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Abstract 

 

Recent system-on-chip's (SoCs) are composed of tightly coupled analog and 

digital components. The resulting mixed-signal systems call for efficient system-

level behavioral simulators for fast and systematic verifications. As the system-level 

verifications rely heavily on digital verification tools, it is desirable to build the 

mixed-signal simulator based on a digital simulator. However, the existing solutions 

in digital simulators suffer from a trade-off between simulation speed and accuracy. 

This work breaks down the trade-off and realizes a fast and accurate analog/mixed-

signal behavior simulation in a digital simulator SystemVerilog. 

The main difference of the proposed methodology from existing ones is its way 

of representing continuous-time signals. Specifically, a clock signal expresses 

accurate timing information by carrying an additional real-value time offset, and an 

analog signal represents its continuous-time waveform in a functional form by 

employing a set of coefficients. With these signal representations, the proposed 

method accurately simulates mixed-signal behaviors independently of a simulator's 

time-step and achieves a purely event-driven simulation without involving any 

numerical iteration.  

The speed and accuracy of the proposed methodology are examined for various 

types of analog/mixed-signal systems. First, timing-sensitive circuits (a phase-

locked loops and a clock and data recovery loop) and linear analog circuits (a 

channel and linear equalizers) are simulated in a high-speed I/O interface example. 

Second, a switched-linear-behavior simulation is demonstrated through switching 
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power supplies, such as a boost converter and a switched-capacitor converter. 

Additionally, the proposed method is applied to weakly nonlinear behaviors 

modeled with a Volterra series for an RF power amplifier and a high-speed I/O 

linear equalizer. Furthermore, the nonlinear behavior simulation is extended to three 

different types of injection-locked oscillators exhibiting time-varying nonlinear 

behaviors. The experimental results show that the proposed simulation methodology 

achieved tens to hundreds of speed-ups while maintaining the same accuracy as 

commercial analog simulators. 
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Chapter 1  

 

Introduction 

 

 

 

 

 

1.1 Background 

Today's high-performance system-on-chip’s (SoCs) are complex, consisting of 

tightly coupled analog and digital components. For example, an RF front-end can 

include a digital calibration loop that compensates for mismatches between I/Q 

channels [1]. A high-speed wireline receiver may employ various digital adaptation 

loops to adjust the timing, voltage offsets, and equalization coefficients [2]. These 

systems contain multiple feedback loops with complex interactions between analog 

and digital blocks. Such a mixture of analog and digital presents challenges in 

verifying them, as it is very time-consuming to verify the entire system using a 

transistor-level SPICE simulation. A practical solution to achieve reasonable 

simulation speed is to employ behavioral models. 

However, existing analog behavioral simulators such as Verilog-A and Matlab 
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Simulink are associated with a trade-off between speed and accuracy. The main 

cause is that they employ ordinary differential equation (ODE) solvers to simulate 

analog responses. ODE solvers numerically solve differential equations based on a 

time-integration method (e.g., forward-Euler, backward-Euler, or trapezoidal 

integration methods), which approximates the derivative of a continuous-time signal 

with a finite difference between two data points as shown in Fig. 1.1 [3]-[6]. This 

finite difference approximation is inaccurate once the two data points are positioned 

too far away. Therefore, the time steps between data points should be fine enough to 

achieve the accuracy at the cost of the simulation speed.  

On the other hand, there have been many efforts to model analog behaviors 

entirely in digital simulators such as Verilog or VHDL [7]-[10]. However, the 

analog simulation still poses a speed bottleneck of the system simulation. These so-

called real-number modeling (RNM) approaches model analog signals as discrete-

time data using real data types in digital simulators. The main advantages of the 

RNM is that it inherits the digital simulator's natural features of fast speed and 

      RCy t y t x t

 x t  y t

C

R

 
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






1

1

k k
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k k

y t y t
y t
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1... ...k kt t
1... ...k kt t

Finite difference approximation
 

Fig. 1.1 A simple example of a forward-Euler time-integration method for an RC 

filter. 
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event-driven simulation. However, the event-driven simulation of analog behaviors 

cannot be as efficient as digital behaviors due to digital simulator's quantized time 

steps. Fig. 1.2 illustrates this using a high-speed receiver example. A clock-triggered 

comparator in the receiver detects 0 or 1 by sampling the analog signal Vin(t) at the 

rising edge of the clock clk. As Vin(t) continuously changes, the sampled signal 

Vout(t) is highly dependent on the clock timing. However, when both signals are 

quantized by a fixed time step of the simulator, the accuracy can be lost. For 

instance, the fixed time step forces the analog signal to be expressed in a piecewise-

constant waveform and limits the resolution of the clock jitter that can be expressed. 

Some techniques can be applied to improve the accuracy [11]-[12]. For instance, [11] 

uses interpolated values between discrete time points to obtain approximated 

continuous-time signals. [12] models clock signals as samples having an amplitude 

proportional to the pulse width in that fixed time interval. The proposed method 

takes a similar approach with [12] to express accurate clock timing information, yet 

in a more explicit way. 

 

Analog 

Sampler

Vin(t)

clk

Vout(t)

Accurate signals

Signals in digital HDLstime step
 

Fig. 1.2 An example of an analog sampler in a high speed receiver. The sampler is 

triggered by a noisy clock to sample a continuous-time input signal. 



Chapter 1. Introduction                              4 

 

Another issue for the analog simulation in the digital simulator is that it is not 

truly event-driven in the sense that a single event at the input triggers multiple 

events at the output. Consider a low-pass RC filter that receives an one-time step 

change at its input (Fig. 1.3). To simulate its exponential response, the output events 

are required to be triggered multiple times even though there was only one input 

event. To relieve this inefficiency, some research employed a non-uniform time step 

[13]-[14]. [13] approximated an analog signal as a piecewise linear (PWL) 

waveform and updates its slope and offset values only when the approximation error 

exceeds a certain tolerance. [14] introduced connecting modules that suppress 

analog events when their changes are small enough. Nonetheless, they still could not 

realize a truly event-driven simulation.  

Some recent research mitigated the speed-accuracy trade-off and realized a truly 

event-driven simulation of analog behaviors [15]-[17]. [15] built an event-driven 

model of a digitally-controlled oscillator in VHDL. For digital control codes and 

oscillator's phase noise characteristics, it computes perturbations of the fundamental 

oscillator's period. Then, the oscillator's digital output event is scheduled according 

 x t  y t

C

R

One input event Multiple output events

 

Fig. 1.3 Existing analog simulation methods in digital simulators are not truly 

event-driven as one input event may trigger multiple output events. 
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to the period. [16] presented an event-driven model for a channel ISI and a limited 

sampler bandwidth in Matlab. Fixing the input signal types to a pulse, the step 

response of a channel followed by a sampler is predetermined in a look-up table. For 

a series of input pulse events, the output is reconstructed as a sum of responses to 

each pulses. [17] implemented an event-driven simulator for a 3rd-order charge-

pump PLL in C. It solved a set of governing differential equations for a loop filter 

and a voltage-controlled oscillator to obtain an exact phase expression in a 

functional form. At every clock event, it updates the phase expression and schedule 

the next clock switching event. While all these approaches achieved a truly event-

driven simulation of analog behaviors, they share the limitations that they are not 

generally applicable to arbitrary systems or input types.  
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1.2 Main Contribution  

This work proposes an event-driven simulation methodology that accurately 

simulates analog/mixed-signal behaviors without sacrificing the simulation speed. 

The key idea is the manner of expressing the clock and analog signals; rather than 

implicitly relying on fine time steps, it explicitly attaches the key information of 

interest to the signals. For the clock signal, a real-valued variable indicating exactly 

when the clock made the last transition is attached. For continuous-time analog 

signals, coefficients describing the signals as time-domain functions (e.g., ci, mi, and 

ai of the complex exponential function ci
i im a t

t e


) are supplemented. With these 

signal representations, the clock and analog signals can be evaluated at any arbitrary 

time precision regardless of the simulator's time step. In addition, the analog 

behaviors can be simulated in a truly event-driven fashion without involving  

numerical time-integration methods.  

The proposed methodology is implemented in a single digital hardware 

description language SystemVerilog. As most of recent SoCs include a large number 

of digital components, it is desirable to build a mixed-signal simulator based on a 

digital simulator. Also, the digital simulator inherently provides an event-driven 

engine supporting the proposed event-driven simulation. The supplemental variables 

for clock and analog signals are bundled as one signal using a composite data type 

struct in SystemVerilog, which keeps module ports pin-compatible.  

The thesis demonstrates that the proposed method can simulate complex mixed-

signal systems employing various classes of analog circuit behaviors: time-

invariant/time-varying linear behaviors and time-invariant/time-varying nonlinear 
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behaviors. The first demonstrative example is a high-speed I/O interface with timing 

sensitive circuits (a phase-locked loop and a clock-and-data recovery loop) and 

linear analog blocks (a channel and linear equalizers). The second examples are 

switching power supplies which exhibit time-varying linear behaviors. In addition, 

weakly nonlinear behaviors are simulated in an RF transmitter and a multi-level 

pulse amplitude modulation receiver. Finally, the proposed method is extended to 

time-varying nonlinear behaviors like an injection-locked oscillator. Simulation 

results show that the proposed method can accurately simulate various mixed-signal 

systems in a truly event-driven fashion with tens to hundreds of speed-ups compared 

to existing analog simulators. 
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1.3 Thesis Organization 

Chapter 2 describes the proposed representations of clock and analog signals, and 

their corresponding type definitions in SystemVerilog. Using those data types, the 

event-driven simulation of analog/mixed-signal behaviors is presented. Chapter 3 

explains modeling details of linear systems on the proposed simulation platform 

using a demonstrative example of a high-speed I/O interface. Chapter 4 provides 

modeling examples of linear time-varying systems with various power converters. 

Chapter 5 applies the proposed method to nonlinear systems modeled with a 

Volterra series. Chapter 6 further demonstrates nonlinear time-varying system 

simulations with injection-locked oscillator examples.  
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Chapter 2  

 

Event-Driven Simulation of 

Analog/Mixed-Signal Behaviors 

 

 

 

 

 

This chapter explains main ideas of the proposed event-driven simulation 

methodology for analog/mixed-signal behaviors. The proposed method introduces 

new ways to express accurate clock and analog signals in digital hardware 

description languages (HDLs). To break the speed-accuracy trade-off explained in 

the introduction, new signal expression explicitly carries the supplementary 

information: transition timing information to the clock signal and a functional 

representation to the analog signal. The analog signal representation allows event-

driven simulation of analog behaviors modeled in ordinary differential equations. 

The newly introduced signal types are implemented in a digital HDL, particularly 

SystemVerilog. These main ideas are demonstrated through a simple RC filter 

example.  
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2.1 Proposed Clock and Analog Signal 

Representations 

 

As described in Chapter 1.1, digital simulators such as Verilog and VHDL use 

quantized time steps, which limit the accuracy and speed when modeling and 

simulating timing-critical clock signals and continuous-time analog signals. The 

proposed method overcomes this limitation by introducing two new signal types: 

xbit for clock signals and xreal for analog signals. 

An xbit-type signal expresses accurate clock transition times by attaching its 

timing offset explicitly to the signal, as illustrated in Fig. 2.1. In digital simulators, 

the simulation time is quantized with a fixed time step, and the actual clock 

transition is snapped to the nearest integer multiple of the time step. The only way to 

make this apparent transition close to the actual transition is to decrease the time 

step. In contrast, the timing offset information attached to the xbit signal indicates 

where the actual transition is located relative to the apparent transition time. For 

instance, if the clock signal switches from 0 to 1 at an apparent time of 10 with the 

timing offset having a value of -0.4, this implies that the actual transition occurred at 

0.4 before 10 (i.e., at a time of 9.6). This timing offset ranges [-1ⅹtime step, 0] and 

takes a double-precision floating-point value. Therefore, the xbit-type signal can 

achieve a virtually infinite timing resolution regardless of the simulator’s time step. 
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Fig. 2.1 The proposed xbit-type expressing an accurate clock waveform by 

supplementing the timing offset. 

 

On the other hand, an xreal-type signal carries a set of coefficients expressing a 

continuous-time analog waveform in a functional form. Specifically, the analog 

signal x(t) is represented as a linear combination of complex exponential functions: 

( ) i im a t

i

i

x t c t e


 . 
( 2-1) 

This functional form is parameterized with three real-valued coefficients, ci, mi, and 

ai. Any change in this set of coefficients constitutes an xreal event, and the analog 

waveform is represented as a series of these events. For example, Fig. 2.2 compares 

cases in which an exponential and a sinusoidal waveforms are expressed using a set 

of discrete data points and a series of xreal events. The existing digital simulators 

describe the waveform with the discrete data points (e.g., a real-type variable), and 

it requires fine time steps to improve its accuracy. In contrast, the xreal 

representation expresses the accurate waveform with only two events at t0 and t1, and 

its accuracy is independent of the simulation time step.  
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Fig. 2.2 The xreal-type expressing the continuous-time analog signal as a sum of 

complex exponential functions 

 

In addition, the family of the xreal functional form in Eq. (2-1) includes most of 

signal types a designer may encounter in analog circuits. For instance, the xreal 

functional form expresses a family of polynomials with ai =0, exponentials with a 

real ai value, sinusoids with complex ci and ai values, and any linear combination of 

these signal families (Fig. 2.3).  

 

ic ia te

imt i im a t

ic t e

i ia t a t

i ic e c e 


i ia t a t

i ic e c e 


Polynomials Exponentials Sinusoids

 

Fig. 2.3 Signal examples of the xreal representation. 
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Another advantage of the xreal functional form is that it can express outputs of 

both linear and nonlinear systems. Scrutinizing Eq. (2-1), the xreal functional form 

is a general expression of a linear system response, where ai and mi correspond to 

the eigenvalues (poles) and their multiplicities of the system, respectively. Therefore, 

this form encompasses all possible outputs of linear systems with xreal inputs. For 

nonlinear systems, the nonlinear distortions are often modeled as modulations 

between signals (e.g. Talyor or Volterra seires models [20]-[22]). As the xreal-type 

is in a sum-of-exponential form, multiplication between those exponentials results in 

the sum-of-exponential form, which is again the xreal-type. 
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2.2 Signal Type Definitions in 

SystemVerilog 

 

The two proposed signal types xbit and xreal are defined as the struct-type in 

SystemVerilog. SystemVerilog is a language extension to Verilog [23], which 

supports a composite data type struct bundling multiple variables into one and 

allows the struct-type variable to pass through port boundaries. Therefore, the 

struct-type can attach the supplementary information (i.e., the timing offset in xbit 

and the coefficients in xreal) to the signal variables without adding new ports at the 

module interface.  

