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Abstract

The depth map is an absolute or relative expression of how far from a captur-

ing device each region of an image is, and a popular representation of the 3D (three-

dimensional) structure of an image. There are many depth cues for depth map estima-

tion using only a 2D (two-dimensional) image, such as the defocus blur, the geometric

structure of a scene, the saliency of an object, and motion parallax. Among them, the

defocus blur is a popular and powerful depth cue, and as such, the DFD (depth from

defocus) problem is important for depth estimation. This paper aims to estimate the

depth map of a 2D image using defocus blur estimation. It assumes that the focus re-

gion of an image is nearest, and therefore, the blur radius of the defocus blur increases

with the distance from the capturing device so that the distance can be estimated us-

ing the amount of defocus blur. In this paper, a new solution for the DFD problem is

proposed. First, the perceptual depth, which is based on human depth perception, is

defined, and then the (true) confidence values of defocus blur estimation are defined

using the perceptual depth. Estimation methods of confidence values were designed

for the gradient- and second-derivative-based focus measures. These estimated confi-

dence values are more correct than those of the existing methods. The proposed focus

depth map estimation method is based on the segment-wise planar model, and the to-

tal cost function consists of the data term and the smoothness term. The data term is

the sum of the fitting error costs of each segment at the fitting process, and the confi-

dence values are used as fitting weights. The smoothness term means the amount of

decrease of total cost function by merging two adjacent segments. It consists of the

boundary cost and the similarity term. To solve the cost optimization problem of the

total cost function, iterative local optimization based on the greedy algorithm is used.

In experiments to evaluate the proposed method and the existing DFD methods, the
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synthetic and real images are used for qualitative evaluation. Based on the results, the

proposed method showed better performances than the existing approaches for depth

map estimation.

keywords: Depth Map, Defocus Blur, Focus Measure, Confidence Value

student number: 2008-30227
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Chapter 1

Introduction

1.1 Focus Depth Map

The depth map represents the distances of the regions of an image from a capturing

device, and is used to show the 3D (three-dimensional) structure of the scene. Stereo-

scopic or multi-view images can be generated through the DIBR (depth-map-image-

based rendering) method using 2D (two-dimensional) monoscopic images and a depth

map. Other problems of computer vision can also be solved using a depth map.

The estimation of the 3D structure from a 2D image can be interpreted as a depth

map estimation problem using only a 2D image. Most 2D-3D conversion methods use

a depth map and DIBR methods, and as such, the performances of 2D-3D conversion

methods depend on the accuracy of the depth map estimation.

There are several monocular depth cues for depth map estimation, such as the

motion parallax, motion information, linear perspective, relative size, and occlusion.

Among them, the focus depth cue is the representative cue and is thus widely used

for depth map estimation. It assumes that the focus point of a capturing device is the

nearest point of a scene; as such, the well-focused regions of an image are regarded as

the near regions, and the blurred regions are regarded as the far regions. The estimation

1
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Figure 1.1: Defocus blur by the thin-lens model.

problem of the focus depth map is finding the degree of focusing of all the regions or

pixels of an image.

1.1.1 Depth from Defocus Blur

The relation between the depth and the defocus blur is shown in Fig. 1.1. Suppose

object P at depth d is blurred on the image detector, and another object at depth df is

focused on the detector. Then, the radius of blur r of object P is obtained using the

following formula of the thin lens-model [12]:

r =
d− df
2d

f2

N(df − f)
, (1.1)

where f and N are the focal length and the stop number of the camera, respectively.

Fig. 1.2 shows the relation between r and d when f = 4, df = 10, and N = 2.

For convenience, the units of f and df are omitted. As shown in the figure, r is zero on

focused depth df , and increased when d was apart from the focused depth. Therefore,

the estimation of d from r has the problem of ambiguity.

Most of the depth from defocus (DFD) methods assume that the focused point

is the nearest point on a scene. Based on this assumption, this paper deals with the

region where d is larger than the focused depth. Now, the problem of estimating d can

2
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Figure 1.2: Relation between the blur radius (r) and the depth (d).

be regarded as the estimation of r. In the next chapter, the existing focus measures are

compared from the viewpoint of the blur radius estimation.

1.1.2 Absolute Depth vs. Relative Depth

There are two different representations of the image depth of a depth map. The ab-

solute depth is the physical distance between the focused point and the object point.

Therefore, the absolute depth is measured using length (e.g., meters) as the unit. On

the other hand, the relative depth is the relative value of the absolute depth on the

scene. The relative depth is a ratio and therefore has no unit. For example, the typical

representations of the relative depth are the real number between zero and one, and the

8bit integer value.

For the estimation of the absolute depth, several camera parameters, including

the focal length, are needed. On the problem of depth map estimation, however, the

3



camera parameters are assumed to be generally unknown. On the other hand, the

relative depth of a point on the scene can be estimated without the camera parameters.

The relative depth gives much information about a scene structure even though it

is not a physical distance. The near region, far region, and overall 3D shape can be

recognized by the relative depth map. In addition, most of the 3D image formats use

the relative depth map to avoid the quantization problem yielded by the differences

in the depth dynamics of the scenes. In the real 3D sequences, some scenes have too

small overall absolute depths compared to the other scenes. Nevertheless, fine 3D

structures can be described by the relative depth map while the whole absolute depth

map is quantized to zero. In this study, therefore, “depth” means the relative depth in

all the following chapters, except “absolute depth.”

1.2 Focus Measure

Focus measure is the quantitative measure of focusing for a region or pixel of an image.

Generally, high-frequency components are measured to get the focus measure because

defocus blurring shows a low-pass property. The local variance, the magnitude of the

gradient, the Laplacian, and the Gaussian filter are examples of focus measures. Many

focus depth map estimation methods estimate the depth value of a pixel using focus

measures. In other words, a focus measure can be converted to the depth value. A low

focusing value of a region indicates a far region, and vice versa.

The simple approach estimates the depth value of a pixel by converting the focus

measure of the pixel directly. There is a serious problem, however, in estimating the

depth value of a pixel using only the focus measure of the pixel. The local region has

to have a sharp texture or edge to obtain an accurate focus measure because defocus

blurring does not show the artifacts on plane regions. The focus measure is not accurate

on a textureless region; as such, it is important to calculate the level of confidence

of the focus measure of each pixel. Furthermore, a method for spreading the local

4



focusing information to a whole image is needed because the reliable pixels of the

image are sparse and inhomogeneous.

1.3 Approaches of the Paper

In this paper, the definitions of the perceptual depth and the confidence value are pro-

posed at first. Statistical properties of focus measures are used to estimate the con-

fidence values of the focus measures of each pixel, and then the depth values of an

image segment are estimated using blur estimators with their confidence values. A

segment-wise planar model is assumed, and the weighted fitting method is adopted

for the estimation of an image segment. Through adaptive image segmentation, lack

of focussing information due to oversegmentation and boundary loss due to underseg-

mentation are prevented. As a result, the focus depth map is smooth in objects with

discontinuities on object boundaries.

5



Chapter 2

Blur Estimation Methods Using Focus Mea-

sures

In this chapter, researches on various focus measures and their comparison are pre-

sented. In the first section, focus measures and blur estimation methods are defined.

Then examples of the results of blur estimations methods on simple example images

are put forth.

