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Abstract

In this thesis, we propose model-based and data-driven techniques for environment-

robust automatic speech recognition. The model-based technique is the feature en-

hancement method in the reverberant noisy environment to improve the performance

of Gaussian mixture model-hidden Markov model (HMM) system. It is based on the

interacting multiple model (IMM), which was originally developed in single-channel

scenario. We extend the single-channel IMM algorithm such that it can handle the

multi-channel inputs under the Bayesian framework. The multi-channel IMM algo-

rithm is capable of tracking time-varying room impulse responses and background

noises by updating the relevant parameters in an on-line manner. In order to reduce

the computation as the number of microphones increases, a computationally efficient

algorithm is also devised. In various simulated and real environmental conditions,

the performance gain of the proposed method has been confirmed.

The data-driven techniques are based on deep neural network (DNN)-HMM hy-

brid system. In order to enhance the performance of DNN-HMM system in the

adverse environments, we propose three techniques. Firstly, we propose a novel su-

pervised pre-training technique for DNN-HMM system to achieve robust speech

recognition in adverse environments. In the proposed approach, our aim is to initial-

ize the DNN parameters such that they yield abstract features robust to acoustic
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environment variations. In order to achieve this, we first derive the abstract fea-

tures from an early fine-tuned DNN model which is trained based on a clean speech

database. By using the derived abstract features as the target values, the standard

error back-propagation algorithm with the stochastic gradient descent method is

performed to estimate the initial parameters of the DNN. The performance of the

proposed algorithm was evaluated on Aurora-4 DB and better results were observed

compared to a number of conventional pre-training methods.

Secondly, a new DNN-based robust speech recognition approaches taking ad-

vantage of noise estimates are proposed. A novel part of the proposed approaches

is that the time-varying noise estimates are applied to the DNN as additional in-

puts. For this, we extract the noise estimates in a frame-by-frame manner from the

IMM algorithm which has been known to show good performance in tracking slowly-

varying background noise. The performance of the proposed approaches is evaluated

on Aurora-4 DB and better performance is observed compared to the conventional

DNN-based robust speech recognition algorithms.

Finally, a new approach to DNN-based robust speech recognition using soft target

labels is proposed. The soft target labeling means that each target value of the DNN

output is not restricted to 0 or 1 but takes non negative values in (0,1) and their

sum equals 1. In this study, the soft target labels are obtained from the forward-

backward algorithm well-known in HMM training. The proposed method makes the

DNN training be more robust in noisy and unseen conditions. The performance of

the proposed approach was evaluated on Aurora-4 DB and various mismatched noise

test conditions, and found better compared to the conventional hard target labeling

method.

Furthermore, in the data-driven approaches, an integrated technique using above
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three algorithms and model-based technique is described. In matched and mis-

matched noise conditions, the performance results are discussed. In matched noise

conditions, the initialization method for the DNN was effective to enhance the recog-

nition performance. In mismatched noise conditions, the combination of using the

noise estimates as an DNN input and soft target labels showed the best recognition

results in all the tested combinations of the proposed techniques.

Keywords: Robust speech recognition, multi-channel, interacting multiple model

(IMM), dereverberation, pre-training, denoising, background noise estimation,

deep neural network (DNN), DNN-based regression, back-propagation, soft

target labels, Viterbi alignment, forward-backward algorithm.
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Chapter 1

Introduction

Recently, automatic speech recognition (ASR) is playing an important role in

a huge number of applications such as smart phones, smart TV, car navigations

and wearable devices. The performance of ASR has been improved by using hidden

Markov model (HMM) to deal with the temporal variability of speech and modeling

its emission probability with Gaussian mixture model (GMM). As an alternative

approach, artificial neural networks (ANNs) was used to predict HMM states. At

that time, however, neither the hardware nor the learning algorithms were adequate

for training neural networks with many hidden layers on large amounts of data,

and the performance benefits of using neural networks with a single hidden layer

were not sufficiently large to seriously challenge GMMs. Over the last few years,

advances in both machine learning algorithms and computer hardware have led to

more efficient methods for training deep neural networks (DNNs) that contain many

layers of nonlinear hidden units and a very large output layer. The DNN-HMM

hybrid system to estimate the emission probabilites using DNN instead of ANN

has outperformed the performance of the GMM-HMM system. However, the input
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signals for ASR systems are often degraded by acoustic reverberation, background

noise and other interferences, which naturally lead to the performance deterioration

of ASR systems in adverse environments. It should be considered to design the ASR

system.

In order to alleviate this performance degradation in adverse environments, a

variety of techniques using either a single microphone or multiple microphones have

been developed e.g., speech enhancement, feature compensation and model adapta-

tion algorithms [1]- [2]. Though separate algorithms perform differently, their ulti-

mate goal is nothing but to reduce the mismatch between the degraded input signal

and the trained recognition model parameters.

In most cases the target speech and noise or other interference sources reside

in different spatial locations. Multiple microphone arrays are useful to extract the

desired signal especially when each sound source is separated spatially. During the

past several decades multi-channel based beamforming techniques such as the gener-

alized sidelobe canceller (GSC) [3], [4] have been proposed to attenuate the coherent

interfering sources and acoustic reverberation. However, the performance is sensitive

to the estimation of transfer function (TF) or time of arrival (TOA) between the mi-

crophone array and the fixed or moving speaker target. So, the estimation of TF or

TOA still remains a challenging task. Multi-channel based criteria are also directly

applied in the feature domain for robust speech recognition [5], which however focus

on additive background noise conditions only.

A natural way to deal with reverberation and background noise in the adverse

environments is to use multi-condition training, which trains the acoustic model with

not only the clean speech data but also all available reverberant noisy speech data.

However, there are two major problems with multi-condition training. The first is
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that during training it is hard to enumerate all reverberant noise types, reverberation

times and SNRs encountered in test environments. The second is that the model

trained with multi-condition training has a very broad distribution because it needs

to model all the environments. Given the unsatisfactory behavior of multi-condition

training, it is necessary to work on technologies that directly deal with the noise and

reverberation.

In this thesis, model-based and data-driven techniques for environment-robust

automatic speech recognition are proposed. The proposed methods can be applied

to both GMM-HMM and DNN-HMM system. In Chapter 4, we propose a novel

approach to feature enhancement in multi-channel scenario. Our approach is based

on the interacting multiple model (IMM), which was originally developed in single-

channel scenario. We extend the single-channel IMM algorithm such that it can

handle the multi-channel inputs under the Bayesian framework. The multi-channel

IMM algorithm is capable of tracking time-varying room impulse responses and back-

ground noises by updating the relevant parameters in an on-line manner. In order

to reduce the computation as the number of microphones increases, a computation-

ally efficient algorithm is also devised. In various simulated and real environmental

conditions, the performance gain of the proposed method has been confirmed.

In Chapter 5, we propose a novel supervised pre-training technique for DNN-

HMM systems to achieve robust speech recognition in adverse environments. In the

proposed approach, our aim is to initialize the DNN parameters such that they yield

abstract features robust to acoustic environment variations. In order to achieve this,

we first derive the abstract features from an early fine-tuned DNN model which is

trained based on a clean speech database. By using the derived abstract features as

the target values, the standard error back-propagation algorithm with the stochastic

3



gradient descent method is performed to estimate the initial parameters of the DNN.

The performance of the proposed algorithm was evaluated on Aurora-4 DB and

better results were observed compared to a number of conventional pre-training

methods.

In Chapter 6, a new DNN-based robust speech recognition approaches taking

advantage of noise estimates are proposed. A novel part of the proposed approaches

is that the time-varying noise estimates are applied to the DNN as additional inputs.

For this, we extract the noise estimates in a frame-by-frame manner from the IMM

algorithm which has been known to show good performance in tracking slowly-

varying background noise. The performance of the proposed approaches is evaluated

on Aurora-4 DB and better performance is observed compared to the conventional

DNN-based robust speech recognition algorithms.

In Chapter 7, a novel approach to DNN-based robust speech recognition using

soft target labels is proposed. The soft target labeling means that each target value

of the DNN output is not restricted to 0 or 1 but takes non negative values in

(0,1) and their sum equals 1. In this study, the soft target labels are obtained from

the forward-backward algorithm well-known in hidden Markov model training. The

proposed method makes the DNN training be more robust in noisy and unseen

conditions. The performance of the proposed approach was evaluated on Aurora-4

DB and various noise mismatched test conditions, and found better compared to

the conventional hard target labeling method. Furthermore, an integrated technique

using the algorithms proposed in Chapter 5 and Chapter 6 is also described. In noise

matched and mismatched conditions, the performance results are discussed.

The rest of the thesis is organized as follows: The next chapter introduces the

experimental environments and database used in this thesis. In Chapter 3, the con-
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ventional robust speech recognition techniques are described. In Chapter 4, a multi-

channel IMM-based feature enhancement algorithm is proposed. In Chapter 5, a

supervised denoising pre-training for robust ASR in the DNN-HMM system is pro-

posed. In Chapter 6, DNN-based frameworks for robust speech recognition using

noise estimates are introduced. Finally, a DNN-based robust speech recognition us-

ing soft target labels is proposed in Chapter 7. The conclusions are drawn in Chapter

8.
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Chapter 2

Experimental Environments and

Database

We describe the experimental environments assumed in this thesis. In order to

evaluate the performance of the proposed techniques, database is explained. For the

multi-channel reverberant noisy conditions, we made the simulation data according

to the target speaker positions using TI digits corpus. Aurora-4 DB was used for the

DNN-based techniques, which is widely used in the robust speech recognition area.

2.1 ASR in Hands-Free Scenario and Feature Extrac-

tion

We consider a typical hands-free scenario for ASR as shown in Fig. 2.1. The

target speaker is located at a certain distance from a far-field microphone in an

enclosed room, which results in acoustic reverberation. Let ȳ[t] be the corrupted

speech captured at a microphone with t ∈ {0, 1, · · · } denoting time index. It consists

7



Target speaker

Background noise

Reverberation

Recorded signal

Figure 2.1: Reverberant noisy environment.

of two components, the reverberant speech signal s̄[t] and background noise n̄[t] as

given by

ȳ[t] = s̄[t] + n̄[t]. (2.1)

Let h̄t[p] represent the room impulse response (RIR) from the target speaker to

the microphone at the time index t with the corresponding tap index p ∈ {0, 1, · · · }.

Then, the reverberant speech signal results from the convolution of the source speech

signal with the time-variant RIR h̄t[p], i.e.,

s̄[t] =

∞∑
p=0

h̄t[p]x̄[t− p]. (2.2)

The noise signal includes all the reverberant background noise signals which originate

from noise sources as well as inherent microphone noise. The three components, x̄[t],

h̄t[p] and n̄[t], may be modeled as independent random processes. The microphone

signal is passed to an ASR system which is expected to estimate the word sequence

spoken by the target speaker.
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In our work, we focus on the mel frequency cepstral coefficient (MFCC) which

is one of the predominant feature parameters for the state-of-the-art ASR system.

General MFCC feature extraction process can be shown in Fig. 2.2. The time signal

ỹ[t] which is obtained after pre-emphasis of the captured speech signal ȳ[t] is framed

and weighted by a Hamming analysis window function w̃a[t] of finite length Lw to

obtain the frame-dependent windowed signal segments:

ỹm[lw] = w̃a[lw]ỹ[lw +mB] (2.3)

in which m ∈ {0, 1, · · · }, lw ∈ {0, 1, · · · , Lw−1} and B denote the frame index, time

index within the segment and the length of frame shift, respectively. The windowed

signal segments are subsequently transformed to the frequency domain by applying

the discrete Fourier transform (DFT), resulting in the short-time discrete Fourier

transform (STDFT) representations given by

Ỹm[f ] =

Lw−1∑
lw=0

ỹm[lw] exp

(
−j

2πf

Nf
lw

)
(2.4)

where f ∈ {0, 1, · · · ,Nf − 1} is the frequency bin index, Nf denotes the number

of frequency bins and j represents imaginary unit
√
−1. Since the Ỹm[f ] is complex

value, we can get the power spectral coefficients by taking the square of the mag-

nitude. And then mel power spectral coefficient (MPSC) is obtained by applying a

bank of Q overlapping triangular filters Λq, q ∈ {0, 1, · · · , Q− 1}, which are equally

spaced on the mel scale, according to

Ym,q =
∑
f

|Ỹm[f ]|2Λq[f ]. (2.5)

The MPSC is computed by taking the natural logarithm as

ym,q = ln(Ym,q) (2.6)
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Pre-emphasis
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Figure 2.2: Feature extraction.

where ym,q represents the log MPSC (LMPSC) at the q-th mel band.

Finally, the ym,q is decorrelated by applying the discrete cosine transform (DCT)

to obtain the well-known MFCC as follows:

y
(c)
m,kc

=

Q−1∑
q=0

ym,q cos

(
kcπ

Nc

(
q +

1

2

))
(2.7)

where kc ∈ {0, 1, · · · ,Nc−1} and Nc denote the MFCC index and the overall number

of MFCC components.

2.2 Relationship between Clean and Distorted Speech

in Feature Domain

In this section, we describe the relationship between the clean and distorted

speech in reverberant noisy environment in detail. For that, by substituting (2.2)
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into (2.1), we can rewrite the reverberant speech signal in time domain as

ȳ[t] =

∞∑
p=0

h̄t[p]x̄[t− p] + n̄[t]. (2.8)

This relationship can be converted to MPSCs as follows:

Ym,q =

(
L∑
τ=0

Xm−τ,qHm,τ,q +Nm,q

)
+ Em,q (2.9)

where Xm,q, Nm,q, Ym,q and Em,q respectively represent the MPSCs of the clean,

background noise, corrupted speech signal and approximation error at the m-th

frame for the q-th mel band, and Hm,τ,q denotes the average RIR magnitudes per

mel band which is assumed to have finite length (L + 1), i.e., Hm,τ,q = 0 for all

τ > L. Based on (2.9), the relationship between the corresponding LMPSCs is given

by

ym,q = ln (Ym,q) (2.10)

= ln

(
L∑
τ=0

Xm−τ,qHm,τ,q +Nm,q

)
+ ln

(
1 +

Em,q∑L
τ=0Xm−τ,qHm,τ,q +Nm,q

)
(2.11)

= ln

(
L∑
τ=0

exp (xm−τ,q + hm,τ,q) + exp (nm,q)

)
+ vm,q (2.12)

where the logarithmic mel magnitude spectral-like representation of the RIR hm,τ,q

and the error term vm,q are respectively given by

hm,τ,q = ln (Hm,τ,q) (2.13)

vm,q = ln

(
1 +

Em,q∑L
τ=0Xm−τ,qHm,τ,q +Nm,q

)
. (2.14)

Let ym, xm, nm and vm respectively denote the Q-dimensional LMPSC vectors

of the reverberant noisy speech, clean speech, background noise and approximation
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error of the observation model in (2.12) at the m-th frame. We also let hm,τ represent

the Q-dimensional vector which reflects the time-variant log frequency response of

the reverberant acoustic path from the speaker to the microphone, which is specified

at a frame index m for a tap index τ . These vectors are defined in the following way:

ym = [ym,0 ym,1 · · · ym,Q−1]
′ (2.15)

xm = [xm,0 xm,1 · · · xm,Q−1]
′ (2.16)

nm = [nm,0 nm,1 · · · nm,Q−1]
′ (2.17)

vm = [vm,0 vm,1 · · · vm,Q−1]
′ (2.18)

hm,τ = [hm,τ,0 hm,τ,1 · · · hm,τ,Q−1]
′ (2.19)

with the prime denoting a matrix or a vector transpose. When the background noise

and acoustic reverberation exist simultaneously, the relation shown in (2.12) can be

written in a vector form as follows:

ym = ln

(
L∑
τ=0

exp (xm−τ + hm,τ ) + exp (nm)

)
+ vm (2.20)

where the functions exp(·) and ln(·) are applied component-wisely and we assume

that the approximation error distribution is given by

vm ∼ N (µv,Σv) (2.21)

in which N (µ,Σ) indicates a Gaussian probability density function with mean vec-

tor µ and covariance matrix Σ.

