimated

3D poses for action recognition is promising and obtaining an accurate 3D pose from a

2D pose like in this dissertation is a very important research issue for reliable computer

vision systems.

5.6 Chapter Summary

In this chapter, we have proposed an action recognition method using 3D human pose

based descriptors. To estimate a 3D human pose, we have used the proposed method in

Chapter 3 and Chapter 4. After obtaining 3D human poses, we have projected 3D hu-

man poses into three image planes, i.e., x-y, y-z, and z-x, and generated 2D pose based

descriptors in each image plane. The pose based descriptors using 3D human poses out-

perform those with 2D human poses, regardless of classification methods. Furthermore,

we have used the group sparse representation with the multiple kernel method (KGS)

for robust classification. Through extensive experiments, we have demonstrated that, in

most cases, KGS can improve the performance of action recognition, especially when

the discriminative power of features is low.
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Chapter 6

Conclusion and Future Work

Since real world consists of 3D objects, usage of 3D information might give better so-

lutions in many computer vision problems including action recognition systems using

3D human poses. In this dissertation, we have proposed a new method to reconstruct 3D

shapes form 2D shapes, i.e.non-rigid structure from motion (NRSfM) problem.

Based on a Procrustean normal distribution (PND) which was recently proposed [18]

and showed state-of-the-art on bench mark datasets, we have proposed a new mixture

model for representing 3D shape variations, which is called Procrustean normal distri-

bution mixture model (PNDMM). While all most existing methods for NRSfM used a

single model, the proposed PNDMM is able to decompose a complex shape variations

to a set of simpler ones, which enables the model learning to be more tractable and ac-

curate. Given 2D observations of a non-rigid object, model learning is performed using

the expectation-maximization (EM) algorithm and component-wise EM algorithm. Ex-

perimental results with various conditions using various datasets have shown that the

PNDMM and adaptive PNDMM significantly outperform existing methods. The pro-

posed PNDMM are not limited to the case of a human pose, but it can be easily extended

to more general objects.

131



Chapter 6. Conclusion and Future Work

In addition, we have extended the proposed PNDMM to single view 3D human pose

estimation. The problem is challenging due to inaccuracies of 2D part detectors and

inherent ambiguity of 3D reconstruction from a single 2D observation. Moreover, the

human poses are very complex shapes. In order to address inaccurate of 2D pose esti-

mation on a single image, we have generated multiple 2D human pose candidates and

reconstructed 3D human poses by using a sound 3D shape model, a PNDMM, learned

by a CMU 3D motion capture dataset. After that we have selected the best one which

can be explained by a 2D human pose detector and a 3D shape model. We have also

introduced model transformation which is incorporated into the 3D shape prior model,

such that the proposed method can be applied to a novel test image. Experimental results

have shown that the proposed method can provide excellent 3D reconstruction results

when tested on a novel test image, despite inaccuracies of 2D part detections and 3D

shape ambiguities.

Finally, we have applied the proposed methods to action recognition from a video

clip. Despite that using human poses has a lot of advantages, posed-based action recog-

nition has not received attention over past few decades, which caused from the difficulty

of human pose estimation on an image. However, current great progress in human pose

estimation makes it possible to robustly estimate a human pose in images. Furthermore,

current studies have pointed to high-level features obtained from 2D estimated human

poses enable action recognition performance beyond current state-of-the-art methods us-

ing low- and mid-level features based on appearance and motion, despite inaccuracy of

human pose estimation. Since the proposed PNDMM is able to reconstruct 3D shapes

from 2D shapes, we have proposed an action recognition method based on 3D human

pose based descriptors. Experimental results have shown that 3D pose based descriptors

are better than 2D pose based descriptors for action recognition, regardless of classifica-

tion methods. Considering the fact that we used simple 3D pose based descriptors based
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on a 3D shape model learned from 2D shapes, results in this dissertation are promis-

ing and obtaining accurate 3D information from 2D observations is a very important

research issue for reliable computer vision systems.

The PNDMM assume that 2D observations are obtained from a orthographic camera

model and in many cases it works well. However, a lot of cameras in real world are based

on a perspective camera model. For future work, NRSfM based on a perspective camera

model should be studied, which is more challenging. Moreover, a new mixture model

using temporal information will be also studied, since a video stream is a kind of time

series data.
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Appendix A

Proof of Propositions in Chapter 2

A.1 Proof of Proposition 1

To explain how to estimate the distribution of hi in E-step, we use (2.3) and (2.7). From

Bayes’ theorem, the distribution of hi can be written as

p(hi|Di,Φ)

=
p(Di,hi|Φ)∫
p(Di,hi|Φ)dhi

=

1

(2π)
3(np−1)

2 |ΣR|
1
2

exp
(
−1

2v
T
i PΣR

−1PTvi

)
∫

1

(2π)
3(np−1)

2 |ΣR|
1
2

exp
(
−1

2v
T
i PΣR

−1PTvi

)
dhi

.

