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Abstract

Space Efficient Encodings for Bit-strings,

Range queries and Related Problems

Seungbum Jo

Department of Electrical Engineerning and Computer Science

Collage of Engineering

The Graduate School

Seoul National University

In this thesis, we design and implement various space efficient data structures.

Most of these structures use spaces close to the information-theoretic lower

bound while supporting the queries efficiently. In particular, this thesis is con-

cerned with the data structures for four problems: (i) supporting rank and select

queries on compressed bit strings, (ii) nearest larger neighbor problem, (iii) si-

multaneous encodings for range and next/previous larger/smaller value queries,

and (iv) range Top-k queries on two-dimensional arrays.

We first consider practical implementations of compressed bitvectors, which

support rank and select operations on a given bit-string, while storing the bit-

string in compressed form [45]. Our approach relies on variable-to-fixed encod-

ings of the bit-string, an approach that has not yet been considered systemati-

cally for practical encodings of bitvectors. We show that this approach leads to

fast practical implementations with low redundancy (i.e., the space used by the

bitvector in addition to the compressed representation of the bit-string), and is

a flexible and promising solution to the problem of supporting rank and select

on moderately compressible bit-strings, such as those encountered in real-world

applications.
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Next, we propose space-efficient data structures for the nearest larger neigh-

bor problem [44, 46]. Given a sequence of n elements from a total order, and

a position in the sequence, the nearest larger neighbor (NLN) query returns

the position of the element which is closest to the query position, and is larger

than the element at the query position. The problem of finding all nearest larger

neighbors has attracted interest due to its applications for parenthesis matching

and in computational geometry [3, 4, 7]. We consider a data structure version of

this problem, which is to preprocess a given sequence of elements to construct

a data structure that can answer NLN queries efficiently. For one-dimensional

arrays, we give time-space tradeoffs for the problem on indexing model. For

two-dimensional arrays, we give an optimal encoding with constant query on

encoding model.

We also propose space-efficient encodings which support various range queries,

and previous and next smaller/larger value queries [47]. Given a sequence of n

elements from a total order, we obtain a 4.088n + o(n)-bit encoding that sup-

ports all these queries where n is the length of input array. For the case when

we need to support all these queries in constant time, we give an encoding that

takes 4.585n+ o(n) bits. This improves the 5.08n+ o(n)-bit encoding obtained

by encoding the colored 2d-Min and 2d-Max heaps proposed by Fischer [25].

We extend the original DFUDS [6] encoding of the colored 2d-Min and 2d-Max

heap that supports the queries in constant time. Then, we combine the ex-

tended DFUDS of 2d-Min heap and 2d-Max heap using the Min-Max encoding

of Gawrychowski and Nicholson [30] with some modifications. We also obtain

encodings that take lesser space and support a subset of these queries.

Finally, we consider the various encodings that support range Top-k queries

on a two-dimensional array containing elements from a total order. For an

m×n array, we first propose an optimal encoding for answering one-sided Top-k

queries, whose query range is restricted to [1 . . .m][1 . . . a], for 1 ≤ a ≤ n. Next,

we propose an encoding for the general Top-k queries that takes m2 lg
(

(k+1)n
n

)
+

ii



m lgm + o(n) bits. This generalizes the Top-k encoding of Gawrychowski and

Nicholson [30].

Keywords: Space-efficient data structure, succinct data structure, encoding

model, indexing model, bitvector, rank query, select query, nearest larger neigh-

bor problem, range queries, next/previous larger query, range Top-k query

Student Number: 2011-30257
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Chapter 1

Introduction

The amount of data increases much faster than the capacity of the storage de-

vices in recent days. Also the rapid growth of the mobile device market requires

storing the large amount of the data into the limited space. To overcome this

problem, one of the best solution is compressing the original data. For exam-

ple, there are numerous text compression algorithms [73, 76] which can store

the text data using much less space than its original size. However, the raw

compressed data itself cannot support most of the queries (for example, ran-

dom accesse and extracting arbitrary substrings from the LZ77-compressed [76]

texts) without uncompressing the whole compressed data and this makes a huge

bottleneck to answer the queries. In many areas of data science like Real-time

data analysis or BigData, supporting queries efficiently for large data sets is

a important issue. Therefore, storing data with compact size while supporting

queries efficiently becomes a crucial issue.

One can define a compressed (space-efficient) data structure as a data struc-

ture which takes less space than the conventional data structure while sup-

porting same set of queries. Let OPT be the minimum number of bits re-

quired to store the data while supporting the query (information-theoretic lower
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bound). The compressed data structures are divided into three types as follows.

(i) Implicit if the data structure uses OPT+O(1) bits, (ii) Succinct if the data

structure uses OPT+o(OPT ) bits and (iii) Compact if the data structure uses

O(OPT ) bits. Since it is hard to design implicit data structure while supporting

queries efficiently due to its space requirement, the main goal in the theoretical

computer science area is usually maintain the size of the data structures as

succinct while supporting the queries efficiently.

Succinct Data Structures were first introduced by Jacobson [42]. He showed

how to represent the static trees and graphs while supporting the various queries

efficiently. There are succinct data structures for various problems such as In-

dexable dictionaries [64, 69], Permutations [54], Equivalence relations [52] and

Range minimum queries [10, 27].

1.1 Computational model

In this thesis, we assume a standard word-RAM model [53] as computational

model. Word-RAM model is a variant of the classic RAM (random access ma-

chine) model [14] which is the computational model under the realistic assump-

tion of a computer. In this model, each memory cell stores a word of size ω

and we can read and write any cell in the memory in O(1) time. Also, we can

support ‘C-style’ arithmetic operations (+,−, ∗, /,%) and boolean operations

(&, |,∧,∼, <<,>>) on words in O(1) time. Since each word needs to be large

enough to store pointers and indices to access the data in practice, we set the

word size ω = Θ(lg n) bits1 for n input elements. We count space in terms of

the number of bits used.

1.1.1 Encoding and indexing models

We consider the data structures in two different models that have been studied

in the succinct data structures literature, namely the indexing and encoding

1We use lgn to denote log2 n
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models. In both these models, the data structure is created after preprocessing

the input data. In the indexing model, the queries can be answered by probing

the data structure as well as the input data, whereas in the encoding model, the

query algorithm cannot access the input data. The size of the data structure

in the encoding model is also referred to as the effective entropy [35, 68] of the

input data, with respect to the problem.

Suppose there is a set of input data S and set of all queries Q. If we can

reconstruct any element in S from the answer to the queries in Q, encoding has

no space advantage compared to indexing for answering the queries. But if the

number of all possible answers on S induced by Q is significantly smaller than

the size of S, then we can save some space by using the encoding model which

doesn’t need to store the original data.

1.2 Contribution of the thesis

In this thesis, we propose the following space-efficient data structures.

• Bitvector based on variable-to-fixed encodings: Bitvector is a data

structure which supports rank and select operations on a given bit-string.

In this thesis, we design bitvectors based on variable-to-fixed compressed

bit-string (V2F bitvector). In the theoretical view, we show that regardless

of the V2F compression algorithms, there exists a V2F bitvector which has

low redundancy (that is, the difference in size between the V2F bitvector

and the compressed bit-string is asymptotically smaller than the size of

the compressed bit-string) and supports rank and select in constant time.

We also give practical implementations of V2F bitvector and evaluate

their practical performance with various existing implementations. The

empirical evaluation shows that our V2F bitvector has low redundancy

and supports rank and select queries efficiently compared to other previous

implementations.
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• Encoding and indexing of the nearest Larger neighbor queries:

Given an elements in an array from a total order, the nearest larger neigh-

bor (NLN) query returns the position of the element which is closest to the

query position, and is larger than the element at the query position. We

consider the NLN problem on one and two-dimensional arrays. For one-

dimensional array of size n, we propose an O((n/c) lg c)-bit index which

supports NLN queries in O(c) time, for any parameter 2 ≤ c ≤ n, improv-

ing the structure of Fischer et al. [28]. For a n×n two-dimensional array,

we first show that Θ(n2) bits are necessary to encode NLN queries. Also,

we give an optimal encoding which supports NLN queries in constant time

on a two-dimensional array, improving the NLN encoding from Jayapaul

et al. [44].

• Simultaneous encodings of various range queries and next/previous

larger/smaller value queries: Given a sequence of n elements from a

total order, we consider the encoding which supports range minimum

query and its variants (RMinQ, RLMinQ, RRMinQ, RkMinQ), range max-

imum query and its variants (RMaxQ, RLMaxQ, RRMaxQ, RkMaxQ) and

next/previous larger/smaller value queries (NLV, NSV, PLV, PSV). In this

thesis, we obtain a 4.585n + o(n)-bit encoding which supports all these

queries in constant time for a sequence of size n. This improves the Fis-

cher’s 5.08n+o(n)-bit encoding [25] which supports same set of queries in

constant time. We also prove that if the query time is not concerned, we

can obtain a 4.088n+ o(n)-bit encoding which supports all these queries.

• Encoding of range Top-k queries on a two-dimensional array:

Given an elements in an array from a total order and a rectangular range

in an array. Range top-k (Top-k) query returns the positions of k largest

elements in the range, In this thesis, we consider various encodings which

support Top-k queries on a two-dimensional array. This problem has not
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been studied. For an m×n array, we first obtain an optimal encoding for

one-sided Top-k queries whose query range is restricted to [1 . . .m][1 . . . i],

for 1 ≤ i ≤ n. Also, we propose the m2 lg
(

(k+1)n
n

)
+m lgm+ o(n)-bit en-

coding for Top-k queries on a two-dimensional array with any rectangular

query ranges by extending the Top-k encoding on a one-dimensional array

proposed by Gawrychowski and Nicholson [30]. In most of encodings do

not support the Top-k queries in efficient query time.

The summary of previous results and our results for these data structures

are in Table 1.1.

1.3 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce data

structures for supporting rank and select queries which are basic operations on

various space-efficient data structures. In Chapter 3, we describe compressed

bit vectors based on variable-to-fixed encodings which have low redundancy in

both theoretical and practical implementations. In Chapter 4 we consider the

encoding and indexing data structures for Nearest Larger Neighbor (NLN) prob-

lem on one-dimensional and two-dimensional arrays. In Chapter 5, we propose

encodings that support various range queries (range minimum, range maxi-

mum and their variants), and previous and next smaller/larger value queries.

In Chapter 6, we propose the various encodings that supports Top-k queries.

Finally in Chapter 7, we summarize the results in this thesis and give some

open problems.
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Input data Query
Space Usage

Query time Encoding/Indexing Reference
(bits)

Bit string X[1 . . . n] rank1, select1 C`+O(C log(n/C)) O(1) Encoding This thesis

1D array A[1 . . . n],

1 ≤ c ≤ n
PLV (NLN)

O((n/c) log c+ (n log n)/c2) O(c) Indexing [44]

O((n/c) lg c) O(c) Indexing This thesis

2D array

A[1 . . . n][1 . . . n]
NLN

O(n2 lg lg n) O(1) Encoding [44]

O(n2) O(lg lg lg n) Indexing [44]

O(n2) O(1) encoding This thesis

2D binary array

A[1 . . . n][1 . . . n],

1 ≤ c ≤ n2
NLN O(n2/c) O(c) Encoding This thesis

1D array A[1 . . . n]

RMinQ, PSV 2n+ o(n)

O(1) Encoding

[27]

RQmin, PSV

NSV
2.54n+ o(n) [25]

RMinQ, RMaxQ 3n+ o(n) [30]

RQmin, RQmax

PSV, NSV

PLV, NLV

4.585n+ o(n) This thesis

2D array

A[1 . . .m][1 . . . n]

One-sided,

sorted Top-k
n
⌈
lg(
∑min (m,k)

i=0

(
m
i

)
( k!
(k−i)! ))

⌉

Encoding This thesis
Four-sided,

unsorted Top-k
O(mn lg n) O(k)

Four-sided,

sorted Top-k

m2 lg
(
(k+1)n

n

)
+

m lgm+ o(n)

Table 1.1 The summary of previous results and our results. C = number of

codewords, ` = codeword size, RQmin = {RMinQ, RLMinQ, RRMinQ, RkMinQ}

and RQmax = {RMaxQ, RLMaxQ, RRMaxQ, RkMaxQ}.
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Chapter 2

Preliminaries

In this chapter, we introduce data structures for answering rank and select

queries, one of the fundamental problems in succinct data structures. These

structures are used for the various space-efficient data structures proposed in

this thesis.

Given a string S[1 . . . n] over an alphabet Σ, rank and select are defined as

follows.

• rankα(S, i): The number of occurrences of α in the first i positions of S,

for any α ∈ Σ.

• selectα(S, i): The position of the i-th α in S, for any α ∈ Σ.

In the thesis, we only consider the case when S is a bit-string, i.e, Σ = {0, 1}.

We first introduce the following lemma from [69] that gives a succinct encoding

of S.

Lemma 2.1 ([69]). Let S be a string of length n containing m 1s. One can

encode S using lg
(
n
m

)
+ o(n) bits to support both rankx(S, i) and selectx(S, i) in

constant time, for x ∈ Σ. Also, one can decode any lg n consecutive bits in S

in O(1) time.

7



Also, we use following lemmas from [37] that can be used to support rank

and select operations on moderately dense bit strings (i.e., bit strings in which

the number of zeros and ones is at most a poly-log factor smaller than the

length of the string).

Lemma 2.2 ([37]). Let S be a bit-string of length n containing m 1s. If m ≥

n/(lg n)c, for some constant c > 0, one can support rank1 and select1 in O(1)

time using lg
(
n
m

)
+O(m) bits.

Lemma 2.3 ([37]). Given integer n > m > 0 such that min{n − m,m} ≥

n/(lg n)c for some constant c, one can store a bit-string S with n0 ≤ n−m 0s

and n1 ≤ m 1s, using lg
(

n
n−m

)
+ O(min{n, n−m}) bits, such that select0 and

select1 are supported in O(1) time.

Now we introduce another lemma from [62]. This lemma shows that if the

number of ones is significantly less than the number of zeros, one can encode S

using less space than the encoding described in Lemma 2.1 (but do not support

queries in constant time).

Lemma 2.4 ([62]). Let S be a bit-string of length n containing m 1s. One can

encode S using O(m lg(n/m)) bits such that rank1 and select1 can be supported

in O(n/m) time.

One can generalize the rank and select queries as follows. Given a string

S[1 . . . n] and pattern string p over the alphabet Σ, rankp(S, i) returns the num-

ber of occurrences of pattern p in the first i positions of S, and selectp(S, i)

returns the position of the i-th occurrence of pattern p in S. Combining the

results from [56] and [69], one can show the following lemma for generalized

rank and select queries on a bit-string.

Lemma 2.5 ([56], [69]). Let S be a bit-string of length n over the containing

m 1s. One can encode S using lg
(
n
m

)
+ o(n) bits to support both rankp(S, i) and

8



selectp(S, i) in constant time, for any binary pattern p with length |p| ≤ 1/2 lg n.

Also, one can decode any lg n consecutive bits in S, in constant time.
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Chapter 3

Compressed bit vectors based on
variable-to-fixed encodings

3.1 Introduction.

A bitvector is a fundamental building block of many space-efficient data struc-

tures. As described in Chapter 2, given a bit-string X of length n with weight

m (i.e., with m 1 bits), the aim is to pre-process X to support the following

operations, for any b ∈ {0, 1}:

• rankb(X, i) returns the number of occurrences of b in the first i positions

of X.

• selectb(X, i) returns the position of the ith b in X.

These operations can be supported in O(1) time using n + o(n) bits of space

[13]. If X is a (uniformly) random bit-string, it cannot be be compressed, and

this space bound is therefore, in the worst case, optimal to within lower-order

terms. However, bit-strings encountered in practical applications are often com-

pressible, and many algorithmic applications use bitvectors on bit-strings that

are constructed to be sparse—contain m = o(n) 1s—and such bit-strings are
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compressible to o(n) bits. Starting from the work of [64, 70], there is now

a rich theory of compressed bitvectors, which aim to use space approaching

that used by a compressed representation of the bit-string, for many different

measures of compressibility1. The most basic measures of compressibility are

density-sensitive, i.e. they depend only upon the length n and weight m of the

bit-string. These are the information-theoretic minimum, B(n,m)
def
=
⌈
log
(
n
m

)⌉
bits, and the zeroth-order empirical entropy, H0(X)

def
= −

∑1
i=0 pi lg pi, where

p1 = m/n and p0 = 1 − p1; the compressed bit-string size should then be

nH0(X) +O(1) bits. Note that if m = o(n) then B(n,m) ≈ nH0(X) = o(n).

Instance-sensitive measures2, where the compressibility of the string X is a

function of X, are more diverse, and include the k-th order empirical entropy Hk

and functions of the gaps between successive 1s [40], or the size of the output

produced by a grammar-based compressor to X. In general, such measures

would show that a bit-string X is at least as compressible as a density-sensitive

measure on X.

Previous Work Although there have been many papers on implementations

of bitvectors [18, 17, 36, 38, 51, 74] (and some researchers have implemented

bitvectors as part of more complex data structures), there are fewer papers on

compressed bitvectors for sparse bit-strings. It should be noted that supporting

O(1)-time rank/select operations using reasonable space is possible only when

m = n/(log n)O(1) [66]. In this range, even the density-sensitive measure gives

O(m log(n/m)) = O(m log log n) bits, so a compressed bitvector is significantly

smaller than either an uncompressed bitvector, which takes Θ(n) bits, or view-

ing X as the characteristic vector of a set and storing the set explicitly, which

requires O(m log n) bits. Such moderately sparse bit-strings are also of great

1As is common in the area of succinct and compressed data structures, we focus on empirical

measures, i.e., those that are a function of the bitstring X itself, rather than measures derived

by postulating a probabilistic model for generating bit-strings.
2A related term, data-aware, is used in [40].
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practical interest. One focus of this chapter is on representing such bit-strings.

The following authors have considered practical data structures for sparse

bit-strings. Geary et al. [32] considered “uniformly” sparse bit-strings, but their

techniques do not apply to general sparse bit-strings, and they do not perform

a stand-alone evaluation of their bitvector. Gupta et al. [40] considered very

sparse bit-strings, and showed that instance-sensitive measures related to the

γ and δ codes outperform density-sensitive ones, but they did not report on

moderately sparse bit-strings. Delpratt et al. [18] considered Golomb coding in

the context of the select1 operation. Okanohara and Sadakane [63] performed

arguably the first comprehensive evaluation, but focused mostly on the density-

sensitive measures. Navarro et al. [59] considered rank and select on grammar-

compressed bit-strings, but do not provide a stand-alone evaluation. Navarro

and Providel [58] also provide an implementation of compressed bitvectors.

This, again, targets the density-sensitive measures. Very recently, Kärkkäinen

et al. [49] presented a hybrid approach combining run-length encoding (RLE),

raw encoding and explicit encoding, and showed good performance on a class

of bit-strings obtained from text indexing applications.

Our results In this chapter we explore the use of variable-to-fixed (V2F) en-

codings of a bit-string, which have only been partially explored previously. Our

results show that this approach leads to very compact and high-performance

compressed bitvectors. Indeed, we give a theoretical basis for the low redun-

dancy (wasted space) of the codes as well as that of the bitvector. An `-bit

V2F code partitions the input bit-string into a concatenation of variable-length

phrases. Each phrase, except the last one, is constrained to belong to a given

dictionary D of ≤ 2` bit-strings; the last phrase is a non-null prefix of a dic-

tionary entry. Once the input bit-string is parsed, each phrase is replaced by

its position in the dictionary, stored as a `-bit codeword. V2F codes are stud-

ied in the data compression literature due to their desirable properties such as

12



error-resilience, but it appears that there has not yet been a comprehensive in-

vestigation of V2F bitvectors. That said, the class of V2F codes is quite broad:

it includes e.g. RLE and grammar-based compression, and it is possible that

there are application-specific implementations of V2F bitvectors inside other

data structures.

Our main conceptual contributions are as follows:

• We argue that in general, V2F coding is an effective approach to reduce

the redundancy of the bitvector, or the difference between the compressed

size of the bit-string and the size of the bit-vector data structure. The re-

dundancy can dominate the space usage of compressed bitvectors: e.g. if

m = O(n/(log n)2), the space usage of the compressed bitvector of [70],

which is B(n,m) + O(n log logn/ log n) bits, is dominated by the redun-

dancy. We show that for the density range of interest, V2F compressors

give redundancy that is asymptotically smaller than the compressed size

of the bit-string.

• In practice, we give an approach for density-sensitive encoding of a bit-

vector that has a significantly lower (intrinsic) redundancy over that of

Navarro and Providel [58] by using Tunstall codes [73]. Furthermore, we

show that the Tunstall code always achieves H0 empirical entropy with

low redundancy (previously this was known only for random inputs).

• We give a new class of enumerative V2F codes. These codes generalize

both Khodak’s code [50, 20], a close relative of the Tunstall code, and

RLE. Finally, a hybrid enumerative code which combines Khodak’s code

with RLE achieves excellent compression performance, even on bit-strings

that are relatively incompressible by density-sensitive measures.

• We argue, as does Vigna [74], that practical implementations of select

based on the method of “sampling” must address the issue of long gaps,
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which many implementations do not do. This is because in practice, guard-

ing against a worst-case scenario for long gaps (using ideas which derive

back to [13]) consumes a lot of space. Although it seems real-life bit-strings

can have a number of reasonably long gaps, we note that the typical test

(select a random 1) is likely to give running times that are independent

of the distribution of the underlying bit-vector. We propose a test that

would “fairly” and “naturally” test the handling of a select implementa-

tion in the presence of long gaps, and show that implementations that do

not guard against long gaps do indeed slow down.

Our implementation has been structured into two independent parts: a frame-

work for rank and select, and a compressor-specific part that deals with individ-

ual codewords. This highlights the challenges faced by a V2F-based bitvector,

and offers a lot of room for innovation with respect to how to deal with code-

words. The fact that there is indeed room has already been hinted at in [58, 59],

but we argue that reasonable performance is obtained by a default implemen-

tation in many cases.

The rest of this chapter is structured as follows. Section 3.2 describes a gen-

eral result on supporting rank and select operations on bit-strings compressed

using V2F schemes. In Section 3.3, we describe the V2F schemes that we use in

the experimental evaluation. Section 3.4 describes the details of our implemen-

tation, and also the results from the experimental evaluation of V2F schemes.

Section 5.5 contains some future directions.

3.2 Bit-vectors using V2F coding

As indicated earlier, the redundancy of a compressed bitvector targeting a

particular compressibility measure is the difference between the size of the

bit string under that compressibility measure and the size of the bitvector.

Pǎtraşcu [65] showed that rank/select can be supported in O(1) time using
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B(n,m) + n/(log n)O(1) bits, and that for m = Θ(n), this is optimal [67]. How-

ever, there is no evidence yet that the approach of [65] is feasible in practice.

Another approach to low-redundancy compressed bitvectors achieves B(n,m)+

O(m(log log n)2/(log n)) bits and O(1) time for the range m = n/(log n)O(1)

[36, 64]. While the redundancy is not as low as Pǎtraşcu’s, it is roughly a log

factor less than the compressed bit-string – a very desirable feature. We now

show that this holds in general for V2F codes under modest assumptions:

Theorem 3.1. Given a bit-string X of n bits encoded as C codewords using a

V2F code of ` bits each. Further assume that there is a data structure, which

given a codeword c, supports rank and select in O(1) time on the phrase p(c) that

the codeword c stands for. Then we can support select1(X, i) and rank1(X, i) in

O(1) time using C`+O(C log(n/C)) bits, provided that C = n/(log n)O(1).

Proof. For any bit-string s, let w(s) denote the weight of s, and for i = 1, . . . , C,

let ci denote the i-th codeword, and let m = w(X). The data structure consists

of two bitvectors on the following bit-strings:

• the ones distribution bit-string OD = 0w(p(c1))10w(p(c2))1 . . .0w(p(cC))1.

• the phrase size bit-string PS = 10|p(c1)|−110|p(c2)|−11 . . .10|p(cC)|−1.

It is easy to see that |OD| = m+ C, w(OD) = C, |PS| = n and w(PS) = C.

• To compute select1(X, i), we first determine the number of codewords be-

fore the codeword in which the selected 1 lies as j = rank1(OD, select0(OD, i)).

We then determine the total number of 1s in c1, . . . , cj as k = select1(OD, j)−

j, and the start position of cj+1 in X as d = select1(PS, j+1)−1. Finally,

we select the i− k-th 1 in p(cj+1), add d to the answer and return.

• To compute rank1(X, i), we first find the codeword j in which the i-th

position lies by j = rank1(PS, i). We then determine d, the start position

of cj , and k, the number of 1s in c1, . . . , cj−1, as before, and return k +

rank1(p(cj), i− d).
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We store OD using Lemma 2.3, which uses O(C log(m/C)) bits. In addition,

we pad OD to length n by adding zeros at the end (so that the condition

in Lemma 2.2 applies), and store the resulting bit-string as well as PS using

Lemma 2.2, which takes O(C log(n/C)) bits.

Remark 1. We will typically choose ` = Θ(log n) bits. Thus, provided that

log(n/C) = o(log n), the redundancy will be smaller than the size of the com-

pressed output, which is C` bits.

3.3 V2F compression algorithms for bit-strings

We now describe different V2F compression schemes that we use to compress

the given bit-string X. Each of these schemes partitions X into a sequence of

variable-length phrases. Each phrase, except the last one, belongs to a dictionary

of size M = 2` that is constructed from the source string. The dictionary entries

are also referred to as code words. The compressed representation of X simply

consists of a sequence of `-bit codes (from the dictionary) corresponding to each

phrase. The only difference between various compression algorithms is the way

in which they construct the dictionary.

3.3.1 Tunstall code

For a given phrase length L, the Tunstall code is designed to maximize E[L],

the expected number of source letters per phrase for a memoryless source [73].

Given an input bit-string X, the dictionary constructed by Tunstall’s algorithm

can be represented as a full binary tree T (i.e., every node has 0 or 2 children),

which we refer to as the Tunstall tree. Each edge in T corresponds to a bit, and

each phrase corresponds to a leaf in T . The phrase corresponding to a leaf u

can be obtained by concatenating the symbols corresponding to the edges on

the root-to-leaf path to u.

We now describe the algorithm to construct a Tunstall code for X with
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M = 2` codewords. First, we define some terminology. Letting n = |X|, and m

be the weight of X, define p0 = 1−m/n and p1 = m/n. The probability3 of a

bit-string b1b2 . . . bl is defined to be
∏l
i=1 pbi . Each leaf in T is labelled by the

probability of the corresponding phrase, and each internal node is labelled by

the sum of the probabilities of its children. The algorithm is as follows:

(1) Start with 2-level rooted tree with the root connected to two leaves, cor-

responding to 0 and 1.

(2) Pick a leaf node which has the highest probability and grow two leaves

on it.

(3) Repeat step (2) while the number of leaves in the tree is at most M .

It has long been known that the Tunstall code achieves zeroth-order entropy

(defined appropriately) for random sources [73] and its redundancy4 for random

sources has been shown to be low [20]. We now show that the redundancy of

the Tunstall code with respect to empirical entropy is also low.

Theorem 3.2. Given a bit-string X with length n and weight m, suppose that

it is encoded using a Tunstall code with M = 2` codewords, constructed taking

p0 = 1−m/n and p1 = m/n as the probabilities of 0 and 1 respectively. Assume,

without loss of generality, that p1 ≤ p0 and further assume that ` = Θ(log n)

and log(1/p1) = o(log n). Then C` ≤ nH0(X) +O(nH0(X) log(1/p1)/`).

Proof. Say that a final leaf refers to a leaf of the Tunstall tree T at the end of the

algorithm. Observe that the probabilities of the leaves of T at any stage of the

algorithm add up to 1. Hence, while the number of leaves is less than M , there

will always be a leaf with probability greater than 1/M , so we will never expand

1This is not a probability in the true sense, of course, since we are dealing with a given

fixed bit-string X.
2Here the term redundancy has been overloaded to refer to the size of the compressed

output relative to the ideal compressed size.

17



a leaf with probability at most 1/M . It follows that the minimum probability

of a final leaf is greater than p1/M . Let p∗ be the maximum probability of any

final leaf. Since all final leaves are created by expanding leaves with probability

≥ p∗, and at least one final leaf must have probability ≤ 1/M , it follows that

p∗p1 ≤ 1/M or p∗ ≤ 1/(p1M).

Suppose that the output of parsing X according to the Tunstall code com-

prises C codewords c1, c2, . . . , cC . Let Pr(ci) denote the probability of the phrase

of ci. Then− log
∏C
i=1 Pr(ci) = − log(pn−m0 pm1 ) = nH0(X). However,

∏C
i=1 Pr(ci) ≤

(1/(p1M))C from the above, which gives nH0(X) ≥ C log(p1M), or:

nH0(X) + C log(1/p1) ≥ C` (3.1)

With the above assumption on p1, it is not hard to verify that C` = O(nH0(X)),

and plugging this back into Equation (3.1) we get that C` ≤ nH0(X) +

O(nH0(X) log(1/p1)/`).

Remark 2. 1. Since we assume log(1/p1) = o(`), the redundancy is a lower-

order term.

2. Note that a similar argument shows that C` ≥ nH0(X) − C log(1/p1).

In other words, the output of Tunstall coding is never much less than the

empirical entropy.

Theorems 3.1 and 3.2 allow us to obtain a small improvement in redun-

dancy over the bitvector of [36, Thm 2], which previously had the lowest known

redundancy of any bitvector that does not use the (fairly complex) technique

of informative encoding [36] or its successors [65].

Corollary 3.1. Let X be a bit-string with length n and weight m. There is a

bit-vector that supports rank1 and select1 in O(1) time when m = n/(log n)O(1)

and uses nH0(X) +O(m log(n/m) log logn
logn ) bits.
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Proof. Since H0(X) = O((m/n) log(n/m)), from Theorem 3.2 the output of

the Tunstall coding occupies nH0(X) + O(m(log(n/m))2/ log n) bits. To aug-

ment it with rank1 and select1, we use Theorem 3.1. The additional data struc-

tures use O(C log(n/C)) = O
(
nH0(X)

logn log
(
n logn
nH0(X)

))
bits. Simplifying, we get

that the redundancy of the bitvector is O
(
m log(n/m)

logn (log(n/m) + log log n)
)

=

O(m log(n/m) log logn
logn ) bits.

Finally, it only remains to explain how to do rank/select on an individ-

ual phrase in O(1) time. Taking the notation of Theorem 3.1, we create the

concatenated bit-string p(0)p(1) . . . p(2` − 1). The maximum length L of an in-

dividual phrase must satisfy (p0)L ≥ p1/M , from which one can obtain that

L = O(n log n/m). Since n/m = O(log n)O(1), if we choose ` = (log n)/2, the

bit-string containing the concatenated phrases will be of size O(n1/2+ε), for any

positive constant ε < 1/2. By building a bit-vector on this bit-string and fur-

thermore explicitly storing the start of each phrase, as well as the cumulative

numbers of 1s in this bit-string (using O(2` log n) = O(n1/2+ε) bits), rank and

select on individual phrases can be supported in O(1) time.

3.3.2 Enumerative codes

We define a class of enumerative codes as follows. An enumerative code can

be specified as a (directed) graph on a subset of the vertices (i, j), for i ≥ 0

and j ≥ 0. A vertex (i, j) may either have no outgoing edges (be a leaf ) or

point to both vertices (i + 1, j) and (i, j + 1). Furthermore, a vertex (i, j) is

complete if either it has indegree 2, or either i or j is 0 (and its indegree is 1);

and incomplete otherwise. All incomplete vertices must be leaves. Finally, the

vertex (0, 0) is always in the graph. Given such a graph, the code is specified as

follows. For every complete leaf (i, j) we allocate
(
i+j
j

)
codewords, which code

for all phrases with i 0s and j 1s. For every incomplete leaf (i, j), if its (sole)

predecessor is (i, j − 1) then we allocate all
(
i+j−1
j−1

)
codewords, which code for

all phrases with i 0s and j 1s that end with a 1. If its predecessor is (i− 1, j),
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(2,2)(2,1)

(1,1)

(0,0) (0,1)

(3,0) (3,1)

(4,0)

Codeword Phrase Vertex in the graph

0 11 (0,2)

1 011 (1,2)

2 101

3 0011 (2,2)

4 0101

5 1001

6 0001 (3,1)

7 0010

8 0100

9 1000

10 0000 (4,0)

Figure 3.1 An example of an (ad-hoc) enumerative code. The graph is given on

the top (leaves shown shaded) and the codewords, and their phrases, right.

then we allocate all
(
i+j−1
j

)
codewords, which code for all phrases with i 0s and

j 1s that end with a 0 (see Fig. 3.1). Clearly, we must ensure that the total

number of codewords is at most 2`.

Given such a graph, we parse the input-bit string as follows. Each phrase

starts at (0, 0). If we are currently at the non-leaf vertex (i, j), upon reading a

1, we move to (i, j+1); upon reading a 0, we move to (i+1, j). By construction,

both these vertices are in the graph. If we are at a complete leaf (i, j) then we

have so far read a phrase with i 0s and j 1s; since all possible
(
i+j
j

)
such phrases

have associated codewords, we choose the appropriate codeword, output it and

restart from (0, 0). Arriving at an incomplete leaf (i, j) from (i, j− 1), we must

have read a phrase with i 0s and j 1s where the last bit is a 1, so we output

the appropriate codeword (the other case is similar), and restart from (0, 0).

We now give examples of enumerative codes.

RLE.

RLE is a special case of enumerative coding. To have codes for runs of 0s

and 1s of length 1, . . . , 2`−1, the corresponding graph contains the non-leaf
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vertices (0, i) and (i, 0), and the leaf vertices (1, i) and (i, 1) for i = 1, . . . , 2`−1−

1, together with the leaf vertices (0, 2`−1) and (2`−1, 0). A codeword is thus

assigned to each phrase of the form 0i1 and 1i0 for i = 1, . . . , 2`−1−1; and one

each for 02`−1
and 12`−1

.

Khodak Code.

The Khodak code [20] is is obtained by modifying Step (2) of the Tunstall

algorithm in Section 3.3.1 to pick all the leaf nodes with highest probability

and grow two leaves on all of them. It is known that every Khodak code is

a Tunstall code, and that for the same dictionary size, the Khodak code has

asymptotically the same average phrase length as the Tunstall code [20]. We

show:

Theorem 3.3. Any Khodak code is an enumerative code.

Proof. We first prove an auxiliary lemma that implies that, when the probabili-

ties of zero and one are not the same, the dictionary constructed by the Khodak

algorithm is a subset of the dictionary constructed by the Tunstall algorithm

– by observing that the order in which the leaves are expanded in both the

algorithms is the same; but Khodak algorithm may stop earlier if there is not

enough space to expand all the leaves with same probability.

Lemma 3.1. For rational number 0 < d < 1, d 6= 1/2, there are no nonnegative

integers x, y, z, w such that x 6= z and dx(1− d)y = dz(1− d)w.

Proof. Suppose that there exist nonnegative integers x, y, z, w such that x 6= z

and dx(1 − d)y = dz(1 − d)w. Let d = n/m for positive integers m and n,

such that n and m are relatively prime. Without loss of generality, assume that

d > 1
2 and z+w ≥ x+ y. Then it is easy to argue that z ≥ x and y ≥ w. Thus,

mz+w−x−y(m − n)y−w = nz−x. If m is even, then left side is even while right

side is odd as n is relatively prime to m. If m is odd and n is even, then left
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side is odd while right side is even. Finally, if both m and n are odd, the left

side is even while the right side is odd.

We now prove Theorem 3.3. Define T k as the tree whose leaves represent

the phrases of the Khodak code (similar to T in the Tunstall code). Next,

let T k(i, j) be the set of all leaves in T k which represent the phrases with i

zeros and j ones. We say that T k(i, j) is complete if T k contains all possible

(
(
i+j
i

)
) phrases with i zeros and j ones (this is analogous to the definition of

completeness of nodes in the enumerative codes). Now to prove Theorem 3.3, it

is enough to prove the claim that if the Khodak algorithm expands the leaves

in T k(i, j) then T k(i, j) is complete. The claim holds if the zero density is 1/2,

because in this case, T k is always a complete binary tree (and each expansion

step expands all the leaves). Now we assume that the one density is strictly

larger than the zero density. Since for every step in the Khodak algorithm, i

and j for expanding T k(i, j) are uniquely determined by the Lemma 3.1, the

claim can be proved by the induction on the number of expansion steps taken

by the Khodak algorithm.

(Basis step) In the first step, we expand the leaf T k(0, 1) which is complete.

(Inductive step) Assume the hypothesis that the claim is true if the number

of steps is at most r. In the r+ 1 step, suppose we expand Tk(i, j) which is not

complete. Note that T k(i, j) is generated by expanding T k(i, j−1) or T k(i−1, j).

Since both T k(i, j−1) and T k(i−1, j) are expanded before r+1-th step (because

they have the smaller probability than T k(i, j)), by induction hypothesis, they

are complete. But if we expand T k(i, j−1) and T k(i−1, j) which are complete,

T k(i, j) becomes complete, contradicting the assumption.

Hybrid Enumerative Coding.

To obtain better compression using enumerative encoding, we reserve a fraction

of codewords for run-length codes, and use the remaining for the Khodak code-
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words. The run-length codewords are divided among 0 runs and 1 runs based

on the densities of 0s and 1s.

3.3.3 LZW algorithm

Lempel-Ziv-Welch (LZW) algorithm [76] is a well-known dictionary-based com-

pression algorithm. The dictionary constructed by the LZW algorithm has no

fixed bound on its size, and it is not stored as part of the compressed text as it

can be reconstructed during decompression. However, since our approach uses

a bounded-size dictionary (with M codewords), we modify the LZW algorithm

as follows: We first construct the dictionary in one pass over the string, as in

the normal LZW algorithm till its size is M , and use that to parse the whole

string in a second pass. Also, unlike the original LZW algorithm, the modi-

fied algorithm requires both the compressed string as well as the dictionary for

decompression.

3.3.4 Empirical evaluation of the compressors

We now describe the compression performance of the above algorithms. We set

` = 16 so each dictionary has 216 = 65536 codewords. For implementing RLE

and Hybrid algorithms, we determined the maximum length of runs of 0s in the

RLE part of the dictionary as the smaller of (215 × density of 0) and maximum

length of runs of 0s in the test file (the maximum length of 1s in the RLE part

is also determined in the same way).

Test files

Table 3.1 summarizes the characteristics of the bit-strings we used in our exper-

iments. factor9.6 and proteins are obtained by parsing two XML files, and

outputting 0i1 when a text node of length i is encountered [18]. Z-Accidents

and Z-Pumsb2 are used in a data structure for mining frequent patterns from

benchmark data sets [33]. dblp 100 and english 100 are the FM-indices [23]
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Bit-string Total Size Density Max run- Max run-

(106 bits) of 0s length of 0s length of 1s

factor9.6 812.0 0.964 2927 1

proteins 374.9 0.900 27376 1

Z-Accidents 903.3 0.996 4,250,294 1,315

Z-Pumsb2 1661.1 0.999 1,138,613 7,774

dblp 100 680.8 0.629 5,252,073 3,115,460

english 100 784.3 0.710 2,142,856 743,383

rand dblp 680.8 0.629 42 20

rand english 784.3 0.710 50 17

Table 3.1 Characteristics of the test files

Bit-string Tunstall LZW
Enumerative code

H0 Logsum
Khodak RLE Hybrid

factor9.6 0.242 0.151 0.241 0.573 0.228 0.223 0.236

proteins 0.466 0.104 0.475 1.585 0.546 0.466 0.484

Z-Accidents 0.045 0.035 0.046 0.058 0.030 0.041 0.111

Z-Pumsb2 0.007 0.006 0.007 0.007 0.004 0.008 0.097

dblp 100 0.975 0.145 0.975 0.369 0.136 0.952 0.201

english 100 0.869 0.285 0.869 0.771 0.306 0.868 0.305

rand dblp 0.956 0.971 0.956 4.872 0.956 0.952 0.991

rand english 0.874 0.891 0.874 4.146 0.874 0.868 0.910

Table 3.2 Compression ratios of the test files.

of the text files in Pizza&Chili Corpus [24]. We use the implementation of FM-

index from fm-index++ [72]. rand dblp and rand english are generated at

random, but setting their length and density to be the same as dblp 100 and

english 100, respectively. The test bit-strings can be classified into four types

based on their properties. The bit-strings factor 9.6 and proteins are fairly

sparse but have relatively short runs of 0s and 1s. The bit-strings Z-Accidents

and Z-Pumsb2 are very sparse and have some very long runs of 0s. While

dblp 100 and english 100 are quite dense, they have long runs of 0s and

1s; obviously, their randomly generated analogues do not have such long runs.

Table 3.2 shows the compression ratio achieved by the compressors on the

test bit-strings. We also give the H0 values of the bit-strings and their Logsum
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value, defined as follows. If we divide a given bit-string X of length n into

fixed-size blocks Bi, i = 1 . . . dn/63e of size 63 and each Bi has weight m(i),

Logsum(X) is defined as 1
n

∑dn/63e
i=1 (log(

(
63
m(i)

)
) + 6). Logsum is an estimate of

the standard density-sensitive approach to compressed bitvectors used in [70]

and predecessors (referred to as RRR in what follows), based on the implemen-

tation of [58], which is optimized for low redundancy. We make the following

observations:

• There is a negligible difference in compression ratio between the Tunstall

and Khodak codes. While Tunstall/Khodak are sometimes better than

H0, the variation is small, as implied by Remark 2.

• Logsum is sometimes significantly better than H0, e.g. in dblp 100 and

english 100. The reason is that all-0 and all-1 blocks (which occur fre-

quently in these bit-strings) compress far better than would be suggested

by the overall density of these bit-strings. However, the additive over-

head of 6 bits per block means that Logsum’s performance is poor on

bit-strings such as Z-Pumsb2 and Z-Accidents, as well as the random

bit-strings.

• Among the enumerative codes, Hybrid uniformly performed the best, even

easily outperforming RLE on very sparse files. It is also often the overall

best performer, but it does perform poorly relative to LZW on the XML

bit-strings. We speculate that this is because in XML files, identical el-

ements may have similar-length text nodes under them (e.g., a zipcode

element will usually contain a text string of length 5) and LZW is able to

capture such long-range patterns.
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3.4 Practical implementation of bitvectors based on

V2F compression.

We now describe our implementation (in C++), which follows the general ap-

proach used by many existing schemes such as that of [58], but with some

modifications. The bit-vector class is (largely) independent of the compressor,

and takes as input two files: one which contains the codewords and the phrases,

and another which contains 16-bit codewords output by the compressor. The

codewords output by the compressor are read into a codeword array, and the

rest of the bit-vector has three parts: a rank/select1 index, a table for scan-

ning codewords, and finally a class that deals with rank/select operations on

individual codewords. We now describe each in detail.

rank/select1 index. For rank we divide the bit-string into rank blocks of size

B, where the i-th block consists of the bits numbered iB through (i+ 1)B − 1.

For each block, we store the position of the first codeword that intersects the

block, the weight at the start of that codeword, and the absolute position in the

bit-string where that codeword begins. The default is B = 1024, but this can

(and should) be varied according to the compressibility of the bit-string, so that

each block (on average) spans a moderate number (say 30-50) of codewords. For

select1, we use the standard “sample and scan” approach [13] used by most select

implementations including [74, 58, 34]. We choose a sampling parameter s and

divide the bit-string into select blocks, where the i-th select block begins at the

position of the is-th 1, and scan this select block to answer select1(j) queries for

j = is+ 1, . . . , (i+ 1)s−1 (Type 0 blocks). This approach does not guarantee a

good time bound if the 1s are distributed non-uniformly: in the worst case, one

may need to scan Θ(n) bit positions. To mitigate this effect, we treat long gaps

differently [13]: we choose a threshold LG, and whenever a select block is larger

than LG, we store the positions of the 1s in the block explicitly (Type 1 blocks).

Even though the number of long gaps is at most n/LG, LG must be relatively
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high as storing 1 positions is costly. In addition, if a long gap spans only a

moderate number of codewords, it is treated as a Type 0 block. For Type 0

blocks, as with rank blocks, we store codeword/phrase alignment information,

and cumulative information. We choose s satisfying m/s = Θ(n/B), so that

the number of select and rank blocks is similar (so on average both rank and

select queries scan similar numbers of codewords).

