

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation

Event-Driven Simulation Methodology

for Analog/Mixed-Signal Systems

혼성 신호 시스템을 위한

사건 구동 방식 모의 실험 방법

by

Ji Eun Jang

August 2015

School of Electrical Engineering and Computer Science

College of Engineering

Seoul National University

Event-Driven Simulation Methodology

for Analog/Mixed-Signal Systems

지도 교수 김 재 하

이 논문을 공학박사 학위논문으로 제출함

2015 년 8 월

서울대학교 대학원

전기·컴퓨터공학부

장 지 은

장지은의 박사 학위논문을 인준함

2015 년 8 월

위 원 장 (인)

부위원장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

ABSTRACT I

Abstract

Recent system-on-chip's (SoCs) are composed of tightly coupled analog and

digital components. The resulting mixed-signal systems call for efficient system-

level behavioral simulators for fast and systematic verifications. As the system-level

verifications rely heavily on digital verification tools, it is desirable to build the

mixed-signal simulator based on a digital simulator. However, the existing solutions

in digital simulators suffer from a trade-off between simulation speed and accuracy.

This work breaks down the trade-off and realizes a fast and accurate analog/mixed-

signal behavior simulation in a digital simulator SystemVerilog.

The main difference of the proposed methodology from existing ones is its way

of representing continuous-time signals. Specifically, a clock signal expresses

accurate timing information by carrying an additional real-value time offset, and an

analog signal represents its continuous-time waveform in a functional form by

employing a set of coefficients. With these signal representations, the proposed

method accurately simulates mixed-signal behaviors independently of a simulator's

time-step and achieves a purely event-driven simulation without involving any

numerical iteration.

The speed and accuracy of the proposed methodology are examined for various

types of analog/mixed-signal systems. First, timing-sensitive circuits (a phase-

locked loops and a clock and data recovery loop) and linear analog circuits (a

channel and linear equalizers) are simulated in a high-speed I/O interface example.

Second, a switched-linear-behavior simulation is demonstrated through switching

ABSTRACT II

power supplies, such as a boost converter and a switched-capacitor converter.

Additionally, the proposed method is applied to weakly nonlinear behaviors

modeled with a Volterra series for an RF power amplifier and a high-speed I/O

linear equalizer. Furthermore, the nonlinear behavior simulation is extended to three

different types of injection-locked oscillators exhibiting time-varying nonlinear

behaviors. The experimental results show that the proposed simulation methodology

achieved tens to hundreds of speed-ups while maintaining the same accuracy as

commercial analog simulators.

