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Abstract

EFFICIENT PARAMETER
ESTIMATION METHODS FOR
AUTOMOTIVE RADAR SYSTEMS

Han-Byul Lee
Department of Electrical and Computer Engineering
The Graduate School

Seoul National University

As the demand for safety and convenience in the automotive-technology field increased,
many applications of advanced driving assistance systems were developed. To provide
driving information, among the sensors, such as cameras sensor, light detection and
ranging sensor, radar sensor, and ultrasonic sensor, a radar sensor is known to exhibit

excellent performance in terms of visibility for different weather conditions. Especially



with the legislation of the adaptive cruise control system and autonomous emergency
braking system in a global environment, the market of the automotive radar sensor is
expected to grow explosively. At present, the development of cost-effective radar offering
high performance with small size is required. In addition, the radar system should be
enforced to have a simultaneous functionality for both long and short ranges. Thus,
challenging issues still remain with respect to radar signal processing including high-
resolution parameter estimation, multi-target detection, clutter suppression, and
interference mitigation.

For high-resolution parameter estimation, direction-of-arrival (DOA) estimation
method has been investigated to identify the target object under complex unban
environment. To separate closely spaced target having similar range and distance, high-
resolution techniques, such as multiple signal classification (MUSIC), the estimation of
signal parameters via rotational invariance techniques (ESPRIT), and maximum
likelihood (ML) algorithm, are applied for automotive radars. In general, cycle time for
radar system, which is the processing time for one snapshot, is very short, thus to
establish a high-resolution estimation algorithm with computational efficiency is
additional issue.

On the other hands, multi-target detection scheme is required to identify many targets
in the field of view. Multi-target detection is regarded as target pairing solution, whose
task is to associate frequency components obtained from multiple targets. Under certain
conditions, the association may fail and real target may be combined to ghost
components. Thus, reliable paring or association method is essential for automotive radar
systems.

The clutter denotes undesired echoes due to reflected wave from background

environment, which includes guardrail, traffic signs, and stationary structures around the
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load. To minimize the effect of clutter, conventional radar systems use high pass filter
based on the assumption that the clutter is stationary with energy concentrated in the low
frequency domain. However, the clutter is presented with various energy and frequency
under automotive radar environment. Especially, under the specific environment with
iron materials, target component is not detected due to clutter with large power.

Mutual interference is a crucial issue that must be resolved for improved safety
functions. Given the increasing number of automotive radar sensors operating at the
same instant, the probability that radar sensors may receive signals from other radar
sensors gradually increases. In such a situation, the system may fail to detect the correct
target given the serious interference. Effective countermeasures, therefore, have to be

considered.

In this dissertation, we propose efficient parameter estimation methods for automotive
radar system. The proposed methods include the radar signal processing issues as above
described, respectively. First, the high-resolution DOA estimation method is proposed by
using frequency domain analysis. The scheme is based on the MUSIC algorithm, which
use distinct beat frequency of the target. The target beat frequency also gives distance and
velocity. Thus, the proposed algorithm provides either high-resolution angle information of
target or natural target pairing solution. Secondly, we propose the clutter suppression
method under iron-tunnel conditions. The clutter in iron-tunnel environments is known to
severely degrade the target detection performance because of the signal reflection from
iron structures. The suppression scheme is based on cepstral analysis of received signal. By

using periodical characteristic of the iron-tunnel clutter, the suppressed frequency response
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is obtained. Finally, the interference mitigation scheme is studied. Mutual interference
between frequency modulated continuous waveform (FMCW) radars appears in the form
of increased noise levels in the frequency domain and results in a failure to separate the
target object from interferer. Thus, we propose a high-resolution frequency estimation

technique for use in interference environments.

Keywords : Automotive radar, FMCW, Direction-of-arrival, Interference,
Mitigation, Clutter, Suppression, High-resolution, Signal processing
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Chapter 1

Introduction

1.1 Background

Three major topics in the field of automotive technology are green, convenience,
and safety. Among these issues, the goal of research on safety and convenience is to
prevent accidents in a variety of dangerous situations commonly encountered by
drivers. To provide safety and driving comfort, advanced driving assistance systems
(ADAS) are emerging as very active issues [1]-[2]. The sensors have played a vital role
in the development of ADAS and enhancement of vehicle safety. Sensor technology
provides artificial sensing of the environment, which enables decision making by in-
car computers [3]. These sensor enabled systems help in providing warning to drivers
and regulating vehicle control to mitigate collisions that can lead to material damage as
well as human injury. ADAS includes blind spot detection, adaptive cruise control
(ACC), autonomous emergency braking (AEB), obstacle detection, collision
avoidance systems, rear view cameras, parking assistance (PA), and lane departure
warning as showing in Figure 1.1 [4]-[5]. Key sensor technologies being used in these
systems are camera sensor, infrared sensors, radar, light detection and ranging, and

ultrasonic sensors.
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Figure 1.1 ADAS applications




1.2 ADAS Applications for Automotive Radars

ACC ensures that the automobile remains at a predefined distance away from the car
ahead, reducing the speed to zero if necessary [6]. For ACC, radar sensors emit and
receive radio waves and thus determine the distance of vehicles in front of the user’s
vehicle. ACC with stop and go facility allows the vehicle to come to a standstill if the
preceding vehicle comes to a halt. The system again takes over as the preceding
vehicle stars and by controlling acceleration, the predefined cruise speed is again
achieved.

The blind spot detection helps the driver while attempting to pass other vehicles [7].
Sensors continuously monitor the presence, direction, and speed of vehicles in the
lanes beside the ego-vehicle. If a vehicle moves into the blind spot, warning based on
visual or audio signals can be generated to alert the driver of potential danger of
collision. Radar sensors mounted on the real bumper or on the side rear view mirrors
monitor vehicles behind or on adjacent lanes.

Forward collision warning systems are in-vehicle electronic systems that
monitoring the roadway in front of the host vehicle and warn the driver when a
potential collision risk exists. The system provides an audible alert when it senses a
reduction in traffic speed in vehicles ahead. When the danger of a collision is detected,
it provides a red warning light that flashes on the windshield. The forward collision
warning is extended as an AEB recently. The system takes sudden braking in an
emergency situation.

PA systems consist of visual aids, using real view cameras and side view cameras,
Ultrasonic sensors provide distance information which allows the vehicle to be safety

guided into the parking space without crashing into any other parked vehicle. Radar is



applied as a form of sensor fusion with camera sensors and ultrasonic techniques.

Parking assistance systems will gradually make way for automatic parking systems.



1.3 Motivation and Organization

The development of automotive radar focuses on two types; short-range radar
(SRR) using ultra-wide band (UWB) system at the 24 GHz and 77 GHz bands, and
long-range radar (LRR) using frequency modulated continuous waveform (FMCW)
systems at the 77GHz band [8]-[9]. The 77GHz band is known to be the most
appropriate frequency band in global automotive radar environments, as the 24GHz
band is shared with other communications systems. Furthermore, multi-mode radar
sensors including the function of both SRR and LRR are obliged to miniaturize its size
[10]. Considering the size of multi-mode radar sensors, 77GHz FMCW radar is a good
candidate for a new automotive radar solution [11]. FMCW radar uses the waveforms
of linearly increasing or decreasing frequencies, which increases reliability of radar
system by providing the distance and velocity information of the target simultaneously.
Moreover, the easy implementation of these radar sensors is the most significant factor
making the most popular commercial system at present [12]-{13].

There remain several problems, however, related to the signal processing of
automotive FMCW radar, including high-resolution parameter estimation, multi-target
detection, clutter elimination and mutual interference elimination [14]-[16]. For high-
resolution parameter estimation, direction-of-arrival (DOA) estimation method has
been investigated to identify the target object under complex unban environment. To
separate closely spaced target having similar range and distance, high-resolution
techniques, such as multiple signal classification (MUSIC) [17], the estimation of
signal parameters via rotational invariance techniques (ESPRIT) [18], and maximum
likelihood (ML) algorithm [19], are applied for automotive radars. In general, cycle

time for radar system, which is the processing time for one snapshot, is very short, thus



to establish a high-resolution estimation algorithm with computational efficiency is
additional issue. On the other hands, multi-target detection scheme is required to
identify many targets in the field of view. Multi-target detection is regarded as target
pairing solution, whose task is to associate frequency components obtained from
multiple targets. Under certain conditions, the association may fail and real target may
be combined to ghost components [20]. Thus, reliable paring or association method is
essential for automotive radar systems. The clutter denotes undesired echoes due to
reflected wave from background environment, which includes guardrail, traffic signs,
and stationary structures around the load. To minimize the effect of clutter,
conventional radar systems use high pass filter based on the assumption that the clutter
is stationary with energy concentrated in the low frequency domain [21]. However, the
clutter is presented with various energy and frequency under automotive radar
environment. Especially, under the specific environment with iron materials, target
component is not detected due to clutter with large power [22]. Mutual interference is a
crucial issue that must be resolved for improved safety functions. Given the increasing
number of automotive radar sensors operating at the same instant, the probability that
radar sensors may receive signals from other radar sensors gradually increases. In such
a situation, the system may fail to detect the correct target given the serious interference
[23]. Effective countermeasures, therefore, have to be considered.

This thesis has a focus on efficient parameter estimation for automotive radar
signal processing. In chapter 2, high-resolution DOA estimation with having pairing
function for automotive FMCW radar is presented. In the section 2 of chapter 2, the
MUSIC in the time-domain and frequency-domain is analyzed, and the simulated
results are presented in section 3 of chapter 2. In Chapter 3, the clutter suppression

scheme for iron tunnels is presented. Radar signal model of iron tunnel,



characterization of iron tunnel, and clutter suppression scheme are presented in in
section 2 of chapter 3. Experimental result is analyzed in in section 3 of chapter 3. In
chapter 4, interference mitigation method is described. Qualitative analysis of
interference is presented in section 2 of chapter 4. In section 3 of chapter 4, high-
resolution frequency estimation scheme is presented. Experimental result is analyzed

in section 4 of chapter 4. Finally, conclusion is presented in chapter 5.



Chapter 2
High-Resolution Direction of Arrival
Estimation with Pairing function for

Automotive Radar Systems

2.1 Introduction

Automotive radar sensors are employed for various ADAS applications such as
ACC, FCW, and AEB. Conventional FMCW radar provides only range and velocity
of targets which exist on field of view. The increasing demand for safety and
convenience leads to efforts improving the DOA estimation to allow resolution of
targets even in the similar distance-velocity information. In an urban environment, for
example, DOA is essential to separate targets with having same distance and velocity.
The DOA resolution using conventional beam-former is poor since automotive radars
have typically a low antenna aperture due to size restriction [24]. High-resolution
methods for DOA estimation such as MUSIC [17] enable radar sensors to resolve very

closely spaced targets. These algorithms are well known as subspace based algorithm,



which is applied wide research area to estimate specific parameters. MUSIC is based
on exploiting the eigen-structure of input covariance matrix. MUSIC makes
assumption that the noise in each channel is uncorrelated making correlation matrix
diagonal.

On the other hand, Target pairing is an essential for multi-target detection. FMCW
radar uses increasing chirp (which is a up chirp) and decreasing chirp (which is a down
chirp) signal to obtain paired beat frequency of target [25]. From these frequency pair,
distance and velocity of targets are calculated. However, additional technique is
required to combine estimated DOA and distance and velocity.

In this chapter, high-resolution DOA estimation algorithm in frequency domain
process is proposed. The proposed method is not significantly different from the
conventional MUSIC, whereas it resolves pairing issue naturally by using only beat
frequency of target. To analyze detection performance of proposed method, simulation
results are presented based on a 77 GHz FMCW radar system. From the simulation,
proposed frequency domain approach shows RMSE performance similar to time

domain approach.



2.2  High-Resolution DOA Estimation for Automotive

Radars

In order to provide DOA information, an array concept with multiple antennas is
employed. With a far-field assumption, which means radius of propagation is much
larger than array spacing, the propagation delay with respect to array element results in
linear phase shift. Array signal processing can largely be classified into spectral
approach and the parametric approach. The former uses spectral peak component of
estimator, including beamforming techniques and subspace based methods [24]. The
latter directly computes the DOA from signal model of estimator, such as maximum
likelihood (ML) [19]. In this section, we employed MUSIC algorithm for DOA

estimation, well known as subspace based method.
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Figure 2.1 ULA structure for DOA estimation
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2.2.1 DOA Estimation in the Time-domain Processing

Let us consider uniform linear array (ULA) with M antenna element, uniform
spacing of d as shown in Figure 2.1. Plane wave reflected from each D target
incidents on a different angle depending on the location of target. Each received signal
X, (n), for m=0,1,...,M, includes additive zero mean, Gaussian noise. Time is

represented by the n-th time sample. Thus, Array output x[n] is expressed as

follows,
x[n]=As[n]+w][n], (2.1)
X [n] si[n] | | wi[n]
aln] [a(6) a(6,) - a(6,)] SZE”] el e
X [n] So [n] Wi [n]
where,
a(@i)=[l, gimdlisn(a) .. ej2ﬂ(M—1)d//lsin(€i):|T’ 2.3)

s[n] is a vector of incident complex signal at time n, w[n] is a noise vector at

each array element m with zero mean, variance of o2, a(6) is M -element

array steering vector forthe ¢ DOA,and A is M x D matrix of steering vectors
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a(é,) . Itis initially assumed that the number of the targets D<M .

Based on above signal model, covariance matrix of received signal is given by

R, = E[x[n]x" [n]] = AE[s[n]s" [N]JA"™ + E[w[n]w" [n]] | 24)
=AR_A" + 5l

In general, D<M , AR_A"is a singular matrix and non-negative definite. The

array covariance matrix is calculated by the expectation of array output. However, we

cannot find exact statistics for the signals and noise. Therefore, we assume that the

process has ergodic properties, so we can approximate the correlation by use of a time-

averaged correlation. Then, (2.4) can be represented by
1 N
R, = WZ x[n]x"[n]. (2.5)
n=1

From (2.4), we can find that the eigenvalue of R, is exactly equal to summation of
the eigenvalue of AR_A" and the noise variance & . Since the rank of AR A"
is D, we can separate D eigenvalues larger than o> and M - D eigenvalues
with a value of o. We can also choose the D eigenvectors associated with the

signaland M — D eigenvectors associated with the noise. Then we can construct the

M x D dimensional subspace spanned by the signal eigenvectorsand M x (M — D)

dimensional subspace spanned by the noise eigenvectors, respectively.

E=[E, E,]. (2.6)
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where,

EN :[el €, - eM—D]

. (26)
Es :[eM—D+1 €v_ps2 " eM]'

The noise subspace eigenvectors are orthogonal to the array steering vectors at the

direction of arrival 6,, 6,, ---, 6, . The relation is expressed as follows,
ALlE,
Ny ) : 7
A" le i=12 --M-D
Placing this relation in the denominator creates sharp peaks at the DOA. Thus,
the MUSIC pseudo-spectrum is given as
Prsc (6) = : 28)
T @ EGE" a0)] |

The peak value of pseudo-spectrum determined as DOA of target objects by using
peak detection algorithm such as constant false alarm rate (CFAR). Parametric
approach such as MUSIC takes advantage of a prior knowledge such as the number of
frequency components. Because the precise number of frequency D value is not
available in practical systems, it must be estimated. As information theoretic criteria,
MDL or the Akaike information criterion (AIC) have been widely used to estimate the
number of frequencies [26]. In this work, we employ the MDL criterion to estimate

M . This is expressed as [27],

13 ; o (=18
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MDL(k)=log| —*—— 4—;k(2L—k)IogQ, (2.9)

after which the estimate of M can be obtained by

M = arg, minMDL(k) +1, (2.10)
where, k=0,1,---,L-1.

