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ABSTRACT 

Improving MIMO Performance in  

Wi-Fi Networks by using Collision 

Resolution and User Selection 

 

Kyu-haeng Lee 

Department of Electrical Engineering & Computer Science 

The Graduate School 

Seoul National University 

 

Multiple-Input Multiple-Output (MIMO) technologies have emerged as a key 

component to increase the capacity of wireless networks. The MIMO scheme either 

simultaneously transmits to multiple users at a time or focuses energy towards a single 

user to enhance the data rate. A number of Wi-Fi standards based on MIMO 

technology have been developed, and recently, several commercial products have 

been successfully deployed on the market. Unfortunately, many commercial MIMO-

based Wi-Fi products fail to fully exploit the advantages of the MIMO technology, 

even though the MIMO technology could play a key role in improving the wireless 

network performance. MIMO nodes cannot provide their higher data rates, especially 

when they coexist with SISO nodes. Meanwhile, in Wi-Fi networks, significant 

Channel State Information (CSI) feedback overhead has been obstacle to the 

performance of MU-MIMO transmission and user selection. Most of these problems 

are observed to root in the inefficient PHY and MAC design of current MIMO based 

Wi-Fi systems: the MAC simply abstracts the advancement of PHY technologies as 

a change of data rate. Hence, the benefit of new PHY technologies are either not fully 

exploited, or they even may harm the performance of existing network protocols.  
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In this dissertation we introduce three co-designs of PHY/MAC layers for MIMO 

based Wi-Fi networks, in order to overcome the intrinsic limitations of the current 

MIMO based Wi-Fi network and improve the network capacity. First, we show the 

Interference Alignment and Cancelation (IAC) based collision resolution scheme for 

heterogeneous MIMO based Wi-Fi systems. Second, we present a practical user 

selection scheme for MU-MIMO Wi-Fi networks. Finally, we improve the proposed 

user selection scheme by exploiting a frequency domain signaling scheme and using 

a capacity gain as a selection metric. We have validated the feasibility and 

performance of our designs using extensive analysis, simulation and USRP testbed 

implementation. 
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CHAPTER I 

 

 

Introduction 

 

 

1.1 Background and Motivation 

 

Multiple-Input Multiple-Output (MIMO) technologies have emerged as a key 

component to increase the capacity of wireless networks. The MIMO scheme either 

simultaneously transmits to multiple users at a time (i.e., MU-MIMO: Multi-User 

MIMO) or focuses energy towards a single user to enhance the data rate (i.e., transmit 

beamforming). A number of Wi-Fi standards based on MIMO technology [1], [2] as 

well as cellular technologies such as LTE systems [3] have been developed, and 

recently, several commercial products have been successfully deployed on the market.  

Unfortunately, many commercial MIMO-based Wi-Fi products fail to fully exploit 

the advantages of the MIMO technology, even though the MIMO technology could 

play a key role in improving the wireless network performance. MIMO nodes cannot 

provide their higher data rates, especially when they coexist with SISO nodes. 

Meanwhile, in Wi-Fi networks, significant Channel State Information (CSI) feedback 

overhead has been obstacle to the performance of MU-MIMO transmission and user 

selection. Most of these problems are observed to root in the inefficient PHY and 
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MAC design: the MAC simply abstracts the advancement of PHY technologies as a 

change of data rate. Hence, the benefit of new PHY (i.e., MIMO) technologies are 

either not fully exploited, or they even may harm the performance of existing network 

protocols.  

In this dissertation, we have identified the following limitations of MIMO based Wi-

Fi networks.  

 Coexistence of heterogeneous MIMO networks 

As a result of the rapid technology advances, there exist heterogeneous nodes with 

diverse number of antennas in the same network; large devices such as Access Points 

(APs) or laptops are increasingly equipped with multiple antennas while small 

devices such as smartphones or sensors have a single antenna due to the limited 

physical size, capabilities, and cost. 

MIMO-based Wi-Fi networks experience the same performance anomaly problem 

[4] observed in Single-Input Single-Output (SISO)-based Wi-Fi networks; slow 

nodes consume more channel time than fast nodes under the equal channel access 

policy, and the overall system throughput decreases. In heterogeneous networks, the 

performance anomaly phenomenon can be severe because the performance disparity 

between a SISO node in a poor channel condition and a MIMO node in a good 

channel condition is large.  
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Figure 1.1: MU-MIMO transmission in 802.11ac. The AP randomly polls a set of users for 

MU-MIMO transmission. 

 

 

 Significant CSI feedback overhead for MU-MIMO transmission 

To enjoy the high transmission rate of MIMO via interference cancelation or user 

selection, a transmitter should acquire the CSI from the transmitter to a receiver. To 

obtain CSI at MIMO transmitters, current technologies use the Request-to-

Send/Clear-to-Send (RTS/CTS)-like feedback mechanism [1], [5] or poll-based 

feedback mechanism [2], as shown in Figure 1.1. However, the CSI feedback 

overhead can be quite large because those control frames are generally transmitted at 

the low basic data rate, thus taking a significant portion of the channel time. The CSI 

feedback overhead can reach up to 25x compared to the data transmission time in the 

case of 160MHz of bandwidth and 4x1 MIMO [6].  

 Limited scalability for user selection in MU-MIMO networks 

Optimal user selection is essential for increasing the capacity of MU-MIMO Wi-Fi 

networks. However, determining an optimal user set is difficult and impractical since 

it requires an exhaustive search over all possible user and antenna sets, and its search 

space is ∑ (
𝐾
𝑚

)𝑀
𝑚=1 , where 𝐾 and 𝑀 are the number of users and the number of AP 

antennas, respectively. Many researchers have developed greedy user selection 

algorithms aimed to provide sub-optimal performance while reducing the feedback 

overhead as well as computational burden [7-12]. The main idea behind the most 

prior schemes is to incrementally select a user in each iteration by some selection 

criteria instead of conducting exhaustive search for all user and antenna set 
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combinations. For example, one user is selected in each iteration such that the new 

user minimizes interference to previously selected streams. 

To accomplish the benefit of the MU-MIMO user selection in the aforementioned 

algorithms, we need to exploit the multi-user diversity gain; at a given time, the AP 

can select the best user (e.g., a user with favorable channel conditions) among 

candidates to improve the system throughput. To leverage multi-user diversity, two 

key challenges should be addressed: reducing the CSI feedback overhead and 

employing the proper scheduling policy for user selection. 
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Figure 1.2: Throughput gain of user scheduling over 802.11ac. 𝑀 and 𝐾 stand for the 

number of AP antennas and the number of users, respectively. In this simulation, we set 𝐾 =
15, and all users are assumed to have the same average SNR of 16.7dB. We set 5Mbps and 

500kbps of traffic sending rates for downlink and uplink, respectively. As a user scheduling 

algorithm, we choose Semiorthogonal User Selection (SUS) [9], where a multi-antenna node 

selects a user if it has the highest ECG (Effective Channel Gain) among users in each selecting 

round. The red horizontal dashed line indicates the zero gain. 

 

 

First, the downlink CSI of the candidate users must be efficiently fed back to the AP. 

Different from cellular systems [3] where separate control channels are used to report 

the CSI, current 802.11ac Wi-Fi systems use a series of poll-based CSI feedbacks for 

each user [2], as shown in Figure 1.1. As mentioned before, the CSI feedback 

overhead can reach up to 25x compared to the data transmission time in the worst 

case, and such excessive overhead could easily overwhelm the multi-user diversity 

gain even under optimal user selection. Figure 1.2 shows the throughput gains of a 

user selection scheme over 802.11ac as a function of the number of polls. As shown 

in the figure, throughput gain in the downlink decreases with the number of polls. In 

particular, when the AP accesses the CSI of all users, the loss increases to about 70%. 

Significant CSI overhead in the downlink also brings a slight throughput loss in the 

uplink, thereby degrading the whole system performance. 
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Second, it is vital to select the best user in every user selection step to leverage the 

MU-MIMO capability by employing the appropriate user selection metric. The 

projected norm, which is defined as the norm of the user channel projected to the 

orthogonal subspace of the previously selected user channels [9], is widely used, since 

it considers both the channel power gain and the orthogonality. However, in some 

cases, the projected norm based scheme may result in undesirable user selection, due 

to the fact that it does not consider how the newly joined user channel impacts the 

already selected ones, if there are any. This may fail to maximize the sum-capacity in 

each iteration, and occasionally cannot guarantee a positive increment in the sum-

capacity. To handle this issue, the AP that employs the norm-based scheme must 

additionally compute the sum-capacity to assure that it gives positive increment. Here, 

the feedback report may have induced unnecessary overhead, since the user may not 

be selected. 

Most of the above problems are caused by the way how the MAC layer interfaces 

with the PHY layer through abstraction. Although MIMO PHY layer features are 

continuously evolving, the MAC protocols still remain intact, and thus they miss 

many opportunities to improve the network performance.  
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Table 1.1: Summary of the Contributions and Approaches in PHY/MAC Co-Design. 

Chapter PHY MAC Goal 

II 

(802.11mc) 

Postamble and IAC 

based collision 

resolution 

Random access 

protocol for collision 

resolution and 

concurrent 

transmission 

MIMO based collision 

resolution scheme for 

heterogeneous MIMO 

networks 

Contributions: 

1. Propose the design of a new MU-MIMO MAC protocol that solves the 

frame collision problem via postamble. 

2. Provide a mathematical analysis to derive the optimal probability to add 

postamble. 

3. Show the feasibility of 802.11mc by implementing the prototype on 

USRP/GNURadio and also on NS-2 simulator. 

III 

(802.11ac+) 

Effective channel 

gain 

Time-domain 

contention for user 

selection 

Scalable user selection 

scheme for MU-MIMO 

Wi-Fi networks 

Contributions: 

1. Propose the design of an MU-MIMO MAC protocol that accomplishes 

user selection scheme with a very small amount of CSI feedback. 

2. Provide a channel hint broadcasting mechanism and an active CSI 

feedback scheme and two fair scheduling protocols based on 802.11ac+. 

3. Evaluate the performance of 802.11ac+ via MATLAB simulations. 

IV 

(DiFuse) 

Overhearing CSI 

feedbacks and 

frequency domain 

signaling 

Distributed user 

selection metric 

computation and 

frequency-domain 

contention 

Enhanced user selection 

protocol for MU-MIMO 

Wi-Fi networks 

Contributions: 

1. Propose the design of an enhanced user selection protocol for MU-MIMO 

Wi-Fi networks. 

2. Propose a frequency domain contention for user selection and provide a 

new selection metric. 

3. Show the feasibility of DiFuse by implementing the prototype on 

USRP/GNURadio and also on MATLAB simulator. 
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1.2 Goal and Contribution 

 

This dissertation proposes three co-designs of PHY/MAC layers for MIMO based 

Wi-Fi networks, in order to overcome the above limitations and also improve the 

network capacity. We summarize the contributions and approaches in our PHY/MAC 

co-designs in Table 1.1. 

First, we present a novel MU-MIMO MAC protocol for heterogeneous MIMO based 

Wi-Fi systems called 802.11 MIMO-based collision resolution (802.11mc for short). 

The 802.11mc protocol resolves RTS frame collision and extracts CSI from the 

resolved RTS frames for simultaneous data transmissions. In resolving collided RTS 

frames, 802.11mc uses the interference handling capability of the multi-antenna array. 

Then, the receiver sends the CTS reply back to the RTS sender such that it can 

continue its data frame transmissions as if there were no collisions. In contrast, in the 

legacy system, the collisions lead to exponential backoff and delayed retransmissions. 

Second, we present a practical user selection scheme for MU-MIMO Wi-Fi 

networks, called 802.11ac+. In 802.11ac+, the AP broadcasts channel information 

about previously scheduled users by appending it to a poll frame. Then users calculate 

their effective channel gains from the received information, and the user with the 

largest gain actively sends a CSI report back the the AP. Upon receiving the CSI 

report, the AP includes the user in the multi-user transmission schedule and repeats 

this process while its Degree of Freedom (DoF) constraint is satisfied. 

Lastly, we present an enhanced version of our user selection protocol called DiFuse 

(Distributed Frequency domain user selection). In this scheme, the capacity gain is 

used as a scheduling metric in user selection: given a user set, the capacity gain of a 

new user is defined as the increment in network capacity achieved by including the 

new user to the user set. In particular, each user cleverly computes its expected sum-

capacity gain by overhearing the CSI feedback transmissions from other users. Then 

each user sends its sum-capacity gain in a simplified format via frequency domain 

contention. The AP uses them to select the best user, then polls it for the actual CSI 

transmission.  
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1.3 Thesis Organization 

 

The remainder of this dissertation is organized as follows. In Chapter II we introduce 

an MU-MIMO MAC protocol for heterogeneous MIMO-based Wi-Fi systems, called 

802.11mc. In Chapter III we describe 802.11ac+, the user scheduling protocol for 

MU-MIMO Wi-Fi networks. In Chapter IV we introduce DiFuse, an enhanced user 

selection protocol. Finally, Chapter V summarizes the contribution of this dissertation.   
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CHAPTER II 

 

 

MIMO based Collision Resolution 

 

 

2.1 Introduction 

 

In this chapter, we present a novel MU-MIMO MAC protocol for heterogeneous 

MIMO-based Wi-Fi systems called 802.11 MIMO-based collision resolution 

(802.11mc for short). The 802.11mc protocol resolves RTS frame collision and 

extracts CSI from the resolved RTS frames for simultaneous data transmissions. In 

resolving collided RTS frames, 802.11mc uses the interference handling capability of 

the multi-antenna array. Then, the receiver sends the CTS reply back to the RTS 

sender such that it can continue its data frame transmissions as if there were no 

collisions. In contrast, in the legacy system, the collisions lead to exponential backoff 

and delayed retransmissions. 

The design of 802.11mc is challenging for the following reasons. When a packet 

collision occurs, a receiver may decode the overlapping frames by employing 

Interference Alignment and Cancelation (IAC). To enable IAC, the receiver should 

obtain at least one clear CSI, which usually can be retrieved on the fly from known 
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bit sequences such as a preamble. Unfortunately, the medium access mechanism of 

the 802.11 almost synchronizes the nodes so that the preambles mostly overlap. To 

solve this problem, we adopt the postamble design at the end of an RTS frame. We 

call an RTS frame with a postamble an mc-RTS. An mc-RTS provides the CSI when 

it collides with non-postamble RTS frames (the legacy RTS frames). Using this CSI, 

the MIMO receiver can efficiently perform the IAC to decode the collided RTS. 

Furthermore, to handle collisions between more than two mc-RTS frames, the 

sending nodes add different numbers of postambles according to their receiver types. 

More specifically, a sender adds 𝑚– 1 postambles if the target node has 𝑚 antennas. 

Let mc-RTSm be an mc-RTS with 𝑚– 1 postambles. We need to add postambles 

probabilistically to avoid collisions between mc-RTS frames with the same number 

of postambles. We take a probabilistic approach and propose an analytic framework 

to derive the optimal 𝑝, which is the probability of transmitting an mc-RTS.  

To show the feasibility of our approach, we implement the 802.11mc prototype on 

the Universal Software Radio Peripheral (USRP) N210 and GNURadio [13]. We 

evaluate the performance of 802.11mc via both the USRP testbed experiments and 

extensive NS-2 simulations. The results show that 802.11mc obtains higher 

throughput gain than 802.11n and 802.11n+ by addressing the frame collision 

problem even in the heavily congested network. 

We summarize our main contributions as follows. First, we propose the design of a 

new MU-MIMO MAC protocol, called 802.11mc, that solves the frame collision 

problem via postamble. Second, we provide a mathematical analysis to derive the 

optimal probability to add postamble. Finally, we show the feasibility of 802.11mc 

by implementing the prototype on USRP/GNURadio and also on NS-2 simulator. 

The remainder of this chapter is organized as follows. Section 2.2 provides the 

related work, and we give our motivation and a description of the IAC in Section 2.3. 

We next describe the 802.11mc mechanism in a greater detail in Section 2.4. Section 

2.5 shows the performance evaluation based on USRP experiments, and Section 2.6 

provides NS-2 simulation results. We finally conclude this chapter in Section 2.7. 
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2.2 Related Work 

 

We survey the research results on the collision resolution and concurrent 

transmission techniques related to 802.11mc.  

Collision Handling Schemes 

Recent advances in signal processing enable overcoming the problem in 

conventional wireless transmissions, i.e., discard all collided frames. Partial recovery 

schemes utilize known symbols to recover collided frames and reduce the frame 

retransmissions [14], [15]. ZigZag decoding [16], Chorus [17], and analog network 

coding [18] use some powerful physical layer techniques such as successive 

interference cancelation and analog network coding. These schemes, however, are 

limited only to very specific collision cases, e.g., successive collisions by hidden 

terminals. 

Similar to the collision detection capability in wired networks, several methods [19], 

[20] that notify collisions to transmitters in wireless networks have been proposed. 

Carrier Sense Multiple Access with Collision Notification (CSMA/CN) [20] enables 

transmitting nodes to detect a collision during transmission and force them to abort 

transmission. In order to realize this scheme, transmitters have to use the full-duplex 

function of a multi-antenna array. This assumption does not fit to our network 

environment where common SISO and MIMO nodes coexist in the network. 

MU-MIMO Concurrent Transmission 

In MU-MIMO protocols, multiple users can transmit and receive independent data 

streams simultaneously. MU-MIMO transmissions can occur both in the 

infrastructure mode and the ad hoc mode. Let us consider first downlink transmission 

in the infrastructure. In this case, MIMO- equipped APs can transmit different data to 

multiple users simultaneously by using precoding. Precoding requires a priori 

apprehension of channel information, which incurs significant channel feedback 

overhead [6]. This is the main reason why downlink MU-MIMO feature is not 

included as mandatory but is an option in an IEEE 802.11ac standard [2]. Concurrent 

upstream transmissions to an AP in the infrastructure mode are even more difficult 

than downstream communications because client nodes synchronize their 
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transmissions to realize beamforming. Instead, staggered transmission methods can 

be used so that the MIMO AP or base stations can decode overlapped uplink frames 

one by one [21], [22]. In the ad hoc mode, beamforming is required on both senders 

and receivers. IAC [23] connects multiple APs to each other with a backbone wired 

network such that connected APs act as a single virtual MIMO AP. IAC achieves a 

higher degree of concurrence than other MIMO schemes. However, to handle 

interference, APs must somehow exchange the decoded packet, e.g., using wired 

transmission. 

A novel MU-MIMO MAC called 802.11n+ [5] enables distributed random accesses. 

In 802.11n+, a MIMO node can send its frame along with the ongoing transmissions 

from other SISO nodes if there are unused DoFs. To realize this, the authors propose 

two schemes, i.e., carrier sensing in a multi-dimensional space and interference 

nulling and alignment. First, 802.11n+ nodes need to carrier sense in the presence of 

ongoing transmissions. To do this, they project the received signal on a space 

orthogonal to the ongoing transmissions in a multi-dimensional space that a multi-

antenna array creates. Second, for MIMO nodes to transmit without interfering the 

ongoing transmissions, they should perform the interference nulling and alignment. 