In the second section, the performances of the blur estimators are compared. First,

the previous works on the results of the comparison of the performances of the focus

measures and on the finding of the optimal focus measure are introduced. Then, the

blur estimators are compared by applying them on the test images.

2.1 Various Blur Estimation Methods

2.1.1 Gradient-based Methods

The gradient is the basic feature representing the degree of definition of the edges or

textures of an image. In the continuous domain, a gradient vector is calculated using

6



the following equation:

∇ic =
∂ic
∂x

x̂+
∂ic
∂y

ŷ (2.1)

where ic is a continuous image. For discrete images, the discrete form of a gradient

can be represented by the filters. The following filters are used to get the gradient

vector:

gx =
1

2
[−1 0 1] , gy =

1

2
[−1 0 1]T (2.2)

There are various focus measures based on the gradient, such as squared gradient

(SG), magnitude of gradient (MG), and Tenenbaum focus measure (TEN) [3]. SG and

MG are obtained using the following equations, and each measure may be combined

with the appropriate thresholding functions:

SG = G2
x +G2

y (2.3)

MG =
(
G2

x +G2
y

) 1
2 (2.4)

where

Gx = gx ∗ i(x, y), Gy = gy ∗ i(x, y) (2.5)

TEN is a famous focus measure and is widely used in various applications. TEN

is the local sum of the squared Sobel gradient magnitude on window W .

TEN =
∑

x,y∈W

(
∇Sx(x, y)

2 +∇Sy(x, y)
2
) 1

2 (2.6)

where ∇Sx(x, y) and ∇Sy(x, y) are obtained using following Sobel gradient filters:

∇Sx(x, y) =


−1 0 1

−2 0 2

−1 0 1

 ∗ i(x, y),∇Sy(x, y) =


1 2 1

0 0 0

−1 −2 −1

 ∗ i(x, y) (2.7)

The relation between the gradient and blur radius r is obtained as follows. Suppose

a blurred image i where unblurred image u is a horizontal step function with height

7



a on a continuous space, and defocus blur function b is a Gaussian with standard

deviation σ.

i = u ∗ b (2.8)

u(x, y) =


0, if x < 0

a, if x ≥ 0

(2.9)

b(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.10)

Then the gradient of blurred image i is

Gx(x, y) =
a√
2πσ2

e−
x2

2σ2 , Gy(x, y) = 0, (2.11)

and σ is

σ =
a√

2πGx(0, 0)
. (2.12)

In this case, r is proportional to the σ of the blur function on σ = ρr, where ρ is a

constant that can be approximated by camera calibration [8]. In this paper, therefore,

σ is estimated by the gradient to get r. Note that the unknown parameter ρ does not

affect the estimation of the relative depth.

In the discrete domain, the estimated σ has an error because the blur function has

to be discretized. Fig. 2.1 shows the experimental results of the estimation of σ on

the discrete domain. It is shown that the error is larger when σ is small because the

discretization error of the Gaussian blur function is larger. In the figure, for squared

gradient-based methods like TEN, the square root of a focus measure is plotted with

an appropriate normalizing constant for each method.

2.1.2 Laplacian-based Methods

The Laplace operator is a second-order differential operator in the Euclidean space. In

image processing, Laplacian shows a high-pass filter and is a popular feature for edge

8
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Figure 2.1: Estimated σ by (a) MG and (b) TEN.
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detection, sharpening, etc. Laplacian is defined as the following equation:

∇2ic =
∂2ic
∂x2

+
∂2ic
∂y2

(2.13)

and the following filter is implemented as a discrete form of Laplacian:

L =


0 1 0

1 −4 1

0 1 0

 (2.14)

Laplacian is suitable for measuring image sharpness, and several focus measures

based on Laplacian have been proposed [6]. The sum of modified Laplacian (SML)

was proposed by Nayar and Nakagawa [2]. Modified Laplacian (ML) is designed to

prevent the cancelation of the x and y directions, which have opposite signs.

∇2
MLic =

∣∣∣∣∂2ic
∂x2

∣∣∣∣2 + ∣∣∣∣∂2ic
∂y2

∣∣∣∣2 (2.15)

SML is the local sum of ML through the window W .

SML =
∑

x,y∈W
∇2

MLic(x, y) (2.16)

For example, for Gaussian blur b and horizontal step function u, the Laplacian of

blurred image i is

∇2i(x, y) =
x√
2πσ3

e−
x2

2σ2 , (2.17)

and the magnitude of ∇2i(x, y) is maximum at x = σ. Therefore, σ can be estimated

by finding x, which gives a maximum ∇2i(x, y). In this paper, the following equation

is adopted to consider both side regions of an edge:

σ̂ =
1

2

{∣∣argmaxx∇2i(x, y)
∣∣+ ∣∣argminx∇2i(x, y)

∣∣} (2.18)
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(a)

(b)

Figure 2.2: Estimated σ by Laplacian when the step size is (a) 0.1 and (b) 0.01.
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2.1.3 Gaussian-filtering-based Methods

Some researchers adopt the focus measure by Gaussian filtering [4, 5]. Suppose the

focused image is r, the blurred image is i, and the PSF (point spread function) of the

blur is h, with standard deviation σ. Then i can be represented by the convolution of r

and h.

i = r ∗ h (2.19)

Let the filtered image of i be p by Gaussian filter G, with standard deviation σ0,

p = i ∗G (2.20)

then focus measure GF is defined as

GF = i− p = r ∗ (h− h ∗G), (2.21)

and GF is inversely correlated to σ.

2.1.4 Focus Measure Based on Adaptive Derivative Filters

In the previous section, the focus measures based on derivative filters like gradient

(first-order derivative) and Laplacian (second-order derivative) were introduced. These

filters are implemented as the minimum sizes, such as 3x1 or 1x3 for the gradient and

3x3 for the Laplacian, and they act as good derivative estimators in noiseless condi-

tions. In noisy conditions, however, the responses of small filters are easily disturbed

by the noise. Therefore, some researches integrate appropriate smoothing processes to

derivative filters.

The following equations are Gaussian derivative filters for first-order derivatives

(gradient) [26]:

gx1 (x, y, σf,1) =
−x

2πσ4
f,1

e−(x2+y2)/2σ2
f,1 (2.22)

gy1(x, y, σf,1) =
−y

2πσ4
f,1

e−(x2+y2)/2σ2
f,1 (2.23)

12



(a)

(b)

(c)

Figure 2.3: Estimated σ by Gaussian filtering when σ0 is (a) 20, (b) 33, and (c) 50.

13



where σf,1 denotes the scale of the first derivative Gaussian estimator. Then, the gra-

dient magnitude r1(x, y) and the gradient direction θg are

r1(x, y, σf,1) =

√
(rx1 (x, y, σf,1))

2 + (ry1(x, y, σf,1))
2 (2.24)

θg = arctan (ry1(x, y, σf,1)/r
x
1 (x, y, σf,1)) (2.25)

where rx1 (x, y, σf,1) = gx1 (x, y, σf,1) ∗ I(x, y) and ry1(x, y, σf,1) = gy1(x, y, σf,1) ∗

I(x, y).