(A.1)

Since hi is a Gaussian distribution, it can be represented as

p(hi|Di,Φ) =
1

(2π)
np−1

2 |C′
i|

1
2

exp

(
−1

2
h̃iPhCi

′−1
PT

h h̃
T
i

)

=

1

(2π)
np−1

2 |C′
i|

1
2

exp
(
−1

2 h̃iPhCi
′−1

PT
h h̃

T
i + ti

)
∫

1

(2π)
np−1

2 |C′
i|

1
2

exp
(
−1

2 h̃iPhCi
′−1

PT
h h̃

T
i + ti

)
dhi

.

(A.2)

An arbitrary constant ti does not have any effect on p(hi|Di,Φ), because it is both on

the numerator and denominator of the above equation. From (A.1) and (A.2), we can
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write

vT
i PΣR

−1PTvi

= vec (siRi3hi)
T PΣR

−1PTvec (siRi3hi)

+ 2vec
(
si [Ri1 Ri2]Di −X

)T
PΣR

−1PTvec (siRi3hi)

+ vec
(
si [Ri1 Ri2]Di −X

)T
PΣR

−1PTvec
(
si [Ri1 Ri2]Di −X

)
.

(A.3)

and

h̃iPhCi
′−1

PT
h h̃

T
i + ti

= hiPhCi
′−1

PT
hh

T
i − 2h̄iPhCi

′−1
PT

hh
T
i + h̄iPhCi

′−1
PT

h h̄
T
i + ti.

(A.4)

Comparing the first term in (A.3) and (A.4) and using the relation vec(Ri3hi) = (I3np⊗

Ri3)h
T
i and (I3np ⊗Ri3)Ph = (Ph ⊗Ri3) = Ψi, we can express C′

i as

Ci
′ =

1

s2i

(
ΨT

i PΣR
−1PTΨi

)−1
.

Also, comparing the second term in (A.3) and (A.4), we can express h̄i as

h̄i = sivec
(
X− si [Ri1 Ri2]Di

)T
PΣR

−1PTΨiCi
′PT

h .

A.2 Proof of Proposition 3

To find the optimal s∗i , we rewrite the objective function (2.9) as

J =−
∑
i

s2i tr
(
ΨT

i PΣR
−1PTΨiCi

′)−∑
i

v̄T
i PΣR

−1PT v̄i

+ λ

∑
i

s2i


∥∥∥∥∥∥
Di

h̄i

∥∥∥∥∥∥
2

F

+ tr
(
C′

i

)− 1

 .

(A.5)

By substituting (2.13) to (A.5), it becomes a generalized eigenvalue problem and s∗

corresponds to the eigenvector of the smallest eigenvalue in the following.

s∗ = argmin
s

sTGs s.t. sTFs = 1, (A.6)

where G, Ψi, qi, and F are given in (2.12). (A.6) gives (2.11).
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A.3 Proof of Proposition 4

To ensure that ΣR = αZ + (1 − α)ΣR
old does increase the log-likelihood, we have to

verify that the Frobenius inner product of
(

∂J
∂ΣR

∣∣∣
ΣR=αZ+(1−α)ΣR

old

)
and

(
Z−ΣR

old
)

is positive for all 0 ≤ α ≤ 1 (the inner product of the gradient and the direction to the

optimal point from the current ΣR
old should be positive.). Note that

tr

((
∂J

∂ΣR

∣∣∣
ΣR=αZ+(1−α)ΣR

old

)T (
Z−ΣR

old
))

= tr((Z−ΣR
old)T (−ns(αZ+ (1− α)ΣR

old)−1

+ ns(αZ+ (1− α)ΣR
old)−1Z(αZ+ (1− α)ΣR

old)−1)).

(A.7)

Let W be the generalized eigenvector matrix of Z and ΣR
old such that

WTΣR
oldW = I, WTZW = Λ. (A.8)

Substituting (A.8) into (A.7), we can obtain

ns(1− α)
∑
i

(λi − 1)2

(α(λi − 1) + 1)2
,

where λi is the ith diagonal matrix of Λ. Since ns(1− α) ≥ 0 and
∑

i
(λi−1)2

(α(λi−1)+1)2
≥ 0

for 0 ≤ α ≤ 1, (A.7) is always positive for all 0 ≤ α ≤ 1.
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Appendix B

Calculation of p(Xi|Di,Φi) in

Chapter 3

This appendix section describes the effect of ignoring the Dirac-delta term in (3.16).

