
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 i 

 
Ph.D. DISSERTATION 

 

EFFICIENT PARAMETER 

ESTIMATION METHODS FOR 

AUTOMOTIVE RADAR SYSTEMS 
 

차량용 레이더 시스템을 위한  
효율적인 파라미터 추정 기법 연구 

 
By 

HAN-BYUL LEE 
 

FEBRUARY 2016 
 
 
 

DEPARTMENT OF ELECTRICAL AND COMPUTER 

ENGINEERING 

COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 



 ii 

 

Abstract 

 

EFFICIENT PARAMETER 

ESTIMATION METHODS FOR 

AUTOMOTIVE RADAR SYSTEMS 

 
 

Han-Byul Lee 

Department of Electrical and Computer Engineering 

The Graduate School 

Seoul National University 

 

As the demand for safety and convenience in the automotive-technology field increased, 

many applications of advanced driving assistance systems were developed. To provide 

driving information, among the sensors, such as cameras sensor, light detection and 

ranging sensor, radar sensor, and ultrasonic sensor, a radar sensor is known to exhibit 

excellent performance in terms of visibility for different weather conditions. Especially 
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with the legislation of the adaptive cruise control system and autonomous emergency 

braking system in a global environment, the market of the automotive radar sensor is 

expected to grow explosively. At present, the development of cost-effective radar offering 

high performance with small size is required. In addition, the radar system should be 

enforced to have a simultaneous functionality for both long and short ranges. Thus, 

challenging issues still remain with respect to radar signal processing including high-

resolution parameter estimation, multi-target detection, clutter suppression, and 

interference mitigation.  

   For high-resolution parameter estimation, direction-of-arrival (DOA) estimation 

method has been investigated to identify the target object under complex unban 

environment. To separate closely spaced target having similar range and distance, high-

resolution techniques, such as multiple signal classification (MUSIC), the estimation of 

signal parameters via rotational invariance techniques (ESPRIT), and maximum 

likelihood (ML) algorithm, are applied for automotive radars. In general, cycle time for 

radar system, which is the processing time for one snapshot, is very short, thus to 

establish a high-resolution estimation algorithm with computational efficiency is 

additional issue. 

   On the other hands, multi-target detection scheme is required to identify many targets 

in the field of view. Multi-target detection is regarded as target pairing solution, whose 

task is to associate frequency components obtained from multiple targets. Under certain 

conditions, the association may fail and real target may be combined to ghost 

components. Thus, reliable paring or association method is essential for automotive radar 

systems. 

   The clutter denotes undesired echoes due to reflected wave from background 

environment, which includes guardrail, traffic signs, and stationary structures around the 
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load. To minimize the effect of clutter, conventional radar systems use high pass filter 

based on the assumption that the clutter is stationary with energy concentrated in the low 

frequency domain. However, the clutter is presented with various energy and frequency 

under automotive radar environment. Especially, under the specific environment with 

iron materials, target component is not detected due to clutter with large power.  

Mutual interference is a crucial issue that must be resolved for improved safety 

functions. Given the increasing number of automotive radar sensors operating at the 

same instant, the probability that radar sensors may receive signals from other radar 

sensors gradually increases. In such a situation, the system may fail to detect the correct 

target given the serious interference. Effective countermeasures, therefore, have to be 

considered.  

In this dissertation, we propose efficient parameter estimation methods for automotive 

radar system. The proposed methods include the radar signal processing issues as above 

described, respectively. First, the high-resolution DOA estimation method is proposed by 

using frequency domain analysis. The scheme is based on the MUSIC algorithm, which 

use distinct beat frequency of the target. The target beat frequency also gives distance and 

velocity. Thus, the proposed algorithm provides either high-resolution angle information of 

target or natural target pairing solution.  Secondly, we propose the clutter suppression 

method under iron-tunnel conditions. The clutter in iron-tunnel environments is known to 

severely degrade the target detection performance because of the signal reflection from 

iron structures. The suppression scheme is based on cepstral analysis of received signal. By 

using periodical characteristic of the iron-tunnel clutter, the suppressed frequency response 
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is obtained. Finally, the interference mitigation scheme is studied. Mutual interference 

between frequency modulated continuous waveform (FMCW) radars appears in the form 

of increased noise levels in the frequency domain and results in a failure to separate the 

target object from interferer. Thus, we propose a high-resolution frequency estimation 

technique for use in interference environments. 

 

Keywords : Automotive radar, FMCW, Direction-of-arrival, Interference, 

Mitigation, Clutter, Suppression, High-resolution, Signal processing 
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Chapter 1 

Introduction 
 

 

1.1 Background 
 

Three major topics in the field of automotive technology are green, convenience, 

and safety. Among these issues, the goal of research on safety and convenience is to 

prevent accidents in a variety of dangerous situations commonly encountered by 

drivers. To provide safety and driving comfort, advanced driving assistance systems 

(ADAS) are emerging as very active issues [1]-[2]. The sensors have played a vital role 

in the development of ADAS and enhancement of vehicle safety. Sensor technology 

provides artificial sensing of the environment, which enables decision making by in-

car computers [3]. These sensor enabled systems help in providing warning to drivers 

and regulating vehicle control to mitigate collisions that can lead to material damage as 

well as human injury. ADAS includes blind spot detection, adaptive cruise control 

(ACC), autonomous emergency braking (AEB), obstacle detection, collision 

avoidance systems, rear view cameras, parking assistance (PA), and lane departure 

warning as showing in Figure 1.1 [4]-[5]. Key sensor technologies being used in these 

systems are camera sensor, infrared sensors, radar, light detection and ranging, and 

ultrasonic sensors.  
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Figure 1.1 ADAS applications 
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1.2 ADAS Applications for Automotive Radars 
 

 ACC ensures that the automobile remains at a predefined distance away from the car 

ahead, reducing the speed to zero if necessary [6]. For ACC, radar sensors emit and 

receive radio waves and thus determine the distance of vehicles in front of the user’s 

vehicle. ACC with stop and go facility allows the vehicle to come to a standstill if the 

preceding vehicle comes to a halt. The system again takes over as the preceding 

vehicle stars and by controlling acceleration, the predefined cruise speed is again 

achieved. 

The blind spot detection helps the driver while attempting to pass other vehicles [7]. 

Sensors continuously monitor the presence, direction, and speed of vehicles in the 

lanes beside the ego-vehicle. If a vehicle moves into the blind spot, warning based on 

visual or audio signals can be generated to alert the driver of potential danger of 

collision. Radar sensors mounted on the real bumper or on the side rear view mirrors 

monitor vehicles behind or on adjacent lanes.  

   Forward collision warning systems are in-vehicle electronic systems that 

monitoring the roadway in front of the host vehicle and warn the driver when a 

potential collision risk exists. The system provides an audible alert when it senses a 

reduction in traffic speed in vehicles ahead. When the danger of a collision is detected, 

it provides a red warning light that flashes on the windshield. The forward collision 

warning is extended as an AEB recently. The system takes sudden braking in an 

emergency situation. 

   PA systems consist of visual aids, using real view cameras and side view cameras, 

Ultrasonic sensors provide distance information which allows the vehicle to be safety 

guided into the parking space without crashing into any other parked vehicle. Radar is 
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applied as a form of sensor fusion with camera sensors and ultrasonic techniques. 

Parking assistance systems will gradually make way for automatic parking systems. 
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1.3 Motivation and Organization 
 

The development of automotive radar focuses on two types; short-range radar 

(SRR) using ultra-wide band (UWB) system at the 24 GHz and 77 GHz bands, and 

long-range radar (LRR) using frequency modulated continuous waveform (FMCW) 

systems at the 77GHz band [8]-[9]. The 77GHz band is known to be the most 

appropriate frequency band in global automotive radar environments, as the 24GHz 

band is shared with other communications systems. Furthermore, multi-mode radar 

sensors including the function of both SRR and LRR are obliged to miniaturize its size 

[10]. Considering the size of multi-mode radar sensors, 77GHz FMCW radar is a good 

candidate for a new automotive radar solution [11]. FMCW radar uses the waveforms 

of linearly increasing or decreasing frequencies, which increases reliability of radar 

system by providing the distance and velocity information of the target simultaneously. 

Moreover, the easy implementation of these radar sensors is the most significant factor 

making the most popular commercial system at present [12]–[13]. 

There remain several problems, however, related to the signal processing of 

automotive FMCW radar, including high-resolution parameter estimation, multi-target 

detection, clutter elimination and mutual interference elimination [14]–[16]. For high-

resolution parameter estimation, direction-of-arrival (DOA) estimation method has 

been investigated to identify the target object under complex unban environment. To 

separate closely spaced target having similar range and distance, high-resolution 

techniques, such as multiple signal classification (MUSIC) [17], the estimation of 

signal parameters via rotational invariance techniques (ESPRIT) [18], and maximum 

likelihood (ML) algorithm [19], are applied for automotive radars. In general, cycle 

time for radar system, which is the processing time for one snapshot, is very short, thus 
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to establish a high-resolution estimation algorithm with computational efficiency is 

additional issue. On the other hands, multi-target detection scheme is required to 

identify many targets in the field of view. Multi-target detection is regarded as target 

pairing solution, whose task is to associate frequency components obtained from 

multiple targets. Under certain conditions, the association may fail and real target may 

be combined to ghost components [20]. Thus, reliable paring or association method is 

essential for automotive radar systems. The clutter denotes undesired echoes due to 

reflected wave from background environment, which includes guardrail, traffic signs, 

and stationary structures around the load. To minimize the effect of clutter, 

conventional radar systems use high pass filter based on the assumption that the clutter 

is stationary with energy concentrated in the low frequency domain [21]. However, the 

clutter is presented with various energy and frequency under automotive radar 

environment. Especially, under the specific environment with iron materials, target 

component is not detected due to clutter with large power [22]. Mutual interference is a 

crucial issue that must be resolved for improved safety functions. Given the increasing 

number of automotive radar sensors operating at the same instant, the probability that 

radar sensors may receive signals from other radar sensors gradually increases. In such 

a situation, the system may fail to detect the correct target given the serious interference 

[23]. Effective countermeasures, therefore, have to be considered.  

 This thesis has a focus on efficient parameter estimation for automotive radar 

signal processing. In chapter 2, high-resolution DOA estimation with having pairing 

function for automotive FMCW radar is presented. In the section 2 of chapter 2, the 

MUSIC in the time-domain and frequency-domain is analyzed, and the simulated 

results are presented in section 3 of chapter 2. In Chapter 3, the clutter suppression 

scheme for iron tunnels is presented. Radar signal model of iron tunnel, 
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characterization of iron tunnel, and clutter suppression scheme are presented in in 

section 2 of chapter 3. Experimental result is analyzed in in section 3 of chapter 3. In 

chapter 4, interference mitigation method is described. Qualitative analysis of 

interference is presented in section 2 of chapter 4. In section 3 of chapter 4, high-

resolution frequency estimation scheme is presented. Experimental result is analyzed 

in section 4 of chapter 4. Finally, conclusion is presented in chapter 5. 
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Chapter 2  

High-Resolution Direction of Arrival 

Estimation with Pairing function for 

Automotive Radar Systems 
 

2.1  Introduction 

 

Automotive radar sensors are employed for various ADAS applications such as 

ACC, FCW, and AEB. Conventional FMCW radar provides only range and velocity 

of targets which exist on field of view. The increasing demand for safety and 

convenience leads to efforts improving the DOA estimation to allow resolution of 

targets even in the similar distance-velocity information. In an urban environment, for 

example, DOA is essential to separate targets with having same distance and velocity. 

The DOA resolution using conventional beam-former is poor since automotive radars 

have typically a low antenna aperture due to size restriction [24]. High-resolution 

methods for DOA estimation such as MUSIC [17] enable radar sensors to resolve very 

closely spaced targets. These algorithms are well known as subspace based algorithm, 
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which is applied wide research area to estimate specific parameters. MUSIC is based 

on exploiting the eigen-structure of input covariance matrix. MUSIC makes 

assumption that the noise in each channel is uncorrelated making correlation matrix 

diagonal.  

On the other hand, Target pairing is an essential for multi-target detection. FMCW 

radar uses increasing chirp (which is a up chirp) and decreasing chirp (which is a down 

chirp) signal to obtain paired beat frequency of target [25]. From these frequency pair, 

distance and velocity of targets are calculated. However, additional technique is 

required to combine estimated DOA and distance and velocity.  

In this chapter, high-resolution DOA estimation algorithm in frequency domain 

process is proposed. The proposed method is not significantly different from the 

conventional MUSIC, whereas it resolves pairing issue naturally by using only beat 

frequency of target. To analyze detection performance of proposed method, simulation 

results are presented based on a 77 GHz FMCW radar system. From the simulation, 

proposed frequency domain approach shows RMSE performance similar to time 

domain approach. 
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2.2  High-Resolution DOA Estimation for Automotive 

Radars 

 

In order to provide DOA information, an array concept with multiple antennas is 

employed. With a far-field assumption, which means radius of propagation is much 

larger than array spacing, the propagation delay with respect to array element results in 

linear phase shift. Array signal processing can largely be classified into spectral 

approach and the parametric approach. The former uses spectral peak component of 

estimator, including beamforming techniques and subspace based methods [24]. The 

latter directly computes the DOA from signal model of estimator, such as maximum 

likelihood (ML) [19]. In this section, we employed MUSIC algorithm for DOA 

estimation, well known as subspace based method.  

 

 
 

Figure 2.1 ULA structure for DOA estimation  
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2.2.1  DOA Estimation in the Time-domain Processing 

 
Let us consider uniform linear array (ULA) with M  antenna element, uniform 

spacing of d  as shown in Figure 2.1. Plane wave reflected from each D  target 

incidents on a different angle depending on the location of target. Each received signal 

( )mx n , for 0,1, ,m M= … , includes additive zero mean, Gaussian noise. Time is 

represented by the n -th time sample. Thus, Array output [ ]nx  is expressed as 

follows,  
 

[ ] [ ] [ ]n n n= +x As w ,    (2.1) 

 

or 

 

[ ]
[ ]

[ ]

( ) ( ) ( )

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

1 1 1

2 2 2
1 2 D

M D M

x n s n w n
x n s n w n

x n s n w n

θ θ θ

     
     
      = +      
     
          

a a a

  

,  (2.2) 

 

where, 

( ) ( ) ( ) ( )2 / sin 2 1 / sin1, , ,i i
Tj d j M d

i e eπ λ θ π λ θθ − =  a  ,  (2.3) 

 

[ ]ns  is a vector of incident complex signal at time n , [ ]nw  is a noise vector at 

each array element m  with zero mean, variance of 2
nσ , ( )iθa  is M -element 

array steering vector for the iθ  DOA, and A  is M D×  matrix of steering vectors 
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( )iθa . It is initially assumed that the number of the targets D M< .  

Based on above signal model, covariance matrix of received signal is given by 

 

2

[ [n] [n]] [ [n] [n]] [ [n] [n]]

      = 

H H H H
T

H
ss M

E E E
s

= = +

+

R x x A s s A w w
AR A I

 ,  (2.4) 

 

In general, D M< , H
ssAR A is a singular matrix and non-negative definite. The 

array covariance matrix is calculated by the expectation of array output. However, we 

cannot find exact statistics for the signals and noise. Therefore, we assume that the 

process has ergodic properties, so we can approximate the correlation by use of a time-

averaged correlation. Then, (2.4) can be represented by 

 

1

1 [n] [n]
N

H
T

nN =

= ∑R x x .    (2.5) 

 

From (2.4), we can find that the eigenvalue of TR  is exactly equal to summation of 

the eigenvalue of H
ssAR A  and the noise variance 2

nσ . Since the rank of H
ssAR A  

is D , we can separate D  eigenvalues larger than 2
nσ  and M D− eigenvalues 

with a value of 2
nσ . We can also choose the D  eigenvectors associated with the 

signal and M D−  eigenvectors associated with the noise. Then we can construct the 

M D× dimensional subspace spanned by the signal eigenvectors and ( )M M D× −  

dimensional subspace spanned by the noise eigenvectors, respectively. 

 

[  ]S N=E E E ,        (2.6) 
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where, 

1 2

1 2

[    ]
[    ].

N M D

S M D M D M

−

− + − +

=
=

E e e e
E e e e





.         (2.6) 

 

The noise subspace eigenvectors are orthogonal to the array steering vectors at the 

direction of arrival 1 2,  ,  , Dθ θ θ . The relation is expressed as follows, 

 

  1,  2, ,
N

H
i i M D

⊥

⊥ = −

A E

A e 

.          (2.7) 

 

Placing this relation in the denominator creates sharp peaks at the DOA. Thus, 

the MUSIC pseudo-spectrum is given as 

 

1( )
( ) ( )MUSIC H H

N N

P θ
θ θ

=
a E E a

.             (2.8) 

 

The peak value of pseudo-spectrum determined as DOA of target objects by using 

peak detection algorithm such as constant false alarm rate (CFAR). Parametric 

approach such as MUSIC takes advantage of a prior knowledge such as the number of 

frequency components. Because the precise number of frequency D  value is not 

available in practical systems, it must be estimated. As information theoretic criteria, 

MDL or the Akaike information criterion (AIC) have been widely used to estimate the 

number of frequencies [26]. In this work, we employ the MDL criterion to estimate 

M . This is expressed as [27], 
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( )11

1

1MDL( ) log (2 )log ,
1 2

k L QL
L k

i
i k

L

i
i k

k k L k Q

L k

l

l

−−
−

=
−

=

 
 
 =− + − 
  − 

∏

∑
  (2.9) 

 

after which the estimate of M can be obtained by 

 

ˆ arg minMDL( ) 1,kM k= +    (2.10) 

where, 0,1, , 1k L= − . 