This scheme, however, requires MIMO transmitters to know the CSI from the 

receivers of ongoing transmissions, as well as their own receivers. To do this, 

802.11n+ requires RTS/CTS exchange before data transmission. In this system, the 

overall system throughput significantly increases because MIMO nodes have 

additional transmission chances concurrent to ongoing transmissions of SISO nodes. 

While several ideas of 802.11n+ may bear some resemblance to our scheme, the SISO 

nodes in 802.11n+ cannot enjoy any additional transmission opportunities. Rather, 

802.11n+ requires the RTS/CTS handshake and may even degrade the performance 

of SISO nodes, although they use a lightweight RTS/CTS [24] to lower the overhead. 

In contrast, our scheme increases the transmission opportunities, even for the SISO 

nodes and the MIMO nodes. 
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2.3 Background 

 

2.3.1 Packet Collision Problems in MIMO Networks 

The packet collision problem has long been highlighted in wireless communication 

systems because of its adverse effect on wireless capacity. For example, the well-

known incident of Steve Jobs’ iPhone keynote presentation failure in 2010 due to 

arduous access contentions shows the severity of this problem. Until now, numerous 

collision resolution methods have been proposed. The RTS/CTS mechanism, based 

on a simple intuition, i.e., RTS/CTS frames take much less channel duration 

compared with data frames, is an attractive solution to ease the burden of such 

collision problems. In addition, many researchers exploit the RTS/CTS mechanism 

as a versatile tool to achieve different purposes such as rate adaptation and CSI 

estimation. Since RTS/CTS frames are transmitted at the basic data rate (e.g., 

6.5Mbps in 802.11n), however, RTS/CTS collision time can be quite large in high-

data-rate WLAN systems such as 802.11n or 802.11ac. For example, if a 

retransmission due to a collision of RTS frames occurs and transmits a 1500-byte 

frame through a channel of 130Mbps data rate, at least two RTS frames, i.e., one CTS 

frame and one DATA frame transmissions, are required. The channel duration periods 

for the control and data frames are 126.46μs and 154.15μs, respectively, which means 

that about 45% of transmission time is being consumed for the RTS/CTS control 

exchange when a collision happens. 

802.11mc resolves collisions in MIMO networks, may it be an RTS. This would 

result in a significant system throughput increase. To realize this, 802.11mc exploits 

the interference-handling capability of a multi-antenna array (e.g., IAC and 

postamble), whereas most previous proposals fail to fully exploit the capabilities of 

multi-antenna techniques. 
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Figure 2.1: Example of a heterogeneous MIMO network. Two nodes TX1 and TX2 send 

frames to their receivers RX1 and RX2, respectively. This topology is a heterogeneous MIMO 

network, where the first flow is MIMO, and the second flow is SISO. 

 

 

2.3.2 IAC 

IAC is a key physical layer technique that enables the MIMO receiver to recover the 

signal when packet collisions occur. Consider two pairs of nodes, i.e., (TX1, RX1) 

and (TX2, RX2), in a heterogeneous MU-MIMO system, as shown in Figure 2.1. We 

assume that the multi-antenna node TX1 uses only one antenna in this example. 

Transmitters TX1 and TX2 simultaneously send frames, i.e., 𝑥1  and 𝑥2 , to their 

receivers RX1 and RX2, respectively. Each receiver receives a combined signal of 

the two concurrent transmissions, and a collision occurs. Now, we explain how a 

multi-antenna receiver RX1 can decode all collided frames, whereas a single-antenna 

receiver RX2 cannot. We denote ℎ𝑟𝑡 as a channel state from the transmitting antenna 

𝑡 of transmitters to the receiving antenna 𝑟 of receivers, e.g., ℎ21 means the channel 

state from antenna 1 of TX1 to antenna 2 of RX1 in Figure 2.1. Then, received signals 

at RX1 are represented as1 

𝑦1 = ℎ11𝑥1 + ℎ12𝑥2                       (1) 

                                           
1 For simplicity, we omit the noise terms. 
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𝑦2 = ℎ21𝑥1 + ℎ22𝑥2.                      (2) 

Our purpose is to decode all received frames, i.e., 𝑥1 and 𝑥2. If all CSI is given, we 

can readily decode the frames by solving linear equations (1) and (2), as do typical 

MIMO decoders [25, [26]. IAC is a new technology that recovers two concurrent 

frames knowing only one CSI. Let us assume that RX1 already knows the CSI of 

TX1, i.e., 𝐻1 = (
ℎ11

ℎ21
). (We will explain how a multi-antenna receiver can obtain this 

CSI in Section 2.4.2.) 

From (1) and (2), we obtain  

ℎ21𝑦1 − ℎ11𝑦2 = ℎ21ℎ12𝑥2 − ℎ11ℎ22𝑥2.               (3) 

Substituting the left-hand side of (3) into 𝑦′, we finally obtain  

𝑦′ = (ℎ21ℎ12 − ℎ11ℎ22)𝑥2.                    (4) 

Equation (4) represents that the linear combination of received signals is composed 

of only one signal 𝑥2. This procedure is IA, which aligns more than two signals along 

with a target direction to nullify one signal. In the previous example, the alignment 

nullifies signal 𝑥1 and, hence, enables decoding of signal 𝑥2. The next step is to 

decode the other frame 𝑥1 . Fortunately, since we already decoded 𝑥2 , we can 

reconstruct the original form of 𝑥2. Canceling 𝑥2 from (1) or (2), we can finally 

decode the signal 𝑥1 . Note that the whole frame of 𝑥2  can be used as training 

symbols to estimate the CSI from TX2 [21]. 

The IAC is easily generalized for 𝑀-antenna MIMO receivers. According to the 

theory [26], an 𝑀-antenna MIMO receiver can decode maximum 𝑀 overlapping 

signals using the IAC repeatedly. Recently, several researchers have been utilizing 

this method to their systems [5], [16], [21-23]. We give more details of our protocol 

in the following section. 
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Figure 2.2: Comparison of three schemes: 802.11n, 802.11n+, and 802.11mc. 802.11mc 

provides higher throughput by collision resolution and concurrent transmission. In the figure, 

letters “R,” “C,” and “mR” represent RTS, CTS, and mc-RTS frames, respectively. A blue-

colored box represents the concurrent frame transmission from a MIMO node. (a) 802.11n. 

(b) 802.11n+. (c) 802.11mc. 

 

 

2.4 802.11mc 

 

2.4.1 Protocol Overview 

We compare the operation of 802.11mc with those of 802.11n and 802.11n+ in 

Figure 2.2 under the network topology2 shown in Figure 2.1. In this example, a frame 

collision happens at the beginning. Note that we assume that the 802.11n does not use 

                                           
2  We consider a heterogeneous MIMO network, where each device communicates with 

another device, similar to 802.11n+. For example, inside a single house, a user connects her 

smartphone to a multi-antenna AP, while a home controller with a single antenna 

communicates with sensor nodes. 
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RTS/CTS, and 802.11n+ and 802.11mc use RTS/CTS for CSI measurements. 

Additionally, we assume that a MIMO node may use all antennas in data transmission 

but use only one antenna in RTS transmission. 

Let us first examine the 802.11n operation, as shown in Figure 2.2 (a). Since 802.11n 

can only operate in the SU-MIMO mode, it cannot resolve the frame collision. In case 

of RTS frame collision, receivers fail to recover the frames and both transmitters back 

off to the next round [see Figure 2.2 (b)]. If the MIMO node captures the medium, it 

uses the medium exclusively. However, if the SISO node captures the medium, the 

MIMO node can transmit concurrently with the SISO node.  

Meanwhile, when RTS frames collide, 802.11mc may not require the RTS 

retransmissions because MIMO receivers can decode all the collided frames, as 

shown in Figure 2.2 (c). As a result, 802.11mc gives transmission opportunities even 

under packet collision, providing better channel utilization than 802.11n or 802.11n+. 

We propose a postamble frame structure to increase the opportunity to receive clean 

signals of known bit pattern. 

The part of achieving DoF for concurrent transmission in 802.11mc is basically 

similar with that of 802.11n+. We understand that the method to exploit DoF, e.g., 

aligning signals from different spatial domain channels into one target spatial domain, 

is not new and has already been used in other recent MIMO systems. In order to 

achieve this goal, the CSI should be acquired prior to the transmission, and both 

802.11mc and 802.11n+ utilize the RTS/CTS for this purpose. One difference from 

802.11n+ is that we can reduce the number of control frame exchanges because 

802.11mc MIMO nodes can extract the CSI, even when a collision occurs.  
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Figure 2.3: Example of an mc-RTS. A collision prevents receivers estimating the CSI from 

preambles. In an mc-RTS, a node duplicates and appends a preamble at the end of the RTS 

frame. 

 

 

2.4.2 Packet Collision Resolution via IAC  

As previously described, we can recover collided frames, applying IAC if one of the 

channel states is known. A clever way to acquire the CSI is to guess the channel state 

by comparing arrived preamble signals with expected signals of the same known bit 

sequence. However, when a packet collision occurs, the collided frames typically 

overlap from the beginning and the preambles are typically corrupted. One method 

to protect the preamble is to artificially regulate transmission start times [21], [22]. A 

node intentionally transmits its packet after the preamble duration of another ongoing 

transmission so that the two preambles do not overlap. However, this procedure fails 

to avoid collision completely, e.g., collisions of multiple nodes with the same backoff 

counters. 

If only one of the nodes transmits an mc-RTS, then a MIMO receiver can measure 

the CSI from the clean postamble signal, as shown in Figure 2.3. If both transmitters 

use mc-RTSs, then we cannot receive a clean postamble, and thus, IAC fails. To 

increase the probability of clean postambles, we use two approaches. One is to append 

postamble probabilistically; not all RTS frames have postambles, but a postamble is 

appended with probability 𝑝. Another approach is to vary the number of postambles 

according to receiver antenna configuration. More specifically, a transmitter pads 

postambles in proportion to the number of its receiver’s antennas. Recall that the 
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number of postambles is not determined by the number of antennas of the transmitter 

but of the receiver. For example, an mc-RTSm for an 𝑚-antenna receiver has 𝑚 − 1 

postambles. Note that a transmitter appends 𝑚 − 1 postambles with probability 𝑝 if 

its receiver has 𝑚 antennas. 
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Figure 2.4: Generalization to an 𝑴 -antenna MIMO. Each transmitter pads multiple 

postambles in proportion to the number of its receiver’s antennas, as shown in (b). In this 

example, only RX3 can decode up to three overlapping signals by repeatedly using the IAC. 

(a) Example of generalized networks. (b) mc-RTS for each receiver. 

 

 

Opportunistic postambles make 802.11mc handle the various collisions between 

more than two frames. Let us consider an example with three transceiver pairs in 

Figure 2.4 (a). In this example, three transmitters simultaneously send RTS frames to 

their receivers. Recall that we assume that RTS frames are sent by using a single 

antenna. TX1 cannot append postambles since its receiver RX1 is a single-antenna 

node. Other transmitters, i.e., TX2 and TX3, use mc-RTS2 and mc-RTS3, respectively. 

Then, each receiver receives the overlapping frames, as shown in Figure 2.4 (b). RX3 

can decode overlapping signals by repeatedly using the IAC and send a CTS back to 

its transmitter TX3, whereas others cannot decode the signals due to their DoF 

constraints. 

The use of postamble is the only change we have made in this work, and it does not 

render any issues on the interoperation of legacy and 802.11mc nodes. First, when 

802.11mc nodes send a legacy RTS, nodes will work as the legacy 802.11 systems. 

Second, when an mc-RTS is transmitted without collision, nodes just decode the 

frame by using the preamble. Third, when an mc-RTS is transmitted with collision, 

802.11mc nodes detect the collision and perform decoding from the postamble, 
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whereas the legacy nodes may regard the postamble as a regular preamble but cannot 

do anything with it. 

The 802.11mc (MIMO) receivers should maintain a buffer of samples of previously 

received symbols. Fortunately, the length of the RTS is fixed in 802.11 systems, and 

those of postambles are determined by the number of receiver antennas. Thus, 

receivers may simply keep the buffer size at least the length of their mc-RTSs.  

 

2.4.3 Collisions between Multiple CTSs  

Next, consider the case where multiple MIMO receivers succeed in decoding the 

collided frames using the mc-RTS. Here, a CTS collision can happen since they will 

attempt to send the CTS simultaneously. To solve the CTS collision, we give the right 

to send a CTS to only one MIMO receiver whose sender has sent the longest mc-RTS 

before. This guarantees that only one receiver sends a CTS at a time even if multiple 

MIMO receivers decode the collided RTS frames. Let us assume that RX2 in Figure 

2.1 is equipped with three antennas and TX1 and TX2 send mc-RTS2 and mc-RTS3 

to their receivers, respectively. In this case, both receivers can decode the collided 

frames with their enough DoFs and RX1 cannot send a CTS to TX1. Instead, RX2 

sends a CTS to TX2, i.e., the length of mc-RTS2 < the length of mc-RTS3. 

As shown in the previous example, IAC may decode multiple overlapped mc-RTS 

frames, but the longest mc-RTS is clearly the one that is decoded last, which is the 

mc-RTS with the highest priority. Then, only the receiver that matches the last mc-

RTS’s destination address transmits the CTS, whereas other receivers remain silent. 

Therefore, the consensus is implicitly achieved. Furthermore, since a transmitter adds 

the postambles in proportion to the number of its receiver’s antennas, the receiver can 

easily match the length of the postambles with its own number of antennas. 

Now, we provide the optimal probability 𝑝 in the following section. 
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2.4.4 Optimal 𝒑 

If two mc-RTSs with the same number of postambles collide, then we cannot decode 

the postamble from the two mc-RTSs since they will overlap. Therefore, we present 

an optimal postamble appending probability 𝑝, which determines whether it will use 

the mc-RTS; otherwise, stick with the legacy RTS. This helps the 802.11mc collision 

resolution to become effective. 

Assume that there are 𝑁 transceivers. Let 𝑀 be the maximum number of receiver 

antennas and 𝑁𝑚 be the number of 𝑚-antenna receivers. 

Let us define function 𝑓(𝑝) as the total number of resolvable collisions in 802.11mc. 

Then, our objective is to find the optimal 𝑝∗ that maximizes 𝑓(𝑝): 

𝑝∗ = 𝑎𝑟𝑔 max
0<𝑝≤1

𝑓(𝑝).                       (5) 

Since 𝑀-antenna receivers can recover collisions involved with up to 𝑀 frames, 

we obtain 

𝑓(𝑝) = ∑ 𝑓𝑚(𝑝)𝑀
𝑚=2                        (6) 

where 𝑓𝑚(𝑝) represents the number of resolvable collisions between 𝑚 frames, and 

it is categorized into the following three cases: 

 𝑓𝑚
1(𝑝): the number of collisions where one of the collided frames is for a SISO 

receiver; 

 𝑓𝑚
2(𝑝) : the number of collisions where all collided frames are for MIMO 

receivers that have a different number of antennas from each other; 

 𝑓𝑚
3(𝑝) : the number of collisions where all collided frames are for MIMO 

receivers and two of them have the same number of antennas. 

Now, for nonnegative integer numbers 𝑁1 , 𝑁2 ,…, 𝑁𝑀  and binary numbers 𝑟1 , 

𝑟2,…, 𝑟𝑀−1, each case is represented as follows. 

1) 𝑓𝑚
1(𝑝)  

Since one of the 𝑚 collided frames is for a SISO receiver, it must use a legacy RTS 

without the postamble. In the same way, the other 𝑚 − 1 frames must be mc-RTSs 
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since they are intended for MIMO receivers. To recover the collided frames, collided 

mc-RTSs should have different numbers of postambles from each other. Thus, we 

obtain the following: 

𝑓𝑚
1(𝑝) = 𝑝𝑚−1 {(

𝑁1

1
) (

𝑁2

1
) ⋯ (

𝑁𝑚

1
) + ⋯ + (

𝑁1

1
) (

𝑁(𝑀−𝑚+2)

1
) ⋯ (

𝑁𝑀

1
)} 

𝑓𝑚
1(𝑝) = (

𝑁1

1
) 𝑝𝑚−1 {(

𝑁2

1
) ⋯ (

𝑁𝑚

1
) + ⋯ + (

𝑁(𝑀−𝑚+2)

1
) ⋯ (

𝑁𝑀

1
)}           

𝑓𝑚
1(𝑝) = (𝑁1)𝑝𝑚−1 ∑ (𝑁2)𝑟1(𝑁3)𝑟2 ⋯ (𝑁𝑀)𝑟(𝑀−1)

𝑟1+⋯+𝑟(𝑀−1)=𝑚−1

               

𝑓𝑚
1(𝑝) = (𝑁1)𝑝𝑚−1 ∑ ∏(𝑁𝑖)𝑟(𝑖−1)

𝑀

𝑖=2𝑟1+⋯+𝑟(𝑀−1)=𝑚−1

                                       

𝑓𝑚
1(𝑝) = (𝑁1)𝑝𝑚−1𝐴(𝑀, 𝑚)                                     (7) 

2) 𝑓𝑚
2(𝑝)  

Here, we present the two cases to recover the collided frames: 1) One of the 

transmitters involved in the collision does not use mc-RTS; and 2) all transmitters 

involved in the collision use mc-RTSs. For the first case, since all 𝑚– 1 transmitters 

use mc-RTSs except one transmitter, the probability is 𝑚𝑝𝑚−1(1 − 𝑝) . For the 

second case, the probability that all transmitters use mc-RTSs is 𝑝𝑚. We obtain the 

following: 

𝑓𝑚
2(𝑝) = {𝑝𝑚 + 𝑚𝑝𝑚−1(1 − 𝑝)} {(

𝑁2

1
) (

𝑁3

1
) ⋯ (

𝑁(𝑚+1)

1
) + ⋯

+ (
𝑁(𝑀−𝑚+1)

1
) (

𝑁(𝑀−𝑚+2)

1
) ⋯ (

𝑁𝑀

1
)}                                         

𝑓𝑚
2(𝑝) = {𝑝𝑚 + 𝑚𝑝𝑚−1(1 − 𝑝)} ∑ (𝑁2)𝑟1(𝑁3)𝑟2 ⋯ (𝑁𝑀)𝑟(𝑀−1)

𝑟1+⋯+𝑟(𝑀−1)=𝑚

 

𝑓𝑚
2(𝑝) = {𝑝𝑚 + 𝑚𝑝𝑚−1(1 − 𝑝)} ∑ ∏(𝑁𝑖)𝑟(𝑖−1)

𝑀

𝑖=2𝑟1+⋯+𝑟(𝑀−1)=𝑚

                          

= {𝑝𝑚 + 𝑚𝑝𝑚−1(1 − 𝑝)}𝐵(𝑀, 𝑚).                            (8) 
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3) 𝑓𝑚
3(𝑝)  

In this case, to avoid overlapping of two mc- RTSs with the same number of 

postambles, only one of the transmitters of those frames should use mc-RTS, and the 

other 𝑚 − 2 frames should be mc-RTSs. Thus, the probability is 2𝑝𝑚−1(1 − 𝑝), 

and finally, we represent 𝑓𝑚
3(𝑝) as 

𝑓𝑚
3(𝑝) = 2𝑝𝑚−1(1 − 𝑝) {(

𝑁2

2
) (

𝑁3

1
) ⋯ (

𝑁𝑚

1
) + (

𝑁2

1
) (

𝑁3

2
) ⋯ (

𝑁𝑚

1
) + ⋯

+ (
𝑁(𝑀−𝑚+2)