Fig. 2.4 shows signal definitions of xbit and xreal in SystemVerilog. The xbit 

type has two member variables: value and t_offset where value denotes the logic 

level of the signal, and t_offset denotes the timing offset of the last transition. On the 

other hand, the xreal type has three member variables: param_set, t_offset, and flag. 

param_set is a C-pointer to the parameter set, which is an array containing the 

values of three coefficients: ci, mi, and ai. For param_set, a dynamic data structure 

such as linked lists is necessary as the number of elements in the s-domain 

parameter set can vary from signal to signal. t_offset is the timing offset of the last 

change event. flag is an event variable to indicate whether the change event has 

occurred. Since the member variable param_set is merely a C-pointer whose address 

does not change once it is initialized, a separate variable is necessary to notify the 

blocks consuming this signal of the change in coefficients. Therefore, a block that 
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produces an xreal signal must trigger the event variable flag whenever it updates the 

parameter set (e.g. ‘->‘ operator in Verilog). 

 

value

t_offset

t_offset

param_set

flag

typedef struct {

      logic value;

      real t_offset;

} xbit;

typedef struct {

      chandle param_set;

      real t_offset;

      event flag;

} xreal;

(a)

(b)

 

Fig. 2.4 The struct data type definitions of (a) xbit and (b) xreal in SystemVerilog. 
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2.3 Event-Driven Simulation Methodology 

This section explains how the xreal representation of continuous-time signals 

enables a purely event-driven simulation of analog systems without involving any 

numerical iteration. The xreal form in Eq. (2-1) has a Laplace s-domain equivalence: 

 
 

1

!
( ) .






  


 i i

i

m a t i i
i m

i i i

c m
x t c t e X s

s a

L

 
(2-2) 

This implies that if the s-domain transfer function of a linear system H(s) is given, 

its response to the input x(t) can be computed simply as a product of the two s-

domain functions, X(s) and H(s). Assuming that the transfer function is expressed in 

the residue form, 

 
 





j

j

n
j

j

q
H s

s p
 

(2-3) 

the process of computing the output is simply calculating the cross-products 

between the terms in X(s) and H(s) and adding them, as expressed by Eq. (2-4). The 

resulting cross-products can be decomposed back into the residue form via partial-

fraction decomposition. It is noteworthy that this computation is fully algebraic; 

there is no numerical iteration or time-step integration involved.  
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(2-4) 
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The described computation is purely event-driven; computation is required only 

once when the coefficients describing the input change. In the other words, when 

there is an event involving a change to the input coefficients, the coefficients of the 

output are updated according to Eq. (2-4), and the results remain valid until the next 

input event arrives. This stands in contrast to SPICE, where the output value keeps 

being updated between the events. In case of multiple input events, the output of the 

linear system can be evaluated based on the superposition principle; responses to 

each input event is computed as outlined in Eq. (2-4), and then the final output is a 

sum of those responses.  

Fig. 2.5 illustrates the proposed event-driven computation using an RC filter. 

When a step input arrives at t0, which is equivalent to a change in the coefficient ci, 

this triggers a computation. As the RC filter has a transfer function of 1/(RCs+1), 

and the step input is 1/s in the s-domain, its output is simply a product of these two 

factors. The resulting output is 1/s - 1/(s+1/RC) according to Eq. (2-4), which 

corresponds to 1-e
-t/RC

 in the time-domain. This output is valid until the next input 

event, realizing therefore an event-driven simulation of analog blocks. 
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Fig. 2.5 The event-driven, s-domain computation of a linear RC filter response. 

 

While initial conditions are omitted for brevity in Fig. 2.5, their effects should be 

considered once a system includes reactive elements. For instance, a Laplace 

transform of the governing differential equation of the RC filter results in two parts: 

a response to an input X(s)·1/(RCs+1) and a response to an initial condition y(0)·

RC/(RCs+1), where y(0) is an initial voltage across a capacitor (Fig. 2.6). The 

response to initial conditions always results in the same form as the xreal form in Eq. 

(2-4), and hence it is additive to the responses to the input events. 

Fig. 2.7 shows a pseudo-model of the RC-filter example in SystemVerilog using 

the proposed event-driven simulation method. The input and output variables, x and 

y, are defined as xreal types. Whenever an input event occurs (as indicated by x.flag), 

the instructions within the always statement are executed to compute the output 

event. First, initial conditions of the circuits are sampled using a DPI function 

sample(). Note that as analog signals are expressed in a functional form, initial 

conditions can be accurately computed at any time point. Then, the output responses 
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to the initial condition and the input event are computed by multiplying the sampled 

initial condition y_init and the input coefficients x.param_set with the transfer 

functions tf_init and tf_in, respectively. tf_init and tf_in are transfer functions from 

the initial condition and from the input event to the output response. compute_coeff() 

is a DPI function that performs the multiplying operation outlined in Eq. (2-4). 

Because the output event is always triggered simultaneously to the input event, 

y.t_offset is set equal to x.t_offset. Finally, the event flag y.flag is triggered to notify 

the subsequent blocks that the signal y has been updated.   
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Fig. 2.6 A complete RC filter response with an initial condition included. 

 

 

module rc_filter (

    input xreal x,

    output xreal y);

 

    always @(x.flag) begin

        y_init = sample( y.param_set );

        y.param_set = compute_coeff( x.param_set, tf_in ) 

                                      +  compute_coeff( y_init, tf_init );

        y.t_offset = x.t_offset;

        -> y.flag;

    end

endmodule
 

Fig. 2.7 A pseudo-model of a linear RC filter in SystemVerilog.
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Chapter 3  

High-Speed I/O Interface 

Simulation 

 

 

 

 

 

This chapter demonstrates how to apply the proposed method to model and 

simulate systems including time-invariant linear analog blocks through a high-speed 

I/O interface example. The exemplary high-speed I/O system consists of a 

transmitter with a charge-pump phase-locked loop (PLL), a receiver with a 

bangbang clock and data recovery (CDR) loop, continuous/discrete-time equalizers, 

and a channel (Fig. 3.1). The modeling accuracy of the system relies strongly on the 

accurate clock timing information and the analog signal waveform. For instance, it 

requires a sub-pico-second time resolution to measure the jitter performances of a 

PLL and a CDR. It also demands a sub-mV voltage resolution to simulate channel 

distortions and equalizer performances. Each sub-section will show that the 

proposed method can accurately model and simulate those sub-blocks in a truly 

event-driven fashion. In the final sub-section, the system-level behaviors are 

simulated and compared with Verilog-A models simulated in HSPICE. 
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Fig. 3.1 An example of a high-speed I/O interface. 
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3.1 Charge-Pump Phase-Locked Loop 

The first sub-block is a third-order charge-pump phase-locked loop (PLL) on the 

transmitter side. As the clock signal affects digital system performances, it is 

desirable to simulate such systems in digital simulators. However, a PLL is analog 

in nature, requiring an accurate simulation of a clock jitter and a loop filter 

waveform. 

The exemplary charge-pump PLL is composed of a phase/frequency detector 

(PFD), a charge pump with a second-order loop filter (CP-LF), a voltage-controlled 

oscillator (VCO), and a frequency divider. The signals carrying the timing 

information, such as the reference input clock in, the VCO output clock out, the 

frequency-divided clock div, and the PFD output pulses up/dn are xbit-type signals, 

while the analog control voltage vctrl is an xreal-type signal (Fig. 3.2).  

d
q
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q
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xbit
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vmax

   N

Frequency divider

div
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Fig. 3.2 A third-order CP-PLL example; the clock and timing-sensitive signals are 

defined as the xbit, while the analog signal is defined as the xreal. 
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3.1.1 Phase/Frequency Detector 

With xbit representations, a PFD model can achieve a sub-time-step resolution 

for the timing difference between the input clock edges. The PFD employs two D 

flip-flops (DFF) with asynchronous reset and one AND gate. The DFF sets the 

output to '1' at the rising edge of the clock clk and resets the output to '0' at the rising 

edge of the reset rst (Fig. 3.3(a)). Therefore, its output q copies the timing offsets of 

clk for the rising edge and rst for the falling edge. In this way, all the timing 

information of clk and rst can be transferred to the output without degrading the 

accuracy. The AND gate produces the output '1' when both DFF outputs rise. Its 

timing offset for the rising edge is determined by the t_offset of the signals arriving 

later, as shown in Fig. 3.3(b). The pseudo-models of the DFF and the AND gate are 

given in Fig. 3.4 and Fig. 3.5.  

Moreover, not only the signal timing offset but also the gate delay can be 

accurately simulated regardless of the simulator's time step. Especially, the AND 

gate delay on the reset path, rst_delay, plays an important role in the PLL non-

idealities [24]. Fig. 3.3(b) depicts a case in which the gate delay is not a multiple 

integer of the time step; for instance, when the AND gate input arrives at a time of 

0.7 with a gate delay of 1.5, the output rises at a time of 2.2. A model of this in 

SystemVerilog is described in Fig. 3.5. First, the AND gate determines the Verilog 

delay in a quantized time step (ceil(delay+t_offset)). Then, after this quantized delay, 

it sets the output value to '1' and computes its timing offset. In Fig. 3.3(b), the AND 

gate waits for two time steps and sets the output to '1' with a t_offset of -0.8. 
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Fig. 3.3 Modeling with accurate timing: (a) the D flip-flop and (b) the AND gate. 

 

 

module dff (

    output xbit q,

    input_xbit d,

    input xbit clk,

    input xbit rst);

    always @(posedge clk.value) begin

        q.value = d.value;

        q.t_offset = clk.t_offset;

    end

   

    always @(posedge rst.value) begin

        q.value = 0;

        q.t_offset = rst.t_offset;

    end

endmodule
 

Fig. 3.4 A pseudo-model of the D flip-flop in SystemVerilog. 
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module and (

    output xbit out,

    input xbit a,

    input xbit b);

    always @(posedge a.value or posedge b.value) begin

        if (a.value ==1 && b.value ==1) begin

t_offset = (a.t_offset > b.toffset)? 

                    a.t_offset: b.t_offset;

#(ceil(delay+t_offset)) out.value = 1;

out.t_offset = delay+t_offset - ceil(delay+t_offset);

        end

    end

    always @(negedge a.value) begin

t_offset = a.t_offset;

#(ceil(delay+t_offset)) out.value = 0;

 out.t_offset = delay+t_offset - ceil(delay+t_offset);

    end

    always @(negedge b.value) begin

t_offset = b.t_offset;

#(ceil(delay+t_offset)) out.value = 0;

 out.t_offset = delay+t_offset - ceil(delay+t_offset);

    end

endmodule
 

Fig. 3.5 A pseudo-model of the AND gate in SystemVerilog. 
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3.1.2 Charge-Pump Loop Filter 

A charge-pump loop filter generates the control voltage in an event-driven 

fashion by computing the filter response only when the up or dn signal changes. The 

charge pump applies a positive current when up is high and a negative current when 

dn is high (Fig. 3.6). This current flows into the following loop filter, which is 

composed of a resistor, Rs, and two capacitors, Cs and Cp. The output voltage vctrl 

is a product of the charge-pump current ictrl and the impedance transfer function 

Z(s):  

 2

1( )
( ) .

( )


 

 

S S

S S P S P

R C svctrl s
Z s

ictrl s R C C s C C s
 

(3-1) 

The charge-pump pseudo-model is given in Fig. 3.7. The charge-pump 

determines the value of the output current I_cur upon every change in the up/dn 

signals. The xreal representation of this current is a constant with the parameter set 

of {(I_cur, 0, 0)}. The t_offset of the output current ictrl is identical to that of the 

up/dn signal. The change in ictrl triggers the computation of the output voltage vctrl, 

which is then computed as a response of a linear filter with a transfer function of Z(s) 

to the ictrl input as described in Chapter 2.3. 
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Fig. 3.6 (a) The charge pump with a second-order loop filter, and (b) signal waveforms 

illustrating its operation. 

module cp_lf (

    output xreal vctrl,

    input xbit up,

    input xbit dn);

    chandle tf; // impedance of loop filter

    always @(up.value) begin

        I_cur = I_up*up.value – I_dn*dn.value;

        ictrl.param_set = create_params(I_cur,0,0);

        ictrl.t_offset = up.t_offset;

        ->ictrl.flag;

    end

    always @(dn.value) begin

        I_cur = I_up*up.value – I_dn*dn.value;

        ictrl.param_set = create_params(I_cur,0,0);

        ictrl.t_offset = dn.t_offset;

        ->ictrl.flag;

    end

    always @(Ictrl.flag) begin

        vctrl.param_set = compute_coeff(ictrl.param_set, tf);

        vctrl.t_offset = ictrl.t_offset;

        ->vctrl.flag;

    end

endmodule
 

Fig. 3.7 A pseudo-model of the charge-pump loop filter in SystemVerilog.  
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3.1.3 Voltage Controlled Oscillator 

The voltage-controlled oscillator (VCO) model generates an xbit-type clock of 

which frequency is controlled by an xreal-type input vctrl. The frequency of the 

oscillator is a linearly scaled version of the input, and its phase is an integral of that 

frequency (Fig. 3.8). This integration can be carried by multiplying 1/s in the s-

domain without time-step integration. This is in contrast to other simulators which 

must accumulate the frequency for every time step, thus degrading the simulation 

speed. Finally, the xbit-typed output clock is toggled every time the xreal-type phase 

reaches the value of π.  