The Gaussian second-order derivative filters are the following:

gx2 (x, y, σf,2) =
1

2πσ4
f,2

(
(x/σf,2)

2 − 1
)
e−(x2+y2)/2σ2

f,2 (2.26)

gy2(x, y, σf,2) =
1

2πσ4
f,2

(
(y/σf,2)

2 − 1
)
e−(x2+y2)/2σ2

f,2 (2.27)

gx2y(x, y, σf,2) =
xy

2πσ6
f,2

e−(x2+y2)/2σ2
f,2 (2.28)

where σf,1 denotes the scale of the derivative filter and the response is

r2(x, y, σf,2) = cos2 θgg
x
2 (x, y, σf,2)− 2 cos θg sin θgg

x
2y(x, y, σf,2)

+ sin2 θgg
x
2y(x, y, σf,2) (2.29)

When σf,1 and σf,2 are large, the derivatives become more robust to noise, but the

correctness of the derivatives is lowered. Therefore, σf,1 and σf,2 have to be selected

adaptively based on the effect of the noise. Elder at el. proposed the local-scale control

method to decide the appropriate scales σf,1 and σf,2 [26] based on the following

criteria:

σf,1(x, y) = inf {σ : r1(x, y, σ) > c1(σ)} (2.30)

σf,2(x, y) = inf {σ : r2(x, y, σ) > c2(σ)} (2.31)

where critical value c1(σ) and c2(σ) are computed using the standard deviation of the

noise and the following equations:

c1(σ) =
1.1sn
σ2

(2.32)
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c2(σ) =
1.8sn
σ3

(2.33)

In the local-scale control method, a large scale is selected to suppress the noise

by getting the smoothed derivative when the response of the derivative filter is weak

compared to the noise. On the other hand, if the response is dominant to the noise, a

small scale is selected to get the correct derivative.

To estimate the standard deviation of the blur using the values derived through the

adaptive scale filters, the blur estimator needs to be slightly modified.

σb =
√

σ̃b
2 − σ2

f (2.34)

In the above equation, σ̃b is the standard deviation computed by the blur estimator

introduced in the previous section, and σf is the scale factor of an appropriate-order

derivative filter. For example, when σ̃b is computed using a gradient, σf means σf,1

and σf means σf,2 for the second-derivative-based blur estimator, respectively.

2.2 Comparison of the Blur Estimators

Subbarao et al. compared the performances of the focus measures to find the optimal

focus measure for autofocusing [7]. They proposed the AUM (autofocus uncertainty

measure) and the ARMS (autofocus root mean square) errors for the comparison and

the finding of the optical focus measure. The AUM and the ARMS errors, however,

depend on not only on the focus measure to evaluate but also on the test image. There-

fore, the optimal focus measure also depends on the image and thus suggests the focus

measure to be selected based on the AUM or ARMS error calculated on the target

image. In addition, this approach is inappropriate for depth estimation from a single

image because for the calculation of the AUM or ARMS error, three or more images

with different lens positions are needed. Therefore, the question of what the best focus

measure for DFD is has not yet been solved and needs to be investigated.
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In this paper, the performances of the blur estimators introduced in the previous

section are compared using the step-function-based test image. The comparison is

first performed in noiseless conditions, and then the same comparison is carried out in

noisy conditions using additive WGN (white gaussian noise).

For the comparison of the blur estimators, the step edge image is synthesized.

The image consists of 512 rows and 128 columns of pixels. The intensities of the

step function are 64 gray level for the darker region and 128 gray level for the brighter

region. The blur is simulated using a 2D Gaussian blur filter, and the standard deviation

of blur σb is varied from 0 to 10 in the vertical direction.

The estimators for the comparison are the gradient-based method, the Laplacian-

based method, the Gaussian-filtering-based method, the gradient-based method with

the local-scale control, and the second-derivative-based method with the local-scale

control. The evaluation is performed using the MSE (mean squared error) between

the true σb and the estimated σb on the edge pixels (64th column) of the original step

function image. The standard deviations of the additive WGN are set at 0, 0.1, 1, and

3.

Fig. 2.4 shows the blur estimation results in noiseless condition (σn = 0). The

overall performances of the estimators are similar, and no one shows outstanding re-

sults. When the σb is small, however, all the estimators have dicretization problems.

In the Fig. 2.4(b), such discretization errors can be more easily observed in the low σb

region.

When WGN is added to the image, the performances of the estimators are radically

differentiated. It can be shown that the Laplacian-based method and the Gaussian-

filtering-based method give poor results when the standard deviation of the noise is

increased, as shown in Fig. 2.5. The gradient-based method and Gaussian-filtering-

based method show acceptable results when σb is not large, but the results become

worse when sn = 3. The adaptive methods with the local-scale control show good
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Figure 2.4: Comparison results of the blur estimators. (a) Results in noiseless condi-

tions and (b) its highlighted image on the low σb region.
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estimation results, however, compared to the non-adaptive methods, even when sn =

3, due to its noise-adaptive filter. Therefore, in this paper, the adaptive filters with the

local-scale control method are used to compute the derivative values and σb.

Table 2.1: Comparison results of the blur estimators.

σn = 0 σn = 0.1 σn = 1 σn = 3

gradient 0.0034 0.0042 0.0636 0.7861

Laplacian 0.0131 0.2664 29.7573 66.0224

Gaussian filtering 0.0044 0.0093 1.4041 3.7816

gradient

with local 0.0074 0.0079 0.0180 0.0650

scale control

second derivative

with local 0.0088 0.0201 0.1483 0.2538

scale control
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Figure 2.5: Comparison results of the blur estimators on (a) σn = 0.1, (b) σn = 1, and

(c) σn = 3.
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Chapter 3

Confidence Values of Focus Measures

3.1 True Confidence Value

3.1.1 Perceptual Depth by the Parallactic Angle

Human can sense the distance of an object in a scene through various depth cues. It

is known that the binocular parallax is the most powerful and important cue among

the different depth cues. Fig. 3.1 shows how to discriminate the distance using the

binocular parallax and the parallactic angle. The near object is at distance d from both

eyes, and the far object is at distance x from the near object. The corresponding visual

angles of both objects are θ1 and θ2, and A is the interpupillary distance. A human

senses the distance of an object through a visual angle, which consists of an object and

both eyes.

The distance discrimination threshold is calculated as follows. To discriminate

the distances of both objects, parallactic angle η of the objects has to be larger than

the sensible minimum value of the parallactic angle. If x is set as the distinguish-

able threshold of the distance between both objects to determine that the distances of

the objects are different, then eta can be approximated using the following equations
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Figure 3.1: Binocular parallax and the parallactic angle.

because d is much larger than A [10]:

η = θ1 − θ2 =
A

d
− A

d+ x
=

Ax

d2 + dx
=

Ax

d2
(3.1)

x =
η

A
d2 (3.2)

Based on equation 3.1, the noticeable threshold of distance x is proportional to

d2, and as such, the human perception of distance is less sensitive in far-view regions.

For example, x = 0.03m when d = 6m while x = 300m when d = 600m, where

A = 0.065m and η = 5.42 × 10−5. The physical distance does not well reflect the

human perception of depth, and as such, the perceptual depth is proposed in this paper.

Perceptual depth is the relative depth value based on the human perception of the

distance of an object. The range of perceptual depth dp(d) is [0, 1), and dp = 0 when

the distance is minimum while dp is converged to 1 when the distance goes to infinity.

