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Abstract

Virtual Garment Resizing and Capturing
Based on the Parametrized Draft

Moonhwan Jeong

Department of Electrical Engineering and Computer Science

The Graduate School

Seoul National University

This dissertation presents novel frameworks for virtual garment resizing and

capturing. In the clothing industry, ready-to-wear apparel is designed from

standard body, and then it is resized to fit specific body. The resizing job is

called grading. Grading requires specialized tailoring techniques and extremely

time. We suggest fast and simple grading technique for virtual clothing. For

generating virtual garment according to real garment, pattern designing and

modeling knowledge are demanded. We propose a method which converts from

real garment into virtual garment. There are in need of the virtual clothes grad-

ing and modeling methods in the animation and game productions, since cos-

tume design takes an important component in the process.

To perform grading job, we introduced retargeting technique which is widely

utilized in the computer graphics field. Retargeting technique demands the me-

diator and the correspondence function. For the mediator of our method, we
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got the insight from the process of drawing the pattern-making draft. Noting

that the draft can be completely determined by supplying the primary body

sizes and the garment type, we implemented a computer module which per-

forms the draft construction process. The module is called the parameterized

draft module. Barycentric coordinates system is a reasonable method for mak-

ing correspondence between garment drafts and panels on 2D. Among others,

the Mean Value Coordinates (MVC) would be an excellent choice. We call

this grading method Draft-space Warping. The proposed grading method can

be performed instantly for any given body without calling for the user inter-

vention. Our approach can minimize designer’s specialized know-how and save

performing time for the grading of real and virtual clothes. Also we suggest

compensation techniques to improve the quality of grading. With experimental

results, we show that the new grading framework can bring an improvement

to garment grading.

Also, we investigated a method which can create the virtual garment from

a single photograph of a real garment put on to the mannequin. Similar as our

resizing method, we used pattern drafting theory in solving this problem. We

utilize parameterized draft module which was introduced in draft-space warp-

ing. Then the capturing problem is reduced to find out the garment type and

primary body sizes. We determine that information by analyzing the silhouette

of the garment with respect to the mannequin. The method works robustly and

produces practically usable virtual clothes which can be used for the graphical

coordination.

ii



Both methods are devised based on the pattern-making draft. Since pro-

posed methods perform resizing and modeling jobs on 2D, we reduce compu-

tation time for the jobs. Although, we can get the plausible results.

Keywords: Virtual Garment, Resizing, Grading, Modeling, Barycentric Coor-

dinate System, Photograph

Student Number: 2013-30259
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Chapter 1

Introduction

In the fashion industry, garment manufacturing have been the significant topic

of research. Generally, the garment manufacturing framework [2] involves 5-

steps: garment sketching, pattern designing, pattern grading, pattern sewing and

inspection. The first step of the garment manufacturing is sketching the design

of clothes. In this step, a fashion designer draws a flat sketch of the garment

and annotates details for the specific design. After that, the pattern maker de-

velops garment patterns from the flat sketch which is drawn before step. These

patterns are based on the standard body size. Next step is pattern grading. The

aim of grading is resizing patterns for different standard body sizes or a spe-

cific body size. In the pattern sewing step, each pattern is stitched. Last step is

inspection. In this step, the garment is checked the sewing defects, erroneous

creasing and non-matching threads. Also, the designer evaluates the design of

the garment draping, garment pressure and garment air-gap. For passing final

1



Chapter 1. Introduction 2

step, the making process requires many iterations of transferring garment de-

sign in patterns to draped design on the body, then back to patterns. These

procedures call for technical knowledge of tailoring and a large amount of

human intervention.

Various virtual clothing technologies help to make garment patterns and

represent 3D draping design effectively and efficiently. Virtual garment means

2D polygons and 3D meshes which are represented clothes patterns in virtual

environment. Virtual clothing can be used to clothe the characters appearing in

the movies, animations and games [46]. It changes working practice in many

companies in the clothing industry. The advancement of virtual clothing tech-

niques is to be welcomed not only to graphics field, but to fashion field.

1.1 Virtual Clothing Techniques

In this section, we examine a brief general description of the virtual cloth-

ing techniques. We introduce how to perform garment modeling, simulation,

rendering and texturing in the computer graphics field and the fashion field.

Garment Modeling Garment modeling techniques are utilized to represent

the garment in a virtual environment. There are two types of cloth modeling

methods: Drawing 2D patterns and constructing 3D meshes. Pattern makers

and designers use computer-aided design (CAD) softwares such as Style-CAD,

Lectra, Gerber, Optitex and DC-Suite in order to making and editing 2D gar-

ment pattern. Generally, ready-to-wear clothing is reflected in standard body
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size. In order to make clothes for various customers, the standard body size

pattern would be graded into specific body sizes by a skillful tailor. These ap-

plications are used to assist drawing, editing, texturing and grading garment

patterns on 2D. In the computer animation and game field, virtual garment is

generated by using 3D modeling applications such as Blender, Maya and 3ds-

MAX. It is same technique as other modeling objects like avatar, accessory,

car, furniture and building. As there is not tailoring knowledge, these garments

tend to consist of basic pattern meshes.

Garment Simulation In order to represent 3D dynamics and shape of the

garment, fashion designer uses 3D draping software such as Qualoth, Mar-

velous, Optitex and DC-Suite. With the help of these software systems, check-

ing the garment shape and evaluating a property of matter can be performed

in virtual environment. These applications decrease time and cost when a gar-

ment is evaluated. In the graphics field, garment simulation reproduces dy-

namic behaviors of cloth in a virtual environment. There are three types of

cloth simulation methods: physically based method, data-driven method and

hybrid method. For implementing dynamic behaviors, physically based cloth

simulation utilizes physical models such as mass-spring model [62] and en-

ergy model [7]. Since the method is based on the physics in the real world,

the shape of draping garment looks like very realistic. However, the simula-

tion quality is proportional to the number of the basic elements of the garment

meshes, it calls for a lot of computational cost to represent fine details. To

solve these problem, many researchers have been investigated various GPU-
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based techniques [72, 96]. Data-driven based cloth simulation utilizes precom-

puted data which is constructed from standard 2D clothing designs draped on

3D avatars with varying shape and pose [19, 85, 32]. These techniques do not

well reflect the property of cloth material than direct physically-based simula-

tion. In the hybrid clothing simulation [45, 43], coarse level garment meshes

were draped physically-based cloth simulation. After that, fine-scale details are

added on the coarse level garment meshes. Multi-grid approaches [59, 38] use

multiple resolutions to reduce computing cost for solving a linear system. Hy-

brid clothing simulation is more efficiently rather than using physical based

simulation solely.

Garment Rendering and Texturing Rendering and texturing techniques

are needed to represent virtual garment more realistically. Rendering is the

process for producing a 2D image from a description of a 3D scene [60].

Many ways have been investigated to describe reflection behavior of fabric

texture on the virtual garment. These methods use the bidirectional reflectance

distribution function(BRDF) which has the advantages to represent reflectance

property of fabric such as anisotropy, fresnel behavior and non-Lambertian dif-

fuse term [31, 6]. For constructing microfacet-based BRDF, reflectance data

was captured from real garment [54, 86]. Small-scale texture and textile are

significant part to produce the appearance of woven fabrics [90, 44, 36]. These

methods consider the geometric model of the woven cloth.
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1.2 Motivation

This dissertation consists of two parts: garment resizing and garment capture.

In the garment resizing section, we introduce the garment resizing and our

novel idea which helps to perform grading the clothes in the virtual environ-

ment. Next, we present the garment modeling method which can generate 2D

garment pattern and 3D draping mesh from a photograph. Both methods are

motivated from pattern-drafting knowledge.

1.2.1 Garment Resizing

In the clothing industry, pattern-maker draws garment pattern based on the

standard body size, and then the resulted patterns are modified to fit different

body sizes. The latter part is generally referred to as grading. Without grading,

the design and fit can not be well appreciated by other bodies because each

body size of individual is different from the standard body size which were

used in the original garment design. Therefore, grading is the significant part

in the fashion field.

Animation and game industry also necessitate the grading technique, since

costume design is an important component in the process. In face, the varia-

tion of the bodies appearing in the animations or games is broader than the

clothing production, because clothes often need to be worn by monsters or an-

imals which has an extreme body sizes. Such bodies are difficult to cover with

the conventional grading methods. Therefore, a new grading technique, which
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Figure 1.1 Linear grading of bodice panel. Linear grading method performs
the grading job by applying translations to a set of panel vertices according
to predetermined directions.

transforms a given design to fit a particular body size, needs to be developed.

In the computer graphics field, an extensive amount of work has been inves-

tigated to clothe human characters, but little study has been performed on the

grading problem itself.

A garment refers to a set of panels [p1, p2, . . . , pN ]. Note that determina-

tion of the shape and size of the panels forms the essential part of the garment

design, but the color and the textiles are irrelevant in the consideration of grad-

ing. Speaking in terms of data, a panel is represented by the contour lines and
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interior points/lines. Focusing on a particular panel, a grading algorithm has to

generate new contour lines and interior points/lines. The graded panels should

fit to the specific body and preserve original design.

Some grading tools are provided with many computer softwares such as

Style-CAD, Lectra, Gerber and Optitex, but the grading tool is a tedious pro-

cess which requires a large amount of user’s intervention and expert knowledge

of the tailoring. The two grading methods, namely, the cut-and-spread method

and the pattern shifting method are in use in the current clothing industry [34].

When an original panel is given, those methods perform the grading job by

applying translations to a set of panel vertices according to predetermined di-

rections, as shown in Figure 1.1. We will call this sort of grading as linear

grading, since the translations are made along a straight line. Unfortunately,

the linear grading may not be an optimal treatment to accommodate non-linear

body variations and non-planar body surface. The above problem has been

noted for a long time. Therefore, a grading expert makes further adjustments

to the linearly graded results, which is typically a time consuming and labor-

intensive task. This dissertation is motivated from the author’s belief that such

non-linearity can be better accounted for by a computer program rather than

human hands.

In order to approach the problem from a different angle, grading is treated

as retargeting problem which is used in deformation mesh and polygon. Retar-

geting method utilizes correspondence between object and mediator as shown

in Figure 1.2. First, we define correspondence function between the source
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Figure 1.2 Framework of retargeting method. First, the correspondence is
defined between the source object and the mediator. Next, the mediator is mod-
ified for the target object. Finally, we make the target object according to the
modified mediator with the correspondence.

object and the mediator. Next, we modify the mediator for the target object.