A pseudo-model of the VCO in SystemVerilog is shown in Fig. 3.9. When the 

input control voltage vctrl has an event, the VCO updates its frequency signal by 

scaling vctrl using a DPI function scale(). The phase signal is then computed by 

multiplying the frequency signal by 1/s in the s-domain, after which the DPI 

function find_cross() checks when the phase signal crosses π. Based on the crossing 

time t_cross, the timing offset t_offset and the quantized time stamp at which the 

output event needs to be scheduled are determined. For instance, if t_cross is 2.5ns 

and the Verilog time step is 1ns, the VCO model waits for three time steps (3ns) and 

toggles the output with a t_offset of -0.5ns. When the scheduled output event is 

triggered, the phase is shifted by -π using the DPI function subtract() to prevent the 

phase from overflowing. At the same time, the next π-crossing event is scheduled, 

and the clock continues to toggle whenever the phase crosses π. 
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Fig. 3.8 The voltage-controlled oscillator generates its digital clock output based on 

xreal-type frequency and phase signals. 

module vco (

    output xbit out,

    input xreal vctrl);

    always @(vctrl.flag) begin

        freq.param_set = scale(vctrl.param_set, Kvco);

        tf = create_params(1,0,0);

        phase.param_set = compute_coeff(freq.param_set, tf);

        t_cross = find_cross(phase.param_set);

        #(ceil(t_cross)) -> out_event;

    end

    always @(out_event) begin

        out.value = ~out.value;

        out.t_offset = t_cross - ceil(t_cross);

        phase.param_set = subtract(phase.param_set,pi);

    end

    always @(out.value) begin

        t_cross = find_cross(phase.param_set);

        #(ceil(t_cross)) -> out_event;

    end

endmodule

 

Fig. 3.9 A pseudo-model of the voltage-controlled oscillator in SystemVerilog. 
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3.1.4 Frequency Divider 

A synchronous divider is modeled by aligning the output clock timing to the 

input clock timing. The divider model counts the number of rising transitions of the 

input and toggles its output whenever it reaches a predetermined division factor. If 

there is no delay, the t_offset value of the output is set equal to that of the triggering 

input. Fig. 3.10 illustrates this operation with a division factor of 4. Fig. 3.11 shows 

a pseudo-model of the frequency divider in SystemVerilog. 

in

out

time step

copy t_offset

 

Fig. 3.10 The input and output waveforms of the synchronous frequency divider with a 

division factor of 4. 

module freq_div (

    output xbit out,

    input xbit in);

    always @(posedge in.value) begin

        count = count + 1;

        if (count == div_factor/2) begin

            out.value = 1;

            out.t_offset = in.t_offset;

        end

        else if (count == div_factor) begin

            out.value = 0;

            out.t_offset = in.t_offset;

            count = 0;

        end

    end

endmodule
 

Fig. 3.11 A pseudo-model of the frequency divider in SystemVerilog. 



Chapter 3. High-Speed I/O Interface Simulation                           32 

 

3.1.5 Simulation Results 

The described charge-pump PLL model is simulated with the design parameters 

listed in Table 3.1. The initial VCO output frequency is 1.5GHz at a control voltage 

vctrl of 0V. Its target output frequency is 2.0GHz for a reference frequency of 

0.5GHz and a frequency division factor of 4. To verify the accuracy, the simulation 

results are compared with those of Verilog-A models simulated in HSPICE. The 

Verilog-A models of the PFD with the charge pump, digital logic gates and VCO are 

those found in [25]-[26], and the loop filter is modeled using the laplace_nd 

function [6].  

Fig. 3.12 shows the locking transient waveform of the VCO control voltage vctrl 

in comparison with the Verilog-A waveform. The value of vctrl is increased from its 

initial value of 0V and is locked at 0.5V. This value corresponds to a VCO 

frequency of 2.0GHz for an initial frequency of 1.5GHz and a Kvco of 1GHz/V. The 

zoomed-in view in Fig. 3.12(b) shows that the simulated waveform is in good 

agreement with the Verilog-A waveform. The measured maximum and the root 

Table 3.1. Design parameters for the charge-pump PLL simulation 

Module Parameter Description Value 

PFD rst_delay AND gate delay on a reset path 30ps 

CP-LF 

I_up/I_dn Up/down current amplitude 20μA 

Rs Series resistance 20kΩ 

Cs Series capacitance 500fF 

Cp Parallel capacitance 50fF 

VCO Kvco Voltage-to-frequency gain 1GHz/V 

Freq. Div. N Frequency division factor 4 
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mean square (RMS) differences between the two waveforms are 0.74mV and 

0.23mV, respectively. 

Fig. 3.13 and Fig. 3.14 show the simulated jitter histogram and jitter transfer 

function. In Fig. 3.13, the jitter histogram of the output clock signal is simulated 

when the PLL is locked to a reference at 0.5 GHz with a RMS jitter of 4ps. The 

simulated jitter histogram shows a standard deviation of 1.86ps, which matches well 

with a Verilog-A result of 1.82ps. Note that the proposed method uses a time step as 

coarse as 10ps, yet still can obtain a jitter histogram with a fine resolution. Fig. 3.14 

shows the jitter transfer function. The jitter transfer function is simulated by 

applying a sinusoidal jitter to the reference clock and measuring the amplitude of the 

resulting sinusoidal jitter of the output clock. Fig. 3.14 plots the ratio between the 

input and output jitter amplitudes when the jitter frequency is swept from 100kHz to 

0.5GHz. The simulated results are in good agreement with the theoretical jitter 

transfer function of a third-order charge-pump PLL, given as:  
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Fig. 3.12 (a) The locking transient waveform of the input control voltage of the VCO, 

and (b) its zoomed-in view. 
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Fig. 3.13 The Simulated jitter histogram of the output clock. 
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Fig. 3.14 The simulated jitter transfer function of the charge-pump PLL. 



Chapter 3. High-Speed I/O Interface Simulation                           35 

 

To assess the non-ideality effects, the reference spurs and static phase offsets are 

measured as a function of the mismatch between the up and down currents. Fig. 3.15 

shows the reference spurs at 0.5GHz in the power spectral density Sф(f) of the output 

phase when the up and down currents are mismatched by 20%. In Fig. 3.15(a), the 

current mismatch causes a reference spur of -133dBc, which is in good agreement 

with the Verilog-A results in Fig. 3.15(b). Fig. 3.16(a) plots the reference spur level 

as the mismatch varies from 0 to 30%. These results show good agreement with the 

Verilog-A results except when the mismatch is 5%, where the reference spur is 

smaller than the noise level of -145dBc. The current mismatch also causes the phase 

offset between the reference and the output clock signals. Fig. 3.16(b) shows that the 

static phase offset increases to 25ps when the charge-pump current mismatch 

reaches 30%.  
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Fig. 3.15 The power spectral densities of the output phase simulated with (a) the 

proposed method and (b) the Verilog-A model, when the up and down currents show a 

mismatch of 20%. 
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Fig. 3.16 (a) The reference spurs of the output clock and (b) static phase offsets between 

the input and output clocks as a function of the charge-pump current mismatch.  
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3.2 Bangbang Clock and Data Recovery  

The second sub-block is a bangbang clock and data recovery (CDR) circuit. The 

bangbang CDR is often considered pure digital circuits as the loop filter is digital 

and the oscillator is digitally controlled. However, the timing information of clock 

signals is critical in the phase detector, and the oscillator is still an analog block. 

Therefore, the bangbang CDR cannot be accurately simulated in a pure digital 

simulator. 

This sub-section provides modeling details and simulation results of a bangbang 

CDR. An bangbang CDR example consists of three blocks (Fig. 3.17): an Alexander 

phase detector (PD), a digital loop filter (LF), and a digitally controlled oscillator 

(DCO). The difference with regard to the previous PLL model is that the PD output 

takes a binary value and the DCO is controlled by a digital value. Therefore, the 

loop filter is implemented in digital and described in pure Verilog. 
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Fig. 3.17 The block diagram of the bangbang clock and data recovery example.  
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3.2.1 Alexander Phase Detector 

The Alexander PD employs two analog comparators, two DFFs, and two XOR 

gates. One of the comparators determines the data at the clock's rising edges, while 

the other extracts the edges at the clock's falling edges. The following DFF and 

XOR gates determine whether the timing is early or late; their models are similar to 

the logic gate models in the charge-pump PLL example. While these DFFs and 

XORs consume xbit-type signals, their outputs, data, up, and dn, are converted to 

bit-type signals using assign (Fig. 3.18). This conversion occurs because the 

subsequent digital loop filter is purely digital. 

Fig. 3.19 outlines the analog comparator model in the Alexander PD. The analog 

comparator computes the sampled value based on the input's functional 

representation. Therefore, this model accurately compares the input signal 

independently of the simulator's time step. For example, if the input is an 

exponential signal of exp(-10
9
/t) and the clock is triggered at a Verilog time of 1ns 

with a time offset of -0.6ns, the sampled value is exp(-10
9
/0.4ns). The sampling is 

performed in C using the DPI function sample(). Finally, the comparator output is 

determined by comparing the sampled value with the comparator threshold.  
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module alexander_pd (

    output bit data,

    output bit up,

    output bit dn,

    input xbit clk,

    input xreal in);

    comparator data_comp(data_d, in, clk);

    comparator edge_comp(edge_d, in, clkb);

    dff data_dff(data_q, data_d, clk);

    dff edge_dff(edge_q, edge_d, clk);

    inv clk_inv(clkb, clk);

    xor up_xor(up_xbit, data_q, edge_q);

    xor dn_xor(dn_xbit, data_d, edge_q);

    /* casting to bit-type */

    assign data = data_d.value;

    assign up = up_xbit.value;

    assign dn = dn_xbit.value;

endmodule
 

Fig. 3.18 A pseudo-model of the Alexander phase detector in SystemVerilog. 

 

module comparator (

    output xbit out,

    input xreal in,

    input xbit clk);

    always @(posedge clk.value) begin

        t_clk = $realtime + clk.t_offset;

        in_value = sample(in.param_set, t_clk);

        out.value = (in_value > threshold)? 1: 0;

        out.t_offset = clk.t_offset;

    end

 endmodule
 

Fig. 3.19 A pseudo-model of the comparator in SystemVerilog. 
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3.2.2 Digital Loop Filter  

The digital loop filter can be described in pure Verilog. In this example, the 

digital loop filter has a proportional and an integral path (Fig. 3.17). The integral 

path accumulates the input with an integral gain of Ki, and the proportional path 

scales the input with a proportional gain of Kp. These two values added to determine 

the output, and the output is delayed by Nd clock cycles to model the filter delay. 

Fig. 3.20 shows a digital loop filter model in Verilog. 

module digital_lf (

    output reg[width_out-1:0] out,      

    input xbit clk,                    

    input bit up,                      

    input_bit dn);

    reg [width_out-1:0] out_d  [Nd-1:0];

    reg [width_out-1:0] acc;

    reg [width_out-1:0] out_p;

    always @(posedge clk) begin

        acc = acc + Ki*(up - dn);

    end

    always @(acc or up or dn) begin

        out_p = Kp*(up - dn) + acc;

    end

    assign out = out_d[Nd-1];

    always @(posedge clk) begin

        for (i=Nd-1; i>0; i--) out_d[i] = out_d[i-1]; 

        out_d[0] = out_p;

    end

endmodule
 

Fig. 3.20 The digital loop filter description in pure Verilog. 
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3.2.3 Digitally Controlled Oscillator 

The modeling of a digitally controlled oscillator (DCO) is identical to that of the 

VCO in the charge-pump PLL example except that its input signal is a bit-type 

signal. The DCO frequency is the input dctrl linearly scaled by a factor of Kdco. Its 

phase is obtained by integrating the frequency, and the output out is toggled every 

time the phase crosses π. 

module dco (

    output xbit out,

    input bit [width_dctrl-1:0] dctrl);

    always @(dctrl) begin

        freq.param_set = create_params(Kdco*real’(dctrl),0,0);

        tf = create_params(1,0,0);

        phase.param_set = compute_coeff(freq.param_set, tf);

        t_cross = find_cross(phase.param_set);

        #(ceil(t_cross)) -> out_event;

    end

    always @(out_event) begin

        out.value = ~out.value;

        out.t_offset = t_cross - ceil(t_cross);

        phase.param_set = subtract(phase.param_set,pi);

    end

    always @(out.value) begin

        t_cross = find_cross(phase.param_set);

        #(ceil(t_cross)) -> out_event;

    end

endmodule
 

Fig. 3.21 A pseudo-model of the digitally-controlled oscillator in SystemVerilog. 

  



Chapter 3. High-Speed I/O Interface Simulation                           42 

 

3.2.4 Simulation Results 

The bangbang CDR example is simulated with the design parameters listed in 

Table 3.2. The bangbang CDR input is a 2-Gbps pseudo random bit sequence 

(PRBS) data stream which is transmitted through a lossy channel. The transmitter 

and channel models are identical to those explained in the next sub-section. 

Fig. 3.22 shows the locking transient waveforms of the CDR. Fig. 3.22(a) plots 

its DCO frequency as a function of time. The DCO frequency is initially 1.984GHz 

and increases to 2GHz. The sudden changes in the frequency arise from its 

proportional path, which increases the phase of the DCO instantaneously. Fig. 

3.22(b) and (c) compare the recovered data during this locking transient period. The 

recovered data show errors when the CDR frequency is lower than the input data 

rate (Fig. 3.22(b)), while the recovered data match the input data when the CDR 

frequency is at the input data rate (Fig. 3.22(c)). 

The effects of the digital loop filter delay and the input transition density on the 

jitter transfer function are investigated. Fig. 3.23 shows the jitter transfer functions 

for different digital loop filter delays. As the filter delay increases from 2 to 16, the 

Table 3.2. Design parameters for the Bangbang CDR simulation 

Module Parameter Description Value 

Digital LF 

Kp Proportional gain 256 

Ki Integral gain 1 

Nd Digital loop filter delay 4 clock cycles 

Width Bit-width of digital output 14 

DCO Kdco Digital-to-frequency gain 2
-14

 GHz/LSB 
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peaking of the transfer function increases. Fig. 3.24 compares the jitter transfer 

functions when two different inputs of a pseudo random bit sequence (PRBS) data 

pattern and a '1010' data pattern are applied. This figure illustrates that the CDR 

bandwidth is wider for the '1010' pattern than for the PRBS pattern. This wider 

bandwidth arises due to the higher transition density of the '1010' pattern, which 

allows the CDR to lock faster with more frequent updates of the control signals.  
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Fig. 3.22 The locking transient waveform of the CDR clock frequency and its recovered 

data when (b) the CDR is not locked and (c) the CDR is locked. 
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Fig. 3.23 The jitter transfer functions with different digital loop filter delays. 
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Fig. 3.24 The jitter transfer functions with different input data patterns.  
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3.3 Channel and Equalizers  

This sub-section explains modeling and simulation of a channel and three 

equalization schemes: a transmitter-side pre-emphasis equalization, and a receiver-

side continuous-time linear equalization (CTLE) and a decision-feedback 

equalization (DFE) as shown in Fig. 3.25. 
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Fig. 3.25 A high-speed I/O interface with three equalization techniques: a pre-emphasis 

equalizer, a continuous-time linear equalizer (CTLE), and a decision-feedback 

equalizer (DFE). 
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3.3.1 Channel and Continuous-Time Linear 

Equalizer 

 

The channel and CTLE are modeled as linear filters with s-domain transfer 

functions. The channel transfer function is extracted from the s-parameters by fitting 

S21 into a rational polynomial form using the rationalfit function in Matlab. Fig. 