2.3 Database

In this section, the database (DB) used in this thesis is described. As mentioned

above, the target environments are reverberant noisy. For that, we choose two kinds
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of DBs widely used in robust speech recognition area: TI digits corpus and Aurora-4

DB.

2.3.1 TI Digits Corpus

TI digits corpus has been collected for use in designing and evaluating algorithms

for speaker independent recognition of connected digit sequences [6]. This dialect

balanced DB consists of more than 25 thousand digit sequences spoken by over

300 men, women and children. The data were collected in a quiet environment and

digitized at 20 kHz. The number of speakers contributing data for the DB is 326 in

total. Eleven digits were used: “zero”, “one”, “two”, ..., “nine” and “oh”. Seventy-

seven sequences of these digits were collected from each speaker, and consisted of

the following types.

1. 22 isolated digits (two tokens/digit)

2. 11 two digit sequences

3. 11 three digit sequences

4. 11 four digit sequences

5. 11 five digit sequences

6. 11 seven digit sequences

Hence each speaker provided 253 digits and 176 digit transitions. Each speaker

was seated in an acoustically treated sound room (Tracoustics, Inc., Model RE-244B

acoustic enclosure), with the microphone placed 2-4 inches in front of the speaker’s

mouth. The microphone was Electro-Voice RE-16 Dynamic Cardioid.

TI digits corpus have been collected in clean environment. In order to apply the

reverberant noisy environment, we made a simulation DB. A small rectangular room

of dimensions 6 m × 4 m × 3 m (length × width × height) was configured as shown
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Figure 2.3: Simulated reverberant noisy environment in the presence of microphone

array.

in Fig. 2.3. In our experiments, we used eight omni-directional microphones placed

at the height of 1.5 m. The distance between the microphones was fixed at 5 cm.

For convenience, we numbered each microphone from the center of the microphones

in order. For the background noise, white noise was used as the diffuse noise source.

In order to simulate various environmental conditions, we varied the distance be-

tween the target speaker and microphones from 2 m to 4 m. The target speaker was

positioned at 5◦ to 20◦ deviated from the center of the microphones. Totally, the

target speaker was located at nine positions according to the distances and sepa-

ration angles. The RIRs were simulated by Allen and Berkley’s image method [7]

using Habets’s software [8]. The reverberation range was varied from 300 to 700 ms

and all the conditions were tested in the signal-to-noise ratios (SNRs) between 0 to

20 dB. For the results of single-channel techniques, the microphone was positioned

at the center of microphone 1 and 2.

14



2.3.2 Aurora-4 DB

Aurora-4 DB [9] was made using 5k-word vocabulary based on the Wall Street

Journal (WSJ) DB. The WSJ data were recorded with a primary Sennheiser mi-

crophone and with a secondary microphone in parallel. The recordings with the

secondary microphone are used for enabling recognition experiments with differ-

ent frequency characteristics in the transmission channel. An additional filtering is

applied to consider the realistic frequency characteristics of terminals and equip-

ment in the telecommunication area. Two standard frequency characteristics are

used which have been defined by the ITU. The abbreviations G.712 and P.341 have

been introduced as reference to these filters. The G.712 characteristic is defined for

the frequency range of the usual telephone bandwidth up to 4 kHz and has a flat

characteristic in the range between 300 and 3400 Hz. P.341 is defined for the fre-

quency range up to 8 kHz and represents a band pass filter with a very low cut off

frequency at the lower end and a cut off frequency at about 7 kHz at the higher end

of the bandpass. These two filters can be applied to data sampled at 8 or 16 kHz,

respectively. We use the 16 kHz sampled data.

The corpus has two training sets: clean- and multi-condition. Both clean- and

multi-condition sets consist of the same 7138 utterances from 83 speakers. The clean-

condition set consists of only the primary Sennheiser microphone data. One half of

the utterances in the multi-condition set were recorded by the primary Sennheiser

microphone and the other half were recorded using one of 18 different secondary mi-

crophones. Both halves include a combination of clean speech and speech corrupted

by one of six different types of noises (car, babble, restaurant, street, airport and

train station) at a range of SNRs between 10 and 20 dB. These noises represent
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Table 2.1: Aurora-4 DB (m: male, f: female).

Training data Development data Evaluation data

Hour 15.1471 8.9694 9.4026

Utterance 7138 4620 4620

Speaker 83 (m: 42, f: 41) 10 (m: 6, f: 4) 8 (m: 5, f: 3)

realistic scenarios of application environments for mobile telephones. Some noises

are fairly stationary like e.g. the car noise. Others contain non-stationary segments

like e.g. the recordings on the street and at the airport. The SNR was defined as

the ratio of signal to noise energy after filtering both speech and noise signals with

P.341 filter characteristic.

The evaluation was conducted on the test set consisting of 330 utterances from

8 speakers. This test set was recorded by the primary microphone and a number

of secondary microphones. These two sets were then each corrupted by the same

six noises used in the training set at SNRs between 5 and 15 dB, creating a total

of 14 test sets. These 14 sets were then grouped into 4 subsets based on the type

of distortions: none (clean speech), additive noise only, channel distortion only and

noise + channel distortion. For convenience, we denote these subsets by Set A, Set B,

Set C and Set D, respectively. Note that the types of noises are common across

training and test sets but the SNRs of the data are not.

For the validation test, we used the development set in Aurora-4 DB consisting

of 330 utterances from 10 speakers not included in the training and test set speakers.

A total of 14 sets with the same conditions as the test set were constructed. More

detail information for Aurora-4 DB is given in Table 2.1.
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Chapter 3

Previous Robust ASR

Approaches

The ASR system has poor performance when the training and test condition

of speech recognition are mismatched. Since the acoustic model of ASR is usu-

ally trained in clean training data, mismatch between acoustics is inevitable in real

environment and the compensation is needed. To alleviate the performance degra-

dation, feature or model domain techniques have proposed. In the feature domain

approaches, the distorted input features are compensated before being decoded using

the acoustic recognition models that were trained on clean speech. The model adap-

tation approaches aim at reducing mismatch between the trained speech recognition

models and the input speech by adapting the model parameters of the recognizer to

the distorted environments.

An alternative approach is to train the acoustic model of ASR as a multi-

condition training which trains the acoustic model with all available noisy speech

data. This approach has better performance than above mentioned techniques but
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it has some disadvantages. Since the characteristic of the background noise is very

diverse. All kinds of the background noise cannot be covered in training condition.

A bunch of data is helpful but collecting the multi-condition database is difficult

and expensive.

In this chapter, we discuss the conventional environment-robust techniques for

robust speech recognition. Typical IMM-based feature compensation and its vari-

ation algorithm in single- and multi-channel scenarios are described using clean-

condition GMM-HMM system. Under the multi-condition training of the acoustic

model, DNN-HMM hybrid system is introduced.

3.1 IMM-Based Feature Compensation in Noise Envi-

ronment

The conventional feature compensation algorithms are usually performed in log

mel frequency domain [10]. If we assume that the target environment has only the

background noise, we can derive the relationship between the noisy speech and the

clean speech as (2.1). Here, the reverberant speech signal s̄[t] is treated as the clean

speech signal. In (2.5), |Ỹm[f ]|2 can be rewritten as following:

|Ỹm[f ]|2 = |S̃m[f ]|2 + |Ñm[f ]|2 + 2|S̃m[f ]||Ñm[f ]| cos θf (3.1)

≈ |S̃m[f ]|2 + |Ñm[f ]|2 (3.2)

where S̃m[f ], Ñm[f ] and θf indicate the spectrum of windowed s̄[l] and n̄[l] and

the random angle between two complex variables S̃m[f ] and Ñm[f ]. Statistically,

the expected value of the last term in (3.1) is treats as zero since x̄[l] and n̄[l] are

statistically independent. After substituting (3.2) into (2.5), we can rewrite the (2.6)
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as following:

Ym,q ≈ Sm,q +Nm,q (3.3)

ym,q ≈ ln (Sm,q +Nm,q) (3.4)

= ln (exp(sm,q) + exp(nm,q)) (3.5)

where Sm,q, Nm,q, sm,q and nm,q denote MPSCs and LMPSCs of channel distorted

clean speech and background noise at the q-th mel band, respectively. The vectors

are defined in (2.15), (2.17) and the following way:

sm = [sm,0 sm,1 · · · sm,Q−1]′ (3.6)

in which prime indicates the transpose of a vector or matrix. The relation between

channel distorted clean speech and noisy LMPSCs can be rewritten as a vector form:

ym ≈ ln (exp(sm) + exp(nm)) = f(sm,nm). (3.7)

The functions exp(·) and ln(·) in (3.7) are applied component-wisely.

The goal of IMM-based feature compensation technique is to estimate the chan-

nel distorted clean feature vector sequence sT0 = [s0, s1, · · · , sT ] which is referred as

clean feature to be estimated given noisy feature sequence yT0 = [y0,y1, · · · ,yT ],

where xm2
m1 = [xm1, xm1+1, · · · , xm2] denotes a subsequence of vectors from frame

index m1 to m2. The relation between ym and sm is nonlinear as shown in (3.7).

To estimate the clean feature, the probability density function of it is assumed as a

mixture of Gaussian distributions such that

p(sm) =

K−1∑
k=0

p(k)N
(
sm;µs,k(m),Σs,k(m)

)
(3.8)

where p(k), µs,k, Σs,k and K represent the weight, mean vector, covariance matrix

of the k-th Gaussian distribution and the number of Gaussians, respectively. As for
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the distribution of background noise, we employ a single Gaussian background noise

model as given by

nm ∼ N (µn(m),Σn(m)) (3.9)

where the mean vector µn(m) and covariance matrix Σn(m) are unknown and should

be estimated during the environment compensation procedure.

It is difficult to estimate directly the clean and noise feature vector sm and nm

due to its nonlinearity in (3.7). To alleviate its difficulty, we apply the piecewise

linear approximation to the given nonlinear function by using vector Taylor series

(VTS) expansion [11]. In the k-th mixture component, the nonlinear function (3.7)

is approximated by

ym ≈ Aksm +Bknm + Ck (3.10)

where Ak, Bk and Ck mean constant matrices of dimension {Q×Q}, {Q×Q} and

{Q×1} respectively. The estimation of these constant matrices can be obtained like

{Âk, B̂k, Ĉk} = arg min
{Ak,Bk,Ck}

E
[
||f̃(sm,nm)− (Aksm +Bknm + Ck)||2

]
(3.11)

where {Âk, B̂k, Ĉk} are estimated constant matrices and f̃(sm,nm) denotes the func-

tion obtained by truncating the VTS expansion of f(sm,nm) up to a finite order.

The more detailed derivation is given in [11]. To estimate the environmental param-

eter, we assume that the environmental characteristic of background noise slowly

changes among the consecutive frames. With this assumption, we employ the noise

evolution process by

nm+1 = nm + wm (3.12)

wm ∼ N (0,Σwm) (3.13)
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where 0 and Σwm indicate zero mean vector and fixed covariance matrix of Gaussian

process wm.

To update the slowly time-varying background noise model parameter λnm =

{µnm
,Σnm} and for a number of practical reasons, we consider a causal estimation

scheme which is desired for sequential filtering. One of the efficient methods for

the sequential estimation is the IMM technique. Using (3.10) and (3.12), we can

construct the multiple state space models according to the mixture components. Here

nm is treated as a state vector. To solve these linear state space models, the extended

Kalman filtering approach based on IMM is applied. The whole procedure has four

steps: mixing, Kalman update, probability calculation and output generation steps.

The detailed information is given as follows.

1) Mixing step: The initial statistics of the state are constructed by mixing the

corresponding estimates at the previous time. Let us define the initial statistics as

µ0
n(m− 1|j) = E[nm−1|km = j,ym−10 ] (3.14)

≈ E[nm−1|ym−10 ] = µ̂n(m− 1) (3.15)

Σ0
n(m− 1|j) = Cov[nm−1|km = j,ym−10 ] (3.16)

≈ Cov[nm−1|ym−10 ] = Σ̂n(m− 1) (3.17)

where E[·] and Cov[·] represents the expectation and covariance. The km indicates

the mixture component at m-th frame. Since nm is independent of km with our

assumption, the initial statistics can be approximated such as the last terms of

(3.15) and (3.17). The µ̂n(m−1) and Σ̂n(m−1) mean the final estimated statistics

from IMM algorithm at (m− 1)-th frame.

2) Kalman update step: The conventional Kalman update is carried out based

on the initial statistics from the mixing step. Let µpn(m|j) and Σp
n(m|j) be the mean
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and covariance of the one-step-ahead predictive state estimate in the j-th mixture

component at frame m. The one-step-ahead predictive state estimate is calculated

by using the state evolution model (3.12),

µpn(m|j) = µ0
n(m− 1|j) (3.18)

Σp
n(m|j) = Σ0

n(m− 1|j) + Σwm . (3.19)

And then the innovation e(m|j), its covariance Re(m|j) and Kalman gain Kf (m|j)

are computed by using linearized observation model (3.10) and predictive state es-

timates (3.18) and (3.19).

e(m|j) = ym −Ajµs,j(m)−Bjµpn(m|j)− Cj (3.20)

Re(m|j) = AjΣs,j(m)A′j +BjΣ
p
n(m|j)B′j (3.21)

Kf (m|j) = Σp
n(m|j)B′jR−1e (m|j). (3.22)

With e(m|j), Re(m|j) and Kf (m|j), we can compute µ̂n(m|j) and Σ̂n(m|j) by the

use of conventional measurement update scheme shown below:

µ̂n(m|j) = µpn(m|j) +Kf (m|j)e(m|j) (3.23)

Σ̂n(m|j) = Σp
n(m|j)−Kf (m|j)BjΣp

n(m|j). (3.24)

For a number of experiments we have observed that large variation of estimated

parameter over frame is not effective in speech recognition performance. For that

reason, as proposed in [10], the Kalman gain shrink factor is applied.

K∗f (m|j) = αKf (m|j) (3.25)

where K∗f (m|j) represents the shrinked Kalman gain and α refers the shrinking

factor between (0, 1]. By substituting Kf (m|j) with K∗f (m|j) in (3.23) and (3.24),

we can get the slowly varying parameter estimates.
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3) Probability calculation step: In this step, the posterior probability corre-

sponding to each mixture component is computed. Since the mixture component

is assumed to be independent of the previous observations, we have γj(m) at j-th

mixture such as

γj(m) = p(km = j|ym0 ) (3.26)

= p(km = j|ym,ym−10 ) (3.27)

=
p(ym|km = j,ym−10 )p(km = j)∑K−1
i=0 p(ym|km = i,ym−10 )p(km = i)

(3.28)

where p(km = j) is the prior probability of the j-th mixture component and de-

nominator of (3.28) is the normalization factor. The p(ym|km = j,ym−10 ) represents

the one-step-ahead predictive likelihood of the observation within the j-th Kalman

filter, which is calculated during the Kalman update step.

4) Output generation step: All the estimates from the mixture components are

combined with the posterior probabilities of probability calculation step to obtain

the final estimated statistics µ̂n(m) and Σ̂n(m) at m-th frame and then their values

are propagated to the next frame.

µ̂n(m) =

K−1∑
j=0

γj(m)µ̂n(m|j) (3.29)

Σ̂n(m) =

K−1∑
j=0

γj(m)[Σ̂n(m|j)

+ (µ̂n(m|j)− µ̂n(m))(µ̂n(m|j)− µ̂n(m))′]. (3.30)
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3.2 Single-Channel Reverberation and Noise-Robust Fea-

ture Enhancement Based on IMM

We consider a typical hands-free scenario for ASR as shown in Fig. 2.1. We con-

sider the single-channel scenario where only one microphone is used. The relationship

between the reverberant noisy speech and the clean speech in LMPSC domain can

be written by (2.20).

Our goal is to estimate the clean speech feature sequence xm0 = [x0 x1 · · ·xm]

given the observation sequence ym0 = [y0 y1 · · ·ym] where xm2
m1

= [xm1 xm1+1 · · · xm2 ]

denotes a subsequence of vectors from frame index m1 to m2. For a number of prac-

tical reasons, we consider a causal estimation scheme which is desired for sequential

filtering. One of the efficient methods for the sequential estimation is the IMM tech-

nique [10] which is based on a mixture of multiple dynamic models adopting Kalman

filtering techniques. In the IMM framework, a linear dynamic model is specified for

each mixture component and the state estimates obtained from all the mixture com-

ponents are merged together to produce a single estimate which is propageted to

the next time frame.