1
) (

𝑁(𝑀−𝑚+3)

1
) ⋯ (

𝑁𝑀

2
)} 

𝑓𝑚
3(𝑝) = 𝑝𝑚−1(1 − 𝑝) ∑ (𝑁2)𝑟1 ⋯ (𝑁𝑀)𝑟(𝑀−1)

𝑟1+⋯+𝑟(𝑀−1)=𝑚−1

× {(𝑁2)𝑟1 + ⋯ + (𝑁𝑀)𝑟(𝑀−1) − (𝑚 − 1)}                            

𝑓𝑚
3(𝑝) = 𝑝𝑚−1(1 − 𝑝) ∑ ∏(𝑁𝑖)𝑟(𝑖−1)

𝑀

𝑖=2𝑟1+⋯+𝑟(𝑀−1)=𝑚−1

× {∑(𝑁𝑖)𝑟(𝑖−1)

𝑀

𝑖=2

− (𝑚 − 1)}                                                  

= 𝑝𝑚−1(1 − 𝑝)𝐶(𝑀, 𝑚).                                            (9) 

By plugging (7)–(9) into (6) 

𝑓(𝑝) = ∑ {[(1 − 𝑚𝐵(𝑀, 𝑚) − 𝐶(𝑀, 𝑚)]𝑝𝑚

𝑀

𝑚=2

+ [(𝑁1)𝐴(𝑀, 𝑚) + 𝑚𝐵(𝑀, 𝑚) + 𝐶(𝑀, 𝑚)]𝑝𝑚−1}                           

𝑓(𝑝) = {(1 − 𝑀)𝐵(𝑀, 𝑀) − 𝐶(𝑀, 𝑀)}𝑝𝑀 + ⋯

+ {(𝑁1 + 1 − 𝑀)𝐵(𝑀, 𝑚) + 𝑀𝐵(𝑀, 𝑚 + 1) + 𝐶(𝑀, 𝑚 + 1)

− 𝐶(𝑀, 𝑚)}𝑝𝑚 + ⋯ + {(𝑁1)𝐵(𝑀, 1) + 2𝐵(𝑀, 2) + 𝐶(𝑀, 2)}𝑝   

𝑓(𝑝) = −𝐶(𝑀, 𝑀)𝑝𝑀 + ⋯ + {(𝑁1)𝐵(𝑀, 1) + 2𝐵(𝑀, 2) + 𝐶(𝑀, 2)}𝑝.      (10) 

As shown in (10), since 𝑓(𝑝) is an 𝑀-degree function of 𝑝, it is unfeasible to 

directly obtain the optimal 𝑝  to maximize the function. Instead, we use a hill-
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climbing method [27]. Note that this method occasionally gets stuck in the local 

maximum. To mitigate this problem, we select multiple initial points that are evenly 

spaced and repeat the algorithm starting from these points. 
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Table 2.1: Collision Probabilities (in percentage) 

 
the number of frames involved in a collision 

2 3 4 5 6 7 8 

𝑁 

10 19.32 2.85 0.28 0.02 0.00 0.00 0.00 

20 23.56 4.96 0.74 0.08 0.01 0.00 0.00 

30 25.68 6.37 1.14 0.16 0.02 0.00 0.00 

40 27.05 7.46 1.50 0.24 0.03 0.00 0.00 

50 28.03 8.35 1.83 0.31 0.04 0.01 0.00 

100 30.63 11.52 3.22 0.71 0.13 0.02 0.00 

 

 

 

Figure 2.5: Optimal 𝒑 when 𝑵 = 𝟏𝟎𝟎 and 𝑴 = 𝟑. Optimal 𝑝 is highly related to 𝑞𝑚. 

As shown in the graph, the optimal 𝑝 spans from 0.5 to 1. 

 

 

The complexity of this optimization mainly lies on 𝑀. Since 𝑀 is no more than 

four in typical 802.11n-based Wi-Fi systems, it is simple to obtain the coefficients. In 

the near future, however, wireless devices equipped with many number of antennas, 

such as massive MIMO systems [28-31], will appear, and they may use more space–

time streams than the current devices3. Fortunately, the actual probabilities of the 

                                           
3 We note that 802.11ac [2] will support up to eight space–time streams. 
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collision with more than four frames are very small and hence negligible. In Table 

2.1, we provide the collision probabilities according to 𝑁 and the number of frames 

involved in a collision with CWMin of 15. Thus, if we consider the limited number 

of streams, then we can obtain the equations in a much simpler form. 

As an example, we provide the optimal 𝑝 by varying the proportion of receiver 

types with 𝑀 = 3 , i.e., 𝑞1 + 𝑞2 + 𝑞3 = 1 , where 𝑞𝑚  is the ratio of 𝑚 -antenna 

receivers to the total number of receivers. As shown in Figure 2.5, 𝑝∗ stays at 1 until 

the proportion of MIMO receivers (𝑞2 + 𝑞3) reaches a certain critical point, and after 

that, it gradually decreases as the proportion increases. In particular, when it reaches 

1, if there is only one type of MIMO receiver, the optimal 𝑝 becomes 0.5 (i.e., when 

𝑞2 = 1  or 𝑞3 = 1 , 𝑝∗ = 0.5 ); otherwise, it increases (i.e., when 𝑞2 + 𝑞3 = 1 , 

maximum 𝑝∗ = 0.67 ). Intuitively, this happens because the diverse number of 

MIMO receiver antennas increases the total number of resolvable collisions. 

 

2.4.5 Discussion 

1) Modification  

We slightly modify the 802.11 standard to employ mc-RTS in 802.11mc; the 

postamble is appended at the end of the current 802.11 RTS frame. The postamble 

takes exactly the same format as the preamble, although the location is different. In 

case the legacy 802.11 or SISO node recognizes the postamble, they would regard 

this as a preamble and try to decode the following signals in vain. Therefore, this 

feature is backward compatible with the legacy 802.11 nodes. 

2) Overhead  

The length of mc-RTSm increases with 𝑚, specifically 𝑚 − 1 training symbols. 

Typically, 802.11n uses two long training Orthogonal Frequency Division 

Multiplexing (OFDM) symbols in a single preamble, e.g., 4𝜇s for each. Thus, even 

for mc-RTS4, the additional overhead compared with mc-RTS1 is only 12𝜇s, which is 

negligible for a typical wireless network. 
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Table 2.2: Overhead of Control Frames (in percentage) 

MCS Index 

802.11mc 802.11n+ 

𝑀 
- 

2 3 4 

0 4.68 4.86 5.05 4.49 

1 8.48 8.80 9.12 8.15 

2 11.62 12.04 12.46 11.19 

3 14.26 14.76 15.26 13.75 

4 18.46 19.08 19.69 17.83 

5 21.64 22.34 23.02 20.93 

6 22.96 23.69 24.40 22.22 

7 24.14 24.90 25.63 23.38 

 

 

Table 2.2 shows the overhead of the control frames (RTS/CTS) under 802.11mc and 

802.11n+ according to different Modulation and Coding Scheme (MCS) indexes. We 

use a single-stream case with a 1500-byte payload. Recall that 802.11mc increases 

the size of the RTS by appending postambles. However, the overhead increases only 

slightly; compared with 802.11n+, it is increased only by up to 2.25% (in the case of 

𝑀 = 4 and MCS index of 7). However, as demonstrated in our results, the gain from 

using the control frame exchange is more than enough to overcome its overhead for 

both 802.11n+ and 802.11mc. Furthermore, a lightweight RTS/CTS [24], which 

reduces the overhead, can be easily employed to the 802.11mc. As will be shown in 

Figure 2.22, the system throughput is increased by 14% from the lightweight 

handshake due to the reduced overhead. 

3) Different Postamble Probabilities 

802.11mc can use another mc-RTS scheme using different postamble probabilities 

with the same MC-RTS, i.e., mc-RTS2 = mc-RTS3 = · · · = mc-RTSM, according to 

the MIMO receiver type. In this scheme, the protocol has a less overhead but cannot 

resolve any collisions between more than two frames. Our opinion is that we can 

adaptively use different mc-RTS rules by considering network configurations such as 

the number of nodes and receiver antenna diversity. We leave this issue to our future 

work. 
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4) Rate Control  

802.11mc can easily adopt various RTS/CTS-based rate adaptation algorithms [32], 

[33]. The rate adaptation method is parallel to the mc-RTS; thus, they do not affect 

each other. 

5) Estimating 𝑁 and Receiver Configuration  

To exploit the optimal 𝑝, the transmitters need to estimate the number of stations 𝑁, 

and the receiver configuration, e.g., the number of receivers’ antennas. First, there are 

numerous algorithms [34], [35] that estimate the number of contending nodes 𝑁, and 

we can simply adopt one of those schemes. These schemes are known in providing 

quite accurate and fast estimation results within error of 1% in 1s. Second, since the 

802.11n systems are based on the WLAN OFDM system, two new formats are 

defined for the Physical Layer Convergence Protocol (PLCP) for MIMO nodes: the 

mixed mode and the green field. In these modes, the MIMO training sequence format 

is added, and this enables any node to know others’ antenna configurations because 

its length is typically equal or greater than the number of space–time streams. In 

practical systems, it is sufficient to measure only the number of SISO nodes and that 

of MIMO nodes (regardless of the number of antennas) because the majority of 

packet collision happens between the two nodes, as shown in Table 2.1. Note that the 

postamble probability 𝑝 ranges from 0.5 to 1 for any cases. Even if a node picks a 

non-optimum value, 802.11mc can guarantee the minimum level of performance gain 

over 802.11n and 802.11n+. 

6) Behavior in Multi-collision Domains  

Until now, we have considered the single-collision-domain scenario, but in the real 

world, there could be some nodes belonging to multiple collision domains. Such 

nodes may have limited concurrent transmission opportunities because their DoFs are 

bounded by the multiple collision domains. For the collision resolution, 802.11mc 

nodes should be in a transmission range where nodes can listen to the RTS/CTS from 

each other. A final note is that the nodes in the multiple collision domains may suffer 

from starvation [36]; hence, we should consider this to redesign the backoff 

mechanism. We leave further study of the multiple collision domains as future work. 
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Figure 2.6: Throughput fairness. There are 20 transceiver pairs with four types of nodes 

from one to four antennas. In this figure, (:,:,:,:) denotes the ratio of SISO, two-antenna MIMO, 

three-antenna MIMO, and four antenna MIMO pairs, respectively. For example, (1,1,1,1) 

means that the network has equal number of pairs for four different types. 

 

 

7) Achieving Fairness  

First, 802.11mc MIMO nodes can gain more transmission opportunities by 

exploiting the concurrent transmission due to DoF. Thus, MIMO nodes with higher 

DoF achieve higher throughput, and this makes sense in terms of proportional fairness; 

higher capable nodes, e.g., MIMO nodes, get better performance. In contrast, the 

random access nature of the current 802.11n gives the same throughput to all 

heterogeneous nodes, regardless of their capabilities, and this may cause the overall 

system performance to degrade, i.e., performance anomaly [4]. Another point to make 

is that nodes with low DoF may have less chance to access the channel after the 

collision resolution. One way of overcoming this issue is to let all nodes involved in 

the collision transmit sequentially after the collision. To achieve this goal, the node 

that sends the CTS should include the addresses of the other nodes that have been 

involved in the collision. Note that the node that sends the CTS can decode the 

collided frames via the postamble.  
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Figure 2.6 shows Jain’s fairness index for the system throughput under three 

protocols according to different transceiver ratios. As expected, the fairness of 

802.11n is always better than that of the others, although it shows the lowest overall 

throughput performance due to performance anomaly. Differently, for 802.11n+ and 

802.11mc, the MIMO nodes achieve higher throughput than SISO nodes, thus 

showing less fairness in terms of throughput. As verified in the result, the fairness of 

both protocols is heavily affected by the network configurations. First, in the (4,3,2,1) 

case where SISO nodes are the majority, a few MIMO nodes attain much higher 

throughput than the others; hence, the throughput disparity increases. For example, 

the four-antenna node can get a transmission opportunity whenever other nodes with 

low DoF acquire a medium. However, in the (1,2,3,4) case, the majority of the nodes 

in the network are MIMO nodes; hence, the concurrent transmission gains are 

distributed among the MIMO nodes, thus achieving better fairness. In addition, over 

all cases, 802.11mc shows better fairness compared with 802.11n+. This is because 

SISO and MIMO nodes can obtain throughput gain from the collision resolution.  
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Figure 2.7: 802.11mc test environment. 

 

 

 

2.5 USRP Experiments 

 

Using USRP and GNURadio [13], we conduct two types of experiments, i.e., micro 

benchmark and macro benchmark. We first evaluate the postamble decoding scheme, 

which is the main technique of 802.11mc by using the micro benchmark. Then, we 

emulate the system throughput of three protocols 802.11n, 802.11n+, and 802.11mc 

via the macro benchmark. 

 

2.5.1 Micro Benchmark 

1) Setup  

We implement five nodes on OFDM PHY using USRP/GNURadio. All nodes are 

equipped with USRP N210 on the SBX daughterboard and work on 10MHz 

bandwidth. Among five nodes, two nodes act as an 802.11mc MIMO receiver: one as 

a legacy SISO receiver and two as SISO transmitters. Two USRP nodes of the MIMO 

receiver are connected with a MIMO cable [13] and placed at location 0 in Figure 2.7 

with the legacy receiver. For the transmitters, we randomly pick two locations. 
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To test for packet collision, we had to let both transmitting nodes start their 

transmission at the same time, but use different frames, i.e., a frame with a postamble 

and a non-postamble frame, so that their preambles are almost overlapped. Recall that 

802.11 nodes generally are timely synchronized by beacon frames. To implement this 

for the USRP experiments, we simply make two transmitters act like one 2-antenna 

distributed MIMO transmitter and send the different frames. We use an 

OCTOCLOCK-G [13], which is a clock distribution system with an integrated GPS 

disciplined oscillator, to connect both transmitters and control their start times under 

distributed test environment. Some delays introduced by software radios are managed 

by USRP timestamp function similar to 802.11n+. As a result, in our experiment, the 

synchronization error is within one cyclic prefix. 

Another possible concern of the USRP experiment is that two different signals sent 

from different locations may incur large power difference; hence, only the larger 

signal is captured by the receiver. Although the A/D converter of USRP N210 is 14 

bits, the actual valid dynamic range is not as high as 84dB but is about 30dB. In our 

settings, we had to make online gain adjustments using the transmit power control to 

overcome the lack of automatic gain control. To do this, before starting the real 

experiment, we performed a test by sending signals concurrently to check whether all 

signals are properly host by the receiver. If not, we changed the power level of the 

transmitters until the receiver can host all signals in a stable manner. 

Each frame has 500 bytes payload, and it is sent 10,000 times for each experiment. 

We implement the IAC decoding by MATLAB because it needs buffering. Hence, we 

first collect all traces and then perform the decoding procedure offline. 
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Figure 2.8: Example of the misalignment. 

 

 

 

Figure 2.9: Misalignment in two collided frames. The portion of the postamble that is 

corrupted ∆𝑖 is mostly covered by the cyclic prefix.  

 

 

 

2) Number of Training Symbols  

The length of postamble renders a tradeoff between the overhead and CSI estimation 

accuracy. Furthermore, if any collided frames overlap at the postamble portion, as 

shown in Figure 2.8, decoding may fail. In this experiment, we measure the length of 

the corrupted postamble caused by the misalignment ∆𝑖 and show the result in Figure 

2.9. 
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Figure 2.10: Success ratio for varying the number of training symbols in the postamble. 

This graph shows that, regardless of the length of training symbols, the collision detection and 

the decoding of collided frames achieve the success ratio of about 92% and 84%, respectively. 

 

 

In our measurement, the portion of the postamble that is corrupted ∆𝑖 is mostly 

covered by the cyclic prefix. From this result, we observe that the misalignment 

caused by the collision does not affect the postamble. Recall that we consider the 

collisions invoked by more than two nodes with the same backoff counters. Next, we 

vary the number of training symbols in the postamble from 1 to 5 and conduct the 

experiment under the same environment as the first experiment. We measure two 

success ratios, i.e., one to detect a collision and the other to decode collided frames. 

From the result in Figure 2.10, we see that the proposed scheme achieves the success 

ratio of 92% and 84% on average for the detection and for the decoding performance, 

respectively. 
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Figure 2.11: SINR enhancement of postamble decoding. Postamble decoding achieves the 

SINR gain of 15.5dB on average. 

 

 

3) SINR Performance  

The successful postamble-based decoding significantly improves the frame SINR. 

We compare the SINR gain obtained from the postamble-based decoding with the 

legacy decoding. We use the same setting as the first experiment unless stated 

otherwise. We measure and plot each SINR of the two decoding cases, the postamble 

decoding and the legacy decoding, as shown in Figure 2.11. As expected, the SINR 

of the legacy decoding is always below 7dB and a median of −6dB, whereas 

postamble decoding maintains an SINR of up to 15.5dB and a median of 9.5dB. 
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Figure 2.12: Decoding success ratio of two schemes. 802.11mc decodes collided frames with 

higher probability than the capture effect. We note that the performance of the capture effect 

can be varied according to network environment factors, such as received signal power and 

location of nodes. 

 

 

4) 802.11mc vs. Capture Effect: Although 802.11mc resolves the collision problem, 

the physical layer capture effect gives a similar result [37]; it enables a receiver to 

decode one of collided frames if the received signal strength of one frame is 

significantly higher than the other. Therefore, we study the effect of capture effect in 

this set of experiments. To evaluate the case where capture effect occurs, we put one 

sending node at location 1 and change the other node’s position from location 1 to 

location 7 in Figure 2.7. 

Figure 2.12 shows the decoding success ratio of each mechanism. In this result, the 

capture effect achieves decoding success ratio of 24% when one of sending nodes 

locates outside the door because the performance of the capture effect is related to the 

difference of received power between two frames. On the other hand, in 802.11mc, 

all of the decoding success ratios are above 80%, except for the case of location 7. 

From this result, we demonstrate that the postamble-based decoding guarantees a 

higher decoding success ratio than the capture effect. We note that the capture effect 

cannot artificially control the frame to be protected under the collision, as opposed to 

802.11mc. 
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2.5.2 Macro Benchmark 

1) Setup  

Next, we run some experiments to compare 802.11mc with 802.11n and 802.11n+. 

Unfortunately, conducting a real-time experiment by implementing the MAC 

functionalities (e.g., CSMA, RTS/CTS, and ACK) in USRP/GNURadio is not simple; 

when software radios exchange signal samples between the host and the RF front end, 

it incurs high latency [38]. Moreover, when the MIMO receivers recover the collided 

frame via the postamble, it needs to buffer some previously received samples for the 

recovery, and this would be even more difficult to implement in real time. Recall that 

we performed the postamble decoding offline in the previous set of experiments due 

to these limitations. Therefore, we construct a macro benchmark inspired by [16] and 

[20] to perform the throughput comparison in a real setup. 