Scanning a Rank/Select Block. To perform a rank operation, or a select1

on a Type 0 block, we need to scan a rank/select block to find the codeword that

contains position i. The key loop in scanning a block is to (a) read a codeword

at a time from the compressed bit string, (b) obtain (and accumulate) the

length of its phrase and its weight, and (c) determine both the codeword where

position i lies, and the offset of position i within that codeword. This is done

by table lookup, and this gives rise to the most important constraint on the

size of M : it must comfortably fit “into cache” (as the cache is likely to contain

other data in real applications). On our machine, this suggests that ` should be

limited to 16; the table then takes 512KB5.

Long Gaps: a Theoretical View. In this paragraph, we illustrate the po-

tential asymptotic gains by using V2F codes in terms of protecting against long

gaps in the “sample and scan” approach to select1. This illustration makes a

number of mappings from current practical parameter choices to asymptotic

functions, which by its very nature involves a certain amount of guesswork: we

do not hope to convince everybody of these mappings.

We begin by assuming that most practical implementations can be viewed

asymptotically as using a block size of B = Θ((log n)2) bits and work by access-

ing O(1) random memory locations and scanning Θ(log n) consecutive memory

locations, where each location comprises Θ(log n) bits. This is justified as there

1For the current compressors, no phrase can be longer than 2` bits, so this could be reduced

to 256KB.
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is evidence that due to address translation, the cost of a random memory ac-

cess is O(log n) [48]. For simplicity we consider the case of a bit-string with

weight Θ(n/ log n), i.e. one whose compressed size is O(n log logn/ log n) bits,

and assume that we wish to achieve a redundancy of O(n/ log n) bits. A typical

sampling factor would be s = log n, so that the cost of pointers to the sampled

locations is O((m/s) log n) = O(n/ log n) bits. We would choose the long gap

parameter to be L = Θ((log n)3), so that the cost of storing the locations of

the 1s in the at most O(n/L) long gaps is O((n/L)s log n) = O(n/ log n) bits.

This makes the worst-case cost of scanning a gap which of length exactly L to

be O((log n)2). However, in (say) Tunstall or Khodak coding, a bit-string with

length L = Θ((log n)3) with weight s = O(log n) is compressed to O((log n)2)

bits or O(log n) codewords, which can be scanned in O(log n) time. (Note that

the compressed size of these L bits is more than the information-theoretic

bound for these L bits, but the Tunstall code is based on the global density

and encodes each 0 using log(n/(n −m)) = O(1/ log n) bits and each 1 using

log(n/m) = O(log log n) bits.)

Implementation of Codeword Operations. Having located the codeword

containing the answer, we perform an appropriate rank/select on its phrase.

The default implementation of rank on a codeword concatenates all phrases

into a bit-string similar to Corollary 3.1 and stores it in a bit-vector supporting

rank [34], together with two words per codeword to allow rank on an individual

phrase to be reduced to rank on the bit-vector. select on each phrase is done by

explicitly storing the positions of the 1s in the phrase in an array. We estimate

the fixed overhead to be about 4 ints per codeword, or 1MB overall. However,

a potentially major variable overhead is the size of the rank phrase bit-vector

and the phrase select array.

An obvious optimization is that for codes known to comprise runs of 0s

or 1s, indicated by an additional type field stored in the length/weight table,
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File name Khodak LZW
Enumerative code

Khodak Hybrid

factor9.6 2.15% 7.24% 2.15% 2.15%

proteins 1.26% 3.01% 1.23% 0.90%

Z-Accidents 38.36% 7.22% 38.30% 19.60%

Z-Pumsb2 668.61% 200.14% 667.98% 73.25%

dblp 100 0.16% 15.53% 0.16% 0.54%

english 100 0.17% 52.20% 0.17% 0.22%

rand dblp 0.16% 0.16% 0.16% 0.16%

rand english 0.17% 0.16% 0.17% 0.17%

Table 3.3 Total phrase length of test files (as % of compressed output), excluding

RLE codewords

we directly (and trivially) answer rank and select queries on the corresponding

phrase. Table 3.3 shows the size of the resulting rank phrase bit-vector (the

phrase select array is usually smaller). As suggested by Corollary 3.1, for Kho-

dak codes, the size of the dictionary is negligible for relatively high-density

bit-vectors. The overhead is much larger for the Z-Accidents and Z-Pumsb2,

though Hybrid codes, which have many RLE codes, have smaller dictionaries

than Khodak codes. Nevertheless, for very sparse bit-strings, it is clear that this

naive approach is inappropriate.

3.4.1 Testing Methodology

The code was written in C++, and compiled with g++ 4.8.3 with optimisation

level 3, and tested on a 64-bit machine with 64GB RAM and an Intel Xeon

E7450 6-core CPU clocked at 2.40GHz with 3 × 3 MB shared L2 caches and

12MB L3 cache, running Fedora Linux (kernel version 3.16.2). Tests were per-

formed for the memory usage, and four tests for the speed of this structure, as

follows.

Memory Test. To determine the true physical memory used by these data

structures, we initialize them and then fork a process that allocates memory
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equal to the physical memory of the machine, which will result in all other

processes’ pages to be swapped out. Putting the forked process to sleep, we

then perform rank and select operations and then measure the resident memory

of the process.

In this test, we implemented bitvector based on V2F codes in two ways -

practical implementation described in this section and implementation based

on Theorem 3.1. In the latter implementation (based on Theorem 3.1), we

implemented OD and PS using RRR and sdarray which have low redundancy

on dense and sparse bit-strings respectively. Since this implementation is not

optimized for the speed tests, we only used the practical implementation for

the other four tests.

We also measure the memory usage of our implementations by a self-reporting

procedure which checks the total size of the main data structures using size re-

porting functions. Testing results shows that the measured memory size is larger

than self-reported memory size because of the initial space used by OS and other

variables in the program. But difference between them does not exceed 10MB

in all test files.

rank1 Test. To test the speed of rank, we perform rank1(i) n times, for random

i ∈ 1..n.

Random select1 Test. Like the rank1 test, this test performs select1(i) n

times, for i selected randomly from 1..m. Although “sample-and-scan” approach

does not guarantee a good time bound, if the bit-string has long gaps, several

implementations, including RSDic, do not guard against long gaps. However,

their performance for random select tests on random bit-vectors (which typically

don’t have long gaps) is good. Vigna [74] proposed testing on pathological bit-

strings to determine whether an implementation had good worst-case select

performance. We note, however, that essentially regardless of the input bit-
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string, a random select test will not be able to distinguish between “sample-and-

scan” bit-vectors, that deal with long gaps and those that don’t. Specifically,

observe that in any select block, the expected time taken to perform a select of

one of the 1s in this block, assuming a fairly even distribution of the 1s within

this block, is essentially proportional to its length. Since a random select accesses

each select block with equal probability, it is not hard to see that the average

running time of a random select is essentially independent of the distribution of

select block lengths; i.e., a random select test is unlikely to distinguish between

an easy bit-string and a pathological one. To address this issue, we propose a

hard select test, described below.

Hard select1 Test. We perform 219 random rank1 queries, and store the

results in an array Q of the same size (with repetitions). We then repeat the

following, n times: select a random index i in Q and perform select1(Q[i] + 1).

Doing this will select a 1 in a select block with probability proportional to

the length of the select block (since the argument of the rank query falls in a

select block with probability proportional to its length), and thus focusses on

the harder select queries in a bit-string.

Mixed Test. We initialise an array Q of size 219 to values from random

rank1(i) as above. We cycle through the array and perform select(Q[i] + 1, 1)

as above, but then do a rank1(j) for a random index j, and store the result in

Q[i]. Each such pair of rank and select operations is performend n times.

For our benchmarks, we choose the LZW code for XML bit-strings and

Hybrid code for other bit-strings as F2V coders which gives the best com-

pression ratio for their bit-strings. For comparison, we used Okanohara’s rsdic

code [61] (based on [58]), sdarray from Okanohara and Sadakane [63] and RRR

from sdsl-lite [34]. We now describe the rsdic and sdarray bitvectors briefly.
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The Compressed Rank Select Dictionary, rsdic is based on the structure pro-

posed by Navarro and Providel [58]. It divides the bit-string X into fixed-sized

blocks of length t = d(lg n)/2e. The set of all possible blocks are divided into

classes based on the number of 1’s in the block. Hence, each block can be iden-

tified by a pair (k, r), where k is the class number which is simply the weight of

the block, and r is the index of the block in a table containing the set of all pos-

sible blocks in the class, in some canonical order, say, the lexicographic order.

Thus, the representation of any block can be stored in dlg(t+1)e+
⌈
log
(
t
k

)⌉
bits.

Also, one can rebuild a block “on-the-fly” using its representation, without stor-

ing any additional precomputed tables. For the sequence of blocks constituting

the given bit-string X, it stores the first components (i.e., the weights of the

blocks) in an array K, using fixed size entries of dlg(t+1)e bits each; the second

components of all the blocks in the sequence are concatenated and stored as a

bitvector R. To enable fast access into R, it first groups every blg nc consecutive

blocks into a superblock. For every superblock, it then stores a pointer into R to

point to the starting position of the representations corresponding to its blocks.

In addition, we also store the rank up to the first bit in each superblock. To

compute the rank for a given position, we first find the superblock containing

the position, and do sequential search from the first block in the superblock.

To support the select operation, we first perform a binary search to find the

superblock containing the required position, and then scan the blocks within

the superblock. The size of R can be shown to be at most nH0(X) + o(n) bits,

and the size of K is ndlg(t+ 1)/te = o(n) bits. Thus the space usage of rsdic is

nH0(X) + o(n) bits.

Okanohara and Sadakane [63] proposed the sdarray which either stores an

sarray when the given bit-string X is sparse, or a darray when X is dense.

To describe the sarray, consider an array x[0, . . . ,m − 1] where x[i] stores the

position of the (i + 1)-th 1-bit in X. We choose a parameter t, and store the

lower z = dlg te bits of each x[i] in an array L such that L[i] = x[i] mod t. The
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upper w = blg(n/t)c bits of each x[i] is encoded in unary to obtain a bit vector,

H, of length m+ t, along with auxiliary structures to support rank and select in

O(1) time on H. The operation select on X can be supported in constant time

by finding the upper bits using the select operation on H, and accessing the

lower bits from the array L. To support rank(i) on X, we first find a smallest

element whose position is greater than di/2we · 2w using select on H and count

number of ones sequentially from here using H and L. By choosing t = 1.44m,

the total size of sarray becomes 1.92m+m(lg(n/m)) + o(m) bits.

The construction of darray first divides the given bit-string X into blocks of

L ones each, and constructs an array P [0, . . . , n/(L− 1)] such that P [i] stores

the position of iL-th one in X. These blocks are represented based on their

length. If the length of a block is more than (lg n)4, it is represented by storing

the positions of all the ones in it. Otherwise, its representation consists of the

position of every (lg n)-th one in the block, using L(lgL)/ lg n bits. To support

select(i), we first find the block that contains the answer using P . If this block is

longer than (lg n)4, we can read the answer from its representation. Otherwise,

we use the representation of the block to find a sequence of (lg n) positions, one

of which corresponds to the required answer, and scan the sequence to find the

answer. The rank operation is supported using an approach similar to that of

rsdic. By choosing L = (lg n)2, the size of darray can be limited to n+ o(n) bits,

including the bit-string X.

3.4.2 Results of Empirical Evaluation

Memory test. Practical implementation of bitvectors based on V2F used

significantly less memory than the competition in most cases (see Fig. 3.2); the

exception is sdarray with Z-Accidents and Z-Pumsb2 and RRR with rand dblp,

rand english and english 100. In the former case (for Z-Accidents and

Z-Pumsb2 files), despite the V2F compressed bit-string being significantly less

than H0, the compressed size is so small that the fixed overhead of the phrase
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rank/select structure dominates. Also for latter three files, their V2F compres-

sion ratios are close to Logsum, and the overhead in the bitvector based on

V2F implementations is more than that of RRR.

Although the redundancy in Theorem 3.1 is less than (little-oh of) the com-

pressed output size in theory, for the implementation based on Theorem 3.1,

the space overhead is 1 ∼ 3 times more than the compressed output size, in

all the test files except Z-Accidents and Z-Pumsb2 (for which the compressed

output size is significantly smaller). This is because the O(lg (n/C)) term in

the redundancy can be larger than the codeword size even though the value of

lg (n/C) in these files is 4 ∼ 6, which is less than the codeword size.

rank1 test. Generally speaking, apart from sdarray, which is not optimized for

rank, all others are comparably fast. However, sdarray does better than rsdic on

the Z-vectors, possibly because it fits in cache due to its much lower memory

usage, and the V2F bitvectors and RRR both do relatively poorly on the random

bit-strings (see Fig. 3.3).

Random select1 test. As expected, sdarray is generally the fastest, but loses

out a little on the FM-index files, as it cannot compress them. The V2F bitvector

is the second-best, and is very close to the best, in most cases, but performs

slightly worse on the random files (see Fig. 3.4). rsdic and RRR show significant

weakness on the Z-vectors and XML bit-strings respectively.

Hard select1 test. rsdic is the only bit-vector that does not guard against

long gaps, and performs very poorly (up to 20 times slower) on three of the

input files (see Fig. 3.5). V2F bitvectors do the hard select1 test at roughly the

same speed as the random select1, and thus demonstrate their resilience.

Mixed test. The V2F bitvectors are the best overall performers in this

test, since they show good performance for both the hard select test and the
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rank test (see Fig. 3.6).

3.5 Future works

In this chapter, we consider theoretical and practical implementations of com-

pressed bitvectors. There is much room for further investigation. For instance,

the naive approach to operations on individual phrases, as well as the relatively

simple approach to supporting rank/select, leads to an overhead that is rather

high for highly compressible bit-strings (admittedly, these are so sparse as to

test the boundaries of our stated aim of targeting “moderately compressible”

bit-strings). This could be overcome by adhering more closely to the theoretical

result, and making greater use of on-the-fly decoding also can be considerd.

Apart from the Tunstall/Khodak/Enumerative codes, we have not explored

V2F codes in any non-trivial way. Much more work is clearly possible along

this axis as well.
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Chapter 4

Space Efficient Data Structures
for Nearest Larger Neighbor

4.1 Introduction

Given a sequence of n elements from a totally ordered set, and a position in

the sequence, the nearest largest neighbor (NLN) query asks for the position

of an element which is closest to the query position, and is larger than the

element at the query position. More formally, given an array A[1 . . . n] of length

n containing elements from a totally ordered set, and a position i in A, we

define the query:

• NLN(i): return the index j such that A[j] > A[i] and |i − j| = min{k :

A[i + k] > A[i] or A[i − k] > A[i] for k > 0}. Ties are broken to the

left, and if there is no element greater than the query element, the query

returns the answer ∞.

In a similar way, we can the define NLV (next larger value), and PLV (previous

larger value) queries, which return the position of the nearest larger neighbor

to the right and left, respectively, of the query position. In a symmetric way,
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one can also define nearest smaller neighbor problems. In this chapter, we will

stick to the version that seeks the larger neighbors.

We exhibit connections between the NLN problem and the well-studied prob-

lem of supporting range maximum queries on a given array. Given an array A,

the query RMaxQ(i, j) (range maximum query) returns a position k between i

and j such that A[k] is a maximum element among A[i, . . . , j].

Two-dimensional NLN We also consider a natural extension of the NLN

problem to two-dimensional arrays. Here, we define the NLN of a query posi-

tion as the closest position in the two-dimensional (2D) array, in terms of the

L1 distance, that contains an element larger than the element at the query po-

sition. More formally, given a position (i, j) in A[1 . . . n][1 . . . n], NLN((i, j)) =

(i′, j′) such that A[i′, j′] > A[i, j], and |i− i′|+ |j − j′| = min{|x|+ |y| : A[i +

x, j + y] > A[i, j]} . If there is no element greater than the query element, the

query returns the answer (∞,∞).

Previous Work and Motivation These kinds of problems have attracted

much attention. In addition to the data structuring problems, the off-line vari-

ants, usually called All Nearest Larger Neighbors (or similar), which consist

in computing answers for all possible input positions, have also been studied.

For example, Berkman et al. [7] gave efficient parallel algorithms for the one-

dimensional (1D) off-line problem and showed their importance as a prepro-

cessing routine for answering range minimum queries, triangulation algorithms,

reconstructing a binary tree from its traversal orders and matching a sequence

of balanced parentheses [7].

Fischer et al. [28] considered the problem of supporting NLV and PLV, and

showed how a data structure supporting these two queries can be used in obtain-

ing entropy-bounded compressed suffix tree representation. (They considered the

min version of the problem instead of max, and named the operations NSV and
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PSV, for the next and previous smaller values, respectively.) They considered

the problem of supporting NLV and PLV in the indexing model, and obtained

the following time-space tradeoff result. For any 1 ≤ c, ` ≤ n, one can use:

O

(
n

c
lg c+ `

n lg lg n

lg n
+
n lg n

c`

)
bits of space and answer queries in O(c`) time. As given, they are unable to

go below O(n lg lg n/ lg n) space, and use more space than we do whenever

c = ω(lg n). As mentioned later, we improved the trade-off to O((n/c) lg c)

bits with O(c) time. To attain O((n/c) lg c) space for c = (lg n)Ω(1), one can

choose ` = O(1) and obtain O(c) time. For smaller values of c, the middle

term in the space usage will never dominate for reasonable values of ` (clearly,

we must always choose c ≥ 2 and ` = O(lg lg n) in this range) and it suffices

(and is optimal) to choose ` = O(lgc lg n) = O(lg lg n − lg lg c). Thus, for any

c = O(lg n), their running time for space O((n/c) lg c) is O(c(lg lg n − lg lg c)),

and our solution is better for small enough c. Jayapaul et al. [44] gave a solution

that uses O((n/c) log c+(n log n)/c2) bits and O(c) time; this space usage equals

ours for c = Ω(log n/ log log n) but is worse otherwise.

Fischer et al. [28] also gave an encoding that supports the PSV and NSV

queries in constant time, using 4n + o(n) bits. The encoding size was later

reduced to the optimal 2.54n + o(n) bits by Fischer [25]. Jayapaul et al. [44]

observe that this can be further improved to 2n + o(n) bits if all the elements

are distinct. For the case of binary sequences, the data structure version of the

NLN problem can be solved by building an auxiliary structure to support rank

and select queries on the bit-strings [69]. This uses o(n) bits of extra space, in

addition to the input array, and answers NLN (and also NLV and PLV) queries

in O(1) time.

Given a 2D array, Asano et al. [3] considered the All Nearest Larger Neigh-

bours problem which asks for computing the NLN values for all the elements

in the input array. They showed that this problem can be solved in O(n2 lg n)
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time (and more generally, for any d-dimensional array in O(nd lg n) time). To

the best of our knowledge, the data structure version of the 2D NLN problem,

in which we are interested in constructing a data structure that answers online

queries efficiently, has not been considered earlier.

Our results Our main results are as follows.

• For the case of 1D, we look at the problems in indexing model. We provide

an algorithm that matches the tradeoff for NLN [44]. For NLV, our algo-

rithm achieves the time-space product of O((n/c) lg c) (where the query

takes O(c) time) while the lower bound is Ω(n).

• For the 2D NLN problem in the encoding model, we first show that Ω(n2)

bits are necessary to encode the array to support NLN queries, even when

all the elements are distinct. We then describe an asymptotically optimal

Θ(n2)-bit encoding that answers queries in O(1) time, even when all the

elements are not distinct. One can achieve this result easily when all the

elements in the array are distinct. However, distinctness is a strong as-

sumption in these kinds of problems. For example, in the 1D case with

distinct values, NLV and PLV are obtained relatively easily from the Carte-

sian tree, giving an 2n + o(n) bit-encoding. By contrast, if we do not

assume distinctness, the optimal space is about 2.54n bits, and the data

structure achieving this bound is also more complex [25]. Also, Asano et

al. [3] remark that the off-line problem for any dimension is “simplified

considerably” if one assumes distinctness.

As we note, in the 1D case, the NLV and PLV problems are closely connected

to the RMaxQ problem. In the 1-D case, there is no asymptotic difference be-

tween the encoding complexity of RMaxQ and NLV/PLV. The 2D RMaxQ prob-

lem has received a great deal of attention lately [19, 10, 9, 8]. It is known that

any 2-D RMaxQ encoding takes Ω(n2 lg n) bits [19, 10]; thus, our Θ(n2)-bit en-
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coding for 2D NLN shows that encoding complexity of NLN is asymptotically

different from RMaxQ in the 2D encoding scenario (unlike the 1-D case).

The rest of this chapter is structured as follows. Section 4.2, we describes an

indexing for answering NLV queries on 1D arrays. In Section 4.3, we propose an

optimal time-space tradeoff encoding for answering NLN queries on 2D binary

arrays. In Section 4.4, we propose an encoding for answering NLN queries on

2D arrays which takes asymptotically optimal space and supports NLN queries

in constant time. Finally, in Section 4.5, we give some open problems.

4.2 Indexing NLV queries on 1D arrays

In this section, we give a result for the NLV problem in the indexing model on

1D array. The approach follows closely the proof of Fischer et al. [28], which

in turn adapts ideas from Jacobson’s representation of balanced parentheses

sequences [42], and is given in full for completeness.

We begin with the following lemma gives an encoding for answering NLV

queries on 1D array.

Lemma 4.1 ([28, 27, 44]). Given a 1D array A of size n, there exists a data

structure in the encoding model that uses 2n+ o(n) bits and solves NLV queries

in O(1) time.

Now we state our result in this section.

Theorem 4.1. Given a 1D array A of size n, there exists a data structure which

supports NLV queries in the indexing model in O(c) time using O((n/c) lg c) bits

for any parameter 2 ≤ c ≤ n.

Proof. Divide A into n/c blocks of size c. For any value 1 ≤ i ≤ n, if i and

NLV(i) are in the same block, say that i is a near value, otherwise say that i is

a far value. Consider a block B and suppose that one or more of its far values

have an NLV in block B′, for an arbitrary block B′. Then the leftmost far value
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in B whose NLV is in B′ is called a pioneer, and its NLV is called its match. It

is known that there are O(n/c) pioneers in A [42].

We maintain a bit-vector V in which the i-th bit is a 1 if A[i] is a pioneer

or a match of one, and 0 otherwise. This bit-vector has length n and con-

tains O(n/c) 1’s, so by Lemma 2.4, we can store it in O((n/c) lg c) bits and

perform rank/select queries on it in O(c) time. Next, we take the sequence

Sp consisting of all pioneers and their matches. This sequence is of length

O(n/c). We represent this sequence using Lemma 4.1 using O(n/c) bits, to

support NLV queries in O(1) time. We claim that if k = NLV(j) in Sp, then

select1(V, k) = NLV(select1(V, j)) in A. Suppose that this claim is not true.

This means there is a pioneer ip such that NLV(ip) is the value between ip and

the match of ip. It cannot be the case that ip and NLV(ip) are in the same block,

since ip is a far value. If ip and NLV(ip) are in different blocks, then NLV(ip) is

the match of ip. So the claim is true.

To answer the query NLV(i), we first check to see if the answer is in the

same block as i taking O(c) time. If so, we are done. Else, (assuming wlog that

A[i] is not a pioneer value) we find the first pioneer pi before position i by doing

rank/select on V . As A[i] < A[pi], NLV(i) is less than or equal to the match of pi.

Since i is the far value in this case, NLV(i) and NLV(pi) are in the same block.

We find the corresponding position of NLV(pi) in Sp using the NLV encoding

of Sp and find the NLV(pi) using rank/select on V . Finally we scan left from

NLV(pi) to find NLV(i). The overall time taken to answer the query is O(c).

4.3 Encoding NLN queries on 2D binary arrays

In this section, we first give an optimal encoding for NLN, and using this obtain

an time-space trade-off for an NLN index for a 2D binary array.

Theorem 4.2. There is a data structure that takes O(n2) bits for any binary

array A[1 . . . n][1 . . . n], and supports NLN queries in O(1) time.
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Proof. Given a query position p, we compute NLN(p) by computing the posi-

tions of the nearest larger values in all four quadrants induced by a vertical

and a horizontal line passing through p, and then returning the closest of these

four positions as the answer (the point p is included in all the four quadrants).

Thus, it is enough to describe a structure that supports finding the position of

the nearest larger value in (say) the upper-right quadrant; in the rest of this

proof, we use NLNNE to denote this.

Given a position p = (i, j), let q = (i′, j′) be its NLNNE if there is a 1 in

the upper-right quadrant of p. For each position (i, j), we give a label from the

alphabet {R,C,D,O,Z}, depending on the answer for the query NLNNE , as

follows. The position (i, j) is labeled with:

• O (“One”) if A[p] = 1 (the value at the position is 1);

• R (“Row”) if i = i′ (its answer is in the same row);

• C (“Column”) if j = j′ (its answer is in the same column);

• D (“Diagonal”) if i < i′ and j < j′ (its answer is not in the same row or

column); and

• Z (“Zero”) if A[p] = 0 and also there is no 1 in the upper-right quadrant

of p.

Now, given a query position p, if the position p is labeled with O or Z,

then we conclude that NLNNE does not exist (in this quadrant). Otherwise,

if the label is R, we can find its answer by following the positions (i, j + k),

for k = 1, 2, . . . (i.e., elements in the same row) till we reach a position with

label O, and return that position as the answer. Also, one can easily show that

all the intermediate positions cannot have label O. Analogously, if the label is

C, then we follow the positions in the same column until we reach a position

with label O and return that position. Finally, if the label is D, then we first

follow the positions (i+ k, j+ k), for k = 1, 2, . . . till we reach the first position
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(i+ `, j+ `) with a label different from D. The label of position (i+ `, j+ `) can

be O, R or C. If it is O, then we return that position as the answer. In the other

two cases, we can find the answer by following the row or column as described

above. The data structure simply stores the labels of all positions in the array

(for each quadrant). In addition, to support queries faster, we build rank/select

structures (over constant alphabet strings) for the encoding of each row, each

column and each diagonal. By Lemma 2.5, the total space usage is clearly O(n2)

bits. Now, queries can be supported in constant time by using rank/select to

jump to the appropriate positions as described in the above procedures.

Now we describe an index for a given 2D binary array, in the bit-probe

model, that uses O(n2/c) bits and supports NLN queries in O(c) time. Since

the indexing trade-off lower bound for the 1D case described in Theorem 4.2 also

holds for higher dimensions, it follows that the achieved trade-off is optimal.

We begin by introducing some notation that will be used later. Suppose we

divide an n×n array A into blocks of size c× c, for 1 ≤ c ≤ n, and divide each

block into c sub-blocks of size
√
c×
√
c. We define an (i, j)-block as the sub-array

A[(i− 1)c+ 1 . . . ic][(j − 1)c . . . jc] and an (i, j, k, l)-sub-block as the sub-array

A[(i− 1)c+ (k− 1)
√
c . . . (i− 1)c+ k

√
c][(j − 1)c+ (l− 1)

√
c . . . (j − 1)c+ l

√
c].

For each (i, j)-block, we define eight regions, consisting of sets of blocks (some

of which can be empty) as follows: the region

N(i, j) consists of all (i, l)-blocks with l > j;

S(i, j) consists of all (i, l)-blocks with l < j;

E(i, j) contains all (k, j)-blocks with k > i;

W (i, j) contains all (k, j)-blocks with k < i;

NE(i, j) contains all (k, l)-blocks with k > i and l > j;

NW (i, j) contains all (k, l)-blocks with k < i and l > j;

SE(i, j) contains all (k, l)-blocks with k > i and l < j; and

SW (i, j) contains all (k, l)-blocks with k < i and l < j.
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Similarly, for each (i, j, k, l)-sub-block, we also define the regions Ni,j(k, l),

Si,j(k, l), Ei,j(k, l), Wi,j(k, l), NEi,j(k, l), NWi,j(k, l), SEi,j(k, l) and SWi,j(k, l)

in the same way.

Theorem 4.3. Given a binary array A[1 . . . n][1 . . . n] one can construct an

index of size O(n2/c) bits to support NLN queries in optimal O(c) time, for any

parameter c, where 1 ≤ c ≤ n.

Proof. We divide the array A into blocks and sub-blocks as mentioned earlier.

We construct an n/c × n/c array A′[1 . . . n/c][1 . . . n/c] such that A′[i][j] = 1

if there exists at least a single 1 in the (i, j)-block, and 0 otherwise. We

also construct another n/
√
c× n/

√
c array A′′[1 . . . n/

√
c][1 . . . n/

√
c] such that

A′′[i][j] = 1 if there exists at least a single 1 in the (bi/
√
cc, bj/

√
cc, i −

bi/
√
cc
√
c, j − bj/

√
cc
√
c)-sub-block, and 0 otherwise .

Suppose the query q is in the (i, j, k, l)-sub-block. If A′′[i
√
c+k, j

√
c+l] = 1,

scanning O(1) sub-blocks is enough to find the NLN of q, and this takes O(c)

time.

Now, consider the case when A′′[i
√
c + k, j

√
c + l] = 0 but A′[i, j] = 1. In

this case, it is clear that we can identify O(c) sub-blocks in which the answer

may lie – namely all the sub-blocks in its block, and the eight neighbouring

blocks. We find the potential answer in each of the eight directions (E, W, N,

S, NE, NW, SE, and SW), and then compare their positions to find the actual

answer. To find the answer in E direction, we scan the bits in A′′ that are

to the right of the current sub-block, till we find a 1, say, in sub-block s. We

then scan sub-block s, and the sub-block immediately to its right, to find the

potential answer in this direction. Similarly, we can find the potential answers

in the W, S, and N directions. Next, we find the nearest 1 to the query in the

NEi,j(k, l) region. This element is the nearest 1 from the bottom-left corner

of (i, j, k + 1, l + 1)-sub-block. The nearest 1 from the bottom-left corner of

(a, b, c, d)-sub-block in the NEa,b(c, d) region is same as the the nearest 1 from
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the bottom-left corners of one of these four sub-blocks: (1) (a, b, c, d)-sub-block

(2) (a, b, c+1, d)-sub-block, (3) (a, b, c, d+1)-sub-block, or (4) (a, b, c+1, d+1)-

sub-block. Therefore we encode each sub-blocks using 2 bits indicating the case

it belongs to ((1), (2), (3) or (4)), which takes a total of O(n2/c) bits. Now,

to find the answer in the NE direction, we scan O(c) sub-blocks to find the

sub-block which contains the nearest 1 from q in NE(i, j, k, l). Once we find

the corresponding sub-block, finding the nearest 1 from the bottom-left corner

in the sub-block takes O(c) time. We can find the nearest 1 in the NWij(k, l),

SEij(k, l) and SWij(k, l) regions in the same way. Then the NLN of q is the

closest one among these eight candidates.

Finally, consider the case when A′[i, j] = 0. By storing the data structure of

Theorem 4.2 for the array A′ using O(n2/c2) bits, we can find the nearest blocks

in each direction to the query position which contains a 1, in O(1) time. Let one

of these blocks be the (i′, j′)-block, let ` be the L1 distance from (i, j) to (i′, j′)

in A′. The value `c is an estimate (within an additive factor of 2c) for the L1

distance from q to its NLN. Assume, wlog, that (i′, j′) is in the NE(i, j) region

of A′. We first describe how to find the nearest 1 in the NE(i, j) region. Define

d(i, j) as the sequence of blocks in the top-left to the bottom-right diagonal that

contains the (i, j)-block (i.e., all the blocks (i′, j′) in A such that i′+ j′ = i+ j),

where the blocks are ordered in the increasing order of their i values. We store

a 1-D array D(i,j) of size equal to |d(i, j)| ≤ n/c, D(i,j)[m] is the distance from

the bottom-left element of the m-th block in the sequence d(i, j) to the nearest

1 in that block, and 2c+ 1 if there is no 1 in that block. Note that each block

belongs to exactly one D(i,j), and hence the total size of all these D(i,j) arrays

is O((n2/c2) lg c) bits. In addition, we also construct a linear-bit RMQ (range

minimum query) data structure for each D(i,j) (using a total of O(n2/c2) bits),

so that RMQ queries can be supported in O(1) time [27]. Now, we find the

two potential blocks in the NE(i, j) region that may have the nearest 1 from

q by performing RMQs on D(i′,j′) and D(i′,j′+1) among all the blocks that are
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(2,5) (3,5) 

(3,4) (4,4) 

(4,3) (5,3) 

(2,2) (5,2) 

Figure 4.1 Suppose the nearest block that contains a 1 from the (2, 2)-block is

the (4, 3)-block. Then d(4, 3) contains the blocks (2, 5), (3, 4), (4, 3) and (5, 2),

in that order. We can find the nearest 1 in NE(2,2) using RMQ(2, 3) on D(4,3)

and RMQ(1, 3) on D(4,4).

contained in the NE(i, j) region (it is easy to see that they form a consecutive

range). We then choose the closer one between these two from q. (Figure 4.1

shows an example.) Note that if (i′, j′) is in a different region from NE(i, j),

then we may not find any potential answer in NE(i, j), as all the ‘relevant’

blocks in d(i′, j′) and d(i′, j′ + 1) may be empty. We can find the nearest 1 in

NW (i, j), SE(i, j) and SW (i, j) in a similar way.

Next, we describe how to find the nearest 1 in the N(i, j) region (finding

the nearest 1 in the S(i, j), E(i, j) and W (i, j) regions is analogous). For each

position in the bottom row of an (a, b)-block with A′[a, b] = 1, we store two

bits indicating whether its answer within the block is in (1) the same column

(C), or (2) some column to the left (L), or (3) some column to the right (R).

The query algorithm simply follows the L or R pointers till it reaches a C,

and then scans the column upwards till it finds a 1 in that column. This takes

O(c × n2/c2) = O(n2/c) bits over all the blocks. This encoding enables us to

find the closest 1 within the block from any column in the bottom row of that

block in O(c) time. Since ` is the L1 distance between (i, j) and (i′, j′) in A′,
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we know that all the blocks A[i, j − r], for 1 ≤ r < ` are empty (otherwise, we

have a closer non-empty block than (i′, j′)). Let k be the column corresponding

to the query position q. We claim that the closest 1 to q in the N(i, j) region

is closest 1 to the bottom row and column k of either the (i, j + `)-block or

the (i, j + ` + 1)-block. These can be computed in O(c) time using the above

encoding, and then compared to find the required answer. Finally we can find

NLN of q by comparing these eight candidate answers.

The optimality of the trade-off follows from the lower bound of the following

lemma.

Lemma 4.2 ([44]). Given a 1D array of size n, any data structure which stores

O(n/c) bits and answers NLV (or NLN) queries in the indexing model, requires

at least Ω(c) query time, for any 1 ≤ c ≤ n.

4.4 Encoding NLN queries for general 2D arrays

Consider an n × n 2D array A[1 . . . n][1 . . . n]. Given two positions (i, j) and

(i′, j′) in A, we define dist((i, j), (i′j′)) = |i − i′| + |j − j′|. A trivial solution

to the NLN problem in 2D array is to store NLN((i, j)), for 1 ≤ i, j ≤ n. This

requires O(n2 lg n) bits, and supports queries in O(1) time. In the following, we

obtain improved results for the 2D NLN in the encoding and indexing models,

and also describe some trade-off results.

4.4.1 2D NLN in the encoding model – distinct case

When there is no restriction on the elements of the array, one can show an n2-

bit lower bound for NLN encoding (described in Section 4.4.2). Using a simple

encoding method, one can prove that the same asymptotic lower bound applies

even when all the elements of the array are distinct to obtain the following.
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Figure 4.2 The positions of useful and dummy elements in a 6 × 6 array. In

this example, the dummy elements (X’s) are in the range [1..24] and the useful

elements (O’s) are in the range [25..26].

Theorem 4.4. Any data structure which supports NLN queries on an n × n

array A[1 . . . n][1 . . . n] in encoding model requires at least n2/6 bits, even when

all the elements in A are distinct.

Proof. Without loss of generality, we assume that n is a multiple of 6. We first

define a set A of 2n
2/6 2D arrays, and then show that the answers to the NLN

queries in any array A ∈ A can be used to distinguish A from A \ {A}. This

proves that encoding for an arbitrary array in A requires at least lg(|A|) = n2/6

bits in the worst case.

Each array A ∈ A contains elements from the set {1, 2, . . . , n2}, where each

element appears in the array exactly once. To describe the arrays in A, we par-

tition the elements of each array into useful and dummy elements. The positions

(3i + 1, 2j) and (3i + 2, 2j), for 0 ≤ i < n/3 and 1 ≤ j ≤ n/2, contain use-

ful elements, and the remaining 2n2/3 positions contain the dummy elements

(see Figure 4.2). We assign the elements from 1 to 2n2/3 to the positions cor-

responding to the dummy elements, in row-major order. Also, we first assign

the elements from 2n2/3 + 1 to n2 to the positions corresponding to the useful
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elements, in row-major order. Let A0 denote this array. We now obtain the

2n
2/6 arrays in A by repeatedly taking a pair of adjacent useful elements and

flipping them.

Consider any two arrays A and A′ in A. We know that for at least one pair

of adjacent positions (3i + 1, 2j) and (3i + 2, 2j), for some 0 ≤ i < n/3 and

1 ≤ j ≤ n/2, we will have A[3i + 1, 2j] < A[3i + 2, 2j] while A′[3i + 1, 2j] >

A′[3i+2, 2j] or vice versa, and hence their NLN answers are distinct. Therefore,

given the answers to the NLN queries of all adjacent pairs of useful elements,

we can distinguish the array A from A \ {A}.

We now obtain an asymptotically optimal upper bound for 2D NLN encoding

for the distinct case. The proof is based on ideas from Asano and Kirkpatrick [4].

Lemma 4.3. A 2D array A[1 . . . n][1 . . . n] can be encoded using O(n2) bits to

support NLN queries, provided all elements are distinct.

Proof. The main idea is to divide the array recursively into blocks of geometri-

cally increasing size, and store the NLN values of all elements, except the largest

element and the elements whose answers are stored at a previous level, in each

block explicitly. The following argument shows that this requires O(n2) bits

overall.

In the first level, we divide A into n2/4 blocks of size 2 × 2 each. Except

for the largest element in each 2 × 2 block, the distance of NLN answer for

the other three elements are bounded by 2. In general, at level k, we divide A

into n2/4k blocks of size 2k × 2k each. In each of these 2k × 2k-sized blocks,

there are four elements left for which we need to store the answer to their

NLN queries. For three of these four elements, which do not correspond to

the maximum value in the block, we store their answers at level k. Since the

distance to the NLN answer for these three elements is bounded by 2k+2, we

can store these answers using O(k) bits. Thus the total space usage is bounded

by
∑lgn

k=1(3n2/4k) ∗O(k) = O(n2) bits.
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We now describe another O(n2)-bit encoding for the 2D NLN problem that

supports queries in constant time when the elements are distinct.

Theorem 4.5. A 2D array A[1 . . . n][1 . . . n] can be encoded using O(n2) bits

to support NLN queries in O(1) time, provided all elements are distinct.

Proof. The encoding is a small variant of the encoding described in the proof

of Lemma 4.3. For each position in A, in some canonical order (say, row-major

order), we write down the relative position (i.e., the distance from the position

to its answer in horizontal and vertical directions) of its NLN answer. We use a

variable-length encoding, such as γ-code or δ-code [21], to write these answers.

The proof of Lemma 4.3 implies that the sum of the lengths of all these answers

is O(n2). We also store an indexable bit vector [69] indicating the starting

positions of each code. This enables us to find the position where the answer

to a given query starts and ends, in constant time.

4.4.2 2D NLN in the encoding model – general case

It is easy to see that for any two distinct n×n binary arrays can be distinguished

by looking at the NLN answers at every positions. In other words, any two

distinct binary arrays must have distinct NLN encodings. This shows an n2-

bit lower bound for NLN encoding in the general case, In this section, we give

an encoding which supports NLN queries in a 2D array with O(n2) bits in the

general case. Before starting the 2D case, we consider the 1D case first. Jayapaul

et al. [44] showed how to encode an array A with n distinct elements using O(n)

bits to answer NLN queries. We give an alternate proof, that is similar to the

proof of Lemma 4.3.

Lemma 4.4. There exists an encoding of an array A[1 . . . n] that uses O(n)

bits while supporting NLN queries, provided all elements are distinct.

Proof. We write down the sequence d(1), d(2), . . . , d(n) explicitly, where d(i) =

n if A[i] is the maximum element of A, and d(i) = |i − NLN(i)| otherwise,
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for 1 ≤ i ≤ n, together with a sequence of n bits that indicate if i < NLN(i)

or i > NLN(i). Thus, it is enough to show that
∑n

i=1 lg d(i) = O(n). Since

all the elements in A are distinct, there are at most n/2k elements for which

d(i) ≥ 2k, for any 1 ≤ k ≤ lg n. From this observation, it follows that there

are O(n/2k) elements for which 2k ≤ d(i) < 2k+1, and hence
∑n

i=1 lg d(i) ≤∑lgn
k=1(O(n/2k) ·O(k)) = O(n).

We now describe a simple modification of the above encoding that can be

used to support NLN queries even when the elements are not distinct. Queries

are not supported in constant time with this encoding. Note that one can use

the encoding of Fischer [25] to obtain a linear-bit (in fact, a 2.54n-bit) encoding

which supports NLN queries in constant time. However, in contrast to Fischer’s

encoding, the new approach stores explict pointers from one array position to

another, and we use the space cost of these explicit pointers to upper bound

the space usage of the pointers stored in the proof of Theorem 4.6.

Instead of encoding the NLN of a position i as in Lemma 4.4, we encode

the distance between i and the nearest value which is ≥ A[i] in the same

direction as NLN(i). Formally, we define dl(i) = i − (maxj<i,A[j]≥A[i] j) and

dr(i) = (minj>i,A[j]≥A[i] j) − i and d(i) = dl(i) if NLN(i) < i and d(i) = dr(i)

otherwise. For each i, we encode d(i) (using a variable-length encoding) and

store a bit indicating whether d(i) = dr(i) or d(i) = dl(i), and view this as a

“pointer” to j = i + dr(i) or j = i − dl(i) respectively. Finally, we also store a

bit indicating whether or not A[i] = A[j]. With this encoding, NLN(i) can be

easily found by following the d(·) “pointers” from i until we reach a position

that is greater than A[i]. We refer to this encoding of a 1D array as encoding1D.
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The following lemma shows that this encoding uses O(n) bits1:

Lemma 4.5. For a 1D array A[1 . . . n], encoding1D takes O(n) bits.

Proof. For A, encoding1D consists of two bit strings of length O(n), and a

sequence of variable-length encodings storing the values d(1), d(2), . . . , d(n). Let

D =
∑n

i=1 lg d(i). To prove the lemma, it is enough to show that D = O(n).

We first create a new array A′ with all distinct elements, and bound the

value D using the size of the NLN encoding of A′. Consider the array A′[1 . . . n]

of size n, where A′[i] = A[i]+ εi if NLN(i) > i and A′[i] = A[i]− εi if NLN(i) < i

for some ε > 0. If we set ε small enough then if A[i] > A[j] for some i, j then

A′[i] > A′[j] as well, but all elements in A′ are distinct. So if we define d′(i), NLN′

and D′ on A′ analogously to d(i), NLN, and D on A, D′ =
∑n

i=1 lg d′(i) = O(n)

by Lemma 4.4. We now show that D ≤ 2D′.

For a subset S of U = {1, 2, . . . , n}, we define DS as
∑

i∈S lg d(i), (and

D′S analogously). To prove that D ≤ 2D′, we partition the set U into disjoint

subsets, and show that DS ≤ 2D′S for every subset S in the partition. To define

the partitions of U , we first extend the array A such that A[0] = A[n+ 1] =∞.

Now, each subset in the partition of U contains a set of indices i1, . . . ir−1 where

0 ≤ i0 < i1 < · · · < ir ≤ n + 1 with r > 1 is a maximal sequence of indices

such that A[i0] > A[i1], A[ir−1] < A[ir], A[i1] = A[i2] = · · · = A[ir−1] and for

all i0 < j < ir, A[j] < A[i1] if j /∈ {i1, . . . , ir−1}. It is easy to show that this

collection of subsets form a partition of U , i.e., they are pairwise disjoint and

cover U .