The shape of function dp(d) is derived using the equation dp(d+x)− dp(d) = const,

which means that distance discrimination threshold x gives a constant difference of

dp on all the distances. Then, dp can be approximated as follows, where dm is the
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minimum distance of a scene:

dp(d) = −dm
d

+ 1 (3.3)

As in the above equation, dp(d) maps [dm, inf) to [0, 1). Therefore, dm decides

the shape of the function. The shape of a low dm increases more rapidly, which means

that when dm is set to a low value, the slope of dp(d) is higher in the near region

about dm. Fig. 3.2 shows the two function examples made by different dm values. In

the earlier section, it was assumed that the focus is on the nearest object in the DFD

problem. Therefore, dm may be set to the estimated distance of the nearest object for

the appropriate selection of the shape of the function.

The relation between the perceptual depth and the blur radius can be derived using

equations 1.1 and 3.3, as follows:

r =

{
1−

df
dm

(1− dp)

}
f2

2N(df − f)
(3.4)

r = pdp + q (3.5)

where

p =
dff

2

2dmN(df − f)
, q =

(
−dm

df
+ 1

)
f2

2N(df − f)
(3.6)

As shown in equation 3.5, dp and r have a linear relation; therefore, the perceptual

depth estimation and evaluation problem can be viewed as a problem of a blur radius

or the σ of a blur if the relative depth will be concentrated on.

3.1.2 True Confidence Value Using the Perceptual Depth and Blur Ra-

dius

The confidence value of a focus measure means the correctness of a blur estimator

based on a focus measure. Therefore, it depends on the type of blur estimator or

focus measure used. For example, the gradient-focus-measure-based blur estimator

introduced in the previous chapter has estimation results and its own confidence value.
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Figure 3.2: Perceptual depth dp(d) when (a) dm = 1 and (b) dm = 5.
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In this chapter, the confidence value from the true values to be estimated is called a

“true confidence value” to distinguish it from the “estimated confidence value” in the

next chapter.

The true confidence value as an evaluation criterion for a focus-measure-based blur

estimator is defined as follows in this paper. First of all, the confidence value is the

quantitative measure of how reliable a blur estimation is. In this paper, this reliability is

measured based on the similarity between the true perceptual depth and the estimated

perceptual depth; as such, the true confidence value is defined by the true dp and the

estimated d̂p, as in the following equation:

cdp =
∣∣∣dp − d̂p

∣∣∣ (3.7)

As the true dp is needed for the computation of true confidence value cdp , it is

assumed that the true depth information and the capturing configuration for estimating

d̂p from a focus measure are known. cdp is the reliability measure of a depth estimator,

and as such, it is dependent on the type of blur estimator or focus measure adopted in

a depth estimator.

In addition, cdp has to be calculated on valid pixels that have sufficient textures

because textureless pixels cannot give any information about the blurs of an image.

For example, if the magnitude of the gradient of a pixel is larger than the threshold,

then the pixel can be regarded as valid.

Then, the computation of a true confidence value is derived as a function of the

blur radius obtained using equation 3.5, as follows:

cdp =
∣∣∣dp − d̂p

∣∣∣ = 1

p
|r − r̂| (3.8)

This means that relative values of cdp of all the pixels in a given scene are equivalent to

blur-radius-based confidence values cr and standard-deviation-based confidence value

cσ, where nr and nσ are normalization constants.

cr =
1

nr
|r − r̂| , cσ =

1

nσ
|σ − σ̂| (3.9)
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Figure 3.3: True confidence value of the gradient-based focus measure.

Furthermore, cr and cσ can be calculated as the relative approximation of cdp even in

a case where constant p is unknown or undefined. Henceforth, true confidence value c

is cr or cσ.

3.1.3 Examples of True Confidence Values

In this section, a simple image example is introduced, and its true confidence values

are presented. Image example i is a Gaussian blurred step function obtained using

equation 2.8. Fig. 3.3 shows the image example and the processes of the calculation

of the true confidence values. All the images are normalized for visual convenience.

In the figure, the true σb is the standard deviation of the Gaussian blur kernel.

As shown by the true σb image, every pixel of the image example is blurred by the

Gaussian kernel, but its effect does not appear on the plain regions, except the near-

edge regions. In this case, only the near-edge pixels are valid pixels; therefore, the true

confidence values are also computed based only on the valid pixels.
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Figure 3.4: True confidence value of the second-derivative-based focus measure.

3.2 Confidence Value Estimation Methods for Various Focus

Measures

In the previous chapter, the true confidence value was proposed when a blur kernel was

known. A blur kernel cannot be known, however, for computing the true confidence

value in a DFD problem because the problem involves the estimation of a blur kernel

from an image. Therefore, the confidence value must be estimated from the image

whose FDM (focus depth map) is desired to be obtained. In this section, estimation

methods of a confidence value for various blur estimators that adopts various focus

measures are presented.

3.2.1 Blur Estimator Based on the Gradient Focus Measure

The gradient-based focused measure was introduced in the earlier chapter. Here, the

estimation method of a confidence value for the gradient-based focus measure and the
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blur estimator is proposed. The estimation method of a confidence value of gradient

ĉg is designed to have the following properties:

ĉg(x, y) =


exp

{
−α

â (deσw)
2
}
· (−kσf + 1) , if (−kσf + 1) > 0

0, if (−kσf + 1) ≤ 0

(3.10)

At first, the shape of the function is also Gaussian to model the Gaussian blur

because the defocus blur kernel is assumed to be Gaussian. The gradient-based focus

measure shows the Gaussian shape on the Gaussian blurred edge, and the difference

between the focus measure of (x, y) and the nearest edge pixel is also Gaussian. de

is the distance between (x, y) and the nearest edge pixel so that ĉg is decreased when

de is increasing, like the true confidence value. Edge pixels are detected at the local

peaks of the focus measure, but various edge detectors may be employed for detecting

edge pixels.

σw is the standard deviation of the gradients of a local window. This term reflects

the degree of textureness. Its value is high at the region that has a complex texture

and enough blur information, and low at the region that has no texture and no blur

information. Therefore, a higher σw gives a higher confidence value.

σf is the standard deviation of the adaptive gradient filter and is related to the

correctness of a gradient. If σf is large, the gradient value is computed from image

filtered by the strong smoothing filter. Therefore, low σf gives a higher confidence

value. The attenuation shape of σf is linear from the regression of the step edge.

The gradient-based blur estimator uses the height of edge a, as in equation 2.10,

but a has to be estimated because it is unknown for an arbiter image. â is the estimated

height of the edge. In this paper, it is estimated simply based on the difference between

the maximum and minimum intensities of the local windows. Lastly, α decides the

attenuation degrees of the side regions of the edges. Its value is selected empirically.
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Figure 3.5: Estimated confidence value of the gradient-based focus measure.

3.2.2 Blur Estimator Based on the Second Derivative Focus Measure

The second-derivative-based focus measures was introduced in the earlier chapter.

Here, the estimation method of a confidence value ĉL for the second-derivative-based

focus measure and the blur estimator is proposed as the following equations:

σ̂s(x, y) =
1

2

{∣∣argmaxxt
∇2i(xt, yy)

∣∣+ ∣∣argminxt
∇2i(xt, yt)

∣∣} (3.11)

ĉs(x, y) =


exp

(
−β

|∇2i(x)|σs

|∇i(x)||∇2i(p)||∇2i(q)|

)
, if pxqx ≤ 0{

1− min(|px|,|qx|)
σmax

}
· exp

(
−β

|∇2i(x)|σs

|∇i(x)||∇2i(p)||∇2i(q)|

)
, if pxqx > 0

(3.12)

where σs is the local standard deviation of the second derivatives and p and q are the

positions where the second derivative values are the peak on both sides of (x, y) along

gradient direction pixels (xt, yt).