B.1 Without the Dirac-delta term

We omit subscripts i, k, and ik if no confusion arises. Using Bayes’ rule, the posterior

distribution of X can be written as

p(X|D,Φ) ∝ p(D|X, σ)p(X|Φ)

∝ exp

(
− 1

2
vec(X)THvec(X) +

1

σ2
vec(D)TFTvec(X)

+ svec(X)TQΣ−1
R QT (I⊗R)vec(X)

)
= exp

(
−1

2
vec(X)THvec(X) +

1

σ2
vec(D)Tvec(X)

)
,

(B.1)

where H = s2(I ⊗ RT )Σ+(I ⊗ R) + 1
σ2F and we use vec(X)TQ = 0, vec(D) =

Fvec(D), and F2 = F.
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We can also write p(X|D,Φ) as:

p(vec(X)|D,Φ) = N (m,Ω)

∝ exp

(
−1

2
(vec(X)−m)T Ω−1 (vec(X)−m)

)
∝ exp

(
−1

2
vec(X)TΩ−1vec(X) +mTΩ−1vec(X)

)
.

(B.2)

Comparing (B.2) with (B.1), we have

Ω−1 = H,

mTΩ−1 =
1

σ2
vec(D)T ,

(B.3)

Therefore, we can represent p(X|D,Φ) as the following Gaussian distribution:

p(X|D,Φ)

= p(vec(X)|D,Φ) ∼ N (m,Ω) ,

m =
1

σ2
Ωvec(D)

=
1

σ2

(
s2(I⊗RT )Σ+(I⊗R) +

1

σ2
F

)+

vec(D),

Ω =

(
s2(I⊗RT )Σ+(I⊗R) +

1

σ2
F

)+

.

(B.4)

B.2 With the Dirac-delta term

Let v be a random vector drawn from N (0,ΣR). Then, vec(X) can be represented as

follows:

vec(X) =
1

s

(
I⊗RT

) (
Qv + vec(X)

)
. (B.5)

By substituting (B.5) to vec(X) of (B.2) in Section B.1 and rearranging them with

respect to v, it can be written as

p(v|D,Φ)

∝ exp

(
− 1

2
vT
(
Σ−1

R

1

s2σ2
QT (I⊗R)F

(
I⊗RT

) )
v

+
1

sσ2

(
svec(D)T

(
I⊗RT

)
Q−X

T
(I⊗R)Q

)
v

)
.

(B.6)
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Since (B.6) has only a quadric term and a linear term of v, and a constant term, it can

be represented as

p(v|D,Φ) = N (m̂, Ω̂)

∝ exp

(
−1

2
(v − m̂)T Ω̂−1(v − m̂)

)
∝ exp

(
−1

2
vT Ω̂−1v + m̂T Ω̂−1v

)
.

(B.7)

Comparing (B.6) with (B.7), we can write

p(v|D,Φ) = N (m̂, Ω̂),

m̂ =
1

sσ2
Ω̂QT

(
vec(D)− 1

s
F
(
I⊗RT

)
vec(X)

)
,

Ω̂ = s2
(
s2Σ−1

R +QT (I⊗R)
F

σ2
(
I⊗RT

)
Q

)+

,

(B.8)

where
(
vec(D) − 1

sF
(
I⊗RT

)
vec(X)

)
corresponds to non-rigid variations and we

can see only non-rigid variations affect m̂ since Q is orthogonal to rigid variations by

the definition of PND.

X can be consider a linear transformed and translated version of v as shown in (B.5).

By a linear property of a Gaussian distribution, we can also represent p(X|D,Φ) as a
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Gaussian distribution as

p(X|D,Φ) = p(vec(X)|D,Φ) ∼ N (m,Ω), where

m = vec(E[X]) =
1

s

(
I⊗RT

)
(Qm̂+ vec(X))

=
1

s2σ2
(
I⊗RT

)
QΩ̂QT (I⊗R)

×
(
vec(D)− 1

s
F
(
I⊗RT

)
vec(X)

)
+

1

s

(
I⊗RT

)
vec(X),

Ω = E[vec(X−m)vec(X−m)T ]

=
1

s2
(
I⊗RT

)
QΩ̂QT (I⊗R)

=
(
I⊗RT

)
Q

(
s2Σ−1

R +QT (I⊗R)
F

σ2
(
I⊗RT

)
Q

)
×QT (I⊗R) ,

(B.9)

where (vec(D)−1
sF
(
I⊗RT

)
vec(X)) corresponds to non-rigid variations and (1s

(
I⊗RT

)
vec(X))

corresponds to rigid ones.

Since Q is a orthogonal to a subspace, QN (X), on rigid motions, it means that we

only consider an aligned prior mean shape 1
sR

TX and non-rigid variations orthogonal to

X and other rigid variations are removed by Q. However, we empirically found ignoring

the Dirac-delta term makes the distribution p(X|D,Φ) close to the observation D and

gives better reconstruction results, since s and R have inexact values in the early stage

of the iteration process.
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Procrustean Mixture Model

Learning and Fitting in Chapter 4

C.1 Procrustean Mixture Model Learning

To model the deformation of 3D shapes, we use the Procrustean normal distribution

(PND) [18], which makes 3D shapes closely aligned in a linear subspace. The PND can

be extended to a mixture of PNDs as:

p(X) =
K∑
k=1

πkp(X|ck = 1), (C.1)

where X ∈ R3×np is a 3D shape satisfying X1 = 0 1, np is the number of landmarks,

and K is the number of mixture components. The mixing probability for the kth com-

ponent is defined as πk = p(ck = 1|πk), where πk ≥ 0, such that
∑

k πk = 1 and ck ∈

{0, 1} indicates which mixture component has generated the sample. p(X|ck = 1) is a

PND corresponding to the kth component, which is defined as NP (Y|Xk,QkΣRk
QT

k )

[18] where Xk, Σk, and Qk are the mean of aligned 3D shapes, the covariance matrix for

1In this chapter, we use 0 to denote both a matrix and a vector of zeros.
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non-rigid variations, and the projection matrix to the linear subspace of non-rigid shapes,

respectively. In addition, Y = sRX is an aligned shape using scale s and rotation R.

