

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Write Avoidance Schemes for
Non-Volatile Memory based

Last-Level Cache

비휘발성메모리기반의최종레벨캐시를위한

쓰기회피기법

2016년 2월

서울대학교대학원

전기·컴퓨터공학부

최주희

ABSTRACT

Non-volatile memory (NVM) is considered to be a promising memory tech-

nology for last-level caches (LLC) due to its low leakage of power and high

storage density. However, NVM has some drawbacks including high dy-

namic energy when modifying NVM cells, long latency for write operations,

and limited write endurance. To overcome these problems, the thesis focuses

on two approaches: cache coherence and NVM capacity management policy

for hybrid cache architecture (HCA).

First, we review existing cache coherence protocols under the condi-

tion of NVM-based LLCs. Our analysis reveals that the LLCs perform un-

necessary write operations because legacy protocols have very pay little at-

tention to reducing the number of write accesses to the LLC. Therefore, a

write avoidance cache coherence protocol (WACC) is proposed to reduce

the number of write operations to the LLC.

In addition, novel HCA schemes are proposed to efficiently utilize

SRAM in the thesis. Previous studies on HCA have concentrated on de-

tecting write-intensive blocks and placing them into the SRAM ways. How-

ever, unlike other studies, a dynamic way adjusting algorithm (DWA) and a

linefill-aware cache partitioning (LCP) calculate the optimal size of NVM

ways and SRAM ways in order to minimize the NVM write counts and as-

signing the corresponding number of NVM ways and SRAM ways to cores.

i

The simulation results show that WACC achieves a 13.2% reduction in

the dynamic energy consumption. For HCA schemes, the dynamic energy

consumption of DWA and LCP is reduced by 26.9% and 37.2%, respec-

tively.

Index Terms : Cache memories, Emerging technologies, Heterogeneous

(hybrid) memory systems , Low-power design, Cache coherence, Cache par-

titioning

Student Number : 2012-30234

ii

CONTENTS

I. Introduction . 1

1.1 Purpose of the thesis . 1

1.2 Background . 3

1.3 Motivation . 4

1.4 Contributions . 5

1.5 Organization of the thesis 8

II. Related work . 9

2.1 Hybrid cache architecture 9

2.1.1 Write intensity prediction studies 11

2.1.2 Static approaches 11

2.1.3 Hybrid cache architecture for main memory 12

2.2 Cache partitioning schemes 14

III. Write avoidance cache coherence protocol 15

iii

3.1 Limitation of existing cache coherence protocol 15

3.2 Write avoidance cache coherence protocol 19

IV. NVM capacity management policy for hybrid cache archi-

tecture . 22

4.1 NVM capacity management policy 22

4.1.1 Concept of NVM capacity management policy . . . 23

4.1.2 Feasibility of NVM capacity management policy . . 27

4.2 Dynamic way adjusting . 37

4.2.1 Maximum stack distance 37

4.2.2 Adjusting the number of NVM ways 41

4.2.3 Algorithm of dynamic way adjusting 42

4.3 Cache partitioning for hybrid cache architecture 46

4.3.1 Linefill-aware cache partitioning 49

4.3.2 Metrics for cache partitioning 50

4.3.3 Algorithm for cache partitioning 59

4.4 Overhead of NVM capacity management policy 68

iv

V. Experimental results . 71

5.1 Experimental environment 71

5.2 Write access to NVM . 78

5.3 Dynamic energy consumption 85

5.4 Lifetime . 90

5.5 Multi-core environment . 96

VI. Conclusion . 104

6.1 Conclusion . 104

6.2 Future work . 106

References . 107

Abstract in Korean . 115

v

List of Figures

Figure 1. Basic structure of hybrid cache architecture (HCA). . . 10

Figure 2. Conventional cache coherence protocol. 17

Figure 3. Write avoidance cache coherence protocol (WACC). . 18

Figure 4. State transition diagrams for WACC. 20

Figure 5. Example for NVM capacity management policy. 26

Figure 6. Miss rates with various number of NVM ways. 32

Figure 7. Normalized total write counts of HCA. 34

Figure 8. Normalized total write counts of NVM. 36

Figure 9. Stack distance histogram. 38

Figure 10. Overall structure of dynamic way adjusting (DWA). . . 40

Figure 11. Example of way shifting. 44

Figure 12. Algorithm for DWA. 45

Figure 13. Examples of cache partitioning for HCA. 48

Figure 14. Example of stack property. 51

vi

Figure 15. Examples of miss counts change (∆M) and write counts

change (∆W). 56

Figure 16. Examples of NVM write counts change (∆NV MW). . . 59

Figure 17. Algorithm of linefill-aware cache partitioning (LCP). . 60

Figure 18. Overall structure of LCP. 63

Figure 19. Error rates for LCP. 65

Figure 20. Miss rates for LCP. 67

Figure 21. Normalized write counts of WACC. 77

Figure 22. Normalized NVM write counts of DWA with STT-RAM. 80

Figure 23. Normalized NVM write counts of DWA with PCM. . . 81

Figure 24. Normalized NVM write counts for LCP. 82

Figure 25. Normalized dynamic energy consumption and lifetime

of WACC. 84

Figure 26. Normalized dynamic energy consumption of DWA with

STT-RAM. 87

Figure 27. Normalized dynamic energy consumption of DWA with

PCM. 88

Figure 28. Normalized dynamic energy consumption for LCP. . . 89

vii

Figure 29. Normalized lifetime of DWA with STT-RAM. 91

Figure 30. Normalized lifetime of DWA with PCM. 92

Figure 31. Miss rates with various DWA configurations with STT-

RAM. 94

Figure 32. Miss rates with various DWA configurations with PCM. 95

Figure 33. DWA with STT-RAM in multi-core environment. . . . 97

Figure 34. DWA with PCM in multi-core environment. 98

Figure 35. IPC throughput for LCP. 100

Figure 36. Weighted speedup for LCP. 101

Figure 37. Fairness for LCP. 102

viii

List of Tables

Table 1. Comparison of area, latency, and energy 4

Table 2. Summary of proposed schemes. 8

Table 3. States and descriptions for write avoidance cache coher-

ence protocol (WACC). 19

Table 4. Signals/actions and descriptions for WACC. 21

Table 5. Notation descriptions for metrics of LCP. 50

Table 6. Notation descriptions for algorithms of LCP. 61

Table 7. Storage overhead. 69

Table 8. Timing overhead. 70

Table 9. Processor configurations. 73

Table 10.Write counts per kilo-instructions for LCP. 75

Table 11.Multi-core workloads for LCP. 75

Table 12.Multi-core workloads for DWA. 76

ix

Chapter 1

Introduction

1.1 Purpose of the thesis

The purpose of the thesis is to reduce the write counts of LLC to overcome

drawbacks of NVM. To this end, three schemes are proposed in the thesis:

write avoidance cache coherence protocol (WACC), dynamic way adjusting

scheme (DWA), and linefill-aware cache partitioning (LCP).

Non-volatile memory (NVM) has been investigated as a resource to

replace volatile memories such as SRAM or DRAM since their tendency to

waste energy has grown to a substantial portion of total energy consumption

[1, 2, 3, 4, 5, 6]. With conventional memory, static power is dissipated by

transistors even when they make no switching. On the contrary, NVM adopts

its own material as memory storage, instead of an electric charge, which

limits leakage power dissipation.

However, there are some drawbacks to be considered when employing

NVM as last level cache (LLC) directly: inefficient write operations and

limited write endurance. Changing values in NVM requires long operating

time and high level current. Thus, write operations generate long latency and

1

high dynamic energy consumption in the NVM cache system. Moreover,

an NVM cell is worn out after a limited number of writing. Therefore, the

lifetime of the NVM based cache is shorter than that of the SRAM cache

due to the write limitation.

To overcome these drawbacks, the thesis introduces a new cache co-

herence protocol to reduce the write operations of the LLC [7]. The block

data of the LLC is updated only if the cache block is written-back from a

private cache, which leads to avoiding useless write operations in the LLC.

In addition, it is found that the previous researchers have overlooked

that the capacity of NVM is also one of important factors affecting the

number of write accesses to NVM. This discovery leads to the necessity

of NVM capacity management policy such that the size of NVM is dynam-

ically adjusted according to the demand of applications. To implement the

idea, we propose a dynamic way adjusting (DWA) algorithm which dynam-

ically monitors the optimal number of NVM ways using the stack property

and disabling the unnecessary NVM ways [8].

Finally, the thesis proposes a cache partitioning scheme called linefill-

aware cache partitioning (LCP) mechanism, taking into account the NVM

linefill counts as well as the NVM write hit counts during cache partition-

ing. Most previous works have concentrated on managing write-intensive

blocks by allocation these blocks to SRAM to reduce the number of the

write operations to NVM. However, those schemes have not considered that

reducing the number of linefill operations to NVM is important to reduce the

2

total number of write operations to NVM. To overcome this weakness, an

algorithm for cache partitioning of LCP considers the NVM linefill counts.

The proposed schemes are simulated with the gem5 simulator [9] for

WACC and macsim [10] for DWA and LCP. We used the PARSEC bench-

mark suite [11] for evaluating WACC and SPEC CINT2006 and SPEC CFP2006

of the SPEC CPU2006 benchmark suite [12] for DWA and LCP. The exper-

itmental results show that WACC achieves a 13.2% reduction in the dynamic

energy consumption. For HCA schemes, the dynamic energy consumption

of DWA and LCP are reduced by 26.9% and 37.2%, respectively.

1.2 Background

According to the material used in NVM, several kinds of NVM [1, 2, 3, 4,

5, 6] have been introduced such as spin-torque transfer RAM (STT-RAM),

phase change memory (PCM), and ferroelectric RAM (FeRAM). Even though

their compositions are different, all NVM can be considered similar in terms

of cache architecture. First, they sustain their information without electric

power; this is the reason why they called non-volatile memory. Their main

advantage comes from their characteristics of extremely low leakage power

consumption. In addition, their density is much higher than that of SRAM

even that of DRAM for some kinds of NVM. Table 1 shows comparison

of parameters of SRAM and STT-RAM obtained from the modified CACTI

[13, 14] in previous work [15].

3

Table 1: Comparison of area, latency, and energy [15].

Parameters SRAM STT-RAM PCM

Cache Size 128KB 512KB 2MB

Area(mm2) 3.262 3.30 3.85

Read Latency(ns) 2.252 2.318 4.636

Write Latency(ns) 2.264 11.024 23.180

Read Energy(nJ) 0.895 0.858 1.732

Write Energy(nJ) 0.797 4.997 3.475

Static power(80 ◦C)(W) 1.131 0.016 0.031

Write Endurance 1016 4 * 1012 109

1.3 Motivation

The thesis focuses on two approaches such as cache coherence protocol and

NVM capacity management policy for hybrid cache architecture (HCA).

For cache coherence protocol, the existing studies have not concentrated

on reducing the write operations because it does not matter in the SRAM-

based LLC. Since there is no drawback of write operation compared to read

operation, the number of write access is not taken into account. However,

reducing the write operations is an important issue in NVM-based LLC.

The dynamic energy consumption largely depends on the write operations,

because the dynamic energy of write operation is greater than that of read

operation. Moreover, the lifetime is inversely proportional to the number

of write access. Therefore, a new protocol for NVM to minimize the write

operations is needed.

4

In addition, it is found that there is a relationship between the capacity

of NVM in HCA and the write counts of NVM. The analysis implies the

necessity of efficient NVM capacity management policy: the HCA dynam-

ically manages the capacity of NVM according to the demand of applica-

tions. As the first step of realizing this idea, we use the number of active

NVM ways in a set as the measure of the capacity of NVM. The capacity of

NVM is expressed by the number of currently available NVM ways and the

demand of NVM is converted to the requested number of NVM ways.

1.4 Contributions

Firstly, the thesis introduces a new cache coherence protocol for NVM to

decrease the number of write access to the LLC [7]. In our protocol, the

data array of the LLC is not updated during the linefill operation, while the

tag array is changed to maintain the inclusion property. The data array is

modified only when the cache block is written-back from the private cache.

Our protocol reduces the number of write access to the LLC; thus, the dy-

namic energy consumption is reduced and the lifetime is enhanced in our

protocol.

• We investigate the existing cache coherence protocol for NVM and

reveal the drawback of them.

• We propose a cache coherence protocol for NVM, which avoids un-

necessary write operation in the LLC based on the analysis.

5

• We present experimental results of a write avoidance coherence pro-

tocol with number of write accesses to LLC, dynamic energy con-

sumption, and lifetime.

In addition, hybrid cache architecture (HCA) has been proposed to

overcome these limitations of NVM [16, 17, 18, 19, 20]. Most previous

works have concentrated on managing write-intensive blocks by storing

these blocks to SRAM to reduce the number of the write operations to NVM.

However, we show the concept of NVM capacity management policy for re-

ducing the number of write accesses to NVM and propose a dynamic way

adjusting algorithm [8]. It dynamically resizes the number of active NVM

ways to improve the dynamic energy consumption and the lifetime. To ad-

just the number of NVM ways, the maximum stack distance is monitored

and rearranging the replaceable NVM ways is regularly performed.

• We investigate the relationship between the number of write opera-

tions and the capacity of NVM in HCA by performing both analysis

based on the devised analytical model and experiments.

• We find out that decreasing the number of active NVM ways can be

beneficial to reduce the number of write accesses to NVM ways, only

if it does not increase the miss rate significantly.

• We propose a dynamic way adjusting algorithm (DWA) to find the

optimal number of NVM ways and dynamically adjust active NVM

ways without physical change of the cache.

6

• We conduct a simulation to evaluate the effectiveness of the proposed

policy in terms of the reduction in the write counts of NVM, the decre-

ment of the dynamic energy consumption, the lifetime extension, and

the variation of the miss rate.

While previous studies focus on reducing NVM write counts due to

the write-intensive blocks, they have not considered the NVM write oper-

ation is also occurred by linefill operation to NVM. Reducing the NVM

write counts due to linefill operations are also very important for minimiz-

ing overall NVM write counts in chip-multiprocessor (CMP) environments.

The thesis proposes a cache partitioning scheme called a linefill-aware cache

partitioning (LCP) mechanism, taking into account the NVM linefill counts

as well as the NVM write hit counts during cache partitioning.

• We propose a linefill-aware cache partitioning scheme (LCP) for HCA,

which takes into account the reduction in the number of linefill oper-

ations to NVM to minimize the NVM write counts.

• We devise new metrics for LCP: write counts change (∆W) and NVM

write counts change (∆NV MW), which are based on the miss counts

change (∆M).

• We propose an algorithm to make partitions by predicting metrics ac-

cording to the change of the number of allocated ways for each core.

7

Table 2: Summary of proposed schemes.

Scheme Aim Description

Write avoidance
cache coherence
protocol (WACC)

Reduction in the number
of write access to LLC

The data array is modi-
fied only when the cache
block is written-back
from the private cache.

Dynamic way adjust-
ing algorithm (DWA)

Reduction in the number
of write access to NVM

The number of active
NVM ways is dynami-
cally resized.

Linefill-aware cache
partitioning (LCP)

Reduction in the number
of write access to NVM
and increase in the hit
rate of LLC

The NVM linefill counts
is taken into account as
well as the NVM write
hit counts during cache
partitioning.

• We present experimental results of LCP with the prediction accuracy,

number of write accesses to NVM, miss rates, performance for mul-

ticore workloads, and dynamic energy consumption.

The schemes in the thesis are summarized in Table 2.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides related

work about NVM. In Chapter 3, a new cache coherence protocol for NVM

called a write avoidance cache coherence protocol is proposed. Chapter 4

describes NVM capacity management policy for HCA. The conclusion is

given in Chapter 5.

8

Chapter 2

Related work

2.1 Hybrid cache architecture

Researchers have merged two types of memory into a single cache sys-

tem, which is called HCA, to reduce the number of write access to NVM

to alleviate the shortcomings of it especially related to a write operation

[16, 17, 18, 19, 21]. As described in above section, the shortcomings of

NVM come from write operation of NVM. In other terms, the number of

write access to NVM is the most important factor for both the dynamic

energy consumption and the lifetime. Since the write energy consumption

of NVM is much larger than read energy of NVM or dynamic energy of

SRAM, the write energy consumption of NVM is dominant for the total dy-

namic energy consumption. Furthermore, the lifetime is proportional to the

number of write access to NVM cells. Therefore, reducing the number of

write access to NVM is one of the most important methods to mitigate the

drawbacks of NVM. For this reason, a small number of SRAM ways are

used to accommodate heavily written blocks in the hybrid cache system as

depicted in Figure 1.

9

Data ArrayTag Array

 S ways N ways S ways N ways

T ways T ways

SRAM way NVM way

Figure 1: Basic structure of hybrid cache architecture (HCA).

First, swapping or migration schemes between SRAM and NVM in a

hybrid cache system were proposed. Wi et al. introduced the region based

cache architecture in [16]. They divided a single level of cache into two re-

gions: read region which consists of STT-RAM and write region which con-

sists of SRAM. If a block is predicted as write-intensive, the block is placed

or swapped to the write region. Besides the schemes, merging set schemes

were proposed [17] and [18]. The authors noticed that non-uniformity of

write operations among sets. While some sets are frequently utilized, other

sets receive relatively small requests. Therefore, write-intensive blocks in

the highly utilized sets are forwarded to the idle sets. In addition, a predic-

tor was equipped to find the correlation between write intensive blocks and

addresses of trigger instructions [19]. In summary, existing policies focused

on placing write-intensive blocks into the SRAM.

10

2.1.1 Write intensity prediction studies

Almost all papers on HCA have focused on devising methods to identify

write-intensive blocks and place them to SRAM ways. Wi et al. suggested

the region based cache architecture in [16]. They separated a single level of

cache into two regions: read and write regions. The read region is prepared

for non-write-intensive blocks composed of NVM, while the write region is

composed of SRAM for write-intensive blocks. When a block is considered

as write-intensive, the block is migrated or placed to the write region. On top

of these schemes, combining set schemes were proposed [17, 22, 23]. This

insight came from the fact that the write operations among sets are not uni-

formly distributed. While some sets receive relatively small write requests,

other sets are highly utilized. To take advantage of these characteristics,

some blocks in the frequently utilized sets are moved to the other sets. To

elaborate the prediction algorithm, Quan et al. introduced a prediction table

[18] containing the history of the write requests of the LLC. Another pre-

diction table is proposed to store the value of combining addresses of the

blocks and program counter of instructions [19]. What distinguishes these

works from our scheme is that they have not focused on the CMP environ-

ment.

2.1.2 Static approaches

Various methods utilizing the compiler have been proposed. Chen et al. [24]

proposed a scheme in which the compiler provides hints to find the write-

11

intensive block and the hardware is modified to correct the hints. Software

dispatch was presented to detect write reuse patterns in [25]. In addition, the

migration-intensive blocks are loaded into the SRAM region with the com-

piler assistance in [26] to mitigate the burden of migration blocks. Moreover,

a loop retiming framework was proposed for loops with intensive data array

operations to relieve the migration overhead [27]. Another study improves

the read performance and energy efficiency guided by the analysis of read

bottlenecks [28]. They focused on the recompilation or profiling schemes,

while our proposed mechanism modifies the hardware structure and logics.

2.1.3 Hybrid cache architecture for main memory

As the write endurance problem has become important for the main mem-

ory, which is based on NVM, many methods have been proposed to prolong

its lifetime. They have employed DRAM as a cache for NVM. Qureshi et

al. firstly suggested the concept of a small DRAM cache to overcome the

latency gap between DRAM and PCM [29]. The mechanism exploits both

the short latency of DRAM and the large capacity of PCM by preventing un-

necessary access to PCM. They also have shown advanced approaches such

as write cancellation and write pausing policies [30] to mitigate the long

read access time due to the long write latency. Meanwhile, a scheme pro-

posed in Meza et al. [31] stores the metadata for the last accessed rows into

a small buffer to manage the difficulty of fine-granularity DRAM caches. It

is found that row buffer misses generate long latencies, and a policy is de-

vised to exploit this observation [32]. They predict the data incurring a row

12

buffer miss and store it into a DRAM buffer by investigating the row buffer

miss counts in PCM. Writeback-aware partitioning offers a new perspective

on cache partitioning, taking into account the writeback information [33]. It

is innovative in regard to reducing the amount of write access to the PCM

main memory by managing the cache partition.

Another approach for the hybrid cache architecture is based on OS

support. For PDRAM [34], the researchers introduced a hybrid solution re-

lated to software as well as hardware to extend the lifetime of the PCM

pages. They modified the OS-level page manager and added a small device

to contain the number of write requests for PCM at a page level granularity.

Ferreira et al. [35] also inserted a DRAM buffer to decrease the number of

read and write requests to PCM via page partitioning. Zhang and Li [36] im-

proved the write endurance and reduced write latency of PCM by exploiting

the workload characteristics as an aspect of an OS level paging. New page

migration schemes were proposed to track read-bound access NVM pages

[37].

All schemes described above are based on the physical features of

DRAM or characteristics of OS, thus they are inadequate applied to the

SRAM and NVM based LLC, which is the target of the thesis.

13

2.2 Cache partitioning schemes

To improve the cache efficiency, several methods using stack property have

been proposed. The number of cache hit counts of LRU position is mon-

itored to calculate the cache utility of each application or core. Based on

the information, the cache is partitioned to minimize the number of total

cache misses. Suh et al. [38] dynamically partitioned the LLC and assigned

the guided number of cache ways to each application. Even though it suc-

cessfully raised the cache utility, there was a problem in that the utility in-

formation of an application was affected by other applications. To avoid

this drawback, Qureshi and Patt [39] introduced a separate utility monitor,

which counts the number of hits without interference by other applications.

An adaptive placement policy [40] was proposed to load a new block into

the local or remote cache for enhancing the efficiency of cache based on

stack distance profiling. In addition, compliers used the information to pre-

dict the memory behavior of the application [41]. For a real-time system,

Liu and Zhang [42] suggested the compilation technique, which improves

the worst case data cache performance using the stack distance approach.

Most papers on cache partitioning assumed that the LLC consists of SRAM

only, hence they do not consider the NVM write counts in their schemes.

14

Chapter 3

Write avoidance cache coherence
protocol

3.1 Limitation of existing cache coherence pro-
tocol

We review the legacy cache coherence protocols to get a new insight to re-

duce the write operations. There are useless write operations in the existing

protocol. Generally, memory systems of CMPs are composed of a shared

LLC and several private caches which are dedicated to cores [43]. In addi-

tion, the cache block is divided into two arrays: tag array and data array. Tag

array stores tag bits and cache coherence state, while data array stores block

data. When a linefill operation occurs, the requested block data is written

to the data array, and the tag bits and cache coherence state are updated to

the tag array. Then, the cache block is forwarded and linefilled to the private

cache. When a core tries to modify the cache block in the private cache,

an invalidation signal is sent to the shared LLC and other private caches to

maintain the cache coherence. Thus, the previous write access to the LLC

during the linefill operation is considered as the useless write operation, if

the cache block in the LLC has been never used until it is invalidated.

15

Figure 2 illustrates an example of write inefficiency in widely used

cache coherence protocols such as MESI or MOESI [44]. In the example, we

assume that a core reads and writes a block data of the PC (Private Cache)

1. Table 3 lists the cache states in the figure and their descriptions. When the

core tries to read the block data, since the PC1 has no valid block data, the

cache controller sends the request for the block data to the LLC.

However, the LLC also has no valid copy; thus, the request is sent to

the external sources such as the main memory or other chipsets. When the

block data “ABCD” is arrived at the LLC, it is written into the LLC and the

state of the LLC is changed to S state, which means the cache block is valid

and other private caches may have the same cache block. Then, the block

data “ABCD” is forwarded to the PC1.

When the block data is received in the PC1, it is written into the PC1

and the state of the PC1 is changed to E state. After the linefill operation is

completed, if the core tries to modify the block data “ABCD” to “EFEF”,

an invalidation request is sent to the LLC to maintain cache coherence. The

purpose of the invalidation request is indicating that the block data of the

PC1 is modified and the cache block in the LLC should be invalidated. If

the block data “ABCD” in the LLC has not been used until it is invalidated,

writing the block data “ABCD” to the LLC during the linefill operation was

a useless write operation.

16

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request

to external sources

* Event :
- Data “ABCD” arrived

* Action :
1) Linefill “ABCD” to LLC
2) Change states(I->S) in LLC
3) Send data “ABCD” to PC1
4) Linefill data “ABCD” to PC1
5) Change states(I->E) in PC1

* Event :
- PC1 Write

* Action :
1) Write data “EFEF” to PC1
2) Change states(E->M) in PC1
3) Send Invalidation Request

to LLC
4) Change states(S->P) in LLC

To
Main Memory or
Other Chipsets

Data Request

Miss
Tag State Data

000 I XXXX

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Miss
Tag State Data

000 I XXXX

Shared LLC

Data Request

From
Main Memory or
Other Chipsets

Linefill
Tag State Data

000 I->E
XXXX ->

ABCD

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Linefill
Tag State Data

000 I->S
XXXX ->

ABCD

Shared LLC

Data “ABCD”

Invalidation
Request

Write
Tag State Data

000 E->M
ABCD ->

EFEF

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Change
States

Tag State Data

000 S->P ABCD

Shared LLC

Stale
Data

Figure 2: Conventional cache coherence protocol.

17

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request

to external sources

* Event :
- Data “ABCD” arrived

* Action :
1) Change states(I->P) in LLC
 without Data Write

2) Send “ABCD” to PC1
3) Linefill “ABCD” to PC1
4) Change states(I->E) in PC1

* Event :
- PC1 Write

* Action :
1) Write data “EFEF” to PC1
2) Change states(E->M) in PC1

To
Main Memory or
Other Chipsets

Data Request

Miss
Tag State Data

000 I XXXX

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Miss
Tag State Data

000 I XXXX

Shared LLC

Data Request

From
Main Memory or
Other Chipsets

Linefill
Tag State Data

000 I->E
XXXX ->

ABCD

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Change
States

Tag State Data

000 I->P XXXX

Shared LLC

Data “ABCD”

Write
Tag State Data

000 E->M
ABCD ->

EFEF

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

No
action

Tag State Data

000 P XXXX

Shared LLC

No Invalidation
Request

No Data Write

X
X

Figure 3: Write avoidance cache coherence protocol (WACC).

18

Table 3: States and descriptions for write avoidance cache coherence proto-
col (WACC).

State Description

I(nvalid) The cache block is invalid

S(hared) The cache block has valid block data and other private caches
may have valid copy.

E(xclusive) The cache block has valid block data with exclusive permission
and other caches have no valid copy.

M(odified) The cache block has valid and modified block data. Other caches
have no valid copy. This state appears in the private cache only.

P(rivate cache) The cache block in the LLC has no valid block data, but more
than one of the private caches has valid block data. This state
appears in the LLC only.

* P state is introduced due to keeping the inclusion property. Modern multiproces-
sors have employed the inclusive LLC to filter the cache coherence traffic from other
chipset or the main memory. Thus, it is needed that a state represents one of the private
caches has valid data even the LLC has no valid data.

3.2 Write avoidance cache coherence protocol

To deal with this problem, we suggest a new cache coherence protocol which

is called Write avoidance cache coherence (WACC) protocol. In our proto-

col, the block data of the cache block is not written into the LLC during

the linefill operation, while the tag bits and the cache coherence state are

updated. Since the block data is not placed in the LLC, one of the private

caches has responsibility to provide the valid block data. The block data

in the LLC is only updated when it is written-back from the private cache.

The writeback is initiated only when no other private cache has the block

data in WACC protocol. Therefore, we avoid useless write operation due to

modifications of the block data in the private cache.

19

I P

S

Inv_PC/-

WB_PC/Wr

Recv_Ext/Wr

Inv_Ext/-

Inv_Ext/-

Req_PC/Rd

Transition Signal / Action
Signal comes from Private Cache

Signal comes from External Devices

Inv_Ext/- Inv_PC/-

I P

S

Inv_PC/-

WB_PC/Wr

Recv_Ext/-

Inv_Ext/-

Inv_Ext/-

Req_PC/Rd

Inv_Ext/- Inv_PC/-

(a) Exisiting Procotol (b) WACC Procotol

Figure 4: State transition diagrams for WACC.

Figure 3 shows an example of WACC protocol. Unlike the conventional

protocols, when the block data ABCD is arrived at the LLC, it is not written

to the LLC. Instead, the state is changed to P state and the block data is for-

warded to the PC1. When the PC1 is modified to EFEF, there is no need to

send an invalidation request to the LLC for the block data ABCD is not writ-

ten to the LLC. Therefore, one write operation of the LLC and one request

for cache coherence is decreased compared to the baseline protocols.

We compare a simple version of the existing MOESI protocol with its

modified protocol in Figure 4. Table 4 shows the coherence signals and ac-

tions. The transition signal is divided into two parts: {signal} {source} and

the action indicates the operation of the data array. For example, WB PC/Wr

means that if the block is P state and receives the WB signal from a private

cache, the block data is written to the data array.

20

Table 4: Signals/actions and descriptions.

Signal Description

Inv Invalidate the cache block if it is valid. This signal is generated
when another device tries to modify the block data.

Recv Provide the block data in the cache block. This signal is gener-
ated when a cache hit occurs.

Req Request the block data for read operation. This signal is gener-
ated when a cache miss occurs.

WB Writeback the block data to the LLC. This signal is generated
when a private cache evicts the cache block.

Action Description

Wr Write the block data of the received cache block into the data
array.

Rd Read the block data and provide it with the requestor.

As shown in Figure 4(a), when a new cache block is received in the

LLC, the state of the cache is transition to S state and the block data is writ-

ten to the data array in the existing protocol. On the contrary, the state is

transition to P state instead of S state in our protocol under the same con-

dition. Furthermore, the write operation is omitted as shown in Figure 4(b).

This is because the block data is forwarded without write access to the data

array in WACC protocol.

Another point to be considered is that the protocol of the private cache

should be changed. The writeback operation is initiated if the cache block in

the private cache is modified and evicted in the existing protocols. However,

the cache block should be written-back to the LLC in WACC protocol when

it is evicted in the private cache regardless of whether the cache block is

dirty or not.

21

Chapter 4

NVM capacity management policy for
hybrid cache architecture

4.1 NVM capacity management policy

In this section, we propose two schemes for NVM capacity management

policy. First, we introduce a dynamic way adjusting algorithm (DWA) that

monitors the optimal number of NVM ways and dynamically adjust the

number of active NVM ways [8]. In addition, we also propose a linefill-

aware cache partitioning scheme (LCP) to save the dynamic energy con-

sumption by efficiently allocating SRAM ways and NVM ways to cores.

The DWA keeps track of maximum stack distance (MSD), which means

the minimum number of ways to maintain the miss rate. If the number of the

current active NVM ways is not the optimal value, it is adjusted according to

the MSD. In addition, an efficient method to disable NVM ways is required

because it is impossible that NVM ways are physically added or removed

during execution. Thus, the DWA prevents deactivated NVM ways from

victim selection. A newly fetched block is prohibited to be loaded into the

disabled NVM ways, which has the effect of virtually deactivating them.

22

The basic idea of LCP comes from cache partitioning [38, 39, 40],

which has been a well-known scheme to improve the performance in CMP

systems. The key idea of the cache partitioning is that all cache ways should

be efficiently allocated for each application to maximize the hit rate of the

LLC. They have contributed the studies of the LLC. However, it is ineffi-

cient to apply them directly into HCA because their models assume that all

cache ways consist of the same memory type. Even though the cache misses

are minimized by the previous cache partitioning schemes, if the linefill op-

erations heavily occur in NVM ways, it fails to reduce the linefill counts of

NVM. Therefore, LCP assigns the SRAM ways and the NVM ways to each

core based on the change of the NVM linefill counts as well as the NVM

write hit counts according to partitioning.

4.1.1 Concept of NVM capacity management policy

This section presents an NVM capacity management policy that resizes the

number of NVM ways to fit the demand of applications. This policy comes

from the observation that reducing the size of NVM usually decreases the

write counts of NVM if the miss rate does not grow. The thesis will propose

an analytical model and perform a simulation to verify this observation.

Cache researchers have been investigating the relationship between the

size of cache and the miss rate [39]. For many programs, as the cache size

grows, the miss rate becomes small. On the contrary, the miss rates of some

programs are saturated or remain despite incremental growth of the cache

23

size. In addition, even the same program always does not require the fixed

size of cache. Therefore, the number of requested ways of the cache varies

during execution, and the unnecessary ways are disabled without perfor-

mance degradation.

The number of write accesses to the cache is strongly coupled with the

miss rate. Generally, the cache operations are divided into three categories:

read hit, write hit, and linefill. Among these operations, write hits and linefill

operations compose the write requests. If some read hits are changed to

cache misses due to the increasing miss rate, new linefill operations occur

as much as the removed read hits. This implies that the total number of write

operations are increased. Alternately, if the number of cache misses is not

increased, the number of write accesses to the cache remains because the hit

counts and miss counts is not changed.

Assume that we minimize the number of NVM ways without generat-

ing significant extra cache misses. In that case, the write operations which

originally occurred in the deactivated NVM ways are forwarded to SRAM

ways or other NVM ways. If a part of write accesses is sent to SRAM ways,

the number of write accesses to NVM ways is reduced. Therefore, partial

deactivating NVM ways with the stable miss rate highly tends to decrease

the write counts of NVM ways.