The flowchart of MUSIC algorithm is summarized in Figure 2.2. 

 

 

Figure 2.2 Flowchart of the MUSIC algorithm 
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2.2.2  DOA Estimation in the Frequency-domain Processing 

 

As described above section 2.2.1, DOA estimation in time-domain gives only the 

sequence of estimated angles. To apply multi-target environment for automotive radars, 

respective DOA of targets should be paired with those of distance and velocity. 

Therefore, a proper pairing solution should be considered. However, if the number of 

targets increases, the computational load to combine each DOA with range and 

velocity.  

In this section, we propose the DOA estimation in frequency-domain processing to 

provide natural pairing solution for automotive radar system. The proposed method is 

based on an observation that each target has different beat frequency. Thus, the DOA 

estimation is performed by using beat frequency component of target.  

 Let us define the spectrum of received signal obtained from fast Fourier transform 

(FFT). FFTN  discrete-time samples  for M  array output is defined by 

 

1 2

1 2

1 2

[ [ ] [ ]  [ ]]

[ [ ] [ ]  [ ]]

[ [ ] [ ]  [ ]]

T
T M

T
T D

T
T M

n n n
n n n

n n n

=

=

=

X x x x
S s s s
W w w w







 ,   (2.11) 

where, 

 

[ ] [ [0] [1]  [ ] ] ,   for =1, 2, ,  

[ ] [ [0] [1]  [ ] ] ,   for =1, 2, ,  

[ ] [ [0] [1]  [ ] ]

T
m m m m FFT

T
d d d d FFT

T
m m m m FFT

n x x x N m M

n s s s N d D

n w w w N

=

=

=

x

s

w

 

 



,  (2.12) 

 

( )T  denotes sampled data in time-domain, TX  and TW  are FFTM N×  
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dimensional matrix, and TS  is FFTD N×  dimensional matrix. Fast Fourier 

transform matrix with length of FFTN  is represented as follows 

 

2 ( 1)( 1)/
,

1[ ]

( ) (  , 1) (  , 1)

FFTj k n N
n k

FFT

d
d d

e
N

ff k
f

π− − −=

= + = +
∆

F

f F : F :
, (2.13) 

 

where, ( )dff  denotes Fourier operator for the beat frequency of d th target, dk  is 

frequency index of d th target, df  is beat frequency of d th target, and f∆  is 

frequency resolution. From (2.13), coefficient of Fourier transform for the df  is 

expressed by 

1
( ) = ( ) ( ,  ) ( ) ( )

            = ( ) ( ,  ) ( ) ( )            
            = ( ) ( ) ( )

D

F d i T d T d
i

d T d T d

d F d F d

f i f f

d f f
s f f

θ

θ
θ

=

+

+
+

∑x a S : f W f

a S : f W f
a w

,  (2.14) 

 

where, ( )F dfx  is a 1M ×  vector including complex magnitude of  beat 

frequency df  for each array element. For the D  targets, the total matrix 

representation is given as 

 

1 2

1 2

1 2

[ ( ) ( )  ( )]

[ ( ) ( )  ( )]

[ ( ) ( )  ( )]

T
F F F D

T
F F F D

T
F F F D

f f f
Diag s f s f s f

f f f

=

=

=

X x x x
S
W w w w







,  (2.15) 

 

where,  
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,1 ,2 ,

,1 ,2 ,

( ) [ [ ] [ ]  [ ]] , for =1, 2, ,  

( ) [ [ ] [ ]  [ ]]

T
F d f d f d f M d

T
F d f d f d f M d

f x f x f x f d D

f w f w f w f

=

=

x

w

 



,  (2.16) 

 

and compact matrix form is expressed by 

 

= +X AS W .    (2.17) 

 

In order to estimate DOA with respect to df , covariance matrix for each beat 

frequency is defined as 

 

, [ ( ) ( )],    for =1, 2, , H
F i F i F iE f f i D=R x x  .  (2.18) 

 

Since ,( ) 1F irank =R  in general case, ,F iR  has one eigenvalue in signal subspace, 

and 1M − eigenvalues in noise subspace. From the pseudo-spectrum (2.8), estimated 

DOA component iθ  is exactly paired with distance and velocity corresponding to if . 

Therefore, the DOA estimation in frequency domain resolves paring problem for 

multi-target detection automatically.  
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2.3  Simulation Result 

 

2.3.1  Simulation Setup 

 

To analyze the performance of DOA algorithm with two different approaches, 

Monte Carlo simulations were performed. The received signal was generated by the 

FMCW signal model. The parameters used in this simulation for FMCW are 

summarized in Table 2.1.  

 

Table 2.1 Parameters used in simulation for FMCW 

Parameters value 
Carrier frequency, cf   76.5 GHz 

Sweep time, t∆  5 ms 
Sweep bandwidth, BW  500 MHz 

Maximum target range, maxR  200 m 

Maximum target velocity, r,maxV  300 km/h 

Sampling frequency, sf  440 kHz 

The number of time sample 1024 

The number of FFT point, FFTN  1024 

The number of Antenna 8 

Antenna spacing / 2 / 2 cc fλ =  

 

It is assumed that 77GHz FMCW radar with single transmitting antenna and 8 

receiving array antenna with equally spaced elements. Maximum beat frequency is 

derived by  

 



 19 

max
,max ,max ,max ,max

2 2 c
b r d r

R fBWf f f V
t c c

= + = +
∆

 ,     (2.19) 

 

where, max
,max

2
r

RBWf
t c

=
∆

 is the maximum frequency difference by the 

maximum target range, and ,max ,max
2 c

d r
ff V
c

=  is the maximum Doppler frequency 

shift by the maximum relative velocity of target. By the Nyquist sampling theorem, 

sampling frequency is determined by 

 

,max2s bf f> ⋅ .                    (2.20) 

 

For convenience of operation, we set the number of the sample in time-domain 

equal to those in frequency-domain.  

 

2.3.2  Performance Comparison of the DOA Estimation in 

Time- and Frequency-domain Processing 

 

  To evaluate performance of DOA estimation, we employed the measure of RMSE 

under various conditions such as signal to noise ratio (SNR), the number of antenna 

elements, and angular separation of closed two targets. The RMSE of estimated DOA 

is defined as 

 



2[( ) ]realRMSE E θ θ= − ,    (2.21) 
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where, θ  is the estimated DOA, and realθ  is the real DOA for the target location. 

From (2.21), we can find that the RMSE means the standard deviation of estimator. 

   The RMSE is evaluated against SNR. It is assumed that there exist two targets with 

-7 and 8 degree. In general, the DOA of target represents the angle from the 

perpendicular direction of the radar sensor. SNR is varied from 0 dB to 20 dB with 

1000 independent trials, respectively. MUSIC estimate in time-domain uses the 

number of time sample, which is snapshot, for 300,  500, 1000N = .  

 

 

Figure 2.3 RMSE versus SNR 

 

Figure 2.3 shows the RMSE performance of the algorithms in terms of the number 

of time samples for the two targets. In general, many of the DOA algorithms rely on 

the array covariance matrix. Since we use time average for estimating covariance 

matrix, large time sample performs better in comparison. However, large snapshot 



 21 

affects computational time, results in longer cycle time for processing. On the other 

hand, MUSIC estimate in frequency domain shows good performance with relatively 

small computational load.  

 

 

Figure 2.4 RMSE versus the number of antenna 
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Figure 2.5 RMSE versus angular separation. 

 

Figure 2.4 shows the RMSE performance in terms of the number of antenna 

elements. The SNR is 10 dB, the number of antenna elements varies from 4 to 12, and 

rest of simulation parameter is same as Figure 2.3. The number of antenna determines 

the size of covariance matrix, which is a square matrix. As the number of antenna 

elements increase, beam pattern of the array is sharper, and the more power of 

receiving antenna is concentrated on specific direction. Moreover, MUSIC algorithm 

uses the orthogonality between steering vector of incoming signal and eigenvectors in 

noise subspace. Thus large antenna elements make large size of eigenvectors in noise 

subspace, results in reducing correlation of signal and noise. 

To evaluate angular resolution of the algorithm, the RMSE performance in terms of 

angular separation is analyzed as shown in Figure 2.5. The SNR is 10 dB, the number 

of antenna is 8, and the angular separation of two targets varies from 3 to 20 degree. 
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MUSIC estimate in frequency domain shows similar performance with MUSIC 

estimate in time domain with N =300. 

From above observation, it is proved that the DOA estimate in frequency domain is 

almost same performance as one in time domain, whereas frequency domain approach 

provides efficient pairing solution. 

  

2.3.3  Performance Analysis of the DOA Estimation in 

Frequency-domain 

 

The frequency domain approach utilizes the beat frequency of the target which is 

derived from Fourier analysis of the received signal. Thus, better estimation of the beat 

frequency leads to better performance of DOA estimate. The frequency resolution of 

the FMCW radar is determined by sampling frequency sf  and length of FFT FFTN  

as follows 

 

s

FFT

ff
N

∆ = .    (2.21) 

 

Thus, large FFT points gives more precise complex magnitude of beat frequency, 

which results in better performance of DOA estimate. Figure 2.6, Figure 2.7, and 

Figure 2.8 show the RMSE performance versus SNR, the number of antenna elements, 

and the angular separation of two targets, respectively. These simulated results are 

performed with same condition as previous section 2.3.2. It is commonly observed that 

larger FFT point shows better performance of RMSE with expense of computational 

load, which is 2logn n . 
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Figure 2.6 RMSE versus SNR according to the number of FFT length 
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Figure 2.7 RMSE versus the number of antenna according to the number of FFT 

length 

 

 

Figure 2.8 RMSE versus angular separation according to the number of FFT length 
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2.4  Conclusion 
 

Conventional DOA estimation method is performed in time-domain, and gives only 

the directions of targets as a sequence. Thus, additional process should be established 

to pair DOA and distance/velocity. If there are many targets in field of view for a radar 

system, a very large amount of computation for precise pairing is required. To cope 

with the restriction of cycle time for the radar system, it is essential to suggest a simple 

but efficient pairing technique.  

In this chapter, the efficient high-resolution DOA estimation method for automotive 

radar systems is proposed. We analyze high-resolution DOA estimation algorithm by 

use of beat frequency of target. By comparing to conventional time domain processing, 

we evaluated the suitability of the proposed method by simulation results. The 

frequency domain approach also provides a simple and efficient target pairing solution, 

which combine DOA information with distance and velocity of the target. 
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Chapter 3 

Clutter Suppression Method of Iron 

Tunnel using Cepstral Analysis for 

Automotive Radars 

 
3.1  Introduction 

 

Clutter suppression is regarded as a relatively simple problem, however, in particular 

for iron-tunnel environments, the clutters are known to severely degrade the target 

detection performance because of the signal reflection from iron structures. 

In the literature, several techniques have been presented in an effort to characterize 

the clutter structure on roads [28]-[29], whereas they are appropriate only for ultra-

wideband pulse radars. Other studies have analyzed the stationary targets located in 

bridges and guard rails [30]-[31]. However, it is noteworthy that unlike the bridges and 

guard rails, iron structures are densely distributed to induce large reflections in iron-

tunnel environments. So far, many of research have been descriptive under normal 

road conditions. Meanwhile, authors in [22] have introduced a technique to recognize 

the structure of iron tunnel. They employed measurement of the entropy based on the 
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short time Fourier transform analysis, and showed performance improvement by 

adjusting CFAR threshold. Note that this technique is tailored only for the recognition 

of iron-tunnel environments and not for the clutter suppression. 

The main purpose of this study is to develop an understanding of the clutter effect of 

the iron tunnel and to establish an efficient clutter suppression algorithm under the iron 

tunnel environment. First, we derive a signal model for frequency modulated 

continuous waveform (FMCW) radars in iron-tunnel conditions, considering that iron 

pillars are located apart at equal distances, which leads to linear-increment of beat 

frequency with respect to the distance of clutters. Here, we focus on the periodic 

properties of the clutters induced by iron structures uniformly located in the tunnel. In 

order to analyze these properties, we employ cepstral analysis, which is used in wide 

areas for pitch detection [32]-[34]. By comparing radar signals in cepstrum domain 

under various road conditions, we prove that the existence of certain family of peaks in 

cepstral domain is a unique characteristic of iron-tunnel environments, which 

represents periodical beat frequency of clutters. Based on the above finding, we 

propose a clutter suppression method for iron-tunnel environments with liftering 

corresponding filtering in the spectral domain. To verify the proposed method, a 77 

GHz forward-looking FMCW radar for ACC is employed. Measured results show that 

the proposed method efficiently suppresses the clutter of iron tunnel and extracts the 

parameter of the target object. It is shown that the proposed method provides 

significant performance enhancement even for early target detection. 

The overall structure of the study organized as follows. Section 3.2 begins by 

modeling radar signal under an iron-tunnel condition. The cepstral characteristic and 

the method to suppress clutter are also discussed in section 3.2. Section 3.3 analyzes 
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the experimental results of the proposed method. Finally, conclusion is presented in 

section 3.4. 
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3.2 Clutter Suppression under Iron Tunnels 
 

In this section, a radar signal model with iron-tunnel clutters is briefly described. We 

analyze cepstral characteristics under various road conditions, and propose an efficient 

method to suppress the clutter effect of iron tunnel by the cepstrum editing process. 

 

 

Figure 3.1 Schematic diagram of a typical FMCW radar 

 

3.2.1 Radar Model of an Iron Tunnel 

 

A 77 GHz forward-looking FMCW long range radar is employed in this work. The 

antenna module consists of linear patch antennas implemented on a printed circuit 

board, which has single transmitting antenna and K receiving antennas. A sinusoid 

signal of the waveform generator is modulated as a chirp signal by a voltage-controlled 

oscillator. The amplified signal is transmitted into the air, and reflected signal from the 

target is received with a time delay and Doppler frequency shift. Using a mixer and 

low pass filter, the received signal is converted to baseband signal. The range and 

velocity are obtained by digital processor of discrete-time signal derived from the 
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analog to digital converter (ADC). The unit time, which includes all of the above 

process, is called scan, and has a value of 50 ms in this work. With the linear frequency 

modulation, the received signal after ADC from k -th array can be simplified by [30]  

 

 
1

( ) ( ) ( ) ( ) cos(2 ( ) ( )) ( ),
T

k k k k k k k
i

x n s n e n a i f i n i e nπ f
=

= + = + +∑   (3.1) 

 

where, 0,1, , 1n N= − , N  is the number of time samples, and T  is the number 

of targets existing on the field of view. ( )ks n  contains sinusoids returned from each 

target, ( )ke n  represents the white noise signal with zero mean and variance of 2σ . 

( )ka i , ( )kf i  and ( )k iφ  are the amplitude, beat frequency and phase of the i -th 

target, respectively. The beat frequency, ( )kf i , means the frequency difference 

between the transmitted and the received signal for i -th target. ( )kf i  is composed 

of , ( )k rf i  (which is frequency difference by the distance of target) and , ( )k df i  

(which is Doppler frequency shift by relative velocity), and each of them is represented 

as 
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where, 
 c

B Bandwidth
T Chirp duration

a = =  is the chirp slope, cf  is the center frequency. 

c  is speed of light and λ  is the wavelength of center frequency. ( )R i  and ( )rv i  

are the range and relative velocity of the i -th target, respectively. When considering 

that the iron clutters of tunnel are densely distributed, (3.1) can be expressed as follows, 
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where, C  is the number of clutters, , ( )k ca j , , ( )k cf j , and , ( )k c jφ  are the 

amplitude, beat frequency, and phase of the j -th clutter, respectively. Assuming that 

the iron clutters have a uniform space, frequency difference by the distance of clutter, 

, , ( )k r cf j , is given by  

 

 , , , ,
2 2( ) ( ) ( (1) ( 1) ) (1 ) ( 1)k r c c c k r c

c c

B Bf j R j R j l f j f
cT cT

= = + − = + − ∆ ,  (3,5) 

 

where, (1)cR  is the distance of the first iron clutter and l  represents distance of the 

inter-clutter. , ,
2(1) (1)k r c c

c

Bf R
cT

=  is frequency difference by the distance of the first 
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clutter. 2

c

Blf
cT

∆ =  is frequency difference by the distance of the inter-clutter. Iron 

clutter is a stationary target, which has a constant Doppler frequency, so iron-tunnel 

condition presents periodic frequency components of the iron clutters. Under an iron 

tunnel, reflected signal from clutters is much larger than those from targets, which 

results in the detection failure of the target from clutters. To suppress clutter effect, 

periodicity of clutters in frequency domain needs to be analyzed. To accomplish this 

object, a cepstrum is employed in this work.  