Since we do not know the true number of mixture components, we introduce a Dirichlet-

type prior on π based on the minimum message length (MML) principle [42]: p(π) ∝

exp
(
−nl

2

∑
k lnπk

)
. Given N training 3D shapes, let us define the joint distribution

p(X, c, π) as

p(X, c, π) =

N∏
i=1

K∏
k=1

{p(Xi|cik = 1)p(cik = 1|πk)}cikp(π), (C.2)

where i corresponds to the ith training sample. Then the parameters of (C.2) can be

learned by maximizing the expected value of the following log-posterior function:

Υ(Φ|Φold) =
∑
i

∑
k

wik ln(p(Xi, cik = 1|Φ))

+ ln(p(π)),

(C.3)

where Φ = {sik,Rik,Xk,ΣRk
,Qk, πk|i = 1, . . . , N, k = 1, . . . ,K} is a set of model

parameters, N is the number of samples, and K is the number of components.

E-step: We estimate p(cik = 1|Xi,Φ
old) given the current estimates of parameter

Φold and observation Xi
2. Since the posterior distribution of cik plays the role as a weight

for the component indicated by ci, we denote it as a weight wik. Using Bayes’ rule, we

have

wik =
πkp(Xi|cik = 1,Φ)∑
l πlp(Xi|cil = 1,Φil)

, (C.4)

where p(Xi|cik = 1,Φ) can be calculated by [18] with Yik = sikRikXi.

M-step: The maximum posterior solutions of parameters are obtained using the pos-

terior distribution of cik, i.e., wik computed from the E-step. Since this optimization

problem is the same as [18] except the prior term π, parameters sik, Rik, Xk, and ΣRk

2The superscript old denotes the parameter set obtained from the previous M-step in the EM iteration

procedure and we will omit the superscript (old) if no confusion arises.
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are obtained by alternatively updating one parameter at a time as done in [18] for each

component. The optimizing πk is found as:

πk = max
(
0,
∑
i

wik −
nk
2

)/∑
k

max
(
0,
∑
i

wik −
nk
2

)
. (C.5)

An important feature of the M-step defined for finding πk is that it performs compo-

nent annihilation. To make more robust, we use the component-wise EM algorithm [42],

such that each component is updated sequentially, i.e., update π1 and Φ1, recompute all

weights wik, update π2 and Φ2, recompute all weights wik, and so on.

The resulting PND components with parameters Xk, ΣRk
, and Qk obtained from 3D

training data Xi will be used as a prior model with parameters in Section C.2 of this

supplementary material, i.e., Xtrain
k = Xk, Σtrain

Rk
= ΣRk

, and Qtrain
k = Qk when we

fit a PNDMM to a 2D shape from a single image.

C.2 Procrustean Mixture Model Fitting

Unlike the prior model learning step discussed in the previous section, observations for

our problem is not a 3D shape X, but a 2D shape D ∈ R2×np . We regard the observa-

tion D as a sample obtained by a noisy orthographic projection of X with a zero mean

Gaussian noise with variance σ2 in each coordinate: vec(D) = Fvec(X) + ui, where

vec is the vectorization operator, ui ∼ N (0, σ2I), and F is a projection matrix which

removes the z-coordinate, the depth information (For more details, refer to Chapter 3).

The joint distribution for a model fitting problem can be represented as

p(D,X, c|σ, π)

=

K∏
k=1

{p(D|X, σ)p(X|ck = 1)p(ck = 1|π)}ck ,
(C.6)

where the notation is the same as (C.2). We treat X in (C.6) as a hidden variable and esti-

mate X using expectation-maximization (EM) algorithm based on the trained PNDMM.
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Figure C.1: A graphical representation of reconstruction process.
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It is a detailed description in Section 4.3.2 of Chapter 4 and parameter notations fol-

lows that chapter. We extend the Procrustean mixture model to a single view 3D recon-

struction problem with pre-learned prior information about Xtrain
k and Σtrain

Rk
, which

can be represented as in Figure C.1. Let Φ be a set of probabilistic parameters and let

Θ be a set of deterministic parameters. Then Φ = {Φk|k = 1, . . . ,K}, where Φk =

{Xk,ΣRk
}, and Θ = {Θk|k = 1, . . . ,K}, where Θk = {σ, sk,Rk,Qk, πk}. Let Φtrain

be a set of parameters related prior distributions, then Φtrain = {Φtrain
k |k = 1, . . . ,K},

where Φtrain
k = {Xtrain

k ,Σtrain
Rk

,Qtrain
k , β, ν}.