An illustration is provided in Figure 5 to aid in the understanding of this

concept. There are two caches in the example. One of the caches consists

of one SRAM and three NVM ways, and another cache is composed of one

24

SRAM and two NVM ways. The program in our example needs only three

ways. For the sake of convenience, suppose that all memory references are

write requests.

When the program starts, cache accesses are performed according to

the sequence in Figure 5. There is no difference between the two caches in

the first three accesses. However, when ”d” miss is encountered, two caches

behave differently. While ”d” is placed in the fourth way in cache A, ”a” is

replaced with ”d” in cache B. Writing ”d” in the second iteration, SRAM

access is made instead of NVM access in cache B. As a result, the number

of write to NVM ways is reduced in cache B. The linefill operation of ”d” is

forwarded to a SRAM way, and thus one linefill operation and one write hit

of NVM ways is reduced.

25

Linefill_S (a)a

Cache A

a

Memory Reference Sequence: a, b, c, d, b, c, d

Linefill_S (a)a

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 1

: 0

: 3

: 3

· SRAM Total Write

· NVM Total Write
: 1

: 6

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 2

: 1

: 2

: 2

· SRAM Total Write

· NVM Total Write
: 3

: 4

Linefill_S Linefill data into SRAM way

Linefill_N Linefill data into NVM way

Write_Hit_S Write data into SRAM way

Write_Hit_N Write data into NVM way

SRAM way NVM way

Linefill_N (b)a bb Linefill_N (b)a b

Linefill_N (c)a b cc Linefill_N (c)a b c

Linefill_N (d)a b c dd Linefill_S (d)d b c

Write_Hit_N (b)a b c db Write_Hit_N (b)d b c

Write_Hit_N (c)a b c dc Write_Hit_N (c)a b c

Write_Hit_N (d)a b c dd Write_Hit_S (d)d b c

Cache B

Figure 5: Example for NVM capacity management policy.

26

4.1.2 Feasibility of NVM capacity management policy

A metric, write intensity of a way (WI), is defined as the portion of write

accesses to the way over the write accesses to all ways. It is given by

WIi =
Wi

Wtotal
(1≤ i≤ T) (4.1)

where Wi is the number of write accesses to ith way and Wtotal means the

number of total write accesses to the cache, while T is the number of all

cache ways. This metric indicates the distribution of write requests among

the ways. If all ways have the same write intensity, the write requests are

evenly distributed. Unless, write operations occur more frequently in some

ways which have higher value than other ways.

Since the total number of write counts is calculated by summation of

write counts of each way, it is expressed as

Wtotal =

T∑
i=1

Wi (4.2)

The above equation is expressed as form of WI as follows

Wtotal =
T∑

i=1

(WIi ∗Wtotal)

=Wtotal ∗
T∑

i=1

WIi (4.3)

27

We rewrite the above equation as form of SRAM ways and NVM ways, and

it is given by

Wtotal =Wsram +Wnvm

=Wtotal ∗
S∑

i=1

WIi +Wtotal ∗
T∑

i=S+1

WIi (4.4)

Wsram =Wtotal ∗
S∑

i=1

WIi (4.5)

Wnvm =Wtotal ∗
S+N∑

i=S+1

WIi =Wtotal ∗
T∑

i=S+1

WIi (4.6)

where S is the number of SRAM ways and N is the number of NVM ways,

while Wsram means the number of write accesses to SRAM ways and Wnvm

is the number of write accesses to NVM ways. We found that there are three

factors that influence the write counts of NVM ways: the number of total

counts (Wtotal), the write intensity per way (WI), and the number of NVM

ways (N = T −S).

So far, the main strategy for reducing the number of write counts of

NVM ways has been keeping average WI of NVM ways lower than that of

SRAM ways. Throughout previous HCA research, WI is thought as the only

important factor among the three factors. It is assumed that N is fixed and

Wtotal is not significantly changed. Therefore, they have focused on mini-

mizing WI of NVM ways by detecting write intensive blocks and placing

them into SRAM ways. These approaches are successful to reduce write

accesses to NVM.

28

Different from previous approach, we consider N as a variable instead

of a constant value. When the number of NVM ways is reduced to N’ (N′ <

N), W ′total , W ′sram, and W ′nvm are defined as the number of write accesses to

the cache, SRAM ways, and NVM ways:

W ′total =W ′sram +W ′nvm (4.7)

In addition, we define the altered number of all ways as T’ (T ′ = S+

N′ < T), and Eq. 4.6 is transformed below:

Wnvm =Wtotal ∗ (
T ′∑

i=S+1

WIi +
T∑

i=T ′+1

WIi)

=
T ′∑

i=S+1

WIi ∗Wtotal +
T∑

i=T ′+1

WIi ∗Wtotal (4.8)

The second term indicates the number of write accesses to the NVM ways

that will be removed. If we adjust the number of NVM ways to N’, the

remaining ways should absorb the write requests of the amount of second

term. For simplicity, this term substitute for X and Eq. 4.6 is expressed as

follows:

X =

T∑
i=T ′+1

WIi ∗Wtotal (4.9)

Wtotal =Wsram +(Wnvm−X)+X (4.10)

29

Hereby, we introduce a condition that the total write counts are not changed

(W ′total =Wtotal). Under the condition, W ′total is given by

W ′total =Wsram +(Wnvm−X)+X (4.11)

If we divide X into Xsram and Xnvm that are the write requests of the amount

of forwarded to SRAM ways and NVM ways, we obtain

W ′total =Wsram +(Wnvm−X)+Xsram +Xnvm

= (Wsram +Xsram)+((Wnvm−X)+Xnvm) (4.12)

Because W ′sram and W ′nvm are defined as the number of write accesses to

SRAM and NVM in the resized cache, they can be expressed by as fol-

lowing equation:

W ′sram =Wsram +Xsram (4.13)

W ′nvm =Wnvm−X +Xnvm (4.14)

Before advancing the discussion, we state that it is assumed that Xsram

is greater than zero for the simplicity of the model. When the number of

ways is changed, the blocks are placed differently than they were. There is

a possibility that some write intensive blocks that were originally located in

SRAM ways are inserted into NVM ways. In that case, Xsram could be zero

or minus value. To avoid this problem, we adopt a policy for placing write

intensive blocks into SRAM ways as presented [16] to our scheme.

30

Since X is summation of Xsram and Xnvm, if Xsram is greater than zero,

Xnvm is given by

Xnvm < X (4.15)

By transforming Eq. 4.14 and substitution Wnvm into Eq. 4.15, we ob-

tain

W ′nvm−Wnvm +X < X (4.16)

W ′nvm <Wnvm (4.17)

Thus, we conclude that fewer NVM ways causes lower write requests to

NVM if the miss rate does not grow.

We examined the impact of NVM capacity management on the miss

rate, the total write counts, and the write accesses to NVM ways. We as-

sume that the hybrid cache has 4 SRAM ways and 12 NVM ways and that

the number of NVM ways varies from 12 to 0. The results are sorted in

decreasing order by the number of NVM ways among each application. To

improve the readability, we abbreviate SRAM ways to ”S” and NVM ways

to ”N”. For example, 4S 2N in the figure means that 4 SRAM ways and 2

NVM ways are used during the simulation.

31

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

4S
_1

2N
4S

_1
0N

4S
_8

N
4S

_6
N

4S
_4

N
4S

_2
N

4S

Le
ft

sid
e (

Lo
we

r S
en

sit
ivi

ty)
Rig

ht
 si

de
 (H

igh
er

 Se
ns

iti
vit

y)

Fi
gu

re
6:

M
is

s
ra

te
s

w
ith

va
ri

ou
s

nu
m

be
ro

fN
V

M
w

ay
s.

32

Figure 6 represents the miss rates with various number of NVM ways to

show sensitivity of the miss rate to the size of NVM. We sort all applications

by geometric standard deviation (GSD), which represents the amount of

dispersion from the geometric mean. In Figure 6, the miss rates of the left

applications are not less influenced by the number of NVM ways, while

the right side applications are more sensitive to the number of NVM ways.

The miss rates of two left most applications such as namd and lbm remain

even when all NVM ways are removed. Part of NVM ways are unnecessary

for some left side applications: milc, bwaves, sjeng, GemsFDTD, dealII,

and zeusmp. On the contrary, the growth of the miss rates of the higher

sensitive applications is large. Especially, the miss rates of bzip2 and h264ref

is multiplied about three times and the miss rate of hmmer soars to 12.8

times.

Figure 7 shows normalized write accesses to the HCA with various

sizes of NVM. We find that the total write counts of the lower sensitive

applications are not greatly increased, while many higher sensitive applica-

tions show rapid growth. For the left side applications, only 2.8% of average

extra write operations occur. Especially, no change is detected through all

sizes of NVM in namd,lbm, and milc. The number of NVM ways can be

decreased to 2 without increasing write counts in bwaves and GemsFDTD.

Other benchmarks such as sjeng and zeusmp have the same values when

NVM ways varies from 12 to 8. On the other hand, the total write counts of

the right side applications increase by 29.4% on average.

33

0.811.21.41.61.8

4S
_1
2N

4S
_1
0N

4S
_8
N

4S
_6
N

4S
_4
N

4S
_2
N

4S

Fi
gu

re
7:

N
or

m
al

iz
ed

to
ta

lw
ri

te
co

un
ts

of
H

C
A

va
ri

ou
s

nu
m

be
ro

fN
V

M
w

ay
s.

4S
12

N
is

th
e

st
an

da
rd

of
no

rm
al

iz
at

io
n.

34

The normalized write accesses to NVM ways with various number of

NVM ways is depicted in Figure 8. As we expected, reducing the number

of NVM ways decreases the write accesses to NVM ways in lower sensi-

tive applications. On the other hand, the reduction in the write counts of

NVM ways is not guaranteed by resizing the number of active NVM ways

in higher sensitive applications. Adjusting NVM ways even results in in-

creasing the write operations of NVM ways in gobmk, gcc, and h264ref.

Some applications such as gromacs, tonto, bzip2, and hmmer show the sim-

ilar pattern of the left applications, but their reduction ratios are small.

In summary, we find out that the number of write accesses to NVM

ways is usually reduced if resizing the number of active NVM ways does

not significantly increase the miss rate by adopting efficient NVM capacity

management policy.

35

00.20.40.60.811.2

4S
_1
2N

4S
_1
0N

4S
_8
N

4S
_6
N

4S
_4
N

4S
_2
N

Fi
gu

re
8:

N
or

m
al

iz
ed

w
ri

te
co

un
ts

of
N

V
M

w
ith

va
ri

ou
s

nu
m

be
ro

fN
V

M
w

ay
s.

4S
12

N
is

th
e

st
an

da
rd

of
no

rm
al

iz
at

io
n.

36

4.2 Dynamic way adjusting

We propose a dynamic way adjusting algorithm (DWA) to implement NVM

capacity management policy. To discover the optimal size of NVM, the max-

imum stack distance (MSD) is dynamically monitored. Using the MSD, the

DWA marks all NVM ways either as ”replaceable way” or ”non-replaceable

way” to realize adjusting the number of NVM ways. Replaceable ways are

regularly changed to prevent write requests from concentrating on a few

NVM ways. This section explains these key ideas and the operations of the

DWA.

4.2.1 Maximum stack distance

In order to find the minimum number of ways which sustain the miss rate,

we introduce the MSD based on the stack property [39]. It is well known that

the LRU replacement policy follows the stack property [45], which means

that a cache of a size C always contains all blocks of the cache of size less

than C. Assume that the number of sets is a constant value. If a cache block

is in an N way cache, it is guaranteed that the block is in the cache, which has

more than N ways. A metric related to stack property is the ”stack distance”.

When a cache hit regardless of a read hit or a write hit, the stack distance is

defined as the LRU order of the hit block. For example, the stack distance of

the block at MRU position is one, and that of the LRU position is N in the N

way cache. Figure 9 presents the stack distance histogram of a hypothetical

application. If the number of the ways is reduced to 3 from 8, the number of

37

20%

40%

50%

80%

90%

100% 100% 100%

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8

Stack Distance

The Ratio of Hits The Ratio of Cumulative Hits

Figure 9: Stack distance histogram.

hits will be halved because the cumulative hits for stack distance 3 is 50%.

This means that the miss rate of three-way cache will be increased to 50% in

this case. However, if we use 6 ways instead of 8 ways, no additional cache

miss occurs. Therefore, the maximum value of the stack distance indicates

the minimum number of ways to maintain the hit rate.

We employ an auxiliary tag directory (ATD), a maximum stack dis-

tance register (MSDR), and a replaceable way size register (RWSR) to mon-

itor the MSD as shown in Figure 10. The ATD is a separate storage con-

structed with the same associativity as the main tag array of the cache. It

keeps track of the LRU order information and tag bits. When an ATD hit

occurs, the MSDR is updated if LRU of the hit block is larger than the

current value of the MSDR. The RWSR is updated in two cases. First, if

38

the MSDR exceeds the RWSR, the RWSR is increased to the MSDR. The

condition that the RWSR is smaller than the MSDR means that the current

working set needs more cache capacity. Thus additional NVM ways should

be replaceable ways by increasing the RWSR. Second, when the value of the

RWSR has been larger than that of the MSDR for a while, it is decreased to

the value of the MSDR. Keeping the situation in which the RWSR is larger

than the MSDR means that unnecessary NVM ways have been used. There-

fore, some NVM ways should be deactivated by decreasing the RWSR. To

detect this situation and initiate resizing the number of NVM ways, a resiz-

ing counter register (RCR) is added. The RCR is increased by 1 when the

RWSR is larger than RWSR during the ATD hit operation. Whenever the

RWSR is updated to the MSDR, the RCR is reset to 0.

Another consideration in adopting the ATD is the storage overhead. If

the ATD has tag information of all sets, the size of the tag array will be

doubled. Therefore, to reduce the storage overhead, we use a set sampling

policy [46]. The ATD is designed to have only a part of sets which is sam-

pled every 32nd in the proposed algorithm. It is verified that the sampled

sets are enough to correctly capture the stack distance value in [46] instead

of using all sets.

39

S
w

ay
s

N
 w

ay
s

DW
A

O
rg

an
iz

at
io

n

Au
xi

lia
ry

 T
ag

Di

re
ct

or
y(

AT
D)

M
ax

im
um

 S
ta

ck
 D

ist
an

ce

Re
gi

st
er

 (M
SD

R)

Re
pl

ac
ea

bl
e

W
ay

 S
iz

e
Re

gi
st

er
 (R

W
SR

)

La
st

 L
ev

el
 C

ac
he

La
st

 P
os

iti
on

 R
eg

ist
er

(L
PR

)

R
R

N
 w

ay
s

Re
pl

ac
ea

bl
e

Bi
t V

ec
to

r
(R

BV
)

SR
AM

 w
ay

N
VM

 w
ay

Sa
m

pl
e

se
t

Ev
en

t
Ac

tio
n

AT
D

M
iss

-
Re

pl
ac

e
ol

de
st

 b
lo

ck
 w

ith
 n

ew

bl
oc

k

RC
R

is
sa

tu
ra

te
d

-
Up

da
te

 R
W

SR
 to

 M
SD

R
-

Re
se

t M
SD

R
an

d
RC

R
to

 0
-

Re
se

t a
ll

R
bi

ts
 to

 0
-

Se
t t

he
 a

m
ou

nt
 o

f R
W

SR
 R

 b
its

to

 1
 u

sin
g

LP
R

AT
D

H
it

If
(L

RU
 >

 M
SD

R)

-
Up

da
te

 M
SD

R
to

 L
RU

If

(M
SD

R
>

RW
SR

)

-
Se

t t
he

 a
m

ou
nt

 o
f (

M
SD

R
–

RW
SR

)
R

bi
ts

 to
 1

 u
sin

g
LP

R
 -

 R
es

et
 R

CR
 to

 0

-

Up
da

te
 R

W
SR

 to
 M

SD
R

El
se -
 In

cr
ea

se
 R

CR

DW
A

O
pe

ra
tio

n

R
Re

pl
ac

ea
bl

e
bi

t

S
w

ay
s

N
 w

ay
s

Re
siz

in
g

Co
un

te
r R

eg
ist

er

(R
CR

)

Fi
gu

re
10

:O
ve

ra
ll

st
ru

ct
ur

e
of

dy
na

m
ic

w
ay

ad
ju

st
in

g
(D

W
A

).

40

4.2.2 Adjusting the number of NVM ways

Since physical NVM cells are not inserted or deleted according to the change

of the MSD, we devise a method to dynamically activate or deactivate NVM

ways. To disable unnecessary NVM ways, we introduce the concept of ”re-

placeable way” and ”non-replaceable way” The replaceable way implies the

normal way that participates in all kinds of cache operations, such as read

access, write access, and replacement. The non-replaceable way means that

it is excluded from block replacement; thus, a new block is not placed into

the way. However, when a cache hit occurs, read access and write access are

performed, same as the replaceable way. All NVM ways in the DWA are

divided into replaceable ways and non-replaceable ways.

The role of the replaceable bit vector (RBV) in Figure 10 is indicating

that each way is non-replaceable or not by controlling replaceable (R) bits.

Since each R bit is corresponded to each NVM way, the size of R bits is

identical to the number of NVM ways. The RBV is altered when the RWSR

is changed. If the RWSR is increased, additional R bits are set to 1. Unless,

all R bits are updated to rearrange non-replaceable ways.

The cache operation for non-replaceable ways should be different from

that for replaceable ways. When a cache hit is occurred to a non-replaceable

way, the LRU information is not updated. In the case of a cache miss, the

non-replaceable ways are not involved in the victim selection. A detailed

description of the management policy is as follows:

41

1. Cache hit in the replaceable way: If a requested block is in the re-

placeable ways, the cache operations do not differ from the conven-

tional cache. When a read hit occurs in the replaceable ways, the data

is sent to the requestor. In case of a write hit, the data is modified.

LRU information is updated in both cases.

2. Cache hit in the non-replaceable way: When the block is in the non-

replaceable way, the data is sent to the requestor or the data is written

the same as the replaceable way. However, no operation for updating

LRU bits occurs because the LRU information of the non-replaceable

way is useless in the DWA.

3. Cache Miss: A new block is only placed into the replaceable way.

When a cache miss occurs and a requested block arrives, the LRU

block in the replaceable ways is selected to load the requested block.

4.2.3 Algorithm of dynamic way adjusting

We rearrange the replaceable ways to avoid lifetime shortening when the

replaceable NVM ways are reduced. If some NVM ways are frequently se-

lected as replaceable way during execution, these ways will be worn out

earlier than other NVM ways. Thus, we shift the start point of replaceable

ways to allow write operations be performed as evenly as possible through

the ways. The basic concept is similar to the round robin policy. At the time

of selecting the replaceable ways, the NVM way next to the current replace-

able ways is chosen for the first replaceable way. The last position register

42

(LPR) remembers the current last replaceable way to support way shifting.

This policy is initiated when RCR is saturated.

Figure 11 shows an example of how this policy works. Assume that

the number of the replaceable ways is five and the first three NVM ways

are assigned to the replaceable ways. Note that two SRAM ways are always

considered the replaceable ways. If the number of the replaceable ways is

increased to six, from the fourth NVM way to the sixth NVM way, then the

first NVM way is chosen as the replaceable ways.

Figure 12 presents the DWA in detail. When a cache access is con-

firmed to an ATD hit (line 1), the MSDR is updated if it is not the maxi-

mum LRU value (line 2-4). Then, we compare the RWSR with the MSDR

to check whether the current size of NVM ways is less than the minimum

size of NVM ways (line 5). If the MSDR exceeds the RWSR, some non-

replaceable NVM ways are changed to be replaceable from the last NVM

way of the current replaceable NVM ways. The amount of activated NVM

ways is the difference between the MSDR and the RWSR. The LPR is au-

tomatically updated during way adjusting within range from 0 to Wnvm (line

6-9). After this adjustment, the RWSR is updated to the MSDR and the RCR

is reset to 0 (line 10-11). The replaceable NVM ways are rearranged when

the MSDR does not exceed RWSR when RCR is saturated (line 13). If the

MSDR is larger than the number of SRAM ways, the RWSR is updated to

MSDR (line 14-15). Unless, the RWSR is set to the number of SRAM ways

because all SRAM ways are replaceable (line 16-17). As a first step of shift-

ing replaceable ways, all R bits are set to 0 (line 19). Then, from the last

43

SRAM way Replaceable NVM way

Non-replaceable NVM way

RWSR = 5

1 11 0 0 0 RBV

Select 3 ways

LPR

RWSR = 6

1 00 1 1 1 RBV

Select 4 ways

LPR

Way Shifting

Figure 11: Example of way shifting.

replaceable NVM way, NVM ways of the amount of RWSR are assigned to

be replaceable (line 20-23). To keep track of the maximum stack distance

again, the MSDR is initialized to 0 and RCR is reset to 0 (line 24-25). If

RCR is smaller than the threshold, RCR is increased by 1 (line 27).

44

Algorithm : Adjust Replaceable Ways
Parameters:
RWSR: Replaceable way size register
MSDR: Maximum stack distance register
LPR: Last position register (1≤ LPR≤Wnvm)
RCR: Resizing counter register
R[x]: Replaceable bit at xth NVM way
Initial conditions:
RWSR ← Wnvm +Wsram
MSDR ← 1
LPR ← Wnvm−1
RCR ← 0
All R[x] ← 1
During execution:
1 : if AT D hit then
2 : if hit block.LRU > MSDR then
3 : MSDR← hit block.LRU
4 : end if
5 : if MSDR > RWSR then
6 : for i← 1 to (MSDR−RWSR) do
7 : LPR← (LPR+1) % Wnvm
8 : R[LPR]← 1
9 : end for
10: RWSR ← MSDR
11: RCR ← 0
12: else
13: if RCR is saturated then
14: if MSDR >Wsram then
15: RWSR ← MSDR
16: else
17: RWSR ← Wsram
18: end if
19: All R[x] ← 0
20: for i← 1 to (RWSR−Wnvm) do
21: LPR← (LPR+1) % Wnvm
22: R[LPR]← 1
23: end for
24: MSDR ← 0
25: RCR ← 0
26: else
27: RCR ← RCR+1
28: end if
29: end if
30: end if

Figure 12: Algorithm for DWA.

45

4.3 Cache partitioning for hybrid cache archi-
tecture

Modern chip-multiprocessors (CMP) have employed multi-level on-chip

caches to address the memory wall problem that is caused by the differ-

ence between access latencies of the memory and the processor. Generally,

the last-level cache (LLC) occupies the largest area in the cache system and

consumes a significant static energy in the CMP. To reduce the area and

the leakage power, researchers have considered using non-volatile mem-

ory (NVM) [1, 3, 5] as LLC. Unlike the SRAM-based LLC, the NVM-

based LLC consumes little leakage power and requires less area with higher

density than SRAM. While NVM has these advantages, they also suffer

from shortcomings such as longer latency to complete a write operation

and higher dynamic energy consumption for a write operation compared to

SRAM. Most researchers have focused on minimizing the write counts of

NVM because the number of write operations strongly affects the dynamic

energy consumption as well as performance.

Hybrid cache architectures (HCA) have been proposed [16, 17, 18, 19,

47] to overcome these limitations of NVM. HCA mainly consists of NVM,

but some of them are replaced with SRAM to reduce the number of write

requests on NVM. Previous studies concerning HCA have attempted to de-

tect the write-intensive blocks, sets, or ways to allocate these to the SRAM.

However, their schemes have not usually focused on reducing the NVM

linefill counts, while the portion of NVM linefill operations is larger than

46

that of NVM write hit operations over the total of write operations to NVM

for many applications. In addition, there is no accurate prediction model to

estimate the change of the write counts of NVM when the number of SRAM

and NVM ways allocated to each core are changed in CMP environments.

Since the number of cache ways is closely related to the cache misses, as-

signing cache ways or releasing cache ways influences the miss rate of the

LLC. Even though the write intensity of NVM ways of a core is larger than

other cores, providing more SRAM ways with the core does not guarantee

reducing the NVM write counts. If a core which hands over SRAM ways

to other core generates much more cache misses with the reduced cache ca-

pacity, the write counts can be increased due to the extra linefill operations.

However, they have not considered this kind of side effects in their schemes.

We propose a novel cache partitioning that is called a linefill-aware

cache partitioning scheme (LCP) to reduce the dynamic energy consumption

by efficiently allocating SRAM ways and NVM ways to cores. To this end,

the thesis presents appropriate metrics and an algorithm for partitioning to

realize LCP. We introduce three metrics that represent change of miss counts

(∆M), write counts (∆W), and NVM write counts (∆NV MW), respectively.

An algorithm for cache partitioning of LCP consists of two steps. First, the

number of cache ways for each core is determined in order to reduce the

miss counts. Next, the SRAM ways and the NVM ways are allocated to

cores to minimize write counts of NVM.

47

A1

A1 A2

A1 A2 A3

B1 A2 A3

B1 B2 A3

B1 B2 B3

A2 B2 B3

A2 A3 B3

A2 A3 B3

A1

A1 A2

A3 A2

A3 A2 B1

A3 A2 B2

A3 A2 B3

A3 A2 B3

A3 A2 B3

A3 A2 B3

A1

A1 A2

A3 A2

B1 A3 A2

B2 A3 A2

B3 A3 A2

B3 A3 A2

B3 A3 A2

B3 A3 A2

Read A1 Linefill_S (A1)

Linefill_N (A2)

Linefill_N (A3)

Linefill_S (B1)

Linefill_N (B2)

Linefill_N (B3)

Linefill_S (A2)

Linefill_N (A3)

Write_Hit_N (B3)

Read A2

Write A3

Read B1

Read B2

Write B3

Read A2

Write A3

Write B3

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 3

: 0

: 5

: 1

· SRAM Total Write

· NVM Total Write

: 3

: 6

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 2

: 1

: 4

: 1

· SRAM Total Write

· NVM Total Write

: 3

: 5

Linefill_S (A1)

Linefill_N (A2)

Linefill_S (A3)

Linefill_N (B1)

Linefill_N (B2)

Linefill_N (B3)

Read_Hit_N (A2)

Write_Hit_S (A3)

Write_Hit_N (B3)

Linefill_N (A1)

Linefill_N (A2)

Linefill_N (A3)

Linefill_S (B1)

Linefill_S (B2)

Linefill_S (B3)

Read_Hit_N (A2)

Write_Hit_N (A3)

Write_Hit_S (B3)

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 3

: 1

: 3

: 1

· SRAM Total Write

· NVM Total Write

: 4

: 4

(a) No Partitioning (b) Partitioning without

 considering NVM Linefill
(c) Partitioning with

 considering NVM Linefill

Core A Core B Core ACore B

SRAM way NVM way

Memory Reference Sequence: R(A1),R(A2),W(A3),R(B1),R(B2),W(B3),R(A2),W(A3),W(B3)

 (Cache blocks for Core A : A1,A2,A3 / Cache blocks for Core B : B1,B2,B3)

Figure 13: (a) No partitioning is applied. (b) Partitioning without NVM line-
fill. (c) Partitioning with NVM linefill.

48

4.3.1 Linefill-aware cache partitioning

To optimize the NVM write counts in HCA, SRAM ways and NVM ways

should be efficiently allocated to cores. To help the understanding, we pro-

vide an illustration in Figure 13. The cache in this example consists of one

SRAM way and two NVM ways. We assumed that there are two cores: core

A and core B. A1, A2, and A3 are cache blocks for core A, and B1, B2, and

B3 are cache blocks for core B. The cache accesses occur as the memory

reference sequence shown in the box of the top in Figure 13.

When there is no special care for the LLC, the total write for the SRAM

way is 3 (3 for SRAM linefill) and the NVM total write is 6 (5 for NVM

linefill and 1 for NVM write hit), as shown in Figure 13(a). If the cache

partitioning only considering the cache misses is applied [39], core A can

occupy two cache ways and only one cache way can be assigned to core

B (Figure 13(b)). Even though this partitioning decreases two cache misses

and one NVM total write, the NVM write counts are not optimized. If a

partitioning algorithm can predict the NVM linefill counts as well as the

NVM write hit counts for every possible partitioning, the SRAM way should

be allocated to core B to minimize the NVM write counts, as shown in

Figure 13(c).

Therefore, a new scheme is required to reduce both the NVM write hit

counts and the NVM linefill counts, which saves dynamic energy consump-

tion of HCA. This paper devises new metrics to evaluate the effectiveness

of cache partitioning schemes and proposes a linefill-aware cache partition-

49

Table 5: Notation descriptions for metrics.

Notation Description

H[i] Hit counts of ith recency position

WH[i] Write hit counts of ith recency position

MCONF Conflict misses which are the number of cache misses due to
partitioning

MNON CONF Non-conflict misses which are the number of cache misses re-
gardless of partitioning

H(N) Total cache hit counts when the number of allocated ways is N

M(N) Total cache misses when the number of allocated ways is N

W (N) Total write counts when the number of allocated ways is N

WH(N) Total write hit counts when the number of allocated ways is N

∆M(N,N′) Miss counts change when the number of allocated ways is
changed from N to N’

∆W (N,N′) Write counts change when the number of allocated ways is
changed from N to N’

∆NV MW (NSRAM,N′SRAM,NNV M,N′NV M)

NVM write counts change when the number of allocated SRAM
ways is changed from NSRAM to N′SRAM and the number of allo-
cated NVM ways is changed from NNV M to N′NV M

ing scheme (LCP) based on these metrics. Table 5 provides a description of

notation we define in this section.

4.3.2 Metrics for cache partitioning

This section describes three metrics for a partitioning decision: Miss counts

change (∆M), write counts change (∆W), and NVM write counts change

(∆NV MW). We newly devise ∆W and ∆NV MW and redefine ∆M by revis-

iting the concept of ”the utility” in the previous work [39].

50

MRU LRU

Hit

Counter
8 6 5 2

1 2 3 4

Recency position

Hit counts of 4 way cache = 8+6+5+2 = 21

Hit counts of 2 way cache = 8+6 = 14

more recently used

Figure 14: Example of stack property.

• ∆M: the change of the number of cache misses according to adjusting

cache capacity for each core. This metric has been usually adopted

to decide the cache partition to improve the performance in previous

studies.

• ∆W : the change of the write counts for both the SRAM write counts

and the NVM write counts according to the change of cache capacity.

• ∆NV MW : the change of the NVM write counts. It is used for the HCA

when memory elements are heterogeneous, while two other metrics

can be applied in the cache consisting of the same memory element.

The concept of the utility [39] is used to estimate the reduction in the

number of cache misses when a core has extra cache ways. The original

paper named this concept as ”the utility”, but we redefine it ”∆M” to clarify

its meaning. They noticed that LRU replacement policy followed the stack

property [45]. If a cache has the stack property, the cache having more cache

ways always contains all blocks of the cache having smaller cache ways

when the number of sets remains. Figure 14 presents the hit counts of each

51

recency position in a 4-way cache. In general, the recency position of the

block at MRU position is called position 1, and that of the LRU position is

called position 4. In this example, if the number of cache ways is reduced

to 2 from 4, we expect that the hit counts of the cache will decrease by

one-thirds without performing the experiments for a 2-way cache.

∆M indicates the change of the miss counts with the change of the

number of allocated ways1. Let H[i] denote the hit counts of ith recency

position of a core and H(N) be the total hit counts when the number of

allocated ways is N of the core. A relationship is established between two

metrics.

H(N) =
N∑

i=1

H[i] (4.18)

Since the increase in the miss counts is the same as the reduction in the hit

counts, when the number of allocated ways is changed from N to N′ of a

core, ∆M(N,N′) is given by

∆M(N,N′) =−(H(N′)−H(N)) =
N∑

i=1

H[i]−
N′∑

i=1

H[i] (4.19)

A new model is built to estimate the change of the number of write

operations with the change of the capacity in the cache. Since improving

the hit rate is the most important goal in previous studies, ∆M is the only

1To clear the meaning of the terminology, the number of cache ways assigned for a core
are called ”the number of allocated cache ways of the core”

52

metric for cache partitioning in SRAM-based LLC in CMP environment.

However, minimizing the write counts should be considered as well as max-

imizing the overall hit counts in HCA. Thus, we define a new metric (∆W)

for representing the change of the number of write accesses caused by the

change of partitioning.

The change of write counts over the change of the amount of allocated

ways is not easily determined, while ∆M is obtained by just accumulating

H[i]. A cache block of the LLC is updated by two cases. First, when a write

hit occurs in the LLC, the corresponding block is overwritten. In addition,

if a new block is loaded due to a cache miss, the contents of the block are

updated. Therefore, the write counts change (∆W) is the sum of the write hit

counts and the linefill counts.

To find the total write hit counts, we define WH[i] as the write hit counts

for ith recency position. The write hit counts WH(N) is expressed in a sim-

ilar form as the hit counts.

WH(N) =

N∑
i=1

WH[i] (4.20)

Calculating the total linefill operations is more complicated than ob-

taining the total write hit counts because there are two kinds of cache misses

to be considered. The first category of the cache miss is called a conflict miss

(MCONF), which occurs when a core partially uses the LLC due to cache

partitioning. If all cache ways are allocated to the core, the amount of the

53

conflict miss becomes zero; thus, it varies across resizing the number of al-

located ways. On the other hand, there is another kind of cache miss, called

a non-conflict miss (MNON CONF), which occurs regardless of partitioning.