In this work, the clean speech component and the log frequency response are

jointly handled as the state vector

zm = [xm hm]′ (3.31)

where the prime denotes the transpose of a vector or matrix, xm =
[
x′m x′m−1 · · · x′m−L

]
and hm =

[
h′m,0 h′m,1 · · · h′m,L

]
respectively denote the local clean speech trajec-

tory and log frequency response LMPSCs consisting of (L + 1) consecutive frames.

The a priori distribution of the state vector is assumed to be a mixture of K Gaus-
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Figure 3.1: Single-channel feature enhancement based on IMM.

sians. This prior distribution is obtained from the training database of the clean

features xm and a simple random walk model for hm [12]. Based on this prior

modeling, we can construct a switching linear dynamic model with K mixture com-

ponents. Since the observation function in (2.20) is nonlinear with respect to the

specified state variables, it is important to linearize it for each mixture component

by means of the vector Taylor series approach [11].

The feature enhancement procedure based on the IMM technique is given in

Fig. 3.1. The procedures consist of five steps and are performed at each frame. In

the pre-processing step, the initial estimates of the state are constructed by mix-

ing the corresponding estimates at the previous frame. And then in the predictive

state estimate step, one-step-ahead estimates of the state are calculated from the

state transition model. In the iterative linearization and Kalman update step, the

linearized observation model is iteratively updated and then the usual Kalman filter-
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ing is performed. In this step, the Kalman gains and the innovations are computed

and then the state estimates are updated. In the post-processing step, the final

state estimate is computed by merging the estimates produced by all the mixture

components.

3.3 Multi-Channel Feature Enhancement for Robust Speech

Recognition

Multi-channel approaches use the benefits of the additional informations carried

out by the presence of multiple speech observations. In most cases the target speech

and noise or other interference sources reside in different spatial locations. Multiple

microphone arrays are useful to extract the desired signal especially when each sound

source is separated spatially. The microphone array system is theoretically able to

obtain a significant gain over single-channel approaches, since it may exploit the

spatial diversity.

In ASR scenario, beamforming techniques are employed as pre-processing stage.

Beamforming is a method by which signals from several sensors can be combined to

emphasize a desired source and to suppress all other noise and interference. Beam-

forming begins with the assumption that the positions of all sensors are known, and

that the positions of the desired sources are known or can be estimated as well.

The simplest of beamforming algorithms, the delay and sum beamformer (DSB),

uses only this geometrical knowledge to combine the signals from several sensors.

The theory of DSB originates from narrowband antenna array processing, where the

plane waves at different sensors are delayed appropriately to be added exactly in

phase. In this way, the array can be electronically steered towards a specific direc-
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tion. This principle is also valid for broadband signals, although the directivity will

then be frequency dependent. A DSB aligns the microphone signals to the direction

of the speech source by delaying and summing the microphone signals. This kind of

beamformer is proved to perform well when the number of microphones is relatively

high, and when the noise sources are spatially white. On the contrary, performance

degrade since noise reduction is strongly dependent on the direction of arrival of the

noise signal. As a consequence, DSB performance on reverberant environments is

poor.

During the past several decades multi-channel based beamforming techniques

such as the GSC [3], [4] have been proposed to attenuate the coherent interfering

sources and acoustic reverberation. However, in case of incoherent or diffuse noise

fields, beamforming alone does not provide sufficient noise reduction, and postfil-

tering is normally required. Postfiltering includes signal detection, noise estimation,

and spectral enhancement. The performance is sensitive to the estimation of TF or

TOA between the microphone array and the fixed or moving speaker target. So, the

estimation of TF or TOA still remains a challenging task.

Multi-channel based criteria are also directly applied in the feature domain for

robust speech recognition [5], which are extended from the single-channel algorithms.

However, these algorithms focus on additive background noise conditions only.

3.4 DNN-Based Robust Speech Recognition

Recently, ASR is playing an important role in a huge number of applications such

as smart phones, car navigations and wearable devices. We have witnessed a great

advance in ASR technology due to the development of new machine learning algo-
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rithms and the increased computing power. One of the most notable technological

advances recently achieved in the ASR society is the rediscovery of the DNNs. For a

long time since their introduction, DNNs were found difficult to be applied to var-

ious practical tasks. This difficulty mostly came from two reasons: lack of efficient

training algorithms and computational complexity. These issues were resolved to

some extent by the introduction of the layer-by-layer pre-training algorithm for the

restricted Boltzmann machines (RBMs) [13] and the parallel processing approach

using graphic processing units. With these approaches, DNNs can be successfully

trained and have shown notable performances in various research areas covering

speech, audio, text and image processing. The remarkable performance of the DNN

is attributed to its capability in automatically learning complicated nonlinear re-

lationship between the input and target values. Particularly in the area of speech

recognition, DNN-HMM systems have outperformed those that are based on the

GMM-HMM [14], [15]. If a sufficient amount of training data is available, more com-

plicated input-target relationship can be easily learned by using wider and deeper

neural network architectures.

The interest on the DNN’s capability in efficient learning has been also expanded

to the robust speech recognition area. Conventional speech enhancement or feature

compensation techniques [10], [16], [17] applied to robust ASR usually require some

specific models or formulations to account for the nonlinear relationship between

the clean and noisy speech processes in an appropriate signal domain. Even stereo

data-based feature mapping algorithms such as SPLICE [18] and switching linear

dynamic system (SLDS) [19] are also designed based on some simplified models of

the speech and noise generation processes. In contrast, the DNNs have the advantage

that they can directly train an arbitrary unknown relationship between the noisy
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input and target values. For training the DNN in adverse environments, not only

the clean features but also the corrupted features are used as an input of the DNN,

which is common in the robust ASR area. In a sense, this approach can be regarded

as a multi-condition training technique.

DNN is a multi-layer perceptron with many hidden layers, which consists of the

stacked RBMs. The DNN training is divided by the unsupervised pre-training and

supervised fine-tuning. In the pre-training, unsupervised greedy layer-wise training

procedures are performed using the contrastive divergence algorithm to explain the

nonlinear representation of the input data in stacked RBM networks. The trained

parameters can be used as the initial variables of a deep network. In the fine-tuning,

the output layer is added on the top of the pre-trained deep networks. The error

between DNN network output and reference target value is calculated according

to the objective function. The type of the output layer and the objective function

are chosen based on the tasks. For the regression tasks, a linear layer is typically

used to generate the output vector and a mean square error is used as the objective

function. For the multi-class classification tasks, each output neuron represents a

class. To serve as a valid multinomial probability distribution, the output vector

should satisfy the sum of all the output neuron equal to 1. This can be done by

normalizing the excitation with a softmax function. The errors between the softmax

outputs and the target labels are calculated by a cross entropy. By using back-

propagation algorithm with a stochastic gradient descent method, the DNN network

parameters are updated.

There are also several DNN structures to be exploited for the robust speech

recognition, i.e., recurrent neural network or long short term memory recurrent

networks. In this thesis, we focus on improving the performance of the recognition
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results by complementing the disadvantages of the DNN.
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Chapter 4

Multi-Channel IMM-Based

Feature Enhancement for

Robust Speech Recognition

4.1 Introduction

The performance of an ASR system is usually degraded when the input speech

is distorted by background noise or acoustic reverberation. In order to alleviate this

performance degradation in adverse environments, a variety of techniques have been

developed e.g., speech enhancement, feature compensation and model adaptation

algorithms [1], [2], [12], [20]–[24]. Though separate algorithms perform differently,

their ultimate goal is nothing but to reduce the mismatch between the degraded

input signal and the trained recognition model parameters. In this chapter, we focus

on the feature compensation techniques which directly enhance the distorted input

feature vectors to match the characteristic of the training data before being decoded
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Target speaker

Background noise

Reverberation

Recorded signal
…
…

Figure 4.1: Reverberant noisy environment in multi-channel scenario.

by the acoustic recognition model.

In most cases the target speech and noise or other interference sources reside

in different spatial locations. Multiple microphone arrays are useful to extract the

desired signal especially when each sound source is separated spatially. During the

past several decades multi-channel based beamforming techniques such as the GSC

[3], [4] have been proposed to attenuate the coherent interfering sources and acoustic

reverberation. However, the performance is sensitive to the estimation of TF or

TOA between the microphone array and the fixed or moving speaker target. So,

the estimation of TF or TOA still remains a challenging task. Multi-channel based

criteria are also directly applied in the feature domain for robust speech recognition

[5], which however focus on additive background noise conditions only.

In this chapter, we propose a novel multi-channel feature enhancement technique

applied in the log-spectral domain. In the proposed approach, we extend the IMM

algorithm [12] originally designed in the single-channel scenario so that it can fit
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to the multi-channel processing in reverberant noisy environments. Basically we

assume that the geometric specification of the microphone array and the position of

the target speaker are unknown, which doesn’t matter for enhancing the features in

the proposed technique. The proposed method has mainly two advantages. First, no

a prior knowledge of the RIR is needed. Second, the parameters concerned with the

acoustic reverberation and background noise are sequentially updated in a frame-by-

frame manner instead of utterance-by-utterance basis for tracking their time-varying

nature. This type of real-time update of the RIR parameters is very important in

handling the possible movements of the talker or microphones.

One of the drawbacks of this multi-channel technique is that the computational

amount increases rapidly as the number of microphones grows. In a synchronous

data collection system such as the multiple sensor system or microphone array,

a number of Kalman filtering algorithms with different processing structures e.g.,

parallel, sequential and data compression filters have been introduced in [25]. In

the case of linear systems, all these processing structures are found equivalent and

optimal. Motivated by this study, we also propose an algorithm which modifies the

original multi-channel IMM approach for reducing computation.

4.2 Observation Model in Multi-Channel Reverberant

Noisy Environment

We consider a typical hands-free scenario for ASR in which multiple microphones

are used as shown in Fig. 4.1. The target speaker is located in a certain distance from

the microphones in an enclosed room, which results in acoustic reverberation. Let

ȳi[t] be the signal obtained from the i-th microphone with t ∈ {0, 1, · · · } denoting the
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time index. If x̄[t] is the target speech signal and h̄i,t[p] represents the RIR from the

target speaker to the i-th microphone with corresponding tap index p ∈ {0, 1, · · · },

then

ȳi[t] =

∞∑
p=0

h̄i,t[p]x̄[t− p] + n̄i[t] (4.1)

where n̄i[t] is the background noise added to the i-th microphone input.

By using the formulation presented in [12], we can rewrite the relation of (4.1)

in the logarithmic mel magnitude spectral coefficient (LMMSC) domain as follow:

yi,m = ln

(
L∑
τ=0

exp (xm−τ + hi,m,τ ) + exp (ni,m)

)
+ vi,m (4.2)

where yi,m, xm, hi,m,τ , ni,m and vi,m respectively denote the Q-dimensional LMMSC

vectors of the reverberant noisy speech, clean speech, time-variant log frequency

response of the reverberant acoustic path for a tap index τ which is assumed to

have finite length (L + 1), i.e., hi,m,τ = −∞ for all τ > L, background noise and

approximation error of the observation model at the m-th frame which are collected

at the i-th microphone. The only difference of (4.2) from the formulation derived

in [12] is that we now add subscript i to identify each microphone. The functions

exp(·) and ln(·) in (4.2) are applied component-wisely and we assume that the error

distribution at each microphone is given by

vi,m ∼ N
(
µvi

,Σvi

)
(4.3)

in which N (µ,Σ) indicates a Gaussian PDF with mean vector µ and covariance

matrix Σ.
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4.3 Multi-Channel Feature Enhancement in a Bayesian

Framework

In our work, the clean speech component and the N log frequency responses

are jointly handled as a state vector zm at the m-th frame where N indicates the

number of microphones. The core idea of our approach is to estimate the posterior

probability p(zm|ym0 ) of the state vector

zm = [xm h1,m h2,m · · · hN,m]′ (4.4)

xm =
[
x′m x′m−1 · · · x′m−L

]
(4.5)

hi,m =
[
h′i,m,0 h′i,m,1 · · · h′i,m,L

]
(4.6)

conditioned on all the N observed reverberant noisy LMMSC vectors

ym0 = [y0 y1 · · · ym] (4.7)

ym =
[
y′1,m y′2,m · · · y′N,m

]′
(4.8)

where the prime denotes the transpose of a vector or matrix, xm and hi,m respec-

tively mean a local clean speech and log frequency response LMMSC trajectories

consisting of (L + 1) consecutive frames at the i-th microphone. In the above for-

mulation, xm2
m1

= [xm1 xm1+1 · · · xm2 ] denotes a subsequence of vectors from frame

index m1 to m2 and ym means N observations at the m-th frame concatenated to

a single vector.

A typical way to compute the posterior distribution of the state vector zm

based on a Bayesian inference is to recursively compute the predictive distribu-

tion p(zm|ym−10 ) and posterior distribution p(zm|ym0 ) given the previous reverberant
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noisy observations as follows:

p
(
zm|ym−10

)
=

∫
p
(
zm|zm−1,ym−10

)
× p

(
zm−1|ym−10

)
dzm−1 (4.9)

p (zm|ym0 ) =
p
(
ym|zm,ym−10

)
p
(
zm|ym−10

)∫
p
(
ym|zm,ym−10

)
p
(
zm|ym−10

)
dzm

. (4.10)

If both p
(
zm|ym−10

)
and p (zm|ym0 ) are assumed to be Gaussian distributions,

it is sufficient to revise the statistical moments up to the second-order which are

defined as follows: ẑm|m−1 = E
[
zm|ym−10

]
Σ̂zm|m−1

= E
[(
zm − ẑm|m−1

) (
zm − ẑm|m−1

)′ |ym−10

] (4.11)

 ẑm|m = E [zm|ym0 ]

Σ̂zm|m = E
[(
zm − ẑm|m

) (
zm − ẑm|m

)′ |ym0 ] (4.12)

where E[·] indicates expectation. The mean vectors and covariance matrices in (4.11)

and (4.12) are obtained through the IMM algorithm which will be described in

Section 4.4.

When we assume that the frequency responses are independent of the process

of generating the clean speech, the overall predictive distribution p(zm|zm−1,ym−10 )

can be factorized, i.e.,

p(zm|zm−1,ym−10 ) (4.13)

≈ p(xm|xm−1,ym−10 )p(hm|hm−1,ym−10 ).

In (4.13), since p(xm|xm−1,ym−10 ) and p(hm|hm−1,ym−10 ) are posterior probabilities

conditioned on the observation, they may have some degree of correlation with each

other. However xm and hm are usually assumed to be independent when simulating
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reverberant environments [7]. For that reason and ease of implementation, we assume

that they can be simply approximated as independent with each other.

Under the framework of environment compensation, our goal is to estimate the

sequence of the local clean feature vector trajectory xm0 , log frequency response

{hi}m0 and background noise {ni}m0 given a noisy feature ym0 . For this purpose, we

propose in this section a variety of models for the clean speech, RIR and back-

ground noise by considering the characteristics of the individual components, and

also present the methods of describing process evolution and function approximation

necessary for an efficient estimation.

4.3.1 A Priori Clean Speech Model

In this section, the prior models for clean speech, RIR, and background noise are

described. As mentioned in [12], the a priori clean speech distribution is assumed

as a mixture of K Gaussians to approximate a high degree of speech dynamics as

follows:

p(xm) =
K−1∑
j=0

p(γm = j)N
(
xm;µj ,Σj

)
(4.14)

where γm ∈ {0, 1, · · · ,K − 1} denotes the index of the mixture component at the

m-th frame, and p(γm = j), µj and Σj represent the weight, mean vector and

covariance matrix of the j-th Gaussian distribution respectively. It is noted that the

covariance matrix Σj in the above a priori model should be properly structured to

incorporate the temporal and spectral correlations among the components of the

local clean speech trajectory xm0 . Once (4.14) is employed, the clean speech term in
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(4.13) can be written

p(xm|xm−1,ym−10 ) (4.15)

=

K−1∑
j=0

p(xm|xm−1,ym−10 , γm = j)p(γm = j|xm−1,ym−10 ).