3.26(a) shows the transfer function extracted with 47 poles, when the delay of 

3.001ns is factored out. The CTLE transfer function has a high-pass characteristic 

with one zero and two poles. Fig. 3.26(b) plots its transfer function when it has a 

zero at 0.5GHz and poles at 1 and 2GHz. Then, these linear analog behavior can be 

modeled in the same way as described in Section 2.3.  
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Fig. 3.26 (a) The channel transfer function extracted from its measured S-parameter, 

and (b) the CTLE transfer function with one zero at 0.5GHz and two poles at 1.0GHz 

and 2.0GHz, respectively. 
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3.3.2 Pre-Emphasis and Decision-Feedback 

Equalizer  

 

The pre-emphasis equalization and DFE can be modeled using a finite impulse 

response (FIR) filter, which determines the output as a weighted sum of the input 

data. For instance, Fig. 3.27 shows the output signal with weighting coefficients of 

{0.8, -0.2}. Fig. 3.28 outlines the FIR filter model in SystemVerilog. The FIR filter 

computes the output value and triggers an output event at every rising clock edge. If 

the output has a finite transition time, two events are required to define the start and 

end points of the transition; the first event starts the transition with a finite transition 

slope, and the second event ends the transition with the final value after the 

transition time. 

The analog adder combines the CTLE output and the DFE output. As the CTLE 

and DFE outputs are in the xreal functional form, their addition is a linear 

combination of those functions. For example, if the CTLE output is an exponential 

function of c1te
-at

 and the DFE output is a step function of c2, the added output is a 

sum of those two functions, c1te
-at

 + c2 , as shown in Fig. 3.29. Therefore, the 

parameter set of the adder output is a union of the parameter sets of the CTLE and 

DFE outputs. This operation in SystemVerilog is outlined in Fig. 3.30. Whenever 

either input changes, the output parameter set is updated to a union of input 

parameter sets using the DPI function union(). 

 



Chapter 3. High-Speed I/O Interface Simulation                           48 

 

w={0.8, -0.2}

0    1    0     0    1  

FIR filter

w[0]

w[1]
in

xbit

out

xreal

Transition time

1.0

-1.0

-0.6

1.0

-1.0

1.0

-1.0

1.0

 

Fig. 3.27 The output signal of the FIR filter with a finite transition time. 

 

module fir_filter (

    output xreal out,

    input xbit in,

    input xbit clk);

    always @(posedge clk.value) begin

        value = 0.8*in.value – 0.2*p_in;

        /* start the transition */

        slope = (value – p_value)/t_tran;

        out.param_set = create_params(slope, 0, 1);

        out.t_offset = clk.t_offset;

        ->out.flag;

        /* finish the transition */

        #(t_tran); // transition time

        out.param_set = create_params(value, 0, 0);

        out.t_offset = clk.t_offset;

        ->out.flag;

        p_value = value; p_in = in.value;

    end

endmodule
 

Fig. 3.28 A pseudo-model of the FIR filter in SystemVerilog. 
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Fig. 3.29 The addition of two xreal signals is a linear combination of functions, and can 

be modeled as a combination of input parameter sets. 

 

module adder (

    output xreal out,

    input xreal in1,

    input xreal in2);

    always @(in1.flag) begin

        out.param_set = union(in1.param_set, in2.param_set);

        out.t_offset = in1.t_offset;

        ->out.flag;

    end

    always @(in2.flag) begin

        out.params = union(in1.param_set, in2.param_set);

        out.t_offset = in2.t_offset;

        ->out.flag;

    end

endmodule
 

Fig. 3.30 A pseudo-model of the analog adder in SystemVerilog. 
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3.3.3 Simulation Results 

The design parameters of the high-speed I/O interface example are as follows. 

The weighting coefficients of the pre-emphasis and decision-feedback equalizers are 

{0.8, -0.2} and {-0.14, -0.03}. The continuous-time linear equalizer has one zero at 

0.5GHz and two poles at 1 and 2GHz. The transmitted data rate is 5Gb/sec. 

Fig. 3.31 shows the analog waveforms of the transmitter (TX) driver, channel, 

CTLE, and DFE adder. The analog events are denoted with the circles, and these 

events propagate multiple analog blocks without introducing any additional events. 

In Fig. 3.31(a), the TX driver generates two events per input bit to start and end the 

ramp signal. In Fig. 3.31(b) and Fig. 3.31(c), these events propagate through the 

channel and the CTLE without adding any new event, yet still describing accurate 

continuous-time waveforms. In Fig. 3.31(d), the events from the CTLE and the DFE 

are combined by the adder. Fig. 3.31(e)-(h) compare the waveforms with Verilog-A 

models simulated in HSPICE. For the Verilog-A model, the digital logic gates and 

oscillators are based on the Verilog-A model library provided in [25]-[26], while the 

analog filters are modeled using the laplace_nd function [6]. The simulation results 

of the proposed method are in good agreement with the Verilog-A models. The 

measured maximum and the root-mean square (RMS) differences between those 

waveforms are 0.12mV and 32μV for a time period of [0,100ns], respectively.  
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Fig. 3.31 The waveforms of (a) the TX driver output, (b) the channel output, (c) the 

CTLE output, and (d) the adder output, simulated with the proposed method; (e), (f), 

(g), and (h) the waveforms of the same signals simulated with Verilog-A models in 

HSPICE. 
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3.4 High-Speed I/O System Simulation  

 

This sub-section summarizes system-level simulation results; the simulation 

includes all the sub-blocks outlined in previous sub-sections. The data rate is 

increased to 5Gb/s (from 2Gb/s in the bangbang CDR example) by the aid of 

equalizers. The charge-pump PLL and bangbang CDR use the same design 

parameters as the preceding examples, except that the center frequencies of the VCO 

and DCO are 5GHz. 

Fig. 3.32 and Fig. 3.33 show simulated eye diagrams in comparison with the 

Verilog-A model. Fig. 3.32 shows the three eye diagrams of the channel, the CTLE, 

and the DFE adder, showing that their eye openings are enlarged as the signal goes 

through the equalizers. Fig. 3.33(a) and Fig. 3.33(b) compare eye diagrams 

simulated with different time steps of 10ps and 10fs. These two eye diagrams are 

identical, demonstrating that the accuracy is independent of the simulation time step. 

Fig. 3.33(b) and Fig. 3.33(c) compare eye diagrams simulated with the proposed 

method and the Verilog-A model. These figures illustrate that the simulation results 

of the proposed method are in good agreement with those of the Verilog-A model.  
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Fig. 3.32 Eye diagrams of (a) the channel output, (b) the CTLE output, and (c) 

the adder output. 
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Fig. 3.33 (a), (b) Eye diagrams simulated with the proposed method with 

simulation time steps of 10ps and 10fs, respectively, and (c) eye diagram 

simulated with Verilog-A models in HSPICE. 
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Fig. 3.34(a) shows the number of events processed in the TX driver, channel, 

CTLE, and DFE adder for one million input data. The number of events in each 

block remains the same regardless of the simulation time step, demonstrating that 

the proposed method is truly event-driven. Fig. 3.34(b) summarizes the simulation 

runtime on a Linux machine with an Intel Core i5-3570 CPU. The runtime of the 

proposed method for one million bits is 226 sec for a time step of 10ps, which is 

equivalent to 4400 bits/sec. The runtime increases slightly to 246 sec (by 8%) for 

a time step of 10fs, but this increase is minimal considering that the time step 

becomes finer by a factor of 1000. These steady simulation speeds arise because 

the amount of computation is unaffected by the simulation time step due to the 

event-driven simulation. For reference, the simulation runtime of the Verilog-A 

model was 168min for one million bits, which is 45× slower than the proposed 

method. 
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Fig. 3.34 (a) The number of events processed in each block, and (b) the simulation 

runtimes for one-million bit input with different time steps. 

 



Chapter 4. Switching Power Supply Simulation                        55 

 

Chapter 4  

 

Switching Power Supply Simulation 

 

 

 

 

 

A switching power supply includes one or more switches which change the 

system input-to-output relationship depending on their connections, but the system 

can be modeled as a linear time-invariant system between switching instants (i.e. a 

switched linear system). The switching power supplies like a boost converter, a buck 

converter, and a switched-capacitor converter are typical examples of a switched 

linear system (Fig. 4.1) [27]. The main difficulty in simulating them is that the time-

integration methods of analog simulators cannot efficiently handle such abrupt 

changes due to switching activities [28]. Moreover, most switching power supplies 

are characterized by high-frequency switching activities that demand fine-grained 

simulation for accuracy, but also by slow transients that require long simulation 

times.  
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Fig. 4.1 Switched-linear system examples. 

 

This chapter demonstrates how to apply the proposed method to switched linear 

systems and compares its simulation accuracy and speed with existing analog 

simulators. The main difference from linear system simulation described in Chapter 

3 is that switched linear system is modeled with multiple transfer functions, each of 

which describes the circuit network during each switching phase. At every switching 

event, one transfer function is selected depending on the switch connections and 

compute the output response. In other words, in addition to the input events, the 

switching event can also trigger an output event. The switched linear system 

simulation is demonstrated through two power converter examples, a power factor 

correction (PFC) boost converter [33] and a time-interleaved switched-capacitor 

DC-DC converter [34].   
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4.1 Boost Converter 

Boost converters are widely used for DC/AC-to-DC power conversion with an 

output voltage greater than its input voltage. A basic architecture is composed of an 

inductor, a capacitor, a resistor, and a switch (Fig. 4.2). The boost converter has two 

operation phases alternated by a switch connection as shown in Fig. 4.2(a). With the 

switch in position 1 (phase 1), the right-hand side of the inductor is connected to the 

ground, resulting in the network shown in Fig. 4.2(b). With the switch in position 2 

(phase 2), the inductor is connected to the output, leading to the circuit shown in Fig. 

4.2(c). 
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Fig. 4.2 (a) A boost converter circuit and its linear system model in (b) switching phase 

1 and (c) switching phase 2. 
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4.1.1 System Model 

Even though the input/output relationship changes at each switching instant, the 

circuit can be modeled as a linear time-invariant system within each operation phase. 

For example, the relationship between the input vIN(t) and output vOUT(t) of the boost 

converter in phases 1 and 2 can be modeled as a set of differential equations listed 

below: 

( ) 1
( )

( ) 1
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This set of differential equations can be converted to Laplace s-domain 

equivalents, using the Laplace transformation formula for a function derivative in Eq. 

(4-3), resulting in Eqs. (4-4) and (4-5). Note that the initial conditions of the reactive 

elements vC and iL are made explicit in the s-domain equations as explained in 

Chapter 2.3. In Eqs. (4-4) and (4-5), the capital letters denote s-domain signals while 

the italic letters denote their initial conditions in the time domain. 
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With s-domain representations, the boost converter can be simulated by 

following the steps: 1) sample the initial conditions of the reactive elements, 2) 

choose the transfer functions corresponding to the operating phases, and 3) compute 

the output by summing the effects from both the input signal and the initial states of 

the reactive elements. Fig. 4.3 illustrates the proposed event-driven method applied 

to the boost converter example. For each phase, the three transfer functions define 

the relationship between the input (VIN), the initial capacitor voltage (vC(0)), the 

initial inductor current (iL(0)), and the output (VOUT =VC). Every time the circuit 

switches between phases, the initial capacitor voltage and the inductor current are 

sampled and their transfer functions are redefined according to Eqs. (4-4) and (4-5). 

Then, the output voltage induced by each of the input and initial conditions can be 

evaluated simply by multiplying each one by its corresponding transfer function. 

The zero transfer gains for VIN and iL(0) in phase 1 imply that the output is not 

related to the input and the inductor current, as they are disconnected from the 

output during this phase. When the circuit switches to the next phase, however, VIN 

and the initial current flow in the inductor start to increase VOUT  again. Finally, the 

output is updated as a linear combination of these three components.  
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Fig. 4.3 The s-domain event-driven simulation of the boost converter example. 

 

An outline of a boost converter model in SystemVerilog is given in Fig. 4.4. The 

input and output signals are defined as xreal, while the switching input signal is xbit. 

The always statement within the module is triggered when the circuit switches 

between phases (switching events) or the input coefficients change (input events). 

The initial states of the capacitors and inductors are then sampled and the param_set 

of the output xreal signal is updated according to the current input and sampled 

initial conditions. The compute_coeff() function is a DPI function written in C that 

performs s-domain multiplications of xreal signals and transfer functions. As the 

output update is aligned in time with a switching event or an input event, the t_offset 

of the output has the same value as the one of the switching or the input accordingly. 
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Once the param_set and t_offset outputs are updated, the event variable out.flag is 

triggered, thus notifying subsequent blocks of the change event. 

 

 

Module boost_converter(

    input xbit switching,

    input xreal in, 

  output xreal out);

    always @(switching.flag or in.flag) begin

    vc0=sample( vc.param_set ); // sampling initial states

    il0=sample( il.param_set );

    if (phase1)          //switching phase 1

          out.param_set = compute_coeff( In.param_set, tf_in_out_ph1 )

                                + compute_coeff( vc0, tf_vc0_out_ph1 )

                        + compute_coeff( il0,  tf_il0_out_ph1 );

    if (phase2)             //switching phase 2

     out.param_set = compute_coeff( in.param_set, tf_in_out_ph2 )

                        + compute_coeff( vc0, tf_vc0_out_ph2 )

                        + compute_coeff( il0, tf_il0_out_ph2 ); 

       

       if (input_event)        out.t_offset = in.t_offset;

       if (switching_event) oUt.t_offset = switching.t_offset;

    -> out.flag;

    end

endmodule
 

Fig. 4.4 A pseudo-model of the boost converter in SystemVerilog. 
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4.1.2 Simulation Results 

The speed and accuracy of the proposed simulation method are demonstrated 

using the example of a power factor correction circuit (PFC) composed of a bridge-

diode rectifier and a boost converter (Fig. 4.5). The power factor is one of the key 

performance metrics of AC-DC power converters required by many regulatory 

standards. It is defined as in Eq. (4-6), which expresses the ratio of the real power 

flowing to the load and the apparent power in the circuit:  

 
 

(  )(  )


average power
power factor

rms voltage rms current . 
(4-6) 

For a high power factor, the circuit should basically behave as a pure resistive load. 