The experiment consists of three steps, i.e., interference map generation, USRP 

transmission, and emulation. In the first step, we make an interference map to capture 

the network contention of the real world. In the same settings shown in Figure 2.7, 

we place laptops each with a MadWiFi driver [39] in locations 1–6, and let each 

laptop in locations 1, 2, and 5 transmit packets to laptops in location 3, 4, and 6, 

respectively. Since the laptops have no MIMO capability, for transmitters, we simply 

let them send different size packets (500-, 750-, and 1500-byte payload for each type). 

We log all trace information (e.g., time, delivery ratio, and SNR) and repeat this work 

again for the case of RTS/CTS. 

After obtaining the interference map, we place the USRP nodes in each location 

again; the nodes in locations 1 and 3 are SISO; the nodes in locations 2 and 4 are two-

antenna MIMO; the nodes in locations 5 and 6 are three-antenna MIMO. Then, we 

mimic the same behavior with the interference map. We let the USRP nodes transmit 

alone frames, i.e., frames without collisions, as many as the number of non-collided 

frames of the interference map and then let them transmit together for the packet loss 

trace. Here, we assume that the packet loss occurs due to the collision only. Since the 

trace includes timing information, we can infer which nodes are involved in a certain 

collision. All data frames are transmitted at a certain data rate using modulations 

BPSK, QPSK, 16-QAM, and 64-QAM based on the SNR traces. Note that the USRP 

nodes in our testbed work only at 10MHz bandwidth; hence, the achievable data rates 
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are smaller than those of real world. To implement the concurrent transmission in 

802.11n+ and 802.11mc, we use the code provided in [5]. The lightweight RTS/CTS 

scheme [24] was not applied. 

Next, we emulate each protocol using the traces. We carefully account for the time-

related intervals (e.g., SIFS, DIFS, and random backoff functionality) and ACK 

packets in our emulation. In addition, since there are a small number of competing 

nodes, we vary the CWMin from 3 to 15 during the experiment. Otherwise, this will 

result in an unrealistic situation where frame collisions rarely occur. 
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Figure 2.13: Throughput comparison in a macro benchmark. When CWMin is 3, the gains 

of 802.11mc are about 47% and 12% on average, compared with 802.11n and 802.11n+, 

respectively. (a) SISO pair (CWMin = 3). (b) 2 × 2 MIMO pair (CWMin = 3). (c) 3 × 3 MIMO 

pair (CWMin = 3). (d) System (CWMin = 3). (e) System (CWMin = 7). (f) System (CWMin 

= 15). 



42 

 

2) Throughput Comparison  

Figure 2.13 plots the throughput CDF of each system: 802.11n, 802.11n+, and 

802.11mc ( 𝑝 = 0.5  and 𝑝 = 1.0 ). In terms of system throughput, the gain of 

802.11mc increases as CWMin decreases since the collision rate will increase. As a 

result, when CWMin is 3, the throughput gains of 802.11mc are about 47% and 12% 

on average, as compared with 802.11n and 802.11n+, respectively.  

These gains come mainly from the high channel utilization due to the collision 

resolution, which gives all the nodes more transmission opportunities. In particular, 

for MIMO nodes, the gain of the concurrent transmission increases significantly. For 

example, if the channel time of SISO increases by Δ𝑡, then the four-antenna MIMO 

node may obtain up to 3𝑟Δ𝑡 throughput, where 𝑟 is the data rate of SISO. 

Since 802.11n+ and 802.11mc both use the RTS/CTS exchange, the performance 

could be limited by its overhead. In particular, it decreases the throughput of the SISO 

pair, as opposed to the 802.11n without RTS/CTS, as shown in Figure 2.13 (a). In our 

result, without the lightweight handshake, the SISO pair’s throughput in 802.11n+ is 

reduced by 4Mbps, whereas that in 802.11mc is reduced by only 1Mbps on average, 

as compared with 802.11n. Note that we can adopt overhead reduction techniques 

like the lightweight handshake. In addition, we see that the optimal postamble 

probability enhances the performance of 802.11mc in all cases, as shown in Figure 

2.13. 
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Table 2.3: NS-2 Simulation Parameters 

Parameter Value 

CWMin 15 

Payload 1500 Bytes 

𝑞2 0.5 

N 20 

P 1 

Data modulation QPSK 

 

 

2.6 NS-2 Simulations 

 

2.6.1 Setting 

The experiments based on USRP/GNURadio cannot give the detailed and large-

scale evaluations to test the complexity and dynamics of node contentions. Therefore, 

we implement the three MAC protocols, i.e., 802.11n, 802.11n+, and 802.11mc, on 

the NS-2 simulator to analyze and compare the performance. 

We set a random topology with 2𝑁 nodes and configure so that they can sense each 

other. The nodes have IDs from 1 to 2𝑁, and we make two nodes as one transceiver 

pair. In this setting, the node 𝑖 with the odd number ID sends data to the node 𝑖 + 1. 

To construct a heterogeneous MIMO network, we set half of transmitters as MIMO 

nodes and the others as SISO nodes. We assume that all MIMO nodes have just two 

antennas (i.e., 𝑀 = 2). We set the simulation parameters to the default values in 

Table 2.3 and the 802.11n standard [1]. Each transmitter generates constant bit rate 

traffic every 1ms, and the simulation time is set to 20s. We run each simulation 100 

times and measure the throughput and throughput gain of 802.11mc over other 

protocols 802.11n and 802.11n+.  
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Figure 2.14: Packet loss rate due to collision. 802.11mc lowers the packet loss rate by up to 

7% compared with the other protocols. 

 

 

2.6.2 Packet Loss Rate due to Collision 

In Figure 2.14, we measure the packet loss rate due to collision as the number of 

nodes increases. Recall that 802.11mc resolves the collision to avoid packet losses. 

We examine that 802.11mc constantly lowers the packet loss rate by up to 7%, as 

compared with the other protocols. Since 802.11n and 802.11n+ cannot resolve the 

collision, they almost show identical performance. At first glance, the packet loss rate 

difference between 802.11mc and 802.11n+ may seem small, but we can see that 

802.11mc significantly outperforms both 802.11n and 802.11n+, as will be shown in 

the later results. Recall that 802.11mc nodes obtain the gain from two sources, namely, 

time domain and spatial domain. Clearly, the 802.11mc will achieve better channel 

utilization due to the decreased loss rate. This gain of increased opportunities is 

further amplified by the concurrent transmissions by MIMO nodes. As a result, the 

relatively smaller decrease in loss rates translates into a larger increase in throughput. 
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Figure 2.15: Impact of CWMin. 802.11mc is not sensitive to the CWMin compared with 

legacy 802.11n. This result indicates that the performance of 802.11mc is influenced by the 

number of contending nodes more than the CWMin. 

 

 

2.6.3 CWMin 

In this set of simulations, we vary the CWMin as 3, 7, and 15 to see how 802.11mc 

reacts for various collision probabilities caused by the CWMin. Note that in general 

802.11 networks, a smaller CWMin will give less channel idle time but will increase 

the collision probability. 

As shown in Figure 2.15, 802.11n is significantly influenced by the CWMin as the 

number of nodes increases. When the CWMin is 3, the throughput of 802.11n results 

in the best performance until the number of pairs reaches 20. Then, it decreases due 

to the increased number of collisions. Meanwhile, the performance of 802.11mc is 

steady with variable CWMin. This is because the collision resolution of 802.11mc 

makes the effect of CWMin relatively weak. This result indicates that the 

performance of 802.11mc is determined by the number of contending nodes more 

than the CWMin. In addition, the gap becomes even larger as the number of node 

pairs increases, which shows the robustness of 802.11mc against the frame collision 

problem.  
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Figure 2.16: Throughput versus data size with various congestion levels. The throughput 

of each protocol is measured for various congestion levels. We use two types of payloads, 

namely, small (400 bytes) and large (1500 bytes). 

 

 

2.6.4 Data Size 

Similar to 802.11n+, the RTS/CTS handshake of 802.11mc may cause overhead, 

particularly when the data size is very small. Furthermore, 802.11n does not employ 

RTS/CTS since this is the general case and it is only used as an option. We vary the 

data size by 400 and 1500 bytes. Additionally, we define three network congestion 

levels, i.e., “Low,” “Medium,” and “High” when the number of pairs is 2, 20, and 40, 

respectively. 

First, as shown in Figure 2.16, for all protocols, the performances of large data are 

generally better than those of the small data size, except the case of the highly 

congested network. In particular, when the number of pairs is 40, i.e., the congestion 

level is “High,” the throughput of the small data increases. This is because when a 

collision occurs, the large data obviously spend more channel time, plus they have to 

defer their retransmission much longer than that of the small data. Second, both 
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802.11n+ and 802.11mc overcome the overhead of RTS/CTS by the MIMO gain and 

outperform legacy 802.11n. In particular, 802.11mc always obtains a higher 

throughput than 802.11n+ due to its collision resolution. As a result, the gain of 

802.11mc over 802.11n+ becomes much larger as the collision probability increases; 

it increases from 1% to 62% as the congestion level becomes high. 
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Figure 2.17: Throughput according to the number of pairs. As the collision probability 

increases, 802.11mc achieves higher throughput due to additional transmission opportunities 

of the transmitting nodes. (a) SISO node. (b) MIMO node. (c) System. 

 

 

 

Figure 2.18: Throughput gain of 802.11mc and 802.11n+ over 802.11n. Different from 

802.11n+, the throughput of SISO nodes also increases in 802.11mc. As a result, the 

throughput gain of 802.11mc increases by up to 79 % and 174 % even in a heavily congested 

network. (a) SISO node. (b) MIMO node. 
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2.6.5 Number of Node Pairs (𝑵) 

We compare the throughput of the three protocols according to the number of pairs 

in Figure 2.17. Each graph shows the SISO, MIMO, and system throughput, 

respectively.  

As shown in Figure 2.17, the throughput of the three protocols decreases as the 

number of pairs increases. However, the throughput of both 802.11mc and 802.11n+ 

fall smoothly because of the small size of the RTS/CTS. In particular, 802.11mc 

shows better throughput than 802.11n+. The main reason is that while only MIMO 

transmitters improve the system performance of 802.11n+, 802.11mc gives all the 

nodes additional transmission opportunities so that the system achieves higher 

channel utilization. 

In order to clarify the result, we provide the throughput gain of 802.11n+ and 

802.11mc over 802.11n in Figure 2.18. The result of 802.11n+ shows that the gain of 

SISO nodes does not increase but vibrates around 0%, whereas that of MIMO nodes 

increases up to 60%. This means that there are no benefits for SISO nodes in 802.11n+. 

Meanwhile, in 802.11mc, both gains of nodes, regardless of their types, become high 

with the collision probability. As a result, the throughput gain of 802.11mc over 

802.11n for each type of node increases by up to 79% and 174%, even in a heavily 

congested network. 
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Figure 2.19: Throughput gain of 802.11mc over other two protocols according to the 

proportion of MIMO receivers (𝒒𝟐 ). 802.11mc provides higher throughput gain as the 

proportion of MIMO receivers increases. We note that the system with non-optimal 𝑝 could 

create more unsolvable collision cases than that with optimal 𝑝. Nevertheless, the throughput 

of 802.11mc is higher than that of 802.11n+ in all cases. 

 

 

2.6.6 Proportion of MIMO Receivers (𝒒𝟐) 

The proportion of MIMO receivers (𝑞2) affects the system performance of 802.11mc 

because only MIMO receivers can resolve the collided frames. In order to evaluate 

the performance to vary the proportion of MIMO receivers, we conduct a simulation 

varying 𝑞2 from 0 to 1. In this simulation, we set 𝑝 to 1, except for the optimal case. 

From the result in Figure 2.19, we observe that both gains of 802.11mc over 802.11n 

and 802.11n+ increase with 𝑞2 (maximum 88% and 21%). In particular, when 𝑝 =

1, the gain over 802.11n+ decreases after the proportion reaches 50% because the 

non-optimal 𝑝 could create some unsolvable collision cases. Note that the optimal 

value of 𝑝 should proportionally decrease with the increase in MIMO receivers, as 

shown in Figure 2.5. Nevertheless, the throughput of 802.11mc is consistently higher 

than that of 802.11n+ in all cases. 
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Figure 2.20: Throughput gain of 802.11mc over other two protocols according to the 

postamble probability (𝒑). With the optimal postamble probability, 802.11mc improves its 

throughput gain by 2%. 

 

 

Figure 2.21: 𝒇(𝒑) under different network configurations. The effect of 𝑝 depends on the 

network configuration. 
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2.6.7 Postamble Probability (𝒑) 

The postamble probability 𝑝 is very important to improve the system performance 

in 802.11mc because the number of resolvable collision cases depends on it. In order 

to investigate the performance for the postamble probability, we measure the 

throughput gain of 802.11mc to vary 𝑝  from 0.5 to 1.We set the number of 

transmitters, the proportion of MIMO receivers, and optimal 𝑝 to 20, 0.5, and 1, 

respectively.  

As shown in Figure 2.20, the system gain of 802.11mc increases, as 𝑝 is close to 

the optimum. As a result, 802.11mc obtains the throughput gain of up to 37% and 17% 

over 802.11n and 802.11n+, respectively. 

The effect of 𝑝 depends on the network configuration, as shown in Figure 2.21. 

First, as the number (or ratio) of MIMO nodes increases, 802.11mc generally 

increases the number of resolvable collisions with larger 𝑝. However, as the number 

of MIMO nodes further increases, the optimal 𝑝  becomes less than 1, e.g., the 

(1:2:3:4) case. Second, if the antenna numbers are less diverse, e.g., the (1:1:0:0) case, 

the effect of 𝑝 on the resolvable collisions becomes much less evident. This is why 

𝑝 shows less impact in Figure 2.20. Note again that in any case, the optimal 𝑝 ranges 

from 0.5 to 1. Even if we adopt a non-optimal 𝑝, 802.11mc still provides a minimum 

level of performance gain over other protocols due to the fact that it can still resolve 

a certain number of collisions, albeit limited, and enable concurrent transmission. 
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Figure 2.22: System throughput comparison under different network configurations. The 

𝑝 and optimal 𝑝 are set to 0.5 and 1, respectively, for (1:1:1:1) and (1:2:3:4) and set to 1 and 

0.5, respectively, for (0:1:0:0). “LW” denotes the lightweight RTS/CTS. The result of 

802.11n+ without the lightweight handshake is omitted. Additionally, we use receiver-based 

auto rate [33] as a rate adaptation algorithm. 

 

 

Figure 2.23: System throughput comparison under dynamic network configurations. 10 

transmitters join the network every 10 minutes. The p is set to 0.5. 
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2.6.8 Performance in Dynamic Network Configurations 

We evaluate the throughput of each protocol under three different network 

configurations and illustrate the result in Figure 2.22. Except for the case of (0:1:0:0), 

the simulation runs with four types of nodes, from SISO to four-antenna MIMO nodes. 

We also evaluate the performance of the protocols with and without the lightweight 

handshake scheme.  

First, when a network lacks the diversity in terms of antennas, e.g., (0:1:0:0), the 

throughput gain of 802.11mc decreases. In such a homogeneous MIMO network, 

802.11n+ and 802.11mc do not need to enable multiuser transmission since each node 

can exploit the full DoFs. Thus, the only source of gain over 802.11n becomes the 

increased channel utilization for 802.11n+ and 802.11mc, respectively. This makes 

both protocols obtain a smaller gain over 802.11n in a homogeneous network than in 

a heterogeneous network. Nevertheless, 802.11mc still shows better performance 

than the others due to the collision resolution, as shown in Figure 2.22. In addition, 

we believe that the future wireless network will become more populated by 

heterogeneous devices in terms of the number of antennas. 

Second, the network configuration significantly affects the system performance; for 

802.11n+ and 802.11mc, the performances of the (1:1:1:1) case are better than those 

of the (1:2:3:4) case. This is because the reduced number of SISO nodes reduces the 

gain from multiuser transmission in the case of (1:2:3:4); the relatively long 

transmission time of SISO (low-DoF) nodes gives more time to MIMO (high-DoF) 

nodes for simultaneous transmission. Third, as previously discussed in Section 2.4.5, 

the lightweight handshake can improve the performance of 802.11mc and 802.11n+. 

In the case of the ratio of (1:1:1:1), the system throughput is increased by about 14% 

from the lightweight handshake. Additionally, optimal p also enhances the throughput 

of 802.11mc. Compared with the result in Figure 2.20, we can see the impact of 

optimal 𝑝  more clearly, which means that the postamble probability affects the 

network more effectively in the case of high diversity in the number of antennas. 

Figure 2.23 shows the system throughput comparison under dynamic network 

configurations. In this setting, we let 10 transmitters (5 for SISO, 5 for MIMO) join 

the network every 10 minutes. As shown in the figure, we can clearly see that 

802.11mc outperforms other protocols even in random network environment. 
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2.7 Conclusion 

 

In this chapter, we have proposed a MAC protocol, i.e.,802.11mc, which addresses 

the frame collision problem. The 802.11mc protocol uses the postamble to realize the 

IAC for decoding collided frames so that all nodes, regardless of the number of their 

antennas, obtain additional transmission opportunities, and the system achieves better 

channel utilization. We give an analytic model to obtain the optimal mc-RTS append 

probability 𝑝 that achieves the maximum performance. To evaluate the performance 

of 802.11mc, we conduct USRP/GNURadio-based experiments and the extensive 

NS-2 simulations. The results show that 802.11mc achieves a throughput gain of up 

to 88% and 21% over 802.11n and 802.11n+, respectively. 

  



56 

 

 

 

CHAPTER III 

 

 

User Selection for MU-MIMO 

Transmission 

 

 

3.1 Introduction 

 

In this chapter, we present an MU-MIMO MAC protocol for Wi-Fi systems, called 

802.11ac+, which provides a novel and practical user scheduling solution. Our idea 

is very intuitive: perform the user scheduling during the CSI feedback phase. To do 

this, the AP broadcasts channel information about previously scheduled users by 

appending it to a poll frame. We refer to this channel information as a channel hint. 

Then, users calculate their Effective Channel Gains (ECGs) from the channel hint, 

and the user with the largest gain actively sends a CSI report back to the AP. Upon 

receiving the CSI report, the AP includes the user in the multi-user transmission 

schedule and repeats this process while its DoF constraint is satisfied. As a result, the 

performance of 802.11ac+ is comparable to other user scheduling heuristics, with the 

key difference that it requires a much smaller amount of CSI feedback.  
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The design of 802.11ac+ is challenging for the following reasons. First, the channel 

hint should be well designed to balance between overhead and efficiency. In order to 

reduce the overhead, the channel hint should be succinct, but at the same time, it 

should include all channel information of already scheduled users such that the 

remaining users can estimate their ECGs. To deal with such a trade-off, we propose 

an efficient channel hint broadcasting mechanism. More specifically, an AP extracts 

the effective channel vector of the last scheduled user from the received CSI reports, 

and uses it as a channel hint. The second challenging issue comes from the fact that 

users hardly know how much better their ECGs are in a fully distributed manner, 

which leads us to adopt a contention for users to get a feedback opportunity. Due to 

the nature of contention, there may be a frame collision if more than one user sends 

a CSI report at the same time. To address the collision problem, we use a delayed 

feedback approach, where users delay their CSI feedback according to their ECGs: 

the bigger the ECG a user has, the faster the CSI report will be. To improve the 

performance, we focus on maximizing the probability of feedback success. 