As in [26], we employ the approximation that

p(xm|xm−1,ym−10 , γm = j) ≈ p(xm|xm−1, γm = j) (4.16)

p(γm = j|xm−1,ym−10 ) ≈
K−1∑
k=0

ajkp(γm−1 = k|ym−10 ) (4.17)

where

ajk = p(γm = j|γm−1 = k) (4.18)

denotes the time-invariant stat transition probability. This kind of prior model,

known as the switching linear dynamic model (SLDM), explicitly considers corre-

lations between successive speech feature vectors which are due to the speech pro-

duction process on the one hand and the feature extraction process on the other.

SLDMs have been successfully applied to noise robust speech recognition in the

previous studies [26], [27], [28].

The parameters of an SLDM are generally learned from a set of clean speech

training data through the well-known expectation maximization (EM) algorithm

[29], which iteratively delivers improved parameter estimates obtained from maxi-

mizing the likelihood of the training data based on previous parameter estimates.

4.3.2 A Priori Model for RIR

We assume that the i-th log frequency response hi,m at the m-th frame is sta-

tistically independent of the clean speech and background noise features. Since the
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RIR is non-stationary, the parameter estimate for hi,m must be constantly updated

to track its time evolution. In our work, we exploit a random walk process which is

the simplest solution for predicting the next state as given by

hi,m = hi,m−1 + wh,i,m (4.19)

wh,i,m ∼ N
(
0Q(L+1)N , σ

2
hIQ(L+1)N

)
(4.20)

where 0d represents the zero vector with dimension d and Id denotes the identity

matrix of size d× d. When σ2h is small, this model is well suited to a slowly evolving

RIR environment.

4.3.3 A Priori Model for Background Noise

The characteristics of the background noise are very diverse. It is difficult to

train all kinds of the background noise in advance. In a short period before active

speech activity occurs, however, we can assume that the background noise only exists

and its characteristic is stationary. Furthermore, the complexity of the background

noise model needs to be quite low to allow a fast and computationally efficient on-

line tracking [10]. For these reasons, we employ a single Gaussian background noise

model as given by

ni,m ∼ N
(
µni,m

,Σni,m

)
(4.21)

where the mean vector µni,m
and covariance matrix Σni,m are unknown and should

be estimated during the environment compensation procedure.
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4.3.4 State Transition Formulation

As in [12], the transition process of the state vector zm for the j-th Gaussian

mixture component can be simply structured as follows:

zm = A(j)zm−1 + b(j)
m (4.22)

with

A(j) =



AB−1 OQ

IQ OQ ··· OQ

OQ IQ ··· OQ

...
. . .

...
...

OQ ··· IQ OQ

O

O′ IQ(L+1)N


(4.23)

b(j)
m ∼ N

(
µ
(j)
b ,Σ

(j)
b

)
(4.24)

where

A = [ Cov(xm,xm−1) Cov(xm,xm−2) ··· Cov(xm,xm−L) ] (4.25)

B =

 Cov(xm−1,xm−1) Cov(xm−1,xm−2) ··· Cov(xm−1,xm−L)
Cov(xm−2,xm−1) Cov(xm−2,xm−2) ··· Cov(xm−2,xm−L)

...
...

. . .
...

Cov(xm−L,xm−1) Cov(xm−L,xm−2) ··· Cov(xm−L,xm−L)

 (4.26)

and Cov(a, b) denotes the covariance between two vectors a and b. In addition,

µ
(j)
b =



µ̃b

0Q
...

0Q


, Σ

(j)
b =


Σ̃b OQ ··· OQ

OQ OQ ··· OQ

...
...

. . .
...

OQ OQ ··· OQ

O

O′ σ2hIQ(L+1)N

 (4.27)
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where

µ̃b = E[xm]−AB−1



E[xm−1]

E[xm−2]

...

E[xm−L]


(4.28)

Σ̃b = Cov(xm,xm)−AB−1A′ (4.29)

with OQ, O and Id denoting a zero matrix with size Q×Q, Q(L + 1)×Q(L + 1)N

and the identity matrix of size d× d. The above formulation given by (4.22)-(4.29)

is an extension of the state transition model derived in [12] to the case of multiple

RIRs.

4.3.5 Function Linearization

It is difficult to estimate directly the clean speech feature vector xm and all the

log frequency responses hi,m,τ of N -channel inputs from the speech distortion model

(4.2) due to its nonlinearity. To alleviate its difficulty, we apply the piecewise linear

approximation to the given nonlinear function by using Taylor series expansion. The

first order form of Taylor series expansion at the i-th microphone input feature is

given as in the following:

fi (zm,ni,m) = ln

(
L∑
τ=0

exp (xm−τ + hi,m,τ ) + exp (ni,m)

)
(4.30)

≈ Gi,mzm + Hi,mni,m + qi,m (4.31)

41



where

Gi,m =

[
∂fi
∂xm

′ · · ·0′Q(N+1) · · ·
∂fi
∂hi,m

′ · · ·0′Q(N+1) · · ·
]

(4.32)

Hi,m =
∂fi
∂ni,m

(4.33)

qi,m = fi
(
z◦m,n

◦
i,m

)
−Gi,mz

◦
m −Hi,mn◦i,m (4.34)

and z◦m and n◦i,m are constant vectors corresponding to the center of vector Taylor

series expansion. In our work, we apply the statistical linear approximation [11]

method for linear approximation. The matrix form of all the N observed reverberant

noisy inputs can be shown as in (4.35).

4.4 Feature Enhancement Algorithm

At each frame m, the proposed feature enhancement procedure based on IMM

technique conducts six steps: pre-processing, predictive state estimation, iterative

linearization and Kalman update, background noise estimation, post-processing and

ym =



y1,m

y2,m

...

yN,m


=



G1,m

G2,m

...

GN,m


zm +



H1,m 0Q · · · 0Q

0Q H2,m · · · 0Q

0Q 0Q
. . . 0Q

0Q 0Q · · · HN,m





n1,m

n2,m

...

nN,m


+



q1,m

q2,m

...

qN,m



+



v1,m

v2,m

...

vN,m


= Gmzm +Hmnm + qm + vm (4.35)
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clean feature estimation steps.

1) Pre-processing: The initial statistics associated to the j-th iterated Kalman

filter are constructed by mixing the corresponding estimates at the previous frame.

Let us define the initial statistics as

ẑ
(0,j)
m−1|m−1 = E

[
zm−1|γm = j,ym−10

]
(4.36)

Σ̂
(0,j)
zm−1|m−1

= Cov
[
zm−1|γm = j,ym−10

]
. (4.37)

Then, by the IMM approximation [10], we can get

ẑ
(0,j)
m−1|m−1 =

K−1∑
k=0

Λ(j,k)
m ẑ

(k)
m−1|m−1 (4.38)

Σ̂
(0,j)
zm−1|m−1

=

K−1∑
k=0

Λ(j,k)
m

[
Σ̂

(k)
zm−1|m−1

+

(ẑ
(0,j)
m−1|m−1 − ẑ

(k)
m−1|m−1)(ẑ

(0,j)
m−1|m−1 − ẑ

(k)
m−1|m−1)

′] (4.39)

in which

ẑ
(k)
m−1|m−1 = E

[
zm−1|γm−1 = k,ym−10

]
(4.40)

Σ̂
(k)
zm−1|m−1

= Cov
[
zm−1|γm−1 = k,ym−10

]
(4.41)

Λ(j,k)
m = P (γm−1 = k|γm = j,ym−10 ). (4.42)

In (4.42), Λ
(j,k)
m denotes the probability that model k was active at the (m − 1)-th

frame given that model j is active at the m-th frame conditioned on the observation

ym−10 . Based on (4.17) and (4.18) it can be shown that

Λ(j,k)
m =

1

cj
ajkP

(k)
m−1|m−1 (4.43)

with

cj =
K∑
k=1

ajkP
(k)
m−1|m−1 (4.44)
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where P
(k)
m−1|m−1 ≡ P (γm−1 = k|ym−10 ) is the a posteriori probability that model

k is active at frame (m − 1) conditioned on the observations ym−10 . Let P
(j)
m|m−1 ≡

P (γm = j|ym−10 ) be the a priori model probability. Then from (4.17),

P
(j)
m|m−1 =

K−1∑
k=0

ajkP
(k)
m−1|m−1, 0 ≤ j ≤ K − 1. (4.45)

2) Predictive state estimation: The one-step-ahead statistics of the predictive

state estimate in the j-th mixture component at frame index m based on the initial

estimates computed from the previous step be defined by

ẑ
(j)
m|m−1 = E

[
zm|γm = j,ym−10

]
(4.46)

Σ̂
(j)
zm|m−1

= Cov
[
zm|γm = j,ym−10

]
. (4.47)

Then, by using the state evolution formulation of (4.22)-(4.29), we can derive

ẑ
(j)
m|m−1 = A(j)ẑ

(0,j)
m−1|m−1 + µ

(j)
b (4.48)

Σ̂
(j)
zm|m−1

= A(j)Σ̂
(0,j)
zm−1|m−1

(A(j))′ + Σ
(j)
b . (4.49)

3) Iterative linearization and Kalman update: The general approach of this step

is similar to that proposed in [30] where the linearization and Kalman update are

performed iteratively. The core idea of this approach is to find a more optimal center

of vector Taylor series expansion for better linear approximation. Let R denote

the total number of iterations and r = 1, · · · , R indicates an iteration index. As

applied in single-channel algorithm, it can be easily extended to the multi-channel

algorithm. Recall that z◦m is the center of vector Taylor series expansion introduced

in Subsection 4.3.5. At the r-th iteration we set

z◦m = ẑ
(r,j)
m|m (4.50)
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and at the first iteration we set

ẑ
(1,j)
m|m = ẑ

(j)
m|m−1. (4.51)

Let ŷ
(r,j)
m and Σ̂

(r,j)
ym

respectively represent the observation and the corresponding

covariance matrix predicted based on ẑ
(r,j)
m|m. Then from (4.3), (4.35) and (4.21), ŷ

(r,j)
m

and Σ̂
(r,j)
ym

can be obtained by

ŷ(r,j)
m = Gmẑ

(j)
m|m−1 +Hmµnm

+ qm + µv (4.52)

Σ̂
(r,j)
ym

= GmΣ̂
(j)
zm|m−1

G′m +HmΣnmH
′
m + Σv (4.53)

where

µnm
=



µn1,m

µn2,m

...

µnN,m


, (4.54)

Σnm =


Σn1,m Cov(n1,m,n2,m) ··· Cov(n1,m,nN,m)

Cov(n2,m,n1,m) Σn2,m ··· Cov(n2,m,nN,m)

...
...

. . .
...

Cov(nN,m,n1,m) Cov(nN,m,n2,m) ··· ΣnN,m

 , (4.55)

µv =



µv1

µv2

...

µvN


, Σv =


Σv1 OQ ··· OQ

OQ Σv2 ··· OQ

...
...

. . .
...

OQ OQ ··· ΣvN

 . (4.56)

Once these are completed, the innovation e
(r,j)
m and its covariance matrix R

(r,j)
em are

computed

e(r,j)m = ym − ŷ(r,j)
m (4.57)

R(r,j)
em

= GmΣ̂
(j)
zm|m−1

G′m +HmΣnmH
′
m + Σv (4.58)
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and the Kalman gain K
(r,j)
m is obtained as follows:

K(r,j)
m = Σ̂

(j)
zm|m−1

G′m(R(r,j)
em

)−1. (4.59)

With e
(r,j)
m , R

(r,j)
em and K

(r,j)
m , we can update the center of Taylor series expansion in

(4.50) by means of the conventional measurement-update scheme

ẑ
(r+1,j)
m|m = ẑ

(j)
m|m−1 +K(r,j)

m e(r,j)m . (4.60)

After R iterative linearization and Kalman update, we can compute the mean

vector and covariance matrix of the posterior distribution p(zm|γm = j,ym0 ) by

ẑ
(j)
m|m = ẑ

(R+1,j)
m|m (4.61)

Σ̂
(j)
zm|m

= (IQ(L+1)(N+1) −K(R,j)
m Gm)Σ̂

(j)
zm|m−1

. (4.62)

4) Background noise estimation: Recall that the local clean trajectory and N log

frequency responses are jointly handled as the state vector. At that time, the back-

ground noise is treated to the fixed estimated value at (4.35). In order to estimate

the background noise, we assume that the background noise evolves according to

the following process:

nm = nm−1 + wm (4.63)

where wm is a zero mean i.i.d. Gaussian process with its covariance matrix Σwm .

The estimation of the background noise can be easily accomplished by an additional

Kalman filtering using the statistics ẑ
(j)
m|m and Σ̂

(j)
zm|m

of the estimated state vector

in (4.61) and (4.62). Using these statistics of the state vector, we can recalculate the

observation and the corresponding covariance matrix of (4.52) and (4.53), which are
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denoted by y̌
(r,j)
m and Σ̌

(r,j)
ym

as following

y̌(r,j)
m = G̃mẑ

(j)
m|m + H̃mµnm

+ q̃m + µv (4.64)

Σ̌
(r,j)
ym

= G̃mΣ̂
(j)
zm|m

G̃′m + H̃mΣnmH̃
′
m + Σv (4.65)

Once these are completed, the innovation ẽ
(r,j)
m and its covariance matrix R̃

(r,j)
ẽm

are

recomputed

ẽ(r,j)m = ym − y̌(r,j)
m (4.66)

R̃
(r,j)
ẽm

= G̃mΣ̂
(j)
zm|m

G̃′m + H̃mΣnmH̃
′
m + Σv. (4.67)

Let µ
(j)
nm and Σ

(j)
nm be j-th mean and variance of background noise at m-th frame.

The Kalman gain K
(j)
nm for background noise can be written by

K(j)
nm

= Σ(j)
nm
H̃′m(R̃

(R,j)
ẽm

)−1. (4.68)

Then noise parameters are updated by means of the conventional measurement-

update scheme

µ̂(j)
nm

= µ(j)
nm

+K(j)
nm
ẽ(R,j)m (4.69)

Σ̂
(j)
nm

= (IQN −K(j)
nm
H̃m)Σ(j)

nm
. (4.70)

5) Post-processing: Let P
(j)
m|m denote the a posteriori model probability. Then it

can be computed as follows:

P
(j)
m|m =

1

c
p(ym|ẑ(j)m|m−1, Σ̂

(j)
zm|m−1

)p(γm = j|ym−10 ) (4.71)

=
1

c
N (ym; ŷ(1,j)

m , Σ̂
(1,j)
ym

)P
(j)
m|m−1 (4.72)

where the normalizing constant c is computed from

c =
K−1∑
j=0

N (ym; ŷ(1,j)
m , Σ̂

(1,j)
ym

)P
(j)
m|m−1. (4.73)
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The mean vector and covariance matrix of the posterior distribution p(zm|ym0 ) are

computed through the linear combination of the state vectors obtained from all the

mixture components.

ẑm|m =

K−1∑
j=0

P
(j)
m|mẑ

(j)
m|m (4.74)

Σ̂zm|m =
K−1∑
j=0

P
(j)
m|m

[
Σ̂

(j)
zm|m

+ (ẑm|m − ẑ
(j)
m|m)(ẑm|m − ẑ

(j)
m|m)′

]
. (4.75)

The mean vector and covariance matrix of the background noise are also calculated

from model combination as given by

µ̂nm
=

K−1∑
j=0

P
(j)
m|mµ̂

(j)
nm

(4.76)

Σ̂nm =
K−1∑
j=0

P
(j)
m|m

[
Σ̂

(j)
nm

+ (µ̂nm
− µ̂(j)

nm
)(µ̂nm

− µ̂(j)
nm

)′
]
. (4.77)

6) Clean feature estimation: After the post-processing step, we can obtain the

estimate for not only the clean speech feature but also RIR since

ẑm|m = [x̂m|m ĥ1,m|m ĥ2,m|m · · · ĥN,m|m]′ (4.78)

where x̂m|m = [x̂′m|m x̂′m−1|m · · · x̂′m−L|m] denotes the (L + 1) consecutive clean

feature vectors given observations ym0 . The x̂m|m means the filtered estimate and all

other x̂m−l|m for l > 0 are smoothed estimates. Since we are assuming the causal

system, we choose the filtered estimate.