The flowchart of MUSIC algorithm is summarized in Figure 2.2.
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Figure 2.2 Flowchart of the MUSIC algorithm
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2.2.2 DOA Estimation in the Frequency-domain Processing

As described above section 2.2.1, DOA estimation in time-domain gives only the
sequence of estimated angles. To apply multi-target environment for automotive radars,
respective DOA of targets should be paired with those of distance and velocity.
Therefore, a proper pairing solution should be considered. However, if the number of
targets increases, the computational load to combine each DOA with range and
velocity.

In this section, we propose the DOA estimation in frequency-domain processing to
provide natural pairing solution for automotive radar system. The proposed method is
based on an observation that each target has different beat frequency. Thus, the DOA
estimation is performed by using beat frequency component of target.

Let us define the spectrum of received signal obtained from fast Fourier transform

(FFT). N, discrete-timesamples for M array output is defined by

X; =D % [n] -+ xy [n]T"
S; =[s[nls,[n] - sp[nl" @11
W, =[w,[n]w,[n] - w,, [n]]T

where,

Xm[n]I[Xm[O] Xm[l] Xm[NFFT] ]Ta form=1,2, -, M
ss[N1=[s,[0] S4[1] - S4[Neer 117, ford=1,2,---,D (2.12)
W, [n] = [w,, [0] W, [1] -+ W, [Neer 1T

(+); denotes sampled data in time-domain, X, and W, are M x N,

15 ; o (=18
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dimensional matrix, and S; is DxN., dimensional matrix. Fast Fourier

transform matrix with length of N, is represented as follows

1 ioraenn-
[F]n,k — e j2z(k-1)(n-1)/Nger

FRT , (2.13)

f(f,)=F( :  k, +1)=F(: ,Af—;+1)

where, f(f,) denotes Fourier operator for the beat frequency of d th target, k, is
frequency index of d th target, f, is beat frequency of d th target, and Af is
frequency resolution. From (2.13), coefficient of Fourier transform for the f, is
expressed by
D
Xe (f,)= Y a(6)S, (i, ) (f,) +W,F(f,)
i=1

=a(0,)S, (d, )f(f,)+W,f(f,) , (2.14)
=a(6,)se (fy)+we(f,)

where, X (f,) is a Mx1 vector including complex magnitude of beat

frequency f, for each array element. For the D targets, the total matrix

representation is given as

X=[Xe (f) X (f,) - XF(fD)]T
S= Diag[sp(fl) SF(fz) SF(fD)]T ’ (2.15)
WZ[WF(fl) WF(fZ) WF(fD)]T

where,

" ALY



XF(fd):[Xf,l[fd]Xf,Z[fd] XfYM[fd]]T,fordzl, 2,---, D

T (2.16)
WF(fd) :[Wf,l[fd] Wf,z[fd] Wf,M[fd]]
and compact matrix form is expressed by
X=AS+W. 2.17)

In order to estimate DOA with respect to f,, covariance matrix for each beat

frequency is defined as
Rei =EX: (f)x." ()], fori=1,2, ---,D. (2.18)

Since rank(R;)=1 ingeneral case, R.; has one eigenvalue in signal subspace,

and M —1eigenvalues in noise subspace. From the pseudo-spectrum (2.8), estimated

DOA component 6, is exactly paired with distance and velocity corresponding to f; .
Therefore, the DOA estimation in frequency domain resolves paring problem for

multi-target detection automatically.
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2.3 Simulation Result

231

Simulation Setup

To analyze the performance of DOA algorithm with two different approaches,

Monte Carlo simulations were performed. The received signal was generated by the

FMCW signal model. The parameters used in this simulation for FMCW are

summarized in Table 2.1.

Table 2.1 Parameters used in simulation for FMCW

Parameters value
Carrier frequency, f, 76.5GHz
Sweep time, At 5ms
Sweep bandwidth, BW 500 MHz
Maximum targetrange, R 200m
Maximum target velocity, V, .. 300 km/h
Sampling frequency, f, 440 kHz
The number of time sample 1024
The number of FFT point, N -, 1024
The number of Antenna 8
Antenna spacing Al2=cl2f,

It is assumed that 77GHz FMCW radar with single transmitting antenna and 8

receiving array antenna with equally spaced elements. Maximum beat frequency is

derived by

18



BW 2R 2f
_—J’__

fomax = Frmax T Tamex = £V
C c

b, max r,max d,max
At

(2.19)

r,max ~’

_BW 2R,
TTECTUAL C

where, f * is the maximum frequency difference by the

maximum target range, and f = 2—fCV is the maximum Doppler frequency

d,max c r,max
shift by the maximum relative velocity of target. By the Nyquist sampling theorem,
sampling frequency is determined by

f,>2.f (2.20)

b,max *

For convenience of operation, we set the number of the sample in time-domain

equal to those in frequency-domain.

232 Performance Comparison of the DOA Estimation in

Time- and Frequency-domain Processing
To evaluate performance of DOA estimation, we employed the measure of RMSE
under various conditions such as signal to noise ratio (SNR), the number of antenna

elements, and angular separation of closed two targets. The RMSE of estimated DOA

is defined as

RMSE = E[(6 - 6,.,,)*]. (2.21)
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where, 0 is the estimated DOA, and @4

reai

, is the real DOA for the target location.
From (2.21), we can find that the RMSE means the standard deviation of estimator.
The RMSE is evaluated against SNR. It is assumed that there exist two targets with
-7 and 8 degree. In general, the DOA of target represents the angle from the
perpendicular direction of the radar sensor. SNR is varied from 0 dB to 20 dB with
1000 independent trials, respectively. MUSIC estimate in time-domain uses the

number of time sample, which is snapshot, for N = 300, 500, 1000 .

# of Antenna = 8, Antenna spacing = A\/2
0.14 . . . . : . .

—5— MUSIC time domain, N=300
—+— MUSIC time domain, N=500
—#— MUSIC time domain, N=1000|
—— MUSIC freq domain

012}

0.1

0.02

0 2 4 6 8 10 12 14 16 18 20
SNR, [dB)

Figure 2.3 RMSE versus SNR

Figure 2.3 shows the RMSE performance of the algorithms in terms of the number
of time samples for the two targets. In general, many of the DOA algorithms rely on
the array covariance matrix. Since we use time average for estimating covariance

matrix, large time sample performs better in comparison. However, large snapshot
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affects computational time, results in longer cycle time for processing. On the other

hand, MUSIC estimate in frequency domain shows good performance with relatively

small computational load.

- SNR = 15 dB, Antenna spacing = A2

—&— MUSIC time domain, N=300
0.16 | —+— MUSIC time domain, N=500
—#— MUSIC time domain, N=1000
—#— MUSIC freq domain

0.14

0.02 ¢

The number of Antenna

Figure 2.4 RMSE versus the number of antenna
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SNR = 15 dB, # of Antenna = 8, Antenna spacing = /2

—&— MUSIC time domain, N=300
0451 —+— MUSIC time domain, N=500

—#— MUSIC time domain, N=1000
04r —— MUSIC freq domain

' 4 6 8 10 12 14 16 18 20
Angular separation, [7]

Figure 2.5 RMSE versus angular separation.

Figure 2.4 shows the RMSE performance in terms of the number of antenna
elements. The SNR is 10 dB, the number of antenna elements varies from 4 to 12, and
rest of simulation parameter is same as Figure 2.3. The number of antenna determines
the size of covariance matrix, which is a square matrix. As the number of antenna
elements increase, beam pattern of the array is sharper, and the more power of
receiving antenna is concentrated on specific direction. Moreover, MUSIC algorithm
uses the orthogonality between steering vector of incoming signal and eigenvectors in
noise subspace. Thus large antenna elements make large size of eigenvectors in noise
subspace, results in reducing correlation of signal and noise.

To evaluate angular resolution of the algorithm, the RMSE performance in terms of
angular separation is analyzed as shown in Figure 2.5. The SNR is 10 dB, the number

of antenna is 8, and the angular separation of two targets varies from 3 to 20 degree.
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MUSIC estimate in frequency domain shows similar performance with MUSIC
estimate in time domain with N =300.

From above observation, it is proved that the DOA estimate in frequency domain is
almost same performance as one in time domain, whereas frequency domain approach

provides efficient pairing solution.

233 Performance Analysis of the DOA Estimation in

Frequency-domain

The frequency domain approach utilizes the beat frequency of the target which is
derived from Fourier analysis of the received signal. Thus, better estimation of the beat
frequency leads to better performance of DOA estimate. The frequency resolution of
the FMCW radar is determined by sampling frequency f, and length of FFT N,

as follows

Af = £ . (2.21)

Neer

Thus, large FFT points gives more precise complex magnitude of beat frequency,
which results in better performance of DOA estimate. Figure 2.6, Figure 2.7, and
Figure 2.8 show the RMSE performance versus SNR, the number of antenna elements,
and the angular separation of two targets, respectively. These simulated results are
performed with same condition as previous section 2.3.2. It is commonly observed that
larger FFT point shows better performance of RMSE with expense of computational

load, whichis nlog, n.
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Figure 2.6 RMSE versus SNR according to the number of FFT length
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Figure 2.7 RMSE versus the number of antenna according to the number of FFT

length
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Figure 2.8 RMSE versus angular separation according to the number of FFT length
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24 Conclusion

Conventional DOA estimation method is performed in time-domain, and gives only
the directions of targets as a sequence. Thus, additional process should be established
to pair DOA and distance/velocity. If there are many targets in field of view for a radar
system, a very large amount of computation for precise pairing is required. To cope
with the restriction of cycle time for the radar system, it is essential to suggest a simple
but efficient pairing technique.

In this chapter, the efficient high-resolution DOA estimation method for automotive
radar systems is proposed. We analyze high-resolution DOA estimation algorithm by
use of beat frequency of target. By comparing to conventional time domain processing,
we evaluated the suitability of the proposed method by simulation results. The
frequency domain approach also provides a simple and efficient target pairing solution,

which combine DOA information with distance and velocity of the target.
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Chapter 3
Clutter Suppression Method of Iron
Tunnel using Cepstral Analysis for

Automotive Radars

3.1 Introduction

Clutter suppression is regarded as a relatively simple problem, however, in particular
for iron-tunnel environments, the clutters are known to severely degrade the target
detection performance because of the signal reflection from iron structures.

In the literature, several techniques have been presented in an effort to characterize
the clutter structure on roads [28]-[29], whereas they are appropriate only for ultra-
wideband pulse radars. Other studies have analyzed the stationary targets located in
bridges and guard rails [30]-[31]. However, it is noteworthy that unlike the bridges and
guard rails, iron structures are densely distributed to induce large reflections in iron-
tunnel environments. So far, many of research have been descriptive under normal
road conditions. Meanwhile, authors in [22] have introduced a technique to recognize

the structure of iron tunnel. They employed measurement of the entropy based on the

P



short time Fourier transform analysis, and showed performance improvement by
adjusting CFAR threshold. Note that this technique is tailored only for the recognition
of iron-tunnel environments and not for the clutter suppression.

The main purpose of this study is to develop an understanding of the clutter effect of
the iron tunnel and to establish an efficient clutter suppression algorithm under the iron
tunnel environment. First, we derive a signal model for frequency modulated
continuous waveform (FMCW) radars in iron-tunnel conditions, considering that iron
pillars are located apart at equal distances, which leads to linear-increment of beat
frequency with respect to the distance of clutters. Here, we focus on the periodic
properties of the clutters induced by iron structures uniformly located in the tunnel. In
order to analyze these properties, we employ cepstral analysis, which is used in wide
areas for pitch detection [32]-[34]. By comparing radar signals in cepstrum domain
under various road conditions, we prove that the existence of certain family of peaks in
cepstral domain is a unique characteristic of iron-tunnel environments, which
represents periodical beat frequency of clutters. Based on the above finding, we
propose a clutter suppression method for iron-tunnel environments with liftering
corresponding filtering in the spectral domain. To verify the proposed method, a 77
GHz forward-looking FMCW radar for ACC is employed. Measured results show that
the proposed method efficiently suppresses the clutter of iron tunnel and extracts the
parameter of the target object. It is shown that the proposed method provides

significant performance enhancement even for early target detection.

The overall structure of the study organized as follows. Section 3.2 begins by
modeling radar signal under an iron-tunnel condition. The cepstral characteristic and

the method to suppress clutter are also discussed in section 3.2. Section 3.3 analyzes
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the experimental results of the proposed method. Finally, conclusion is presented in

section 3.4.
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3.2  Clutter Suppression under Iron Tunnels

In this section, a radar signal model with iron-tunnel clutters is briefly described. We
analyze cepstral characteristics under various road conditions, and propose an efficient

method to suppress the clutter effect of iron tunnel by the cepstrum editing process.

Passband Baseband
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Figure 3.1 Schematic diagram of a typical FMCW radar

3.21 Radar Model of an Iron Tunnel

A 77 GHz forward-looking FMCW long range radar is employed in this work. The
antenna module consists of linear patch antennas implemented on a printed circuit
board, which has single transmitting antenna and K receiving antennas. A sinusoid
signal of the waveform generator is modulated as a chirp signal by a voltage-controlled
oscillator. The amplified signal is transmitted into the air, and reflected signal from the
target is received with a time delay and Doppler frequency shift. Using a mixer and
low pass filter, the received signal is converted to baseband signal. The range and

velocity are obtained by digital processor of discrete-time signal derived from the
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analog to digital converter (ADC). The unit time, which includes all of the above
process, is called scan, and has a value of 50 ms in this work. With the linear frequency

modulation, the received signal after ADC from K -th array can be simplified by [30]

X (n) =s,(n)+e(n)= iak ()cos2z f (n+4 (1)) +e(n), B

where, n=0,1,---,N -1, N isthe number of time samples,and T is the number
of targets existing on the field of view. s, (n) contains sinusoids returned from each
target, e, (n) represents the white noise signal with zero mean and variance of o?.
a (i), f (i) and ¢ (i) are the amplitude, beat frequency and phase of the i-th
target, respectively. The beat frequency, f, (i), means the frequency difference
between the transmitted and the received signal for i-th target. f, (i) is composed
of f, . (i) (which is frequency difference by the distance of target) and f, , (i)

(which is Doppler frequency shift by relative velocity), and each of them is represented

as
£, ()= 22R(0) =22 R(), (32)
' c cT,
and
foy ()= 22, () = 2v, i), (33
' C A
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B Bandwidth
where, a=—=—"~———
T. Chirpduration

c

is the chirp slope, f, is the center frequency.

c isspeed of light and A is the wavelength of center frequency. R(i) and v, (i)
are the range and relative velocity of the i -th target, respectively. When considering

that the iron clutters of tunnel are densely distributed, (3.1) can be expressed as follows,

X (n) = iak (i)cos(27 f, (i)n + ¢, (1))

. , (34)
+ 28 (1)cos@r fy  (In+ 4. (1)) +e(n)
j=1
where, C is the number of clutters, a .(j), f,.(J), and ¢ (j) are the
amplitude, beat frequency, and phase of the j -th clutter, respectively. Assuming that
the iron clutters have a uniform space, frequency difference by the distance of clutter,
f . c(J) . isgivenby
. 2B .. 2B . .
fk,r,c(J) D RC(J) = _(Rc (1) + (J _1)|) = fk,r,c(l) + (J _1)Af ' (3’5)
cT, cT,
where, R.(1) is the distance of the first iron clutter and | represents distance of the
. 2B . . . '
inter-clutter. f, . (1) = po=s R. (1) is frequency difference by the distance of the first
,, T,
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clutter. Af :2—$| is frequency difference by the distance of the inter-clutter. Iron
c

clutter is a stationary target, which has a constant Doppler frequency, so iron-tunnel
condition presents periodic frequency components of the iron clutters. Under an iron
tunnel, reflected signal from clutters is much larger than those from targets, which
results in the detection failure of the target from clutters. To suppress clutter effect,
periodicity of clutters in frequency domain needs to be analyzed. To accomplish this

object, a cepstrum is employed in this work.