Let ik be the index such that NLN(il) = i0 for all 0 < l ≤ k and NLN(il) = ir

for all k < l ≤ r − 1. Then by the definition of A′, for all k < l ≤ r − 1,

1Note that this encoding cannot be obtained by simply breaking ties among equal elements

in some arbitrary fashion and applying Lemma 4.4. For example, if A[i] = A[i+1] and A[i− t]

and A[i + 1 + t] for some t > 1 are the nearest larger values, then in the current encoding,

neither A[i] nor A[i + 1] would point to one another. If we break ties then either A[i] points

to A[i + 1] or A[i + 1] points to A[i].
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NLN′(il) = il+1 so d(il) = d′(il). For the elements to the left of ik, we can

consider the case that there exist 0 < m ≤ k such that NLN′(il) = il−1 for all

0 < l ≤ m− 1 and NLN′(il) = ik+1 for m ≤ l ≤ k. Then:

DS −D′S =

r−1∑
j=1

lg d(ij)−
r−1∑
j=1

lg d′(ij)

=

m−1∑
j=1

lg d(ij) +
k∑

j=m

lg(ij − ij−1) +
r−1∑
j=k+1

lg d(ij)


−

m−1∑
j=1

lg d′(ij) +

k∑
j=m

lg(ik+1 − ij) +

r−1∑
j=k+1

lg d′(ij)


=

k∑
j=m

lg(ij − ij−1)−
k∑

j=m

lg(ik+1 − ij)

≤ lg(im − im−1)− lg(ik+1 − ik)

(∵ ij − ij−1 ≤ ik+1 − ij−1 for all m ≤ j ≤ k)

≤ lg(im − im−1) ≤ lg(im − i0) ≤ lg(ir − im) (∵ NLN(im) = i0)

≤ lg(ik+1 − im) +

r−1∑
j=k+1

lg(ij+1 − ij) (by the concavity of lg function)

≤
r−1∑
j=1

lg d′(ij) = D′S

We now extend this encoding to encode NLNs for a 2D arrayA[1 . . . n][1 . . . n]

that answers NLN queries. We call this encoding scheme encoding2D. We then

show that encoding2D takes O(n2) bits (in Theorem 4.6).

In encoding2D, each (i, j) “points to” another location (i′, j′), such that

A[i′, j′] ≥ A[i, j], as follows: |i − i′| is encoded using O(1 + lg |i′ − i|) (the row

cost of the pointer) and |j− j′| is coded using O(1+lg |j′ − j|) bits (the column

cost of the pointer), the direction from (i, j) to (i′, j′) is given using two bits,

and finally one extra bit indicates whether or not A[i′, j′] > A[i, j]. Now we

explain how to specify the pointers. Pick an element A[i, j] and without loss
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of generality assume that NLN(i, j) = (i∗, j∗) with i∗ ≥ i, j∗ ≥ j. We choose

pointers as follows:

Case (1) Let i′ > i be the smallest value such that i′ ≤ i∗ and A[i, j] = A[i′, j].

If i′ exists, then we store a pointer from (i, j) to (i′, j) and set the extra bit

to 0.

Case (2) If there exists no i′ such that A[i, j] = A[i′, j]. for i < i′ ≤ i∗, then

let j′ > j be the smallest value such that j′ ≤ j∗ and A[i, j] = A[i, j′]. If j′

exists, we store a pointer from (i, j) to (i, j′) and set the extra bit to 0.

Case (3) If there exists no i′ such that A[i, j] = A[i′, j]. for i < i′ ≤ i∗, and

also if there exists no j′ such that A[i, j] = A[i, j′]. for j < j′ ≤ j∗, then we

store a pointer from (i, j) to (i∗, j∗) and set the extra bit to 1.

To obtain NLN(i, j), we follow pointers starting from (i, j) until we follow

one with the extra bit set to 1, and return the position pointed to by this

pointer.

We now show that the above procedure computes NLN(i, j), for all 1 ≤ i, j ≤

n. The proof is by induction on k, the distance between (i, j) and NLN(i, j) =

(i∗, j∗). The base case k = 1 follows directly from case 3) above.

Assume the induction hypothesis holds for all NLNs at distance ≤ k, and

choose an (i, j) such that NLN(i, j) = (i∗, j∗) and dist((i, j), (i∗, j∗)) = k + 1.

Assume, without loss of generality, that the pointer from (i, j) has its extra

bit set to 0 (otherwise, the induction step is trivial) and it points to (i′, j)

with i′ > i. Assume that NLN(i′, j) = (x, y) 6= (i∗, j∗), and dist((x, y), (i, j))

is greater than dist((x, y), (i∗, j∗)). Since A[i′, j] = A[i, j], dist((i′, j), (x, y)) ≤

dist((i′, j), (i∗, j∗)) < dist((i, j), (i∗, j∗)) = k + 1. By the induction hypothesis,

following pointers from (i′, j) leads to (x, y). Now:

dist((i, j), (x, y)) = dist((i, j), (i′, j)) + dist((i′, j), (x, y))

≤ dist((i, j), (i′, j)) + dist((i′, j), (i∗, j∗)) (∵ NLN(i′, j) = (x, y))

= dist((i, j), (i∗, j∗)),
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contradicting the assumption that dist((x, y), (i, j)) > dist((x, y), (i∗, j∗)).

Theorem 4.6. There exists an encoding of a 2D array A[1 . . . n][1 . . . n] that

supports NLN queries, using O(n2) bits.

Proof. We show that encoding2D, described earlier, takes O(n2) bits. To upper

bound the space, we first describe an encoding, called encodinggrid as follows.

We encode each column and each row of A using encoding1D, using O(n2) bits.

These pointers are called grid pointers. However, the maximal values in each

row and column do not have pointers by Lemma 4.5, as their NLN is not defined.

So, in addition, for each row r which has (locally) maximum values in columns

i1 < . . . < ik, we store extra pointers from (ij , r) to (ij+1, r) and vice versa for

j = 0, . . . , k, taking i0 = 0 and ik+1 = n + 1. The space taken by these extra

pointers is O(lg i1 +
∑k−1

j=2 lg (ij − ij−1) + lg (n+ 1− ik)) = O(n) bits for row r.

We do this for all rows and columns, at a cost of O(n2) bits overall.

Although encodinggrid does not encode NLN, we use it to upper bound the

space used by encoding2D. Let a grid pointer and a 2D pointer refer to a pointer

in encodinggrid and encoding2D respectively. For any 2D pointer, the cost of

encoding it can be upper-bounded by the cost of encoding (one or more) grid

pointers. Each grid pointer will be used O(1) times this way. Below, we show

how to upper bound all Case (2) 2D pointers and the column cost of all Case

(3) 2D pointers by grid pointers in rows, using each grid pointer at most thrice.

The costs of Case (1) 2D pointers and the column cost of Case (3) 2D pointers

can similarly be bounded by the costs of grid pointers in the columns. This will

prove the theorem.

We consider a fixed location (i, j), and assume wlog that NLN(i, j) = (i∗, j∗)

with i∗ ≥ i and j∗ > j (if j∗ = j then the pointer from (i, j) will have column

distance 0 and there is nothing to bound). There are four cases to consider

(see Figure 4.3).

Case (a) Let j′ > j be the minimum index such that A[i, j′] ≥ A[i, j]. Suppose
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Pointer in encodinggrid 

Pointer in encoding2D 

(i,j) 

Case (a.1) Case (a.2) 

Case (b.1) 

(i,j’) (i,j) (i,j’) 

(i*,j*) 

(i,j) (i,j’) (i,jl-1) (i,jl-2) (i,j) (i,jl-1) (i,jl-2) 

(i*,j*) 

Case (b.2) 

Figure 4.3 Pointers in encoding2D and encodinggrid

that j′ exists and there is a grid pointer from (i, j) to (i, j′) or vice versa.

There are two sub-cases:

(a.1) The 2D pointer from (i, j) points to (i, j′). We use the cost of this

grid pointer to upper bound the cost of the 2D pointer. Observe that

if there is a 2D pointer from (i, j) to (i, j′), there cannot be a 2D

pointer from (i, j′) to (i, j), so the grid pointer is used for upper-

bounding only once in this case.

(a.2) The 2D pointer from (i, j) points to (i∗, j∗). Observe that j′ ≥

j∗, since otherwise either (i, j′) is a larger value that is closer than

(i∗, j∗), a contradiction, or we would have a Case (2) 2D pointer

from (i, j) to (i, j′). The pointer between (i, j) and (i, j′) will only

be charged twice for upper-bounding in this case.

Case (b) Either (i) A[i, j] > A[i, j′] for all j′ > j, or (ii) there exists a j′ > j
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such that A[i, j] ≤ A[i, j′], and there are no grid pointers either from (i, j)

to (i, j′) or vice versa. As before, we consider two sub-cases.

(b.1) Suppose the 2D pointer from (i, j) points to (i, j′), where j′ > j is

the smallest index such that A[i, j′] ≥ A[i, j]. If A[i, j] is a maximal

value in row i, the cost of the pointer is upper-bounded by the extra

pointer between (i, j) and (i, j′). If not, the absence of grid pointers

between (i, j) and (i, j′) implies that the NLN of (i, j) in the i-th

row is (i, j0) for some j0 < j. Note that |j0 − j| ≥ dist((i, j), (i∗, j∗))

(otherwise NLN(i, j) would be (i, j0)). The path p between (i, j) and

(i, j0) in encodinggrid may comprise a number of grid edges. We

can bound the cost of the 2D edge from (i, j) to (i, j′) by the total

cost of the grid edges on the path p consisting of the elements j =

jl, jl−1, . . . , j1, j0 (omitting the row number for brevity).2 Note that

for any 0 < k < l, no 2D pointer from (i, jk) can end up in Case (b),

so this path can only be used twice to upper-bound the cost of a 2D

edge: once from (i, j) and once (possibly) from (i, j0).

(b.2) Suppose the 2D pointer from (i, j) points to (i∗, j∗). If A[i, j] is a

maximal value in row i, then if j′ exists, then it must be the case

that j′ > j∗, and the row cost of the 2D pointer is bounded by the

extra pointer between (i, j) and (i, j′). On the other hand, if j′ does

not exist, then the row cost of the 2D pointer is bounded by the

extra pointer from (i, j) to (i, n+ 1).

If A[i, j] is not maximal, then arguing as above, we see that the NLN

of (i, j) in the i-th row is (i, j0) for some j0 < j, that |j0−j| ≥ |j−j∗|,

and so we can upper-bound the row cost of this 2D pointer by the

total cost of all the grid pointers between j and j0, and each of these

1Since the log function is concave, the sum of the costs of the path p is no less than the

cost of a single edge from (i, j) to (i, j0).
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grid pointers is used at most twice (once each for the pointers out of

(i, j) and (i, j0) in Case (b) to upper bound a 2D pointer.

We now describe an O(n2)-bit encoding that supports NLN queries in con-

stant time on a 2D array.

Theorem 4.7. There exists an encoding of a 2D array A[1 . . . n][1 . . . n] that

uses O(n2) bits while supporting NLN queries in O(1) time.

Proof. We first divide A into blocks of size b × b, and divide each block into

sub-blocks of size s × s. For each position (i, j) in the array, we say that the

four locations (i+1, j), (i−1, j), (i, j+1) and (i, j−1) (even if they are outside

the array range) are its neighbors. We say that a location (i, j) is a boundary

location with respect to a block (sub-block) if one of its neighbors is not in the

same block (sub-block). Note that there are O(b) (O(s)) boundary elements

in each block (sub-block). For each block, we store a b × b bitmap of size b2

bits, such that the (i, j)-th bit, for 1 ≤ i, j ≤ b, stores a 1 if the corresponding

element in that position is a maximum element in that block, and stores a 0

otherwise. We also store similar bitmaps for each sub-block, using s2 bits for

each sub-block.

For each boundary position (i, j) in a block B, we store the nearest position

to (i, j) whose value is larger than the maximum element in B. This takes

O(b lg n) bits for each block. Also, for a sub-block B′ in a block B, if B′ does

not contain the maximum element in B, then for each boundary position (i, j)

in B′, we store the nearest position to (i, j) whose value is larger than the

maximum element in B′. Since the distance to this position is at most 2b, it

takes O(s lg b) bits for each sub-block to store this information.

Finally, for a position (i, j) in a sub-block B′, if A[i, j] is not the maximum

element in B′, then its NLN always exists in the sub-array A′ of A, of size
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5s × 5s such that B′ = A′[2s + 1, . . . , 3s][2s + 1, . . . , 3s] (i.e., B′ is the center

sub-block in the 5s× 5s sub-array A′). Theorem 4.6 shows that this sub-array

A′ can be encoded using λs2 bits, for some positive constant λ, to support NLN

queries. For each sub-block B′ in A, we store the encoding (of Theorem 4.6) of

the corresponding sub-array A′. Over all the sub-blocks, this takes O(n2) bits.

In addition, we construct a precomputed table which we store as a two-

dimensional array. The first dimension is indexed by all possible bit-strings of

length λs2, and the second dimension is indexed by all possible positions in a

sub-block. The (e, p)-th entry in this array stores the NLN of the position p in

sub-block B′ within the 5s × 5s sub-array A′ (with B as its center sub-block)

whose encoding is the bit string e.

We now describe the query algorithm. Consider the query position (i, j),

and let B (B′) be the block (sub-block) that contains (i, j). We first check

whether (i, j) is a position of the maximal element in B′ in O(1) time using

the bitmap defined above. If A[i, j] is not a maximal element in B′, then we

use the precomputed table to find the answer, in O(1) time. If A[i, j] is the

maximum element in B′ but not in B, then we can answer the query in O(1)

time by comparing the distance between (i, j) and stored positions on the four

boundary positions in B′ which have the same row or the column positions as

(i, j) and choose the nearest one. If A[i, j] is a maximal element in B, we can

find its NLN in O(1) time by a similar procedure as above case, by looking at

the four boundary positions in B with same row or column index as (i, j). Thus,

in all cases, the queries can be supported in O(1) time. The overall space usage

is O(n2/b2 × (b2 + b lg n) + n2/s2 × (s2 + s lg b) + s22λs
2

lg s2) bits. By choosing

b = lg n and s = c
√

lg n, for some small constant c (chosen appropriately), the

overall space usage becomes O(n2) bits.
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4.5 Open problems

Our main contribution is a systematic study of data structures for NLV on 1D

arrays in the indexing model, and NLN on 2D arrays in the encoding model.

We suggest the following open problems for future works.

• Is there a data structure that takes less than 2.54n + o(n) bits and can

answer NLN queries in a one dimensional array in constant time in the

general case (when elements may repeat) in the encoding model?

• For a 1D array, is there an index for NLV that uses O(n/c) bits and

supports queries in O(c) query time?

• For a 2D array, is there an index for NLN that uses O(n2/c) bits and

supports queries in O(c) query time?
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Chapter 5

Simultaneous encodings for range
and next/previous larger/smaller
value queries

5.1 Introduction

Given an array A[1 . . . n] of n elements from a total order. For 1 ≤ i ≤ j ≤ n,

suppose that there are m (l) positions i ≤ p1 ≤ · · · ≤ pm ≤ j (i ≤ q1 ≤ · · · ≤

ql ≤ j ) in A which are the positions of minimum (maximum) values between

A[i] and A[j]. Then we can define various range minimum (maximum) queries

as follows.

• Range Minimum Query (RMinQA(i, j)) : Return an arbitrary position

among p1, . . . , pm.

• Range Leftmost Minimum Query (RLMinQA(i, j)) : Return p1.

• Range Rightmost Minimum Query (RRMinQA(i, j)) : Return pj .

• Range k-th Minimum Query (RkMinQA(i, j)) : Return pk (for 1 ≤ k ≤ m).
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• Range Maximum Query (RMaxQA(i, j)) : Return an arbitrary position

among q1, . . . , ql.

• Range Leftmost Maximum Query (RLMaxQA(i, j)) : Return q1.

• Range Rightmost Maximum Query (RRMaxQA(i, j)) : Return ql.

• Range k-th Maximum Query (RkMaxQA(i, j)) : Return qk (for 1 ≤ k ≤ l).

Also for 1 ≤ i ≤ n, we consider following additional queries on A.

• Previous Smaller Value (PSVA(i)) : max (j : j < i,A[j] < A[i]).

• Next Smaller Value (NSVA(i)) : min (j : j > i,A[j] < A[i]).

• Previous Larger Value (PLVA(i)) : max (j : j < i,A[j] > A[i]).

• Next Larger Value (NLVA(i)) : min (j : j > i,A[j] > A[i]).

For define above four queries formally, we assume that A[0] = A[n+ 1] = −∞

for PSVA(i) and NSVA(i). Similarly we assume that A[0] = A[n + 1] = ∞ for

PLVA(i) and NLVA(i).

Our aim is to obtain space-efficient encodings that support these queries

efficiently.

Previous Work The range minimum/maximum problem has been well-studied

in the literature. It is well-known [5] that finding RMinQA can be transformed

to the problem of finding the LCA (Lowest Common Ancestor) between (the

nodes corresponding to) the two query positions in the Cartesian tree con-

structed on A. Furthermore, since different topological structures of the Carte-

sian tree on A give rise to different set of answers for RMinQA on A, one can

obtain an information-theoretic lower bound of 2n−Θ(lg n) bits on the encod-

ing of A that answers RMinQ queries. Sadakane [71] proposed the 4n+ o(n)-bit

encoding with constant query time for RMinQA problem using the balanced

parentheses (BP) [55] of the Cartesian tree of A with some additional nodes.

65



Fischer and Heun [27] introduced the 2d-Min heap, which is a variant of the

Cartesian tree, and showed how to encode it using the Depth first unary de-

gree sequence (DFUDS) [6] representation in 2n + o(n) bits which supports

RMinQA queries in constant time. Davoodi et al. show that same 2n+ o(n)-bit

encoding with constant query time can be obtained by encoding the Carte-

sian trees.[16]. For RkMinQA, Fischer and Heun [26] defined the approximate

range median of minima query problem which returns a position RkMinQA for

some 1
16m ≤ k ≤ 15

16m, and proposed an encoding that uses 2.54n + o(n) bits

and supports the approximate RMinQA queries in constant time, using a Super

Cartesian tree.

For PSVA and NSVA, if all elements in A are distinct, then 2n + o(n) bits

are enough to answer the queries in constant time, by using the 2d-Min heap of

Fischer and Heun [27]. For the general case, Fischer [25] proposed the colored

2d-Min heap, and proposed an optimal 2.54n + o(n)-bit encoding which can

answer PSVA and NSVA in constant time.

One can support both RMinQA and RMaxQA in constant time trivially using

the encodings for RMinQA and RMaxQA queries, using a total of 4n + o(n)

bits. Gawrychowski and Nicholson reduce this space to 3n + o(n) bits while

maintaining constant time query time [30]. Their scheme also can support PSVA

and PLVA in constant time when there are no consecutive equal elements in A.

Our results In this chapter, we first extend the original DFUDS [6] for col-

ored 2d-Min(Max) heap that supports the queries in constant time. Then,

we combine the extended DFUDS of 2d-Min heap and 2d-Max heap using

Gawrychowski and Nicholson’s Min-Max encoding [30] with some modifica-

tions. As a result, we obtain the following non-trivial encodings that support a

wide range of queries.

Theorem 5.1. An array A[1 . . . n] containing n elements from a total order

can be encoded using
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(a) at most 3.17n+o(n) bits to support RMinQA, RMaxQA, RRMinQA, RRMaxQA,

PSVA, and PLVA queries;

(b) at most 3.322n+ o(n) bits to support the queries in (a) in constant time;

(c) at most 4.088n + o(n) bits to support RMinQA, RRMinQA, RLMinQA,

RkMinQA, PSVA, NSVA, RMaxQA, RRMaxQA, RLMaxQA, RkMaxQA, PLVA

and NLVA queries; and

(d) at most 4.585n+ o(n) bits to support the queries in (c) in constant time.

If the array contains no two consecutive equal elements, then (a) and (b) take

3n+ o(n) bits, and (c) and (d) take 4n+ o(n) bits.

This chapter organized as follows. Section 5.2 introduces various data struc-

tures that we use later in our encodings. In Section 5.3, we describe the encoding

of colored 2d-Min heap by extending the DFUDS of 2d-Min heap. This encod-

ing uses a distinct approach from the encoding of the colored 2d-Min heap by

Fischer [25]. Finally, in Section 5.4, we combine the encoding of this colored

2d-Min heap and Gawrychowski and Nicholson’s Min-Max encoding [30] with

some modifications, to obtain our main result (Theorem 5.1).

5.2 Preliminaries

We first introduce some useful data structures that we use to encode various

bit vectors and balanced parenthesis sequences.

Balanced parenthesis sequences Given a string S[1 . . . n] over the alpha-

bet Σ = {′(′,′ )′}, if S is balanced and S[i] is an open (close) parenthesis, then we

can define findopenS(i) (findcloseS(i)) which returns the position of the match-

ing close (open) parenthesis to S[i]. Now we introduce the lemma from Munro

and Raman [55].
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Lemma 5.1 ([55]). Let S be a balanced parenthesis sequence of length n.

If one can access any lg n-bit subsequence of S in constant time, Then both

findopenS(i) and findcloseS(i) can be supported in constant time with o(n)-bit

additional space.

Depth first unary degree sequence Depth first unary degree sequence

(DFUDS) is one of the well-known methods for representing ordinal trees [6].

It consists of a balanced sequence of open and closed parentheses, which can be

defined inductively as follows. If the tree consists of the single node, its DFUDS

is ‘()’. Otherwise, if the ordinal tree T has k subtrees T1 . . . Tk, then its DFUDS,

DT is the sequence (k+1 )dT1 . . . dTk (i.e., k + 1 open parentheses followed by a

close parenthesis concatenated with the ‘partial’ DFUDS sequences dT1 . . . dTk)

where dTi , for 1 ≤ i ≤ k, is the DFUDS of the subtree Ti (i.e., DTi) with the

first open parenthesis removed. From the above construction, it is easy to prove

by induction that if T has n nodes, then the size of DT is 2n bits. The follow-

ing lemma shows that DFUDS representation can be used to support various

navigational operations on the tree efficiently.

Lemma 5.2 ([1], [6], [43]). Given an ordinal tree T on n nodes with DFUDS

sequence DT , one can construct an auxiliary structure of size o(n) bits to support

the following operations in constant time: for any two nodes x and y in T ,

- parentT (x) : Label of the parent node of node x.

- degreeT (x) : Degree of node x.

- depthT (x) : Depth of node x (The depth of the root node is 0).

- subtree sizeT (x) : Size of the subtree of T which has the x as the root node.

- next siblingT (x) : The label of the next sibling of the node x.

- childT (x, i) : Label of the i-th child of the node x.

- child rankT (x) : Number of siblings left to the node x.

- laT (x, i) : Label of the level ancestor of node x at depth i.

- lcaT (x, y) : Label of the least common ancestor of node x and y.
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- pre rankT (i) : The preorder rank of the node in T corresponding to DT [i].

- pre selectT (x) : The first position of node with preorder rank x in DT .

We use the following lemma to bound the space usage of the data structures

described in Section 5.4.

Lemma 5.3. Given two positive integers a and n, and a nonnegative integer

k ≤ n, lg
(
n
k

)
+ a(n− k) ≤ n lg (2a + 1).

Proof. By raising both sides to the power of 2, it is enough to prove that(
n
k

)
2(a(n−k)) ≤ (2a + 1)n. We prove the lemma by induction on n and k. In the

base case, when n = 1 and k = 0, the claim holds since 2a < (2a + 1). Now

suppose that
(
n′

k′

)
2a(n′−k′) ≤ (2a + 1)n

′
for all 0 < n′ ≤ n and 0 ≤ k′ ≤ k. Then(

n+ 1

k

)
2a(n+1−k) =

((
n

k

)
+

(
n

k − 1

))
2a(n+1−k)

≤ 2a(2a + 1)n + (2a + 1)n = (2a + 1)n+1 by induction hypothesis.

Also by induction hypothesis,(
n

k + 1

)
2a(n−(k+1)) =

((
n− 1

k

)
+

(
n− 1

k + 1

))
2a(n−(k+1))

≤ (2a + 1)n−1

(
1 +

(
n−1
k+1

)
(2a(n−1−k))

(2a + 1)n−1

)

Since
(
n−1
k+1

)
2a(n−1−k) < 2a(2a + 1)n−1(∵ (2a + 1)n−1 =

∑n−1
m=0

(
n−1
m

)
2a(n−1−m)),

(2a + 1)n−1

(
1 +

(
n−1
k+1

)
(2a(n−1−k))

(2a + 1)n−1

)
< (2a + 1)n−1(1 + 2a) = (2a + 1)n.

Therefore the above inequality still holds when n′ = n+ 1 or k′ = k+ 1, which

proves the lemma.

5.2.1 2d-Min heap

The 2d-Min heap [27] on A, denoted by Min(A), is designed to encode the

answers of RMinQA(i, j) efficiently. We can also define the 2d-Max heap on A
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(Max(A)) analogously. Min(A) is an ordered labeled tree with n+1 nodes labeled

with 0 . . . n. Each node in Min(A) is labeled by its preorder rank and each label

corresponds to a position in A. We extend the array A[1 . . . n] to A[0 . . . n]

with A[0] = −∞. In the labeled tree, the node x denotes the node labeled x.

For every vertex i, except for the root node, its parent node is (labeled with)

PSVA(i).

Using the operations in Lemma 5.2, Fischer and Heun [27] showed that

RMinQA(i, j) can be answered in constant time using DMin(A). If the elements

in A are not distinct, RMinQA(i, j) returns the RRMinQA(i, j).

Fischer and Heun [27] also proposed a linear-time stack-based algorithm

to construct DMin(A). Their algorithm maintains a min-stack consisting of a

decreasing sequence of elements from top to the bottom. The elements of A are

pushed into the min-stack from right to left and before pushing the element A[i],

all the elements from the stack that are larger than A[i] are popped. Starting

with an empty string, the algorithm constructs a sequence S as described below.

Whenever k elements are popped from the stack and then an element is pushed

into the stack, (k) is prepended to S. Finally, after pushing A[1] into the stack,

if the stack contains m elements, then (m+1) is prepended to S. One can show

that this sequence S is the same as the DFUDS sequence DMin(A). Analogously,

one can construct DMax(A) using a similar stack-based algorithm.

Colored 2d-Min heap From the definition of 2d-Min heap, it is easy show

that PSVA(i), for 1 ≤ i ≤ n, is the label corresponding to the parent of the node

labeled i in Min(A). Thus, using the encoding of Lemma 5.2 using 2n+o(n) bits,

one can support the PSVA(i) queries in constant time. A straightforward way

to support NSVA(i) is to construct the 2d-Min heap structure for the reverse of

the array A, and encode it using an additional 2n+o(n) bits. Therefore one can

encode all answers of PSVA and NSVA using 4n+o(n) bits with constant query

time. To reduce this size, Fischer proposed the colored 2d-Min heap [25]. This
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 
A[i] -∞ 3 8 5 6 6 6 3 2 2 7 10 9 
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5 6 

8 7 

2 

Figure 5.1 Colored 2d-Min heap of A

has the same structure as normal 2d-Min heap, and in addition, the vertices

are colored either red or blue. Suppose there is a parent node x in the colored

2d-Min heap with its children x1 . . . xk. Then for 1 < i ≤ k, node xi is colored

red if A[xi] < A[xi−1], and all the other nodes are colored blue (see Figure 5.1).

We define the operation NRS(xi) which returns the leftmost red sibling to the

right (i.e., next red sibling) of xi.

The following lemma can be used to support NSVA(i) efficiently using the

colored 2d-Min heap representation.

Lemma 5.4 ([25]). Let CMin(A) be the colored 2d-Min heap on A. Suppose there

is a parent node x in CMin(A) with its children x1 . . . xk. Then for 1 ≤ i ≤ k,

NSVA(xi) =

 NRS(xi) if NRS(xi) exists,

xk + subtree size(xk) otherwise.

If all the elements in A are distinct, then a 2n+o(n)-bit encoding of Min(A)

is enough to support RMinQA, PSVA and NSVA with constant query time. In the

general case, Fischer proposed an optimal 2.54n+ o(n)-bit encoding of colored

2d-Min heap on A using TC-encoding [22]. This encoding also supports two ad-

ditional operations, namely modified childCMin(A)(x, i) and child rankCMin(A)(x),
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which answer the i-th red child of node x and the number of red siblings to the

left of node x, respectively, in constant time. Using these operations, one can

also support RLMinQA and RkMinQA in constant time.

5.2.2 Encoding range min-max queries

0

1 5

2 3 7 

4 8 9 

6

0 

1 5 

2 3 7 

6 

3 

3 

Min(A) Max(A) 

i 0 1 2 3 4 5 6 7 8 9 
A[i] -∞ (∞ ) 3 8 5 6 3 2 7 10 9

DMin(A) (((() (() ) () ) ) () (() ) ) 
DMax(A) (((() ) ((() ) () () ) ) () ) 

T () (() ) ) ) ) () ) 
U 0 1 0 1 1 0 0 1 

Figure 5.2 Encoding of 2d-Min heap and 2d-Max heap of A

One can support both RMinQA and RMaxQA in constant time by encoding

both Min(A) and Max(A) separately using 4n + o(n) bits. Gawrychowski and

Nicholson [30] described an alternate encoding that uses only 3n + o(n) bits

while still supporting the queries in O(1) time. There are two key observations

which are used in obtaining this structure:

1. If we can access any lg n-bit substring of DMin(A) and DMax(A) on O(1)

time, we can still support both queries in O(1) time, using an additional

o(n) bits;

2. To generate DMin(A) and DMax(A) using Fischer and Heun’s stack-based

algorithm, in each step we push an element into both the min-stack and

72



max-stack, and pop a certain number of elements from exactly one of the

stacks (assuming that A[i] 6= A[i+ 1], for all i, where 1 ≤ i < n).

Now we describe the overall encoding in [30] briefly. The structure consists of

two bit strings T and U along with various auxiliary structures. For 1 ≤ i < n, if

k elements are popped from the min (max)-stack when we push A[i](1 ≤ i < n)

into both the stacks (from right to left), we prepend (k−1 ) and 0(1) to the

currently generated T and U respectively. Initially, when i = n, both min and

max stacks push ‘)’ so we do not prepend anything to both strings. But we can

recover it easily because this is the last ‘)’ in common. Finally, after pushing

A[1] into both the stacks, we pop the remaining elements from them, and store

the number of these popped elements in min and max stack explicitly using

lg n bits. One can show that the size of T is at most 2n bits, and that of U is

n − 1 bits. Thus the total space usage is at most 3n bits. See Algorithm 1 for

the pseudocode, and Figure 5.2 for an example.

To recover any lg n-bit substring, DMin(A)[d1 . . . dlgn], in constant time we

construct the following auxiliary structures. We first divide DMin(A) into blocks

of size lg n, and for the starting position of each block, store its corresponding

position in T . For this purpose, we construct a bit string Bmin of length at

most 2n such that Bmin[i] = 1 if and only if T [i] corresponds to the start

position of the ith-block in DMin(A). We encode Bmin using the representation

of Lemma 2.5 which takes o(n) bits since the number of ones in Bmin is 2n/ lg n.

Then if d1 belongs to the i-th block, it is enough to recover the i-th and the

(i+ 1)-st blocks in the worst case.

Now, to recover the i-th block of DMin(A), we first compute the distance

between i-th and (i + 1)-st 1’s in Bmin. If this distance is less than c lg n for

some fixed constant c > 9, we call it a min-good block, otherwise, we call it a

min-bad block. We can recover a min-good block in DMin(A) in O(c) time using

a o(n)-bit pre-computed table indexed by all possible strings of length lg n/4

bits for T and U (we can find the position corresponding to the i-th block
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Algorithm 1 Construction algorithm for T and U

1: Initialize T to ‘)’, and U to ε.

2: Initialize Min-stack and Max-stack as empty stacks

3: Push A[n] into Min-stack and Max-stack.

4: for i := n− 1 to 1 do

5: counter = 0

6: if A[i] < A[i− 1] then

7: Push A[i] into Max-stack

8: while ((Min-stack is not empty) & (Top of Min-stack > A[i])) do

9: Pop Min-stack

10: counter = counter + 1

11: end while

12: Push A[i] into Min-stack

13: Prepend (counter−1) to T and 0 to U

14: else // A[i] > A[i− 1]

15: Push A[i] into Min-stack

16: while ((Max-stack is not empty) & (Top of Max-stack < A[i])) do

17: Pop Max-stack

18: counter = counter + 1

19: end while

20: Push A[i] into Max-stack

21: Prepend (counter−1) to T and 1 to U

22: end if

23: end for
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in U in constant time), which stores the appropriate O(lg n) bits of DMin(A)

obtained from them (see [30] for details). For min-bad blocks, we store the

answers explicitly. This takes (2n/(c lg n)) · lg n = 2n/c additional bits. To save

this additional space, we store the min-bad blocks in compressed form using the

property that any min-bad block in DMin(A) and DMax(A) cannot overlap more

than 4 lg n bits in T , (since any 2 lg n consecutive bits in T consist of at least

lg n bits from either DMin(A) or DMax(A)). So, for c > 9 we can save more than

lg n bits by compressing the remaining (c − 4) lg n bits in T corresponding to

each min-bad block in DMin(A). Thus, we can reconstruct any lg n-bit substring

of DMin(A) (and DMax(A)) in constant time, using a total of 3n+ o(n) bits.

We first observe that if there is a position i, for 1 ≤ i < n such that

A[i] = A[i + 1], we cannot decode the ‘)′ in T which corresponds to A[i] only

using T and U since we do not pop any elements from both min and max

stacks when we push A[i] into both stacks. Gawrychowski and Nicholson [30]

handle this case by defining an ordering between equal elements (for example,

by breaking the ties based on their positions). But this ordering does not help

us in supporting the PSV and PLV queries. We describe how to handle the case

when there are repeated (consecutive) elements in A, to answer the PSV and

PLV queries.

Gawrychowski and Nicholson [30] also show that any encoding that supports

both RMinQA and RMaxQA cannot use less than 3n−Θ(lg n) bits for sufficiently

large n (even if all elements in A are distinct).

5.3 Extended DFUDS for colored 2d-Min heap

In this section, we describe an encoding of colored 2d-Min heap on A (CMin(A))

using at most 3n + o(n) bits while supporting RMinQA, RRMinQA, RLMinQA,

RkMinQA, PSVA and NSVA in constant time. This is done by storing the color

information of the nodes using a bit string of length at most n, in addition to

the DFUDS representation of CMin(A). We can also encode the colored 2d-Max
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heap in a similar way. In the worst case, this representation uses more space

than the colored 2d-Min heap encoding of Fischer [25], but the advantage is

that it separates the tree encoding from the color information. We later describe

how to combine the tree encodings of the 2d-Min heap and 2d-Max heap, and

(separately) also combine the color information of the two trees, to reduce the

overall space.

Now we describe the main encoding of CMin(A). The encoding consists of

two parts: DCMin(A) and Vmin. The sequence DCMin(A) is same as DMin(A), the

DFUDS representation of CMin(A), which takes 2n + o(n) bits and supports

the operations in Lemma 5.2 in constant time.

The bit string Vmin stores the color information of all nodes in CMin(A),

except the nodes which are the leftmost children of their parents (the color of

these nodes is always blue), as follows. Suppose there are p nodes in CMin(A),

for 1 ≤ p ≤ n, which are the leftmost children of their parents. Then we define

the bit string Vmin[0 . . . n− p] as follows. For 1 ≤ i ≤ n− p, Vmin[i] stores 0 if

the color of the node

nodeVmin(i) = pre rankCMin(A)(findcloseDCMin(A)
(select(((DCMin(A), i+ 1)) + 1)

in CMin(A) is red, and 1 otherwise. This follows from the observation that if

there is an i, 1 ≤ i < 2n−1 such that DCMin(A)[i] = ‘(′ and DCMin(A)[i+ 1] = ‘)′,

then DCMin(A)[i + 2] corresponds to the node which is the leftmost child of

the node pre rankCMin(A)(DCMin(A)[i]), so we skip these nodes by counting the

pattern ‘( (′ in DCMin(A). Also, we set Vmin[0] = 1, which corresponds to the

first open parenthesis in DCMin(A). For example, for CMin(A) in Figure 5.1, we

store the node 3’s color in Vmin[4]. This is becuase select(((DCMin(A), 5) = 7,

findcloseDCMin(A)
(7) + 1 = 11 and pre rankCMin(A)(11) = 3 (see Figure 5.3). We

define the bit string Vmax in a similar way.

The following lemma shows that encoding Min(A) and Vmin separately, using

at most 3n+ o(n) bits, has the same functionality as the CMin(A) encoding of
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A[i] -∞ 3 8 5 6 6 6 3 2 2 7 10 9 

0 

1 

3 10 

4 11 12 

9 

5 6 

8 7 

2 

DCMin(A) ( ( ( ( ( ) ( ( ) ) ( ( ( ) ) ) ) ) ) ( ) ( ( ) ) )

pre rankCMin(A) 0 0 0 0 0 0 1 1 1 2 3 3 3 3 4 5 6 7 8 9 9 10 10 10 11 12

Vmin 1 1 0 1 0 1 1 0

nodeVmin - 9 8 7 3 6 5 12

pre selectCMin(A) 1 7 10 11 15 16 17 18 19 20 22 25 26

node colorCMin(A) - - - 4 - 6 5 3 2 1 - - 7

Figure 5.3 DCMin(A), pre rankCMin(A), Vmin[i], nodeVmin , pre selectCMin(A) and

node colorCMin(A) for colored 2d-Min heap
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Fischer [25], which only takes 2.54n+ o(n) bits.

Lemma 5.5. For an array A[1 . . . n] of length n, there is an encoding for A

which takes at most 3n+o(n) bits and supports RMinQA, RRMinQA, RLMinQA,

RkMinQA, PSVA and NSVA in constant time.

Proof. The encoding consists of the 2n+ o(n)-bit encoding of Min(A) encoded

using structure of Lemma 5.2, together with the bit string Vmin that stores the

color information of the nodes in CMin(A). We use a o(n)-bit auxiliary structure

to support the rank/select queries on Vmin in constant time. Since the size of

Vmin is at most n bits, the total space of the encoding is at most 3n+o(n) bits.

To define the correspondence between the nodes in CMin(A) and the posi-

tions in the bit string Vmin, we define the following operation. For 0 ≤ i ≤ n,

we define node colorCMin(A)(i) as the position of Vmin that stores the color of

the node i in CMin(A). This can be computed in constant time, using o(n) bits,

by

node colorCMin(A)(i) =

 undefined if child rankCMin(A)(i) = 0

rank(((DCMin(A), c)− 1 otherwise

where c = findopenDCMin(A)
(pre selectCMin(A)(i) − 1) (note that node colorCMin(A)

is the inverse operation of nodeVmin).

Now we describe how to support the queries in constant time. Fischer and

Heun [27] showed that RMinQA(i, j) can be answered in constant time using

DCMin(A). In fact, they return the position RRMinQA(i, j) as the answer to

RMinQA(i, j). Also, as mentioned earlier, PSVA(i) = parentCMin(A)(i), and hence

can be answered in constant time. Therefore, it is enough to describe how to

find RLMinQA(i, j), RkMinQA(i, j) and NSVA(i) in constant time.

RLMinQA(i, j): As shown by Fischer and Huen [27], all corresponding values of

left siblings of the node RRMinQA(i, j) in A are at least A[RRMinQA(i, j)] (i.e.,

the values of the siblings are in the non-increasing order, from left to right). Also,
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for a child node m of any of the left siblings of the node RRMinQA(i, j), A[m] >

A[RRMinQA(i, j)]. Therefore, the position RLMinQA(i, j) corresponds to one of

the left siblings of the node whose position corresponds to RRMinQA(i, j).

We first check whether the color of the node RRMinQA(i, j) is red or not

using Vmin. If Vmin[node colorCMin(A)(RRMinQA(i, j))] = 0 then RLMinQA(i, j)

is equal to RRMinQA(i, j). If not, we find the node leftmost(i, j) which is the left-

most sibling of the node RRMinQA(i, j) between the nodes in [i . . . j]. leftmost(i, j)

can be found in constant time by computing the depth of node i and comparing

this value with dright, the depth of the node RRMinQA(i, j). More specifically,

leftmost(i, j) =

 i if depthCMin(A)(i) = dright.

next siblingCMin(A)(laCMin(A)(i, dright)) otherwise.

In the next step, find the leftmost blue sibling nv such that there is no red

sibling between nv and RRMinQA(i, j). This can be found in constant time by

first finding the index v using the equation

v = select0(Vmin, rank0(Vmin, node colorCMin(A)(RRMinQA(i, j))) + 1)− 1

and then finding the node nv using nv = nodeVmin(v). If child rankCMin(A)(nv) ≤

child rankCMin(A)(leftmost(i, j)) or child rankCMin(A)(nv) = 1 (this is the case that

leftmost(i, j) can be the the lestmost sibling), then RLMinQA(i, j) = leftmost(i, j).

Otherwise, RLMinQA(i, j) = nv.

RkMinQA(i, j): This query can be answered in constant time by returning

the k-th sibling (in the left-to-right order) of RLMinQA(i, j), if it exists. More

formally, if child rankCMin(A)(RRMinQA(i, j))− child rankCMin(A)(RLMinQA(i, j))

is at least k− 1, then RkMinQA(i, j) exists; and in this case, RkMinQA(i, j) can

be computed in constant time by computing

childCMin(A)(parentCMin(A)(RRMinQA(i, j)),RLMinQA(i, j) + k − 1).

NSVA(i): By Lemma 5.4, it is enough to show how to support NRS(i) in
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constant time (note that we can support subtree size in constant time using

Lemma 5.2). If node i is the rightmost sibling, then NRS(i) does not exist. Oth-

erwise we define v′ as select0(Vmin, rank0(Vmin, node colorCMin(A)(next sibling(i)))).

Let nv′ = nodeVmin(v′). If the parent of nv′ is same as the parent of i, then

NRS(i) = nv′ ; otherwise NRS(i) does not exist. Finally, if NRS(i) does not ex-

ist, we compute the node r which is the rightmost sibling of the node i can be

found by

childCMin(A)(parentCMin(A)(i), degreeCMin(A)(parentCMin(A)(i))− 1).

Then NSVA(i) = r+ subtree sizeCMin(A)(r). All these operations can be done in

constant time.

5.4 Encoding colored 2d-Min and 2d-Max heaps

In this section, we describe our encodings for supporting various subsets of oper-

ations, proving the results stated in Theorem 5.1. As mentioned in Section 5.2.1,

the TC-encoding of the colored 2d-Min heap of Fischer [25] can answer RMinQA,

RRMinQA, PSVA and NSVA queries in O(1) time, using 2.54n+ o(n) bits. The

following lemma shows that we can also support the queries RLMinQA and

RkMinQA using the same structure.

Lemma 5.6. For an array A[1 . . . n] of length n, RLMinQA, RkMinQA can be

answered in constant time by the TC-encoding of colored 2d-Min heap.

Proof. Fischer [25] defined two operations, which are modifications of the child

and child rank, as follows:

• mchildCMin(A)(x, i) - returns the i-th red child of node x in CMin(A), and

• mchild rankCMin(A)(x) - returns the number of red siblings to the left of

node x in CMin(A).
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He showed that the TC-encoding of the colored 2d-Min heap can support

mchildCMin(A)(x, i) and mchild rankCMin(A)(x) in constant time. Also, since the

TC-encoding supports depthCMin(A), next siblingCMin(A), laCMin(A), childCMin(A)

and child rankCMin(A) in constant time on ordinal trees [41], we can support

leftmost(i, j) (defined in the proof of the Lemma 5.5) in constant time. For an-

swering RLMinQA(i, j), we first find the previous red sibling l of RRMinQA(i, j)

using mchildCMin(A) and mchild rankCMin(A). If such a node l exists, we compare

the child ranks of next siblingCMin(A)(l) and leftmost(i, j), and return the node

with the larger rank value as the answer. RkMinQA(i, j) can be answered by

returning the k-th sibling (in the left-to-right order) of RLMinQA(i, j) using

childCMin(A) and child rankCMin(A), if it exists.

By storing a similar TC-encoding of colored 2d-Max heap, in addition to

the structure of Lemma 5.6, we can support all the operations mentioned in

Theorem 5.1(c) in O(1) time. This uses a total space of 5.08n + o(n) bits. We

now describe alternative encodings to reduce the overall space usage.

More specifically, we show that a combined encoding ofDCMin(A) andDCMax(A),

using at most 3.17n + o(n) bits, can be used to answer RMinQA, RMaxQA,

RRMinQA, RRMaxQA, PSVA, and PLVA queries (Theorem 5.1(a)). To support

the queries in constant time, we use a less space-efficient data structure that

encodes the same structures, using at most 3.322n+o(n) bits (Theorem 5.1(b)).

Similarly, a combined encoding of DCMin(A), DCMax(A), Vmin and Vmax using at

most 4.088n + o(n) bits can be used to answer RLMinQA, RkMinQA, NSVA,

RLMaxQA, RkMaxQA, and NLVA queries in addition (Theorem 5.1(c)). Again,

to support the queries in constant time, we design a less space-efficient data

structure using at most 4.58n+ o(n) bits (Theorem 5.1(d)).

