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Abstract

TCP (Transmission Control Protocol), one of the most essential pro-

tocol for the Internet, has carried the most of the Internet traffic since

its birth. With the deployment of various types of wireless networks

and proliferation of smart devices, a rapid increase in mobile data

traffic volume has been observed and TCP has still carried the ma-

jority of mobile traffic, thus leading to huge attention again on TCP

performance in wireless networks. In this dissertation, we tackle three

different problems that aim to improve TCP performance in wireless

networks.

Firstly, we dealt with the downstream bufferbloat problem in wire-

less access networks such as LTE and Wi-Fi. We clarify the down-

stream bufferbloat problem in resource competitive environments such

as Wi-Fi, and design a receiver-side countermeasure for easy deploy-

ment that does not require any modification at the sender or interme-

diate routers. Exploiting TCP and AQM dynamics, our scheme com-

petes for shared resource in a fair manner with conventional TCP flow

control methods and prevents bufferbloat. We implement our scheme
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in commercial smart devices and verify its performance through real

experiments in LTE and Wi-Fi networks.

Secondly, we consider the upstream bufferbloat problem in LTE

networks. We clarify that the upstream bufferbloat problem can sig-

nificantly degrade multitasking users’ QoE in LTE networks and de-

sign a packet scheduler that aims to separate delay-sensitive packets

from non delay-sensitive packets without computational overhead. We

implement the proposed packet scheduler in commercial smart devices

and evaluate the performance of our proposed scheme through real ex-

periments in LTE networks.

Lastly, we investigate the TCP fairness problem in low-power

and lossy networks (LLNs). We confirm severe throughput unfair-

ness among nodes with different hop counts and propose dynamic

TX period adjustment scheme to enhance TCP fairness in LLNs.

Through experiments on the testbed, we evaluate how much the pro-

posed scheme enhances fairness index.

Keywords: TCP, AQM, bufferbloat, LTE, Wi-Fi, LLN
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Chapter 1

Introduction

1.1 Motivation

TCP (Transmission Control Protocol), firstly designed to provide a

reliable data transfer across the ARPANET in the early 1970s, is a

transport layer protocol that the majority of current Internet traf-

fic such as WWW (World Wide Web), e-mail, FTP (File Transfer

Protocol), and streaming service relies on. Since its birth, TCP has

been evolved along with the advancement of communication technol-

ogy and the evolution of the network and TCP has still governed the

Internet traffic.

TCP has a few key features as follows: i) retransmission of lost

packets, ii) ordered delivery, iii) flow control, and iv) congestion con-

trol. The essential element is congestion control that is a distributed

algorithm to determine how much data each source can inject to the
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network. TCP congestion control fundamentally aims to achieve high

link utilization while coexisting with other flows in a fair manner with

the assistance of AQM (Active Queue Management) schemes at inter-

mediate routers. For several decades, various TCP congestion control

schemes have been proposed and verified their performances in terms

of throughput and fairness.

With the deployment of various types of wireless networks and

proliferation of smart devices, a rapid increase in mobile data traffic

volume has been observed [1] and TCP has still carried the majority

of mobile traffic, thus leading to huge attention again on TCP per-

formance in wireless networks. In early days, TCP congestion control

schemes for wireless networks mainly focus on how to distinguish be-

tween buffer overflow and random loss due to wireless channel error

because a TCP source does not need to decrease its rate when a ran-

dom loss happens for fully utilizing the link. On the other hand,

recent wireless technologies provide very low random loss rate with

the assistance of robust link layer retransmission. As a result, queue

management rather than classification between random loss and buffer

overflow have been drawn much attention in the network community.

Recently, the bufferbloat problem, unnecessary long delay expe-

rience due to over-provisioned buffer space, has attracted significant

attention since it severely degrades the quality of experience (QoE)

of users, especially in multi-core multitasking smartphone systems.

In addition, connecting low-power and lossy networks (LLNs) to the
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Internet have drawn another attention with the emerging concept of

IoT (Internet of Things). Due to the fact that LLNs typically have

different characteristics such as low throughput, high packet loss, and

frequent topology changes, many technical challenges including TCP

will be encountered.

In this dissertation, we dealt with three different TCP problems

that can arise in wireless networks. Throughput dissertation, we iden-

tify problems based on measurement and evaluate our solutions in real

wireless networks such as LTE, Wi-Fi, and LLNs.

1.2 Background and Related Work

There have been several efforts to tackle the persistent queueing, or

the bufferbloat problem. The solutions can be categorized into three

types according to the location where they work [7]:

Replacing the loss-based congestion detection with the delay-based

congestion detection can solve the bufferbloat problem. It has been

shown that delay-based congestion controllers like TCP-Vegas [12]

and Fast TCP [13] can detect the congestion based on round trip

time (RTT ) and other delay information. They do not suffer from

long delay due to bufferbloat because they throttle cwnd before the

RTT becomes too large [7]. A main weakness of delay-based ap-

proaches is that they suffer from bandwidth starvation when they

coexist with loss-based approaches [15]. Mo and Walrand [14] have
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developed an interesting congestion measure, Decoupled fairness Cri-

teria, using cwnd and the measured bandwidth-delay product (BDP ).

Roughly, they have shown that by setting cwnd to the BDP (and thus

by controlling cwnd irrespective of loss detection) a variety of utility

functions can be maximized.

Active queue management (AQM) at intermediate routers can pre-

vent the buffer from bloating [6, 7]. AQM schemes such as random

early detection (RED) [16], exponential RED (E-RED) [17], and ran-

dom exponential marking (REM) [18] discard (or mark if explicit

congestion notification (ECN) is enabled [19]) incoming packets in

a probabilistic manner before the buffer becomes full, and can inform

the TCP senders of incipient congestion such that they can reduce

their transmission rate before they experience long queueing delay.

Despite many advantages of the queue management, few intermedi-

ate routers enable AQM in practice by default due to difficulty in

its parameter settings. Recently, a sojourn-time based AQM scheme

named CoDeL [6] and lightweight AQM scheme named PIE [45] have

been developed to address the bufferbloat problem. However, it re-

mains still unclear how quickly these AQM schemes will be deployed

in practice including mobile networks, e.g., LTE networks.

Flow control at the receiver that adjusts its advertised receive win-

dow (rwnd) can provide an alternative way to prevent bufferbloat.

Originally, rwnd has been introduced to limit the amount of in-flight

data for the receiver to receive it in a reliable manner. However,
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most modern handheld devices are equipped with enough buffer space,

hardly need flow control, and set rwnd sufficiently large by default,

which is commonly denoted by Auto-tuning [7]. On the other hand,

the receiver can utilize rwnd to restrict the amount of in-flight data [20].

Most smartphones regulate the maximum amount of in-flight data to

prevent the bufferbloat problem by placing a cap on rwnd . One of

the main advantages of the receiver-oriented approach is that it can

prevent the bufferbloat without intervention of service providers and

can quickly and easily deployed by updating the firmware of user de-

vice. However, since the setting is static and the performance highly

depends on the underlying network environment, the problem would

linger especially when the user switches the operators or roams. There

have been several dynamic controls of rwnd in the literature to throttle

TCP transmission rate for traffic prioritizing [40], service differenti-

ation [41], quick transfer of background traffic [42], and prefetching

web contents [43]. They aim to provide preference to certain flows but

are unable to prevent bufferbloat. Recently, a scheme termed DRWA

that dynamically changes rwnd to solve the bufferbloat problem has

been proposed [7]. In DRWA, the receiver adjusts rwnd to keep RTT

close to its minimum RTT , which is, in principle, similar to TCP-

Vegas. Although DRWA successfully prevents bufferbloat, it suffers

from significant performance degradation when it competes with other

competitive schemes.

In addition, there have been many efforts to improve TCP perfor-
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mance under two-Way TCP traffic in asymmetric networks [46, 47, 53,

54]. Ack compression, gives rise to rapid queue fluctuation, was known

as the cause of download throughput degradation [62]. Ack prioritiza-

tion for reducing ack compression was proposed [53, 54]. In addition,

connection-level bandwidth allocation was proposed [54]. Data pen-

dulum is another reason of performance degradation in asymmetric

links in the way that only one of buffers are fully utilized at a given

time [46]. [47] designed asymmetric queueing (AQ) to improve TCP

performance in residential access networks .

In cellular networks (3G/HSPA), proxy-based solutions to tackle

two-way TCP traffic in asymmetric links were proposed [48, 49]. Y.

Xu et al. proposed receiver-side flow control (RFRS) [48] which reg-

ulates upload traffic by flow control. TCP receiver-rate estimation

(TCP-RRE) [49] was designed to increase download throughput by

injecting as much as packets to the mobile devices.

Fair queueing (FQ) was designed to share the link capacity fairly

at the gateway. Examples of FQ implementation are stochastic fair

queueing (SFQ) [50], weighted fair queueing (WFQ) [51], and class-

based queueing (CBQ) [52]. These FQ algorithms were designed to

work at the routers or switches; therefore, elaborate parameter set-

tings are necessary to achieve good performance.
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1.3 Outline

This dissertation is organized as follows.

In Chapter 2, we consider the downstream bufferbloat and propose

a reciever-side scheme to takcle the downstream bufferbloat problem.

Based on dynamics of TCP and AQM, RTAC dynamically determines

rwnd to prevent bufferbloat. Furthermore, RTAC can coexist well

with other conventional TCP schemes in a fair manner. We show

that RTAC successfully prevents bufferbloat and achieves good per-

formance in LTE and Wi-Fi networks.

In Chapter 3, we deal with the upstream bufferbloat problem in

LTE networks. We clarify the negative impact of upload bufferbloat

on multitasking users’ QoE in LTE networks and design a packet

scheduler that aims to separate delay-sensitive packets from non delay-

sensitive packets. We also implement the proposed packet scheduler

on Android devices and verify its effectiveness through real experi-

ments in LTE networks.

In Chapter 4, we dealt with TCP performance in terms of fairness

in low-power and lossy networks. We confirm that TCP throughput

unfairness between LLN nodes are severe and propose an algorithm

to adjust TX period dynamically to enhance fairness. Through exper-

iments on our testbed, we evaluate the effectiveness of our solution.

We conclude the dissertation in Chapter 5.
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Chapter 2

Receiver-side TCP

Countermeasure to

Bufferbloat in Wireless

Access Networks

2.1 Introduction

Long delays in accessing the Internet through wireless mobile net-

works have been commonly witnessed [4]. One of the main reasons

is persistent queues at intermediate routers, in particular, at wireless

edge routers such as cellular base stations (BSs) due to their exces-

sively large-size buffers [5]. Low price of memory contributes to the
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installation of such large-size buffers. Due to the very large buffer

space, a TCP connection rarely observes a loss even if it fully uti-

lizes the bandwidth, which causes more packets to be injected into

the network through its congestion window (cwnd) size.