We formulate the model fitting to an 2D observation using the MAP-EM algorithm as

(Φ,Θ) = argmax
Φ,Θ
{ln p(D,X, c|Φ,Θ) + ln p(Φ|Φtrain)} (C.7)

and the cost function for the MAP-EM algorithm can be represented as

J(Φ,Θ|Φold,Θold)

=
∑
k

(
wk

∫
ln(p(D,X, ck = 1|Φk,Θk)

× p(X|ck = 1,D,Φold
k ,Θold

k )dX

+ ln p(Φk|Φtrain
k )

)
.

(C.8)

Here, we use the chain rule as p(X, ck = 1|D,Φold
k ,Θold

k ) = p(ck = 1|D,Φold
k ,Θold

k )p(X|ck =

1,D,Φold
k Θold

k ) and denote p(ck = 1|D,Φold
k ,Θold

k ) bywk, since p(ck = 1|D,Φold
k ,Θold

k )

plays the role as a weight for the component indicated by c. The superscript old denotes

the parameter set obtained from a previous M-step in the EM iteration procedure. From

now on, we will omit the superscript (old) if no confusion arises.

The complete likelihood is represented by

p(D,X, ck = 1|Φk,Θk)

= p(D|X, σ)p(X|Xk,ΣRk
, ck = 1)p(ck = 1|πk),

(C.9)
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where p(D|X, σ) is for the observation noise and modeled by a Gaussian distribution,

p(X|Xk,ΣRk
, ck = 1) is for the kth PND component, and p(ck = 1|πk) is for the

indicator variable, i.e., ck = {0, 1}.

The prior distribution p(Φk|Φtrain
k ) is represented by

p(Φk|Φtrain
k )

= p(Xk|X
train
k , β,ΣRk

)p(Σ−1
Rk
|Σtrain

Rk

−1
, ν),

(C.10)

where p(Xk|X
train
k , β,ΣRk

), and p(Σ−1
Rk
|Σtrain

Rk

−1
, ν) are prior distributions for a mean

shape Xk of the kth PND, a precision matirx of non-rigid variations Σ−1
Rk

, respectively.

To apply pre-learned prior Xtrain
k and Σtrain

Rk
, let Xk have a PND as

p(Xk|X
train
k , β,ΣRk

)

= NP (Xk|X
train
k , β−1Qtrain

k ΣRk
Qtrain

k
T
),

(C.11)

where Qtrain
k is a PND parameter for the kth trained PND component, and let ΣRk

have

a Wishart distribution as

p(Σ−1
Rk
|Σtrain

Rk

−1
, ν) =W(Σ−1

Rk
|νΣtrain

Rk

−1
, ν). (C.12)

Given a test image, we compute mixture weights (E-step) using

wk =
πkp(D|ck = 1,Φk)∑
l πlp(D|cl = 1,Φl)

, (C.13)

where p(D|ck = 1,Φk) =
∫
p(D|X, σ)p(X|ck = 1,Φk)dX. The posterior distribution

of the true 3D shape, i.e., p(X|ck = 1,D,Φk,Θk), can be represented by a Gaussian

distribution [18].

Since the prior information about Xk, ΣRk
, and πk affects M-step of EM procedure,

the M-step is similar to [18] and the differences in the M-step are calculation of Xk and

ΣRk
.
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For the optimization problem in the M-step for Xk and ΣRk
is

max J(Φ,Θ|Φold,Θold)

= −
∑
k

wk

(
1

2
ln |ΣRk

|+ 1

2
hT
kΣ

−1
Rk

hk

+
s2k
2
tr
(
(I⊗RT

k )QkΣ
−1
Rk

QT
k (I⊗Rk)Ωk

)
− lnπk

)

−
∑
k

(
1

2
ln |ΣRk

|+ 1

2
βvT

k Q
train
k Σ−1

Rk
Qtrain

k
T
vk

+
ν − nR − 1

2
ln |ΣRk

|+ 1

2
tr(νΣtrain

Rk
Σ−1

Rk
)

)
,

subject to
∑
k

πk = 1, RT
kRk = I,

∥∥Xk

∥∥2
F
= 1,

sktr(RkMkX
T
k ) = 1, RkMkX

T
k ∈ Snd

+ ,

(C.14)

where hk = QT
k (sk(I⊗Rk)mk − vec(Xk)), vk = vec(Xk −X

train
k ), and Mk is the

expectation of X with respect to its posterior distribution.