A boost converter is a widely used topology for power factor correction circuits 

because the switched inductor at the input conducts a current that is proportional to 

the input voltage with very low harmonics [33]. 
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Fig. 4.5 A power factor correction boost converter. 
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One difficulty in simulating such an AC-DC power converter is that there is a big 

gap between the input AC frequency and the switching frequency of the boost 

converter. For instance, in most applications, the input source is 50~60-Hz 

110~220V AC power, while the switching frequency is typically in the 

100kHz~1MHz range. Therefore, the required simulation time is long, typically 

several tens of milliseconds, to simulate a few cycles of the 60-Hz AC input.  

Fig. 4.6 illustrates the accuracy of the waveforms simulated by the proposed 

event-driven simulation method. Fig. 4.6(a) is the simulated output voltage of the 

boost converter, vOUT(t), for one 60-Hz input cycle. The zoom-in waveforms in Fig. 

4.6(b) and Fig. 4.6(c), simulated with the proposed method and HSPICE, 

respectively, demonstrate that they are well matched, and illustrate the switching 

ripples of the converter. It is noteworthy that HSPICE requires many data points to 

express the switching ripples (marked by the blue dots in Fig. 4.6(c)) while our 

event-driven method generates only two events per switching cycle, as indicated by 

the arrows in Fig. 4.6(b). The power factor can be measured from the simulated 

input current waveform. The comparison between the simulated power factors as a 

function of switching frequency and duty cycle in confirms that the proposed 

method achieves the same level of accuracy as SPICE. 

The proposed event-driven simulator demonstrates significant improvements in 

speed compared with HSPICE, yet retains the equivalent accuracy. On a Linux 

machine with an AMD Phenom II X4 945 processor, the total execution time to 

simulate a 0.1-second period with a 100-ns time step is 8.2 seconds. Under the same 

conditions, the HSPICE simulation takes 920.5 seconds, which is 110× slower.  

The execution time of the proposed method varies weakly with the time step (Fig. 
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4.8(a)). For instance, when the time step is reduced from 100-ns to 10-ps (1/10,000x 

reduction), the execution time of the proposed method increases by only 15% (from 

8.2 to 9.4 seconds), while that of HSPICE increases by 15000%. The reason the 

execution time hardly varies is that the number of switching events within the 0.1-

second period remains the same regardless of the time step, which confirms that the 

proposed simulation indeed operates in a purely event-driven fashion. This 

remarkable speed-up does not incur any penalty in accuracy, as the power factor 

measured using the proposed method is virtually constant, independent of the time 

step (Fig. 4.8(b)).  
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Fig. 4.6 (a) The output voltage waveform vOUT(t) simulated for one 60-Hz input cycle, (b) 

5000× zoom-in view of vOUT(t), (c) vOUT(t) simulated by HSPICE. 
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Fig. 4.7 The comparison of the simulated power factors vs. (a) frequency and (b) 

switching duty cycle. 

1 2 3 4 5
7

8

9

10

11

 

 

Execution time

P
o

w
e

r 
fa

c
to

r

Simulation time step (sec)
1 2 3 4 5

0.9

0.95

1

 

 

Power factor

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

     100n    10n    1n     100p   10p       100n    10n    1n     100p   10p  

Simulation time step (sec)

8.2 sec (110X faster than SPICE)

(15%    for 10,000X finer step)
remain same at 0.94

9.4 sec

(a) (b)
 

Fig. 4.8 (a) Execution time and (b) simulated power factor for different time steps.  
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4.2 Time-Interleaved Switched-Capacitor 

Converter  

The second example of a switching power supply is a time-interleaved switched-

capacitor (TI-SC) DC-DC converter described and analyzed in [34]. The switched-

capacitor DC-DC converter topology is becoming a common choice for power-

supplies on chips, as the IC technology is more amenable to integrating high-density 

capacitors than low-loss inductors. One difficulty in simulating a TI-SC DC-DC 

converter is that the number of switching activities increases with the number of 

time-interleaving phases.  
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Fig. 4.9 (a) N time-interleaved 2:1 step-down switched-capacitor DC-DC converter, (b) 

the waveforms of its internal capacitor voltages and final output voltage when N=4 [34]. 
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The TI-SC converter example is composed of N interleaved 2:1 step-down 

converter units, as shown in Fig. 4.9(a). The total capacitance is divided into a set of 

small units and the switching is controlled by a set of N equally spaced clocks (Ф1, 

…, ФN). Fig. 4.9(b) illustrates the basic operation of a 4-phase TI-SC converter with 

the output waveforms. The output voltage ripple is inherent in a switched-capacitor 

converter, and generally decreases as the switching frequency increases. Time-

interleaving is an alternate way of reducing the ripples without increasing the 

switching frequency. 
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4.2.1 System Model 

The TI-SC converter in Fig. 4.9 can be modeled as in Fig. 4.10, where the unit 

capacitors, Cfly, switch their configurations between a series and parallel connections 

depending on the controlling clock phase (). The model includes the on-resistance 

of the switches, Rsw, and parasitic top- and bottom-plate capacitances, Cpar, to 

account for the conduction and switching losses, respectively. To simplify the model, 

the top- and bottom-plate capacitances are combined into a single capacitor because 

they experience approximately the same voltage swings in steady states [34]. The s-

domain transfer function of each phase can be derived from Eq. (4-7), where vcap[i] 

denotes the voltage across the i-th unit capacitor. 
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RLCparNS

NS: num. of cap in series with RL

NP: num. of cap in parallel with RL

NS+NP: total num. of phase (=N)
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Fig. 4.10 Switched linear circuit model of an N time-interleaved, 2:1 step-down TI-SC 

converter. 
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4.2.2 Simulation Results 

Fig. 4.11(a) plots the power efficiency of the TI-SC converter as a function of the 

number of time-interleaving phases, N, and compares the results produced by 

HSPICE and the proposed method. When the total amount of charge delivered to the 

load is fixed with N, the output voltage ripple initially decreases by a factor of N, as 

the amount of charge delivered per clock transition is smaller. Therefore, the better 

power efficiency can be achieved with a higher N. However, increasing N above a 

certain value produces diminishing returns because the other losses, such as the 

conduction loss of the switches and the switching loss of the parasitic capacitors, 

increase. Fig. 4.11 illustrates this tendency, and the simulation results of the 

proposed method match well with the SPICE simulation results. 

The improvement in speed with the proposed method is moderate compared with 

the boost converter case, as SPICE is better at simulating switched capacitors than 

inductors. When simulated on a Linux machine with an AMD Phenom II X4 945 

processor, the proposed method shows a ~20X overall speed improvement compared 

with the HSPICE simulation (see Fig. 4.11(b)).  

The proposed method predicts the well-known dependencies of the switching 

frequency and power efficiency for the output voltage vOUT, described in [34]. Fig. 

4.12(a) plots the switching frequency vs. the average vOUT and Fig. 4.12(b) plots the 

power efficiency vs. the average vOUT when vIN is 2V and N=16. The vOUT 

dependency on the switching frequency is similar to the IR-drop phenomenon in 

linear regulators, in which the output voltage drops when the load current is higher 

than the current that the TI-SC converter can nominally supply. As a result, slower 
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switching leads to a lower average vOUT and lower power efficiencies (Fig. 4.12). 

Nonetheless, an excessively high switching frequency is also undesirable as the 

power efficiency can be degraded due to the loss in the switching capacitors.  
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Fig. 4.11 (a) The simulated power efficiency of the TI-SC converter and (b) execution 

time vs. the number of time-interleaving phases (N). 
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Fig. 4.12 The simulated (a) switching frequency and (b) power efficiency of the TI-SC 

converter vs. the average output voltage.
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Chapter 5  

 

Volterra Series Model Simulation 

 

 

 

 

 

 

Even though most analog systems can be modeled as linear or switched-linear 

systems, there are systems in which weak nonlinearities significantly affect system 

performances and need to be accurately evaluated. For instance, the nonlinearity of a 

power amplifier in a RF transmitter introduces cross- and inter-modulation [35] and 

a continuous-time linear equalizer in a high-speed digital communication system can 

distort a signal presented to the subsequent data decision blocks [36]. Although such 

nonlinear responses are orders of magnitude smaller than the desired response, it is 

important to consider these nonlinearities during system-level verification processes 

to meet stringent design specifications such as total harmonic distortion of less than 

–50dBC for a RF system and a bit error rate (BER) of less than 10
-20

 for a high-

speed I/O interface.  

This chapter demonstrates that the proposed event-driven simulation method can 
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be extended to simulate such weakly nonlinear behavior of analog circuits. 

Specifically, this chapter uses the perturbational form of a Volterra series model to 

simulate the circuit nonlinearities. The Volterra series is one of the most widely used 

nonlinear system representation. The Volterra series expresses a nonlinear response 

by a series of polynomial integral operators with increasing degree of nonlinear 

distortions [20]. Its perturbational form decomposes the nonlinear system equation 

into a multiple sub-system equation linearized with respect to each nonlinear 

distortion [35]. Therefore, sub-system equation can be converted to s-domain 

transfer function and simulated by the presented event-driven method. 

In this chapter, two examples are modeled and simulated: a class-A power 

amplifier for an RF transmitter and a continuous-time linear equalizer (CTLE) for a 

multi-PAM receiver. The simulation results demonstrate the accuracy and speed of 

the proposed method compared to SPICE simulation. 
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5.1 Volterra Series Model 

A Volterra series is one of the most widely used nonlinear system representation. 

The Volterra series expresses a nonlinear system response y(t) to an input x(t) as a 

sum of partial responses yi(t):  

0 0 1 2

1

( ) ( )
N

i N

i

y t y y t y y y y


       , (5-1) 

where yi(t) is computed as i-times repeated convolution with the i-th order Volterra 

kernel hi() [20]: 

1 2 1 2 1 2( ) ( , , , ) ( ) ( ) ( )i i i i iy t h t t t x t t x t t x t t dt dt dt
 

 
     . (5-2) 

For a weakly nonlinear system, which exhibits only minor deviations from the linear 

response such as inter- and cross-modulation and gain compression, the output 

response can be fully described only with the first few orders. 

The Volterra formulation provides a way to extract nonlinear transfer functions 

from the general time-invariant nonlinear differential equations. Without loss of 

generality, nonlinear circuit behaviors can be formulated in the following nonlinear 

differential equation: 

         
d

q y t g y t u
dt

x t . (5-3) 

where y(t) and x(t) are the output and input, and where q(·), g(·), and u(·) are 

nonlinear resistive, dynamic and input functions. Considering a small perturbation 

around a DC operating point at 0 0, x x y y and expanding q(·) and g(·) at the 

operating point, Eq. (5-3) becomes: 
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             2 2 2

1 2 1 2 1 2

d
C y t C y t G y t G y t B x t B x t

dt
        . (5-4) 

where 
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x
. Assume that the small 

perturbation to the input is given as    0   x t x x t , where   is an arbitrarily 

small scalar value. According to Eq. (5-1) and (5-2), the output response y(t) should 

take the form of: 

     2

0 1 2( )        n

ny t y y t y t y t . (5-5) 

As Eq. (5-5) should satisfy the system equation, Eq. (5-4), for an arbitrary value of 

 , a set of n differential equations is obtained by equating each of the  i
-

coefficients to zero [37]. For instance, listing only the first three equations: 

 

   

   

1 1 1 1

2 2 2

1 2 1 2 2 1 2 1 2

3 3 3

1 3 1 3 3 1 2 1 2 3 1 2 1 2 32 2


 



 
    

 

 
      

 

C y G y Bx
t

C y G y C y G y B x
t t

C y G y C y C y y G y G y y B x
t t . 

(5-6) 

Note that Eqs. (5-6) are linearized with respect to each distortion orders; the first 

equation is linear with respect to the first-order distortion y1(t), the second equation 

is linear with respect to the second-order distortion y2(t), and so on. Therefore, these 

equations can be transformed to Laplace s-domain, representing s-domain transfer 

functions.  

For instance, a simple circuit of a nonlinear capacitor in series with a linear 

resistor demonstrates the procedure of decomposing a nonlinear single-input-single-

output (SISO) system equation. Its circuit equation is given as Eq. (5-8), when a 
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nonlinear capacitance is modeled with a Taylor series, Eq. (5-7).  

 0 1
 

C
C C C v t

 (5-7) 
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(5-8) 

Representing the output response, vc(t), with a Volterra series, vc(t)= vc1(t)+ vc2(t)+ 

vc3(t)+…, the linearized differential equations with respect to the first three order 

responses are as follows: 
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(5-9) 

These three linearized differential equations of the nonlinear capacitor example (Eq. 

(5-9)) can be converted to the s-domain transfer functions as follows: 
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(5-10) 

For Eq. (5-10), the capital letters denote s-domain signals, the italic letters denote 

time-domain signals, and terms with t=0 means its initial state.  

Even though Eq. (5-10) includes time-domain multiplications of signals such as 

vc1
2
(t) and vc1(t)vc2(t), the multiplication between signals in xreal functional form can 

be efficiently computed in s-domain without additional inverse Laplace transforms. 
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As explained in Chapter 2.2, one very useful property of our signal representation is 

that it keeps the Laplace transform of the multiplication between the signals simple, 

as merely coefficient addition and multiplication are involved. With the two signals 

x1(t) and x2(t) given as Eq. (5-11), a multiplied signal of two signals remains in an 

identical form, as shown in Eq. (5-12). 

 
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(5-12) 

The newly defined s-domain operator, A2, performs such time-domain multiplication 

of the two signals via Eq. (5-12). Therefore all the computation can be handled 

solely in s domain. For instance, Eq. (5-11) can be rewritten as Eq. (5-13) utilizing 

the operator, A2. 
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(5-13) 

As all the distortion terms, VC1, VC2, and VC3, are expressed in s-domain and they 

are in the xreal form, the Eq. (5-13) can be solved by the proposed event-driven 

method. First, at every input event, VC1, VC2, and VC3 are solved sequentially; VC1 is 

computed based on VIN(s), VC2 is solved based on computed VC1, VC3 is updated based 
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on VC1 and VC2, and so on. Then, the final output is simply a sum of the distortion 

terms, VC=VC1+VC2+VC3.  

Fig. 5.1 compares the output waveforms simulated with the proposed method (the 

red solid lines) to a SPICE simulation (the blue dotted line) when a sinusoidal input 

signal is applied. For the SPICE simulation, the nonlinear differential equation Eq. 