Keywords : Event-driven simulation, Behavioral modeling, Mixed-signal system,

SystemVerilog, High-speed I/O interface, Switching-mode power supply, Volterra

series model, Injection-locked oscillator

Student Number : 2011-30974

CONTENTS III

Contents

ABSTRACT I

CONTENTS III

LIST OF FIGURES V

LIST OF TABLES XII

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND .. 1

1.2 MAIN CONTRIBUTION ... 6

1.3 THESIS ORGANIZATION .. 8

CHAPTER 2 EVENT-DRIVEN SIMULATION OF ANALOG/MIXED-

SIGNAL BEHAVIORS 9

2.1 PROPOSED CLOCK AND ANALOG SIGNAL REPRESENTATIONS 10

2.2 SIGNAL TYPE DEFINITIONS IN SYSTEMVERILOG ... 14

2.3 EVENT-DRIVEN SIMULATION METHODOLOGY .. 16

CHAPTER 3 HIGH-SPEED I/O INTERFACE SIMULATION 21

3.1 CHARGE-PUMP PHASE-LOCKED LOOP ... 23

3.2 BANGBANG CLOCK AND DATA RECOVERY ... 37

3.3 CHANNEL AND EQUALIZERS ... 45

3.4 HIGH-SPEED I/O SYSTEM SIMULATION .. 52

CONTENTS IV

CHAPTER 4 SWITCHING POWER SUPPLY SIMULATION 55

4.1 BOOST CONVERTER .. 57

4.2 TIME-INTERLEAVED SWITCHED-CAPACITOR CONVERTER 66

CHAPTER 5 VOLTERRA SERIES MODEL SIMULATION 72

5.1 VOLTERRA SERIES MODEL ... 74

5.2 CLASS-A POWER AMPLIFIER .. 79

5.3 CONTINUOUS-TIME EQUALIZER ... 84

CHAPTER 6 INJECTION-LOCKED OSCILLATOR SIMULATION 89

6.1 PPV-BASED ILO MODEL .. 91

6.2 LC OSCILLATOR ... 99

6.3 RING OSCILLATOR .. 104

6.4 BURST-MODE CLOCK AND DATA RECOVERY .. 109

CONCLUSION 116

BIBLIOGRAPHY 118

초 록 126

LIST OF FIGURES V

List of Figures

Fig. 1.1 A simple example of a forward-Euler time-integration method for an

RC filter. ... 2

Fig. 1.2 An example of an analog sampler in a high speed receiver. The

sampler is triggered by a noisy clock to sample a continuous-time input

signal. .. 3

Fig. 1.3 Existing analog simulation methods in digital simulators are not truly

event-driven as one input event may trigger multiple output events. 4

Fig. 2.1 The proposed xbit-type expressing an accurate clock waveform by

supplementing the timing offset. ... 11

Fig. 2.2 The xreal-type expressing the continuous-time analog signal as a

sum of complex exponential functions ... 12

Fig. 2.3 Signal examples of the xreal representation. 12

Fig. 2.4 The struct data type definitions of (a) xbit and (b) xreal in

SystemVerilog. .. 15

Fig. 2.5 The event-driven, s-domain computation of a linear RC filter

response. .. 18

Fig. 2.6 A complete RC filter response with an initial condition included. ... 20

Fig. 2.7 A pseudo-model of a linear RC filter in SystemVerilog. 20

Fig. 3.1 An example of a high-speed I/O interface. 22

Fig. 3.2 A third-order CP-PLL example; the clock and timing-sensitive

signals are defined as the xbit, while the analog signal is defined as the

file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394182
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394182
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394184
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394184

LIST OF FIGURES VI

xreal. ... 23

Fig. 3.3 Modeling with accurate timing: (a) the D flip-flop and (b) the AND

gate. ... 25

Fig. 3.4 A pseudo-model of the D flip-flop in SystemVerilog. 25

Fig. 3.5 A pseudo-model of the AND gate in SystemVerilog. 26

Fig. 3.6 (a) The charge pump with a second-order loop filter, and (b) signal

waveforms illustrating its operation. ... 28

Fig. 3.7 A pseudo-model of the charge-pump loop filter in SystemVerilog. . 28

Fig. 3.8 The voltage-controlled oscillator generates its digital clock output

based on xreal-type frequency and phase signals. 30

Fig. 3.9 A pseudo-model of the voltage-controlled oscillator in

SystemVerilog. .. 30

Fig. 3.10 The input and output waveforms of the synchronous frequency

divider with a division factor of 4. .. 31

Fig. 3.11 A pseudo-model of the frequency divider in SystemVerilog. 31

Fig. 3.12 (a) The locking transient waveform of the input control voltage of

the VCO, and (b) its zoomed-in view. .. 33

Fig. 3.13 The Simulated jitter histogram of the output clock. 34

Fig. 3.14 The simulated jitter transfer function of the charge-pump PLL. 34

Fig. 3.15 The power spectral densities of the output phase simulated with (a)

the proposed method and (b) the Verilog-A model, when the up and

down currents show a mismatch of 20%. ... 35

Fig. 3.16 (a) The reference spurs of the output clock and (b) static phase

offsets between the input and output clocks as a function of the charge-

file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394203
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394203

LIST OF FIGURES VII

pump current mismatch. .. 36

Fig. 3.17 The block diagram of the bangbang clock and data recovery

example. .. 37

Fig. 3.18 A pseudo-model of the Alexander phase detector in SystemVerilog.

 ... 39

Fig. 3.19 A pseudo-model of the comparator in SystemVerilog. 39

Fig. 3.20 The digital loop filter description in pure Verilog. 40

Fig. 3.21 A pseudo-model of the digitally-controlled oscillator in

SystemVerilog. .. 41

Fig. 3.22 The locking transient waveform of the CDR clock frequency and its

recovered data when (b) the CDR is not locked and (c) the CDR is

locked. ... 43

Fig. 3.23 The jitter transfer functions with different digital loop filter delays.