ĉs is high when the peak values of the side regions are high and the second deriva-
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Figure 3.6: Estimated confidence value of the second-derivative-based focus measure.

tive of (x, y) is low because the second derivative is zero at the center of the unit step

edge. As the error of the estimated standard deviation using second-derivative-based

blur estimator is increased if (x, y) is outside the regions between the two peaks of the

second derivative that have opposite signs around the unit step edge, ĉs is designed to

decrease when pxqx > 0. The attenuation constant β is selected empirically.
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Chapter 4

Focus Depth Map Estimation

4.1 Piecewise Planar Model

The information about the defocus blur of an image is concentrated on the edges or

complex textures, as mentioned in the last chapter. The confidence values of focus

measures are sufficiently high only on these regions, and are too low for estimating

the blur on the remaining regions, which account for a much greater portion of the

whole area than the edge regions. As such, to estimate the entire depth map of an

image, the blur information of the edge regions has to be spread to the textureless or

no-information regions.

The existing methods for spreading information can be categorized into two types

of algorithms: The filtering-based method [4] and the “segmentation and averaging”

method [9][5]. These types of algorithms both have strong points and weak points,

as shown in Fig. 4.1 and 4.2. Each (b) of the figures shows sparsely distributed focus

measures with errors.

The filtering-based methods are appropriate for representing a smooth depth map

because a filter has to be large enough to spread the defocus information. Many details

of a scene are lost, however, and such methods cannot represent the depth disconti-
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Figure 4.1: Simple explanation of the existing depth map estimation methods when

each object has a constant depth.

nuities, as shown in Fig. 4.1(c), due to the large smoothing filter. On the other hand,

the segmentation-based methods are outstanding for conserving the scene details and

depth discontinuities, as shown in Fig. 4.1(d), but they cannot represent the gradual

changes in the depth, as shown in Fig. 4.2(d). In addition, very small segments give

erroneous depth segments due to lack of information.

In the recent stereo matching method, the segment-wise (piecewise) planar model

is developed to estimate a disparity map [11]. It is assumed that the disparity of each

segment is a plane; as such, a gradual change in the disparities in a segment can be

represented and makes the segment robust against the outliers compared to the filtering

methods.

The segment-wise-planar-model-based method tries to find the optimal disparity

map using total cost function C explained by equation 4.1. Total cost C consists of the

32



Figure 4.2: Simple explanation of the existing depth map estimation methods when

the depth changes gradually.

data term Cd and smoothness term Cs.

C = Cd + λ · Cs (4.1)

where λ is a constant value and the data term Cd is

Cd =
∑
i

ei (4.2)

where ei is the fitting error of segment i.

The smoothness term is the value obtained from multiplying border length l(i, j)

and color similarity s(i, j) for neighboring segments i and j.

Cs =
∑
i,j

l(i, j) · s(i, j) (4.3)

l(i, j) is the length of the border between segments i and j. This term means that the

separation of the segments with a complex border entails a higher cost than that of
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the segments with a simple border. Color similarity s(i, j) is defined by the following

equation:

s(i, j) =

(
1− min (|m(i)−m(j)| , 255)

255

)
· 0.5 + 0.5 (4.4)

where m(i) and m(j) are the mean values of the pixels in segment i and j.

4.2 The Proposed Focus Depth Map Estimation Method

4.2.1 Cost Function

The proposed cost function for a depth map is based on the segment-wise planar model

explained in the last section. The following equations are the total cost function and

the data term:

C = Cd + λ · Cs (4.5)

where λ is a constant value. The data term is

Cd =
∑
i

ei (4.6)

where ei is the fitting error of a segment i.

At first, the data term Cd represents the goodness of fit of all the segments. To

fit the estimated depth to the plane, in this paper, the weighted linear least square

regression method is used. The error function of fitting segment i to a linear plane is

as follows:

ẽi(w) =
∑

(x,y)∈i

c(x, y) ·
{
d̂(x, y)− (w1x+ w2y + w3)

}2
(4.7)

where w =
[
w1 w2 w3

]
is the fitting coefficients vector. As each pixel has a

different texture and edge, the confidence value c(x, y) is used as the weight of fitting.

Then, the fitting error cost of segment i is

ei = ẽi(wm) (4.8)
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where wm = argminwẽi(w). Finally, the data term Cd can be computed by adding

the fitting error costs of all the segments.

The proposed method has two different modes and data terms in fitting a segment:

(1) the linear plane mode, which is introduced in the segment-wise-planar-model; and

(2) the constant depth mode. The purpose of the constant depth mode is to prevent

overfitting. Unlike the disparity information of stereo matching, defocus information

is very sparse. Therefore, the slope of a segment may yield a large error on the sparse

region. In this paper, the constant depth mode is applied to a segment that has sparse

depth information, using the confidence value density dc, which is defined as follows:

dc(x, y) =
∑
i,j

c(x+ i, y + j) · w(i, j) (4.9)

where c is the confidence value and w is the Gaussian window. Then, the normalized

variance of confidence density Vc = V ar(dc)/
∑

dc is computed. A high Vc means

that the area of the sparse information region of a segment is large, and as such, the

constant depth mode is applied to the segment. On the other hand, the linear plane

mode is applied to the segment that has a small Vc.

w =


[
w1 w2 w3

]
for linear plane mode[

0 0 w3

]
for contant depth mode

(4.10)

The smoothness cost Cs is modified by replacing boundary cost b(i, j) with border

length l(i, j).

Cs =
∑
i,j

b(i, j) · s(i, j) (4.11)

Fig. 4.3 shows the concepts of boundary cost computation. Fig. 4.3(a) and (b) have

different boundaries on the same images. In this case, Fig. 4.3(b) has a high boundary

cost than Fig. 4.3(a) due to the complex shape of the boundary of Fig. 4.3(b). In

the next case, Fig. 4.3(c) and (d) have the same complex boundaries, but Fig. 4.3(c)

looks like two different segments only. To reflect this concept, the boundary cost
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Figure 4.3: Simple explanation of the concept of boundary cost computation.
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considers the gradients of the boundary pixels. Fig. 4.3(e) and (f) have the same simple

boundaries and the same gradients of the boundary pixels, but Fig. 4.3(e) looks like

two different segments while Fig. 4.3(f) looks like one segment because the interior

textures of the figures are quite different. The proposed boundary cost uses a non-

boundary gradient mean to solve this problem. Briefly, the boundary cost is high when

the boundary is complex, when the gradients of the boundary pixels are low, and when

the textures in both segments are complex.

The complete form of the boundary cost is as follows:

b(i, j) =
∑
k∈B

255− |grad(k)− ρ · (mg(i) +mg(j))|
255

(4.12)

and the non-boundary gradient mean mg is

mg(i) =
1

Ni

∑
k ̸∈B

grad(k) (4.13)

where Ni is the number of non-boundary pixels of segment i. Boundary cost b(i, j)

accumulates the values that are inversely related to the gradients of the boundary pixels

instead of counting the boundary pixels. This term prevents merging through the object

boundaries by a small b(i, j). On the other hand, a boundary on a smooth plane gives

a large b(i, j); as such, the segments around the boundary are induced to merge. In

addition, the subtraction of mg from accumulates values prevents a low boundary cost

on the false boundary of the complex texture regions, and therefore, the segments in

the complex texture can also be merged.