(5-8) is written in Verilog-A. Fig. 5.1(a), Fig. 5.1(b), and Fig. 5.1(c) show the output 

waveforms obtained using our method when the first-, second- and third-order terms 

are added, respectively. Fig. 5.1(d), Fig. 5.1(e), and Fig. 5.1(f) show the error terms 

compared to the SPICE simulation. With the first three orders, the nonlinear 

responses are described with an error less than 1mV. It is noteworthy that while 

SPICE numerically solved the equation at every data point, as represented with dots 

on the waveforms, the proposed method processed the output response only once, at 

t=0. 
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Fig. 5.1 Output response up to (a) the first-order, (b) the second-order, and (c) the 

third-order responses, and output error with (d) the first-order, (e) the second-order, 

and (f) the third-order responses. 
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5.2 Class-A Power Amplifier 

The first example of the Volterra series model is an RF transmitter employing a 

phase-shift keying (PSK) modulation and a class-A power amplifier (Fig. 5.2). The 

nonlinearity of the power amplifier is a critical factor, as it presents interferers to 

other users or corrupts its own signal through cross- and inter-modulation. Meeting 

the stringent design specifications on linearity for RF communication systems, its 

accurate simulation and verification is important. As the modulation scheme varies 

with systems, a full-waveform transient simulation is necessary for a rigorous 

characterization of the PA nonlinearity effect with respect to the scheme. However, 

a circuit-level simulation with actual modulated inputs takes a very long time, as it 

requires a fine time resolution for a fast carrier frequency (several GHz) and a long 

simulation time for a low data rate (several MHz). This chapter demonstrates that 

the presented event-driven method can accurately simulate a Volterra series model 

of a class-A power amplifier with a significant speed-up compared to Spectre 

simulation. 
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Fig. 5.2 (a) An RF transmitter employing a phase-shift keying modulation scheme and 

(b) a class-A power amplifier. 
  



Chapter 5. Volterra Series Model Simulation                        80 

 

5.2.1 System Model 

The class-A power amplifier for the exemplary RF transmitter in Fig. 5.2 is 

modeled in a perturbational form of a Volterra series. There are many effective 

model extraction and model-order reduction methods for a general Volterra series 

applied to RF power amplifiers [35]. For demonstrative purposes, the class-A power 

amplifier is modeled with the nonlinear circuit equation: 

   
     

2

1 


    
o CM o

L OV i o SS

L

dv t V v t
C K V v t V t I

dt R
. (5-14) 

where the circuit parameters RL, CL, K, VOV, and λ are assumed to be 50Ω, 100fF, 

1.0A/V
2
, 0.1V, and 1/50, respectively. This equation models the distortion due to the 

square-law dependence and channel-length modulation effect of the MOSFET 

device. Applying the perturbation method as described in Chapter 5.1, its first-, 

second-, and third-order transfer functions are given as: 
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(5-15) 
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5.2.2 Simulation Results 

Time-domain simulation is performed to assess a third-order intercept point (IP3) 

and spectral re-growth property of the transmitter. First, a two-tone test shown in Fig. 

5.3(a) is simulated to estimate the third-order intercept point (IP3). Two sinusoidal 

inputs with frequencies of 0.99GHz and 1.01GHz are applied and the 

intermodulation power at 1.03GHz is measured. Fig. 5.3(b) shows the simulated 

main signal power, the third-order inter-modulation power (IM3), and its 

extrapolated third-order intercept point (IP3), which are in good agreement with the 

SpectreRF periodic-steady-state (PSS) simulation. Waveforms in Fig. 5.4 depicts a 

transient output when a two-tone sinusoidal input is applied. For a better visibility, 

the sinusoidal signals at frequencies with bigger differences (0.9GHz and 1.1GHz) 

are applied. As shown in the zoom-in view in Fig. 5.4(b), output signal gets distorted 

as its amplitude is amplified, and this nonlinear effect is well modeled with the 

third-order Volterra series. 
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Fig. 5.3 (a) A two-tone testbench for an RF power amplifier and (b) simulated third-

order intercept point (IP3). 
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Fig. 5.4 (a) Transient waveforms of the two tone test and (b) their zoom-in view. 
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Fig. 5.5 Output spectra of the power amplifier with data-modulated inputs simulated 

by (a) Spectre and (b) the proposed method. 

 

On the other hand, Fig. 5.5 shows the spectra of the output signal when a 1-GHz 

carrier signal is PSK-modulated with 1-Mbps data. To obtain the spectra, a transient 

waveform is simulated for a 512-μsec, which is equivalent to a data length of 512 

with 512,000 carrier cycles. The obtained power spectra is in a good agreement with 

the Cadence Spectre. Thanks to the event-driven simulation, the substantial speed-up 

of ~300× was observed compared to Cadence Spectre; For a 512-bit data 

transmission (corresponding to 512μsec), it took only 0.38 seconds for our simulator 
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while it took 112.5 seconds for Spectre. The speed-up is largely due to the fact that 

the xreal functional form is particularly efficient in expressing a stiff signal such as a 

PSK modulated signal. For instance, it takes only 512 events for the proposed 

method to express the signal without any accuracy loss, while it takes one million 

samples for Spectre to Nyquist-sample the 1-GHz carrier signal. 
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5.3 Continuous-Time Equalizer 

The second example is a multi-level, high-speed data receiver, employing a 

continuous-time linear equalizer (CTLE) stage and a four-level pulse-amplitude 

modulation (4PAM) scheme as shown in Fig. 5.6 [36]. The multi-level receiver is 

particularly sensitive to the distortion, as it experiences non-uniform 

filtering/amplification depending on the signal level. Resorting to a SPICE-like 

simulator to assess its effects is however too costly, considering the complexity of a 

typical high-speed link system and long simulation times required to estimate a BER 

less than 10
-12

. 

 

CTLEChannel4-PAM Transmitter

2bit Vout

Data

4PAM Receiver

Vin

 

Fig. 5.6 A 4-PAM high-speed I/O interface example. 
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5.3.1 System Model 

The CTLE in Fig. 5.7 is designed to compensate an 8-dB loss at 2GHz with a 

zero introduced by a source-degeneration capacitor (CS) and resistor (RS). The 

governing circuit equations with input (vin) and transistor's source node voltages (vs+ 

and vs-) are: 

   

   

2 2

2

2
SS OV in s OV in s

s s s s

s m in s in s
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 
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 
 

 

(5-16) 

where the circuit parameters gm, K, CS, RS, CL and RL have values of 10mS, 0.1A/V
2
, 

800fF, 400Ω, 100fF and 200Ω, respectively. This equation models the distortion due 

to the square-law dependence of the MOSFET device. The upper-case letters denote 

large-signal operating points, while the lower-case letters represent small-signal 

behaviors of interest.  

 

RL CL

CS

RS

ISS

VS+vs+ VS−vs-

ISS+id vOUT-

VG-vin

vOUT+

 

Fig. 5.7 Circuit schematics of the continuous-time linear equalizer. 
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Applying the perturbation method described in Chapter 5.1, its first-, second-, 

and third-order transfer functions of vs+ are given as: 

 
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. (5-17) 

Once vs+ is solved, then the output vout can be computed by the following differential 

equation: 

 
2

   
L

out out
OV in s

dv v
C K

dt R
V v v , (5-18) 

which has an equivalent s-domain representation: 

 2 ( ) ( ), ( ) ( ) (0)
( )

1/ 1/

     
 

 

OV in s OV in s L out
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L L

K A V V s V s V V s V s C v
V s

R sC R sC
. (5-19) 
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5.3.2 Simulation Results 

Fig. 5.8 compares the eye-diagrams of the 2-Gbps 4-PAM signals before and 

after the CTLE stage for the transmit swing of ±30mVdpp and ±300mVdpp. Since the 

channel is modeled as a linear system with 7 poles, there is no difference in its 

output eye shapes between Fig. 5.8(a) and (d). The same is true when only the first-

order response of the CTLE stage is modeled (Fig. 5.8(b) and (e)). However, when 

the third-order distortion response is included, the output signal exhibits different 

amount of distortion depending on the signal swing as shown in Fig. 5.8(c) and (f). 

In particular, for the input swing of ±300mVdpp, the top-most and bottom-most eye 

openings are smaller (115mV) than that of the middle eye (155mV).  

Fig. 5.9 compares the eye diagrams obtained with Synopsys HSPICE and the 

proposed simulator with different time steps of 100ps and 100fs. Note that the eye 

diagram obtained is identical to the one with HSPICE even with a coarse time step 

of 100ps (0.2 UI). In addition, simulating 2,000 bits of data pattern takes 26 seconds 

for the proposed method on a Linux machine with AMD Phenom II X4 945 

processor while HSPICE simulation takes 25,720 seconds (~990× speed-up).  
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Fig. 5.8 The simulated eye diagrams for two swing levels: ±30mVdpp and ±300mVdpp. 

The eye diagrams before the CTLE (a,d) and after the CTLE without (b,e) and with the 

third-order distortion included (c,f).  
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Fig. 5.9 Eye-diagrams of the CTLE output added up to a third-order response 

simulated by (a) SPICE with a maximum time step of 10ps, (b) the proposed method 

with a time step of 100ps, and (c) the proposed method with a time step of 100fs. 
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Injection-locked oscillators (ILOs) are circuits that produce a fundamental or 

super-/sub-harmonic frequency of the input signal based on an injection locking 

phenomenon [38]. When the injection input or super-/sub-harmonic frequency is 

close enough to the oscillator’s free-running frequency, the nonlinear interaction 

within the oscillator forces its frequency and phase to lock to those of the injection 

input. This injection locking phenomenon is utilized in many wireline and wireless 

communication applications such as multi-phase clock generation, jitter filtering, 

frequency multiplication or division, and burst-mode clock recovery [39]-[44]. 

However, the nonlinear, time-varying oscillator characteristic challenges the 

modeling and simulation of the injection-locking behavior. 
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This chapter shows that the presented method can simulate such nonlinear time-

varying behaviors in an event-driven fashion. The injection-locking behavior is 

modeled by a perturbation projection vector (PPV) based approach presented in [45]. 

The governing ordinary differential equation (ODE) of the PPV-based ILO model is 

nonlinear and can be expanded by a Volterra series as described in Chapter 5. 

However, there are two main differences from the nonlinear behavior simulation in 

Chapter 5: first, the governing ODE does not have an analytical form as the PPV is 

numerically extracted via simulation in most cases. Second, the governing ODE is 

periodically time-varying as it describes the oscillator's behavior. To address these 

issues, the numerically extracted PPV is curve-fitted into a piecewise polynomial 

(PWP). Then, the PPV-based ILO model can be simulated in the same way as the 

Volterra series model with additional crossing events at piecewise interval 

boundaries. 

This chapter demonstrates the PPV-based ILO model simulation through three 

examples: an LC oscillator, a ring oscillator, and a burst-mode CDR. In the LC 

oscillator example, the dependence of the simulation accuracy and speed on the 

number of intervals and degree of polynomials in PPV's piecewise polynomial 

notation is investigated. Additionally, a ring oscillator example with a non-

sinusoidal PPV shows that the proposed model can accurately simulate both the lock 

and quasi-lock behaviors of the ILO and also predict the locking range and static 

phase offset for different injection frequencies and magnitudes. Furthermore, a 

burst-mode clock recovery example shows that the proposed method can also 

simulate the locking transient, lock range, and lock time of the ILO when an 

aperiodic, pseudo-random pattern signal is injected into it.  
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6.1 PPV-Based ILO Model 

Among various macromodeling approaches for ILOs [45]-[49], this work adopts 

the perturbation projection vector (PPV) based approach presented in [45] to model 

the oscillator’s response to an external injection input. The simplest and most 

intuitive model is perhaps the Adler's equation [46]. While it can predict the ILO 

locking range, it depends on a quality factor Q that limits its use to LC oscillators. 

The generalized Adler's equation [47] extends the applicability to other oscillator 

types, but ignores the high-order harmonic effects. Another macromodel approach 

for ILOs is based on the impulse sensitivity function (ISF) [48]. ISF describes the 

final phase shift of the oscillator caused by an impulse arriving at different times. 

While the ISF can capture harmonic effects, it is not suitable for modeling the 

injection-locking behaviors, since only the final phase shift at steady-states is 

described and not the instantaneous phase shift during transients. Thus, the ILO 

model in [49] introduced an additional phase shift term in the ISF-based model. On 

the other hand, the PPV-based macromodel [45] can predict the oscillator's injection 

locking behavior most accurately and is generally applicable to all types of 

oscillators and inputs [50]-[52]. Moreover, the PPV-based model describes the 

oscillator's phase response to the perturbation using a compact, scalar, nonlinear 

ordinary differential equation (ODE) that renders its models simple. 

The PPV model describes the output response of a perturbed oscillator as: 

( ) ( ( )) ( )p sx t x t t y t    
(6-1) 
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where xs(t) is a steady-state response of an unperturbed oscillator. Here, the 

perturbation is decomposed of the amplitude deviation, y(t), and phase deviation, 

α(t). The PPV model mainly focuses on the phase deviation as it is the only one that 

persists over time. In other words, the perturbation input on the oscillators' 

amplitude is neglected and the perturbed oscillator's signal waveform, xp(t), is 

approximated as:  

( ) ( ( )) p sx t x t t . (6-2) 

PPV is a periodically time-varying vector 1( )v   that describes the oscillator's 

phase response to the perturbation input. The PPV-based phase-domain macromodel 

describes the phase deviation α(t) of the perturbed oscillator using the nonlinear 

differential equation  

1( ) ( ( )) ( )   Tt v t t b t , (6-3) 

where ( )b t  is an n×1 row vector describing the perturbation inputs to the system 

and 1( )v   is a periodically time-varying n×1 row vector referred to as the 

perturbation projection vector (PPV). Eq. (6-3) implies that the PPV represents the 

oscillator's phase sensitivity to the perturbation input depending on its internal phase 

t+α(t). Due to the periodically time-varying nature of the oscillator, the PPV is also 

periodic with the self-oscillating period. The ODE in Eq. (6-3) is nonlinear, because 

the phase variable α(t) is used as an argument to the PPV function. 

PPV is a well-established concept in oscillator modeling and various PPV 

extracting methods from transistor-level circuits are available [45], [53], [54]. For 

instance, the work in [53] extracts the PPV from the frequency- or time-domain 

Jacobian matrices computed during steady-state analysis. Some commercial 
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simulators like Cadence SpectreRF provide options to report the PPVs after the 

periodic steady-state (PSS) analysis of oscillators. 

The main issue in simulating the PPV-based ILO model with the same method as 

the Volterra series model in Chapter 5 is that the PPV is numerically extracted via 

simulation and the ODE does not have a polynomial form of Eq. (5-4). One 

straightforward way is to curve-fit the numerical PPV into a polynomial function. 