In the following, we first describe the data structure of Theorem 5.1(b)

followed by the structure for Theorem 5.1(d). Next we describe the encodings

of Theorem 5.1(a) and Theorem 5.1(c).
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5.4.1 Combined data structure for DCMin(A) and DCMax(A)

As mentioned in Section 5.2.2, the encoding of Gawrychowski and Nicholson [30]

consists of two bit strings U and T of total length at most 3n, along with the

encodings of Bmin, Bmax and a few additional auxiliary structures of total size

o(n) bits. In this section, we denote this encoding by E. To encode the DFUDS

sequences of CMin(A) and CMax(A) in a single structure, we use E with some

modifications, which we denote by E′. As described in Section 5.2.2, encoding

scheme of Gawrychowski and Nicholson cannot be used (as it is) to support

the PSV and PLV queries if there is a position i, for 1 ≤ i < n such that

A[i] = A[i + 1]. To support these queries, we define an additional bit string

C[1 . . . n] such that C[1] = 0, and for 1 < i ≤ n, C[i] = 1 iff A[i− 1] = A[i]. If

the bit string C has k ones in it, then we represent C using lg
(
n
k

)
+ o(n) bits

while supporting rank, select queries and decoding any lg n consecutive bits in

C in constant time, using Lemma 2.5. We also define a new array A′[0 . . . n−k]

by setting A′[0] = A[0], and for 0 < i ≤ n − k, A′[i] = A[select0(C, i)]. (Note

that A′ has no consecutive repeated elements.) In addition, we define another

sequence D′CMin(A) of size 2n−k as follows. Suppose DCMin(A’) = (δ1 ) . . . (δn−k ),

for some 0 ≤ δ1 . . . δn ≤ n− k, then we set D′CMin(A) = (δ1+ε1 ) . . . (δn−k+εn−k ),

where δi + εi is the number of elements popped when A[i] is pushed into the

min-stack of A, for 1 ≤ i ≤ n− k. (Analogously, we define D′CMax(A).)

The encoding E′ defined on A consists of two bit strings U ′ and T ′, along

with C, B′min, B′max and additional auxiliary structures (as in E). Let U and

T be the bit strings in E defined on A′. Then U ′ is same as U in E, and size

of U ′ is n− k − 1 bits. To obtain T ′, we add some additional open parentheses

to T as follows. Suppose T = (δ1 )(δ2 ) . . . (δn−k ), where 0 ≤ δi ≤ n − k for

1 ≤ i ≤ n − k. Then T ′ = (δ1+ε1 ) . . . (δn−k+εn−k ), where δi + εi is the number

of elements are popped when A[i] is pushed into the min or max stack of A, for

1 ≤ i ≤ n− k (see Figure 5.4 for an example). Since the length of T is at most
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2(n−k), and |T ′|− |T | =
∑n−k

i=1 εi ≤ k, the size of T ′ is at most 2n−k bits. The

encodings of B′min and B′max are defined on D′CMin(A), D
′
CMax(A) and T ′, similar

to Bmin and Bmax in E. The total size of the encodings of the modified B′min

and B′max is o(n) bits. All the other auxiliary structures use o(n) bits. Although

we use E′ instead of E, we can use the decoding algorithm in E without any

modifications because all the properties used in the algorithm still hold even

though T ′ has additional open parentheses compared to T . Therefore from E′

we can reconstruct any lg n consecutive bits of D′CMin(A) or D′CMax(A) in constant

time, and thus we can support rank and select on these strings in constant time

with o(n) additional structures by Lemma 2.5.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 

A[i] -∞ (∞ ) 3 8 5 6 6 6 3 2 2 7 10 9 
D’Min(A) ((((() (() ) ((() ) ) () (() ) ) 
D’Max(A) (((() ) ((((() ) () (() ) ) () ) 

T’ () (((() (() ) () ) () ) 
U’ 0 1 0 1 1 0 0 1 

C(uncompressed) 0 0 0 0 0 1 1 0 0 1 0 0 0 
Vmin 1101 0 11 0 
Vmax 100 0110 1 
V 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 

CMin(A) CMax(A) 
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Figure 5.4 Data structure combining the colored 2d-Min heap and colored 2d-

Max heap of A. C is represented in uncompressed form.
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Decoding DCMin(A) and DCMax(A)

We use the following auxiliary structures to decode DCMin(A) from D′CMin(A) and

C. For this, we first define a correspondence between DCMin(A) and D′CMin(A)

as follows. Note that both DCMin(A) and D′CMin(A) have the same number of

open parentheses, but D′CMin(A) has fewer close parentheses than DCMin(A). The

ith open parenthesis in DCMin(A) corresponds to the ith open parenthesis in

D′CMin(A). Suppose there are ` and `′ (≤ `) close parentheses between the ith

and the (i+1)st open parentheses in DCMin(A) and D′CMin(A), respectively. Then

the last `′ close parentheses in DCMin(A) correspond, in that order, to the `′

close parentheses in D′CMin(A); the remaining close parentheses in DCMin(A) do

not have a corresponding position in D′CMin(A).

We construct three bit strings Pmin, Qmin and Rmin of lengths 2n − k,

d2n/ lg ne and d2n/ lg ne, respectively, as follows. For 1 ≤ i ≤ d2n/ lg ne, if the

position i lg n in DCMin(A) has its corresponding position j in D′CMin(A), then we

set Pmin[j] = 1, Qmin[i] = 0 and Rmin[i] = 0. If position i lg n in DCMin(A) has no

corresponding position in D′CMin(A) but for some ki where 1 ≤ ki < lg n, suppose

there is a leftmost position q = i lg n+ ki which has its corresponding position

j in D′CMin(A). Then we set Pmin[j] = 1, Qmin[i] = 1 and Rmin[i] = 0. Finally,

if all positions between i lg n and (i+ 1) lg n in DCMin(A) have no corresponding

position in D′CMin(A), then we set Qmin[i] = 1 and Rmin[i] = 1. In remaining

positions for Pmin, Qmin and Rmin, we set their values as 0. We also store the

values, ki explicitly, for 1 ≤ i ≤ d2n/ lg ne, whenever they are defined (as in the

second case). Since ki < lg n, we can store all the ki values explicitly using at

most 2n lg lgn/ lg n = o(n) bits.

Since the bit strings Pmin, Qmin and Rmin have at most 2n/ lg n 1’s each,

they can be represented using the structure of Lemma 2.5, taking o(n) bits

while supporting rank and select queries in constant time. We define Pmax,

Qmax, Rmax in the same way, and represent them analogously.
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In addition to these bit strings, we construct two pre-computed tables. In

the rest of this section, we refer to the parenthesis strings (such as DCMin(A)

and D′CMin(A)) also as bit strings. To describe these tables, we first define two

functions f and f ′, each of which takes two bit strings s and c as parameters,

and returns a bit string of length at most |s|+ |c|, as follows.



f(s, ε) = s

f(ε, c) = ε

f(s, 1 · c1) =) · f(s, c1)

f((δ ) · s1, 0 · c1) = (δ·) · f(s1, c1)



f ′(s, ε) = s

f ′(ε, c) = ε

f ′(s, c1 · 1) = f ′(s, c1)·)

f ′(s1 · (δ ), c1 · 0) = f ′(s1, c1) · (δ·)

One can easily show that if s is a substring of D′CMin(A) and c is a substring of

C whose starting (ending) position corresponds to the starting (ending) position

in s, then f(s, c) (f ′(s, c)) returns the substring of DCMin(A) whose starting

(ending) position corresponds to the starting (ending) position in s,

We construct a pre-computed table Tf that, for each possible choice of

bit strings s and c of length (1/4) lg n, stores the bit string f(s, c). These pre-

computed tables can be used to decode a substring of DCMin(A) given a substring

of D′CMin(A) (denoted s) and a substring of C whose bits correspond to s. The

total space usage of Tf is 2(1/4) lgn · 2(1/4) lgn · ((1/2) lg n) = o(n) bits. We can

also construct Tf ′ defined analogous to Tf using o(n) bits.

Now we describe how to decode lg n consecutive bits of DCMin(A) in con-

stant time. (We can decode lg n consecutive bits of DCMax(A) in a similar way.)

Suppose we divide DCMin(A) into blocks of size lg n. As described in Section

5.2.2, it is enough to show that for 1 ≤ i ≤ d2n/ lg ne, we can decode i-th

block of DCMin(A) in constant time. First, we check the value of the Rmin[i].

If Rmin[i] = 1, then the i-th block in DCMin(A) consists of a sequence of lg n

consecutive close parentheses. Otherwise, there are two cases depending on the

value of Qmin[i]. We compute the position p which is a position in D′CMin(A) (it’s

exact correspondence in DCMin(A) depends on the value of the bit Qmin[i]), and
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then compute the position cp in C which corresponds to p in D′CMin(A), using

the following equations:

p = select1(Pmin, i− rank1(Rmin, i))

cp =

 select0(C, rank)(D
′
CMin(A), p)) if D′CMin(A)[p] =′)′

select0(C, rank)(D
′
CMin(A), p) + 1) otherwise

Case (1) Qmin[i] = 0. In this case, we take the lg n consecutive bits ofD′CMin(A)

starting from p, and the lg n consecutive bits of C starting from the position cp

(padding at the end with zeros if necessary). Using these bit strings, we can de-

code the i-block in DCMin(A) by looking up Tf with these substrings (a constant

number of times, until the pre-computed table generates the required lg n bits).

Since the position p corresponds to the starting position of the i-th block in

DCMin(A) in this case, we can decode the i-th block of DCMin(A) in constant time.

Case (2) Qmin[i] = 1. First we decode lg n consecutive bits of DCMin(A) whose

starting position corresponds to the position p using the same procedure as in

Case (1). Let S1 be this bit string. Next, we take the lg n consecutive bits of

D′CMin(A) ending with position p, and the lgn consecutive bits of C ending with

position cp (padding at the beginning with zeros if necessary). Then we can

decode the lg n consecutive bits of DCMin(A) whose ending position corresponds

to the p by looking up Tf ′ (a constant number of times) with these substrings.

Let S2 be this bit string. By concatenating S1 and S2, we obtain a 2 lg n-bit

substring of DCMin(A) which contains the starting position of the i-th block of

DCMin(A) (since the starting position of the i-th block in DCMin(A), and the po-

sition which corresponds to p differ by at most lg n). Finally, we can obtain the

i-th block in DCMin(A) by skipping the first lg n− ki bits in S1 · S2, and taking

lg n consecutive bits from there.
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From the encoding described above, we can decode any lgn consecutive bits

of DCMin(A) and DCMax(A) in constant time. Therefore by Lemma 5.5, we can

answer all queries supported by CMin(A) and CMax(A) (without using the color

information) in constant time. If there are k elements such that A[i− 1] = A[i]

for 1 ≤ i ≤ n, then the size of C is lg
(
n
k

)
+ o(n) bits, and the size of E′ on A

is 3n− 2k + o(n) bits. All other auxiliary bit strings and tables take o(n) bits.

Therefore, by the Lemma 5.3, we can encode A using 3n− 2k+ lg
(
n
k

)
+ o(n) ≤

((1+lg 5)n+o(n) < 3.322n+o(n) bits. Also, this encoding supports the queries

in Theorem 5.1(b) (namely RMinQA, RMaxQA, RRMinQA, RRMaxQA, PSVA

and PLVA, which do not need the color information) in constant time. This

proves Theorem 5.1(b).

Note that if k = 0 (i.e, there are no consecutive equal elements), E′ on A is

same as E on A. Therefore, we can support all the queries in Theorem 5.1(b)

using 3n+ o(n) bits with constant query time.

Encoding Vmin and Vmax

We simply concatenate Vmax and Vmin on A and store it as bitstring V , and

store the length of Vmin using lg n bits (see V in Figure 5.4). If there are k

elements such that A[i − 1] = A[i] for 1 ≤ i ≤ n, Fischer and Heun’s stack

based algorithm [27] does not pop any elements from both stacks when these k

elements and A[n] are pushed into them. Before pushing any of the remaining

elements into the min- and max-stacks, we pop some elements from exactly

one of the stacks. Also after pushing A[1] into both the stacks, we pop the

remaining elements from the stacks in the final step. Suppose the n elements

are popped from the min-stack during p runs of pop operations. Then, it is

easy show that the elements are popped from the max-stack during n − k − p

runs of pop operations. Also, p (n−k−p) is the number of leftmost children in

CMin(A) (CMax(A)) since each run of pop operations generates exactly one open

parenthesis whose matched closing parenthesis corresponds to the leftmost child
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in CMin(A) (CMax(A)). As described in Section 5.3, the size of Vmin is n−p+ 1

bits, and that of Vmax is p + k + 1 bits. Thus, the total size of V is n + k + 2

bits.

Therefore, we can decode any lg n-bit substring of Vmin or Vmax in constant

time using V and the length of Vmin. By combining these structures with the

encoding of Theorem 5.1(b), we can support the queries in Theorem 5.1(d)

(namely, the queries RMinQA, RRMinQA, RLMinQA, RkMinQA, PSVA, NSVA

RMaxQA, RRMaxQA, RLMaxQA, RkMaxQA, PLVA and NLVA) in constant time.

By Lemma 5.3, the total space of these structures is 4n − k + lg
(
n
k

)
+ o(n) ≤

((3 + lg 3)n+ o(n) < 4.585n+ o(n) bits. This proves Theorem 5.1(d).

Note that if k = 0 (i.e, there are no consecutive equal elements), E′ on A is

same as E on A, and the size of V is n + 2 bits. Therefore we can support all

the queries in Theorem 5.1(d) using 4n+ o(n) bits with constant query time.

5.4.2 Encoding colored 2d-Min and 2d-Max heaps using less

space

In this section, we give new encodings that prove Theorem 5.1(a) and Theo-

rem 5.1(c), which use less space but take more query time than the previous

encodings. To prove Theorem 5.1(a), we maintain the encoding E′ on A, with

the modification that instead of T ′ (which takes at most 2n− k bits), we store

the bit string T (which takes at most 2(n− k) bits) which is obtained by con-

structing the encoding E on A′. Note that f(s, c) is well-defined when s and

c are substrings of DCMin(A’) and C, respectively. If there are k elements such

that A[i− 1] = A[i] for 1 ≤ i ≤ n, then the total size of the encoding is at most

3(n−k)+lg
(
n
k

)
+o(n) ≤ n lg 9+o(n) < 3.17n+o(n) bits. If we can reconstruct

the sequences DCMin(A) and DCMax(A), by Lemma 5.5, we can support all the

required queries. We now describe how to decode the entire DCMin(A) using this

encoding. (Decoding DCMax(A) can be done analogously.)

Once we decode the sequenceDCMin(A’), we reconstruct the sequenceDCMin(A)
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by scanning the sequences DCMin(A’) and C from left to right, and using the

lookup table Tf . Note that f(DCMin(A’), C) looses some open parentheses in

DCMin(A) whose matched close parentheses are not inDCMin(A’) but in f(DCMin(A’), C).

So when we add m consecutive close parentheses from the r-th position in

DCMin(A’) in decoding with Tf , we add m more open parentheses before the

position pos = findopenDMin(A’)
(r − 1). This proves Theorem 5.1(a).

To prove Theorem 5.1(c), we combine the concatenated sequence of Vmin and

Vmax on A′ whose total size is n−k+2 bits to the above encoding. Then we can

reconstruct Vmin on A by adding m extra 1’s before Vmin[rank(((DMin(A’), pos)]

when m consecutive close parentheses are added from the r-th position in

DCMin(A’) while decoding with Tf . (Reconstructing Vmax on A can be done

in a similar way.) The space usage of this encoding is 4(n− k) + lg
(
n
k

)
+ o(n) ≤

n lg 17 + o(n) < 4.088n+ o(n) bits. This proves Theorem 5.1(c).

5.5 Open problems

In this chpater, we obtained space-efficient encodings that support a large set

of range and previous/next smaller/larger value queries.

We suggest the following open problems for future works.

• Can we support the queries in the Theorem 5.1(c) in O(1) time using at

most 4.088n+ o(n) bits?

• As described in Section 5.2, Gawrychowski and Nicholson [30] show that

any encoding that supports both RMinQA and RMaxQA requires at least

3n − Θ(lg n) bits. Can we obtain an improved lower bound in the case

when we need to support the queries in Theorem 5.1(a)?

• Can we prove a lower bound that is strictly more than 3n bits for any

encoding that supports the queries in Theorem 5.1(c)?
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Chapter 6

Encoding Two-dimensional range
Top-k queries

6.1 Introduction

Given a one-dimensional (1D) array A[1 . . . n] from a total order and 1 ≤ k ≤ n,

the Range Top-k query on A (Top-k(i, j, A), 1 ≤ i, j ≤ n) returns the positions

of k largest values in A[i . . . j]. We can extend this query to the two-dimensional

(2D) array case. Given a 2D array A[1 . . .m][1 . . . n], from a total order and 1 ≤

k ≤ mn, the Top-k query on A (Top-k(i, j, a, b, A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n)

returns the positions of k largest values in A[i . . . j][a . . . b]. Without loss of

generality, we assume that all elements in A are distinct by ordering equal

elements in the lexicographic order of their positions. Also, if the k positions of

a Top-k query are reported in sorted order of the corresponding values, we refer

to the query as sorted Top-k query; and refer to it as unsorted Top-k query,

otherwise. For 1 ≤ i, j ≤ m and 1 ≤ a, b ≤ n, we can also classify Top-k queries

on 2D array by its range as follows.

• 1-sided query : The query range is [1 . . .m][1 . . . b].
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• 4-sided query : The query range is [i . . . j][a . . . b].

We can also consider 2-sided and 3-sided queries which correspond to the

ranges [1 . . . j][1 . . . a] and [1 . . . j][a . . . b] respectively. We consider how to sup-

port the Top-k queries in the encoding model.

In the rest of the chapter, we assume that for Top-k encodings, k is at most

the size of the array (either 1D or 2D). Also, unless otherwise mentioned, we

assume that all Top-k queries are sorted Top-k queries.

Previous Work. Encoding Top-k queries on 1D array has been widely stud-

ied in the recent years. For a 1D array A[. . . n], Chan and Wilkinson [12] pro-

posed a data structure that uses Θ(n) words and answers selection queries (i.e.,

selecting the k-th largest element) in O(lg k/ lg lgn) time. Grossi et al. [39] con-

sidered the Top-k encoding problem, and obtained an O(n lg κ)-bit encoding

which can answer the Top-k queries for any k ≤ κ in O(κ) time or alternately,

using O(n lg2 κ) bits with O(k) query time. (They also considered one-sided

Top-k query, they proposed n lg k + O(n)-bit encoding with O(k) query time.)

The space usage of this encoding was improved to O(n lg κ) bits, maintain-

ing the O(k) query time, by Navarro et al. [60]. Recently, Gawrychowski and

Nicholson [31] proposed an (k+1)nH0(1/(k+1))+o(n)-bit1 encoding for Top-k

queries and showed that at least (k+1)nH0(1/(k+1))(1−o(1)) bits are required

to encode Top-k queries.

To the best of our knowledge, there are no results for range Top-k queries

for 2D array with general k. For k = 1, the Top-k query is same as the Range

Maximum Query (RMaxQ), which has been well-studied for 1D as well as for 2D

arrays. For a 2D m×n array, Brodal et al. [10] proposed an O(nmmin (m, lg n))-

bit encoding which answers RMaxQ queries in O(1) time. Brodal et al. [8] im-

proved the space bound to the optimal O(nm lgm) bits, although this encoding

does not support the queries efficiently.

1H0(x) = x lg (1/x) + (1 − x) lg (1/(1 − x))
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Array size Query range Space Query time

m× n one-sided n dlg T e bits -

m× n four-sided O(mn lg n) bits O(k)

m× n four-sided m2 lg
(

(k+1)n
n

)
+m lgm+ o(n) bits -

Table 6.1 The summary of our results for Top-k queries on m × n 2D array.

T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!)

Our results. For an m×n 2D array A, we first obtain an n dlg T e-bit encoding

for answering one-sided Top-k queries, where T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!).

We then show that any encoding that supports Top-k queries on A must use at

least n lg T bits.

Next, we observe that there exists an O(mn lg n)-bit data structure which

answers 4-sided Top-k queries on A in O(k) time by combining the results of [11]

and [10]. We then propose an m2 lg
(

(k+1)n
n

)
+ m lgm + o(n)-bit encoding for

4-sided Top-k queries on A, by extending the Top-k encoding of Gawrychowski

and Nicholson for 1D arrays [31]. The summary of our results are in Table 6.1.

This chapter organized as follows. Section 6.2 gives an lower and upper

bound for encoding one-sided Top-k queries on 2D array. In Section 6.3 we

propose two encodings for answering 4-sided Top-k queries on 2D array. Finally,

in Section 6.4, we give some open problems.

6.2 Encoding one-sided range Top-k queries on 2D ar-

ray

In this section, we consider the encoding of one-sided Top-k queries on a 2D

array A[1 . . .m][1 . . . n]. We first introduce the encoding by simply extending

the encoding of one-sided Top-k queries for 1D array proposed by Grossi et

al. [39]. Next we propose an optimal encoding for one-sided Top-k queries on A.

For a 1D array A′[1 . . . n], one can define another 1D array X[1 . . . n] such
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as X[i] = i for 1 ≤ i ≤ k and for k < i ≤ n, X[i] = X[i′] if there exist a

position i′ < i such that A′[i] is larger than A′[i′] which is the k-th largest value

in A′[1 . . . i− 1], and X[i] = k+ 1 otherwise. One can answer the Top-k(1, i, A′)

by finding the rightmost occurrence of every element 1 . . . k in X[1 . . . i]. By

representing X (along with some additional auxiliary structures) using n lg k+

O(n) bits, Grossi et al. [39] obtained an encoding which supports 1-sided Top-k

queries on A′ in O(k) time.

For a 2D array A, one can encode A to support one-sided Top-k queries by

writing down the values of A in column-major order into a 1D array, and using

the encoding described above – resulting in the following encoding.

Proposition 6.1. A 2D array A[1 . . .m][1 . . . n] can be encoded using mn lg k+

O(n) bits to support one-sided Top-k queries in O(k) time.

Now we describe an optimal encoding of A which supports one-sided Top-k

queries. For 1D array A′[1 . . . n], we can define another 1D array B′[1 . . . n] such

that for 1 ≤ i ≤ n, B′[i] = l if A′[i] is the l-th largest element in A′[1 . . . i] with

l ≤ k, and B′[i] = k + 1 otherwise. Then we answer the Top-k(1, i, A′) query

as follows. We first find the rightmost position p1 ≤ i such that B′[p1] ≤ k.

Then we find the positions p2 > p3 · · · > pk such that for 2 ≤ j ≤ k, pj is the

rightmost position in A′[1 . . . pj−1−1] with B′[pj ] ≤ k−j+1. Finally, we return

the positions p1, p2, . . . , pk. Therefore by storing B′ using n dlg (k + 1)e bits, we

can answer the one-sided Top-k queries on A′. Also we can sort A′[p1], . . . , A′[pk]

using the property that for 1 ≤ b < a ≤ k, A′[pa] < A′[pb] if and only if one

of the following two conditions hold: (i) B′[pa] ≥ B′[pb], or (ii) B′[pa] < B′[pb]

and there exist q = B′[pb] − B′[pa] positions j1, j2, . . . , jq such that pa < j1 <

· · · < jq < pb and B′[jr] ≤ B′[pa] for 1 ≤ r ≤ q.

We can extend this encoding for the one-sided Top-k queries on a 2D array A.

For 1 ≤ j ≤ n, we first define the elements of j-th column in A as a1j . . . amj .

Then we define the sequence Sj = s1j . . . smj such that for 1 ≤ i ≤ m, sij = l
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if aij is the l-th largest element in A[1 . . .m][1 . . . j] with l ≤ k and sij =

k + 1 otherwise. Since there exist T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!) possible Si

sequences, we can store SA = S1 . . . Sn using n dlg T e bits and we can answer

the one-sided Top-k(1,m, 1, j) queries on A by the following procedure.

1. Find the rightmost column q, for some q ≤ j, such that Sq has ` > 0

elements sp1q, . . . , sp`q where sp1q < · · · < sp`q < k+ 1. If ` > k, we return

the positions of A[p1][q] . . . A[pk][q] as the answers of the query, and stop.

If ` ≤ k, we return the positions of A[p1][q] . . . A[p`][q].

2. Repeat Step 1 by setting k to k − `, and j to q − 1.

We can return the positions in the sorted order of their corresponding values

similar to the 1D array case. This encoding takes less space than the encod-

ing in the Proposition 6.1 since mn lg k = n lg
∑m

i=0

(
m
i

)
(k − 1)i ≥ n lg T . The

following theorem shows that the space usage of this encoding is essentially

optimal for answering one-sided Top-k queries on A.

Theorem 6.1. Any encoding of a 2D array A[1 . . .m][1 . . . n] that supports one-

sided Top-k queries requires n lg T bits, where T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!).

Proof. Suppose there are two distinct sequences SA = S1 . . . Si and SA
′

=

S′1 . . . S
′
i which give one-sided Top-k encodings of 2D arrays A and A′, respec-

tively. For 1 ≤ b ≤ n, if Sb 6= S′b then Top-k(1,m, 1, b, A) 6= Top-k(1,m, 1, b, A′)

by the definition of SA and SA
′
. Since for an m × n array, there are Tn dis-

tinct sequences SA1 . . . SATn , it is enough to prove that for 1 ≤ q ≤ Tn, each

SAq = Sq1 . . . S
q
n has an array A such that SA = SAq .

Without loss of generality, suppose that all elements in A come from the

set L = {1, . . . ,mn}. Then we can reconstruct A from the rightmost column

using SAq as follows. If sqjn ≤ k, for 1 ≤ j ≤ m, we assign the sqjn-th largest

element in L to A[j][n]. After we assign all values in the rightmost column with

sqjn ≤ k, we discard all assigned values from L, move to (n − 1)-th column
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and repeat the procedure. After we assign all values in A whose corresponding

values in SAq are smaller than k + 1, we assign the remaining values in L to

remaining positions in Aq which are not assigned yet. Thus for any 1 ≤ b ≤ n,

if Sqb has ` > 0 elements sp1b, . . . , sp`b where sp1b < · · · < sp`b < k + 1, then the

b-th column in A contains `-largest elements in A[1 . . .m][1 . . . b] by the above

procedure. This shows that SA = SAq .

6.3 Encoding general range Top-k queries on 2D array

In this section, we give an encoding which supports general Top-k queries on

2D array. For an m×n 2D array, we first introduce an O(mn lg n)-bit encoding

which supports Top-k query in O(k) time by using the RMaxQ encoding of

Brodal et al. [8].

Proposition 6.2. A 2D array A[1 . . .m][1 . . . n] can be encoded using O(mn lg n)

bits to support unsorted Top-k(i, j, a, b, A) in O(k) time for 1 ≤ a, b ≤ m and

1 ≤ i, j ≤ n.

Proof. We use a data structure similar to the one outlined in [11] (based on Fred-

erikson’s heap selection algorithm [29]) for answering unsorted Top-k queries

in 1D array2. First encode A using O(mn lg n) bits to support RMaxQ (range

maximum) queries in constant time for the any rectangular range in A. This

encoding also supports finding the rank (i.e., the position in sorted order) of any

element in A in O(1) time [10]. Next, let x = A[x1][x2] be the maximum value

in A[i . . . j][a . . . b], which can be found using an RMaxQ query on A. Then con-

sider the 4-ary heap obtained by the following procedure. The root of the heap

is x, and its four subtrees are formed by recursively constructing the 4-ary heap

on the sub-arrays A[i . . . x1− 1][a . . . b], A[x1 + 1 . . . j][a . . . b], A[x1][a . . . x2− 1]

and A[x1][x2 + 1 . . . b], respectively. Now, we can find the k largest elements in

2Brodal et al. [11] also give another structure to answer sorted Top-k queries, with the
same time and space bounds.
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the above 4-ary heap in O(k) time using the algorithm proposed by Frederick-

son [29] (note that this algorithm only builds a heap with O(k) nodes which is

a connected subgraph of the above 4-ary heap).

We now introduce another encoding to support Top-k queries on an m×n 2D

array A. This encoding extends the optimal Top-k encoding of Gawrychowski

and Nicholson [31] for a 1D array. This encoding does not support the queries

efficiently. Compared to the encoding of Proposition 6.2, this encoding uses less

space when n = Ω(km). We first review the Gawrychowski and Nicholson [31]’s

optimal Top-k encoding for 1D array, and show how to extend this encoding to

the 2D array case.

For a given 1D array A′[1 . . . n], we define the sequence of arrays SA
′

=

SA
′

1 . . . SA
′

n , where for 1 ≤ j ≤ n and 1 ≤ i ≤ j, SA′j is an array of size j defined

as follows.

SA
′

j [i] =

 p if there are p (< k) elements larger than A′[i] in A′[i+ 1 . . . j]

k otherwise

See Figure 6.1 for an example.

If SA
′

j [i] < k, we call A[i] in A[1 . . . j] as active, otherwise A[i] is inactive in

A[1 . . . j].

Gawrychowski and Nicholson [31] show that for 1 ≤ i, j ≤ n, Top-k(i, j, A′)

can be answered using SA
′

j [i . . . j]. They obtained a lg
(

(k+1)n
n

)
+o(n)-bit encod-

ing of SA
′

by representing δA
′

1 . . . δA
′

n−1 (where δA
′

i =
∑i+1

l=1 S
A′
i+1[l]−

∑i
l=1 S

A′
i [l])

in unary, and compressing the sequence using the Lemma 2.1. Since
∑n−1

i−1 δ
A′
i ≤

kn, the unary sequence has kn zeros and n ones. The following lemma states

their result for 1D arrays.

Lemma 6.1 ([31]). Given an 1D array A[1 . . . n], there is an encoding of A

using lg
(

(k+1)n
n

)
+ o(n) bits which supports Top-k queries.

We now describe how to extend this encoding to a 2D m× n array A. For

1 ≤ i ≤ m, let Ai[1 . . . n] be the array of the i-th row in A. Then we first
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A1 3 7 8 2 6 4

A2 6 4 10 3 5 2

SA1
1 0

SA1
2 1 0

SA1
3 2 1 0

SA1
4 2 1 0 0

SA1
5 2 2 0 1 0

SA1
6 2 2 0 2 0 0

SA2
1 0

SA2
2 0 0

SA2
3 1 1 0

SA2
4 1 1 0 0

SA2
5 1 2 0 1 0

SA2
6 1 2 0 1 0 0

I
(1,2)
1 1

I
(1,2)
2 2 0

I
(1,2)
3 2 1 1

I
(1,2)
4 2 1 1 1

I
(1,2)
5 2 1 1 2 0

I
(1,2)
6 2 1 1 2 0 0

I
(2,1)
1 0

I
(2,1)
1 1 0

I
(2,1)
1 2 1 0

I
(2,1)
1 2 1 0 0

I
(2,1)
1 2 2 0 1 0

I
(2,1)
1 2 2 0 2 0 0

Figure 6.1 Top-k encoding of the 2D array A when k = 2

maintain the Top-k encoding of A1 . . . Am using Lemma 6.1, and this takes

m lg
(

(k+1)n
n

)
+ o(n) bits. In addition, for every 1 ≤ i 6= j ≤ m, we define the

sequence of arrays, I(i,j) = I
(i,j)
1 . . . I

(i,j)
n . For 1 ≤ r ≤ n, I

(i,j)
r is an array of size

r defined as follows.

I(i,j)
r [s] =



p if i > j and there are p (< k) elements which are

larger than Ai[s] in Aj [s+ 1 . . . r]

q if i < j and there are q (< k) elements which are

larger than Ai[s] in Aj [s . . . r]

k otherwise (if there are ≥ k elements, in the above two cases)

See Figure 6.1 for an example.

We can answer the Top-k(i, j, a, b, A) queries as follows. We first define the

1D array B[1 . . . b(j − i + 1)] by writing down the values of A[i . . . j][1 . . . b] in

column-major order. Then we observe that Top-k(i, j, a, b, A) can be answered

using SBb(j−i+1)[a(j − i+ 1) + 1 . . . b(j − i+ 1)].

The following lemma shows that we can compute the values in SBb(j−i+1)

using SA1 . . . SAm and all the arrays I
(c,d)
b , for 1 ≤ c 6= d ≤ m.
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Lemma 6.2. Given a 2D array A[1 . . .m][1 . . . n], for 1 ≤ i ≤ j ≤ m and

1 ≤ b ≤ n, let B[1 . . . q] be the 1D array of size q = (j − i + 1)b obtained by

writing the elements of A[i . . . j][1 . . . b] in column-major order. Also, for any

1 ≤ s ≤ q, let (srow, scol) be the position corresponding B[s] in A (which can be

computed using scol = ds/(j − i+ 1)e and srow = s−(scol−1)∗(j−i+1)+(i−1)).

Then

SBq [s] = max (k, (S
Asrow
b [scol] +

∑
i≤`≤j, 6̀=srow

I
(srow,`)
b [scol])).

Proof. It is enough to count the number of elements inB (i.e., inA[i . . . j][a . . . b])

which are larger than B[s] (i.e., A[srow][scol]) in B[s + 1 . . . q] (i.e., the corre-

sponding elements in A). Let L be the set of these elements. If |L| ≥ k, then

SBq [s] = k. In the following, we describe how to compute SBq [s] when |L| < k.

From the definition of S
Asrow
b , it follows that the number of elements in L

which are in row srow is S
Asrow
b [scol].. Also, for any row ` 6= srow, I

(srow,`)
b [scol]

is the number of elements in L that belong to row `. From all these values, we

can compute |L|.

By Lemma 6.2, we can answer the Top-k queries on A using the Top-k

encodings of all the rows A1, . . . , Am, together with all the arrays I(i,j), for

all 1 ≤ i 6= j ≤ m. Since we can recover the order of all active elements

in the prefix of i-th row using SAi [31], we can decode I
(i,j)
p using I

(i,j)
p−1 and

γijp =
∑p

l=1 I
(i,j)
p [l]−

∑p−1
l=1 I

(i,j)
p−1 [l] by the following procedure, for p > 1.

1. Append 0 to I
(i,j)
p−1 . Let this array be J

(i,j)
p−1 .

2. Find the positions of γ
(i,j)
p−1 smallest active values in Ai[1 . . . p] using SAi ,

and increase the values of J
(i,j)
p−1 in these positions by 1.

Therefore, using I
(i,j)
1 , and γ

(i,j)
2 , . . . , γ

(i,j)
n , we can decode I(i,j). Since the sum∑`=n

`=2 γ
(i,j)
` is at most kn, we can encode all the arrays I(i,j) (for all possible

i 6= j) using m(m− 1) lg
(

(k+1)n
n

)
+ o(n) bits (by converting γ

(i,j)
` ’s into unary,

as in the encoding of Lemma 6.1). Also, to encode I
(i,j)
1 for i < j (note that if
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i > j, I
(i,j)
1 is always 0), we need to store the ordering of all elements in the first

column, which takes m lgm bits. This gives a proof of the following theorem.

Theorem 6.2. Given a 2D array A[1 . . .m][1 . . . n], there is an encoding of A

using m2 lg
(

(k+1)n
n

)
+m lgm+ o(n) bits which can answer the Top-k queries.

6.4 Open problems

In this chapter, we obtained encodings which answer Top-k query on 2D array.

We suggest the following open problems for future works.

• Can we support efficient query time on our proposed encodings of Theo-

rem 6.1 and Theorem 6.2?

• For 2 and 3-sided query, can we obtain an encoding which uses less space

than the 4-sided Top-k queries on 2D array?

• Is the effective entropy of unsorted Top-k queries smaller than the effective

entropy of sorted Top-k queries on 2D arrays?

99



Chapter 7

Conculsion

In this thesis, we proposed various space-efficient data structures that answer

rank and select on bit strings, NLN queries, range queries and next/previous

larger/smaller values simultaneously, and Range Top-k queries on two-dimensional

array. Most of our data structures not only require less space than existing data

structures, but also support queries efficiently .

In Chapter 3, we are aware, carefully investigated V2F compressors as a

basis for bitvectors. We have shown how V2F bitvectors can lead to simple

bitvectors with low redundancy. Empirical testing of an implementation, which

albeit differs considerably from the theoretical proposals, shows that low mem-

ory usage and good, robust speed performance can be obtained via V2F com-

pressors.

In Chapter 4, we proposed data structures for NLV in one-dimensional ar-

rays in indexing model, and NLN in two-dimensional arrays, in the encoding

models. For two-dimensional arrays we obtained a data structure that uses

asymptotically optimal space and supports NLN queries in constant time.

In Chapter 5, we obtained space-efficient encodings that support a large set

of range and previous/next smaller/larger value queries. The encodings that
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support the queries in constant time take more space than the ones that do not

support the queries in constant time.

Finally, in Chapter 6, we obtained encodings which answer Top-k query

on two-dimensional array. In particular, for m × n two-dimensional array, we

proposed an optimal encoding when the query is one-sided.

In addition to the open problems in each chapter, we give the following

general open problems which can be considered for all problems in this thesis.

• In this thesis, all data structures give exact answers for queries. Different

from exact queries, for ε > 0, ε-approximate query returns the answer

between T and εT where T is an exact answer of the query. For example,

(1 + ε)-approximate NLN(i) on A[1 . . . n] returns the position j such that

A[j] > A[i] and |j − i| ≤ (1 + ε)|NLN(i) − i|. There are several studies

about approximate queries such as nearest neighbor problem [2] and range

minima in the middle [26]. Can data structures in this thesis use less space

or query time for answering the approximate queries instead of exact

queries?

• All data structures proposed in this thesis only works on a one or two-

dimensional array. Extending these data structures for general n-dimensional

array can be considered as an open problem. For example, Yuan and Atal-

lah [75], and Davoodi et al. [15] obtained encodings which support RMinQ

queries on n-dimensional arrays.

More interesting open problem is that we can generalize an n-dimensional

array into an n-dimensional grid. For example, we can consider the two-

dimensional array as a special case of two-dimensional grid such that all

grid points have an assigned value. Navarro et al. proposed data structures

for various range queries on two-dimensional grid [57], but they did not

considered the problems in terms of density, i.e, the ratio between the

total number of grid points and the grid points which have an assigned
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value. In many practical cases, the grid is sparse, that is, only few grid

points have an assigned value. Can we design efficient data structures

where input data is an n-dimensional grid and obtain better space or

query time when the grid is sparse?
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range reporting. In ISAAC 2009, Proceedings, pages 173–182, 2009.

[12] T. M. Chan and B. T. Wilkinson. Adaptive and approximate orthogo-

nal range counting. In Proceedings of the Twenty-Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2013,2013, pages 241–

251, 2013.

[13] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage

(extended abstract). In SODA, pages 383–391. ACM/SIAM, 1996.

[14] S. A. Cook and R. A. Reckhow. Time bounded random access machines.

J. Comput. Syst. Sci., 7(4):354–375, 1973.

[15] P. Davoodi, J. Iacono, G. M. Landau, and M. Lewenstein. Range minimum

query indexes in higher dimensions. In Combinatorial Pattern Matching -

26th Annual Symposium, CPM 2015, Ischia Island, Italy, June 29 - July

1, 2015, Proceedings, pages 149–159, 2015.

104



[16] P. Davoodi, R. Raman, and S. R. Satti. Succinct representations of binary

trees for range minimum queries. In COCOON 2012, Proceedings, pages

396–407, 2012.

[17] O. Delpratt, N. Rahman, and R. Raman. Engineering the louds suc-

cinct tree representation. In WEA, volume 4007 of LNCS, pages 134–145.

Springer, 2006.

[18] O. Delpratt, N. Rahman, and R. Raman. Compressed prefix sums. In

SOFSEM (1), volume 4362 of LNCS, pages 235–247. Springer, 2007.

[19] E. D. Demaine, G. M. Landau, and O. Weimann. On cartesian trees and

range minimum queries. Algorithmica, 68(3):610–625, 2014.

[20] M. Drmota, Y. A. Reznik, and W. Szpankowski. Tunstall code, khodak

variations, and random walks. IEEE Transactions on Information Theory,

56(6):2928–2937, 2010.

[21] P. Elias. Universal codeword sets and representations of the integers. IEEE

Transactions on Information Theory, 21(2):194–203, 1975.

[22] A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode

various families of trees. Algorithmica, 68(1):16–40, 2014.

[23] P. Ferragina and G. Manzini. An experimental study of an opportunis-

tic index. In Proceedings of the Twelfth Annual Symposium on Discrete

Algorithms, January 7-9, 2001, Washington, DC, USA., pages 269–278,

2001.

[24] P. Ferragina and G. Navarro. Pizza&chili corpus. http://pizzachili.

dcc.uchile.cl/texts.html.

[25] J. Fischer. Combined data structure for previous- and next-smaller-values.

Theor. Comput. Sci., 412(22):2451–2456, 2011.

105



[26] J. Fischer and V. Heun. Finding range minima in the middle: Approxi-

mations and applications. Mathematics in Computer Science, 3(1):17–30,

2010.

[27] J. Fischer and V. Heun. Space-efficient preprocessing schemes for

range minimum queries on static arrays. SIAM Journal on Computing,

40(2):465–492, 2011.
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요약

본논문에서는다양한범위질의및관련문제들을해결하는공간효율적인자료

구조들을 디자인 및 구현하였다. 본 논문에서 제안한 대부분의 자료 구조들은

정보 엔트로피에 가까운 적은 공간 만을 차지하면서도 효과적인 질의 시간을

지원한다. 세부적으로 본 논문에서는 다음 네 가지 문제 ((i) 압축된 비트 문

자열 상에서 rank 와 select 질의를 지원하는 문제, (ii) nearest larger neighbor

질의 문제, (iii) 여러 범위 질의 및, next/previous larger/smaller value 질의 문

제, (iv) 이차원 배열 상에서의 Top-k 질의 문제) 을 해결하는 공간 효율적인

자료 구조에 대해 연구하였다.

본 논문에서는 우선 압축된 비트 벡터를 실질적으로 구현하였다 [45]. 비트

벡터는비트문자열상에서 rank와 select질의를지원하는자료구조를뜻한다.

본 논문에서는 이전까지 체계적으로 연구 되지 않았던 V2F(variable-to-fixed)

압축알고리즘으로압축되어진비트문자열상에서비트벡터를구현하는방법

에대해연구하였다.본논문은이러한접근방식이실제상황에서빠른질의를

지원함과 동시에 적은 여분 공간 (압축 된 비트 문자열을 제외한 비트 벡터의

공간) 을 차지한다는 것을 보였다. 본 논문에서 제안한 비트 벡터는 다양한

방법으로 압축된 비트 문자열 상에서 rank 와 select 질의를 지원하는 효과적이

면서도 실용적인 방안을 제공한다.

이어서본논문에서는 nearest larger neighbor문제를해결하는공간효율적

인자료구조에대해연구하였다 [44, 46].전순서가주어진 n개의원소를가지는

일차원 배열이 있을 때, nearest larger neighbor (NLN) 질의는 배열 상의 어느

한 위치가 질의로 주어졌을 때, 질의와 가장 가까운 곳에 위치하면서 질의보다

큰값을가진배열상의원소의위치를반환한다.배열상에모든원소들의 NLN

질의에 답하는 문제는 괄호 매칭 이나 계산 기하학 관련 문제들에 활용될 수

있기에 큰 주목을 받고 있다 [3, 4, 7]. 본 논문에서는 이러한 NLN 질의를 빠른

시간 안에 풀 수 있는 공간 효율적인 자료 구조들에 대해 연구하였다. 우선 본
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논문은 인덱싱 모델 하에서 일차원 배열에서 질의 시간과 사용 공간 사이에

tradeoff 를 가지는 자료 구조를 제안하였으며 인코딩 모델 하에서 이차원 배

열에서 최적에 가까운 공간을 사용하면서 상수 시간 안에 NLN 질의에 답할 수

있는 자료 구조를 제안하였다.

또한본논문에서는다양한범위질의들(범위최소질의,범위최대질의및

이들에 대한 확장 질의) 과 함께 next/previous larger/smaller value 질의를 답

할 수 있는 공간 효율적인 자료 구조에 대해 연구하였다 [47]. 전순서가 주어진

n개의 원소를 가지는 일차원 배열이 있을 떄, 본 논문에서는 4.088n+ o(n) 비

트의공간을사용하면서위에주어진모든질의들에답할수있는자료구조를

제안하였다.또한본논문에서는 4.585n+o(n)비트의공간을사용하면서위에

주어진모든질의들을상수시간안에답할수있는자료구조를제안하였다.본

논문이제안한자료구조는기존의 Fischer에의해연구된 5.08n+o(n)비트의

공간을 사용하는 자료구조에 비해 적은 공간을 차지한다 [25]. 본 논문에서는

우선색칠된 2d-Min heap과색칠된 2d-Max heap를인코딩하기위해기존의

DFUDS [6]인코딩기법을확장한다음, Gawrychowski와 Nicholson이 2d-Min

heap과 2d-Max heap을동시에인코딩하기위해제안한자료구조를수정하여

색칠 된 2d-Min heap 과 색칠 된 2d-Max heap 을 동시에 인코딩 할 수 있음을

보였다. 본 논문은 또한 위의 질의들 중 일부를 지원하면서 4.088n+ o(n) 비트

보다 더 적은 공간을 사용하는 자료 구조를 제안하였다.