 

3.2.2 Cepstral Analysis of an Iron Tunnel 

 
The cepstrum, derived from an anagram of spectrum, is a signal processing 

technique for identifying harmonic families in spectrum and removing the certain 

spectral components [35]. Cepstrum is used in wide research areas including speech 

signal processing and fault diagnosis. The cepstrum is originally defined as the power 

spectrum of the logarithmic power spectrum. However, various definitions for 

cepstrum are presented in literatures with different functionalities. For the given 

discrete time signal of ( )kx n , representative definitions of cepstrum are expressed as 

follows [36] 
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and 
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where, | |⋅  denotes absolute value, ( )powerC n , ( )realC n , and ( )complexC n  represent 

power, real and complex cepstrum, respectively. The operations of both forward and 

inverse Fourier transform are involved in the calculation of the cepstrum. The 

transformation of cepstrum concentrates on the periodic spectrum components, such as 

families of equally spaced harmonics. The essential observation leading to the 

cepstrum analysis is that the logarithmic spectrum can be treated as an input waveform 

and subjected to further inverse Fourier transform. The magnitude of the spectrum of 

( )kx n  varies as the frequency changes. By the log operation, however, it is possible to 

compress the dynamic range of magnitude and reduce magnitude differences in the 

harmonic components. Table 3.1 lists the terminologies in the cepstrum domain with 

the one corresponding in the spectrum domain. 
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Table 3.1 Terminology of cepstral- and spectral domain 

 

 

To characterize the radar signal under the iron-tunnel environment, we analyze the 

cepstral results. The real cepstrum is employed in this work. Discrete-time Fourier 

transform is replaced by fast Fourier transform (FFT), which is computationally 

efficient. Data acquisition is performed in various road conditions, such as an 

expressway, guardrail, normal tunnel and iron tunnel. Figure 3.2 shows the magnitude 

response of the cepstrum under each road condition. Under general road conditions 

including expressway, guardrail, and normal tunnel, any peak value of quefrency does 

not exist clearly. It means that there is no periodicity between the beat frequencies of 

the targets having different ranges and velocities. It is shown that the magnitude 

response has certain peak values of the quefrency only under iron-tunnel condition, 

which are rahmonic components. The first rahmonic peak is exactly same as the 

inverse of fundamental period in frequency domain, f∆ . From this analysis, we 

verify that the periodicity of the clutter frequencies is an inherent property of the iron-

tunnel condition.  

 



 36 

      

(a) Express way         (b) Guard rail 

 

     

   (c) Normal tunnel                       (d) Iron tunnel 

 

Figure 3.1 Schematic diagram of typical FMCW radar 

 

3.2.3 Cepstrum Based Clutter Suppression Method 

 

To extract the hidden frequency of target objects from periodic frequency of clutter, 

an effective technique to suppress the clutter frequency is necessary. Since Fourier 

transform is complex domain operation, the cepstrum is represented in complex 
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domain. Therefore, the complex cepstrum has its inverse transformation, and the time 

domain signal can be reconstructed by using a modified cepstrum. However, complex 

cepstrum requires the continuity of phase to be unwrapped. So, it is not applicable to 

stationary random components where the phase is random. 

On the other hand, if the input waveform of inverse Fourier transform has no phase 

information such as magnitude of spectrum, the cepstrum is real-valued. Despite of 

real-valued cepstrum, reconstruction to the time domain can be achieved by using the 

amplitude of the modified spectrum combined with the original phase spectrum. 

Moreover, we can lifter a rahmonic family in the quefrency domain and obtain an 

edited spectrum. Based on this real cepstral analysis, a simple rejection and 

reconstruction of the spectrum are employed in this work [37]. As shown in Figure 3.3, 

we propose to remove harmonics of clutters through the following steps: Step 1) once 

the received signal is transformed into the frequency domain by the fast Fourier 

transform (FFT), we perform the log operation to separate the amplitude and phase 

components. Step 2) using the log amplitude only with inverse FFT, real cepstrum is 

obtained. Step 3) the peak values in the cepstrum, representing a rahmonic family, are 

simply rejected by setting those gamnitude to zero, which acts as an ideal band-

rejection lifter in the cepstral domain. Step 4) edited cepstrum is reversely transformed 

to spectral domain, which is an edited log amplitude. Step 5) edited log spectrum is 

composed of edited log amplitude and phase of the original spectrum. Step 6) with 

exponentiation of the edited log spectrum, finally, the edited spectrum is obtained, 

from which the target frequencies are extracted. 
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Figure 3.3 Procedure of cepstrum method for removing the harmonic family 
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3.3  Experimental Result 
 

In this section, we present our experimental results based on the measured data in 

real driving environments. The FMCW radar sensor for ACC was installed at front of 

the test vehicle. The parameters of the FMCW radar are with 76.5 GHz of center 

frequency and 200 m of maximum operating range. The FFT algorithm is used for 

frequency estimation, and the cell average (CA)-CFAR is employed to detect target 

frequency [38]. To validate the proposed method, measurement tests were performed 

under various iron tunnels. Moreover, all of the measured data is obtained in a real 

driving situation. To recognize an iron tunnel, the method based on spectrum spreading 

in [22], is applied. The proposed method, therefore, operates only when iron tunnel is 

recognized. The profile of the representative two iron tunnels, used in this work, is 

summarized in Table 3.2. 

 

Table 3.2 Iron-tunnel profile 
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The measured results for the proposed suppression method are shown in Figure 3.4 

and Figure 3.5 for case A and B in Table 3.2, respectively. Figure 3.4.a depicts the 

original spectrum of the received signal before applying the proposed algorithm. The 

component represented by an asterisk stands for beat frequency of the target vehicle in 

the same lane with the ego-vehicle. Because of the periodical frequencies of the iron 

clutters, the hidden frequency of the target is not identified clearly. Although the target 

indicates the peak frequency, the frequency of target may be filtered by a CFAR 

threshold. The magnitude response of the log spectrum is shown in Figure 3.4.b. The 

log magnitude maintains periodicity of the original spectrum, while it smoothens the 

variation of magnitude with respect to frequency. Figure 3.4.c shows the cepstrum of 

the received signal with fundamental period and its rahmonics, resulted from the 

periodic peaks in the spectrum. The peak at rahmonic of 0.76 ms in Figure 3.4.c is 

equal to the inverse of 1.31 kHz, the fundamental period of the peak in the spectrum. 

After peaks of quefrencies are removed, edited spectrum in Figure 3.4.d still has 

residual periodic components. Compared with the original spectrum, nevertheless, 

frequency of the target is identified definitely, and also clutter effect is suppressed 

clearly. Figure 3.5 in case B of the iron tunnel also shows very similar results with 

Figure 3.4. Because the iron structures of the case B are almost same as those of A, 

identical fundamental frequency and harmonics in the quefrency domain are presented.  
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(a) Magnitude of original spectrum 

 

(b) Log magnitude of original spectrum 

 

(c) Cepstrum analysis 

 

(d) Edited spectrum 

Figure 3.4 Clutter suppression using cepstral analysis for the iron tunnel of case A 
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(a) Magnitude of original spectrum 

 

(b) Log magnitude of original spectrum 

 

(c) Cepstrum analysis 

 

(d) Edited spectrum 

Figure 3.5 Clutter suppression using cepstral analysis for the iron tunnel of case B 
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Figure 3.6 presents detection results before and after the clutter suppression. Figure 

3.6.a and Figure 3.6.b shows the original spectrum and edited spectrum in frequency 

domain, respectively. The dotted line represents the threshold value obtained by CFAR. 

The spectral components larger than CFAR threshold are expressed by an asterisk. 

These peaks include the target in the same lane with ego-vehicle, the targets in others 

lane, and also clutters with high power. Although residual clutters are detected after 

suppression, they can be rejected by target pairing and tracking procedure. It is beyond 

the scope of this study to examine the pairing and tracking algorithm. It is noteworthy 

that the target in the same lane with the ego-vehicle is extracted from clutters, which 

provides essential information so as to control the ego-vehicle automatically. Figure 

3.6.c depicts the trajectory comparison of the target vehicle in the same lane. The 

trajectory of the target is calculated by using the estimated target distance, location of 

ego-vehicle, and wheel speed of ego-vehicle. It represents the change of the estimated 

position with a marker at every five scans. It is shown that when the suppression 

algorithm is applied, the target vehicle is detected at an earlier time.  
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Figure 3.6 Detection result before and after clutter suppression 

 To evaluate the performance of the proposed method quantitatively, experiments are 

performed to determine the distance of early target detection, which is a measure of the 

initial distance to detect a target vehicle in the lane of the ego-vehicle. The initial 

detection of the target is a very important indicator for the ACC application. If the 

initial detection of the target is late, the ego-vehicle brakes suddenly, which increases 

the probability of collision with the vehicle in the front or rear. For each iron-tunnel 



 45 

condition, some factors are considered including a type of the target vehicle and 

different velocity of the ego-vehicle. Table II summarizes the results of distance of 

early target detection for each iron tunnel. The average distance of the early target 

detection is improved by more than 55 m for the proposed method. Although the 

proposed method performs additional computation of both FFT and inverse FFT, it 

shows performance enhancement without adjusting any CFAR threshold with respect 

to the road condition.  

 

Table 3.3 Evaluation of the distance of early target 
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3.4  Conclusion 
  

In many applications of automotive radar systems, a technique to suppress clutter 

effect is essential, particularly for the iron-tunnel environments. In this paper, we 

modeled a FMCW radar signal under iron tunnels in which iron structures are 

uniformly and densely distributed. From cepstral analysis, we proved that the periodic 

property of iron clutters is revealed in the cepstral domain. Based on this observation, 

we proposed an efficient clutter suppression method using real cepstrum to remove the 

clutter effects in the cepstral domain. Experimental results present that the proposed 

method provides significant enhancement in the target detection performance. This 

proves that the proposed method is successfully applied for clutter suppression.  
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Chapter 4 

Interference Mitigation by High-

Resolution Frequency Estimation for 

Automotive Radars 

 

4.1 Introduction 

 

Mutual interference is a crucial issue that must be resolved for improved safety 

functions [16], [23]. Given the increasing number of automotive radar sensors 

operating at the same instant, the probability that radar sensors may receive signals 

from other radar sensors gradually increases. In such a situation, the system may fail to 

detect the correct target given the serious interference. Effective countermeasures, 

therefore, have to be considered. In the literature, several techniques have been 

presented in an effort mitigate the performance degradation issue caused by 

interference in radar or communications systems [39], [40]. To avoid overlap in the 

frequency domain, one method to minimize interference shifts the frequency of the 

transmitted signal pseudo-randomly [39]. Other authors [40] propose frequency ramps 

from short PN-coded sequences as a spread-spectrum technique. With these methods, 

however, the radars must share the same set of codes. Efficient strategies to distribute 

codes are required beforehand for collision avoidance. 
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Another study [16] qualitatively analyzed the mutual interference between 

millimeter-wave radar sensors and examined interference scenarios when considering 

spatial, temporal and frequency overlap. Interference from neighboring sensors appears 

to result in an increase in the noise level in the frequency domain. Therefore, it is 

important to estimate beat frequency accurately in a high interference environment. 

Conventional FMCW radar systems use the fast Fourier transform (FFT) algorithm for 

beat frequency estimation [41]. However, the traditional FFT algorithm is associated 

with high probability of failing to separate target objects from interferers. This 

motivates us to exploit high-resolution estimation techniques in interference-limited 

automotive radar environments. 

This chapter proposes a beat frequency estimator for use in automotive FMCW 

radar systems based on high-resolution techniques to suppress mutual interference by 

means of a frequency domain analysis. The proposed method can be considered as the 

application of a subspace method known as MUSIC and ESPRIT, which solve the 

generalized eigenvalue problem using an autocorrelation matrix of received signal [17], 

[18]. The proposed method employs an estimator of a correlation matrix with forward-

backward spatial smoothing (FBSS) [42] and a frequency signal dimension order 

(FSDO) estimator with the minimum description length (MDL) criteria [27]. The 

proposed method improves the frequency resolution and reduces the influence of 

interference relative to the FFT method. Moreover, ESPRIT is more computationally 

efficient than MUSIC [43], as ESPRIT directly calculates the frequency components in 

a given frequency range, whereas MUSIC requires a peak detection process from the 

spectral analysis.  

To verify proposed methods, measurement was performed in a test field. The 
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experimental data used in the paper are obtained from a 77 GHz forward-looking 

FMCW radar for adaptive cruise control (ACC). The results show that the missing 

problem of a target vehicle under interference environments is improved by proposed 

methods in the detection performance. 

The rest of this chapter is organized as follows. The characteristics and a 

mathematical representation of FMCW radar systems are presented in section 4.2. 

Based on the system model, beat frequency estimations using MUSIC and ESPRIT 

are discussed in section 4.3. Experimental results are presented in section 4.4 to verify 

the performance enhancement when using the proposed schemes. Finally, conclusions 

are given in section 4.5. 
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4.2 Automotive FMCW Radars in an Interference 

Environment 

 

A signal transmitted using a linearly increasing or decreasing signal in the frequency 

domain can be represented as [30] 
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0 00

( ) cos(2 )
1       cos 2 ( ) cos 2 ( ) ,
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( ) ( )t

f t A

A f t dt A f t t
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π α π α
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where, A  and φ  are the amplitude and phase of the transmitted signal, 

respectively; 0f  is the transmitted signal frequency at time 0t = ; and 

sweepbandwidth
sweeptime

BW
t

a = =
∆

 is the chirp rate (chirp slope). The received signals 

returning from multiple targets are delayed and attenuated. If the targets are moving, 

they include an additional frequency shift term as follows: 
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       ( ( ))
m
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g t B f f t t t tπ α
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Here, m  is the number of targets; iB  is the amplitude of the received signal; and 
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,d if  and ,d it  are the Doppler frequency and the delay time respectively. The 

transmitted and received signals are mixed by multiplication in the time domain. With 

the trigonometric identity of the sum of the cosines, the product of the two signals has 

distinct sinusoidal components. One of these will be at a frequency that is 

approximately twice the carrier frequency, which will be cut off by a low-pass filter 

(LPF). The other term, i.e., the mixer output after LPF processing, is given by 

 

 2
, , 0 , , ,

1
( )  cos  2 ( )       2 ( )  ,( )

m

i d i d i d i d i d i
i

s t C t f t f f t tπ α π πα
=

= − + + −∑   (4.3) 

 

where i iC AB=  is the amplitude of the mixed output. , , ,b i d i d if t fα= −  is the 

beat frequency (or frequency difference), which is analyzed by the FFT algorithm. The 

range and velocity of each target are obtained from the beat frequency component with 

a peak detection algorithm such as the CFAR technique [44]. 

Considering that many vehicles may be equipped with FMCW radar sensors, it is 

essential to analyze the interference mechanism. Two simple scenarios can be regarded, 

as shown in Figure 4.1. One is direct interference from a vehicle in the opposite 

direction and the other is a returned interference from a vehicle traveling in the same 

direction (which is indirect interference). There are many factors affecting radar 

sensitivity, such as interfering source levels, the side-lobe effect, the target shape, the 
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operating band, and the sweep time. 

 

(a) Direct interference 

 

(b) In-direct interference 

Figure 4.1 Simple interference scenarios in automotive radar environment 

 

As an issue that acts between FMCW radars, interference can be divided into in-

band-region interference and out-of-band interference depending on the delay time, 

resulting in a ghost target and a uniform increase of the noise floor respectively [16]. 

In-band-region interference not only occurs with a very low probability, but it can also 

be removed by means of multi-target detection and tracking algorithms [45]. For the 

out-of-band interference, however, the detection of the targets fails due to the increase 

in the noise floor. Figure 4.2 shows the influence of an interference signal that is 30dB 

larger than the signal from the target when the target is present at the 70m. The target 
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signal-to-noise-ratio (SNR) is reduced considerably. It is an important issue, therefore, 

to identify the signal from a result which contains an increase in the noise floor. The 

out-of-band interference is modeled in the following two cases according to the delay 

time of the interference signal. 

 

(a) Spectrum of a target without interference 

 

    (b)  Spectrum of a target with interference 

Figure 4.2 The spectrum of FFT output for an out-of-band region interference with a 

magnitude 30 dB larger than signal returned from target object. 
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(a) Same sign-chirp case 

 

 

(b) Different sign-chirp case 

Figure 4.3 Two cases of out-of-band interference, where sf is the sampling rate and 

LPFf  is the cut-off frequency of LPF. 

 

4.2.1  The Same Sign-Chirp Case 

 

Assuming there are multiple interferers equipped with FMCW radar in the field of 

view, with parallel increasing chirps in the transmitted signal and with the interference 



 55 

signal in the sampling interval (Figure 4.3(a)), the received signal can be expressed as 

follows: 
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Here, , , jd max d It t< ; ,d maxt  is the round-trip time for the maximum operating range 

of 200m, jI  is the index of the interferer, , jd It  is the delay time of the interferer, k  

is the number of interferers, and ( )n t  is white noise. The mixed output after low-pass 

filtering is as follows: 
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 (4.5) 

 

In this case, the influence of interference signal is presented in the form of a ghost 

target with a constant frequency. Because the beat frequency of the interferer is larger 
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than the maximum beat frequency corresponding to the maximum operating range, it 

can be ignored by the sampling rate, sf . 

 

4.2.2  The Different Sign-Chirp Case 

 

In contrast to the above case, with an increasing chirp of transmitted signal and a 

decreasing chirp of interfering signal, the received signal is expressed as follow:  
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The mixed output is, therefore, given by 
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Because the interfering signal comes with a short pulse and time-varying frequency 

components as shown in Figure 4.3(b), it would appear as an increase in the noise floor 

with a very wide spectral width. The amount of the increase in the noise floor is 

proportional to the time duration of the interfering signal or the interfering source 

power. Considering that the interfering signals are also treated as noise, (4.7) can also 

be represented as shown below. 

 

2
, , 0 , , ,

1

( ) ( ) ( ) ( ) ( ) ( )

       cos  2 ( ) (2 ( ) ( ),

( )
[ ]

m

i d i d i d i d i d i
i

x t s t I t w t s t e t

C t f t f f t t e tπ α π πα
=

= + + = +

= − + + − +∑
  (4.8) 

 

Here, ( ) ( ) ( )e t I t w t= + . 
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4.3  High-Resolution Frequency Estimation Methods 
 

In this section, the proposed high-resolution beat frequency estimation scheme is 

described. Figure 4.4 shows a functional block diagram of the proposed scheme, which 

employs a FBSS and a FSDO estimator. We present a data model for subspace-based 

algorithms and describe an effective method to estimate the correlation matrix. Based 

on the data model, a theory encompassing MUSIC and ESPRIT is investigated and the 

FSDO estimator, as a part of MUSIC and ESPRIT, is presented to provide the number 

of frequency components. 