Extra packets beyond capacity pile up at the buffer and cause ex-

cessive delays. This phenomenon, called bufferbloat, has been observed

empirically in both cellular and wired network environments [7, 8, 9,

10, 11]. Recently, the bufferbloat problem has attracted significant

attention since it severely degrades the quality of experience (QoE)

of users, especially in multi-core multitasking smartphone systems [7]

that are already popular. For example, long-lived TCP flows for such

as file downloads give rise to negative impact on delay-sensitive flows

for such as mobile games and streaming services because they pile up

packets at BSs or APs with oversized buffers.

Bufferbloat can be considered as self-generated congestion that oc-

curs due to a fundamental mismatch between buffer sizes at bottleneck

links and loss-based TCP congestion control approaches that have

governed the Internet since its birth. Although there have been many

advances in the details, some original features such as window-based

ACK clocking and loss-based congestion detection still remain effec-

tive. For example, TCP CUBIC [31] that has been recently adopted

in Linux Kernel 2.6.19 and above still controls data transmission rate

upon a packet loss. In general, upon a packet loss, the TCP sender

shrinks its congestion window that determines the number of bytes
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in-flight, and inflates it if a packet is successfully delivered to the re-

ceiver. On occurrence of bufferbloat, however, packets will not be lost

owing to large-size buffer, so the TCP sender will keep increasing the

amount of in-flight data.

In this chapter, we propose a receiver-oriented scheme, named

Receiver-side TCP Adaptive queue Control (RTAC), to tackle the

downstream bufferbloat problem. Unlike DRWA, RTAC can coex-

ist well with other conventional TCP schemes without performance

degradation. In RTAC, the receiver controls rwnd in a TCP-Friendly

manner according to the dynamics of TCP and AQM. In this sense,

RTAC can be regarded as a realization of AQM at the receiver side.

We show that RTAC successfully prevents bufferbloat and achieves

good performance under resource competing environments. The con-

tributions of this chapter can be summarized as follows:

• We clarify the bufferbloat problem in a resource shared environ-

ment like Wi-Fi networks. Different from LTE networks, TCP

flows in Wi-Fi networks share the buffer space at access points

(APs) and directly compete with each other for the buffer re-

source.

• We develop a receiver-oriented scheme to the bufferbloat prob-

lem based on the dynamics of TCP and AQM. It successfully

prevents bufferbloat and achieves fair resource sharing with TCP

flows of conventional receivers.
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• We evaluate the performance of our scheme through experi-

ments. Implementing RTAC on commercially available Android

phones (Samsung Galaxy S2 (E120K)), we evaluate its effec-

tiveness on the bufferbloat prevention in both LTE and Wi-Fi

networks.

The rest of this chapter is organized as follows. We first overview

the dynamics of TCP and AQM in Section 2.2. In Section 2.3, we

develop a receiver-side scheme that aims to prevent bufferbloat while

achieving fairness under the coexistence with various types of TCP

flows. Section 2.4 describes experimental setup and we provide ex-

perimental results to evaluate our scheme in Section 2.5. Finally, we

conclude this chapter in Section 2.6.

2.2 Dynamics of TCP and AQM

We first describe the dynamics of TCP and AQM in a general network

setting. Then we focus on the scenarios where users receive data

packets through wireless access links such as LTE andWi-Fi networks.

We consider a network with a given set of nodes and (wired or wire-

less) links. Each traffic flow is a TCP connection between a source and

a destination. Let S denote the set of all traffic flows in the network.

The source of flow s ∈ S injects data packets into the network at rate

xs, which traverses the pre-determined path that consists of a subset

of links Ls. Each flow s is associated with utility function Us(xs) that

11



is assumed to be concave and differentiable. Each link has capacity

cl. We denote the set of flows that pass through link l by Sl, and the

total packet arrival rate at link l by yl, i.e., yl :=
∑

s∈Sl
xs.

It has been known that TCP and its variants are solutions to the

following Network Utility Maximization (NUM) problem with differ-

ent utility functions in [17, 21, 22]:

Maximize
∑
s∈S

Us(xs)

subject to yl ≤ cl, for all links l.

(2.1)

For example, TCP-Reno is a solution to (2.1) when the utility function

is

UReno
s (xs) = −

a

RTT 2
m

1

xs
, (2.2)

where RTTm is the RTT without queueing delay and a is a coefficient.

Similarly, TCP-Vegas solves this problem with the utility function

UV egas
s (xs) = η ·RTTm · log(xs), where η is a coefficient.

We consider the standard dual problem of (2.1), and obtain the

Lagrangian function as

L(x, p) :=
∑
s∈S

Us(xs)−
∑
l

pl(yl − cl)

=
∑
s∈S

(Us(xs)− xsqs) +
∑
l

plcl,
(2.3)

where pl denotes the Lagrangian multiplier of link l and qs denotes the

sum of pl over path Ls, i.e., qs :=
∑

l∈Ls
pl. Note that the Lagrangian
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multiplier pl is often interpreted as the price of link l or the link con-

gestion information such as queue length and loss probability. From

the Karush-Kuhn-Tucker conditions (KKT) [39], the optimal utility

sum is achieved when ∇L(x, p) = 0, i.e.,

U ′
s(xs) = qs, for all s, (2.4)

where U ′(x) = dU(x)
dx .

We now focus on typical wireless access network scenarios, where

users are connected through LTE and Wi-Fi networks. In this case,

wireless links often become a bottleneck due to their limited band-

width, which explains why bufferbloat typically occurs at edge routers

or wireless access links [7]. Hence, in wireless access networks, we ap-

proximate the sum price as the price of an access link, i.e.,

qs ≈ plast hop = f(Qs), (2.5)

where Qs denotes the queue length at the wireless link of flow s,

and f(·) denotes the loss probability function under a given queueing

discipline at the BS or AP. For example, the DropTail queueing dis-

cipline with maximum buffer space Q̄s has f(Qs) = 0 if Qs < Q̄s and

f(Qs) = 1 if Qs ≥ Q̄s.

Each AQM scheme has its own mapping function. For instance,

random early detection (RED) has a function that linearly maps the

queue length in [minth,maxth] into the drop probability in [pmin, pmax].
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Random early marking (REM) and E-RED have an exponential map-

ping function, which has a good property of presenting the summation

of the link prices over the path [17, 18]. Throughout this chapter, we

consider a linear mapping function similar to RED, not only because

it is easier to understand the dynamics but, more importantly, it has

a smaller approximation error than non-linear functions when imple-

mented in the Linux Kernel where floating-point operations are not

allowed. To elaborate, we use the following mapping function

f(Qs) = K(Qs + 1), (2.6)

where K denotes the slope of the linear mapping function and will

be discussed in detail later, and the extra ‘1’ is added to avoid the

potential divide-by-zero problem when Qs = 0.

2.3 Receiver-side TCP Adaptive Queue Con-

trol

In this section, we propose our receiver-side solution that aims to

coexist with other types of TCP flows in a fair manner as well as pre-

vent bufferbloat. It does not require changes at either TCP senders or

bottleneck routers, and thus can be quickly deployed in real networks.

We first explain its operations based on TCP and AQM dynamics.
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2.3.1 Receiver-side Window Control

Most existing TCP congestion controls show throughput performance

compatible with TCP-Reno [31, 32, 33], and a flow is called TCP-

Friendly if it achieves throughput compatible with TCP-Reno [23].

In this regard, we try to control the TCP sender to transmit at a

rate compatible with TCP-Reno using its utility function (2.2). A

different utility function results in a different controller, and may fail

to achieve fairness when conventional TCP flows coexist.

We first note that the TCP sender determines its transmission

rate by taking the minimum of cwnd and rwnd [24]. The latter can

be exploited to control the transmission rate from the receiver side [7,

25, 40, 41, 42, 43]. Let xs denote the transmission rate, i.e., xs :=
ws

RTT
,

where ws := min{cwnd, rwnd}. If the transmission rate is constrained

by cwnd, i.e., if cwnd < rwnd, from (2.2) and (2.4), we have

cwnd

RTT
=

√
a

RTTm

1√
qs
, (2.7)

where the coefficient a is known to be 3
2 for TCP-Reno [26]. We inter-

preted the price qs as the loss probability at the wireless access link.

If the wireless access router has the DropTail queueing discipline with

excessively large buffer space, the loss probability remains close to 0,

which in turn results in an excessively large cwnd, i.e., the bufferbloat

problem.

To prevent bufferbloat without the modification at the sender and
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the router, we apply AQM at the receiver side. Suppose that the

receiver knows RTT , the minimum RTT (RTTm), and the queue

length Qs at the access link. From (2.6), the receiver calculates the

loss probability (link price) q̂s, and advertises rwnd as

rwnd =
√
a
RTT

RTTm

1√
q̂s
, (2.8)

where q̂s = K(Qs + 1) and a = 3
2 . Then from (2.7) and (2.8), the

transmission rate is controlled as

xs =
ws

RTT
=

√
a

RTTm

·min

{
1√
qs
,

1√
q̂s

}
. (2.9)

Since the actual loss probability qs is close to 0 due to the large buffer

size, the emulated loss probability q̂s dominates the equation and

controls the transmission rate.

Note that the receiver can control the sender effectively only when

cwnd > rwnd, and thus it can selectively prevent bufferbloat with-

out weakening the sender’s capability of congestion control. In other

words, when the network is congested, the sender reduces cwnd to a

smaller value than rwnd, and controls its transmission rate. Also since

our proposal is based on the dynamics of TCP and AQM, and com-

patible with previous TCP-Reno variants, it can coexist with other

conventional TCP flows in a fair manner. On the other hand, it as-

sumes that the receiver knows the queue length Qs of the wireless

access router, which is not available in practice. In the following, we
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design the receiver to estimate Qs using the measured RTT and the

estimated transmission window size.

2.3.2 Delay Measurement and Queue Length Estima-

tion

Our receiver-side solution (2.8) requires information aboutRTT , RTTm,

and the queue length Qs of the wireless access link, along with ap-

propriate configuration of the parameter K. In this subsection, we

describe how the receiver estimates the queue length Qs from RTT

measurement. The configuration of K will be discussed at the end of

this section.

The receiver can measure the round-trip time RTT , since TCP

connection is full-duplex by default. We denote the measured RTT

at the receiver by R̂TT . The RTT without queueing delay can be

also obtained by taking the minimum of R̂TT values over time, as in

TCP-Vegas. We denote the estimated minimum RTT as R̂TTm. The

measurement accuracy can be further improved by the TCP times-

tamp option that is widely used in wireless networks [27] and set on

in many Android devices by default.

We now estimate the access link queue length Qs from the delay

information. To elaborate, we use the RTT difference with respect

to RTTm. Under bufferbloat, the access link queueing delay com-

monly dominates the total queueing delay over the path in wireless

access networks, and thus it can be estimated from RTT measure-
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ments as (R̂TT − R̂TTm). Then multiplying the queueing delay by

the transmission rate, we can approximately obtain1 the estimated

queue length Q̂s as

Q̂s = (R̂TT − R̂TTm)
ŵs

R̂TT
, (2.10)

where the estimated transmission window size ŵs can be obtained at

the receiver using the method in [28]. Note that if we can estimate one-

way forward delay from the sender to the receiver as in LEDBAT [38],

the estimation can be precise.