Finally, we make the target object according to the modified mediator with the

correspondence function. Many researchers [55, 84, 15] introduced retargeting

scheme for handling garment grading. In the previous works, 2D garment pat-

terns are retargeted on 3D space because the mediator is 3D avatar. The result

of these works is 3D garment mesh. But, only 2D panels can be used in the

clothing production, therefore previous works need additional process such as

pattern extraction [66, 67] which involves additional computation and distor-

tion. We suggest novel approach which switches from garment grading to 2D

polygon retargeting problem. We call the approach Draft-Space Warping [40],

and call the retargeting step draft-space encoding and decoding. In order to do

grading on 2D, we need a 2D mediator, which would be served as 3D avatar

on 3D space.
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Figure 1.3 Bodice draft

PBS (unit:cm) source

Bust Circumference 85
Waist Circumference 65
Hip Circumference 90
Waist Back Length 39
Bust Point to Bust point 17
Neck Point to Breast Point 24

Table 1.1 The primary sizes of bodice

The proper mediator and the corresponding function are demanded to get

the satisfactory result in the retargeting method. For the mediator of grading

problem, we got the insight from the process of drawing the pattern-making

draft, an example of which is shown in Figure 1.3. Draft is the appropriate

mediator for the proposed method. Because, the three facts, (1) draft can be



Chapter 1. Introduction 10

designed from arbitrary body and (2) It can be drawn easily and instantly (3)

It involves the tailoring knowledge, led us to the new framework. From the

given primary body sizes (PBSs), a clothing expert can construct the draft by

drawing points or straight/curved lines step by step. For example, Figure 1.3

is drawn from six sizes listed in Table 1.1: the bust, the waist, the hip cir-

cumference, the waist back length, the bust point to bust point, and the neck

point to breast point. We note that the draft gives one of the possible solu-

tions which perfectly meet the given primary sizes requirement and supposedly

meet other (non-primary) sizes satisfactorily. Since the draft is completely de-

termined from the primary body sizes, we can abstract the construction process

as a procedure D(∗) which takes an arbitrary body then generates the draft for

it. We call that procedure the parameterized draft. We implement a computer

module which performs the parameterized draft procedure. We instantly draw

a lot of drafts using the parameterized draft module. The input parameters of

the module are garment type and PBSs. The result shown in Figure 1.3 is

D(A) for a particular body A, whose PBSs are given in Table 1.1.

The quality of the draft-space encoding, which finds out the barycentric

coordinates of a panel vertex with respect to the draft, is essential for the

proposed method to successfully work. There are several choices [82, 68, 87,

27, 35] which can be employed for the draft-space encoding. We compare

these barycentric coordinates that will be introduced in Chapter 4.3. And then

we find that the mean value coordinates is an excellent choice.

Although construction of the parameterized draft can not be considered as
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a garment design, it can serve as a mediator which relates a garment design to

the body, which forms the main idea of this work. If a parameterized draft is

available, we can decompose the original problem of grading to the following

five steps. The first step is the Source Draft Construction. In this step, we

create the draft D(A) by giving the PBSs of the source body. The second

step is the Panel Positioning. We position the panels of the design ,which is

constructed for the body A, on the draft D(A). The third step is the Draft-

space Encoding. We express each vertex (vi) of the panel as a weighted sum

of the vertices constituting the draft D(A). Finding the weights can be viewed

as encoding the panel point in the form of coordinates in the D(A)-space.

That is how this step is called the draft-space encoding. The next step is the

Target Draft Construction. By supplying the PBSs of the target body B, the

parameterized draft generates the draft D(B) for it. The final step is the Draft-

space Decoding. In this step, we decode the correspondence, which created in

the Draft-space Encoding step, with respect to D(B) which will produce the

graded version of the original design. This step corresponds to warping panels

based on D(A)-to-D(B) discrepancy.

1.2.2 Garment Creating from a Photograph

Creation of virtual garments is demanded from various applications. This dis-

sertation notes that such demand arises also from the consumers at home who

would like to graphically coordinate the clothes in her closet to her own avatar.

For that purpose, the existing garments need to be converted to virtual gar-
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Figure 1.4 The setup for the garment capture.

ments.

For the consumer, using the CAD programs for digitizing (i.e., identifying

and creating the comprising cloth panels, positioning the panels around the

body, defining the seams, extracting and mapping the textures, then draping

on the avatar) her clothing collection is practically out of question. That job

is difficult and cumbersome even for the clothing experts. This paper proposes

a new method to instantly create the virtual garment from a single photograph

of the existing garment put on to the mannequin, the setup of which is shown

in Figure 1.4. We call the method Garment Capture (GarmCap) [39].

Millimeter-scale accuracy in the sewing pattern is not the quality this method

promises. From insufficient information (thus easy to use), the method aims to

create practically usable clothes that are just sufficient for the graphical outfit

coordination. For the above purpose, the proposed method is very successful.

As Figure 1.5 and other reported results demonstrate, the method creates prac-
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(a) Input photograph (b) Result virtual garment

Figure 1.5 The proposed method GarmCap takes a photograph (a) and pro-
duces its 3D virtual garment (b).

tically usable clothes and works very robustly.

We attribute the above success to the following two novel approaches this

paper takes: (1) silhouette-based and (2) pattern-based. The use of vision-based

techniques is not new in the context of virtual garment creation. Instead of

trying to analyze the interior of the foreground, however, this paper devises

a garment creation algorithm that utilizes only the silhouette, which can be

captured a lot more robustly. This robustness trades-off with the foreground

details such as buttons or collars, but we give up them in this paper to obtain

a practically usable technique.
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Another bifurcation this paper makes is, instead of working directly in

the 3D-shape space, it works in the 2D-pattern space. In fact, our method is

based on the pattern drafting theory which is well established in the conven-

tional pattern-making study [4]. The proposed method is different from sketch

or photograph based shape-in-3D-then-flatten approaches in that it does not

call for flattening of the 3D surfaces. Flattening of a triangular mesh can-

not be done in the theoretical (differential-geometrical) sense thus inevitably

introduces errors, which emerge as unnaturalness to keen human eyes. Our

method’s obviation of the flattening significantly contributes to producing more

realistic results.

Since it is based on pattern drafting, our work is applicable only to the

types of garments whose drafting is already acquired. In this work, the goal

of which is to demonstrate the potential of the proposed approach, we limit

the scope to simple casual designs (shirt, skirt, pants, and one-piece dress)

shown in Figure 5.6.

1.3 Contribution

We suggested the framework which would easily perform grading based on the

pattern-drafting theory. Also we proposed the garment capturing method which

is the photograph-based virtual garment creation technique with the help of

the pattern drafting theory. Particularly rewarding is that we introduce pattern

drafting theory which make it possible to do resizing and creating panel on
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the 2D space. Proposed methods do not require pattern extracting step which

brings on additional computations and distortions. Draft represents not only

frontal garment design but also rear and laterals. Proposed draft-based ap-

proach can save time and memory. Nonetheless, we got the plausible results.

The novel idea of utilizing pattern-drafting theory forms the main contribution

of this work in the field of computer graphics and fashion.

1.4 Terminology

We present new grading and capturing frameworks in the clothing and com-

puter graphics field. There are many terminologies of clothing fields in this

paper. Now we introduce these terminologies and new notions.

– Pattern : Which is the template from the part of garment. It is composed

of lines and points.

– Panel : A piece of cloth which is cut congruent to the pattern.

– Grading : The process which linearly expand or reduce the original pat-

tern is designed to fit typical body size as shown in Figure 1.1.

– Draft : An early version of garment patterns. Figure 1.3 shows simple

bodice draft.

– parameterized draft : The pattern is drafted according to PBSs.
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– Primary body sizes (PBSs) : Which is set of each body size to create

parameterized draft.

– Panel point (vertex) : The point (vertex) of panel.

– Draft point (vertex) : The point (vertex) of parameterized draft.



Chapter 2

Previous Work

Many researchers have investigated methods in order to show virtual garment

in 3D computer animation and other applications. It represents both garment

shape and properties of the fabric in computer graphics [79]. Garment shape is

related to geometrical modeling and modification. Geometrical modeling is the

process of making the garment in a virtual environment. Garment modification

is the process which resize the garment. Properties of the fabric are involved

in simulation and rendering. Simulation reproduce dynamic behaviors of cloth

such as exterior force, interior energy [74, 7, 14, 81, 18], collision [13, 8, 30,

71] and hysteresis [57, 58]. Rendering [95, 6, 54, 86] and texture [1, 44, 25,

36] techniques are needed to implement realistic virtual garment.

This chapter surveys the various garment resizing [78, 76, 83, 15] and cre-

ating [75, 65, 12, 77] methods which are appropriate to the suggested research.

17



Chapter 2. Previous Work 18

2.1 Garment Resizing

This section is divided into algorithms for garment grading and coordinates

systems for draft-space encoding.

2.1.1 Algorithms for Garment Resizing

In the clothing field, computer cad system [52] which have been used for gar-

ment design and grading in order to dispose tedious process. In the computer

graphics field, the study on the grading technique is in the early stage. Volino

et al. [78] presented an interactive garment modeling framework in which the

garment could be edited in 3D, then its constituent 2D patterns can be ex-

tracted. Umetani et al. [76] investigated a novel interactive tool in which the

3D garment and 2D patterns are coupled in such a way. Designers can in-

teractively modify 2D/3D designs and immediately observe the results. When

viewed from the clothing industry, both methods are revolutionary, since they

allow clothing construction in 3D and produce the 2D patterns of the fitted gar-

ment. However, we do not categorize them as garment resizing techniques, as

accommodating the body variations was not the main concern of those meth-

ods.

Wang et al. [83] provided a garment modeling scheme, called the automatic

made-to-measure (AMM), which generates a garment mesh that fits to a given

arbitrary body. Wang et al. [84] proposed a garment retargeting method which

established the spatial relationship between the garment and the source body.
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The original garment is then retargeted to the target body following the spatial

relationship established above. This method produces fine results in the aspect

of fitting body. However, since the garment generation algorithm is closely

couple with the body shape, the result can have distortions when a loose gar-

ment is retargeted. Another automatic garment resizing method proposed by

Meng et al. [55] solves the distortion problem of [84] by introducing a local

geometry encoding technique. Recently, Brouet et al. [15] presented a garment

transfer method performs garment grading by explicitly considering additional

criteria such as the silhouette, fit and manufacturability.

In the goal, our work is same with the above methods; they develop meth-

ods that retarget a given garment design to fit the target body while preserv-

ing the original design. In the methodology, however, our work is different

from the above methods; while the above methods make a direct retargeting

of the garment in 3D with the subsequent pattern extraction process [66, 67],

our method retargets each 2D panel to the graded version via the 2D pattern-

making draft space, resulting in more utilization of the pattern-making exper-

tise from the clothing field.

2.1.2 Methods for Draft-space Encoding

The essence of the draft-space encoding is expressing the position of each

panel vertex as a weighted sum of the draft vertices. In this work, an under-

lying assumption is that, when grading a design, the weights should be pre-

served. A variety of such encoding schemes have been studied. One of the
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simplest approaches is triangular barycentric coordinates system (TBC) which

encodes a position within a triangle in terms of the weighted sum of the three

vertices. TBC has many desirable features including non-negativity, linear in-

terpolation and smoothness. Furthermore it is easy to implement. Many re-

searchers have utilized TBC and some attempted extension of it to fit for their

own purposes. Hoppe et al. [33] developed a method which uses TBC to create

correspondence between high and low resolution faces for mesh optimization.

Warren developed TBC which can take arbitrary convex polygons [87] and ar-

bitrary convex sets [88]. Meyer et al. [56] presented another generalization of

TBC which can apply to irregular, convex n-sided polygons.