To update Xk, Qk and Qtrain
k are regarded as independent parameters with Xk and

X
train
k , differentiate (C.14) with respect to Xk and equate it to zero, and normalize the

solution, as done in [18]. Then, the solution to a mean shape Xk is

Xk =
Ξk

∥Ξk∥F
, (C.15)

where Ξk is a matrix representation of xk, i.e., vec(Ξk) = xk and xk =
(
wkQkΣ

−1
Rk

QT
k+

βQtrain
k Σ−1

Rk
Qtrain

k

)+(
wkskQkΣ

−1
Rk

QT
k (I ⊗ Rk)mk + βQtrain

k Σ−1
Rk

Qtrain
k

T

vec(X
train
k )

)
. β > 0 ∈ R plays a role as a prior weight in a posterior probability,

and mk is a posterior mean of vec(Xk).

Also, a covariance matrix of non-rigid variation ΣRk
can be obtained by solving the
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first-order necessary condition of (C.14), i.e.,

ΣRk
=

1

wk + ν − nR

(
wkhkh

T
k+

wks
2
kQ

T
k (I⊗Rk)Ωk

(
I⊗RT

k

)
Qk

βQtrain
k

T
vec(Xk −X

train
k )vec(Xk −X

train
k )TQtrain

k

+ νΣtrain
Rk

)
,

(C.16)

where ν > nR−1 ∈ R and it also plays a role as a prior weight in a posterior probability,

and hk = QT
k (sk(I ⊗ Rk)mk − vec(Xk)). However, in the case of a single view

reconstruction based on noisy observation, the prior information has to be emphasized,

i.e., wk ≪ β and wk ≪ ν. Moreover, wk ≪ 1, thus the terms based on observed data in

Xk and ΣRk
can be neglected as

Xk ≈ X
train
k ,ΣRk

≈
νΣtrain

Rk

wk + ν − nR
≈ Σtrain

Rk
. (C.17)

Since Qk is calculated using the mean shape Xk, it can be calculated as Qk ≈ Qtrain
k .

It means that we can fit a PNDMM to a single 2D observation using a learned PND

parameters Xtrain
k , Σtrain

Rk
, and Qtrain

k , and do not need to update them . If πk = 0, the

kth PND component is removed. After finishing EM iterations, the final posterior mean

shape Mk of X corresponding to a PND component with the maximum weight wk is

used as a reconstructed 3D shape X̂.

152



Bibliography

[1] A. Yao, J. Gall, G. Fanelli, and L. J. V. Gool, “Does human action recognition

benefit from pose estimation?.” in Proceedings of the British Machine Vision Con-

ference, 2011.

[2] A. Yao, J. Gall, and L. V. Gool, “Coupled action recognition and pose estimation

from multiple views,” International Journal of Computer Vision, vol. 100, no. 1,

pp. 16–37, 2012.

[3] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based action recog-

nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2013.

[4] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards understand-

ing action recognition,” in Proceedings of the IEEE International Conference on

Computer Vision, 2013.

[5] B. X. Nie, C. Xiong, and S.-C. Zhu, “Joint action recognition and pose estimation

from video,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015.

153



Bibliography

[6] Y. Yang and D. Ramanan, “Articulated human detection with flexible mixtures of

parts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 12, pp. 2878–2890, 2013.

[7] J. Xiao, J. Chai, and T. Kanade, “A closed-form solution to non-rigid shape and

motion recovery,” International Journal of Computer Vision, vol. 67, pp. 233–246,

2006.

[8] L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid structure-from-motion:

Estimating shape and motion with hierarchical priors,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 30, pp. 878–892, 2008.
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초록

최근 컴퓨터 비전 기술은 증강현실, 비디오 이미지 분석 등 지능형 시스템에서 점점

더중요한역할을하고있으며,마이크로소프트의키넥트와같이비용효율이높은깊

이카메라도개발되고있다.하지만여전히많은컴퓨터비전알고리즘들은일반적인

컬러카메라로부터얻어진 2차원관측을가정하에개발되고있기때문에만약우리가

2차원관측으로부터 3차원정보를추론할수있다면많은컴퓨터비전문제에서좀더

좋은해결책을제시할수있을것이다.

본논문은 2차원관측들로부터 3차원관측을추론하는것에집중한다.이러한것은

비강체의구조와움직임복원(NRSfM)으로잘알려져있으며, NRSfM은하나의물체

에대한변형이낮은차원의공간에서모델링될수있다는가정하에다수의이미지를

분석함으로써 물체의 3차원 구조를 얻는 방법이다. 그러나 오랜 시간 동안의 사람의

몸은매우복잡한변화가가능하고,이로인한자유도의증가는문제를보다복잡하게

만든다.본논문에서는이러한복잡한형상의움직임을보다효율적으로모델링하기

위하여최근에제안된 3차원형상의강체움직임과비강체움직임을구분하여비강체

움직임만을효율적으로모델링 Procrustean정규분포(PND)를복합형태로확장하는

방법을제안하고, Procrustean정규분포혼합모델로명명하였다.기존의NRSfM방법

들이 3차원형상을추론하기위하여하나의모델을사용하는데반해,제안하는방법은

복잡한형상의움직임을보다단순한움직임으로그룹화하고,각그룹을 Procrustean

정규분포를통해모델링함으로써모델학습을보다간단하고정확하게하였다.본논

문에서는 실험을 통하여 제안된 방법을 긴 시간동안 복잡한 움직임을 하는 사람의 2

차원형상에적용하여기존의방법보다 3차원형상을더잘추론할수있음을보였다.