 

 

Figure 4.4 Functional block diagram of the high-resolution beat frequency estimation 

algorithm 

 

4.3.1  Data Model 

 

Let us a consider sampled version of radar mixed output as a discrete-time sinusoid 

signal having amplitude, frequency, and phase components, as follows,  
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where 0,1,2, , 1n N= − ; s [ n ] contains sinusoids returned from each target; e [ n ] 

represents the noise signal from other FMCW radars, including white noise with a zero 

mean and variance of 2σ ; m  is the number of sinusoids; N  is the number of 

sampled data points; and ia , if  and iφ  are the amplitude, beat frequency, and 

phase of the i -th sinusoid, respectively. According to Euler’s formula, 

cos(2 )i if nπ f+  can be expressed as (2 ) ( 2 )1 ( )
2

i i i ij f n j f ne eπ f π f+ − ++ . Then, (4.9) can be 

represented in complex exponential form, as 
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By defining the i -th complex sinusoid component, 2 ij f n
iAe π  as ( )is n , (4.10) is 

expressed as follows: 
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From L  discrete-time samples, a compact matrix form is obtained by 
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( ) [ [ ] [ 1] [ 1]]Tn e n e n e n L= + − +e  . Then, a low-rank matrix representation for 

subspace methods can be represented as  
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where 1 2[ ( ) ( ) ( )]Mf f f=F f f f  is a L M×  Vandermonde matrix of rank M , 

1 22 2 2
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Mn A e A e A eπ π π=A  , and 2 2 ( 1)( ) [ ]i ij f j L f T
if e eπ π −=f   for 

1,2, ,i M=   is a frequency mode vector with frequency if . The autocorrelation 

matrix of mixed output xxR  is expressed as 
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( ) ( ) ,[ ]H
xx E n n=R x x     (4.15) 

 

where [ ]E ⋅  denotes the expected value. By using eigenvalue decomposition, the 

eigenvalues and corresponding eigenvectors of xxR  are obtained according to 

1 2{ }Lλ λ λ≥ ≥ ≥  and  respectively. If xxR  has the full rank of M , the 

eigenvalues are given by 

 

1 2 1 2        [ [ ]],        M M M L var e nλ λ λ λ λ λ− −≥ ≥ ≥ > = = = =    (4.16) 

 

where [ [ ]]var e n  denotes the noise variance. From the eigenvalues and eigenvectors 

of xxR , we define a signal subspace matrix 1 2 ][S M=V v v v  corresponding to the 

largest M  eigenvalues, and a noise subspace matrix 1 2 ][N M M L+ +=V v v v  that 

contains the remaining eigenvectors. 

 

4.3.2  Estimation of the Correlation Matrix 

 

The correlation matrix of the received signal is found by the expected value of the 

absolute values squared. However, we cannot identify the exact statistics for the signal 

and noise. Assuming that the process is ergodic, we can approximate the correlation 

matrix by means of time-averaged correlation as follows: 
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Here, N L> , N  denotes the sequentially decimated time samples 

{ [ ] [ 1] [ 1]}Tx n x n x n N+ + − . When the number of time samples is limited, the rank 

sparsity of the correlation matrix degrades the performance. To improve the 

performance of subspace methods, FBSS method is used in this paper [42]. FBSS is 

used to calculate the L L×  matrix, as 
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where 1Q N L= − + ; ˆ ( ) ( )Hn n=nR x x , and J  is the L L×  reversal matrix, for 

which the elements are unity along the anti-diagonal and are zero elsewhere. 

 

4.3.3  Application of the MUSIC Algorithm 

 

The MUSIC algorithm uses the basic assumption that the frequency mode vector 

corresponding to its frequency component is orthogonal to the noise subspace formed 

by the noise eigenvectors. This is expressed, as 

 

( ) 0,H
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where 1,2, ,i M=   and 1, 2, ,k M M L= + +   

By using the orthogonality of the frequency mode vectors to the noise eigenvectors, the 

MUSIC pseudo-spectrum is then defined as follows [17]: 
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A peak value occurs in the pseudo-spectrum when if f= , and the estimated 

frequency is obtained by CFAR[44]. 

 

4.3.4  Application of the ESPRIT Algorithm 

 

ESPRIT is based on the naturally existing shift-invariance between discrete-time 

series samples which leads to rotational invariance between the corresponding signal 

subspaces [18]. Let us define two subsamples 1( ) [ [ ] [ 1] [ 2]]Tn x n x n x n L= + + −x   

and 2 ( ) [ [ 1] [ 2] [ 1]]Tn x n x n x n L= + + + −x   for 1L M− > . From [ 1]is n +  
2[ ] ij f

is n e π=  in (4.13), 1( )nx  and 2 ( )nx  can be represented by 
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where Φ  is a ( 1) ( 1)L L− × −  diagonal matrix whose i -th component is 
2 ij f

i e πf = . By defining 1SV  and 2SV  as the signal subspace eigenvectors from the 

auto-correlation of 1( )nx and 2 ( )nx , respectively, the subspaces of the eigenvectors 

are related by a unique non-singular transformation matrix Ψ  such that 

 

1 2.S S=V Ψ V        (4.22) 

 

Because F  and 1SV , 2SV  span the same signal subspace, there is also a unique 

non-singular transformation matrix T  such that 
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By substituting (4.23) into (4.22), we can derive the following relationship: 
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Thus, the largest M  eigenvalues of Ψ  are equal to the diagonal elements of Φ  

such that 1 22 2 2
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Me e eπ π πψ ψ ψ= = = . The frequency estimates if  for 

1 i M≤ ≤  are then calculated as 
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where ∠⋅  denotes the phase of the argument, with the sampling frequency of the 
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data used to calculate if . The MUSIC algorithm needs to search the peaks of the 

spatial spectrum at a cost of computational load, whereas ESPRIT exploits the 

rotational invariance structure of the signal subspace and avoids searching any spatial 

spectrum. 

  

4.3.5  Number of Frequency Estimation 

 

MUSIC and ESPRIT take advantage of a prior knowledge such as the number of 

frequency components. Because the precise number of frequency M  value is not 

available in practical systems, it must be estimated. As information theoretic criteria, 

MDL or the AIC have been widely used to estimate the number of frequencies. In this 

paper, we employ the MDL criterion to estimate M . This is expressed as [27], 
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after which the estimate of M  can be obtained by 

 

ˆ arg minMDL( ) 1,kM k= +    (4.27) 

 

where, 0,1, , 1k L= − . 
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4.4  Experimental Result 

 

Table 4.1 Parameters of a FMCW radar for the experiment 

 

 

In this section, we present our measurement setup and analyze the proposed method 

as compared to the conventional FFT algorithm. To validate performance of the 

proposed methods, measurement performed with two interference scenario (Figure 

4.1). The FMCW radar sensor, used for ACC, was installed in the test vehicle which is 

produced by a Korea company. All of the experiments were performed in an open 

space on flat ground. The interfering and target vehicles have 10dBsm radar cross 

section (RCS). The parameters of the FMCW radar used in this study are summarized 

in the Table 1. For a sweep bandwidth of 500 MHz, a sweep time of 5 ms and a 

maximum operating range of 200 m, the maximum round trip time is 1.33 sµ  and 

the maximum beat frequency is 133 kHz. The cut-off frequency of the LPF was set to 

1 MHz. 
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In order to evaluate the quantitative performance of the frequency estimation in an 

interference environment, probability of resolution is analyzed according to SIR. The 

SIR is determined by the distance from the radar sensor to the target and the interferer. 

The SIR is distributed up to about -31 dB and -63 dB for the indirect interference and 

direct interference respectively. 

The mixer outputs of the FMCW radar were analyzed using the conventional FFT, 

the MUSIC and the ESPRIT methods. To detect the peak values from the FFT and 

MUSIC spectral results, the ordered statistic (OS) CFAR algorithm was adopted [44], 

where the probability of a false alarm is 610− . The beat frequency of the target is 

determined by the spectral component higher than a threshold. 

 

 

Figure 4.5 Sample result for the beat frequency estimation when the target object exists 

at a range of 50m (For a direct interference scenario) 
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Figure 4.5 shows a snapshot (which means a scan) for the beat frequency estimation 

when the target object exists at a range of 50 m. In this example, the SIR is -30 dB (i.e., 

the direct interferer is 30 m away from the radar sensor). This result shows that the 

proposed method is more capable of identifying the beat frequency than the 

conventional FFT method. Although, the FFT result indicates a peak value for the 

target object, it is not larger than the threshold, leading to a detection failure of the 

target object. 

 

 

Figure 4.6 Probability of resolution versus SIR 

 

The results are based on 1600 independent periods of measured data for each 

distance using the subsample size set to 100L =  for the FBSS. As shown in Figure 

4.6, the proposed method operates up to a SIR of -32.5 dB, whereas the FFT shows a 
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performance limit of -17.9 dB SIR. These subspace-based methods are entirely robust 

for at least indirect interference scenarios. For a short range of less than 50 m, 

Furthermore, it can be said the proposed methods can identify the beat frequencies of 

targets regardless of the SIR. The MUSIC and ESPRIT algorithms show similar 

performance levels. However, ESPRIT has better computational efficiency because it 

avoids the peak-search process. 

 

 

Figure 4.7 Probability of resolution versus the number of subsample for FBSS 

 

The performance of the proposed algorithm versus the number of subsamples for 

the FBSS was also assessed. The conditions for estimation are same to those in Figure 

4.7, except that the number of subsamples is varied from 100L =  to 300L = . 

Figure 4.7 shows that when the number of samples is increased to 200 and 300, the 
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performance of the MUSIC algorithm shows additional margin of SIR, about 2.4 dB 

and 4.1 dB, respectively. This improvement occurs because large number of 

subsamples, L , makes the rank property of the correlation matrix effective. 
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4.4  Conclusion 
 

The conventional FFT approach is vulnerable in interference-limited environments. 

In this paper, the performance limitation of the existing system was evaluated 

quantitatively. Also, we proposed a subspace-based method to identify the beat 

frequency of the targets while suppressing the interference signals. Experimental 

results show that the proposed method has a SIR margin of at least about 14 dB 

compared to the conventional FFT algorithm. The proposed method provides a 

significant performance enhancement even in a direct interference environment, which 

proves that the proposed estimation method can be successfully applied for the beat 

frequency analysis in an interference environment. Thus, it is concluded that MUSIC 

and ESPRIT are essential for minimizing the interference effects in the automotive 

radar field. Moreover the overall method will be useful for eliminating the influence of 

interference when used in conjunction with other mitigation techniques.
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초록 

 

자동차 기술 분야의 안전 및 편의에 대한 수요가 증가함에 따라, 

주행 보조 시스템의 많은 응용 제품들이 연구, 개발 중이다. 차량의 주행 

정보를 제공하기 위해서, 라이더, 카메라, 레이더, 초음파 레이더와 같은 

다양한 센서 중에서, 레이더 센서는 시계 및 기상 상황에 대해 훌륭한 

성능을 보여준다. 특히, 글로벌 생태계의 긴급 제동 시스템과 같은 안전 

관련 기술의 의무장착화 진행과 맞물려 차량 레이더 센서의 시장을 

폭발적으로 증가할 것으로 예상된다. 최근에는, 작은 크기를 가지면서도 

성능이 우수한 레이더 센서에 대한 개발이 필수적이다. 또한 기존의 

단거리, 중장거리 레이더 기능을 통합하는 다중 모드 레이더의 개발이 

요구된다. 따라서 고해상도 파라미터 추정, 다중 타겟 감지, 클러터 억제, 

간섭 완화 등의 기법은 여전히 레이더 신호처리 분야의 도전 과제로 

남아있다.  

고해상도 파라미터 추정에 대해서, 타겟 차량들을 구분하기 위한  

각도 추정 기법들이 연구되고 있다. 특히 복잡한 도심환경에서는 비슷한 

거리 및 속도로 주행하는 차량들이 빈번히 존재한다. 이러한 근접 

차량들을 구분하기 위해서는 차량용 레이더에 적합한 고해상도 각도 추정 
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알고리즘이 필수적이다. 

한편 레이더 센서 시야 범위 내에 존재하는 다중 타겟들을 분리하는 

다중 타겟 감지기법이 요구된다. 다중 타겟 감지 기법은 각각의 타겟들이 

가지는 고유의 주파수 성분들을 페어링하고 결합하는 과정이다. 특정 

환경에서는 잘못된 주파수 페어링을 통해서 고스트 타겟이 검출될 수 

있다. 따라서 신뢰성 높은 페어링 또는 결합 기법이 요구된다. 

클러터는 주변 환경으로부터 반사되는 원하지 않는 신호 성분을 

말한다. 차량 주행 환경에서는 가드레일, 교통표지판, 도로 주변의 

정지물체들이 될 수 있다. 클러터의 효과를 최소화하기 위해서, 기존 

레이더 시스템은 클러터의 비유동적인 특성 및 저주파 특성을 가정하고 

이를 필터링한다. 그러나 차량용 레이더 환경에서는 클러터들이 다양한 

주파수 성분 및 에너지를 가지고 분포하므로 적용이 어렵다. 특히, 철제 

구조물과 같은 특수한 환경에서는 클러터의 높은 파워로 인하여 타겟 

차량이 검출되지 않는다. 

상호 간섭은 차량 안전 기능 제공을 위해서 반드시 풀어야 할 

문제이다. 동일한 대역, 동일한 순간에 동작하는 레이더 센서를 탑재한 

차량의 수가 증가할수록, 다른 레이더 센서의 신호로부터 정확한 타겟 

구분에 실패 할 확률일 점차적으로 증가한다. 따라서 이에 대한 적절한 

대책이 필요하다.  

본 논문에서는, 차량용 레이더 시스템을 위한 효율적인 파라미터 
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추정 기법을 제안한다. 제안된 기법들은 앞서 설명한 신호처리 이슈들을 

각각 포함하고 있다. 먼저, 주파수 영역에서 고해상도 각도 추정 기법을 

제안한다. 본 기법은 타겟 차량의 고유한 비트 주파수를 이용하여 

고해상도로 각도를 추정한다. 타겟의 비트 주파수는 거리 및 속도 정보를 

제공하기 때문에, 추정된 각도 정보는 자연스럽게 거리 및 속도정보와 

페어링 된다. 다음으로는, 철제 터널 환경에서의 클러터 억제 기법을 

제안한다. 철제 터널 환경의 클러터는 철제 구조물의 반사 신호 성분으로 

타겟의 감지 성능을 매우 열화시킨다. 제안된 기법은 켑스트럼에 기반한 

클러터 억제 기법으로서, 주파수 영역에서의 주기적인 클러터 특성을 

이용한다. 마지막으로, 간섭 제거 기법을 제안한다. 차량용 레이더의 

간섭은 대부분 주파수 영역의 잡음 전력의 증가로 나타나며, 타겟의 감지 

실패로 이어진다. 따라서 우리는 간섭 환경에서의 고해상도 주파수 추정 

기법을 제안하고, 성능의 개선을 제시한다.  
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As the demand for safety and convenience in the automotive-technology field increased, 

many applications of advanced driving assistance systems were developed. To provide 

driving information, among the sensors, such as cameras sensor, light detection and 

ranging sensor, radar sensor, and ultrasonic sensor, a radar sensor is known to exhibit 

excellent performance in terms of visibility for different weather conditions. Especially 
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with the legislation of the adaptive cruise control system and autonomous emergency 

braking system in a global environment, the market of the automotive radar sensor is 

expected to grow explosively. At present, the development of cost-effective radar offering 

high performance with small size is required. In addition, the radar system should be 

enforced to have a simultaneous functionality for both long and short ranges. Thus, 

challenging issues still remain with respect to radar signal processing including high-

resolution parameter estimation, multi-target detection, clutter suppression, and 

interference mitigation.  

   For high-resolution parameter estimation, direction-of-arrival (DOA) estimation 

method has been investigated to identify the target object under complex unban 

environment. To separate closely spaced target having similar range and distance, high-

resolution techniques, such as multiple signal classification (MUSIC), the estimation of 

signal parameters via rotational invariance techniques (ESPRIT), and maximum 

likelihood (ML) algorithm, are applied for automotive radars. In general, cycle time for 

radar system, which is the processing time for one snapshot, is very short, thus to 

establish a high-resolution estimation algorithm with computational efficiency is 

additional issue. 

   On the other hands, multi-target detection scheme is required to identify many targets 

in the field of view. Multi-target detection is regarded as target pairing solution, whose 

task is to associate frequency components obtained from multiple targets. Under certain 

conditions, the association may fail and real target may be combined to ghost 

components. Thus, reliable paring or association method is essential for automotive radar 

systems. 

   The clutter denotes undesired echoes due to reflected wave from background 

environment, which includes guardrail, traffic signs, and stationary structures around the 
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load. To minimize the effect of clutter, conventional radar systems use high pass filter 

based on the assumption that the clutter is stationary with energy concentrated in the low 

frequency domain. However, the clutter is presented with various energy and frequency 

under automotive radar environment. Especially, under the specific environment with 

iron materials, target component is not detected due to clutter with large power.  

Mutual interference is a crucial issue that must be resolved for improved safety 

functions. Given the increasing number of automotive radar sensors operating at the 

same instant, the probability that radar sensors may receive signals from other radar 

sensors gradually increases. In such a situation, the system may fail to detect the correct 

target given the serious interference. Effective countermeasures, therefore, have to be 

considered.  