The overall procedures in our receiver-side solution, called RTAC,

are provided in Algorithm 1, where α and β are the parameters for a

running average.

Remarks: RTAC sets tcp rmen max sufficiently large to remove an

artificial constraint on rwnd and fully utilizes the link capacity. It

is necessary in particular for so-called Long-Fat networks [7]. The

receiver’s estimations of the transmission window size and RTT may

vary a lot, so it is necessary to take their averages with parameters

α and β respectively. Interestingly, we observed that R̂TTm also

varies over time and needs some compensation, which will be discussed

separately.

1Our end-to-end delay estimation includes all the queueing delay sum over the
path, and thus the resultant queue length estimation will be no smaller than the
actual queue length at the bottleneck. In a certain environment like with multiple
congested links, the estimation could be inaccurate.
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Algorithm 1 Receiver-side TCP Adaptive Queue Control (RTAC)

On receiving a packet:

1: if (measured RTT is valid) then

2: R̂TT ← (1− β) · R̂TT + β · (measured RTT )

3: Update R̂TTm if necessary.
4: end if

On copying data from receiver buffer to user space:

1: pkts← pkts+ copied data in packets
2: if (current time− last update time) ≥ R̂TT then

3: ŵs ← α · ŵs + (1− α) · pkts
4: Q̂s ← (R̂TT − R̂TTm) ŵs

R̂TT

5: q̂s ← K(Q̂s + 1)

6: rwnd← √a R̂TT

R̂TTm

1√
q̂s

7: pkts← 0
8: last update time← current time
9: end if

2.3.3 Configuration of RTAC

From (2.8) and (2.10), RTAC determines rwnd from the three mea-

surement values of (R̂TT , R̂TTm, ŵs), and a configuration parame-

ter K. The parameter K represents the slope of the linear mapping

function of AQM, and affects the operating point of TCP and AQM

dynamics. A low value of K results in a large queue length and un-

necessary delay, while a high value causes underutilization and even

instability [29]. The precise setting of K is beyond the scope of this

chapter and needs further study with rigorous analysis. However, we

briefly address this issue to provide a rough idea of its setting.

Basically, it is desirable that the solution achieve as small a queue

length as possible without underutilizing capacity. This can be achieved
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by maintaining the cwnd between BDP and 2BDP , which means that

the average cwnd is around 1.5BDP due to its sawtooth-like behavior.

We obtain BDP from multiplying the wireless link capacity by

R̂TTm. Let R̂TT
∗
denote the long-term average RTT , i.e., operating

point, and let θ := R̂TT
∗

R̂TTm

. We configure RTAC such that the amount

of in-flight data is θ times BDP , i.e., rwnd = θ · BDP = ŵs. To this

end, we obtain the following from (2.6), (2.8), and (2.10):

θ ·BDP = rwnd ≈ θ
√
a 1√

K·Qs

= θ
√
a 1√

K(θ−1)BDP
,

which leads to

K =
a

θ − 1

(
1

BDP

)3

. (2.11)

Hence, in our settings, the configuration of K depends on θ, which

can be considered as the ratio of the amount of total in-flight data

to BDP , and needs to be minimized as close as to 1 for better delay

performance, subject to full utilization of the wireless capacity. In our

experiments, the best performance has been observed for θ ∈ [1.3, 1.4].

2.4 Experimental Setup and Configuration

We implement RTAC on Android devices and conduct experiments

over two different wireless access networks. One is a public LTE net-

work operated by Korea Telecom (KT), the second largest cellular
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operator in Korea, and the other is an university Wi-Fi network with

Qualcomm Atheros AR93xx. We use Samsung Galaxy S2 (E120K)

and modify the manufacturer’s open source code [2]. We also imple-

ment DRWA on the same platform and compare their performance.

We consider traffic downloading scenarios from a server to users

via wireless access networks. The server runs Ubuntu 12.04 LTS over

octa-core 3.5 GHz PC and uses the default TCP implementation, i.e.,

TCP CUBIC with the TCP timestamp option on. Traffic is generated

by Iperf [3]. The detailed settings are summarized in Table 3.1.

2.4.1 Receiver Measurement Errors and Configuration

We overview the operation of three different TCP receiver types and

discuss their parameter configurations; they are the factory default

TCP receiver of Galaxy S2, denoted by Auto-tuning, and the state-

of-the-art receiver-side window controller, denoted by DRWA, and our

proposed RTAC.

In Auto-tuning, the receiver advertises the rwnd as the mini-

mum of twice the measured transmission window size over time and

tcp rmem max2 which limits the maximum advertised receive win-

dow. Letting ŵ∗
s denote the largest transmission window estimated

by the receiver of flow s during a session, it can be expressed as

rwnd = min{2ŵ∗
s , tcp rmem max}, (2.12)

2tcp rmem max can be checked via ‘sysctl net.ipv4.tcp rmem’ command.
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Table 2.1: Experimental Setup

TCP Server

Ubuntu 12.04 LTS (Kernel 3.2.0-54)
Intel(R) Xeon(R) CPU E3-1270 V2 (3.50GHz)
CUBIC with the timestamp option on
MSS = 1448 Bytes
TSO (tcp-segmentation-offload): OFF
TX-ring = 256 packets

Smartphone

Samsung Galaxy S2 (Model E120K)
OS: Kernel version 3.0.8,

Android Icecream Sandwich (4.0.3)
TSO (tcp-segmentation-offload): OFF
TX-ring = 256 packets

LTE networks
Operator: Korea Telecom (KT)
Bandwidth: 100 Mbps

Wi-Fi networks
Access Point: Qualcomm Atheros AR93xx
Bandwidth: 54 Mbps (802.11g)

TCP receiver settings

Auto-tuning tcp rmem max =

{
2, 560 KBytes for LTE
2, 560 KBytes for Wi-Fi

DRWA
tcp rmem max = 2, 560 KBytes
λ = 3

RTAC
tcp rmem max = 2.560 KBytes
α = 1/8, β = 1/8
θ = 1.38 for both LTE and Wi-Fi
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Figure 2.1: The severity of bufferbloat according to applications.

where tcp rmem max has a different value for LTE and Wi-Fi net-

works.

DRWA adjusts the receiver window dynamically according to the

RTT measurement and the transmission window size ŵs as

rwnd = λ
R̂TTm

R̂TT
ŵs, (2.13)

where λ is a configuration parameter set to 3 in most scenarios [7].

RTAC controls the receive window according to the dynamics of

TCP and AQM. From (2.6), (2.8), and (2.10), it sets the receive win-

dow as

rwnd =
√

3
2

R̂TT

R̂TTm

1√
Kŵs

(
1− R̂TTm

R̂TT

)
+1

. (2.14)

Using (2.11) with θ = 1.38, we set K as 3 · 10−7 for the LTE network,

and 15 · 10−5 for the Wi-Fi network.
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Note that both DRWA and RTAC detect the incipience of queue-

ing at the BS or AP by measuring R̂TT , R̂TTm, and ŵs, and throttle

the transmission window by controlling rwnd. If the measurements at

the receiver are not accurate, both schemes will suffer in their perfor-

mance. In practice, RTT estimation at the receiver can be inaccurate

in particular when the sender has an application-limited amount of

data. In this chapter, we focus on the bufferbloat problem caused

by commercial services over LTE/Wi-Fi systems. Fig. 2.1 shows the

RTT distribution of TCP flows with different applications: web, VoD

streaming (Youtube), live streaming (Naver Media) and file transfer

(Dropbox). As shown in Fig. 2.1, it is clear that the long-lived flow

such as Dropbox (file transfer) suffers from bufferbloat while the other

long-lived flows such as Youtube3 (VoD), Naver Media (live stream-

ing) and short-lived flows (web) that finishes data transfer with small

cwnd do not incur bufferbloat. Hence, we focus on long-lived TCP

flows like file transfer that is likely to fully utilize link, and assume

that the receiver can perform reasonably good estimation on RTT .

Since these measurements are critical for appropriate operation

of the receiver-side control, we first evaluate their accuracy. Fig. 2.2

shows that the measurements of ŵs and R̂TT at the receiver (after

taking the running averages with parameters α and β) are well aligned

along with the sender’s cwnd and RTT . The receiver underestimates

ws by 11% compared to the sender in a saturated region, and makes

3The reason that Youtube does not experience large RTT is related to queue
discipline (i.e., sched fq) for scheduling traffic.
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Figure 2.3: RTT and RTTm in the LTE network with low rate.

similarly accurate estimation on RTT as the sender (4.4% mismatch).

On the other hand, we found that the estimation of RTT with-

out queueing delay (i.e., RTTm) is a bit troublesome. We inject data

packets at a very low rate of 8 Mbps (a seventh of the nominal link

capacity) such that packets do not experience any queueing, and mea-

sure RTT using the TCP timestamp option. Fig. 2.3 shows the mea-

surements of R̂TT and R̂TTm in the LTE network. Since there is no

queueing, the measured R̂TT is indeed RTTm. Interestingly, the em-

pirical results show that RTTm varies over time. We conjecture that

the variation is incurred by frame synchronization in LTE, retransmis-

sion at the wireless link, deep inspection at the base station, and/or

other processing delays. In our measurements, RTTm is about 50%

higher than the minimum RTT measurement ever seen, i.e., R̂TTm.

Since RTTm is an important factor that determines the BDP and

the queueing-delay estimation, such a large mismatch can cause unex-
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pected behavior. To this end, we compensate RTT without queueing

delay as ̂RTT ∗
m := R̂TTm + ∆ and replace R̂TTm with ̂RTT ∗

m. The

compensation delay ∆ needs to be determined according to the mea-

surements for each wireless access network. In practice, average ∆

seems static and it can be derived from measurement statistics, e.g.,

from [37]. We set ∆LTE = 18 msec for LTE and ∆Wi−F i = 8 msec

for Wi-Fi.

2.5 Experimental Results

In this section, we evaluate the performance of RTAC and other

schemes through experiments in WiFi and cellular networks under

various scenarios.

2.5.1 Bufferbloat in Wireless Access Networks

The bufferbloat in cellular and Wi-Fi networks has been noted in the

literature [5, 7, 8]. We firstly confirm the previous results in LTE

networks and Wi-Fi networks.

The bufferbloat is closely related to the setting of tcp rmem max

of the TCP receiver as well as the buffer size of the BS or AP [7]. We

first measure the throughput and RTT at Auto-tuning receiver in the

LTE network for 30 seconds. Figs. 2.4(a) and 2.4(b) show that the

setting of tcp rmem max has a critical impact on the performance.