마지막으로본논문에서는전순서가주어진이차원배열상에서 Top-k질의

에답할수있는다양한자료구조들에대해연구하였다. m×n이차원배열에서

본 논문은 질의 범위가 [1 . . .m][1 . . . a] (1 ≤ a ≤ n) 로 제한 되었을 때 최적의

공간을 사용하는 자료 구조를 제안하였다. 또한 본 논문은 Gawrychowski 와

Nicholson 이 제안한 일차원 배열상에서 Top-k 질의를 지원하는 자료 구조를

확장하여 m2 lg
(

(k+1)n
n

)
+ m lgm + o(n) 비트의 공간을 사용하면서 일반적인

Top-k 질의를 지원하는 자료 구조를 제안하였다.

주요어: 공간 효율적인 자료구조, 간결한 자료구조, 인코딩 모델, 인덱싱 모

델, 비트벡터, rank 질의, select 질의, nearest larger neighbor 문제, 범위 질의,
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next/previous larger 질의, 범의 Top-k 질의
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Abstract

Space Efficient Encodings for Bit-strings,

Range queries and Related Problems

Seungbum Jo

Department of Electrical Engineerning and Computer Science

Collage of Engineering

The Graduate School

Seoul National University

In this thesis, we design and implement various space efficient data structures.

Most of these structures use spaces close to the information-theoretic lower

bound while supporting the queries efficiently. In particular, this thesis is con-

cerned with the data structures for four problems: (i) supporting rank and select

queries on compressed bit strings, (ii) nearest larger neighbor problem, (iii) si-

multaneous encodings for range and next/previous larger/smaller value queries,

and (iv) range Top-k queries on two-dimensional arrays.

We first consider practical implementations of compressed bitvectors, which

support rank and select operations on a given bit-string, while storing the bit-

string in compressed form [45]. Our approach relies on variable-to-fixed encod-

ings of the bit-string, an approach that has not yet been considered systemati-

cally for practical encodings of bitvectors. We show that this approach leads to

fast practical implementations with low redundancy (i.e., the space used by the

bitvector in addition to the compressed representation of the bit-string), and is

a flexible and promising solution to the problem of supporting rank and select

on moderately compressible bit-strings, such as those encountered in real-world

applications.
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Next, we propose space-efficient data structures for the nearest larger neigh-

bor problem [44, 46]. Given a sequence of n elements from a total order, and

a position in the sequence, the nearest larger neighbor (NLN) query returns

the position of the element which is closest to the query position, and is larger

than the element at the query position. The problem of finding all nearest larger

neighbors has attracted interest due to its applications for parenthesis matching

and in computational geometry [3, 4, 7]. We consider a data structure version of

this problem, which is to preprocess a given sequence of elements to construct

a data structure that can answer NLN queries efficiently. For one-dimensional

arrays, we give time-space tradeoffs for the problem on indexing model. For

two-dimensional arrays, we give an optimal encoding with constant query on

encoding model.

We also propose space-efficient encodings which support various range queries,

and previous and next smaller/larger value queries [47]. Given a sequence of n

elements from a total order, we obtain a 4.088n + o(n)-bit encoding that sup-

ports all these queries where n is the length of input array. For the case when

we need to support all these queries in constant time, we give an encoding that

takes 4.585n+ o(n) bits. This improves the 5.08n+ o(n)-bit encoding obtained

by encoding the colored 2d-Min and 2d-Max heaps proposed by Fischer [25].

We extend the original DFUDS [6] encoding of the colored 2d-Min and 2d-Max

heap that supports the queries in constant time. Then, we combine the ex-

tended DFUDS of 2d-Min heap and 2d-Max heap using the Min-Max encoding

of Gawrychowski and Nicholson [30] with some modifications. We also obtain

encodings that take lesser space and support a subset of these queries.

Finally, we consider the various encodings that support range Top-k queries

on a two-dimensional array containing elements from a total order. For an

m×n array, we first propose an optimal encoding for answering one-sided Top-k

queries, whose query range is restricted to [1 . . .m][1 . . . a], for 1 ≤ a ≤ n. Next,

we propose an encoding for the general Top-k queries that takes m2 lg
(

(k+1)n
n

)
+

ii



m lgm + o(n) bits. This generalizes the Top-k encoding of Gawrychowski and

Nicholson [30].

Keywords: Space-efficient data structure, succinct data structure, encoding

model, indexing model, bitvector, rank query, select query, nearest larger neigh-

bor problem, range queries, next/previous larger query, range Top-k query

Student Number: 2011-30257
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Chapter 1

Introduction

The amount of data increases much faster than the capacity of the storage de-

vices in recent days. Also the rapid growth of the mobile device market requires

storing the large amount of the data into the limited space. To overcome this

problem, one of the best solution is compressing the original data. For exam-

ple, there are numerous text compression algorithms [73, 76] which can store

the text data using much less space than its original size. However, the raw

compressed data itself cannot support most of the queries (for example, ran-

dom accesse and extracting arbitrary substrings from the LZ77-compressed [76]

texts) without uncompressing the whole compressed data and this makes a huge

bottleneck to answer the queries. In many areas of data science like Real-time

data analysis or BigData, supporting queries efficiently for large data sets is

a important issue. Therefore, storing data with compact size while supporting

queries efficiently becomes a crucial issue.

One can define a compressed (space-efficient) data structure as a data struc-

ture which takes less space than the conventional data structure while sup-

porting same set of queries. Let OPT be the minimum number of bits re-

quired to store the data while supporting the query (information-theoretic lower
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bound). The compressed data structures are divided into three types as follows.

(i) Implicit if the data structure uses OPT+O(1) bits, (ii) Succinct if the data

structure uses OPT+o(OPT ) bits and (iii) Compact if the data structure uses

O(OPT ) bits. Since it is hard to design implicit data structure while supporting

queries efficiently due to its space requirement, the main goal in the theoretical

computer science area is usually maintain the size of the data structures as

succinct while supporting the queries efficiently.

Succinct Data Structures were first introduced by Jacobson [42]. He showed

how to represent the static trees and graphs while supporting the various queries

efficiently. There are succinct data structures for various problems such as In-

dexable dictionaries [64, 69], Permutations [54], Equivalence relations [52] and

Range minimum queries [10, 27].

1.1 Computational model

In this thesis, we assume a standard word-RAM model [53] as computational

model. Word-RAM model is a variant of the classic RAM (random access ma-

chine) model [14] which is the computational model under the realistic assump-

tion of a computer. In this model, each memory cell stores a word of size ω

and we can read and write any cell in the memory in O(1) time. Also, we can

support ‘C-style’ arithmetic operations (+,−, ∗, /,%) and boolean operations

(&, |,∧,∼, <<,>>) on words in O(1) time. Since each word needs to be large

enough to store pointers and indices to access the data in practice, we set the

word size ω = Θ(lg n) bits1 for n input elements. We count space in terms of

the number of bits used.

1.1.1 Encoding and indexing models

We consider the data structures in two different models that have been studied

in the succinct data structures literature, namely the indexing and encoding

1We use lgn to denote log2 n
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models. In both these models, the data structure is created after preprocessing

the input data. In the indexing model, the queries can be answered by probing

the data structure as well as the input data, whereas in the encoding model, the

query algorithm cannot access the input data. The size of the data structure

in the encoding model is also referred to as the effective entropy [35, 68] of the

input data, with respect to the problem.

Suppose there is a set of input data S and set of all queries Q. If we can

reconstruct any element in S from the answer to the queries in Q, encoding has

no space advantage compared to indexing for answering the queries. But if the

number of all possible answers on S induced by Q is significantly smaller than

the size of S, then we can save some space by using the encoding model which

doesn’t need to store the original data.

1.2 Contribution of the thesis

In this thesis, we propose the following space-efficient data structures.

• Bitvector based on variable-to-fixed encodings: Bitvector is a data

structure which supports rank and select operations on a given bit-string.

In this thesis, we design bitvectors based on variable-to-fixed compressed

bit-string (V2F bitvector). In the theoretical view, we show that regardless

of the V2F compression algorithms, there exists a V2F bitvector which has

low redundancy (that is, the difference in size between the V2F bitvector

and the compressed bit-string is asymptotically smaller than the size of

the compressed bit-string) and supports rank and select in constant time.

We also give practical implementations of V2F bitvector and evaluate

their practical performance with various existing implementations. The

empirical evaluation shows that our V2F bitvector has low redundancy

and supports rank and select queries efficiently compared to other previous

implementations.
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• Encoding and indexing of the nearest Larger neighbor queries:

Given an elements in an array from a total order, the nearest larger neigh-

bor (NLN) query returns the position of the element which is closest to the

query position, and is larger than the element at the query position. We

consider the NLN problem on one and two-dimensional arrays. For one-

dimensional array of size n, we propose an O((n/c) lg c)-bit index which

supports NLN queries in O(c) time, for any parameter 2 ≤ c ≤ n, improv-

ing the structure of Fischer et al. [28]. For a n×n two-dimensional array,

we first show that Θ(n2) bits are necessary to encode NLN queries. Also,

we give an optimal encoding which supports NLN queries in constant time

on a two-dimensional array, improving the NLN encoding from Jayapaul

et al. [44].

• Simultaneous encodings of various range queries and next/previous

larger/smaller value queries: Given a sequence of n elements from a

total order, we consider the encoding which supports range minimum

query and its variants (RMinQ, RLMinQ, RRMinQ, RkMinQ), range max-

imum query and its variants (RMaxQ, RLMaxQ, RRMaxQ, RkMaxQ) and

next/previous larger/smaller value queries (NLV, NSV, PLV, PSV). In this

thesis, we obtain a 4.585n + o(n)-bit encoding which supports all these

queries in constant time for a sequence of size n. This improves the Fis-

cher’s 5.08n+o(n)-bit encoding [25] which supports same set of queries in

constant time. We also prove that if the query time is not concerned, we

can obtain a 4.088n+ o(n)-bit encoding which supports all these queries.

• Encoding of range Top-k queries on a two-dimensional array:

Given an elements in an array from a total order and a rectangular range

in an array. Range top-k (Top-k) query returns the positions of k largest

elements in the range, In this thesis, we consider various encodings which

support Top-k queries on a two-dimensional array. This problem has not
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been studied. For an m×n array, we first obtain an optimal encoding for

one-sided Top-k queries whose query range is restricted to [1 . . .m][1 . . . i],

for 1 ≤ i ≤ n. Also, we propose the m2 lg
(

(k+1)n
n

)
+m lgm+ o(n)-bit en-

coding for Top-k queries on a two-dimensional array with any rectangular

query ranges by extending the Top-k encoding on a one-dimensional array

proposed by Gawrychowski and Nicholson [30]. In most of encodings do

not support the Top-k queries in efficient query time.

The summary of previous results and our results for these data structures

are in Table 1.1.

1.3 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce data

structures for supporting rank and select queries which are basic operations on

various space-efficient data structures. In Chapter 3, we describe compressed

bit vectors based on variable-to-fixed encodings which have low redundancy in

both theoretical and practical implementations. In Chapter 4 we consider the

encoding and indexing data structures for Nearest Larger Neighbor (NLN) prob-

lem on one-dimensional and two-dimensional arrays. In Chapter 5, we propose

encodings that support various range queries (range minimum, range maxi-

mum and their variants), and previous and next smaller/larger value queries.

In Chapter 6, we propose the various encodings that supports Top-k queries.

Finally in Chapter 7, we summarize the results in this thesis and give some

open problems.
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Input data Query
Space Usage

Query time Encoding/Indexing Reference
(bits)

Bit string X[1 . . . n] rank1, select1 C`+O(C log(n/C)) O(1) Encoding This thesis

1D array A[1 . . . n],

1 ≤ c ≤ n
PLV (NLN)

O((n/c) log c+ (n log n)/c2) O(c) Indexing [44]

O((n/c) lg c) O(c) Indexing This thesis

2D array

A[1 . . . n][1 . . . n]
NLN

O(n2 lg lg n) O(1) Encoding [44]

O(n2) O(lg lg lg n) Indexing [44]

O(n2) O(1) encoding This thesis

2D binary array

A[1 . . . n][1 . . . n],

1 ≤ c ≤ n2
NLN O(n2/c) O(c) Encoding This thesis

1D array A[1 . . . n]

RMinQ, PSV 2n+ o(n)

O(1) Encoding

[27]

RQmin, PSV

NSV
2.54n+ o(n) [25]

RMinQ, RMaxQ 3n+ o(n) [30]

RQmin, RQmax

PSV, NSV

PLV, NLV

4.585n+ o(n) This thesis

2D array

A[1 . . .m][1 . . . n]

One-sided,

sorted Top-k
n
⌈
lg(
∑min (m,k)

i=0

(
m
i

)
( k!
(k−i)! ))

⌉

Encoding This thesis
Four-sided,

unsorted Top-k
O(mn lg n) O(k)

Four-sided,

sorted Top-k

m2 lg
(
(k+1)n

n

)
+

m lgm+ o(n)

Table 1.1 The summary of previous results and our results. C = number of

codewords, ` = codeword size, RQmin = {RMinQ, RLMinQ, RRMinQ, RkMinQ}

and RQmax = {RMaxQ, RLMaxQ, RRMaxQ, RkMaxQ}.
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Chapter 2

Preliminaries

In this chapter, we introduce data structures for answering rank and select

queries, one of the fundamental problems in succinct data structures. These

structures are used for the various space-efficient data structures proposed in

this thesis.

Given a string S[1 . . . n] over an alphabet Σ, rank and select are defined as

follows.

• rankα(S, i): The number of occurrences of α in the first i positions of S,

for any α ∈ Σ.

• selectα(S, i): The position of the i-th α in S, for any α ∈ Σ.

In the thesis, we only consider the case when S is a bit-string, i.e, Σ = {0, 1}.

We first introduce the following lemma from [69] that gives a succinct encoding

of S.

Lemma 2.1 ([69]). Let S be a string of length n containing m 1s. One can

encode S using lg
(
n
m

)
+ o(n) bits to support both rankx(S, i) and selectx(S, i) in

constant time, for x ∈ Σ. Also, one can decode any lg n consecutive bits in S

in O(1) time.
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Also, we use following lemmas from [37] that can be used to support rank

and select operations on moderately dense bit strings (i.e., bit strings in which

the number of zeros and ones is at most a poly-log factor smaller than the

length of the string).

Lemma 2.2 ([37]). Let S be a bit-string of length n containing m 1s. If m ≥

n/(lg n)c, for some constant c > 0, one can support rank1 and select1 in O(1)

time using lg
(
n
m

)
+O(m) bits.

Lemma 2.3 ([37]). Given integer n > m > 0 such that min{n − m,m} ≥

n/(lg n)c for some constant c, one can store a bit-string S with n0 ≤ n−m 0s

and n1 ≤ m 1s, using lg
(

n
n−m

)
+ O(min{n, n−m}) bits, such that select0 and

select1 are supported in O(1) time.

Now we introduce another lemma from [62]. This lemma shows that if the

number of ones is significantly less than the number of zeros, one can encode S

using less space than the encoding described in Lemma 2.1 (but do not support

queries in constant time).

Lemma 2.4 ([62]). Let S be a bit-string of length n containing m 1s. One can

encode S using O(m lg(n/m)) bits such that rank1 and select1 can be supported

in O(n/m) time.

One can generalize the rank and select queries as follows. Given a string

S[1 . . . n] and pattern string p over the alphabet Σ, rankp(S, i) returns the num-

ber of occurrences of pattern p in the first i positions of S, and selectp(S, i)

returns the position of the i-th occurrence of pattern p in S. Combining the

results from [56] and [69], one can show the following lemma for generalized

rank and select queries on a bit-string.

Lemma 2.5 ([56], [69]). Let S be a bit-string of length n over the containing

m 1s. One can encode S using lg
(
n
m

)
+ o(n) bits to support both rankp(S, i) and

8



selectp(S, i) in constant time, for any binary pattern p with length |p| ≤ 1/2 lg n.

Also, one can decode any lg n consecutive bits in S, in constant time.
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Chapter 3

Compressed bit vectors based on
variable-to-fixed encodings

3.1 Introduction.

A bitvector is a fundamental building block of many space-efficient data struc-

tures. As described in Chapter 2, given a bit-string X of length n with weight

m (i.e., with m 1 bits), the aim is to pre-process X to support the following

operations, for any b ∈ {0, 1}:

• rankb(X, i) returns the number of occurrences of b in the first i positions

of X.

• selectb(X, i) returns the position of the ith b in X.

These operations can be supported in O(1) time using n + o(n) bits of space

[13]. If X is a (uniformly) random bit-string, it cannot be be compressed, and

this space bound is therefore, in the worst case, optimal to within lower-order

terms. However, bit-strings encountered in practical applications are often com-

pressible, and many algorithmic applications use bitvectors on bit-strings that

are constructed to be sparse—contain m = o(n) 1s—and such bit-strings are
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compressible to o(n) bits. Starting from the work of [64, 70], there is now

a rich theory of compressed bitvectors, which aim to use space approaching

that used by a compressed representation of the bit-string, for many different

measures of compressibility1. The most basic measures of compressibility are

density-sensitive, i.e. they depend only upon the length n and weight m of the

bit-string. These are the information-theoretic minimum, B(n,m)
def
=
⌈
log
(
n
m

)⌉
bits, and the zeroth-order empirical entropy, H0(X)

def
= −

∑1
i=0 pi lg pi, where

p1 = m/n and p0 = 1 − p1; the compressed bit-string size should then be

nH0(X) +O(1) bits. Note that if m = o(n) then B(n,m) ≈ nH0(X) = o(n).

Instance-sensitive measures2, where the compressibility of the string X is a

function of X, are more diverse, and include the k-th order empirical entropy Hk

and functions of the gaps between successive 1s [40], or the size of the output

produced by a grammar-based compressor to X. In general, such measures

would show that a bit-string X is at least as compressible as a density-sensitive

measure on X.

Previous Work Although there have been many papers on implementations

of bitvectors [18, 17, 36, 38, 51, 74] (and some researchers have implemented

bitvectors as part of more complex data structures), there are fewer papers on

compressed bitvectors for sparse bit-strings. It should be noted that supporting

O(1)-time rank/select operations using reasonable space is possible only when

m = n/(log n)O(1) [66]. In this range, even the density-sensitive measure gives

O(m log(n/m)) = O(m log log n) bits, so a compressed bitvector is significantly

smaller than either an uncompressed bitvector, which takes Θ(n) bits, or view-

ing X as the characteristic vector of a set and storing the set explicitly, which

requires O(m log n) bits. Such moderately sparse bit-strings are also of great

1As is common in the area of succinct and compressed data structures, we focus on empirical

measures, i.e., those that are a function of the bitstring X itself, rather than measures derived

by postulating a probabilistic model for generating bit-strings.
2A related term, data-aware, is used in [40].
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practical interest. One focus of this chapter is on representing such bit-strings.

The following authors have considered practical data structures for sparse

bit-strings. Geary et al. [32] considered “uniformly” sparse bit-strings, but their

techniques do not apply to general sparse bit-strings, and they do not perform

a stand-alone evaluation of their bitvector. Gupta et al. [40] considered very

sparse bit-strings, and showed that instance-sensitive measures related to the

γ and δ codes outperform density-sensitive ones, but they did not report on

moderately sparse bit-strings. Delpratt et al. [18] considered Golomb coding in

the context of the select1 operation. Okanohara and Sadakane [63] performed

arguably the first comprehensive evaluation, but focused mostly on the density-

sensitive measures. Navarro et al. [59] considered rank and select on grammar-

compressed bit-strings, but do not provide a stand-alone evaluation. Navarro

and Providel [58] also provide an implementation of compressed bitvectors.

This, again, targets the density-sensitive measures. Very recently, Kärkkäinen

et al. [49] presented a hybrid approach combining run-length encoding (RLE),

raw encoding and explicit encoding, and showed good performance on a class

of bit-strings obtained from text indexing applications.

Our results In this chapter we explore the use of variable-to-fixed (V2F) en-

codings of a bit-string, which have only been partially explored previously. Our

results show that this approach leads to very compact and high-performance

compressed bitvectors. Indeed, we give a theoretical basis for the low redun-

dancy (wasted space) of the codes as well as that of the bitvector. An `-bit

V2F code partitions the input bit-string into a concatenation of variable-length

phrases. Each phrase, except the last one, is constrained to belong to a given

dictionary D of ≤ 2` bit-strings; the last phrase is a non-null prefix of a dic-

tionary entry. Once the input bit-string is parsed, each phrase is replaced by

its position in the dictionary, stored as a `-bit codeword. V2F codes are stud-

ied in the data compression literature due to their desirable properties such as
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error-resilience, but it appears that there has not yet been a comprehensive in-

vestigation of V2F bitvectors. That said, the class of V2F codes is quite broad:

it includes e.g. RLE and grammar-based compression, and it is possible that

there are application-specific implementations of V2F bitvectors inside other

data structures.

Our main conceptual contributions are as follows:

• We argue that in general, V2F coding is an effective approach to reduce

the redundancy of the bitvector, or the difference between the compressed

size of the bit-string and the size of the bit-vector data structure. The re-

dundancy can dominate the space usage of compressed bitvectors: e.g. if

m = O(n/(log n)2), the space usage of the compressed bitvector of [70],

which is B(n,m) + O(n log logn/ log n) bits, is dominated by the redun-

dancy. We show that for the density range of interest, V2F compressors

give redundancy that is asymptotically smaller than the compressed size

of the bit-string.

• In practice, we give an approach for density-sensitive encoding of a bit-

vector that has a significantly lower (intrinsic) redundancy over that of

Navarro and Providel [58] by using Tunstall codes [73]. Furthermore, we

show that the Tunstall code always achieves H0 empirical entropy with

low redundancy (previously this was known only for random inputs).

• We give a new class of enumerative V2F codes. These codes generalize

both Khodak’s code [50, 20], a close relative of the Tunstall code, and

RLE. Finally, a hybrid enumerative code which combines Khodak’s code

with RLE achieves excellent compression performance, even on bit-strings

that are relatively incompressible by density-sensitive measures.

• We argue, as does Vigna [74], that practical implementations of select

based on the method of “sampling” must address the issue of long gaps,
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which many implementations do not do. This is because in practice, guard-

ing against a worst-case scenario for long gaps (using ideas which derive

back to [13]) consumes a lot of space. Although it seems real-life bit-strings

can have a number of reasonably long gaps, we note that the typical test

(select a random 1) is likely to give running times that are independent

of the distribution of the underlying bit-vector. We propose a test that

would “fairly” and “naturally” test the handling of a select implementa-

tion in the presence of long gaps, and show that implementations that do

not guard against long gaps do indeed slow down.

Our implementation has been structured into two independent parts: a frame-

work for rank and select, and a compressor-specific part that deals with individ-

ual codewords. This highlights the challenges faced by a V2F-based bitvector,

and offers a lot of room for innovation with respect to how to deal with code-

words. The fact that there is indeed room has already been hinted at in [58, 59],

but we argue that reasonable performance is obtained by a default implemen-

tation in many cases.

The rest of this chapter is structured as follows. Section 3.2 describes a gen-

eral result on supporting rank and select operations on bit-strings compressed

using V2F schemes. In Section 3.3, we describe the V2F schemes that we use in

the experimental evaluation. Section 3.4 describes the details of our implemen-

tation, and also the results from the experimental evaluation of V2F schemes.

Section 5.5 contains some future directions.

3.2 Bit-vectors using V2F coding

As indicated earlier, the redundancy of a compressed bitvector targeting a

particular compressibility measure is the difference between the size of the

bit string under that compressibility measure and the size of the bitvector.

Pǎtraşcu [65] showed that rank/select can be supported in O(1) time using
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B(n,m) + n/(log n)O(1) bits, and that for m = Θ(n), this is optimal [67]. How-

ever, there is no evidence yet that the approach of [65] is feasible in practice.

Another approach to low-redundancy compressed bitvectors achieves B(n,m)+

O(m(log log n)2/(log n)) bits and O(1) time for the range m = n/(log n)O(1)

[36, 64]. While the redundancy is not as low as Pǎtraşcu’s, it is roughly a log

factor less than the compressed bit-string – a very desirable feature. We now

show that this holds in general for V2F codes under modest assumptions:

Theorem 3.1. Given a bit-string X of n bits encoded as C codewords using a

V2F code of ` bits each. Further assume that there is a data structure, which

given a codeword c, supports rank and select in O(1) time on the phrase p(c) that

the codeword c stands for. Then we can support select1(X, i) and rank1(X, i) in

O(1) time using C`+O(C log(n/C)) bits, provided that C = n/(log n)O(1).

Proof. For any bit-string s, let w(s) denote the weight of s, and for i = 1, . . . , C,

let ci denote the i-th codeword, and let m = w(X). The data structure consists

of two bitvectors on the following bit-strings:

• the ones distribution bit-string OD = 0w(p(c1))10w(p(c2))1 . . .0w(p(cC))1.

• the phrase size bit-string PS = 10|p(c1)|−110|p(c2)|−11 . . .10|p(cC)|−1.

It is easy to see that |OD| = m+ C, w(OD) = C, |PS| = n and w(PS) = C.

• To compute select1(X, i), we first determine the number of codewords be-

fore the codeword in which the selected 1 lies as j = rank1(OD, select0(OD, i)).

We then determine the total number of 1s in c1, . . . , cj as k = select1(OD, j)−

j, and the start position of cj+1 in X as d = select1(PS, j+1)−1. Finally,

we select the i− k-th 1 in p(cj+1), add d to the answer and return.

• To compute rank1(X, i), we first find the codeword j in which the i-th

position lies by j = rank1(PS, i). We then determine d, the start position

of cj , and k, the number of 1s in c1, . . . , cj−1, as before, and return k +

rank1(p(cj), i− d).
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We store OD using Lemma 2.3, which uses O(C log(m/C)) bits. In addition,

we pad OD to length n by adding zeros at the end (so that the condition

in Lemma 2.2 applies), and store the resulting bit-string as well as PS using

Lemma 2.2, which takes O(C log(n/C)) bits.

Remark 1. We will typically choose ` = Θ(log n) bits. Thus, provided that

log(n/C) = o(log n), the redundancy will be smaller than the size of the com-

pressed output, which is C` bits.

3.3 V2F compression algorithms for bit-strings

We now describe different V2F compression schemes that we use to compress

the given bit-string X. Each of these schemes partitions X into a sequence of

variable-length phrases. Each phrase, except the last one, belongs to a dictionary

of size M = 2` that is constructed from the source string. The dictionary entries

are also referred to as code words. The compressed representation of X simply

consists of a sequence of `-bit codes (from the dictionary) corresponding to each

phrase. The only difference between various compression algorithms is the way

in which they construct the dictionary.

3.3.1 Tunstall code

For a given phrase length L, the Tunstall code is designed to maximize E[L],

the expected number of source letters per phrase for a memoryless source [73].

Given an input bit-string X, the dictionary constructed by Tunstall’s algorithm

can be represented as a full binary tree T (i.e., every node has 0 or 2 children),

which we refer to as the Tunstall tree. Each edge in T corresponds to a bit, and

each phrase corresponds to a leaf in T . The phrase corresponding to a leaf u

can be obtained by concatenating the symbols corresponding to the edges on

the root-to-leaf path to u.

We now describe the algorithm to construct a Tunstall code for X with
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M = 2` codewords. First, we define some terminology. Letting n = |X|, and m

be the weight of X, define p0 = 1−m/n and p1 = m/n. The probability3 of a

bit-string b1b2 . . . bl is defined to be
∏l
i=1 pbi . Each leaf in T is labelled by the

probability of the corresponding phrase, and each internal node is labelled by

the sum of the probabilities of its children. The algorithm is as follows:

(1) Start with 2-level rooted tree with the root connected to two leaves, cor-

responding to 0 and 1.

(2) Pick a leaf node which has the highest probability and grow two leaves

on it.

(3) Repeat step (2) while the number of leaves in the tree is at most M .

It has long been known that the Tunstall code achieves zeroth-order entropy

(defined appropriately) for random sources [73] and its redundancy4 for random

sources has been shown to be low [20]. We now show that the redundancy of

the Tunstall code with respect to empirical entropy is also low.

Theorem 3.2. Given a bit-string X with length n and weight m, suppose that

it is encoded using a Tunstall code with M = 2` codewords, constructed taking

p0 = 1−m/n and p1 = m/n as the probabilities of 0 and 1 respectively. Assume,

without loss of generality, that p1 ≤ p0 and further assume that ` = Θ(log n)

and log(1/p1) = o(log n). Then C` ≤ nH0(X) +O(nH0(X) log(1/p1)/`).

Proof. Say that a final leaf refers to a leaf of the Tunstall tree T at the end of the

algorithm. Observe that the probabilities of the leaves of T at any stage of the

algorithm add up to 1. Hence, while the number of leaves is less than M , there

will always be a leaf with probability greater than 1/M , so we will never expand

1This is not a probability in the true sense, of course, since we are dealing with a given

fixed bit-string X.
2Here the term redundancy has been overloaded to refer to the size of the compressed

output relative to the ideal compressed size.
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a leaf with probability at most 1/M . It follows that the minimum probability

of a final leaf is greater than p1/M . Let p∗ be the maximum probability of any

final leaf. Since all final leaves are created by expanding leaves with probability

≥ p∗, and at least one final leaf must have probability ≤ 1/M , it follows that

p∗p1 ≤ 1/M or p∗ ≤ 1/(p1M).

Suppose that the output of parsing X according to the Tunstall code com-

prises C codewords c1, c2, . . . , cC . Let Pr(ci) denote the probability of the phrase

of ci. Then− log
∏C
i=1 Pr(ci) = − log(pn−m0 pm1 ) = nH0(X). However,

∏C
i=1 Pr(ci) ≤

(1/(p1M))C from the above, which gives nH0(X) ≥ C log(p1M), or:

nH0(X) + C log(1/p1) ≥ C` (3.1)

With the above assumption on p1, it is not hard to verify that C` = O(nH0(X)),

and plugging this back into Equation (3.1) we get that C` ≤ nH0(X) +

O(nH0(X) log(1/p1)/`).

Remark 2. 1. Since we assume log(1/p1) = o(`), the redundancy is a lower-

order term.

2. Note that a similar argument shows that C` ≥ nH0(X) − C log(1/p1).

In other words, the output of Tunstall coding is never much less than the

empirical entropy.

Theorems 3.1 and 3.2 allow us to obtain a small improvement in redun-

dancy over the bitvector of [36, Thm 2], which previously had the lowest known

redundancy of any bitvector that does not use the (fairly complex) technique

of informative encoding [36] or its successors [65].

Corollary 3.1. Let X be a bit-string with length n and weight m. There is a

bit-vector that supports rank1 and select1 in O(1) time when m = n/(log n)O(1)

and uses nH0(X) +O(m log(n/m) log logn
logn ) bits.
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Proof. Since H0(X) = O((m/n) log(n/m)), from Theorem 3.2 the output of

the Tunstall coding occupies nH0(X) + O(m(log(n/m))2/ log n) bits. To aug-

ment it with rank1 and select1, we use Theorem 3.1. The additional data struc-

tures use O(C log(n/C)) = O
(
nH0(X)

logn log
(
n logn
nH0(X)

))
bits. Simplifying, we get

that the redundancy of the bitvector is O
(
m log(n/m)

logn (log(n/m) + log log n)
)

=

O(m log(n/m) log logn
logn ) bits.

Finally, it only remains to explain how to do rank/select on an individ-

ual phrase in O(1) time. Taking the notation of Theorem 3.1, we create the

concatenated bit-string p(0)p(1) . . . p(2` − 1). The maximum length L of an in-

dividual phrase must satisfy (p0)L ≥ p1/M , from which one can obtain that

L = O(n log n/m). Since n/m = O(log n)O(1), if we choose ` = (log n)/2, the

bit-string containing the concatenated phrases will be of size O(n1/2+ε), for any

positive constant ε < 1/2. By building a bit-vector on this bit-string and fur-

thermore explicitly storing the start of each phrase, as well as the cumulative

numbers of 1s in this bit-string (using O(2` log n) = O(n1/2+ε) bits), rank and

select on individual phrases can be supported in O(1) time.

3.3.2 Enumerative codes

We define a class of enumerative codes as follows. An enumerative code can

be specified as a (directed) graph on a subset of the vertices (i, j), for i ≥ 0

and j ≥ 0. A vertex (i, j) may either have no outgoing edges (be a leaf ) or

point to both vertices (i + 1, j) and (i, j + 1). Furthermore, a vertex (i, j) is

complete if either it has indegree 2, or either i or j is 0 (and its indegree is 1);

and incomplete otherwise. All incomplete vertices must be leaves. Finally, the

vertex (0, 0) is always in the graph. Given such a graph, the code is specified as

follows. For every complete leaf (i, j) we allocate
(
i+j
j

)
codewords, which code

for all phrases with i 0s and j 1s. For every incomplete leaf (i, j), if its (sole)

predecessor is (i, j − 1) then we allocate all
(
i+j−1
j−1

)
codewords, which code for

all phrases with i 0s and j 1s that end with a 1. If its predecessor is (i− 1, j),
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(2,2)(2,1)

(1,1)

(0,0) (0,1)

(3,0) (3,1)

(4,0)

Codeword Phrase Vertex in the graph

0 11 (0,2)

1 011 (1,2)

2 101

3 0011 (2,2)

4 0101

5 1001

6 0001 (3,1)

7 0010

8 0100

9 1000

10 0000 (4,0)

Figure 3.1 An example of an (ad-hoc) enumerative code. The graph is given on

the top (leaves shown shaded) and the codewords, and their phrases, right.

then we allocate all
(
i+j−1
j

)
codewords, which code for all phrases with i 0s and

j 1s that end with a 0 (see Fig. 3.1). Clearly, we must ensure that the total

number of codewords is at most 2`.

Given such a graph, we parse the input-bit string as follows. Each phrase

starts at (0, 0). If we are currently at the non-leaf vertex (i, j), upon reading a

1, we move to (i, j+1); upon reading a 0, we move to (i+1, j). By construction,

both these vertices are in the graph. If we are at a complete leaf (i, j) then we

have so far read a phrase with i 0s and j 1s; since all possible
(
i+j
j

)
such phrases

have associated codewords, we choose the appropriate codeword, output it and

restart from (0, 0). Arriving at an incomplete leaf (i, j) from (i, j− 1), we must

have read a phrase with i 0s and j 1s where the last bit is a 1, so we output

the appropriate codeword (the other case is similar), and restart from (0, 0).

We now give examples of enumerative codes.

RLE.

RLE is a special case of enumerative coding. To have codes for runs of 0s

and 1s of length 1, . . . , 2`−1, the corresponding graph contains the non-leaf
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vertices (0, i) and (i, 0), and the leaf vertices (1, i) and (i, 1) for i = 1, . . . , 2`−1−

1, together with the leaf vertices (0, 2`−1) and (2`−1, 0). A codeword is thus

assigned to each phrase of the form 0i1 and 1i0 for i = 1, . . . , 2`−1−1; and one

each for 02`−1
and 12`−1

.

Khodak Code.

The Khodak code [20] is is obtained by modifying Step (2) of the Tunstall

algorithm in Section 3.3.1 to pick all the leaf nodes with highest probability

and grow two leaves on all of them. It is known that every Khodak code is

a Tunstall code, and that for the same dictionary size, the Khodak code has

asymptotically the same average phrase length as the Tunstall code [20]. We

show:

Theorem 3.3. Any Khodak code is an enumerative code.

Proof. We first prove an auxiliary lemma that implies that, when the probabili-

ties of zero and one are not the same, the dictionary constructed by the Khodak

algorithm is a subset of the dictionary constructed by the Tunstall algorithm

– by observing that the order in which the leaves are expanded in both the

algorithms is the same; but Khodak algorithm may stop earlier if there is not

enough space to expand all the leaves with same probability.

Lemma 3.1. For rational number 0 < d < 1, d 6= 1/2, there are no nonnegative

integers x, y, z, w such that x 6= z and dx(1− d)y = dz(1− d)w.

Proof. Suppose that there exist nonnegative integers x, y, z, w such that x 6= z

and dx(1 − d)y = dz(1 − d)w. Let d = n/m for positive integers m and n,

such that n and m are relatively prime. Without loss of generality, assume that

d > 1
2 and z+w ≥ x+ y. Then it is easy to argue that z ≥ x and y ≥ w. Thus,

mz+w−x−y(m − n)y−w = nz−x. If m is even, then left side is even while right

side is odd as n is relatively prime to m. If m is odd and n is even, then left
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side is odd while right side is even. Finally, if both m and n are odd, the left

side is even while the right side is odd.

We now prove Theorem 3.3. Define T k as the tree whose leaves represent

the phrases of the Khodak code (similar to T in the Tunstall code). Next,

let T k(i, j) be the set of all leaves in T k which represent the phrases with i

zeros and j ones. We say that T k(i, j) is complete if T k contains all possible

(
(
i+j
i

)
) phrases with i zeros and j ones (this is analogous to the definition of

completeness of nodes in the enumerative codes). Now to prove Theorem 3.3, it

is enough to prove the claim that if the Khodak algorithm expands the leaves

in T k(i, j) then T k(i, j) is complete. The claim holds if the zero density is 1/2,

because in this case, T k is always a complete binary tree (and each expansion

step expands all the leaves). Now we assume that the one density is strictly

larger than the zero density. Since for every step in the Khodak algorithm, i

and j for expanding T k(i, j) are uniquely determined by the Lemma 3.1, the

claim can be proved by the induction on the number of expansion steps taken

by the Khodak algorithm.

(Basis step) In the first step, we expand the leaf T k(0, 1) which is complete.

(Inductive step) Assume the hypothesis that the claim is true if the number

of steps is at most r. In the r+ 1 step, suppose we expand Tk(i, j) which is not

complete. Note that T k(i, j) is generated by expanding T k(i, j−1) or T k(i−1, j).

Since both T k(i, j−1) and T k(i−1, j) are expanded before r+1-th step (because

they have the smaller probability than T k(i, j)), by induction hypothesis, they

are complete. But if we expand T k(i, j−1) and T k(i−1, j) which are complete,

T k(i, j) becomes complete, contradicting the assumption.

Hybrid Enumerative Coding.

To obtain better compression using enumerative encoding, we reserve a fraction

of codewords for run-length codes, and use the remaining for the Khodak code-
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words. The run-length codewords are divided among 0 runs and 1 runs based

on the densities of 0s and 1s.

3.3.3 LZW algorithm

Lempel-Ziv-Welch (LZW) algorithm [76] is a well-known dictionary-based com-

pression algorithm. The dictionary constructed by the LZW algorithm has no

fixed bound on its size, and it is not stored as part of the compressed text as it

can be reconstructed during decompression. However, since our approach uses

a bounded-size dictionary (with M codewords), we modify the LZW algorithm

as follows: We first construct the dictionary in one pass over the string, as in

the normal LZW algorithm till its size is M , and use that to parse the whole

string in a second pass. Also, unlike the original LZW algorithm, the modi-

fied algorithm requires both the compressed string as well as the dictionary for

decompression.

3.3.4 Empirical evaluation of the compressors

We now describe the compression performance of the above algorithms. We set

` = 16 so each dictionary has 216 = 65536 codewords. For implementing RLE

and Hybrid algorithms, we determined the maximum length of runs of 0s in the

RLE part of the dictionary as the smaller of (215 × density of 0) and maximum

length of runs of 0s in the test file (the maximum length of 1s in the RLE part

is also determined in the same way).

Test files

Table 3.1 summarizes the characteristics of the bit-strings we used in our exper-

iments. factor9.6 and proteins are obtained by parsing two XML files, and

outputting 0i1 when a text node of length i is encountered [18]. Z-Accidents

and Z-Pumsb2 are used in a data structure for mining frequent patterns from

benchmark data sets [33]. dblp 100 and english 100 are the FM-indices [23]
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Bit-string Total Size Density Max run- Max run-

(106 bits) of 0s length of 0s length of 1s

factor9.6 812.0 0.964 2927 1

proteins 374.9 0.900 27376 1

Z-Accidents 903.3 0.996 4,250,294 1,315

Z-Pumsb2 1661.1 0.999 1,138,613 7,774

dblp 100 680.8 0.629 5,252,073 3,115,460

english 100 784.3 0.710 2,142,856 743,383

rand dblp 680.8 0.629 42 20

rand english 784.3 0.710 50 17

Table 3.1 Characteristics of the test files

Bit-string Tunstall LZW
Enumerative code

H0 Logsum
Khodak RLE Hybrid

factor9.6 0.242 0.151 0.241 0.573 0.228 0.223 0.236

proteins 0.466 0.104 0.475 1.585 0.546 0.466 0.484

Z-Accidents 0.045 0.035 0.046 0.058 0.030 0.041 0.111

Z-Pumsb2 0.007 0.006 0.007 0.007 0.004 0.008 0.097

dblp 100 0.975 0.145 0.975 0.369 0.136 0.952 0.201

english 100 0.869 0.285 0.869 0.771 0.306 0.868 0.305

rand dblp 0.956 0.971 0.956 4.872 0.956 0.952 0.991

rand english 0.874 0.891 0.874 4.146 0.874 0.868 0.910

Table 3.2 Compression ratios of the test files.

of the text files in Pizza&Chili Corpus [24]. We use the implementation of FM-

index from fm-index++ [72]. rand dblp and rand english are generated at

random, but setting their length and density to be the same as dblp 100 and

english 100, respectively. The test bit-strings can be classified into four types

based on their properties. The bit-strings factor 9.6 and proteins are fairly

sparse but have relatively short runs of 0s and 1s. The bit-strings Z-Accidents

and Z-Pumsb2 are very sparse and have some very long runs of 0s. While

dblp 100 and english 100 are quite dense, they have long runs of 0s and

1s; obviously, their randomly generated analogues do not have such long runs.

Table 3.2 shows the compression ratio achieved by the compressors on the

test bit-strings. We also give the H0 values of the bit-strings and their Logsum
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value, defined as follows. If we divide a given bit-string X of length n into

fixed-size blocks Bi, i = 1 . . . dn/63e of size 63 and each Bi has weight m(i),

Logsum(X) is defined as 1
n

∑dn/63e
i=1 (log(

(
63
m(i)

)
) + 6). Logsum is an estimate of

the standard density-sensitive approach to compressed bitvectors used in [70]

and predecessors (referred to as RRR in what follows), based on the implemen-

tation of [58], which is optimized for low redundancy. We make the following

observations:

• There is a negligible difference in compression ratio between the Tunstall

and Khodak codes. While Tunstall/Khodak are sometimes better than

H0, the variation is small, as implied by Remark 2.

• Logsum is sometimes significantly better than H0, e.g. in dblp 100 and

english 100. The reason is that all-0 and all-1 blocks (which occur fre-

quently in these bit-strings) compress far better than would be suggested

by the overall density of these bit-strings. However, the additive over-

head of 6 bits per block means that Logsum’s performance is poor on

bit-strings such as Z-Pumsb2 and Z-Accidents, as well as the random

bit-strings.

• Among the enumerative codes, Hybrid uniformly performed the best, even

easily outperforming RLE on very sparse files. It is also often the overall

best performer, but it does perform poorly relative to LZW on the XML

bit-strings. We speculate that this is because in XML files, identical el-

ements may have similar-length text nodes under them (e.g., a zipcode

element will usually contain a text string of length 5) and LZW is able to

capture such long-range patterns.
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3.4 Practical implementation of bitvectors based on

V2F compression.

We now describe our implementation (in C++), which follows the general ap-

proach used by many existing schemes such as that of [58], but with some

modifications. The bit-vector class is (largely) independent of the compressor,

and takes as input two files: one which contains the codewords and the phrases,

and another which contains 16-bit codewords output by the compressor. The

codewords output by the compressor are read into a codeword array, and the

rest of the bit-vector has three parts: a rank/select1 index, a table for scan-

ning codewords, and finally a class that deals with rank/select operations on

individual codewords. We now describe each in detail.

rank/select1 index. For rank we divide the bit-string into rank blocks of size

B, where the i-th block consists of the bits numbered iB through (i+ 1)B − 1.