In this dissertation, we propose efficient parameter estimation methods for automotive 

radar system. The proposed methods include the radar signal processing issues as above 

described, respectively. First, the high-resolution DOA estimation method is proposed by 

using frequency domain analysis. The scheme is based on the MUSIC algorithm, which 

use distinct beat frequency of the target. The target beat frequency also gives distance and 

velocity. Thus, the proposed algorithm provides either high-resolution angle information of 

target or natural target pairing solution.  Secondly, we propose the clutter suppression 

method under iron-tunnel conditions. The clutter in iron-tunnel environments is known to 

severely degrade the target detection performance because of the signal reflection from 

iron structures. The suppression scheme is based on cepstral analysis of received signal. By 

using periodical characteristic of the iron-tunnel clutter, the suppressed frequency response 
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is obtained. Finally, the interference mitigation scheme is studied. Mutual interference 

between frequency modulated continuous waveform (FMCW) radars appears in the form 

of increased noise levels in the frequency domain and results in a failure to separate the 

target object from interferer. Thus, we propose a high-resolution frequency estimation 

technique for use in interference environments. 

 

Keywords : Automotive radar, FMCW, Direction-of-arrival, Interference, 

Mitigation, Clutter, Suppression, High-resolution, Signal processing 

Student Number : 2009 - 30928 
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Chapter 1 

Introduction 
 

 

1.1 Background 
 

Three major topics in the field of automotive technology are green, convenience, 

and safety. Among these issues, the goal of research on safety and convenience is to 

prevent accidents in a variety of dangerous situations commonly encountered by 

drivers. To provide safety and driving comfort, advanced driving assistance systems 

(ADAS) are emerging as very active issues [1]-[2]. The sensors have played a vital role 

in the development of ADAS and enhancement of vehicle safety. Sensor technology 

provides artificial sensing of the environment, which enables decision making by in-

car computers [3]. These sensor enabled systems help in providing warning to drivers 

and regulating vehicle control to mitigate collisions that can lead to material damage as 

well as human injury. ADAS includes blind spot detection, adaptive cruise control 

(ACC), autonomous emergency braking (AEB), obstacle detection, collision 

avoidance systems, rear view cameras, parking assistance (PA), and lane departure 

warning as showing in Figure 1.1 [4]-[5]. Key sensor technologies being used in these 

systems are camera sensor, infrared sensors, radar, light detection and ranging, and 

ultrasonic sensors.  
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Figure 1.1 ADAS applications 
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1.2 ADAS Applications for Automotive Radars 
 

 ACC ensures that the automobile remains at a predefined distance away from the car 

ahead, reducing the speed to zero if necessary [6]. For ACC, radar sensors emit and 

receive radio waves and thus determine the distance of vehicles in front of the user’s 

vehicle. ACC with stop and go facility allows the vehicle to come to a standstill if the 

preceding vehicle comes to a halt. The system again takes over as the preceding 

vehicle stars and by controlling acceleration, the predefined cruise speed is again 

achieved. 

The blind spot detection helps the driver while attempting to pass other vehicles [7]. 

Sensors continuously monitor the presence, direction, and speed of vehicles in the 

lanes beside the ego-vehicle. If a vehicle moves into the blind spot, warning based on 

visual or audio signals can be generated to alert the driver of potential danger of 

collision. Radar sensors mounted on the real bumper or on the side rear view mirrors 

monitor vehicles behind or on adjacent lanes.  

   Forward collision warning systems are in-vehicle electronic systems that 

monitoring the roadway in front of the host vehicle and warn the driver when a 

potential collision risk exists. The system provides an audible alert when it senses a 

reduction in traffic speed in vehicles ahead. When the danger of a collision is detected, 

it provides a red warning light that flashes on the windshield. The forward collision 

warning is extended as an AEB recently. The system takes sudden braking in an 

emergency situation. 

   PA systems consist of visual aids, using real view cameras and side view cameras, 

Ultrasonic sensors provide distance information which allows the vehicle to be safety 

guided into the parking space without crashing into any other parked vehicle. Radar is 
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applied as a form of sensor fusion with camera sensors and ultrasonic techniques. 

Parking assistance systems will gradually make way for automatic parking systems. 
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1.3 Motivation and Organization 
 

The development of automotive radar focuses on two types; short-range radar 

(SRR) using ultra-wide band (UWB) system at the 24 GHz and 77 GHz bands, and 

long-range radar (LRR) using frequency modulated continuous waveform (FMCW) 

systems at the 77GHz band [8]-[9]. The 77GHz band is known to be the most 

appropriate frequency band in global automotive radar environments, as the 24GHz 

band is shared with other communications systems. Furthermore, multi-mode radar 

sensors including the function of both SRR and LRR are obliged to miniaturize its size 

[10]. Considering the size of multi-mode radar sensors, 77GHz FMCW radar is a good 

candidate for a new automotive radar solution [11]. FMCW radar uses the waveforms 

of linearly increasing or decreasing frequencies, which increases reliability of radar 

system by providing the distance and velocity information of the target simultaneously. 

Moreover, the easy implementation of these radar sensors is the most significant factor 

making the most popular commercial system at present [12]–[13]. 

There remain several problems, however, related to the signal processing of 

automotive FMCW radar, including high-resolution parameter estimation, multi-target 

detection, clutter elimination and mutual interference elimination [14]–[16]. For high-

resolution parameter estimation, direction-of-arrival (DOA) estimation method has 

been investigated to identify the target object under complex unban environment. To 

separate closely spaced target having similar range and distance, high-resolution 

techniques, such as multiple signal classification (MUSIC) [17], the estimation of 

signal parameters via rotational invariance techniques (ESPRIT) [18], and maximum 

likelihood (ML) algorithm [19], are applied for automotive radars. In general, cycle 

time for radar system, which is the processing time for one snapshot, is very short, thus 
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to establish a high-resolution estimation algorithm with computational efficiency is 

additional issue. On the other hands, multi-target detection scheme is required to 

identify many targets in the field of view. Multi-target detection is regarded as target 

pairing solution, whose task is to associate frequency components obtained from 

multiple targets. Under certain conditions, the association may fail and real target may 

be combined to ghost components [20]. Thus, reliable paring or association method is 

essential for automotive radar systems. The clutter denotes undesired echoes due to 

reflected wave from background environment, which includes guardrail, traffic signs, 

and stationary structures around the load. To minimize the effect of clutter, 

conventional radar systems use high pass filter based on the assumption that the clutter 

is stationary with energy concentrated in the low frequency domain [21]. However, the 

clutter is presented with various energy and frequency under automotive radar 

environment. Especially, under the specific environment with iron materials, target 

component is not detected due to clutter with large power [22]. Mutual interference is a 

crucial issue that must be resolved for improved safety functions. Given the increasing 

number of automotive radar sensors operating at the same instant, the probability that 

radar sensors may receive signals from other radar sensors gradually increases. In such 

a situation, the system may fail to detect the correct target given the serious interference 

[23]. Effective countermeasures, therefore, have to be considered.  

 This thesis has a focus on efficient parameter estimation for automotive radar 

signal processing. In chapter 2, high-resolution DOA estimation with having pairing 

function for automotive FMCW radar is presented. In the section 2 of chapter 2, the 

MUSIC in the time-domain and frequency-domain is analyzed, and the simulated 

results are presented in section 3 of chapter 2. In Chapter 3, the clutter suppression 

scheme for iron tunnels is presented. Radar signal model of iron tunnel, 



 7 

characterization of iron tunnel, and clutter suppression scheme are presented in in 

section 2 of chapter 3. Experimental result is analyzed in in section 3 of chapter 3. In 

chapter 4, interference mitigation method is described. Qualitative analysis of 

interference is presented in section 2 of chapter 4. In section 3 of chapter 4, high-

resolution frequency estimation scheme is presented. Experimental result is analyzed 

in section 4 of chapter 4. Finally, conclusion is presented in chapter 5. 
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Chapter 2  

High-Resolution Direction of Arrival 

Estimation with Pairing function for 

Automotive Radar Systems 
 

2.1  Introduction 

 

Automotive radar sensors are employed for various ADAS applications such as 

ACC, FCW, and AEB. Conventional FMCW radar provides only range and velocity 

of targets which exist on field of view. The increasing demand for safety and 

convenience leads to efforts improving the DOA estimation to allow resolution of 

targets even in the similar distance-velocity information. In an urban environment, for 

example, DOA is essential to separate targets with having same distance and velocity. 

The DOA resolution using conventional beam-former is poor since automotive radars 

have typically a low antenna aperture due to size restriction [24]. High-resolution 

methods for DOA estimation such as MUSIC [17] enable radar sensors to resolve very 

closely spaced targets. These algorithms are well known as subspace based algorithm, 
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which is applied wide research area to estimate specific parameters. MUSIC is based 

on exploiting the eigen-structure of input covariance matrix. MUSIC makes 

assumption that the noise in each channel is uncorrelated making correlation matrix 

diagonal.  

On the other hand, Target pairing is an essential for multi-target detection. FMCW 

radar uses increasing chirp (which is a up chirp) and decreasing chirp (which is a down 

chirp) signal to obtain paired beat frequency of target [25]. From these frequency pair, 

distance and velocity of targets are calculated. However, additional technique is 

required to combine estimated DOA and distance and velocity.  

In this chapter, high-resolution DOA estimation algorithm in frequency domain 

process is proposed. The proposed method is not significantly different from the 

conventional MUSIC, whereas it resolves pairing issue naturally by using only beat 

frequency of target. To analyze detection performance of proposed method, simulation 

results are presented based on a 77 GHz FMCW radar system. From the simulation, 

proposed frequency domain approach shows RMSE performance similar to time 

domain approach. 
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2.2  High-Resolution DOA Estimation for Automotive 

Radars 

 

In order to provide DOA information, an array concept with multiple antennas is 

employed. With a far-field assumption, which means radius of propagation is much 

larger than array spacing, the propagation delay with respect to array element results in 

linear phase shift. Array signal processing can largely be classified into spectral 

approach and the parametric approach. The former uses spectral peak component of 

estimator, including beamforming techniques and subspace based methods [24]. The 

latter directly computes the DOA from signal model of estimator, such as maximum 

likelihood (ML) [19]. In this section, we employed MUSIC algorithm for DOA 

estimation, well known as subspace based method.  

 

 
 

Figure 2.1 ULA structure for DOA estimation  
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2.2.1  DOA Estimation in the Time-domain Processing 

 
Let us consider uniform linear array (ULA) with M  antenna element, uniform 

spacing of d  as shown in Figure 2.1. Plane wave reflected from each D  target 

incidents on a different angle depending on the location of target. Each received signal 

( )mx n , for 0,1, ,m M= … , includes additive zero mean, Gaussian noise. Time is 

represented by the n -th time sample. Thus, Array output [ ]nx  is expressed as 

follows,  
 

[ ] [ ] [ ]n n n= +x As w ,    (2.1) 

 

or 

 

[ ]
[ ]

[ ]

( ) ( ) ( )

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

1 1 1

2 2 2
1 2 D

M D M

x n s n w n
x n s n w n

x n s n w n

θ θ θ

     
     
      = +      
     
          

a a a

  

,  (2.2) 

 

where, 

( ) ( ) ( ) ( )2 / sin 2 1 / sin1, , ,i i
Tj d j M d

i e eπ λ θ π λ θθ − =  a  ,  (2.3) 

 

[ ]ns  is a vector of incident complex signal at time n , [ ]nw  is a noise vector at 

each array element m  with zero mean, variance of 2
nσ , ( )iθa  is M -element 

array steering vector for the iθ  DOA, and A  is M D×  matrix of steering vectors 
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( )iθa . It is initially assumed that the number of the targets D M< .  

Based on above signal model, covariance matrix of received signal is given by 

 

2

[ [n] [n]] [ [n] [n]] [ [n] [n]]

      = 

H H H H
T

H
ss M

E E E
s

= = +

+

R x x A s s A w w
AR A I

 ,  (2.4) 

 

In general, D M< , H
ssAR A is a singular matrix and non-negative definite. The 

array covariance matrix is calculated by the expectation of array output. However, we 

cannot find exact statistics for the signals and noise. Therefore, we assume that the 

process has ergodic properties, so we can approximate the correlation by use of a time-

averaged correlation. Then, (2.4) can be represented by 

 

1

1 [n] [n]
N

H
T

nN =

= ∑R x x .    (2.5) 

 

From (2.4), we can find that the eigenvalue of TR  is exactly equal to summation of 

the eigenvalue of H
ssAR A  and the noise variance 2

nσ . Since the rank of H
ssAR A  

is D , we can separate D  eigenvalues larger than 2
nσ  and M D− eigenvalues 

with a value of 2
nσ . We can also choose the D  eigenvectors associated with the 

signal and M D−  eigenvectors associated with the noise. Then we can construct the 

M D× dimensional subspace spanned by the signal eigenvectors and ( )M M D× −  

dimensional subspace spanned by the noise eigenvectors, respectively. 

 

[  ]S N=E E E ,        (2.6) 
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where, 

1 2

1 2

[    ]
[    ].

N M D

S M D M D M

−

− + − +

=
=

E e e e
E e e e





.         (2.6) 

 

The noise subspace eigenvectors are orthogonal to the array steering vectors at the 

direction of arrival 1 2,  ,  , Dθ θ θ . The relation is expressed as follows, 

 

  1,  2, ,
N

H
i i M D

⊥

⊥ = −

A E

A e 

.          (2.7) 

 

Placing this relation in the denominator creates sharp peaks at the DOA. Thus, 

the MUSIC pseudo-spectrum is given as 

 

1( )
( ) ( )MUSIC H H

N N

P θ
θ θ

=
a E E a

.             (2.8) 

 

The peak value of pseudo-spectrum determined as DOA of target objects by using 

peak detection algorithm such as constant false alarm rate (CFAR). Parametric 

approach such as MUSIC takes advantage of a prior knowledge such as the number of 

frequency components. Because the precise number of frequency D  value is not 

available in practical systems, it must be estimated. As information theoretic criteria, 

MDL or the Akaike information criterion (AIC) have been widely used to estimate the 

number of frequencies [26]. In this work, we employ the MDL criterion to estimate 

M . This is expressed as [27], 
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( )11

1

1MDL( ) log (2 )log ,
1 2

k L QL
L k

i
i k

L

i
i k

k k L k Q

L k

l

l

−−
−

=
−

=

 
 
 =− + − 
  − 

∏

∑
  (2.9) 

 

after which the estimate of M can be obtained by 

 

ˆ arg minMDL( ) 1,kM k= +    (2.10) 

where, 0,1, , 1k L= − . 

The flowchart of MUSIC algorithm is summarized in Figure 2.2. 

 

 

Figure 2.2 Flowchart of the MUSIC algorithm 



 15 

2.2.2  DOA Estimation in the Frequency-domain Processing 

 

As described above section 2.2.1, DOA estimation in time-domain gives only the 

sequence of estimated angles. To apply multi-target environment for automotive radars, 

respective DOA of targets should be paired with those of distance and velocity. 

Therefore, a proper pairing solution should be considered. However, if the number of 

targets increases, the computational load to combine each DOA with range and 

velocity.  

In this section, we propose the DOA estimation in frequency-domain processing to 

provide natural pairing solution for automotive radar system. The proposed method is 

based on an observation that each target has different beat frequency. Thus, the DOA 

estimation is performed by using beat frequency component of target.  

 Let us define the spectrum of received signal obtained from fast Fourier transform 

(FFT). FFTN  discrete-time samples  for M  array output is defined by 

 

1 2

1 2

1 2

[ [ ] [ ]  [ ]]

[ [ ] [ ]  [ ]]

[ [ ] [ ]  [ ]]

T
T M

T
T D

T
T M

n n n
n n n

n n n

=

=

=

X x x x
S s s s
W w w w







 ,   (2.11) 

where, 

 

[ ] [ [0] [1]  [ ] ] ,   for =1, 2, ,  

[ ] [ [0] [1]  [ ] ] ,   for =1, 2, ,  

[ ] [ [0] [1]  [ ] ]

T
m m m m FFT

T
d d d d FFT

T
m m m m FFT

n x x x N m M

n s s s N d D

n w w w N

=

=

=

x

s

w

 

 



,  (2.12) 

 

( )T  denotes sampled data in time-domain, TX  and TW  are FFTM N×  
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dimensional matrix, and TS  is FFTD N×  dimensional matrix. Fast Fourier 

transform matrix with length of FFTN  is represented as follows 

 

2 ( 1)( 1)/
,

1[ ]

( ) (  , 1) (  , 1)

FFTj k n N
n k

FFT

d
d d

e
N

ff k
f

π− − −=

= + = +
∆

F

f F : F :
, (2.13) 

 

where, ( )dff  denotes Fourier operator for the beat frequency of d th target, dk  is 

frequency index of d th target, df  is beat frequency of d th target, and f∆  is 

frequency resolution. From (2.13), coefficient of Fourier transform for the df  is 

expressed by 

1
( ) = ( ) ( ,  ) ( ) ( )

            = ( ) ( ,  ) ( ) ( )            
            = ( ) ( ) ( )

D

F d i T d T d
i

d T d T d

d F d F d

f i f f

d f f
s f f

θ

θ
θ

=

+

+
+

∑x a S : f W f

a S : f W f
a w

,  (2.14) 

 

where, ( )F dfx  is a 1M ×  vector including complex magnitude of  beat 

frequency df  for each array element. For the D  targets, the total matrix 

representation is given as 

 

1 2

1 2

1 2

[ ( ) ( )  ( )]

[ ( ) ( )  ( )]

[ ( ) ( )  ( )]

T
F F F D
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F F F D
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,  (2.15) 

 

where,  
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,1 ,2 ,

,1 ,2 ,

( ) [ [ ] [ ]  [ ]] , for =1, 2, ,  

( ) [ [ ] [ ]  [ ]]

T
F d f d f d f M d

T
F d f d f d f M d

f x f x f x f d D

f w f w f w f

=

=

x

w

 



,  (2.16) 

 

and compact matrix form is expressed by 

 

= +X AS W .    (2.17) 

 

In order to estimate DOA with respect to df , covariance matrix for each beat 

frequency is defined as 

 

, [ ( ) ( )],    for =1, 2, , H
F i F i F iE f f i D=R x x  .  (2.18) 

 

Since ,( ) 1F irank =R  in general case, ,F iR  has one eigenvalue in signal subspace, 

and 1M − eigenvalues in noise subspace. From the pseudo-spectrum (2.8), estimated 

DOA component iθ  is exactly paired with distance and velocity corresponding to if . 