The color similarity s(i, j) is also modified as follows:

s(i, j) = exp(−η∥mean(i)−mean(j)∥1) (4.14)

Through the modified term, the color similarity of the adjacent segments has a greater

influence at the segment merging stage, which will be explained in the next section.
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4.2.2 Depth Map Generation Algorithm

The proposed depth map generation algorithm uses greedy algorithm based iterative

local cost optimization [33]. Although the greedy algorithm cannot guarantees to get

the global optimum solution, it is very fast and effective to reach the local optimum

solution. At the setup process, first, an image is divided into Ns segments through

entropy-based oversegmentation [15]. The Cd(i) values of segments i and △C(i, j)

for neighboring segment pairs i and j are computed. △C(i, j) refers to the cost that

can be reduced when i and j are merged.

△C(i, j) = Cd(i) + Cd(j) + Cs(i, j)− Cs(i ∪ j) (4.15)

In the iteration process, (im, jm) = argmax(i,j)△C(i, j) is calculated, and if

△C(im, jm) > 0, then segment im and jm are merged into im. After merging,

Cd(im), Cs(im, j), and △C(im, j) are updated for neighboring segment j of im. If no

merging occurs, the iteration stops.

Fig. 4.4 shows an example of the processes involved in the proposed focus depth

map estimation algorithm. At the initial step, the image is divided into 10 segments.

In this step, each segment has its own depth plane, but the planes of the segments

are not consistent due to the lack of information on each segment. Through iteration,

similar segments are merged to decrease the cost function, and the consistency of the

map is gradually increased. The figure shows that the consistency is improved after

five iterations. Finally, all the segments are merged into one segment, and the map

becomes natural.
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Figure 4.4: Example of the processes of the proposed depth map generation algorithm.
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Chapter 5

Experimental Results

The experiments that were performed in this research consisted of two main categories:

(1) comparison of the confidence value estimation methods of focus measures; and (2)

comparison of the depth map estimation methods. To compare the existing methods

and the proposed method, some images were synthesized artificially, and some images

were captured with a camera. All the images had enough focus information to estimate

a depth map.

5.1 Comparison of the Confidences Value Estimation Meth-

ods of Focus Measures

To verify the confidence value estimation methods, artificial images were synthesized

using a step function and random rectangles. The step function image was explained in

the earlier chapter, and there was a step function on the horizontal center of all the lines

of the image with Gaussian blur. The standard deviation of the blur σb was vertically

increased linearly from 0 to 6. The step function image is shown in Fig. 5.1. In the

image, WGN is added, and its standard deviation σn is varied to 0, 1, 2, and 3.
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The random rectangles image consisted of a plane background and of 20 randomly

located rectangles. The widths, heights, locations, directions, and intensities were all

random. As overlapping of the rectangles was allowed, the number of visible rectan-

gles could be lower than 20, as shown in Fig. 5.13. The blur of the image was the same

as that of the step function image.

For the synthetic images, quantitative evaluation could be performed because the

true confidence value of the focus measures and the true σb were known. Therefore,

the evaluation criteria are the MSE (mean square error) for the confidence value and

the MSE of σb for the depth (standard deviation) map.

Fig. 5.1 - 5.8 compare the confidence values of the gradient- and second-derivative-

based focus measures for the step function image. The true confidence values seem to

form a thick line on the vertical center, and their widths are increasing with the blur.

The error images are represented by the red and green colors, which mean opposite

error signs. In the figures, the ratio of the amounts of the green and red color looks

like similarl as such, every empirical coefficient or normalizer is sufficiently tuned for

all the methods.

Fig. 5.9 - 5.12 show the MSE of the proposed and of Jing’s method on various

σn. Fig. 5.9 represents the MSE in decimal scale, and Fig. 5.10 is the same data in

log scale. In the log scale graph, the difference of the performances on the small error

region can be easily shown. Fig. 5.11 shows the ratio of the MSE of the estimated

confidence values to the sum of squared true confidence value. It reflects the decrease

of the confidence values when σn is high because the MSE can be decreased despite

the increase of the noise due to the very low confidence value. Fig. 5.11 is its log scale

version.

It was shown that the proposed method estimates the confidence values well so

that the absolute errors between the estimated confidence values and the true confi-

dence values are quite small, especially when σn is high. The errors are amplified for
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visualization in the figures, the accurate values of the errors can be seen in Table. 5.1.

Compared to Jing’s method [9], the proposed method estimates the confidence values

of the side lobes better. The application of Jing’s method to the second-derivative-

based blur estimator seems slightly inappropriate because such method is based on

gradients. The reason for applying the method, however, is that it seems that there is

no confidence value that fits the second-derivative-based blur estimator.
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Figure 5.1: Comparison of the confidence values of the gradient-based focus measure

for the step function image (σn = 0).
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Figure 5.2: Comparison of the confidence values of the gradient-based focus measure

for the step function image (σn = 1).
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Figure 5.3: Comparison of the confidence values of the gradient-based focus measure

for the step function image (σn = 2).

45



test
image

proposed
confidence
of gradient

confidence
by Jing’s
method

true
confidence
of gradient

error of
Jing’s

method

error of
proposed
method

Figure 5.4: Comparison of the confidence values of the gradient-based focus measure

for the step function image (σn = 3).

46



test
image

proposed
confidence of

2nd SD

confidence
by Jing’s
method

true
confidence

of SD

error of
Jing’s

method

error of
proposed
method

Figure 5.5: Comparison of the confidence values of the second-derivative-based focus

measure for the step function image (σn = 0).
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Figure 5.6: Comparison of the confidence values of the second-derivative-based focus

measure for the step function image (σn = 1).
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Figure 5.7: Comparison of the confidence values of the second-derivative-based focus

measure for the step function image (σn = 2).
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Figure 5.8: Comparison of the confidence values of the second-derivative-based focus

measure for the step function image (σn = 3).
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Figure 5.9: Mean square error of the confidence values estimation methods for the step

function images in decimal scale.
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Figure 5.10: Mean square error of the confidence values estimation methods for the

step function images in log scale.
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Figure 5.11: Ratio of the mean square error of the estimated confidence values to the

sum of squared true confidence values for the step function images in decimal scale.
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Figure 5.12: Ratio of the mean square error of the estimated confidence values to the

sum of squared true confidence values for the step function images in log scale.
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Table 5.1: Mean square errors of confidence values for the step function image (aver-

age of 5 trials). All the values of the table are 100 times the MSE.

Jing’s proposed Jing’s proposed

method method method method

(gradient) (gradient) (second (second

derivative) derivative)

σn = 0 0.4942 0.0772 0.1457 0.0120

σn = 1 0.4735 0.0752 0.1665 0.0552

σn = 2 0.4567 0.0637 0.1652 0.0812

σn = 3 0.4448 0.0588 0.1752 0.0990
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Fig. 5.13 - 5.20 compare the confidence values of the gradient- and second-derivative-

based focus measures for the random rectangles image. The figures show the results of

one example, and Table. 5.2 shows the average MSE of the five trials through randomly

generated images. In the figure, the true confidence values are high on the boundaries

of the rectangles. Like the step function image, the proposed method was shown to

provide better results for the random rectangles images.