For each block, we store the position of the first codeword that intersects the

block, the weight at the start of that codeword, and the absolute position in the

bit-string where that codeword begins. The default is B = 1024, but this can

(and should) be varied according to the compressibility of the bit-string, so that

each block (on average) spans a moderate number (say 30-50) of codewords. For

select1, we use the standard “sample and scan” approach [13] used by most select

implementations including [74, 58, 34]. We choose a sampling parameter s and

divide the bit-string into select blocks, where the i-th select block begins at the

position of the is-th 1, and scan this select block to answer select1(j) queries for

j = is+ 1, . . . , (i+ 1)s−1 (Type 0 blocks). This approach does not guarantee a

good time bound if the 1s are distributed non-uniformly: in the worst case, one

may need to scan Θ(n) bit positions. To mitigate this effect, we treat long gaps

differently [13]: we choose a threshold LG, and whenever a select block is larger

than LG, we store the positions of the 1s in the block explicitly (Type 1 blocks).

Even though the number of long gaps is at most n/LG, LG must be relatively
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high as storing 1 positions is costly. In addition, if a long gap spans only a

moderate number of codewords, it is treated as a Type 0 block. For Type 0

blocks, as with rank blocks, we store codeword/phrase alignment information,

and cumulative information. We choose s satisfying m/s = Θ(n/B), so that

the number of select and rank blocks is similar (so on average both rank and

select queries scan similar numbers of codewords).

Scanning a Rank/Select Block. To perform a rank operation, or a select1

on a Type 0 block, we need to scan a rank/select block to find the codeword that

contains position i. The key loop in scanning a block is to (a) read a codeword

at a time from the compressed bit string, (b) obtain (and accumulate) the

length of its phrase and its weight, and (c) determine both the codeword where

position i lies, and the offset of position i within that codeword. This is done

by table lookup, and this gives rise to the most important constraint on the

size of M : it must comfortably fit “into cache” (as the cache is likely to contain

other data in real applications). On our machine, this suggests that ` should be

limited to 16; the table then takes 512KB5.

Long Gaps: a Theoretical View. In this paragraph, we illustrate the po-

tential asymptotic gains by using V2F codes in terms of protecting against long

gaps in the “sample and scan” approach to select1. This illustration makes a

number of mappings from current practical parameter choices to asymptotic

functions, which by its very nature involves a certain amount of guesswork: we

do not hope to convince everybody of these mappings.

We begin by assuming that most practical implementations can be viewed

asymptotically as using a block size of B = Θ((log n)2) bits and work by access-

ing O(1) random memory locations and scanning Θ(log n) consecutive memory

locations, where each location comprises Θ(log n) bits. This is justified as there

1For the current compressors, no phrase can be longer than 2` bits, so this could be reduced

to 256KB.
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is evidence that due to address translation, the cost of a random memory ac-

cess is O(log n) [48]. For simplicity we consider the case of a bit-string with

weight Θ(n/ log n), i.e. one whose compressed size is O(n log logn/ log n) bits,

and assume that we wish to achieve a redundancy of O(n/ log n) bits. A typical

sampling factor would be s = log n, so that the cost of pointers to the sampled

locations is O((m/s) log n) = O(n/ log n) bits. We would choose the long gap

parameter to be L = Θ((log n)3), so that the cost of storing the locations of

the 1s in the at most O(n/L) long gaps is O((n/L)s log n) = O(n/ log n) bits.

This makes the worst-case cost of scanning a gap which of length exactly L to

be O((log n)2). However, in (say) Tunstall or Khodak coding, a bit-string with

length L = Θ((log n)3) with weight s = O(log n) is compressed to O((log n)2)

bits or O(log n) codewords, which can be scanned in O(log n) time. (Note that

the compressed size of these L bits is more than the information-theoretic

bound for these L bits, but the Tunstall code is based on the global density

and encodes each 0 using log(n/(n −m)) = O(1/ log n) bits and each 1 using

log(n/m) = O(log log n) bits.)

Implementation of Codeword Operations. Having located the codeword

containing the answer, we perform an appropriate rank/select on its phrase.

The default implementation of rank on a codeword concatenates all phrases

into a bit-string similar to Corollary 3.1 and stores it in a bit-vector supporting

rank [34], together with two words per codeword to allow rank on an individual

phrase to be reduced to rank on the bit-vector. select on each phrase is done by

explicitly storing the positions of the 1s in the phrase in an array. We estimate

the fixed overhead to be about 4 ints per codeword, or 1MB overall. However,

a potentially major variable overhead is the size of the rank phrase bit-vector

and the phrase select array.

An obvious optimization is that for codes known to comprise runs of 0s

or 1s, indicated by an additional type field stored in the length/weight table,
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File name Khodak LZW
Enumerative code

Khodak Hybrid

factor9.6 2.15% 7.24% 2.15% 2.15%

proteins 1.26% 3.01% 1.23% 0.90%

Z-Accidents 38.36% 7.22% 38.30% 19.60%

Z-Pumsb2 668.61% 200.14% 667.98% 73.25%

dblp 100 0.16% 15.53% 0.16% 0.54%

english 100 0.17% 52.20% 0.17% 0.22%

rand dblp 0.16% 0.16% 0.16% 0.16%

rand english 0.17% 0.16% 0.17% 0.17%

Table 3.3 Total phrase length of test files (as % of compressed output), excluding

RLE codewords

we directly (and trivially) answer rank and select queries on the corresponding

phrase. Table 3.3 shows the size of the resulting rank phrase bit-vector (the

phrase select array is usually smaller). As suggested by Corollary 3.1, for Kho-

dak codes, the size of the dictionary is negligible for relatively high-density

bit-vectors. The overhead is much larger for the Z-Accidents and Z-Pumsb2,

though Hybrid codes, which have many RLE codes, have smaller dictionaries

than Khodak codes. Nevertheless, for very sparse bit-strings, it is clear that this

naive approach is inappropriate.

3.4.1 Testing Methodology

The code was written in C++, and compiled with g++ 4.8.3 with optimisation

level 3, and tested on a 64-bit machine with 64GB RAM and an Intel Xeon

E7450 6-core CPU clocked at 2.40GHz with 3 × 3 MB shared L2 caches and

12MB L3 cache, running Fedora Linux (kernel version 3.16.2). Tests were per-

formed for the memory usage, and four tests for the speed of this structure, as

follows.

Memory Test. To determine the true physical memory used by these data

structures, we initialize them and then fork a process that allocates memory
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equal to the physical memory of the machine, which will result in all other

processes’ pages to be swapped out. Putting the forked process to sleep, we

then perform rank and select operations and then measure the resident memory

of the process.

In this test, we implemented bitvector based on V2F codes in two ways -

practical implementation described in this section and implementation based

on Theorem 3.1. In the latter implementation (based on Theorem 3.1), we

implemented OD and PS using RRR and sdarray which have low redundancy

on dense and sparse bit-strings respectively. Since this implementation is not

optimized for the speed tests, we only used the practical implementation for

the other four tests.

We also measure the memory usage of our implementations by a self-reporting

procedure which checks the total size of the main data structures using size re-

porting functions. Testing results shows that the measured memory size is larger

than self-reported memory size because of the initial space used by OS and other

variables in the program. But difference between them does not exceed 10MB

in all test files.

rank1 Test. To test the speed of rank, we perform rank1(i) n times, for random

i ∈ 1..n.

Random select1 Test. Like the rank1 test, this test performs select1(i) n

times, for i selected randomly from 1..m. Although “sample-and-scan” approach

does not guarantee a good time bound, if the bit-string has long gaps, several

implementations, including RSDic, do not guard against long gaps. However,

their performance for random select tests on random bit-vectors (which typically

don’t have long gaps) is good. Vigna [74] proposed testing on pathological bit-

strings to determine whether an implementation had good worst-case select

performance. We note, however, that essentially regardless of the input bit-

30



string, a random select test will not be able to distinguish between “sample-and-

scan” bit-vectors, that deal with long gaps and those that don’t. Specifically,

observe that in any select block, the expected time taken to perform a select of

one of the 1s in this block, assuming a fairly even distribution of the 1s within

this block, is essentially proportional to its length. Since a random select accesses

each select block with equal probability, it is not hard to see that the average

running time of a random select is essentially independent of the distribution of

select block lengths; i.e., a random select test is unlikely to distinguish between

an easy bit-string and a pathological one. To address this issue, we propose a

hard select test, described below.

Hard select1 Test. We perform 219 random rank1 queries, and store the

results in an array Q of the same size (with repetitions). We then repeat the

following, n times: select a random index i in Q and perform select1(Q[i] + 1).

Doing this will select a 1 in a select block with probability proportional to

the length of the select block (since the argument of the rank query falls in a

select block with probability proportional to its length), and thus focusses on

the harder select queries in a bit-string.

Mixed Test. We initialise an array Q of size 219 to values from random

rank1(i) as above. We cycle through the array and perform select(Q[i] + 1, 1)

as above, but then do a rank1(j) for a random index j, and store the result in

Q[i]. Each such pair of rank and select operations is performend n times.

For our benchmarks, we choose the LZW code for XML bit-strings and

Hybrid code for other bit-strings as F2V coders which gives the best com-

pression ratio for their bit-strings. For comparison, we used Okanohara’s rsdic

code [61] (based on [58]), sdarray from Okanohara and Sadakane [63] and RRR

from sdsl-lite [34]. We now describe the rsdic and sdarray bitvectors briefly.
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The Compressed Rank Select Dictionary, rsdic is based on the structure pro-

posed by Navarro and Providel [58]. It divides the bit-string X into fixed-sized

blocks of length t = d(lg n)/2e. The set of all possible blocks are divided into

classes based on the number of 1’s in the block. Hence, each block can be iden-

tified by a pair (k, r), where k is the class number which is simply the weight of

the block, and r is the index of the block in a table containing the set of all pos-

sible blocks in the class, in some canonical order, say, the lexicographic order.

Thus, the representation of any block can be stored in dlg(t+1)e+
⌈
log
(
t
k

)⌉
bits.

Also, one can rebuild a block “on-the-fly” using its representation, without stor-

ing any additional precomputed tables. For the sequence of blocks constituting

the given bit-string X, it stores the first components (i.e., the weights of the

blocks) in an array K, using fixed size entries of dlg(t+1)e bits each; the second

components of all the blocks in the sequence are concatenated and stored as a

bitvector R. To enable fast access into R, it first groups every blg nc consecutive

blocks into a superblock. For every superblock, it then stores a pointer into R to

point to the starting position of the representations corresponding to its blocks.

In addition, we also store the rank up to the first bit in each superblock. To

compute the rank for a given position, we first find the superblock containing

the position, and do sequential search from the first block in the superblock.

To support the select operation, we first perform a binary search to find the

superblock containing the required position, and then scan the blocks within

the superblock. The size of R can be shown to be at most nH0(X) + o(n) bits,

and the size of K is ndlg(t+ 1)/te = o(n) bits. Thus the space usage of rsdic is

nH0(X) + o(n) bits.

Okanohara and Sadakane [63] proposed the sdarray which either stores an

sarray when the given bit-string X is sparse, or a darray when X is dense.

To describe the sarray, consider an array x[0, . . . ,m − 1] where x[i] stores the

position of the (i + 1)-th 1-bit in X. We choose a parameter t, and store the

lower z = dlg te bits of each x[i] in an array L such that L[i] = x[i] mod t. The
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upper w = blg(n/t)c bits of each x[i] is encoded in unary to obtain a bit vector,

H, of length m+ t, along with auxiliary structures to support rank and select in

O(1) time on H. The operation select on X can be supported in constant time

by finding the upper bits using the select operation on H, and accessing the

lower bits from the array L. To support rank(i) on X, we first find a smallest

element whose position is greater than di/2we · 2w using select on H and count

number of ones sequentially from here using H and L. By choosing t = 1.44m,

the total size of sarray becomes 1.92m+m(lg(n/m)) + o(m) bits.

The construction of darray first divides the given bit-string X into blocks of

L ones each, and constructs an array P [0, . . . , n/(L− 1)] such that P [i] stores

the position of iL-th one in X. These blocks are represented based on their

length. If the length of a block is more than (lg n)4, it is represented by storing

the positions of all the ones in it. Otherwise, its representation consists of the

position of every (lg n)-th one in the block, using L(lgL)/ lg n bits. To support

select(i), we first find the block that contains the answer using P . If this block is

longer than (lg n)4, we can read the answer from its representation. Otherwise,

we use the representation of the block to find a sequence of (lg n) positions, one

of which corresponds to the required answer, and scan the sequence to find the

answer. The rank operation is supported using an approach similar to that of

rsdic. By choosing L = (lg n)2, the size of darray can be limited to n+ o(n) bits,

including the bit-string X.

3.4.2 Results of Empirical Evaluation

Memory test. Practical implementation of bitvectors based on V2F used

significantly less memory than the competition in most cases (see Fig. 3.2); the

exception is sdarray with Z-Accidents and Z-Pumsb2 and RRR with rand dblp,

rand english and english 100. In the former case (for Z-Accidents and

Z-Pumsb2 files), despite the V2F compressed bit-string being significantly less

than H0, the compressed size is so small that the fixed overhead of the phrase
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rank/select structure dominates. Also for latter three files, their V2F compres-

sion ratios are close to Logsum, and the overhead in the bitvector based on

V2F implementations is more than that of RRR.

Although the redundancy in Theorem 3.1 is less than (little-oh of) the com-

pressed output size in theory, for the implementation based on Theorem 3.1,

the space overhead is 1 ∼ 3 times more than the compressed output size, in

all the test files except Z-Accidents and Z-Pumsb2 (for which the compressed

output size is significantly smaller). This is because the O(lg (n/C)) term in

the redundancy can be larger than the codeword size even though the value of

lg (n/C) in these files is 4 ∼ 6, which is less than the codeword size.

rank1 test. Generally speaking, apart from sdarray, which is not optimized for

rank, all others are comparably fast. However, sdarray does better than rsdic on

the Z-vectors, possibly because it fits in cache due to its much lower memory

usage, and the V2F bitvectors and RRR both do relatively poorly on the random

bit-strings (see Fig. 3.3).

Random select1 test. As expected, sdarray is generally the fastest, but loses

out a little on the FM-index files, as it cannot compress them. The V2F bitvector

is the second-best, and is very close to the best, in most cases, but performs

slightly worse on the random files (see Fig. 3.4). rsdic and RRR show significant

weakness on the Z-vectors and XML bit-strings respectively.

Hard select1 test. rsdic is the only bit-vector that does not guard against

long gaps, and performs very poorly (up to 20 times slower) on three of the

input files (see Fig. 3.5). V2F bitvectors do the hard select1 test at roughly the

same speed as the random select1, and thus demonstrate their resilience.

Mixed test. The V2F bitvectors are the best overall performers in this

test, since they show good performance for both the hard select test and the
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rank test (see Fig. 3.6).

3.5 Future works

In this chapter, we consider theoretical and practical implementations of com-

pressed bitvectors. There is much room for further investigation. For instance,

the naive approach to operations on individual phrases, as well as the relatively

simple approach to supporting rank/select, leads to an overhead that is rather

high for highly compressible bit-strings (admittedly, these are so sparse as to

test the boundaries of our stated aim of targeting “moderately compressible”

bit-strings). This could be overcome by adhering more closely to the theoretical

result, and making greater use of on-the-fly decoding also can be considerd.

Apart from the Tunstall/Khodak/Enumerative codes, we have not explored

V2F codes in any non-trivial way. Much more work is clearly possible along

this axis as well.
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Chapter 4

Space Efficient Data Structures
for Nearest Larger Neighbor

4.1 Introduction

Given a sequence of n elements from a totally ordered set, and a position in

the sequence, the nearest largest neighbor (NLN) query asks for the position

of an element which is closest to the query position, and is larger than the

element at the query position. More formally, given an array A[1 . . . n] of length

n containing elements from a totally ordered set, and a position i in A, we

define the query:

• NLN(i): return the index j such that A[j] > A[i] and |i − j| = min{k :

A[i + k] > A[i] or A[i − k] > A[i] for k > 0}. Ties are broken to the

left, and if there is no element greater than the query element, the query

returns the answer ∞.

In a similar way, we can the define NLV (next larger value), and PLV (previous

larger value) queries, which return the position of the nearest larger neighbor

to the right and left, respectively, of the query position. In a symmetric way,
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one can also define nearest smaller neighbor problems. In this chapter, we will

stick to the version that seeks the larger neighbors.

We exhibit connections between the NLN problem and the well-studied prob-

lem of supporting range maximum queries on a given array. Given an array A,

the query RMaxQ(i, j) (range maximum query) returns a position k between i

and j such that A[k] is a maximum element among A[i, . . . , j].

Two-dimensional NLN We also consider a natural extension of the NLN

problem to two-dimensional arrays. Here, we define the NLN of a query posi-

tion as the closest position in the two-dimensional (2D) array, in terms of the

L1 distance, that contains an element larger than the element at the query po-

sition. More formally, given a position (i, j) in A[1 . . . n][1 . . . n], NLN((i, j)) =

(i′, j′) such that A[i′, j′] > A[i, j], and |i− i′|+ |j − j′| = min{|x|+ |y| : A[i +

x, j + y] > A[i, j]} . If there is no element greater than the query element, the

query returns the answer (∞,∞).

Previous Work and Motivation These kinds of problems have attracted

much attention. In addition to the data structuring problems, the off-line vari-

ants, usually called All Nearest Larger Neighbors (or similar), which consist

in computing answers for all possible input positions, have also been studied.

For example, Berkman et al. [7] gave efficient parallel algorithms for the one-

dimensional (1D) off-line problem and showed their importance as a prepro-

cessing routine for answering range minimum queries, triangulation algorithms,

reconstructing a binary tree from its traversal orders and matching a sequence

of balanced parentheses [7].

Fischer et al. [28] considered the problem of supporting NLV and PLV, and

showed how a data structure supporting these two queries can be used in obtain-

ing entropy-bounded compressed suffix tree representation. (They considered the

min version of the problem instead of max, and named the operations NSV and
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PSV, for the next and previous smaller values, respectively.) They considered

the problem of supporting NLV and PLV in the indexing model, and obtained

the following time-space tradeoff result. For any 1 ≤ c, ` ≤ n, one can use:

O

(
n

c
lg c+ `

n lg lg n

lg n
+
n lg n

c`

)
bits of space and answer queries in O(c`) time. As given, they are unable to

go below O(n lg lg n/ lg n) space, and use more space than we do whenever

c = ω(lg n). As mentioned later, we improved the trade-off to O((n/c) lg c)

bits with O(c) time. To attain O((n/c) lg c) space for c = (lg n)Ω(1), one can

choose ` = O(1) and obtain O(c) time. For smaller values of c, the middle

term in the space usage will never dominate for reasonable values of ` (clearly,

we must always choose c ≥ 2 and ` = O(lg lg n) in this range) and it suffices

(and is optimal) to choose ` = O(lgc lg n) = O(lg lg n − lg lg c). Thus, for any

c = O(lg n), their running time for space O((n/c) lg c) is O(c(lg lg n − lg lg c)),

and our solution is better for small enough c. Jayapaul et al. [44] gave a solution

that uses O((n/c) log c+(n log n)/c2) bits and O(c) time; this space usage equals

ours for c = Ω(log n/ log log n) but is worse otherwise.

Fischer et al. [28] also gave an encoding that supports the PSV and NSV

queries in constant time, using 4n + o(n) bits. The encoding size was later

reduced to the optimal 2.54n + o(n) bits by Fischer [25]. Jayapaul et al. [44]

observe that this can be further improved to 2n + o(n) bits if all the elements

are distinct. For the case of binary sequences, the data structure version of the

NLN problem can be solved by building an auxiliary structure to support rank

and select queries on the bit-strings [69]. This uses o(n) bits of extra space, in

addition to the input array, and answers NLN (and also NLV and PLV) queries

in O(1) time.

Given a 2D array, Asano et al. [3] considered the All Nearest Larger Neigh-

bours problem which asks for computing the NLN values for all the elements

in the input array. They showed that this problem can be solved in O(n2 lg n)
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time (and more generally, for any d-dimensional array in O(nd lg n) time). To

the best of our knowledge, the data structure version of the 2D NLN problem,

in which we are interested in constructing a data structure that answers online

queries efficiently, has not been considered earlier.

Our results Our main results are as follows.

• For the case of 1D, we look at the problems in indexing model. We provide

an algorithm that matches the tradeoff for NLN [44]. For NLV, our algo-

rithm achieves the time-space product of O((n/c) lg c) (where the query

takes O(c) time) while the lower bound is Ω(n).

• For the 2D NLN problem in the encoding model, we first show that Ω(n2)

bits are necessary to encode the array to support NLN queries, even when

all the elements are distinct. We then describe an asymptotically optimal

Θ(n2)-bit encoding that answers queries in O(1) time, even when all the

elements are not distinct. One can achieve this result easily when all the

elements in the array are distinct. However, distinctness is a strong as-

sumption in these kinds of problems. For example, in the 1D case with

distinct values, NLV and PLV are obtained relatively easily from the Carte-

sian tree, giving an 2n + o(n) bit-encoding. By contrast, if we do not

assume distinctness, the optimal space is about 2.54n bits, and the data

structure achieving this bound is also more complex [25]. Also, Asano et

al. [3] remark that the off-line problem for any dimension is “simplified

considerably” if one assumes distinctness.

As we note, in the 1D case, the NLV and PLV problems are closely connected

to the RMaxQ problem. In the 1-D case, there is no asymptotic difference be-

tween the encoding complexity of RMaxQ and NLV/PLV. The 2D RMaxQ prob-

lem has received a great deal of attention lately [19, 10, 9, 8]. It is known that

any 2-D RMaxQ encoding takes Ω(n2 lg n) bits [19, 10]; thus, our Θ(n2)-bit en-
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coding for 2D NLN shows that encoding complexity of NLN is asymptotically

different from RMaxQ in the 2D encoding scenario (unlike the 1-D case).

The rest of this chapter is structured as follows. Section 4.2, we describes an

indexing for answering NLV queries on 1D arrays. In Section 4.3, we propose an

optimal time-space tradeoff encoding for answering NLN queries on 2D binary

arrays. In Section 4.4, we propose an encoding for answering NLN queries on

2D arrays which takes asymptotically optimal space and supports NLN queries

in constant time. Finally, in Section 4.5, we give some open problems.

4.2 Indexing NLV queries on 1D arrays

In this section, we give a result for the NLV problem in the indexing model on

1D array. The approach follows closely the proof of Fischer et al. [28], which

in turn adapts ideas from Jacobson’s representation of balanced parentheses

sequences [42], and is given in full for completeness.

We begin with the following lemma gives an encoding for answering NLV

queries on 1D array.

Lemma 4.1 ([28, 27, 44]). Given a 1D array A of size n, there exists a data

structure in the encoding model that uses 2n+ o(n) bits and solves NLV queries

in O(1) time.

Now we state our result in this section.

Theorem 4.1. Given a 1D array A of size n, there exists a data structure which

supports NLV queries in the indexing model in O(c) time using O((n/c) lg c) bits

for any parameter 2 ≤ c ≤ n.

Proof. Divide A into n/c blocks of size c. For any value 1 ≤ i ≤ n, if i and

NLV(i) are in the same block, say that i is a near value, otherwise say that i is

a far value. Consider a block B and suppose that one or more of its far values

have an NLV in block B′, for an arbitrary block B′. Then the leftmost far value
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in B whose NLV is in B′ is called a pioneer, and its NLV is called its match. It

is known that there are O(n/c) pioneers in A [42].

We maintain a bit-vector V in which the i-th bit is a 1 if A[i] is a pioneer

or a match of one, and 0 otherwise. This bit-vector has length n and con-

tains O(n/c) 1’s, so by Lemma 2.4, we can store it in O((n/c) lg c) bits and

perform rank/select queries on it in O(c) time. Next, we take the sequence

Sp consisting of all pioneers and their matches. This sequence is of length

O(n/c). We represent this sequence using Lemma 4.1 using O(n/c) bits, to

support NLV queries in O(1) time. We claim that if k = NLV(j) in Sp, then

select1(V, k) = NLV(select1(V, j)) in A. Suppose that this claim is not true.

This means there is a pioneer ip such that NLV(ip) is the value between ip and

the match of ip. It cannot be the case that ip and NLV(ip) are in the same block,

since ip is a far value. If ip and NLV(ip) are in different blocks, then NLV(ip) is

the match of ip. So the claim is true.

To answer the query NLV(i), we first check to see if the answer is in the

same block as i taking O(c) time. If so, we are done. Else, (assuming wlog that

A[i] is not a pioneer value) we find the first pioneer pi before position i by doing

rank/select on V . As A[i] < A[pi], NLV(i) is less than or equal to the match of pi.

Since i is the far value in this case, NLV(i) and NLV(pi) are in the same block.

We find the corresponding position of NLV(pi) in Sp using the NLV encoding

of Sp and find the NLV(pi) using rank/select on V . Finally we scan left from

NLV(pi) to find NLV(i). The overall time taken to answer the query is O(c).

4.3 Encoding NLN queries on 2D binary arrays

In this section, we first give an optimal encoding for NLN, and using this obtain

an time-space trade-off for an NLN index for a 2D binary array.

Theorem 4.2. There is a data structure that takes O(n2) bits for any binary

array A[1 . . . n][1 . . . n], and supports NLN queries in O(1) time.
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Proof. Given a query position p, we compute NLN(p) by computing the posi-

tions of the nearest larger values in all four quadrants induced by a vertical

and a horizontal line passing through p, and then returning the closest of these

four positions as the answer (the point p is included in all the four quadrants).

Thus, it is enough to describe a structure that supports finding the position of

the nearest larger value in (say) the upper-right quadrant; in the rest of this

proof, we use NLNNE to denote this.

Given a position p = (i, j), let q = (i′, j′) be its NLNNE if there is a 1 in

the upper-right quadrant of p. For each position (i, j), we give a label from the

alphabet {R,C,D,O,Z}, depending on the answer for the query NLNNE , as

follows. The position (i, j) is labeled with:

• O (“One”) if A[p] = 1 (the value at the position is 1);

• R (“Row”) if i = i′ (its answer is in the same row);

• C (“Column”) if j = j′ (its answer is in the same column);

• D (“Diagonal”) if i < i′ and j < j′ (its answer is not in the same row or

column); and

• Z (“Zero”) if A[p] = 0 and also there is no 1 in the upper-right quadrant

of p.

Now, given a query position p, if the position p is labeled with O or Z,

then we conclude that NLNNE does not exist (in this quadrant). Otherwise,

if the label is R, we can find its answer by following the positions (i, j + k),

for k = 1, 2, . . . (i.e., elements in the same row) till we reach a position with

label O, and return that position as the answer. Also, one can easily show that

all the intermediate positions cannot have label O. Analogously, if the label is

C, then we follow the positions in the same column until we reach a position

with label O and return that position. Finally, if the label is D, then we first

follow the positions (i+ k, j+ k), for k = 1, 2, . . . till we reach the first position
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(i+ `, j+ `) with a label different from D. The label of position (i+ `, j+ `) can

be O, R or C. If it is O, then we return that position as the answer. In the other

two cases, we can find the answer by following the row or column as described

above. The data structure simply stores the labels of all positions in the array

(for each quadrant). In addition, to support queries faster, we build rank/select

structures (over constant alphabet strings) for the encoding of each row, each

column and each diagonal. By Lemma 2.5, the total space usage is clearly O(n2)

bits. Now, queries can be supported in constant time by using rank/select to

jump to the appropriate positions as described in the above procedures.

Now we describe an index for a given 2D binary array, in the bit-probe

model, that uses O(n2/c) bits and supports NLN queries in O(c) time. Since

the indexing trade-off lower bound for the 1D case described in Theorem 4.2 also

holds for higher dimensions, it follows that the achieved trade-off is optimal.

We begin by introducing some notation that will be used later. Suppose we

divide an n×n array A into blocks of size c× c, for 1 ≤ c ≤ n, and divide each

block into c sub-blocks of size
√
c×
√
c. We define an (i, j)-block as the sub-array

A[(i− 1)c+ 1 . . . ic][(j − 1)c . . . jc] and an (i, j, k, l)-sub-block as the sub-array

A[(i− 1)c+ (k− 1)
√
c . . . (i− 1)c+ k

√
c][(j − 1)c+ (l− 1)

√
c . . . (j − 1)c+ l

√
c].

For each (i, j)-block, we define eight regions, consisting of sets of blocks (some

of which can be empty) as follows: the region

N(i, j) consists of all (i, l)-blocks with l > j;

S(i, j) consists of all (i, l)-blocks with l < j;

E(i, j) contains all (k, j)-blocks with k > i;

W (i, j) contains all (k, j)-blocks with k < i;

NE(i, j) contains all (k, l)-blocks with k > i and l > j;

NW (i, j) contains all (k, l)-blocks with k < i and l > j;

SE(i, j) contains all (k, l)-blocks with k > i and l < j; and

SW (i, j) contains all (k, l)-blocks with k < i and l < j.
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Similarly, for each (i, j, k, l)-sub-block, we also define the regions Ni,j(k, l),

Si,j(k, l), Ei,j(k, l), Wi,j(k, l), NEi,j(k, l), NWi,j(k, l), SEi,j(k, l) and SWi,j(k, l)

in the same way.

Theorem 4.3. Given a binary array A[1 . . . n][1 . . . n] one can construct an

index of size O(n2/c) bits to support NLN queries in optimal O(c) time, for any

parameter c, where 1 ≤ c ≤ n.

Proof. We divide the array A into blocks and sub-blocks as mentioned earlier.

We construct an n/c × n/c array A′[1 . . . n/c][1 . . . n/c] such that A′[i][j] = 1

if there exists at least a single 1 in the (i, j)-block, and 0 otherwise. We

also construct another n/
√
c× n/

√
c array A′′[1 . . . n/

√
c][1 . . . n/

√
c] such that

A′′[i][j] = 1 if there exists at least a single 1 in the (bi/
√
cc, bj/

√
cc, i −

bi/
√
cc
√
c, j − bj/

√
cc
√
c)-sub-block, and 0 otherwise .

Suppose the query q is in the (i, j, k, l)-sub-block. If A′′[i
√
c+k, j

√
c+l] = 1,

scanning O(1) sub-blocks is enough to find the NLN of q, and this takes O(c)

time.

Now, consider the case when A′′[i
√
c + k, j

√
c + l] = 0 but A′[i, j] = 1. In

this case, it is clear that we can identify O(c) sub-blocks in which the answer

may lie – namely all the sub-blocks in its block, and the eight neighbouring

blocks. We find the potential answer in each of the eight directions (E, W, N,

S, NE, NW, SE, and SW), and then compare their positions to find the actual

answer. To find the answer in E direction, we scan the bits in A′′ that are

to the right of the current sub-block, till we find a 1, say, in sub-block s. We

then scan sub-block s, and the sub-block immediately to its right, to find the

potential answer in this direction. Similarly, we can find the potential answers

in the W, S, and N directions. Next, we find the nearest 1 to the query in the

NEi,j(k, l) region. This element is the nearest 1 from the bottom-left corner

of (i, j, k + 1, l + 1)-sub-block. The nearest 1 from the bottom-left corner of

(a, b, c, d)-sub-block in the NEa,b(c, d) region is same as the the nearest 1 from
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the bottom-left corners of one of these four sub-blocks: (1) (a, b, c, d)-sub-block

(2) (a, b, c+1, d)-sub-block, (3) (a, b, c, d+1)-sub-block, or (4) (a, b, c+1, d+1)-

sub-block. Therefore we encode each sub-blocks using 2 bits indicating the case

it belongs to ((1), (2), (3) or (4)), which takes a total of O(n2/c) bits. Now,

to find the answer in the NE direction, we scan O(c) sub-blocks to find the

sub-block which contains the nearest 1 from q in NE(i, j, k, l). Once we find

the corresponding sub-block, finding the nearest 1 from the bottom-left corner

in the sub-block takes O(c) time. We can find the nearest 1 in the NWij(k, l),

SEij(k, l) and SWij(k, l) regions in the same way. Then the NLN of q is the

closest one among these eight candidates.

Finally, consider the case when A′[i, j] = 0. By storing the data structure of

Theorem 4.2 for the array A′ using O(n2/c2) bits, we can find the nearest blocks

in each direction to the query position which contains a 1, in O(1) time. Let one

of these blocks be the (i′, j′)-block, let ` be the L1 distance from (i, j) to (i′, j′)

in A′. The value `c is an estimate (within an additive factor of 2c) for the L1

distance from q to its NLN. Assume, wlog, that (i′, j′) is in the NE(i, j) region

of A′. We first describe how to find the nearest 1 in the NE(i, j) region. Define

d(i, j) as the sequence of blocks in the top-left to the bottom-right diagonal that

contains the (i, j)-block (i.e., all the blocks (i′, j′) in A such that i′+ j′ = i+ j),

where the blocks are ordered in the increasing order of their i values. We store

a 1-D array D(i,j) of size equal to |d(i, j)| ≤ n/c, D(i,j)[m] is the distance from

the bottom-left element of the m-th block in the sequence d(i, j) to the nearest

1 in that block, and 2c+ 1 if there is no 1 in that block. Note that each block

belongs to exactly one D(i,j), and hence the total size of all these D(i,j) arrays

is O((n2/c2) lg c) bits. In addition, we also construct a linear-bit RMQ (range

minimum query) data structure for each D(i,j) (using a total of O(n2/c2) bits),

so that RMQ queries can be supported in O(1) time [27]. Now, we find the

two potential blocks in the NE(i, j) region that may have the nearest 1 from

q by performing RMQs on D(i′,j′) and D(i′,j′+1) among all the blocks that are
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(2,5) (3,5) 

(3,4) (4,4) 

(4,3) (5,3) 

(2,2) (5,2) 

Figure 4.1 Suppose the nearest block that contains a 1 from the (2, 2)-block is

the (4, 3)-block. Then d(4, 3) contains the blocks (2, 5), (3, 4), (4, 3) and (5, 2),

in that order. We can find the nearest 1 in NE(2,2) using RMQ(2, 3) on D(4,3)

and RMQ(1, 3) on D(4,4).

contained in the NE(i, j) region (it is easy to see that they form a consecutive

range). We then choose the closer one between these two from q. (Figure 4.1

shows an example.) Note that if (i′, j′) is in a different region from NE(i, j),

then we may not find any potential answer in NE(i, j), as all the ‘relevant’

blocks in d(i′, j′) and d(i′, j′ + 1) may be empty. We can find the nearest 1 in

NW (i, j), SE(i, j) and SW (i, j) in a similar way.

Next, we describe how to find the nearest 1 in the N(i, j) region (finding

the nearest 1 in the S(i, j), E(i, j) and W (i, j) regions is analogous). For each

position in the bottom row of an (a, b)-block with A′[a, b] = 1, we store two

bits indicating whether its answer within the block is in (1) the same column

(C), or (2) some column to the left (L), or (3) some column to the right (R).

The query algorithm simply follows the L or R pointers till it reaches a C,

and then scans the column upwards till it finds a 1 in that column. This takes

O(c × n2/c2) = O(n2/c) bits over all the blocks. This encoding enables us to

find the closest 1 within the block from any column in the bottom row of that

block in O(c) time. Since ` is the L1 distance between (i, j) and (i′, j′) in A′,
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we know that all the blocks A[i, j − r], for 1 ≤ r < ` are empty (otherwise, we

have a closer non-empty block than (i′, j′)). Let k be the column corresponding

to the query position q. We claim that the closest 1 to q in the N(i, j) region

is closest 1 to the bottom row and column k of either the (i, j + `)-block or

the (i, j + ` + 1)-block. These can be computed in O(c) time using the above

encoding, and then compared to find the required answer. Finally we can find

NLN of q by comparing these eight candidate answers.

The optimality of the trade-off follows from the lower bound of the following

lemma.

Lemma 4.2 ([44]). Given a 1D array of size n, any data structure which stores

O(n/c) bits and answers NLV (or NLN) queries in the indexing model, requires

at least Ω(c) query time, for any 1 ≤ c ≤ n.

4.4 Encoding NLN queries for general 2D arrays

Consider an n × n 2D array A[1 . . . n][1 . . . n]. Given two positions (i, j) and

(i′, j′) in A, we define dist((i, j), (i′j′)) = |i − i′| + |j − j′|. A trivial solution

to the NLN problem in 2D array is to store NLN((i, j)), for 1 ≤ i, j ≤ n. This

requires O(n2 lg n) bits, and supports queries in O(1) time. In the following, we

obtain improved results for the 2D NLN in the encoding and indexing models,

and also describe some trade-off results.

4.4.1 2D NLN in the encoding model – distinct case

When there is no restriction on the elements of the array, one can show an n2-

bit lower bound for NLN encoding (described in Section 4.4.2). Using a simple

encoding method, one can prove that the same asymptotic lower bound applies

even when all the elements of the array are distinct to obtain the following.
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Figure 4.2 The positions of useful and dummy elements in a 6 × 6 array. In

this example, the dummy elements (X’s) are in the range [1..24] and the useful

elements (O’s) are in the range [25..26].

Theorem 4.4. Any data structure which supports NLN queries on an n × n

array A[1 . . . n][1 . . . n] in encoding model requires at least n2/6 bits, even when

all the elements in A are distinct.

Proof. Without loss of generality, we assume that n is a multiple of 6. We first

define a set A of 2n
2/6 2D arrays, and then show that the answers to the NLN

queries in any array A ∈ A can be used to distinguish A from A \ {A}. This

proves that encoding for an arbitrary array in A requires at least lg(|A|) = n2/6

bits in the worst case.

Each array A ∈ A contains elements from the set {1, 2, . . . , n2}, where each

element appears in the array exactly once. To describe the arrays in A, we par-

tition the elements of each array into useful and dummy elements. The positions

(3i + 1, 2j) and (3i + 2, 2j), for 0 ≤ i < n/3 and 1 ≤ j ≤ n/2, contain use-

ful elements, and the remaining 2n2/3 positions contain the dummy elements

(see Figure 4.2). We assign the elements from 1 to 2n2/3 to the positions cor-

responding to the dummy elements, in row-major order. Also, we first assign

the elements from 2n2/3 + 1 to n2 to the positions corresponding to the useful
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elements, in row-major order. Let A0 denote this array. We now obtain the

2n
2/6 arrays in A by repeatedly taking a pair of adjacent useful elements and

flipping them.

Consider any two arrays A and A′ in A. We know that for at least one pair

of adjacent positions (3i + 1, 2j) and (3i + 2, 2j), for some 0 ≤ i < n/3 and

1 ≤ j ≤ n/2, we will have A[3i + 1, 2j] < A[3i + 2, 2j] while A′[3i + 1, 2j] >

A′[3i+2, 2j] or vice versa, and hence their NLN answers are distinct. Therefore,

given the answers to the NLN queries of all adjacent pairs of useful elements,

we can distinguish the array A from A \ {A}.

We now obtain an asymptotically optimal upper bound for 2D NLN encoding

for the distinct case. The proof is based on ideas from Asano and Kirkpatrick [4].

Lemma 4.3. A 2D array A[1 . . . n][1 . . . n] can be encoded using O(n2) bits to

support NLN queries, provided all elements are distinct.

Proof. The main idea is to divide the array recursively into blocks of geometri-

cally increasing size, and store the NLN values of all elements, except the largest

element and the elements whose answers are stored at a previous level, in each

block explicitly. The following argument shows that this requires O(n2) bits

overall.

In the first level, we divide A into n2/4 blocks of size 2 × 2 each. Except

for the largest element in each 2 × 2 block, the distance of NLN answer for

the other three elements are bounded by 2. In general, at level k, we divide A

into n2/4k blocks of size 2k × 2k each. In each of these 2k × 2k-sized blocks,

there are four elements left for which we need to store the answer to their

NLN queries. For three of these four elements, which do not correspond to

the maximum value in the block, we store their answers at level k. Since the

distance to the NLN answer for these three elements is bounded by 2k+2, we

can store these answers using O(k) bits. Thus the total space usage is bounded

by
∑lgn

k=1(3n2/4k) ∗O(k) = O(n2) bits.
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We now describe another O(n2)-bit encoding for the 2D NLN problem that

supports queries in constant time when the elements are distinct.

Theorem 4.5. A 2D array A[1 . . . n][1 . . . n] can be encoded using O(n2) bits

to support NLN queries in O(1) time, provided all elements are distinct.

Proof. The encoding is a small variant of the encoding described in the proof

of Lemma 4.3. For each position in A, in some canonical order (say, row-major

order), we write down the relative position (i.e., the distance from the position

to its answer in horizontal and vertical directions) of its NLN answer. We use a

variable-length encoding, such as γ-code or δ-code [21], to write these answers.

The proof of Lemma 4.3 implies that the sum of the lengths of all these answers

is O(n2). We also store an indexable bit vector [69] indicating the starting

positions of each code. This enables us to find the position where the answer

to a given query starts and ends, in constant time.

4.4.2 2D NLN in the encoding model – general case

It is easy to see that for any two distinct n×n binary arrays can be distinguished

by looking at the NLN answers at every positions. In other words, any two

distinct binary arrays must have distinct NLN encodings. This shows an n2-

bit lower bound for NLN encoding in the general case, In this section, we give

an encoding which supports NLN queries in a 2D array with O(n2) bits in the

general case. Before starting the 2D case, we consider the 1D case first. Jayapaul

et al. [44] showed how to encode an array A with n distinct elements using O(n)

bits to answer NLN queries. We give an alternate proof, that is similar to the

proof of Lemma 4.3.

Lemma 4.4. There exists an encoding of an array A[1 . . . n] that uses O(n)

bits while supporting NLN queries, provided all elements are distinct.

Proof. We write down the sequence d(1), d(2), . . . , d(n) explicitly, where d(i) =

n if A[i] is the maximum element of A, and d(i) = |i − NLN(i)| otherwise,
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for 1 ≤ i ≤ n, together with a sequence of n bits that indicate if i < NLN(i)

or i > NLN(i). Thus, it is enough to show that
∑n

i=1 lg d(i) = O(n). Since

all the elements in A are distinct, there are at most n/2k elements for which

d(i) ≥ 2k, for any 1 ≤ k ≤ lg n. From this observation, it follows that there

are O(n/2k) elements for which 2k ≤ d(i) < 2k+1, and hence
∑n

i=1 lg d(i) ≤∑lgn
k=1(O(n/2k) ·O(k)) = O(n).

We now describe a simple modification of the above encoding that can be

used to support NLN queries even when the elements are not distinct. Queries

are not supported in constant time with this encoding. Note that one can use

the encoding of Fischer [25] to obtain a linear-bit (in fact, a 2.54n-bit) encoding

which supports NLN queries in constant time. However, in contrast to Fischer’s

encoding, the new approach stores explict pointers from one array position to

another, and we use the space cost of these explicit pointers to upper bound

the space usage of the pointers stored in the proof of Theorem 4.6.

Instead of encoding the NLN of a position i as in Lemma 4.4, we encode

the distance between i and the nearest value which is ≥ A[i] in the same

direction as NLN(i). Formally, we define dl(i) = i − (maxj<i,A[j]≥A[i] j) and

dr(i) = (minj>i,A[j]≥A[i] j) − i and d(i) = dl(i) if NLN(i) < i and d(i) = dr(i)

otherwise. For each i, we encode d(i) (using a variable-length encoding) and

store a bit indicating whether d(i) = dr(i) or d(i) = dl(i), and view this as a

“pointer” to j = i + dr(i) or j = i − dl(i) respectively. Finally, we also store a

bit indicating whether or not A[i] = A[j]. With this encoding, NLN(i) can be

easily found by following the d(·) “pointers” from i until we reach a position

that is greater than A[i]. We refer to this encoding of a 1D array as encoding1D.
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The following lemma shows that this encoding uses O(n) bits1:

Lemma 4.5. For a 1D array A[1 . . . n], encoding1D takes O(n) bits.

Proof. For A, encoding1D consists of two bit strings of length O(n), and a

sequence of variable-length encodings storing the values d(1), d(2), . . . , d(n). Let

D =
∑n

i=1 lg d(i). To prove the lemma, it is enough to show that D = O(n).

We first create a new array A′ with all distinct elements, and bound the

value D using the size of the NLN encoding of A′. Consider the array A′[1 . . . n]

of size n, where A′[i] = A[i]+ εi if NLN(i) > i and A′[i] = A[i]− εi if NLN(i) < i

for some ε > 0. If we set ε small enough then if A[i] > A[j] for some i, j then

A′[i] > A′[j] as well, but all elements in A′ are distinct. So if we define d′(i), NLN′

and D′ on A′ analogously to d(i), NLN, and D on A, D′ =
∑n

i=1 lg d′(i) = O(n)

by Lemma 4.4. We now show that D ≤ 2D′.