3.22 Cepstral Analysis of an Iron Tunnel

The cepstrum, derived from an anagram of spectrum, is a signal processing
technique for identifying harmonic families in spectrum and removing the certain
spectral components [35]. Cepstrum is used in wide research areas including speech
signal processing and fault diagnosis. The cepstrum is originally defined as the power
spectrum of the logarithmic power spectrum. However, various definitions for
cepstrum are presented in literatures with different functionalities. For the given
discrete time signal of X, (n), representative definitions of cepstrum are expressed as

follows [36]

N-1 N-1 —i%%kn 5 2% kn
Cooner (N)=D_10g(1 D X, (Me "N e N, (36)
n=0 n=0
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'zikn

Coa (1) =3 051 X x, (e e’ @)

n=0
and
U -i%%n 2k
Ccomplex(n)zzlog(zxk(n)e N )e N ’ (38)
n=0 n=0
where, || denotes absolute value, C,. (), C.,(n),and C, . (n) represent

power, real and complex cepstrum, respectively. The operations of both forward and
inverse Fourier transform are involved in the calculation of the cepstrum. The
transformation of cepstrum concentrates on the periodic spectrum components, such as
families of equally spaced harmonics. The essential observation leading to the
cepstrum analysis is that the logarithmic spectrum can be treated as an input waveform
and subjected to further inverse Fourier transform. The magnitude of the spectrum of
X, (n) varies as the frequency changes. By the log operation, however, it is possible to
compress the dynamic range of magnitude and reduce magnitude differences in the
harmonic components. Table 3.1 lists the terminologies in the cepstrum domain with

the one corresponding in the spectrum domain.
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Table 3.1 Terminology of cepstral- and spectral domain

Cepstral domain | Spectral domain
quefrency frequency
gamnitude magnitude
rahmonic harmonic

lifter filter
saphe phase

To characterize the radar signal under the iron-tunnel environment, we analyze the
cepstral results. The real cepstrum is employed in this work. Discrete-time Fourier
transform is replaced by fast Fourier transform (FFT), which is computationally
efficient. Data acquisition is performed in various road conditions, such as an
expressway, guardrail, normal tunnel and iron tunnel. Figure 3.2 shows the magnitude
response of the cepstrum under each road condition. Under general road conditions
including expressway, guardrail, and normal tunnel, any peak value of quefrency does
not exist clearly. It means that there is no periodicity between the beat frequencies of
the targets having different ranges and velocities. It is shown that the magnitude
response has certain peak values of the quefrency only under iron-tunnel condition,
which are rahmonic components. The first rahmonic peak is exactly same as the
inverse of fundamental period in frequency domain, Af . From this analysis, we
verify that the periodicity of the clutter frequencies is an inherent property of the iron-

tunnel condition.
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Figure 3.1 Schematic diagram of typical FMCW radar
3.23 Cepstrum Based Clutter Suppression Method
To extract the hidden frequency of target objects from periodic frequency of clutter,

an effective technique to suppress the clutter frequency is necessary. Since Fourier

transform is complex domain operation, the cepstrum is represented in complex
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domain. Therefore, the complex cepstrum has its inverse transformation, and the time
domain signal can be reconstructed by using a modified cepstrum. However, complex
cepstrum requires the continuity of phase to be unwrapped. So, it is not applicable to
stationary random components where the phase is random.

On the other hand, if the input waveform of inverse Fourier transform has no phase
information such as magnitude of spectrum, the cepstrum is real-valued. Despite of
real-valued cepstrum, reconstruction to the time domain can be achieved by using the
amplitude of the modified spectrum combined with the original phase spectrum.
Moreover, we can lifter a rahmonic family in the quefrency domain and obtain an
edited spectrum. Based on this real cepstral analysis, a simple rejection and
reconstruction of the spectrum are employed in this work [37]. As shown in Figure 3.3,
we propose to remove harmonics of clutters through the following steps: Step 1) once
the received signal is transformed into the frequency domain by the fast Fourier
transform (FFT), we perform the log operation to separate the amplitude and phase
components. Step 2) using the log amplitude only with inverse FFT, real cepstrum is
obtained. Step 3) the peak values in the cepstrum, representing a rahmonic family, are
simply rejected by setting those gamnitude to zero, which acts as an ideal band-
rejection lifter in the cepstral domain. Step 4) edited cepstrum is reversely transformed
to spectral domain, which is an edited log amplitude. Step 5) edited log spectrum is
composed of edited log amplitude and phase of the original spectrum. Step 6) with
exponentiation of the edited log spectrum, finally, the edited spectrum is obtained,

from which the target frequencies are extracted.
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Figure 3.3 Procedure of cepstrum method for removing the harmonic family

38 ]
25 A&



3.3 Experimental Result

In this section, we present our experimental results based on the measured data in

real driving environments. The FMCW radar sensor for ACC was installed at front of

the test vehicle. The parameters of the FMCW radar are with 76.5 GHz of center

frequency and 200 m of maximum operating range. The FFT algorithm is used for

frequency estimation, and the cell average (CA)-CFAR is employed to detect target

frequency [38]. To validate the proposed method, measurement tests were performed

under various iron tunnels. Moreover, all of the measured data is obtained in a real

driving situation. To recognize an iron tunnel, the method based on spectrum spreading

in [22], is applied. The proposed method, therefore, operates only when iron tunnel is

recognized. The profile of the representative two iron tunnels, used in this work, is

summarized in Table 3.2.

Table 3.2 Iron-tunnel profile

Case | Geographic coordinate Length Experiment
(latitude, longitude) (km) Date
A (37.27. 127.08) 1.0 Sep.09.2015
B (37.17, 127.03) 0.7 Sep.05.2015
39



The measured results for the proposed suppression method are shown in Figure 3.4
and Figure 3.5 for case A and B in Table 3.2, respectively. Figure 3.4.a depicts the
original spectrum of the received signal before applying the proposed algorithm. The
component represented by an asterisk stands for beat frequency of the target vehicle in
the same lane with the ego-vehicle. Because of the periodical frequencies of the iron
clutters, the hidden frequency of the target is not identified clearly. Although the target
indicates the peak frequency, the frequency of target may be filtered by a CFAR
threshold. The magnitude response of the log spectrum is shown in Figure 3.4.b. The
log magnitude maintains periodicity of the original spectrum, while it smoothens the
variation of magnitude with respect to frequency. Figure 3.4.c shows the cepstrum of
the received signal with fundamental period and its rahmonics, resulted from the
periodic peaks in the spectrum. The peak at rahmonic of 0.76 ms in Figure 3.4.c is
equal to the inverse of 1.31 kHz, the fundamental period of the peak in the spectrum.
After peaks of quefrencies are removed, edited spectrum in Figure 3.4.d still has
residual periodic components. Compared with the original spectrum, nevertheless,
frequency of the target is identified definitely, and also clutter effect is suppressed
clearly. Figure 3.5 in case B of the iron tunnel also shows very similar results with
Figure 3.4. Because the iron structures of the case B are almost same as those of A,

identical fundamental frequency and harmonics in the quefrency domain are presented.
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Figure 3.4 Clutter suppression using cepstral analysis for the iron tunnel of case A
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Figure 3.6 presents detection results before and after the clutter suppression. Figure
3.6.a and Figure 3.6.b shows the original spectrum and edited spectrum in frequency
domain, respectively. The dotted line represents the threshold value obtained by CFAR.
The spectral components larger than CFAR threshold are expressed by an asterisk.
These peaks include the target in the same lane with ego-vehicle, the targets in others
lane, and also clutters with high power. Although residual clutters are detected after
suppression, they can be rejected by target pairing and tracking procedure. It is beyond
the scope of this study to examine the pairing and tracking algorithm. It is noteworthy
that the target in the same lane with the ego-vehicle is extracted from clutters, which
provides essential information so as to control the ego-vehicle automatically. Figure
3.6.c depicts the trajectory comparison of the target vehicle in the same lane. The
trajectory of the target is calculated by using the estimated target distance, location of
ego-vehicle, and wheel speed of ego-vehicle. It represents the change of the estimated
position with a marker at every five scans. It is shown that when the suppression

algorithm is applied, the target vehicle is detected at an earlier time.
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Figure 3.6 Detection result before and after clutter suppression

To evaluate the performance of the proposed method quantitatively, experiments are
performed to determine the distance of early target detection, which is a measure of the
initial distance to detect a target vehicle in the lane of the ego-vehicle. The initial
detection of the target is a very important indicator for the ACC application. If the
initial detection of the target is late, the ego-vehicle brakes suddenly, which increases

the probability of collision with the vehicle in the front or rear. For each iron-tunnel
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condition, some factors are considered including a type of the target vehicle and

different velocity of the ego-vehicle. Table Il summarizes the results of distance of

early target detection for each iron tunnel. The average distance of the early target

detection is improved by more than 55 m for the proposed method. Although the

proposed method performs additional computation of both FFT and inverse FFT, it

shows performance enhancement without adjusting any CFAR threshold with respect

to the road condition.

Table 3.3 Evaluation of the distance of early target

Case | Geographic coordinate | Length Before After Ego-vehicle Relative Vehicle Experiment
(latitude, longitude) (km) suppression (m) | suppression (m) | speed (mps) | speed (mps) type Date
A (37.27, 127.08) 1.0 9.7 1334 373 -2 suv Sep.09.2015
A (37.27, 127.08) 1.0 513 118.1 41 -0.99 compact car | Sep.09.2015
B (37.17, 127.03) 0.7 64.5 125.1 27.1 -6.97 Sedan Sep.03.2015
B (37.17, 127.03) 07 6ik1 109.7 40.1 2316 compact car | Sep.03.2013
45



34 Conclusion

In many applications of automotive radar systems, a technique to suppress clutter
effect is essential, particularly for the iron-tunnel environments. In this paper, we
modeled a FMCW radar signal under iron tunnels in which iron structures are
uniformly and densely distributed. From cepstral analysis, we proved that the periodic
property of iron clutters is revealed in the cepstral domain. Based on this observation,
we proposed an efficient clutter suppression method using real cepstrum to remove the
clutter effects in the cepstral domain. Experimental results present that the proposed
method provides significant enhancement in the target detection performance. This

proves that the proposed method is successfully applied for clutter suppression.
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Chapter 4
Interference Mitigation by High-
Resolution Frequency Estimation for

Automotive Radars

4.1 Introduction

Mutual interference is a crucial issue that must be resolved for improved safety
functions [16], [23]. Given the increasing number of automotive radar sensors
operating at the same instant, the probability that radar sensors may receive signals
from other radar sensors gradually increases. In such a situation, the system may fail to
detect the correct target given the serious interference. Effective countermeasures,
therefore, have to be considered. In the literature, several techniques have been
presented in an effort mitigate the performance degradation issue caused by
interference in radar or communications systems [39], [40]. To avoid overlap in the
frequency domain, one method to minimize interference shifts the frequency of the
transmitted signal pseudo-randomly [39]. Other authors [40] propose frequency ramps
from short PN-coded sequences as a spread-spectrum technique. With these methods,
however, the radars must share the same set of codes. Efficient strategies to distribute

codes are required beforehand for collision avoidance.
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Another study [16] qualitatively analyzed the mutual interference between
millimeter-wave radar sensors and examined interference scenarios when considering
spatial, temporal and frequency overlap. Interference from neighboring sensors appears
to result in an increase in the noise level in the frequency domain. Therefore, it is
important to estimate beat frequency accurately in a high interference environment.
Conventional FMCW radar systems use the fast Fourier transform (FFT) algorithm for
beat frequency estimation [41]. However, the traditional FFT algorithm is associated
with high probability of failing to separate target objects from interferers. This
motivates us to exploit high-resolution estimation techniques in interference-limited
automotive radar environments.

This chapter proposes a beat frequency estimator for use in automotive FMCW
radar systems based on high-resolution techniques to suppress mutual interference by
means of a frequency domain analysis. The proposed method can be considered as the
application of a subspace method known as MUSIC and ESPRIT, which solve the
generalized eigenvalue problem using an autocorrelation matrix of received signal [17],
[18]. The proposed method employs an estimator of a correlation matrix with forward-
backward spatial smoothing (FBSS) [42] and a frequency signal dimension order
(FSDO) estimator with the minimum description length (MDL) criteria [27]. The
proposed method improves the frequency resolution and reduces the influence of
interference relative to the FFT method. Moreover, ESPRIT is more computationally
efficient than MUSIC [43], as ESPRIT directly calculates the frequency components in
a given frequency range, whereas MUSIC requires a peak detection process from the

spectral analysis.

To verify proposed methods, measurement was performed in a test field. The
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experimental data used in the paper are obtained from a 77 GHz forward-looking
FMCW radar for adaptive cruise control (ACC). The results show that the missing
problem of a target vehicle under interference environments is improved by proposed

methods in the detection performance.

The rest of this chapter is organized as follows. The characteristics and a
mathematical representation of FMCW radar systems are presented in section 4.2.
Based on the system model, beat frequency estimations using MUSIC and ESPRIT
are discussed in section 4.3. Experimental results are presented in section 4.4 to verify
the performance enhancement when using the proposed schemes. Finally, conclusions

are given in section 4.5.
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42 Automotive FMCW Radars in an Interference

Environment

A signal transmitted using a linearly increasing or decreasing signal in the frequency

domain can be represented as [30]

f(t) = Acos(27z¢)

= Acos(2z [ (f, +at)dt) = Acos(2z(,t +%at2)),

where, A and ¢ are the amplitude and phase of the transmitted signal,
respectively; f, is the transmitted signal frequency at time t=0 ; and

o BW  sweepbandwidth
At sweeptime

is the chirp rate (chirp slope). The received signals

returning from multiple targets are delayed and attenuated. If the targets are moving,

they include an additional frequency shift term as follows:

4.1)

u 1
gt) = Z B, cos (2”(( fo +f0t -ty )"Ea(t - td,i)z)) ' (4.2
i=1
Here, m is the number of targets; B, is the amplitude of the received signal; and
50 L ] =
[ A= 8l



fy, and t,; are the Doppler frequency and the delay time respectively. The
transmitted and received signals are mixed by multiplication in the time domain. With
the trigonometric identity of the sum of the cosines, the product of the two signals has
distinct sinusoidal components. One of these will be at a frequency that is

approximately twice the carrier frequency, which will be cut off by a low-pass filter

(LPF). The other term, i.e., the mixer output after LPF processing, is given by

st) =Y Creos (27 (at, ~f, )t +27(f, + f, )t~ 7at?,), 43)

i=1

where C, = AB, is the amplitude of the mixed output. f & =at,, —f,, is the
beat frequency (or frequency difference), which is analyzed by the FFT algorithm. The
range and velocity of each target are obtained from the beat frequency component with
a peak detection algorithm such as the CFAR technique [44].

Considering that many vehicles may be equipped with FMCW radar sensors, it is
essential to analyze the interference mechanism. Two simple scenarios can be regarded,
as shown in Figure 4.1. One is direct interference from a vehicle in the opposite
direction and the other is a returned interference from a vehicle traveling in the same

direction (which is indirect interference). There are many factors affecting radar

sensitivity, such as interfering source levels, the side-lobe effect, the target shape, the
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operating band, and the sweep time.

Interferer

T

Radar sensor Target

(@) Direct interference

Interferer

) p

Radar sensor Target

(b) In-direct interference

Figure 4.1 Simple interference scenarios in automotive radar environment

As an issue that acts between FMCW radars, interference can be divided into in-
band-region interference and out-of-band interference depending on the delay time,
resulting in a ghost target and a uniform increase of the noise floor respectively [16].
In-band-region interference not only occurs with a very low probability, but it can also
be removed by means of multi-target detection and tracking algorithms [45]. For the
out-of-band interference, however, the detection of the targets fails due to the increase
in the noise floor. Figure 4.2 shows the influence of an interference signal that is 30dB

larger than the signal from the target when the target is present at the 70m. The target
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signal-to-noise-ratio (SNR) is reduced considerably. It is an important issue, therefore,
to identify the signal from a result which contains an increase in the noise floor. The
out-of-band interference is modeled in the following two cases according to the delay

time of the interference signal.