Fig. 5.9 - 5.12 show the MSE of the proposed and Jing’s method on various σn for

the random rectangles images. The explanation of each graphs is the same as those of

the graphs for the step function images.

With regard to the correctness of the confidence value estimation of the gradient-

and second-derivative-based focus measures, the estimator for the second-derivative-

based focus measure showed better results in the simple regions, like the step image

or an isolated rectangle in the random rectangles image. The estimator for the second-

derivative-based focus measure, however, showed weakness at the complex region,

like the overlapped rectangles. With regard to the overall correctness, the estimator for

the second-derivative-based focus measure showed better results.
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Figure 5.13: Comparison of the confidence values of the gradient-based focus measure

for the random rectangles image (σn = 0).
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Figure 5.14: Comparison of the confidence values of the gradient-based focus measure

for the random rectangles image (σn = 1).
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Figure 5.15: Comparison of the confidence values of the gradient-based focus measure

for the random rectangles image (σn = 2).
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Figure 5.16: Comparison of the confidence values of the gradient-based focus measure

for the random rectangles image (σn = 3).
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Figure 5.17: Comparison of the confidence values of the second-derivative-based focus

measure for the random rectangles image (σn = 0).
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Figure 5.18: Comparison of the confidence values of the second-derivative-based focus

measure for the random rectangles image (σn = 1).
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Figure 5.19: Comparison of the confidence values of the second-derivative-based focus

measure for the random rectangles image (σn = 2).
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Figure 5.20: Comparison of the confidence values of the second-derivative-based focus

measure for the random rectangles image (σn = 3).
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Figure 5.21: Mean square error of the confidence values estimation methods for the

random rectangles images in decimal scale
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Figure 5.22: Mean square error of the confidence values estimation methods for the

random rectangles images in log scale.
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Figure 5.23: Ratio of mean square error of the estimated confidence values to the sum

of squared true confidence values for the random rectangles images in decimal scale.
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Figure 5.24: Ratio of mean square error of the estimated confidence values to the sum

of squared true confidence values for the random rectangles images in log scale.
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Table 5.2: Mean square errors of the confidence values for the random rectangles

image (average of 5 trials). All the values of the table are 100 times the MSE.

Jing’s proposed Jing’s proposed

method method method method

(gradient) (gradient) (second (second

derivative) derivative)

σn = 0 5.135 2.480 11.371 4.567

σn = 1 5.053 2.337 12.823 7.372

σn = 2 5.000 2.271 13.296 8.849

σn = 3 5.033 2.160 13.800 9.922
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5.2 Performances of the Proposed Depth Map Generation

Method

Depth map estimation experiments were performed on synthetic and real images. The

focus depth maps of the same images with the past section were estimated using the

proposed and existing methods to compare their performances. Chen’s method [4] is

based on the Gaussian filter, and Lee’s method [5] is based on oversegmentation and

averaging. Although Lee deals not only with the focus depth map but also with the

pseudo depth map and depth fusion, in this paper, only the focus depth map generation

parts of Lee’s method are compared.

With regard to the term “focus depth map,” in principle, σb and the depth are not

the same. In the previous chapter, however, it was explained that perceptual depth

dp, blur radius r, and σb have a linear relationship. Therefore, with undefined or

unknown parameters, the σb map can be regarded as the scaled perceptual depth map.

In accordance with this interpretation, the focus depth map means the σb map in the

experiments described in this section.

5.2.1 Experiments on Synthetic Images

In Fig. 5.25, the true σb map is a uniformly increasing map in the vertical direction, but

there is no blur information on the textureless regions. Therefore, Chen’s method can-

not estimate the σb of the plane regions because it adopts the smoothing Gaussian filter.

Lee’s method also cannot obtain an appropriate map because the edge and plane re-

gions are separated by the oversegmentation process. On the other hand, the proposed

method estimates the planar map by iteratively merging all the segments into one seg-

ment. These tendencies are shown for the random rectangles image, as in Fig. 5.26.

The errors of the proposed method are fewer than those of the existing methods. This

is because the proposed method shows strong points for the gradual changes of σb.
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Figure 5.25: Estimated depth (standard deviation of the blur) maps for the step function

image.

In addition, the iterative segment merging process gathers local information to build a

robust σb plane. The overall performance of the gradient-based method is better than

that of the second-derivative-based method. It seems that the reason for this is the

larger error of the second-derivative-based blur estimator when σb is low.
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Figure 5.26: Estimated depth (standard deviation of the blur) maps for the random

rectangles image.

Table 5.3: Mean square errors of estimated depth (σb) maps using synthetic images.

Chen’s Lee’s proposed proposed

method method method method

(gradient) (second

derivative)

step function 17.8115 29.2947 0.1426 0.4222

random rectangles

(average of 4.4321 6.5277 0.8327 0.9180

5 trials)
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5.2.2 The Experiments on Real Images

Unlike with synthetic images, generally, there are no known true distance or depth

maps of existing images. Therefore, images are captured under a controlled config-

uration to know the true distance and depth for quantitative evaluation using real im-

ages. In this research, five images are captured under known configurations described

in Fig. 5.27. In this section, the focus depth maps are estimated using the proposed

method from the real images and are compared to the results of Chen’s method and

Lee’s method.

Fig. 5.28 shows the true distance maps and the true perceptual depth maps of the

captured images. For visual convenience, the distance and depth of the gray images

are inverted so that the brighter region means the nearer region. Every true distance is

physically measured by meter, and the true distance images of the figure are normal-

ized for visual purposes. The true perceptual depth maps are computed using equa-

tion 3.3 from the true distance maps. In addition, the measurement of the distance

considers the capturing angle of the camera and the curve of the object; as such, a

slightly curved surface of the floor and the object can be shown in the 3D visualized

versions of the perceptual depth mapss.

Images 1-3 include a floor whose depth changes gradually, as with synthetic im-

ages. Chen’s and Lee’s methods show a coarse tendency of depth changes but also

include unnatural details due to the smoothing filter and oversegmentation. The pro-

posed method, on the other hand, shows the natural depth maps based on the gradual

depth changes. As appropriate to the shapes and depths of objects like a plate and a

book, Chen’s and Lee’s methods do not represent the smooth depths of objects. The

proposed method, however, shows the smooth planes of the depths of objects, although

some errors of the slopes are visible.

Images 4-5 consist of a focused foreground object and a blurred background.

Chen’s method cannot emphasize the depth difference between the foreground and
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(a)

(b)

Figure 5.27: Capturing configuration and captured images (a) camera and object con-

figuration; and (b) captured images.
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Figure 5.28: True distance maps and true perceptual depth maps of the images.

the background due to the very large gradient of the object boundaries. Lee’s method

shows moderate qualities but still contains unnatural depth discontinuities on the bor-

ders of the segments. On the other hand, the proposed method shows consistent and

natural depth maps on both the foreground objects and the background regions.