4.5 Incremental State Estimation

When we generally compare the single-channel techniques with multi-channel

techniques, one of the issues is the computational complexity. As the number of

48



Pre-
processing

Predictive 
state 

estimation

Iterative linearization 
and Kalman update

Post-
processing

1st mixture component

Pre-
processing

Predictive 
state 

estimation

Iterative linearization 
and Kalman update

2nd mixture component

Pre-
processing

Predictive 
state 

estimation

Iterative linearization 
and Kalman update

Kth mixture component

Clean feature 
estimation

…

x

Figure 4.2: Feature enhancement algorithm.

kth mixture component
y , , y , , … , y ,

IL&KU
, , … , , , , … , ,

Predictive
state

estimation

Pro-
processing

(a) Joint state estimation.

kth mixture component

…

y ,

IL&KU 
1, ,

y ,

, ,

y ,

, ,

Predictive
state

estimation

Pro-
processingIL&KU 

2
IL&KU 

N

(b) Incremental state estimation.

Figure 4.3: Types of state estimation of Kalman filter at k-th mixture component

(IL&KU: iterative linearization and Kalman update).

channels grows, the computational complexity is also increased. In our case, when

we consider all the observations simultaneously, the computational complexity is

increased due to the large dimension of the state vector. To alleviate this computa-

tional complexity problem and make the algorithm more reasonable to be used in
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real applications, we propose a new state estimation method of the Kalman filtering

motivated by [25]. Let the new state estimation method denote a incremental state

estimation.

Basically, the feature enhancement procedures for the multi-channel technique

are described in Fig. 4.2. The iterative linearization and Kalman update step re-

quires a large amount of calculation according to the extended state vector. In Fig.

4.2, the iterative linearization and Kalman update step includes the background

noise estimation step. Let the state estimate method in Fig. 4.2 denote a joint state

estimation to distinguish it from the incremental state estimation. The main compu-

tation difference between the joint and incremental state estimation is occurred by

modifying the iterative linearization and Kalman update step. The Fig. 4.3 shows the

relationship between inputs and outputs of the iterative linearization and Kalman

update step according to the joint and incremental state estimation. The joint state

estimation is to update the estimates [x̂m ĥ1,m ĥ2,m · · · ĥN,m] of the state vector zm

using all the observations [y1,m,y2,m, · · · ,yN,m] at one time while the incremental

state estimation is to update the each estimate [x̂m ĥi,m] of the state vector zm

according to the channel input yi,m separately. Especially, in the incremental state

estimation, the previous clean estimate [x̃m, x̌m, · · · , x̆m] of the Kalman filtering is

used as an input of the next Kalman filtering and eventually the clean speech xm

is updated N times using all the observations. The log frequency response hi,m is

updated only once with the corresponding channel input. The reason why we can

apply the incremental state estimation is that our main concern is only the clean

speech component of the state vector and we can use the highly correlated sample

data to find the optimal value of the clean speech at current frame.

Our multi-channel technique based on the mixture of multiple linear dynamic
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Table 4.1: Average word accuracies (%) of the baseline system according to the

distances and separation angles in the reverberation environment.

Reverb.
SNR (dB)

(ms) reverb. 20 15 10 5 0

300 96.34 81.75 64.43 39.82 21.87 14.39

500 84.28 60.17 43.20 26.37 16.75 12.03

700 70.57 45.42 31.87 20.43 14.28 10.50

models requires quite large computational complexity according to the several pa-

rameters such as K, L and N . As the value of the K grows, the computational

complexity is increased by approximately K times to process the dynamic models.

The feature dimension of the state vector is (N + 1)Q(L + 1). In our algorithm,

we assume that the clean speech and RIR are independent each other [7]. Given N

channels, the log frequency response of the state vector is increased to NQ(L + 1)

length vector. When we consider the increasing amount of computation according

to the many matrix multiplications, the computational complexity of the joint state

estimation is in proportion to about {(N + 1)Q(L + 1)}3. On the other hand, the

computational complexity of the incremental state estimation is in proportion to

about N{2Q(L + 1)}3. From this analysis, we can know that the proposed incre-

mental state estimation is more efficient than the joint state estimation in terms of

computation.
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Table 4.2: Average word accuracies (%) of the proposed system according to the

distances and separation angles in the reverberation environment.

Reverb. Method

SNR (dB)

reverb. 20 15 10 5 0

(ms) JNT INC JNT INC JNT INC JNT INC JNT INC JNT INC

300

IMM-1ch 96.76 96.76 94.40 94.40 90.89 90.89 83.64 83.64 71.44 71.44 55.22 55.22

IMM-2ch 96.42 96.74 95.52 95.38 93.37 93.38 88.63 88.81 79.02 78.98 63.92 63.81

IMM-4ch 97.13 96.92 96.24 95.68 94.29 94.20 90.04 90.66 81.05 81.90 66.42 67.92

IMM-8ch 97.38 97.59 96.67 96.20 95.20 94.98 91.87 91.96 84.44 83.54 71.60 69.95

500

IMM-1ch 82.98 82.98 81.44 81.44 76.87 76.87 69.73 69.73 59.11 59.11 46.05 46.05

IMM-2ch 81.15 82.67 84.57 83.98 81.89 81.15 76.53 75.82 67.52 66.58 54.24 53.85

IMM-4ch 85.07 83.53 87.35 84.95 84.78 82.52 79.56 77.92 70.50 69.48 57.15 58.01

IMM-8ch 86.93 87.46 88.28 86.84 86.15 84.80 81.91 80.02 74.17 71.00 62.14 59.37

700

IMM-1ch 66.86 66.85 67.07 67.07 63.13 63.13 57.52 57.52 49.38 49.38 39.72 39.72

IMM-2ch 63.83 66.43 71.34 70.91 68.92 67.92 64.33 63.22 56.75 55.95 46.53 46.35

IMM-4ch 69.39 67.84 74.85 72.52 72.41 69.76 67.94 65.61 60.41 59.13 49.34 50.23

IMM-8ch 72.32 73.75 76.87 75.44 74.72 72.78 70.66 68.20 63.84 60.84 53.99 51.45

4.6 Experiments

4.6.1 Simulation Data

The proposed approach was applied to a connected digit recognition task us-

ing TI digits corpus of which data set was usually used for feature compensation

experiments. In our implementation, we employed the conventional front-end fea-

ture specified in the ETSI standard [31] and cepstral mean normalization was also

applied. The baseline system of ASR was configured by using the scripts provided

in [32], which was implemented by HTK software [33] for training and decoding. We
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assumed the clean training condition for the acoustic model of speech recognition in

accordance with our purpose of estimating the clean feature vectors. The close talk

baseline performance of the recognition system was obtained to the word accuracy

99.21 %.

The configuration for a reverberant noisy environment was shown in Fig. 2.3. In

order to simulate various environmental conditions, the target speaker was located

at nine positions according to the distances and separation angles. The RIRs were

simulated by Allen and Berkley’s image method [7] using Habets’s software [8]. The

reverberation range was varied from 300 to 700 ms and all the conditions were tested

in the SNR range 0 to 20 dB. For the results of single-channel techniques, the micro-

phone was positioned at the center of microphone 1 and 2. Due to the computational

issue, we used L = 2 and K = 16 for all the following experiments. For convenience,

we denote the baseline, single-, two-, three-, four- and eight-channel algorithm by

BAS, IMM-1ch, IMM-2ch, IMM-3ch, IMM-4ch and IMM-8ch, respectively. All the

experiments were performed according to the joint and incremental state estimations

of Kalman filtering, which was denoted by JNT and INC, respectively. We compared

our proposed multi-channel algorithm with the single-channel algorithm.

The Table 4.1 and 4.2 show the average word accuracies of the baseline and pro-

posed system according to the distances and separation angles in the reverberation

environment. The word accuracy is defined by

Word accuracy (%) =
N−D − I − S

N
× 100 (4.79)

where N, D, I and S indicate the number of total words, word deletion errors,

word insertion errors and word substitution errors, respectively. Here, reverb. in-

dicates a noise-free condition which has only reverberation. The proposed methods
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Table 4.3: Word accuracies (%) of the baseline and single-channel algorithm in the

car environment.

APL SVL SVC SVR

Baseline 52.48 64.14 63.84 54.21

IMM-1ch 94.02 95.39 95.15 93.98

outperformed single-channel algorithm in many conditions. The JNT was better per-

formance than INC in several conditions but the performance differences were quite

comparable.

4.6.2 Live Recording Data

For the real environment test, we used a car environment speech corpora created

by the SiTEC in the 1st year of the 5-year project for creation and distribution

of standarized speech corpora [34]. The data consisted of spoken Korean words by

100 speakers recorded through 7 microphones and one handsfree simultaneously in

driving environments. The target words were represented by car control or navigation

commands, single digits, and connected digits with total 1451 words. We used the

left, center, right microphones positioned at a sun visor with distance about 15 cm

and one microphone attached at A-pillar of the passenger seat. For convenience,

those microphones were denoted by APL, SVL, SVC and SVR, respectively. The

acoustic model based on tied-state triphone was trained with SiTEC clean Korean

word DB which was uttered by 407 people. Each state had eight Gaussian mixtures.

The same feature as the TI digits corpus was exploited. The close talk baseline

performance of the recognition system was obtained to the word accuracy 91.69 %.

Table 4.3 shows the word accuracies of the baseline and single-channel algorithm
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Figure 4.4: Word accurarices (%) on IMM-2ch according to different microphone

combinations.

in the car environment. Since we assumed the hands-free scenario, four microphones

APL, SVL, SVC and SVR were only considered. Fig. 4.4 and 4.5 show the word

accuracies of the IMM-2ch and IMM-3ch according to the different microphone

combinations, respectively. From the results, we can see that better performance

was obtained when using APL and SVL microphones due to their high correlation.

4.6.3 Computational Complexity

In this work, we compared the proposed joint and incremental state estimation

methods. The real time factors (RTFs) were measured using a server with Intel Xeon

3.33 GHz processor and 48 GB memory running on Ubuntu Linux 10.04 LTS. In

Fig. 4.6, the RTFs of the joint and incremental state estimation methods are shown.

The INC shows suitable results in spite of increase in the number of channels.
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4.7 Summary

In this chapter, we have proposed a novel approach to estimate the clean feature

vectors in multi-channel environment, which was obtained by extending the single-

channel IMM algorithm to a multi-channel version. To reduce the computational

complexity of the multi-channel technique, a new state estimation method of the

Kalman filtering also has been described. From various experiments in reverberant

noisy environments and real environment, it has been confirmed that the proposed

algorithm has shown adequate results in terms of word accuracy and computational

complexity.

56



0

1

2

3

4

5

1 2 4 8

R
ea

l t
im

e 
fa

ct
or

 (
xR

T
)

# of microphones

JNT
INC

Figure 4.6: Real time factors according to the microphones.

57



58



Chapter 5

Supervised Denoising

Pre-Training for Robust ASR

with DNN-HMM

5.1 Introduction

Recently, DNNs have become one of the most popular techniques in the vast

field of machine learning. Due to their powerful capability in nonlinear descrip-

tion between the input and the target values, the DNNs have outperformed many

other conventional techniques in various tasks. This DNN’s capability has also been

applied to the environment-robust techniques for ASR. Particularly, in the robust

ASR area, conventional environment-robust techniques usually necessitate some spe-

cific models or formulations to account for the nonlinear relationship between the

clean and noisy speech processes in an appropriate signal domain. In constrast, the

DNNs have the advantage that they can directly learn an arbitrary unknown rela-
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tionship between the input and the target values without any specific assumption.

Consequently, they have brought a better performance gain than the conventional

approaches. A more complicated input-target relationship can be easily learned by

using wider and deeper neural network architectures with a sufficient amount of

training data.

Since DNN is a highly nonlinear and non-convex model, its performance usually

depends on the initial parameter setting for training. This issue has been possi-

bly resolved through a number of unsupervised or supervised pre-training meth-

ods. For the unsupervised methods, generative pre-training algorithm for the RBMs

(RBM) [13], greedy layer-wise unsupervised pre-training using autoencoder [35] and

stacked denoising autoencoder (SDAE) [36], [37] were proposed. A core idea of these

algorithms is to learn a nonlinear representation of the input data one level at a time

using unsupervised feature learning. In the case of SDAE, the pre-training module

takes the noisy features as an input and then tries to recover the original clean

features by minimizing the cross-entropy loss or the squared error loss between the

reconstructed features and the original clean features.

In the class of the supervised methods, greedy layer-wise supervised pre-training

(GLPT) [35] and discriminative pre-training (DPT) [38] methods were proposed.

These methods first train the DNN with one hidden layer using the target labels

discriminatively, then insert another hidden layer between the trained hidden layer

and the output layer and again discriminatively train the network to convergence.

This procedure is repeated until the desired number of hidden layers are all trained. A

hybrid pre-training algorithm combining RBM and GLPT was also introduced [39].

These pre-training techniques can potentially bring the DNN weights to a relatively

good initial point for converging to a better local optimum.

60



The above mentioned pre-training techniques can be also applied to robust ASR.

In order to initialize the DNN in adverse environments, not only the clean features

but also the corrupted features are used as an input of the DNN, which is common

in the robust ASR area. In a sense, this approach can be regarded as a multi-

condition training technique. The parameters of the DNN are learned to describe the

hidden representation of the multi-condition data set. As the depth of the DNN gets

deeper, more abstract features can appear at higher layers. More abstract concepts

are generally considered more robust to most local variations of the inputs. Learning

these invariant features has been a long-standing goal in pattern recognition [40].

In this chapter, we propose a novel supervised denoising pre-training technique

for the DNN-HMM system for robust speech recognition in adverse environments.

In the proposed approach, our aim is to initialize the DNN parameters such that

they yield abstract features robust to acoustic environment variations. In order to

achieve this, we first derive the abstract features from an early fine-tuned DNN model

which is trained based on a clean speech database. By using the derived abstract

features as the target values, the standard error back-propagation algorithm with the

stochastic gradient descent method is performed to estimate the initial parameters

of the DNN. The performance of the proposed algorithm was evaluated on Aurora-4

DB, and better results were observed compared to a number of conventional pre-

training methods.

5.2 Deep Neural Networks

DNN is a multi-layer perceptron network with many hidden layers. A DNN

consists of input, hidden and output layers as shown in Fig. 5.1. For simplicity, we
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denote the input layer as layer 0 and the output layer as layer L for an (L+ 1)-layer

DNN.

The hidden representation of the DNN at the l-th layer can be written by

vl = σ(zl) = σ(Wlvl−1 + bl), for 0 < l < L (5.1)

where vl = [vl1 vl2 · · · vlNl
]′, zl = Wlvl−1 + bl = [zl1 zl2 · · · zlNl

]′, Wl, bl =

[bl1 b
l
2 · · · blNl

]′ and Nl denote the activation vector, excitation vector, weight ma-

trix with size Nl × Nl−1, bias vector and the number of neurons at the l-th layer,

respectively. Here, the prime denotes the transpose of a vector or a matrix. In (5.1),

σ(x) = 1/(1+e−x) is the sigmoid function which is usually employed as an activation

function in many applications. The function σ(·) is applied to the excitation vector

element-wisely. At the 0-th layer, v0 = [v01 v
0
2 · · · v0N0

]′ is the input vector and N0

is the input feature dimension.

The data type at the output layer is decided based on the target task. For a

multi-class classification task, each output neuron represents a class membership for

which the softmax function is applied to zL as follows:

vLi = softmaxi(z
L) =

ez
L
i∑NL

j=1 e
zLj

(5.2)

NL∑
i=1

vLi = 1 (5.3)

where vLi , zLi and NL indicate the i-th component of the output activation, the i-th

component of the excitation vector and the number of classes at the output layer,

respectively.