Derose et al. [23] presented a new form of dimensional coordinates. It is

called the Harmonic Coordinates (HC), because it is produced as a solution

of the Laplace equation. HC has attractive properties including interior locality

and non-negativity. Therefore, it is advisable solution to make appropriate cor-

respondence between the cage 1 and interior vertex of meshes. Joshi et al. [41]

introduced HC to solve the problem of creating and controlling the volume de-

formation of character articulation. Jacobson et al. [37] developed a blending-

based deformation technique, called the bounded biharmonic weights (BBW),

in which the weights of the vertices are blended to minimize the Laplacian

energy. BBW can support not only cages but also points and bones. BBW

can be appropriate encoding method for handling exterior vertex. Lipman et

al.[50] presented Green Coordinate which are motivated by Green’s third in-

1A geometrical structure with respect to which an arbitrary position around it is encoded
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tegral identity. This coordinates system not only utilizes the vertices position,

but reflects edges orientation in the polygon.

Floater [27] introduced a new coordinates system, called the Mean Value

Coordinates (MVC), which was derived from the mean value theorem for har-

monic functions. The mean value coordinates could encode a position with

respect to an n-gon and it is smooth and easy to implement. Ju et al. [42]

improved the applicability of MVC from closed 2D polygons to closed trian-

gular meshes. Hormann et al. [35] demonstrated that MVC is well defined for

arbitrary planar polygons. Langer et al. [47] improved MVC to be able to take

3D polyhedra. MVC was used many applications which are based on retarget-

ing problem. The weights of MVC can have negative values when the n-gon

is concave. Lipman et al. [49] introduced the positive mean value coordinates

(PMVC) which guarantees to have positive weights everywhere including the

interior or exterior of the cage. The key idea of PMVC originates from HC,

therefore PMVC shows similar results with those of HC. GPU-based PMVC

is developed by [23], which has been shown faster than HC. Among the above

encoding methods, MVC and PMVC are the most relevant to our work. The

details of those two methods will be introduced in Section 4.3.

2.2 Garment Modeling

In this section, we introduce algorithms for virtual garment creating from sketch,

photographs and video stream. We also presents clothes classification method
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which have been investigated in computer vision field.

2.2.1 Garment Creating

Sketch-based method In the graphics field, there have been various stud-

ies for creating virtual garments. Turquin et al. [75] proposed a sketch-based

framework, in which the user sketches the silhouette lines in 2D with respect

to the body, which are then converted to the 3D garment. This framework used

the distance between the 2D garment silhouette and the character model to es-

timate the variations of the distance between the garment mesh and the char-

acter in 3D. Decaudin et al. [22] proposed a more comprehensive technique

that improved Turquin et al.’s work with the developability approximation and

geometrical modeling of fabric folds. Since the output garment mesh is de-

velopable, it is easy to compute the corresponding 2D sewing patterns. The

recent sketch-based method [63] is based on context-aware interpretation of

the sketch strokes. The context-aware interpretation of garment sketches was

used as constraint for creating believable garments. garment sketches We note

that the above techniques are targeted to novel garment creation, not to cap-

turing existing garments.

Marker based method Some researchers used implicit markers (i.e., printed

patterns) in order to capture the 3D shape of the garment [73, 65, 89]. Tanie

et al. [73] presented a method for capturing detailed human motion and gar-

ment mesh from a suit covered with the meshes which are created with retro-
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reflective tape. In other to to increase the robustness, above method used var-

ious thresholds at each stage of reconstruction. Scholz et al. [65] used the

garment on which a specialized color pattern is printed, which enabled repro-

duction of the 3D garment shape by establishing the correspondence among

multi-view images. The system consists of eight cameras and two HMI lamps

with soft-boxes. White et al. [89] used the color pattern of tessellated triangles

to capture the occluded part as well as the folded geometry of the garment.

We note that the above techniques are applicable to specially-created clothes

but not to the clothes in the consumers’ closet.

Marker free method A number of marker-free approaches have been also

proposed for capturing garments from multi-view video capture [12, 77, 21,

69]. Bradley et al. [12] proposed a method that is based on the establish-

ment of temporally coherent parameterization between the time-steps. Vlasic et

al. [77] performed the skeletal pose estimation of the articulated figure, which

was then used to estimate the mesh shape by processing the multi-view silhou-

ettes. Aguiar et al. [21] took the approach of taking the full-body laser scan

prior to the video-recording. Then, for each frame of the video, the method

recovered the avatar pose and captured the surface details. Popa et al. [61]

proposed a method to reintroduce high frequency folds, which tend to disap-

pear in the video-based reconstruction of the garment. We note that the above

multi-view techniques call for somewhat professional setup for the capture.

Zhou et al. [97] presented a method that generates the garment from a single
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image. Since the method assume the garment is symmetric in front part and

rear part, it is hard to generate realistic rear part of the garment. The result

can be useful if the clothing expert applies some additional processing, but not

quite sufficient for the graphical coordination of the garments.

2.2.2 Clothes Classification

In the computer vision field, the investigators have studied the classification of

the garment from a photograph. Chen et al. [17] suggested a method which

categorizes a garment and body into composite templates based on the sketches

of the image. The method utilizes And/Or Graphs to account for the topolog-

ical configurations. Berg et al. [10] proposed attribute classification technique

from web images. The approach characterizes attributes according to types

(color, texture, or shape) without hand labeled training data. Yang et al. [93]

proposed a real-time clothing categories technique from surveillance videos.

Bossard et al. [11] provided an upper body detectors which uses a multi-class

learner based on an extended random forest. Dong et al. [24] utilize parselet,

which is a set of basic clothes elements, to construct a deformable mixture

parsing model. Manfredi et al. [53] introduced a general approach for color

based retrieval and garment categorizations. Similar as our method, the ap-

proach performs segmentation with the help of mask. Liu et al. [51] suggested

a weakly-supervised fashion parsing framework. The method uses an image-

level color-category tags dataset as a traning set to assign both a color and

a type of the garment. Yamaguchi et al. [91] proposed a clothing classifier
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which takes advantage of pose estimation [94] and superpixels [3] to analysis

input image. For increasing overall accuracy, Yamaguchi et al. [92] developed

above method [91] by using the retrieved images approach. Similar as And/Or

Graph based method [17, 24], we utilize garment masks and a state machine

to categorize a clothes of an input photograph.
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Chapter 3

Background

In this chapter, we present the pattern-drafting theory which is the core of our

research. We suggest guidelines on how to judge the quality of grading and

capturing in the draft based method.

3.1 Introduction to the Pattern-drafting

In the fashion field, draping and drafting have been used for the pattern-making

[20, 16]. In the draping method, cloths are put on a dress form. And then it

is constructed by cutting and pinning to specify garment design. To generate

garment pattern, tailor draws line on the cloth and takes clothes to pieces. In

general, muslin is utilized as draping cloth.

In drafting method, pattern maker imagines design as stereogram version

and then draws planar figure. Drafting is known as the optimal solution to ex-

tract 2D drawing from the 3D garment design. In the fashion field, the pattern-

27
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drafting have been studied by the researchers, the tailors and the pattern mak-

ers. It calls for complex geometric knowledge. However, there exist pattern

drawing methods based on the draft in the school, industry and institution. A

draft is used as the starting point of many different garment patterns. Thus

pattern maker tends to think that sketching pattern based on the drafting is

more easy than draping.

Margin represents a gap between garment and body. It is important point

for formative clothing. Margin is taken into account for disrobing, clothing

and shape preserving. In order to grasp relation between garment and body,

ergonomic and anatomic body segmentation are demanded [5]. For drawing

draft, protrusion part on the body are projected to the front, side and rear

directions. Dart presents non-linearity of the human body. For properly fitting,

the lines and darts on the draft are drawn according to these items [26].

– Circumference line on the draft must be fit on the body without stretch-

ing and loosing.

– Bust, waist and hip circumference lines are aligned along the horizontal.

– There is proper gap between body and draft.

– The lines on the body should be stable.

– The draped draft has not fine wrinkle and stretch wrinkle.

In this work, the distinction between ‘draft’ and ‘panel’ is needed. Pattern-

making is the process of drawing the pattern-making draft (sloper) as shown
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(a) (b)

Figure 3.1 Draft (a) and panels (b). The black lines represent contour of
draft and a gray line represents an auxiliary line for drawing draft. Each panels
are described a gray polygon.

in Figure 3.1(a). The black lines represent contour of draft and a gray line

represents an auxiliary line for drawing draft. In general, a design of draft is

simple and it has not any ornament. Patterns are sketched from the draft. As

shown in Figure 3.1(b), a panel is a piece of cloth which is created according

to the contour of garment patterns. Each panels are described a gray polygon

in Figure 3.1(b).

Another important requirement imposed for the pattern-making is that the

result garment should fit to the body. For the fitting part, fashion field has been

using the drafting from a long time ago [4]. Although in the details of each

panel is varied from draft for design purpose, the primary body sizes such as

the pants length and girth are kept the same.

In fact, pattern-drafting is a common element practiced from fashion de-

partments. SADI, SMOD and DCC has established their own ways of draft-
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Figure 3.2 Intermediate steps for creating draft. The completed draft is
drawn in blue.

ing the basic bodice, skirt, sleeve, pants, etc. In fact, drafting steps consist of

the following types of operations which can be executed with no other input

than the primary body sizes. For instance the bodice draft is designed from

6 primary body sizes: Waist Circumference, Bust Circumference, Waist-Back

Length, Bust point-Bust point Length, Neck point to Breast point Length and

Waist Front Length. Figure 3.2 shows a few intermediate steps until the final

bodice draft is drawn.

– Drawing parallel/perpendicular lines

– Drawing curved line according to control points

– Dividing a line into two or three pieces of equal length

– Finding intersection point

– Symmetrizing points or lines

– Extending and reducing lines

If we decompose the drafting of Figure 3.2 into the above operations, it

takes 73 operations, taking tens of minutes even to an experienced pattern-

maker. But here we note that those operations are very basic to implement. For
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(a) (b) (c) (d)

Figure 3.3 Parameterized draft module can generate various type of drafts.
(a): Basic Blouse, (b): Basic Onepiece, (c): High-Waist Skirt, (d): Sleeve .

(a) (b) (c)

Figure 3.4 Parameterized draft module can generate various size of drafts.
(a): 44-Size Bodice draft, (b): 66-Size Bodice draft, (c): 88-Size Bodice draft.

the application of the basic bodice drafting, for example, we can implement

a computer module which takes. We call it parameterized draft module (PD-

module), and call the application draft constructor.

Our parameterized draft module can create various drafts. Figure 3.3 shows

basic blouse, basic one-piece, high waist skirt and sleeve draft which are gen-

erated by parameterized draft module. We can add a specific draft based on

pattern-drafting books [29, 28, 48]. In the parameterized draft module, it is

possible to create various size drafts by an adjustment of PBS parameters. Fig-

ure 3.4 presents 44, 66 and 88-size bodice drafts. The PBS parameters of these

drafts are shown in Table 3.1.
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PBS (unit:cm) 44 66 88

Bust Circumference 82.0 90.0 98.0
Waist Circumference 62.0 70.0 78.0
Hip Circumference 88.0 96.0 104.0
Waist Back Length 38.0 40.0 42.0
Bust Point to Bust point 16.4 17.6 18.8
Neck Point to Breast Point 24.4 25.6 26.8

Table 3.1 The PBS parameters

3.2 Judging the Quality in the Draft-based Method

Fitting The aim of garment grading is modifying the garment to fit the tar-

get body. In the other garment grading methods [84], [15], [55], measuring

how much fitting is directly calculated by the distance between each vertex of

garment mesh and each vertex of body mesh, therefore preserving the distance

is important point of these grading method. In our method, we can generate

parameterized draft which always fit to the target body. Therefore, each panel

of garment would be graded in order to fit the target body, if encoding and

decoding are processed according to proper coordinates system which keeps

local position of vertex on the garment panel.