For a subset S of U = {1, 2, . . . , n}, we define DS as
∑

i∈S lg d(i), (and

D′S analogously). To prove that D ≤ 2D′, we partition the set U into disjoint

subsets, and show that DS ≤ 2D′S for every subset S in the partition. To define

the partitions of U , we first extend the array A such that A[0] = A[n+ 1] =∞.

Now, each subset in the partition of U contains a set of indices i1, . . . ir−1 where

0 ≤ i0 < i1 < · · · < ir ≤ n + 1 with r > 1 is a maximal sequence of indices

such that A[i0] > A[i1], A[ir−1] < A[ir], A[i1] = A[i2] = · · · = A[ir−1] and for

all i0 < j < ir, A[j] < A[i1] if j /∈ {i1, . . . , ir−1}. It is easy to show that this

collection of subsets form a partition of U , i.e., they are pairwise disjoint and

cover U .

Let ik be the index such that NLN(il) = i0 for all 0 < l ≤ k and NLN(il) = ir

for all k < l ≤ r − 1. Then by the definition of A′, for all k < l ≤ r − 1,

1Note that this encoding cannot be obtained by simply breaking ties among equal elements

in some arbitrary fashion and applying Lemma 4.4. For example, if A[i] = A[i+1] and A[i− t]

and A[i + 1 + t] for some t > 1 are the nearest larger values, then in the current encoding,

neither A[i] nor A[i + 1] would point to one another. If we break ties then either A[i] points

to A[i + 1] or A[i + 1] points to A[i].
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NLN′(il) = il+1 so d(il) = d′(il). For the elements to the left of ik, we can

consider the case that there exist 0 < m ≤ k such that NLN′(il) = il−1 for all

0 < l ≤ m− 1 and NLN′(il) = ik+1 for m ≤ l ≤ k. Then:

DS −D′S =

r−1∑
j=1

lg d(ij)−
r−1∑
j=1

lg d′(ij)

=

m−1∑
j=1

lg d(ij) +
k∑

j=m

lg(ij − ij−1) +
r−1∑
j=k+1

lg d(ij)


−

m−1∑
j=1

lg d′(ij) +

k∑
j=m

lg(ik+1 − ij) +

r−1∑
j=k+1

lg d′(ij)


=

k∑
j=m

lg(ij − ij−1)−
k∑

j=m

lg(ik+1 − ij)

≤ lg(im − im−1)− lg(ik+1 − ik)

(∵ ij − ij−1 ≤ ik+1 − ij−1 for all m ≤ j ≤ k)

≤ lg(im − im−1) ≤ lg(im − i0) ≤ lg(ir − im) (∵ NLN(im) = i0)

≤ lg(ik+1 − im) +

r−1∑
j=k+1

lg(ij+1 − ij) (by the concavity of lg function)

≤
r−1∑
j=1

lg d′(ij) = D′S

We now extend this encoding to encode NLNs for a 2D arrayA[1 . . . n][1 . . . n]

that answers NLN queries. We call this encoding scheme encoding2D. We then

show that encoding2D takes O(n2) bits (in Theorem 4.6).

In encoding2D, each (i, j) “points to” another location (i′, j′), such that

A[i′, j′] ≥ A[i, j], as follows: |i − i′| is encoded using O(1 + lg |i′ − i|) (the row

cost of the pointer) and |j− j′| is coded using O(1+lg |j′ − j|) bits (the column

cost of the pointer), the direction from (i, j) to (i′, j′) is given using two bits,

and finally one extra bit indicates whether or not A[i′, j′] > A[i, j]. Now we

explain how to specify the pointers. Pick an element A[i, j] and without loss
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of generality assume that NLN(i, j) = (i∗, j∗) with i∗ ≥ i, j∗ ≥ j. We choose

pointers as follows:

Case (1) Let i′ > i be the smallest value such that i′ ≤ i∗ and A[i, j] = A[i′, j].

If i′ exists, then we store a pointer from (i, j) to (i′, j) and set the extra bit

to 0.

Case (2) If there exists no i′ such that A[i, j] = A[i′, j]. for i < i′ ≤ i∗, then

let j′ > j be the smallest value such that j′ ≤ j∗ and A[i, j] = A[i, j′]. If j′

exists, we store a pointer from (i, j) to (i, j′) and set the extra bit to 0.

Case (3) If there exists no i′ such that A[i, j] = A[i′, j]. for i < i′ ≤ i∗, and

also if there exists no j′ such that A[i, j] = A[i, j′]. for j < j′ ≤ j∗, then we

store a pointer from (i, j) to (i∗, j∗) and set the extra bit to 1.

To obtain NLN(i, j), we follow pointers starting from (i, j) until we follow

one with the extra bit set to 1, and return the position pointed to by this

pointer.

We now show that the above procedure computes NLN(i, j), for all 1 ≤ i, j ≤

n. The proof is by induction on k, the distance between (i, j) and NLN(i, j) =

(i∗, j∗). The base case k = 1 follows directly from case 3) above.

Assume the induction hypothesis holds for all NLNs at distance ≤ k, and

choose an (i, j) such that NLN(i, j) = (i∗, j∗) and dist((i, j), (i∗, j∗)) = k + 1.

Assume, without loss of generality, that the pointer from (i, j) has its extra

bit set to 0 (otherwise, the induction step is trivial) and it points to (i′, j)

with i′ > i. Assume that NLN(i′, j) = (x, y) 6= (i∗, j∗), and dist((x, y), (i, j))

is greater than dist((x, y), (i∗, j∗)). Since A[i′, j] = A[i, j], dist((i′, j), (x, y)) ≤

dist((i′, j), (i∗, j∗)) < dist((i, j), (i∗, j∗)) = k + 1. By the induction hypothesis,

following pointers from (i′, j) leads to (x, y). Now:

dist((i, j), (x, y)) = dist((i, j), (i′, j)) + dist((i′, j), (x, y))

≤ dist((i, j), (i′, j)) + dist((i′, j), (i∗, j∗)) (∵ NLN(i′, j) = (x, y))

= dist((i, j), (i∗, j∗)),
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contradicting the assumption that dist((x, y), (i, j)) > dist((x, y), (i∗, j∗)).

Theorem 4.6. There exists an encoding of a 2D array A[1 . . . n][1 . . . n] that

supports NLN queries, using O(n2) bits.

Proof. We show that encoding2D, described earlier, takes O(n2) bits. To upper

bound the space, we first describe an encoding, called encodinggrid as follows.

We encode each column and each row of A using encoding1D, using O(n2) bits.

These pointers are called grid pointers. However, the maximal values in each

row and column do not have pointers by Lemma 4.5, as their NLN is not defined.

So, in addition, for each row r which has (locally) maximum values in columns

i1 < . . . < ik, we store extra pointers from (ij , r) to (ij+1, r) and vice versa for

j = 0, . . . , k, taking i0 = 0 and ik+1 = n + 1. The space taken by these extra

pointers is O(lg i1 +
∑k−1

j=2 lg (ij − ij−1) + lg (n+ 1− ik)) = O(n) bits for row r.

We do this for all rows and columns, at a cost of O(n2) bits overall.

Although encodinggrid does not encode NLN, we use it to upper bound the

space used by encoding2D. Let a grid pointer and a 2D pointer refer to a pointer

in encodinggrid and encoding2D respectively. For any 2D pointer, the cost of

encoding it can be upper-bounded by the cost of encoding (one or more) grid

pointers. Each grid pointer will be used O(1) times this way. Below, we show

how to upper bound all Case (2) 2D pointers and the column cost of all Case

(3) 2D pointers by grid pointers in rows, using each grid pointer at most thrice.

The costs of Case (1) 2D pointers and the column cost of Case (3) 2D pointers

can similarly be bounded by the costs of grid pointers in the columns. This will

prove the theorem.

We consider a fixed location (i, j), and assume wlog that NLN(i, j) = (i∗, j∗)

with i∗ ≥ i and j∗ > j (if j∗ = j then the pointer from (i, j) will have column

distance 0 and there is nothing to bound). There are four cases to consider

(see Figure 4.3).

Case (a) Let j′ > j be the minimum index such that A[i, j′] ≥ A[i, j]. Suppose
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Case (b.2) 

Figure 4.3 Pointers in encoding2D and encodinggrid

that j′ exists and there is a grid pointer from (i, j) to (i, j′) or vice versa.

There are two sub-cases:

(a.1) The 2D pointer from (i, j) points to (i, j′). We use the cost of this

grid pointer to upper bound the cost of the 2D pointer. Observe that

if there is a 2D pointer from (i, j) to (i, j′), there cannot be a 2D

pointer from (i, j′) to (i, j), so the grid pointer is used for upper-

bounding only once in this case.

(a.2) The 2D pointer from (i, j) points to (i∗, j∗). Observe that j′ ≥

j∗, since otherwise either (i, j′) is a larger value that is closer than

(i∗, j∗), a contradiction, or we would have a Case (2) 2D pointer

from (i, j) to (i, j′). The pointer between (i, j) and (i, j′) will only

be charged twice for upper-bounding in this case.

Case (b) Either (i) A[i, j] > A[i, j′] for all j′ > j, or (ii) there exists a j′ > j
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such that A[i, j] ≤ A[i, j′], and there are no grid pointers either from (i, j)

to (i, j′) or vice versa. As before, we consider two sub-cases.

(b.1) Suppose the 2D pointer from (i, j) points to (i, j′), where j′ > j is

the smallest index such that A[i, j′] ≥ A[i, j]. If A[i, j] is a maximal

value in row i, the cost of the pointer is upper-bounded by the extra

pointer between (i, j) and (i, j′). If not, the absence of grid pointers

between (i, j) and (i, j′) implies that the NLN of (i, j) in the i-th

row is (i, j0) for some j0 < j. Note that |j0 − j| ≥ dist((i, j), (i∗, j∗))

(otherwise NLN(i, j) would be (i, j0)). The path p between (i, j) and

(i, j0) in encodinggrid may comprise a number of grid edges. We

can bound the cost of the 2D edge from (i, j) to (i, j′) by the total

cost of the grid edges on the path p consisting of the elements j =

jl, jl−1, . . . , j1, j0 (omitting the row number for brevity).2 Note that

for any 0 < k < l, no 2D pointer from (i, jk) can end up in Case (b),

so this path can only be used twice to upper-bound the cost of a 2D

edge: once from (i, j) and once (possibly) from (i, j0).

(b.2) Suppose the 2D pointer from (i, j) points to (i∗, j∗). If A[i, j] is a

maximal value in row i, then if j′ exists, then it must be the case

that j′ > j∗, and the row cost of the 2D pointer is bounded by the

extra pointer between (i, j) and (i, j′). On the other hand, if j′ does

not exist, then the row cost of the 2D pointer is bounded by the

extra pointer from (i, j) to (i, n+ 1).

If A[i, j] is not maximal, then arguing as above, we see that the NLN

of (i, j) in the i-th row is (i, j0) for some j0 < j, that |j0−j| ≥ |j−j∗|,

and so we can upper-bound the row cost of this 2D pointer by the

total cost of all the grid pointers between j and j0, and each of these

1Since the log function is concave, the sum of the costs of the path p is no less than the

cost of a single edge from (i, j) to (i, j0).
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grid pointers is used at most twice (once each for the pointers out of

(i, j) and (i, j0) in Case (b) to upper bound a 2D pointer.

We now describe an O(n2)-bit encoding that supports NLN queries in con-

stant time on a 2D array.

Theorem 4.7. There exists an encoding of a 2D array A[1 . . . n][1 . . . n] that

uses O(n2) bits while supporting NLN queries in O(1) time.

Proof. We first divide A into blocks of size b × b, and divide each block into

sub-blocks of size s × s. For each position (i, j) in the array, we say that the

four locations (i+1, j), (i−1, j), (i, j+1) and (i, j−1) (even if they are outside

the array range) are its neighbors. We say that a location (i, j) is a boundary

location with respect to a block (sub-block) if one of its neighbors is not in the

same block (sub-block). Note that there are O(b) (O(s)) boundary elements

in each block (sub-block). For each block, we store a b × b bitmap of size b2

bits, such that the (i, j)-th bit, for 1 ≤ i, j ≤ b, stores a 1 if the corresponding

element in that position is a maximum element in that block, and stores a 0

otherwise. We also store similar bitmaps for each sub-block, using s2 bits for

each sub-block.

For each boundary position (i, j) in a block B, we store the nearest position

to (i, j) whose value is larger than the maximum element in B. This takes

O(b lg n) bits for each block. Also, for a sub-block B′ in a block B, if B′ does

not contain the maximum element in B, then for each boundary position (i, j)

in B′, we store the nearest position to (i, j) whose value is larger than the

maximum element in B′. Since the distance to this position is at most 2b, it

takes O(s lg b) bits for each sub-block to store this information.

Finally, for a position (i, j) in a sub-block B′, if A[i, j] is not the maximum

element in B′, then its NLN always exists in the sub-array A′ of A, of size
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5s × 5s such that B′ = A′[2s + 1, . . . , 3s][2s + 1, . . . , 3s] (i.e., B′ is the center

sub-block in the 5s× 5s sub-array A′). Theorem 4.6 shows that this sub-array

A′ can be encoded using λs2 bits, for some positive constant λ, to support NLN

queries. For each sub-block B′ in A, we store the encoding (of Theorem 4.6) of

the corresponding sub-array A′. Over all the sub-blocks, this takes O(n2) bits.

In addition, we construct a precomputed table which we store as a two-

dimensional array. The first dimension is indexed by all possible bit-strings of

length λs2, and the second dimension is indexed by all possible positions in a

sub-block. The (e, p)-th entry in this array stores the NLN of the position p in

sub-block B′ within the 5s × 5s sub-array A′ (with B as its center sub-block)

whose encoding is the bit string e.

We now describe the query algorithm. Consider the query position (i, j),

and let B (B′) be the block (sub-block) that contains (i, j). We first check

whether (i, j) is a position of the maximal element in B′ in O(1) time using

the bitmap defined above. If A[i, j] is not a maximal element in B′, then we

use the precomputed table to find the answer, in O(1) time. If A[i, j] is the

maximum element in B′ but not in B, then we can answer the query in O(1)

time by comparing the distance between (i, j) and stored positions on the four

boundary positions in B′ which have the same row or the column positions as

(i, j) and choose the nearest one. If A[i, j] is a maximal element in B, we can

find its NLN in O(1) time by a similar procedure as above case, by looking at

the four boundary positions in B with same row or column index as (i, j). Thus,

in all cases, the queries can be supported in O(1) time. The overall space usage

is O(n2/b2 × (b2 + b lg n) + n2/s2 × (s2 + s lg b) + s22λs
2

lg s2) bits. By choosing

b = lg n and s = c
√

lg n, for some small constant c (chosen appropriately), the

overall space usage becomes O(n2) bits.
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4.5 Open problems

Our main contribution is a systematic study of data structures for NLV on 1D

arrays in the indexing model, and NLN on 2D arrays in the encoding model.

We suggest the following open problems for future works.

• Is there a data structure that takes less than 2.54n + o(n) bits and can

answer NLN queries in a one dimensional array in constant time in the

general case (when elements may repeat) in the encoding model?

• For a 1D array, is there an index for NLV that uses O(n/c) bits and

supports queries in O(c) query time?

• For a 2D array, is there an index for NLN that uses O(n2/c) bits and

supports queries in O(c) query time?
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Chapter 5

Simultaneous encodings for range
and next/previous larger/smaller
value queries

5.1 Introduction

Given an array A[1 . . . n] of n elements from a total order. For 1 ≤ i ≤ j ≤ n,

suppose that there are m (l) positions i ≤ p1 ≤ · · · ≤ pm ≤ j (i ≤ q1 ≤ · · · ≤

ql ≤ j ) in A which are the positions of minimum (maximum) values between

A[i] and A[j]. Then we can define various range minimum (maximum) queries

as follows.

• Range Minimum Query (RMinQA(i, j)) : Return an arbitrary position

among p1, . . . , pm.

• Range Leftmost Minimum Query (RLMinQA(i, j)) : Return p1.

• Range Rightmost Minimum Query (RRMinQA(i, j)) : Return pj .

• Range k-th Minimum Query (RkMinQA(i, j)) : Return pk (for 1 ≤ k ≤ m).

64



• Range Maximum Query (RMaxQA(i, j)) : Return an arbitrary position

among q1, . . . , ql.

• Range Leftmost Maximum Query (RLMaxQA(i, j)) : Return q1.

• Range Rightmost Maximum Query (RRMaxQA(i, j)) : Return ql.

• Range k-th Maximum Query (RkMaxQA(i, j)) : Return qk (for 1 ≤ k ≤ l).

Also for 1 ≤ i ≤ n, we consider following additional queries on A.

• Previous Smaller Value (PSVA(i)) : max (j : j < i,A[j] < A[i]).

• Next Smaller Value (NSVA(i)) : min (j : j > i,A[j] < A[i]).

• Previous Larger Value (PLVA(i)) : max (j : j < i,A[j] > A[i]).

• Next Larger Value (NLVA(i)) : min (j : j > i,A[j] > A[i]).

For define above four queries formally, we assume that A[0] = A[n+ 1] = −∞

for PSVA(i) and NSVA(i). Similarly we assume that A[0] = A[n + 1] = ∞ for

PLVA(i) and NLVA(i).

Our aim is to obtain space-efficient encodings that support these queries

efficiently.

Previous Work The range minimum/maximum problem has been well-studied

in the literature. It is well-known [5] that finding RMinQA can be transformed

to the problem of finding the LCA (Lowest Common Ancestor) between (the

nodes corresponding to) the two query positions in the Cartesian tree con-

structed on A. Furthermore, since different topological structures of the Carte-

sian tree on A give rise to different set of answers for RMinQA on A, one can

obtain an information-theoretic lower bound of 2n−Θ(lg n) bits on the encod-

ing of A that answers RMinQ queries. Sadakane [71] proposed the 4n+ o(n)-bit

encoding with constant query time for RMinQA problem using the balanced

parentheses (BP) [55] of the Cartesian tree of A with some additional nodes.
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Fischer and Heun [27] introduced the 2d-Min heap, which is a variant of the

Cartesian tree, and showed how to encode it using the Depth first unary de-

gree sequence (DFUDS) [6] representation in 2n + o(n) bits which supports

RMinQA queries in constant time. Davoodi et al. show that same 2n+ o(n)-bit

encoding with constant query time can be obtained by encoding the Carte-

sian trees.[16]. For RkMinQA, Fischer and Heun [26] defined the approximate

range median of minima query problem which returns a position RkMinQA for

some 1
16m ≤ k ≤ 15

16m, and proposed an encoding that uses 2.54n + o(n) bits

and supports the approximate RMinQA queries in constant time, using a Super

Cartesian tree.

For PSVA and NSVA, if all elements in A are distinct, then 2n + o(n) bits

are enough to answer the queries in constant time, by using the 2d-Min heap of

Fischer and Heun [27]. For the general case, Fischer [25] proposed the colored

2d-Min heap, and proposed an optimal 2.54n + o(n)-bit encoding which can

answer PSVA and NSVA in constant time.

One can support both RMinQA and RMaxQA in constant time trivially using

the encodings for RMinQA and RMaxQA queries, using a total of 4n + o(n)

bits. Gawrychowski and Nicholson reduce this space to 3n + o(n) bits while

maintaining constant time query time [30]. Their scheme also can support PSVA

and PLVA in constant time when there are no consecutive equal elements in A.

Our results In this chapter, we first extend the original DFUDS [6] for col-

ored 2d-Min(Max) heap that supports the queries in constant time. Then,

we combine the extended DFUDS of 2d-Min heap and 2d-Max heap using

Gawrychowski and Nicholson’s Min-Max encoding [30] with some modifica-

tions. As a result, we obtain the following non-trivial encodings that support a

wide range of queries.

Theorem 5.1. An array A[1 . . . n] containing n elements from a total order

can be encoded using
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(a) at most 3.17n+o(n) bits to support RMinQA, RMaxQA, RRMinQA, RRMaxQA,

PSVA, and PLVA queries;

(b) at most 3.322n+ o(n) bits to support the queries in (a) in constant time;

(c) at most 4.088n + o(n) bits to support RMinQA, RRMinQA, RLMinQA,

RkMinQA, PSVA, NSVA, RMaxQA, RRMaxQA, RLMaxQA, RkMaxQA, PLVA

and NLVA queries; and

(d) at most 4.585n+ o(n) bits to support the queries in (c) in constant time.

If the array contains no two consecutive equal elements, then (a) and (b) take

3n+ o(n) bits, and (c) and (d) take 4n+ o(n) bits.

This chapter organized as follows. Section 5.2 introduces various data struc-

tures that we use later in our encodings. In Section 5.3, we describe the encoding

of colored 2d-Min heap by extending the DFUDS of 2d-Min heap. This encod-

ing uses a distinct approach from the encoding of the colored 2d-Min heap by

Fischer [25]. Finally, in Section 5.4, we combine the encoding of this colored

2d-Min heap and Gawrychowski and Nicholson’s Min-Max encoding [30] with

some modifications, to obtain our main result (Theorem 5.1).

5.2 Preliminaries

We first introduce some useful data structures that we use to encode various

bit vectors and balanced parenthesis sequences.

Balanced parenthesis sequences Given a string S[1 . . . n] over the alpha-

bet Σ = {′(′,′ )′}, if S is balanced and S[i] is an open (close) parenthesis, then we

can define findopenS(i) (findcloseS(i)) which returns the position of the match-

ing close (open) parenthesis to S[i]. Now we introduce the lemma from Munro

and Raman [55].
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Lemma 5.1 ([55]). Let S be a balanced parenthesis sequence of length n.

If one can access any lg n-bit subsequence of S in constant time, Then both

findopenS(i) and findcloseS(i) can be supported in constant time with o(n)-bit

additional space.

Depth first unary degree sequence Depth first unary degree sequence

(DFUDS) is one of the well-known methods for representing ordinal trees [6].

It consists of a balanced sequence of open and closed parentheses, which can be

defined inductively as follows. If the tree consists of the single node, its DFUDS

is ‘()’. Otherwise, if the ordinal tree T has k subtrees T1 . . . Tk, then its DFUDS,

DT is the sequence (k+1 )dT1 . . . dTk (i.e., k + 1 open parentheses followed by a

close parenthesis concatenated with the ‘partial’ DFUDS sequences dT1 . . . dTk)

where dTi , for 1 ≤ i ≤ k, is the DFUDS of the subtree Ti (i.e., DTi) with the

first open parenthesis removed. From the above construction, it is easy to prove

by induction that if T has n nodes, then the size of DT is 2n bits. The follow-

ing lemma shows that DFUDS representation can be used to support various

navigational operations on the tree efficiently.

Lemma 5.2 ([1], [6], [43]). Given an ordinal tree T on n nodes with DFUDS

sequence DT , one can construct an auxiliary structure of size o(n) bits to support

the following operations in constant time: for any two nodes x and y in T ,

- parentT (x) : Label of the parent node of node x.

- degreeT (x) : Degree of node x.

- depthT (x) : Depth of node x (The depth of the root node is 0).

- subtree sizeT (x) : Size of the subtree of T which has the x as the root node.

- next siblingT (x) : The label of the next sibling of the node x.

- childT (x, i) : Label of the i-th child of the node x.

- child rankT (x) : Number of siblings left to the node x.

- laT (x, i) : Label of the level ancestor of node x at depth i.

- lcaT (x, y) : Label of the least common ancestor of node x and y.
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- pre rankT (i) : The preorder rank of the node in T corresponding to DT [i].

- pre selectT (x) : The first position of node with preorder rank x in DT .

We use the following lemma to bound the space usage of the data structures

described in Section 5.4.

Lemma 5.3. Given two positive integers a and n, and a nonnegative integer

k ≤ n, lg
(
n
k

)
+ a(n− k) ≤ n lg (2a + 1).

Proof. By raising both sides to the power of 2, it is enough to prove that(
n
k

)
2(a(n−k)) ≤ (2a + 1)n. We prove the lemma by induction on n and k. In the

base case, when n = 1 and k = 0, the claim holds since 2a < (2a + 1). Now

suppose that
(
n′

k′

)
2a(n′−k′) ≤ (2a + 1)n

′
for all 0 < n′ ≤ n and 0 ≤ k′ ≤ k. Then(

n+ 1

k

)
2a(n+1−k) =

((
n

k

)
+

(
n

k − 1

))
2a(n+1−k)

≤ 2a(2a + 1)n + (2a + 1)n = (2a + 1)n+1 by induction hypothesis.

Also by induction hypothesis,(
n

k + 1

)
2a(n−(k+1)) =

((
n− 1

k

)
+

(
n− 1

k + 1

))
2a(n−(k+1))

≤ (2a + 1)n−1

(
1 +

(
n−1
k+1

)
(2a(n−1−k))

(2a + 1)n−1

)

Since
(
n−1
k+1

)
2a(n−1−k) < 2a(2a + 1)n−1(∵ (2a + 1)n−1 =

∑n−1
m=0

(
n−1
m

)
2a(n−1−m)),

(2a + 1)n−1

(
1 +

(
n−1
k+1

)
(2a(n−1−k))

(2a + 1)n−1

)
< (2a + 1)n−1(1 + 2a) = (2a + 1)n.

Therefore the above inequality still holds when n′ = n+ 1 or k′ = k+ 1, which

proves the lemma.

5.2.1 2d-Min heap

The 2d-Min heap [27] on A, denoted by Min(A), is designed to encode the

answers of RMinQA(i, j) efficiently. We can also define the 2d-Max heap on A
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(Max(A)) analogously. Min(A) is an ordered labeled tree with n+1 nodes labeled

with 0 . . . n. Each node in Min(A) is labeled by its preorder rank and each label

corresponds to a position in A. We extend the array A[1 . . . n] to A[0 . . . n]

with A[0] = −∞. In the labeled tree, the node x denotes the node labeled x.

For every vertex i, except for the root node, its parent node is (labeled with)

PSVA(i).

Using the operations in Lemma 5.2, Fischer and Heun [27] showed that

RMinQA(i, j) can be answered in constant time using DMin(A). If the elements

in A are not distinct, RMinQA(i, j) returns the RRMinQA(i, j).

Fischer and Heun [27] also proposed a linear-time stack-based algorithm

to construct DMin(A). Their algorithm maintains a min-stack consisting of a

decreasing sequence of elements from top to the bottom. The elements of A are

pushed into the min-stack from right to left and before pushing the element A[i],

all the elements from the stack that are larger than A[i] are popped. Starting

with an empty string, the algorithm constructs a sequence S as described below.

Whenever k elements are popped from the stack and then an element is pushed

into the stack, (k) is prepended to S. Finally, after pushing A[1] into the stack,

if the stack contains m elements, then (m+1) is prepended to S. One can show

that this sequence S is the same as the DFUDS sequence DMin(A). Analogously,

one can construct DMax(A) using a similar stack-based algorithm.

Colored 2d-Min heap From the definition of 2d-Min heap, it is easy show

that PSVA(i), for 1 ≤ i ≤ n, is the label corresponding to the parent of the node

labeled i in Min(A). Thus, using the encoding of Lemma 5.2 using 2n+o(n) bits,

one can support the PSVA(i) queries in constant time. A straightforward way

to support NSVA(i) is to construct the 2d-Min heap structure for the reverse of

the array A, and encode it using an additional 2n+o(n) bits. Therefore one can

encode all answers of PSVA and NSVA using 4n+o(n) bits with constant query

time. To reduce this size, Fischer proposed the colored 2d-Min heap [25]. This
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Figure 5.1 Colored 2d-Min heap of A

has the same structure as normal 2d-Min heap, and in addition, the vertices

are colored either red or blue. Suppose there is a parent node x in the colored

2d-Min heap with its children x1 . . . xk. Then for 1 < i ≤ k, node xi is colored

red if A[xi] < A[xi−1], and all the other nodes are colored blue (see Figure 5.1).

We define the operation NRS(xi) which returns the leftmost red sibling to the

right (i.e., next red sibling) of xi.

The following lemma can be used to support NSVA(i) efficiently using the

colored 2d-Min heap representation.

Lemma 5.4 ([25]). Let CMin(A) be the colored 2d-Min heap on A. Suppose there

is a parent node x in CMin(A) with its children x1 . . . xk. Then for 1 ≤ i ≤ k,

NSVA(xi) =

 NRS(xi) if NRS(xi) exists,

xk + subtree size(xk) otherwise.

If all the elements in A are distinct, then a 2n+o(n)-bit encoding of Min(A)

is enough to support RMinQA, PSVA and NSVA with constant query time. In the

general case, Fischer proposed an optimal 2.54n+ o(n)-bit encoding of colored

2d-Min heap on A using TC-encoding [22]. This encoding also supports two ad-

ditional operations, namely modified childCMin(A)(x, i) and child rankCMin(A)(x),
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which answer the i-th red child of node x and the number of red siblings to the

left of node x, respectively, in constant time. Using these operations, one can

also support RLMinQA and RkMinQA in constant time.

5.2.2 Encoding range min-max queries
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0 
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2 3 7 
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Min(A) Max(A) 

i 0 1 2 3 4 5 6 7 8 9 
A[i] -∞ (∞ ) 3 8 5 6 3 2 7 10 9

DMin(A) (((() (() ) () ) ) () (() ) ) 
DMax(A) (((() ) ((() ) () () ) ) () ) 

T () (() ) ) ) ) () ) 
U 0 1 0 1 1 0 0 1 

Figure 5.2 Encoding of 2d-Min heap and 2d-Max heap of A

One can support both RMinQA and RMaxQA in constant time by encoding

both Min(A) and Max(A) separately using 4n + o(n) bits. Gawrychowski and

Nicholson [30] described an alternate encoding that uses only 3n + o(n) bits

while still supporting the queries in O(1) time. There are two key observations

which are used in obtaining this structure:

1. If we can access any lg n-bit substring of DMin(A) and DMax(A) on O(1)

time, we can still support both queries in O(1) time, using an additional

o(n) bits;

2. To generate DMin(A) and DMax(A) using Fischer and Heun’s stack-based

algorithm, in each step we push an element into both the min-stack and
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max-stack, and pop a certain number of elements from exactly one of the

stacks (assuming that A[i] 6= A[i+ 1], for all i, where 1 ≤ i < n).

Now we describe the overall encoding in [30] briefly. The structure consists of

two bit strings T and U along with various auxiliary structures. For 1 ≤ i < n, if

k elements are popped from the min (max)-stack when we push A[i](1 ≤ i < n)

into both the stacks (from right to left), we prepend (k−1 ) and 0(1) to the

currently generated T and U respectively. Initially, when i = n, both min and

max stacks push ‘)’ so we do not prepend anything to both strings. But we can

recover it easily because this is the last ‘)’ in common. Finally, after pushing

A[1] into both the stacks, we pop the remaining elements from them, and store

the number of these popped elements in min and max stack explicitly using

lg n bits. One can show that the size of T is at most 2n bits, and that of U is

n − 1 bits. Thus the total space usage is at most 3n bits. See Algorithm 1 for

the pseudocode, and Figure 5.2 for an example.

To recover any lg n-bit substring, DMin(A)[d1 . . . dlgn], in constant time we

construct the following auxiliary structures. We first divide DMin(A) into blocks

of size lg n, and for the starting position of each block, store its corresponding

position in T . For this purpose, we construct a bit string Bmin of length at

most 2n such that Bmin[i] = 1 if and only if T [i] corresponds to the start

position of the ith-block in DMin(A). We encode Bmin using the representation

of Lemma 2.5 which takes o(n) bits since the number of ones in Bmin is 2n/ lg n.

Then if d1 belongs to the i-th block, it is enough to recover the i-th and the

(i+ 1)-st blocks in the worst case.

Now, to recover the i-th block of DMin(A), we first compute the distance

between i-th and (i + 1)-st 1’s in Bmin. If this distance is less than c lg n for

some fixed constant c > 9, we call it a min-good block, otherwise, we call it a

min-bad block. We can recover a min-good block in DMin(A) in O(c) time using

a o(n)-bit pre-computed table indexed by all possible strings of length lg n/4

bits for T and U (we can find the position corresponding to the i-th block
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Algorithm 1 Construction algorithm for T and U

1: Initialize T to ‘)’, and U to ε.

2: Initialize Min-stack and Max-stack as empty stacks

3: Push A[n] into Min-stack and Max-stack.

4: for i := n− 1 to 1 do

5: counter = 0

6: if A[i] < A[i− 1] then

7: Push A[i] into Max-stack

8: while ((Min-stack is not empty) & (Top of Min-stack > A[i])) do

9: Pop Min-stack

10: counter = counter + 1

11: end while

12: Push A[i] into Min-stack

13: Prepend (counter−1) to T and 0 to U

14: else // A[i] > A[i− 1]

15: Push A[i] into Min-stack

16: while ((Max-stack is not empty) & (Top of Max-stack < A[i])) do

17: Pop Max-stack

18: counter = counter + 1

19: end while

20: Push A[i] into Max-stack

21: Prepend (counter−1) to T and 1 to U

22: end if

23: end for
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in U in constant time), which stores the appropriate O(lg n) bits of DMin(A)

obtained from them (see [30] for details). For min-bad blocks, we store the

answers explicitly. This takes (2n/(c lg n)) · lg n = 2n/c additional bits. To save

this additional space, we store the min-bad blocks in compressed form using the

property that any min-bad block in DMin(A) and DMax(A) cannot overlap more

than 4 lg n bits in T , (since any 2 lg n consecutive bits in T consist of at least

lg n bits from either DMin(A) or DMax(A)). So, for c > 9 we can save more than

lg n bits by compressing the remaining (c − 4) lg n bits in T corresponding to

each min-bad block in DMin(A). Thus, we can reconstruct any lg n-bit substring

of DMin(A) (and DMax(A)) in constant time, using a total of 3n+ o(n) bits.

We first observe that if there is a position i, for 1 ≤ i < n such that

A[i] = A[i + 1], we cannot decode the ‘)′ in T which corresponds to A[i] only

using T and U since we do not pop any elements from both min and max

stacks when we push A[i] into both stacks. Gawrychowski and Nicholson [30]

handle this case by defining an ordering between equal elements (for example,

by breaking the ties based on their positions). But this ordering does not help

us in supporting the PSV and PLV queries. We describe how to handle the case

when there are repeated (consecutive) elements in A, to answer the PSV and

PLV queries.

Gawrychowski and Nicholson [30] also show that any encoding that supports

both RMinQA and RMaxQA cannot use less than 3n−Θ(lg n) bits for sufficiently

large n (even if all elements in A are distinct).

5.3 Extended DFUDS for colored 2d-Min heap

In this section, we describe an encoding of colored 2d-Min heap on A (CMin(A))

using at most 3n + o(n) bits while supporting RMinQA, RRMinQA, RLMinQA,

RkMinQA, PSVA and NSVA in constant time. This is done by storing the color

information of the nodes using a bit string of length at most n, in addition to

the DFUDS representation of CMin(A). We can also encode the colored 2d-Max
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heap in a similar way. In the worst case, this representation uses more space

than the colored 2d-Min heap encoding of Fischer [25], but the advantage is

that it separates the tree encoding from the color information. We later describe

how to combine the tree encodings of the 2d-Min heap and 2d-Max heap, and

(separately) also combine the color information of the two trees, to reduce the

overall space.

Now we describe the main encoding of CMin(A). The encoding consists of

two parts: DCMin(A) and Vmin. The sequence DCMin(A) is same as DMin(A), the

DFUDS representation of CMin(A), which takes 2n + o(n) bits and supports

the operations in Lemma 5.2 in constant time.

The bit string Vmin stores the color information of all nodes in CMin(A),

except the nodes which are the leftmost children of their parents (the color of

these nodes is always blue), as follows. Suppose there are p nodes in CMin(A),

for 1 ≤ p ≤ n, which are the leftmost children of their parents. Then we define

the bit string Vmin[0 . . . n− p] as follows. For 1 ≤ i ≤ n− p, Vmin[i] stores 0 if

the color of the node

nodeVmin(i) = pre rankCMin(A)(findcloseDCMin(A)
(select(((DCMin(A), i+ 1)) + 1)

in CMin(A) is red, and 1 otherwise. This follows from the observation that if

there is an i, 1 ≤ i < 2n−1 such that DCMin(A)[i] = ‘(′ and DCMin(A)[i+ 1] = ‘)′,

then DCMin(A)[i + 2] corresponds to the node which is the leftmost child of

the node pre rankCMin(A)(DCMin(A)[i]), so we skip these nodes by counting the

pattern ‘( (′ in DCMin(A). Also, we set Vmin[0] = 1, which corresponds to the

first open parenthesis in DCMin(A). For example, for CMin(A) in Figure 5.1, we

store the node 3’s color in Vmin[4]. This is becuase select(((DCMin(A), 5) = 7,

findcloseDCMin(A)
(7) + 1 = 11 and pre rankCMin(A)(11) = 3 (see Figure 5.3). We

define the bit string Vmax in a similar way.

The following lemma shows that encoding Min(A) and Vmin separately, using

at most 3n+ o(n) bits, has the same functionality as the CMin(A) encoding of
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 
A[i] -∞ 3 8 5 6 6 6 3 2 2 7 10 9 

0 

1 

3 10 

4 11 12 

9 

5 6 

8 7 

2 

DCMin(A) ( ( ( ( ( ) ( ( ) ) ( ( ( ) ) ) ) ) ) ( ) ( ( ) ) )

pre rankCMin(A) 0 0 0 0 0 0 1 1 1 2 3 3 3 3 4 5 6 7 8 9 9 10 10 10 11 12

Vmin 1 1 0 1 0 1 1 0

nodeVmin - 9 8 7 3 6 5 12

pre selectCMin(A) 1 7 10 11 15 16 17 18 19 20 22 25 26

node colorCMin(A) - - - 4 - 6 5 3 2 1 - - 7

Figure 5.3 DCMin(A), pre rankCMin(A), Vmin[i], nodeVmin , pre selectCMin(A) and

node colorCMin(A) for colored 2d-Min heap
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Fischer [25], which only takes 2.54n+ o(n) bits.

Lemma 5.5. For an array A[1 . . . n] of length n, there is an encoding for A

which takes at most 3n+o(n) bits and supports RMinQA, RRMinQA, RLMinQA,

RkMinQA, PSVA and NSVA in constant time.

Proof. The encoding consists of the 2n+ o(n)-bit encoding of Min(A) encoded

using structure of Lemma 5.2, together with the bit string Vmin that stores the

color information of the nodes in CMin(A). We use a o(n)-bit auxiliary structure

to support the rank/select queries on Vmin in constant time. Since the size of

Vmin is at most n bits, the total space of the encoding is at most 3n+o(n) bits.

To define the correspondence between the nodes in CMin(A) and the posi-

tions in the bit string Vmin, we define the following operation. For 0 ≤ i ≤ n,

we define node colorCMin(A)(i) as the position of Vmin that stores the color of

the node i in CMin(A). This can be computed in constant time, using o(n) bits,

by

node colorCMin(A)(i) =

 undefined if child rankCMin(A)(i) = 0

rank(((DCMin(A), c)− 1 otherwise

where c = findopenDCMin(A)
(pre selectCMin(A)(i) − 1) (note that node colorCMin(A)

is the inverse operation of nodeVmin).

Now we describe how to support the queries in constant time. Fischer and

Heun [27] showed that RMinQA(i, j) can be answered in constant time using

DCMin(A). In fact, they return the position RRMinQA(i, j) as the answer to

RMinQA(i, j). Also, as mentioned earlier, PSVA(i) = parentCMin(A)(i), and hence

can be answered in constant time. Therefore, it is enough to describe how to

find RLMinQA(i, j), RkMinQA(i, j) and NSVA(i) in constant time.

RLMinQA(i, j): As shown by Fischer and Huen [27], all corresponding values of

left siblings of the node RRMinQA(i, j) in A are at least A[RRMinQA(i, j)] (i.e.,

the values of the siblings are in the non-increasing order, from left to right). Also,
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for a child node m of any of the left siblings of the node RRMinQA(i, j), A[m] >

A[RRMinQA(i, j)]. Therefore, the position RLMinQA(i, j) corresponds to one of

the left siblings of the node whose position corresponds to RRMinQA(i, j).

We first check whether the color of the node RRMinQA(i, j) is red or not

using Vmin. If Vmin[node colorCMin(A)(RRMinQA(i, j))] = 0 then RLMinQA(i, j)

is equal to RRMinQA(i, j). If not, we find the node leftmost(i, j) which is the left-

most sibling of the node RRMinQA(i, j) between the nodes in [i . . . j]. leftmost(i, j)

can be found in constant time by computing the depth of node i and comparing

this value with dright, the depth of the node RRMinQA(i, j). More specifically,

leftmost(i, j) =

 i if depthCMin(A)(i) = dright.

next siblingCMin(A)(laCMin(A)(i, dright)) otherwise.

In the next step, find the leftmost blue sibling nv such that there is no red

sibling between nv and RRMinQA(i, j). This can be found in constant time by

first finding the index v using the equation

v = select0(Vmin, rank0(Vmin, node colorCMin(A)(RRMinQA(i, j))) + 1)− 1

and then finding the node nv using nv = nodeVmin(v). If child rankCMin(A)(nv) ≤

child rankCMin(A)(leftmost(i, j)) or child rankCMin(A)(nv) = 1 (this is the case that

leftmost(i, j) can be the the lestmost sibling), then RLMinQA(i, j) = leftmost(i, j).

Otherwise, RLMinQA(i, j) = nv.

RkMinQA(i, j): This query can be answered in constant time by returning

the k-th sibling (in the left-to-right order) of RLMinQA(i, j), if it exists. More

formally, if child rankCMin(A)(RRMinQA(i, j))− child rankCMin(A)(RLMinQA(i, j))

is at least k− 1, then RkMinQA(i, j) exists; and in this case, RkMinQA(i, j) can

be computed in constant time by computing

childCMin(A)(parentCMin(A)(RRMinQA(i, j)),RLMinQA(i, j) + k − 1).

NSVA(i): By Lemma 5.4, it is enough to show how to support NRS(i) in
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constant time (note that we can support subtree size in constant time using

Lemma 5.2). If node i is the rightmost sibling, then NRS(i) does not exist. Oth-

erwise we define v′ as select0(Vmin, rank0(Vmin, node colorCMin(A)(next sibling(i)))).

Let nv′ = nodeVmin(v′). If the parent of nv′ is same as the parent of i, then

NRS(i) = nv′ ; otherwise NRS(i) does not exist. Finally, if NRS(i) does not ex-

ist, we compute the node r which is the rightmost sibling of the node i can be

found by

childCMin(A)(parentCMin(A)(i), degreeCMin(A)(parentCMin(A)(i))− 1).

Then NSVA(i) = r+ subtree sizeCMin(A)(r). All these operations can be done in

constant time.

5.4 Encoding colored 2d-Min and 2d-Max heaps

In this section, we describe our encodings for supporting various subsets of oper-

ations, proving the results stated in Theorem 5.1. As mentioned in Section 5.2.1,

the TC-encoding of the colored 2d-Min heap of Fischer [25] can answer RMinQA,

RRMinQA, PSVA and NSVA queries in O(1) time, using 2.54n+ o(n) bits. The

following lemma shows that we can also support the queries RLMinQA and

RkMinQA using the same structure.

Lemma 5.6. For an array A[1 . . . n] of length n, RLMinQA, RkMinQA can be

answered in constant time by the TC-encoding of colored 2d-Min heap.

Proof. Fischer [25] defined two operations, which are modifications of the child

and child rank, as follows:

• mchildCMin(A)(x, i) - returns the i-th red child of node x in CMin(A), and

• mchild rankCMin(A)(x) - returns the number of red siblings to the left of

node x in CMin(A).
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He showed that the TC-encoding of the colored 2d-Min heap can support

mchildCMin(A)(x, i) and mchild rankCMin(A)(x) in constant time. Also, since the

TC-encoding supports depthCMin(A), next siblingCMin(A), laCMin(A), childCMin(A)

and child rankCMin(A) in constant time on ordinal trees [41], we can support

leftmost(i, j) (defined in the proof of the Lemma 5.5) in constant time. For an-

swering RLMinQA(i, j), we first find the previous red sibling l of RRMinQA(i, j)

using mchildCMin(A) and mchild rankCMin(A). If such a node l exists, we compare

the child ranks of next siblingCMin(A)(l) and leftmost(i, j), and return the node

with the larger rank value as the answer. RkMinQA(i, j) can be answered by

returning the k-th sibling (in the left-to-right order) of RLMinQA(i, j) using

childCMin(A) and child rankCMin(A), if it exists.