 ... 44

Fig. 3.24 The jitter transfer functions with different input data patterns. 44

Fig. 3.25 A high-speed I/O interface with three equalization techniques: a

pre-emphasis equalizer, a continuous-time linear equalizer (CTLE), and

a decision-feedback equalizer (DFE). ... 45

Fig. 3.26 (a) The channel transfer function extracted from its measured S-

parameter, and (b) the CTLE transfer function with one zero at 0.5GHz

and two poles at 1.0GHz and 2.0GHz, respectively. 46

Fig. 3.27 The output signal of the FIR filter with a finite transition time. 48

Fig. 3.28 A pseudo-model of the FIR filter in SystemVerilog. 48

Fig. 3.29 The addition of two xreal signals is a linear combination of

LIST OF FIGURES VIII

functions, and can be modeled as a combination of input parameter sets.

 ... 49

Fig. 3.30 A pseudo-model of the analog adder in SystemVerilog. 49

Fig. 3.31 The waveforms of (a) the TX driver output, (b) the channel output,

(c) the CTLE output, and (d) the adder output, simulated with the

proposed method; (e), (f), (g), and (h) the waveforms of the same

signals simulated with Verilog-A models in HSPICE. 51

Fig. 3.32 Eye diagrams of (a) the channel output, (b) the CTLE output, and (c)

the adder output. .. 53

Fig. 3.33 (a), (b) Eye diagrams simulated with the proposed method with

simulation time steps of 10ps and 10fs, respectively, and (c) eye

diagram simulated with Verilog-A models in HSPICE. 53

Fig. 3.34 (a) The number of events processed in each block, and (b) the

simulation runtimes for one-million bit input with different time steps.

 ... 54

Fig. 4.1 Switched-linear system examples. .. 56

Fig. 4.2 (a) A boost converter circuit and its linear system model in (b)

switching phase 1 and (c) switching phase 2. 57

Fig. 4.3 The s-domain event-driven simulation of the boost converter

example. .. 60

Fig. 4.4 A pseudo-model of the boost converter in SystemVerilog. 61

Fig. 4.5 A power factor correction boost converter. 62

Fig. 4.6 (a) The output voltage waveform vOUT(t) simulated for one 60-Hz

input cycle, (b) 5000× zoom-in view of vOUT(t), (c) vOUT(t) simulated by

LIST OF FIGURES IX

HSPICE. .. 65

Fig. 4.7 The comparison of the simulated power factors vs. (a) frequency and

(b) switching duty cycle. ... 65

Fig. 4.8 (a) Execution time and (b) simulated power factor for different time

steps. .. 65

Fig. 4.9 (a) N time-interleaved 2:1 step-down switched-capacitor DC-DC

converter, (b) the waveforms of its internal capacitor voltages and final

output voltage when N=4 [34]. ... 66

Fig. 4.10 Switched linear circuit model of an N time-interleaved, 2:1 step-

down TI-SC converter. .. 69

Fig. 4.11 (a) The simulated power efficiency of the TI-SC converter and (b)

execution time vs. the number of time-interleaving phases (N). 71

Fig. 4.12 The simulated (a) switching frequency and (b) power efficiency of

the TI-SC converter vs. the average output voltage. 71

Fig. 5.1 Output response up to (a) the first-order, (b) the second-order, and (c)

the third-order responses, and output error with (d) the first-order, (e)

the second-order, and (f) the third-order responses. 78

Fig. 5.2 (a) An RF transmitter employing a phase-shift keying modulation

scheme and (b) a class-A power amplifier. ... 79

Fig. 5.3 (a) A two-tone testbench for an RF power amplifier and (b)