Too small a value leads to low throughput (i.e., underutilization) and
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Figure 2.4: TCP performance with Auto-tuning receiver in LTE and
Wi-Fi networks for different tcp rmem max values.
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too large a value causes high delay (i.e., bufferbloat). From the re-

sults, we can say that the best performance can be achieved when

tcp rmem max is in the range [400, 800] KBytes. However, the opti-

mal value depends on various factors of the underlying access network.

Figs. 2.4(c) and 2.4(d) depict the TCP performance in the Wi-Fi net-

work. A similar trend is observed as in the LTE network, with the

best setting of tcp rmem max around 200 KBytes.

We conduct additional measurements to identify the bufferbloat

problem in the LTE network. Three client devices are associated with

the same LTE eNodeB, and each client measures the delay toward the

google server (i.e., www.google.co.kr) by pinging periodically. Two

out of three devices initiate downloading using iperf to build up the

queue at LTE eNodeB; one starts at 10 seconds, and the other starts at

20 seconds. Fig. 2.5 shows the results. As Client 2 starts downloading

at 10 seconds, it experiences additional delay, but the other flows do

not, implying that their queues are managed separately. Similarly,

when Client 3 starts downloading at 20 seconds, the delay increase

of Client 3 shows its queues building up. Note that Client 1 still

maintains the lowest delay. Around 20 seconds, the delay of Client 2

is almost doubled since its bandwidth share is halved. These results

imply the system performs per-flow queueing for a small number of

users.

Wireless available bandwidth can play a role. We place an Auto-

tuning receiver at three different locations. At each location, we mea-
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sure the throughput, which is 19.6 Mbps, 14.8 Mbps, and 8.3 Mbps, re-

spectively. Fig. 2.6 shows the cumulative RTT distribution of received

packets at each location. It is clear that the lower the throughput is,

the higher delay the packets suffer from. For the low throughput case,

the largest RTT measurement was 1.5 sec. Throuhgout this chapter,

we conduct most of the experiments in high throughput environment.

Recently, the parameter tcp rmem max tends to be set higher as

new devices are released. For example, the setting of Galaxy S2

(E120K) in the LTE network has 1, 220 KBytes, while Galaxy S3

(E210K) and Galaxy S4 (E330K) set it to 2, 560 KBytes. For the Wi-

Fi network, tcp rmem max for each device is set to 196 (Galaxy S2),

2, 097 (Galaxy S3), and 2, 560 (Galaxy S4) KBytes, respectively. The

increasing trend in new devices seems to be related to the increasing

capacity of wireless access links. In the sequel, we use tcp rmem max

= 2, 560 KBytes for Auto-tuning receiver, since it is the default set-

ting of the most recent device of Galaxy S4 for both LTE and Wi-Fi

networks. For DRWA and RTAC, we also set tcp rmem max to the

same value.

2.5.2 Prevention of Bufferbloat

We now investigate the effectiveness of our proposed scheme in bufferbloat

prevention. We establish a single downstream TCP connection, and

evaluate its performance with different receivers of Auto-tuning, DRWA,

and RTAC for 30 seconds.
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Fig. 2.7 shows their throughput and delay performance in LTE

and Wi-Fi networks. On average, Auto-tuning achieves a through-

put of 55 Mbps and a delay of 223 msec in LTE, and 18.9 Mbps and

337 msec in Wi-Fi. DRWA achieves 52 Mbps and 89 msec in LTE, and

18.5 Mbps and 32 msec in Wi-Fi. Also, RTAC shows 51 Mbps and

71 msec in LTE, and 18.8 Mbps and 37.8 msec in Wi-Fi. Both DRWA

and RTAC maintain low queue length and fully utilize of the wire-

less link by controlling rwnd, accordingly preventing the downstream

bufferbloat.

We also compare the performance of Auto-tuning and RTAC with

different RSSI scenarios by placing an Auto-tuning receiver at three

different locations. At each location, we measure average received

signal strength indicator (RSSI) value, which is −51 dbm (high RSSI),

−62 dbm (mid RSSI), and −70 dbm (low RSSI), respectively. Since

the signal strength changes the link capacity, we have different Ks for

RTAC, i.e., K = 15·10−5 for high RSSI, 37·10−5 for mid RSSI, and 12·

10−4 for low RSSI, which has been obtained from (2.11) with θ = 1.38.

Fig. 2.8 shows the results, in which Auto-tuning suffers from larger

delay in accordance with the signal weaker, while RTAC successfully

removes bufferbloat with any signal strengths.

2.5.3 Fairness of TCP Flows with Various Receiver Types

For a single flow, both DRWA and RTAC are successful in preventing

the downstream bufferbloat. We now consider the scenarios where
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Figure 2.7: Prevention of bufferbloat in LTE and Wi-Fi networks.
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multiple TCP flows coexist and compete for the shared resource. It

has been known that the BS in 3G network maintains a separate buffer

for each flow [30], while the AP in a Wi-Fi network uses shared buffers

for all the flows. Thus, we consider different resource competition

scenarios for LTE and Wi-Fi networks, respectively.

We let two wireless clients download data from the server via a

common wireless access link. In the Wi-Fi network, the two clients

are connected to a single AP as shown in Fig. 2.9(a), and compete for

its buffer space. We denote this Wi-Fi scenario as Direct Competition

(DC). For the LTE network, however, we cannot make two wireless

clients compete directly with each other, since queues at the BS are

separately managed for each flow. So, we foster a resource-competitive

environment in the wired network part by adding an additional client

as shown in Fig. 2.9(b), which creates a wired bottleneck link just

before the server. The additional client runs Auto-tuning and com-

petes with the wireless clients through the wired link. We denote this

scenario as Indirect Competition (IC).

In the DC scenario in Wi-Fi, we first run Auto-tuning for one

client and DRWA for the other. Fig. 2.10(a) illustrates throughput

performance of the two TCP flows, in which DRWA achieves only

6% throughput of Auto-tuning. Under the same environment, we re-

place DRWA with RTAC. The results show that both Auto-tuning and

RTAC achieve similar throughput performance (i.e., 96% throughput

of Auto-tuning), sharing buffers of the AP in a fair manner. In the IC
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(a) Direct compe-
tition (DC) in Wi-
Fi

(b) Indirect competition
(IC) in LTE

Figure 2.9: Resource competition scenarios with two wireless clients.

scenario of LTE, we observe similar results as shown in Fig. 2.10(b).

RTAC achieves 96% throughput of Auto-tuning while DRWA starves

severely (i.e., only 2% of Auto-tuning) due to the addition of Client

3 in the wired bottleneck link. From our experimental results, we

conclude that DRWA indeed works similar to TCP-Vegas and has

the same fairness problem due to its conservative behavior, which

makes it less attractive in resource-competitive environments. On

the other hand, RTAC always works well owing to utilizing the TCP

and AQM dynamics and achieves throughput performance compatible

with Auto-tuning.

We also perform experimental measurements of the scenario where

three TCP flows (each with Auto-tuning, DRWA, and RTAC receiver,

respectively) coexist in LTE and Wi-Fi networks. We extend the

DC and IC scenarios in Fig. 2.9 by adding one more wireless client.
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Figure 2.10: Coexitence of RTAC and Auto-tuning in LTE and Wi-Fi
networks.
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Figure 2.11: Fairness among Auto-tuning, DRWA, and RTAC re-
ceivers.

Fig. 2.11 shows the throughput of the three receivers in Wi-Fi and

LTE network. Again, in both cases, RTAC is compatible with Auto-

tuning while DRWA suffers from severe starvation.

Fig. 2.12 depicts the throughput and RTT measurements of the

three different schemes (i.e., Auto-tuning, DRWA, and RTAC) in the

DC scenario under the shared-buffer AP. These results show that

both RTAC and Auto-tuning achieve similar throughput performance

while DRWA suffers from starvation due to non-negligible queueing

delay that RTAC and Auto-tuning flows contribute to. Also, the three

schemes achieve similar delay performance due to the shared buffer.

Further, we tested different combinations of a RTAC flows + b

Auto-tuning flows with (a,b) = (3,0), (2,1), (1,2), (0,3). The results

in Fig. 2.13 show the performance difference between RTAC and Auto-
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Figure 2.12: Performance of an AP with shared buffer.

tuning flows is marginal, and RTAC coexists with Auto-tuning in a

fair manner in both LTE and Wi-Fi networks.

We prepare a Wi-Fi AP (i.e., CISCO AIR-SAP1602I-K-K9) and

conduct the same experiments. In the LTE and Wi-Fi network with

shared buffer, the delay performance of Auto-tuning, DRWA, and

RTAC is similar because the network congestion happens at the same

router. On the other hand, RTT measurements in CISCO AP shows

an unexpected result. As shown in Fig. 2.14, Auto-tuning experiences

longer delay than RTAC and DRWA, which is unexpected, since they

are supposed to share a single buffer space and experience the same

delay. Though additional experiments, we found that the latest Wi-Fi

AP such as CISCO AIR-SAP1602I-K-K9 does not manage its buffer

space in a shared manner.
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Figure 2.13: Performance with aggregated traffic from different num-
ber of Auto-tuning and RTAC devices.
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Figure 2.14: Throughput and RTT performance among Auto-tuning,
DRWA, and RTAC receivers with CISCO AP.

2.5.4 The Impact of TCP Variants

So far, we performed experiments with TCP CUBIC at the sender.

In this subsection, we evaluate different receiver-side controllers along

with TCP variants at the sender, including TCP-Reno, HTCP, TCP-

Vegas, and TCP Westwood. TCP-Reno is a well-known traditional

loss-based congestion controller, HTCP is a high-speed variant of TCP

(like TCP CUBIC) for Long-Fat Networks [32], TCP-Vegas is a delay-

based congestion controller, and TCP Westwood can handle wireless

loss and load dynamics by adaptively setting the congestion control

parameters using information obtained from the ACK stream [33].

Fig. 2.15 shows the throughput and delay performance for a sin-

gle TCP flow under various TCP sender types in the LTE network.

It demonstrates that DRWA and RTAC are successful in prevent-
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Figure 2.15: Performance of a single TCP flow with various TCP
sender types in LTE network.
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Figure 2.16: Performance of a single TCP flow with various TCP
sender types in Wi-Fi network.
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ing bufferbloat by a single TCP flow, except the TCP-Vegas sender.

TCP-Vegas suffers from low throughput regardless of TCP receiver

types, which may come from inaccurate estimation on RTTm. As

we discussed before, RTTm changes over time in the LTE network,

and thus without appropriate compensation, the sender will have

R̂TTm < RTTm most of the time, which leads to an unnecessarily

small cwnd for TCP-Vegas.

Another interesting observation is that Auto-tuning suffers from

bufferbloat, especially for CUBIC and HTCP that are designed for

Long-Fat Networks and thus quickly increases cwnd when there is no

loss. The results confirm again that an aggressive TCP sender can

aggravate bufferbloat.