For supervised fine-tuning, a labeled training set (o,d) = {(ot, dt)|1 ≤ t ≤ T} is

needed where ot represents the t-th observation vector, dt = [dt,1 dt,2 · · · dt,NL
]′ is

the corresponding target vector with size NL and T denotes the number of training

62



Input layer

Hidden layers

Output layer

…
v

v

v

v

W , b

W , b
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samples. The DNN input v0
t = [v0t,1 v

0
t,2 · · · v0t,N0

]′ at time t usually consists of a

number of concatenated observation vectors. During fine-tuning, the DNN param-

eters are updated by using the back-propagation procedure according to a proper

objective function. For multi-class classification, the cross-entropy (CE) is usually

adopted as an objective function as given by

JCE =
1

T

T∑
t=1

[
−

NL∑
i=1

dt,i log(vLt,i)

]
(5.4)

where dt,i and vLt,i indicate the i-th component of the desired target value and the i-th

component of the generated DNN output value given the t-th observation. Basically,

dt,i can be regarded as the posterior probability of the i-th output class.

5.3 Supervised Denoising Pre-Training

In this section, we propose a novel approach to initialize the DNN parameters

particularly for robust ASR. The proposed approach is called a supervised denoising
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pre-training technique. In the proposed technique, the initial parameters of the DNN

for noisy inputs are learned so as to describe the most abstract features obtained

when the corresponding clean features are applied. If this is achieved, the DNN is

capable of extracting abstract representations, i.e., hidden node values robust against

the interfering noises.

For this approach, we need an auxiliary DNN with the same structure, which is

fully-trained based solely on a clean speech database. It can be obtained using a set

of clean training data and the corresponding target labels through the procedure

described in Section 5.2. The hidden nodes of this auxiliary DNN are considered

to form abstract representations of the clean speech features which are not affected

by interfering noises. Since the nodes of the top hidden layer are considered to

possess the most abstract characteristics of the clean speech features, we only focus

on the top hidden layer of the auxiliary DNN when creating the target abstract

representation in this work.

Let {Wl
c,b

l
c|(oc,d)} denote the parameters of the auxiliary DNN estimated

from a clean training data oc with the corresponding target labels d. Also let

{Wl
m,b

l
m|(om,d)} be the parameters of the main DNN which will be trained based

on a multi-condition data om with the target labels d. Note that oc and om form

a stereo database, i.e., simultaneous recordings obtained in both the clean and cor-

rupted conditions, and the desired target labels are the same in both data. In our

approach to pre-training, the parameters {Wl
m,b

l
m} are initialized such that they

yield the abstract representation at the (L− 1)-th hidden layer as close as possible

to those obtained at the same layer of the auxiliary DNN which was fed with clean

speech feature. Providing the last hidden layer values of the auxiliary DNN as the

target enables to estimate {Wl
m,b

l
m} with the use of the back-propagation algo-
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rithm. For back-propagating the errors between the activated values obtained from

the main DNN and the target abstract features derived from the auxiliary DNN,

we employ the mean square error (MSE) as the objective function. If the number of

training samples is T , the objective function JMSE is given by

JMSE =
1

T

T∑
t=1

[
1

2
||vL−1m,t − vL−1c,t ||2

]
(5.5)

where vL−1m,t and vL−1c,t respectively indicate the t-th activation vectors obtained from

the main and auxiliary DNN at the (L − 1)-th layer, and || · || means Euclidean

norm. It is very important to note that vL−1m,t in (5.5) is derived from om while vL−1c,t

is derived from the auxiliary DNN when the clean speech feature oc is applied. The

proposed method can be modified to reproduce all the hidden node activations of

the auxiliary DNN by treating each hidden activation as the target value. From a

number of preliminary experiments, we have found that using only the last hidden

layer as the target values shows a slightly better performance than using all the

hidden layers.

After {Wl
m,b

l
m} are initialized as above, a usual discriminative fine-tuning al-

gorithm is performed with the objective function of (5.4) as described in Section

5.2.

5.4 Experiments

The performance of the proposed method was evaluated on Aurora-4 DB which

is widely used in the robust speech recognition area. The proposed method was

compared with the following conventional pre-training approaches: RBM [13], GLPT

[35], DPT [38] and SDAE [37]. DPT is similar to GLPT but differs in that the latter

only updates the newly added hidden layer while in the former all layers are jointly
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updated each time when a new hidden layer is added. The performance is measured

with word error rate which is defined by

Word error rate (%) =
D + I + S

N
× 100 = 100−Acc (5.6)

where N, D, I, S and Acc indicate the number of total words, word deletion errors,

word insertion errors, word substitution errors and word accuracy, respectively.

5.4.1 Feature Extraction and GMM-HMM System

We used the Kaldi speech recognition toolkit [41] for feature extraction, acoustic

modeling of ASR, DNN training and ASR decoding. The feature was extracted with

the default configuration of Kaldi. According to that configuration, 23-dimensional

log mel filterbank (LMFB) features were calculated and 13-dimensional MFCCs

(including C0) with their first and second derivatives were extracted for the GMM-

HMM recognizer. The cepstral mean normalization algorithm was applied for each

speaker.

In order to provide the target alignment information for the discriminative DNN

training, we built a clean-condition GMM-HMM system with 2009 senones and

15028 Gaussian mixtures in total. The target senone labels of the DNN-HMM system

were obtained over the clean-condition training data. As for the language model, we

applied the standard 5k open bi-gram model for decoding.

5.4.2 DNN Structures

For the auxiliary and main DNN training, we applied five hidden layers with 2048

nodes as proposed in [43]. As for the input features of the DNNs, we used the LMFB

features due to their good performance demonstrated in the previous studies. The
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input features consisted of 11 frames (5 frames on each side of the current frame)

context window of 23 dimensional LMFB features with their first and second order

derivatives, which resulted in the input dimension of 759. The input features of the

DNNs were normalized to have zero mean and unit variance.

For training the auxiliary DNN using the clean-condition training data, RBM

was carried out to initialize the DNN parameters as described in [42] which is based

on a greedy layerwise fashion [13]. The Gaussian-Bernoulli RBM was trained with

an initial learning rate of 0.01 and the Bernoulli-Bernoulli RBMs with a rate of

0.4. The initial RBM weights were randomly drawn from a Gaussian N (0, 0.01); the

hidden biases of Bernoulli units as well as the visible biases of the Gaussian units

were initialized to zero, while the visible biases of the Bernoulli units were initialized

as log(p/1−p), where p was the mean output of a Bernoulli unit from previous layer.

During pre-training, the momentum m was set to 0.9, which was accompanied by

a rescaling of the learning rate using 1−m. Also the L2 regularization was applied

to the weights, with a penalty factor of 0.0002. For the supervised fine-tuning, the

initial learning rate of 0.008 with the same 256 minibatch size as the pre-training

was used for the DNN training. The errors between the DNN outputs and the target

senone labels were calculated according to (5.4).

For initializing the main DNN parameters using the proposed method, RBM

was first conducted using the multi-condition training data for the main DNN and

then supervised fine-tuning was performed using the abstract features derived from

the auxiliary DNN as the target values with the initial learning rate of 0.0001. The

errors between the last hidden node activations of the main DNN and the target

abstract features derived from the auxiliary DNN were calculated as in (5.5). After

initializing the parameters of the main DNN and adding an output layer on the top
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Table 5.1: WERs (%) on the auxiliary DNN-HMM system.

Method Set A Set B Set C Set D Average

RBM 7.12 47.55 42.91 65.98 52.23

Table 5.2: WERs (%) on the main DNN-HMM system according to various pre-

training methods.

Method Set A Set B Set C Set D Average

SDAE 7.77 11.88 12.42 23.72 16.70

DPT 8.00 11.92 12.68 23.29 16.57

GLPT 7.83 11.73 11.97 23.02 16.31

RBM 7.81 11.71 12.27 22.71 16.18

SDPT 7.42 10.93 11.86 22.56 15.73

of the network, the discriminative fine-tuning with the senone targets was performed

with the initial learning rate of 0.008. In order to speed up training, we applied the

learning rate scheduling scheme and stop criteria presented in [42].

5.4.3 Performance Evaluation

We compared our proposed method with the conventional pre-training approaches

on Aurora-4 DB. For convenience, the proposed method was denoted by SDPT

when demonstrating the experimental results. Table 5.1 shows the word error rates

(WERs) obtained with the auxiliary DNN-HMM system which was used to gener-

ate the target abstract features. Table 5.2 shows the WERs of the main DNN-HMM

system built with various pre-training techniques. From the results, we can see that

SDPT outperformed all the other pre-training techniques in all the tested condi-
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tions. Consequently, the DNN parameters initialized by SDPT allowed the model to

converge a better local optimum in adverse environments.

5.5 Summary

In this chapter, we have proposed a novel supervised denoising pre-training tech-

nique for the DNN robust to noisy input variations. The initial parameters of the

DNN was obtained from the supervised training using the back-propagation algo-

rithm. The target values were calculated from the auxiliary DNN which was fine-

tuned using the clean training data and the corresponding target labels. From the

experimental results, we have found that the proposed method was effective for

enhancing the recognition performance in adverse conditions.
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Chapter 6

DNN-Based Frameworks for

Robust Speech Recognition

Using Noise Estimates

6.1 Introduction

Recently, ASR has achieved a great success with the aid of the DNNs. The most

salient feature of the DNN is its ability to learn an arbitrary unknown mapping

from the input to the target values automatically. Interest in this DNN’s capability

has been also expanded to the area of robust speech recognition. The DNN-based

algorithms have shown better performances recently than the conventional noise

processing algorithms such as the speech enhancement, feature compensation and

model adaptation techniques.

Despite its big success, the DNN still has some problems to be solved. First, since

the DNN is a highly nonliner and non-convex model, its performance usually depends
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Figure 6.1: DNN-based frameworks for robust ASR.

on the initial parameter setting for training. Second, the DNN has a training-test

mismatch problem, i.e., the performance usually deteriorates for unseen data at the

test stage. To alleviate these problems, pre-training with denoising autoencoder [35]

and adaptation techniques such as noise-aware training [43] have been proposed. The

former can potentially bring the DNN weights to a relatively good initial point for

converging to a better local optimum by reconstructing the input from a corrupted

version of it. The latter gives the background noise information as an additional input

to the network such that the DNN training algorithm can automatically figure out

how to adjust the model parameters to exploit the noise information in unknown

conditions [44].

The DNN-based robust ASR can be implemented in two different ways as shown

in Fig. 6.1: robust feature enhancement (RFE) and robust model training (RMT).

In the scenario of RFE, DNN is applied to map the noisy input features to their
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uncorrupted clean versions without modifying the back-end recognizer which is as-

sumed to be a DNN-HMM system in this work. On the other hand, in the RMT

scheme, the parameters of the back-end DNN-HMM recognizer are directly learned

to describe the relations between the input features and the desired target values

while applying not only the clean speech features but also the corrupted features

as the training data. In a sense, this approach can be regarded as a multi-condition

training technique which is common in the area of robust ASR. Even though it

has been generally known that the RMT approach usually outperforms the corre-

sponding feature enhancement technique, the latter has the advantage that it can

be performed separately from the back-end recognizer.

In this chapter, new DNN-based robust ASR approaches using noise estimates

are proposed and then applied to both the RFE and RMT scenarios. A novel part of

the proposed approaches is that the time-varying noise estimates are applied to the

DNN as additional inputs. For this, we extract noise estimates in a frame-by-frame

manner from the IMM algorithm which has been known to show good performance

in tracking slowly-varying background noise [10]. The performance of the proposed

approaches is evaluated on Aurora-4 DB and better performance is observed com-

pared to the conventional DNN-based robust speech recognition algorithms [43].

6.2 DNN-Based Frameworks for Robust ASR

Our focus in this work is the environments where additive background noises

exist. It is assumed that the distorted input signal is captured by a single microphone.

As for the input features of the DNN, we use the LMFB features due to their good

performance demonstrated in the previous studies. As mentioned in Section 6.1, we
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consider two DNN-based robust ASR frameworks: RFE and RMT. Now we describe

each of these two frameworks below.

6.2.1 Robust Feature Enhancement

As shown in Fig. 6.1(a), we can divide the recognition process into two parts:

DNN-based front-end processing and back-end DNN-HMM recognition system. In

the DNN-based front-end processing, the noisy LMFB features are first enhanced

before being fed to the back-end DNN-HMM system. In the back-end DNN-HMM

system, the enhanced features are used to estimate the posterior probabilities of the

tied-state triphones (senones) which are then converted to the emission probabilities

of the HMM states.

The DNN-based front-end processing can be treated as a regression task where

the target values are the clean speech features. The proposed DNN structure is

given in Fig. 6.2(a) where the noise estimates are applied as inputs to the DNN in

conjunction with the noisy features. Through the stacked hidden layers with many

nodes, the complex mappings between the input vectors and the desired target

values, e.g., the clean LMFB features are automatically learned based on a set of

training DB. The input vector vt for this DNN structure can be configured as follows:

vt = [yt−τ ,yt−τ+1, · · · ,yt, n̂t] (6.1)

where yt denotes the noisy LMFB feature with its first and second order derivatives

extracted at the t-th frame and τ indicates the context window size. For practical

purposes, we select the input vectors such that they enable a causal processing of the

data, i.e., the output at a time only depends on the present or past inputs. In (6.1),

n̂t denotes the estimated noise feature with its first and second order derivatives.
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In our work, the noise estimates are obtained from the IMM-based technique [10]

which also estimates the background noise components in a causal manner. With the

assumption of slowly time-varying noise environments, we can track the variation of

the background noise in a frame-by-frame basis and the estimated noises are directly

applied to the DNN as additional inputs. Interested readers are referred to [10] for

further information of the IMM algorithm.

The structure of the DNN used for the back-end DNN-HMM system is shown in

Fig. 6.2(b) where we can see that the DNN estimates the senone posterior proba-

bilities from the enhanced speech features. The input vector vt of this DNN can be

configured as

vt = [xt−τ ,xt−τ+1, · · · ,xt] (6.2)

where xt denotes the estimated clean LMFB feature with its first and second order

derivatives at the t-th frame. The back-end DNN in this framework is usually trained

over a clean speech DB only though re-training is also possible with the enhanced

features.

6.2.2 Robust Model Training

In the RMT scheme, as shown in Fig. 6.1(b), the robust back-end DNN-HMM

system can estimate the senone posterior probabilities directly from the noisy fea-

tures. The structure of the DNN used in the RMT scheme is different from that

of the back-end DNN-HMM in Fig. 6.1(a) in that noise estimates are additionally

applied as inputs to the network. This means that the robust back-end DNN-HMM

system of RMT directly uses noisy features while the back-end DNN-HMM system

of RFE uses clean or enhanced features. Since the input variations of RMT are very
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DNN-HMM system, (b) for the back-end DNN-HMM system.

diverse due to various noisy environments, the background noise estimates are con-

sidered to provide useful information concerned with the environment leading to a

robust training of the DNN. The structure of the DNN is given in Fig. 6.2(a) where

the target values now represent the senone posterior probabilities.

The advantage of RMT is its ability to learn arbitrary unknown relations between

the noisy inputs and the senone labels directly using a deep network. Rather than

two stage ASR as in the RFE scheme, lower recognition errors can be expected

since a joint optimization of the parameters is performed instead of two separate

optimizations.
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6.3 IMM-Based Noise Estimation

In this section, we introduce the proposed noise estimation method based on

IMM, which is the part of IMM-based feature compensation algorithm. The goal of

IMM-based feature compensation technique is to estimate clean LMFB feature se-

quence xT0 = [x0,x1, · · · ,xT ] given noisy LMFB feature sequence yT0 = [y0,y1, · · · ,yT ],

where xt2t1 = [xt1, xt1+1, · · · , xt2] denotes a subsequence of vectors from frame index

t1 to t2. Particularly, we consider a causal estimation scheme which is desired for

sequential filtering. One of the most efficient methods for the causal estimation is

the IMM technique which is based on the multiple dynamic models using Kalman

filter. Specially, when the state transition and observation models for the multiple

dynamic models evolved over frame are given, the states to be defined in the system

are updated at all the dynamic models and propagated to the next frame.