simulated third-order intercept point (IP3). .. 81

Fig. 5.4 (a) Transient waveforms of the two tone test and (b) their zoom-in

view. .. 82

Fig. 5.5 Output spectra of the power amplifier with data-modulated inputs

LIST OF FIGURES X

simulated by (a) Spectre and (b) the proposed method. 82

Fig. 5.6 A 4-PAM high-speed I/O interface example. 84

Fig. 5.7 Circuit schematics of the continuous-time linear equalizer. 85

Fig. 5.8 The simulated eye diagrams for two swing levels: ±30mVdpp and

±300mVdpp. The eye diagrams before the CTLE (a,d) and after the

CTLE without (b,e) and with the third-order distortion included (c,f). 88

Fig. 5.9 Eye-diagrams of the CTLE output added up to a third-order response

simulated by (a) SPICE with a maximum time step of 10ps, (b) the

proposed method with a time step of 100ps, and (c) the proposed

method with a time step of 100fs. ... 88

Fig. 6.1 Piecewise polynomial expansion example of a PPV extracted by

SpectreRF. ... 94

Fig. 6.2 The procedure for the event-driven simulation of the ILO model

using a piecewise polynomial expansion of the PPV: (a) a process

flowchart and (b) Verilog pseudo-code. ... 98

Fig. 6.3 An LC oscillator example [51] ... 99

Fig. 6.4 (a) its oscillating output waveform and (b) measured perturbation

projection vector (PPV) at node v(t). .. 100

Fig. 6.5 (a) A phase shift of π in the input perturbation b(t), (b) a locking

transient of the ILO phase, and (c) a simulation error in ILO's phase

response compared to Spectre simulation. .. 102

Fig. 6.6 The worst-case phase errors and execution times while varying the

degree of piecewise polynomials describing the PPV ((a) and (b),

respectively) and maximum distortion order included while solving

file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394251
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394251
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc422394251

LIST OF FIGURES XI

each piecewise nonlinear ODE ((c) and (d), respectively). 103

Fig. 6.7 (a) A 7-stage injection-locked ring oscillator and (b) a circuit

schematic of each stage. .. 104

Fig. 6.8 (a) An oscillating waveform of the ring oscillator and (b) a measured

perturbation projection vector (PPV) at the injection node. 105

Fig. 6.9 (a) Frequency and (b) phase waveforms when the ring oscillator is

injection-locked. (c) Frequency and (d) phase waveforms when the ring

oscillator is injection-pulled. ... 107

Fig. 6.10 (a) Minimum injection amplitude required for injection-locking and

(b) static phase offset between the output and the input injection signal

for different injection frequencies. .. 108

Fig. 6.11 Burst-mode clock recovery circuits [44]. 109

Fig. 6.12 (a) An LC oscillator used for the burst-mode clock recovery, (b) its

oscillating waveform, and (c) PPV at the output node. 111

Fig. 6.13 (a) A locking transient of the burst-mode clock recovery and (b) its

zoomed-in view (c) with the input signal Vp. 113

Fig. 6.14 A lock time of the burst-mode clock recovery circuit for different

initial phase offsets of the input from the LC oscillator. 114

Fig. 6.15 An output waveform of the LC oscillator for the case with an initial

phase offset of 0.56UI. .. 114

Fig. 6.16. The minimum injection amplitude required for the burst-mode

clock recovery circuit to achieve a phase lock for different data rates.

 ... 115

LIST OF TABLES XII

List of Tables

Table 3.1. Design parameters for the charge-pump PLL simulation 32

Table 3.2. Design parameters for the Bangbang CDR simulation 42

file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc419981006
file:///C:/Users/jieuns/Dropbox/Thesis/Thesis/학위논문_장지은_20150520.docx%23_Toc419981007

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Background

Today's high-performance system-on-chip’s (SoCs) are complex, consisting of

tightly coupled analog and digital components. For example, an RF front-end can

include a digital calibration loop that compensates for mismatches between I/Q

channels [1]. A high-speed wireline receiver may employ various digital adaptation

loops to adjust the timing, voltage offsets, and equalization coefficients [2]. These

systems contain multiple feedback loops with complex interactions between analog

and digital blocks. Such a mixture of analog and digital presents challenges in

verifying them, as it is very time-consuming to verify the entire system using a

transistor-level SPICE simulation. A practical solution to achieve reasonable

simulation speed is to employ behavioral models.

However, existing analog behavioral simulators such as Verilog-A and Matlab

Chapter 1. Introduction 2

Simulink are associated with a trade-off between speed and accuracy. The main

cause is that they employ ordinary differential equation (ODE) solvers to simulate

analog responses. ODE solvers numerically solve differential equations based on a

time-integration method (e.g., forward-Euler, backward-Euler, or trapezoidal

integration methods), which approximates the derivative of a continuous-time signal

with a finite difference between two data points as shown in Fig. 1.1 [3]-[6]. This

finite difference approximation is inaccurate once the two data points are positioned

too far away. Therefore, the time steps between data points should be fine enough to

achieve the accuracy at the cost of the simulation speed.

On the other hand, there have been many efforts to model analog behaviors

entirely in digital simulators such as Verilog or VHDL [7]-[10]. However, the

analog simulation still poses a speed bottleneck of the system simulation. These so-

called real-number modeling (RNM) approaches model analog signals as discrete-

time data using real data types in digital simulators. The main advantages of the

RNM is that it inherits the digital simulator's natural features of fast speed and

      RCy t y t x t

 x t  y t

C

R

 
   








1

1

k k

k

k k

y t y t
y t

t t

1... ...k kt t
1... ...k kt t

Finite difference approximation

Fig. 1.1 A simple example of a forward-Euler time-integration method for an RC

filter.