However, a polynomial expansion is not suitable for describing a periodic function 

like PPV since asymptotically, it is either increasing or decreasing. Instead, a 

piecewise polynomial (PWP) expansion is adopted to describe the periodic PPV.  

The PWP expansion of the PPV turns the periodically time-varying ODE in Eq. 

(6-3) into a set of nonlinear ODE segments which is more amenable to a Volterra 

series model. Let’s consider an example of a PPV with a single row element, v1(t), 

described by a piecewise polynomial function with k phase intervals: 

1 1

2 1 2

1

1

( ) for  0

( ) for  
( )  

( ) for  1

 


 
 

   k k

f t t t

f t t t t
v t

f t t t

, (6-4) 

where f1(·), f2(·), …, fk(·) are polynomial functions of the input phase argument, t. 

The PPV continuity and periodicity require 

1

1

( ) ( )    for   1,2, , 1

(0) (1)
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

i i i i

k

f t f t i k

f f
. (6-5) 

For instance, Fig. 6.1 shows an exemplary PPV curve-fitted to a third-order 

piecewise polynomial function with four intervals (k=4). By substituting Eq. (6-4) 

into Eq. (6-3), the piecewise nonlinear ODE governing the phase deviation response 
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α(t) of the ILO is given as: 

1 1

2 1 2

1
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Fig. 6.1 Piecewise polynomial expansion example of a PPV extracted by SpectreRF. 

 

For a given segment of the piecewise nonlinear ODE in Eq. (6-5), the phase 

response to an input event is computed in the same way as the Volterra series model 

in Chapter 5. The ODE segments listed in Eq. (6-5) are nonlinear ODEs, since each 

of their right-hand side expressions contains a polynomial function of the phase 

deviation, α(t). When the ODE segment response is assumed to be a sum of multiple 

distortion-order responses (i.e., α(t)=α1(t)+α2(t)+α3(t)+...), a perturbation method in 

[37] decomposes the nonlinear ODE of Eq. (6-5) into a set of linear ODEs, each of 

which governs a different distortion-order response. If a small perturbation is given 

as an input, εb(t), with an arbitrarily small scalar value ε, α(t) takes the form of Eq. 
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(6-7) assuming that the nonlinear distortion terms generate harmonics at their 

degrees: 

         2 3

1 2 3

i

it t t t t             (6-7) 

Since Eq. (6-7) should satisfy the system equation in Eq. (6-5) for an arbitrary ε, 

a set of differential equations is obtained by equating each ε
i
-coefficient to zero. For 

instance, if the PPV is described using a second-order piecewise polynomial (i.e., 

fi(t)=p0+p1t+p2t
2
) and the phase response, α(t), is approximated up to its third-order 

distortions, the system equation for a given segment becomes: 
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By equating each of the ε
i
-coefficients to zero, the set of the decomposed ODEs are 
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. (6-9) 

With the input signal b(t) already in a form of Eq. (2-4), right-hand side of Eq. (6-9) 

also takes the same form as in Eq. (2-4), as they are products between polynomials 

and exponentials. As αi(t) corresponds to an integration of each of these expressions, 

each distortion-order response can be computed in an event-driven fashion by 

converting the right-hand side expression into Laplace s-domain using Eq. (2-5) and 

multiplying it by 1/s. The overall response, α(t), of the nonlinear ODE segment is a 

sum of these multiple distortion-order responses, α1(t), α2(t), ... , αi(t), and its initial 

condition. The number of distortion-order responses required to accurately describe 



Chapter 6. Injection-Locked Oscillator Simulation      96 

 

the oscillator's behavior depends on how strongly nonlinear the circuit is.  

Due to the piecewise representation of the PPV, the phase t+α(t) crossing the 

piecewise interval boundaries triggers additional phase computations. In other words, 

every time the phase advances to the new polynomial segment, the phase deviation, 

α(t), should be re-computed based on a corresponding polynomial in Eq. (6-6). 

Whenever a new analytical α(t) is computed, the time, tn, when the phase crosses the 

current phase interval boundary is found and the next phase computation event is 

scheduled. Since an ILO typically has a narrow locking range, the crossing time, tn, 

can be found via an efficient bisection search algorithm with an narrow initial search 

range. For instance, it is still conservative to use (t, t+2/k] as the search range where 

t is the current time in a unit interval (UI) and k is the number of piecewise segments 

over one period.  

Fig. 6.2 summarizes the simulation flow of the aforementioned procedure for 

computing the phase deviation response, α(t). Assuming that the initial condition for 

α(t) is given, a proper nonlinear ODE segment that corresponds to the current phase 

t+α(t) is chosen. Upon the arrival of each input event, the α(t) of the chosen 

nonlinear ODE segment is computed as a sum of multiple distortion-order responses, 

each of which can be obtained by solving a linear differential equation in Eq. (6-9). 

Every time the analytical expression for the phase response α(t) is updated, the time, 

tn, when the phase t+α(t) crosses the interval boundary of the current ODE segment 

is computed and a Verilog event is scheduled at tn. When the time advances to tn, the 

scheduled event is triggered and the phase response, α(t), is re-computed using the 

next ODE segment while preserving the state variable α(t) (i.e. an initial condition 

for the next segment). If a new input event arrives before the time reaches tn, α(t) is 
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re-evaluated using the current ODE segment and a new tn value is computed. In this 

case, the previously-scheduled event at tn is rescheduled according to this new tn 

value.  
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always @(phase-crossing event) begin

    - Select fi(·) based on t+α(t)

    - Solve the ODE (Eq. (10)) for the new α(t)  

    - Find the next crossing time tn 

      satisfying tn+α(tn)=ti
    - Schedule a phase-crossing event at t=tn
end

always @(input event) begin

    - Solve the ODE (Eq. (10)) for the new α(t)  

    - Find the next crossing time tn 

      satisfying tn+α(tn)=ti
    - Reschedule a phase-crossing event at t=tn
end

Select fi(·) based on t+α(t)

Update α(t) by solving Eq. (10)
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Wait for the next event

Initial event

Phase-crossing  eventInput   event

event computation(a)

(b)
 

Fig. 6.2 The procedure for the event-driven simulation of the ILO model using a 

piecewise polynomial expansion of the PPV: (a) a process flowchart and (b) Verilog 

pseudo-code.  
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6.2 LC Oscillator 

The first example is an 1-GHz LC oscillator frequently used in many papers on 

the PPV-based macromodel [51], [55] (Fig. 6.3). The governing differential 

equations of this LC oscillator are 

( )( )
( ) ( ) tanh ( )

( ) ( )

 
     

 



nG v td v t
C v t i t S b t

dt R S

d
L i t v t

dt

, (6-10) 

where L, R, and C are the inductance, resistance, and capacitance of the LC tank, 

respectively, and S and Gn are the parameters of the nonlinear negative resistor. The 

parameter values used for this example are L=4.869x10
-7

/2π, C=2x10
-12

/2π, R=100, 

S=1/R, and Gn= –1.1/R.  

 

v(t)b(t) L C R Gm

Nonlinear

i(t)

 

Fig. 6.3 An LC oscillator example [51] 
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6.2.1 System Model 

Fig. 6.4(a) and (b) show the oscillating waveform and PPV of the LC oscillator 

(Fig. 6.3) at the v(t) node that are both simulated using SpectreRF. The simulated 

PPV is divided into equally-spaced 16 segments, each curve-fitted to a first-degree 

polynomial (i.e. piecewise linear) function having a least mean square (LMS) error 

(Fig. 6.4(b)). While the uniform piecewise interval is demonstrated in this example, 

the non-uniform piecewise interval can also be used to reduce the PPV-fitting error 

without increasing the number of piecewise intervals.  
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Fig. 6.4 (a) its oscillating output waveform and (b) measured perturbation projection 

vector (PPV) at node v(t).  
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6.2.2 Simulation Results 

Fig. 6.5 shows that the proposed method accurately simulates the ILO's response 

to a step change of the input clock phase. First, the oscillator is injection-locked to a 

sinusoidal signal at a 1GHz frequency. The input signal, b(t), changes its polarity at 

10ns (i.e. a phase shift of π), as shown in Fig. 6.5(a). After the input signal’s phase 

change, the oscillator phase starts to decrease following the input signal phase and 

reaches π at 40ns (Fig. 6.5(b)). The phase change simulated with the proposed 

method is compared with the Spectre simulation in Fig. 6.5(c). The maximum phase 

difference between two simulations for [0:50ns] was 0.15-rad. 

To examine the accuracy and speed dependencies on the piecewise polynomial 

(PWP) approximation of the PPV, the maximum phase errors in the aforementioned 

phase-shift test bench are measured for various numbers of PWP intervals and 

degrees of polynomials. In this test, the nonlinear ODE is decomposed up to the 

second-order distortion. Fig. 6.6 shows the measured phase errors between the 

proposed method and Spectre simulations. The phase error decreases as the number 

of intervals increases and the degree of polynomials increases (Fig. 6.6(a)). However, 

the phase error rapidly reaches its minimum as the number of intervals increases. In 

fact, the case with 32 intervals has the same phase error as the case with 16 intervals. 

On the other hand, the simulation runtime increases in proportion to the number of 

intervals and degree of polynomials (Fig. 6.6(b)). This is because the larger number 

of intervals increases the phase update events and the higher degree of polynomials 

increases the computation required for each event. With the maximum error 

tolerance at 0.2-rad, the case with 16 intervals and first-order polynomial has the 
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fastest simulation time with 9.5sec. For reference, the equivalent simulation in 

Spectre took 16.2 sec. 

To examine the accuracy and speed dependencies on the distortion orders 

included in the nonlinear ODE decomposition, the worst-case phase error is 
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Fig. 6.5 (a) A phase shift of π in the input perturbation b(t), (b) a locking transient of 

the ILO phase, and (c) a simulation error in ILO's phase response compared to 

Spectre simulation. 
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measured while varying the maximum distortion-order included in the phase in Eqs. 

(6-7)-(6-9). In this case, the PPV is curve-fitted to a piecewise linear function. Fig. 

6.6(c) shows that the phase error decreases as the maximum distortion order 

increases to 2, but has rapidly diminishing returns as the order increases past 2. On 

the other hand, Fig. 6.6(d) shows that the simulation time grows super-linearly with 

the maximum distortion order due to the large amount of computation required for 

the higher distortion-order responses. Considering this trade-off between accuracy 

and speed, it is best to use the maximum distortion order of 2.   
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Fig. 6.6 The worst-case phase errors and execution times while varying the degree of 

piecewise polynomials describing the PPV ((a) and (b), respectively) and maximum 

distortion order included while solving each piecewise nonlinear ODE ((c) and (d), 

respectively).  
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6.3 Ring Oscillator 

The second example is a 7.2-GHz, 7-stage ring oscillator in the CMOS process 

(Fig. 6.7). Injection-locked ring oscillators are frequently used in recent low-power 

PLL applications, as it can suppress the noise-sensitive ring oscillator jitters by 

periodically injecting a clean reference signal. However, its limited locking range 

and static phase offset should be verified for the correct PLL operation. In addition, 

a ring oscillator has a non-sinusoidal PPV with its peak sensitivities located near the 

clock edge transition timings. This can demonstrate the applicability of the proposed 

PPV-based model with the piecewise polynomial expansion.  

 

b(t)=Ainjsin(ωinjt)
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Fig. 6.7 (a) A 7-stage injection-locked ring oscillator and (b) a circuit schematic of each 

stage. 
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6.3.1 System Model 

For the ring oscillator shown in Fig. 6.7(a), the input injection signal 

b(t)=Ainjsin(ωinjt) is connected at the output node of the first stage. Fig. 6.8 shows its 

oscillating waveform, Vout, and measured PPV at the injection node. The PPV is 

fitted into a piecewise linear function with 16 equally-spaced intervals, as shown in 

Fig. 6.8(b). The governing nonlinear ODE of the oscillator's phase response is 

decomposed up to the second-order distortion. 
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Fig. 6.8 (a) An oscillating waveform of the ring oscillator and (b) a measured 

perturbation projection vector (PPV) at the injection node. 
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6.3.2 Simulation Results 

Fig. 6.9 shows the simulated injection-locking and pulling behaviors of the ring 

oscillator in comparison with the Spectre simulation. For the injection-locking case, 

a 7.27-GHz sinusoidal signal with 4μA amplitude is injected at time 10ns. Under 

this strong injection, the frequency is locked to the injection frequency and there is 

no further phase shift after 20ns, as shown in Fig. 6.9(a) and Fig. 6.9(b). On the 

other hand, Fig. 6.9(c) and Fig. 6.9(d) show the frequency and phase waveforms of 

the oscillator when a 7.27-GHz sinusoidal signal with 2.5μA amplitude is injected. 

In this case, the injected signal frequency is just above the lock range and the ring 

oscillator shows injection-pulling. When the oscillator is injection-pulled, it mostly 

behaves as if it is locked to the injection (the quasi-lock shown in Fig. 6.9(d)), but 

periodically undergoes a rapid 2π phase shift returning to the quasi-lock condition 

(i.e., the phase slip shown in Fig. 6.9(d)) [38]. As shown in Fig. 6.9, the waveforms 

simulated with the proposed method agree with the Spectre simulation. For the 70-

ns simulation period shown in Fig. 6.9, the worst-case phase errors for the injection-

locking and injection-pulling cases were 0.074-rad and 0.105-rad, respectively. On 

the other hand, the execution times of simulating the longer 1μs period were 12.5 

seconds for the proposed method and 387.6 seconds for Spectre, which shows a 

speed-up of 31×. This larger speed-up compared to the previous LC oscillator case is 

because Spectre simulation is slower for the transistor-level circuits than the RLC 

passive circuits. In contrast, PPV-based macromodels abstract these circuit-level 

details and achieve the same simulation speeds that depend only on the polynomial 

degree and number of piecewise intervals. 
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Fig. 6.9 (a) Frequency and (b) phase waveforms when the ring oscillator is injection-

locked. (c) Frequency and (d) phase waveforms when the ring oscillator is injection-

pulled. 
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Fig. 6.10 is the minimum injection strength needed to acquire a lock and the 

simulated static phase offset after lock at various injection frequencies. Fig. 6.10(a) 

plots the minimum injection amplitude, Ainj, required for the oscillator to acquire the 

lock as a function of injection frequencies normalized to the self-oscillating 

frequency, ω0. Fig. 6.10(a) shows that the larger injection amplitude is required as 

the frequency offset of the injection signal becomes larger. For the same frequency 

offsets (e.g. ωinj/ω0=0.96 and 1.04), the ring oscillator can lock to the lower 

frequency (i.e. ωinj/ω0=0.96) with the smaller injection amplitude. Fig. 6.10(b) 

measures the static phase offsets of the output signal compared to the injection 

signal at different injection frequencies. For injection frequencies higher than ω0, the 

output signal lags behind the injection signal. For frequencies lower than ω0, the 

output leads the injection signal. As expected, the phase offsets between the output 

and injection signals are smaller for a stronger injection. All the simulation results 

agree with the Spectre simulations. 
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Fig. 6.10 (a) Minimum injection amplitude required for injection-locking and (b) static 

phase offset between the output and the input injection signal for different injection 

frequencies.  
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6.4 Burst-Mode Clock and Data Recovery 

The third example is a 20Gb/s burst-mode clock recovery using an LC oscillator 

[44]. Some communication networks require immediate clock extraction as soon as 

a data packet arrives (i.e. burst-mode operation). The burst-mode clock recovery is 

one of ILO's key applications that take advantage of its virtually instantaneous 

locking capability. In this example, the lock time and lock range are the key 

performance specifications. Another difference from the previous examples is that 

the input is an aperiodic random data stream. This example examines if the model 

can accurately handle such aperiodic perturbations.  
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Fig. 6.11 Burst-mode clock recovery circuits [44]. 
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6.4.1 System Model 

The block diagram of the burst-mode clock recovery circuits is shown in Fig. 