In our work, the background noise feature is treated as a state vector. To estimate

the noise features, we employ a single Gaussian background noise model as given by

nt ∼ N
(
µnt

,Σnt

)
(6.3)

where the mean vector µnt
and covariance matrix Σnt are unknown and should be

estimated during the environment compensation procedure. As for the prior knowl-

edge, the probability density function of the clean features is assumed as a mixture

of Gaussian distributions such that

p(xt) =

N∑
k=1

p(k)N
(
xt;µ

k
xt
,Σk

xt

)
(6.4)

where p(k), µkxt
, Σk

xt
and N represent the weight, mean vector, covariance matrix

of the k-th Gaussian distribution and the number of Gaussians, respectively.
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We assume that the environmental characteristic of the background noise slowly

changes among the consecutive frames. With this assumption, we employ the noise

evolution process by

nt+1 = nt + wt (6.5)

wt ∼ N (0,Σwt) (6.6)

where 0 and Σwt indicate zero mean vector and fixed covariance matrix of Gaussian

process wt. To update the slowly time-varying background noise model parameters

{µnt
,Σnt}, we can construct the N linear dynamic models according to the mixture

components. Through the extended Kalman filtering approach based on IMM, the

estimated noise model parameters {µ̂nt
, Σ̂nt} are obtained at every frame. Interested

readers are referred to [10] for further information.

The estimated noise means {µ̂nt
} are directly used to the DNN’s additional

inputs. In (6.1), n̂t is the feature including the dynamic component of µ̂nt
.

6.4 Experiments

To confirm our proposed method, we evaluated the performance in noise matched

and mismatched conditions. The noise matched conditions were obtained from Aurora-

4 DB. The noise mismatched conditions were made using 100 nonspeech environmen-

tal sounds [45]. The features used in the experiments and the GMM-HMM system

were described in Section 5.4.1.

6.4.1 DNN Structures

For performance comparison, we also implemented the DNN-based robust ASR

technique proposed in [43] which used fixed noise estimates obtained from the initial
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duration of each utterance. We compared three different DNN input vectors: no noise

estimate (NSY), fixed noise estimate (FIXN) and the noise estimates obtained from

the IMM algorithm (ESTN). We used the context window size τ = 5, which resulted

in the input dimensions of 414, 483 and 483 for NSY, FIXN and ESTN, respectively.

All the input features were normalized to have zero mean and unit variance.

For the DNN-based front-end, we applied three hidden layers with 2048 nodes as

in [46]. For the back-end DNN-HMM system of RFE and RMT, seven hidden layers

with 2048 nodes each were adopted as proposed in [47]. In RFE, 23-dimensional

clean LMFB features were applied as the target vectors while 2009 senone labels

were applied as the target values in the back-end DNN-HMM systems. Generative

pre-training using the restricted Boltzmann machines [13] was carried out to initialize

the DNN parameters as described in Section 5.4.2.

For supervised fine-tuning, the initial learning rates 0.001 and 0.008 with the

same minibatch size as the pre-training were used for DNN-based front-end and the

DNN training of all the back-end DNN-HMM systems respectively. For speeding up

the training, we applied the learning rate scheduling and stop criteria as described

in [42].

6.4.2 Performance Evaluations

In order to evaluate our proposed method, we also made the noise mismatched

test sets with the clean speech of Set A and Set C on Aurora-4 DB. Six noises

were chosen from 100 noise types: machine noise, siren, animal sound, water sound,

wind and phone dialing. After downsampling to 16 kHz and applying P. 341 filter

to maintain the same configuration as the Aurora-4 environment, the noises were

added to the data in Set A and Set C at SNRs between 5 and 15 dB to form new
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Table 6.1: WERs (%) of RFE according to the training conditions and input types.

Condition Input types Set A Set B Set C Set D Average

Clean

Baseline 7.23 52.47 43.53 69.33 55.83

NSY 7.57 14.56 15.39 30.41 20.95

FIXN 7.57 15.72 16.46 32.23 22.26

ESTN 7.44 13.47 15.64 29.04 19.86

Re-trained

NSY 7.77 12.42 13.51 27.03 18.43

FIXN 7.75 13.66 13.99 29.89 20.22

multi ESTN 8.22 12.36 14.53 26.56 18.31

Table 6.2: WERs (%) of RMT according to the input types.

Condition Input types Set A Set B Set C Set D Average

Multi

NSY 7.96 12.45 13.79 26.35 18.18

FIXN 8.33 13.63 14.55 28.31 19.61

ESTN 7.64 12.22 13.21 25.56 17.68

Set B and new Set D, respectively.

First, we evaluated the performance in the RFE framework. The WERs obtained

with different DNN input types and training conditions are shown in Table 6.1. The

back-end DNN-HMM systems in the RFE framework were trained either over the

clean-condition training set only or over all the multi-condition training set after

being enhanced by the DNN-based front-end processing. We differentiate these two

training conditions by denoting them respectively as clean-condition and re-trained

multi-condition in the table. The Baseline in Table 6.1 means the baseline perfor-

mance of the clean-condition back-end DNN-HMM system without any DNN-based
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Table 6.3: WERs (%) of RMT on noise mismatched test conditions.

Condition Input types New Set B New Set D Average

Multi

NSY 27.50 43.08 35.29

FIXN 30.99 45.26 38.13

ESTN 24.95 39.16 32.05

front-end processing. From the results we can see that the DNN input type of ESTN,

which applied the noise estimates obtained from the IMM algorithm, outperformed

all the other input types. In addition, re-trained multi-condition training with the

enhanced features further improved the performance of the ASR system.

Next, we evaluated the performance in the RMT framework. This time the back-

end DNN-HMM systems were trained over all the multi-condition training set with

different DNN input configurations. The results are shown in Table 6.2 from which

we can see that the DNN input configuration of ESTN outperformed all the other

input types. This observation once again confirms that the incorporation of the time-

varying noise estimates obtained from the IMM algorithm is useful to provide the

environment-related information to the DNN.

Finally, we evaluated the performance on the noise mismatched conditions. In

this work, we just checked the WERs in the RMT framework. Table 6.3 shows the

results according to the noise mismatched conditions in the RMT scenario. We can

see that ESTN outperformed the other techniques and it is more effective in noise

mismatched conditions.
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6.5 Summary

In this chapter, we have proposed to incorporate the noise estimates in the DNN

inputs for robust ASR. From the experimental results, we have found that the noise

estimates obtained from the IMM algorithm are useful to enhance the recognition

performance in both the RFE and RMT scenarios. Especially, we found that the

proposed techniques were more effective to enhance the recognition performance in

the noise mismatched condition.
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Chapter 7

DNN-Based Robust Speech

Recognition Using Soft Target

Labels

7.1 Introduction

Recently, ASR has achieved a great success with the aid of the DNNs. The most

salient feature of the DNN is its ability to automatically learn an arbitrary unknown

mapping from the input to the target values. Interest in this DNN’s capability has

been also expanded to the area of robust speech recognition. The DNN-based al-

gorithms have recently shown better performances than the conventional noise pro-

cessing algorithms such as speech enhancement, feature compensation and model

adaptation techniques. The most prominent advantage of this approach is that the

parameters of the DNN-HMM recognizer can be directly trained to describe the re-

lations between the possibly corrupted input features and the desired target values
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while applying not only the clean speech features but also the corrupted features

as the training data. In a sense, this approach can be regarded as a multi-condition

training technique which is common in the area of robust ASR.

The supervised learning algorithms used in the DNN framework usually require

a large amount of labeled training data. Obtaining the correct labels is important

for those training algorithms. If each training instance has multiple semantic mean-

ings, multi-labels can be also applied to account for them, which has been tried

in several application areas, e.g., image, text and language processing [48]. In the

large vocabulary ASR area, the DNN estimates the posterior probabilities of the

tied context-dependent acoustic states (senones) from the acoustic observations. In

order to provide the target values for the DNN training, state level labels are usually

obtained from the Viterbi alignment using the reference word transcript and a well-

trained GMM-HMM system [15], [42], [44]. Since the quality of the target labels can

affect the performance of the DNN training, it is important to train a good GMM-

HMM system for state alignment. In [49], to further enhance the forced alignment,

realignment is performed iteratively using the updated DNN-HMM parameters.

The state level alignments usually provide the senones’ posterior probabilities.

When applied to the DNN training, these are converted to the hard target labels,

which means that the target value corresponding to the most probable senone is set

to one and all the others are fixed to zero. In contrast, we can consider an alternative

approach in which soft labels are used based on the senones’ posterior probabilities.

Soft labeling means that each target value is not restricted to 0 or 1 but takes non

negative values in (0,1) and their sum equals 1. In adverse conditions, confining the

target values only to a single senone is considered not proper since the distinction

between different acoustic units becomes more ambiguous as the speech is degraded
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more severely.

In this chapter, we propose a DNN training method using soft target labels

instead of hard labeling. The usage of the soft target labels at the DNN training can

be also regarded as taking advantage of the correlations among the target labels. In

a sense, this approach can be seen as a kind of structured learning technique [50]. In

our work, the soft target labels are obtained from the forward-backward algorithm

well-known in HMM training as applied in the handwriting recognition task [51].

The proposed method makes the DNN training be more robust in noisy and unseen

conditions. The performance of the proposed approach was evaluated on Aurora-4

DB and various noise mismatched test conditions, and better results were observed

compared to the conventional hard target labeling method.

7.2 DNN-HMM Hybrid System

The aim of a speech recognition system is to find the most likely word sequence

w = {w1, ..., wN} given an observation sequence x = {x1, ..., xT }, which can be

formulated as

ŵ = argmax
w

P (w|x). (7.1)

By applying Bayes rule and considering that the word sequence is independent of

the marginal distribution of the observations p(x), (7.1) can rewritten as

ŵ = argmax
w

p(x|w)P (w)

p(x)
(7.2)

= argmax
w

p(x|w)P (w) (7.3)

where P (w) is the prior probability of a particular word sequence provided by a

language model, and p(x|w) is calculated from an acoustic model. HMMs have
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been one of the most popular and successful acoustic models to date. The HMM

parameters are basically estimated according to the maximum likelihood criterion.

Given HMM parameters λ, (7.2) is converted to

ŵ = argmax
w

p(x|w, λ)P (w). (7.4)

Since the observation sequence is generated along a state sequence q = {q1, ..., qT } of

the HMM, the likelihood p(x|w, λ) is calculated as an expectation over all possible

hidden state sequences q associated with the hyphothesis w

p(x|w, λ) =
∑
q

p(x,q|w, λ) (7.5)

=
∑
q

p(x|q,w, λ)p(q|w, λ) (7.6)

=
∑
q

πq1

T∏
t=2

aqt−1qt

T∏
t=1

p(xt|qt) (7.7)

where πqt , aqt−1qt and p(xt|qt) denote the initial state probability, state transition

probability between states qt−1 and qt, and observation probability at state qt for

the observation xt respectively.

In (7.7), the state likelihood p(xt|qt) has been usually computed using GMM

until recently. In DNN-HMM hybrid systems, this likelihood is obtained from the

DNN. After the posterior probability p(qt|xt) is estimated, it is converted to the state

likelihood p(xt|qt) after being divided by the prior probability p(qt). The DNN-HMM

hybrid system takes advantage of the DNN’s strong representation learning power

and HMM’s sequential modeling ability, and outperforms the conventional GMM-

HMM system significantly in many large vocabulary continuous speech recognition

tasks [15].

In DNN training, in order to estimate p(qt|xt), the state level label information
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corresponding to the observation at each frame is needed. In the common framework

for DNN-HMM training, the maximum likelihood of the observation sequence given

one hidden state sequence is used to approximate the marginal likelihood over all

possible state sequences and this process is called the Viterbi algorithm, i.e.,

p(x|w, λ)P (w) ≈ max
q

p(x,q|w, λ)P (w). (7.8)

Given a training data and the corresponding transcript, 1-best state sequence is

obtained and then hard target label according to each observation is applied as the

target for the supervised learning of the DNN.

7.3 Soft Target Label Estimation

The core idea proposed in this work is to apply soft labels when training the

DNN instead of the conventional hard labeling scheme. In previous ASR studies, in

order to obtain the state level labels, the Viterbi alignment is used and it is one of

the best alternatives for getting the labels in the sequential data. When we consider

only one instance, the most probable state at that time cannot be chosen after back-

tracking in the Viterbi algorithm. In the proposed approach, we regard all possible

states at each instance.

The soft labels are derived from the posterior probability γj(t) of the state j

at time t given the observation sequence x, correct word sequence w and HMM

parameters λ. From the basic HMM formulation, it is easy to see that

γj(t) = P (qt = j|x,w, λ) (7.9)

=
∑
q\qt

P (q1, · · · , qt−1, qt = j, qt+1, · · · , qT |x,w, λ) (7.10)
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where q\qt = {q1, · · · , qt−1, qt+1, · · · , qT } denotes a subsequence excluding qt. This

probability can be calculated from the well-known forward-backward algorithm as

follows:

γj(t) =
αj(t)βj(t)

p(x|w, λ)
, j ∈ Q (7.11)

where

αj(t) = p(x1, · · · , xt, qt = j|w, λ), (7.12)

βj(t) = p(xt+1, · · · , xT |qt = j,w, λ), (7.13)

Q∑
j=1

γj(t) = 1 (7.14)

with Q denoting the set of all HMM states.

The posterior probabilities calculated from (7.11)-(7.14) can be directly used

for the target values of the DNN in the soft labeling scheme. Similar approaches

have been proposed in the sequence-discriminative training methods [42], [52], [53].

The aim of these approaches is to minimize the sentence level errors at the training

step. When comparing the reference transcript with the competing hypotheses, all

possible state sequences for the reference word sequence can be represented using

the forward-backward algorithm. In our work, we focus on minimizing the frame

level errors.

In order to further investigate the effect of soft target labels, we employ a control

parameter ξ with which the soft target labels are modified to γ′j(t) as

γ′j(t) =
γξj (t)∑Q
j=1 γ

ξ
j (t)

. (7.15)

If ξ →∞, γ′j(t) becomes the hard target labels and ξ → 0 means equally distributed

soft target labels. Note that it is not equal to the forced aligned hard target labels

using the Viterbi algorithm when ξ →∞.
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7.4 Experiments

We compared our proposed method with the conventional hard labeling approach

in noise matched and mismatched test conditions. The noise matched conditions

were built using the Aurora-4 DB. The noise mismatched conditions were made us-

ing 100 nonspeech environmental sounds [45]. The features used in the experiments

and the GMM-HMM system were described in Section 5.4.1. Furthermore, the per-

formance evaluation when training the DNN with various noise conditions was also

investigated.

7.4.1 DNN Structures

For the DNN-HMM hybrid system, we applied five hidden layers with 2048 nodes

as proposed in [43]. As for the input features of the DNN, we used the LMFB

features due to their good performance demonstrated in the previous studies. The

input features consisted of 11 frames (5 frames on each side of the current frame)

context window of 23 dimensional LMFB features with their first and second order

derivatives, which resulted in the input dimension of 759. The input features were

normalized to have zero mean and unit variance.

Generative pre-training using the restricted Boltzmann machines [13] was carried

out to initialize the DNN parameters as described in [42]. For supervised fine-tuning,

the initial learning rate 0.008 with the same 256 minibatch size as the pre-training

was used for the DNN training. The error between DNN output and reference target

value was calculated using the cross entropy criterion. The DNN parameters were

updated by using the back-propagation algorithm with a stochastic gradient descent

method. In order to speed up the training, we applied the learning rate scheduling
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Table 7.1: WERs (%) on Aurora-4 DB.

Model Label Set A Set B Set C Set D Average

Clean
HARD 7.12 47.55 42.91 65.98 52.23

DNN-HMM SOFT 7.12 47.33 43.88 65.68 52.07

Multi
HARD 7.81 11.71 12.27 22.71 16.18

DNN-HMM SOFT 7.53 11.53 11.66 22.67 16.03

Table 7.2: WERs (%) on noise mismatched test conditions.

Model Label New Set B New Set D Average

Clean
HARD 47.33 75.94 61.64

DNN-HMM SOFT 47.24 75.92 61.58

Multi
HARD 21.62 37.76 29.69

DNN-HMM SOFT 19.72 36.13 27.93

and stop criteria as described in Section 5.4.2.