In other words, when a core utilizes all cache ways, there is no MCONF in

the core, while MNON CONF can occur. Note that the non-conflict miss is

composed of two kinds of misses, usually referred to as capacity and com-

pulsory misses [48]. In our proposal, we use a single term as a non-conflict

miss because there is no need to distinguish these misses.

Combining the two cache misses, the miss counts (M(N)) can be writ-

ten as follows:

M(N) = MCONF +MNON CONF

= H(NALL)−H(N)+MNON CONF

=

NALL∑
i=1

H[i]−
N∑

i=1

H[i]+MNON CONF

(4.21)

where NALL is the number of total cache ways in the LLC.

To put it all together, W (N) is expressed as

W (N) =WH(N)+M(N) (4.22)

Since ∆W (N,N′) means the change of the write counts, we reach the

following equation:

∆W (N,N′) = (WH(N′)+M(N′))− (WH(N)+M(N)) (4.23)

54

From Eq. 4.20 and Eq. 4.21, we transform Eq. 4.23 into the following:

∆W (N,N′) = (
N′∑

i=1

WH[i]+
NALL∑
i=1

H[i]−
N′∑

i=1

H[i]+MNON CONF)

−(
N∑

i=1

WH[i]+
NALL∑
i=1

H[i]−
N∑

i=1

H[i]+MNON CONF)

(4.24)

This can be written in this form:

∆W (N,N′) =
N′∑

i=1

WH[i]−
N′∑

i=1

H[i]−
N∑

i=1

WH[i]+
N∑

i=1

H[i]

+ (

NALL∑
i=1

H[i]−
NALL∑
i=1

H[i])+(MNON CONF −MNON CONF)

(4.25)

H(NALL) and MNON CONF in the above equation are removed because

they do not change with the number of allocated ways. Therefore, after sim-

plifying Eq. 4.25, this becomes

∆W (N,N′) =
N′∑

i=1

(WH[i]−H[i])−
N∑

i=1

(WH[i]−H[i]) (4.26)

To aid the understanding of the equation, we provide illustrations in

Figure 15. In this figure, Eq. 4.26 is applied to find the write counts change,

while Eq. 4.19 is used to calculate the miss counts change. When the amount

of allocated ways is increased to 3 from 2 (N = 2 and N′ = 3), ∆M(2,3) is

-5 and ∆W (2,3) is -3.

55

MRU LRU

M(2,3) = – (∑H(3) – ∑H(2))

 = (10+6+5) – (10+6) = – 5

(a) Miss counts difference

Hit Counts 10 6 5 3

MRU LRU

Hit Counts 10 6 5 3

Write Hit

Counts
2 4 2 1

W(2,3) = (∑WH(3) – ∑H(3)) – (∑WH(2) – ∑H(2))

 = ((2+4+2) – (10+6+5)) – ((2+4) – (10+6))

 = – 3

(b) Write counts difference

Figure 15: Examples of (a) miss counts change (∆M) and (b) write counts
change (∆W).

This section describes the NVM write counts change (∆NV MW) used

for calculating the variation of the write accesses to NVM in HCA. In the

above section, we showed that the write counts are changed, but it is only

applied in the LLC, which has one memory type. Thus, another metric is

required to measure the change of NVM write counts. Note that ∆NV MW

has four kinds of parameters because two types of memory elements are

considered in this model. N is divided into NSRAM and NNV M, which are the

number of allocated SRAM ways and NVM ways before new partitioning

is initiated, respectively. Instead of N′, N′SRAM and N′NV M are used to in-

dicate how many SRAM ways and NVM ways are allocated to a specific

core based on the new partitioning. Therefore, this metric is expressed as

∆NV MW (NSRAM,N′SRAM,NNV M,N′NV M).

56

We propose a new method to measure the variation of the write counts

of NVM because the methods on the stack property cannot calculate the ex-

act change of the write counts of NVM. For example, when a certain NVM

way receives five write requests, removing the NVM way does not decrease

the write counts of NVM by five. Since the concept of recency position is

independent to the order of way, every way can have any recency position

and the position usually changes after every cache access. When the num-

ber of allocated ways is changed, the blocks are stored into different ways

from they were, and the hit counts of each way are not reserved. Therefore,

it is impossible to exactly predict the change of the write counts of NVM or

SRAM when the number of the allocated cache ways is changed.

Instead, we use a statistical approach to find the NVM write counts.

In general, every way has the same probability of receiving write requests,

which means write requests are statistically evenly distributed among the

ways. Therefore, the portion of the NVM write counts over the all write

counts is assumed to be proportional to the ratio of the number of NVM

ways over the total number of cache ways.

NV MW (NSRAM,NNV M)≈

W (NSRAM +NNV M)∗ NNV M

NSRAM +NNV M

(4.27)

57

Therefore, ∆NV MW is calculated as follows:

∆NV MW (NSRAM,N′SRAM,NNV M,N′NV M)

= NV MW (N′SRAM,N′NV M)−NV MW (NSRAM,NNV M)

=W (N′)∗ N′NV M

N′
−W (N)∗ NNV M

N

(4.28)

= (WH(N′)+M(N′)+MNON CONF)∗
N′NV M

N′

−(WH(N)+M(N)+MNON CONF)∗
NNV M

N

(4.29)

= (
N′∑

i=1

WH[i]+
NALL∑

i=N′+1

H[i]+MNON CONF)∗
N′NV M

N′

−(
N∑

i=1

WH[i]+
NALL∑

i=N+1

H[i]+MNON CONF)∗
NNV M

N

(4.30)

Figure 16 shows the procedure of calculation of the equation. On top

of the write hit counters, a non-conflict miss counter is inserted. A cache

in the example is composed of two SRAM ways and two NVM ways. We

assume that a core takes one SRAM way and one NVM way at first. If one

more way is assigned to the core, there are two options; the core gets either

an extra NVM way or SRAM way. For former case, we add an NVM way to

the core, ∆NV MW is increased by 1. On the contrary, the latter case shows

that ∆NV MW becomes -4.

58

MRU LRU

Hit Counts 10 6 5 3

Write Hit

Counts
2 4 2 1

NVMW(1,1,1,2) = ∑NVMW(1,1) – ∑NVMW(1,2)

 = (∑WH(2) + ∑M(2)) * (1 / 2) – (∑WH(3) + ∑M(3)) * (2 / 3)

 = ((2+4) + (5+3+4)) * (1 / 2) – ((2+4+2) + 3 + 4) * (2 / 3) = – 1

Capacity Misses 4

(a) An NVM way is added (1S1N -> 1S2N)

NVMW(1,1,1,2) = ∑NVMW(1,1) – ∑NVMW(2,1)

 = (∑WH(2) + ∑M(2)) * (1 / 2) – (∑WH(3) + ∑M(3)) * (1 / 3)

 = ((2+4) + (10+6+4)) * (1 / 2) – ((2+4+2) + 6 + 4) * (1 / 3) = – 4

(b) An SRAM way is added (1S1N -> 2S1N)

Figure 16: Examples of NVM write counts change (∆NV MW). Initially, a
core owns an SRAM way and an NVM way (1S1N). (a) The core acquires
one more NVM way (1S2N). (b) The core acquires one more SRAM way
(2S1N).

4.3.3 Algorithm for cache partitioning

The algorithm for LCP consists of two steps to optimize the NVM write

counts without increasing cache misses, as shown in Figure 17. The first

step is finding the best partitions for optimizing the linefill counts. LCP

utilizes ∆M to search for the optimal size of partition in this step. After that,

the SRAM partition and NVM partition of each core are determined within

its budget determined by the first step, based on ∆W and ∆NV MW . Table 6

lists the description of notation we define in this section.

To make our algorithms more efficient, we employ the concept of the

marginal utility approach introduced in UCP [39]. Since prior studies of

59

Algorithm 1 : Linefill-aware Cache Partitioning
Step 1 : finding the number of allocated cache ways
1 : UALL ← TALL - TCORE
2 : foreach i← all cores do
3 : AALL[i]← 1
4 : end if
5 : while UALL > 0 do
6 : min MU← ∞

7 : foreach i← all cores do
8 : for w← 1 to UALL do
9 : MU← ∆M (AALL[i],AALL[i]+w) / w
10: if MU < min MU do
11: min MU←MU
12: CCORE ← i
13: Req← w
14: end if
15: end for
16: end foreach
17: AALL[CCORE]← AALL[CCORE] + Req
18: UALL ← UALL - Req
19: end while
Step 2 : finding the number of allocated NVM ways
20: USRAM ← TSRAM
21: foreach i← all cores do
22: ANV M[i]← AALL[i]
23: end foreach
24: while USRAM > 0 do
25: foreach i← all cores do
26: min MU← ∞

27: if USRAM > AALL[i] then
28: w’← AALL[i]
29: else
30: w’← USRAM
31: end if
32: for w← 1 to w′ do
33: if USRAM == 0 and ASRAM[i] == 0 do
34: MU← ∆W (ANV M[i],ANV M[i] + w) / w
35: else
36: MU← ∆NV MW (ASRAM[i],ASRAM[i] + w, ANV M[i],ANV M[i] - w) / w
37: end if
38: if MU < min MU do
39: min MU←MU
40: CCORE ← i
41: Req← w
42: end if
43: end for
44: end foreach
45: ASRAM[CCORE]← ASRAM[CCORE] + Req
46: ANV M[CCORE]← AALL[CCORE] - ASRAM[CCORE]
47: USRAM ← USRAM - Req
48: end while

Figure 17: Algorithm of linefill-aware cache partitioning (LCP).

60

Table 6: Notation descriptions for algorithms.

Notation Description

TALL Number of total cache ways in the LLC

TSRAM Number of total SRAM ways in the LLC

TNV M Number of total NVM ways in the LLC

TCORE Number of total cores

UALL Number of unallocated ways

USRAM Number of unallocated SRAM ways

UNV M Number of unallocated NVM ways

AALL[i] Number of allocated ways per ith core

ASRAM[i] Number of allocated SRAM ways for ith core

ANV M[i] Number of allocated NVM ways for ith core

MU Marginal utility of metrics

min MU Minimum value of marginal utility

Req Number of requesetd ways to get min MU

CCORE A specific core gaining extra cache ways

NVM-based CMP used the greedy algorithm [49, 50], there is a risk of

reaching to a suboptimal partitioning, which commonly occurs in greedy

algorithms. To avoid this problem, LCP uses the marginal utility. Therefore,

our algorithm uses a value which is divided by the number of allocated ways

instead of the value directly obtaining from the calculation. For example, if

∆W is -4 and the number of allocated ways is 2, the marginal utility (MU)

of ∆W is -2 (= -4 / 2). In addition, the partitioning algorithm is designed to

perform the cache repartitioning every 1M cycles because it shows the best

efficiency compared with other periods.

Step 1 starts initializing UALL, which is a key variable of the first loop

(line 1). Since each core has at least one way, UALL has the difference be-

61

tween the number of total cache ways in the LLC and the number of cores

(line 2-4). Step 1 is executed until all ways are assigned to cores (line 5).

When each iteration begins, min MU is initialized to infinity; in reality, it

has the maximum integer value that a system allows (line 6). For every core,

∆M per way are calculated by varying the number of allocated cache ways

(line 7-9). If MU is smaller than the currently minimum value of MU (line

10), min MU is updated (line 11), and the current core is tentatively indi-

cated as the target core to be allocated more cache ways (line 12). Req has

the current number of allocated ways (line 13). When the loop ends, the re-

quested ways are allocated to the target core (line 17) and UALL is updated

as well (line 18). Note that this step is performed based on the UCP [39],

which is known as one of the best partitioning schemes. Because this step

is orthogonal to second step, other partitioning schemes can be used if they

provide the better partitioning efficiency.

Step 2 works similar to step 1, but a key variable of the loop becomes

USRAM substituting UALL and ∆NV MW and ∆W are used instead of ∆M be-

cause SRAM ways are distributed among cores in this step. At first, USRAM

has the number of SRAM cache ways (line 20). The number of the allocated

NVM ways for each core is temporarily the number of allocated cache ways,

which is determined by the previous step (line 22-24). Another difference

from step 1 is that a loop for finding the min MU is iterated when the candi-

date number of cache ways is from 1 to the maximum value between AALL[i]

and USRAM (line 27-31). This is because each core cannot have more ways

than AALL[i]. ∆NV MW is basically used to find the value of MU (line 36),

62

Core 1 Monitor

S ways N ways

Core 0 Monitor

Auxiliary Tag Directory

(ATD)

Hit Counter

Capacity Miss Counter

Write Hit Counter

S ways N ways

SRAM way NVM way Sample Set

Last Level Cache

Figure 18: Overall structure of LCP.

however ∆W is applied for simplicity if it is guaranteed that no SRAM way

involves calculation (line 34). In this algorithm, the number of NVM ways

are simply calculated; we obtain it by subtracting AALL[i] to ASRAM[i] (line

46).

We extend the conventional utility monitor [39] and utilize a cache par-

titioning logic of UCP to implement our proposal. Therefore, storage over-

head is estimated as less than 1%. The traditional utility monitor contains

an auxiliary tag directory (ATD) and hit counters. On top of that, two ad-

ditional counters are added which are a write hit counter and a non-conflict

miss counter, as depicted in Figure 18. As many write hit counters as the

number of cache ways are needed, and only a single counter is required for

63

accumulating the non-conflict misses.

The role of the ATD is keeping track of the recency positions of blocks

for each core. Using the ATD, the hit counter indicates the hit counts of

each recency position. Similar to the hit counter, the write hit counters store

the number of write hit for the corresponding position. The associativity

of the hit counter and the write hit counter is the same as the LLC. The

non-conflict miss counter is inserted to obtain the total non-conflict miss

counts. If a cache miss occurs in the ATD, the non-conflict miss counter is

increased by one, while the hit counter is increased when a cache hit occurs

in the corresponding recency position.

Assuming that the LLC has 16-way associativity and the size of each

counter is 32 bits, the total storage overhead of the LCP is (16 + 1) * 32 bits

= 68 bytes. Considering the capacity of the LLC is 2MB in our system, it is

obvious that the storage overhead is not significant.

64

0%5%10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

M
IX

_1

M
IX

_2

M
IX

_3

M
IX

_4

M
IX

_5

M
IX

_6

M
IX

_7

M
IX

_8

M
IX

_9
 M

IX
_1

0
M

IX
_1

1
M

IX
_1

2
M

IX
_1

3
M

IX
_1

4
M

IX
_1

5
av

er
ag

e

Error_Rate
10

K
10

0K
1M

10
M

Fi
gu

re
19

:E
rr

or
ra

te
s

w
ith

va
ri

ou
s

re
pa

rt
iti

on
in

g
pe

ri
od

fr
om

10
K

to
10

M
.

65

We start by analyzing how accurate the proposed algorithm predicts the

NVM write counts. Whenever the cache partitioning is done, the expected

NVM write counts during the execution period is accumulated. At the end

of the program execution, the difference between the predicted value and

the measured value is used to calculate the error value of the algorithm. In

this way, we estimate the error rate of our algorithms as follows:

ErrorRate =
|Predicted NV M Writes−Measured NV M Writes|

Predicted NV M Writes
∗100

(4.31)

Figure 19 summarizes error rates of our algorithm with various sizes of

repartitioning periods from 10K to 10M. LCP utilizes the statistics of each

period to predict the behavior of the next. If a previous period has a sim-

ilar access pattern of the following period, this approach will be effective.

Unfortunately, if partitioning occurs in the middle of transition of working

sets in the program, the information gathered by the ATD during the current

period does not represent the next period. In this case, the accuracy of hit

counts, write hit counts, and cache misses will decrease. Thus, we have ex-

perimented with several repartitioning periods and the consequential change

of the accuracy. The proposed LCP with the 1M period cycle shows that the

error rate is 4.3%, which is meaningfully lower than the error rate of other

period sizes. Therefore, we choose 1M as the repartitioning period for our

proposal.

66

0%20
%

40
%

60
%

80
%

10
0%

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Miss_Rate

N
oC
P

UC
P

AW
CP

BC
P

Fi
gu

re
20

:M
is

s
ra

te
s

w
ith

fo
ur

sc
he

m
es

.

67

The miss rates for all workloads are given in Figure 20 for NoCP,

BSABM, AWCP, and LCP. AWCP shows the worst miss rate for all bench-

mark programs because the number of cache ways for each core is adjusted

according to its NVM write intensity. Even though this approach is bene-

ficial to reducing the number of write counts, it is not helpful to improve

the total hit counts. The miss rate of BSABM is the nearly same as NoCP

because they use a similar replacement policy. The miss rate of LCP is de-

creased by 4.3% over NoCP, and the difference between average miss rate of

AWCP and LCP is 13.7%. While the efficiency of LCP varies significantly

depending on characteristics of workload, the miss rates of all applications

are decreased. For MIX 4, the miss rate of LCP is lower than that of AWCP

by 21.9%.

4.4 Overhead of NVM capacity management pol-
icy

Table 7 shows the storage overhead of the DWA. We assume that the system

uses a 40-bit physical address space. To keep track of the MSD, an entry of

the ATD has a separate tag and LRU bits. The each ATD has 64 entries and

256 entries because the number of sample sets is 64 and 256 respectively.

The size of R bits is 12 as the number of NVM ways is 12. The DWA also

needs three kinds of 4-bit registers and a 2-bit resizing counter register. Both

HCAs have about less than 1% extra area. With a low hardware overhead,

our proposal achieved the dynamic energy saving and write endurance en-

68

Table 7: Storage overhead.

Component HCA with STT-RAM HCA with PCM

ATD entry LRU + Tag + Valid = 4 + 22
+ 1 = 27 bits

LRU + Tag + Valid = 4 + 20
+ 1 = 25 bits

27 bits * 16 way = 54 bytes 25 bits * 16 way = 50 bytes

ATD 54 bytes * 64 sets = 3.8KB 50 bytes * 256 sets =
12.5KB

R bits 12 bits 12 bits

LPR 4 bits 4 bits

MSDR 4 bits 4 bits

RWSR 4 bits 4 bits

RCR 2 bits 2 bits

Overhead for
LCP

(16 + 1) * 32 bits = 68 bytes (16 + 1) * 32 bits = 68 bytes

Total about 4KB (0.1%) about 13KB (0.31%)

hancement. For the LCP, as we discussed earlier, the total storage overhead

of the LCP is (16 + 1) * 32 bits = 68 bytes on top of the extra storage of the

DWA. Therefore, the storage overhead of both schemes is not significant.

Another consideration for cache partitioning is the timing overhead of

obtaining the optimal value. To investigate the timing overhead, we calcu-

lated the latencies of the algorithm in detail as shown in Table 8. According

to Eq. 4.19 one iteration of the main loop of step 1 requires one addition,

one subtraction, one division, one comparison, and one assignment. The la-

tencies of an adder and a comparator are one cycle and the latency of a

divider is thirteen cycles in modern processors [43], thus one iteration takes

17 cycles (we assume that each register captures the value in a cycle). Ac-

69

Table 8: Timing overhead.

Component Cycles

Step1 Initialization (line 1-4) 2 cycles

Step1 Main loop (line 6-16) 17 cycles

Step1 Result assigning (line 17-18) 2 cycles

Step2 Initialization (line 20-23) 3 cycles

Step2 Main loop preparation (line 24-31) 2 cycles

Step2 Main loop (line 32-44) 36 cycles

Step2 Result assigning (line 45-47) 3 cycles

Total 851 cycles (0.9%)

cording to Eq. 4.30, one iteration of the main loop of the step 2 requires

three additions, one multiplication, two divisions, one comparison, and one

assignment. The latency of a multiplier is five cycles in modern processors

[43], thus one iteration takes 36 cycles.

The initialization steps are executed once for every partitioning. The

main loop in step one of LCP is iterated 24.95 times and the main loop

in step two is iterated 10.21 times. The other parts of the algorithm are

executed 4.57 times and 2.31 times for each step respectively. Therefore,

the algorithm takes 851 cycles to identify the average of the partitioning

(2+17*25+2*5+3+2*3+36*11+3*3 = 851). Considering that the period of

partitioning is 1M, the latency of the algorithm does not have an influence

on the overall performance.

70

Chapter 5

Experimental results

5.1 Experimental environment

We simulated our approach with PARSEC benchmark suite [11] for evalu-

ating WACC. The gem5 simulator is used to evaluate the normalized energy

and normalized lifetime of our protocol [9]. The overall simulation parame-

ters are shown in Table 9. We assume that the cache coherence protocol is a

MOESI protocol. In addition, LLC is composed of STT-RAM because STT-

RAM is considered as the right alternative among several types of NVM

[51]. The power value of STT-RAM is derived from the previous work [52].

For DWA, a simulation was performed using Macsim [10] which is a

trace-driven and cycle level simulator. It is designed to thoroughly model the

detailed microarchitectural behavior, including pipeline stages and memory

systems. Our baseline system has a three level cache hierarchy. The L1 and

L2 caches are composed of the SRAM memory. Table 9 shows our baseline

processor configurations in detail. Since STT-RAM and PCM are widely

studied among several kinds of NVM, the LLC has two hybrid cache con-

figurations: STT-RAM with SRAM, PCM with SRAM. We examined our

proposal on multi core configuration which has 4 cores as well. We used

71

SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006 benchmark

suite [12]. Because the benchmark programs with the reference input set

take a very long time to run, we simulated 500M instructions of the re-

gion selected by Pinpoints [53, 54] which is a well-known tool to find the

representative regions. To compare our proposal with previous studies, we

also conducted the experiments with prediction table based cache line re-

placement and management policy (PTHCM) [18]. For multi core system

simulation, we generated ten workloads by mixing six applications as listed

in Table 12.

In addition, the standard of normalization in our results is the baseline

hybrid cache, which is operated as a conventional cache except that it con-

sists of both SRAM and STT-RAM cells. Thus, the baseline hybrid cache

has no special policy such as the DWA or the PTHCM. For DWA, note

that write intensity block migration policy is always applied. Finally, we as-

sume that cache hierarchy maintains inclusion property in our proposal as

like many modern processors such as the Intel i7 processor [43] or ARM

CORTEX-A57 processor [55].

We have performed experiments to evaluate the proposed cache par-

titioning scheme with Macsim [10] for LCP. Table 9 presents the system

parameters used for the simulation. It has four cores and a two-level cache

hierarchy. The capacity of the L1 instruction and data caches are 32KB, and

they are 4-way associative caches. The LLC (L2) cache is a 2MB 16-way

cache, which is composed of 4-way SRAM and 12-way NVM. The line size

of all caches is 64B.

72

Table 9: Processor configurations.

WACC
Cores 4
L1 Inst / Data
Cache

64KB, 2-way, 64B line

L2 Unified Cache 2MB, 16-way, 64B line
Memory 64bit bus width , 4 read/write ports
Function Units 6 IALU, 2 IMULT, 4 FPALU, 2 FPMULT

DWA
Core Type x86, out-of-order, 2GHz
Core Count 1 / 4
INT / MEM / FP 4 / 4 / 4
Branch Predictor gshare predictor, 16 history length
ROB Size 256
I/D Cache 16KB, 4-way, 64B blocks, 1-cycle latency
L2 Cache 512KB, 8-way, 64B blocks, 5-cycle latency
Hybrid LLC with
STT-RAM

4MB(4-way SRAM and 12-way STT-RAM), 64B
blocks
SRAM: 10-cycle latency
STT-RAM: 10-cycle (read) and 45-cycle (write) la-
tency

Hybrid LLC with
PCM

16MB(4-way SRAM and 12-way PCM), 64B blocks

SRAM: 10-cycle latency
PCM: 19-cycle (read) and 93-cycle (write) latency

Memory Latency 200 cycles

LCP
Core Type x86, out-of-order, 2GHz
Core Count 4
INT / MEM / FP 4 / 4 / 4
Branch Predictor gshare predictor, 16 history length
ROB Size 256
I/D Cache 32KB, 4-way, 64B blocks, 2-cycle latency
Hybrid LLC 2MB(4-way SRAM and 12-way STT-RAM), 64B

blocks
Memory Latency 200 cycles

73

We used SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006

benchmark suite for the simulation [12] for LCP. To evaluate the efficiency

of our proposal across write intensive and non-write intensive applications,

workloads are created based on write counts per kilo-instructions (WBKI).

At first, we sorted the applications by increasing the order based on WBKI

as shown in Table 10 and divided them into three categories: such as low,

mid, and high. Mixing four benchmarks from the three categories, we gen-

erated 15 workloads as listed in Table 11 (The number of combination of

selecting 4 applications from 3 categories with repetitions is 15 and appli-

cations in each category are randomly selected.) Each trace is collected by

Pinpoints [53], which is widely used to extract the representative regions.

There are four schemes tested in our simulation: the baseline which

uses no partitioning scheme (NoCP), block swapping and active block mi-

gration (BSABM) [49], access-aware cache partitioning policy (AWCP) [50],

and LCP proposed in the thesis. NoCP has no partitioning scheme and fol-

lows the LRU replacement. To compare the previous studies with our pro-

posal, BSABM and AWCP, which are available for the HCA-based LLC in

CMP, are included for the experiment.

To fairly compare the results of our proposal and previous studies, we

used the same parameters of STT-RAM that were used in the previous study

[50]; the dynamic energy consumption of cache operation for an SRAM

cache bank 0.609nJ, while the read energy for an STT-RAM cache bank is

0.598nJ and the write energy is 4.375nJ.

74

Table 10: Write counts per kilo-instructions for LCP.

Type Benchmark WPKI Type Benchmark WPKI

Low

dealII 0.90

Mid

zeusmp 30.92

gamess 1.04 cactusADM 41.78

gromacs 1.79 gcc 51.96

povray 2.31 omnetpp 65.46

perlbench 2.38

High

milc 75.94

h264ref 4.13 wrf 92.29

calculix 7.56 libquantum 114.29

xalancbmk 8.10 GemsFDTD 133.44

Mid

gobmk 11.20 leslie3d 138.10

hmmer 12.99 soplex 145.47

tonto 13.53 lbm 221.45

bzip2 15.75 mcf 228.77

Table 11: Multi-core workloads for LCP.

Workload Benchmarks

MIX 1 dealII(L), gamess(L), calculix(L), xalancbmk(L)

MIX 2 gamess(L), gromacs(L), h264ref(L), cactusADM(M)

MIX 3 dealII(L), povray(L), xalancbmk(L), lbm(H)

MIX 4 gromacs(L), povray(L), gcc(M), omnetpp(M)

MIX 5 povray(L), perlbench(L), cactusADM(M), libquan-
tum(H)

MIX 6 dealII(L), gamess(L), soplex(H), lbm(H)

MIX 7 xalancbmk(L), gobmk(M), cactusADM(M), omnetpp(M)

MIX 8 dealII(L), gcc(M), omnetpp(M), mcf(H)

MIX 9 povray(L), zeusmp(M), wrf(H), lbm(H)

MIX 10 povray(L), libquantum(H), lbm(H), mcf(H)

MIX 11 gobmk(M), hmmer(M), gcc(M), omnetpp(M)

MIX 12 gobmk(M), tonto(M), omnetpp(M), lbm(H)

MIX 13 hmmer(M), bzip2(M), leslie3d(H), lbm(H)

MIX 14 hmmer(M), GemsFDTD(H), leslie3d(H), mcf(H)

MIX 15 milc(H), wrf(H), lbm(H), mcf(H)

75

Table 12: Multi-core workloads for DWA.

Workload Benchmarks

MIX 1 bwaves, calculix, wrf, gromacs

MIX 2 bwaves, calculix, wrf, hmmer

MIX 3 bwaves, calculix, wrf, h264ref

MIX 4 bwaves, calculix, gromacs, hmmer

MIX 5 bwaves, calculix, gromacs, h264ref

MIX 6 bwaves, calculix, hmmer, h264ref

MIX 7 bwaves, wrf, gromacs, hmmer

MIX 8 bwaves, wrf, gromacs, h264ref

MIX 9 bwaves, wrf, hmmer, h264ref

MIX 10 bwaves, gromacs, hmmer, h264ref

MIX 11 calculix, wrf, gromacs, hmmer

MIX 12 calculix, wrf, gromacs, h264ref

MIX 13 calculix, wrf, hmmer, h264ref

MIX 14 calculix, gromacs, hmmer, h264ref

MIX 15 wrf, gromacs, hmmer, h264ref

76

00.20.40.60.811.2

bla
ck
sc
ho

les
str

ea
m
clu

ste
r

bo
dy
tra

ck
flu

ida
nim

at
e

de
du

p
ca
nn

ea
l

x2
64

sw
ap

tio
ns

av
er
ag
e

Normalized Write Access to LLC

Ba
se
lin

e_
Lin

ef
ill

W
AC

C_
W
rit
eb

ac
k

Ba
se
lin

e_
W
rit
eb

ac
k

Fi
gu

re
21

:N
or

m
al

iz
ed

nu
m

be
ro

ft
he

ac
ce

ss
to

L
L

C
of

W
A

C
C

pr
ot

oc
ol

co
m

pa
re

d
to

th
e

M
O

E
SI

pr
ot

oc
ol

.

77

5.2 Write access to NVM

Figure 21 presents the normalized number of the read and write access to

LLC in our protocol compared to the baseline MOESI protocol. Note that

write access is divided into writeback access and linefill access. As a result,

13.2% of the write operations were decreased on average. The noticeable

result is that the number of the writeback access was increased, while there

were no linefill operation. When a cache block is evicted in a private cache,

the writeback operation is not required in the existing protocols if the cache

block is not modified. This is because the LLC already has the valid block

data if the cache block is clean. On the contrary, the writeback operation

should be initiated if no other private cache has the valid copy during cache

replacement in WACC protocol. This difference generates the extra write-

back operations. However, the total number of the write access in WACC

protocol is smaller than that of other protocols because the reduction in the

linefill operation is much larger than the increment in the writeback opera-

tion.

We first examined the write counts of NVM ways as depicted in Fig-

ure 22 and Figure 23. About 75.4% reduction and 77.2% reduction in the

number of write accesses is achieved on average in the DWA for HCAs with

STT-RAM and PCM, respectively, while the decrement on the number of

write accesses to NVM ways of PTHCM are about 5.7% and 11.0%.

From the two figures, we discover that the write access reduction ratio

of the DWA follows the sensitivity of the miss rate to the number of NVM

78

ways. First, low sensitive applications require a small number of NVM

ways; therefore, the number of write accesses to NVM is largely reduced.

On the contrary, highly sensitive applications show only a little change of

write access because they have very little room for the DWA. To show this

trend clearly, we calculate the reduction ratio of each category. For the left

side applications, 92.2% reduction and 88.3% reduction in the write counts

of STT-RAM and PCM ways is achieved on average, while 22.6% reduction

and 55.6% reduction in the number of write accesses is achieved on average

for the right side applications.

Furthermore, we combined the PTHCM with the DWA to check that

it is orthogonally effective with other HCA algorithms. Since our proposal

does not affect the fundamentals of operation of other HCA algorithms, the

DWA can create a synergy effect. The results show that the PTHCM with

the DWA (PTHCM DWA) achieved the best results among four HCA algo-

rithms as it showed 77.6% reduction and 80.0% reduction in write counts

of NVM ways. Combining PTHCM with DWA reduces the write access

to NVM more 8.9% when only DWA is applied for STT-RAM. In addition,

PTHCM DWA shows the lower NVM write counts by 11.0%. Therefore, we

conclude that merging two algorithms takes advantage of both algorithms

successfully.

79

00.20.40.60.811.21.41.6

Normalized_NVM_Write_Counts

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
22

:N
or

m
al

iz
ed

N
V

M
w

ri
te

co
un

ts
of

D
W

A
w

ith
ST

T-
R

A
M

.

80

00.20.40.60.811.21.4

Normalized_NVM_Write_Counts

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
23

:N
or

m
al

iz
ed

N
V

M
w

ri
te

co
un

ts
of

D
W

A
w

ith
PC

M
.

81

0

0.
2

0.
4

0.
6

0.
81

1.
2

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Normalized_NVM_Write_Counts

N
oC
P_
N
VM

_W
rit
e_
Hi
t

BS
AB

M
_N
VM

_W
rit
e_
Hi
t

AW
CP
_N
VM

_W
rit
e_
Hi
t

BC
P_
N
VM

_W
rit
e_
Hi
t

N
oC
P_
N
VM

_L
in
ef
ill

BS
AB

M
_N
VM

_L
in
ef
ill

AW
CP
_N
VM

_L
in
ef
ill

BC
P_
N
VM

_L
in
ef
ill

Fi
gu

re
24

:N
or

m
al

iz
ed

N
V

M
w

ri
te

co
un

ts
w

ith
fo

ur
sc

he
m

es
.