또한, 본 논문은 제안된 Procrustean 정규 분포 혼합 모델을 한 장의 이미지에서 사

람의 3차원 자세를 추론하는 문제로 확장하였다. 한 장의 이미지에서 사람의 3차원

형상을 복원하는 문제는 중요한 문제임에도 불구하고 문제의 해가 하나로 주어지지

않는 모호성이 존재한다. 더욱이 2차원 관측으로 3차원 형상을 복원하기에 앞서 정

확한 2차원 관측을 얻는 것이 필요하다. 본 논문에서는 2차원 관측의 부정확성과 3
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차원 복원의 모호성의 문제를 해결하기 위하여, 다수의 2차원 관측과 3차원 형상을

추론하고 2차원자세검출기와 3차원형상추론모델모두에서잘설명되는하나의 2

차원관측및 3차원형상추론결과를선택함으로써해결하고자하였다.본논문은또

한학습데이터와시험데이터가다른경우모델을이미지에서추론한관측방향으로

변형시킴으로써 새로운 이미지에도 적용이 가능하도록 모델변환을 도입하였다. 본

논문은실험을통하여제안하는방법이새로운시험이미지에적용한경우에도좋은

결과를보여줌을확인하였다.

마지막으로 본 논문은 제안하는 3차원 형상 복원 방법을 동영상에 적용함으로써

행동인식 문제를 다루고 있다. 최근 행동인식에 관한 연구는 이미지에서 추정된 2차

원 사람의 자세와 같은 고수준(high-level)의 특징이 이미지의 겉모습과 픽셀 단위의

움직임과같은저수준(low-level)의특징보다더좋은성능을보여줄수있음을말하고

있다.앞서본논문에서제안하는방법들은한장의이미지에서사람의 3차원자세를

추론할수있기때문에,본논문은이러한최근논문의흐름에서한발더나아가동영

상에서 3차원자세를추정하고이를이용한행동인식방법을제안한다.시험결과는

3차원 자세에 기반을 둔 행동 묘사자가 2차원 자세에 기반을 둔 행동 묘사자보다 더

좋은 성능을 보여주었다. 본 논문에서 제안한 3차원 행동묘사자는 다수의 2차원 영

상으로부터학습된 3차원형상모델을통하여얻어진것임을고려할때,본논문에서

도출된 결과는 매우 유망하다고 볼 수 있으며, 2차원 정보로부터 3차원 정보를 추론

하는 연구는 보다 신뢰성 있는 컴퓨터 비전 시스템 개발을 위해 여전히 중요한 연구

주제라고할수있다.

주요어: 3차원형상복원,비강체형상및움직임복원, 3차원자세추정,행동인식

학 번: 2010-20902

168


	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research Issues
	1.3 Organization of the Dissertation 

	Chapter 2 Preliminary
	2.1 Generalized Procrustes Analysis (GPA)
	2.2 EM-GPA Algorithm
	2.2.1 Objective function  
	2.2.2 E-step
	2.2.3 M-step  

	2.3 Implementation Considerations for EM-GPA  
	2.3.1 Preprocessing stage  
	2.3.2 Small update rate for the covariance matrix

	2.4 Experiments
	2.4.1 Shape alignment with the missing information 
	2.4.2 3D shape modeling  
	2.4.3 2D+3D active appearance models 

	2.5 Chapter Summary and Discussion 

	Chapter 3 Procrustean Normal Distribution Mixture Model
	3.1 Non-Rigid Structure from Motion 
	3.2 Procrustean Normal Distribution (PND)
	3.3 PND Mixture Model 
	3.4 Learning a PNDMM 
	3.4.1 E-step 
	3.4.2 M-step

	3.5 Learning an Adaptive PNDMM
	3.6 Experiments 
	3.6.1 Experimental setup 
	3.6.2 CMU Mocap database 
	3.6.3 UMPM dataset 
	3.6.4 Simple and short motions
	3.6.5 Real sequence - qualitative representation 

	3.7 Chapter Summary  

	Chapter 4 Recovering a 3D Human Pose from a Novel Image
	4.1 Single View 3D Human Pose Estimation 
	4.2 Candidate Generation
	4.2.1 Initial pose generation
	4.2.2 Part recombination 

	4.3 3D Shape Prior Model  
	4.3.1 Procrustean mixture model learning 
	4.3.2 Procrustean mixture model fitting 

	4.4 Model Transformation  
	4.4.1 Model normalization
	4.4.2 Model adaptation 

	4.5 Result Selection  
	4.6 Experiments
	4.6.1 Implementation details
	4.6.2 Evaluation of the joint 2D and 3D pose estimation
	4.6.3 Evaluation of the 2D pose estimation
	4.6.4 Evaluation of the 3D pose estimation  