Additionally, we extend our user selection algorithm to well-known fair scheduling 

protocols, Round-Robin (RR) and Proportional-Fair (PF), to achieve fairness among 

users. 

To evaluate the performance of our approach, we implement the 802.11ac+ and its 

fair scheduling protocols on a MATLAB simulator. The extensive trace-driven 

simulation results show that 802.11ac+ obtains much higher throughput gain than 

802.11ac and a MAC protocol employing a well-known user scheduling algorithm. 

Also, we demonstrate that two fair scheduling protocols of 802.11ac+ give a much 

better throughput fairness than 802.11ac, especially when users experience different 

channel qualities. 

The remainder of this chapter is organized as follows. Section 3.2 provides the 

related work and we next introduce the background of this chapter. We describe the 

802.11ac+ mechanism in greater detail in Section 3.4. In Section 3.5 we discuss the 

fair scheduling protocols of 802.11ac+, and Section 3.6 shows the performance 

evaluation. We finally conclude this chapter in Section 3.7.  

 

 



58 

 

3.2 Related Work  

 

We survey the research results on the user scheduling schemes and channel feedback 

overhead reduction techniques related to 802.11ac+. 

User scheduling schemes 

User selection has been highlighted since it can improve the MU-MIMO 

performance significantly. In user scheduling, it is challenging and often impractical 

to determine the optimal user set due to the large search space. Therefore, some 

protocols based on heuristics have been proposed. Many publications study the 

problem of maximizing sum capacity [7], [10], [11], [40]. ZFS [7] chooses a user that 

maximizes the sum-capacity. In GWC-ZFBF [8], the AP chooses a user with the 

largest channel power gain. SUS [9] selects one user in each round by exploiting 

channel orthogonality between users. However, the selected users cannot guarantee 

that they always increase the sum rate. GUSS [11] considers `delete' and `swap' 

operations to guarantee a positive increment of channel capacity in each selecting 

round. Jin et al. propose a volume metric as the product of diagonal elements of an 

upper-triangular matrix by performing QR factorization to the selected user channels 

[10]. Shen et al. [40] propose and compare two algorithms for both approaches with 

block diagonalization [41] which is a generalized concept of channel inversion.  

OPUS [12] is a user selection scheme for MU-MIMO Wi-Fi systems that bears the 

most similarity to our work. In OPUS, users estimate their potentials (e.g., SINR) in 

each round to boost the capacity and initiate a distributed feedback contention. The 

potential measurement scheme closely follows the main idea of the SUS (i.e., the 

largest projection power). However, the result based on the projected norm may not 

satisfy the maximum sum-capacity. Also, the time domain contention employed in 

OPUS may cause non-negligibly high overhead. 

In addition to the sum rate maximization, the rate balancing problem aimed at 

maximizing the throughput subject to the constraint that the rates of the different users 

need to have certain fixed ratios has also been considered in many literatures [42], 

[43]. Hellings et al. propose a gradient projection-based solution [42], and Guthy et 

al. propose a user classification scheme based on perturbation analysis [43], in order 
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to handle the rate balancing problem. Along this line, Lima et al. consider a frequency 

allocation problem for MIMO-OFDMA networks [44]. Unfortunately, these schemes 

come with a non-negligible performance loss due to the excessive feedback overhead. 

Channel feedback overhead reduction techniques 

One way of overcoming the CSI overhead is to use the compression techniques for 

reducing CSI feedback bits. Codebook and quantization are already adopted in LTE 

and MIMO-based Wi-Fi systems [1-3], [45], [46]; however, selecting the optimal 

quantization level is still an open problem. In Wi-Fi systems, it is proposed to 

compress the CSI report along three dimensions: time, frequency and quantization 

level. Even though compression is used, it is reported that the feedback can take about 

25 times longer than the data transmission time when sending a small packet with a 

high data rate [6]. A vast literature of work has aimed to design an efficient CSI 

quantization mechanism [47-51]. Recently, compressive sensing has also been used 

for feedback reduction in MIMO communications [52], [53]. The downside of 

compressions is, as expected, a throughput loss of MU-MIMO transmission: fewer 

bits may offer diminishing returns.  

In addition to the compression, the reduction of feedback loads by adaptively 

sending feedback can be used. One possible solution is to allow only users whose 

signal quality (e.g., SNR, Carrier-to-Noise Ratio (CNR)) is higher than a pre-defined 

threshold to report their CSI [6], [54-57]. However, these approaches may fail to 

obtain higher effective channel gain because their CSI reports are sent without 

considering the relationship between user channels. 
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Figure 3.1: MU-MIMO downlink system with the 𝑴-antenna AP and 𝑲 single-antenna 

user stations. 

 

 

3.3 Background 

 

3.3.1 System Model 

In this chapter, we consider a single Basic Service Set (BSS) Wi-Fi network, where 

an 𝑀-antenna AP and 𝐾 single-antenna user stations communicate with each other, 

as shown in Figure 3.1. We assume that MIMO channels satisfy the i.i.d. Rayleigh 

fading condition: the real and imaginary components of 𝐡𝐤𝐦 are i.i.d. Gaussian with 

unitary variance and zero mean, where 𝐡𝐤𝐦 is a channel gain from the 𝑚th antenna 

of the AP to the 𝑘th user. Then, we can characterize the channel of user 𝑘 from the 

AP, i.e., 𝐡𝐤, as a zero mean complex Gaussian channel vector. 

In MU-MIMO, the multi-antenna transmitter, e.g., AP, uses precoding to send 

multiple data streams between several users at a given instant. Similar to most recent 

schemes, we incorporate Zero-Forcing Beamforming (ZFBF) as the precoding 

strategy, since it effectively removes the mutual interference among concurrent 

transmissions by using a low-complexity precoding matrix computation. In ZFBF, 

the precoding vector of one user is selected to be orthogonal to the channel vector of 
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the other user. In particular, the precoding matrix for the transmission group 𝑆 , 

denoted by 𝑊(𝑆), is obtained as: 

𝑊(𝑆) = 𝐻(𝑆)† = 𝐻(𝑆)∗(𝐻(𝑆)𝐻(𝑆)∗)−1              (11) 

where (⋅)†, 𝐻(𝑆) and 𝐻∗ stand for a pseudo-inverse, the channel matrix of 𝑆, and 

the conjugate transpose of 𝐻, respectively. 

Let 𝑋(𝑆) be the signal vector to be transmitted for 𝑆. Then, the precoded signal 

vector, denoted by 𝑋(𝑆)′ = 𝑊(𝑆)𝑋(𝑆), has an average power constraint of 𝑃 and 

ℰ[∙] are the maximum transmitting power of the AP and the expectation operator, 

respectively. The sum-capacity for 𝑆, denoted by 𝐶(𝑆), is modeled as: 

𝐶(𝑆) = max
𝑃𝑗:∑ 𝛾𝑗

−1𝑃𝑗≤𝑃𝑗∈𝑆

∑ log (1 + 𝑃𝑗)𝑗∈𝑆               (12) 

, where 𝛾𝑗 =
1

‖𝑤𝑗‖
2  is the effective channel gain of 𝑗 th user in 𝑆  and 𝑤𝑗  is an 

element of 𝑊(𝑆). 

 

3.3.2 User Selection  

The main objective of the user selection problem is to maximize the sum-capacity 

for a user group 𝑆: 

maximize
𝑆⊂{1,…,𝐾}:|𝑆|≤𝑀

𝐶(𝑆).                       (13) 

Generally, (13) is accomplished by taking two steps: optimal user selection and 

power allocation. Note that the water filling is well known for the optimal power 

allocation approach [26]. In this chapter, we assume the equal power distribution 

scheme for simplicity. 

 

 

  



62 

 

 

Figure 3.2: Operation example of 802.11ac+. Both AP and users participate in scheduling 

decisions. Except for the first scheduled user, all users should send a feedback report through 

a contention. If the AP fails in reception of any CSI reports, then it does not go to the next 

contention round, and finishes the feedback procedure. Therefore, there could be maximum 

(𝑀 − 1) contention rounds in the case of 𝑀 AP antennas. 

 

 

3.4 802.11ac+ 

 

3.4.1 Overview 

As explained earlier, we do not separate CSI feedback from the user scheduling 

procedure. This is the key difference between the user scheduling in 802.11ac+ and 

other approaches. Figure 3.2 illustrates the main idea. At the beginning, an AP polls 

the first user (i.e., User 1 in this example) and it replies with its CSI. Then, the AP 

immediately joins User 1 to the scheduled user set 𝑆. We note that the first user is 

selected by the AP's queuing policy. By using the first CSI, the AP makes a channel 

hint, and it broadcasts a polling frame with the channel hint to all users. Upon 

receiving the poll, users compute their ECGs from the channel hint. Then, the user 

with the highest gain sends its CSI report to the AP through a contention. In this 

example, User 2 has the largest channel gain so it can feed back CSI for the second 

time. This step repeats until the AP successfully receives 𝑀  CSI reports or the 

feedback timeout is triggered.  

The intuition behind our user scheduling method is that users actively participate in 

scheduling decisions, unlike in most user scheduling algorithms, which are executed 

at only the multi-antenna transmitters. As a result, user scheduling in 802.11ac+ can 

limit the number of sounding exchanges to the number of AP antennas, while still 
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keeping the scheduling gain. In the next section, we introduce two main mechanisms 

to realize 802.11ac+: channel hint broadcasting and active CSI feedback. 

 

3.4.2 Channel Hint Broadcasting 

1) Effective Channel Gain 

Since the user scheduling in 802.11ac+ is based on harnessing the ECG, we first 

look into the concept of it. For a user channel 𝐡𝐤, its effective channel vector4 is 

defined as 𝐞𝐤 , and can be calculated by projecting 𝐡𝐤  onto the orthogonal 

complement of the subspace spanned by set {𝐞𝟏, … , 𝐞(|𝑺|)}, being interpreted as the 

effective channel vectors of previously selected users [9], [11]: 

𝐞𝐤 = 𝐡𝐤 − ∑
𝐡𝐤𝐞(𝐣)

∗

‖𝐞(𝐣)‖
2 𝐞(𝐣)

|𝑆|
𝑗=1                      (14) 

𝑒𝑘 = 𝐡𝐤 (𝐼 − ∑
𝐞(𝐣)

∗ 𝐞(𝐣)

‖𝐞(𝐣)‖
2

|𝑆|
𝑗=1 )                     (15) 

𝑒𝑘 = 𝐡𝐤𝑄(𝑆)                                (16) 

where 𝐼 is the identity matrix and 𝑄(𝑆) is a projection matrix. Then, the ECG of 

user 𝑘 is denoted as ‖𝐞𝐤‖2. 

Specifically, for OFDM systems, which divide the bandwidth into orthogonal 

subcarriers and treat each of the subcarriers as an independent narrowband channel, 

the ECG should be averaged over all subcarriers 5 . Let 𝐞𝐤[𝒄]  be the ECG on 

subcarrier 𝑐, then we have  

 

‖𝐞𝐤‖2 =
1

𝑁𝑐
∑ ‖𝐞𝐤[𝒄]‖2𝑁𝑐

𝑐=1                      (17) 

where 𝑁𝑐 is the total number of subcarriers. 

                                           
4 The effective channel vector of the first user is the same as its channel vector, 𝐞(𝟏) = 𝐡(𝟏). 
5 In this work, we do not consider a per-subcarrier decision. We leave this issue to our future 

work. 
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Figure 3.3: The change in use of the polling frame. When using a channel hint, polling is no 

longer destined for only one target user, so the receiver address should be the broadcast 

address. The length of the channel hint varies depending on the quantization level. 

 

 

2) Channel Hint Design 

There are many ways to implement a channel hint. In a simple way, the AP can use 

a projection matrix as a channel hint. Although this simplifies the computation burden 

at the receiver, it always consumes significant bits for representing an 𝑀 × 𝑀 matrix 

per each subcarrier (the maximum required number of appended channel vectors is 

(𝑀 − 1)𝑀𝑁𝑐.). By contrast, if we use the received CSI as a channel hint, then this 

will increase the receiver side computing complexity. 

Our proposed design exploits a compromise between the above two schemes. Every 

time the AP receives a CSI report, it computes the effective channel vector from that 

CSI and uses it as a channel hint. Hence, in every poll frame the effective channel 

vector of the last scheduled user will be included. On the receiver side, users should 

maintain the value of summation in (15) during the feedback phase so that they can 

update a projection matrix and obtain their ECGs much faster. 

We illustrate the poll frame structure used in 802.11ac+ in Figure 3.3. As shown in 

the figure, the poll frame requires only one additional channel vector, and thus the 

maximum number of appended vectors is (𝑀 − 1)𝑁𝑐. Since in each selection round, 

each user and the AP require one (1 × 𝑀) × (𝑀 × 𝑀) vector-matrix multiplication 

per subcarrier, we conclude that the computational complexity is 𝐶(𝑀 − 1)𝑁𝑐 , 

where 𝐶 is a computational cost corresponding to one vector-matrix multiplication. 

One may claim that polling additional (𝑀 − 1) users and taking CSI from them for 

user selection would be more effective than using (𝑀 − 1) channel hints. However, 

this may have a large feedback overhead, which brings MU-MIMO performance 

degradation. To clarify this, we compare the overhead of two schemes. Let 
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𝜏𝐸𝐶𝑉 ,  𝜏𝑃𝑂𝐿𝐿  and 𝜏𝐶𝑆𝐼  be the transmission time of sending one effective channel 

vector in channel hint, one polling frame and one CSI feedback, respectively. Note 

that 𝜏𝐸𝐶𝑉 + 𝜏𝑃𝑂𝐿𝐿 is the transmission time for one channel hint, and 𝜏𝐸𝐶𝑉 < 𝜏𝑃𝑂𝐿𝐿. 

First, in 802.11ac+, the AP will send maximum (𝑀 − 1)  channel hints, and 

maximum 𝑀 users will report their CSI reports. Then, we have the following: 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑802.11𝑎𝑐+ = 𝜏𝑃𝑂𝐿𝐿 + (𝑀 − 1)(𝜏𝐸𝐶𝑉 + 𝜏𝑃𝑂𝐿𝐿) + 𝑀𝜏𝐶𝑆𝐼 + 2𝑀𝜏𝑆𝐼𝐹𝑆 

+(𝑀 − 1)𝜏𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛                           (18)  

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑802.11𝑎𝑐+ = 𝑀𝜏𝑃𝑂𝐿𝐿 + (𝑀 − 1)𝜏𝐸𝐶𝑉 + 𝑀𝜏𝐶𝑆𝐼 + 2𝑀𝜏𝑆𝐼𝐹𝑆                

+(𝑀 − 1)𝜏𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛                           (19) 

where 𝜏𝑆𝐼𝐹𝑆  stands for 802.11 Short InterFrame Space (SIFS), which is 16μs in 

802.11ac [2]. Here, 𝜏𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  is an overhead from the feedback contention of 

802.11ac+, which will be discussed in the next section. As will be shown in Figure 

3.5 (b) later, the maximum value of a 𝜏𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is about 2𝜏𝑆𝐼𝐹𝑆 (four slots per each 

round). 

Now, assume that the AP polls (𝑀 − 1) users after taking CSI from 𝑀 users. In 

other words, the AP takes CSI from total (2𝑀 − 1) users for user selection. Then, 

we have the following: 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑎𝑑𝑑 = (2𝑀 − 1)(𝜏𝑃𝑂𝐿𝐿 + 𝜏𝐶𝑆𝐼) + 2(2𝑀 − 1)𝜏𝑆𝐼𝐹𝑆        (20) 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑎𝑑𝑑 = (2𝑀 − 1)𝜏𝑃𝑂𝐿𝐿 + (2𝑀 − 1)𝜏𝐶𝑆𝐼 + 2(2𝑀 − 1)𝜏𝑆𝐼𝐹𝑆. (21) 

Even if taking 𝜏𝐸𝐶𝑉 ≅ 𝜏𝐶𝑆𝐼, 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑802.11𝑎𝑐+ < 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑎𝑑𝑑. Also, since the 

AP has no choice but to poll users randomly in this scheme, the user selection gain 

could be small, as shown in the case of 𝑀 = 4 in Figure 1.2. 

When sending a channel hint, since the AP may not intend all users to participate in 

the feedback procedure, it requires a method to notify only some dedicated users. For 

example, an AP should prevent users from sending CSI reports when it has no frames 

for them. For target user notification, we utilize the legacy Null Data Packet 

Announcement (NDPA) frame, by using fewer bits for the Association ID in the STA 

Info field and mapping bit positions to each user ID. This method maintains the same 

frame format, and thus is efficient. A detailed description of the notification is out of 

the scope of this thesis.  
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Table 3.1: An Example of the Thresholds 

CR (𝒘𝒔, 𝒘𝒄, 𝒘𝒕) 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 

1 
(1,1,1) 3.667 3.543 3.453 3.371 3.280 

(0.4,0.4,0.2) 3.680 3.558 3.472 3.396 3.318 

2 
(1,1,1) 2.541 2.436 2.360 2.291 2.215 

(0.4,0.4,0.2) 2.552 2.449 2.376 2.312 2.246 

3 
(1,1,1) 1.384 1.304 1.247 1.196 1.140 

(0.4,0.4,0.2) 1.392 1.314 1.259 1.212 1.163 

 

 

 

Figure 3.4: Example of the active CSI feedback with 𝜸 of five slots. Slot thresholds are 

given in Table 3.1. User 2 wins the contention because its ECG is higher than that of the others. 

Other users are notified of User 2's transmission and wait for the next round. 

 

 

3.4.3 Active CSI Feedback 

1) Feedback Contention 

In 802.11ac+, only the user with the highest ECG should respond to the poll. 

However, this is a challenging task since users cannot know the ECG of the others in 

a distributed manner. If two users, who might think their gains are the best, feed back 

their CSI reports simultaneously, a frame collision will occur. Without any 

coordination between users, they should get opportunities to send feedback through 

a contention like the 802.11 Distributed Coordinate Function (DCF). We call this a 

feedback contention in this chapter. 

In order to resolve the feedback contention, we adopt a delayed transmission 

approach. In this approach, users delay their feedback transmission regarding their 
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ECGs, such that a user with higher value can access the feedback opportunity faster. 

To realize this, we first apply slotted time in our scheme, where the slot duration is 

fixed and each slot has a pre-defined threshold. We refer to this threshold as a slot 

threshold. A user is assigned to the specific slot according to its ECG and is allowed 

to transmit feedback only at the slot. If a user senses a feedback transmission earlier 

than its slot, it gives up and waits until the next poll. 

Since users should listen to the medium until they obtain a transmission opportunity, 

the minimum duration of the slot requires at least one slot time of 802.11 (e.g., 4μs 

for CCA + 5μs for RX/TX turnaround). To limit the expense of delayed feedback, an 

AP uses the timeout threshold (𝛾). If the AP does not receive any feedback reports 

before 𝛾, then it finishes the scheduling. When feedback collision or timeout occurs 

in the first contention round, the scheduling may be stopped with only one user (i.e., 

the first user) remaining in 𝑆. In this case, the AP just sends a frame to that user in 

diversity mode, which guarantees the minimal level of system performance. 