82

Next, we analyze the NVM write counts of BSABM, AWCP, and LCP

normalized to NoCP as depicted in Figure 24. The average value in the fig-

ure indicates the geometric mean of all workloads. BSABM and AWCP

decreased the NVM write counts by 2.6% and 6.7%, respectively. LCP

achieved a 46.9% reduction in the NVM write counts, which is the much

better than previous studies. To investigate these results further, we divide

the total NVM write counts into the NVM write hit counts and the NVM

write linefill counts. At first, we found that the linefill operation occupies a

significant portion of the NVM write counts. While the portion of the write

hit counts is 16.5% on average, the portion of the NVM linefill counts is

83.5%. BSABM, AWCP, and LCP reduced the NVM write hit counts by

21.7%, 26.4%, and 39.2%, respectively. LCP shows the best results, and

the previous schemes for HCA also achieved the meaningful reduction in

the NVM write hit counts. On the contrary, the reduction ratio of the NVM

linefill counts of BSABM and AWCP are only 4.3% and 2.8%, while LCP

reduced the NVM linefill counts by 47.4%. These results confirm that LCP

accomplishes the reduction in the NVM write counts by reducing the NVM

linefill counts significantly as we intended.

83

0.
9

11.
1

1.
2

1.
3

1.
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

bl
ac

ks
ch

ol
es

st
re

am
clu

st
er

bo
dy

tra
ck

flu
id

an
im

at
e

de
du

p
ca

nn
ea

l
x2

64
sw

ap
tio

ns
av

er
ag

e

Normalized Lifetime

Normalized Dynamic Energy

Re
ad

 E
ne

rg
y

W
rit

eb
ac

k
En

er
gy

No
rm

al
ize

d
Lif

et
im

e

Fi
gu

re
25

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
an

d
lif

et
im

e
of

W
A

C
C

co
m

pa
re

d
to

th
e

ba
se

lin
e

M
O

E
SI

pr
ot

oc
ol

.

84

5.3 Dynamic energy consumption

We show the normalized dynamic energy consumption and lifetime in Fig-

ure 25. Since the dynamic energy in write operation dominates the dynamic

energy consumption in read operation, the reduction of the write opera-

tions leads to reducing the total dynamic energy consumption. Our protocol

achieves 27.1% energy savings at maximum and 10.8% energy savings on

average. In addition, WACC protocol also extends the lifetime of the LLC

because the lifetime of STT-RAM is inversely proportional to the number

of write access to the LLC. The improvement of average write endurance in

WACC protocol is 26.3% at maximum and 9.3% on average.

We investigated the normalized dynamic energy consumption com-

pared to the baseline hybrid cache as shown in Figure 26 and Figure 27,

which also present the portion of the write energy consumption of NVM

over the total dynamic energy consumption. The results of HCA with STT-

RAM show that the DWA achieved 26.4% reduction in the total dynamic en-

ergy consumption. The dynamic energy consumption of the PTHCM and the

PTHCM DWA was saved 2.3% and 28.4% over the baseline hybrid cache,

respectively. For HCA with PCM, the DWA saved 27.4% of dynamic en-

ergy consumption, while the PTHCM and the PTHCM DWA reduced the

dynamic energy consumption by 2.7% and 30.0%. The trend of reduction is

similar to that of reduction in the write accesses. This is because the dynamic

energy consumption is mainly affected by the write accesses to STT-RAM.

85

Based on the observation of these figures, the write energy consump-

tion of NVM occupies a significant portion of the total dynamic energy con-

sumption. In the baseline hybrid cache, 78.6% and 56.0% of the dynamic

energy was consumed due to the write accesses to STT-RAM and PCM

ways. Therefore, we conclude that the number of write accesses to NVM

ways is the most important factor for dynamic energy consumption. The

results show that the portion of write dynamic energy of NVM ways was

reduced to 32.8% and 14.7% in the DWA. The dynamic energy consump-

tion of NVM write operations of the PTHCM occupies 74.3% and 48.8%

of the total dynamic energy consumption. For the PTHCM DWA, the por-

tion is reduced to 30.0% and 14.1%. The reduction trend is also similar to

that of the write access reduction. Therefore, the reduction in the dynamic

energy consumption mainly comes from the reduction of the write energy

consumption of NVM.

86

00.20.40.60.811.2

Normalized_Dynamic_Energy

Ba
se
lin

e_
To

ta
l

DW
A_

To
ta
l

PT
HC

M
_T
ot
al

PT
HC

M
_D

W
A_

To
ta
l

Ba
se
lin

e_
NV

M
_W

rit
e

DW
A_

NV
M
_W

rit
e

PT
HC

M
_N

VM
_W

rit
e

PT
HC

M
_D

W
A_

NV
M
_W

rit
e

Fi
gu

re
26

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
of

D
W

A
w

ith
ST

T-
R

A
M

.

87

00.20.40.60.811.2

Normalized_Dynamic_Energy

Ba
se
lin

e_
To

ta
l

DW
A_

To
ta
l

PT
HC

M
_T
ot
al

PT
HC

M
_D

W
A_

To
ta
l

Ba
se
lin

e_
NV

M
_W

rit
e

DW
A_

NV
M
_W

rit
e

PT
HC

M
_N

VM
_W

rit
e

PT
HC

M
_D

W
A_

NV
M
_W

rit
e

Fi
gu

re
27

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
of

D
W

A
w

ith
PC

M
.

88

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Normalized_Dynamic_Energy

N
oC
P

BS
AB

M
AW

P
BC
P

Fi
gu

re
28

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
co

m
pa

re
d

to
N

oC
P.

89

The normalized dynamic energy consumption of four schemes are pre-

sented in Figure 28. LCP saved 37.2%, 36.6%, and 34.1% of dynamic en-

ergy consumption over NoCP, BSABM, and AWCP, respectively. The trends

of the dynamic energy reduction are similar to those of the normalized NVM

write counts, while the variation is small. For MIX 12, the dynamic energy

consumption is reduced by nearly 60% compared to AWCP at maximum,

while the difference between AWCP and LCP is less than 1% for MIX 1.

The reason for this similarity is that the NVM write counts is a main con-

tributor to the total energy consumption; thus, reducing the number of NVM

write accesses to the LLC highly influenced the total dynamic energy con-

sumption.

5.4 Lifetime

We estimated the normalized lifetime as shown in Figure 29 and Figure 30.

There is a general consensus among researchers that PCM has a limited

lifetime. However, opinions are different about the write endurance of STT-

RAM. Many studies assume that its write endurance is high enough, and

thus they set aside the lifetime problem. On the other hand, another group

argues that the assumption is unrealistic [19, 56]. Since determining the

correctness of their claims is not the focus in the thesis, the results of both

types of NVM are presented.

90

-1-0
.500.511.522.53

Normalized_Lifetime(Log scale)

DW
A

PT
HC

M
PT

HC
M
_D

W
A

Fi
gu

re
29

:N
or

m
al

iz
ed

lif
et

im
e

of
D

W
A

w
ith

ST
T-

R
A

M
.

91

-0
.500.511.522.53

Normalized_Lifetime(Log scale)

DW
A

PT
HC

M
PT

HC
M
_D

W
A

Fi
gu

re
30

:N
or

m
al

iz
ed

lif
et

im
e

of
D

W
A

w
ith

PC
M

.

92

Notice that the results of two figures are presented in log scale because

the lifetime of some applications were extended significantly. Especially, the

write endurance of namd and lbm was increased by more than 300 times. For

these applications, the number of replaceable ways was almost always less

than the number of SRAM ways. Since NVM ways were rarely used in the

DWA, the lifetime soared up. The PTHCM DWA extended the lifetime by

10.9 times and 11.3 times for HCAs with STT-RAM and PCM, respectively.

To confirm that our proposal does not increase the miss rate signifi-

cantly, we present the miss rates of each HCA configuration compared to

the baseline hybrid cache in Figure 31 and Figure 32. The miss rate of the

DWA was increased only by 1.8% and 1.9% for HCAs with STT-RAM and

PCM, respectively, while the PTHCM decreased the miss rate by 1%. Since

the PTHCM did not improve the miss rate meaningfully, the miss rate of the

PTHCM DWA followed the miss rate of the DWA. Therefore, the miss rates

of the DWA and the PTHCM DWA are very similar and the PTHCM DWA

increased the miss rate by 1.9% and 1.9% on average which are the same

values of the DWA. As expected, this result confirms that our proposed al-

gorithm does not significantly increase the miss rate.

93

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss_Rate(%)

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
31

:M
is

s
ra

te
s

w
ith

va
ri

ou
s

H
C

A
co

nfi
ru

at
io

ns
w

ith
ST

T-
R

A
M

.

94

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss_Rate(%)

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
32

:M
is

s
ra

te
s

w
ith

va
ri

ou
s

D
W

A
co

nfi
gu

ra
tio

ns
w

ith
PC

M
.

95

5.5 Multi-core environment

We investigated several metrics for multi-core environments as shown in

Figure 33 and Figure 34. For multi core system simulation, we generated

ten workloads by mixing six applications as listed in Table 12. The two

benchmarks for low sensitivity are bwaves and calculix, while hmmer and

h264ref represent high sensitivity. Other two benchmarks such as wrf and

gromacs are selected as the middle range of sensitive programs.

First of all, a significant reduction in the write accesses was achieved

in both HCA configurations. The DWA removed 80.7% of write accesses

on average, while the average write reduction ratio of six benchmarks is

61.3% for HCA with STT-RAM in single-core environments. This result

means that our proposal has the extendibility for the multi-core system. In

case of HCA with PCM, the average reduction ratio of multi-core results is

59.4%, while each application removed 76.3% of write accesses on average.

Even though the results of HCA with PCM are less impressive compared to

HCA with STT-RAM, our proposal still removed a great deal of unneces-

sary NVM write operations. The results of dynamic energy consumption

are consistent with the trend of the write accesses to NVM. For HCAs with

STT-RAM and PCM, 55.5% and 33.7% of dynamic energy consumption

were saved, respectively. The lifetime was prolonged by 1.76 times and 1.35

times on average.

96

012345

0

0.
2

0.
4

0.
6

0.
81

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0

M
IX
_1
1

M
IX
_1
2

M
IX
_1
3

M
IX
_1
4

M
IX
_1
5

av
er
ag
e

HC
A

w
ith

 S
TT

-R
AM

W
rit
e_
Ac
ce
ss

Dy
na
m
ic_
En
er
gy

Lif
et
im
e

Fi
gu

re
33

:N
or

m
al

iz
ed

w
ri

te
ac

ce
ss

,d
yn

am
ic

en
er

gy
co

ns
um

pt
io

n,
an

d
lif

et
im

e
of

H
C

A
w

ith
ST

T-
R

A
M

w
ith

th
e

m
ul

ti-
co

re
w

or
kl

oa
ds

.

97

012345

0

0.
2

0.
4

0.
6

0.
81

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

 M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

HC
A

w
ith

 P
CM

W
rit
e_
Ac
ce
ss

Dy
na
m
ic_
En
er
gy

Lif
et
im
e

Fi
gu

re
34

:
N

or
m

al
iz

ed
w

ri
te

ac
ce

ss
,

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n,
an

d
lif

et
im

e
of

H
C

A
w

ith
PC

M
w

ith
th

e
m

ul
ti-

co
re

w
or

kl
oa

ds
.

98

To represent the performance improvement in a multi-core environ-

ment, three metrics usually are presented – nstruction per cycle (IPC) through-

put, weighted speedup, and fairness – which have their own purposes [57].

They usually are defined as follows:

IPC throughput =
n∑

i=1

IPCi (5.1)

Weighted Speedup =

n∑
i=1

IPCMP
i

IPCSP
i

(5.2)

Fairness =
n∑n

i=1
IPCSP

i
IPCMP

i

(5.3)

where IPCSP
i is the IPC of ith program under single program mode (SP)

and IPCMP
i is the IPC under multi-program mode (MP). IPC throughput is

simply and intuitively defined as the sum of the IPCs of the all applications.

The weighted speedup is proposed to equalize the contribution of programs

using normalized IPCs [58]. Luo et al. argued that harmonic mean is more

suitable to represent the fairness than weighted speedup [59].

99

02468

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

IPC_Throughput

N
oC
P

BS
AB

M
AW

CP
BC
P

Fi
gu

re
35

:I
PC

th
ro

ug
hp

ut
w

ith
fo

ur
sc

he
m

es
.

100

1.
52

2.
53

3.
54

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Weighted_Speedup

N
oC
P

BS
AB

M
AW

CP
BC
P

Fi
gu

re
36

:W
ei

gh
te

d
sp

ee
du

p
w

ith
fo

ur
sc

he
m

es
.

101

0.
5

0.
6

0.
7

0.
8

0.
91

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Fairness

N
oC
P

BS
AB

M
AW

CP
BC
P

Fi
gu

re
37

:F
ai

rn
es

s
w

ith
fo

ur
sc

he
m

es
.

102

Therefore, we plot three metrics in Figure 35, Figure 36, and Figure 37

for different schemes. LCP outperforms NoCP and AWCP by 5.0% and

14.3% in terms of IPC throughput as depicted in Figure 35. In addition,

our scheme improved the weighted speedup by 5.6% and 11.4% for NoCP

and AWCP as shown in Figure 36. Finally, Figure 37 compares the fairness

improvement for four schemes; the fairness of LCP is improved to 0.93,

while NoCP and AWCP have 0.89 and 0.83, respectively. The IPC through-

put improvement is maximized for MIX 3, whereas MIX 2 shows the best

weighted speedup improvement compared to AWCP. The fairness of the ap-

plications of MIX 12 is most increased.

103

Chapter 6

Conclusion

6.1 Conclusion

In the thesis, three proposals have been provided to compensate for identi-

fied weaknesses of NVM: write avoidance cache coherence protocol (WACC),

dynamic way adjusting scheme (DWA), and linefill-aware cache partition-

ing (LCP).

We proposed a novel cache coherence protocol to eliminate useless

write operations of LLC for a multi-core system. Based on the analysis of

the existing protocols, it was found that they generated useless write ac-

cesses to the LLC during the linefill operation. Thus, our protocol,which

is called WACC, modifies the cache states without storing the block data

during linefill. This write policy reduced the number of write access at-

tempts to the LLC, which led to improvements in the energy consumption

and lifetime. The simulation result showed that the reduction of maximum

energy consumption in WACC protocol is 27.1% and the lifetime extension

is 26.3% at maximum in STT-RAM based LLC.

104

The thesis introduced the concept of an NVM capacity management

policy for reducing the number of write accesses to NVM. This policy is

implemented by two methods called dynamic way adjusting scheme (DWA)

and linefill-aware cache partitioning (LCP). DWA dynamically resized the

number of active NVM ways to improve the dynamic energy consumption

and the lifetime of the components. To adjust the number of NVM ways,

the maximum stack distance is dynamically monitored and rearranging of

the replaceable NVM ways is regularly performed. The proposed policy re-

duced the number of write accesses to STT-RAM by about 77.6% and PCM

by 79.6%. The results also showed that HCAs with STT-RAM and PCM

achieves 30.0% reduction and 28.4% in dynamic energy consumption. The

lifetime of the two HCAs was prolonged by 10.9 times and 11.3 times over

a conventional hybrid cache system. Both HCAs can achieve these improve-

ments without any meaningful miss rate increment. While the portion of the

NVM linefill operations, over the write counts, is about 83.5% in our exper-

imental results, previous studies have not considered the linefill operations

to NVM in CMP environments during partitioning.

We also proposed LCP, to minimize the NVM write counts, in consid-

eration of the NVM linefill counts, as well as the NVM write hit counts. In

the thesis, three kinds of metrics were introduced to analyze the efficiency

of adjusting the cache partitioning; if a core gets or loses ways, how many

the miss counts, write counts, and NVM write counts are changed. A cache

partitioning algorithm for LCP is proposed to provide the best partitioning

through a two-step approach based on these metrics. We have shown that

105

the proposed LCP predicts the NVM write counts with less than a 5% er-

ror rate and reduces the dynamic energy consumption by 34.1% on average

with improved performance.

6.2 Future work

We will extend the findings of thesis in two ways. First, we plan to combine

our proposal with schemes for non-uniformity of write operations among

sets which are inspired that the write varies across different cache sets.

They separated the physical mapping and logical mapping of cache sets and

stored data between sets. The key idea is decent, but there is a pitfall to sim-

ply merge LCP with the inter-set variation wear leveling scheme (ISWLs).

Since the data is possible to be placed in a different set, they violate the stack

property which our scheme is based on. Keeping track of all recency posi-

tion of remapped blocks would not be a feasible method because it needs a

significant area overhead and consumes a lot of dynamic energy. Hence, we

are developing a new method to efficiently bond LCP and ISWLs.

In addition, we will consider combining data bypassing techniques to

the proposed scheme. Even though cache bypassing techniques are appar-

ently promising schemes for NVM, they cannot be directly applied to our

mechanism because the inclusion property is not maintained in most of their

schemes. We will investigate a new scheme that both keeps inclusion prop-

erty and utilizes the bypass schemes.

106

Bibliography

[1] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-

mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al., “A novel

nonvolatile memory with spin torque transfer magnetization switch-

ing: Spin-ram,” in Proceedings of IEEE International Electron Devices

Meeting, pp. 459–462, IEEE, 2005.

[2] H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,

M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceed-

ings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[3] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-

phase transitions of gete-sb2te3 pseudobinary amorphous thin films for

an optical disk memory,” Journal of Applied Physics, vol. 69, no. 5,

pp. 2849–2856, 1991.

[4] A. Driskill-Smith, S. Watts, D. Apalkov, D. Druist, X. Tang, Z. Diao,

X. Luo, A. Ong, V. Nikitin, and E. Chen, “Non-volatile spin-transfer

torque ram (stt-ram): An analysis of chip data, thermal stability and

scalability,” in Proceedings of IEEE International Memory Workshop,

pp. 1–3, IEEE, 2010.

[5] T. Sumi, Y. Judai, K. Hirano, T. Ito, T. Mikawa, M. Takeo, M. Azuma,

S.-i. Hayashi, Y. Uemoto, K. Arita, et al., “Ferroelectric nonvolatile

memory technology and its applications,” Japanese Journal of Applied

Physics, vol. 35, no. 2S, p. 1516, 1996.

[6] H. Akinaga and H. Shima, “Resistive random access memory (reram)

based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12,

pp. 2237–2251, 2010.

[7] J. H. Choi, J. W. Kwak, and C. S. Jhon, “Write avoidance cache

coherence protocol for non-volatile memory as last-level cache in

107

chip-multiprocessor,” IEICE Transactions on Information and Sys-

tems, vol. 97, no. 8, pp. 2166–2169, 2014.

[8] J. H. Choi and G. H. Park, “Demand-aware nvm capacity management

policy for hybrid cache architecture,” Computer Journal, advance on-

line publication, 2015, doi:10.1093/comjnl/bxv103.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5

simulator,” ACM SIGARCH Computer Architecture News, vol. 39,

no. 2, pp. 1–7, 2011.

[10] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and

T. Pho, “Macsim: A cpu-gpu heterogeneous simulation framework

user guide,” Georgia Institute of Technology, 2012.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark

suite: Characterization and architectural implications,” in Proceedings

of International Conference on Parallel Architectures and Compilation

Techniques, pp. 72–81, ACM, 2008.

[12] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[13] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:

A tool to model large caches,” HP Laboratories, pp. 22–31, 2009.

[14] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level per-

formance, energy, and area model for emerging nonvolatile memory,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[15] S. Lee, K. Kang, and C.-M. Kyung, “Runtime thermal management

for 3-d chip-multiprocessors with hybrid sram/mram l2 cache,” IEEE

Transactions on Very Large Scale Integration Systems, vol. 23, no. 3,

pp. 520–533, 2014.

108

[16] X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, “Power and perfor-

mance of read-write aware hybrid caches with non-volatile memories,”

in Proceedings of International Conference on Design, Automation

and Test in Europe, pp. 737–742, IEEE, 2009.

[17] J. Li, L. Shi, C. J. Xue, C. Yang, and Y. Xu, “Exploiting set-level write

non-uniformity for energy-efficient nvm-based hybrid cache,” in Pro-

ceedings of International Symposium on Embedded Systems for Real-

Time Multimedia, pp. 19–28, IEEE, 2011.

[18] B. Quan, T. Zhang, T. Chen, and J. Wu, “Prediction table based man-

agement policy for stt-ram and sram hybrid cache,” in Proceedings of

International Conference on Computing and Convergence Technology,

pp. 1092–1097, IEEE, 2012.

[19] J. Ahn, S. Yoo, and K. Choi, “Write intensity prediction for energy-

efficient non-volatile caches,” in Proceedings of International Sympo-

sium on Low Power Electronics and Design, pp. 223–228, IEEE, 2013.

[20] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hy-

brid cache architecture with disparate memory technologies,” in ACM

SIGARCH Computer Architecture News, vol. 37, pp. 34–45, ACM,

2009.

[21] J. H. Choi, J. W. Kwak, S. T. Jhang, and C. S. Jhon, “Adaptive cache

compression for non-volatile memories in embedded system,” in Pro-

ceedings of International Conference on Research in Adaptive and

Convergent Systems, pp. 52–57, ACM, 2014.

[22] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and

performance-efficient design of hybrid cache architectures through

adaptive line replacement,” in Proceedings of International Sympo-

sium on Low Power Electronics and Design, pp. 79–84, IEEE, 2011.

[23] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i 2 wap: Improving

non-volatile cache lifetime by reducing inter-and intra-set write vari-

109

ations,” in Proceedings of International Symposium on High Perfor-

mance Computer Architecture, pp. 234–245, IEEE, 2013.

[24] Y.-T. Chen, J. Cong, H. Huang, C. Liu, R. Prabhakar, and G. Reinman,

“Static and dynamic co-optimizations for blocks mapping in hybrid

caches,” in Proceedings of International Symposium on Low Power

Electronics and Design, pp. 237–242, ACM, 2012.

[25] Y. Li, Y. Chen, and A. K. Jones, “A software approach for combat-

ing asymmetries of non-volatile memories,” in Proceedings of Inter-

national Symposium on Low Power Electronics and Design, pp. 191–

196, ACM, 2012.

[26] Q. Li, M. Zhao, C. J. Xue, and Y. He, “Compiler-assisted preferred

caching for embedded systems with stt-ram based hybrid cache,” ACM

SIGPLAN Notices, vol. 47, no. 5, pp. 109–118, 2012.

[27] K. Qiu, M. Zhao, C. Fu, L. Shi, and C. J. Xue, “Migration-aware loop

retiming for stt-ram based hybrid cache for embedded systems,” in

Proceedings of International Conference on Application-Specific Sys-

tems, Architectures and Processors, pp. 83–86, IEEE, 2013.

[28] Y. Li, Y. Zhang, H. Li, Y. Chen, and A. K. Jones, “C1c: A configurable,

compiler-guided stt-ram l1 cache,” ACM Transactions on Architecture

and Code Optimization, vol. 10, no. 4, p. 52, 2013.

[29] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-

formance main memory system using phase-change memory technol-

ogy,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,

pp. 24–33, 2009.

[30] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montaño, “Im-

proving read performance of phase change memories via write cancel-

lation and write pausing,” in Proceedings of International Symposium

on High Performance Computer Architecture, pp. 1–11, IEEE, 2010.

110

[31] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling

efficient and scalable hybrid memories using fine-granularity dram

cache management,” Computer Architecture Letters, vol. 11, no. 2,

pp. 61–64, 2012.

[32] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,

“Row buffer locality aware caching policies for hybrid memories,”

in Proceedings of International Conference on Computer Design,

pp. 337–344, IEEE, 2012.

[33] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, “Writeback-

aware partitioning and replacement for last-level caches in phase

change main memory systems,” ACM Transactions on Architecture

and Code Optimization, vol. 8, no. 4, p. 53, 2012.

[34] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram

main memory system,” in Proceedings of Internaional Conference on

Design Automation Conference, pp. 664–669, IEEE, 2009.

[35] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and

D. Mossé, “Increasing pcm main memory lifetime,” in Proceedings of

Internaional Conference on Design, Automation and Test in Europe,

pp. 914–919, IEEE, 2010.

[36] W. Zhang and T. Li, “Exploring phase change memory and 3d die-

stacking for power/thermal friendly, fast and durable memory archi-

tectures,” in Proceedings of International Conference on Parallel Ar-

chitectures and Compilation Techniques, pp. 101–112, IEEE, 2009.

[37] H. Seok, Y. Park, and K. H. Park, “Migration based page caching al-

gorithm for a hybrid main memory of dram and pram,” in Applied

Computing, International Symposium on, pp. 595–599, ACM, 2011.

[38] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of

shared cache memory,” The Journal of Supercomputing, vol. 28, no. 1,

pp. 7–26, 2004.

111

[39] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared

caches,” in Microarchitecture, IEEE/ACM International Symposium

on, pp. 423–432, IEEE Computer Society, 2006.

[40] A. Samih, Y. Solihin, and A. Krishna, “Evaluating placement poli-

cies for managing capacity sharing in cmp architectures with private

caches,” ACM Transactions on Architecture and Code Optimization,

vol. 8, no. 3, p. 15, 2011.

[41] C. CaBcaval and D. A. Padua, “Estimating cache misses and locality

using stack distances,” in Proceedings of International Conference on

Supercomputing, pp. 150–159, ACM, 2003.

[42] Y. Liu and W. Zhang, “Exploiting stack distance to estimate worst-case

data cache performance,” in Proceedings of International Symposium

on Applied Computing, pp. 1979–1983, ACM, 2009.

[43] “The intel 64 and ia-32 architectures software developer’s manual.”

http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-system-

programming-manual-325384.pdf. accessed 3-Mar-2014.

[44] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory con-

sistency and cache coherence,” Synthesis Lectures on Computer Archi-

tecture, vol. 6, no. 3, pp. 1–212, 2011.

[45] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation

techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,

pp. 78–117, 1970.

[46] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for

mlp-aware cache replacement,” ACM SIGARCH Computer Architec-

ture News, vol. 34, no. 2, pp. 167–178, 2006.

[47] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive place-

ment and migration policy for an stt-ram-based hybrid cache,”

112

[48] J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-

tative approach. 2011.

[49] J. Li, C. J. Xue, and Y. Xu, “Stt-ram based energy-efficiency hybrid

cache for cmps,” in Proceedings of International Conference on VLSI

and System-on-Chip, pp. 31–36, IEEE, 2011.

[50] S.-M. Syu, Y.-H. Shao, and I.-C. Lin, “High-endurance hybrid cache

design in cmp architecture with cache partitioning and access-aware

policy,” in Proceedings of International Conference on Great Lakes

Symposium on VLSI, pp. 19–24, ACM, 2013.

[51] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-

ram using early write termination,” in Proceedings of International

Conference on Computer-Aided Design-Digest of Technical Papers,

pp. 264–268, IEEE, 2009.

[52] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture

of the 3d stacked mram l2 cache for cmps,” in Proceedings of In-

ternational Symposium on High Performance Computer Architecture,

pp. 239–249, IEEE, 2009.

[53] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,

“Pinpointing representative portions of large intel® itanium® pro-

grams with dynamic instrumentation,” in Proceedings of International

Symposium on Microarchitecture, pp. 81–92, IEEE Computer Society,

2004.

[54] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-

gram analysis tools with dynamic instrumentation,” in ACM Sigplan

Notices, vol. 40, pp. 190–200, ACM, 2005.

[55] “Arm cortex-a57 processor.” ”http://www.

arm.com/products/processors/cortex-a/

cortex-a57-processor.php” (accessed 1-Sep-2015).

113

http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php

[56] J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun, and H. H. Li, “A co-

herent hybrid sram and stt-ram l1 cache architecture for shared mem-

ory multicores.,” in Proceeding of Asia and South Pacific Design Au-

tomation Conference, pp. 610–615, IEEE, 2014.

[57] L. Eeckhout, “Computer architecture performance evaluation meth-

ods,” Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–

145, 2010.

[58] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-

taneous mutlithreading processor,” ACM SIGPLAN Notices, vol. 35,

no. 11, pp. 234–244, 2000.

[59] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and

fairness in smt processors.,” in Performance Analysis of Systems and

Software, International Symposium on, pp. 164–171, IEEE, 2001.

114

초록

비휘발성메모리기반의최종레벨캐시를위한쓰기

회피기법

비휘발성메모리는높은집적성과낮은정적전력소모량이라는특성으로

인해최종레벨캐시로사용되기에유력한기술로떠오르고있다.그러나

비휘발성메모리는쓰기작업을위해많은전력과시간을소모하고,제한

된 수명을 가진다는 단점이 있기 때문에 이를 보완하기 위한 방법이 없

다면최종레벨캐시로사용되기어렵다.본논문에서비휘발성메모리의

단점을보완하기위해쓰기회피기법들을제시하였다.먼저,멀티코어환

경에서쓰기횟수를줄이기위한캐시일관성정책(Write avoidance cache

coherence protocol)을제시하였고,이종캐시구조(Hybrid cache architec-

ture)에서쓰기회수를최소화하기위한 2가지기법을제안하였다.첫번째

기법은 NVM way을 동적으로 조정하는 방식이며(Dynamic way adjust-

ing), 다른 기법은 linefill을 고려한 캐시 분할 기법(Linefill-aware cache

partitioning)이다.

우선본논문에서는쓰기횟수를줄이기위한새로운캐시일관성정

책을 제안한다. 새로운 정책을 사용하는 시스템에서는 상위 레벨 캐시에

동일한데이터가있는경우,최종레벨캐시에서는태그정보만저장하고

데이터정보는기록하지않는다.따라서상위레벨캐시에서쓰기수정이

일어났을때,불필요한쓰기를줄일수있게된다.

115

다음으로 이종 캐시 구조 환경하에서 비휘발성 메모리의 크기를 제

한하여쓰기횟수를줄이는기법을제안한다.이종캐시구조는비휘발성

메모리의 일부를 휘발성 메모리인 SRAM로 교체하여 두 가지 종류의 메

모리가하나의캐시에존재하는구조이다.통계적으로비휘발성메모리의

way의비율이많아질수록전체쓰기작업에서비휘발성메모리의쓰기작

업의비율또한커지게된다.그런데모든프로그램이항상전체메모리를

요구하는것은아니다.프로그램에따라서또는실행시간에따라서메모

리의일부만을요구할때도있다.그러한경우에는필요한만큼만비휘발

성 메모리를 사용하도록 메모리의 크기를 제한한다면 성능의 저하 없이

비휘발성메모리의쓰기횟수를줄일수있다.

또한, 본 논문에서는 이종 캐시 구조를 사용하는 멀티 코어 시스템

에서 비휘발성 메모리의 쓰기 회수를 최소화하는 캐시 분할(Cache parti-

tioning)을제안한다.기존의캐시분할방식들은휘발성메모리를사용한

동종 캐시 구조를 사용하기 때문에, 각 코어에 할당할 way의 수만 계산

하였다.그러나이종캐시구조에서는각코어가사용할전체 way의수뿐

만 아니라 비휘발성 메모리 way의 수와 휘발성 메모리 way의 수를 따로

구해야 한다. 그렇지 않으면 휘발성 메모리 way가 비효율적으로 코어에

분배되어, 전체적인 비휘발성 메모리의 쓰기 회수가 최적화되지 않는다.

따라서,본논문에서는일정한주기마다캐시분할방식을바꾸어가면서

비휘발성메모리의쓰기회수를최소화하는캐시분할구성을찾아낸다.

실험을 수행한 결과, Write avoidance cache coherence protocol을 적

용하게 되면 전력 소모량은 13.2%가 감소하며, Dynamic way adjusting

와 Linefill-aware cache partitioning을 적용하는 경우 각각 전력 소모량이

26.9%와 37.2%감소하였다.

116

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Write Avoidance Schemes for
Non-Volatile Memory based

Last-Level Cache

비휘발성메모리기반의최종레벨캐시를위한

쓰기회피기법

2016년 2월

서울대학교대학원

전기·컴퓨터공학부

최주희

ABSTRACT

Non-volatile memory (NVM) is considered to be a promising memory tech-

nology for last-level caches (LLC) due to its low leakage of power and high

storage density. However, NVM has some drawbacks including high dy-

namic energy when modifying NVM cells, long latency for write operations,

and limited write endurance. To overcome these problems, the thesis focuses

on two approaches: cache coherence and NVM capacity management policy

for hybrid cache architecture (HCA).

First, we review existing cache coherence protocols under the condi-

tion of NVM-based LLCs. Our analysis reveals that the LLCs perform un-

necessary write operations because legacy protocols have very pay little at-

tention to reducing the number of write accesses to the LLC. Therefore, a

write avoidance cache coherence protocol (WACC) is proposed to reduce

the number of write operations to the LLC.

In addition, novel HCA schemes are proposed to efficiently utilize

SRAM in the thesis. Previous studies on HCA have concentrated on de-

tecting write-intensive blocks and placing them into the SRAM ways. How-

ever, unlike other studies, a dynamic way adjusting algorithm (DWA) and a

linefill-aware cache partitioning (LCP) calculate the optimal size of NVM

ways and SRAM ways in order to minimize the NVM write counts and as-

signing the corresponding number of NVM ways and SRAM ways to cores.

i

The simulation results show that WACC achieves a 13.2% reduction in

the dynamic energy consumption. For HCA schemes, the dynamic energy

consumption of DWA and LCP is reduced by 26.9% and 37.2%, respec-

tively.