	4.7 Chapter Summary  

	Chapter 5 Application to Action Recognition
	5.1 Appearance and Motion Based Descriptors  
	5.2 2D Pose Based Descriptors 
	5.3 Bag-of-Features with a Multiple Kernel Method  
	5.4 Classification - Kernel Group Sparse Representation 
	5.4.1 Group sparse representation for classification  
	5.4.2 Kernel group sparse (KGS) representation for classification

	5.5 Experiment on sub-JHMDB Dataset  
	5.5.1 Experimental setup 
	5.5.2 3D pose based descriptor  
	5.5.3 Experimental results  

	5.6 Chapter Summary

	Chapter 6 Conclusion and Future Work
	Appendices
	A Proof of Propositions in Chapter 2
	A.1 Proof of Proposition 1 
	A.2 Proof of Proposition 3 
	A.3 Proof of Proposition 4 

	B Calculation of p(XijDi;�i) in Chapter 3
	B.1 Without the Dirac-delta term
	B.2 With the Dirac-delta term

	C Procrustean Mixture Model Learning and Fitting in Chapter 4
	C.1 Procrustean Mixture Model Learning 
	C.2 Procrustean Mixture Model Fitting 


	Bibliography
	초 록


<startpage>14
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Research Issues 4
 1.3 Organization of the Dissertation  6
Chapter 2 Preliminary 9
 2.1 Generalized Procrustes Analysis (GPA) 11
 2.2 EM-GPA Algorithm 12
  2.2.1 Objective function   12
  2.2.2 E-step 15
  2.2.3 M-step   16
 2.3 Implementation Considerations for EM-GPA   18
  2.3.1 Preprocessing stage   18
  2.3.2 Small update rate for the covariance matrix 20
 2.4 Experiments 21
  2.4.1 Shape alignment with the missing information  23
  2.4.2 3D shape modeling   24
  2.4.3 2D+3D active appearance models  28
 2.5 Chapter Summary and Discussion  32
Chapter 3 Procrustean Normal Distribution Mixture Model 33
 3.1 Non-Rigid Structure from Motion  35
 3.2 Procrustean Normal Distribution (PND) 38
 3.3 PND Mixture Model  41
 3.4 Learning a PNDMM  43
  3.4.1 E-step  44
  3.4.2 M-step 46
 3.5 Learning an Adaptive PNDMM 48
 3.6 Experiments  50
  3.6.1 Experimental setup  50
  3.6.2 CMU Mocap database  53
  3.6.3 UMPM dataset  69
  3.6.4 Simple and short motions 74
  3.6.5 Real sequence - qualitative representation  77
 3.7 Chapter Summary   78
Chapter 4 Recovering a 3D Human Pose from a Novel Image 83
 4.1 Single View 3D Human Pose Estimation  85
 4.2 Candidate Generation 87
  4.2.1 Initial pose generation 87
  4.2.2 Part recombination  88
 4.3 3D Shape Prior Model   89
  4.3.1 Procrustean mixture model learning  89
  4.3.2 Procrustean mixture model fitting  91
 4.4 Model Transformation   92
  4.4.1 Model normalization 92
  4.4.2 Model adaptation  95
 4.5 Result Selection   96
 4.6 Experiments 98
  4.6.1 Implementation details 98
  4.6.2 Evaluation of the joint 2D and 3D pose estimation 99
  4.6.3 Evaluation of the 2D pose estimation 104
  4.6.4 Evaluation of the 3D pose estimation   106
 4.7 Chapter Summary   108
Chapter 5 Application to Action Recognition 109
 5.1 Appearance and Motion Based Descriptors   112
 5.2 2D Pose Based Descriptors  113
 5.3 Bag-of-Features with a Multiple Kernel Method   114
 5.4 Classification - Kernel Group Sparse Representation  115
  5.4.1 Group sparse representation for classification   116
  5.4.2 Kernel group sparse (KGS) representation for classification 118
 5.5 Experiment on sub-JHMDB Dataset   120
  5.5.1 Experimental setup  120
  5.5.2 3D pose based descriptor   122
  5.5.3 Experimental results   123
 5.6 Chapter Summary 129
Chapter 6 Conclusion and Future Work 131
Appendices 135
 A Proof of Propositions in Chapter 2 137
  A.1 Proof of Proposition 1  137
  A.2 Proof of Proposition 3  138
  A.3 Proof of Proposition 4  139
 B Calculation of p(XijDi;�i) in Chapter 3 141
  B.1 Without the Dirac-delta term 141
  B.2 With the Dirac-delta term 142
 C Procrustean Mixture Model Learning and Fitting in Chapter 4 145
  C.1 Procrustean Mixture Model Learning  145
  C.2 Procrustean Mixture Model Fitting  147
Bibliography 153
ÃÊ ·Ï 167
</body>