Chapter 1. Introduction 3

event-driven simulation. However, the event-driven simulation of analog behaviors

cannot be as efficient as digital behaviors due to digital simulator's quantized time

steps. Fig. 1.2 illustrates this using a high-speed receiver example. A clock-triggered

comparator in the receiver detects 0 or 1 by sampling the analog signal Vin(t) at the

rising edge of the clock clk. As Vin(t) continuously changes, the sampled signal

Vout(t) is highly dependent on the clock timing. However, when both signals are

quantized by a fixed time step of the simulator, the accuracy can be lost. For

instance, the fixed time step forces the analog signal to be expressed in a piecewise-

constant waveform and limits the resolution of the clock jitter that can be expressed.

Some techniques can be applied to improve the accuracy [11]-[12]. For instance, [11]

uses interpolated values between discrete time points to obtain approximated

continuous-time signals. [12] models clock signals as samples having an amplitude

proportional to the pulse width in that fixed time interval. The proposed method

takes a similar approach with [12] to express accurate clock timing information, yet

in a more explicit way.

Analog

Sampler

Vin(t)

clk

Vout(t)

Accurate signals

Signals in digital HDLstime step

Fig. 1.2 An example of an analog sampler in a high speed receiver. The sampler is

triggered by a noisy clock to sample a continuous-time input signal.

Chapter 1. Introduction 4

Another issue for the analog simulation in the digital simulator is that it is not

truly event-driven in the sense that a single event at the input triggers multiple

events at the output. Consider a low-pass RC filter that receives an one-time step

change at its input (Fig. 1.3). To simulate its exponential response, the output events

are required to be triggered multiple times even though there was only one input

event. To relieve this inefficiency, some research employed a non-uniform time step

[13]-[14]. [13] approximated an analog signal as a piecewise linear (PWL)

waveform and updates its slope and offset values only when the approximation error

exceeds a certain tolerance. [14] introduced connecting modules that suppress

analog events when their changes are small enough. Nonetheless, they still could not

realize a truly event-driven simulation.

Some recent research mitigated the speed-accuracy trade-off and realized a truly

event-driven simulation of analog behaviors [15]-[17]. [15] built an event-driven

model of a digitally-controlled oscillator in VHDL. For digital control codes and

oscillator's phase noise characteristics, it computes perturbations of the fundamental

oscillator's period. Then, the oscillator's digital output event is scheduled according

 x t  y t

C

R

One input event Multiple output events

Fig. 1.3 Existing analog simulation methods in digital simulators are not truly

event-driven as one input event may trigger multiple output events.

Chapter 1. Introduction 5

to the period. [16] presented an event-driven model for a channel ISI and a limited

sampler bandwidth in Matlab. Fixing the input signal types to a pulse, the step

response of a channel followed by a sampler is predetermined in a look-up table. For

a series of input pulse events, the output is reconstructed as a sum of responses to

each pulses. [17] implemented an event-driven simulator for a 3rd-order charge-

pump PLL in C. It solved a set of governing differential equations for a loop filter

and a voltage-controlled oscillator to obtain an exact phase expression in a

functional form. At every clock event, it updates the phase expression and schedule

the next clock switching event. While all these approaches achieved a truly event-

driven simulation of analog behaviors, they share the limitations that they are not

generally applicable to arbitrary systems or input types.

Chapter 1. Introduction 6

1.2 Main Contribution

This work proposes an event-driven simulation methodology that accurately

simulates analog/mixed-signal behaviors without sacrificing the simulation speed.

The key idea is the manner of expressing the clock and analog signals; rather than

implicitly relying on fine time steps, it explicitly attaches the key information of

interest to the signals. For the clock signal, a real-valued variable indicating exactly

when the clock made the last transition is attached. For continuous-time analog

signals, coefficients describing the signals as time-domain functions (e.g., ci, mi, and

ai of the complex exponential function ci
i im a t

t e


) are supplemented. With these

signal representations, the clock and analog signals can be evaluated at any arbitrary

time precision regardless of the simulator's time step. In addition, the analog

behaviors can be simulated in a truly event-driven fashion without involving

numerical time-integration methods.

The proposed methodology is implemented in a single digital hardware

description language SystemVerilog. As most of recent SoCs include a large number

of digital components, it is desirable to build a mixed-signal simulator based on a

digital simulator. Also, the digital simulator inherently provides an event-driven

engine supporting the proposed event-driven simulation. The supplemental variables

for clock and analog signals are bundled as one signal using a composite data type

struct in SystemVerilog, which keeps module ports pin-compatible.