Figure 3.4 shows an example of an active feedback scheme with three users and five 

feedback slots for the first contention round. The associated slot thresholds are given 

in Table 3.1, which will be explained in the following section. Assume that User 2 

and User 1 can transmit CSI feedback in the second and fourth slots, respectively, 

while User 3 cannot get an opportunity due to the low gain. User 2 sends the CSI 

feedback in the second slot. The others listen to the feedback transmission and wait 

for the next contention round. 

2) Slot Threshold Optimization 

The performance of the active feedback mainly relies on how to select the thresholds: 

𝛾 and slot thresholds. As described before, active feedback fails when a collision or 

timeout occurs; however, their impacts are different from each other. The loss from 

collision is much bigger than that from timeout, due to the relatively long time wasted 

in the collision. Thus, we first fix 𝛾 and find optimal values of the slot thresholds for 

each contention round. Now, we describe how to determine the thresholds as below. 

Provided that a random channel vector on subcarrier c, 𝐡𝐤[𝒄] , is a zero-mean 

circularly symmetric complex Gaussian random variable, from (17), ‖𝐞𝐤‖2  is a 
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Gamma-distributed random variable with 𝑁𝑐𝐿  (shape parameter) and 
1

𝑁𝑐
(scale 

parameter), where 𝐿 = 𝑟𝑎𝑛𝑘(𝑄(𝑆)). Formally, for a constant 𝛼, ‖𝐞𝐤‖2 satisfies 

P{‖𝐞𝐤‖2 ≤ 𝛼} = 𝐹(𝛼; 𝑁𝑐𝐿,
1

𝑁𝑐
)                   (22) 

where 𝐹(𝛼; 𝑁𝑐𝐿,
1

𝑁𝑐
) is the Cumulative Distribution Function (CDF) of the Gamma 

distribution for 𝛼, 𝑁𝑐 and 𝐿. For fixed 𝑁𝑐 and 𝐿, we use 𝐹(𝛼) and 𝐹(𝛼; 𝑁𝑐𝐿,
1

𝑁𝑐
) 

in the same sense. Note that 𝐿 varies every contention round. 

For a timeout 𝛾 (= 𝐺 slots) in a certain contention round, let 𝛼1, 𝛼2,…, 𝛼𝐺 be the 

threshold corresponding to each slot, where 𝛼1 ≥ 𝛼2 ≥, … , ≥ 𝛼𝐺 ≥ 0. We assume 

that 𝛾 is fixed over all contention rounds. We define the probability of successful 

feedback as the probability that only one user will send a CSI report in 𝛾. Then, it 

can be calculated by summing up all success probabilities over all time slots:  

𝑝𝑠𝑢𝑐 = ∑ 𝑝𝑔
𝑠𝑢𝑐𝐺

𝑔=1                                             (23)  

𝑝𝑠𝑢𝑐 = 𝐾′{1 − 𝐹(𝛼1)𝐹(𝛼1)(𝐾′−1)} + 𝐾′{𝐹(𝛼1 − 𝐹(𝛼2)𝐹(𝛼2)(𝐾′−1)} + ⋯ +

𝐾′{𝐹(𝛼𝐺−1 − 𝐹(𝛼𝐺)𝐹(𝛼𝐺)(𝐾′−1)}       (24) 

where 𝐾′ is the number of contending users in the contention round. We note that 

𝐾′ ≤ 𝐾 − 1 because the first user is already selected by AP, and 𝐾′ can be estimated 

by using the target user notification. 

The timeout and collision probabilities are defined as follows: 

𝑝𝑡𝑜𝑢𝑡 = 𝐹(𝛼𝐺)𝐾′
                       (25) 

𝑝𝑐𝑜𝑙 = 1 − 𝑝𝑠𝑢𝑐 − 𝑝𝑡𝑜𝑢𝑡.                (26) 

Then, our objective is to find a set of thresholds as follows: 

𝑎𝑟𝑔max
𝛼1,…,𝛼𝐺

𝑤𝑠𝑝𝑠𝑢𝑐 − 𝑤𝑐𝑝𝑐𝑜𝑙 − 𝑤𝑡𝑝𝑡𝑜𝑢𝑡              (27) 

where 𝑤𝑠 , 𝑤𝑐  and 𝑤𝑡  are weights for the probabilities of success, collision and 

timeout, respectively. 
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The optimization problem described in (27) is non-convex and is solved using 

nonlinear optimization technique. Note that it only needs to be solved whenever the 

network configuration (𝑁𝑐 , 𝑀, 𝐾) is changed or we can construct a set of solutions 

offline. Once a set of thresholds has been constructed, users can refer to them at any 

time. 

Table 3.1 shows an example of the thresholds in the case of 𝛾 = 5, 𝑀 = 4, and 

𝑁𝑐 = 30, where CR stands for contention round. Recall that there are maximum 

(𝑀 − 1) contention rounds and each round consists of 𝛾 time slots. From the table, 

we can see that the thresholds decrease during the course of a contention round, 

because successful feedback reduces 𝐿 one by one, and hence decreases the DoF of 

the Chi-Square distribution. In addition, the reduced number of contending users also 

results in lower thresholds in further contention rounds. The thresholds of nonequal 

weights are slightly bigger than those of equal weights. In this case, the probability 

of success as well as the probability of collision decreases. 
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Figure 3.5: Performance of the active CSI feedback. (a) We use two different CSI traces 

(real and synthetic traces). The channel coefficients of the synthetic trace follow the Rayleigh 

distribution explained in Section 3.3.1. (b) We use weights of (0.4,0.4,0.2) as the non-equal 

weights cases. The results for (‘neq’, ‘synthetic’) are omitted, because they show a similar 

pattern as those for `real'. 

 

 

We compare the downlink throughput and success feedback probability of 

802.11ac+ as a function of 𝛾 in Figure 3.5. In particular, to observe the impact of the 

threshold optimization according to channel distributions, we use two different 

channel distributions. Figure 3.5 (a) shows the ECG distributions of two traces used 

in this simulation: ‘real trace’ and ‘synthetic trace (Rayleigh)’. Note that the slot 

thresholds are computed from the real trace. As shown in Figure 3.5 (b), a throughput 

loss (maximum 4Mbps when 𝛾 = 4) happens in the synthetic trace scenario. This 

result is predictable: the thresholds are optimized only for the real trace. Even though 

the performance loss might seem small in this result, using a more exact channel 

model will improve the robustness of the proposed scheme. Note that in this section 

we provide an analysis of the Rayleigh fading case only, but we can apply the same 

technique for different distributions, e.g., Rician, by changing (22) in the optimization. 

The graph also demonstrates that non-equal weights reduce both the feedback 

success probability and the collision probability (omitted here), as expected, thereby 

decreasing the scheduling gain. As a result, the throughput of non-equal weights is 

lower than that of the equal weights over all cases. Additionally, we can see that too 

large a 𝛾 decreases the effective channel gain while too small a 𝛾 decreases the user 
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diversity gain. For the real trace scenario, both downlink throughputs increase as 𝛾 

reaches four; after that they decrease (for the synthetic trace, maximum downlink 

throughput is obtained when 𝛾 is three). 
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3.5 Fair Scheduling 

 

In this section we develop two fair scheduling approaches of the 802.11ac+ based 

on the Round-Robin and Proportional-Fair algorithms. Two main changes are 

adopted in the fair scheduling protocols to maintain the property of the 802.11ac+ 

user scheduling. The first change is to make use of a simple fair queue in the AP of 

both RR-11ac+ and PF-11ac+. In particular, the AP selects the first user by using the 

following: 

𝑎𝑟𝑔max
𝑘∈𝐴

1

ℛ𝑘
                           (28) 

where ℛ𝑘  is the average data rate of user 𝑘  and 𝐴 is a target user set. For the 

remaining users, each fair scheduling protocol uses a different scheduling strategy, 

but the main idea is the same as that of 802.11ac+. We describe the details of RR-

11ac+ and PF-11ac+ in the next subsections. 

 

3.5.1 RR-11ac+ 

This is the simplest way to obtain the fairness that gives users equal transmission 

opportunities. Most Round-Robin schedulers use the average data rates of all users 

and they can be monitored at the scheduler, which is very easy to implement.  

In RR-11ac+, we use the same metric to schedule users, but a simple change is made 

for multi-user transmission: before the active CSI feedback, an AP limits the 

contending users according to their average data rates. Specifically, among remaining 

users in 𝐴, the AP selects top (𝑀 − 1 + 𝑜) users in ascending order of average data 

rates such that users who have been served less have more feedback opportunities. If 

the non-negative parameter 𝑜 is set to 0, then RR-11ac+ is reduced to the 802.11ac 

with the legacy Round-Robin scheduling; however, it still considers the ECG of users. 

For example, if one's ECG is too low so joining it into 𝑆 is no longer helpful for 

multi-user transmission, then it will be discarded. 
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Table 3.2: Comparison between Three Schemes 

 
Size of target 

user set 
First user selection 

Metric for 𝒏(> 𝟏)th 

user selection 

802.11ac+ 𝐾 Random or 𝑎𝑟𝑔max  ‖𝐞𝐤‖2 ‖𝐞𝐤‖2 

RR-11ac+ 𝑀 − 1 + 𝑜 
𝑎𝑟𝑔max

1

ℛ𝑘

 
𝛵𝑘

ℛ𝑘

 
PF-11ac+ 𝐾 

 

 

3.5.2 PF-11ac+ 

The proportional fairness maintains a balance between maximizing the sum rate and 

allowing all users at least a minimal level of service. Basically, both the original 

Proportional-Fair algorithms and PF-11ac+ use the following criterion to select users: 

𝛵𝑘

ℛ𝑘
                              (29) 

where 𝛵𝑘 is the current available data rate of user 𝑘. 

The difficulty of legacy Proportional-Fair scheduling is that the scheduler cannot 

know the exact data rates of users (𝛵𝑘) when the scheduling decision has to be made. 

However, the active feedback of 802.11ac+ provides a simple implementation of the 

Proportional-Fair scheduling since users can actively join the scheduling decision. In 

particular, they can estimate 𝛵𝑘 by using their ECGs (i.e., 𝛵𝑘~ 𝑙𝑜𝑔(‖𝐞𝐤‖2)). Note 

that in PF-11ac+ users should maintain their average data rates, and the slot thresholds 

should be redefined according to (29) by adopting the technique in Section 3.4. 

 

3.5.3 Summary 

Table 3.2 shows the comparison between 802.11ac+, RR-11ac+ and PF-11ac+. As 

shown in the table, there are notable differences in three aspects: target user set, first 

user selection and 𝑛th user selection. First, in 802.11ac+ and PF-11ac+ all users are 

considered for scheduling, while in RR-11ac+ the number of target users is bounded 

to (𝑀 − 1 + 𝑜), as explained earlier. Second, in 802.11ac+ basically the first user is 

selected randomly according to AP's queuing policy, while in RR-11ac+ and PF-

11ac+, the user with maximum utility (28) will be chosen. To maximize the sum 
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capacity, the user with the largest ECG will be selected as a first user, similar to SUS 

[9]. In using this method, one possible concern is that optimally selecting the first 

user is difficult since no CSI is available at the time of user selection. To handle this 

issue, we propose referring to the statistics of previous channel status of the users, for 

the first user selection. This method should work well when transmissions of the AP 

happen in channel coherent time, which typically ranges from 15ms to 100ms [6], 

[58]. Lastly, for 𝑛th user selection, 802.11ac+ uses ECG as a selection metric, while 

the fair scheduling protocols use (29) as a selection metric. 
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Table 3.3: Default Simulation Parameters 

Parameter Value 

Downlink (Upllink) traffic intensity 5 (0.5) Mbps 

𝐾 15 

The number of polls used in SUS 10 

𝑀 4 

SNR 16.7 dB 

𝛾 4 

𝑜 4 

 

 

3.6 Performance Evaluation 

 

In this section, simulation results for the throughput and fairness performance of the 

proposed schemes are presented. 

 

3.6.1 Setting 

We implement 802.11ac, SUS, 802.11ac+, RR-11ac+ and PF-11ac+ on the 

MATLAB simulator. To conduct high-fidelity emulation of real-world settings, we 

use the 802.11n data traces provided by the authors of [59]. The traces contain per-

subcarrier (30 subcarriers for 20MHz) CSI and SNR readings (ranging from 4dB to 

43dB) for 18 users. By using the traces, we reconfigure 25 users and a maximum of 

four AP antennas in our simulations. 

Except for the set of fair scheduling protocol simulations, we assume that all users 

have the same average SNR of 16.7 dB (according to the trace). We set the simulation 

parameters to the default values in Table 3.3 and 802.11ac. The AP and users generate 

traffic for each other according to their average sending rates (traffic intensity). We 

measure the average aggregate throughput of the downlink, uplink and system. Note 

that the system throughput is defined as the sum of downlink and uplink throughput. 

We also assume that all protocols used in the simulation enable a packet aggregation 

scheme.  
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Figure 3.6: Throughput according to the number of users. Due to dominant uplink traffic 

and heavy contention, the network throughput decreases with the number of users. We note 

that 𝛼 used in SUS controls the trade-off between diversity gain and effective channel gain 

[9]. 

 

 

3.6.2 802.11ac+ Performance 

1) Impact of 𝐾 

The user diversity will be more effective as the number of users to be considered for 

the scheduling increases; however, the significant CSI feedback overhead may limit 

the gain. In order to examine the performance of 802.11ac+, we illustrate the 

downlink and system throughput of three protocols according to the number of users 

in Figure 3.6. Both throughputs increase until the number of users reaches a certain 

point, after which they start to decrease. 802.11ac+ shows significant throughput gain 

over the other protocols from the high channel utilization via its user selection scheme. 

As a result, it achieves the maximum downlink (system) throughput gain of 100% 

(69%) and 168% (97%) over 802.11ac and SUS, respectively. On the other hand, SUS 

shows a similar or worse performance compared to 802.11ac except for a moderate 

number of users.   
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Figure 3.7: Throughput according to the number of AP antennas. The large number of AP 

antennas increases the size of the CSI feedback frame. Thus, requesting many users' CSI for 

scheduling may limit the scheduling gain significantly, as shown in the result of SUS. 

However, 802.11ac+ can obtain higher throughput gain over both protocols due to the limited 

feedback. 

 

 

2) Impact of 𝑀 

More AP antennas provide better spatial multiplexing gain while increasing the CSI 

overhead because a large number of bits are required for representing CSI. In this 

simulation, we investigate and compare the performance according to the number of 

AP antennas, as shown in Figure 3.7. As expected, the throughput of protocols 

increases with the number of AP antennas. However, the CSI overhead limits the 

performance of SUS while 802.11ac+ can obtain much higher throughput gain due to 

small CSI overhead. As a result, it achieves the maximum downlink (system) 

throughput gain of 98% (51%) and 161% (75%) over 802.11ac and SUS, respectively. 
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Figure 3.8: System throughput according to the number of polls. 802.11ac+ obtains higher 

throughput gain from the user scheduling with a fixed number of polls, while in the case of 

SUS, the performance degrades as the number of polls increases. 

 

 

3) Impact of the Number of Polls 

To investigate the user scheduling gain affected by the CSI overhead, we compare 

the three system throughput results according to the number of polls in Figure 3.8. As 

expected, SUS suffers from the CSI overhead as the number of polls increases. As a 

result, SUS shows poor throughput performance compared to 802.11ac after the 

number of polling frames exceeds seven in the case of 𝑀 = 4. In contrast to SUS, 

802.11ac+ outperforms other protocols by using far less CSI feedback while fully 

harnessing the user scheduling gain. As a result, in the case of M = 4 and four polling 

frames, its throughput gains over 802.11ac and SUS are 51% and 20%, respectively. 
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Figure 3.9: System throughput comparison of 802.11ac, 802.11ac+ and two fair 

scheduling protocols. 802.11ac+, RR-11ac+, and PF-11ac+ show a similar performance 

under the same average user SNR environment due to the fact that they consider the effective 

channel gain. 

 

 

3.6.3 Fair Scheduling Protocol Performance 

1) System Throughput 

We compare the system throughput of RR-11ac+ and PF-11ac+ with 802.11ac and 

802.11ac+ in Figure 3.9. As shown in the graph, 802.11ac+ and its fair approaches 

show similar throughputs, although they use different user selection criteria from each 

other. In particular, the system throughputs of RR-11ac+ and PF-11ac+ are much 

bigger than that of 802.11ac, since the user scheduling adopted in them still considers 

the effective channel gain, unlike 802.11ac. Recall that all users experience similar 

average SNRs in this simulation. 
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Figure 3.10: Jain's Fairness Index according to 𝑴. RR-11ac+ and PF-11ac+ can achieve 

high throughput fairness compared to 802.11ac and 802.11ac+. 

 

 

2) Fairness 

To evaluate the fairness performance of RR-11ac+ and PF-11ac+, users are 

subjected to different average SNRs from 4dB to 43dB, and a user with a higher ID 

has a bigger SNR than one with a lower ID, unlike in the previous set of simulations. 

Figure 3.10 illustrates Jain's Fairness Index of downlink throughput of four 

protocols. From the result, we can see that the MU-MIMO transmission with more 

antennas gives better fairness because it can serve more users at once. Over all cases, 

RR-11ac+ shows the best fairness performance, followed by PF-11ac+. In particular, 

RR-11ac+ with 𝑀 = 4  achieves close-to-perfect fairness among users. In the 

meantime, 802.11ac and 802.11ac+ bring low fairness levels compared with the two 

fair scheduling protocols. The performance of 802.11ac+ is similar to or higher than 

that of 802.11ac, and yet the sum rate of 802.11ac+ is much higher than that of 

802.11ac. 
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Figure 3.11: Downlink throughput comparison of 802.11ac, 802.11ac+, RR-11ac+ and PF-

11ac+. RR-11ac+ and PF-ac+ achieve fairly similar throughputs over all users, though they 

experience different channel qualities. 

 

 

Finally, we plot the downlink throughput that each user attains under each protocol 

in Figure 3.11. From the figure, we can clearly see that RR-11ac+ and PF-11ac+ 

achieve fairly similar throughputs over all users except some users with low SNRs. 

In addition, in this result, PF-11ac+ shows better aggregate downlink throughput than 

802.11ac+, since users in 802.11ac+ have different chances of being scheduled 

regarding only their ECGs: the user scheduling of 802.11ac+ only favors a user to 

enhance the sum rate. As a result, there exist some users that have low throughput in 

802.11ac+. Surprisingly, in the case of 802.11ac, this phenomenon is more obvious; 

more users suffer from starvation and a few users with high SNRs enjoy the high 

throughput. The main reason is that since the user scheduling in 802.11ac+ cares 

about the channel orthogonality between users, the probability of creating a low-

benefit scheduling group is lowered. 
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3.7 Conclusion 

 

In this work, we propose a new MU-MIMO MAC protocol, 802.11ac+, which 

obtains significant user scheduling gain with a far smaller amount of CSI feedback 

by exploiting channel hint-based polling and active CSI feedback. Trace-driven 

MATLAB simulation results show that 802.11ac+ achieves downlink throughput 

gains of up to 100% and 168% over 802.11ac and SUS-based MAC protocols. 