Fig. 2.16 shows the performance of a single TCP flow in the Wi-Fi

network. The overall results are similar to those in the LTE net-

work. TCP-Vegas suffers less throughput degradation than in the

LTE network due to a smaller variation of RTTm, and the bufferbloat

of Auto-tuning with TCP-Reno and TCP Westwood becomes more

striking.

Finally, we evaluate the fairness between Auto-tuning, DRWA,

and RTAC receivers, under different TCP variants at the sender. We

consider the same three client scenarios of DC in Wi-Fi and IC in LTE.

Fig. 2.17(a) depicts the throughput performance of the three clients

for the TCP variants in Wi-Fi. It shows that RTAC achieves more

than 94% throughput of Auto-tuning for all TCP variants (except
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TCP-Vegas). This means that RTAC and Auto-tuning coexist well.

In contrast, DRWA achieves only lower than 13% throughput of Auto-

tuning for all TCP variants except TCP-Vegas.

In LTE, Fig. 2.17(b) shows that Auto-tuning and RTAC achieve

similar throughputs while DRWA achieves much lower throughput ex-

cept TCP-Vegas. DRWA works well with TCP-Vegas which is too con-

servative in competing environments, resulting in very low through-

put. Overall throughput performance in the IC scenario is lowered

due to the congestion in the wired link.

2.5.5 The Impact of Upload Bufferbloat

For downstream bufferbloat, RTAC significantly reduces unnecessary

RTT increase by controlling rwnd dynamically. On the other hand,

there can be another problem in the upstream when upload traffic

exists. Specifically, upload traffic can build up a large queue at the

receiver, which hinders ACKs of download traffic from returning and

deteriorates the performance of download traffic [46, 47, 48, 49]. This

problem can be solved by applying multi-queue schemes such as fair

queueing [44, 50, 51, 52] and priority queueing [53, 54] at user devices.

To elaborate, we conduct additional experiments4, in which a user

device first generates upload traffic toward a server using iperf, and

after 10 sec, starts to download TCP traffic using iperf in the LTE

4We have used Galaxy S2 with kernel version 3.0, in which Byte Queue Limits
(BQL) is not implemented, and we have used soft rate limiting with Hierarchy
Token Bucket (HTB).
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Figure 2.17: Performance under competing environments with various
TCP sender types.
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Figure 2.18: Download performance of RTAC with FQ CoDel in LTE
network.
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network. Fig. 2.18 shows the performance of the download traffic

in terms of throughput and RTT under each combination of Auto-

tuning/RTAC and FIFO/FQ CoDel. In a nutshell, the upload traffic

builds up a large queue at the user device with FIFO queue due to

limited wireless capacity, which suppresses the download traffic by de-

laying returning ACKs, resulting in low throughput and high delay. A

multi-class queue discipline like FQ CoDel [44] can solve the problem

by processing the returning ACKs separately from the upload traffic

as shown in Fig. 2.18.

Note that, however, FQ CoDel at the user device does not com-

pletely remove the delay as shown in Fig. 2.18(b). Auto-tuning with

FQ CoDel still has a large delay of up to 380 ms, which is indeed due to

the bufferbloat at eNodeB. Our results demonstrate that RTAC can be

used along with FQ CoDel, further improving the delay performance

by removing the bufferbloat over the download path.

2.5.6 Coexistence with the Unlimited Sender

When an unlimited TCP flow coexists with limited TCP flows (i.e.,

flows with tcp rmem max= 2, 560 KBytes), the unlimited sender fills

up the buffer space, and overwhelms other limited flows. To clarify its

impact, we experimented with two flows: one RTAC (limited) flow and

one unlimited flow, where the unlimited flow is prepared by setting its

tcp rmem max to a large value (i.e., 7.6 MBytes). We evaluate their

performance in both DC (Wi-Fi) and IC (LTE) scenarios. Fig. 2.19
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Figure 2.19: Impact of a flow with unlimited rwnd.

shows their throughput performance. In the IC (LTE) and DC (Wi-

Fi) scenarios, the unlimited sender pushes RTAC aside by injecting

more packets aggressively, as we expected.

2.6 Summary

In this chapter, we have presented a receiver-side countermeasure,

named RTAC, to address the downstream bufferbloat problem in wire-

less access networks such as LTE and Wi-Fi networks. According to

TCP dynamics, a RTAC receiver estimates an appropriate amount

of in-flight data for a wireless access link, and controls the trans-

mission rate via advertised receive window. We have implemented

RTAC on commercial smartphones and conducted extensive experi-
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mental measurements. We have verified that RTAC successfully pre-

vents bufferbloat, and achieves good delay performance without sac-

rificing throughput performance nor fairness with conventional TCP

flows, outperforming the state-of-the-art schemes. Furthermore, we

have showed that RTAC can be incorporated with per-flow queueing

like FQ CoDel to alleviate the upstream bufferbloat problem. There

still remain interesting open problems. For instance, a TCP connec-

tion may be established between a far-away sender and a receiver

across the Internet. In this case, packets go through multiple hops,

which results in noise on our queue length estimation and performance

degradation. Hence, an accurate estimation on the bottleneck queue

length in various scenarios will be necessary to extend our scheme.

In addition, precise estimation on network status such as BDP and

RTT should be investigated to cope with a rapid change of wireless

available bandwidth.
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Chapter 3

Dual Queue Approach for

Improving User QoE in

LTE Networks

3.1 Introduction

With the evolution of hardware and software technology, smart de-

vices such as smartphone and tablet based on multi-core architecture

enable users to experience multitasking. For example, it is hardly

surprising that smart device users are able to enjoy mobile messenger

services while they are uploading data to social network service.

Recently, users tend to generate more upload traffic than be-

fore [59]. For example, the statistics of the most-used smartphone

applications in 2013 [60] shows that smartphone users frequently use
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social network services (Facebook, Google+, and Twitter), mobile

messenger services (WeChat and Whatsapp), m-VoIP service (Skype),

which incur a large volume of upload traffic. In addition, the increas-

ing popularity of the cloud storage service (e.g. Google Drive and

Dropbox) has caused more upload traffic.

Performance like throughput and delay in multitasking scenario

is affected by network resource allocation. Specifically, one of the re-

source allocation is related to queuing discipline (qdisc), which deter-

mines how to enqueue and dequeue packets on each application at end

hosts or intermediate nodes such as routers and cellular base stations

(BSs). Previous works have pointed out that performance degrada-

tion in multitasking scenarios can happen in both wired [46, 47, 53, 54]

and cellular networks [7, 48, 49]. Fundamental reason of performance

degradation in multitasking scenarios lies in qdisc based on single

queue architecture. In other words, background traffic is able to oc-

cupy most of the buffer, thus leading to unnecessary large delay on

foreground traffic. For example, when a smartphone user is running

a mobile game and uploading data to the cloud storage server simul-

taneously, packets of the mobile game is delayed due to the stacked

packets of upload data in the transmit queue.

In this chapter, we propose a new metric, called sendbuffer occu-

pancy ratio (SOR), for packet classification to improve user QoE in

multitasking scenarios. The proposed scheme basically adopts dual

transmit queue like [46, 47, 53, 54] and can achieve better delay

51



performance by classifying between delay-sensitive packets and non

delay-sensitive packets using SOR without computational overhead.

Through extensive measurements in LTE networks, we show that the

proposed scheme significantly reduces the delay of delay-sensitive ap-

plications.

The contributions of this chapter are summarized as follows:

• We clarify the severity of delay increase of multitasking users in

LTE networks through extensive measurements.

• We develop a SOR based packet classification algorithm (SORPC)

that aims to improve multitasking users’ QoE. Based on prior-

ity queueing, the proposed scheme achieves better delay per-

formance by separating delay-sensitive packets from non delay-

sensitive packets.

• We evaluate the performance of the proposed scheme through

experiments. We implement the proposed scheme on commer-

cial Android phones (i.e., Galaxy S2 (E120K)) and verified its

effectiveness with commercial applications in LTE networks.

The rest of this chapter is organized as follows. We first present the

performance degradation in multitasking scenarios in LTE networks

in Section 3.2. Section. 3.3 describes our proposed scheme that aims

to improve user QoE in multitasking scenarios. Experiment results

to evaluate the proposed scheme follow in Section 3.4. Finally we

conclude this chapter in Section 3.5.
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3.2 User QoE Degradation in Multitasking Sce-

narios

In this section, we first present the severity of upload queueing delay

and briefly show its negative impact on users’ QoE in multitasking

scenarios.

3.2.1 Unnecessary Large Upload Queueing delay

Unnecessary large delay in traffic downloading scenarios from a server

to users in cellular networks have been observed [7, 8] due to large

size buffer at base stations, and it is known as bufferbloat [5]. On

the other hand, we consider traffic uploading scenarios from a user to

a server and conduct measurements over LTE network operated by

Korea Telecom (KT) using iperf [3] as a traffic generator with TCP

as transport layer protocol.

We first measure the upload throughput and RTT for 30 sec-

onds for different TCP sendbuffer of which maximum value is lim-

ited by system parameter tcp wmem max 1. Fig. 3.1 shows through-

put and RTT according to tcp wmem max. As tcp wmem max in-

creases, throughput stays around 20 Mbps; however, RTT increases

more than 400 msec when tcp wmem max is set as 2,560 KBytes.

The optimal throughput and delay performance can be achieved when

tcp wmem max is smaller than 200 KBytes. However, there is a ten-

1tcp wmem max limits sendbuffer for each TCP connection and wmem max

limits sendbuffer for all types of connections
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dency that default tcp wmem max is set higher value as new smart-

phone model is released. For example, tcp wmem max is set as 1,220 KBytes

for Galaxy S2 (E120K), 2,560 KBytes for Galaxy S3 (E210K), and

2,560 KBytes for Galaxy S4 (E330K). This is related with uplink

bandwidth increase of cellular networks for achieving higher through-

put. We conduct additional experiments to identify the relation be-

tween uplink bandwidth and the degree of RTT increase. Fig. 3.2

shows that the upload queueing delay get worsen as uplink bandwidth

shrinks. For instance, RTT increase reaches more than 900 msec when

uplink bandwidth is lower than 10 Mbps.

This measurement study indicates that the cause of unnecessary

large delay in traffic uploading is due to not low link speed of cellular

networks [48] but large sendbuffer of mobile devices. The best set-

ting of tcp wmem max changes depending on network status; there-

fore, it is difficult to achieve the optimal performance with the fixed

tcp wmem max setting.

3.2.2 Negative Impact on Performance in Multitasking

Scenarios

Unnecessary large sendbuffer may have little impact on user expe-

rience in singletasking environments. However, a large number of

stacked packets in sendbuffer give the negative impact on multitask-

ing scenarios that there are more than 2 running applications simul-

taneously. Although each application has its own sendbuffer shown
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Figure 3.1: TCP upload performance for different tcp wmem max.
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Figure 3.2: Upload delay performance for different upload throughput.

in Fig. 3.5, they share transmit queue which consist of a single queue.