6.11. The input, Din, and its delayed replica, Dd, are XORed to generate pulses, Vp, 

at every data transition. Furthermore, Vp has spectral components at the harmonic 

frequencies of the data rate, which is fed to the LC oscillator to lock its frequency at 

the data rate. The circuit schematics and parameter values of the LC oscillator used 

in this example are given in Fig. 6.12(a), and Vp is injected through the gm-stage of 

b(t). Fig. 6.12(b) and Fig. 6.12(c) show the simulated output waveform and the 

measured LC oscillator PPV. Again, the PPV is modeled as a piecewise linear 

function with 16 equally-spaced intervals and the governing nonlinear ODE is 

decomposed to the second order distortion. 
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Fig. 6.12 (a) An LC oscillator used for the burst-mode clock recovery, (b) its oscillating 

waveform, and (c) PPV at the output node.  
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6.4.2 Simulation Results 

Fig. 6.13 shows its phase waveform getting injection-locked to a 20.02-Gb/s 

pseudo-random bit stream (PRBS) input. Note that the injected data rate is higher 

than the free-running oscillator frequency. Therefore, in the zoomed-in Fig. 6.13(b) 

and Fig. 6.13(c), the phase advances to the higher values when there are the input 

pulses injected into the oscillator and drifts towards the lower values when there is 

no input pulse. Fig. 6.13 shows the agreement between the proposed method and 

Spectre simulation. The measured worst-case phase error in this simulation period 

for 20ns was 0.117-rad. As for the execution times, the proposed method took 

31.9secs for 1-μs simulation while Spectre took 134secs, which demonstrated a 4× 

speed-up. 

Fig. 6.14 plots the simulated lock time of the burst-mode clock recovery circuits 

when the input signal is injected to the LC oscillator with different initial phase 

offsets. For instance, when the injection signal has an initial phase offset of 0.56UI, 

the CDR takes the longest at 6.3ns to acquire the phase lock. On the other hand, the 

CDR can achieve the phase lock almost instantaneously (i.e. lock time=0) when the 

initial phase offset is 0-UI. Fig. 6.14 shows the discrepancies in the simulated lock 

times compared to the Spectre simulation for the phase offset values near 0.56UI. In 

Spectre simulations under these conditions, the LC oscillator experiences 

considerable amplitude changes during the locking transition shown in Fig. 6.15. 

Our model cannot capture this behavior since it neglects the amplitude deviation 

when assuming a sufficiently weak perturbation. Proving that the error is due to the 

limitation of the phase-domain-only model and not due to the proposed event-driven 
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method, the PPV-based model written in Verilog-A [55] gave the same results as our 

event-driven model in Fig. 6.14. For reference, the same 1-μs simulation took 

47.7sec for the Verilog-A model. 
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Fig. 6.13 (a) A locking transient of the burst-mode clock recovery and (b) its zoomed-in 

view (c) with the input signal Vp. 
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Fig. 6.14 A lock time of the burst-mode clock recovery circuit for different initial phase 

offsets of the input from the LC oscillator. 

1.5 2.5 3.5 4.5
-1.5

-1

-0.5

0

0.5

1

1.5

V
o

u
t 
(V

)

Time  (ns)

Vp injected

 

Fig. 6.15 An output waveform of the LC oscillator for the case with an initial phase 

offset of 0.56UI. 
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Finally, Fig. 6.16 measures the minimum amplitude of the injection current, b(t), 

to achieve a phase lock for different input data rates. As expected, the clock 

recovery circuit requires a larger injection current if the input data rate deviates from 

its self-oscillating frequency. Fig. 6.16 also shows that the clock recovery circuit 

needs a large injection current when the input signal, Vp, has a short pulse width. 

This is because the spectral power at the data rate depends on its pulse width, which 

is controlled by the delay in Fig. 6.11. For instance, the spectral power with a 0.25-

UI pulse width is 1/ 2 of that with a 0.5-UI pulse width [44]. Fig. 6.16 agrees well 

with this theory in that the required amplitude of b(t) with the 0.25-UI delay is 

1/ 2 × lower than that with 0.5-UI delay.  
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Fig. 6.16. The minimum injection amplitude required for the burst-mode clock 

recovery circuit to achieve a phase lock for different data rates. 
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Conclusion 

This work proposes an event-driven simulation methodology for analog/mixed-

signal behaviors. The proposed method is implemented on a single digital logic 

simulation platform, SystemVerilog, without relying on an additional analog 

simulator. Its simulation is fast and independently accurate of the simulator's time-

step. This advantage stems from two newly introduced signal-type definitions of 

clock and analog signals: xbit and xreal, respectively. By supplementing a real-value 

time offset to the xbit-type signal and a set of coefficients describing the functional 

form to the xreal-type signal, these signals achieve virtually infinite time resolution 

without relying on a fine time-step. Moreover, this xreal functional form enables 

truly event-driven simulations of analog signals: when there is a change event to the 

input coefficients, the output coefficients are updated only once. The computation 

for this update is fully algebraic, and there is no numerical iteration or time-step 

integration involved. 

The proposed method is demonstrated for various analog/mixed-signal systems. 

First, for a high-speed I/O interface example, the proposed method accurately 

simulated jitter performances of clock-generating circuits, such as phase-locked 

loops and clock and data recovery. Also, simulated continuous-time waveforms of 

linear blocks, such as channels and linear equalizers, were in good agreement with 

Verilog-A models, achieving a 45x speed-up. Second, for switching power supply 
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examples, the proposed method showed SPICE-level accuracy with 20~100x faster 

simulation speed for switched linear systems such as AC-DC boost converters and 

DC-DC switched-capacitor converters. Furthermore, the proposed method was 

applied to simulate nonlinear behaviors modeled by a Volterra series. The simulation 

results showed that it can accurately estimate system performance degradation due 

to circuit nonlinearities (e.g. a spectral regrowth in an RF transmitter and an eye-

opening reduction in a multi-level pulse amplitude modulation transceiver). For both 

examples, the simulation speed was 300~1000x faster compared to SPICE 

simulations. Finally, the proposed method was extended to simulate time-varying 

nonlinear behaviors of injection-locked oscillators. The injection-locked oscillator 

was modeled based on a perturbation projection vector phase-domain macromodel. 

Using three examples (an LC oscillator, a ring oscillator, and burst-mode clock 

recovery circuits), the proposed method achieved the same level of accuracy with 

2~30x speed-ups compared to the Spectre simulation. 
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초 록 

 

최근 시스템온칩은 아날로그와 디지털 회로가 긴밀하게 연결되어 디자

인 되고있다. 따라서 시스템온칩을 빠르고 체계적으로 검증하기 위해서는 

효율적인 혼성 신호 시뮬레이터가 필요하다. 하지만, 현존하는 시뮬레이터

들은 아날로그 회로를 시뮬레이션할 때 시뮬레이션 속도와 정확도가 서로 

상충되어 효율적인 시뮬레이션을 할 수 없다. 본 연구는 이러한 상충을 

극복하여 정확하면서 빠른 혼성 신호 행동 시뮬레이터를 구현하는 방법을 

제안하였다.  

본 연구가 제안하는 방법의 가장 큰 특징은 지속 시간 신호를 표현하

는 방식이다. 클럭 신호는 시간 오프셋을 추가하여 신호의 전환 시간을 

정확히 표현하며, 아날로그 신호는 함수의 계수들을 추가하여 지속 시간 

파형을 함수의 꼴로 표현한다. 이러한 부가적인 정보를 활용하면, 시뮬레

이터의 시간 단계에 상관없이 정확한 지속 시간 신호를 시뮬레이션 할 수 

있다. 더욱이, 함수로 표현된 지속 시간 파형은 아날로그 회로를 사건 구

동 방식으로 시뮬레이션 가능하게 하여 시뮬레이션 속도를 크게 향상 시

킬 수 있다. 

본 연구는 제안한 혼성 신호 시뮬레이션 방법을 다양한 시스템 예제들

을 통하여 검증하였다. 첫번째로, 위상고정루프, 클럭데이터복원기와 같은 

시간 정보에 민감한 회로들과 채널, 이퀄라이저와 같은 선형 회로들을 포

함하는 고속 입출력 인터페이스 예제를 제안한 방법이 정확히 시뮬레이션

하는 것을 보였다. 두번째로, 부스트컨버터, 스위칭커패시터컨버터와 같은 

전원 공급 회로 예제들에서 제안한 방법이 스위칭 선형 시스템에 적용되



 

 

는 것을 보였다. 추가하여, 제안한 방식을 볼테라 시리즈로 모델된 약한 

비선형 행동에 적용하여 무선 주파수 송신기와 고속 입출력 인터페이스 

이퀄라이저를 시뮬레이션하였다. 마지막으로, 다양한 주입 동기 발진 회로

를 시뮬레이션하여 제안한 방식이 시변 비선형 회로에도 확대될 수 있음

을 확인하였다. 위의 예제들의 시뮬레이션 결과에 기반하여 제안한 방식

이 현존하는 아날로그 행동 시뮬레이터들과 같은 정확도를 가지며 수십배

에서 수백배까지 빠른 속도로 시뮬레이션 할 수 있음을 검증하였다.  

 

 

 

 

 

 

주요어 : 사건 구동 방식의 모의 실험, 행동 모델, 혼성 신호 시스템, 시

스템베릴로그, 고속 입출력 인터페이스, 스위칭 전원 공급 회로, 볼테라 

시리즈 모델, 주입 동기 발진기  

 

 

 

학 번 : 2011-30974 


	CHAPTER 1 INTRODUCTION
	1.1 BACKGROUND
	1.2 MAIN CONTRIBUTION
	1.3 THESIS ORGANIZATION

	CHAPTER 2 EVENT-DRIVEN SIMULATION OF ANALOG/MIXED-SIGNAL BEHAVIORS
	2.1 PROPOSED CLOCK AND ANALOG SIGNAL REPRESENTATIONS
	2.2 SIGNAL TYPE DEFINITIONS IN SYSTEMVERILOG
	2.3 EVENT-DRIVEN SIMULATION METHODOLOGY

	CHAPTER 3 HIGH-SPEED I/O INTERFACE SIMULATION
	3.1 CHARGE-PUMP PHASE-LOCKED LOOP
	3.2 BANGBANG CLOCK AND DATA RECOVERY
	3.3 CHANNEL AND EQUALIZERS
	3.4 HIGH-SPEED I/O SYSTEM SIMULATION

	CHAPTER 4 SWITCHING POWER SUPPLY SIMULATION
	4.1 BOOST CONVERTER
	4.2 TIME-INTERLEAVED SWITCHED-CAPACITOR CONVERTER

	CHAPTER 5 VOLTERRA SERIES MODEL SIMULATION
	5.1 VOLTERRA SERIES MODEL
	5.2 CLASS-A POWER AMPLIFIER
	5.3 CONTINUOUS-TIME EQUALIZER

	CHAPTER 6 INJECTION-LOCKED OSCILLATOR SIMULATION
	6.1 PPV-BASED ILO MODEL
	6.2 LC OSCILLATOR
	6.3 RING OSCILLATOR
	6.4 BURST-MODE CLOCK AND DATA RECOVERY

	CONCLUSION
	BIBLIOGRAPHY
	초 록


<startpage>16
CHAPTER 1 INTRODUCTION 1
 1.1 BACKGROUND 1
 1.2 MAIN CONTRIBUTION 6
 1.3 THESIS ORGANIZATION 8
CHAPTER 2 EVENT-DRIVEN SIMULATION OF ANALOG/MIXED-SIGNAL BEHAVIORS 9
 2.1 PROPOSED CLOCK AND ANALOG SIGNAL REPRESENTATIONS 10
 2.2 SIGNAL TYPE DEFINITIONS IN SYSTEMVERILOG 14
 2.3 EVENT-DRIVEN SIMULATION METHODOLOGY 16
CHAPTER 3 HIGH-SPEED I/O INTERFACE SIMULATION 21
 3.1 CHARGE-PUMP PHASE-LOCKED LOOP 23
 3.2 BANGBANG CLOCK AND DATA RECOVERY 37
 3.3 CHANNEL AND EQUALIZERS 45
 3.4 HIGH-SPEED I/O SYSTEM SIMULATION 52
CHAPTER 4 SWITCHING POWER SUPPLY SIMULATION 55
 4.1 BOOST CONVERTER 57
 4.2 TIME-INTERLEAVED SWITCHED-CAPACITOR CONVERTER 66
CHAPTER 5 VOLTERRA SERIES MODEL SIMULATION 72
 5.1 VOLTERRA SERIES MODEL 74
 5.2 CLASS-A POWER AMPLIFIER 79
 5.3 CONTINUOUS-TIME EQUALIZER 84
CHAPTER 6 INJECTION-LOCKED OSCILLATOR SIMULATION 89
 6.1 PPV-BASED ILO MODEL 91
 6.2 LC OSCILLATOR 99
 6.3 RING OSCILLATOR 104
 6.4 BURST-MODE CLOCK AND DATA RECOVERY 109
CONCLUSION 116
BIBLIOGRAPHY 118
ÃÊ ·Ï 126
</body>