Additionally, two fair scheduling protocols of 802.11ac+ give close-to-perfect user 

fairness even when the users experience different channel qualities.  
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CHAPTER IV 

 

 

Distributed Frequency Domain User 

Selection 

 

 

4.1 Introduction 

 

In this chapter, we present a new user selection protocol called DiFuse (Distributed 

frequency domain user selection) that uses the capacity gain as a scheduling metric 

in user selection. The key mechanism of DiFuse is to greedily select a user at each 

iteration which yields maximum positive increment to the sum-capacity of the 

network. Given a user set, the capacity gain of a new user is defined as the increment 

in network capacity achieved by including the new user to the user set. DiFuse, as its 

name suggests, makes the scheduling decisions in a distributed manner. Each user 

cleverly computes its expected sum-capacity gain by overhearing the CSI feedback 

transmissions from other users. Then each user sends its sum-capacity gain in a 

simplified format called a Selection REQuest (SREQ); the user marks on one 

particular subcarrier of an OFDM symbol depending on the value of sum-capacity 

gain. The users concurrently transmit the SREQs via distributed feedback contention, 
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which is devised to effectively reduce feedback contention via dynamic threshold 

design and frequency domain contention [36], [60], [61]. The AP receives the SREQs 

and collectively uses them to select the user that gives the maximum positive 

increment to the sum-capacity of the network, then polls the user for the actual CSI 

transmission. 

We implement the DiFuse prototype on the USRP N210 and GNURadio [13], and 

conduct testbed experiments and trace-driven emulations. The results show that 

DiFuse obtains higher throughput compared to conventional schemes such as SUS [9] 

and OPUS [12], as well as 802.11ac [2]. Further, DiFuse gives a better degree of 

proportional fairness over other schemes, especially when users experience different 

channel qualities.  

The remainder of this chapter is organized as follows. We give some background of 

MU-MIMO and user selection in Section 4.2. We discuss the DiFuse mechanism in 

Section 4.3. Section 4.4 shows the performance evaluation and we finally conclude 

our chapter in Section 4.5. 

 

 

4.2 Motivation 

 

For optimal user selection, we should consider all possible user groups, compare 

their capacities, and choose one group which gives the highest capacity. However, 

such a naïve and exhaustive search over the entire user set (i.e., ∑ (
𝐾
𝑚

)𝑀
𝑚=1 ) 

obviously results in very high feedback overhead as well as computation, especially 

when K is very large. To reduce the overhead, many schemes adopt the incremental 

user selection approach: the AP or BS (Base Station) incrementally chooses a user by 

employing a use selection metric in each iteration, e.g., channel strength, 

orthogonality (angle), (projected) norm and capacity gain. 
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Figure 4.1: Normalized capacity gain of each selection metric. We set 𝑀 = 2, 𝐾 = 20 and 

use two traces, real trace (‘R’) and synthetic trace (‘N’). 

 

 

Figure 4.2: An illustrative example of the projected norm based scheme when 𝑴 = 𝟐 

and 𝑲 = 𝟑. We assume that User 1 was already selected.𝛾(𝑎,𝑏) denotes the channel of user 𝑎 

projected to the orthogonal subspace of channel of user 𝑏. User 2 will be selected if we select 

the user with the largest projected norm, i.e., 𝛾(2,1) > 𝛾(3,1). However, the actual sum-capacity 

becomes bigger when User 3 is selected instead of User 2, i.e., log 𝛾(1,2) + log 𝛾(2,1) <

log 𝛾(1,3) + log 𝛾(3,1). 
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Figure 4.1 compares the normalized capacity gain of the four selection metrics 

(random, maximum power, maximum angle, maximum projected norm), computed 

over that of the optimal selection. We select one user randomly as the first user and 

then, choose the other users according to the selection metric. The same first user is 

chosen for each metric, for fair comparison. We set M as 2 and K as 20. For the 

optimal selection, we consider the capacity gain among all possible user groups. We 

use two type of traces as input: real trace (‘R’) and synthetic trace (‘N’).  

As shown in the result, in random and max-power selection schemes, only about 15% 

and 20% result the same as the optimal, respectively. The max-angle metric is better 

by showing 27% to 46% of the optimal. Although the projected norm delivers the 

best performance (80% result the same as the optimal), it gives around 20% of non-

optimal sum capacity. Such a performance loss happens because sometimes a user 

with a high power gain but small orthogonality could be selected. Such a small 

orthogonality may induce significant power loss to the previously selected user 

channels, as shown in the example in Figure 4.2. From this result, we conclude that 

the capacity gain is the most effective selection metric for the case of M = 2. Note 

that when M > 2, even the capacity gain cannot guarantee the optimal solution due to 

the nature of incremental user selection, but it still provides a better selection result 

than the projected norm, as will be shown later. 

Unfortunately, exploiting the capacity gain as a selection metric is a challenging task. 

First, to compute the capacity gain, all CSI feedbacks from users should be sent prior 

to the selection, which significantly increases a MAC overhead. One alternative is to 

compute them in a distributed manner. In other words, we can let each user estimate 

its own capacity gain. To realize this, users should know the CSI of the previously 

selected users, and thus the AP may need to send them back to the remaining users, 

which brings a large amount of frame exchanges. Instead of explicitly sending the 

CSI feedbacks, the OPUS [12] performs orthogonality probing to realize distributed 

user selection. However, since the users do not have the CSI of others, the OPUS has 

no choice but to use the projected norm. Second, an effective contention mechanism 

should be supported for distributed user selection. A time-domain contention scheme 

adopted in OPUS is simple and intuitive, but the contention overhead is non-

negligible, as mentioned earlier. 
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In summary, the main goal of this chapter is to propose a protocol that enables the 

capacity gain metric for user selection in a scalable manner and at the same time 

addresses the time-domain contention overhead issue. Our proposed scheme, DiFuse, 

meets both requirements by using overhearing-based CSI acquisition and frequency 

domain signaling. We elaborate the details of our scheme in the next section. 
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Figure 4.3: Overview of DiFuse operation. The poll and CSI feedback exchanges between 

the AP and users are conducted via SREQ/SREP based on frequency domain contention. 

DiFuse requires up to 𝑀 polling and feedback frames to achieve the user selection gain. 

 

 

4.3 Distributed Frequency Domain User Selection 

 

4.3.1 Protocol Overview  

Figure 4.3 illustrates the operation of DiFuse. Let us assume User 1 was first selected 

(we will explain the first user selection in the later subsection.). User 1 sends its CSI 

report to the AP, and all remaining users (𝑘 = 2, . . , 𝐾) overhear it6 and compute the 

capacity gain by comparing the sum capacities of the two user groups: with and 

without itself. Then, the users concurrently send the gain value via SREQ to the AP, 

only if the gain is above 1. This implies that a user can become a candidate only if it 

gives a positive increment to the sum-capacity. Furthermore, since the users with gain 

values under 1 do not transmit the SREQ, the contention can be reduced. Say that 

User 𝐾  has the highest capacity gain among all remaining users, i.e., 
𝐶({1,𝐾})

𝐶({1})
>

𝐶({1,𝑘})

𝐶({1})
, 𝑘 ∈ {1,2, … , 𝐾} ∖ {1, 𝐾}. Then, in the second polling round, the AP polls User 

𝐾 via Selection REPly (SREP) as the next user, and in turn, User 𝐾 transmits the 

actual CSI feedback. DiFuse exploits the frequency domain contention to efficiently 

                                           
6 We assume explicit CSI feedback as in 802.11ac [2]. 
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integrate the concurrent SREQ transmissions from the users. This process repeats 

while the remaining Degree of Freedoms (DoFs) are available.  

 

4.3.2 Distributed Feedback Contention 

We conduct the distributed feedback contention at the frequency domain. The 

capacity gain of each user is first mapped to a particular subcarrier of an OFDM 

symbol (setting a bit “1"), and then the users concurrently transmit the symbols via 

SREQ. The AP can detect these combined multiple SREQs by using the typical FFT. 

An SREQ lasts only for a few OFDM symbols, and so its overhead is much smaller 

than that of the time-domain contention [12]. Note that multiple OFDM symbols 

could be misaligned due to several reasons such as different propagation delay or 

switching delay, but the total misalignment has been shown to be tightly bounded 

[36], [60], [61]. As long as the misalignment is less than the Cyclic Prefix (CP), the 

AP can decode misaligned signals. 

In making a SREQ, DiFuse uses a simple threshold based mapping scheme. We 

assume that for each polling round 𝑖 , each data subcarrier 𝑛 ∈ 𝑁  has its virtual 

threshold 𝐸𝑖,𝑛  (we call this a slot threshold). For all 𝑖 and 𝑛, all slot thresholds 

satisfy the following condition: 

1 ≤ 𝐸𝑖
𝑚𝑖𝑛 ≤ 𝐸𝑖,𝑛 ≤ 𝐸𝑖

𝑚𝑎𝑥                    (30) 

𝐸𝑖,𝑛 < 𝐸𝑖,𝑛+1                         (31) 

, where 𝐸𝑖
𝑚𝑖𝑛 and 𝐸𝑖

𝑚𝑎𝑥 are the minimum and maximum slot threshold of round 𝑖, 

respectively. Recall that 𝐸𝑖
𝑚𝑖𝑛 cannot be less than 1. 
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Figure 4.4: The main concept of slot thresholds of DiFuse. We generate several slot 

thresholds for idle case. Here 𝛿 presents a seed parameter. 

 

We illustrate an example of slot thresholds in Figure 4.4. There are several slot 

thresholds for each selecting round 𝑖, and when making SREQ, DiFuse users use one 

of them. In particular, at the beginning, users use slot thresholds with 𝛿 = 0.99, and 

according to SREQ transmission results, users can use other threshold with the 

decreased 𝛿. The detailed description of 𝛿 and the slot threshold is given in the next 

subsection. Given slot thresholds, a channel gain of User 𝑘 (𝜆𝑖,𝑘) is mapped to 𝑛th 

subcarrier, if it satisfies the following condition: 

𝐸𝑖,𝑛 ≤ 𝜆𝑖,𝑘 < 𝐸𝑖,𝑛+1                      (32) 

, where 𝐸𝑖,|𝑁|+1 = ∞. 

Since the slot thresholds of round 𝑖 are monotonic increasing with 𝑛, as shown in 

(30) and (31), a user with a higher capacity gain will activate a higher subcarrier index 

on SREQ. When users send SREQs, according to the capacity gain status of users, 

one of following cases may occur.  
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Figure 4.5: Three cases of SREQ transmissions. 
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 Success case  

A success case happens only when a single user is associated with the highest 

activated subcarrier index of the combined SREQ. The DiFuse AP extracts the SREQ 

of the selected user from the combined SREQ, which we call SREP-I, which is then 

broadcast to all remaining users. The user checks if SREP-I matches the previously 

sent SREQ, if so, then it transmits the actual CSI feedback. 

Example 

Let us assume that the capacity gain of User 2 and User 3 are 1.750 and 1.703, 

respectively. Then, with slot thresholds of 𝛿 = 0.99 and 𝑖 = 2, users will send their 

SREQs to the AP as shown in Figure 4.5 (a). Since only User 2 is associated with the 

highest activated subcarrier index, the contention is successfully resolved. 

 Collision case 

A collision case happens when more than one users are associated with the highest 

activated subcarrier index of the combined SREQ. Since the SREQs do not include 

any user information such as user ID or address, the SREP-I will invoke multiple 

users to send their CSI feedbacks at the same time. If the AP fails to apprehend the 

received CSI due to the collision, it just quits the user selection procedure and starts 

the data transmission for the already selected users. 

Example 

Let us assume that the capacity gains of User 2 and User 3 are 1.75. Then, their 

SREQs will be the same and finally CSI collision will occur, as shown in Figure 4.5 

(b). 

 Idle case 

An idle case happens if there are no associated users for SREQ, which means 𝜆𝑖,𝑘 <

𝐸𝑖
𝑚𝑖𝑛, for all users (Figure 4.5 (c)). Therefore, in this case, the SREQ transmissions 

do not occur. Instead, after timeout (2 SIFS), the AP transmits the pre-defined OFDM 

symbols (we call this SREP-II) to inform the users of the idle case. Compared to the 

collision case, the idle case hardly affects the system performance, since the 

transmission times of SREQ and SREP are very short (a few microseconds per each). 
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Based on this fact, we allow users to perform re-mapping and re-transmission of 

SREQs again, when an idle case happens. Specifically, in each retry, users make 

SREQs with different slot thresholds. Note that the number of retries is limited by the 

pre-defined threshold. The SREP-I and SREP-II may require some modifications to 

the legacy standard, but we note that this change can reduce up to 3 OFDM symbol 

transmissions, compared to the legacy polling frame. 

Example 

Let us assume that the capacity gains of User 2 and User 3 are 1.690 and 1.691, 

respectively. With slot thresholds of 𝛿 = 0.99 and 𝑖 = 2, each user cannot generate 

SREQ because their capacity gains are too low. After receiving SREP-II, users 

regenerate SREQs with a decreased 𝛿  (e.g., 0.95). Here, users can successfully 

generate SREQs and User 3 will be selected as the ith user, as shown in Figure 4.5 

(c). 
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Figure 4.6: Capacity gain distribution for 𝑴 = 𝟐 𝐚𝐧𝐝 𝟒. As the selection round advances, 

the average capacity gain decreases. This result is predictable, because the power allocated to 

each user is reduced as a user group size increases. 

 

 

Figure 4.7: Examples of slot thresholds for different mapping configurations. In the ‘dist’ 

design, gaps between slot thresholds are determined by the capacity gain distribution, while 

in the ‘linear’ design, gaps are determined to be equal. 
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4.3.3 Slot Threshold Design 

To maximize the number of success cases, we devise an empirical method to 

dynamically set the slot thresholds of DiFuse. We address several challenges to 

accomplish this. First, it is not easy to know the exact channel status of users before 

the user selection. For this reason, we set slot thresholds empirically from the channel 

status statistics. To do this, the AP collects the channel status of the users and 

computes the capacity gain distribution. We provide an example of the capacity gain 

distribution in Figure 4.6. Note that the capacity gain distribution is computed offline. 

Second, it is difficult to reduce both collision and idle cases since we could not 

estimate the dynamics of user channels. Thus, we aim to avoid only collision cases, 

in that the penalty of the idle case is far smaller than that of the collision case. To 

accomplish this, we let the distance between 𝐸𝑖
𝑚𝑖𝑛 and 𝐸𝑖

𝑚𝑎𝑥 be relatively short. 

However, if the two values are too close together, it decreases the multi-user diversity 

gain because it is likely to have very few or even no associated users between the two 

values (i.e., idle case). On the other hand, if the two values are too far apart, it 

increases the probability that more than one users are associated with the same 

activated subcarrier (i.e., collision case).  

Based on the above insight, we allow multiple slot thresholds for one selection round. 

In particular, we first fix 𝐸𝑖
𝑚𝑎𝑥 (𝐸𝑖

𝑚𝑎𝑥 is set to 𝐹𝑖
−1(1), since it reflects the expected 

gain that the system can obtain) and make several 𝐸𝑖
𝑚𝑖𝑛 values according to 𝛿 (seed 

parameter) as follows: 

𝐸𝑖
𝑚𝑖𝑛 = 𝐹𝑖

−1(𝛿)                        (33) 

, where 𝐹𝑖 is the CDF of capacity gain distribution for selection round 𝑖. 

Since the collision probability decreases with 𝛿, we set the initial 𝛿 as 0.99. After 

that, if an idle case happens, 𝛿 is decreased and users retry SREQ transmission with 

slot thresholds of the new 𝛿 . In our case the minimum available value of 𝛿   

(denoted by 𝛿𝑡ℎ𝑟) is 70% (𝐹3
−1(𝛿) ≅ 1 (see Figure 4.6).) 

Once 𝐸𝑖
𝑚𝑖𝑛 and 𝐸𝑖

𝑚𝑎𝑥 are given, other remaining thresholds can be determined in 

various ways. For example, the gap between the thresholds may increase or decrease 

according to some functions (e.g., ‘linear’, ‘exponential’), or we can make it by 
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reflecting the capacity gain distribution itself (we call this ‘dist’ design). Figure 4.7 

shows the examples of slot thresholds according to different mapping designs. As we 

will show later in Figure 4.15, the performance of ‘dist’ design is better than that of 

‘linear’ design. After determining a set of slot thresholds, the DiFuse AP periodically 

broadcasts them to all users. Note that we do not need to broadcast slot thresholds for 

every packet transmission. 
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Figure 4.8: The gain distribution of the proportional fair utility for 𝑴 = 𝟒. 

 

 

4.3.4 Proportional Fair Selection 

The fairness among users is an important factor in communication systems. We 

introduce DiFuse-PF which considers the proportional fairness based on DiFuse. 

DiFuse-PF uses the following utility to select users: 

𝛵𝑘

ℛ𝑘
                             (34) 

, where 𝛵𝑘, ℛ𝑘 are the current available data rate and average data rate of user 𝑘, 

respectively. 

The main difficulty of implementing the proportional fair selection lies in the fact 

that the AP does not know the instantaneous data rates of the users (𝛵𝑘) when the 

decision has to be made. However, in DiFuse-PF, each user can easily estimate Tk 

from the sum-capacity computation in the polling phase. Moreover, the DiFuse-PF 

users must use the gain of (34) to mark the subcarrier in their SREQs. Figure 4.8 

shows the utility gain distribution. From the result, we see that the utility gain 

distribution has a similar pattern with the capacity gain distribution in Figure 4.6, but 

it has a different scale. The remaining procedure is essentially the same with the 

technique described in 4.3.3. 
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Table 4.1: Summary of User Selection Protocols 

Protocols Fist user selection 𝒊(>1)th user selection 

SUS [9] ‖𝛾𝑘‖2 ‖𝛾𝑘‖2 

OPUS [12] random SINR 

OPUS-PF [12] 
1

ℛ𝑘

 SINR 

DiFuse ‖𝐡𝐤‖2 𝜆𝑘 

DiFuse-PF 𝑈𝑘 𝑈𝑘 

 

 

 

4.3.5 Discussions 

1) First User Selection 

For the first user selection, we use the same technique introduced in Chapter III. We 

summarize the metric comparison of several user selection protocols stated so far in 

Table 4.1.  

2) Gain Reduction Compared to the Optimum  

DiFuse may not give the optimal result due to the nature of the incremental selection 

procedure. To obtain better capacities, we may need an additional procedure to switch 

the existing selected users with new users, similar to GUSS [11]. However, this may 

lead to more interactions between the users and an AP, thus resulting in higher 

overhead and diminishing the achieved gain. 

3) Computational Complexity  

In computing the sum-capacity, the complexity mainly lies on the channel inversion. 

For a subchannel, the complexity for channel inversion is 𝑂(𝑀3), in the worst case 

where 𝑀 = |𝑆|. According to the recent result [58], the absolute processing time is 

actually affordable when 𝑀  is modest (<50). For example, 𝑀 = |𝑆| < 12 , the 

channel inversion only takes merely 10μs. 

4) Selfish User Behavior  

A selfish user could manipulate the SREQ to be selected for the MU-MIMO 

transmission by setting a bit on the highest subcarrier index. However, the DiFuse AP 
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can easily detect such selfish user behavior by comparing the actual CSI feedback 

and the user’s SREQ value. 
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Figure 4.9: Throughput comparison of 802.11ac, SUS, OPUS and DiFuse under hidden 

terminal environment. Three users (ID 1, 2, 3) are hidden from other users.  