For the garment capturing, we find out primary body sizes from the input

photograph. The fitting of garment is related to the size of panels. Our method

generates garment panels from the draft which is drawn based on primary body

sizes. The fitting quality is determined by how primary body sizes are exactly

measured from the photograph.
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Design Preserving design is another crucial property of garment grading, there-

fore fitted garment should be accorded with original garment design. But orig-

inal garment design may be broken, since we try to fit the target body. The

localization is necessary to preserve design, because the position of panel ver-

tex must not be changed by modifying position of irrelevant draft vertex. We

utilized mean value coordinates system [27], which to strengthen locality. Ac-

cording to our new scheme, each draft vertex has properly localized weights.

Therefore, suggested framework is a reasonable method for maintaining gar-

ment shape.

Our garment capturing method utilized pattern-drafting theory for creating

garment panels. We only describe the garment in our draft database. The over-

all design of generated panels is determined from garment type of source pho-

tograph. The primary body sizes can also represent details in garment design

such as pants length, sleeve length and skirt width. A draft has front/side/rear

design of garment panels. We can describe the design on the various side of

the garment, even if our method uses a photograph which was taken in front

side.
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Chapter 4

Garment Resizing

This chapter presents our garment resizing method. With the parametrized draft

module presented in Chapter 3, now we develop a novel grading scheme which

we call the draft-space warping (DSW).

4.1 Problem Description

In the 3D based grading methods, retargeting is done by using optimization

which is performed by keeping correspondence between position of garment

vertex and position of body vertex [15]. These correspondence is represented

offset vector or distance between a vertex of the garment mesh and vertices

on the body surface mesh. Likewise, we suggest an approach for creating cor-

respondence. Draft-space warping is performed on 2D, therefore the proposed

approach is suitable for 2D garment panels. A garment consists of a number

of panels [p1, p2, . . . , pN ] which are stitched together at the sides. Each panel

35
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pi is a cloth piece, but in terms of data, a panel is composed by a collection

of points and lines. Grading can be thought of as the following retargeting

problem.

Input to the DSW is the source panels Φ(A) = [p1, p2, . . . , pN ] (i.e., the de-

sign constructed for the standard body A positioned in reference to the source

draft D(A). The position of the panels p1, p2, . . . , pN with respect to the draft

is important, because the essence of DSW is to keep the D(A)-relative posi-

tions invariant during the D(A)-to-D(B) space warp. We assume that the de-

sign Φ(A) is drawn in reference to the draft D(A) (the panel-draft coupling

assumption), in which case the panels are already positioned on that draft.1

Figure 4.1 shows conception of problem description. In Figure 4.1, left

side figures describe source (original) body/draft/panels and right side figures

represent target (resized) body/draft/panels. DSW-grading utilizes the draft as

mediator to resize the garment panels. The draft is generated from the primary

body sizes using PD-module. There is a correlation among the body, the draft

and the garment panels.

4.2 Overview

We present framework of Draft-space warping which is composed to 5 sub-

steps as shown in Figure 4.2. Inputs of this process are source panels (light

1When Φ(A) is not created in reference to the draft D(A), then positioning of the panels
with respect to that draft can be a problem. Since it is a common industry practice to perform
panel creation in reference to a draft, making the panel-draft coupling assumption does not
significantly limit the applicability of the proposed grading method.
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Figure 4.1 Problem description. Left Top: source body, Left Middle: source
draft, Left Bottom: source (original) panels, Right Top: target body, Right Mid-
dle: target draft, Right Bottom: target (graded) panels.

gray) which are designed by professional designer to fit source body, outputs

are graded panels (dark gray) which suppose to fit target body. As discussed in

Chapter 3, source panels are closely related to the draft which is automatically

generated by PD-module according to the primary body sizes. Draft-space en-

coding and decoding are represented by a linear combination of the draft ver-

tices. For these reasons, performing draft space warping can be simple, fast
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Figure 4.2 Framework of DSW-grading. Draft-space warping is composed to
5 sub-steps: Source Draft Construction, Panel Positioning, Draft-space Encod-
ing, Target Draft Construction, Draft-space Decoding. The draft is drawn on
lines and panels are described by polygons. In the Draft-space Encoding step,
the vertex (circle) is represented weighted sum of draft vertices (red line).

and automatic.

Source Draft Construction In this step, we construct source drafts (D(A))

as shown in first figure in Figure 4.2. The shape of D(A) is determined from

the PBSs of the source body (A) and garment types2. Drawing draft can be

automatically done by using parametrized draft module. We do not have to

perform complex operation, just determine garment type and PBSs.

Panel Positioning In this step, we arrange the source panels on the draft.

Since the essence of DSW is to keep the panel-to-draft relative position in-

variant during the source-to-target transformation, the position of the panels

with respect to the draft is important. In the fashion field, panels were moved

by expert tailors so that reference lines/points in the panels coincide with those

2Garment types : bodice, jacket, skirt, dress, pants, sleeve, etc
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of draft. In this step, first, we classify the panels according to garment type.

After that, we make the group from classified panels. Panels were moved to

match the center of AABB (Axis Aligned Bounding Box) of a garment panel

group and that of a draft.

Draft-space Encoding We make correspondence between source draft ver-

tices (vi) and each panel vertex (Pj). We call this process draft-space encoding.

This step encodes the position of each panel vertex Pj with respect to D(A).

More specifically, we encode Pj by expressing it as a linear combination of

the draft vertices using barycentric coordinates system.

Pj =
M

∑
i=1

λivi. (4.1)

As a consequence of above linear combination equation, we find out the weight

vector array (λ1, . . . ,λM) for each panel vertex Pj. Because most drafts are

represented by polygon, the linear combination is not unique. Thus, encod-

ing may not be well-defined. Fortunately, there have already been pioneering

studies which can be applied to our draft-space encoding. The details of the

draft-space encoding are postponed to Section 4.3.

Target Draft Construction In this step, we generate the target draft D(B)

according to PBSs of target body (B), which is a trivial task when the parametrized

draft module is available. Let v̂i (i= 1, . . . ,M) be the vertices of the target draft

D(B). Target draft is designed to fit the target body, so the position of vertex
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(v̂i) differs from position of source draft vertex.

Draft-space Decoding This step finds out the new vertex position P̂j of the

graded panel p̂k. With the assumption that the relative position of each panel

vertex Pj is invariant during the D(A)-to-D(B) space warp, we compute P̂j

with

P̂j =
M

∑
i=1

λiv̂i. (4.2)

Here the weights λi are the ones which were calculated in the draft-space

encoding step. The last figure in Figure 4.2 shows graded panels (dark gray)

which are the outputs of our framework.

The reason why the above simple encoding and decoding operation can

perform the grading task can be attributed to the fact that the target draft al-

ready contains all the necessary resizing to cover the target body.

4.3 Draft-Space Encoding and Decoding

In this section, we present the draft-space encoding and decoding method which

is an important component in the development of the proposed grading frame-

work DSW. The result of grading will depend on (1) the method used for the

draft-space encoding, and (2) the implementation of the parameterized draft

module. As the parameterized draft module is a simple adoption of clothing

expertise, the only engineering part whose quality will affect the grading qual-

ity the draft-space encoding and decoding. We focus of the draft space encod-
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Figure 4.3 Triangular Barycentric Coordinates. A position P is represented
as a linear combination of the triangle vertices A, B, and C

ing and decoding. This section reviews previously proposed candidates for the

draft-space encoding, then concludes with an encoding method which best suits

for the current purpose.

4.3.1 Triangular Barycentric Coordinates

One of the most popular methods is the Triangular Barycentric Coordinates

(TBC) which have been used to represent a local position within a triangle [88].

In the TBC, referring to Figure 4.3, a position P is represented as a linear

combination of the triangle vertices A, B, and C

P = αA+βB+ γC, (4.3)
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with

α +β + γ = 1 (4.4)

where α , β , and γ are the weights of the linear combination. Those weights

are in fact proportional to the areas of the triangles PBC, PCA, and PAB, re-

spectively. Triangular barycentric coordinates is easy to implement and takes

a low computational cost.

Unfortunately, a typical situation the draft-space encoding has to handle is

the one shown in Figure 4.4, which is far from a triangle. It can have more

than three vertices. Moreover, the polygon does not need to be convex due

to properties of the garment. If we are to use the triangular barycentric co-

ordinates in this situation, (1) first we have to triangulate the draft, then (2)

record the triangle that encloses the encoded position as well as the barycentric

coordinates with that triangle.

However, triangularization brings another computational cost and accumu-

lation error. Therefore, we have to take other coordinates system can be ap-

plied to n-gon.

4.3.2 Coordinates Systems for Polygon

Several techniques have been proposed which can directly encode a position

with respect to a general n-gon without going through triangulation [82, 68,

87, 27, 35].

Suppose that v1, · · ·, vN are vertices on the plane (in the counter-clockwise
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Figure 4.4 Coordinates system for polygon. P is expressed as a linear com-
bination of the draft vertices(v1, · · ·, vN).

order), and we want to encode a position P on that plane as a linear combi-

nation of those vertices (Figure 4.4)

P =
N

∑
i=1

λivi (4.5)

with
N

∑
i=1

λi = 1 (4.6)

λi presents each weight of each vertex(vi) in linear combination. The sum of

λ must be 1 for the purpose of shape conservation.
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Wachspress Coordinates Wachspress [82] determines the weight λi for the

vertex vi by referring to the areas of the triangles.

λi =
wi

∑
N
k=1 wk

, (4.7)

where

wi =
A(vi−1,vi,vi+1)

A(vi−1,vi,P)A(vi,vi+1,P)
=

cotγi−1 + cotβi

‖vi−P‖2 (4.8)

The weighting scheme satisfies the basic requirement of the encoding; When

P is close to the vertex vi, λi is close to one; If P happens to be on vi itself,

λi = 1. However, when the polygon is concave as shown in Figure 4.4, λi can

have a negative value.

Green Coordinates Lipman et al.[50] introduced Green Coordinate which

is motivated from Green’s third integral identity and respect both the vertices

position and edges orientation of the polygon.

P =
N

∑
i=1

φivi +
N

∑
j=1

ψ jn j (4.9)

φi =
∫

ξ∈N(vi)
Γi(ξ )

δG(ξ ,vi)

δn(ξ )
dσξ , i ∈ Ivertex (4.10)

ψi =−
∫

ξ∈t j

δG(ξ ,vi)dσξ , j ∈ I f ace (4.11)
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G(ξ ,vi) =


1

(2−d)ωd
‖ξ − vi‖2−d d ≥ 3

1
2π

log‖ξ − vi‖ d = 2

(4.12)

Denote by N(vi) the union of all faces in the 1-ring neighborhood of vertex

vi. t j is the the face. ωd is the area of a unit sphere. G( , ) is the fundamen-

tal solution of the Laplace equation in Rd . Without additional treatment, the

coordinates φi has discontinuities along the edges.