Index Terms : Cache memories, Emerging technologies, Heterogeneous

(hybrid) memory systems , Low-power design, Cache coherence, Cache par-

titioning

Student Number : 2012-30234

ii

CONTENTS

I. Introduction . 1

1.1 Purpose of the thesis . 1

1.2 Background . 3

1.3 Motivation . 4

1.4 Contributions . 5

1.5 Organization of the thesis 8

II. Related work . 9

2.1 Hybrid cache architecture 9

2.1.1 Write intensity prediction studies 11

2.1.2 Static approaches 11

2.1.3 Hybrid cache architecture for main memory 12

2.2 Cache partitioning schemes 14

III. Write avoidance cache coherence protocol 15

iii

3.1 Limitation of existing cache coherence protocol 15

3.2 Write avoidance cache coherence protocol 19

IV. NVM capacity management policy for hybrid cache archi-

tecture . 22

4.1 NVM capacity management policy 22

4.1.1 Concept of NVM capacity management policy . . . 23

4.1.2 Feasibility of NVM capacity management policy . . 27

4.2 Dynamic way adjusting . 37

4.2.1 Maximum stack distance 37

4.2.2 Adjusting the number of NVM ways 41

4.2.3 Algorithm of dynamic way adjusting 42

4.3 Cache partitioning for hybrid cache architecture 46

4.3.1 Linefill-aware cache partitioning 49

4.3.2 Metrics for cache partitioning 50

4.3.3 Algorithm for cache partitioning 59

4.4 Overhead of NVM capacity management policy 68

iv

V. Experimental results . 71

5.1 Experimental environment 71

5.2 Write access to NVM . 78

5.3 Dynamic energy consumption 85

5.4 Lifetime . 90

5.5 Multi-core environment . 96

VI. Conclusion . 104

6.1 Conclusion . 104

6.2 Future work . 106

References . 107

Abstract in Korean . 115

v

List of Figures

Figure 1. Basic structure of hybrid cache architecture (HCA). . . 10

Figure 2. Conventional cache coherence protocol. 17

Figure 3. Write avoidance cache coherence protocol (WACC). . 18

Figure 4. State transition diagrams for WACC. 20

Figure 5. Example for NVM capacity management policy. 26

Figure 6. Miss rates with various number of NVM ways. 32

Figure 7. Normalized total write counts of HCA. 34

Figure 8. Normalized total write counts of NVM. 36

Figure 9. Stack distance histogram. 38

Figure 10. Overall structure of dynamic way adjusting (DWA). . . 40

Figure 11. Example of way shifting. 44

Figure 12. Algorithm for DWA. 45

Figure 13. Examples of cache partitioning for HCA. 48

Figure 14. Example of stack property. 51

vi

Figure 15. Examples of miss counts change (∆M) and write counts

change (∆W). 56

Figure 16. Examples of NVM write counts change (∆NV MW). . . 59

Figure 17. Algorithm of linefill-aware cache partitioning (LCP). . 60

Figure 18. Overall structure of LCP. 63

Figure 19. Error rates for LCP. 65

Figure 20. Miss rates for LCP. 67

Figure 21. Normalized write counts of WACC. 77

Figure 22. Normalized NVM write counts of DWA with STT-RAM. 80

Figure 23. Normalized NVM write counts of DWA with PCM. . . 81

Figure 24. Normalized NVM write counts for LCP. 82

Figure 25. Normalized dynamic energy consumption and lifetime

of WACC. 84

Figure 26. Normalized dynamic energy consumption of DWA with

STT-RAM. 87

Figure 27. Normalized dynamic energy consumption of DWA with

PCM. 88

Figure 28. Normalized dynamic energy consumption for LCP. . . 89

vii

Figure 29. Normalized lifetime of DWA with STT-RAM. 91

Figure 30. Normalized lifetime of DWA with PCM. 92

Figure 31. Miss rates with various DWA configurations with STT-

RAM. 94

Figure 32. Miss rates with various DWA configurations with PCM. 95

Figure 33. DWA with STT-RAM in multi-core environment. . . . 97

Figure 34. DWA with PCM in multi-core environment. 98

Figure 35. IPC throughput for LCP. 100

Figure 36. Weighted speedup for LCP. 101

Figure 37. Fairness for LCP. 102

viii

List of Tables

Table 1. Comparison of area, latency, and energy 4

Table 2. Summary of proposed schemes. 8

Table 3. States and descriptions for write avoidance cache coher-

ence protocol (WACC). 19

Table 4. Signals/actions and descriptions for WACC. 21

Table 5. Notation descriptions for metrics of LCP. 50

Table 6. Notation descriptions for algorithms of LCP. 61

Table 7. Storage overhead. 69

Table 8. Timing overhead. 70

Table 9. Processor configurations. 73

Table 10.Write counts per kilo-instructions for LCP. 75

Table 11.Multi-core workloads for LCP. 75

Table 12.Multi-core workloads for DWA. 76

ix

Chapter 1

Introduction

1.1 Purpose of the thesis

The purpose of the thesis is to reduce the write counts of LLC to overcome

drawbacks of NVM. To this end, three schemes are proposed in the thesis:

write avoidance cache coherence protocol (WACC), dynamic way adjusting

scheme (DWA), and linefill-aware cache partitioning (LCP).

Non-volatile memory (NVM) has been investigated as a resource to

replace volatile memories such as SRAM or DRAM since their tendency to

waste energy has grown to a substantial portion of total energy consumption

[1, 2, 3, 4, 5, 6]. With conventional memory, static power is dissipated by

transistors even when they make no switching. On the contrary, NVM adopts

its own material as memory storage, instead of an electric charge, which

limits leakage power dissipation.

However, there are some drawbacks to be considered when employing

NVM as last level cache (LLC) directly: inefficient write operations and

limited write endurance. Changing values in NVM requires long operating

time and high level current. Thus, write operations generate long latency and

1

high dynamic energy consumption in the NVM cache system. Moreover,

an NVM cell is worn out after a limited number of writing. Therefore, the

lifetime of the NVM based cache is shorter than that of the SRAM cache

due to the write limitation.

To overcome these drawbacks, the thesis introduces a new cache co-

herence protocol to reduce the write operations of the LLC [7]. The block

data of the LLC is updated only if the cache block is written-back from a

private cache, which leads to avoiding useless write operations in the LLC.

In addition, it is found that the previous researchers have overlooked

that the capacity of NVM is also one of important factors affecting the

number of write accesses to NVM. This discovery leads to the necessity

of NVM capacity management policy such that the size of NVM is dynam-

ically adjusted according to the demand of applications. To implement the

idea, we propose a dynamic way adjusting (DWA) algorithm which dynam-

ically monitors the optimal number of NVM ways using the stack property

and disabling the unnecessary NVM ways [8].

Finally, the thesis proposes a cache partitioning scheme called linefill-

aware cache partitioning (LCP) mechanism, taking into account the NVM

linefill counts as well as the NVM write hit counts during cache partition-

ing. Most previous works have concentrated on managing write-intensive

blocks by allocation these blocks to SRAM to reduce the number of the

write operations to NVM. However, those schemes have not considered that

reducing the number of linefill operations to NVM is important to reduce the

2

total number of write operations to NVM. To overcome this weakness, an

algorithm for cache partitioning of LCP considers the NVM linefill counts.

The proposed schemes are simulated with the gem5 simulator [9] for

WACC and macsim [10] for DWA and LCP. We used the PARSEC bench-

mark suite [11] for evaluating WACC and SPEC CINT2006 and SPEC CFP2006

of the SPEC CPU2006 benchmark suite [12] for DWA and LCP. The exper-

itmental results show that WACC achieves a 13.2% reduction in the dynamic

energy consumption. For HCA schemes, the dynamic energy consumption

of DWA and LCP are reduced by 26.9% and 37.2%, respectively.

1.2 Background

According to the material used in NVM, several kinds of NVM [1, 2, 3, 4,

5, 6] have been introduced such as spin-torque transfer RAM (STT-RAM),

phase change memory (PCM), and ferroelectric RAM (FeRAM). Even though

their compositions are different, all NVM can be considered similar in terms

of cache architecture. First, they sustain their information without electric

power; this is the reason why they called non-volatile memory. Their main

advantage comes from their characteristics of extremely low leakage power

consumption. In addition, their density is much higher than that of SRAM

even that of DRAM for some kinds of NVM. Table 1 shows comparison

of parameters of SRAM and STT-RAM obtained from the modified CACTI

[13, 14] in previous work [15].

3

Table 1: Comparison of area, latency, and energy [15].

Parameters SRAM STT-RAM PCM

Cache Size 128KB 512KB 2MB

Area(mm2) 3.262 3.30 3.85

Read Latency(ns) 2.252 2.318 4.636

Write Latency(ns) 2.264 11.024 23.180

Read Energy(nJ) 0.895 0.858 1.732

Write Energy(nJ) 0.797 4.997 3.475

Static power(80 ◦C)(W) 1.131 0.016 0.031

Write Endurance 1016 4 * 1012 109

1.3 Motivation

The thesis focuses on two approaches such as cache coherence protocol and

NVM capacity management policy for hybrid cache architecture (HCA).

For cache coherence protocol, the existing studies have not concentrated

on reducing the write operations because it does not matter in the SRAM-

based LLC. Since there is no drawback of write operation compared to read

operation, the number of write access is not taken into account. However,

reducing the write operations is an important issue in NVM-based LLC.

The dynamic energy consumption largely depends on the write operations,

because the dynamic energy of write operation is greater than that of read

operation. Moreover, the lifetime is inversely proportional to the number

of write access. Therefore, a new protocol for NVM to minimize the write

operations is needed.

4

In addition, it is found that there is a relationship between the capacity

of NVM in HCA and the write counts of NVM. The analysis implies the

necessity of efficient NVM capacity management policy: the HCA dynam-

ically manages the capacity of NVM according to the demand of applica-

tions. As the first step of realizing this idea, we use the number of active

NVM ways in a set as the measure of the capacity of NVM. The capacity of

NVM is expressed by the number of currently available NVM ways and the

demand of NVM is converted to the requested number of NVM ways.

1.4 Contributions

Firstly, the thesis introduces a new cache coherence protocol for NVM to

decrease the number of write access to the LLC [7]. In our protocol, the

data array of the LLC is not updated during the linefill operation, while the

tag array is changed to maintain the inclusion property. The data array is

modified only when the cache block is written-back from the private cache.

Our protocol reduces the number of write access to the LLC; thus, the dy-

namic energy consumption is reduced and the lifetime is enhanced in our

protocol.

• We investigate the existing cache coherence protocol for NVM and

reveal the drawback of them.

• We propose a cache coherence protocol for NVM, which avoids un-

necessary write operation in the LLC based on the analysis.

5

• We present experimental results of a write avoidance coherence pro-

tocol with number of write accesses to LLC, dynamic energy con-

sumption, and lifetime.

In addition, hybrid cache architecture (HCA) has been proposed to

overcome these limitations of NVM [16, 17, 18, 19, 20]. Most previous

works have concentrated on managing write-intensive blocks by storing

these blocks to SRAM to reduce the number of the write operations to NVM.

However, we show the concept of NVM capacity management policy for re-

ducing the number of write accesses to NVM and propose a dynamic way

adjusting algorithm [8]. It dynamically resizes the number of active NVM

ways to improve the dynamic energy consumption and the lifetime. To ad-

just the number of NVM ways, the maximum stack distance is monitored

and rearranging the replaceable NVM ways is regularly performed.

• We investigate the relationship between the number of write opera-

tions and the capacity of NVM in HCA by performing both analysis

based on the devised analytical model and experiments.

• We find out that decreasing the number of active NVM ways can be

beneficial to reduce the number of write accesses to NVM ways, only

if it does not increase the miss rate significantly.

• We propose a dynamic way adjusting algorithm (DWA) to find the

optimal number of NVM ways and dynamically adjust active NVM

ways without physical change of the cache.

6

• We conduct a simulation to evaluate the effectiveness of the proposed

policy in terms of the reduction in the write counts of NVM, the decre-

ment of the dynamic energy consumption, the lifetime extension, and

the variation of the miss rate.

While previous studies focus on reducing NVM write counts due to

the write-intensive blocks, they have not considered the NVM write oper-

ation is also occurred by linefill operation to NVM. Reducing the NVM

write counts due to linefill operations are also very important for minimiz-

ing overall NVM write counts in chip-multiprocessor (CMP) environments.

The thesis proposes a cache partitioning scheme called a linefill-aware cache

partitioning (LCP) mechanism, taking into account the NVM linefill counts

as well as the NVM write hit counts during cache partitioning.

• We propose a linefill-aware cache partitioning scheme (LCP) for HCA,

which takes into account the reduction in the number of linefill oper-

ations to NVM to minimize the NVM write counts.

• We devise new metrics for LCP: write counts change (∆W) and NVM

write counts change (∆NV MW), which are based on the miss counts

change (∆M).

• We propose an algorithm to make partitions by predicting metrics ac-

cording to the change of the number of allocated ways for each core.

7

Table 2: Summary of proposed schemes.

Scheme Aim Description

Write avoidance
cache coherence
protocol (WACC)

Reduction in the number
of write access to LLC

The data array is modi-
fied only when the cache
block is written-back
from the private cache.

Dynamic way adjust-
ing algorithm (DWA)

Reduction in the number
of write access to NVM

The number of active
NVM ways is dynami-
cally resized.

Linefill-aware cache
partitioning (LCP)

Reduction in the number
of write access to NVM
and increase in the hit
rate of LLC

The NVM linefill counts
is taken into account as
well as the NVM write
hit counts during cache
partitioning.

• We present experimental results of LCP with the prediction accuracy,

number of write accesses to NVM, miss rates, performance for mul-

ticore workloads, and dynamic energy consumption.

The schemes in the thesis are summarized in Table 2.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides related

work about NVM. In Chapter 3, a new cache coherence protocol for NVM

called a write avoidance cache coherence protocol is proposed. Chapter 4

describes NVM capacity management policy for HCA. The conclusion is

given in Chapter 5.

8

Chapter 2

Related work

2.1 Hybrid cache architecture

Researchers have merged two types of memory into a single cache sys-

tem, which is called HCA, to reduce the number of write access to NVM

to alleviate the shortcomings of it especially related to a write operation

[16, 17, 18, 19, 21]. As described in above section, the shortcomings of

NVM come from write operation of NVM. In other terms, the number of

write access to NVM is the most important factor for both the dynamic

energy consumption and the lifetime. Since the write energy consumption

of NVM is much larger than read energy of NVM or dynamic energy of

SRAM, the write energy consumption of NVM is dominant for the total dy-

namic energy consumption. Furthermore, the lifetime is proportional to the

number of write access to NVM cells. Therefore, reducing the number of

write access to NVM is one of the most important methods to mitigate the

drawbacks of NVM. For this reason, a small number of SRAM ways are

used to accommodate heavily written blocks in the hybrid cache system as

depicted in Figure 1.

9

Data ArrayTag Array

 S ways N ways S ways N ways

T ways T ways

SRAM way NVM way

Figure 1: Basic structure of hybrid cache architecture (HCA).

First, swapping or migration schemes between SRAM and NVM in a

hybrid cache system were proposed. Wi et al. introduced the region based

cache architecture in [16]. They divided a single level of cache into two re-

gions: read region which consists of STT-RAM and write region which con-

sists of SRAM. If a block is predicted as write-intensive, the block is placed

or swapped to the write region. Besides the schemes, merging set schemes

were proposed [17] and [18]. The authors noticed that non-uniformity of

write operations among sets. While some sets are frequently utilized, other

sets receive relatively small requests. Therefore, write-intensive blocks in

the highly utilized sets are forwarded to the idle sets. In addition, a predic-

tor was equipped to find the correlation between write intensive blocks and

addresses of trigger instructions [19]. In summary, existing policies focused

on placing write-intensive blocks into the SRAM.

10

2.1.1 Write intensity prediction studies

Almost all papers on HCA have focused on devising methods to identify

write-intensive blocks and place them to SRAM ways. Wi et al. suggested

the region based cache architecture in [16]. They separated a single level of

cache into two regions: read and write regions. The read region is prepared

for non-write-intensive blocks composed of NVM, while the write region is

composed of SRAM for write-intensive blocks. When a block is considered

as write-intensive, the block is migrated or placed to the write region. On top

of these schemes, combining set schemes were proposed [17, 22, 23]. This

insight came from the fact that the write operations among sets are not uni-

formly distributed. While some sets receive relatively small write requests,

other sets are highly utilized. To take advantage of these characteristics,

some blocks in the frequently utilized sets are moved to the other sets. To

elaborate the prediction algorithm, Quan et al. introduced a prediction table

[18] containing the history of the write requests of the LLC. Another pre-

diction table is proposed to store the value of combining addresses of the

blocks and program counter of instructions [19]. What distinguishes these

works from our scheme is that they have not focused on the CMP environ-

ment.

2.1.2 Static approaches

Various methods utilizing the compiler have been proposed. Chen et al. [24]

proposed a scheme in which the compiler provides hints to find the write-

11

intensive block and the hardware is modified to correct the hints. Software

dispatch was presented to detect write reuse patterns in [25]. In addition, the

migration-intensive blocks are loaded into the SRAM region with the com-

piler assistance in [26] to mitigate the burden of migration blocks. Moreover,

a loop retiming framework was proposed for loops with intensive data array

operations to relieve the migration overhead [27]. Another study improves

the read performance and energy efficiency guided by the analysis of read

bottlenecks [28]. They focused on the recompilation or profiling schemes,

while our proposed mechanism modifies the hardware structure and logics.

2.1.3 Hybrid cache architecture for main memory

As the write endurance problem has become important for the main mem-

ory, which is based on NVM, many methods have been proposed to prolong

its lifetime. They have employed DRAM as a cache for NVM. Qureshi et

al. firstly suggested the concept of a small DRAM cache to overcome the

latency gap between DRAM and PCM [29]. The mechanism exploits both

the short latency of DRAM and the large capacity of PCM by preventing un-

necessary access to PCM. They also have shown advanced approaches such

as write cancellation and write pausing policies [30] to mitigate the long

read access time due to the long write latency. Meanwhile, a scheme pro-

posed in Meza et al. [31] stores the metadata for the last accessed rows into

a small buffer to manage the difficulty of fine-granularity DRAM caches. It

is found that row buffer misses generate long latencies, and a policy is de-

vised to exploit this observation [32]. They predict the data incurring a row

12

buffer miss and store it into a DRAM buffer by investigating the row buffer

miss counts in PCM. Writeback-aware partitioning offers a new perspective

on cache partitioning, taking into account the writeback information [33]. It

is innovative in regard to reducing the amount of write access to the PCM

main memory by managing the cache partition.

Another approach for the hybrid cache architecture is based on OS

support. For PDRAM [34], the researchers introduced a hybrid solution re-

lated to software as well as hardware to extend the lifetime of the PCM

pages. They modified the OS-level page manager and added a small device

to contain the number of write requests for PCM at a page level granularity.

Ferreira et al. [35] also inserted a DRAM buffer to decrease the number of

read and write requests to PCM via page partitioning. Zhang and Li [36] im-

proved the write endurance and reduced write latency of PCM by exploiting

the workload characteristics as an aspect of an OS level paging. New page

migration schemes were proposed to track read-bound access NVM pages

[37].

All schemes described above are based on the physical features of

DRAM or characteristics of OS, thus they are inadequate applied to the

SRAM and NVM based LLC, which is the target of the thesis.

13

2.2 Cache partitioning schemes

To improve the cache efficiency, several methods using stack property have

been proposed. The number of cache hit counts of LRU position is mon-

itored to calculate the cache utility of each application or core. Based on

the information, the cache is partitioned to minimize the number of total

cache misses. Suh et al. [38] dynamically partitioned the LLC and assigned

the guided number of cache ways to each application. Even though it suc-

cessfully raised the cache utility, there was a problem in that the utility in-

formation of an application was affected by other applications. To avoid

this drawback, Qureshi and Patt [39] introduced a separate utility monitor,

which counts the number of hits without interference by other applications.

An adaptive placement policy [40] was proposed to load a new block into

the local or remote cache for enhancing the efficiency of cache based on

stack distance profiling. In addition, compliers used the information to pre-

dict the memory behavior of the application [41]. For a real-time system,

Liu and Zhang [42] suggested the compilation technique, which improves

the worst case data cache performance using the stack distance approach.

Most papers on cache partitioning assumed that the LLC consists of SRAM

only, hence they do not consider the NVM write counts in their schemes.

14

Chapter 3

Write avoidance cache coherence
protocol

3.1 Limitation of existing cache coherence pro-
tocol

We review the legacy cache coherence protocols to get a new insight to re-

duce the write operations. There are useless write operations in the existing

protocol. Generally, memory systems of CMPs are composed of a shared

LLC and several private caches which are dedicated to cores [43]. In addi-

tion, the cache block is divided into two arrays: tag array and data array. Tag

array stores tag bits and cache coherence state, while data array stores block

data. When a linefill operation occurs, the requested block data is written

to the data array, and the tag bits and cache coherence state are updated to

the tag array. Then, the cache block is forwarded and linefilled to the private

cache. When a core tries to modify the cache block in the private cache,

an invalidation signal is sent to the shared LLC and other private caches to

maintain the cache coherence. Thus, the previous write access to the LLC

during the linefill operation is considered as the useless write operation, if

the cache block in the LLC has been never used until it is invalidated.

15

Figure 2 illustrates an example of write inefficiency in widely used

cache coherence protocols such as MESI or MOESI [44]. In the example, we

assume that a core reads and writes a block data of the PC (Private Cache)

1. Table 3 lists the cache states in the figure and their descriptions. When the

core tries to read the block data, since the PC1 has no valid block data, the

cache controller sends the request for the block data to the LLC.

However, the LLC also has no valid copy; thus, the request is sent to

the external sources such as the main memory or other chipsets. When the

block data “ABCD” is arrived at the LLC, it is written into the LLC and the

state of the LLC is changed to S state, which means the cache block is valid

and other private caches may have the same cache block. Then, the block

data “ABCD” is forwarded to the PC1.

When the block data is received in the PC1, it is written into the PC1

and the state of the PC1 is changed to E state. After the linefill operation is

completed, if the core tries to modify the block data “ABCD” to “EFEF”,

an invalidation request is sent to the LLC to maintain cache coherence. The

purpose of the invalidation request is indicating that the block data of the

PC1 is modified and the cache block in the LLC should be invalidated. If

the block data “ABCD” in the LLC has not been used until it is invalidated,

writing the block data “ABCD” to the LLC during the linefill operation was

a useless write operation.

16

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request

to external sources

* Event :
- Data “ABCD” arrived

* Action :
1) Linefill “ABCD” to LLC
2) Change states(I->S) in LLC
3) Send data “ABCD” to PC1
4) Linefill data “ABCD” to PC1
5) Change states(I->E) in PC1

* Event :
- PC1 Write

* Action :
1) Write data “EFEF” to PC1
2) Change states(E->M) in PC1
3) Send Invalidation Request

to LLC
4) Change states(S->P) in LLC

To
Main Memory or
Other Chipsets

Data Request

Miss
Tag State Data

000 I XXXX

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Miss
Tag State Data

000 I XXXX

Shared LLC

Data Request

From
Main Memory or
Other Chipsets

Linefill
Tag State Data

000 I->E
XXXX ->

ABCD

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Linefill
Tag State Data

000 I->S
XXXX ->

ABCD

Shared LLC

Data “ABCD”

Invalidation
Request

Write
Tag State Data

000 E->M
ABCD ->

EFEF

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Change
States

Tag State Data

000 S->P ABCD

Shared LLC

Stale
Data

Figure 2: Conventional cache coherence protocol.

17

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request

to external sources

* Event :
- Data “ABCD” arrived

* Action :
1) Change states(I->P) in LLC
 without Data Write

2) Send “ABCD” to PC1
3) Linefill “ABCD” to PC1
4) Change states(I->E) in PC1

* Event :
- PC1 Write

* Action :
1) Write data “EFEF” to PC1
2) Change states(E->M) in PC1

To
Main Memory or
Other Chipsets

Data Request

Miss
Tag State Data

000 I XXXX

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Miss
Tag State Data

000 I XXXX

Shared LLC

Data Request

From
Main Memory or
Other Chipsets

Linefill
Tag State Data

000 I->E
XXXX ->

ABCD

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

Change
States

Tag State Data

000 I->P XXXX

Shared LLC

Data “ABCD”

Write
Tag State Data

000 E->M
ABCD ->

EFEF

Private Cache 1

Tag State Data

000 I XXXX

Private Cache 1

No
action

Tag State Data

000 P XXXX

Shared LLC

No Invalidation
Request

No Data Write

X
X

Figure 3: Write avoidance cache coherence protocol (WACC).

18

Table 3: States and descriptions for write avoidance cache coherence proto-
col (WACC).

State Description

I(nvalid) The cache block is invalid

S(hared) The cache block has valid block data and other private caches
may have valid copy.

E(xclusive) The cache block has valid block data with exclusive permission
and other caches have no valid copy.

M(odified) The cache block has valid and modified block data. Other caches
have no valid copy. This state appears in the private cache only.

P(rivate cache) The cache block in the LLC has no valid block data, but more
than one of the private caches has valid block data. This state
appears in the LLC only.

* P state is introduced due to keeping the inclusion property. Modern multiproces-
sors have employed the inclusive LLC to filter the cache coherence traffic from other
chipset or the main memory. Thus, it is needed that a state represents one of the private
caches has valid data even the LLC has no valid data.

3.2 Write avoidance cache coherence protocol

To deal with this problem, we suggest a new cache coherence protocol which

is called Write avoidance cache coherence (WACC) protocol. In our proto-

col, the block data of the cache block is not written into the LLC during

the linefill operation, while the tag bits and the cache coherence state are

updated. Since the block data is not placed in the LLC, one of the private

caches has responsibility to provide the valid block data. The block data

in the LLC is only updated when it is written-back from the private cache.

The writeback is initiated only when no other private cache has the block

data in WACC protocol. Therefore, we avoid useless write operation due to

modifications of the block data in the private cache.

19

I P

S

Inv_PC/-

WB_PC/Wr

Recv_Ext/Wr

Inv_Ext/-

Inv_Ext/-

Req_PC/Rd

Transition Signal / Action
Signal comes from Private Cache

Signal comes from External Devices

Inv_Ext/- Inv_PC/-

I P

S

Inv_PC/-

WB_PC/Wr

Recv_Ext/-

Inv_Ext/-

Inv_Ext/-

Req_PC/Rd

Inv_Ext/- Inv_PC/-

(a) Exisiting Procotol (b) WACC Procotol

Figure 4: State transition diagrams for WACC.

Figure 3 shows an example of WACC protocol. Unlike the conventional

protocols, when the block data ABCD is arrived at the LLC, it is not written

to the LLC. Instead, the state is changed to P state and the block data is for-

warded to the PC1. When the PC1 is modified to EFEF, there is no need to

send an invalidation request to the LLC for the block data ABCD is not writ-

ten to the LLC. Therefore, one write operation of the LLC and one request

for cache coherence is decreased compared to the baseline protocols.

We compare a simple version of the existing MOESI protocol with its

modified protocol in Figure 4. Table 4 shows the coherence signals and ac-

tions. The transition signal is divided into two parts: {signal} {source} and

the action indicates the operation of the data array. For example, WB PC/Wr

means that if the block is P state and receives the WB signal from a private

cache, the block data is written to the data array.

20

Table 4: Signals/actions and descriptions.

Signal Description

Inv Invalidate the cache block if it is valid. This signal is generated
when another device tries to modify the block data.

Recv Provide the block data in the cache block. This signal is gener-
ated when a cache hit occurs.

Req Request the block data for read operation. This signal is gener-
ated when a cache miss occurs.

WB Writeback the block data to the LLC. This signal is generated
when a private cache evicts the cache block.

Action Description

Wr Write the block data of the received cache block into the data
array.

Rd Read the block data and provide it with the requestor.

As shown in Figure 4(a), when a new cache block is received in the

LLC, the state of the cache is transition to S state and the block data is writ-

ten to the data array in the existing protocol. On the contrary, the state is

transition to P state instead of S state in our protocol under the same con-

dition. Furthermore, the write operation is omitted as shown in Figure 4(b).

This is because the block data is forwarded without write access to the data

array in WACC protocol.

Another point to be considered is that the protocol of the private cache

should be changed. The writeback operation is initiated if the cache block in

the private cache is modified and evicted in the existing protocols. However,

the cache block should be written-back to the LLC in WACC protocol when

it is evicted in the private cache regardless of whether the cache block is

dirty or not.

21

Chapter 4

NVM capacity management policy for
hybrid cache architecture

4.1 NVM capacity management policy

In this section, we propose two schemes for NVM capacity management

policy. First, we introduce a dynamic way adjusting algorithm (DWA) that

monitors the optimal number of NVM ways and dynamically adjust the

number of active NVM ways [8]. In addition, we also propose a linefill-

aware cache partitioning scheme (LCP) to save the dynamic energy con-

sumption by efficiently allocating SRAM ways and NVM ways to cores.

The DWA keeps track of maximum stack distance (MSD), which means

the minimum number of ways to maintain the miss rate. If the number of the

current active NVM ways is not the optimal value, it is adjusted according to

the MSD. In addition, an efficient method to disable NVM ways is required

because it is impossible that NVM ways are physically added or removed

during execution. Thus, the DWA prevents deactivated NVM ways from

victim selection. A newly fetched block is prohibited to be loaded into the

disabled NVM ways, which has the effect of virtually deactivating them.

22

The basic idea of LCP comes from cache partitioning [38, 39, 40],

which has been a well-known scheme to improve the performance in CMP

systems. The key idea of the cache partitioning is that all cache ways should

be efficiently allocated for each application to maximize the hit rate of the

LLC. They have contributed the studies of the LLC. However, it is ineffi-

cient to apply them directly into HCA because their models assume that all

cache ways consist of the same memory type. Even though the cache misses

are minimized by the previous cache partitioning schemes, if the linefill op-

erations heavily occur in NVM ways, it fails to reduce the linefill counts of

NVM. Therefore, LCP assigns the SRAM ways and the NVM ways to each

core based on the change of the NVM linefill counts as well as the NVM

write hit counts according to partitioning.

4.1.1 Concept of NVM capacity management policy

This section presents an NVM capacity management policy that resizes the

number of NVM ways to fit the demand of applications. This policy comes

from the observation that reducing the size of NVM usually decreases the

write counts of NVM if the miss rate does not grow. The thesis will propose

an analytical model and perform a simulation to verify this observation.

Cache researchers have been investigating the relationship between the

size of cache and the miss rate [39]. For many programs, as the cache size

grows, the miss rate becomes small. On the contrary, the miss rates of some

programs are saturated or remain despite incremental growth of the cache

23

size. In addition, even the same program always does not require the fixed

size of cache. Therefore, the number of requested ways of the cache varies

during execution, and the unnecessary ways are disabled without perfor-

mance degradation.

The number of write accesses to the cache is strongly coupled with the

miss rate. Generally, the cache operations are divided into three categories:

read hit, write hit, and linefill. Among these operations, write hits and linefill

operations compose the write requests. If some read hits are changed to

cache misses due to the increasing miss rate, new linefill operations occur

as much as the removed read hits. This implies that the total number of write

operations are increased. Alternately, if the number of cache misses is not

increased, the number of write accesses to the cache remains because the hit

counts and miss counts is not changed.

Assume that we minimize the number of NVM ways without generat-

ing significant extra cache misses. In that case, the write operations which

originally occurred in the deactivated NVM ways are forwarded to SRAM

ways or other NVM ways. If a part of write accesses is sent to SRAM ways,

the number of write accesses to NVM ways is reduced. Therefore, partial

deactivating NVM ways with the stable miss rate highly tends to decrease

the write counts of NVM ways.

An illustration is provided in Figure 5 to aid in the understanding of this

concept. There are two caches in the example. One of the caches consists

of one SRAM and three NVM ways, and another cache is composed of one

24

SRAM and two NVM ways. The program in our example needs only three

ways. For the sake of convenience, suppose that all memory references are

write requests.

When the program starts, cache accesses are performed according to

the sequence in Figure 5. There is no difference between the two caches in

the first three accesses. However, when ”d” miss is encountered, two caches

behave differently. While ”d” is placed in the fourth way in cache A, ”a” is

replaced with ”d” in cache B. Writing ”d” in the second iteration, SRAM

access is made instead of NVM access in cache B. As a result, the number

of write to NVM ways is reduced in cache B. The linefill operation of ”d” is

forwarded to a SRAM way, and thus one linefill operation and one write hit

of NVM ways is reduced.

25

Linefill_S (a)a

Cache A

a

Memory Reference Sequence: a, b, c, d, b, c, d

Linefill_S (a)a

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 1

: 0

: 3

: 3

· SRAM Total Write

· NVM Total Write
: 1

: 6

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 2

: 1

: 2

: 2

· SRAM Total Write

· NVM Total Write
: 3

: 4

Linefill_S Linefill data into SRAM way

Linefill_N Linefill data into NVM way

Write_Hit_S Write data into SRAM way

Write_Hit_N Write data into NVM way

SRAM way NVM way

Linefill_N (b)a bb Linefill_N (b)a b

Linefill_N (c)a b cc Linefill_N (c)a b c

Linefill_N (d)a b c dd Linefill_S (d)d b c

Write_Hit_N (b)a b c db Write_Hit_N (b)d b c

Write_Hit_N (c)a b c dc Write_Hit_N (c)a b c

Write_Hit_N (d)a b c dd Write_Hit_S (d)d b c

Cache B

Figure 5: Example for NVM capacity management policy.