As a result, packets from applications requiring high QoS can be de-

layed in the transmit queue due to the stacked packets from other

applications.

Fig. 3.3 shows the RTT increase of foreground ping application

from a user to a server (i.e., www.google.com) while background up-

load traffic is generated by iperf. RTT of foreground ping application

can be reached more than 1.8 sec when background upload through-

put is 9 Mbps, which is critical value for delay-sensitive applications.

In addition, we measure the degree of download performance degrada-

tion with upload traffic. Both traffics are generated by iperf with TCP

CUBIC [31] and download starts 10 sec after upload begins. Fig. 3.4

shows that throughput degradation is inevitable when measurement

duration is short (i.e., 10 sec) although uplink bandwidth is high. Low
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Figure 3.3: Delay Performance of ping application with background
upload traffic.

throughput is caused by late arrival of download ACKs and it results

in slow cwnd increase. On the other hand, performance degradation

of download is not that severe with long measurement duration (i.e.,

60 sec).

Our observation from the measurements shows that critical per-

formance degradation in multitasking scenarios can happen in LTE

networks and it is rooted in a single transmit queue which is shared

by whole applications in end devices.

3.3 SOR based Packet Classification with Mul-

tiple Transmit Queue

In this section, we describe the proposed scheme that aims to improve

user QoE. We present considering queue structure and propose a new
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Figure 3.4: Throughput performance of download traffic with back-
ground upload traffic.

metric for separating delay-sensitive packets from non delay-sensitive

packets.

3.3.1 Dual Transmit Queue

Large sendbuffer environment with a single transmit queue have a bad

influence on multitasking scenarios in the way that it incurs unneces-

sary large upload queueing delay. Reducing sendbuffer is one of the

most simple way to tackle this problem. However, it is not easy to

find the best value of tcp wmem max as network status changes.

We adopt dual transmit queue architecture like [53, 54] to im-

prove user QoE in multitasking scenarios. The primary goal of the

proposed queue management scheme is to separate delay-sensitive ap-

plications (e.g. VoIP, mobile messenger, and mobile game) from non
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delay-sensitive applications (e.g. FTP). For example, when a user

begins m-VoIP while uploading data to the cloud storage server, we

want to process packets from m-VoIP in advance of packets from cloud

storage service. Different with previous works [53, 54] that focused

only on improving download performance, we consider QoE of inter-

active applications such as mobile messenger services, online games,

and m-VoIP as well as download performance. Hence, it is the key

for the performance how to classify packets from delay-sensitive and

non delay-sensitive applications which will be explained in Sec. 3.3.2.

The structure of dual transmit queue is depicted in Fig. 3.5. FIFO0

has higher priority than FIFO1; therefore, FIFO1 can be dequeued

only after FIFO0 becomes empty. FIFO1 mainly serves non delay-

sensitive applications like file transfer while FIFO0 serves delay-sensitive

applications according to packet classification.

Although linux-based android smartphones adopt pfifo fast qdisc

as a default, which maintains 3 different priority transmit queue,

which is called band2, priority queueing of pfifo fast rarely used be-

cause it classifies packets according to type of service (ToS) field in IP

header of each packet. Most of popular applications are not likely to

use ToS (i.e., ToS = 0x00); therefore, pfifo fast operates like a single

transmit queue.

2pfifo fast has 3 bands. Band 0 is processed with the highest priority and band
2 with the lowest priority

59



Figure 3.5: Dual transmit queue architecture.

3.3.2 SOR based Packet Classification Algorithm

Based on the dual transmit queue architecture, packet classification

before enqueuing a packet to the transmit queue is the key perfor-

mance factor. Using well-known port number (ex. FTP (21), HTTP

(80), and HTTPS (443)), which is registered in Internet Assigned

Numbers Authority (IANA) [61] in one of the simplest way to clas-

sify packets. However, its low accuracy of port number based clas-

sification may cause false results [63, 64]. In addition, it is not ad-

equate for mobile devices to adopt more sophisticated classification

techniques [65, 66, 67] which require high computational complexity.

We propose a sendbuffer occupancy ratio based packet classifica-

tion algorithm, called SORPC, to improve user QoE in multitasking

scenarios without computational overhead. From the measurements

which will be shown in Sec. 3.4.1, we found that many commercial
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applications supporting file transfer fill their sendbuffer very quickly.

As a result, we define a packet classification metric as sendbuffer oc-

cupancy ratio (SOR) as follow:

SORs(t) =
Qs(t)

sndbuf(t)
, (3.1)

where Qa(t) denotes the amount of data piled up in the sendbuffer

of session s at time t and sndbuf(t) denotes the size of the send-

buffer at time t. Qs(t) and sndbuf(t) can be easily obtained from the

socket structure without overhead; therefore, SORs(t) can be calcu-

lated whenever there are packets to transmit. To make a enqueuing

decision, SORPC sets the same threshold SORth for all the sessions.

When SORs(t) ≥ SORth at time t, SORPC refers session s as a

file transfer application and it enqueues a packet to FIFO1 which

serves non delay-sensitive applications. Otherwise, SORPC enqueues

a packet to FIFO0 to transmit.

In addition to SOR criterion, SORPC gives higher priority on UDP

packets to provide better QoE becasue UDP is widely used by delay-

sensitive applications such as video streaming, video phone call, and

m-VoIP. SORPC follows the same technique with previous works [53,

54] in the way that it gives more priority download ACKs than upload

data.
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Figure 3.6: Experimental scenarios.

3.4 Experiment Results

We implement SORPC on commercial android devices (i.e., Sam-

sung Galaxy S2 (E120K)) and conduct experiments in LTE network

operated by KT (Korea Telecom). All experiments is done with

background upload traffic generated by iperf or Dropbox. We com-

pared SORPC with a single transmit queue scheme (Single Queue)

throughput whole experiments. For the interactive applications, we

use KakaoTalk3 as mobile messenger service, Marble for all4 as mo-

bile game, and skype as m-VoIP. Youtube and Amazon.com has been

chosen for download applications. The detailed setup are summarized

in Table. 3.1.

3KakaoTalk is the most popular mobile messenger applications in Korea and it
has been downloaded more than 100 millions.

4Marble for all is a mobile board game like blue marble and it has recorded
more than 10 million downloads.
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Table 3.1: Experimental Setup

Smartphone

Samsung Galaxy S2 (Model E120K)
OS: Kernel version 3.0.8,

Android Icecream Sandwich (4.0.3)
Chipset: Qualcomm Snapdragon S3 MSM8660,

1500 MHz (Dual-Core)
Congestion control: CUBIC
tcp wmem max: 2,560,000 Bytes
SORth: 0.5

LTE networks
Operator: Korea Telecom (KT)
Download Bandwidth: 100 Mbps
Upload Bandwidth: 25 Mbps

Applications

Upload traffic generator: iperf, Dropbox
Download traffic generator: iperf
Mobile messenger: KakaoTalk
Online game: Marble for all
m-VoIP: SkypeStreming: Youtube
Web: www.amazon.com

3.4.1 Packet Classification Metric: Sendbuffer Occu-

pancy Ratio (SOR)

The degree of upload queueing delay is related to both tcp wmem max and

upload bandwidth as presented in Sec. 3.2. We first briefly overview

sendbuffer auto-tuning technique. Sendbuffer auto-tuning is similar

to advertised receive window (rwnd) auto-tuning which determines

rwnd as min{2∗ cwndest, tcp rmem max}, where cwndest denotes the

estimated cwnd at the receiver side [28] and tcp rmem max denotes

the maximum receive buffer space. Sendbuffer (sndbuf ) is also deter-

mined as follow:
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sndbuf = min{2 ∗ cwnd, tcp wmem max}. (3.2)

Fig. 3.7(a) shows the evolution of sendbuffer, cwnd, and queue

length using iperf. As cwnd increases, sendbuffer is automatically ex-

panded based on (3.2) until it reaches tcp wmem max. In addition,

sendbuffer never decreases and can only be expanded when there are

no memory pressure. We also measure the ratio of queue length to

cwnd (QCR). If the ratio is larger than 1, it means that there are

more packets than network BDP which is approximately estimated

from cwnd ; otherwise, there are less packets than network capacity.

Fig. 3.7(b) shows the distribution of QCR. Regardless of applications,

QCR is almost larger than 1 all the time. In other words, there are

always more packets than network capacity for file transfer applica-

tions. In the case of text service through mobile messenger, QCR

is always less than 1 due to large initial cwnd (i.e., 10) of Android

devices.

With the assumption that file transfer applications enqueue more

packets than network BDP, we measure SOR of popular file transfer

applications. Fig. 3.8 shows SOR distributions of popular file up-

load applications (except text in mobile messenger)). Facebook and

Dropobx shows similar distributions in the way that they mostly fill

their sendbuffers more than half. When a user transfers a picture via

mobile messenger, SOR distribution is also similar. However, SOR of
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text service through mobile messenger shows different distribution due

to the small size of data packets. The threshold for SOR can affect

the performance of SORPC. Throughout this chapter, we use 0.5 for

SORth.

Fig. 3.9 shows the time to reach SORth with Dropbox and Face-

book. It takes only few hundred milliseconds to reach SORth for both

applications. This characteristic has the strength and weakness. Fast

decision of packet classification is the strength; on the other hand, the

weakness is the possibility of unfairness among competing upload file

transfer applications which will be presented in Sec. 3.4.4.

66



Dropbox Facebook
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time to reach SOR
th

T
im

e 
(s

)

Figure 3.9: Time to reach SORth.

3.4.2 Improving RTT performance of Interactive Ap-

plications

We conduct experiments to verify the effectiveness of SORPC us-

ing three popular interactive applications: mobile messenger service

(KakaoTalk), mobile game (Marble for All), and m-VoIP (Skype).

Iperf is used as an upload traffic generator and conduct the same ex-

periments for different uplink bandwidth. The delay performances of

mobile messenger service and mobile game can be obtained from TCP

layer; however, we use “display technical call info” option to get RTT

performance for Skpye which mainly uses UDP as a transport layer

protocol.

Fig. 3.10(a) shows RTT distribution of mobile messenger appli-

cation. Without upload traffic, average RTT is around 50 msec.
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Single Queue shows deteriorated RTT performance with background

upload traffic and RTT increase get worse as uplink bandwidth be-

comes smaller. On the other hand, SORPC shows very low RTT

performance less than 300 msec regardless of uplink bandwidth. It is

because SORPC can automatically separate mobile messenger packets

from background upload traffic using SOR criterion. SORPC also im-

proves the RTT performance of mobile game as shown in Fig. 3.10(b).

At the worst case, a packet of Single Queue is delayed by 1.5 sec while

SORPC achieves the RTT performance lower than 418 msec. In the

case of m-VoIP, SORPC is also effective to reduce the delay with back-

ground upload traffic by processing UDP packets first while RTT of

Single Queue is critical to use m-VoIP as shown in Fig. 3.10(c).