The thesis demonstrates that the proposed method can simulate complex mixed-

signal systems employing various classes of analog circuit behaviors: time-

invariant/time-varying linear behaviors and time-invariant/time-varying nonlinear

Chapter 1. Introduction 7

behaviors. The first demonstrative example is a high-speed I/O interface with timing

sensitive circuits (a phase-locked loop and a clock-and-data recovery loop) and

linear analog blocks (a channel and linear equalizers). The second examples are

switching power supplies which exhibit time-varying linear behaviors. In addition,

weakly nonlinear behaviors are simulated in an RF transmitter and a multi-level

pulse amplitude modulation receiver. Finally, the proposed method is extended to

time-varying nonlinear behaviors like an injection-locked oscillator. Simulation

results show that the proposed method can accurately simulate various mixed-signal

systems in a truly event-driven fashion with tens to hundreds of speed-ups compared

to existing analog simulators.

Chapter 1. Introduction 8

1.3 Thesis Organization

Chapter 2 describes the proposed representations of clock and analog signals, and

their corresponding type definitions in SystemVerilog. Using those data types, the

event-driven simulation of analog/mixed-signal behaviors is presented. Chapter 3

explains modeling details of linear systems on the proposed simulation platform

using a demonstrative example of a high-speed I/O interface. Chapter 4 provides

modeling examples of linear time-varying systems with various power converters.

Chapter 5 applies the proposed method to nonlinear systems modeled with a

Volterra series. Chapter 6 further demonstrates nonlinear time-varying system

simulations with injection-locked oscillator examples.

Chapter 2. Event-Driven Simulation of AMS Behaviors 9

Chapter 2

Event-Driven Simulation of

Analog/Mixed-Signal Behaviors

This chapter explains main ideas of the proposed event-driven simulation

methodology for analog/mixed-signal behaviors. The proposed method introduces

new ways to express accurate clock and analog signals in digital hardware

description languages (HDLs). To break the speed-accuracy trade-off explained in

the introduction, new signal expression explicitly carries the supplementary

information: transition timing information to the clock signal and a functional

representation to the analog signal. The analog signal representation allows event-

driven simulation of analog behaviors modeled in ordinary differential equations.

The newly introduced signal types are implemented in a digital HDL, particularly

SystemVerilog. These main ideas are demonstrated through a simple RC filter

example.

Chapter 2. Event-Driven Simulation of AMS Behaviors 10

2.1 Proposed Clock and Analog Signal

Representations

As described in Chapter 1.1, digital simulators such as Verilog and VHDL use

quantized time steps, which limit the accuracy and speed when modeling and

simulating timing-critical clock signals and continuous-time analog signals. The

proposed method overcomes this limitation by introducing two new signal types:

xbit for clock signals and xreal for analog signals.

An xbit-type signal expresses accurate clock transition times by attaching its

timing offset explicitly to the signal, as illustrated in Fig. 2.1. In digital simulators,

the simulation time is quantized with a fixed time step, and the actual clock

transition is snapped to the nearest integer multiple of the time step. The only way to

make this apparent transition close to the actual transition is to decrease the time

step. In contrast, the timing offset information attached to the xbit signal indicates

where the actual transition is located relative to the apparent transition time. For

instance, if the clock signal switches from 0 to 1 at an apparent time of 10 with the

timing offset having a value of -0.4, this implies that the actual transition occurred at

0.4 before 10 (i.e., at a time of 9.6). This timing offset ranges [-1ⅹtime step, 0] and

takes a double-precision floating-point value. Therefore, the xbit-type signal can

achieve a virtually infinite timing resolution regardless of the simulator’s time step.

Chapter 2. Event-Driven Simulation of AMS Behaviors 11

-0.4 -0.8-0.6 0.0

0.4 0.6 0.8

Accurate clock

(proposed xbit)

Apparent clock

(existing simulators)

Timing offset

(supplementation)

time step

Fig. 2.1 The proposed xbit-type expressing an accurate clock waveform by

supplementing the timing offset.