Mean Value Coordinates Floter [27] introduced a weighting scheme, so-

called the Mean Value Coordinates (MVC)

λi =
wi

∑
N
k=1 wk

, wi =
tan(αi−1/2)+ tan(αi/2)

‖vi−P‖2 (4.13)

where αi is the angle made by vi’s and/or P as shown in Figure 4.4. The

method is named that way because the weights are determined by applying

the mean value theorem to the harmonic functions. When a panel point(P) is

located in the draft, both αi/2 and αi−1/2 are less than 90 degrees. In this

case, the weight wi is positive. In addition to giving the positive weights, the

encoding quality of MVC is superior to other methods as reported in [42],

[35], [47]. With the MVC, the weights vary continuously across the interior

and exterior of the draft.
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(a) (b) (c) (d)

Figure 4.5 Weight of the vertex/edge in encoding an arbitrary point in
case of convex polygon. (a): Mean Value Coordinate, (B): Wachspress Coor-
dinate, (C)/(D): Green Coordinate. Red/White/Blue indicates that v has a pos-
itive/zero/negative weight for that position, respectively.

(a) (b) (c) (d)

Figure 4.6 Weight of the vertex/edge in encoding an arbitrary point in case
of concave polygon. (a): Mean Value Coordinates, (B): Wachspress Coordi-
nates, (C)/(D): Green Coordinates. Red/White/Blue indicates that v has a pos-
itive/zero/negative weight for that position, respectively.

4.3.3 Comparison

In the following, we compare the quality of the weight calculation in different

methods.

Weight distribution Figure 4.5 shows weight distribution of each method in

case of convex polygon. Red/White/Blue indicates that v has a positive/zero/negative

weight for that position, respectively. In the Figure 4.5(a), we notice the mean
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(a) (b) (c)

Figure 4.7 Color blending in case of convex polygon. (a): Mean Value Co-
ordinates, (B): Wachspress Coordinates, (C): Green Coordinates.

value coordinates do not involve any jump discontinuity. Wachspress coordi-

nates and green coordinates are smooth in the interior of the polygon. How-

ever, wachspress coordinates has jump discontinuities at the opposite side in

exterior. Without additional treatment, green coordinates only handles inside

part of the polygon.

The draft vertex has negative weight when the point is located on the invis-

ible region. These negative weights may bring unexpected side effect. We sug-

gested omitted mean value coordinates for achieving the non-negativity [40].

But, the weights could non-continuously across the draft in the omitted mean

value coordinates. We notice that the negativity in MVC does not work harm-

fully for the draft-space encoding, since the draft and panels are symmetric.

Figure 4.6 shows weight distribution of each method in case of concave

polygon. The weight has negative value(blue) when v is invisible. In the case

of Wachspress, there are some discontinuities inside of the polygon.
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(a) (b) (c)

Figure 4.8 Color blending in case of convex polygon. (a): Mean Value Co-
ordinates, (B): Wachspress Coordinates, (C): Green Coordinates.

Color Blending For comparing sensitivity and locality of the coordinates

system, we performed color blending test. Color blending mixes source color

of vertices of the polygon by using the coordinates system. In The results of

color blending smooth inside of the convex polygon shown in as Figure 4.7.

In case of mean value coordinates and green coordinates, the results of color

blending smooth inside of the concave polygon that is similar as the result of

convex polygon. However, we notice that the result of wachpress coordinates

has discontinuity inside part of the polygon shown as Figure 4.8(b).

Continuity and simplicity are significant properties of correspondence func-

tion. Continuity is relevant to the quality of the result. Complex correspon-

dence function causes performance degradation. Therefore, mean value coor-

dinates could be a suitable approach for the encoding method of draft-space

warping.
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(a) (b)

Figure 4.9 DSW with base draft. The draft is represented by straight lines,
the panel is expressed as gray polygon. (a): 55 size, (b): 77 size

4.4 Linear Grading using Base Draft

The quality of grading is associate with the proximity between the contour

shape of input garment panels and that of parametrized draft. If we can not

find suitable draft for the input garment panels, draft space warping method

would utilize a base draft. Figure 4.9 shows a base draft for bodice. The base

draft is the preliminary version of a particular draft. Since drawing draft is

started from the base draft, DSW with the base draft can cover various input

garments. A base draft is commonly determined a few parameters which are

less than general draft, for example, a base draft of blouse use waist-back

length, bust circumstance and waist circumstance for the input parameters.

Figure 4.10 shows original panels, graded panels which were generated

from DSW with a base draft and a correlated draft. We notice that discrep-

ancies between width and height of graded panels are under 5mm. DSW with

base draft does not perform proper grading about some parts which are de-

fined from specific parameters such as armhole, neckline and dart.According
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(a) (b) (c)

Figure 4.10 Compare the graded panel of our method with that of manual
grading (a): Original panel (55 size), (b): DSW with a base draft (77 size),
(c): DSW with a correlated draft (77 size)

to experiments, it seems the quality of the DSW with the base draft is simi-

lar to that of the linear grading. But, our method performs the grading work

easily and instantly.

4.5 Dart Compensation

Since our method based on the draft, the correlation with a draft and panels

is significant. The graded garment is not well fitted for target body unless

there is the proper correlation between a draft and panels. Darts are folded

wedges of fabric which are sewn to provide shape to clothes. A dart consists

of an apex and two legs. The dart legs are stitched to represent a shallow cone

which make convex/concave shape from flat fabric. Darts are utilized to fit the

outline of the body in drafting.
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(a) (b) (c) (d)

Figure 4.11 DSW with dart compensation. The draft is represented by
straight lines, the panel is expressed as gray polygon. (a): experiment envi-
ronment, (b): source panel, (c): graded panel without dart compensation, (d):
graded panel with dart compensation

We can solve above unfitting problem by increasing/reducing width be-

tween dart legs. We call this approach as dart compensation.

Dnew = Dold +(m+Cbody−Cgarment)/Ndart (4.14)

Equation 4.14 shows how to calculate proper dart width (Dnew). The symbol

Dold presents dart width after our DSW-grading. The symbol m represents mar-

gin which makes proper gap between body and garment. In general, it is about

3cm. The symbol Cbody and Cgarment are PBSs of body and garment, especially

horizontal line such as waist, bust and hip circumference. The symbol Ndart

is a number of darts on the circumference line.

Figure 4.11 shows an example of dart compensation. There is not close

correlation between a bodice draft and bodice panels around waist line in

Figure 4.11(a). Figure 4.11(b), 4.11(c), 4.11(d) presents an enlarged image of

source panel, graded panel without dart compensation and graded panel with

dart compensation, respectively. In Table 4.1, the margin between waist cir-
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(unit:cm) Source DSW without DA DSW with DA

WC (garment) 68.00 75.43 77.99
WC (body) 65.00 75.00 75.00
Margin 3.00 0.43 2.99

Table 4.1 Measurement of waist circumference (WC) in Figure 4.11. The
source and graded waist circumference of body were based on the size 55 and
77, respectively.

cumference of body and garment is 3cm in case of source. The margin is

reduced to 0.43cm in Figure 4.11(c). When the garment is DSW with dart

compensation, the garment now has a proper margin. Figure 4.11(d) shows

that the waist dart narrows to increase waist circumference of garment. Dart

compensation may cause unexpected distortion in the garment. But we can

optionally use it for fitting to the contour of the body.
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(a) (b)

Figure 4.12 Source dress. (a) panels, (b) draping snapshot.

4.6 Results

All demonstrations were performed on an Intel Core i7 3.20GHz CPU with a

NVIDIA Geforce GTX570 GPU. To evaluate our method, we execute the PBSs

analysis, the silhouette analysis, the garment strain analysis and the air-gap

analysis for the simple one-piece as shown in 4.12. An one-piece consist of

front/rear bodice, skirt and sleeve panels. We used a physically-based clothing

simulator [14, 81, 18] and renderer [6] for the analyses.

For the above dress, running the whole DSW-grading algorithm including

the draft-space encoding, target draft generation, and draft-space decoding took

less than one millisecond. In case of manual grading, these works took about a

hour per each dress. Therefore, we will not give any further time analysis for

this work. Figure 4.13 shows the source body and three target bodies used for

the experiments. The source body was designed based on the size 55 which
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(a) (b) (c) (d)

Figure 4.13 The source and three target bodies. (a): source body, (b): target
1 body, (c): target 2 body, (d): target 3 body.

PBS (unit:cm) Source Target 1 Target 2 Target 3
(55) (44) (66) (77)

Bust Circumference 85.0 80.0 90.0 95.0
Waist Circumference 65.0 60.0 70.0 75.0
Hip Circumference 90.0 85.0 95.0 100.0
Waist Back Length 39.0 38.4 39.6 40.2
Bust Point to Bust point 17.0 16.4 17.6 18.2
Neck Point to Breast Point 24.0 23.2 24.8 25.6
Skirt Length 55.3 53.4 57.2 59.1
Hip Length 19.0 18.4 19.6 20.2
Height 171.0 169.5 172.5 174.0
Front Armhole Circumference 20.2 19.6 20.8 21.4
Rear Armhole Circumference 21.4 20.8 22.0 22.6
Sleeve Length 57.0 56.4 57.6 58.2
Wrist Circumference 20.0 19.4 20.6 21.2

Table 4.2 The primary body sizes for the source and target bodies. The
source PBSs was based on the size 55 which is a standard woman size. The
target PBSs are referenced on size 44, 66 and 77, respectively.
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(a) (b)

(c) (d)

Figure 4.14 The source/target panels and drafts. Drafts and Panels are repre-
sented with black lines and gray polygons, respectively. Panels are presented
(a): source, (b): target 1, (c): target 2, (d): target 3. The parametrized draft
module generates source draft and target drafts for the each body.

is a standard woman body size. The size of target bodies are size 44, 66 and

77, respectively. The PBSs of those bodies are summarized in Table 4.2.

4.6.1 Generation of Target Drafts

Figure 4.14 presents the drafts which were generated by the parameterized

draft module for the source and target bodies and the dress panels which are

designed based on the source draft. We choose basic one-piece type as input of

garment type of parameterized draft module. Table 4.2 describes specific PBSs

which were used the PBSs as input parameter of parameterized draft module.

Clothing experts judged that these drafts were successfully implemented based

on the conventional drafting theory.
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(a) (b)

(c) (d)

Figure 4.15 The garment panels of source dress and three DSW-graded
dresses. (a): source panels, (b): DSW-graded panels for target 1, (c):DSW-
graded panels for target 2, (d): DSW-graded panels for target 3.

4.6.2 Generation of Panels

Figure 4.15 shows the results of running the DSW-grading for Targets 1-3, re-

spectively. Figure 4.16 presents the results of the manual grading for Targets

1-3, respectively. the manual grading is linear grading followed by hand adjust-

ments and it took about an hour. Viewed in that scale, no particular difference

is noticeable.

4.6.3 Primary Body Sizes Analysis

For quantitative evaluation, we measured PBSs on the graded garment panels.