Therefore, the DOA estimation in frequency domain resolves paring problem for 

multi-target detection automatically.  
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2.3  Simulation Result 

 

2.3.1  Simulation Setup 

 

To analyze the performance of DOA algorithm with two different approaches, 

Monte Carlo simulations were performed. The received signal was generated by the 

FMCW signal model. The parameters used in this simulation for FMCW are 

summarized in Table 2.1.  

 

Table 2.1 Parameters used in simulation for FMCW 

Parameters value 
Carrier frequency, cf   76.5 GHz 

Sweep time, t∆  5 ms 
Sweep bandwidth, BW  500 MHz 

Maximum target range, maxR  200 m 

Maximum target velocity, r,maxV  300 km/h 

Sampling frequency, sf  440 kHz 

The number of time sample 1024 

The number of FFT point, FFTN  1024 

The number of Antenna 8 

Antenna spacing / 2 / 2 cc fλ =  

 

It is assumed that 77GHz FMCW radar with single transmitting antenna and 8 

receiving array antenna with equally spaced elements. Maximum beat frequency is 

derived by  
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max
,max ,max ,max ,max

2 2 c
b r d r

R fBWf f f V
t c c

= + = +
∆

 ,     (2.19) 

 

where, max
,max

2
r

RBWf
t c

=
∆

 is the maximum frequency difference by the 

maximum target range, and ,max ,max
2 c

d r
ff V
c

=  is the maximum Doppler frequency 

shift by the maximum relative velocity of target. By the Nyquist sampling theorem, 

sampling frequency is determined by 

 

,max2s bf f> ⋅ .                    (2.20) 

 

For convenience of operation, we set the number of the sample in time-domain 

equal to those in frequency-domain.  

 

2.3.2  Performance Comparison of the DOA Estimation in 

Time- and Frequency-domain Processing 

 

  To evaluate performance of DOA estimation, we employed the measure of RMSE 

under various conditions such as signal to noise ratio (SNR), the number of antenna 

elements, and angular separation of closed two targets. The RMSE of estimated DOA 

is defined as 

 



2[( ) ]realRMSE E θ θ= − ,    (2.21) 
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where, θ  is the estimated DOA, and realθ  is the real DOA for the target location. 

From (2.21), we can find that the RMSE means the standard deviation of estimator. 

   The RMSE is evaluated against SNR. It is assumed that there exist two targets with 

-7 and 8 degree. In general, the DOA of target represents the angle from the 

perpendicular direction of the radar sensor. SNR is varied from 0 dB to 20 dB with 

1000 independent trials, respectively. MUSIC estimate in time-domain uses the 

number of time sample, which is snapshot, for 300,  500, 1000N = .  

 

 

Figure 2.3 RMSE versus SNR 

 

Figure 2.3 shows the RMSE performance of the algorithms in terms of the number 

of time samples for the two targets. In general, many of the DOA algorithms rely on 

the array covariance matrix. Since we use time average for estimating covariance 

matrix, large time sample performs better in comparison. However, large snapshot 
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affects computational time, results in longer cycle time for processing. On the other 

hand, MUSIC estimate in frequency domain shows good performance with relatively 

small computational load.  

 

 

Figure 2.4 RMSE versus the number of antenna 
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Figure 2.5 RMSE versus angular separation. 

 

Figure 2.4 shows the RMSE performance in terms of the number of antenna 

elements. The SNR is 10 dB, the number of antenna elements varies from 4 to 12, and 

rest of simulation parameter is same as Figure 2.3. The number of antenna determines 

the size of covariance matrix, which is a square matrix. As the number of antenna 

elements increase, beam pattern of the array is sharper, and the more power of 

receiving antenna is concentrated on specific direction. Moreover, MUSIC algorithm 

uses the orthogonality between steering vector of incoming signal and eigenvectors in 

noise subspace. Thus large antenna elements make large size of eigenvectors in noise 

subspace, results in reducing correlation of signal and noise. 

To evaluate angular resolution of the algorithm, the RMSE performance in terms of 

angular separation is analyzed as shown in Figure 2.5. The SNR is 10 dB, the number 

of antenna is 8, and the angular separation of two targets varies from 3 to 20 degree. 
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MUSIC estimate in frequency domain shows similar performance with MUSIC 

estimate in time domain with N =300. 

From above observation, it is proved that the DOA estimate in frequency domain is 

almost same performance as one in time domain, whereas frequency domain approach 

provides efficient pairing solution. 

  

2.3.3  Performance Analysis of the DOA Estimation in 

Frequency-domain 

 

The frequency domain approach utilizes the beat frequency of the target which is 

derived from Fourier analysis of the received signal. Thus, better estimation of the beat 

frequency leads to better performance of DOA estimate. The frequency resolution of 

the FMCW radar is determined by sampling frequency sf  and length of FFT FFTN  

as follows 

 

s

FFT

ff
N

∆ = .    (2.21) 

 

Thus, large FFT points gives more precise complex magnitude of beat frequency, 

which results in better performance of DOA estimate. Figure 2.6, Figure 2.7, and 

Figure 2.8 show the RMSE performance versus SNR, the number of antenna elements, 

and the angular separation of two targets, respectively. These simulated results are 

performed with same condition as previous section 2.3.2. It is commonly observed that 

larger FFT point shows better performance of RMSE with expense of computational 

load, which is 2logn n . 
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Figure 2.6 RMSE versus SNR according to the number of FFT length 
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Figure 2.7 RMSE versus the number of antenna according to the number of FFT 

length 

 

 

Figure 2.8 RMSE versus angular separation according to the number of FFT length 
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2.4  Conclusion 
 

Conventional DOA estimation method is performed in time-domain, and gives only 

the directions of targets as a sequence. Thus, additional process should be established 

to pair DOA and distance/velocity. If there are many targets in field of view for a radar 

system, a very large amount of computation for precise pairing is required. To cope 

with the restriction of cycle time for the radar system, it is essential to suggest a simple 

but efficient pairing technique.  

In this chapter, the efficient high-resolution DOA estimation method for automotive 

radar systems is proposed. We analyze high-resolution DOA estimation algorithm by 

use of beat frequency of target. By comparing to conventional time domain processing, 

we evaluated the suitability of the proposed method by simulation results. The 

frequency domain approach also provides a simple and efficient target pairing solution, 

which combine DOA information with distance and velocity of the target. 
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Chapter 3 

Clutter Suppression Method of Iron 

Tunnel using Cepstral Analysis for 

Automotive Radars 

 
3.1  Introduction 

 

Clutter suppression is regarded as a relatively simple problem, however, in particular 

for iron-tunnel environments, the clutters are known to severely degrade the target 

detection performance because of the signal reflection from iron structures. 

In the literature, several techniques have been presented in an effort to characterize 

the clutter structure on roads [28]-[29], whereas they are appropriate only for ultra-

wideband pulse radars. Other studies have analyzed the stationary targets located in 

bridges and guard rails [30]-[31]. However, it is noteworthy that unlike the bridges and 

guard rails, iron structures are densely distributed to induce large reflections in iron-

tunnel environments. So far, many of research have been descriptive under normal 

road conditions. Meanwhile, authors in [22] have introduced a technique to recognize 

the structure of iron tunnel. They employed measurement of the entropy based on the 
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short time Fourier transform analysis, and showed performance improvement by 

adjusting CFAR threshold. Note that this technique is tailored only for the recognition 

of iron-tunnel environments and not for the clutter suppression. 

The main purpose of this study is to develop an understanding of the clutter effect of 

the iron tunnel and to establish an efficient clutter suppression algorithm under the iron 

tunnel environment. First, we derive a signal model for frequency modulated 

continuous waveform (FMCW) radars in iron-tunnel conditions, considering that iron 

pillars are located apart at equal distances, which leads to linear-increment of beat 

frequency with respect to the distance of clutters. Here, we focus on the periodic 

properties of the clutters induced by iron structures uniformly located in the tunnel. In 

order to analyze these properties, we employ cepstral analysis, which is used in wide 

areas for pitch detection [32]-[34]. By comparing radar signals in cepstrum domain 

under various road conditions, we prove that the existence of certain family of peaks in 

cepstral domain is a unique characteristic of iron-tunnel environments, which 

represents periodical beat frequency of clutters. Based on the above finding, we 

propose a clutter suppression method for iron-tunnel environments with liftering 

corresponding filtering in the spectral domain. To verify the proposed method, a 77 

GHz forward-looking FMCW radar for ACC is employed. Measured results show that 

the proposed method efficiently suppresses the clutter of iron tunnel and extracts the 

parameter of the target object. It is shown that the proposed method provides 

significant performance enhancement even for early target detection. 

The overall structure of the study organized as follows. Section 3.2 begins by 

modeling radar signal under an iron-tunnel condition. The cepstral characteristic and 

the method to suppress clutter are also discussed in section 3.2. Section 3.3 analyzes 
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the experimental results of the proposed method. Finally, conclusion is presented in 

section 3.4. 
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3.2 Clutter Suppression under Iron Tunnels 
 

In this section, a radar signal model with iron-tunnel clutters is briefly described. We 

analyze cepstral characteristics under various road conditions, and propose an efficient 

method to suppress the clutter effect of iron tunnel by the cepstrum editing process. 

 

 

Figure 3.1 Schematic diagram of a typical FMCW radar 

 

3.2.1 Radar Model of an Iron Tunnel 

 

A 77 GHz forward-looking FMCW long range radar is employed in this work. The 

antenna module consists of linear patch antennas implemented on a printed circuit 

board, which has single transmitting antenna and K receiving antennas. A sinusoid 

signal of the waveform generator is modulated as a chirp signal by a voltage-controlled 

oscillator. The amplified signal is transmitted into the air, and reflected signal from the 

target is received with a time delay and Doppler frequency shift. Using a mixer and 

low pass filter, the received signal is converted to baseband signal. The range and 

velocity are obtained by digital processor of discrete-time signal derived from the 
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analog to digital converter (ADC). The unit time, which includes all of the above 

process, is called scan, and has a value of 50 ms in this work. With the linear frequency 

modulation, the received signal after ADC from k -th array can be simplified by [30]  
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where, 0,1, , 1n N= − , N  is the number of time samples, and T  is the number 

of targets existing on the field of view. ( )ks n  contains sinusoids returned from each 

target, ( )ke n  represents the white noise signal with zero mean and variance of 2σ . 

( )ka i , ( )kf i  and ( )k iφ  are the amplitude, beat frequency and phase of the i -th 

target, respectively. The beat frequency, ( )kf i , means the frequency difference 

between the transmitted and the received signal for i -th target. ( )kf i  is composed 

of , ( )k rf i  (which is frequency difference by the distance of target) and , ( )k df i  

(which is Doppler frequency shift by relative velocity), and each of them is represented 

as 
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where, 
 c

B Bandwidth
T Chirp duration

a = =  is the chirp slope, cf  is the center frequency. 

c  is speed of light and λ  is the wavelength of center frequency. ( )R i  and ( )rv i  

are the range and relative velocity of the i -th target, respectively. When considering 

that the iron clutters of tunnel are densely distributed, (3.1) can be expressed as follows, 
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where, C  is the number of clutters, , ( )k ca j , , ( )k cf j , and , ( )k c jφ  are the 

amplitude, beat frequency, and phase of the j -th clutter, respectively. Assuming that 

the iron clutters have a uniform space, frequency difference by the distance of clutter, 

, , ( )k r cf j , is given by  
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where, (1)cR  is the distance of the first iron clutter and l  represents distance of the 

inter-clutter. , ,
2(1) (1)k r c c

c

Bf R
cT

=  is frequency difference by the distance of the first 
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clutter. 2

c

Blf
cT

∆ =  is frequency difference by the distance of the inter-clutter. Iron 

clutter is a stationary target, which has a constant Doppler frequency, so iron-tunnel 

condition presents periodic frequency components of the iron clutters. Under an iron 

tunnel, reflected signal from clutters is much larger than those from targets, which 

results in the detection failure of the target from clutters. To suppress clutter effect, 

periodicity of clutters in frequency domain needs to be analyzed. To accomplish this 

object, a cepstrum is employed in this work.  

 

3.2.2 Cepstral Analysis of an Iron Tunnel 

 
The cepstrum, derived from an anagram of spectrum, is a signal processing 

technique for identifying harmonic families in spectrum and removing the certain 

spectral components [35]. Cepstrum is used in wide research areas including speech 

signal processing and fault diagnosis. The cepstrum is originally defined as the power 

spectrum of the logarithmic power spectrum. However, various definitions for 

cepstrum are presented in literatures with different functionalities. For the given 

discrete time signal of ( )kx n , representative definitions of cepstrum are expressed as 

follows [36] 
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where, | |⋅  denotes absolute value, ( )powerC n , ( )realC n , and ( )complexC n  represent 

power, real and complex cepstrum, respectively. The operations of both forward and 

inverse Fourier transform are involved in the calculation of the cepstrum. The 

transformation of cepstrum concentrates on the periodic spectrum components, such as 

families of equally spaced harmonics. The essential observation leading to the 

cepstrum analysis is that the logarithmic spectrum can be treated as an input waveform 

and subjected to further inverse Fourier transform. The magnitude of the spectrum of 

( )kx n  varies as the frequency changes. By the log operation, however, it is possible to 

compress the dynamic range of magnitude and reduce magnitude differences in the 

harmonic components. Table 3.1 lists the terminologies in the cepstrum domain with 

the one corresponding in the spectrum domain. 
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Table 3.1 Terminology of cepstral- and spectral domain 

 

 

To characterize the radar signal under the iron-tunnel environment, we analyze the 

cepstral results. The real cepstrum is employed in this work. Discrete-time Fourier 

transform is replaced by fast Fourier transform (FFT), which is computationally 

efficient. Data acquisition is performed in various road conditions, such as an 

expressway, guardrail, normal tunnel and iron tunnel. Figure 3.2 shows the magnitude 

response of the cepstrum under each road condition. Under general road conditions 

including expressway, guardrail, and normal tunnel, any peak value of quefrency does 

not exist clearly. It means that there is no periodicity between the beat frequencies of 

the targets having different ranges and velocities. It is shown that the magnitude 

response has certain peak values of the quefrency only under iron-tunnel condition, 

which are rahmonic components. The first rahmonic peak is exactly same as the 

inverse of fundamental period in frequency domain, f∆ . From this analysis, we 

verify that the periodicity of the clutter frequencies is an inherent property of the iron-

tunnel condition.  
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(a) Express way         (b) Guard rail 

 

     

   (c) Normal tunnel                       (d) Iron tunnel 

 

Figure 3.1 Schematic diagram of typical FMCW radar 

 

3.2.3 Cepstrum Based Clutter Suppression Method 

 

To extract the hidden frequency of target objects from periodic frequency of clutter, 

an effective technique to suppress the clutter frequency is necessary. Since Fourier 

transform is complex domain operation, the cepstrum is represented in complex 
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domain. Therefore, the complex cepstrum has its inverse transformation, and the time 

domain signal can be reconstructed by using a modified cepstrum. However, complex 

cepstrum requires the continuity of phase to be unwrapped. So, it is not applicable to 

stationary random components where the phase is random. 

On the other hand, if the input waveform of inverse Fourier transform has no phase 

information such as magnitude of spectrum, the cepstrum is real-valued. Despite of 

real-valued cepstrum, reconstruction to the time domain can be achieved by using the 

amplitude of the modified spectrum combined with the original phase spectrum. 

Moreover, we can lifter a rahmonic family in the quefrency domain and obtain an 

edited spectrum. Based on this real cepstral analysis, a simple rejection and 

reconstruction of the spectrum are employed in this work [37]. As shown in Figure 3.3, 

we propose to remove harmonics of clutters through the following steps: Step 1) once 

the received signal is transformed into the frequency domain by the fast Fourier 

transform (FFT), we perform the log operation to separate the amplitude and phase 

components. Step 2) using the log amplitude only with inverse FFT, real cepstrum is 

obtained. Step 3) the peak values in the cepstrum, representing a rahmonic family, are 

simply rejected by setting those gamnitude to zero, which acts as an ideal band-

rejection lifter in the cepstral domain. Step 4) edited cepstrum is reversely transformed 

to spectral domain, which is an edited log amplitude. Step 5) edited log spectrum is 

composed of edited log amplitude and phase of the original spectrum. Step 6) with 

exponentiation of the edited log spectrum, finally, the edited spectrum is obtained, 

from which the target frequencies are extracted. 