 

5) Hidden Terminal Problem  

Since DiFuse users exploit CSI feedback overhearing, in some cases, some users 

may not be able to participate in the selection decision due to the hidden terminal 

problem. Even though they cannot join the transmission group, such users may be 

rewarded by the proportional fair selection (DiFuse-PF). Furthermore, the CSI 

feedbacks are reliably transmitted at the basic data rate, so that practically, the hidden 

terminal rarely occurs. 

Figure 4.9 shows the throughput comparison of 802.11ac, SUS, OPUS and DiFuse 

under hidden terminal environment. We let user ID 1 to ID 3 be hidden from other 

users. From the result, we can clearly observe that the hidden terminal problem shows 

less impact on the performance. This is because the uses can be rewarded by the AP’s 

first user selection, even if they are likely to be excluded from the selection decision 

due to the hidden terminal problem. 
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Figure 4.10: Experiment environment. 

 

 

4.4 Performance Evaluation 

 

In this section, we first evaluate the frequency domain contention scheme through 

the benchmark testbed. Then we evaluate the system-level performance via the trace-

driven emulations. 

 

4.4.1 Micro Benchmark 

1) Benchmark Testbed Setup  

We implement the USRP/GNURadio testbed on OFDM PHY of 64 FFT size and 48 

data subcarriers [13]. All nodes are equipped with USRP N210 on SBX 

daughterboard and work on 10MHz bandwidth7 . The AP is equipped with M = 2, 4 

antennas and the user nodes are randomly located as shown in Figure 4.9. In 

USRP/GNURadio testbeds, real-time experiments generally have limitations; when 

the software radios exchange signal samples between the host and the RF front end, 

it incurs very high latency [38]. This limitation exacerbates under larger number of 

K. For this reason, we evaluate the performance of frequency domain contention 

under the USRP testbed, and conduct remaining parts as a trace-driven emulation 

approach similar to recent experimental works [6], [36], [61], [62].  

                                           
7 In trace-driven emulations, the bandwidth is set to 20MHz. 
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Figure 4.11: FFT results under two different transmit power cases. 

 

 

2) SREQ Detection  

To evaluate the feasibility of multiple users simultaneously sending the SREQ, we 

measure the SREQ detection probability by the AP. We let 8 users each transmit the 

SREQ to the 4-antenna AP under two different circumstances. For similar case, the 

difference between the maximum and minimum received signal power is less than 

5dB, and otherwise it is different case. To control the dedicated power levels, we 

make gain adjustments using the transmit power control before starting the real 

measurements. As for SREQ, we assign different subcarrier indexes from 

{10,13,...,40} for each user. However, four indexes (31,34,37,40) are assigned to the 

last user. Also all 8 users are connected to a central controller to achieve transmission 

synchronization. 

The FFT result examples regarding the two cases are compared in Figure 4.10. The 

threshold for detection is set to 10dB over noise level. As expected, the result of the 

similar case is clearer. In the different case, though the noise level increases due to 

the power difference, we can still accurately detect the signals at all 11 dedicated 

points.  
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Figure 4.12: Detection error probability vs. SNR. The SNR is synthesized from the SNRs 

of multiple SREQs. Even in the worst case, the detection error of DiFuse is still less than 5%. 

 

 

Next, we measure the detection error probability according to the received SNR 

synthesized from the multiple SREQs. We define the detection error as the event that 

the AP mis-detects the SREQ of the largest subcarrier index, i.e., 40. Recall that the 

SREQ of the largest subcarrier index, i.e., SREQ from the highest capacity gain user, 

matters most in DiFuse. As shown in Figure 4.11, in the similar case, the detection 

error is only about 0.6% at the high SNR range. The detection error increases in the 

different case, but is always less than 5% even in the low SNR range (the majority of 

detection error is due to the false negative.). The signal mis-detection in subcarrier 

level comes from two major sources, interference and misalignment. For example, 

back2F [36] suffers from the strong self-signal interference by the full-duplexing. In 

contrast, in DiFuse, only the noise can affect the detection performance, since control 

frames play a role of holding the medium, like RTS/CTS. Also, as long as the 

misalignment is less than CP, the AP can still detect all SREQs reliably, as mentioned 

earlier. 

  



104 

 

 

Figure 4.13: Performance comparison on the frequency domain contention. The DiFuse 

can limit the collision probability to 3% for 100 users. 

 

 

3) Frequency Domain Contention  

To evaluate the frequency domain contention of DiFuse, we measure two 

probabilities of collision case (𝑝𝑐𝑜𝑙) and idle case (𝑝𝑖𝑑𝑙𝑒) according to different 𝛿𝑡ℎ𝑟. 

Each value is averaged over whole polling rounds. Based on the results, we 

additionally compute the expected throughput according to different transmission 

lengths (0:5ms, 3:0ms, 5:5ms). For comparison, we conduct an emulation for the case 

of K = 100, and illustrate both results in Figure 4.12.  

From the result, we can clearly observe the tradeoff between 𝑝𝑖𝑑𝑙𝑒 and 𝑝𝑐𝑜𝑙: 𝑝𝑖𝑑𝑙𝑒 

increases with 𝛿𝑡ℎ𝑟, while 𝑝𝑐𝑜𝑙 decreases. First, the initial 𝑝𝑖𝑑𝑙𝑒 is quite high in both 

cases. Specifically, in the case of K = 8, the actual number of contending users is very 

small (i.e., 7,6,5 for each selection round, respectively), and thus 𝑝𝑖𝑑𝑙𝑒  is much 

higher than that of K = 100. Actually this high piddle shows that our slot threshold 

design fits well in the real scenario. Recall that our design mainly aims to lower 𝑝𝑐𝑜𝑙, 

at the expense of the increase of 𝑝𝑖𝑑𝑙𝑒. As a result, 𝑝𝑐𝑜𝑙 of two cases are 2.5% and 

2.9%, respectively. And thus we can effectively limit the impact of 𝑝𝑐𝑜𝑙  on the 

system performance (e.g., throughput). 
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From the viewpoint of the throughput of different K, we can see that their patterns 

are different from each other. For small K, the throughput decreases with 𝛿𝑡ℎ𝑟. This 

result indicates that the throughput of small K is highly affected by the re-transmission 

overhead in the frequency domain contention. In particular, the small K increases 

𝑝𝑖𝑑𝑙𝑒, and thus invokes more re-transmissions of SREQs and SREPs. On the other 

hand, for large K, 𝑝𝑖𝑑𝑙𝑒 converges to 0 quickly, and thus it is very unlikely to go into 

the re-mapping procedures. As a result, the throughput seems to be not much affected 

by 𝛿𝑡ℎ𝑟.  

In addition, we can see that there is an optimal 𝛿𝑡ℎ𝑟  point to maximize the 

throughput in each case. For small K, except the case of transmission length of 0.5ms, 

the throughput is slightly increased before going down. For large K, the results show 

the similar pattern to those of small K, but the gap is very small because retries of 

SREQ/SREP transmission rarely happen. 

 

4.4.2 System-Level Performance 

1) Setting  

We use MATLAB to emulate 802.11ac, SUS8, OPT, OPUS, OPUS-PF, DiFuse and 

DiFuse-PF with the basic parameters defined in the 802.11ac specification [2]. 𝑃 is 

set to 15dB and we use the ESNR (Effective SNR) based rate adaptation scheme [62]. 

We use our CSI traces obtained from the USRP testbed. Our traces basically contain 

10,000 per-subcarrier CSI traces for 20 users. For large 𝐾 (e.g., 200), we extend the 

trace by multiplying random complex numbers. Unless otherwise stated, 𝐾, 𝑀 and 

transmission length is set to 20ms, 4ms and 0.5ms, respectively.  

 

                                           
8 We set the parameter 𝛼 used in SUS as 1, and so it does not render the early termination. 
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Figure 4.14: Sum-capacity vs. 𝑴. The capacity gain metric which is used in DiFuse achieves 

the sum-capacity improvement of 2.0x, 1.9x, 1.6x and 1.1x over random (802.11ac), max-

power, max-angle and projected norm (SUS, OPUS), respectively. 

 

 

2) The Impact of Selection Metrics  

In this section, to evaluate the impact of selection metrics, we compare the sum-

capacities of five different selection metrics according to 𝑀, in Figure 4.13. The first 

user is randomly selected for all cases. Note that this result does not include the CSI 

feedback overhead. 

From the results, we can observe that capacity gain metric consistently outperforms 

other metrics. The capacity improvements of capacity gain metric which is used in 

DiFuse are up to 2.0x, 1.9x, 1.6x and 1.1x compared to random, max-power, max-

angle and projected norm, respectively. As expected the random user selection gives 

the worst performance. The performance of max-power is better than the random 

selection, but its gain is marginal. The orthogonality gives more capacity gains than 

the channel strength, but using only this metric alone limits the performance, 

especially when 𝑀 is large. On the other hand, the projected norm metric shows a 

quite good performance, since it considers the tradeoff between channel strength and 



107 

 

orthogonality. However, as discussed in Section 4.3, this metric cannot guarantee the 

highest sum capacity gain in every selection round. In our result, 16 % of total cases 

suffer from that problem.  
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Figure 4.15: CSI feedback duration vs. 𝑲. The average feedback time of DiFuse is lower 

than those of other protocols. 

 

 

3) CSI Feedback Overhead  

In this section, we investigate the CSI feedback overhead of each protocol. Figure 

4.14 shows the average CSI feedback duration as a function of 𝐾. First, in 802.11ac 

the CSI feedback overhead is fixed regardless of 𝐾 because it always gathers CSI of 

users as many as 𝑀. SUS conveys a much larger overhead than other schemes, 

constantly increasing with 𝐾. We observe that OPUS shows a higher overhead than 

802.11ac. Even though OPUS limits the CSI overhead by terminating the selection 

earlier than 802.11ac, it suffers from the inefficient time-domain contention. In the 

meantime, DiFuse has the lowest overhead over all cases, thanks to the frequency 

domain contention and quick termination. Such overhead reduction further improves 

the throughput performance of DiFuse based on the sum-capacity enhancement by 

the user selection method. 
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Figure 4.16: Throughput vs. 𝑴. DiFuse obtains the maximum throughput gain of 4.8x, 2.8x 

and 1.8x on average, over 802.11ac, SUS, and OPUS, respectively. In massive MIMO case 

(c), DiFuse still obtains modest throughput even under significantly large CSI reports. 

 

 

4) Throughput  

We first compare the throughput of each protocol in Figure 4.15, under different 

network configurations. DiFuse outperforms other protocols in all cases. Except for 

the case of (c), DiFuse obtains the maximum throughput gain of 4.8x, 2.8x and 1.8x 

on average, over 802.11ac, SUS, and OPUS, respectively, especially when DiFuse 

uses the ‘dist’ slot thresholds design. Through the ‘dist’ design, DiFuse can achieve 

the additional gain of maximum 5% than the ‘linear’ design. The gap between DiFuse 

and OPUS becomes even larger with increasing 𝑀 . First, the frequency domain 

contention of DiFuse gives a much smaller overhead than the contention scheme used 

in OPUS. Second, the effective selection method of DiFuse provides a higher capacity 

than that of OPUS.  

Additionally, we observe zero-throughput cases in the case of 802.11ac. This is the 

limitation of ZFBF. The AP wastes most transmit power for interference cancellation 

and the intended signal may have low power. This can lead to zero-throughput. 

802.11ac significantly suffers from the zero-throughput, due to the random user 

selection. SUS achieves better performance than 802.11ac, but the gain over 802.11ac 

is not that large due to its long CSI feedback time. 

In massive MIMO [28], [29], [31], [58] or distributed MIMO systems [63], [64], we 

can exploit much more transmit antennas. Figure 4.15 (c) shows the result when 𝑀 =
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20, 𝐾 = 200. Recall that the size of each CSI report is approximately 10 times larger 

than that of the case (a). In 802.11ac and SUS, the performance of ZFBF drops 

dramatically, due to the tightness of the DoF. Recall that in both protocols, the number 

of selected users is 𝑀. In result, almost zero-throughput happens in both 802.11ac 

and SUS. In contrast, the results of DiFuse and OPUS show that they are feasible 

under many-antenna systems in practice. Also, DiFuse brings a higher throughput 

than OPUS in this scenario. 
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Figure 4.17: Throughput vs. 𝑲. DiFuse consistently outperforms other protocols. DiFuse 

and OPUS benefit from the multi-user diversity gain. 

 

 

Next, we measure the throughput of four protocols, according to 𝐾 in Figure 4.16. 

The random selection of 802.11ac gives constant throughput regardless of 𝐾. We can 

clearly see that the throughput of SUS decreases with 𝐾. Meanwhile, OPUS and 

DiFuse persistently obtain higher throughput over other two protocols, due to the 

small number of CSI feedback transmissions, plus the capacity enhancement by 

selection. Specifically, DiFuse outperforms OPUS over all cases. 
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Figure 4.18: Throughput comparison of 802.11ac, SUS, OPUS-PF and DiFuse-PF. 

DiFuse-PF achieves the best fairness even when the users experience diverse channel qualities, 

while maintaining the throughput. 

 

 

5) Fairness  

To evaluate the fairness performance of DiFuse-PF, we let 20 users experience 

diverse average SNRs ranging from 5dB to 20dB; the user with a larger ID number 

has a higher SNR than the user with a lower ID number. 

Figure 4.17 shows the throughput that each user attains under each protocol. 

802.11ac severely suffers due to the low SNR users, diminishing the MU-MIMO 

effectiveness. Although SUS shows higher throughput than 802.11ac, some users 

with low SNR suffer from the starvation. OPUS-PF [12] is the proportional fair 

version of OPUS, where the user with the lowest average throughput is likely to be 

selected as the first user, so that users with low SNRs can maintain throughput. 

However, just considering the first user for user fairness is not enough, especially 

when users experience diverse channel qualities. Users with high channel gains will 

eventually join the MU-MIMO transmission group in the following rounds. Recall 

that OPUS-PF and OPUS both use the same selection metric to select users except 
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for the first user. Meanwhile, DiFuse-PF shows better fairness than others since the 

probability that users with low SNRs have a transmission chance is increased. 

 

 

4.5 Conclusion 

 

In this chapter, we have proposed a new user selection protocol called DiFuse, which 

employs the sum-capacity gain as the user selection metric and exploits the frequency 

domain contention to reduce CSI feedback overhead. To evaluate the performance of 

DiFuse, we conduct USRP/GNURadio based experiments as well as the extensive 

trace-driven emulations. The results show that DiFuse consistently outperforms other 

schemes in terms of throughput and proportional fairness.  
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CHAPTER V 

 

 

Conclusion 

 

 

This dissertation proposes three co-designs of PHY/MAC layers for MIMO based 

Wi-Fi networks, in order to overcome the limitations of current MIMO based Wi-Fi 

networks and also improve the network capacity. We first show that 802.11mc, 

collision resolution based MU-MIMO MAC protocol for heterogeneous MIMO 

based Wi-Fi systems can effectively resolves RTS frame collision and extracts CSI 

from the resolved RTS frames for simultaneous data transmissions. Next, we propose 

a practical user selection scheme for MU-MIMO Wi-Fi networks, called 802.11ac+. 

In 802.11ac+, both the AP and users participate in making a scheduling decision via 

channel hint exchange. As a result, the user selection in 802.11ac+ boosts the network 

capacity significantly. Finally, from DiFuse, we show that user selection scheme 

could be enhanced by using capacity gain as a selection metric and exploiting the 

frequency domain signaling scheme. In particular, the new metric of DiFuse enables 

to accomplish a higher level of network capacity and its frequency domain CSI 

feedback contention further reduces a feedback overhead compared to 802.11ac+ 

based on the time-domain CSI feedback contention.  
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초 록 

충돌해결과 유저선택을 이용한  

Wi-Fi 무선망에서의 MIMO 성능  

향상 기법 

 

이규행 

전기·컴퓨터공학부 

서울대학교 대학원 

 

 

다수의 안테나를 이용하여 무선신호를 송수신하는 MIMO 기술은 

추가적인 주파수자원 확보 없이 무선망 용량을 획기적으로 늘려줄 수 

있기 때문에 차세대 무선망의 필수 핵심기술로 각광받고 있다. MIMO 는 

동시에 다수의 사용자에게 전송을 하거나, 특정 유저에게 빔포밍을 하여 

데이터 전송 속도를 증가시킬 수 있다. 이러한 이점으로 셀룰라망 뿐만 

아니라 Wi-Fi 무선망에서도 MIMO 를 지원하는 표준들이 개발되어 왔고, 

2009 년을 기점으로 상용화되기 시작하였다. 하지만, 대부분의 MIMO 

기반 Wi-Fi 시스템들은 MIMO 본연의 장점을 충분히 살리고 있지 못하고 

다양한 한계점을 드러내고 있다. 먼저 MIMO 노드는 기존의 SISO 노드와 

채널을 공유할 경우 마치 성능 비정상 현상(Performance Anomaly)처럼 

SISO 노드 수준으로 성능이 떨어지게 된다. 또한, MU-MIMO 를 위한 CSI 

획득 과정은 매우 큰 MAC 오버헤드를 수반하여 전송효율을 저하시키고 

더 나아가 최적 유저 선택 기법을 불가능하게 하여 전송용량을 
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제한시킨다. 이러한 한계점들이 발생하게 된 근본적인 원인은 현재 

MIMO 시스템의 PHY 와 MAC 이 유기적으로 설계되어 있지 않기 

때문이다. 즉, MIMO 의 PHY 기술이 빠르게 발전하면서 기능이 

다양해지고 고도화되고 있지만, MAC 계층에서는 이러한 잠재적인 

기능들을 효과적으로 이끌어내지 못하고 있으며, 단지 데이터 전송 속도 

선택의 폭을 조금씩 넓혀주는 단순한 기능확장에만 초점을 맞춰왔다. 그 

결과 새롭고 강력한 PHY (MIMO) 기술이 개발되어도 충분히 활용될 수 

없었으며, 기존 시스템과의 호환성 문제를 일으켜 전체적인 시스템 

성능이 저하되기도 하였다.  

본 논문은 MIMO Wi-Fi 무선망을 위한 세가지 PHY/MAC 통합설계 

기법에 대해 논한다. 먼저 포스트앰블 기반의 IAC 를 활용하여 프레임 

충돌문제를 해결하고, 이기종망에서 동시전송 기회를 늘려주는 MAC 

프로토콜 802.11mc 를 소개한다. 두번째로, CSI 획득 오버헤드를 

획기적으로 줄이면서 실제로 구현가능한 최적 유저 선택 프로토콜 

802.11ac+를 제안한다. 마지막으로, 주파수 도메인 시그널링과 더 나은 

유저 선택 메트릭을 사용하여 네트워크 용량을 증대시키고 기존에 

제안했던 802.11ac+의 CSI 획득 오버헤드를 한 단계 더 높은 수준으로 

줄일 수 있는 DiFuse 를 제안한다. 본 논문에서는 정교한 분석과 

시뮬레이션은 물론 USRP 기반 테스트베드 구현 및 실험을 통해 

성능평가의 신뢰성을 높이고 제안한 프로토콜들의 구현 가능성을 

입증한다. 
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