Table 4.3 shows the PBSs and discrepancies of each graded panels. The num-

ber in the parenthesis means the discrepancy between PBSs on the Table 4.1
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(a) (b)

(c) (d)

Figure 4.16 The garment panels of source dress and three manually
graded panels. (a): source panels, (b): manually graded panels for target 1,
(c):manually graded panels for target 2, (d): manually graded panels for target
3

PBS (unit:cm) Source (55) Target 1 (44) Target 2 (66) Target 3 (77)
DSW Manual DSW Manual DSW Manual

Bust Circumference 87.1(2.1) 82.2(2.2) 82.4(2.4) 92.1(2.1) 92.5(2.5) 97.2(2.2) 98.0(3.0)
Waist Circumference 67.0(2.0) 62.5(2.5) 61.9(1.9) 70.9(0.9) 67.0(2.0) 74.8(0.0) 77.4(2.4)
Waist Back Length 39.0(0.0) 38.4(0.0) 38.4(0.0) 39.6(0.0) 39.6(0.0) 40.2(0.0) 40.3(0.0)
Skirt Length 55.0(0.4) 53.0(0.4) 53.1(0.3) 56.9(0.4) 56.9(0.4) 58.8(0.0) 58.8(0.0)
Armhole Circumference 44.5(2.9) 43.4(3.0) 42.3(1.9) 45.7(2.9) 46.6(3.8) 47.0(0.0) 48.8(4.8)
Sleeve Length 57.0(0.0) 56.4(0.0) 56.4(0.0) 57.6(0.0) 57.6(0.0) 58.2(0.0) 58.8(0.6)
Wrist Circumference 20.0(0.0) 19.5(0.1) 19.3(0.1) 20.5(0.1) 20.6(0.0) 21.0(0.2) 21.3(0.1)

Table 4.3 The primary body sizes for the source and target dresses. We
measured PBSs on the graded garment panels. The figure in the parenthesis
means the discrepancy between PBSs on the Table 4.1 and PBSs on this table.

and PBSs on this table. All discrepancies have the absolute values. Figure 4.17

presents cumulative discrepancies of each target. In the case of DSW-grading,

the discrepancies around waist is much more different from in the case of

source than the discrepancies in manual grading. However, the difference be-
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Figure 4.17 Primary body sizes analysis chart. Each bar graph describes
cumulative discrepancies of each garment. BC, WC, WBL, SL, AC, SvL and
WrC are abbreviations for bust circumference, waist circumference, waist back
length, skirt length, armhole circumference, sleeve length and wrist circumfer-
ence, respectively. The dashed line represents the value of cumulative discrep-
ancy in source.

tween the cumulative discrepancy between source and DSW-grading are less

than 2cm. It is less than the difference between source and manual grading.

4.6.4 Silhouette Analysis

Figure 4.18, Figure 4.19 and Figure 4.20 show snapshots taken during the

physically-based simulation of ungraded, DSW-graded and manually-graded ver-

sions, respectively. The results of ungraded show that each garment did not fit

to each Target, it were too loose (Figure 4.18(b)) or tight (Figure 4.18(c) and

Figure 4.18(d)). These mismatches are hard to recognize. Otherwise, the re-

sults of DSW-graded and manually-graded show that the garments well fitted
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(a) (b) (c) (d)

Figure 4.18 The source dress and three ungraded dresses. We draped source
garment in the source and target bodies. (a): Source, (b): Target 1, (c): Target
2, (d): Target 3

(a) (b) (c) (d)

Figure 4.19 The draping snapshot of source dress and three DSW-graded
dresses. We draped DSW-graded garment in the source and target bodies. (a):
source, (b): target 1, (c): target 2, (d): target 3.
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(a) (b) (c) (d)

Figure 4.20 The source dress and three Manually graded dresses. We draped
Manually graded garment in the source and target bodies. (a): Source, (b):
Target 1, (c): Target 2, (d): Target 3

Targets as shown in Figure 4.19 and 4.20. The results of DSW-graded is al-

most indistinguishable from those of manually-graded. We also note that the

silhouette of the source design is kept quite well in the graded results.

4.6.5 Strain Analysis

During the physically-based clothing simulation, the simulator could calculate

the cloth strain value distribution on the garment to further analyze the fitting

mismatches. Figure 4.21, 4.22 and 4.23 show the strain distribution in the un-

graded, DSW-graded, manually-graded versions, respectively. The highest and

lowest strain energy were represented to red and yellow. In the ungraded ver-

sion, the strain energies in target 1 is low around bodice, but the strain energies

in target 2 and 3 is high around bodice. It differs from the strain distribution of
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(a) (b) (c) (d)

Figure 4.21 Strain distribution on the source dress and three ungraded
graded dresses. The highest and lowest strain were represented to red and yel-
low. (a): source, (b): target 1, (c): target 2, (d): target 3.

(a) (b) (c) (d)

Figure 4.22 Strain distribution on the source dress and three DSW-graded
dresses. (a): source, (b): target 1, (c): target 2, (d): target 3.
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(a) (b) (c) (d)

Figure 4.23 Strain distribution on the source dress and three manually
graded dresses. (a): source, (b): target 1, (c): target 2, (d): target 3.

source. The strain distribution in DSW-graded and manually-graded versions

were similar as source.



Chapter 4. Garment Resizing 63

Figure 4.24 Air-gap analysis. The body and the garment cross-sections are
shown in black and red contour lines, respectively

4.6.6 Air-Gap Analysis

During the physically-based simulation, we put a horizontal plane and obtained

the cross-sections it makes with the body and the garment. In Figure 4.24, the

body and the garment cross-sections are shown in black and red contour lines,

respectively. When those cross-sections are available, the air-gap ratio R can

be defined as

R =
Agarment−Abody

Agarment
, (4.15)

where Agarment and Abody are the areas enclosed by the garment and body

the cross-sections.

Figure 4.25 plots the air-gap ratio at different elevations from hip to bust.

The air-gap ratio of the source dress on the source body is plotted with red

solid line. The air-gap ratio for the ungraded, DSW-graded, and manually-

graded versions are solid, dashed, dotted lines. The results for the Targets 1-

3 are shown in blue, green, and violet, respectively. It was observable that
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Figure 4.25 Comparison of the air-gap ratio in various graded results

the air-gap ratio of the non-grading version was significantly different from

the DSW-graded and manually-graded versions. But, the air-gap ratio of both

DSW-graded and manually-graded versions were similar to that of the source

dress/body.

4.6.7 Redesign using DSW

We redesign the garment using our DSW-grading method. Figure 4.26 shows

the redesigned dress from the source dress as shown in Figure 4.12(a). We

reduce the skirt and sleeve length for generating short skirt and short sleeve.

We can also create high-waist dress by decreasing the waist-back length and

increasing the skirt length. It is easy to make loose/tight sleeve with adjusting

wrist circumference. We generate new design garment as adjustment of PBSs.
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(a) (b)

(c) (d)

Figure 4.26 Redesigned dresses. We modified the skirt and sleeve to short
skirt and short sleeve. (a) Panels (b) Draping snapshot. We resigned the gar-
ment to high-waist and loose sleeve. (a) Panels (b) Draping snapshot.
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4.7 Discussion

The objective of our research was to investigate fast and accurate grading

framework. We considered that the retargeting method is an appropriate ap-

proach. We introduced the parameterized draft as the mediator of the retarget-

ing method. The parameterized draft always fits to the given body, also we

can make easily by using draft constructor. As source garment is generated

from draft, there is close relation between parameterized draft and source gar-

ment. After investigating a few candidates for the draft-space encoding, we

concluded that the mean value coordinates is an optimal choice. Each point

of garment panel is represented by linear combination of that draft, and the

weight function was calculated according to MVC.

The proposed method has been implemented and tested for grading a few

garments. The primary body sizes analysis, the silhouette analysis, the strain

analysis, and the air-gap analysis were performed on the graded results. We

verified that the results are indistinguishable from the manually-graded results

in the quality but taking much less time. For these reasons, our method sat-

isfy the judging the quality of garment grading as presented in Section 3.2.

In this work the grading quality was analyzed only with the physically-based

simulator. As a future work, for the industrial validation of the method, the

grading quality needs to be tested with real garments by putting them on the

real subjects.

Our method has two main limitations. First, we always need parameterized
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draft DB, since our method is based on draft. Although we can use base draft

when there is not proper draft for input source garment, quality of the result is

lower than result of using suitable draft. Fortunately, we can easily find proper

parameterized draft, because general garment panels are made based on the

draft which can serve as parameterized draft. Another limitation is negativity

of our encoding method. It may make some artifact when the draft is not

convex.

4.8 Conclusion

This study suggests a novel framework for garment grading. For the develop-

ment of the grading technique, we got the insight from the process of drawing

the pattern-making draft. Although the idea itself is simple, we note that pro-

posed approach is the first attempt to utilize the parametrized draft for the

purpose of grading. Noting that the draft can be completely determined from

the primary body sizes, we abstracted the draft construction process as a pro-

cedure which we call the parameterized draft. With the parametrized draft,

we developed the grading method which takes five steps: source draft con-

struction, panel positioning, draft-space encoding, target draft construction and

draft-space decoding. Proposed method can perform the grading job instantly,

and the result quality comes close to that of manual grading by a skilled tailor.
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Chapter 5

Garment Capture

from a Photograph

This chapter presents our garment capturing method. The method instantly

generates the virtual garment from a single photograph of the existing gar-

ment which is draped on the mannequin.

5.1 Overview

Our virtual garment creation is based on the drafts. Conventionally, there exists

a draft for each garment type. Figure 5.1 shows a typical draft for the one-

piece dress. The whole set of the panels can be obtained by symmetrizing,

mirroring, or making some variations to the draft.

We introdeced that the drafting can be done from the input of just a few

parameters in Chapter 3.1. For the case of the one-piece dress draft shown in

69
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Figure 5.1 The one-piece dress draft, which can be determined from the
primary body sizes summarized in Table 5.1

Acronym Meaning

WBL Waist Back Length
HL Hip Length
SL Skirt Length
BiSL Bishoulder Length
BP Bust point to bust point Length
BC Bust Circumference
WC Waist Circumference
HC Hip Circumference

Table 5.1 The primary body sizes for the one-piece dress draft

Figure 5.1, the required input parameters are eight primary body sizes which

are summarized in Table 5.1. Since this work performs the garment capture in

the context of pre-acquired drafts, the problem of converting the photographed

garment to a 3D virtual garment can be reduced to the problem of identifying

the garment type and the PBSs.
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Figure 5.2 The steps the proposed garment capture technique (GarmCap).

Figure 5.2 overviews the steps of our garment capture technique (Garm-

Cap). From the given photograph, it first extracts the garment silhouette. Based

on the garment silhouette, it identifies the garment type and PBSs, which en-

ables creation of the sized draft. Then, it can generate the comprising panels.

Finally, it performs the physically-based simulation [14, 81, 18] on the 3D

mannequin or avatar.

5.2 Garment Capture

This section presents each of the steps overviewed in Figure 5.2.
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5.2.1 Off-line Photographing Set up

Our photographing setup (Figure 1.4) consists of a camera and a mannequin

such that the photograph can be taken from the front. The positions of both

the camera and the mannequin are fixed, so that the photographs taken with

and without the garment can have pixel-to-pixel correspondence. We use the

green background screen, which facilitates extraction of the foreground ob-

jects. In order to minimize the influence caused by the shadow, we tried to

use lights of ambient nature as much as possible. We preprocessed the man-

nequin (scanned, graphically modeled, and stored into an OBJ file) to obtain

its complete 3D geometry as well as its PBSs such that we can establish the

relationship between real world distance and pixel distance.