Normalized amplitude [dB]

o 50 100 150
Beal frequency [kHz]

(@ Spectrum of a target without interference

Normalized amplitude [dB]

1] 50 100 150
Beal frequency [kHz]

(b) Spectrum of a target with interference

Figure 4.2 The spectrum of FFT output for an out-of-band region interference with a

magnitude 30 dB larger than signal returned from target object.
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(b) Different sign-chirp case

Figure 4.3 Two cases of out-of-band interference, where  f, is the sampling rate and

fpe IS the cut-off frequency of LPF.

421 The Same Sign-Chirp Case

Assuming there are multiple interferers equipped with FMCW radar in the field of

view, with parallel increasing chirps in the transmitted signal and with the interference
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signal in the sampling interval (Figure 4.3(a)), the received signal can be expressed as

follows:

9(t)=g,(t)+g,(t)+n(t)

- Z B cos (27 ((f,+f,)(t- td'i)-i—;a(t— t,0°)) 44)

+ zk: B, cos (27 (( f0+fdy,j)(t—td’,j)4—;a(t— {1 )7)) + (o).

is the round-trip time for the maximum operating range

d,max

Here, t, .. <ty 5t

of 200m, I; isthe index of the interferer, t,, is the delay time of the interferer, k

j
is the number of interferers, and n(t) is white noise. The mixed output after low-pass

filtering is as follows:

x(t) = F©)g®) = f ©)(g, (1) + g, ©) +n(t)) = (t) + 1 (1) +w(t)

= 3 cieos (2x(aty ~f, )+ @a(fy+ fy Mty -mat?, (4.5)
i=1

k
+ Y C, cos (2z(at,, ~f,, o+ @a(fyrty, My, — 70t?, ) +W(t).

=L

In this case, the influence of interference signal is presented in the form of a ghost

target with a constant frequency. Because the beat frequency of the interferer is larger
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than the maximum beat frequency corresponding to the maximum operating range, it

can be ignored by the sampling rate, f,.

422 The Different Sign-Chirp Case

In contrast to the above case, with an increasing chirp of transmitted signal and a

decreasing chirp of interfering signal, the received signal is expressed as follow:

g(t) =g, (t)+g, () +n(t)

= $Boos (2r((1+1, )t 1)+ 2att-1,,))) 49)

+Zk: B, cos (27((f,+BW+1,, )(t—td,,j)—;a(t—td',j )?)) +n(t),

The mixed output is, therefore, given by

x(t) = f (©)g(®) = f ©)(g, (1) + g, ®) +n®) = s(t) + 1 () + w(t)

= 3 cieos (2x(aty,~f, )+ QRa(fot+f, )t~ 7at?,)

i=1

k
+>.C, cos[- 2z(aty, +BW+f, )t + 27zat® 27 (f, +BW + f, )t + zat?, ]+ w(t).

j=1

@.7)
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Because the interfering signal comes with a short pulse and time-varying frequency
components as shown in Figure 4.3(b), it would appear as an increase in the noise floor
with a very wide spectral width. The amount of the increase in the noise floor is
proportional to the time duration of the interfering signal or the interfering source
power. Considering that the interfering signals are also treated as noise, (4.7) can also

be represented as shown below.

x(®) =s(t) + (1(t) + w(t)) = s(t) + e(t)
=ﬁ Ccos [27(at, —f, @ (fo+f, ), —mat?, Jre),

i=1

(4.8)

Here, e(t)=I(t)+w(t) .
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4.3 High-Resolution Frequency Estimation Methods

In this section, the proposed high-resolution beat frequency estimation scheme is
described. Figure 4.4 shows a functional block diagram of the proposed scheme, which
employs a FBSS and a FSDO estimator. We present a data model for subspace-based
algorithms and describe an effective method to estimate the correlation matrix. Based
on the data model, a theory encompassing MUSIC and ESPRIT is investigated and the
FSDO estimator, as a part of MUSIC and ESPRIT, is presented to provide the number

of frequency components.
Ligenvalues and
3 Eigenvectors 2
x[n timati R .. = - '
()] mstmationor (R rags | g, wosic |/,
matrix by FBSS Decomposition || Fspo [ ] ESPRIT
Estimator | -
M

Figure 4.4 Functional block diagram of the high-resolution beat frequency estimation

algorithm

431 Data Model

Let us a consider sampled version of radar mixed output as a discrete-time sinusoid

signal having amplitude, frequency, and phase components, as follows,

x[n]=s[n]+¢[n]= Zm:ai cos(2z f.n+¢)+e[n], 4.9
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where n=0,1,2;--,N-1; s[n] contains sinusoids returned from each target; e [n]
represents the noise signal from other FMCW radars, including white noise with a zero

mean and variance of o?; m is the number of sinusoids; N is the number of

sampled data points; and a,, f, and ¢ are the amplitude, beat frequency, and

phase of the i -th sinusoid, respectively. According to Euler’s formula,
cos(2z f,n+¢) can be expressed as %(e“z”fi”*ﬂhej(Z”fi”*m). Then, (4.9) can be

represented in complex exponential form, as

Mo

x[n]=s[n]+e[n]=> Ael®"™® L e[n], (4.10)
i=1

with
— a i — .
A :E'e‘”', f,=1f for 1<i<m
K:%e"”i,f:—fi form+1<i<2m, (4.11)
M =2m

By defining the 1-th complex sinusoid component, Ke"z”?i” as s;(n), (4.10) is

expressed as follows:
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x[n]=isi[n]+e[n], n=0,12,---,N -1,

(4.12)
From L discrete-time samples, a compact matrix form is obtained by
M
x(n)=>"s;(n)+e(n), (4.13)
i=1
where L>M ; x(n) = [X[n] X[n+1] - - x[n—LA]]" , s;(n) =
[s,[n]s,[n+1]---s,[n— L+1]]" = [Lei?7h ... gI2r (DT T, pgi2ein and

e(n) =[e[n]e[n+1]---e[n—L+1]]" . Then, a low-rank matrix representation for

subspace methods can be represented as

x(n) =FA(n) +e(n), 4.14)

where F = [f (Tl)f (f_z) - of (ﬂ)] isa LxM Vandermonde matrix of rank M ,
A(n) — [EejZnTln Eejbzf?n . 'mejz,,mn]

,and f(T)=[e!"...e*EVNT for

i=12,---,M is a frequency mode vector with frequency f.. The autocorrelation

matrix of mixed output R, isexpressed as

60



R,, = E[x(mxn)"], (4.15)

where E[-] denotes the expected value. By using eigenvalue decomposition, the
eigenvalues and corresponding eigenvectors of R, are obtained according to
Hz242--24} and respectively. If R,, has the full rank of M, the

eigenvalues are given by

A 2A2 2 Ay > Ay, = Ay, == A =var[e[n]], (4.16)

where var[e[n]] denotes the noise variance. From the eigenvalues and eigenvectors

of R, ,we define asignal subspace matrix V, =[v,Vv,---v,,] corresponding to the

XX !

largest M eigenvalues, and a noise subspace matrix V, =[V,,,;Vy.,---V,] that

contains the remaining eigenvectors.

432 Estimation of the Correlation Matrix

The correlation matrix of the received signal is found by the expected value of the
absolute values squared. However, we cannot identify the exact statistics for the signal
and noise. Assuming that the process is ergodic, we can approximate the correlation

matrix by means of time-averaged correlation as follows:
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R 1 N-L+1

R =—— " 4.17
x N_L+1;X(H)X(n) 4.17)

Here, N>L , N denotes the sequentially decimated time samples
{X[NIX[n +1]---x[n + N =1]}" . When the number of time samples is limited, the rank
sparsity of the correlation matrix degrades the performance. To improve the
performance of subspace methods, FBSS method is used in this paper [42]. FBSS is

used to calculate the L x L matrix, as
A 1 & - ~
Reess === (R, +JR"J), (4.18)
Q=3

where Q=N -L+1; Iin =x(n)x(n)" ,and J isthe LxL reversal matrix, for

which the elements are unity along the anti-diagonal and are zero elsewhere.

433 Application of the MUSIC Algorithm
The MUSIC algorithm uses the basic assumption that the frequency mode vector
corresponding to its frequency component is orthogonal to the noise subspace formed

by the noise eigenvectors. This is expressed, as

1 (f)v, =0, (4.19)

62 ; o (=18
F A =l



where i=1,2,---,M and k=M +1,M +2,---,L
By using the orthogonality of the frequency mode vectors to the noise eigenvectors, the

MUSIC pseudo-spectrum is then defined as follows [17]:

1
Puusic (f) = —_— (4.20)

AL OIS

k=m+1

A peak value occurs in the pseudo-spectrum when f =f,, and the estimated

frequency is obtained by CFAR[44].

434  Application of the ESPRIT Algorithm

ESPRIT is based on the naturally existing shift-invariance between discrete-time
series samples which leads to rotational invariance between the corresponding signal
subspaces [18]. Let us define two subsamples x,(n) =[x[n]1x[n+1]---x[n+ L - 2]]"
and  x,(n)=[x[n+1x[n+2]---x[n+L-1]" for L-1>M . From s[n+1]

=s,[nle’*"% in(4.13), x,(n) and x,(n) can be represented by

% (n) =FA(n) +e,(n)

(4.21)
X,(n) = F®A(n) +e,(n),
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where @ is a (L-1)x(L-1) diagonal matrix whose i -th component is

¢ = ezt By defining V,, and Vj, asthe signal subspace eigenvectors from the

auto-correlation of x,(n) and x,(n), respectively, the subspaces of the eigenvectors

are related by a unique non-singular transformation matrix ¥ such that

V¥ =V,,. (4.22)

Because F and V,, V,, span the same signal subspace, there is also a unique

non-singular transformation matrix T such that

V,, =FT
(4.23)
V;, =FO®T.
By substituting (4.23) into (4.22), we can derive the following relationship:
Y=T'OT. (4.24)

Thus, the largest M eigenvalues of ¥ are equal to the diagonal elements of ®

~

such that y, =ei?™h y, =el?"% ...\ —el?™ The frequency estimates f for

1<i<M arethen calculated as

=W (4.25)
2

where /- denotes the phase of the argument, with the sampling frequency of the
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data used to calculate ?, The MUSIC algorithm needs to search the peaks of the

spatial spectrum at a cost of computational load, whereas ESPRIT exploits the
rotational invariance structure of the signal subspace and avoids searching any spatial

spectrum,
435  Number of Frequency Estimation

MUSIC and ESPRIT take advantage of a prior knowledge such as the number of
frequency components. Because the precise number of frequency M value is not
available in practical systems, it must be estimated. As information theoretic criteria,
MDL or the AIC have been widely used to estimate the number of frequencies. In this

paper, we employ the MDL criterion to estimate M . This is expressed as [27],

Lr 1 \kbe
[T4*
MDL(K)=log| —=—— |  +k(2LK)logQ, (4.26)
. 2
L-k&

after which the estimate of M can be obtained by
M =arg, minMDL(K) +1, 4.27)

where, k=0,1,---,L-1.
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44  Experimental Result

Table 4.1 Parameters of a FMCW radar for the experiment

Parameter Specification
Frequency TH.25-T6.7TH GHz
Sweep bandwidth 500 MHz

Sweep time 5 ms

Output power 10 mW
Maximum range 200 m

FFT points 2048

Sampling rate 208 kHz

In this section, we present our measurement setup and analyze the proposed method
as compared to the conventional FFT algorithm. To validate performance of the
proposed methods, measurement performed with two interference scenario (Figure
4.1). The FMCW radar sensor, used for ACC, was installed in the test vehicle which is
produced by a Korea company. All of the experiments were performed in an open
space on flat ground. The interfering and target vehicles have 10dBsm radar cross
section (RCS). The parameters of the FMCW radar used in this study are summarized
in the Table 1. For a sweep bandwidth of 500 MHz, a sweep time of 5 ms and a
maximum operating range of 200 m, the maximum round trip time is 1.33 s and
the maximum beat frequency is 133 kHz. The cut-off frequency of the LPF was set to

1 MHz.
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In order to evaluate the quantitative performance of the frequency estimation in an
interference environment, probability of resolution is analyzed according to SIR. The
SIR is determined by the distance from the radar sensor to the target and the interferer.
The SIR is distributed up to about -31 dB and -63 dB for the indirect interference and

direct interference respectively.

The mixer outputs of the FMCW radar were analyzed using the conventional FFT,
the MUSIC and the ESPRIT methods. To detect the peak values from the FFT and
MUSIC spectral results, the ordered statistic (OS) CFAR algorithm was adopted [44],
where the probability of a false alarm is 107° . The beat frequency of the target is

determined by the spectral component higher than a threshold.

interferer

— RET
. OS-CFAR __
_5H FFT

= = = MUSIC

S .
(o —{"I'.\RML 81

%  ESPRIT

Amplitude [dB]

25 30 35
Beat frequency [kHz]

Figure 4.5 Sample result for the beat frequency estimation when the target object exists

at a range of 50m (For a direct interference scenario)
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Figure 4.5 shows a snapshot (which means a scan) for the beat frequency estimation
when the target object exists at a range of 50 m. In this example, the SIR is -30 dB (i.e.,
the direct interferer is 30 m away from the radar sensor). This result shows that the
proposed method is more capable of identifying the beat frequency than the
conventional FFT method. Although, the FFT result indicates a peak value for the
target object, it is not larger than the threshold, leading to a detection failure of the

target object.

08r
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0.3F

Probability of resolution, P
!

0.2

=40 =35 =30 =25 =20 -15
Signal-to-interference ratio [dB]

Figure 4.6 Probability of resolution versus SIR

The results are based on 1600 independent periods of measured data for each
distance using the subsample size setto L =100 for the FBSS. As shown in Figure

4.6, the proposed method operates up to a SIR of -32.5 dB, whereas the FFT shows a
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performance limit of -17.9 dB SIR. These subspace-based methods are entirely robust
for at least indirect interference scenarios. For a short range of less than 50 m,
Furthermore, it can be said the proposed methods can identify the beat frequencies of
targets regardless of the SIR. The MUSIC and ESPRIT algorithms show similar
performance levels. However, ESPRIT has better computational efficiency because it

avoids the peak-search process.

08
08
07t
08
0.5
04

0.3[

0.2

Probability of resolution
v

Figure 4.7 Probability of resolution versus the number of subsample for FBSS

The performance of the proposed algorithm versus the number of subsamples for
the FBSS was also assessed. The conditions for estimation are same to those in Figure
4.7, except that the number of subsamples is varied from L=100 to L =300.

Figure 4.7 shows that when the number of samples is increased to 200 and 300, the
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performance of the MUSIC algorithm shows additional margin of SIR, about 2.4 dB
and 4.1 dB, respectively. This improvement occurs because large number of

subsamples, L, makes the rank property of the correlation matrix effective.
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44 Conclusion

The conventional FFT approach is vulnerable in interference-limited environments.
In this paper, the performance limitation of the existing system was evaluated
quantitatively. Also, we proposed a subspace-based method to identify the beat
frequency of the targets while suppressing the interference signals. Experimental
results show that the proposed method has a SIR margin of at least about 14 dB
compared to the conventional FFT algorithm. The proposed method provides a
significant performance enhancement even in a direct interference environment, which
proves that the proposed estimation method can be successfully applied for the beat
frequency analysis in an interference environment. Thus, it is concluded that MUSIC
and ESPRIT are essential for minimizing the interference effects in the automotive
radar field. Moreover the overall method will be useful for eliminating the influence of

interference when used in conjunction with other mitigation techniques.
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Abstract

EFFICIENT PARAMETER
ESTIMATION METHODS FOR
AUTOMOTIVE RADAR SYSTEMS

Han-Byul Lee
Department of Electrical and Computer Engineering
The Graduate School

Seoul National University

As the demand for safety and convenience in the automotive-technology field increased,
many applications of advanced driving assistance systems were developed. To provide
driving information, among the sensors, such as cameras sensor, light detection and
ranging sensor, radar sensor, and ultrasonic sensor, a radar sensor is known to exhibit

excellent performance in terms of visibility for different weather conditions. Especially



with the legislation of the adaptive cruise control system and autonomous emergency
braking system in a global environment, the market of the automotive radar sensor is
expected to grow explosively. At present, the development of cost-effective radar offering
high performance with small size is required. In addition, the radar system should be
enforced to have a simultaneous functionality for both long and short ranges. Thus,
challenging issues still remain with respect to radar signal processing including high-
resolution parameter estimation, multi-target detection, clutter suppression, and
interference mitigation.