On the other hand, an xreal-type signal carries a set of coefficients expressing a

continuous-time analog waveform in a functional form. Specifically, the analog

signal x(t) is represented as a linear combination of complex exponential functions:

() i im a t

i

i

x t c t e


 .
(2-1)

This functional form is parameterized with three real-valued coefficients, ci, mi, and

ai. Any change in this set of coefficients constitutes an xreal event, and the analog

waveform is represented as a series of these events. For example, Fig. 2.2 compares

cases in which an exponential and a sinusoidal waveforms are expressed using a set

of discrete data points and a series of xreal events. The existing digital simulators

describe the waveform with the discrete data points (e.g., a real-type variable), and

it requires fine time steps to improve its accuracy. In contrast, the xreal

representation expresses the accurate waveform with only two events at t0 and t1, and

its accuracy is independent of the simulation time step.

Chapter 2. Event-Driven Simulation of AMS Behaviors 12

1-e
-ωt

-0.5+1.5e
-ωt

v1

v2

v3 ...

t0 t1
-sin(ωt)

t0 t1

sin(ωt)

v1

v2

v3

v4 ...

Time-value representation

(existing simulators)

Functional representation

(proposed xreal)

Fig. 2.2 The xreal-type expressing the continuous-time analog signal as a sum of

complex exponential functions

In addition, the family of the xreal functional form in Eq. (2-1) includes most of

signal types a designer may encounter in analog circuits. For instance, the xreal

functional form expresses a family of polynomials with ai =0, exponentials with a

real ai value, sinusoids with complex ci and ai values, and any linear combination of

these signal families (Fig. 2.3).

ic ia te

imt i im a t

ic t e

i ia t a t

i ic e c e 


i ia t a t

i ic e c e 


Polynomials Exponentials Sinusoids

Fig. 2.3 Signal examples of the xreal representation.

Chapter 2. Event-Driven Simulation of AMS Behaviors 13

Another advantage of the xreal functional form is that it can express outputs of

both linear and nonlinear systems. Scrutinizing Eq. (2-1), the xreal functional form

is a general expression of a linear system response, where ai and mi correspond to

the eigenvalues (poles) and their multiplicities of the system, respectively. Therefore,

this form encompasses all possible outputs of linear systems with xreal inputs. For

nonlinear systems, the nonlinear distortions are often modeled as modulations

between signals (e.g. Talyor or Volterra seires models [20]-[22]). As the xreal-type

is in a sum-of-exponential form, multiplication between those exponentials results in

the sum-of-exponential form, which is again the xreal-type.

Chapter 2. Event-Driven Simulation of AMS Behaviors 14

2.2 Signal Type Definitions in

SystemVerilog

The two proposed signal types xbit and xreal are defined as the struct-type in

SystemVerilog. SystemVerilog is a language extension to Verilog [23], which

supports a composite data type struct bundling multiple variables into one and

allows the struct-type variable to pass through port boundaries. Therefore, the

struct-type can attach the supplementary information (i.e., the timing offset in xbit

and the coefficients in xreal) to the signal variables without adding new ports at the

module interface.

Fig. 2.4 shows signal definitions of xbit and xreal in SystemVerilog. The xbit

type has two member variables: value and t_offset where value denotes the logic

level of the signal, and t_offset denotes the timing offset of the last transition. On the

other hand, the xreal type has three member variables: param_set, t_offset, and flag.

param_set is a C-pointer to the parameter set, which is an array containing the

values of three coefficients: ci, mi, and ai. For param_set, a dynamic data structure

such as linked lists is necessary as the number of elements in the s-domain

parameter set can vary from signal to signal. t_offset is the timing offset of the last

change event. flag is an event variable to indicate whether the change event has

occurred. Since the member variable param_set is merely a C-pointer whose address

does not change once it is initialized, a separate variable is necessary to notify the

blocks consuming this signal of the change in coefficients. Therefore, a block that

Chapter 2. Event-Driven Simulation of AMS Behaviors 15

produces an xreal signal must trigger the event variable flag whenever it updates the

parameter set (e.g. ‘->‘ operator in Verilog).

value

t_offset

t_offset

param_set

flag

typedef struct {

 logic value;

 real t_offset;

} xbit;

typedef struct {

 chandle param_set;

 real t_offset;

 event flag;

} xreal;

(a)

(b)

Fig. 2.4 The struct data type definitions of (a) xbit and (b) xreal in SystemVerilog.

Chapter 2. Event-Driven Simulation of AMS Behaviors 16

2.3 Event-Driven Simulation Methodology

This section explains how the xreal representation of continuous-time signals

enables a purely event-driven simulation of analog systems without involving any

numerical iteration. The xreal form in Eq. (2-1) has a Laplace s-domain equivalence:

 
 

1

!
() .