26

4.1.2 Feasibility of NVM capacity management policy

A metric, write intensity of a way (WI), is defined as the portion of write

accesses to the way over the write accesses to all ways. It is given by

WIi =
Wi

Wtotal
(1≤ i≤ T) (4.1)

where Wi is the number of write accesses to ith way and Wtotal means the

number of total write accesses to the cache, while T is the number of all

cache ways. This metric indicates the distribution of write requests among

the ways. If all ways have the same write intensity, the write requests are

evenly distributed. Unless, write operations occur more frequently in some

ways which have higher value than other ways.

Since the total number of write counts is calculated by summation of

write counts of each way, it is expressed as

Wtotal =

T∑
i=1

Wi (4.2)

The above equation is expressed as form of WI as follows

Wtotal =
T∑

i=1

(WIi ∗Wtotal)

=Wtotal ∗
T∑

i=1

WIi (4.3)

27

We rewrite the above equation as form of SRAM ways and NVM ways, and

it is given by

Wtotal =Wsram +Wnvm

=Wtotal ∗
S∑

i=1

WIi +Wtotal ∗
T∑

i=S+1

WIi (4.4)

Wsram =Wtotal ∗
S∑

i=1

WIi (4.5)

Wnvm =Wtotal ∗
S+N∑

i=S+1

WIi =Wtotal ∗
T∑

i=S+1

WIi (4.6)

where S is the number of SRAM ways and N is the number of NVM ways,

while Wsram means the number of write accesses to SRAM ways and Wnvm

is the number of write accesses to NVM ways. We found that there are three

factors that influence the write counts of NVM ways: the number of total

counts (Wtotal), the write intensity per way (WI), and the number of NVM

ways (N = T −S).

So far, the main strategy for reducing the number of write counts of

NVM ways has been keeping average WI of NVM ways lower than that of

SRAM ways. Throughout previous HCA research, WI is thought as the only

important factor among the three factors. It is assumed that N is fixed and

Wtotal is not significantly changed. Therefore, they have focused on mini-

mizing WI of NVM ways by detecting write intensive blocks and placing

them into SRAM ways. These approaches are successful to reduce write

accesses to NVM.

28

Different from previous approach, we consider N as a variable instead

of a constant value. When the number of NVM ways is reduced to N’ (N′ <

N), W ′total , W ′sram, and W ′nvm are defined as the number of write accesses to

the cache, SRAM ways, and NVM ways:

W ′total =W ′sram +W ′nvm (4.7)

In addition, we define the altered number of all ways as T’ (T ′ = S+

N′ < T), and Eq. 4.6 is transformed below:

Wnvm =Wtotal ∗ (
T ′∑

i=S+1

WIi +
T∑

i=T ′+1

WIi)

=
T ′∑

i=S+1

WIi ∗Wtotal +
T∑

i=T ′+1

WIi ∗Wtotal (4.8)

The second term indicates the number of write accesses to the NVM ways

that will be removed. If we adjust the number of NVM ways to N’, the

remaining ways should absorb the write requests of the amount of second

term. For simplicity, this term substitute for X and Eq. 4.6 is expressed as

follows:

X =

T∑
i=T ′+1

WIi ∗Wtotal (4.9)

Wtotal =Wsram +(Wnvm−X)+X (4.10)

29

Hereby, we introduce a condition that the total write counts are not changed

(W ′total =Wtotal). Under the condition, W ′total is given by

W ′total =Wsram +(Wnvm−X)+X (4.11)

If we divide X into Xsram and Xnvm that are the write requests of the amount

of forwarded to SRAM ways and NVM ways, we obtain

W ′total =Wsram +(Wnvm−X)+Xsram +Xnvm

= (Wsram +Xsram)+((Wnvm−X)+Xnvm) (4.12)

Because W ′sram and W ′nvm are defined as the number of write accesses to

SRAM and NVM in the resized cache, they can be expressed by as fol-

lowing equation:

W ′sram =Wsram +Xsram (4.13)

W ′nvm =Wnvm−X +Xnvm (4.14)

Before advancing the discussion, we state that it is assumed that Xsram

is greater than zero for the simplicity of the model. When the number of

ways is changed, the blocks are placed differently than they were. There is

a possibility that some write intensive blocks that were originally located in

SRAM ways are inserted into NVM ways. In that case, Xsram could be zero

or minus value. To avoid this problem, we adopt a policy for placing write

intensive blocks into SRAM ways as presented [16] to our scheme.

30

Since X is summation of Xsram and Xnvm, if Xsram is greater than zero,

Xnvm is given by

Xnvm < X (4.15)

By transforming Eq. 4.14 and substitution Wnvm into Eq. 4.15, we ob-

tain

W ′nvm−Wnvm +X < X (4.16)

W ′nvm <Wnvm (4.17)

Thus, we conclude that fewer NVM ways causes lower write requests to

NVM if the miss rate does not grow.

We examined the impact of NVM capacity management on the miss

rate, the total write counts, and the write accesses to NVM ways. We as-

sume that the hybrid cache has 4 SRAM ways and 12 NVM ways and that

the number of NVM ways varies from 12 to 0. The results are sorted in

decreasing order by the number of NVM ways among each application. To

improve the readability, we abbreviate SRAM ways to ”S” and NVM ways

to ”N”. For example, 4S 2N in the figure means that 4 SRAM ways and 2

NVM ways are used during the simulation.

31

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

4S
_1

2N
4S

_1
0N

4S
_8

N
4S

_6
N

4S
_4

N
4S

_2
N

4S

Le
ft

sid
e (

Lo
we

r S
en

sit
ivi

ty)
Rig

ht
 si

de
 (H

igh
er

 Se
ns

iti
vit

y)

Fi
gu

re
6:

M
is

s
ra

te
s

w
ith

va
ri

ou
s

nu
m

be
ro

fN
V

M
w

ay
s.

32

Figure 6 represents the miss rates with various number of NVM ways to

show sensitivity of the miss rate to the size of NVM. We sort all applications

by geometric standard deviation (GSD), which represents the amount of

dispersion from the geometric mean. In Figure 6, the miss rates of the left

applications are not less influenced by the number of NVM ways, while

the right side applications are more sensitive to the number of NVM ways.

The miss rates of two left most applications such as namd and lbm remain

even when all NVM ways are removed. Part of NVM ways are unnecessary

for some left side applications: milc, bwaves, sjeng, GemsFDTD, dealII,

and zeusmp. On the contrary, the growth of the miss rates of the higher

sensitive applications is large. Especially, the miss rates of bzip2 and h264ref

is multiplied about three times and the miss rate of hmmer soars to 12.8

times.

Figure 7 shows normalized write accesses to the HCA with various

sizes of NVM. We find that the total write counts of the lower sensitive

applications are not greatly increased, while many higher sensitive applica-

tions show rapid growth. For the left side applications, only 2.8% of average

extra write operations occur. Especially, no change is detected through all

sizes of NVM in namd,lbm, and milc. The number of NVM ways can be

decreased to 2 without increasing write counts in bwaves and GemsFDTD.

Other benchmarks such as sjeng and zeusmp have the same values when

NVM ways varies from 12 to 8. On the other hand, the total write counts of

the right side applications increase by 29.4% on average.

33

0.811.21.41.61.8

4S
_1
2N

4S
_1
0N

4S
_8
N

4S
_6
N

4S
_4
N

4S
_2
N

4S

Fi
gu

re
7:

N
or

m
al

iz
ed

to
ta

lw
ri

te
co

un
ts

of
H

C
A

va
ri

ou
s

nu
m

be
ro

fN
V

M
w

ay
s.

4S
12

N
is

th
e

st
an

da
rd

of
no

rm
al

iz
at

io
n.

34

The normalized write accesses to NVM ways with various number of

NVM ways is depicted in Figure 8. As we expected, reducing the number

of NVM ways decreases the write accesses to NVM ways in lower sensi-

tive applications. On the other hand, the reduction in the write counts of

NVM ways is not guaranteed by resizing the number of active NVM ways

in higher sensitive applications. Adjusting NVM ways even results in in-

creasing the write operations of NVM ways in gobmk, gcc, and h264ref.

Some applications such as gromacs, tonto, bzip2, and hmmer show the sim-

ilar pattern of the left applications, but their reduction ratios are small.

In summary, we find out that the number of write accesses to NVM

ways is usually reduced if resizing the number of active NVM ways does

not significantly increase the miss rate by adopting efficient NVM capacity

management policy.

35

00.20.40.60.811.2

4S
_1
2N

4S
_1
0N

4S
_8
N

4S
_6
N

4S
_4
N

4S
_2
N

Fi
gu

re
8:

N
or

m
al

iz
ed

w
ri

te
co

un
ts

of
N

V
M

w
ith

va
ri

ou
s

nu
m

be
ro

fN
V

M
w

ay
s.

4S
12

N
is

th
e

st
an

da
rd

of
no

rm
al

iz
at

io
n.

36

4.2 Dynamic way adjusting

We propose a dynamic way adjusting algorithm (DWA) to implement NVM

capacity management policy. To discover the optimal size of NVM, the max-

imum stack distance (MSD) is dynamically monitored. Using the MSD, the

DWA marks all NVM ways either as ”replaceable way” or ”non-replaceable

way” to realize adjusting the number of NVM ways. Replaceable ways are

regularly changed to prevent write requests from concentrating on a few

NVM ways. This section explains these key ideas and the operations of the

DWA.

4.2.1 Maximum stack distance

In order to find the minimum number of ways which sustain the miss rate,

we introduce the MSD based on the stack property [39]. It is well known that

the LRU replacement policy follows the stack property [45], which means

that a cache of a size C always contains all blocks of the cache of size less

than C. Assume that the number of sets is a constant value. If a cache block

is in an N way cache, it is guaranteed that the block is in the cache, which has

more than N ways. A metric related to stack property is the ”stack distance”.

When a cache hit regardless of a read hit or a write hit, the stack distance is

defined as the LRU order of the hit block. For example, the stack distance of

the block at MRU position is one, and that of the LRU position is N in the N

way cache. Figure 9 presents the stack distance histogram of a hypothetical

application. If the number of the ways is reduced to 3 from 8, the number of

37

20%

40%

50%

80%

90%

100% 100% 100%

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8

Stack Distance

The Ratio of Hits The Ratio of Cumulative Hits

Figure 9: Stack distance histogram.

hits will be halved because the cumulative hits for stack distance 3 is 50%.

This means that the miss rate of three-way cache will be increased to 50% in

this case. However, if we use 6 ways instead of 8 ways, no additional cache

miss occurs. Therefore, the maximum value of the stack distance indicates

the minimum number of ways to maintain the hit rate.

We employ an auxiliary tag directory (ATD), a maximum stack dis-

tance register (MSDR), and a replaceable way size register (RWSR) to mon-

itor the MSD as shown in Figure 10. The ATD is a separate storage con-

structed with the same associativity as the main tag array of the cache. It

keeps track of the LRU order information and tag bits. When an ATD hit

occurs, the MSDR is updated if LRU of the hit block is larger than the

current value of the MSDR. The RWSR is updated in two cases. First, if

38

the MSDR exceeds the RWSR, the RWSR is increased to the MSDR. The

condition that the RWSR is smaller than the MSDR means that the current

working set needs more cache capacity. Thus additional NVM ways should

be replaceable ways by increasing the RWSR. Second, when the value of the

RWSR has been larger than that of the MSDR for a while, it is decreased to

the value of the MSDR. Keeping the situation in which the RWSR is larger

than the MSDR means that unnecessary NVM ways have been used. There-

fore, some NVM ways should be deactivated by decreasing the RWSR. To

detect this situation and initiate resizing the number of NVM ways, a resiz-

ing counter register (RCR) is added. The RCR is increased by 1 when the

RWSR is larger than RWSR during the ATD hit operation. Whenever the

RWSR is updated to the MSDR, the RCR is reset to 0.

Another consideration in adopting the ATD is the storage overhead. If

the ATD has tag information of all sets, the size of the tag array will be

doubled. Therefore, to reduce the storage overhead, we use a set sampling

policy [46]. The ATD is designed to have only a part of sets which is sam-

pled every 32nd in the proposed algorithm. It is verified that the sampled

sets are enough to correctly capture the stack distance value in [46] instead

of using all sets.

39

S
w

ay
s

N
 w

ay
s

DW
A

O
rg

an
iz

at
io

n

Au
xi

lia
ry

 T
ag

Di

re
ct

or
y(

AT
D)

M
ax

im
um

 S
ta

ck
 D

ist
an

ce

Re
gi

st
er

 (M
SD

R)

Re
pl

ac
ea

bl
e

W
ay

 S
iz

e
Re

gi
st

er
 (R

W
SR

)

La
st

 L
ev

el
 C

ac
he

La
st

 P
os

iti
on

 R
eg

ist
er

(L
PR

)

R
R

N
 w

ay
s

Re
pl

ac
ea

bl
e

Bi
t V

ec
to

r
(R

BV
)

SR
AM

 w
ay

N
VM

 w
ay

Sa
m

pl
e

se
t

Ev
en

t
Ac

tio
n

AT
D

M
iss

-
Re

pl
ac

e
ol

de
st

 b
lo

ck
 w

ith
 n

ew

bl
oc

k

RC
R

is
sa

tu
ra

te
d

-
Up

da
te

 R
W

SR
 to

 M
SD

R
-

Re
se

t M
SD

R
an

d
RC

R
to

 0
-

Re
se

t a
ll

R
bi

ts
 to

 0
-

Se
t t

he
 a

m
ou

nt
 o

f R
W

SR
 R

 b
its

to

 1
 u

sin
g

LP
R

AT
D

H
it

If
(L

RU
 >

 M
SD

R)

-
Up

da
te

 M
SD

R
to

 L
RU

If

(M
SD

R
>

RW
SR

)

-
Se

t t
he

 a
m

ou
nt

 o
f (

M
SD

R
–

RW
SR

)
R

bi
ts

 to
 1

 u
sin

g
LP

R
 -

 R
es

et
 R

CR
 to

 0

-

Up
da

te
 R

W
SR

 to
 M

SD
R

El
se -
 In

cr
ea

se
 R

CR

DW
A

O
pe

ra
tio

n

R
Re

pl
ac

ea
bl

e
bi

t

S
w

ay
s

N
 w

ay
s

Re
siz

in
g

Co
un

te
r R

eg
ist

er

(R
CR

)

Fi
gu

re
10

:O
ve

ra
ll

st
ru

ct
ur

e
of

dy
na

m
ic

w
ay

ad
ju

st
in

g
(D

W
A

).

40

4.2.2 Adjusting the number of NVM ways

Since physical NVM cells are not inserted or deleted according to the change

of the MSD, we devise a method to dynamically activate or deactivate NVM

ways. To disable unnecessary NVM ways, we introduce the concept of ”re-

placeable way” and ”non-replaceable way” The replaceable way implies the

normal way that participates in all kinds of cache operations, such as read

access, write access, and replacement. The non-replaceable way means that

it is excluded from block replacement; thus, a new block is not placed into

the way. However, when a cache hit occurs, read access and write access are

performed, same as the replaceable way. All NVM ways in the DWA are

divided into replaceable ways and non-replaceable ways.

The role of the replaceable bit vector (RBV) in Figure 10 is indicating

that each way is non-replaceable or not by controlling replaceable (R) bits.

Since each R bit is corresponded to each NVM way, the size of R bits is

identical to the number of NVM ways. The RBV is altered when the RWSR

is changed. If the RWSR is increased, additional R bits are set to 1. Unless,

all R bits are updated to rearrange non-replaceable ways.

The cache operation for non-replaceable ways should be different from

that for replaceable ways. When a cache hit is occurred to a non-replaceable

way, the LRU information is not updated. In the case of a cache miss, the

non-replaceable ways are not involved in the victim selection. A detailed

description of the management policy is as follows:

41

1. Cache hit in the replaceable way: If a requested block is in the re-

placeable ways, the cache operations do not differ from the conven-

tional cache. When a read hit occurs in the replaceable ways, the data

is sent to the requestor. In case of a write hit, the data is modified.

LRU information is updated in both cases.

2. Cache hit in the non-replaceable way: When the block is in the non-

replaceable way, the data is sent to the requestor or the data is written

the same as the replaceable way. However, no operation for updating

LRU bits occurs because the LRU information of the non-replaceable

way is useless in the DWA.

3. Cache Miss: A new block is only placed into the replaceable way.

When a cache miss occurs and a requested block arrives, the LRU

block in the replaceable ways is selected to load the requested block.

4.2.3 Algorithm of dynamic way adjusting

We rearrange the replaceable ways to avoid lifetime shortening when the

replaceable NVM ways are reduced. If some NVM ways are frequently se-

lected as replaceable way during execution, these ways will be worn out

earlier than other NVM ways. Thus, we shift the start point of replaceable

ways to allow write operations be performed as evenly as possible through

the ways. The basic concept is similar to the round robin policy. At the time

of selecting the replaceable ways, the NVM way next to the current replace-

able ways is chosen for the first replaceable way. The last position register

42

(LPR) remembers the current last replaceable way to support way shifting.

This policy is initiated when RCR is saturated.

Figure 11 shows an example of how this policy works. Assume that

the number of the replaceable ways is five and the first three NVM ways

are assigned to the replaceable ways. Note that two SRAM ways are always

considered the replaceable ways. If the number of the replaceable ways is

increased to six, from the fourth NVM way to the sixth NVM way, then the

first NVM way is chosen as the replaceable ways.

Figure 12 presents the DWA in detail. When a cache access is con-

firmed to an ATD hit (line 1), the MSDR is updated if it is not the maxi-

mum LRU value (line 2-4). Then, we compare the RWSR with the MSDR

to check whether the current size of NVM ways is less than the minimum

size of NVM ways (line 5). If the MSDR exceeds the RWSR, some non-

replaceable NVM ways are changed to be replaceable from the last NVM

way of the current replaceable NVM ways. The amount of activated NVM

ways is the difference between the MSDR and the RWSR. The LPR is au-

tomatically updated during way adjusting within range from 0 to Wnvm (line

6-9). After this adjustment, the RWSR is updated to the MSDR and the RCR

is reset to 0 (line 10-11). The replaceable NVM ways are rearranged when

the MSDR does not exceed RWSR when RCR is saturated (line 13). If the

MSDR is larger than the number of SRAM ways, the RWSR is updated to

MSDR (line 14-15). Unless, the RWSR is set to the number of SRAM ways

because all SRAM ways are replaceable (line 16-17). As a first step of shift-

ing replaceable ways, all R bits are set to 0 (line 19). Then, from the last

43

SRAM way Replaceable NVM way

Non-replaceable NVM way

RWSR = 5

1 11 0 0 0 RBV

Select 3 ways

LPR

RWSR = 6

1 00 1 1 1 RBV

Select 4 ways

LPR

Way Shifting

Figure 11: Example of way shifting.

replaceable NVM way, NVM ways of the amount of RWSR are assigned to

be replaceable (line 20-23). To keep track of the maximum stack distance

again, the MSDR is initialized to 0 and RCR is reset to 0 (line 24-25). If

RCR is smaller than the threshold, RCR is increased by 1 (line 27).

44

Algorithm : Adjust Replaceable Ways
Parameters:
RWSR: Replaceable way size register
MSDR: Maximum stack distance register
LPR: Last position register (1≤ LPR≤Wnvm)
RCR: Resizing counter register
R[x]: Replaceable bit at xth NVM way
Initial conditions:
RWSR ← Wnvm +Wsram
MSDR ← 1
LPR ← Wnvm−1
RCR ← 0
All R[x] ← 1
During execution:
1 : if AT D hit then
2 : if hit block.LRU > MSDR then
3 : MSDR← hit block.LRU
4 : end if
5 : if MSDR > RWSR then
6 : for i← 1 to (MSDR−RWSR) do
7 : LPR← (LPR+1) % Wnvm
8 : R[LPR]← 1
9 : end for
10: RWSR ← MSDR
11: RCR ← 0
12: else
13: if RCR is saturated then
14: if MSDR >Wsram then
15: RWSR ← MSDR
16: else
17: RWSR ← Wsram
18: end if
19: All R[x] ← 0
20: for i← 1 to (RWSR−Wnvm) do
21: LPR← (LPR+1) % Wnvm
22: R[LPR]← 1
23: end for
24: MSDR ← 0
25: RCR ← 0
26: else
27: RCR ← RCR+1
28: end if
29: end if
30: end if

Figure 12: Algorithm for DWA.

45

4.3 Cache partitioning for hybrid cache archi-
tecture

Modern chip-multiprocessors (CMP) have employed multi-level on-chip

caches to address the memory wall problem that is caused by the differ-

ence between access latencies of the memory and the processor. Generally,

the last-level cache (LLC) occupies the largest area in the cache system and

consumes a significant static energy in the CMP. To reduce the area and

the leakage power, researchers have considered using non-volatile mem-

ory (NVM) [1, 3, 5] as LLC. Unlike the SRAM-based LLC, the NVM-

based LLC consumes little leakage power and requires less area with higher

density than SRAM. While NVM has these advantages, they also suffer

from shortcomings such as longer latency to complete a write operation

and higher dynamic energy consumption for a write operation compared to

SRAM. Most researchers have focused on minimizing the write counts of

NVM because the number of write operations strongly affects the dynamic

energy consumption as well as performance.

Hybrid cache architectures (HCA) have been proposed [16, 17, 18, 19,

47] to overcome these limitations of NVM. HCA mainly consists of NVM,

but some of them are replaced with SRAM to reduce the number of write

requests on NVM. Previous studies concerning HCA have attempted to de-

tect the write-intensive blocks, sets, or ways to allocate these to the SRAM.

However, their schemes have not usually focused on reducing the NVM

linefill counts, while the portion of NVM linefill operations is larger than

46

that of NVM write hit operations over the total of write operations to NVM

for many applications. In addition, there is no accurate prediction model to

estimate the change of the write counts of NVM when the number of SRAM

and NVM ways allocated to each core are changed in CMP environments.

Since the number of cache ways is closely related to the cache misses, as-

signing cache ways or releasing cache ways influences the miss rate of the

LLC. Even though the write intensity of NVM ways of a core is larger than

other cores, providing more SRAM ways with the core does not guarantee

reducing the NVM write counts. If a core which hands over SRAM ways

to other core generates much more cache misses with the reduced cache ca-

pacity, the write counts can be increased due to the extra linefill operations.

However, they have not considered this kind of side effects in their schemes.

We propose a novel cache partitioning that is called a linefill-aware

cache partitioning scheme (LCP) to reduce the dynamic energy consumption

by efficiently allocating SRAM ways and NVM ways to cores. To this end,

the thesis presents appropriate metrics and an algorithm for partitioning to

realize LCP. We introduce three metrics that represent change of miss counts

(∆M), write counts (∆W), and NVM write counts (∆NV MW), respectively.

An algorithm for cache partitioning of LCP consists of two steps. First, the

number of cache ways for each core is determined in order to reduce the

miss counts. Next, the SRAM ways and the NVM ways are allocated to

cores to minimize write counts of NVM.

47

A1

A1 A2

A1 A2 A3

B1 A2 A3

B1 B2 A3

B1 B2 B3

A2 B2 B3

A2 A3 B3

A2 A3 B3

A1

A1 A2

A3 A2

A3 A2 B1

A3 A2 B2

A3 A2 B3

A3 A2 B3

A3 A2 B3

A3 A2 B3

A1

A1 A2

A3 A2

B1 A3 A2

B2 A3 A2

B3 A3 A2

B3 A3 A2

B3 A3 A2

B3 A3 A2

Read A1 Linefill_S (A1)

Linefill_N (A2)

Linefill_N (A3)

Linefill_S (B1)

Linefill_N (B2)

Linefill_N (B3)

Linefill_S (A2)

Linefill_N (A3)

Write_Hit_N (B3)

Read A2

Write A3

Read B1

Read B2

Write B3

Read A2

Write A3

Write B3

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 3

: 0

: 5

: 1

· SRAM Total Write

· NVM Total Write

: 3

: 6

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 2

: 1

: 4

: 1

· SRAM Total Write

· NVM Total Write

: 3

: 5

Linefill_S (A1)

Linefill_N (A2)

Linefill_S (A3)

Linefill_N (B1)

Linefill_N (B2)

Linefill_N (B3)

Read_Hit_N (A2)

Write_Hit_S (A3)

Write_Hit_N (B3)

Linefill_N (A1)

Linefill_N (A2)

Linefill_N (A3)

Linefill_S (B1)

Linefill_S (B2)

Linefill_S (B3)

Read_Hit_N (A2)

Write_Hit_N (A3)

Write_Hit_S (B3)

· SRAM Linefill

· SRAM Write Hit

· NVM Linefill

· NVM Write Hit

: 3

: 1

: 3

: 1

· SRAM Total Write

· NVM Total Write

: 4

: 4

(a) No Partitioning (b) Partitioning without

 considering NVM Linefill
(c) Partitioning with

 considering NVM Linefill

Core A Core B Core ACore B

SRAM way NVM way

Memory Reference Sequence: R(A1),R(A2),W(A3),R(B1),R(B2),W(B3),R(A2),W(A3),W(B3)

 (Cache blocks for Core A : A1,A2,A3 / Cache blocks for Core B : B1,B2,B3)

Figure 13: (a) No partitioning is applied. (b) Partitioning without NVM line-
fill. (c) Partitioning with NVM linefill.

48

4.3.1 Linefill-aware cache partitioning

To optimize the NVM write counts in HCA, SRAM ways and NVM ways

should be efficiently allocated to cores. To help the understanding, we pro-

vide an illustration in Figure 13. The cache in this example consists of one

SRAM way and two NVM ways. We assumed that there are two cores: core

A and core B. A1, A2, and A3 are cache blocks for core A, and B1, B2, and

B3 are cache blocks for core B. The cache accesses occur as the memory

reference sequence shown in the box of the top in Figure 13.

When there is no special care for the LLC, the total write for the SRAM

way is 3 (3 for SRAM linefill) and the NVM total write is 6 (5 for NVM

linefill and 1 for NVM write hit), as shown in Figure 13(a). If the cache

partitioning only considering the cache misses is applied [39], core A can

occupy two cache ways and only one cache way can be assigned to core

B (Figure 13(b)). Even though this partitioning decreases two cache misses

and one NVM total write, the NVM write counts are not optimized. If a

partitioning algorithm can predict the NVM linefill counts as well as the

NVM write hit counts for every possible partitioning, the SRAM way should

be allocated to core B to minimize the NVM write counts, as shown in

Figure 13(c).

Therefore, a new scheme is required to reduce both the NVM write hit

counts and the NVM linefill counts, which saves dynamic energy consump-

tion of HCA. This paper devises new metrics to evaluate the effectiveness

of cache partitioning schemes and proposes a linefill-aware cache partition-

49

Table 5: Notation descriptions for metrics.

Notation Description

H[i] Hit counts of ith recency position

WH[i] Write hit counts of ith recency position

MCONF Conflict misses which are the number of cache misses due to
partitioning

MNON CONF Non-conflict misses which are the number of cache misses re-
gardless of partitioning

H(N) Total cache hit counts when the number of allocated ways is N

M(N) Total cache misses when the number of allocated ways is N

W (N) Total write counts when the number of allocated ways is N

WH(N) Total write hit counts when the number of allocated ways is N

∆M(N,N′) Miss counts change when the number of allocated ways is
changed from N to N’

∆W (N,N′) Write counts change when the number of allocated ways is
changed from N to N’

∆NV MW (NSRAM,N′SRAM,NNV M,N′NV M)

NVM write counts change when the number of allocated SRAM
ways is changed from NSRAM to N′SRAM and the number of allo-
cated NVM ways is changed from NNV M to N′NV M

ing scheme (LCP) based on these metrics. Table 5 provides a description of

notation we define in this section.

4.3.2 Metrics for cache partitioning

This section describes three metrics for a partitioning decision: Miss counts

change (∆M), write counts change (∆W), and NVM write counts change

(∆NV MW). We newly devise ∆W and ∆NV MW and redefine ∆M by revis-

iting the concept of ”the utility” in the previous work [39].

50

MRU LRU

Hit

Counter
8 6 5 2

1 2 3 4

Recency position

Hit counts of 4 way cache = 8+6+5+2 = 21

Hit counts of 2 way cache = 8+6 = 14

more recently used

Figure 14: Example of stack property.

• ∆M: the change of the number of cache misses according to adjusting

cache capacity for each core. This metric has been usually adopted

to decide the cache partition to improve the performance in previous

studies.

• ∆W : the change of the write counts for both the SRAM write counts

and the NVM write counts according to the change of cache capacity.

• ∆NV MW : the change of the NVM write counts. It is used for the HCA

when memory elements are heterogeneous, while two other metrics

can be applied in the cache consisting of the same memory element.

The concept of the utility [39] is used to estimate the reduction in the

number of cache misses when a core has extra cache ways. The original

paper named this concept as ”the utility”, but we redefine it ”∆M” to clarify

its meaning. They noticed that LRU replacement policy followed the stack

property [45]. If a cache has the stack property, the cache having more cache

ways always contains all blocks of the cache having smaller cache ways

when the number of sets remains. Figure 14 presents the hit counts of each

51

recency position in a 4-way cache. In general, the recency position of the

block at MRU position is called position 1, and that of the LRU position is

called position 4. In this example, if the number of cache ways is reduced

to 2 from 4, we expect that the hit counts of the cache will decrease by

one-thirds without performing the experiments for a 2-way cache.

∆M indicates the change of the miss counts with the change of the

number of allocated ways1. Let H[i] denote the hit counts of ith recency

position of a core and H(N) be the total hit counts when the number of

allocated ways is N of the core. A relationship is established between two

metrics.

H(N) =
N∑

i=1

H[i] (4.18)

Since the increase in the miss counts is the same as the reduction in the hit

counts, when the number of allocated ways is changed from N to N′ of a

core, ∆M(N,N′) is given by

∆M(N,N′) =−(H(N′)−H(N)) =
N∑

i=1

H[i]−
N′∑

i=1

H[i] (4.19)

A new model is built to estimate the change of the number of write

operations with the change of the capacity in the cache. Since improving

the hit rate is the most important goal in previous studies, ∆M is the only

1To clear the meaning of the terminology, the number of cache ways assigned for a core
are called ”the number of allocated cache ways of the core”

52

metric for cache partitioning in SRAM-based LLC in CMP environment.

However, minimizing the write counts should be considered as well as max-

imizing the overall hit counts in HCA. Thus, we define a new metric (∆W)

for representing the change of the number of write accesses caused by the

change of partitioning.

The change of write counts over the change of the amount of allocated

ways is not easily determined, while ∆M is obtained by just accumulating

H[i]. A cache block of the LLC is updated by two cases. First, when a write

hit occurs in the LLC, the corresponding block is overwritten. In addition,

if a new block is loaded due to a cache miss, the contents of the block are

updated. Therefore, the write counts change (∆W) is the sum of the write hit

counts and the linefill counts.

To find the total write hit counts, we define WH[i] as the write hit counts

for ith recency position. The write hit counts WH(N) is expressed in a sim-

ilar form as the hit counts.

WH(N) =

N∑
i=1

WH[i] (4.20)

Calculating the total linefill operations is more complicated than ob-

taining the total write hit counts because there are two kinds of cache misses

to be considered. The first category of the cache miss is called a conflict miss

(MCONF), which occurs when a core partially uses the LLC due to cache

partitioning. If all cache ways are allocated to the core, the amount of the

53

conflict miss becomes zero; thus, it varies across resizing the number of al-

located ways. On the other hand, there is another kind of cache miss, called

a non-conflict miss (MNON CONF), which occurs regardless of partitioning.

In other words, when a core utilizes all cache ways, there is no MCONF in

the core, while MNON CONF can occur. Note that the non-conflict miss is

composed of two kinds of misses, usually referred to as capacity and com-

pulsory misses [48]. In our proposal, we use a single term as a non-conflict

miss because there is no need to distinguish these misses.

Combining the two cache misses, the miss counts (M(N)) can be writ-

ten as follows:

M(N) = MCONF +MNON CONF

= H(NALL)−H(N)+MNON CONF

=

NALL∑
i=1

H[i]−
N∑

i=1

H[i]+MNON CONF

(4.21)

where NALL is the number of total cache ways in the LLC.

To put it all together, W (N) is expressed as

W (N) =WH(N)+M(N) (4.22)

Since ∆W (N,N′) means the change of the write counts, we reach the

following equation:

∆W (N,N′) = (WH(N′)+M(N′))− (WH(N)+M(N)) (4.23)

54

From Eq. 4.20 and Eq. 4.21, we transform Eq. 4.23 into the following:

∆W (N,N′) = (
N′∑

i=1

WH[i]+
NALL∑
i=1

H[i]−
N′∑

i=1

H[i]+MNON CONF)

−(
N∑

i=1

WH[i]+
NALL∑
i=1

H[i]−
N∑

i=1

H[i]+MNON CONF)

(4.24)

This can be written in this form:

∆W (N,N′) =
N′∑

i=1

WH[i]−
N′∑

i=1

H[i]−
N∑

i=1

WH[i]+
N∑

i=1

H[i]

+ (

NALL∑
i=1

H[i]−
NALL∑
i=1

H[i])+(MNON CONF −MNON CONF)

(4.25)

H(NALL) and MNON CONF in the above equation are removed because

they do not change with the number of allocated ways. Therefore, after sim-

plifying Eq. 4.25, this becomes

∆W (N,N′) =
N′∑

i=1

(WH[i]−H[i])−
N∑

i=1

(WH[i]−H[i]) (4.26)

To aid the understanding of the equation, we provide illustrations in

Figure 15. In this figure, Eq. 4.26 is applied to find the write counts change,

while Eq. 4.19 is used to calculate the miss counts change. When the amount

of allocated ways is increased to 3 from 2 (N = 2 and N′ = 3), ∆M(2,3) is

-5 and ∆W (2,3) is -3.