For high-resolution parameter estimation, direction-of-arrival (DOA) estimation
method has been investigated to identify the target object under complex unban
environment. To separate closely spaced target having similar range and distance, high-
resolution techniques, such as multiple signal classification (MUSIC), the estimation of
signal parameters via rotational invariance techniques (ESPRIT), and maximum
likelihood (ML) algorithm, are applied for automotive radars. In general, cycle time for
radar system, which is the processing time for one snapshot, is very short, thus to
establish a high-resolution estimation algorithm with computational efficiency is
additional issue.

On the other hands, multi-target detection scheme is required to identify many targets
in the field of view. Multi-target detection is regarded as target pairing solution, whose
task is to associate frequency components obtained from multiple targets. Under certain
conditions, the association may fail and real target may be combined to ghost
components. Thus, reliable paring or association method is essential for automotive radar
systems.

The clutter denotes undesired echoes due to reflected wave from background

environment, which includes guardrail, traffic signs, and stationary structures around the
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load. To minimize the effect of clutter, conventional radar systems use high pass filter
based on the assumption that the clutter is stationary with energy concentrated in the low
frequency domain. However, the clutter is presented with various energy and frequency
under automotive radar environment. Especially, under the specific environment with
iron materials, target component is not detected due to clutter with large power.

Mutual interference is a crucial issue that must be resolved for improved safety
functions. Given the increasing number of automotive radar sensors operating at the
same instant, the probability that radar sensors may receive signals from other radar
sensors gradually increases. In such a situation, the system may fail to detect the correct
target given the serious interference. Effective countermeasures, therefore, have to be

considered.

In this dissertation, we propose efficient parameter estimation methods for automotive
radar system. The proposed methods include the radar signal processing issues as above
described, respectively. First, the high-resolution DOA estimation method is proposed by
using frequency domain analysis. The scheme is based on the MUSIC algorithm, which
use distinct beat frequency of the target. The target beat frequency also gives distance and
velocity. Thus, the proposed algorithm provides either high-resolution angle information of
target or natural target pairing solution. Secondly, we propose the clutter suppression
method under iron-tunnel conditions. The clutter in iron-tunnel environments is known to
severely degrade the target detection performance because of the signal reflection from
iron structures. The suppression scheme is based on cepstral analysis of received signal. By

using periodical characteristic of the iron-tunnel clutter, the suppressed frequency response

v @A e

o

iTA



is obtained. Finally, the interference mitigation scheme is studied. Mutual interference
between frequency modulated continuous waveform (FMCW) radars appears in the form
of increased noise levels in the frequency domain and results in a failure to separate the
target object from interferer. Thus, we propose a high-resolution frequency estimation

technique for use in interference environments.

Keywords : Automotive radar, FMCW, Direction-of-arrival, Interference,
Mitigation, Clutter, Suppression, High-resolution, Signal processing
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Chapter 1

Introduction

1.1 Background

Three major topics in the field of automotive technology are green, convenience,
and safety. Among these issues, the goal of research on safety and convenience is to
prevent accidents in a variety of dangerous situations commonly encountered by
drivers. To provide safety and driving comfort, advanced driving assistance systems
(ADAS) are emerging as very active issues [1]-[2]. The sensors have played a vital role
in the development of ADAS and enhancement of vehicle safety. Sensor technology
provides artificial sensing of the environment, which enables decision making by in-
car computers [3]. These sensor enabled systems help in providing warning to drivers
and regulating vehicle control to mitigate collisions that can lead to material damage as
well as human injury. ADAS includes blind spot detection, adaptive cruise control
(ACC), autonomous emergency braking (AEB), obstacle detection, collision
avoidance systems, rear view cameras, parking assistance (PA), and lane departure
warning as showing in Figure 1.1 [4]-[5]. Key sensor technologies being used in these
systems are camera sensor, infrared sensors, radar, light detection and ranging, and

ultrasonic sensors.
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Figure 1.1 ADAS applications




1.2 ADAS Applications for Automotive Radars

ACC ensures that the automobile remains at a predefined distance away from the car
ahead, reducing the speed to zero if necessary [6]. For ACC, radar sensors emit and
receive radio waves and thus determine the distance of vehicles in front of the user’s
vehicle. ACC with stop and go facility allows the vehicle to come to a standstill if the
preceding vehicle comes to a halt. The system again takes over as the preceding
vehicle stars and by controlling acceleration, the predefined cruise speed is again
achieved.

The blind spot detection helps the driver while attempting to pass other vehicles [7].
Sensors continuously monitor the presence, direction, and speed of vehicles in the
lanes beside the ego-vehicle. If a vehicle moves into the blind spot, warning based on
visual or audio signals can be generated to alert the driver of potential danger of
collision. Radar sensors mounted on the real bumper or on the side rear view mirrors
monitor vehicles behind or on adjacent lanes.

Forward collision warning systems are in-vehicle electronic systems that
monitoring the roadway in front of the host vehicle and warn the driver when a
potential collision risk exists. The system provides an audible alert when it senses a
reduction in traffic speed in vehicles ahead. When the danger of a collision is detected,
it provides a red warning light that flashes on the windshield. The forward collision
warning is extended as an AEB recently. The system takes sudden braking in an
emergency situation.

PA systems consist of visual aids, using real view cameras and side view cameras,
Ultrasonic sensors provide distance information which allows the vehicle to be safety

guided into the parking space without crashing into any other parked vehicle. Radar is



applied as a form of sensor fusion with camera sensors and ultrasonic techniques.

Parking assistance systems will gradually make way for automatic parking systems.



1.3 Motivation and Organization

The development of automotive radar focuses on two types; short-range radar
(SRR) using ultra-wide band (UWB) system at the 24 GHz and 77 GHz bands, and
long-range radar (LRR) using frequency modulated continuous waveform (FMCW)
systems at the 77GHz band [8]-[9]. The 77GHz band is known to be the most
appropriate frequency band in global automotive radar environments, as the 24GHz
band is shared with other communications systems. Furthermore, multi-mode radar
sensors including the function of both SRR and LRR are obliged to miniaturize its size
[10]. Considering the size of multi-mode radar sensors, 77GHz FMCW radar is a good
candidate for a new automotive radar solution [11]. FMCW radar uses the waveforms
of linearly increasing or decreasing frequencies, which increases reliability of radar
system by providing the distance and velocity information of the target simultaneously.
Moreover, the easy implementation of these radar sensors is the most significant factor
making the most popular commercial system at present [12]-{13].

There remain several problems, however, related to the signal processing of
automotive FMCW radar, including high-resolution parameter estimation, multi-target
detection, clutter elimination and mutual interference elimination [14]-[16]. For high-
resolution parameter estimation, direction-of-arrival (DOA) estimation method has
been investigated to identify the target object under complex unban environment. To
separate closely spaced target having similar range and distance, high-resolution
techniques, such as multiple signal classification (MUSIC) [17], the estimation of
signal parameters via rotational invariance techniques (ESPRIT) [18], and maximum
likelihood (ML) algorithm [19], are applied for automotive radars. In general, cycle

time for radar system, which is the processing time for one snapshot, is very short, thus



to establish a high-resolution estimation algorithm with computational efficiency is
additional issue. On the other hands, multi-target detection scheme is required to
identify many targets in the field of view. Multi-target detection is regarded as target
pairing solution, whose task is to associate frequency components obtained from
multiple targets. Under certain conditions, the association may fail and real target may
be combined to ghost components [20]. Thus, reliable paring or association method is
essential for automotive radar systems. The clutter denotes undesired echoes due to
reflected wave from background environment, which includes guardrail, traffic signs,
and stationary structures around the load. To minimize the effect of clutter,
conventional radar systems use high pass filter based on the assumption that the clutter
is stationary with energy concentrated in the low frequency domain [21]. However, the
clutter is presented with various energy and frequency under automotive radar
environment. Especially, under the specific environment with iron materials, target
component is not detected due to clutter with large power [22]. Mutual interference is a
crucial issue that must be resolved for improved safety functions. Given the increasing
number of automotive radar sensors operating at the same instant, the probability that
radar sensors may receive signals from other radar sensors gradually increases. In such
a situation, the system may fail to detect the correct target given the serious interference
[23]. Effective countermeasures, therefore, have to be considered.

This thesis has a focus on efficient parameter estimation for automotive radar
signal processing. In chapter 2, high-resolution DOA estimation with having pairing
function for automotive FMCW radar is presented. In the section 2 of chapter 2, the
MUSIC in the time-domain and frequency-domain is analyzed, and the simulated
results are presented in section 3 of chapter 2. In Chapter 3, the clutter suppression

scheme for iron tunnels is presented. Radar signal model of iron tunnel,



characterization of iron tunnel, and clutter suppression scheme are presented in in
section 2 of chapter 3. Experimental result is analyzed in in section 3 of chapter 3. In
chapter 4, interference mitigation method is described. Qualitative analysis of
interference is presented in section 2 of chapter 4. In section 3 of chapter 4, high-
resolution frequency estimation scheme is presented. Experimental result is analyzed

in section 4 of chapter 4. Finally, conclusion is presented in chapter 5.



Chapter 2
High-Resolution Direction of Arrival
Estimation with Pairing function for

Automotive Radar Systems

2.1 Introduction

Automotive radar sensors are employed for various ADAS applications such as
ACC, FCW, and AEB. Conventional FMCW radar provides only range and velocity
of targets which exist on field of view. The increasing demand for safety and
convenience leads to efforts improving the DOA estimation to allow resolution of
targets even in the similar distance-velocity information. In an urban environment, for
example, DOA is essential to separate targets with having same distance and velocity.
The DOA resolution using conventional beam-former is poor since automotive radars
have typically a low antenna aperture due to size restriction [24]. High-resolution
methods for DOA estimation such as MUSIC [17] enable radar sensors to resolve very

closely spaced targets. These algorithms are well known as subspace based algorithm,



which is applied wide research area to estimate specific parameters. MUSIC is based
on exploiting the eigen-structure of input covariance matrix. MUSIC makes
assumption that the noise in each channel is uncorrelated making correlation matrix
diagonal.

On the other hand, Target pairing is an essential for multi-target detection. FMCW
radar uses increasing chirp (which is a up chirp) and decreasing chirp (which is a down
chirp) signal to obtain paired beat frequency of target [25]. From these frequency pair,
distance and velocity of targets are calculated. However, additional technique is
required to combine estimated DOA and distance and velocity.

In this chapter, high-resolution DOA estimation algorithm in frequency domain
process is proposed. The proposed method is not significantly different from the
conventional MUSIC, whereas it resolves pairing issue naturally by using only beat
frequency of target. To analyze detection performance of proposed method, simulation
results are presented based on a 77 GHz FMCW radar system. From the simulation,
proposed frequency domain approach shows RMSE performance similar to time

domain approach.



2.2  High-Resolution DOA Estimation for Automotive

Radars

In order to provide DOA information, an array concept with multiple antennas is
employed. With a far-field assumption, which means radius of propagation is much
larger than array spacing, the propagation delay with respect to array element results in
linear phase shift. Array signal processing can largely be classified into spectral
approach and the parametric approach. The former uses spectral peak component of
estimator, including beamforming techniques and subspace based methods [24]. The
latter directly computes the DOA from signal model of estimator, such as maximum
likelihood (ML) [19]. In this section, we employed MUSIC algorithm for DOA

estimation, well known as subspace based method.
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2.2.1 DOA Estimation in the Time-domain Processing

Let us consider uniform linear array (ULA) with M antenna element, uniform
spacing of d as shown in Figure 2.1. Plane wave reflected from each D target
incidents on a different angle depending on the location of target. Each received signal
X, (n), for m=0,1,...,M, includes additive zero mean, Gaussian noise. Time is

represented by the n-th time sample. Thus, Array output x[n] is expressed as

follows,
x[n]=As[n]+w][n], (2.1)
X [n] si[n] | | wi[n]
aln] [a(6) a(6,) - a(6,)] SZE”] el e
X [n] So [n] Wi [n]
where,
a(@i)=[l, gimdlisn(a) .. ej2ﬂ(M—1)d//lsin(€i):|T’ 2.3)

s[n] is a vector of incident complex signal at time n, w[n] is a noise vector at

each array element m with zero mean, variance of o2, a(6) is M -element

array steering vector forthe ¢ DOA,and A is M x D matrix of steering vectors
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a(é,) . Itis initially assumed that the number of the targets D<M .

Based on above signal model, covariance matrix of received signal is given by

R, = E[x[n]x" [n]] = AE[s[n]s" [N]JA"™ + E[w[n]w" [n]] | 24)
=AR_A" + 5l

In general, D<M , AR_A"is a singular matrix and non-negative definite. The

array covariance matrix is calculated by the expectation of array output. However, we

cannot find exact statistics for the signals and noise. Therefore, we assume that the

process has ergodic properties, so we can approximate the correlation by use of a time-

averaged correlation. Then, (2.4) can be represented by
1 N
R, = WZ x[n]x"[n]. (2.5)
n=1

From (2.4), we can find that the eigenvalue of R, is exactly equal to summation of
the eigenvalue of AR_A" and the noise variance & . Since the rank of AR A"
is D, we can separate D eigenvalues larger than o> and M - D eigenvalues
with a value of o. We can also choose the D eigenvectors associated with the

signaland M — D eigenvectors associated with the noise. Then we can construct the

M x D dimensional subspace spanned by the signal eigenvectorsand M x (M — D)

dimensional subspace spanned by the noise eigenvectors, respectively.

E=[E, E,]. (2.6)

12 ; o (=18
[ =) A = Tf ¢



where,

EN :[el €, - eM—D]

. (26)
Es :[eM—D+1 €v_ps2 " eM]'

The noise subspace eigenvectors are orthogonal to the array steering vectors at the

direction of arrival 6,, 6,, ---, 6, . The relation is expressed as follows,
ALlE,
Ny ) : 7
A" le i=12 --M-D
Placing this relation in the denominator creates sharp peaks at the DOA. Thus,
the MUSIC pseudo-spectrum is given as
Prsc (6) = : 28)
T @ EGE" a0)] |

The peak value of pseudo-spectrum determined as DOA of target objects by using
peak detection algorithm such as constant false alarm rate (CFAR). Parametric
approach such as MUSIC takes advantage of a prior knowledge such as the number of
frequency components. Because the precise number of frequency D value is not
available in practical systems, it must be estimated. As information theoretic criteria,
MDL or the Akaike information criterion (AIC) have been widely used to estimate the
number of frequencies [26]. In this work, we employ the MDL criterion to estimate

M . This is expressed as [27],
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MDL(k)=log| —*—— 4—;k(2L—k)IogQ, (2.9)

after which the estimate of M can be obtained by

M = arg, minMDL(k) +1, (2.10)
where, k=0,1,---,L-1.

The flowchart of MUSIC algorithm is summarized in Figure 2.2.
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Array output
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Estimation of spatial covariance matrix

¥R
Eigenvalue decomposition
\ 2
# of multipath A
estimation e
L 22

i

Compute pseudospectrum

\ 220

Estimation of DOA

Figure 2.2 Flowchart of the MUSIC algorithm
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2.2.2 DOA Estimation in the Frequency-domain Processing

As described above section 2.2.1, DOA estimation in time-domain gives only the
sequence of estimated angles. To apply multi-target environment for automotive radars,
respective DOA of targets should be paired with those of distance and velocity.
Therefore, a proper pairing solution should be considered. However, if the number of
targets increases, the computational load to combine each DOA with range and
velocity.