7.4.2 Performance Evaluation

In order to evaluate the performance of our proposed method, we used Aurora-4

DB and noise mismatched data which was described in 6.4.2. Tables 7.1 and 7.2 show

the WERs on Aurora-4 DB and noise mismatched test conditions. For convenience,

the labeling methods using the conventional Viterbi alignment and the proposed

method were denoted by HARD and SOFT, respectively. In this experiments, we

set ξ in (7.15) to 1.0 for deriving the soft labels. From the results, we can see that

after applying the soft target labels for the DNN training, all the average WERs

were improved. Particularly, in noise mismatched test conditions, multi-condition
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Table 7.3: WERs (%) on Aurora-4 DB according to the control parameter ξ.

Model ξ Set A Set B Set C Set D Average

Multi

0.75 7.62 11.46 11.92 22.88 16.11

1.0 7.53 11.53 11.66 22.67 16.03

DNN-HMM 1.25 7.70 11.65 12.25 22.87 16.22

1.5 7.75 11.64 12.01 23.06 16.28

Table 7.4: WERs (%) on noise mismatched test conditions according to the control

parameter ξ.

Model ξ New Set B New Set D Average

Multi

0.75 19.43 35.99 27.71

1.0 19.72 36.13 27.93

DNN-HMM 1.25 18.89 36.01 27.45

1.5 19.38 36.21 27.79

DNN-HMM system showed great performance improvement with the usage of soft

labels.

7.4.3 Effects of Control Parameter ξ

The performance of soft labeling was further evaluated with various ξ in the

multi-condition DNN-HMM system. The control parameter ξ was varied from 0.75

to 1.5. ξ = 1.0 means that the posterior probabilities obtained from the forward-

backward algorithm were directly applied. Tables 7.3 and 7.4 respectively show the

WERs on Aurora-4 DB and noise mismatched test conditions with different ξ. In

Aurora-4 DB, the best performance was obtained with ξ = 1.0. On the other hand,
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Table 7.5: WERs (%) on Aurora-4 DB in the multi-condition DNN-HMM system.

Input type Pre-training Target labels Set A Set B Set C Set D Average

NSY

RBM
HARD 7.81 11.71 12.27 22.71 16.18

SOFT 7.53 11.53 11.66 22.67 16.03

SDPT
HARD 7.42 10.93 11.86 22.56 15.73

SOFT 7.23 10.90 11.75 22.33 15.60

ESTN

RBM
HARD 7.66 11.51 11.66 22.52 15.96

SOFT 7.94 11.69 11.97 22.45 16.06

SDPT
HARD 7.49 11.12 11.62 22.59 15.81

SOFT 7.34 11.04 12.24 22.31 15.69

in noise mismatched conditions, ξ = 1.25 resulted in the best performance.

7.4.4 An Integration with SDPT and ESTN Methods

In this section, we evaluated the performance of the integration of the initializa-

tion technique (SDPT) in Chapter 5, RMT using noise estimates (ESTN) in Chapter

6 and the soft target labeling technique (SOFT) in this work. For all the experiments

about the DNN structures, the DNN input features and GMM-HMM system, etc.,

we used the same setting in this work.

Table 7.5 and 7.6 show the WERs on matched and mismatched conditions in the

multi-condition DNN-HMM system. In Table 7.5, the combination of NSY, SDPT

and SOFT shows better performance results. We found that SDPT played an im-

portant role in the DNN training. It allowed the initial parameters of the DNN to

converge better local optimum given any input types. In Table 7.6, however, the ini-

tialization of the DNN training using SDPT brought worse performance than RBM.
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Table 7.6: WERs (%) on noise mismatched conditions in the multi-condition DNN-

HMM system.

Input type Pre-training Target labels New Set B New Set D Average

NSY

RBM
HARD 21.62 37.76 29.69

SOFT 19.72 36.13 27.93

SDPT
HARD 24.55 39.67 32.11

SOFT 23.19 38.72 30.96

ESTN

RBM
HARD 19.41 33.87 26.64

SOFT 18.94 33.42 26.18

SDPT
HARD 22.86 38.08 30.47

SOFT 21.18 35.99 28.59

This means that if the noise mismatched data was used as an input of the DNN

initialized using SDPT, the mismatched problem occurred in SDPT. In contrast,

the combinations of ESTN and SOFT robust to the mismatched conditions shows

the most performance in all the experiments.

7.4.5 Performance Evaluation on Various Noise Types

In order to investigate the performance of the DNN according to the number

of noise types, we made new three training sets using clean-condition training data

on Aurora-4 DB. The Set 1 consisted of clean speech, crowd, traffic and car, bell

and cough noises. The Set 2 had clap, snore, yawn and cry noises in addition to

the noised of the Set 1. The Set 3 had shower, tooth brushing, foot step and door

moving noises in addition to the noised of the Set 2. To sum up, Set 1, Set 2 and

Set 3 had 5, 9 and 13 conditions. The size of three training sets was the same as
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Table 7.7: WERs (%) according to the DNN structures on validation data of Set 3.

Hidden layer depth Validation set Number of parameters (M)

3 31.20 14.07

4 30.75 18.26

5 30.69 22.46

6 30.25 26.65

7 30.22 30.85

8 30.23 35.05

9 30.45 39.24

the clean-condition training data on Aurora-4 DB. For the evaluation, mismatched

noise condition New Set B was used.

To choose the adequate DNN structure on new training data sets, we fist eval-

uated the performance according to the DNN structures using Set 3. For training

and validation, Set 3 was divided into 90% and 10% of data. Table 7.7 shows the

WERs according to the DNN structures on validation data of Set 3. In our case, we

fixed the number of hidden nodes to 2048. The DNN with 7 hidden layers showed

better performance results. As one layer is piled up, the parameters of the DNN

increase. Efficiently to train the deep networks, a large amount of data is required

for training.

Table 7.8, 7.9 and 7.10 show the performance results on mismatched noise con-

ditions using Set 1, Set 2 and Set 3, respectively. The performance was evaluated

using the proposed SDPT, ESTN and SOFT techniques. In Table 7.8, 7.9 and 7.10,

IDEN means that the correct noise values are used in the DNN training instead of

the fixed or time varying noise estimates. In Set 3, the overall performance became
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Table 7.8: WERs (%) on noise mismatched conditions using Set 1.

Training set Pre-training Input type Target labels New Set B RERR (%)

Set 1

RBM

NSY
HARD 31.75 -

SOFT 31.84 -0.28

FIXN SOFT 28.89 9.00

ESTN SOFT 25.46 19.81

IDEN SOFT 23.57 25.76

SDPT

NSY SOFT 35.13 -10.64

FIXN SOFT 30.51 3.90

ESTN SOFT 30.96 2.48

IDEN SOFT 23.59 25.70

better than that of Set 1 and Set 2. As the number of noise types increases, the

performance results were better. The integrated solution of the proposed methods

using the ESTN and SOFT methods showed better performance results. In case of

IDEN, particularly, SDPT also showed better performance results on contrary to

those in 7.6. The training data with many noise conditions made the DNN to have

more generalization power. From all the performance results, we can see that the

proposed methods were effective to improve the recognition performance.

7.4.6 DNN Training and Decoding Time

DNNs have many hidden layers each of which has many neurons. This greatly

increases the total number of parameters in the model and slows down both the train-

ing and decoding. The training speed may be boosted by using high-performance

computing devices such as general purpose graphical processing units (GPGPUs).
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Table 7.9: WERs (%) on noise mismatched conditions using Set 2.

Training set Pre-training Input type Target labels New Set B RERR (%)

Set 2

RBM

NSY
HARD 23.34 -

SOFT 22.33 4.33

FIXN SOFT 22.03 5.61

ESTN SOFT 21.22 9.08

IDEN SOFT 16.49 29.35

SDPT

NSY SOFT 25.48 -9.17

FIXN SOFT 24.94 -6.85

ESTN SOFT 23.52 -0.77

IDEN SOFT 16.23 30.47

To compare the RTFs between CPU and GPU, we exploited the five hidden layers

with 2048 nodes. The dimension of the DNN input was 759 LMFB features and 2009

senones were used. Table 7.11 shows the RTFs of DNN training and decoding using

CPU and GPU. The RTFs for CPU were measured using Intel Xeon E5-2620 2.4

GHz processor and 16 GB memory running on Ubuntu Linux 14.04 LTS. The RTFs

for GPU were measured using GeForce GTX 980 with 2048 cores. From the results,

we have found that GPU performs significantly faster than CPU and are preferred

platforms for training DNNs.

7.5 Summary

In this chapter, we have proposed the DNN-based robust speech recognition ap-

proach using soft target labels. From the experimental results, we have found that the
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Table 7.10: WERs (%) on noise mismatched conditions using Set 3.

Training set Pre-training Input type Target labels New Set B RERR (%)

Set 3

RBM

NSY
HARD 20.82 -

SOFT 20.08 3.55

FIXN SOFT 20.14 3.27

ESTN SOFT 20.93 -0.53

IDEN SOFT 16.01 23.10

SDPT

NSY SOFT 23.16 -11.26

FIXN SOFT 22.96 -10.25

ESTN SOFT 21.84 -4.88

IDEN SOFT 13.91 33.17

Table 7.11: RTFs of DNN training and decoding using CPU and GPU.

Training (1 epoch) Decoding

CPU (xRT) 0.833021 0.842849

GPU (xRT) 0.006995 0.325861

soft target labels were useful to enhance the recognition performance. Particularly,

great performance improvement has been observed in unseen test conditions. The

combinations of the SDPT and ESTN methods were also investigated. In the noise

matched condition, SDPT brought better performance. In the noise mismatched

conditions, the combination of ESTN and SOFT showed better performance results.

Furthermore, the performance evaluation when training the DNN with various noise

conditions was also investigated. The proposed methods have been effective to en-

hance the recognition performance once again.
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Chapter 8

Conclusions

In this thesis, model-based and data-driven approaches for the environment-

robust speech recognition have been proposed. The sequential characteristic of the

speech was modeled by HMM. According to the way to calculate the emission prob-

abilities of the HMM, the type of the speech recognition decoder was divided into

GMM-HMM and DNN-HMM systems. In the GMM-HMM system, the acoustic

model was trained using the clean-condition training data and model-based tech-

nique was proposed in order to match the reverberant noisy input features with the

characteristic of the trained acoustic model. In the DNN-HMM system, the DNN was

trained using the multi-condition training data to obtain the relationship between

the input and the target labels. In accordance with these concepts, we proposed four

techniques for the environment-robust speech recognition.

Firstly, we have proposed a novel approach to estimate the clean feature vectors

in multi-channel environment, which was obtained by extending the single-channel

IMM algorithm to a multi-channel version. To reduce the computational complex-

ity of the multi-channel technique, a new state estimation method of the Kalman
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filtering also has been described. From various experiments in reverberant noisy en-

vironments and real environment, it has been confirmed that the proposed algorithm

has shown adequate results in terms of accuracy and computational complexity.

Secondly, we have proposed a novel supervised denoising pre-training technique

for the DNN robust to noisy input variations. The initial parameters of the DNN was

obtained from the supervised training using the BP algorithm. The target values was

calculated from the auxiliary DNN which was fine-tuned using the clean training data

and the corresponding target labels. From the experimental results, we have found

that the proposed method was effective to enhance the recognition performance in

adverse conditions.

Thirdly, we have proposed to incorporate the noise estimates in the DNN in-

puts for robust ASR. From the experimental results, we have found that the noise

estimates obtained from the IMM algorithm are useful to enhance the recognition

performance in both the RFE and RMT scenarios. Especially, we found that the pro-

posed technique was more effective to enhance the recognition performance in the

noise mismatched condition. Especially, ESTN method brought better performance

results in the noise mismatched conditions.

Finally, we have proposed the DNN-based robust speech recognition approach

using soft target labels. From the experimental results, we have found that the soft

target labels were useful to enhance the recognition performance. Particularly, great

performance improvement has been observed in unseen test conditions. Furthermore,

the combinations of the SDPT and ESTN methods were investigated. In the noise

matched condition, SDPT brought better performance. In the noise mismatched

conditions, the combination of ESTN and SOFT showed better performance results.
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요 약

본 논문에서는 주변 환경에 강인한 음성인식을 위한 모델 및 데이터기반 기법들을

제안한다. 모델기반 기법은 반향 및 잡음이 존재하는 환경에서 GMM-HMM 인식기를

대상으로 강인한 음성인식을 얻기 위한 특징 보상 기법이다. 이는 기존에 제안되었던

IMM 기반 단일 채널 알고리즘을 다중 채널로 확장하였다. 제안된 다중 채널 알고리즘

은 Bayisian 관점에서 기술되고 시간에 따라 변하는 반향 및 잡음의 특성을 실시간으로

추정에 나가는 장점을 가진다. 그리고 다중 채널의 계산량을 줄이기 위한 기법도 같

이 제안되었으며, 다중 채널 환경의 시뮬레이션 실험과 자동차 환경에서 녹음된 실제

데이터를 통해 성능이 검증되었다.

데이터기반 기법은 DNN-HMM 인식기를 대상으로 수행되며 세가지 기법이 제안

된다. 첫 번째로 주변 환경에 강인한 음성인식 성능을 얻기 위해 잡음 환경에서 DNN

의 파라미터들이 좀 더 나은 초기값을 가질 수 있도록 지도 학습 기반의 사전 학습을

제안한다.제안된알고리즘에서잡음데이터를입력으로하는 DNN의초기값은깨끗한

음성으로 구별 학습된 보조 DNN의 은닉층 노드의 값을 가지도록 역전파 알고리즘을

수행하여초기값이결정된다.제안된기법은 Aurora-4 DB에서여러사전학습기법들과

비교되었으며 좀 더 나은 성능을 보였다.

두 번째는 DNN의 학습 및 테스트 환경에서의 잡음 환경의 불일치에 따른 성능

감소를 보완하기 위해 주변 잡음 추정치를 DNN의 입력으로 같이 사용하는 기법이다.

이를통해서 DNN은입력데이터와주변잡음추정치의정보를모두활용하여학습되고
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테스트 시 학습에 쓰이지 않은 잡음 데이터가 입력으로 들어오더라도 주변 잡음 추정

정보를 통해 좀 더 강인한 인식 성능을 얻을 수 있도록 한다. 주변 잡음은 IMM 기반

알고리즘을 통해서 얻어진다. 제안된 기법은 Aurora-4 DB에서 기존에 고정된 잡음

추정치를 사용하는 기법과 비교되어 좀 더 나은 성능을 보였다.

마지막으로 DNN 학습에서의 대상 레이블 정보를 고정된 값을 사용하는 것이 아니

라확률정보에기반한레이블을사용하는것이다.이는잡음데이터가주어질경우에는

여러 입력에 대해 하나의 고정된 정답을 주는 것보다 가능한 정답을 모두 제공해 주는

것이 좀 더 학습의 강인함을 증가시킬 수 있기 때문이다. 확률 정보에 기반한 레이블은

forward-backward 알고리즘을 통해 얻어졌으며 기존 Viterbi 알고리즘을 통해 얻어지

는 고정된 레이블을 사용하는 방법과 Aurora-4 DB에서 비교되었고 좀 더 나은 성능을

확인할 수 있었다.

게다가, 모델기반 기법과 데이터기반 기법에서 제안된 세가지의 기법들을 하나의

통합된알고리즘으로제안하였고이는학습과테스트시의잡음환경의일치및불일치

조건에 대해서 평가되었다. 결과적으로 잡음 환경이 일치할 경우에는 초기값을 정하는

기법이중요한역할을하였으며잡음환경이불일치할경우에는잡음추정치를 DNN의

입력으로 사용하는 기법과 확률에 기반한 대상 레이블을 같이 사용했을 때 가장 좋은

성능을 보였다.

주요어: 강인한 음성인식, 다중 채널, interacting multiple model (IMM), 반향 제거,

사전 학습, 잡음 제거, 잡음 추정, deep neural network (DNN), DNN 기반의

regression, 오류 역전파 알고리즘, 확률 기반 대상 레이블, Viterbi 알고리즘,

forward-backward 알고리즘
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