 



 38 

 

Figure 3.3 Procedure of cepstrum method for removing the harmonic family 
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3.3  Experimental Result 
 

In this section, we present our experimental results based on the measured data in 

real driving environments. The FMCW radar sensor for ACC was installed at front of 

the test vehicle. The parameters of the FMCW radar are with 76.5 GHz of center 

frequency and 200 m of maximum operating range. The FFT algorithm is used for 

frequency estimation, and the cell average (CA)-CFAR is employed to detect target 

frequency [38]. To validate the proposed method, measurement tests were performed 

under various iron tunnels. Moreover, all of the measured data is obtained in a real 

driving situation. To recognize an iron tunnel, the method based on spectrum spreading 

in [22], is applied. The proposed method, therefore, operates only when iron tunnel is 

recognized. The profile of the representative two iron tunnels, used in this work, is 

summarized in Table 3.2. 

 

Table 3.2 Iron-tunnel profile 
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The measured results for the proposed suppression method are shown in Figure 3.4 

and Figure 3.5 for case A and B in Table 3.2, respectively. Figure 3.4.a depicts the 

original spectrum of the received signal before applying the proposed algorithm. The 

component represented by an asterisk stands for beat frequency of the target vehicle in 

the same lane with the ego-vehicle. Because of the periodical frequencies of the iron 

clutters, the hidden frequency of the target is not identified clearly. Although the target 

indicates the peak frequency, the frequency of target may be filtered by a CFAR 

threshold. The magnitude response of the log spectrum is shown in Figure 3.4.b. The 

log magnitude maintains periodicity of the original spectrum, while it smoothens the 

variation of magnitude with respect to frequency. Figure 3.4.c shows the cepstrum of 

the received signal with fundamental period and its rahmonics, resulted from the 

periodic peaks in the spectrum. The peak at rahmonic of 0.76 ms in Figure 3.4.c is 

equal to the inverse of 1.31 kHz, the fundamental period of the peak in the spectrum. 

After peaks of quefrencies are removed, edited spectrum in Figure 3.4.d still has 

residual periodic components. Compared with the original spectrum, nevertheless, 

frequency of the target is identified definitely, and also clutter effect is suppressed 

clearly. Figure 3.5 in case B of the iron tunnel also shows very similar results with 

Figure 3.4. Because the iron structures of the case B are almost same as those of A, 

identical fundamental frequency and harmonics in the quefrency domain are presented.  
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(a) Magnitude of original spectrum 

 

(b) Log magnitude of original spectrum 

 

(c) Cepstrum analysis 

 

(d) Edited spectrum 

Figure 3.4 Clutter suppression using cepstral analysis for the iron tunnel of case A 
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(a) Magnitude of original spectrum 

 

(b) Log magnitude of original spectrum 

 

(c) Cepstrum analysis 

 

(d) Edited spectrum 

Figure 3.5 Clutter suppression using cepstral analysis for the iron tunnel of case B 
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Figure 3.6 presents detection results before and after the clutter suppression. Figure 

3.6.a and Figure 3.6.b shows the original spectrum and edited spectrum in frequency 

domain, respectively. The dotted line represents the threshold value obtained by CFAR. 

The spectral components larger than CFAR threshold are expressed by an asterisk. 

These peaks include the target in the same lane with ego-vehicle, the targets in others 

lane, and also clutters with high power. Although residual clutters are detected after 

suppression, they can be rejected by target pairing and tracking procedure. It is beyond 

the scope of this study to examine the pairing and tracking algorithm. It is noteworthy 

that the target in the same lane with the ego-vehicle is extracted from clutters, which 

provides essential information so as to control the ego-vehicle automatically. Figure 

3.6.c depicts the trajectory comparison of the target vehicle in the same lane. The 

trajectory of the target is calculated by using the estimated target distance, location of 

ego-vehicle, and wheel speed of ego-vehicle. It represents the change of the estimated 

position with a marker at every five scans. It is shown that when the suppression 

algorithm is applied, the target vehicle is detected at an earlier time.  
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Figure 3.6 Detection result before and after clutter suppression 

 To evaluate the performance of the proposed method quantitatively, experiments are 

performed to determine the distance of early target detection, which is a measure of the 

initial distance to detect a target vehicle in the lane of the ego-vehicle. The initial 

detection of the target is a very important indicator for the ACC application. If the 

initial detection of the target is late, the ego-vehicle brakes suddenly, which increases 

the probability of collision with the vehicle in the front or rear. For each iron-tunnel 
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condition, some factors are considered including a type of the target vehicle and 

different velocity of the ego-vehicle. Table II summarizes the results of distance of 

early target detection for each iron tunnel. The average distance of the early target 

detection is improved by more than 55 m for the proposed method. Although the 

proposed method performs additional computation of both FFT and inverse FFT, it 

shows performance enhancement without adjusting any CFAR threshold with respect 

to the road condition.  

 

Table 3.3 Evaluation of the distance of early target 
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3.4  Conclusion 
  

In many applications of automotive radar systems, a technique to suppress clutter 

effect is essential, particularly for the iron-tunnel environments. In this paper, we 

modeled a FMCW radar signal under iron tunnels in which iron structures are 

uniformly and densely distributed. From cepstral analysis, we proved that the periodic 

property of iron clutters is revealed in the cepstral domain. Based on this observation, 

we proposed an efficient clutter suppression method using real cepstrum to remove the 

clutter effects in the cepstral domain. Experimental results present that the proposed 

method provides significant enhancement in the target detection performance. This 

proves that the proposed method is successfully applied for clutter suppression.  
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Chapter 4 

Interference Mitigation by High-

Resolution Frequency Estimation for 

Automotive Radars 

 

4.1 Introduction 

 

Mutual interference is a crucial issue that must be resolved for improved safety 

functions [16], [23]. Given the increasing number of automotive radar sensors 

operating at the same instant, the probability that radar sensors may receive signals 

from other radar sensors gradually increases. In such a situation, the system may fail to 

detect the correct target given the serious interference. Effective countermeasures, 

therefore, have to be considered. In the literature, several techniques have been 

presented in an effort mitigate the performance degradation issue caused by 

interference in radar or communications systems [39], [40]. To avoid overlap in the 

frequency domain, one method to minimize interference shifts the frequency of the 

transmitted signal pseudo-randomly [39]. Other authors [40] propose frequency ramps 

from short PN-coded sequences as a spread-spectrum technique. With these methods, 

however, the radars must share the same set of codes. Efficient strategies to distribute 

codes are required beforehand for collision avoidance. 
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Another study [16] qualitatively analyzed the mutual interference between 

millimeter-wave radar sensors and examined interference scenarios when considering 

spatial, temporal and frequency overlap. Interference from neighboring sensors appears 

to result in an increase in the noise level in the frequency domain. Therefore, it is 

important to estimate beat frequency accurately in a high interference environment. 

Conventional FMCW radar systems use the fast Fourier transform (FFT) algorithm for 

beat frequency estimation [41]. However, the traditional FFT algorithm is associated 

with high probability of failing to separate target objects from interferers. This 

motivates us to exploit high-resolution estimation techniques in interference-limited 

automotive radar environments. 

This chapter proposes a beat frequency estimator for use in automotive FMCW 

radar systems based on high-resolution techniques to suppress mutual interference by 

means of a frequency domain analysis. The proposed method can be considered as the 

application of a subspace method known as MUSIC and ESPRIT, which solve the 

generalized eigenvalue problem using an autocorrelation matrix of received signal [17], 

[18]. The proposed method employs an estimator of a correlation matrix with forward-

backward spatial smoothing (FBSS) [42] and a frequency signal dimension order 

(FSDO) estimator with the minimum description length (MDL) criteria [27]. The 

proposed method improves the frequency resolution and reduces the influence of 

interference relative to the FFT method. Moreover, ESPRIT is more computationally 

efficient than MUSIC [43], as ESPRIT directly calculates the frequency components in 

a given frequency range, whereas MUSIC requires a peak detection process from the 

spectral analysis.  

To verify proposed methods, measurement was performed in a test field. The 
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experimental data used in the paper are obtained from a 77 GHz forward-looking 

FMCW radar for adaptive cruise control (ACC). The results show that the missing 

problem of a target vehicle under interference environments is improved by proposed 

methods in the detection performance. 

The rest of this chapter is organized as follows. The characteristics and a 

mathematical representation of FMCW radar systems are presented in section 4.2. 

Based on the system model, beat frequency estimations using MUSIC and ESPRIT 

are discussed in section 4.3. Experimental results are presented in section 4.4 to verify 

the performance enhancement when using the proposed schemes. Finally, conclusions 

are given in section 4.5. 
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4.2 Automotive FMCW Radars in an Interference 

Environment 

 

A signal transmitted using a linearly increasing or decreasing signal in the frequency 

domain can be represented as [30] 
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where, A  and φ  are the amplitude and phase of the transmitted signal, 

respectively; 0f  is the transmitted signal frequency at time 0t = ; and 
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 is the chirp rate (chirp slope). The received signals 

returning from multiple targets are delayed and attenuated. If the targets are moving, 

they include an additional frequency shift term as follows: 
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Here, m  is the number of targets; iB  is the amplitude of the received signal; and 



 51 

,d if  and ,d it  are the Doppler frequency and the delay time respectively. The 

transmitted and received signals are mixed by multiplication in the time domain. With 

the trigonometric identity of the sum of the cosines, the product of the two signals has 

distinct sinusoidal components. One of these will be at a frequency that is 

approximately twice the carrier frequency, which will be cut off by a low-pass filter 

(LPF). The other term, i.e., the mixer output after LPF processing, is given by 

 

 2
, , 0 , , ,

1
( )  cos  2 ( )       2 ( )  ,( )

m

i d i d i d i d i d i
i

s t C t f t f f t tπ α π πα
=

= − + + −∑   (4.3) 

 

where i iC AB=  is the amplitude of the mixed output. , , ,b i d i d if t fα= −  is the 

beat frequency (or frequency difference), which is analyzed by the FFT algorithm. The 

range and velocity of each target are obtained from the beat frequency component with 

a peak detection algorithm such as the CFAR technique [44]. 

Considering that many vehicles may be equipped with FMCW radar sensors, it is 

essential to analyze the interference mechanism. Two simple scenarios can be regarded, 

as shown in Figure 4.1. One is direct interference from a vehicle in the opposite 

direction and the other is a returned interference from a vehicle traveling in the same 

direction (which is indirect interference). There are many factors affecting radar 

sensitivity, such as interfering source levels, the side-lobe effect, the target shape, the 
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operating band, and the sweep time. 

 

(a) Direct interference 

 

(b) In-direct interference 

Figure 4.1 Simple interference scenarios in automotive radar environment 

 

As an issue that acts between FMCW radars, interference can be divided into in-

band-region interference and out-of-band interference depending on the delay time, 

resulting in a ghost target and a uniform increase of the noise floor respectively [16]. 

In-band-region interference not only occurs with a very low probability, but it can also 

be removed by means of multi-target detection and tracking algorithms [45]. For the 

out-of-band interference, however, the detection of the targets fails due to the increase 

in the noise floor. Figure 4.2 shows the influence of an interference signal that is 30dB 

larger than the signal from the target when the target is present at the 70m. The target 
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signal-to-noise-ratio (SNR) is reduced considerably. It is an important issue, therefore, 

to identify the signal from a result which contains an increase in the noise floor. The 

out-of-band interference is modeled in the following two cases according to the delay 

time of the interference signal. 

 

(a) Spectrum of a target without interference 

 

    (b)  Spectrum of a target with interference 

Figure 4.2 The spectrum of FFT output for an out-of-band region interference with a 

magnitude 30 dB larger than signal returned from target object. 
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(a) Same sign-chirp case 

 

 

(b) Different sign-chirp case 

Figure 4.3 Two cases of out-of-band interference, where sf is the sampling rate and 

LPFf  is the cut-off frequency of LPF. 

 

4.2.1  The Same Sign-Chirp Case 

 

Assuming there are multiple interferers equipped with FMCW radar in the field of 

view, with parallel increasing chirps in the transmitted signal and with the interference 
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signal in the sampling interval (Figure 4.3(a)), the received signal can be expressed as 

follows: 
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Here, , , jd max d It t< ; ,d maxt  is the round-trip time for the maximum operating range 

of 200m, jI  is the index of the interferer, , jd It  is the delay time of the interferer, k  

is the number of interferers, and ( )n t  is white noise. The mixed output after low-pass 

filtering is as follows: 
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In this case, the influence of interference signal is presented in the form of a ghost 

target with a constant frequency. Because the beat frequency of the interferer is larger 
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than the maximum beat frequency corresponding to the maximum operating range, it 

can be ignored by the sampling rate, sf . 

 

4.2.2  The Different Sign-Chirp Case 

 

In contrast to the above case, with an increasing chirp of transmitted signal and a 

decreasing chirp of interfering signal, the received signal is expressed as follow:  
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The mixed output is, therefore, given by 
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Because the interfering signal comes with a short pulse and time-varying frequency 

components as shown in Figure 4.3(b), it would appear as an increase in the noise floor 

with a very wide spectral width. The amount of the increase in the noise floor is 

proportional to the time duration of the interfering signal or the interfering source 

power. Considering that the interfering signals are also treated as noise, (4.7) can also 

be represented as shown below. 
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Here, ( ) ( ) ( )e t I t w t= + . 
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4.3  High-Resolution Frequency Estimation Methods 
 

In this section, the proposed high-resolution beat frequency estimation scheme is 

described. Figure 4.4 shows a functional block diagram of the proposed scheme, which 

employs a FBSS and a FSDO estimator. We present a data model for subspace-based 

algorithms and describe an effective method to estimate the correlation matrix. Based 

on the data model, a theory encompassing MUSIC and ESPRIT is investigated and the 

FSDO estimator, as a part of MUSIC and ESPRIT, is presented to provide the number 

of frequency components. 

 

 

Figure 4.4 Functional block diagram of the high-resolution beat frequency estimation 

algorithm 

 

4.3.1  Data Model 

 

Let us a consider sampled version of radar mixed output as a discrete-time sinusoid 

signal having amplitude, frequency, and phase components, as follows,  

 

1
[ ] [ ] [ ] cos(2 ) [ ],

m

i i i
i

x n s n e n a f n e nπ f
=

= + = + +∑  (4.9) 
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where 0,1,2, , 1n N= − ; s [ n ] contains sinusoids returned from each target; e [ n ] 

represents the noise signal from other FMCW radars, including white noise with a zero 

mean and variance of 2σ ; m  is the number of sinusoids; N  is the number of 

sampled data points; and ia , if  and iφ  are the amplitude, beat frequency, and 

phase of the i -th sinusoid, respectively. According to Euler’s formula, 

cos(2 )i if nπ f+  can be expressed as (2 ) ( 2 )1 ( )
2

i i i ij f n j f ne eπ f π f+ − ++ . Then, (4.9) can be 

represented in complex exponential form, as 

 

(2 )

1
[ ] [ ] [ ] [ ]i i

M
j f n

i
i

x n s n e n A e e nπ f+

=

= + = +∑ ,        (4.10) 

with 

 

 ,   for  1   
2

, for 

   

 2 1
2
2

i

i

ji
i i i

ji
i i i

aA e f f i m

aA e f f m i m

M m

π

π−

= = ≤ ≤

= = − + ≤ ≤

=

,      (4.11)  

 

By defining the i -th complex sinusoid component, 2 ij f n
iAe π  as ( )is n , (4.10) is 

expressed as follows: 
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1
[ ] [ ] [ ], 0,1,2, , 1

M

i
i

x n s n e n n N
=

= + = −∑  ,  (4.12) 

 

From L  discrete-time samples, a compact matrix form is obtained by 

 

1
( ) ( ) ( ),

M

i
i

n n n
=

= +∑x s e     (4.13) 

 

where    L M> ; ( ) [ [ ] [ 1] [ 1]]Tn x n x n x n L= + − +x  , ( )i n =s  

[ [ ] [ 1] [ 1]]T
i i is n s n s n L+ − +

2 2 ( 1) 2[1 ]i i ij f j L f j f nT
ie e A eπ π π−= × ; and 

( ) [ [ ] [ 1] [ 1]]Tn e n e n e n L= + − +e  . Then, a low-rank matrix representation for 

subspace methods can be represented as  

 

( ) ( ) ( ),n n n= +x FA e     (4.14) 

 

where 1 2[ ( ) ( ) ( )]Mf f f=F f f f  is a L M×  Vandermonde matrix of rank M , 

1 22 2 2
1 2( ) [ ]Mj f n j f n j f n

Mn A e A e A eπ π π=A  , and 2 2 ( 1)( ) [ ]i ij f j L f T
if e eπ π −=f   for 

1,2, ,i M=   is a frequency mode vector with frequency if . The autocorrelation 

matrix of mixed output xxR  is expressed as 
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( ) ( ) ,[ ]H
xx E n n=R x x     (4.15) 

 

where [ ]E ⋅  denotes the expected value. By using eigenvalue decomposition, the 

eigenvalues and corresponding eigenvectors of xxR  are obtained according to 

1 2{ }Lλ λ λ≥ ≥ ≥  and  respectively. If xxR  has the full rank of M , the 

eigenvalues are given by 

 

1 2 1 2        [ [ ]],        M M M L var e nλ λ λ λ λ λ− −≥ ≥ ≥ > = = = =    (4.16) 

 

where [ [ ]]var e n  denotes the noise variance. From the eigenvalues and eigenvectors 

of xxR , we define a signal subspace matrix 1 2 ][S M=V v v v  corresponding to the 

largest M  eigenvalues, and a noise subspace matrix 1 2 ][N M M L+ +=V v v v  that 

contains the remaining eigenvectors. 