In this section, we propose the DOA estimation in frequency-domain processing to
provide natural pairing solution for automotive radar system. The proposed method is
based on an observation that each target has different beat frequency. Thus, the DOA
estimation is performed by using beat frequency component of target.

Let us define the spectrum of received signal obtained from fast Fourier transform

(FFT). N, discrete-timesamples for M array output is defined by

X; =D % [n] -+ xy [n]T"
S; =[s[nls,[n] - sp[nl" @11
W, =[w,[n]w,[n] - w,, [n]]T

where,

Xm[n]I[Xm[O] Xm[l] Xm[NFFT] ]Ta form=1,2, -, M
ss[N1=[s,[0] S4[1] - S4[Neer 117, ford=1,2,---,D (2.12)
W, [n] = [w,, [0] W, [1] -+ W, [Neer 1T

(+); denotes sampled data in time-domain, X, and W, are M x N,
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dimensional matrix, and S; is DxN., dimensional matrix. Fast Fourier

transform matrix with length of N, is represented as follows

1 ioraenn-
[F]n,k — e j2z(k-1)(n-1)/Nger

FRT , (2.13)

f(f,)=F( :  k, +1)=F(: ,Af—;+1)

where, f(f,) denotes Fourier operator for the beat frequency of d th target, k, is
frequency index of d th target, f, is beat frequency of d th target, and Af is
frequency resolution. From (2.13), coefficient of Fourier transform for the f, is
expressed by
D
Xe (f,)= Y a(6)S, (i, ) (f,) +W,F(f,)
i=1

=a(0,)S, (d, )f(f,)+W,f(f,) , (2.14)
=a(6,)se (fy)+we(f,)

where, X (f,) is a Mx1 vector including complex magnitude of beat

frequency f, for each array element. For the D targets, the total matrix

representation is given as

X=[Xe (f) X (f,) - XF(fD)]T
S= Diag[sp(fl) SF(fz) SF(fD)]T ’ (2.15)
WZ[WF(fl) WF(fZ) WF(fD)]T

where,
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XF(fd):[Xf,l[fd]Xf,Z[fd] XfYM[fd]]T,fordzl, 2,---, D

T (2.16)
WF(fd) :[Wf,l[fd] Wf,z[fd] Wf,M[fd]]
and compact matrix form is expressed by
X=AS+W. 2.17)

In order to estimate DOA with respect to f,, covariance matrix for each beat

frequency is defined as
Rei =EX: (f)x." ()], fori=1,2, ---,D. (2.18)

Since rank(R;)=1 ingeneral case, R.; has one eigenvalue in signal subspace,

and M —1eigenvalues in noise subspace. From the pseudo-spectrum (2.8), estimated

DOA component 6, is exactly paired with distance and velocity corresponding to f; .
Therefore, the DOA estimation in frequency domain resolves paring problem for

multi-target detection automatically.
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2.3 Simulation Result

231

Simulation Setup

To analyze the performance of DOA algorithm with two different approaches,

Monte Carlo simulations were performed. The received signal was generated by the

FMCW signal model. The parameters used in this simulation for FMCW are

summarized in Table 2.1.

Table 2.1 Parameters used in simulation for FMCW

Parameters value
Carrier frequency, f, 76.5GHz
Sweep time, At 5ms
Sweep bandwidth, BW 500 MHz
Maximum targetrange, R 200m
Maximum target velocity, V, .. 300 km/h
Sampling frequency, f, 440 kHz
The number of time sample 1024
The number of FFT point, N -, 1024
The number of Antenna 8
Antenna spacing Al2=cl2f,

It is assumed that 77GHz FMCW radar with single transmitting antenna and 8

receiving array antenna with equally spaced elements. Maximum beat frequency is

derived by

18



BW 2R 2f
_—J’__

fomax = Frmax T Tamex = £V
C c

b, max r,max d,max
At

(2.19)

r,max ~’

_BW 2R,
TTECTUAL C

where, f * is the maximum frequency difference by the

maximum target range, and f = 2—fCV is the maximum Doppler frequency

d,max c r,max
shift by the maximum relative velocity of target. By the Nyquist sampling theorem,
sampling frequency is determined by

f,>2.f (2.20)

b,max *

For convenience of operation, we set the number of the sample in time-domain

equal to those in frequency-domain.

232 Performance Comparison of the DOA Estimation in

Time- and Frequency-domain Processing
To evaluate performance of DOA estimation, we employed the measure of RMSE
under various conditions such as signal to noise ratio (SNR), the number of antenna

elements, and angular separation of closed two targets. The RMSE of estimated DOA

is defined as

RMSE = E[(6 - 6,.,,)*]. (2.21)
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where, 0 is the estimated DOA, and @4

reai

, is the real DOA for the target location.
From (2.21), we can find that the RMSE means the standard deviation of estimator.
The RMSE is evaluated against SNR. It is assumed that there exist two targets with
-7 and 8 degree. In general, the DOA of target represents the angle from the
perpendicular direction of the radar sensor. SNR is varied from 0 dB to 20 dB with
1000 independent trials, respectively. MUSIC estimate in time-domain uses the

number of time sample, which is snapshot, for N = 300, 500, 1000 .

# of Antenna = 8, Antenna spacing = A\/2
0.14 . . . . : . .

—5— MUSIC time domain, N=300
—+— MUSIC time domain, N=500
—#— MUSIC time domain, N=1000|
—— MUSIC freq domain

012}

0.1

0.02

0 2 4 6 8 10 12 14 16 18 20
SNR, [dB)

Figure 2.3 RMSE versus SNR

Figure 2.3 shows the RMSE performance of the algorithms in terms of the number
of time samples for the two targets. In general, many of the DOA algorithms rely on
the array covariance matrix. Since we use time average for estimating covariance

matrix, large time sample performs better in comparison. However, large snapshot
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affects computational time, results in longer cycle time for processing. On the other

hand, MUSIC estimate in frequency domain shows good performance with relatively

small computational load.

- SNR = 15 dB, Antenna spacing = A2

—&— MUSIC time domain, N=300
0.16 | —+— MUSIC time domain, N=500
—#— MUSIC time domain, N=1000
—#— MUSIC freq domain

0.14

0.02 ¢

The number of Antenna

Figure 2.4 RMSE versus the number of antenna
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SNR = 15 dB, # of Antenna = 8, Antenna spacing = /2

—&— MUSIC time domain, N=300
0451 —+— MUSIC time domain, N=500

—#— MUSIC time domain, N=1000
04r —— MUSIC freq domain

' 4 6 8 10 12 14 16 18 20
Angular separation, [7]

Figure 2.5 RMSE versus angular separation.

Figure 2.4 shows the RMSE performance in terms of the number of antenna
elements. The SNR is 10 dB, the number of antenna elements varies from 4 to 12, and
rest of simulation parameter is same as Figure 2.3. The number of antenna determines
the size of covariance matrix, which is a square matrix. As the number of antenna
elements increase, beam pattern of the array is sharper, and the more power of
receiving antenna is concentrated on specific direction. Moreover, MUSIC algorithm
uses the orthogonality between steering vector of incoming signal and eigenvectors in
noise subspace. Thus large antenna elements make large size of eigenvectors in noise
subspace, results in reducing correlation of signal and noise.

To evaluate angular resolution of the algorithm, the RMSE performance in terms of
angular separation is analyzed as shown in Figure 2.5. The SNR is 10 dB, the number

of antenna is 8, and the angular separation of two targets varies from 3 to 20 degree.
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MUSIC estimate in frequency domain shows similar performance with MUSIC
estimate in time domain with N =300.

From above observation, it is proved that the DOA estimate in frequency domain is
almost same performance as one in time domain, whereas frequency domain approach

provides efficient pairing solution.

233 Performance Analysis of the DOA Estimation in

Frequency-domain

The frequency domain approach utilizes the beat frequency of the target which is
derived from Fourier analysis of the received signal. Thus, better estimation of the beat
frequency leads to better performance of DOA estimate. The frequency resolution of
the FMCW radar is determined by sampling frequency f, and length of FFT N,

as follows

Af = £ . (2.21)

Neer

Thus, large FFT points gives more precise complex magnitude of beat frequency,
which results in better performance of DOA estimate. Figure 2.6, Figure 2.7, and
Figure 2.8 show the RMSE performance versus SNR, the number of antenna elements,
and the angular separation of two targets, respectively. These simulated results are
performed with same condition as previous section 2.3.2. It is commonly observed that
larger FFT point shows better performance of RMSE with expense of computational

load, whichis nlog, n.
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#of Antenna = 8, Antenna spacing = A2
0s T T T T T T T T T
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Figure 2.6 RMSE versus SNR according to the number of FFT length
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SMNR =15 dB, Antenna spacing = A2

07 T T T T T T T
: : —o— MUSIC freq domain, NFFT=512
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The number of Antenna

Figure 2.7 RMSE versus the number of antenna according to the number of FFT

length

SNR =15 dB, #of Antenna = 8, Antenna spacing = A2
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Figure 2.8 RMSE versus angular separation according to the number of FFT length
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24 Conclusion

Conventional DOA estimation method is performed in time-domain, and gives only
the directions of targets as a sequence. Thus, additional process should be established
to pair DOA and distance/velocity. If there are many targets in field of view for a radar
system, a very large amount of computation for precise pairing is required. To cope
with the restriction of cycle time for the radar system, it is essential to suggest a simple
but efficient pairing technique.

In this chapter, the efficient high-resolution DOA estimation method for automotive
radar systems is proposed. We analyze high-resolution DOA estimation algorithm by
use of beat frequency of target. By comparing to conventional time domain processing,
we evaluated the suitability of the proposed method by simulation results. The
frequency domain approach also provides a simple and efficient target pairing solution,

which combine DOA information with distance and velocity of the target.
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Chapter 3
Clutter Suppression Method of Iron
Tunnel using Cepstral Analysis for

Automotive Radars

3.1 Introduction

Clutter suppression is regarded as a relatively simple problem, however, in particular
for iron-tunnel environments, the clutters are known to severely degrade the target
detection performance because of the signal reflection from iron structures.

In the literature, several techniques have been presented in an effort to characterize
the clutter structure on roads [28]-[29], whereas they are appropriate only for ultra-
wideband pulse radars. Other studies have analyzed the stationary targets located in
bridges and guard rails [30]-[31]. However, it is noteworthy that unlike the bridges and
guard rails, iron structures are densely distributed to induce large reflections in iron-
tunnel environments. So far, many of research have been descriptive under normal
road conditions. Meanwhile, authors in [22] have introduced a technique to recognize

the structure of iron tunnel. They employed measurement of the entropy based on the

P



short time Fourier transform analysis, and showed performance improvement by
adjusting CFAR threshold. Note that this technique is tailored only for the recognition
of iron-tunnel environments and not for the clutter suppression.

The main purpose of this study is to develop an understanding of the clutter effect of
the iron tunnel and to establish an efficient clutter suppression algorithm under the iron
tunnel environment. First, we derive a signal model for frequency modulated
continuous waveform (FMCW) radars in iron-tunnel conditions, considering that iron
pillars are located apart at equal distances, which leads to linear-increment of beat
frequency with respect to the distance of clutters. Here, we focus on the periodic
properties of the clutters induced by iron structures uniformly located in the tunnel. In
order to analyze these properties, we employ cepstral analysis, which is used in wide
areas for pitch detection [32]-[34]. By comparing radar signals in cepstrum domain
under various road conditions, we prove that the existence of certain family of peaks in
cepstral domain is a unique characteristic of iron-tunnel environments, which
represents periodical beat frequency of clutters. Based on the above finding, we
propose a clutter suppression method for iron-tunnel environments with liftering
corresponding filtering in the spectral domain. To verify the proposed method, a 77
GHz forward-looking FMCW radar for ACC is employed. Measured results show that
the proposed method efficiently suppresses the clutter of iron tunnel and extracts the
parameter of the target object. It is shown that the proposed method provides

significant performance enhancement even for early target detection.

The overall structure of the study organized as follows. Section 3.2 begins by
modeling radar signal under an iron-tunnel condition. The cepstral characteristic and

the method to suppress clutter are also discussed in section 3.2. Section 3.3 analyzes
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the experimental results of the proposed method. Finally, conclusion is presented in

section 3.4.
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3.2  Clutter Suppression under Iron Tunnels

In this section, a radar signal model with iron-tunnel clutters is briefly described. We
analyze cepstral characteristics under various road conditions, and propose an efficient

method to suppress the clutter effect of iron tunnel by the cepstrum editing process.

Passband Baseband

O = [ ph—————r s YRR )

1 1 1 1 1
-\ | Pl ¥ P P 5
o -+ LPF AID [T b |
/o b H Do . l
I 1 1 i . I
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i i L ]
RF Module Digital Processor User Interface

Figure 3.1 Schematic diagram of a typical FMCW radar

3.21 Radar Model of an Iron Tunnel

A 77 GHz forward-looking FMCW long range radar is employed in this work. The
antenna module consists of linear patch antennas implemented on a printed circuit
board, which has single transmitting antenna and K receiving antennas. A sinusoid
signal of the waveform generator is modulated as a chirp signal by a voltage-controlled
oscillator. The amplified signal is transmitted into the air, and reflected signal from the
target is received with a time delay and Doppler frequency shift. Using a mixer and
low pass filter, the received signal is converted to baseband signal. The range and

velocity are obtained by digital processor of discrete-time signal derived from the
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analog to digital converter (ADC). The unit time, which includes all of the above
process, is called scan, and has a value of 50 ms in this work. With the linear frequency

modulation, the received signal after ADC from K -th array can be simplified by [30]

X (n) =s,(n)+e(n)= iak ()cos2z f (n+4 (1)) +e(n), B

where, n=0,1,---,N -1, N isthe number of time samples,and T is the number
of targets existing on the field of view. s, (n) contains sinusoids returned from each
target, e, (n) represents the white noise signal with zero mean and variance of o?.
a (i), f (i) and ¢ (i) are the amplitude, beat frequency and phase of the i-th
target, respectively. The beat frequency, f, (i), means the frequency difference
between the transmitted and the received signal for i-th target. f, (i) is composed
of f, . (i) (which is frequency difference by the distance of target) and f, , (i)

(which is Doppler frequency shift by relative velocity), and each of them is represented

as
£, ()= 22R(0) =22 R(), (32)
' c cT,
and
foy ()= 22, () = 2v, i), (33
' C A
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B Bandwidth
where, a=—=—"~———
T. Chirpduration

c

is the chirp slope, f, is the center frequency.

c isspeed of light and A is the wavelength of center frequency. R(i) and v, (i)
are the range and relative velocity of the i -th target, respectively. When considering

that the iron clutters of tunnel are densely distributed, (3.1) can be expressed as follows,

X (n) = iak (i)cos(27 f, (i)n + ¢, (1))

. , (34)
+ 28 (1)cos@r fy  (In+ 4. (1)) +e(n)
j=1
where, C is the number of clutters, a .(j), f,.(J), and ¢ (j) are the
amplitude, beat frequency, and phase of the j -th clutter, respectively. Assuming that
the iron clutters have a uniform space, frequency difference by the distance of clutter,
f . c(J) . isgivenby
. 2B .. 2B . .
fk,r,c(J) D RC(J) = _(Rc (1) + (J _1)|) = fk,r,c(l) + (J _1)Af ' (3’5)
cT, cT,
where, R.(1) is the distance of the first iron clutter and | represents distance of the
. 2B . . . '
inter-clutter. f, . (1) = po=s R. (1) is frequency difference by the distance of the first
,, T,
32 A = =]-
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clutter. Af :2—$| is frequency difference by the distance of the inter-clutter. Iron
c

clutter is a stationary target, which has a constant Doppler frequency, so iron-tunnel
condition presents periodic frequency components of the iron clutters. Under an iron
tunnel, reflected signal from clutters is much larger than those from targets, which
results in the detection failure of the target from clutters. To suppress clutter effect,
periodicity of clutters in frequency domain needs to be analyzed. To accomplish this

object, a cepstrum is employed in this work.