There is a gap between SORPC and without upload although

SOR criterion classifies a packet well. Hardware limitation that we

use (E120K with a dual-core Snapdragon) for supporting multitasking

is the main reason of that gap.

3.4.3 Improving Download Performance

Severe performance degradation on download with simultaneous up-

load has been observed in both wired [53, 54] and 3G/HSPA net-

works [48, 49]. We firstly measure the impact of simultaneous upload

on download performance in LTE network with popular applications

such as Youtube streaming and Web loading which use TCP as a

transport layer protocol. File upload to a Dropbox server is chosen as
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a background upload traffic.

Fig. 3.11(a) shows youtube startup delay performance. When

there are no background upload traffic, average start delay is around

4.4 sec while Single Queue shows worse performance of 8 sec in aver-

age and 15 sec in the worst case. Web loading also shows the similar

performance as shown in Fig. 3.11(b). Average web loading time is

3.2 sec without upload traffic; however, the performance of Single

Queue is 12 sec in average. SORPC achieves better performances

than Single Queue by transmitting download ACKs of Youtube and

Web in advance of Dropbox data packets like [53, 54]. In average,

SORPC achieves 6.3 sec startup delay with Youtube and 6.2 sec web

loading time. Fluctuation of the download performance is much se-

vere due to the bottleneck at the server. When we experiment with

servers of popular applications, the performance variation happens

although wireless link capacity is enough.

Short-term throughput degradation shown in Fig. 3.4 is also alle-

viated by prioritizing download ACKs first. We use iperf as a traffic

generator for both upload and download and experiment duration

is 10 sec. Fig. 3.12 shows that average short-term throughput of

SORPC increases from 3.2 Mbps to 19.1 Mbps.

3.4.4 Fairness among Competing Upload Flows

SORPC’s effectiveness to improve user QoE in multitasking scenarios

is presented in Sec. 3.4.2 and 3.4.3. However, when there are compet-
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ing upload file transfers, SORPC incurs short-term unfairness among

competing upload flows. We conduct experiments with two upload

flows using iperf to identify the degree of unfairness. There is a 10 sec

gap between two upload flows.

Fig. 3.13 shows that fairness is achieved between two flows when

the duration is 60 sec and it shows 0.94 of Jain’s fairness index [68].

On the other hand, unfairness between two flows happens when the

duration is 10 sec with 0.64 of fairness index. The reason of unfairness

is that the time to fill sendbuffer is very short; therefore, late upload

flows can only enqueue a small amount of packets to FIFO0. We

remain a fairness issue among competing flows as a future work.
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Figure 3.13: Unfairness among competing upload traffics.

3.5 Summary

In this chapter, we have presented a packet classification algorithm in

transport layer to improve multitasking user’s QoE in LTE networks.

Based on dual transmit queue architecture, the proposed scheme effec-

tively separates delay-sensitive packets from non delay-sensitive pack-

ets without computational overhead. We have implemented the pro-

posed scheme on commercial available smartphones and conducted

extensive experiments. We have verified that the proposed packet

classification technique performs well and result in better delay per-

formance for delay-sensitive applications.
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Chapter 4

Uplink Congestion Control

in Low-power and Lossy

Networks

4.1 Introduction

Low-power and lossy networks (LLNs), consist of many embedded

networking devices which formed in wireless multi-hop networks, have

recently drawn huge attention due to its various applications such

as smart grid automated metering infrastructures (AMIs) [69, 70],

monitoring [71, 72], and wireless sensor networks (WSNs) [73, 74]. In

addition, current LLNs has been employing IPv6-based architecture

to be connected to the Internet. For example, the IETF has recently

standardized protocols such as RPL [78] and 6LoWPAN [77, 79, 80]
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for connecting LLNs to the Internet with the concept of the Internet

of Things (IoT).

A move that makes LLNs be part of the Internet naturally gives

rise to many challenges about the possibility of interoperation between

LLNs and existing Internet. To be connected to the Internet, LLNs

performs wireless multi-hop communication from LLN nodes to LBR

(LLN Border Gateway) as depicted in Fig. 4.1. Due to the fact that

LLNs typically have different characteristics such as low memory, high

packet loss, and frequent topology changes from wired and wireless

access networks such as LTE and Wi-Fi, many technical challenges

will be encountered.

One of the main challenges in connecting LLNs to the Internet

is about TCP for compatibility reason because TCP has provided

a reliable data transfer for the most of the Internet traffic since its

birth. To reflect this trend, BLIP, IPv6 stack in TinyOS, have re-

cently released experimental version of TCP in TinyOS by providing

fundamental TCP features such as 3-way handshake and congestion

control including TCP retransmission schemes.

Main difference between LLNs and the Internet is the role of each

node. A LLN node can become a data source and a router for its child

nodes simultaneously like wireless ad-hoc network. Therefore, LLN

nodes fundamentally contend with their child nodes that potentially

have packets to transmit through their parent. In addition, LLN

nodes (e.g. wireless sensor motes) typically have equipped with low
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memory and results in frequent packet loss due to buffer overflow

when congestion happens. These characteristics of LLNs give negative

impact on TCP performance in temrs of throughput and fairness.

Previous works that aim to enhance TCP performance have been

mainly done in 802.11 based wireless ad-hoc networks [81, 82, 83].

However, they have some practical problems to be adopted in LLNs

in the way that they incur additional control overhead and are too

heavy to be implemented in LLN nodes. In addition, transport layer

protocols for wireless sensor networks, one of the main applications

of LLNs, have been developed to enhance performance at transport

layer [84, 85, 86]. However, there remain an interoperability issue with

existing Internet because their main target is limited to themselves.

In this chapter, we propose an uplink TCP congestion control for

LLNs in order to improve fairness. Firstly, we confirm that through-

put among nodes with different hop counts shows severe unfairness

due to frequent buffer overflow of LLN nodes and propose dynamic

TX period adjustment (DTPA) to overcome throughput unfairness.

To the best of our knowledge, this it the first work that handle TCP

fairness problem in LLNs. Through experiments on our testbed with

30 TelosB sensor motes, we evaluate the effectiveness of the proposed

scheme.

The rest of this chapter is organized as follows. We first describe

the system model in Section 4.2. In Section 4.3, we develop a dis-

tributed algorithm that aims to mitigate TCP unfairness in LLNs.
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Figure 4.1: A scenario of LLN connected to the Internet through LBR.

Section 4.4 describes experimental setup and experimental results to

evaluate our solution. Finally, we conclude this chapter in Section 4.5.

4.2 System Model

We consider a scenario for LLN as shown in Fig. 4.1. LLN nodes can

communicate each other by utilizing LLN interface and is connect to

the LBR using unicast routing protocol like RPL [78]. Each LLN

node can be connected to the external TCP end host via LBR (LLN

Border Router) which performs a gateway between LLN and the wide

area network (WAN) which can either be the public Internet or a

private IP-based network [91]. Both and LLN nodes and TCP end

host use TCP/IPv6 stack to communicate each other at the network

and transport layers. We mainly consider a traffic upload scenario

from each LLN nodes to the TCP end host. We assume that the

network from LBR to the TCP end host is quite stable and round-

trip time (RTT ) from the LBR to the TCP end host is relatively small

compared to the RTT from each LLN nodes to the LBR.
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4.3 Proposed Scheme

In this section, we introduce the new concept of TX period (TXP) for

improving TCP fairness among LLN nodes and propose dynamic TX

period adjustment (DTPA) with throughput analysis in LLN.

4.3.1 Tx Period

LLNs are fundamentally different from wired and wireless access net-

works in the way that each node in LLNs can be a both data source

and router simultaneously. Different with 802.11 based wireless ad-

hoc networks, LLN nodes typically have very low memory1 which is

the performance bottleneck in multi-hop communications. When we

consider uplink TCP traffic from LLN nodes to the external TCP end

host, TCP performance of a LLN node far from the LBR get worsen.

Not only uplink DATA packets but also TCP ACKs from the exter-

nal TCP end host frequently get lost due to the small queue length of

intermediate LLN nodes although its data is successfully delivered to

the TCP end host, thus leading to unfairness among LLN nodes with

different hop counts from the LBR.

We introduce the concept of TX period (TXP ) to enhance fair-

ness among LLN nodes. An intuition on TXP is ‘wait and transmit

strategy (WSS)’. Because a node close to the LBR is likely to experi-

ence low packet loss rate and low RTT compared to a node far away

from the LBR, a node close to the LBR should wait their own data

1For example, TelosB only provides 48 KBytes ROM and 10 KBytes RAM.
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transfer although they have something to transmit for TXP . After

TXP timer fires, it can transmit its own data. Therefore, parent

nodes only perform packet forwarding on behalf of their child nodes

during TXP .

4.3.2 Dynamic TX Period Adjustment

Basic intuition on TXP is that parent nodes yield their TX oppor-

tunity to their child nodes for improving TCP fairness. We propose

dynamic TX period adjustment (DTPA) that determines TXP dy-

namically in a distributed manner. We first explain TCP throughput

analysis of LLN nodes.

TCP congestion control is a distributed algorithm to share network

resources. and is known to an optimal solution of network utility max-

imization problem [17, 21, 22]. In equilibrium point, [75, 76] showed

that throughput of TCP Reno is

xReno =
MSS

RTT

a√
p
, (4.1)

where p denotes loss probability and the coefficient a is known to be
√

3
2 .

DTPA basically follows the same AIMD policy with TCP Reno as

follows:
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cwnd =





cwnd+ 1
cwnd

on every ACK reception

1
2cnwd on a packet loss

(4.2)

Similar to (4.1), throughput of LLN nodes with TCP Reno can be

modeled as

xDTPA =
MSS

TXP +RTT

a√
p
. (4.3)

To differentiate TXP among LLN nodes with different hop counts,

we set TXP as a function of p and RTT as

TXPi(RTTi, pi) = h(pi)−RTTi, (4.4)

where i denote LLN node index and h(·) denotes the mapping function

from packet loss rate to TXP . Due to the fact that DTPA mainly

focuses on improvement of TCP throughput fairness, DTPA sets the

same bandwidth to all LLN nodes as follows:

1

TXPi +RTTi

a√
pi

= c, (4.5)

where c is a system parameter that depends on network topology.

From (4.5), DTPA finally determines TXP as
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TXPi =





a
c
√
pi
−RTTi if a

c
√
pi
−RTTi > 0

0 o.w
(4.6)

Our intuition on (4.6) makes a node close to the LBR wait longer

because it is likely to experience low packet loss rate and low RTT

compared to nodes far away from the LBR. If c is set as an infinite

value, DTPA shows the same operation of TCP Reno. With small

value of c, every LLN nodes should waste too much time for unneces-

sary large TXP . Proper setting of c is important issue and we remain

is as a future work. The overall procedures of DTPA are provided in

Algorithm 2.