5.2.2 Obtaining the Garment Silhouette

The first step of the GarmCap is the garment silhouette extraction, that is

based on GrabCut [64] method. We already have the mannequin mask MM

obtained from the mannequin image. We can get the exposed mask ME , the

non-garment region of the input photograph. Subtracting ME from MM gives us

the base mask MB. Figure 5.3(a) shows the base mask of the input photograph

in Figure 5.2. By supplying this base mask, now the GrabCut can produce the

garment silhouette without any user interaction. Figure 5.3(b) shows the gar-

ment silhouette taken from the input photograph of Figure 5.2 according to

the above procedure.
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(a) (b) (c)

Figure 5.3 The steps for obtaining the garment silhouette and landmarks: (a)
base mask, (b) garment silhouette, (c) mannequin-silhouette landmark points
(red) and garment-silhouette landmark points (blue)

5.2.3 Identifying the Garment Type

With the garment silhouette extracted in Section 5.2.2, we identify the garment

type from the choices in the current garment type DB (shirt, skirt, pants and

one-piece dress) by searching the closest match with Shape Context [9] match-

ing. Shape Context is a method to measure shape similarity between images.

Ci, j =
1
2

K

∑
k=1

[g(k)+h(k)]2

g(k)+h(k)
(5.1)

where i is a point on the input garment silhouette image (e.g., Figure 5.3(b)),

j is a point on the silhouette image in the DB. The method compares the

shape contexts bitween i and j to compute a similarity cost Ci, j. A function

g(k) and h(k) present the K-bin histogram at i and j, respectively.

After the garment type is identified, when needed, we sub-classify the type.

For example, a garment is identified as a skirt, we further sub-classify it whether



Chapter 5. Garment Capture from a Photograph 74

it is “A-line” or “H-line”. For the case of the shirt, we sub-classify it whether

according to the sleeve and neckline. The sub-classification is done in the sim-

ilar way as described with Equation 5.1.

5.2.4 Identifying the PBSs

A few points on the silhouette of the mannequin are pre-registered as the

mannequin-silhouette landmark points (MSLPs). Garmcap identifies them and

labels them with red circles as shown in Figure 5.3(c). Then, GarmCap labels

a few feature points of the photographed garment with blue circles as shown in

Figure 5.3(c). We call them the garment-silhouette landmark points (GSLPs).

For the center waist and bust points, the MSLPs and GSLPs coincide, thus

the red circles are hidden behind the blue ones. But In general there can ex-

ist some discrepancy. For example, the discrepancy at the waist left and waist

right, although they are in 2D, informs the ease at the waist. Note that the

sleeve ends and the skirt end exist only as GSLPs, and indicate the length of

the sleeves and the skirt.

Figure 5.4 Filters for identifying the GSLPs.

To identify the GSLPs from the garment silhouette, we search the candidate
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spots of the silhouette image according to

argmin
ML
‖MF −ML‖ , (5.2)

where MF is one of the filters shown in Figure 5.4, ML is the square fraction

of the silhouette image. The filters are similar as haar features. Note that the

above minimization is not mislead by the local minima since the searching

is performed a domain which is around a MSLP. By performing the above

search for the silhouette image with the transformation T in Equation 5.1 being

applied, we do not need to consider the size mismatch here. Now, we can

get the PBSs of the garment based on the GSLPs identified above. For the

circumferences, we reference the geometry of the scanned mannequin body.

5.2.5 Texture Extraction

This section describes how we extract one-repeat texture from the input im-

age. Texture is a significant part of the garment without which the captured

result would look monotonous. Note that our work is not based on vision-

based reconstruction of the original surface, but it reproduces the garment by

pattern-based construction and simulation. In that approach, the conventional

texture extraction (i.e., extracting the texture of the whole garment) produces

poor results. The proposed method calls for extraction of an undistorted one-

repeat texture. We propose a simple texture extraction method that can approx-

imately produce visual impression of the original garment in the limited cases
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of regular patterns consisting of straight lines.

(a) (b) (c)

(d) (e)

Figure 5.5 Extraction of the texture: (a) original image, (b) triangle mesh,
(c) deformed image, (d) deformed mesh, (e) one-repeat texture

We eliminate the distortion first and then extract one-repeat texture from

undistorted image. We extract the lines by applying the sobel filter, then con-

struct a 2D triangle mesh based on the extracted lines as shown in Figure 5.5(b).

We apply the deformation transfer technique [70] to straighten the above mesh.

To apply the deformation transfer method, we define the affine transforma-

tion T as

T = ṼV−1 (5.3)

for each triangle, where V and Ṽ represent undeformed and deformed trian-

gle matrices, respectively. Using only the smoothness term ES and the identity
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term EI ,

ES =
|t|

∑
i=1

∑
j∈ad j(i)

∥∥Ti−Tj
∥∥2

F (5.4)

EI =
|t|

∑
i=1
‖Ti− I‖2

F (5.5)

we formulate the optimization problem as

min
Ṽ1···Ṽn

E = wSES +wIEI (5.6)

sub ject to yṼi
= yṼ j

(i, j ∈ Lh)

xṼi
= xṼ j

(i, j ∈ Lv)

where wS and wI are the user controlled weights, Lh and Lv are horizontal and

vertical lines, respectively, and yṼi
is y coordinate of vertex i. We use weights

wS = 1.0 and wI = 0.001 as in [70]. The optimization produces straightened

results as shown in Figure 5.5(c) and 5.5(d). Now, one-repeat texture (Fig-

ure 5.5(e)) can be extracted by selecting the four corner points of the texture

along the parallel straight lines.

5.2.6 Generating the Draft and Panels

After we get the garment type and the PBSs, we create the panels by supply-

ing them to the parameterized drafting module. We map the one-repeat texture

on the panels. Each garment type has the information on how to position and
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create seams between the panels. Each panel has the 3D coordinate for posi-

tioning. We has the index of the line pairs for stitching. After positioning and

seaming panels, we perform the physically based clothing simulation [7, 8, 80].

5.3 Results

We implemented the proposed garment capture method on a 3.2 GHz Intel

Core(TM) i7-960 processor with 8GB memory and a Nvidia GeForce GTX

560Ti video card. We ran the method to the left images of Figure 5.6. The

right side images of Figure 5.6 show the results produced with GarmCap.

For the physically-based static simulation, we set the mass density, stretch-

ing stiffness, bending stiffness, friction coefficient to 0.01g/cm2, 100kg/s2,

0.05kgcm2/s2, 0.3, respectively, for the experiments shown in this chapter.

Running the proposed method took about three seconds per garment excluding

the static simulation.

Figure 5.6(a) shows experiments, a left figure is input photograph and a

right figure is captured image of GarmCap. Our experiments included five

dresses (Figure 5.6(a)−(e)), two sweaters (Figure 5.6(f)−(g)), one shirt (Fig-

ure 5.6(h)), one H-line skirt (Figure 5.6(i)), one A-line skirt (Figure 5.6(j)),

and two pairs of pants (Figure 5.6(k)−(i)). Some input garments have stripe

or check textile.

There exist some discrepancies between captured and real garments. We

measured the discrepancies in the corresponding PBSs of the 2D panels of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6 Input photograph (left) vs. captured result (right). The captured
result was obtained by performing physically-based draping simulation on the
3D mannequin model.
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captured garments and real garments. For the garments experimented in this

chapter, the discrepancy was bounded by 3cm.

The proposed method reproduces the shoulder strap (Figure 5.6(b), (c)) and

the necklines (Figure 5.6(a)-(h)) quite well. The method captures loose-fit gar-

ments (Figure 5.6(a), (e), (j)) as well as normal-fit garments (Figure 5.6(b), (c))

very successfully. In capturing tight-fit garments, however, GarmCap may not

accurately represent the tightness of the garment because the silhouette analy-

sis cannot tell how much the garment is stretched. Due to above problem, for

example, some wrinkles are produced in the captured result of Figure 5.6(i).

Although we reference the geometry of the scanned mannequin body to mea-

sure circumstance, there are some discrepancies around limbs as shown in Fig-

ure 5.6(h), (l).

Intrinsically, the proposed method can not capture the input garment accu-

rately when its draft does not exist in the database. In Figure 5.6(j), whereas

the skirt has pleats at the bottom end, our method produces an A-line skirt

since the pleated skirt is not in the database. In spite of the missing pleats,

we note that the results are visually quite similar.

Solid color textiles (Figure 5.6(a), (b), (e), (i), (k)) are well captured. In

case of basic type one-piece (Figure 5.6(c), (d)) and blouse (Figure 5.6(f)),

stripe textiles are continuous. But, we notice discontinuity in case of the highneck-

line blouse (Figure 5.6(g), (h)).

Figure 5.7 shows the side and rear views of the virtual garment shown in

Figure 5.6(a). The shape of garment looks like real one-piece. The neck line
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Figure 5.7 The side and rear view of Figure 5.6(a).

of the rear view does not same as front view. We note that the result is quite

plausible from other views although the method referenced only the frontal

image. We attribute the success to the fact that GarmCap is based the pattern

drafting theory.

Figure 5.8 The 2D panels for the captured virtual garment shown in Fig-
ure 5.1.

Figure 5.8 shows the panels which have been automatically created for the

captured garment in Figure 1.5. The garment panels are composed of two front

bodice panels, two rear bodice panels and two short sleeve panels. These pan-
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Figure 5.9 Draping captured garment on the avatar.

els are mapped a blue stripe texture which was generated in texture extraction

process (Section 5.2.5).

Figure 5.9 shows a few results which are put on to the avatar. We drape

the virtual garment on the avatar which has same PBSs as mannequin at the

input photograph.

5.4 Discussion

The aim of presented study is to investigate the method which captures the

virtual garment from a photograph. The virtual garment which was captured

from the input photograph looks quite similar to the real garment. The method

did not require any panel-flattening procedure, which contributed to obtaining

realistic results. GarmCap also extracted the one-repeat texture in some limited

cases based on the deformation transfer technique [70].

Our garment categorization method is based on the state machine which is
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similar as And/Or graph [17, 24]. Many clothes classifier have been investi-

gated in the computer vision field [3, 93, 91, 92, 53]. These methods categories

a garment as several types. The input garment is draped on the body which

has arbitrary size and pose. Our method detects a garment type from a frontal

clothes image. In the our garment classifier, the input garment is draped on the

static mannequin. Therefore, the input image of our method is more limited

than that of previous methods. However, we can detect more various type of

garment through sub-classification. Our approach can measure an approximate

size of the garment.

The proposed method captures garment properties from a silhouette image.

Therefore, the method is difficult to represent the non-silhouette details of the

garment such as wrinkles, collars, stitches, pleats and pockets. It would be

challenging for the method to represent complex dresses (including traditional

costumes). In the future, we plan to investigate the methods for more compre-

hensive garment capture techniques that can represent the above features. We

utilize basic OpenCV technique [9] for measuring PBSs and finding garment

type. If we use state of the art technique, we could get more plausible results.

5.5 Conclusion

In this work, we proposed a novel method GarmCap that generates the vir-

tual garment from a single photograph of a real garment. The method got the

insight from the drafting of the garments in the pattern-making study. Garm-
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Cap abstracted the drafting process into a computer module, which takes the

garment type and PBSs to produce the draft as the output. For identifying the

garment type, GarmCap matched the photographed garment silhouette with the

selections in the database. The method extracted the PBSs based on the dis-

tances between the garment silhouette landmark points. Since draft involves

front/side/rear side design, the result looks plausible from an arbitrary direc-

tion although we created the virtual garment based on the front image.
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Conclusion

In the fashion field, a garment is composed with panels which involve a de-

sign. Many applications in the fashion industry help to perform drawing, resiz-

ing, manufacturing and draping cloth pattern. In the film and game industry,

a garment is represented by a tremendous number of meshes. Resizing and

modeling virtual garment on 3D requires a large amount of human interven-

tion. We developed the resizing (grading) and capturing techniques with the

help of the pattern-drafting theory. We implemented draft constructor called

for Parameterized dra f t, which takes the garment type and PBSs. This dis-

sertation deals with two methods which perform grading and capturing virtual

garments, respectively.