3.22 Cepstral Analysis of an Iron Tunnel

The cepstrum, derived from an anagram of spectrum, is a signal processing
technique for identifying harmonic families in spectrum and removing the certain
spectral components [35]. Cepstrum is used in wide research areas including speech
signal processing and fault diagnosis. The cepstrum is originally defined as the power
spectrum of the logarithmic power spectrum. However, various definitions for
cepstrum are presented in literatures with different functionalities. For the given
discrete time signal of X, (n), representative definitions of cepstrum are expressed as

follows [36]

N-1 N-1 —i%%kn 5 2% kn
Cooner (N)=D_10g(1 D X, (Me "N e N, (36)
n=0 n=0
33 FE (=18
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'zikn

Coa (1) =3 051 X x, (e e’ @)

n=0
and
U -i%%n 2k
Ccomplex(n)zzlog(zxk(n)e N )e N ’ (38)
n=0 n=0
where, || denotes absolute value, C,. (), C.,(n),and C, . (n) represent

power, real and complex cepstrum, respectively. The operations of both forward and
inverse Fourier transform are involved in the calculation of the cepstrum. The
transformation of cepstrum concentrates on the periodic spectrum components, such as
families of equally spaced harmonics. The essential observation leading to the
cepstrum analysis is that the logarithmic spectrum can be treated as an input waveform
and subjected to further inverse Fourier transform. The magnitude of the spectrum of
X, (n) varies as the frequency changes. By the log operation, however, it is possible to
compress the dynamic range of magnitude and reduce magnitude differences in the
harmonic components. Table 3.1 lists the terminologies in the cepstrum domain with

the one corresponding in the spectrum domain.
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Table 3.1 Terminology of cepstral- and spectral domain

Cepstral domain | Spectral domain
quefrency frequency
gamnitude magnitude
rahmonic harmonic

lifter filter
saphe phase

To characterize the radar signal under the iron-tunnel environment, we analyze the
cepstral results. The real cepstrum is employed in this work. Discrete-time Fourier
transform is replaced by fast Fourier transform (FFT), which is computationally
efficient. Data acquisition is performed in various road conditions, such as an
expressway, guardrail, normal tunnel and iron tunnel. Figure 3.2 shows the magnitude
response of the cepstrum under each road condition. Under general road conditions
including expressway, guardrail, and normal tunnel, any peak value of quefrency does
not exist clearly. It means that there is no periodicity between the beat frequencies of
the targets having different ranges and velocities. It is shown that the magnitude
response has certain peak values of the quefrency only under iron-tunnel condition,
which are rahmonic components. The first rahmonic peak is exactly same as the
inverse of fundamental period in frequency domain, Af . From this analysis, we
verify that the periodicity of the clutter frequencies is an inherent property of the iron-

tunnel condition.
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Figure 3.1 Schematic diagram of typical FMCW radar
3.23 Cepstrum Based Clutter Suppression Method
To extract the hidden frequency of target objects from periodic frequency of clutter,

an effective technique to suppress the clutter frequency is necessary. Since Fourier

transform is complex domain operation, the cepstrum is represented in complex
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domain. Therefore, the complex cepstrum has its inverse transformation, and the time
domain signal can be reconstructed by using a modified cepstrum. However, complex
cepstrum requires the continuity of phase to be unwrapped. So, it is not applicable to
stationary random components where the phase is random.

On the other hand, if the input waveform of inverse Fourier transform has no phase
information such as magnitude of spectrum, the cepstrum is real-valued. Despite of
real-valued cepstrum, reconstruction to the time domain can be achieved by using the
amplitude of the modified spectrum combined with the original phase spectrum.
Moreover, we can lifter a rahmonic family in the quefrency domain and obtain an
edited spectrum. Based on this real cepstral analysis, a simple rejection and
reconstruction of the spectrum are employed in this work [37]. As shown in Figure 3.3,
we propose to remove harmonics of clutters through the following steps: Step 1) once
the received signal is transformed into the frequency domain by the fast Fourier
transform (FFT), we perform the log operation to separate the amplitude and phase
components. Step 2) using the log amplitude only with inverse FFT, real cepstrum is
obtained. Step 3) the peak values in the cepstrum, representing a rahmonic family, are
simply rejected by setting those gamnitude to zero, which acts as an ideal band-
rejection lifter in the cepstral domain. Step 4) edited cepstrum is reversely transformed
to spectral domain, which is an edited log amplitude. Step 5) edited log spectrum is
composed of edited log amplitude and phase of the original spectrum. Step 6) with
exponentiation of the edited log spectrum, finally, the edited spectrum is obtained,

from which the target frequencies are extracted.
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Figure 3.3 Procedure of cepstrum method for removing the harmonic family
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3.3 Experimental Result

In this section, we present our experimental results based on the measured data in

real driving environments. The FMCW radar sensor for ACC was installed at front of

the test vehicle. The parameters of the FMCW radar are with 76.5 GHz of center

frequency and 200 m of maximum operating range. The FFT algorithm is used for

frequency estimation, and the cell average (CA)-CFAR is employed to detect target

frequency [38]. To validate the proposed method, measurement tests were performed

under various iron tunnels. Moreover, all of the measured data is obtained in a real

driving situation. To recognize an iron tunnel, the method based on spectrum spreading

in [22], is applied. The proposed method, therefore, operates only when iron tunnel is

recognized. The profile of the representative two iron tunnels, used in this work, is

summarized in Table 3.2.

Table 3.2 Iron-tunnel profile

Case | Geographic coordinate Length Experiment
(latitude, longitude) (km) Date
A (37.27. 127.08) 1.0 Sep.09.2015
B (37.17, 127.03) 0.7 Sep.05.2015
39



The measured results for the proposed suppression method are shown in Figure 3.4
and Figure 3.5 for case A and B in Table 3.2, respectively. Figure 3.4.a depicts the
original spectrum of the received signal before applying the proposed algorithm. The
component represented by an asterisk stands for beat frequency of the target vehicle in
the same lane with the ego-vehicle. Because of the periodical frequencies of the iron
clutters, the hidden frequency of the target is not identified clearly. Although the target
indicates the peak frequency, the frequency of target may be filtered by a CFAR
threshold. The magnitude response of the log spectrum is shown in Figure 3.4.b. The
log magnitude maintains periodicity of the original spectrum, while it smoothens the
variation of magnitude with respect to frequency. Figure 3.4.c shows the cepstrum of
the received signal with fundamental period and its rahmonics, resulted from the
periodic peaks in the spectrum. The peak at rahmonic of 0.76 ms in Figure 3.4.c is
equal to the inverse of 1.31 kHz, the fundamental period of the peak in the spectrum.
After peaks of quefrencies are removed, edited spectrum in Figure 3.4.d still has
residual periodic components. Compared with the original spectrum, nevertheless,
frequency of the target is identified definitely, and also clutter effect is suppressed
clearly. Figure 3.5 in case B of the iron tunnel also shows very similar results with
Figure 3.4. Because the iron structures of the case B are almost same as those of A,

identical fundamental frequency and harmonics in the quefrency domain are presented.
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Figure 3.6 presents detection results before and after the clutter suppression. Figure
3.6.a and Figure 3.6.b shows the original spectrum and edited spectrum in frequency
domain, respectively. The dotted line represents the threshold value obtained by CFAR.
The spectral components larger than CFAR threshold are expressed by an asterisk.
These peaks include the target in the same lane with ego-vehicle, the targets in others
lane, and also clutters with high power. Although residual clutters are detected after
suppression, they can be rejected by target pairing and tracking procedure. It is beyond
the scope of this study to examine the pairing and tracking algorithm. It is noteworthy
that the target in the same lane with the ego-vehicle is extracted from clutters, which
provides essential information so as to control the ego-vehicle automatically. Figure
3.6.c depicts the trajectory comparison of the target vehicle in the same lane. The
trajectory of the target is calculated by using the estimated target distance, location of
ego-vehicle, and wheel speed of ego-vehicle. It represents the change of the estimated
position with a marker at every five scans. It is shown that when the suppression

algorithm is applied, the target vehicle is detected at an earlier time.
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Figure 3.6 Detection result before and after clutter suppression

To evaluate the performance of the proposed method quantitatively, experiments are
performed to determine the distance of early target detection, which is a measure of the
initial distance to detect a target vehicle in the lane of the ego-vehicle. The initial
detection of the target is a very important indicator for the ACC application. If the
initial detection of the target is late, the ego-vehicle brakes suddenly, which increases

the probability of collision with the vehicle in the front or rear. For each iron-tunnel
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condition, some factors are considered including a type of the target vehicle and

different velocity of the ego-vehicle. Table Il summarizes the results of distance of

early target detection for each iron tunnel. The average distance of the early target

detection is improved by more than 55 m for the proposed method. Although the

proposed method performs additional computation of both FFT and inverse FFT, it

shows performance enhancement without adjusting any CFAR threshold with respect

to the road condition.

Table 3.3 Evaluation of the distance of early target

Case | Geographic coordinate | Length Before After Ego-vehicle Relative Vehicle Experiment
(latitude, longitude) (km) suppression (m) | suppression (m) | speed (mps) | speed (mps) type Date
A (37.27, 127.08) 1.0 9.7 1334 373 -2 suv Sep.09.2015
A (37.27, 127.08) 1.0 513 118.1 41 -0.99 compact car | Sep.09.2015
B (37.17, 127.03) 0.7 64.5 125.1 27.1 -6.97 Sedan Sep.03.2015
B (37.17, 127.03) 07 6ik1 109.7 40.1 2316 compact car | Sep.03.2013
45



34 Conclusion

In many applications of automotive radar systems, a technique to suppress clutter
effect is essential, particularly for the iron-tunnel environments. In this paper, we
modeled a FMCW radar signal under iron tunnels in which iron structures are
uniformly and densely distributed. From cepstral analysis, we proved that the periodic
property of iron clutters is revealed in the cepstral domain. Based on this observation,
we proposed an efficient clutter suppression method using real cepstrum to remove the
clutter effects in the cepstral domain. Experimental results present that the proposed
method provides significant enhancement in the target detection performance. This

proves that the proposed method is successfully applied for clutter suppression.
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Chapter 4
Interference Mitigation by High-
Resolution Frequency Estimation for

Automotive Radars

4.1 Introduction

Mutual interference is a crucial issue that must be resolved for improved safety
functions [16], [23]. Given the increasing number of automotive radar sensors
operating at the same instant, the probability that radar sensors may receive signals
from other radar sensors gradually increases. In such a situation, the system may fail to
detect the correct target given the serious interference. Effective countermeasures,
therefore, have to be considered. In the literature, several techniques have been
presented in an effort mitigate the performance degradation issue caused by
interference in radar or communications systems [39], [40]. To avoid overlap in the
frequency domain, one method to minimize interference shifts the frequency of the
transmitted signal pseudo-randomly [39]. Other authors [40] propose frequency ramps
from short PN-coded sequences as a spread-spectrum technique. With these methods,
however, the radars must share the same set of codes. Efficient strategies to distribute

codes are required beforehand for collision avoidance.
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Another study [16] qualitatively analyzed the mutual interference between
millimeter-wave radar sensors and examined interference scenarios when considering
spatial, temporal and frequency overlap. Interference from neighboring sensors appears
to result in an increase in the noise level in the frequency domain. Therefore, it is
important to estimate beat frequency accurately in a high interference environment.
Conventional FMCW radar systems use the fast Fourier transform (FFT) algorithm for
beat frequency estimation [41]. However, the traditional FFT algorithm is associated
with high probability of failing to separate target objects from interferers. This
motivates us to exploit high-resolution estimation techniques in interference-limited
automotive radar environments.

This chapter proposes a beat frequency estimator for use in automotive FMCW
radar systems based on high-resolution techniques to suppress mutual interference by
means of a frequency domain analysis. The proposed method can be considered as the
application of a subspace method known as MUSIC and ESPRIT, which solve the
generalized eigenvalue problem using an autocorrelation matrix of received signal [17],
[18]. The proposed method employs an estimator of a correlation matrix with forward-
backward spatial smoothing (FBSS) [42] and a frequency signal dimension order
(FSDO) estimator with the minimum description length (MDL) criteria [27]. The
proposed method improves the frequency resolution and reduces the influence of
interference relative to the FFT method. Moreover, ESPRIT is more computationally
efficient than MUSIC [43], as ESPRIT directly calculates the frequency components in
a given frequency range, whereas MUSIC requires a peak detection process from the

spectral analysis.

To verify proposed methods, measurement was performed in a test field. The
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experimental data used in the paper are obtained from a 77 GHz forward-looking
FMCW radar for adaptive cruise control (ACC). The results show that the missing
problem of a target vehicle under interference environments is improved by proposed

methods in the detection performance.

The rest of this chapter is organized as follows. The characteristics and a
mathematical representation of FMCW radar systems are presented in section 4.2.
Based on the system model, beat frequency estimations using MUSIC and ESPRIT
are discussed in section 4.3. Experimental results are presented in section 4.4 to verify
the performance enhancement when using the proposed schemes. Finally, conclusions

are given in section 4.5.
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42 Automotive FMCW Radars in an Interference

Environment

A signal transmitted using a linearly increasing or decreasing signal in the frequency

domain can be represented as [30]

f(t) = Acos(27z¢)

= Acos(2z [ (f, +at)dt) = Acos(2z(,t +%at2)),

where, A and ¢ are the amplitude and phase of the transmitted signal,
respectively; f, is the transmitted signal frequency at time t=0 ; and

o BW  sweepbandwidth
At sweeptime

is the chirp rate (chirp slope). The received signals

returning from multiple targets are delayed and attenuated. If the targets are moving,

they include an additional frequency shift term as follows:

4.1)

u 1
gt) = Z B, cos (2”(( fo +f0t -ty )"Ea(t - td,i)z)) ' (4.2
i=1
Here, m is the number of targets; B, is the amplitude of the received signal; and
50 L ] =
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fy, and t,; are the Doppler frequency and the delay time respectively. The
transmitted and received signals are mixed by multiplication in the time domain. With
the trigonometric identity of the sum of the cosines, the product of the two signals has
distinct sinusoidal components. One of these will be at a frequency that is

approximately twice the carrier frequency, which will be cut off by a low-pass filter

(LPF). The other term, i.e., the mixer output after LPF processing, is given by

st) =Y Creos (27 (at, ~f, )t +27(f, + f, )t~ 7at?,), 43)

i=1

where C, = AB, is the amplitude of the mixed output. f & =at,, —f,, is the
beat frequency (or frequency difference), which is analyzed by the FFT algorithm. The
range and velocity of each target are obtained from the beat frequency component with
a peak detection algorithm such as the CFAR technique [44].

Considering that many vehicles may be equipped with FMCW radar sensors, it is
essential to analyze the interference mechanism. Two simple scenarios can be regarded,
as shown in Figure 4.1. One is direct interference from a vehicle in the opposite
direction and the other is a returned interference from a vehicle traveling in the same

direction (which is indirect interference). There are many factors affecting radar

sensitivity, such as interfering source levels, the side-lobe effect, the target shape, the
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operating band, and the sweep time.