4.4 Experimental Results

4.4.1 Experimental Setup

We configure a testbed environment as depicted in Fig. 4.2. There

are 30 LLN nodes and one LBR in an office environment. The LBR

consists of a Linux desktop PC and an LLN interface. The LBR

forwards packets to/from the Linux PC through UART and LLN in-

terface uses the ppprouter stack in TinyOS. The desktop PC uses

TCP/IP to exchange data with multiple LLN devices where each LLN

node is a TelosB clone device [87] with an MSP430 microcontroller

and a CC2420 radio. We use TinyOS as the embedded software in

our experiments [88]. In TinyOS, we use berkeley low-power IP stack
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Algorithm 2 Dynamic TX Period Adjustment (DTPA)

Initialization:

1: RTOcounter ← 0
2: FRcounter ← 0
3: TotalTxcounter← 0

On receiving a packet:

1: if (measured RTT is valid) then

2: R̂TT ← (1− β) · R̂TT + β · (measured RTT )
3: p = (RTOcounter + FRcounter)/TotalTxcounter

4: TXP = a
c·
√
p
− R̂TT

5: if TXP < 0 then

6: TXP ← 0
7: end if

8: end if

On retransmission timer fired:

1: RTOcounter ← RTOcounter + 1

On receiving 3 DUPACKs:

1: FRcounter ← FRcounter + 1
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Figure 4.2: Testbed topology in an office environment.

(BLIP) as a TCP/IPv6 stack including 6LoWPAN that allows IPv6

to operate efficiently over IEEE 802.15.4. We have not turned on

a low power listening (LPL) duty cycling mechanism [89, 90], and

each node employs a FIFO transmit queue of which size is 15 pack-

ets and we generate traffic 2 packets/s for all LLN nodes. We have

implemented RTT estimator in BLIP TCP stack due to the fact that

DTPA determines its TXP based on RTT .

4.4.2 Throughput analysis vs. Measurement

We first compare throughput analysis in (4.3) with real measurement

results. We consider 2 different topologies as shown in Fig. 4.3. Node

ID is correspond to the number in Fig. 4.2. Fig. 4.4 shows the result

between analysis and measurement. Real measurement results show

that throughput analysis of DTPA is almost similar to experimental

results. Due to the small queue length at each node, network per-
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Figure 4.3: Different topologies with different maximum hop count.
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Figure 4.4: Throughput analysis vs. Measurement.
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formance converges fast in terms of packet loss rate and RTT , thus

leading to the small gap between analysis and experimental results.

4.4.3 TCP Performance in Low-power Lossy Networks

We firstly show that TCP throughput unfairness in LLNs. Fig. 4.5

shows 6 hop topology with 10 nodes. Fig. 4.6 shows TCP performance

according to hop count from the LBR. Throughput significantly de-

creases as hop count increases. Because RTT and packet loss rate

also increases according to hop count, throughput of a node in 6 hop

from the LBR only achieves only 20 % of a node in 1 hop from the

LBR. This results are directly related to the limited queue length of

LLN nodes. Fig. 4.7 shows that the number of buffer overflow at each

nodes. As shown in Fig. 4.7, buffer overflow at node 1 almost reaches

2000 times while other nodes only shows smaller buffer overflow. It
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Figure 4.6: Throughput unfairness among nodes with different hop
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means that the bottleneck of this topology lies in node 1. TCP DATA

and ACKs that passes node 1 experience high loss rate, thus leading

to throughput degradation as shown in Fig. 4.6(a).

4.4.4 Fairness improvement of DTPA

We now verify the performance of DTPA in various topology scenar-

ios. Firstly, we consider 6 hop topology with 10 nodes as shown in

Fig. 4.5. Fig. 4.8(a) shows that DTPA shows better performance in

terms of fairness while overall goodput decreases by 23 %. Because

TX period is dynamically determined based on (4.5), nodes close to

the LBR shows higher TXP than nodes far away from the LBR as

shown in Fig. 4.9(b). During TXP , each node cannot send any data

and only can forward packets for their child, thus leading to through-

put reduction of node close to the LBR.
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Fig. 4.9 shows the performance of DTPA in the topology with 30

nodes as presented in Fig. 4.3(a). Similar to results of 6 hop topology

with 10 nodes, DTPA shows better performance in terms of fairness by

setting TXP of nodes close to the LBR as a high value. Interestingly,

TCP-Vegas [12] suffers from TCP unfairness similar to TCP-Reno due

to inaccurate end-to-end queue length estimation in LLNs. Frequent

loss makes it hard for TCP-Vegas to estimate queue length.

4.5 Summary

In this chapter, we have confirmed TCP throughput unfairness among

LLN nodes. Due to the limited memory, each node can only hold small

number of packets and results in frequent packet loss when conges-

tion happens. We introduce the concept of TX period and propose

dynamic TX period adjustment that aims to enhance TCP fairness in

LLNs. Through extensive experiments using testbed with 30 nodes,

we verify the effectiveness of our solution.
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Chapter 5

Conclusion

5.1 Research Contributions

In this dissertation, we dealt with three different problems that aim

to improve TCP performance in wireless networks.

First, we have presented a receiver-side countermeasure, named

RTAC, to address the downstream bufferbloat problem in wireless

access networks such as LTE and Wi-Fi networks. According to

TCP and AQM dynamics, a RTAC receiver estimates an appropriate

amount of in-flight data for a wireless access link, and controls the

transmission rate through advertised receive window. We have imple-

mented RTAC on commercial smartphones and conducted extensive

experimental measurements. We have verified that RTAC success-

fully prevents bufferbloat, and achieves good delay performance with-

out sacrificing throughput performance nor fairness with conventional
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TCP flows, outperforming the state-of-the-art schemes.

Next, we have presented a new packet classification algorithm,

named SORPC ,to improve multitasking user’s QoE in LTE networks.

SORPC adopts multiple transmit queue architecture and effectively

separates delay-sensitive packets from non delay-sensitive packets us-

ing SOR. We have implemented the proposed scheme on Android

device and verified that SOR performs well in terms of packet classi-

fication, thus leading to better delay performance for delay-sensitive

applications.

Thirdly, we dealt with TCP performance in low-power and lossy

networks. We firstly have shown severe TCP throughput unfairness

among LLN nodes due to the limited memory. We propose dynamic

TX period adjustment that aims to enhance TCP fairness by yielding

each node’s transmission opportunity to its child. Through extensive

experiments on the testbed, we have verified the effectiveness of our

proposed scheme.

To summarize, TCP in wireless networks has drawn attention in

the network community for not only poor delay performance but also

an interoperability issue of LLNs with existing Internet. There still

remains some issues to resolve, it is anticipated that our proposed

schemes can be a used as a guideline to improve TCP performance

in wireless networks. Besides the three problems considered in this

dissertation, many interesting problems that need deeper investigation

of TCP will appear in wireless networks.
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5.2 Future Research Directions

RTAC performs better with a precise estimation on BDP. In wireless

networks, however, the dynamic nature of wireless channel, traffic,

and user mobility makes accurate estimation very difficult. There

have been several estimation techniques to tackle the problem in cel-

lular and Wi-Fi networks [34, 35, 36], which can be incorporated with

RTAC to operate in an auto-adaptive manner. To this end, develop-

ing precise estimation schemes for BDP, RTT, and wireless capacity,

is of great interest and remains as a future work.

RTAC can be considered as the emulation of RED at the receiver-

side like PERT [58] that uses only smoothed RTT with high weight to

predict congestion accurately. In addition, CoDel [6] drops a packet

based on its sojourn time and PIE [45] calculates the drop probability

from delay. To incorporate these schemes with RTAC, there should

be an investigation on how smoothed RTT can reflect congestion over

the entire paths, and how the receiver estimates a sojourn time at the

wireless last hop, and how one can achieve fairness under the existence

of other competing TCP flows, which is an interesting open problem.

Finally, it is worth noting that controlling bufferbloat exacerbates

the inherent fairness problem of TCP due to different RTTs [55, 56].

Hence, the removal of the downstream bufferbloat at the receiver-side

may bring back the fairness problem in certain scenarios. The problem

can be mitigated by applying TCP congestion control such as TCP
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Libra [57] that is designed to enhance RTT fairness. Furthermore, the

fairness problem can be addressed by adopting per-flow queueing like

FQ CoDel [44] at bottleneck routers as in LTE and Wi-Fi networks.
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초  록

TCP는 인터넷을 이루는 필수적인 프로토콜 중 하나로써, 현재 대

부분의 인터넷 트래픽에서 사용되고 있다. 다양한 무선 네트워크의 

배치와 스마트 단말의 보급으로 인해 모바일 데이터 트래픽이 폭증

한 현 시점에서 TCP는 여전히 대부분의 모바일 트래픽에서 사용되

며, 이는 무선 네트워크에서의 TCP 성능에 대한 큰 관심을 불러일

으키고 있다. 본 논문에서는 무선 네트워크 환경에서 TCP 성능 향

상을 위한 세 가가지 문제를 다룬다.

첫째, LTE와 Wi-Fi와 같은 무선 네트워크에서의 다운스트림 

bufferbloat 문제를 다룬다. LTE 뿐만이 아니라 Wi-Fi와 같이 자원 

경쟁적인 환경에서의 bufferbloat 문제를 확인하고, 이를 해결하기 

위한 수신단 윈도우 조절 기법을 제안한다. 제안하는 기법을 스마트 

단말에 구현하고, 실제 LTE 및 Wi-Fi 네트워크에서의 실험을 통해 

제안 기법의 성능을 평가한다.

둘째, LTE 네트워크에서의 업스트림 bufferbloat 문제를 고려한다.

LTE 네트워크에서 멀티태스킹 사용자의 QoE가 업스트림 

bufferbloat으로 인해 크게 저하됨을 확인하고, 사용자 QoE 향상을 

위한 패킷 스케쥴러를 제안한다. 제안하는 패킷 스케쥴러를 실제 스

마트 단말에 구현하고, 실제 LTE 네트워크에서의 실험을 통해 제안

하는 기법의 효과를 평가한다.

셋째, 저전력의 손실이 많이 발생하는 네트워크에서의 TCP 공평성 

문제를 고려한다. 저전력의 손실이 많이 발생하는 네트워크에서 노

드 간 수율 불공평성이 심각하게 나타남을 확인하고, TCP 공평성 

향상을 위한 동적 전송 주기 결정 기법을 제안한다. 제안하는 기법

이 자원이 한정되어 있는 저전력의 손실이 많이 발생하는 네트워크 



노드에 적용될 수준의 가벼운 프로토콜임을 실제 구현을 통해 확인

하고, 테스트베드 실험을 통해 기존 기법과의 공평성 지표를 비교한

다.

주요어 : TCP, AQM, bufferbloat, LTE, Wi-Fi, 저전력의 손실

이 많이 발생하는 네트워크

학  번 : 2010-30229
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