Fig. 5.31 - 5.32, and Table. 5.4 show quantitative comparisons of the depth map

estimation results. For every image, the results of the proposed method are better than

those of the other methods. Especially, the proposed method outperforms the other

methods at image 3, which includes the gradual depth changes and the flat region

simultaneously.
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Figure 5.29: True distance maps and estimated depth maps obtained through Chen’s

method, Lee’s method, and the proposed method (gradient-based).
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Figure 5.30: True distance maps and estimated depth maps obtained through Chen’s

method, Lee’s method, and the proposed method (second-derivative-based).
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Figure 5.31: Mean square error of the depth map estimation methods for the real

images in decimal scale
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Figure 5.32: Mean square error of the depth map estimation methods for the real

images in log scale
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Table 5.4: Mean square errors of estimated depth maps using the real images. All the

values of the table are 100 times the MSE.
Chen’s Lee’s proposed proposed

method method method method

(gradient) (second

derivative)

image 1 16.9 2.75 0.12 1.85

image 2 8.97 3.11 0.33 0.84

image 3 11.6 15.2 0.88 1.93

image 4 17.6 1.11 0.51 0.49

image 5 21.1 3.36 0.16 0.16

average 15.2 5.10 0.40 1.05

79



Lee’s
method

Chen’s
method

original
image

proposed
method
(gradient)

proposed
method
(SD)

Figure 5.33: Estimated depth maps using practical images.

Fig. 5.33 shows the results of real images with unknown true depths. These images

represent landscape scenes, outdoor scenes, and arbitrary objects; as such, their true

distances or depths are unknown. To show the results using practical images, however,

experiments using images gathered from the Internet are performed. Note that all the

images have sufficient defocus information and meet the condition that the nearest

region is focused. As shown in Fig. 5.33, the overall properties of the resulting images

are similar to those in the previous experiments using images with known true depths.

The results of the use of the proposed method show smooth and natural depth maps.
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5.2.3 Execution Time

In the previous chapter, the proposed method showed better results than the existing

methods, but the proposed method is in fact quite complex compared to the other

methods. In other words, although the existing methods do not give correct depth

maps, their execution times are very short. The following figures show the execution

time of the proposed method in various cases. The size of the test image is QVGA

(240 rows, 320 columns), and the testing system is core i7 3.2Ghz with MATLAB.

Fig. 5.34 shows the execution times when the number of initial segments for

the oversegmentation process is changed with the assumption that a whole image is

merged into one segment. The second-derivative-based method needs more time than

the gradient-based method does due to the blur estimation step. The execution time in-

creases when the number of initial segments is high, but the amounts of time increase

by the number of initial segments are similar for both. For comparison, Chen’s method

records 0.694s, and Lee’s method records 0.946s, and the proposed method is about

30-60 times slower when the number of initial segments is around 15.

Fig. 5.35 shows the execution times when the number of final segments for the

oversegmentation process is changed. The number of final segments is dependent on

an image; that is, an image that has many objects or segments needs a shorter time,

and vice versa. The second-derivative-based method also needs more time than the

gradient-based method does. The execution time decreases when the number of final

segments is high because the number of iterations is low at the merging step. In the

experiments herein, the number of initial segments is fixed to 15.
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Figure 5.34: Effect of the number of initial segments on the execution time.
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Figure 5.35: Effect of the number of final segments on the execution time.
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Chapter 6

Conclusion

In this paper, a new solution for the DFD (depth from defocus) problem is proposed.

The typical DFD method assumes that the focus is on the nearest region of a scene to

avoid ambiguity in the relation between the depth and the defocus blur, and the pro-

posed method follows such assumption. First, the perceptual depth, which is based on

human depth perception, is defined, and then the (true) confidence values of a focus

measure are defined using the perceptual depth. The estimation methods of confi-

dence values are designed for the gradient- and second-derivative-based focus mea-

sures. These estimated confidence values are more correct than those of the existing

method. The proposed focus depth map estimation method is based on the segment-

wise planar model. In the fitting process of each segment, confidence values are used

as fitting weights of the weighted linear least square fitting method. To solve the cost

optimization problem of focus depth map estimation, iterative local optimization based

on the greedy algorithm is used.

To verify the performance of the proposed method, comparative experiments are

performed using the existing methods and the proposed method. The test set, which is

used in the experiments, consists of artificial and real images whose true distances and
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depths are known. The proposed method shows better performances than the existing

approaches for defocus blur estimation and depth map estimation.

Some problems of DFD remain, however, or need to be alleviated. First, the re-

sults of the estimation of the confidence value of the gradient-based method cannot be

considerably improved when the edge detection results have poor quality. To achieve

better results in poor environments, the edge detector has to be more robust to noise

and blur. Next, sometimes the density of the confidence values does not give correct

information about the shape of a segment. For example, in the case of the perspective

view of a wide and less textured floor, the algorithm decided that it is a flat segment

due to the high variance of the confidence value densities. Lastly, oversegmentation

does not give the exact object boundaries for some images. The segmentation results

of some images show merged objects and unnatural boundaries, making the resulting

depth maps also look unnatural locally.

Furthermore, some images do not meet the essential assumption that the focus is

on the nearest region of a scene, and some images have motion blur due to the moving

capturing devices that were used in obtaining them. In these cases, the correct depth

map cannot be generated from the amounts of blur. To solve these problems, depth

fusion using another depth cue is widely used. For example, motion estimation can

give approximated information about motion blur; as such, more accurate defocus

blur estimation is possible from the blur of an image. As no single depth cue is perfect

for all images, the adaptive depth fusion by image property has to be improved in the

future.
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국문초록

깊이맵이란영상내에서촬영장치로부터가깝고먼정도를수치적으로나

타낸것으로서영상의 3차원구조를나타내기위해널리쓰이는표현방식이다.

2차원영상으로부터깊이맵을예측하기위해서는탈초점흐림,장면의기하학

적 구조, 객체의 주목도 및 움직임 등 다양한 종류의 깊이 정보가 활용된다. 그

중에서도탈초점흐림은널리이용되는강력한정보로서탈초점흐림으로부터

깊이를 예측하는 문제는 깊이를 예측하는 데 있어서 매우 중요한 역할을 한다.

본 연구는 2차원 영상만을 이용하여 깊이 맵을 예측하는 것을 목표로 하며 이

때,촬영장치로부터영상내각영역의거리를알아내기위해탈초점거리예측

을이용한다. 먼저영상을촬영할때영상내가장가까운곳에초점이맞춰져있

다고가정하면촬영장치로부터멀어짐에따라탈초점흐림의정도가증가하게

된다. 탈초점거리기반깊이맵예측방법은이를이용하여탈초점흐림의정도

를측정함으로써거리를예측하는방식이다. 본연구에서는탈초점거리로부터

깊이맵을구하는새로운방법을제안한다. 먼저인간의깊이지각방식을고려

한지각깊이를정의하고이를이용하여탈초점거리예측의 (실제)신뢰도를정

의하였다. 다음으로그래디언트및 2차미분값에기반한탈초점거리예측결과

에 대하여 신뢰도를 예측하는 방법을 설계하였다. 이렇게 예측한 신뢰도 값은

기존의신뢰도예측방법으로예측한것에비하여더정확하였다. 제안하는깊

이맵작성방법은조각단위평면모델에기반하였으며,비용함수는데이터항

과평활도항으로구성되었다. 깊이맵의전체비용함수를최적화하는과정에

서는 반복적 지역 최적화 방식을 사용하였다. 제안하는 방법을 검증하기 위한

실험에는인공영상및실제영상들을사용하여제안하는방법과기존의탈초점

거리기반깊이맵예측방법들을비교하였다. 그결과,제안하는방법은기존의

방법들보다더나은결과를보여주었다.
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