 

4.3.2  Estimation of the Correlation Matrix 

 

The correlation matrix of the received signal is found by the expected value of the 

absolute values squared. However, we cannot identify the exact statistics for the signal 

and noise. Assuming that the process is ergodic, we can approximate the correlation 

matrix by means of time-averaged correlation as follows: 
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1

1

1ˆ ( ) ( )
1

N L
H

xx
k

n n
N L

− +

=

=
− + ∑R x x .     (4.17)  

 

Here, N L> , N  denotes the sequentially decimated time samples 

{ [ ] [ 1] [ 1]}Tx n x n x n N+ + − . When the number of time samples is limited, the rank 

sparsity of the correlation matrix degrades the performance. To improve the 

performance of subspace methods, FBSS method is used in this paper [42]. FBSS is 

used to calculate the L L×  matrix, as 

 

1

1ˆ ˆ ˆ( ),
2

Q
T

FBSS
kQ =

= +∑ n nR R JR J     (4.18) 

 

where 1Q N L= − + ; ˆ ( ) ( )Hn n=nR x x , and J  is the L L×  reversal matrix, for 

which the elements are unity along the anti-diagonal and are zero elsewhere. 

 

4.3.3  Application of the MUSIC Algorithm 

 

The MUSIC algorithm uses the basic assumption that the frequency mode vector 

corresponding to its frequency component is orthogonal to the noise subspace formed 

by the noise eigenvectors. This is expressed, as 

 

( ) 0,H
i kf =f v             (4.19) 
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where 1,2, ,i M=   and 1, 2, ,k M M L= + +   

By using the orthogonality of the frequency mode vectors to the noise eigenvectors, the 

MUSIC pseudo-spectrum is then defined as follows [17]: 

 

2

1

1( )
| ( ) |

MUSIC M
H

k
k m

P f
f

= +

=

∑ f v
 ,   (4.20) 

 

A peak value occurs in the pseudo-spectrum when if f= , and the estimated 

frequency is obtained by CFAR[44]. 

 

4.3.4  Application of the ESPRIT Algorithm 

 

ESPRIT is based on the naturally existing shift-invariance between discrete-time 

series samples which leads to rotational invariance between the corresponding signal 

subspaces [18]. Let us define two subsamples 1( ) [ [ ] [ 1] [ 2]]Tn x n x n x n L= + + −x   

and 2 ( ) [ [ 1] [ 2] [ 1]]Tn x n x n x n L= + + + −x   for 1L M− > . From [ 1]is n +  
2[ ] ij f

is n e π=  in (4.13), 1( )nx  and 2 ( )nx  can be represented by 

 

1 1

2 2

( ) ( ) ( )
( ) ( ) ( ),
n n n
n n n
= +
= +

x FA e
x FΦA e

    (4.21) 
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where Φ  is a ( 1) ( 1)L L− × −  diagonal matrix whose i -th component is 
2 ij f

i e πf = . By defining 1SV  and 2SV  as the signal subspace eigenvectors from the 

auto-correlation of 1( )nx and 2 ( )nx , respectively, the subspaces of the eigenvectors 

are related by a unique non-singular transformation matrix Ψ  such that 

 

1 2.S S=V Ψ V        (4.22) 

 

Because F  and 1SV , 2SV  span the same signal subspace, there is also a unique 

non-singular transformation matrix T  such that 

 

1

2 .
S

S

=
=

V FT
V FΦT

      (4.23) 

 

By substituting (4.23) into (4.22), we can derive the following relationship: 

 

1−=Ψ T ΦT .       (4.24) 

 

Thus, the largest M  eigenvalues of Ψ  are equal to the diagonal elements of Φ  

such that 1 22 2 2
1 2, , , Mj f j f j f

Me e eπ π πψ ψ ψ= = = . The frequency estimates if  for 

1 i M≤ ≤  are then calculated as 

 



( ) ,
2

i
if

ψ
π

∠
=       (4.25) 

 

where ∠⋅  denotes the phase of the argument, with the sampling frequency of the 
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data used to calculate if . The MUSIC algorithm needs to search the peaks of the 

spatial spectrum at a cost of computational load, whereas ESPRIT exploits the 

rotational invariance structure of the signal subspace and avoids searching any spatial 

spectrum. 

  

4.3.5  Number of Frequency Estimation 

 

MUSIC and ESPRIT take advantage of a prior knowledge such as the number of 

frequency components. Because the precise number of frequency M  value is not 

available in practical systems, it must be estimated. As information theoretic criteria, 

MDL or the AIC have been widely used to estimate the number of frequencies. In this 

paper, we employ the MDL criterion to estimate M . This is expressed as [27], 

 

( )11

1

1MDL( ) log (2 )log ,
1 2

k L QL
L k

i
i k

L

i
i k

k k L k Q

L k

l

l

−−
−

=
−

=

 
 
 =− + − 
  − 

∏

∑
  (4.26) 

 

after which the estimate of M  can be obtained by 

 

ˆ arg minMDL( ) 1,kM k= +    (4.27) 

 

where, 0,1, , 1k L= − . 
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4.4  Experimental Result 

 

Table 4.1 Parameters of a FMCW radar for the experiment 

 

 

In this section, we present our measurement setup and analyze the proposed method 

as compared to the conventional FFT algorithm. To validate performance of the 

proposed methods, measurement performed with two interference scenario (Figure 

4.1). The FMCW radar sensor, used for ACC, was installed in the test vehicle which is 

produced by a Korea company. All of the experiments were performed in an open 

space on flat ground. The interfering and target vehicles have 10dBsm radar cross 

section (RCS). The parameters of the FMCW radar used in this study are summarized 

in the Table 1. For a sweep bandwidth of 500 MHz, a sweep time of 5 ms and a 

maximum operating range of 200 m, the maximum round trip time is 1.33 sµ  and 

the maximum beat frequency is 133 kHz. The cut-off frequency of the LPF was set to 

1 MHz. 
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In order to evaluate the quantitative performance of the frequency estimation in an 

interference environment, probability of resolution is analyzed according to SIR. The 

SIR is determined by the distance from the radar sensor to the target and the interferer. 

The SIR is distributed up to about -31 dB and -63 dB for the indirect interference and 

direct interference respectively. 

The mixer outputs of the FMCW radar were analyzed using the conventional FFT, 

the MUSIC and the ESPRIT methods. To detect the peak values from the FFT and 

MUSIC spectral results, the ordered statistic (OS) CFAR algorithm was adopted [44], 

where the probability of a false alarm is 610− . The beat frequency of the target is 

determined by the spectral component higher than a threshold. 

 

 

Figure 4.5 Sample result for the beat frequency estimation when the target object exists 

at a range of 50m (For a direct interference scenario) 
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Figure 4.5 shows a snapshot (which means a scan) for the beat frequency estimation 

when the target object exists at a range of 50 m. In this example, the SIR is -30 dB (i.e., 

the direct interferer is 30 m away from the radar sensor). This result shows that the 

proposed method is more capable of identifying the beat frequency than the 

conventional FFT method. Although, the FFT result indicates a peak value for the 

target object, it is not larger than the threshold, leading to a detection failure of the 

target object. 

 

 

Figure 4.6 Probability of resolution versus SIR 

 

The results are based on 1600 independent periods of measured data for each 

distance using the subsample size set to 100L =  for the FBSS. As shown in Figure 

4.6, the proposed method operates up to a SIR of -32.5 dB, whereas the FFT shows a 
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performance limit of -17.9 dB SIR. These subspace-based methods are entirely robust 

for at least indirect interference scenarios. For a short range of less than 50 m, 

Furthermore, it can be said the proposed methods can identify the beat frequencies of 

targets regardless of the SIR. The MUSIC and ESPRIT algorithms show similar 

performance levels. However, ESPRIT has better computational efficiency because it 

avoids the peak-search process. 

 

 

Figure 4.7 Probability of resolution versus the number of subsample for FBSS 

 

The performance of the proposed algorithm versus the number of subsamples for 

the FBSS was also assessed. The conditions for estimation are same to those in Figure 

4.7, except that the number of subsamples is varied from 100L =  to 300L = . 

Figure 4.7 shows that when the number of samples is increased to 200 and 300, the 
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performance of the MUSIC algorithm shows additional margin of SIR, about 2.4 dB 

and 4.1 dB, respectively. This improvement occurs because large number of 

subsamples, L , makes the rank property of the correlation matrix effective. 
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4.4  Conclusion 
 

The conventional FFT approach is vulnerable in interference-limited environments. 

In this paper, the performance limitation of the existing system was evaluated 

quantitatively. Also, we proposed a subspace-based method to identify the beat 

frequency of the targets while suppressing the interference signals. Experimental 

results show that the proposed method has a SIR margin of at least about 14 dB 

compared to the conventional FFT algorithm. The proposed method provides a 

significant performance enhancement even in a direct interference environment, which 

proves that the proposed estimation method can be successfully applied for the beat 

frequency analysis in an interference environment. Thus, it is concluded that MUSIC 

and ESPRIT are essential for minimizing the interference effects in the automotive 

radar field. Moreover the overall method will be useful for eliminating the influence of 

interference when used in conjunction with other mitigation techniques.
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초록 

 

자동차 기술 분야의 안전 및 편의에 대한 수요가 증가함에 따라, 

주행 보조 시스템의 많은 응용 제품들이 연구, 개발 중이다. 차량의 주행 

정보를 제공하기 위해서, 라이더, 카메라, 레이더, 초음파 레이더와 같은 

다양한 센서 중에서, 레이더 센서는 시계 및 기상 상황에 대해 훌륭한 

성능을 보여준다. 특히, 글로벌 생태계의 긴급 제동 시스템과 같은 안전 

관련 기술의 의무장착화 진행과 맞물려 차량 레이더 센서의 시장을 

폭발적으로 증가할 것으로 예상된다. 최근에는, 작은 크기를 가지면서도 

성능이 우수한 레이더 센서에 대한 개발이 필수적이다. 또한 기존의 

단거리, 중장거리 레이더 기능을 통합하는 다중 모드 레이더의 개발이 

요구된다. 따라서 고해상도 파라미터 추정, 다중 타겟 감지, 클러터 억제, 

간섭 완화 등의 기법은 여전히 레이더 신호처리 분야의 도전 과제로 

남아있다.  

고해상도 파라미터 추정에 대해서, 타겟 차량들을 구분하기 위한  

각도 추정 기법들이 연구되고 있다. 특히 복잡한 도심환경에서는 비슷한 

거리 및 속도로 주행하는 차량들이 빈번히 존재한다. 이러한 근접 

차량들을 구분하기 위해서는 차량용 레이더에 적합한 고해상도 각도 추정 
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알고리즘이 필수적이다. 

한편 레이더 센서 시야 범위 내에 존재하는 다중 타겟들을 분리하는 

다중 타겟 감지기법이 요구된다. 다중 타겟 감지 기법은 각각의 타겟들이 

가지는 고유의 주파수 성분들을 페어링하고 결합하는 과정이다. 특정 

환경에서는 잘못된 주파수 페어링을 통해서 고스트 타겟이 검출될 수 

있다. 따라서 신뢰성 높은 페어링 또는 결합 기법이 요구된다. 

클러터는 주변 환경으로부터 반사되는 원하지 않는 신호 성분을 

말한다. 차량 주행 환경에서는 가드레일, 교통표지판, 도로 주변의 

정지물체들이 될 수 있다. 클러터의 효과를 최소화하기 위해서, 기존 

레이더 시스템은 클러터의 비유동적인 특성 및 저주파 특성을 가정하고 

이를 필터링한다. 그러나 차량용 레이더 환경에서는 클러터들이 다양한 

주파수 성분 및 에너지를 가지고 분포하므로 적용이 어렵다. 특히, 철제 

구조물과 같은 특수한 환경에서는 클러터의 높은 파워로 인하여 타겟 

차량이 검출되지 않는다. 

상호 간섭은 차량 안전 기능 제공을 위해서 반드시 풀어야 할 

문제이다. 동일한 대역, 동일한 순간에 동작하는 레이더 센서를 탑재한 

차량의 수가 증가할수록, 다른 레이더 센서의 신호로부터 정확한 타겟 

구분에 실패 할 확률일 점차적으로 증가한다. 따라서 이에 대한 적절한 

대책이 필요하다.  

본 논문에서는, 차량용 레이더 시스템을 위한 효율적인 파라미터 
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추정 기법을 제안한다. 제안된 기법들은 앞서 설명한 신호처리 이슈들을 

각각 포함하고 있다. 먼저, 주파수 영역에서 고해상도 각도 추정 기법을 

제안한다. 본 기법은 타겟 차량의 고유한 비트 주파수를 이용하여 

고해상도로 각도를 추정한다. 타겟의 비트 주파수는 거리 및 속도 정보를 

제공하기 때문에, 추정된 각도 정보는 자연스럽게 거리 및 속도정보와 

페어링 된다. 다음으로는, 철제 터널 환경에서의 클러터 억제 기법을 

제안한다. 철제 터널 환경의 클러터는 철제 구조물의 반사 신호 성분으로 

타겟의 감지 성능을 매우 열화시킨다. 제안된 기법은 켑스트럼에 기반한 

클러터 억제 기법으로서, 주파수 영역에서의 주기적인 클러터 특성을 

이용한다. 마지막으로, 간섭 제거 기법을 제안한다. 차량용 레이더의 

간섭은 대부분 주파수 영역의 잡음 전력의 증가로 나타나며, 타겟의 감지 

실패로 이어진다. 따라서 우리는 간섭 환경에서의 고해상도 주파수 추정 

기법을 제안하고, 성능의 개선을 제시한다.  

 

 

 

주요어 : 차량 레이더, FMCW, 각도 추정, 간섭, 완화, 클러터, 억제, 

고해상도, 신호처리 

학   번 : 2009- 30928 

 


	Chapter 1. Introduction
	1.1 Background
	1.2 ADAS Applications for Automotive Radar
	1.3 Motivation and Organization

	Chapter 2. High-Resolution Direction-of-Arrvial Estimation with Pairing function for Automotive Radar Systems
	2.1 Introduction
	2.2 High-Resolution DOA Estimation for automotive Radars
	2.2.1 DOA Estimation in the Time-domain Processing
	2.2.2 DOA Estimation in the Frequency-domain Processing

	2.3 Simulation Result
	2.3.1 Simulation setup
	2.3.2 Performance Comparison of the DOA Estimation in Time- and Frquency-domain Processing
	2.3.3 Performance Analysis of the DOA Estimation in Frequency-domain

	2.4 Conclusion

	Chapter 3. Clutter Suppression Method of Iron Tunnel using Cepstral Analysis for Automotive Radars
	3.1 Introduction
	3.2 Clutter Suppression under Iron Tunnels
	3.2.1 Radar Model of an Iron Tunnel
	3.2.2 Cepstrum Analysis of an Iron Tunnel
	3.2.3 Cepstrum Based Clutter Suppression Method

	3.3 Experimental Result
	3.4 Conclusion

	Chapter 4. Interference Mitigation by High-Resolution Frequency Estimation in Automotive FMCW Radar
	4.1 Introduction
	4.2 Automotive FMCW Radars in an Interference Environment
	4.2.1 The Same Sign-Chirp Case
	4.2.2 The Different Sign-Chirp Case

	4.3 High-Resolution Frequency Estimation Method
	4.3.1 Data Model
	4.3.2 Estimation of Correlation Matrix
	4.3.3 Application of the MUSIC Algorithm
	4.3.4 Application of the MUSIC Algorithm
	4.3.5 Number of Frequency Estimation

	4.4 Experimental Result
	4.5 Conclusion

	Bibliography
	Abstract in Korean


<startpage>14
Chapter 1. Introduction 1
 1.1 Background 1
 1.2 ADAS Applications for Automotive Radar 3
 1.3 Motivation and Organization 5
Chapter 2. High-Resolution Direction-of-Arrvial Estimation with Pairing function for Automotive Radar Systems 8
 2.1 Introduction 8
 2.2 High-Resolution DOA Estimation for automotive Radars 10
  2.2.1 DOA Estimation in the Time-domain Processing 11
  2.2.2 DOA Estimation in the Frequency-domain Processing 15
 2.3 Simulation Result 18
  2.3.1 Simulation setup 18
  2.3.2 Performance Comparison of the DOA Estimation in Time- and Frquency-domain Processing 19
  2.3.3 Performance Analysis of the DOA Estimation in Frequency-domain 23
 2.4 Conclusion 26
Chapter 3. Clutter Suppression Method of Iron Tunnel using Cepstral Analysis for Automotive Radars 27
 3.1 Introduction 27
 3.2 Clutter Suppression under Iron Tunnels 30
  3.2.1 Radar Model of an Iron Tunnel 30
  3.2.2 Cepstrum Analysis of an Iron Tunnel 33
  3.2.3 Cepstrum Based Clutter Suppression Method 36
 3.3 Experimental Result 39
 3.4 Conclusion 46
Chapter 4. Interference Mitigation by High-Resolution Frequency Estimation in Automotive FMCW Radar 47
 4.1 Introduction 47
 4.2 Automotive FMCW Radars in an Interference Environment 50
  4.2.1 The Same Sign-Chirp Case 54
  4.2.2 The Different Sign-Chirp Case 56
 4.3 High-Resolution Frequency Estimation Method 58
  4.3.1 Data Model 58
  4.3.2 Estimation of Correlation Matrix 61
  4.3.3 Application of the MUSIC Algorithm 62
  4.3.4 Application of the MUSIC Algorithm 63
  4.3.5 Number of Frequency Estimation 65
 4.4 Experimental Result 66
 4.5 Conclusion 71
Bibliography 72
Abstract in Korean 78
</body>