Interferer

T

Radar sensor Target

(@) Direct interference

Interferer

) p

Radar sensor Target

(b) In-direct interference

Figure 4.1 Simple interference scenarios in automotive radar environment

As an issue that acts between FMCW radars, interference can be divided into in-
band-region interference and out-of-band interference depending on the delay time,
resulting in a ghost target and a uniform increase of the noise floor respectively [16].
In-band-region interference not only occurs with a very low probability, but it can also
be removed by means of multi-target detection and tracking algorithms [45]. For the
out-of-band interference, however, the detection of the targets fails due to the increase
in the noise floor. Figure 4.2 shows the influence of an interference signal that is 30dB

larger than the signal from the target when the target is present at the 70m. The target
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signal-to-noise-ratio (SNR) is reduced considerably. It is an important issue, therefore,
to identify the signal from a result which contains an increase in the noise floor. The
out-of-band interference is modeled in the following two cases according to the delay

time of the interference signal.

Normalized amplitude [dB]

o 50 100 150
Beal frequency [kHz]

(@ Spectrum of a target without interference

Normalized amplitude [dB]

1] 50 100 150
Beal frequency [kHz]

(b) Spectrum of a target with interference

Figure 4.2 The spectrum of FFT output for an out-of-band region interference with a

magnitude 30 dB larger than signal returned from target object.
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Figure 4.3 Two cases of out-of-band interference, where  f, is the sampling rate and

fpe IS the cut-off frequency of LPF.

421 The Same Sign-Chirp Case

Assuming there are multiple interferers equipped with FMCW radar in the field of

view, with parallel increasing chirps in the transmitted signal and with the interference
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signal in the sampling interval (Figure 4.3(a)), the received signal can be expressed as

follows:

9(t)=g,(t)+g,(t)+n(t)

- Z B cos (27 ((f,+f,)(t- td'i)-i—;a(t— t,0°)) 44)

+ zk: B, cos (27 (( f0+fdy,j)(t—td’,j)4—;a(t— {1 )7)) + (o).

is the round-trip time for the maximum operating range

d,max

Here, t, .. <ty 5t

of 200m, I; isthe index of the interferer, t,, is the delay time of the interferer, k

j
is the number of interferers, and n(t) is white noise. The mixed output after low-pass

filtering is as follows:

x(t) = F©)g®) = f ©)(g, (1) + g, ©) +n(t)) = (t) + 1 (1) +w(t)

= 3 cieos (2x(aty ~f, )+ @a(fy+ fy Mty -mat?, (4.5)
i=1

k
+ Y C, cos (2z(at,, ~f,, o+ @a(fyrty, My, — 70t?, ) +W(t).

=L

In this case, the influence of interference signal is presented in the form of a ghost

target with a constant frequency. Because the beat frequency of the interferer is larger
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than the maximum beat frequency corresponding to the maximum operating range, it

can be ignored by the sampling rate, f,.

422 The Different Sign-Chirp Case

In contrast to the above case, with an increasing chirp of transmitted signal and a

decreasing chirp of interfering signal, the received signal is expressed as follow:

g(t) =g, (t)+g, () +n(t)

= $Boos (2r((1+1, )t 1)+ 2att-1,,))) 49)

+Zk: B, cos (27((f,+BW+1,, )(t—td,,j)—;a(t—td',j )?)) +n(t),

The mixed output is, therefore, given by

x(t) = f (©)g(®) = f ©)(g, (1) + g, ®) +n®) = s(t) + 1 () + w(t)

= 3 cieos (2x(aty,~f, )+ QRa(fot+f, )t~ 7at?,)

i=1

k
+>.C, cos[- 2z(aty, +BW+f, )t + 27zat® 27 (f, +BW + f, )t + zat?, ]+ w(t).

j=1

@.7)
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Because the interfering signal comes with a short pulse and time-varying frequency
components as shown in Figure 4.3(b), it would appear as an increase in the noise floor
with a very wide spectral width. The amount of the increase in the noise floor is
proportional to the time duration of the interfering signal or the interfering source
power. Considering that the interfering signals are also treated as noise, (4.7) can also

be represented as shown below.

x(®) =s(t) + (1(t) + w(t)) = s(t) + e(t)
=ﬁ Ccos [27(at, —f, @ (fo+f, ), —mat?, Jre),

i=1

(4.8)

Here, e(t)=I(t)+w(t) .
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4.3 High-Resolution Frequency Estimation Methods

In this section, the proposed high-resolution beat frequency estimation scheme is
described. Figure 4.4 shows a functional block diagram of the proposed scheme, which
employs a FBSS and a FSDO estimator. We present a data model for subspace-based
algorithms and describe an effective method to estimate the correlation matrix. Based
on the data model, a theory encompassing MUSIC and ESPRIT is investigated and the
FSDO estimator, as a part of MUSIC and ESPRIT, is presented to provide the number

of frequency components.
Ligenvalues and
3 Eigenvectors 2
x[n timati R .. = - '
()] mstmationor (R rags | g, wosic |/,
matrix by FBSS Decomposition || Fspo [ ] ESPRIT
Estimator | -
M

Figure 4.4 Functional block diagram of the high-resolution beat frequency estimation

algorithm

431 Data Model

Let us a consider sampled version of radar mixed output as a discrete-time sinusoid

signal having amplitude, frequency, and phase components, as follows,

x[n]=s[n]+¢[n]= Zm:ai cos(2z f.n+¢)+e[n], 4.9

; (25 A=t st



where n=0,1,2;--,N-1; s[n] contains sinusoids returned from each target; e [n]
represents the noise signal from other FMCW radars, including white noise with a zero

mean and variance of o?; m is the number of sinusoids; N is the number of

sampled data points; and a,, f, and ¢ are the amplitude, beat frequency, and

phase of the i -th sinusoid, respectively. According to Euler’s formula,
cos(2z f,n+¢) can be expressed as %(e“z”fi”*ﬂhej(Z”fi”*m). Then, (4.9) can be

represented in complex exponential form, as

Mo

x[n]=s[n]+e[n]=> Ael®"™® L e[n], (4.10)
i=1

with
— a i — .
A :E'e‘”', f,=1f for 1<i<m
K:%e"”i,f:—fi form+1<i<2m, (4.11)
M =2m

By defining the 1-th complex sinusoid component, Ke"z”?i” as s;(n), (4.10) is

expressed as follows:
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x[n]=isi[n]+e[n], n=0,12,---,N -1,

(4.12)
From L discrete-time samples, a compact matrix form is obtained by
M
x(n)=>"s;(n)+e(n), (4.13)
i=1
where L>M ; x(n) = [X[n] X[n+1] - - x[n—LA]]" , s;(n) =
[s,[n]s,[n+1]---s,[n— L+1]]" = [Lei?7h ... gI2r (DT T, pgi2ein and

e(n) =[e[n]e[n+1]---e[n—L+1]]" . Then, a low-rank matrix representation for

subspace methods can be represented as

x(n) =FA(n) +e(n), 4.14)

where F = [f (Tl)f (f_z) - of (ﬂ)] isa LxM Vandermonde matrix of rank M ,
A(n) — [EejZnTln Eejbzf?n . 'mejz,,mn]

,and f(T)=[e!"...e*EVNT for

i=12,---,M is a frequency mode vector with frequency f.. The autocorrelation

matrix of mixed output R, isexpressed as
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R,, = E[x(mxn)"], (4.15)

where E[-] denotes the expected value. By using eigenvalue decomposition, the
eigenvalues and corresponding eigenvectors of R, are obtained according to
Hz242--24} and respectively. If R,, has the full rank of M, the

eigenvalues are given by

A 2A2 2 Ay > Ay, = Ay, == A =var[e[n]], (4.16)

where var[e[n]] denotes the noise variance. From the eigenvalues and eigenvectors

of R, ,we define asignal subspace matrix V, =[v,Vv,---v,,] corresponding to the

XX !

largest M eigenvalues, and a noise subspace matrix V, =[V,,,;Vy.,---V,] that

contains the remaining eigenvectors.

432 Estimation of the Correlation Matrix

The correlation matrix of the received signal is found by the expected value of the
absolute values squared. However, we cannot identify the exact statistics for the signal
and noise. Assuming that the process is ergodic, we can approximate the correlation

matrix by means of time-averaged correlation as follows:
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R 1 N-L+1

R =—— " 4.17
x N_L+1;X(H)X(n) 4.17)

Here, N>L , N denotes the sequentially decimated time samples
{X[NIX[n +1]---x[n + N =1]}" . When the number of time samples is limited, the rank
sparsity of the correlation matrix degrades the performance. To improve the
performance of subspace methods, FBSS method is used in this paper [42]. FBSS is

used to calculate the L x L matrix, as
A 1 & - ~
Reess === (R, +JR"J), (4.18)
Q=3

where Q=N -L+1; Iin =x(n)x(n)" ,and J isthe LxL reversal matrix, for

which the elements are unity along the anti-diagonal and are zero elsewhere.

433 Application of the MUSIC Algorithm
The MUSIC algorithm uses the basic assumption that the frequency mode vector
corresponding to its frequency component is orthogonal to the noise subspace formed

by the noise eigenvectors. This is expressed, as

1 (f)v, =0, (4.19)
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where i=1,2,---,M and k=M +1,M +2,---,L
By using the orthogonality of the frequency mode vectors to the noise eigenvectors, the

MUSIC pseudo-spectrum is then defined as follows [17]:

1
Puusic (f) = —_— (4.20)

AL OIS

k=m+1

A peak value occurs in the pseudo-spectrum when f =f,, and the estimated

frequency is obtained by CFAR[44].

434  Application of the ESPRIT Algorithm

ESPRIT is based on the naturally existing shift-invariance between discrete-time
series samples which leads to rotational invariance between the corresponding signal
subspaces [18]. Let us define two subsamples x,(n) =[x[n]1x[n+1]---x[n+ L - 2]]"
and  x,(n)=[x[n+1x[n+2]---x[n+L-1]" for L-1>M . From s[n+1]

=s,[nle’*"% in(4.13), x,(n) and x,(n) can be represented by

% (n) =FA(n) +e,(n)

(4.21)
X,(n) = F®A(n) +e,(n),
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where @ is a (L-1)x(L-1) diagonal matrix whose i -th component is

¢ = ezt By defining V,, and Vj, asthe signal subspace eigenvectors from the

auto-correlation of x,(n) and x,(n), respectively, the subspaces of the eigenvectors

are related by a unique non-singular transformation matrix ¥ such that

V¥ =V,,. (4.22)

Because F and V,, V,, span the same signal subspace, there is also a unique

non-singular transformation matrix T such that

V,, =FT
(4.23)
V;, =FO®T.
By substituting (4.23) into (4.22), we can derive the following relationship:
Y=T'OT. (4.24)

Thus, the largest M eigenvalues of ¥ are equal to the diagonal elements of ®

~

such that y, =ei?™h y, =el?"% ...\ —el?™ The frequency estimates f for

1<i<M arethen calculated as

=W (4.25)
2

where /- denotes the phase of the argument, with the sampling frequency of the
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data used to calculate ?, The MUSIC algorithm needs to search the peaks of the

spatial spectrum at a cost of computational load, whereas ESPRIT exploits the
rotational invariance structure of the signal subspace and avoids searching any spatial

spectrum,
435  Number of Frequency Estimation

MUSIC and ESPRIT take advantage of a prior knowledge such as the number of
frequency components. Because the precise number of frequency M value is not
available in practical systems, it must be estimated. As information theoretic criteria,
MDL or the AIC have been widely used to estimate the number of frequencies. In this

paper, we employ the MDL criterion to estimate M . This is expressed as [27],

Lr 1 \kbe
[T4*
MDL(K)=log| —=—— |  +k(2LK)logQ, (4.26)
. 2
L-k&

after which the estimate of M can be obtained by
M =arg, minMDL(K) +1, 4.27)

where, k=0,1,---,L-1.

65 ; o (=18
F A =l



44  Experimental Result

Table 4.1 Parameters of a FMCW radar for the experiment

Parameter Specification
Frequency TH.25-T6.7TH GHz
Sweep bandwidth 500 MHz

Sweep time 5 ms

Output power 10 mW
Maximum range 200 m

FFT points 2048

Sampling rate 208 kHz

In this section, we present our measurement setup and analyze the proposed method
as compared to the conventional FFT algorithm. To validate performance of the
proposed methods, measurement performed with two interference scenario (Figure
4.1). The FMCW radar sensor, used for ACC, was installed in the test vehicle which is
produced by a Korea company. All of the experiments were performed in an open
space on flat ground. The interfering and target vehicles have 10dBsm radar cross
section (RCS). The parameters of the FMCW radar used in this study are summarized
in the Table 1. For a sweep bandwidth of 500 MHz, a sweep time of 5 ms and a
maximum operating range of 200 m, the maximum round trip time is 1.33 s and
the maximum beat frequency is 133 kHz. The cut-off frequency of the LPF was set to

1 MHz.
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In order to evaluate the quantitative performance of the frequency estimation in an
interference environment, probability of resolution is analyzed according to SIR. The
SIR is determined by the distance from the radar sensor to the target and the interferer.
The SIR is distributed up to about -31 dB and -63 dB for the indirect interference and

direct interference respectively.

The mixer outputs of the FMCW radar were analyzed using the conventional FFT,
the MUSIC and the ESPRIT methods. To detect the peak values from the FFT and
MUSIC spectral results, the ordered statistic (OS) CFAR algorithm was adopted [44],
where the probability of a false alarm is 107° . The beat frequency of the target is

determined by the spectral component higher than a threshold.

interferer

— RET
. OS-CFAR __
_5H FFT

= = = MUSIC

S .
(o —{"I'.\RML 81

%  ESPRIT

Amplitude [dB]

25 30 35
Beat frequency [kHz]

Figure 4.5 Sample result for the beat frequency estimation when the target object exists

at a range of 50m (For a direct interference scenario)
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Figure 4.5 shows a snapshot (which means a scan) for the beat frequency estimation
when the target object exists at a range of 50 m. In this example, the SIR is -30 dB (i.e.,
the direct interferer is 30 m away from the radar sensor). This result shows that the
proposed method is more capable of identifying the beat frequency than the
conventional FFT method. Although, the FFT result indicates a peak value for the
target object, it is not larger than the threshold, leading to a detection failure of the

target object.
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Figure 4.6 Probability of resolution versus SIR

The results are based on 1600 independent periods of measured data for each
distance using the subsample size setto L =100 for the FBSS. As shown in Figure

4.6, the proposed method operates up to a SIR of -32.5 dB, whereas the FFT shows a
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performance limit of -17.9 dB SIR. These subspace-based methods are entirely robust
for at least indirect interference scenarios. For a short range of less than 50 m,
Furthermore, it can be said the proposed methods can identify the beat frequencies of
targets regardless of the SIR. The MUSIC and ESPRIT algorithms show similar
performance levels. However, ESPRIT has better computational efficiency because it

avoids the peak-search process.
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0.2

Probability of resolution
v

Figure 4.7 Probability of resolution versus the number of subsample for FBSS

The performance of the proposed algorithm versus the number of subsamples for
the FBSS was also assessed. The conditions for estimation are same to those in Figure
4.7, except that the number of subsamples is varied from L=100 to L =300.

Figure 4.7 shows that when the number of samples is increased to 200 and 300, the
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performance of the MUSIC algorithm shows additional margin of SIR, about 2.4 dB
and 4.1 dB, respectively. This improvement occurs because large number of

subsamples, L, makes the rank property of the correlation matrix effective.
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44 Conclusion

The conventional FFT approach is vulnerable in interference-limited environments.
In this paper, the performance limitation of the existing system was evaluated
quantitatively. Also, we proposed a subspace-based method to identify the beat
frequency of the targets while suppressing the interference signals. Experimental
results show that the proposed method has a SIR margin of at least about 14 dB
compared to the conventional FFT algorithm. The proposed method provides a
significant performance enhancement even in a direct interference environment, which
proves that the proposed estimation method can be successfully applied for the beat
frequency analysis in an interference environment. Thus, it is concluded that MUSIC
and ESPRIT are essential for minimizing the interference effects in the automotive
radar field. Moreover the overall method will be useful for eliminating the influence of

interference when used in conjunction with other mitigation techniques.
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