55

MRU LRU

M(2,3) = – (∑H(3) – ∑H(2))

 = (10+6+5) – (10+6) = – 5

(a) Miss counts difference

Hit Counts 10 6 5 3

MRU LRU

Hit Counts 10 6 5 3

Write Hit

Counts
2 4 2 1

W(2,3) = (∑WH(3) – ∑H(3)) – (∑WH(2) – ∑H(2))

 = ((2+4+2) – (10+6+5)) – ((2+4) – (10+6))

 = – 3

(b) Write counts difference

Figure 15: Examples of (a) miss counts change (∆M) and (b) write counts
change (∆W).

This section describes the NVM write counts change (∆NV MW) used

for calculating the variation of the write accesses to NVM in HCA. In the

above section, we showed that the write counts are changed, but it is only

applied in the LLC, which has one memory type. Thus, another metric is

required to measure the change of NVM write counts. Note that ∆NV MW

has four kinds of parameters because two types of memory elements are

considered in this model. N is divided into NSRAM and NNV M, which are the

number of allocated SRAM ways and NVM ways before new partitioning

is initiated, respectively. Instead of N′, N′SRAM and N′NV M are used to in-

dicate how many SRAM ways and NVM ways are allocated to a specific

core based on the new partitioning. Therefore, this metric is expressed as

∆NV MW (NSRAM,N′SRAM,NNV M,N′NV M).

56

We propose a new method to measure the variation of the write counts

of NVM because the methods on the stack property cannot calculate the ex-

act change of the write counts of NVM. For example, when a certain NVM

way receives five write requests, removing the NVM way does not decrease

the write counts of NVM by five. Since the concept of recency position is

independent to the order of way, every way can have any recency position

and the position usually changes after every cache access. When the num-

ber of allocated ways is changed, the blocks are stored into different ways

from they were, and the hit counts of each way are not reserved. Therefore,

it is impossible to exactly predict the change of the write counts of NVM or

SRAM when the number of the allocated cache ways is changed.

Instead, we use a statistical approach to find the NVM write counts.

In general, every way has the same probability of receiving write requests,

which means write requests are statistically evenly distributed among the

ways. Therefore, the portion of the NVM write counts over the all write

counts is assumed to be proportional to the ratio of the number of NVM

ways over the total number of cache ways.

NV MW (NSRAM,NNV M)≈

W (NSRAM +NNV M)∗ NNV M

NSRAM +NNV M

(4.27)

57

Therefore, ∆NV MW is calculated as follows:

∆NV MW (NSRAM,N′SRAM,NNV M,N′NV M)

= NV MW (N′SRAM,N′NV M)−NV MW (NSRAM,NNV M)

=W (N′)∗ N′NV M

N′
−W (N)∗ NNV M

N

(4.28)

= (WH(N′)+M(N′)+MNON CONF)∗
N′NV M

N′

−(WH(N)+M(N)+MNON CONF)∗
NNV M

N

(4.29)

= (
N′∑

i=1

WH[i]+
NALL∑

i=N′+1

H[i]+MNON CONF)∗
N′NV M

N′

−(
N∑

i=1

WH[i]+
NALL∑

i=N+1

H[i]+MNON CONF)∗
NNV M

N

(4.30)

Figure 16 shows the procedure of calculation of the equation. On top

of the write hit counters, a non-conflict miss counter is inserted. A cache

in the example is composed of two SRAM ways and two NVM ways. We

assume that a core takes one SRAM way and one NVM way at first. If one

more way is assigned to the core, there are two options; the core gets either

an extra NVM way or SRAM way. For former case, we add an NVM way to

the core, ∆NV MW is increased by 1. On the contrary, the latter case shows

that ∆NV MW becomes -4.

58

MRU LRU

Hit Counts 10 6 5 3

Write Hit

Counts
2 4 2 1

NVMW(1,1,1,2) = ∑NVMW(1,1) – ∑NVMW(1,2)

 = (∑WH(2) + ∑M(2)) * (1 / 2) – (∑WH(3) + ∑M(3)) * (2 / 3)

 = ((2+4) + (5+3+4)) * (1 / 2) – ((2+4+2) + 3 + 4) * (2 / 3) = – 1

Capacity Misses 4

(a) An NVM way is added (1S1N -> 1S2N)

NVMW(1,1,1,2) = ∑NVMW(1,1) – ∑NVMW(2,1)

 = (∑WH(2) + ∑M(2)) * (1 / 2) – (∑WH(3) + ∑M(3)) * (1 / 3)

 = ((2+4) + (10+6+4)) * (1 / 2) – ((2+4+2) + 6 + 4) * (1 / 3) = – 4

(b) An SRAM way is added (1S1N -> 2S1N)

Figure 16: Examples of NVM write counts change (∆NV MW). Initially, a
core owns an SRAM way and an NVM way (1S1N). (a) The core acquires
one more NVM way (1S2N). (b) The core acquires one more SRAM way
(2S1N).

4.3.3 Algorithm for cache partitioning

The algorithm for LCP consists of two steps to optimize the NVM write

counts without increasing cache misses, as shown in Figure 17. The first

step is finding the best partitions for optimizing the linefill counts. LCP

utilizes ∆M to search for the optimal size of partition in this step. After that,

the SRAM partition and NVM partition of each core are determined within

its budget determined by the first step, based on ∆W and ∆NV MW . Table 6

lists the description of notation we define in this section.

To make our algorithms more efficient, we employ the concept of the

marginal utility approach introduced in UCP [39]. Since prior studies of

59

Algorithm 1 : Linefill-aware Cache Partitioning
Step 1 : finding the number of allocated cache ways
1 : UALL ← TALL - TCORE
2 : foreach i← all cores do
3 : AALL[i]← 1
4 : end if
5 : while UALL > 0 do
6 : min MU← ∞

7 : foreach i← all cores do
8 : for w← 1 to UALL do
9 : MU← ∆M (AALL[i],AALL[i]+w) / w
10: if MU < min MU do
11: min MU←MU
12: CCORE ← i
13: Req← w
14: end if
15: end for
16: end foreach
17: AALL[CCORE]← AALL[CCORE] + Req
18: UALL ← UALL - Req
19: end while
Step 2 : finding the number of allocated NVM ways
20: USRAM ← TSRAM
21: foreach i← all cores do
22: ANV M[i]← AALL[i]
23: end foreach
24: while USRAM > 0 do
25: foreach i← all cores do
26: min MU← ∞

27: if USRAM > AALL[i] then
28: w’← AALL[i]
29: else
30: w’← USRAM
31: end if
32: for w← 1 to w′ do
33: if USRAM == 0 and ASRAM[i] == 0 do
34: MU← ∆W (ANV M[i],ANV M[i] + w) / w
35: else
36: MU← ∆NV MW (ASRAM[i],ASRAM[i] + w, ANV M[i],ANV M[i] - w) / w
37: end if
38: if MU < min MU do
39: min MU←MU
40: CCORE ← i
41: Req← w
42: end if
43: end for
44: end foreach
45: ASRAM[CCORE]← ASRAM[CCORE] + Req
46: ANV M[CCORE]← AALL[CCORE] - ASRAM[CCORE]
47: USRAM ← USRAM - Req
48: end while

Figure 17: Algorithm of linefill-aware cache partitioning (LCP).

60

Table 6: Notation descriptions for algorithms.

Notation Description

TALL Number of total cache ways in the LLC

TSRAM Number of total SRAM ways in the LLC

TNV M Number of total NVM ways in the LLC

TCORE Number of total cores

UALL Number of unallocated ways

USRAM Number of unallocated SRAM ways

UNV M Number of unallocated NVM ways

AALL[i] Number of allocated ways per ith core

ASRAM[i] Number of allocated SRAM ways for ith core

ANV M[i] Number of allocated NVM ways for ith core

MU Marginal utility of metrics

min MU Minimum value of marginal utility

Req Number of requesetd ways to get min MU

CCORE A specific core gaining extra cache ways

NVM-based CMP used the greedy algorithm [49, 50], there is a risk of

reaching to a suboptimal partitioning, which commonly occurs in greedy

algorithms. To avoid this problem, LCP uses the marginal utility. Therefore,

our algorithm uses a value which is divided by the number of allocated ways

instead of the value directly obtaining from the calculation. For example, if

∆W is -4 and the number of allocated ways is 2, the marginal utility (MU)

of ∆W is -2 (= -4 / 2). In addition, the partitioning algorithm is designed to

perform the cache repartitioning every 1M cycles because it shows the best

efficiency compared with other periods.

Step 1 starts initializing UALL, which is a key variable of the first loop

(line 1). Since each core has at least one way, UALL has the difference be-

61

tween the number of total cache ways in the LLC and the number of cores

(line 2-4). Step 1 is executed until all ways are assigned to cores (line 5).

When each iteration begins, min MU is initialized to infinity; in reality, it

has the maximum integer value that a system allows (line 6). For every core,

∆M per way are calculated by varying the number of allocated cache ways

(line 7-9). If MU is smaller than the currently minimum value of MU (line

10), min MU is updated (line 11), and the current core is tentatively indi-

cated as the target core to be allocated more cache ways (line 12). Req has

the current number of allocated ways (line 13). When the loop ends, the re-

quested ways are allocated to the target core (line 17) and UALL is updated

as well (line 18). Note that this step is performed based on the UCP [39],

which is known as one of the best partitioning schemes. Because this step

is orthogonal to second step, other partitioning schemes can be used if they

provide the better partitioning efficiency.

Step 2 works similar to step 1, but a key variable of the loop becomes

USRAM substituting UALL and ∆NV MW and ∆W are used instead of ∆M be-

cause SRAM ways are distributed among cores in this step. At first, USRAM

has the number of SRAM cache ways (line 20). The number of the allocated

NVM ways for each core is temporarily the number of allocated cache ways,

which is determined by the previous step (line 22-24). Another difference

from step 1 is that a loop for finding the min MU is iterated when the candi-

date number of cache ways is from 1 to the maximum value between AALL[i]

and USRAM (line 27-31). This is because each core cannot have more ways

than AALL[i]. ∆NV MW is basically used to find the value of MU (line 36),

62

Core 1 Monitor

S ways N ways

Core 0 Monitor

Auxiliary Tag Directory

(ATD)

Hit Counter

Capacity Miss Counter

Write Hit Counter

S ways N ways

SRAM way NVM way Sample Set

Last Level Cache

Figure 18: Overall structure of LCP.

however ∆W is applied for simplicity if it is guaranteed that no SRAM way

involves calculation (line 34). In this algorithm, the number of NVM ways

are simply calculated; we obtain it by subtracting AALL[i] to ASRAM[i] (line

46).

We extend the conventional utility monitor [39] and utilize a cache par-

titioning logic of UCP to implement our proposal. Therefore, storage over-

head is estimated as less than 1%. The traditional utility monitor contains

an auxiliary tag directory (ATD) and hit counters. On top of that, two ad-

ditional counters are added which are a write hit counter and a non-conflict

miss counter, as depicted in Figure 18. As many write hit counters as the

number of cache ways are needed, and only a single counter is required for

63

accumulating the non-conflict misses.

The role of the ATD is keeping track of the recency positions of blocks

for each core. Using the ATD, the hit counter indicates the hit counts of

each recency position. Similar to the hit counter, the write hit counters store

the number of write hit for the corresponding position. The associativity

of the hit counter and the write hit counter is the same as the LLC. The

non-conflict miss counter is inserted to obtain the total non-conflict miss

counts. If a cache miss occurs in the ATD, the non-conflict miss counter is

increased by one, while the hit counter is increased when a cache hit occurs

in the corresponding recency position.

Assuming that the LLC has 16-way associativity and the size of each

counter is 32 bits, the total storage overhead of the LCP is (16 + 1) * 32 bits

= 68 bytes. Considering the capacity of the LLC is 2MB in our system, it is

obvious that the storage overhead is not significant.

64

0%5%10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

M
IX

_1

M
IX

_2

M
IX

_3

M
IX

_4

M
IX

_5

M
IX

_6

M
IX

_7

M
IX

_8

M
IX

_9
 M

IX
_1

0
M

IX
_1

1
M

IX
_1

2
M

IX
_1

3
M

IX
_1

4
M

IX
_1

5
av

er
ag

e

Error_Rate
10

K
10

0K
1M

10
M

Fi
gu

re
19

:E
rr

or
ra

te
s

w
ith

va
ri

ou
s

re
pa

rt
iti

on
in

g
pe

ri
od

fr
om

10
K

to
10

M
.

65

We start by analyzing how accurate the proposed algorithm predicts the

NVM write counts. Whenever the cache partitioning is done, the expected

NVM write counts during the execution period is accumulated. At the end

of the program execution, the difference between the predicted value and

the measured value is used to calculate the error value of the algorithm. In

this way, we estimate the error rate of our algorithms as follows:

ErrorRate =
|Predicted NV M Writes−Measured NV M Writes|

Predicted NV M Writes
∗100

(4.31)

Figure 19 summarizes error rates of our algorithm with various sizes of

repartitioning periods from 10K to 10M. LCP utilizes the statistics of each

period to predict the behavior of the next. If a previous period has a sim-

ilar access pattern of the following period, this approach will be effective.

Unfortunately, if partitioning occurs in the middle of transition of working

sets in the program, the information gathered by the ATD during the current

period does not represent the next period. In this case, the accuracy of hit

counts, write hit counts, and cache misses will decrease. Thus, we have ex-

perimented with several repartitioning periods and the consequential change

of the accuracy. The proposed LCP with the 1M period cycle shows that the

error rate is 4.3%, which is meaningfully lower than the error rate of other

period sizes. Therefore, we choose 1M as the repartitioning period for our

proposal.

66

0%20
%

40
%

60
%

80
%

10
0%

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Miss_Rate

N
oC
P

UC
P

AW
CP

BC
P

Fi
gu

re
20

:M
is

s
ra

te
s

w
ith

fo
ur

sc
he

m
es

.

67

The miss rates for all workloads are given in Figure 20 for NoCP,

BSABM, AWCP, and LCP. AWCP shows the worst miss rate for all bench-

mark programs because the number of cache ways for each core is adjusted

according to its NVM write intensity. Even though this approach is bene-

ficial to reducing the number of write counts, it is not helpful to improve

the total hit counts. The miss rate of BSABM is the nearly same as NoCP

because they use a similar replacement policy. The miss rate of LCP is de-

creased by 4.3% over NoCP, and the difference between average miss rate of

AWCP and LCP is 13.7%. While the efficiency of LCP varies significantly

depending on characteristics of workload, the miss rates of all applications

are decreased. For MIX 4, the miss rate of LCP is lower than that of AWCP

by 21.9%.

4.4 Overhead of NVM capacity management pol-
icy

Table 7 shows the storage overhead of the DWA. We assume that the system

uses a 40-bit physical address space. To keep track of the MSD, an entry of

the ATD has a separate tag and LRU bits. The each ATD has 64 entries and

256 entries because the number of sample sets is 64 and 256 respectively.

The size of R bits is 12 as the number of NVM ways is 12. The DWA also

needs three kinds of 4-bit registers and a 2-bit resizing counter register. Both

HCAs have about less than 1% extra area. With a low hardware overhead,

our proposal achieved the dynamic energy saving and write endurance en-

68

Table 7: Storage overhead.

Component HCA with STT-RAM HCA with PCM

ATD entry LRU + Tag + Valid = 4 + 22
+ 1 = 27 bits

LRU + Tag + Valid = 4 + 20
+ 1 = 25 bits

27 bits * 16 way = 54 bytes 25 bits * 16 way = 50 bytes

ATD 54 bytes * 64 sets = 3.8KB 50 bytes * 256 sets =
12.5KB

R bits 12 bits 12 bits

LPR 4 bits 4 bits

MSDR 4 bits 4 bits

RWSR 4 bits 4 bits

RCR 2 bits 2 bits

Overhead for
LCP

(16 + 1) * 32 bits = 68 bytes (16 + 1) * 32 bits = 68 bytes

Total about 4KB (0.1%) about 13KB (0.31%)

hancement. For the LCP, as we discussed earlier, the total storage overhead

of the LCP is (16 + 1) * 32 bits = 68 bytes on top of the extra storage of the

DWA. Therefore, the storage overhead of both schemes is not significant.

Another consideration for cache partitioning is the timing overhead of

obtaining the optimal value. To investigate the timing overhead, we calcu-

lated the latencies of the algorithm in detail as shown in Table 8. According

to Eq. 4.19 one iteration of the main loop of step 1 requires one addition,

one subtraction, one division, one comparison, and one assignment. The la-

tencies of an adder and a comparator are one cycle and the latency of a

divider is thirteen cycles in modern processors [43], thus one iteration takes

17 cycles (we assume that each register captures the value in a cycle). Ac-

69

Table 8: Timing overhead.

Component Cycles

Step1 Initialization (line 1-4) 2 cycles

Step1 Main loop (line 6-16) 17 cycles

Step1 Result assigning (line 17-18) 2 cycles

Step2 Initialization (line 20-23) 3 cycles

Step2 Main loop preparation (line 24-31) 2 cycles

Step2 Main loop (line 32-44) 36 cycles

Step2 Result assigning (line 45-47) 3 cycles

Total 851 cycles (0.9%)

cording to Eq. 4.30, one iteration of the main loop of the step 2 requires

three additions, one multiplication, two divisions, one comparison, and one

assignment. The latency of a multiplier is five cycles in modern processors

[43], thus one iteration takes 36 cycles.

The initialization steps are executed once for every partitioning. The

main loop in step one of LCP is iterated 24.95 times and the main loop

in step two is iterated 10.21 times. The other parts of the algorithm are

executed 4.57 times and 2.31 times for each step respectively. Therefore,

the algorithm takes 851 cycles to identify the average of the partitioning

(2+17*25+2*5+3+2*3+36*11+3*3 = 851). Considering that the period of

partitioning is 1M, the latency of the algorithm does not have an influence

on the overall performance.

70

Chapter 5

Experimental results

5.1 Experimental environment

We simulated our approach with PARSEC benchmark suite [11] for evalu-

ating WACC. The gem5 simulator is used to evaluate the normalized energy

and normalized lifetime of our protocol [9]. The overall simulation parame-

ters are shown in Table 9. We assume that the cache coherence protocol is a

MOESI protocol. In addition, LLC is composed of STT-RAM because STT-

RAM is considered as the right alternative among several types of NVM

[51]. The power value of STT-RAM is derived from the previous work [52].

For DWA, a simulation was performed using Macsim [10] which is a

trace-driven and cycle level simulator. It is designed to thoroughly model the

detailed microarchitectural behavior, including pipeline stages and memory

systems. Our baseline system has a three level cache hierarchy. The L1 and

L2 caches are composed of the SRAM memory. Table 9 shows our baseline

processor configurations in detail. Since STT-RAM and PCM are widely

studied among several kinds of NVM, the LLC has two hybrid cache con-

figurations: STT-RAM with SRAM, PCM with SRAM. We examined our

proposal on multi core configuration which has 4 cores as well. We used

71

SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006 benchmark

suite [12]. Because the benchmark programs with the reference input set

take a very long time to run, we simulated 500M instructions of the re-

gion selected by Pinpoints [53, 54] which is a well-known tool to find the

representative regions. To compare our proposal with previous studies, we

also conducted the experiments with prediction table based cache line re-

placement and management policy (PTHCM) [18]. For multi core system

simulation, we generated ten workloads by mixing six applications as listed

in Table 12.

In addition, the standard of normalization in our results is the baseline

hybrid cache, which is operated as a conventional cache except that it con-

sists of both SRAM and STT-RAM cells. Thus, the baseline hybrid cache

has no special policy such as the DWA or the PTHCM. For DWA, note

that write intensity block migration policy is always applied. Finally, we as-

sume that cache hierarchy maintains inclusion property in our proposal as

like many modern processors such as the Intel i7 processor [43] or ARM

CORTEX-A57 processor [55].

We have performed experiments to evaluate the proposed cache par-

titioning scheme with Macsim [10] for LCP. Table 9 presents the system

parameters used for the simulation. It has four cores and a two-level cache

hierarchy. The capacity of the L1 instruction and data caches are 32KB, and

they are 4-way associative caches. The LLC (L2) cache is a 2MB 16-way

cache, which is composed of 4-way SRAM and 12-way NVM. The line size

of all caches is 64B.

72

Table 9: Processor configurations.

WACC
Cores 4
L1 Inst / Data
Cache

64KB, 2-way, 64B line

L2 Unified Cache 2MB, 16-way, 64B line
Memory 64bit bus width , 4 read/write ports
Function Units 6 IALU, 2 IMULT, 4 FPALU, 2 FPMULT

DWA
Core Type x86, out-of-order, 2GHz
Core Count 1 / 4
INT / MEM / FP 4 / 4 / 4
Branch Predictor gshare predictor, 16 history length
ROB Size 256
I/D Cache 16KB, 4-way, 64B blocks, 1-cycle latency
L2 Cache 512KB, 8-way, 64B blocks, 5-cycle latency
Hybrid LLC with
STT-RAM

4MB(4-way SRAM and 12-way STT-RAM), 64B
blocks
SRAM: 10-cycle latency
STT-RAM: 10-cycle (read) and 45-cycle (write) la-
tency

Hybrid LLC with
PCM

16MB(4-way SRAM and 12-way PCM), 64B blocks

SRAM: 10-cycle latency
PCM: 19-cycle (read) and 93-cycle (write) latency

Memory Latency 200 cycles

LCP
Core Type x86, out-of-order, 2GHz
Core Count 4
INT / MEM / FP 4 / 4 / 4
Branch Predictor gshare predictor, 16 history length
ROB Size 256
I/D Cache 32KB, 4-way, 64B blocks, 2-cycle latency
Hybrid LLC 2MB(4-way SRAM and 12-way STT-RAM), 64B

blocks
Memory Latency 200 cycles

73

We used SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006

benchmark suite for the simulation [12] for LCP. To evaluate the efficiency

of our proposal across write intensive and non-write intensive applications,

workloads are created based on write counts per kilo-instructions (WBKI).

At first, we sorted the applications by increasing the order based on WBKI

as shown in Table 10 and divided them into three categories: such as low,

mid, and high. Mixing four benchmarks from the three categories, we gen-

erated 15 workloads as listed in Table 11 (The number of combination of

selecting 4 applications from 3 categories with repetitions is 15 and appli-

cations in each category are randomly selected.) Each trace is collected by

Pinpoints [53], which is widely used to extract the representative regions.

There are four schemes tested in our simulation: the baseline which

uses no partitioning scheme (NoCP), block swapping and active block mi-

gration (BSABM) [49], access-aware cache partitioning policy (AWCP) [50],

and LCP proposed in the thesis. NoCP has no partitioning scheme and fol-

lows the LRU replacement. To compare the previous studies with our pro-

posal, BSABM and AWCP, which are available for the HCA-based LLC in

CMP, are included for the experiment.

To fairly compare the results of our proposal and previous studies, we

used the same parameters of STT-RAM that were used in the previous study

[50]; the dynamic energy consumption of cache operation for an SRAM

cache bank 0.609nJ, while the read energy for an STT-RAM cache bank is

0.598nJ and the write energy is 4.375nJ.

74

Table 10: Write counts per kilo-instructions for LCP.

Type Benchmark WPKI Type Benchmark WPKI

Low

dealII 0.90

Mid

zeusmp 30.92

gamess 1.04 cactusADM 41.78

gromacs 1.79 gcc 51.96

povray 2.31 omnetpp 65.46

perlbench 2.38

High

milc 75.94

h264ref 4.13 wrf 92.29

calculix 7.56 libquantum 114.29

xalancbmk 8.10 GemsFDTD 133.44

Mid

gobmk 11.20 leslie3d 138.10

hmmer 12.99 soplex 145.47

tonto 13.53 lbm 221.45

bzip2 15.75 mcf 228.77

Table 11: Multi-core workloads for LCP.

Workload Benchmarks

MIX 1 dealII(L), gamess(L), calculix(L), xalancbmk(L)

MIX 2 gamess(L), gromacs(L), h264ref(L), cactusADM(M)

MIX 3 dealII(L), povray(L), xalancbmk(L), lbm(H)

MIX 4 gromacs(L), povray(L), gcc(M), omnetpp(M)

MIX 5 povray(L), perlbench(L), cactusADM(M), libquan-
tum(H)

MIX 6 dealII(L), gamess(L), soplex(H), lbm(H)

MIX 7 xalancbmk(L), gobmk(M), cactusADM(M), omnetpp(M)

MIX 8 dealII(L), gcc(M), omnetpp(M), mcf(H)

MIX 9 povray(L), zeusmp(M), wrf(H), lbm(H)

MIX 10 povray(L), libquantum(H), lbm(H), mcf(H)

MIX 11 gobmk(M), hmmer(M), gcc(M), omnetpp(M)

MIX 12 gobmk(M), tonto(M), omnetpp(M), lbm(H)

MIX 13 hmmer(M), bzip2(M), leslie3d(H), lbm(H)

MIX 14 hmmer(M), GemsFDTD(H), leslie3d(H), mcf(H)

MIX 15 milc(H), wrf(H), lbm(H), mcf(H)

75

Table 12: Multi-core workloads for DWA.

Workload Benchmarks

MIX 1 bwaves, calculix, wrf, gromacs

MIX 2 bwaves, calculix, wrf, hmmer

MIX 3 bwaves, calculix, wrf, h264ref

MIX 4 bwaves, calculix, gromacs, hmmer

MIX 5 bwaves, calculix, gromacs, h264ref

MIX 6 bwaves, calculix, hmmer, h264ref

MIX 7 bwaves, wrf, gromacs, hmmer

MIX 8 bwaves, wrf, gromacs, h264ref

MIX 9 bwaves, wrf, hmmer, h264ref

MIX 10 bwaves, gromacs, hmmer, h264ref

MIX 11 calculix, wrf, gromacs, hmmer

MIX 12 calculix, wrf, gromacs, h264ref

MIX 13 calculix, wrf, hmmer, h264ref

MIX 14 calculix, gromacs, hmmer, h264ref

MIX 15 wrf, gromacs, hmmer, h264ref

76

00.20.40.60.811.2

bla
ck
sc
ho

les
str

ea
m
clu

ste
r

bo
dy
tra

ck
flu

ida
nim

at
e

de
du

p
ca
nn

ea
l

x2
64

sw
ap

tio
ns

av
er
ag
e

Normalized Write Access to LLC

Ba
se
lin

e_
Lin

ef
ill

W
AC

C_
W
rit
eb

ac
k

Ba
se
lin

e_
W
rit
eb

ac
k

Fi
gu

re
21

:N
or

m
al

iz
ed

nu
m

be
ro

ft
he

ac
ce

ss
to

L
L

C
of

W
A

C
C

pr
ot

oc
ol

co
m

pa
re

d
to

th
e

M
O

E
SI

pr
ot

oc
ol

.

77

5.2 Write access to NVM

Figure 21 presents the normalized number of the read and write access to

LLC in our protocol compared to the baseline MOESI protocol. Note that

write access is divided into writeback access and linefill access. As a result,

13.2% of the write operations were decreased on average. The noticeable

result is that the number of the writeback access was increased, while there

were no linefill operation. When a cache block is evicted in a private cache,

the writeback operation is not required in the existing protocols if the cache

block is not modified. This is because the LLC already has the valid block

data if the cache block is clean. On the contrary, the writeback operation

should be initiated if no other private cache has the valid copy during cache

replacement in WACC protocol. This difference generates the extra write-

back operations. However, the total number of the write access in WACC

protocol is smaller than that of other protocols because the reduction in the

linefill operation is much larger than the increment in the writeback opera-

tion.

We first examined the write counts of NVM ways as depicted in Fig-

ure 22 and Figure 23. About 75.4% reduction and 77.2% reduction in the

number of write accesses is achieved on average in the DWA for HCAs with

STT-RAM and PCM, respectively, while the decrement on the number of

write accesses to NVM ways of PTHCM are about 5.7% and 11.0%.

From the two figures, we discover that the write access reduction ratio

of the DWA follows the sensitivity of the miss rate to the number of NVM

78

ways. First, low sensitive applications require a small number of NVM

ways; therefore, the number of write accesses to NVM is largely reduced.

On the contrary, highly sensitive applications show only a little change of

write access because they have very little room for the DWA. To show this

trend clearly, we calculate the reduction ratio of each category. For the left

side applications, 92.2% reduction and 88.3% reduction in the write counts

of STT-RAM and PCM ways is achieved on average, while 22.6% reduction

and 55.6% reduction in the number of write accesses is achieved on average

for the right side applications.

Furthermore, we combined the PTHCM with the DWA to check that

it is orthogonally effective with other HCA algorithms. Since our proposal

does not affect the fundamentals of operation of other HCA algorithms, the

DWA can create a synergy effect. The results show that the PTHCM with

the DWA (PTHCM DWA) achieved the best results among four HCA algo-

rithms as it showed 77.6% reduction and 80.0% reduction in write counts

of NVM ways. Combining PTHCM with DWA reduces the write access

to NVM more 8.9% when only DWA is applied for STT-RAM. In addition,

PTHCM DWA shows the lower NVM write counts by 11.0%. Therefore, we

conclude that merging two algorithms takes advantage of both algorithms

successfully.

79

00.20.40.60.811.21.41.6

Normalized_NVM_Write_Counts

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
22

:N
or

m
al

iz
ed

N
V

M
w

ri
te

co
un

ts
of

D
W

A
w

ith
ST

T-
R

A
M

.

80

00.20.40.60.811.21.4

Normalized_NVM_Write_Counts

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
23

:N
or

m
al

iz
ed

N
V

M
w

ri
te

co
un

ts
of

D
W

A
w

ith
PC

M
.

81

0

0.
2

0.
4

0.
6

0.
81

1.
2

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Normalized_NVM_Write_Counts

N
oC
P_
N
VM

_W
rit
e_
Hi
t

BS
AB

M
_N
VM

_W
rit
e_
Hi
t

AW
CP
_N
VM

_W
rit
e_
Hi
t

BC
P_
N
VM

_W
rit
e_
Hi
t

N
oC
P_
N
VM

_L
in
ef
ill

BS
AB

M
_N
VM

_L
in
ef
ill

AW
CP
_N
VM

_L
in
ef
ill

BC
P_
N
VM

_L
in
ef
ill

Fi
gu

re
24

:N
or

m
al

iz
ed

N
V

M
w

ri
te

co
un

ts
w

ith
fo

ur
sc

he
m

es
.

82

Next, we analyze the NVM write counts of BSABM, AWCP, and LCP

normalized to NoCP as depicted in Figure 24. The average value in the fig-

ure indicates the geometric mean of all workloads. BSABM and AWCP

decreased the NVM write counts by 2.6% and 6.7%, respectively. LCP

achieved a 46.9% reduction in the NVM write counts, which is the much

better than previous studies. To investigate these results further, we divide

the total NVM write counts into the NVM write hit counts and the NVM

write linefill counts. At first, we found that the linefill operation occupies a

significant portion of the NVM write counts. While the portion of the write

hit counts is 16.5% on average, the portion of the NVM linefill counts is

83.5%. BSABM, AWCP, and LCP reduced the NVM write hit counts by

21.7%, 26.4%, and 39.2%, respectively. LCP shows the best results, and

the previous schemes for HCA also achieved the meaningful reduction in

the NVM write hit counts. On the contrary, the reduction ratio of the NVM

linefill counts of BSABM and AWCP are only 4.3% and 2.8%, while LCP

reduced the NVM linefill counts by 47.4%. These results confirm that LCP

accomplishes the reduction in the NVM write counts by reducing the NVM

linefill counts significantly as we intended.

83

0.
9

11.
1

1.
2

1.
3

1.
4

0

0.
2

0.
4

0.
6

0.
81

1.
2

bl
ac

ks
ch

ol
es

st
re

am
clu

st
er

bo
dy

tra
ck

flu
id

an
im

at
e

de
du

p
ca

nn
ea

l
x2

64
sw

ap
tio

ns
av

er
ag

e

Normalized Lifetime

Normalized Dynamic Energy

Re
ad

 E
ne

rg
y

W
rit

eb
ac

k
En

er
gy

No
rm

al
ize

d
Lif

et
im

e

Fi
gu

re
25

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
an

d
lif

et
im

e
of

W
A

C
C

co
m

pa
re

d
to

th
e

ba
se

lin
e

M
O

E
SI

pr
ot

oc
ol

.