First, we proposed a novel framework which performs grading job. Dra f t−

Space Warping (DSW ) is the first approach which utilizes the parametrized

draft to resize the clothes. DSW-grading can perform grading job for arbi-

85
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trary body, not only linear grading, since parameterized draft module can con-

struct various drafts according to arbitrary PBSs. Because DSW-grading per-

forms on the 2D, the method do not involve converting dimension steps such

as physically-based simulation and pattern extraction. Also, the virtual garment

in 2D uses small number of the vertices to represent shape of panel by com-

parison with 3D. Therefore, our approach is able to reduce computational cost.

Consequently, DSW-grading lead to minimizing knowledge intensive work and

saving performing time for garment grading. Conventionally, grading is used

for mass production. For example, when a medium size garment is designed,

grading is done for obtaining the large and small versions of it. The proposed

grading framework based on the parametrized draft is far more powerful than

the conventional grading, since it can instantly perform grading for any body

size without calling for the user’s intervention. In clothing, mass customization

has been conceived as a dream technology which can provide made-to-measure

quality garments at the cost comparable to ready-made garments. The authors

believe that the proposed grading method can be an important element for the

realization of the mass customization.

Second, we investigated a novel method GarmCap which captures the vir-

tual garment from a single photograph. GarmCap utilizes parameterized draft

to create the garment pattern. Parameterized draft requires garment type and

PBSs to produce the draft. For identifying the garment type, GarmCap searched

the photographed garment silhouette in the database using Shape Context method.

To identify PBSs, we measured the distances between the garment silhouette
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landmark points. We extracted the one-repeat texture for more plausible re-

sults. The captured virtual garment looks quite similar as the real garment in

the input photograph. The method did not require any panel-flattening proce-

dure, which contributed to obtaining realistic results. Although we captured

the virtual garment from the frontal image, the result is plausible even when

it is viewed from an arbitrary view.

Both methods used parameterized draft module for grading and captur-

ing the garment. The quality of output is affected by that of drafts database.

We would add a specific draft to get the suitable result as needed, when we

face with exceptional cases. We suggested additional approaches to overcome

above problem. We utilized the base draft to handle exceptional cases in DSW-

grading method. When GarmCap generates the garment, PBSs are used for

helping to describe the comprehensive design of virtual garment. The further

direction of this study will be to suggest a method which can apply to more

comprehensive garment.
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Appendix A

Implementing Local Coordinates

Systems

In this section, we present pseudo codes for helping to implement local coor-

dinates systems. We introduced three coordinates systems in the Section 4.3.

P =
N

∑
i=1

λivi (A.1)

Before interpreting pseudo code, we introduce notations in Equation A.1.

– vi : Position of the i-th vertex in polygon.

– P : Position of the point which would be replesented linear combination

of vertices.

– λi : Normalized weight of the i-th vertex.

89
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Wachspress Coordinates Algorithm 1 shows how to determine λi in the

Wachspress coordinates [82]. The weight λi is the normalized value of wi. wi

is calculated by referring to the areas of the triangles. We can get the areas

of the triangles from the cross product. The magnitude of the cross product

indicates the area of the parallelogram having v1−v0 and v2−v0 as sides. The

area of triangle v0v1v2 is half of the area of the parallelogram. It is replesented

in Algorithm 1 Line 14.

Algorithm 1 Pseudo Code for Wachspress Coordinates
1: procedure WACHSPRESS COORDINATES

2: for each vertex vi ∈ N do
3: A1=calArea(vi−1,vi,vi+1)
4: A2=calArea(vi−1,vi,P)
5: A3=calArea(P,vi,vi+1)
6: wi=A1/(A2 ∗A3)
7: sumw+=wi

8: end for
9: for each weight wi ∈ N do

10: λi=wi/sumw

11: end for
12: end procedure

Algorithm 2 Calculate Trinagle Area
1: procedure CALAREA

2: return 0.5*cross(v1− v0, v2− v0)
3: end procedure
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Algorithm 3 Pseudo Code for Green Coordinates
1: procedure GREEN COORDINATES

2: for each vertex vi ∈ N do
3: a=vi-vi+1

4: nx=ay

5: ny=-ax

6: b=vi-P
7: Q=ax ∗ax +ay ∗ay

8: S=bx ∗bx +by ∗by

9: R=2.0∗dot(a,b)
10: BA=dot(n,b)
11: V =4.0∗S∗Q−R∗R
12: L0=logS
13: L1=log(S+Q+R)
14: A0=arctan(R/SRT )/SRT ;
15: A1=arctan((2∗Q+R)/SRT )/SRT ;
16: A10=A1−A0;
17: L10=L1−L0;
18: ψi=

√
Q/(4.0∗π)∗((4.0∗S−(R∗R/Q))∗A10+(R/(2.0∗Q))∗L10+

L1−2)
19: φi+1-=(BA/(2.0∗π))∗ ((L10/(2.0∗Q))−A10∗R/Q)

20: φi+=(BA/(2.0∗π))∗ ((L10/(2.0∗Q))−A10∗ (2.0+R/Q))

21: sumψ+=ψi

22: end for
23: for each weight wi ∈ N do
24: ψi/=sumψ

25: end for
26: end procedure

Green Coordinates We get the weight for vertex(ψi) and the weight for

edge(φi) using Algorithm 3. a is the different vector between vi and vi+1. n

indicates the normal vector which is perpendicular to the vector a. b presents
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the different vector between vi and P. Q and S represent a2 and b2, respec-

tively. R is double the dot product between a and b, and BA is the dot product

between n and b. After that, we get the ψi and φi form calculation formulas.

The weight for vertex ψi is normalized to conserve the shape.

Algorithm 4 Pseudo Code for Mean Value Coordinates
1: procedure MEAN VALUE COORDINATES

2: for each vertex vi ∈ N do
3: Vec1=P− vi−1

4: Vec2=P− vi

5: Vec3=P− vi+1

6: len=mag(Vec2)

7: normalize(Vec1)

8: normalize(Vec2)

9: normalize(Vec3)

10: cosαi−1 = dot(Vec1,Vec2)

11: sinαi−1 = cross(Vec1,Vec2)

12: cosαi = dot(Vec2,Vec3)

13: sinαi = cross(Vec2,Vec3)

14: αi−1=arctan(sinαi−1,cosαi−1)/2
15: αi=arctan(sinαi,cosαi)/2
16: tani−1=tan(αi−1)

17: tani=tan(αi)

18: wi=(tan(αi−1)+tan(αi))/len
19: sumw+=wi

20: end for
21: for each weight wi ∈ N do
22: λi=wi/sumw

23: end for
24: end procedure
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Mean Value Coordinates Algorithm 4 presents the pseudo code which de-

termines the weight λ using mean value coordinates. In Equation 4.13, λi is

calculated based on angles αi,αi−1 and length between vi and P. We measure

the algle by using vector product. Similar as other algorithms, the weights are

normalized.
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초 록

본 논문은 가상의복 리사이징 및 캡쳐링에 관한 새로운 방법론을 제시한

다. 의복 산업에서는 기성복의 경우 표준 신체 치수에 맞게 디자인 된 다음

특정한 신체 치수로 수정된다. 이러한 리사이징 과정을 그레이딩이라 부른

다. 그레이딩은 전문적인 의복 제단 기술이 요구 되며 매우 번거로운 작업이

다. 본 논문에서는 가상의복에 대한 빠르고 쉬운 그레이딩 방법을 제안한다.

한편, 실제의복을 참조하여 가상의복으로 만들기 위해서는 재단 및 모델링

기술이 필요하다. 위의 과정 역시 많은 시간과 의복 패턴 제도에 관한 심

화지식을 요구한다. 본 논문에서는 앞의 문제를 해결하기 위해 실제의복을

가상의복으로 변환하는 기술도 소개한다. 비단 의류산업에서 뿐만 아니라,

애니메이션 및 게임 산업에서도 의복 디자인의 중요성이 증가함에 따라 가

상의복의 그레이딩 및 모델링 기술에 대한 요구가 점차 늘어나고 있다.

본 논문에서는 그레이딩 작업을 수행하기 위해 컴퓨터 그래픽스 분야에

서 널리 사용되는 리타겟팅 기술을 도입하였다. 리타겟팅 기술은 매개체와

대응함수를 필요로 한다. 본 논문에서는 패턴 매이킹 드레프트 제도 과정을

참조하여 적합한 매개체를 고안했다. 제안한 방법의 구현을 위해 매개변수

드레프트라는 드레프트 생성 컴퓨터 모듈을 개발하였다. 매개변수 드레프트

모듈은 주요 신체 치수와 드레프트 종류를 입력 받아 드레프트를 제도한다.

무게중심 좌표계 시스템은 2차원상에서 가상의복의 드래프트와 패널 간 대

응 관계를 형성하기에 좋은 방법이다. 여러 무게중심 좌표계 시스템 중 평균

값 좌표계 시스템은 본 논문에서 고안한 방법에 가장 적합하다. 위 그레이딩

111



방법을 드레프트 공간 왜곡(Draft-space Warping) 기술이라 부른다. 제안한

방법은 주어진 특정 신체에 맞게 이용자의 조정 작업 없이 그레이딩 작업

을 즉각적으로 수행한다. 보다 양질의 그레이딩 결과물을 얻기 위해 고안 된

몇 가지 보상기법도 제안한다. 위 방법은 실제의복 및 가상의복의 그레이딩

작업 수행에서, 의상디자이너의 전문 지식을 최소화하며 작업시간 또한 줄

여준다.

또한 본 논문은 한 장의 마네킹에 입혀진 실제 의복사진에서 가상의복을

생성할 수 있는 방법을 소개한다. 앞에서 제안한 그레이딩 방법과 유사하게,

위 문제를 해결하기 위해 패턴 드레프팅 이론을 도입하였다. 따라서 가상의

복 캡쳐링 문제를 의복의 종류와 주요 신체 치수를 찾는 문제로 간단화 할 수

있었다. 의복의 종류와 주요 신체 치수는 사진 속의 의복의 실루엣과 마네킹

을 분석하여 얻는다. 위 방법은 기본적인 의상에 대해 안정적으로 동작하며,

그래픽 코디네이션에 적합한 가상의복을 생성한다.

두 방법 모두 패턴 드레프트 이론의 기반하에 고안 되었다. 기존 3차원

에서 수행되던 그레이딩 및 모델링 작업을 2차원에서 수행하여 계산 시간을

크게 감소 시켰음에도 불구하고, 보다 정확한 결과를 얻을 수 있었다.

주요어: 가상 의복, 리사이징, 그레이딩, 모델링, 무게중심 좌표계 시스템, 사

진 기반

Keywords: Virtual Garment, Resizing, Grading, Modeling, Barycentric Coor-

dinate System, Photograph

학 번: 2013-30259
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