By storing a similar TC-encoding of colored 2d-Max heap, in addition to

the structure of Lemma 5.6, we can support all the operations mentioned in

Theorem 5.1(c) in O(1) time. This uses a total space of 5.08n + o(n) bits. We

now describe alternative encodings to reduce the overall space usage.

More specifically, we show that a combined encoding ofDCMin(A) andDCMax(A),

using at most 3.17n + o(n) bits, can be used to answer RMinQA, RMaxQA,

RRMinQA, RRMaxQA, PSVA, and PLVA queries (Theorem 5.1(a)). To support

the queries in constant time, we use a less space-efficient data structure that

encodes the same structures, using at most 3.322n+o(n) bits (Theorem 5.1(b)).

Similarly, a combined encoding of DCMin(A), DCMax(A), Vmin and Vmax using at

most 4.088n + o(n) bits can be used to answer RLMinQA, RkMinQA, NSVA,

RLMaxQA, RkMaxQA, and NLVA queries in addition (Theorem 5.1(c)). Again,

to support the queries in constant time, we design a less space-efficient data

structure using at most 4.58n+ o(n) bits (Theorem 5.1(d)).

In the following, we first describe the data structure of Theorem 5.1(b)

followed by the structure for Theorem 5.1(d). Next we describe the encodings

of Theorem 5.1(a) and Theorem 5.1(c).
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5.4.1 Combined data structure for DCMin(A) and DCMax(A)

As mentioned in Section 5.2.2, the encoding of Gawrychowski and Nicholson [30]

consists of two bit strings U and T of total length at most 3n, along with the

encodings of Bmin, Bmax and a few additional auxiliary structures of total size

o(n) bits. In this section, we denote this encoding by E. To encode the DFUDS

sequences of CMin(A) and CMax(A) in a single structure, we use E with some

modifications, which we denote by E′. As described in Section 5.2.2, encoding

scheme of Gawrychowski and Nicholson cannot be used (as it is) to support

the PSV and PLV queries if there is a position i, for 1 ≤ i < n such that

A[i] = A[i + 1]. To support these queries, we define an additional bit string

C[1 . . . n] such that C[1] = 0, and for 1 < i ≤ n, C[i] = 1 iff A[i− 1] = A[i]. If

the bit string C has k ones in it, then we represent C using lg
(
n
k

)
+ o(n) bits

while supporting rank, select queries and decoding any lg n consecutive bits in

C in constant time, using Lemma 2.5. We also define a new array A′[0 . . . n−k]

by setting A′[0] = A[0], and for 0 < i ≤ n − k, A′[i] = A[select0(C, i)]. (Note

that A′ has no consecutive repeated elements.) In addition, we define another

sequence D′CMin(A) of size 2n−k as follows. Suppose DCMin(A’) = (δ1 ) . . . (δn−k ),

for some 0 ≤ δ1 . . . δn ≤ n− k, then we set D′CMin(A) = (δ1+ε1 ) . . . (δn−k+εn−k ),

where δi + εi is the number of elements popped when A[i] is pushed into the

min-stack of A, for 1 ≤ i ≤ n− k. (Analogously, we define D′CMax(A).)

The encoding E′ defined on A consists of two bit strings U ′ and T ′, along

with C, B′min, B′max and additional auxiliary structures (as in E). Let U and

T be the bit strings in E defined on A′. Then U ′ is same as U in E, and size

of U ′ is n− k − 1 bits. To obtain T ′, we add some additional open parentheses

to T as follows. Suppose T = (δ1 )(δ2 ) . . . (δn−k ), where 0 ≤ δi ≤ n − k for

1 ≤ i ≤ n − k. Then T ′ = (δ1+ε1 ) . . . (δn−k+εn−k ), where δi + εi is the number

of elements are popped when A[i] is pushed into the min or max stack of A, for

1 ≤ i ≤ n− k (see Figure 5.4 for an example). Since the length of T is at most
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2(n−k), and |T ′|− |T | =
∑n−k

i=1 εi ≤ k, the size of T ′ is at most 2n−k bits. The

encodings of B′min and B′max are defined on D′CMin(A), D
′
CMax(A) and T ′, similar

to Bmin and Bmax in E. The total size of the encodings of the modified B′min

and B′max is o(n) bits. All the other auxiliary structures use o(n) bits. Although

we use E′ instead of E, we can use the decoding algorithm in E without any

modifications because all the properties used in the algorithm still hold even

though T ′ has additional open parentheses compared to T . Therefore from E′

we can reconstruct any lg n consecutive bits of D′CMin(A) or D′CMax(A) in constant

time, and thus we can support rank and select on these strings in constant time

with o(n) additional structures by Lemma 2.5.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 

A[i] -∞ (∞ ) 3 8 5 6 6 6 3 2 2 7 10 9 
D’Min(A) ((((() (() ) ((() ) ) () (() ) ) 
D’Max(A) (((() ) ((((() ) () (() ) ) () ) 

T’ () (((() (() ) () ) () ) 
U’ 0 1 0 1 1 0 0 1 

C(uncompressed) 0 0 0 0 0 1 1 0 0 1 0 0 0 
Vmin 1101 0 11 0 
Vmax 100 0110 1 
V 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 

CMin(A) CMax(A) 
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4 11 12 
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2 

Figure 5.4 Data structure combining the colored 2d-Min heap and colored 2d-

Max heap of A. C is represented in uncompressed form.
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Decoding DCMin(A) and DCMax(A)

We use the following auxiliary structures to decode DCMin(A) from D′CMin(A) and

C. For this, we first define a correspondence between DCMin(A) and D′CMin(A)

as follows. Note that both DCMin(A) and D′CMin(A) have the same number of

open parentheses, but D′CMin(A) has fewer close parentheses than DCMin(A). The

ith open parenthesis in DCMin(A) corresponds to the ith open parenthesis in

D′CMin(A). Suppose there are ` and `′ (≤ `) close parentheses between the ith

and the (i+1)st open parentheses in DCMin(A) and D′CMin(A), respectively. Then

the last `′ close parentheses in DCMin(A) correspond, in that order, to the `′

close parentheses in D′CMin(A); the remaining close parentheses in DCMin(A) do

not have a corresponding position in D′CMin(A).

We construct three bit strings Pmin, Qmin and Rmin of lengths 2n − k,

d2n/ lg ne and d2n/ lg ne, respectively, as follows. For 1 ≤ i ≤ d2n/ lg ne, if the

position i lg n in DCMin(A) has its corresponding position j in D′CMin(A), then we

set Pmin[j] = 1, Qmin[i] = 0 and Rmin[i] = 0. If position i lg n in DCMin(A) has no

corresponding position in D′CMin(A) but for some ki where 1 ≤ ki < lg n, suppose

there is a leftmost position q = i lg n+ ki which has its corresponding position

j in D′CMin(A). Then we set Pmin[j] = 1, Qmin[i] = 1 and Rmin[i] = 0. Finally,

if all positions between i lg n and (i+ 1) lg n in DCMin(A) have no corresponding

position in D′CMin(A), then we set Qmin[i] = 1 and Rmin[i] = 1. In remaining

positions for Pmin, Qmin and Rmin, we set their values as 0. We also store the

values, ki explicitly, for 1 ≤ i ≤ d2n/ lg ne, whenever they are defined (as in the

second case). Since ki < lg n, we can store all the ki values explicitly using at

most 2n lg lgn/ lg n = o(n) bits.

Since the bit strings Pmin, Qmin and Rmin have at most 2n/ lg n 1’s each,

they can be represented using the structure of Lemma 2.5, taking o(n) bits

while supporting rank and select queries in constant time. We define Pmax,

Qmax, Rmax in the same way, and represent them analogously.
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In addition to these bit strings, we construct two pre-computed tables. In

the rest of this section, we refer to the parenthesis strings (such as DCMin(A)

and D′CMin(A)) also as bit strings. To describe these tables, we first define two

functions f and f ′, each of which takes two bit strings s and c as parameters,

and returns a bit string of length at most |s|+ |c|, as follows.



f(s, ε) = s

f(ε, c) = ε

f(s, 1 · c1) =) · f(s, c1)

f((δ ) · s1, 0 · c1) = (δ·) · f(s1, c1)



f ′(s, ε) = s

f ′(ε, c) = ε

f ′(s, c1 · 1) = f ′(s, c1)·)

f ′(s1 · (δ ), c1 · 0) = f ′(s1, c1) · (δ·)

One can easily show that if s is a substring of D′CMin(A) and c is a substring of

C whose starting (ending) position corresponds to the starting (ending) position

in s, then f(s, c) (f ′(s, c)) returns the substring of DCMin(A) whose starting

(ending) position corresponds to the starting (ending) position in s,

We construct a pre-computed table Tf that, for each possible choice of

bit strings s and c of length (1/4) lg n, stores the bit string f(s, c). These pre-

computed tables can be used to decode a substring of DCMin(A) given a substring

of D′CMin(A) (denoted s) and a substring of C whose bits correspond to s. The

total space usage of Tf is 2(1/4) lgn · 2(1/4) lgn · ((1/2) lg n) = o(n) bits. We can

also construct Tf ′ defined analogous to Tf using o(n) bits.

Now we describe how to decode lg n consecutive bits of DCMin(A) in con-

stant time. (We can decode lg n consecutive bits of DCMax(A) in a similar way.)

Suppose we divide DCMin(A) into blocks of size lg n. As described in Section

5.2.2, it is enough to show that for 1 ≤ i ≤ d2n/ lg ne, we can decode i-th

block of DCMin(A) in constant time. First, we check the value of the Rmin[i].

If Rmin[i] = 1, then the i-th block in DCMin(A) consists of a sequence of lg n

consecutive close parentheses. Otherwise, there are two cases depending on the

value of Qmin[i]. We compute the position p which is a position in D′CMin(A) (it’s

exact correspondence in DCMin(A) depends on the value of the bit Qmin[i]), and
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then compute the position cp in C which corresponds to p in D′CMin(A), using

the following equations:

p = select1(Pmin, i− rank1(Rmin, i))

cp =

 select0(C, rank)(D
′
CMin(A), p)) if D′CMin(A)[p] =′)′

select0(C, rank)(D
′
CMin(A), p) + 1) otherwise

Case (1) Qmin[i] = 0. In this case, we take the lg n consecutive bits ofD′CMin(A)

starting from p, and the lg n consecutive bits of C starting from the position cp

(padding at the end with zeros if necessary). Using these bit strings, we can de-

code the i-block in DCMin(A) by looking up Tf with these substrings (a constant

number of times, until the pre-computed table generates the required lg n bits).

Since the position p corresponds to the starting position of the i-th block in

DCMin(A) in this case, we can decode the i-th block of DCMin(A) in constant time.

Case (2) Qmin[i] = 1. First we decode lg n consecutive bits of DCMin(A) whose

starting position corresponds to the position p using the same procedure as in

Case (1). Let S1 be this bit string. Next, we take the lg n consecutive bits of

D′CMin(A) ending with position p, and the lgn consecutive bits of C ending with

position cp (padding at the beginning with zeros if necessary). Then we can

decode the lg n consecutive bits of DCMin(A) whose ending position corresponds

to the p by looking up Tf ′ (a constant number of times) with these substrings.

Let S2 be this bit string. By concatenating S1 and S2, we obtain a 2 lg n-bit

substring of DCMin(A) which contains the starting position of the i-th block of

DCMin(A) (since the starting position of the i-th block in DCMin(A), and the po-

sition which corresponds to p differ by at most lg n). Finally, we can obtain the

i-th block in DCMin(A) by skipping the first lg n− ki bits in S1 · S2, and taking

lg n consecutive bits from there.
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From the encoding described above, we can decode any lgn consecutive bits

of DCMin(A) and DCMax(A) in constant time. Therefore by Lemma 5.5, we can

answer all queries supported by CMin(A) and CMax(A) (without using the color

information) in constant time. If there are k elements such that A[i− 1] = A[i]

for 1 ≤ i ≤ n, then the size of C is lg
(
n
k

)
+ o(n) bits, and the size of E′ on A

is 3n− 2k + o(n) bits. All other auxiliary bit strings and tables take o(n) bits.

Therefore, by the Lemma 5.3, we can encode A using 3n− 2k+ lg
(
n
k

)
+ o(n) ≤

((1+lg 5)n+o(n) < 3.322n+o(n) bits. Also, this encoding supports the queries

in Theorem 5.1(b) (namely RMinQA, RMaxQA, RRMinQA, RRMaxQA, PSVA

and PLVA, which do not need the color information) in constant time. This

proves Theorem 5.1(b).

Note that if k = 0 (i.e, there are no consecutive equal elements), E′ on A is

same as E on A. Therefore, we can support all the queries in Theorem 5.1(b)

using 3n+ o(n) bits with constant query time.

Encoding Vmin and Vmax

We simply concatenate Vmax and Vmin on A and store it as bitstring V , and

store the length of Vmin using lg n bits (see V in Figure 5.4). If there are k

elements such that A[i − 1] = A[i] for 1 ≤ i ≤ n, Fischer and Heun’s stack

based algorithm [27] does not pop any elements from both stacks when these k

elements and A[n] are pushed into them. Before pushing any of the remaining

elements into the min- and max-stacks, we pop some elements from exactly

one of the stacks. Also after pushing A[1] into both the stacks, we pop the

remaining elements from the stacks in the final step. Suppose the n elements

are popped from the min-stack during p runs of pop operations. Then, it is

easy show that the elements are popped from the max-stack during n − k − p

runs of pop operations. Also, p (n−k−p) is the number of leftmost children in

CMin(A) (CMax(A)) since each run of pop operations generates exactly one open

parenthesis whose matched closing parenthesis corresponds to the leftmost child
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in CMin(A) (CMax(A)). As described in Section 5.3, the size of Vmin is n−p+ 1

bits, and that of Vmax is p + k + 1 bits. Thus, the total size of V is n + k + 2

bits.

Therefore, we can decode any lg n-bit substring of Vmin or Vmax in constant

time using V and the length of Vmin. By combining these structures with the

encoding of Theorem 5.1(b), we can support the queries in Theorem 5.1(d)

(namely, the queries RMinQA, RRMinQA, RLMinQA, RkMinQA, PSVA, NSVA

RMaxQA, RRMaxQA, RLMaxQA, RkMaxQA, PLVA and NLVA) in constant time.

By Lemma 5.3, the total space of these structures is 4n − k + lg
(
n
k

)
+ o(n) ≤

((3 + lg 3)n+ o(n) < 4.585n+ o(n) bits. This proves Theorem 5.1(d).

Note that if k = 0 (i.e, there are no consecutive equal elements), E′ on A is

same as E on A, and the size of V is n + 2 bits. Therefore we can support all

the queries in Theorem 5.1(d) using 4n+ o(n) bits with constant query time.

5.4.2 Encoding colored 2d-Min and 2d-Max heaps using less

space

In this section, we give new encodings that prove Theorem 5.1(a) and Theo-

rem 5.1(c), which use less space but take more query time than the previous

encodings. To prove Theorem 5.1(a), we maintain the encoding E′ on A, with

the modification that instead of T ′ (which takes at most 2n− k bits), we store

the bit string T (which takes at most 2(n− k) bits) which is obtained by con-

structing the encoding E on A′. Note that f(s, c) is well-defined when s and

c are substrings of DCMin(A’) and C, respectively. If there are k elements such

that A[i− 1] = A[i] for 1 ≤ i ≤ n, then the total size of the encoding is at most

3(n−k)+lg
(
n
k

)
+o(n) ≤ n lg 9+o(n) < 3.17n+o(n) bits. If we can reconstruct

the sequences DCMin(A) and DCMax(A), by Lemma 5.5, we can support all the

required queries. We now describe how to decode the entire DCMin(A) using this

encoding. (Decoding DCMax(A) can be done analogously.)

Once we decode the sequenceDCMin(A’), we reconstruct the sequenceDCMin(A)

88



by scanning the sequences DCMin(A’) and C from left to right, and using the

lookup table Tf . Note that f(DCMin(A’), C) looses some open parentheses in

DCMin(A) whose matched close parentheses are not inDCMin(A’) but in f(DCMin(A’), C).

So when we add m consecutive close parentheses from the r-th position in

DCMin(A’) in decoding with Tf , we add m more open parentheses before the

position pos = findopenDMin(A’)
(r − 1). This proves Theorem 5.1(a).

To prove Theorem 5.1(c), we combine the concatenated sequence of Vmin and

Vmax on A′ whose total size is n−k+2 bits to the above encoding. Then we can

reconstruct Vmin on A by adding m extra 1’s before Vmin[rank(((DMin(A’), pos)]

when m consecutive close parentheses are added from the r-th position in

DCMin(A’) while decoding with Tf . (Reconstructing Vmax on A can be done

in a similar way.) The space usage of this encoding is 4(n− k) + lg
(
n
k

)
+ o(n) ≤

n lg 17 + o(n) < 4.088n+ o(n) bits. This proves Theorem 5.1(c).

5.5 Open problems

In this chpater, we obtained space-efficient encodings that support a large set

of range and previous/next smaller/larger value queries.

We suggest the following open problems for future works.

• Can we support the queries in the Theorem 5.1(c) in O(1) time using at

most 4.088n+ o(n) bits?

• As described in Section 5.2, Gawrychowski and Nicholson [30] show that

any encoding that supports both RMinQA and RMaxQA requires at least

3n − Θ(lg n) bits. Can we obtain an improved lower bound in the case

when we need to support the queries in Theorem 5.1(a)?

• Can we prove a lower bound that is strictly more than 3n bits for any

encoding that supports the queries in Theorem 5.1(c)?
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Chapter 6

Encoding Two-dimensional range
Top-k queries

6.1 Introduction

Given a one-dimensional (1D) array A[1 . . . n] from a total order and 1 ≤ k ≤ n,

the Range Top-k query on A (Top-k(i, j, A), 1 ≤ i, j ≤ n) returns the positions

of k largest values in A[i . . . j]. We can extend this query to the two-dimensional

(2D) array case. Given a 2D array A[1 . . .m][1 . . . n], from a total order and 1 ≤

k ≤ mn, the Top-k query on A (Top-k(i, j, a, b, A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n)

returns the positions of k largest values in A[i . . . j][a . . . b]. Without loss of

generality, we assume that all elements in A are distinct by ordering equal

elements in the lexicographic order of their positions. Also, if the k positions of

a Top-k query are reported in sorted order of the corresponding values, we refer

to the query as sorted Top-k query; and refer to it as unsorted Top-k query,

otherwise. For 1 ≤ i, j ≤ m and 1 ≤ a, b ≤ n, we can also classify Top-k queries

on 2D array by its range as follows.

• 1-sided query : The query range is [1 . . .m][1 . . . b].
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• 4-sided query : The query range is [i . . . j][a . . . b].

We can also consider 2-sided and 3-sided queries which correspond to the

ranges [1 . . . j][1 . . . a] and [1 . . . j][a . . . b] respectively. We consider how to sup-

port the Top-k queries in the encoding model.

In the rest of the chapter, we assume that for Top-k encodings, k is at most

the size of the array (either 1D or 2D). Also, unless otherwise mentioned, we

assume that all Top-k queries are sorted Top-k queries.

Previous Work. Encoding Top-k queries on 1D array has been widely stud-

ied in the recent years. For a 1D array A[. . . n], Chan and Wilkinson [12] pro-

posed a data structure that uses Θ(n) words and answers selection queries (i.e.,

selecting the k-th largest element) in O(lg k/ lg lgn) time. Grossi et al. [39] con-

sidered the Top-k encoding problem, and obtained an O(n lg κ)-bit encoding

which can answer the Top-k queries for any k ≤ κ in O(κ) time or alternately,

using O(n lg2 κ) bits with O(k) query time. (They also considered one-sided

Top-k query, they proposed n lg k + O(n)-bit encoding with O(k) query time.)

The space usage of this encoding was improved to O(n lg κ) bits, maintain-

ing the O(k) query time, by Navarro et al. [60]. Recently, Gawrychowski and

Nicholson [31] proposed an (k+1)nH0(1/(k+1))+o(n)-bit1 encoding for Top-k

queries and showed that at least (k+1)nH0(1/(k+1))(1−o(1)) bits are required

to encode Top-k queries.

To the best of our knowledge, there are no results for range Top-k queries

for 2D array with general k. For k = 1, the Top-k query is same as the Range

Maximum Query (RMaxQ), which has been well-studied for 1D as well as for 2D

arrays. For a 2D m×n array, Brodal et al. [10] proposed an O(nmmin (m, lg n))-

bit encoding which answers RMaxQ queries in O(1) time. Brodal et al. [8] im-

proved the space bound to the optimal O(nm lgm) bits, although this encoding

does not support the queries efficiently.

1H0(x) = x lg (1/x) + (1 − x) lg (1/(1 − x))
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Array size Query range Space Query time

m× n one-sided n dlg T e bits -

m× n four-sided O(mn lg n) bits O(k)

m× n four-sided m2 lg
(

(k+1)n
n

)
+m lgm+ o(n) bits -

Table 6.1 The summary of our results for Top-k queries on m × n 2D array.

T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!)

Our results. For an m×n 2D array A, we first obtain an n dlg T e-bit encoding

for answering one-sided Top-k queries, where T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!).

We then show that any encoding that supports Top-k queries on A must use at

least n lg T bits.

Next, we observe that there exists an O(mn lg n)-bit data structure which

answers 4-sided Top-k queries on A in O(k) time by combining the results of [11]

and [10]. We then propose an m2 lg
(

(k+1)n
n

)
+ m lgm + o(n)-bit encoding for

4-sided Top-k queries on A, by extending the Top-k encoding of Gawrychowski

and Nicholson for 1D arrays [31]. The summary of our results are in Table 6.1.

This chapter organized as follows. Section 6.2 gives an lower and upper

bound for encoding one-sided Top-k queries on 2D array. In Section 6.3 we

propose two encodings for answering 4-sided Top-k queries on 2D array. Finally,

in Section 6.4, we give some open problems.

6.2 Encoding one-sided range Top-k queries on 2D ar-

ray

In this section, we consider the encoding of one-sided Top-k queries on a 2D

array A[1 . . .m][1 . . . n]. We first introduce the encoding by simply extending

the encoding of one-sided Top-k queries for 1D array proposed by Grossi et

al. [39]. Next we propose an optimal encoding for one-sided Top-k queries on A.

For a 1D array A′[1 . . . n], one can define another 1D array X[1 . . . n] such
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as X[i] = i for 1 ≤ i ≤ k and for k < i ≤ n, X[i] = X[i′] if there exist a

position i′ < i such that A′[i] is larger than A′[i′] which is the k-th largest value

in A′[1 . . . i− 1], and X[i] = k+ 1 otherwise. One can answer the Top-k(1, i, A′)

by finding the rightmost occurrence of every element 1 . . . k in X[1 . . . i]. By

representing X (along with some additional auxiliary structures) using n lg k+

O(n) bits, Grossi et al. [39] obtained an encoding which supports 1-sided Top-k

queries on A′ in O(k) time.

For a 2D array A, one can encode A to support one-sided Top-k queries by

writing down the values of A in column-major order into a 1D array, and using

the encoding described above – resulting in the following encoding.

Proposition 6.1. A 2D array A[1 . . .m][1 . . . n] can be encoded using mn lg k+

O(n) bits to support one-sided Top-k queries in O(k) time.

Now we describe an optimal encoding of A which supports one-sided Top-k

queries. For 1D array A′[1 . . . n], we can define another 1D array B′[1 . . . n] such

that for 1 ≤ i ≤ n, B′[i] = l if A′[i] is the l-th largest element in A′[1 . . . i] with

l ≤ k, and B′[i] = k + 1 otherwise. Then we answer the Top-k(1, i, A′) query

as follows. We first find the rightmost position p1 ≤ i such that B′[p1] ≤ k.

Then we find the positions p2 > p3 · · · > pk such that for 2 ≤ j ≤ k, pj is the

rightmost position in A′[1 . . . pj−1−1] with B′[pj ] ≤ k−j+1. Finally, we return

the positions p1, p2, . . . , pk. Therefore by storing B′ using n dlg (k + 1)e bits, we

can answer the one-sided Top-k queries on A′. Also we can sort A′[p1], . . . , A′[pk]

using the property that for 1 ≤ b < a ≤ k, A′[pa] < A′[pb] if and only if one

of the following two conditions hold: (i) B′[pa] ≥ B′[pb], or (ii) B′[pa] < B′[pb]

and there exist q = B′[pb] − B′[pa] positions j1, j2, . . . , jq such that pa < j1 <

· · · < jq < pb and B′[jr] ≤ B′[pa] for 1 ≤ r ≤ q.

We can extend this encoding for the one-sided Top-k queries on a 2D array A.

For 1 ≤ j ≤ n, we first define the elements of j-th column in A as a1j . . . amj .

Then we define the sequence Sj = s1j . . . smj such that for 1 ≤ i ≤ m, sij = l
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if aij is the l-th largest element in A[1 . . .m][1 . . . j] with l ≤ k and sij =

k + 1 otherwise. Since there exist T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!) possible Si

sequences, we can store SA = S1 . . . Sn using n dlg T e bits and we can answer

the one-sided Top-k(1,m, 1, j) queries on A by the following procedure.

1. Find the rightmost column q, for some q ≤ j, such that Sq has ` > 0

elements sp1q, . . . , sp`q where sp1q < · · · < sp`q < k+ 1. If ` > k, we return

the positions of A[p1][q] . . . A[pk][q] as the answers of the query, and stop.

If ` ≤ k, we return the positions of A[p1][q] . . . A[p`][q].

2. Repeat Step 1 by setting k to k − `, and j to q − 1.

We can return the positions in the sorted order of their corresponding values

similar to the 1D array case. This encoding takes less space than the encod-

ing in the Proposition 6.1 since mn lg k = n lg
∑m

i=0

(
m
i

)
(k − 1)i ≥ n lg T . The

following theorem shows that the space usage of this encoding is essentially

optimal for answering one-sided Top-k queries on A.

Theorem 6.1. Any encoding of a 2D array A[1 . . .m][1 . . . n] that supports one-

sided Top-k queries requires n lg T bits, where T =
∑min (m,k)

i=0

(
m
i

)
(k!/(k − i)!).

Proof. Suppose there are two distinct sequences SA = S1 . . . Si and SA
′

=

S′1 . . . S
′
i which give one-sided Top-k encodings of 2D arrays A and A′, respec-

tively. For 1 ≤ b ≤ n, if Sb 6= S′b then Top-k(1,m, 1, b, A) 6= Top-k(1,m, 1, b, A′)

by the definition of SA and SA
′
. Since for an m × n array, there are Tn dis-

tinct sequences SA1 . . . SATn , it is enough to prove that for 1 ≤ q ≤ Tn, each

SAq = Sq1 . . . S
q
n has an array A such that SA = SAq .

Without loss of generality, suppose that all elements in A come from the

set L = {1, . . . ,mn}. Then we can reconstruct A from the rightmost column

using SAq as follows. If sqjn ≤ k, for 1 ≤ j ≤ m, we assign the sqjn-th largest

element in L to A[j][n]. After we assign all values in the rightmost column with

sqjn ≤ k, we discard all assigned values from L, move to (n − 1)-th column
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and repeat the procedure. After we assign all values in A whose corresponding

values in SAq are smaller than k + 1, we assign the remaining values in L to

remaining positions in Aq which are not assigned yet. Thus for any 1 ≤ b ≤ n,

if Sqb has ` > 0 elements sp1b, . . . , sp`b where sp1b < · · · < sp`b < k + 1, then the

b-th column in A contains `-largest elements in A[1 . . .m][1 . . . b] by the above

procedure. This shows that SA = SAq .

6.3 Encoding general range Top-k queries on 2D array

In this section, we give an encoding which supports general Top-k queries on

2D array. For an m×n 2D array, we first introduce an O(mn lg n)-bit encoding

which supports Top-k query in O(k) time by using the RMaxQ encoding of

Brodal et al. [8].

Proposition 6.2. A 2D array A[1 . . .m][1 . . . n] can be encoded using O(mn lg n)

bits to support unsorted Top-k(i, j, a, b, A) in O(k) time for 1 ≤ a, b ≤ m and

1 ≤ i, j ≤ n.

Proof. We use a data structure similar to the one outlined in [11] (based on Fred-

erikson’s heap selection algorithm [29]) for answering unsorted Top-k queries

in 1D array2. First encode A using O(mn lg n) bits to support RMaxQ (range

maximum) queries in constant time for the any rectangular range in A. This

encoding also supports finding the rank (i.e., the position in sorted order) of any

element in A in O(1) time [10]. Next, let x = A[x1][x2] be the maximum value

in A[i . . . j][a . . . b], which can be found using an RMaxQ query on A. Then con-

sider the 4-ary heap obtained by the following procedure. The root of the heap

is x, and its four subtrees are formed by recursively constructing the 4-ary heap

on the sub-arrays A[i . . . x1− 1][a . . . b], A[x1 + 1 . . . j][a . . . b], A[x1][a . . . x2− 1]

and A[x1][x2 + 1 . . . b], respectively. Now, we can find the k largest elements in

2Brodal et al. [11] also give another structure to answer sorted Top-k queries, with the
same time and space bounds.
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the above 4-ary heap in O(k) time using the algorithm proposed by Frederick-

son [29] (note that this algorithm only builds a heap with O(k) nodes which is

a connected subgraph of the above 4-ary heap).

We now introduce another encoding to support Top-k queries on an m×n 2D

array A. This encoding extends the optimal Top-k encoding of Gawrychowski

and Nicholson [31] for a 1D array. This encoding does not support the queries

efficiently. Compared to the encoding of Proposition 6.2, this encoding uses less

space when n = Ω(km). We first review the Gawrychowski and Nicholson [31]’s

optimal Top-k encoding for 1D array, and show how to extend this encoding to

the 2D array case.

For a given 1D array A′[1 . . . n], we define the sequence of arrays SA
′

=

SA
′

1 . . . SA
′

n , where for 1 ≤ j ≤ n and 1 ≤ i ≤ j, SA′j is an array of size j defined

as follows.

SA
′

j [i] =

 p if there are p (< k) elements larger than A′[i] in A′[i+ 1 . . . j]

k otherwise

See Figure 6.1 for an example.

If SA
′

j [i] < k, we call A[i] in A[1 . . . j] as active, otherwise A[i] is inactive in

A[1 . . . j].

Gawrychowski and Nicholson [31] show that for 1 ≤ i, j ≤ n, Top-k(i, j, A′)

can be answered using SA
′

j [i . . . j]. They obtained a lg
(

(k+1)n
n

)
+o(n)-bit encod-

ing of SA
′

by representing δA
′

1 . . . δA
′

n−1 (where δA
′

i =
∑i+1

l=1 S
A′
i+1[l]−

∑i
l=1 S

A′
i [l])

in unary, and compressing the sequence using the Lemma 2.1. Since
∑n−1

i−1 δ
A′
i ≤

kn, the unary sequence has kn zeros and n ones. The following lemma states

their result for 1D arrays.

Lemma 6.1 ([31]). Given an 1D array A[1 . . . n], there is an encoding of A

using lg
(

(k+1)n
n

)
+ o(n) bits which supports Top-k queries.

We now describe how to extend this encoding to a 2D m× n array A. For

1 ≤ i ≤ m, let Ai[1 . . . n] be the array of the i-th row in A. Then we first
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A1 3 7 8 2 6 4

A2 6 4 10 3 5 2

SA1
1 0

SA1
2 1 0

SA1
3 2 1 0

SA1
4 2 1 0 0

SA1
5 2 2 0 1 0

SA1
6 2 2 0 2 0 0

SA2
1 0

SA2
2 0 0

SA2
3 1 1 0

SA2
4 1 1 0 0

SA2
5 1 2 0 1 0

SA2
6 1 2 0 1 0 0

I
(1,2)
1 1

I
(1,2)
2 2 0

I
(1,2)
3 2 1 1

I
(1,2)
4 2 1 1 1

I
(1,2)
5 2 1 1 2 0

I
(1,2)
6 2 1 1 2 0 0

I
(2,1)
1 0

I
(2,1)
1 1 0

I
(2,1)
1 2 1 0

I
(2,1)
1 2 1 0 0

I
(2,1)
1 2 2 0 1 0

I
(2,1)
1 2 2 0 2 0 0

Figure 6.1 Top-k encoding of the 2D array A when k = 2

maintain the Top-k encoding of A1 . . . Am using Lemma 6.1, and this takes

m lg
(

(k+1)n
n

)
+ o(n) bits. In addition, for every 1 ≤ i 6= j ≤ m, we define the

sequence of arrays, I(i,j) = I
(i,j)
1 . . . I

(i,j)
n . For 1 ≤ r ≤ n, I

(i,j)
r is an array of size

r defined as follows.

I(i,j)
r [s] =



p if i > j and there are p (< k) elements which are

larger than Ai[s] in Aj [s+ 1 . . . r]

q if i < j and there are q (< k) elements which are

larger than Ai[s] in Aj [s . . . r]

k otherwise (if there are ≥ k elements, in the above two cases)

See Figure 6.1 for an example.

We can answer the Top-k(i, j, a, b, A) queries as follows. We first define the

1D array B[1 . . . b(j − i + 1)] by writing down the values of A[i . . . j][1 . . . b] in

column-major order. Then we observe that Top-k(i, j, a, b, A) can be answered

using SBb(j−i+1)[a(j − i+ 1) + 1 . . . b(j − i+ 1)].

The following lemma shows that we can compute the values in SBb(j−i+1)

using SA1 . . . SAm and all the arrays I
(c,d)
b , for 1 ≤ c 6= d ≤ m.
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Lemma 6.2. Given a 2D array A[1 . . .m][1 . . . n], for 1 ≤ i ≤ j ≤ m and

1 ≤ b ≤ n, let B[1 . . . q] be the 1D array of size q = (j − i + 1)b obtained by

writing the elements of A[i . . . j][1 . . . b] in column-major order. Also, for any

1 ≤ s ≤ q, let (srow, scol) be the position corresponding B[s] in A (which can be

computed using scol = ds/(j − i+ 1)e and srow = s−(scol−1)∗(j−i+1)+(i−1)).

Then

SBq [s] = max (k, (S
Asrow
b [scol] +

∑
i≤`≤j, 6̀=srow

I
(srow,`)
b [scol])).

Proof. It is enough to count the number of elements inB (i.e., inA[i . . . j][a . . . b])

which are larger than B[s] (i.e., A[srow][scol]) in B[s + 1 . . . q] (i.e., the corre-

sponding elements in A). Let L be the set of these elements. If |L| ≥ k, then

SBq [s] = k. In the following, we describe how to compute SBq [s] when |L| < k.

From the definition of S
Asrow
b , it follows that the number of elements in L

which are in row srow is S
Asrow
b [scol].. Also, for any row ` 6= srow, I

(srow,`)
b [scol]

is the number of elements in L that belong to row `. From all these values, we

can compute |L|.

By Lemma 6.2, we can answer the Top-k queries on A using the Top-k

encodings of all the rows A1, . . . , Am, together with all the arrays I(i,j), for

all 1 ≤ i 6= j ≤ m. Since we can recover the order of all active elements

in the prefix of i-th row using SAi [31], we can decode I
(i,j)
p using I

(i,j)
p−1 and

γijp =
∑p

l=1 I
(i,j)
p [l]−

∑p−1
l=1 I

(i,j)
p−1 [l] by the following procedure, for p > 1.

1. Append 0 to I
(i,j)
p−1 . Let this array be J

(i,j)
p−1 .

2. Find the positions of γ
(i,j)
p−1 smallest active values in Ai[1 . . . p] using SAi ,

and increase the values of J
(i,j)
p−1 in these positions by 1.

Therefore, using I
(i,j)
1 , and γ

(i,j)
2 , . . . , γ

(i,j)
n , we can decode I(i,j). Since the sum∑`=n

`=2 γ
(i,j)
` is at most kn, we can encode all the arrays I(i,j) (for all possible

i 6= j) using m(m− 1) lg
(

(k+1)n
n

)
+ o(n) bits (by converting γ

(i,j)
` ’s into unary,

as in the encoding of Lemma 6.1). Also, to encode I
(i,j)
1 for i < j (note that if
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i > j, I
(i,j)
1 is always 0), we need to store the ordering of all elements in the first

column, which takes m lgm bits. This gives a proof of the following theorem.

Theorem 6.2. Given a 2D array A[1 . . .m][1 . . . n], there is an encoding of A

using m2 lg
(

(k+1)n
n

)
+m lgm+ o(n) bits which can answer the Top-k queries.

6.4 Open problems

In this chapter, we obtained encodings which answer Top-k query on 2D array.

We suggest the following open problems for future works.

• Can we support efficient query time on our proposed encodings of Theo-

rem 6.1 and Theorem 6.2?

• For 2 and 3-sided query, can we obtain an encoding which uses less space

than the 4-sided Top-k queries on 2D array?

• Is the effective entropy of unsorted Top-k queries smaller than the effective

entropy of sorted Top-k queries on 2D arrays?
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Chapter 7

Conculsion

In this thesis, we proposed various space-efficient data structures that answer

rank and select on bit strings, NLN queries, range queries and next/previous

larger/smaller values simultaneously, and Range Top-k queries on two-dimensional

array. Most of our data structures not only require less space than existing data

structures, but also support queries efficiently .

In Chapter 3, we are aware, carefully investigated V2F compressors as a

basis for bitvectors. We have shown how V2F bitvectors can lead to simple

bitvectors with low redundancy. Empirical testing of an implementation, which

albeit differs considerably from the theoretical proposals, shows that low mem-

ory usage and good, robust speed performance can be obtained via V2F com-

pressors.

In Chapter 4, we proposed data structures for NLV in one-dimensional ar-

rays in indexing model, and NLN in two-dimensional arrays, in the encoding

models. For two-dimensional arrays we obtained a data structure that uses

asymptotically optimal space and supports NLN queries in constant time.

In Chapter 5, we obtained space-efficient encodings that support a large set

of range and previous/next smaller/larger value queries. The encodings that
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support the queries in constant time take more space than the ones that do not

support the queries in constant time.

Finally, in Chapter 6, we obtained encodings which answer Top-k query

on two-dimensional array. In particular, for m × n two-dimensional array, we

proposed an optimal encoding when the query is one-sided.

In addition to the open problems in each chapter, we give the following

general open problems which can be considered for all problems in this thesis.

• In this thesis, all data structures give exact answers for queries. Different

from exact queries, for ε > 0, ε-approximate query returns the answer

between T and εT where T is an exact answer of the query. For example,

(1 + ε)-approximate NLN(i) on A[1 . . . n] returns the position j such that

A[j] > A[i] and |j − i| ≤ (1 + ε)|NLN(i) − i|. There are several studies

about approximate queries such as nearest neighbor problem [2] and range

minima in the middle [26]. Can data structures in this thesis use less space

or query time for answering the approximate queries instead of exact

queries?

• All data structures proposed in this thesis only works on a one or two-

dimensional array. Extending these data structures for general n-dimensional

array can be considered as an open problem. For example, Yuan and Atal-

lah [75], and Davoodi et al. [15] obtained encodings which support RMinQ

queries on n-dimensional arrays.

More interesting open problem is that we can generalize an n-dimensional

array into an n-dimensional grid. For example, we can consider the two-

dimensional array as a special case of two-dimensional grid such that all

grid points have an assigned value. Navarro et al. proposed data structures

for various range queries on two-dimensional grid [57], but they did not

considered the problems in terms of density, i.e, the ratio between the

total number of grid points and the grid points which have an assigned
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value. In many practical cases, the grid is sparse, that is, only few grid

points have an assigned value. Can we design efficient data structures

where input data is an n-dimensional grid and obtain better space or

query time when the grid is sparse?
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요약

본논문에서는다양한범위질의및관련문제들을해결하는공간효율적인자료

구조들을 디자인 및 구현하였다. 본 논문에서 제안한 대부분의 자료 구조들은

정보 엔트로피에 가까운 적은 공간 만을 차지하면서도 효과적인 질의 시간을

지원한다. 세부적으로 본 논문에서는 다음 네 가지 문제 ((i) 압축된 비트 문

자열 상에서 rank 와 select 질의를 지원하는 문제, (ii) nearest larger neighbor

질의 문제, (iii) 여러 범위 질의 및, next/previous larger/smaller value 질의 문

제, (iv) 이차원 배열 상에서의 Top-k 질의 문제) 을 해결하는 공간 효율적인

자료 구조에 대해 연구하였다.

본 논문에서는 우선 압축된 비트 벡터를 실질적으로 구현하였다 [45]. 비트

벡터는비트문자열상에서 rank와 select질의를지원하는자료구조를뜻한다.

본 논문에서는 이전까지 체계적으로 연구 되지 않았던 V2F(variable-to-fixed)

압축알고리즘으로압축되어진비트문자열상에서비트벡터를구현하는방법

에대해연구하였다.본논문은이러한접근방식이실제상황에서빠른질의를

지원함과 동시에 적은 여분 공간 (압축 된 비트 문자열을 제외한 비트 벡터의

공간) 을 차지한다는 것을 보였다. 본 논문에서 제안한 비트 벡터는 다양한

방법으로 압축된 비트 문자열 상에서 rank 와 select 질의를 지원하는 효과적이

면서도 실용적인 방안을 제공한다.

이어서본논문에서는 nearest larger neighbor문제를해결하는공간효율적

인자료구조에대해연구하였다 [44, 46].전순서가주어진 n개의원소를가지는

일차원 배열이 있을 때, nearest larger neighbor (NLN) 질의는 배열 상의 어느

한 위치가 질의로 주어졌을 때, 질의와 가장 가까운 곳에 위치하면서 질의보다

큰값을가진배열상의원소의위치를반환한다.배열상에모든원소들의 NLN

질의에 답하는 문제는 괄호 매칭 이나 계산 기하학 관련 문제들에 활용될 수

있기에 큰 주목을 받고 있다 [3, 4, 7]. 본 논문에서는 이러한 NLN 질의를 빠른

시간 안에 풀 수 있는 공간 효율적인 자료 구조들에 대해 연구하였다. 우선 본
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논문은 인덱싱 모델 하에서 일차원 배열에서 질의 시간과 사용 공간 사이에

tradeoff 를 가지는 자료 구조를 제안하였으며 인코딩 모델 하에서 이차원 배

열에서 최적에 가까운 공간을 사용하면서 상수 시간 안에 NLN 질의에 답할 수

있는 자료 구조를 제안하였다.

또한본논문에서는다양한범위질의들(범위최소질의,범위최대질의및

이들에 대한 확장 질의) 과 함께 next/previous larger/smaller value 질의를 답

할 수 있는 공간 효율적인 자료 구조에 대해 연구하였다 [47]. 전순서가 주어진

n개의 원소를 가지는 일차원 배열이 있을 떄, 본 논문에서는 4.088n+ o(n) 비

트의공간을사용하면서위에주어진모든질의들에답할수있는자료구조를

제안하였다.또한본논문에서는 4.585n+o(n)비트의공간을사용하면서위에

주어진모든질의들을상수시간안에답할수있는자료구조를제안하였다.본

논문이제안한자료구조는기존의 Fischer에의해연구된 5.08n+o(n)비트의

공간을 사용하는 자료구조에 비해 적은 공간을 차지한다 [25]. 본 논문에서는

우선색칠된 2d-Min heap과색칠된 2d-Max heap를인코딩하기위해기존의

DFUDS [6]인코딩기법을확장한다음, Gawrychowski와 Nicholson이 2d-Min

heap과 2d-Max heap을동시에인코딩하기위해제안한자료구조를수정하여

색칠 된 2d-Min heap 과 색칠 된 2d-Max heap 을 동시에 인코딩 할 수 있음을

보였다. 본 논문은 또한 위의 질의들 중 일부를 지원하면서 4.088n+ o(n) 비트

보다 더 적은 공간을 사용하는 자료 구조를 제안하였다.

마지막으로본논문에서는전순서가주어진이차원배열상에서 Top-k질의

에답할수있는다양한자료구조들에대해연구하였다. m×n이차원배열에서

본 논문은 질의 범위가 [1 . . .m][1 . . . a] (1 ≤ a ≤ n) 로 제한 되었을 때 최적의

공간을 사용하는 자료 구조를 제안하였다. 또한 본 논문은 Gawrychowski 와

Nicholson 이 제안한 일차원 배열상에서 Top-k 질의를 지원하는 자료 구조를

확장하여 m2 lg
(

(k+1)n
n

)
+ m lgm + o(n) 비트의 공간을 사용하면서 일반적인

Top-k 질의를 지원하는 자료 구조를 제안하였다.

주요어: 공간 효율적인 자료구조, 간결한 자료구조, 인코딩 모델, 인덱싱 모

델, 비트벡터, rank 질의, select 질의, nearest larger neighbor 문제, 범위 질의,
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next/previous larger 질의, 범의 Top-k 질의
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