84

5.3 Dynamic energy consumption

We show the normalized dynamic energy consumption and lifetime in Fig-

ure 25. Since the dynamic energy in write operation dominates the dynamic

energy consumption in read operation, the reduction of the write opera-

tions leads to reducing the total dynamic energy consumption. Our protocol

achieves 27.1% energy savings at maximum and 10.8% energy savings on

average. In addition, WACC protocol also extends the lifetime of the LLC

because the lifetime of STT-RAM is inversely proportional to the number

of write access to the LLC. The improvement of average write endurance in

WACC protocol is 26.3% at maximum and 9.3% on average.

We investigated the normalized dynamic energy consumption com-

pared to the baseline hybrid cache as shown in Figure 26 and Figure 27,

which also present the portion of the write energy consumption of NVM

over the total dynamic energy consumption. The results of HCA with STT-

RAM show that the DWA achieved 26.4% reduction in the total dynamic en-

ergy consumption. The dynamic energy consumption of the PTHCM and the

PTHCM DWA was saved 2.3% and 28.4% over the baseline hybrid cache,

respectively. For HCA with PCM, the DWA saved 27.4% of dynamic en-

ergy consumption, while the PTHCM and the PTHCM DWA reduced the

dynamic energy consumption by 2.7% and 30.0%. The trend of reduction is

similar to that of reduction in the write accesses. This is because the dynamic

energy consumption is mainly affected by the write accesses to STT-RAM.

85

Based on the observation of these figures, the write energy consump-

tion of NVM occupies a significant portion of the total dynamic energy con-

sumption. In the baseline hybrid cache, 78.6% and 56.0% of the dynamic

energy was consumed due to the write accesses to STT-RAM and PCM

ways. Therefore, we conclude that the number of write accesses to NVM

ways is the most important factor for dynamic energy consumption. The

results show that the portion of write dynamic energy of NVM ways was

reduced to 32.8% and 14.7% in the DWA. The dynamic energy consump-

tion of NVM write operations of the PTHCM occupies 74.3% and 48.8%

of the total dynamic energy consumption. For the PTHCM DWA, the por-

tion is reduced to 30.0% and 14.1%. The reduction trend is also similar to

that of the write access reduction. Therefore, the reduction in the dynamic

energy consumption mainly comes from the reduction of the write energy

consumption of NVM.

86

00.20.40.60.811.2

Normalized_Dynamic_Energy

Ba
se
lin

e_
To

ta
l

DW
A_

To
ta
l

PT
HC

M
_T
ot
al

PT
HC

M
_D

W
A_

To
ta
l

Ba
se
lin

e_
NV

M
_W

rit
e

DW
A_

NV
M
_W

rit
e

PT
HC

M
_N

VM
_W

rit
e

PT
HC

M
_D

W
A_

NV
M
_W

rit
e

Fi
gu

re
26

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
of

D
W

A
w

ith
ST

T-
R

A
M

.

87

00.20.40.60.811.2

Normalized_Dynamic_Energy

Ba
se
lin

e_
To

ta
l

DW
A_

To
ta
l

PT
HC

M
_T
ot
al

PT
HC

M
_D

W
A_

To
ta
l

Ba
se
lin

e_
NV

M
_W

rit
e

DW
A_

NV
M
_W

rit
e

PT
HC

M
_N

VM
_W

rit
e

PT
HC

M
_D

W
A_

NV
M
_W

rit
e

Fi
gu

re
27

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
of

D
W

A
w

ith
PC

M
.

88

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Normalized_Dynamic_Energy

N
oC
P

BS
AB

M
AW

P
BC
P

Fi
gu

re
28

:N
or

m
al

iz
ed

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n
co

m
pa

re
d

to
N

oC
P.

89

The normalized dynamic energy consumption of four schemes are pre-

sented in Figure 28. LCP saved 37.2%, 36.6%, and 34.1% of dynamic en-

ergy consumption over NoCP, BSABM, and AWCP, respectively. The trends

of the dynamic energy reduction are similar to those of the normalized NVM

write counts, while the variation is small. For MIX 12, the dynamic energy

consumption is reduced by nearly 60% compared to AWCP at maximum,

while the difference between AWCP and LCP is less than 1% for MIX 1.

The reason for this similarity is that the NVM write counts is a main con-

tributor to the total energy consumption; thus, reducing the number of NVM

write accesses to the LLC highly influenced the total dynamic energy con-

sumption.

5.4 Lifetime

We estimated the normalized lifetime as shown in Figure 29 and Figure 30.

There is a general consensus among researchers that PCM has a limited

lifetime. However, opinions are different about the write endurance of STT-

RAM. Many studies assume that its write endurance is high enough, and

thus they set aside the lifetime problem. On the other hand, another group

argues that the assumption is unrealistic [19, 56]. Since determining the

correctness of their claims is not the focus in the thesis, the results of both

types of NVM are presented.

90

-1-0
.500.511.522.53

Normalized_Lifetime(Log scale)

DW
A

PT
HC

M
PT

HC
M
_D

W
A

Fi
gu

re
29

:N
or

m
al

iz
ed

lif
et

im
e

of
D

W
A

w
ith

ST
T-

R
A

M
.

91

-0
.500.511.522.53

Normalized_Lifetime(Log scale)

DW
A

PT
HC

M
PT

HC
M
_D

W
A

Fi
gu

re
30

:N
or

m
al

iz
ed

lif
et

im
e

of
D

W
A

w
ith

PC
M

.

92

Notice that the results of two figures are presented in log scale because

the lifetime of some applications were extended significantly. Especially, the

write endurance of namd and lbm was increased by more than 300 times. For

these applications, the number of replaceable ways was almost always less

than the number of SRAM ways. Since NVM ways were rarely used in the

DWA, the lifetime soared up. The PTHCM DWA extended the lifetime by

10.9 times and 11.3 times for HCAs with STT-RAM and PCM, respectively.

To confirm that our proposal does not increase the miss rate signifi-

cantly, we present the miss rates of each HCA configuration compared to

the baseline hybrid cache in Figure 31 and Figure 32. The miss rate of the

DWA was increased only by 1.8% and 1.9% for HCAs with STT-RAM and

PCM, respectively, while the PTHCM decreased the miss rate by 1%. Since

the PTHCM did not improve the miss rate meaningfully, the miss rate of the

PTHCM DWA followed the miss rate of the DWA. Therefore, the miss rates

of the DWA and the PTHCM DWA are very similar and the PTHCM DWA

increased the miss rate by 1.9% and 1.9% on average which are the same

values of the DWA. As expected, this result confirms that our proposed al-

gorithm does not significantly increase the miss rate.

93

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss_Rate(%)

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
31

:M
is

s
ra

te
s

w
ith

va
ri

ou
s

H
C

A
co

nfi
ru

at
io

ns
w

ith
ST

T-
R

A
M

.

94

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss_Rate(%)

Ba
se
lin

e
DW

A
PT

HC
M

PT
HC

M
_D

W
A

Fi
gu

re
32

:M
is

s
ra

te
s

w
ith

va
ri

ou
s

D
W

A
co

nfi
gu

ra
tio

ns
w

ith
PC

M
.

95

5.5 Multi-core environment

We investigated several metrics for multi-core environments as shown in

Figure 33 and Figure 34. For multi core system simulation, we generated

ten workloads by mixing six applications as listed in Table 12. The two

benchmarks for low sensitivity are bwaves and calculix, while hmmer and

h264ref represent high sensitivity. Other two benchmarks such as wrf and

gromacs are selected as the middle range of sensitive programs.

First of all, a significant reduction in the write accesses was achieved

in both HCA configurations. The DWA removed 80.7% of write accesses

on average, while the average write reduction ratio of six benchmarks is

61.3% for HCA with STT-RAM in single-core environments. This result

means that our proposal has the extendibility for the multi-core system. In

case of HCA with PCM, the average reduction ratio of multi-core results is

59.4%, while each application removed 76.3% of write accesses on average.

Even though the results of HCA with PCM are less impressive compared to

HCA with STT-RAM, our proposal still removed a great deal of unneces-

sary NVM write operations. The results of dynamic energy consumption

are consistent with the trend of the write accesses to NVM. For HCAs with

STT-RAM and PCM, 55.5% and 33.7% of dynamic energy consumption

were saved, respectively. The lifetime was prolonged by 1.76 times and 1.35

times on average.

96

012345

0

0.
2

0.
4

0.
6

0.
81

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0

M
IX
_1
1

M
IX
_1
2

M
IX
_1
3

M
IX
_1
4

M
IX
_1
5

av
er
ag
e

HC
A

w
ith

 S
TT

-R
AM

W
rit
e_
Ac
ce
ss

Dy
na
m
ic_
En
er
gy

Lif
et
im
e

Fi
gu

re
33

:N
or

m
al

iz
ed

w
ri

te
ac

ce
ss

,d
yn

am
ic

en
er

gy
co

ns
um

pt
io

n,
an

d
lif

et
im

e
of

H
C

A
w

ith
ST

T-
R

A
M

w
ith

th
e

m
ul

ti-
co

re
w

or
kl

oa
ds

.

97

012345

0

0.
2

0.
4

0.
6

0.
81

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

 M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

HC
A

w
ith

 P
CM

W
rit
e_
Ac
ce
ss

Dy
na
m
ic_
En
er
gy

Lif
et
im
e

Fi
gu

re
34

:
N

or
m

al
iz

ed
w

ri
te

ac
ce

ss
,

dy
na

m
ic

en
er

gy
co

ns
um

pt
io

n,
an

d
lif

et
im

e
of

H
C

A
w

ith
PC

M
w

ith
th

e
m

ul
ti-

co
re

w
or

kl
oa

ds
.

98

To represent the performance improvement in a multi-core environ-

ment, three metrics usually are presented – nstruction per cycle (IPC) through-

put, weighted speedup, and fairness – which have their own purposes [57].

They usually are defined as follows:

IPC throughput =
n∑

i=1

IPCi (5.1)

Weighted Speedup =

n∑
i=1

IPCMP
i

IPCSP
i

(5.2)

Fairness =
n∑n

i=1
IPCSP

i
IPCMP

i

(5.3)

where IPCSP
i is the IPC of ith program under single program mode (SP)

and IPCMP
i is the IPC under multi-program mode (MP). IPC throughput is

simply and intuitively defined as the sum of the IPCs of the all applications.

The weighted speedup is proposed to equalize the contribution of programs

using normalized IPCs [58]. Luo et al. argued that harmonic mean is more

suitable to represent the fairness than weighted speedup [59].

99

02468

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

IPC_Throughput

N
oC
P

BS
AB

M
AW

CP
BC
P

Fi
gu

re
35

:I
PC

th
ro

ug
hp

ut
w

ith
fo

ur
sc

he
m

es
.

100

1.
52

2.
53

3.
54

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Weighted_Speedup

N
oC
P

BS
AB

M
AW

CP
BC
P

Fi
gu

re
36

:W
ei

gh
te

d
sp

ee
du

p
w

ith
fo

ur
sc

he
m

es
.

101

0.
5

0.
6

0.
7

0.
8

0.
91

M
IX
_1

M
IX
_2

M
IX
_3

M
IX
_4

M
IX
_5

M
IX
_6

M
IX
_7

M
IX
_8

M
IX
_9

M
IX
_1
0
M
IX
_1
1
M
IX
_1
2
M
IX
_1
3
M
IX
_1
4
M
IX
_1
5
av
er
ag
e

Fairness

N
oC
P

BS
AB

M
AW

CP
BC
P

Fi
gu

re
37

:F
ai

rn
es

s
w

ith
fo

ur
sc

he
m

es
.

102

Therefore, we plot three metrics in Figure 35, Figure 36, and Figure 37

for different schemes. LCP outperforms NoCP and AWCP by 5.0% and

14.3% in terms of IPC throughput as depicted in Figure 35. In addition,

our scheme improved the weighted speedup by 5.6% and 11.4% for NoCP

and AWCP as shown in Figure 36. Finally, Figure 37 compares the fairness

improvement for four schemes; the fairness of LCP is improved to 0.93,

while NoCP and AWCP have 0.89 and 0.83, respectively. The IPC through-

put improvement is maximized for MIX 3, whereas MIX 2 shows the best

weighted speedup improvement compared to AWCP. The fairness of the ap-

plications of MIX 12 is most increased.

103

Chapter 6

Conclusion

6.1 Conclusion

In the thesis, three proposals have been provided to compensate for identi-

fied weaknesses of NVM: write avoidance cache coherence protocol (WACC),

dynamic way adjusting scheme (DWA), and linefill-aware cache partition-

ing (LCP).

We proposed a novel cache coherence protocol to eliminate useless

write operations of LLC for a multi-core system. Based on the analysis of

the existing protocols, it was found that they generated useless write ac-

cesses to the LLC during the linefill operation. Thus, our protocol,which

is called WACC, modifies the cache states without storing the block data

during linefill. This write policy reduced the number of write access at-

tempts to the LLC, which led to improvements in the energy consumption

and lifetime. The simulation result showed that the reduction of maximum

energy consumption in WACC protocol is 27.1% and the lifetime extension

is 26.3% at maximum in STT-RAM based LLC.

104

The thesis introduced the concept of an NVM capacity management

policy for reducing the number of write accesses to NVM. This policy is

implemented by two methods called dynamic way adjusting scheme (DWA)

and linefill-aware cache partitioning (LCP). DWA dynamically resized the

number of active NVM ways to improve the dynamic energy consumption

and the lifetime of the components. To adjust the number of NVM ways,

the maximum stack distance is dynamically monitored and rearranging of

the replaceable NVM ways is regularly performed. The proposed policy re-

duced the number of write accesses to STT-RAM by about 77.6% and PCM

by 79.6%. The results also showed that HCAs with STT-RAM and PCM

achieves 30.0% reduction and 28.4% in dynamic energy consumption. The

lifetime of the two HCAs was prolonged by 10.9 times and 11.3 times over

a conventional hybrid cache system. Both HCAs can achieve these improve-

ments without any meaningful miss rate increment. While the portion of the

NVM linefill operations, over the write counts, is about 83.5% in our exper-

imental results, previous studies have not considered the linefill operations

to NVM in CMP environments during partitioning.

We also proposed LCP, to minimize the NVM write counts, in consid-

eration of the NVM linefill counts, as well as the NVM write hit counts. In

the thesis, three kinds of metrics were introduced to analyze the efficiency

of adjusting the cache partitioning; if a core gets or loses ways, how many

the miss counts, write counts, and NVM write counts are changed. A cache

partitioning algorithm for LCP is proposed to provide the best partitioning

through a two-step approach based on these metrics. We have shown that

105

the proposed LCP predicts the NVM write counts with less than a 5% er-

ror rate and reduces the dynamic energy consumption by 34.1% on average

with improved performance.

6.2 Future work

We will extend the findings of thesis in two ways. First, we plan to combine

our proposal with schemes for non-uniformity of write operations among

sets which are inspired that the write varies across different cache sets.

They separated the physical mapping and logical mapping of cache sets and

stored data between sets. The key idea is decent, but there is a pitfall to sim-

ply merge LCP with the inter-set variation wear leveling scheme (ISWLs).

Since the data is possible to be placed in a different set, they violate the stack

property which our scheme is based on. Keeping track of all recency posi-

tion of remapped blocks would not be a feasible method because it needs a

significant area overhead and consumes a lot of dynamic energy. Hence, we

are developing a new method to efficiently bond LCP and ISWLs.

In addition, we will consider combining data bypassing techniques to

the proposed scheme. Even though cache bypassing techniques are appar-

ently promising schemes for NVM, they cannot be directly applied to our

mechanism because the inclusion property is not maintained in most of their

schemes. We will investigate a new scheme that both keeps inclusion prop-

erty and utilizes the bypass schemes.

106

Bibliography

[1] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-

mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al., “A novel

nonvolatile memory with spin torque transfer magnetization switch-

ing: Spin-ram,” in Proceedings of IEEE International Electron Devices

Meeting, pp. 459–462, IEEE, 2005.

[2] H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,

M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceed-

ings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[3] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-

phase transitions of gete-sb2te3 pseudobinary amorphous thin films for

an optical disk memory,” Journal of Applied Physics, vol. 69, no. 5,

pp. 2849–2856, 1991.

[4] A. Driskill-Smith, S. Watts, D. Apalkov, D. Druist, X. Tang, Z. Diao,

X. Luo, A. Ong, V. Nikitin, and E. Chen, “Non-volatile spin-transfer

torque ram (stt-ram): An analysis of chip data, thermal stability and

scalability,” in Proceedings of IEEE International Memory Workshop,

pp. 1–3, IEEE, 2010.

[5] T. Sumi, Y. Judai, K. Hirano, T. Ito, T. Mikawa, M. Takeo, M. Azuma,

S.-i. Hayashi, Y. Uemoto, K. Arita, et al., “Ferroelectric nonvolatile

memory technology and its applications,” Japanese Journal of Applied

Physics, vol. 35, no. 2S, p. 1516, 1996.

[6] H. Akinaga and H. Shima, “Resistive random access memory (reram)

based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12,

pp. 2237–2251, 2010.

[7] J. H. Choi, J. W. Kwak, and C. S. Jhon, “Write avoidance cache

coherence protocol for non-volatile memory as last-level cache in

107

chip-multiprocessor,” IEICE Transactions on Information and Sys-

tems, vol. 97, no. 8, pp. 2166–2169, 2014.

[8] J. H. Choi and G. H. Park, “Demand-aware nvm capacity management

policy for hybrid cache architecture,” Computer Journal, advance on-

line publication, 2015, doi:10.1093/comjnl/bxv103.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5

simulator,” ACM SIGARCH Computer Architecture News, vol. 39,

no. 2, pp. 1–7, 2011.

[10] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and

T. Pho, “Macsim: A cpu-gpu heterogeneous simulation framework

user guide,” Georgia Institute of Technology, 2012.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark

suite: Characterization and architectural implications,” in Proceedings

of International Conference on Parallel Architectures and Compilation

Techniques, pp. 72–81, ACM, 2008.

[12] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[13] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:

A tool to model large caches,” HP Laboratories, pp. 22–31, 2009.

[14] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level per-

formance, energy, and area model for emerging nonvolatile memory,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[15] S. Lee, K. Kang, and C.-M. Kyung, “Runtime thermal management

for 3-d chip-multiprocessors with hybrid sram/mram l2 cache,” IEEE

Transactions on Very Large Scale Integration Systems, vol. 23, no. 3,

pp. 520–533, 2014.

108

[16] X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, “Power and perfor-

mance of read-write aware hybrid caches with non-volatile memories,”

in Proceedings of International Conference on Design, Automation

and Test in Europe, pp. 737–742, IEEE, 2009.

[17] J. Li, L. Shi, C. J. Xue, C. Yang, and Y. Xu, “Exploiting set-level write

non-uniformity for energy-efficient nvm-based hybrid cache,” in Pro-

ceedings of International Symposium on Embedded Systems for Real-

Time Multimedia, pp. 19–28, IEEE, 2011.

[18] B. Quan, T. Zhang, T. Chen, and J. Wu, “Prediction table based man-

agement policy for stt-ram and sram hybrid cache,” in Proceedings of

International Conference on Computing and Convergence Technology,

pp. 1092–1097, IEEE, 2012.

[19] J. Ahn, S. Yoo, and K. Choi, “Write intensity prediction for energy-

efficient non-volatile caches,” in Proceedings of International Sympo-

sium on Low Power Electronics and Design, pp. 223–228, IEEE, 2013.

[20] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hy-

brid cache architecture with disparate memory technologies,” in ACM

SIGARCH Computer Architecture News, vol. 37, pp. 34–45, ACM,

2009.

[21] J. H. Choi, J. W. Kwak, S. T. Jhang, and C. S. Jhon, “Adaptive cache

compression for non-volatile memories in embedded system,” in Pro-

ceedings of International Conference on Research in Adaptive and

Convergent Systems, pp. 52–57, ACM, 2014.

[22] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and

performance-efficient design of hybrid cache architectures through

adaptive line replacement,” in Proceedings of International Sympo-

sium on Low Power Electronics and Design, pp. 79–84, IEEE, 2011.

[23] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i 2 wap: Improving

non-volatile cache lifetime by reducing inter-and intra-set write vari-

109

ations,” in Proceedings of International Symposium on High Perfor-

mance Computer Architecture, pp. 234–245, IEEE, 2013.

[24] Y.-T. Chen, J. Cong, H. Huang, C. Liu, R. Prabhakar, and G. Reinman,

“Static and dynamic co-optimizations for blocks mapping in hybrid

caches,” in Proceedings of International Symposium on Low Power

Electronics and Design, pp. 237–242, ACM, 2012.

[25] Y. Li, Y. Chen, and A. K. Jones, “A software approach for combat-

ing asymmetries of non-volatile memories,” in Proceedings of Inter-

national Symposium on Low Power Electronics and Design, pp. 191–

196, ACM, 2012.

[26] Q. Li, M. Zhao, C. J. Xue, and Y. He, “Compiler-assisted preferred

caching for embedded systems with stt-ram based hybrid cache,” ACM

SIGPLAN Notices, vol. 47, no. 5, pp. 109–118, 2012.

[27] K. Qiu, M. Zhao, C. Fu, L. Shi, and C. J. Xue, “Migration-aware loop

retiming for stt-ram based hybrid cache for embedded systems,” in

Proceedings of International Conference on Application-Specific Sys-

tems, Architectures and Processors, pp. 83–86, IEEE, 2013.

[28] Y. Li, Y. Zhang, H. Li, Y. Chen, and A. K. Jones, “C1c: A configurable,

compiler-guided stt-ram l1 cache,” ACM Transactions on Architecture

and Code Optimization, vol. 10, no. 4, p. 52, 2013.

[29] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-

formance main memory system using phase-change memory technol-

ogy,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,

pp. 24–33, 2009.

[30] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montaño, “Im-

proving read performance of phase change memories via write cancel-

lation and write pausing,” in Proceedings of International Symposium

on High Performance Computer Architecture, pp. 1–11, IEEE, 2010.

110

[31] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling

efficient and scalable hybrid memories using fine-granularity dram

cache management,” Computer Architecture Letters, vol. 11, no. 2,

pp. 61–64, 2012.

[32] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,

“Row buffer locality aware caching policies for hybrid memories,”

in Proceedings of International Conference on Computer Design,

pp. 337–344, IEEE, 2012.

[33] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, “Writeback-

aware partitioning and replacement for last-level caches in phase

change main memory systems,” ACM Transactions on Architecture

and Code Optimization, vol. 8, no. 4, p. 53, 2012.

[34] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram

main memory system,” in Proceedings of Internaional Conference on

Design Automation Conference, pp. 664–669, IEEE, 2009.

[35] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and

D. Mossé, “Increasing pcm main memory lifetime,” in Proceedings of

Internaional Conference on Design, Automation and Test in Europe,

pp. 914–919, IEEE, 2010.

[36] W. Zhang and T. Li, “Exploring phase change memory and 3d die-

stacking for power/thermal friendly, fast and durable memory archi-

tectures,” in Proceedings of International Conference on Parallel Ar-

chitectures and Compilation Techniques, pp. 101–112, IEEE, 2009.

[37] H. Seok, Y. Park, and K. H. Park, “Migration based page caching al-

gorithm for a hybrid main memory of dram and pram,” in Applied

Computing, International Symposium on, pp. 595–599, ACM, 2011.

[38] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of

shared cache memory,” The Journal of Supercomputing, vol. 28, no. 1,

pp. 7–26, 2004.

111

[39] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared

caches,” in Microarchitecture, IEEE/ACM International Symposium

on, pp. 423–432, IEEE Computer Society, 2006.

[40] A. Samih, Y. Solihin, and A. Krishna, “Evaluating placement poli-

cies for managing capacity sharing in cmp architectures with private

caches,” ACM Transactions on Architecture and Code Optimization,

vol. 8, no. 3, p. 15, 2011.

[41] C. CaBcaval and D. A. Padua, “Estimating cache misses and locality

using stack distances,” in Proceedings of International Conference on

Supercomputing, pp. 150–159, ACM, 2003.

[42] Y. Liu and W. Zhang, “Exploiting stack distance to estimate worst-case

data cache performance,” in Proceedings of International Symposium

on Applied Computing, pp. 1979–1983, ACM, 2009.

[43] “The intel 64 and ia-32 architectures software developer’s manual.”

http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-system-

programming-manual-325384.pdf. accessed 3-Mar-2014.

[44] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory con-

sistency and cache coherence,” Synthesis Lectures on Computer Archi-

tecture, vol. 6, no. 3, pp. 1–212, 2011.

[45] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation

techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,

pp. 78–117, 1970.

[46] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for

mlp-aware cache replacement,” ACM SIGARCH Computer Architec-

ture News, vol. 34, no. 2, pp. 167–178, 2006.

[47] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive place-

ment and migration policy for an stt-ram-based hybrid cache,”

112

[48] J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-

tative approach. 2011.

[49] J. Li, C. J. Xue, and Y. Xu, “Stt-ram based energy-efficiency hybrid

cache for cmps,” in Proceedings of International Conference on VLSI

and System-on-Chip, pp. 31–36, IEEE, 2011.

[50] S.-M. Syu, Y.-H. Shao, and I.-C. Lin, “High-endurance hybrid cache

design in cmp architecture with cache partitioning and access-aware

policy,” in Proceedings of International Conference on Great Lakes

Symposium on VLSI, pp. 19–24, ACM, 2013.

[51] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-

ram using early write termination,” in Proceedings of International

Conference on Computer-Aided Design-Digest of Technical Papers,

pp. 264–268, IEEE, 2009.

[52] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture

of the 3d stacked mram l2 cache for cmps,” in Proceedings of In-

ternational Symposium on High Performance Computer Architecture,

pp. 239–249, IEEE, 2009.

[53] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,

“Pinpointing representative portions of large intel® itanium® pro-

grams with dynamic instrumentation,” in Proceedings of International

Symposium on Microarchitecture, pp. 81–92, IEEE Computer Society,

2004.

[54] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-

gram analysis tools with dynamic instrumentation,” in ACM Sigplan

Notices, vol. 40, pp. 190–200, ACM, 2005.

[55] “Arm cortex-a57 processor.” ”http://www.

arm.com/products/processors/cortex-a/

cortex-a57-processor.php” (accessed 1-Sep-2015).

113

http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php

[56] J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun, and H. H. Li, “A co-

herent hybrid sram and stt-ram l1 cache architecture for shared mem-

ory multicores.,” in Proceeding of Asia and South Pacific Design Au-

tomation Conference, pp. 610–615, IEEE, 2014.

[57] L. Eeckhout, “Computer architecture performance evaluation meth-

ods,” Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–

145, 2010.

[58] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-

taneous mutlithreading processor,” ACM SIGPLAN Notices, vol. 35,

no. 11, pp. 234–244, 2000.

[59] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and

fairness in smt processors.,” in Performance Analysis of Systems and

Software, International Symposium on, pp. 164–171, IEEE, 2001.

114

초록

비휘발성메모리기반의최종레벨캐시를위한쓰기

회피기법

비휘발성메모리는높은집적성과낮은정적전력소모량이라는특성으로

인해최종레벨캐시로사용되기에유력한기술로떠오르고있다.그러나

비휘발성메모리는쓰기작업을위해많은전력과시간을소모하고,제한

된 수명을 가진다는 단점이 있기 때문에 이를 보완하기 위한 방법이 없

다면최종레벨캐시로사용되기어렵다.본논문에서비휘발성메모리의

단점을보완하기위해쓰기회피기법들을제시하였다.먼저,멀티코어환

경에서쓰기횟수를줄이기위한캐시일관성정책(Write avoidance cache

coherence protocol)을제시하였고,이종캐시구조(Hybrid cache architec-

ture)에서쓰기회수를최소화하기위한 2가지기법을제안하였다.첫번째

기법은 NVM way을 동적으로 조정하는 방식이며(Dynamic way adjust-

ing), 다른 기법은 linefill을 고려한 캐시 분할 기법(Linefill-aware cache

partitioning)이다.

우선본논문에서는쓰기횟수를줄이기위한새로운캐시일관성정

책을 제안한다. 새로운 정책을 사용하는 시스템에서는 상위 레벨 캐시에

동일한데이터가있는경우,최종레벨캐시에서는태그정보만저장하고

데이터정보는기록하지않는다.따라서상위레벨캐시에서쓰기수정이

일어났을때,불필요한쓰기를줄일수있게된다.

115

다음으로 이종 캐시 구조 환경하에서 비휘발성 메모리의 크기를 제

한하여쓰기횟수를줄이는기법을제안한다.이종캐시구조는비휘발성

메모리의 일부를 휘발성 메모리인 SRAM로 교체하여 두 가지 종류의 메

모리가하나의캐시에존재하는구조이다.통계적으로비휘발성메모리의

way의비율이많아질수록전체쓰기작업에서비휘발성메모리의쓰기작

업의비율또한커지게된다.그런데모든프로그램이항상전체메모리를

요구하는것은아니다.프로그램에따라서또는실행시간에따라서메모

리의일부만을요구할때도있다.그러한경우에는필요한만큼만비휘발

성 메모리를 사용하도록 메모리의 크기를 제한한다면 성능의 저하 없이

비휘발성메모리의쓰기횟수를줄일수있다.

또한, 본 논문에서는 이종 캐시 구조를 사용하는 멀티 코어 시스템

에서 비휘발성 메모리의 쓰기 회수를 최소화하는 캐시 분할(Cache parti-

tioning)을제안한다.기존의캐시분할방식들은휘발성메모리를사용한

동종 캐시 구조를 사용하기 때문에, 각 코어에 할당할 way의 수만 계산

하였다.그러나이종캐시구조에서는각코어가사용할전체 way의수뿐

만 아니라 비휘발성 메모리 way의 수와 휘발성 메모리 way의 수를 따로

구해야 한다. 그렇지 않으면 휘발성 메모리 way가 비효율적으로 코어에

분배되어, 전체적인 비휘발성 메모리의 쓰기 회수가 최적화되지 않는다.

따라서,본논문에서는일정한주기마다캐시분할방식을바꾸어가면서

비휘발성메모리의쓰기회수를최소화하는캐시분할구성을찾아낸다.

실험을 수행한 결과, Write avoidance cache coherence protocol을 적

용하게 되면 전력 소모량은 13.2%가 감소하며, Dynamic way adjusting

와 Linefill-aware cache partitioning을 적용하는 경우 각각 전력 소모량이

26.9%와 37.2%감소하였다.

116

	I. Introduction
	1.1 Purpose of the thesis
	1.2 Background
	1.3 Motivation
	1.4 Contributions
	1.5 Organization of the thesis

	II. Related work
	2.1 Hybrid cache architecture
	2.1.1 Write intensity prediction studies
	2.1.2 Static approaches
	2.1.3 Hybrid cache architecture for main memory

	2.2 Cache partitioning schemes

	III. Write avoidance cache coherence protocol
	3.1 Limitation of existing cache coherence protocol
	3.2 Write avoidance cache coherence protocol

	IV. NVM capacity management policy for hybrid cache architecture
	4.1 NVM capacity management policy
	4.1.1 Concept of NVM capacity management policy
	4.1.2 Feasibility of NVM capacity management policy

	4.2 Dynamic way adjusting
	4.2.1 Maximum stack distance
	4.2.2 Adjusting the number of NVM ways
	4.2.3 Algorithm of dynamic way adjusting

	4.3 Cache partitioning for hybrid cache architecture
	4.3.1 Linefill-aware cache partitioning
	4.3.2 Metrics for cache partitioning
	4.3.3 Algorithm for cache partitioning

	4.4 Overhead of NVM capacity management policy

	V. Experimental results
	5.1 Experimental environment
	5.2 Write access to NVM
	5.3 Dynamic energy consumption
	5.4 Lifetime
	5.5 Multi-core environment

	VI. Conclusion
	6.1 Conclusion
	6.2 Future work

	References
	Abstract in Korean

<startpage>12
I. Introduction 1
 1.1 Purpose of the thesis 1
 1.2 Background 3
 1.3 Motivation 4
 1.4 Contributions 5
 1.5 Organization of the thesis 8
II. Related work 9
 2.1 Hybrid cache architecture 9
 2.1.1 Write intensity prediction studies 11
 2.1.2 Static approaches 11
 2.1.3 Hybrid cache architecture for main memory 12
 2.2 Cache partitioning schemes 14
III. Write avoidance cache coherence protocol 15
 3.1 Limitation of existing cache coherence protocol 15
 3.2 Write avoidance cache coherence protocol 19
IV. NVM capacity management policy for hybrid cache architecture 22
 4.1 NVM capacity management policy 22
 4.1.1 Concept of NVM capacity management policy 23
 4.1.2 Feasibility of NVM capacity management policy 27
 4.2 Dynamic way adjusting 37
 4.2.1 Maximum stack distance 37
 4.2.2 Adjusting the number of NVM ways 41
 4.2.3 Algorithm of dynamic way adjusting 42
 4.3 Cache partitioning for hybrid cache architecture 46
 4.3.1 Linefill-aware cache partitioning 49
 4.3.2 Metrics for cache partitioning 50
 4.3.3 Algorithm for cache partitioning 59
 4.4 Overhead of NVM capacity management policy 68
V. Experimental results 71
 5.1 Experimental environment 71
 5.2 Write access to NVM 78
 5.3 Dynamic energy consumption 85
 5.4 Lifetime 90
 5.5 Multi-core environment 96
VI. Conclusion 104
 6.1 Conclusion 104
 6.2 Future work 106
References 107
Abstract in Korean 115
</body>