  


 i i

i

m a t i i
i m

i i i

c m
x t c t e X s

s a

L

(2-2)

This implies that if the s-domain transfer function of a linear system H(s) is given,

its response to the input x(t) can be computed simply as a product of the two s-

domain functions, X(s) and H(s). Assuming that the transfer function is expressed in

the residue form,

 
 





j

j

n
j

j

q
H s

s p

(2-3)

the process of computing the output is simply calculating the cross-products

between the terms in X(s) and H(s) and adding them, as expressed by Eq. (2-4). The

resulting cross-products can be decomposed back into the residue form via partial-

fraction decomposition. It is noteworthy that this computation is fully algebraic;

there is no numerical iteration or time-step integration involved.

       ,

  
  

  
i j i j

j ji i

m n m n
i j i ji ij j

q qb b

s a s as p s p

   , 1 1 

 
  
  
 

  
ji

nm

k l

k l
i j k li j

c d

s a s p

(2-4)

Chapter 2. Event-Driven Simulation of AMS Behaviors 17

 
 

 
 

1

1

,
()

where,
1

1 , 1, ,1
()!()

,
()

1
1 , 1, ,1

()!()

j

i
i

i j

i

j j

j i

i j

in

j i

k m k m
i j

i j im n k
z iij i

i j

jm

i j

l n l n

i j

j i jn m l
z iji j

b q
for k m

p a
c

b q
m n z for k m

m kp a

b q
for l n

a p
d

b q
n m z for l n

n la p

 

 


 

 






 

 
       





 

 
      







The described computation is purely event-driven; computation is required only

once when the coefficients describing the input change. In the other words, when

there is an event involving a change to the input coefficients, the coefficients of the

output are updated according to Eq. (2-4), and the results remain valid until the next

input event arrives. This stands in contrast to SPICE, where the output value keeps

being updated between the events. In case of multiple input events, the output of the

linear system can be evaluated based on the superposition principle; responses to

each input event is computed as outlined in Eq. (2-4), and then the final output is a

sum of those responses.

Fig. 2.5 illustrates the proposed event-driven computation using an RC filter.

When a step input arrives at t0, which is equivalent to a change in the coefficient ci,

this triggers a computation. As the RC filter has a transfer function of 1/(RCs+1),

and the step input is 1/s in the s-domain, its output is simply a product of these two

factors. The resulting output is 1/s - 1/(s+1/RC) according to Eq. (2-4), which

corresponds to 1-e
-t/RC

 in the time-domain. This output is valid until the next input

event, realizing therefore an event-driven simulation of analog blocks.

Chapter 2. Event-Driven Simulation of AMS Behaviors 18

 x t  y t

1

s 

1

1

RC

RCs


 1

1 1

RCs s

input event output event

s-domain transfer function

C

R

 X s  Y s

step function 1
t
RCe




Fig. 2.5 The event-driven, s-domain computation of a linear RC filter response.

While initial conditions are omitted for brevity in Fig. 2.5, their effects should be

considered once a system includes reactive elements. For instance, a Laplace

transform of the governing differential equation of the RC filter results in two parts:

a response to an input X(s)·1/(RCs+1) and a response to an initial condition y(0)·

RC/(RCs+1), where y(0) is an initial voltage across a capacitor (Fig. 2.6). The

response to initial conditions always results in the same form as the xreal form in Eq.

(2-4), and hence it is additive to the responses to the input events.

Fig. 2.7 shows a pseudo-model of the RC-filter example in SystemVerilog using

the proposed event-driven simulation method. The input and output variables, x and

y, are defined as xreal types. Whenever an input event occurs (as indicated by x.flag),

the instructions within the always statement are executed to compute the output

event. First, initial conditions of the circuits are sampled using a DPI function

sample(). Note that as analog signals are expressed in a functional form, initial

conditions can be accurately computed at any time point. Then, the output responses

Chapter 2. Event-Driven Simulation of AMS Behaviors 19

to the initial condition and the input event are computed by multiplying the sampled

initial condition y_init and the input coefficients x.param_set with the transfer

functions tf_init and tf_in, respectively. tf_init and tf_in are transfer functions from

the initial condition and from the input event to the output response. compute_coeff()

is a DPI function that performs the multiplying operation outlined in Eq. (2-4).

Because the output event is always triggered simultaneously to the input event,

y.t_offset is set equal to x.t_offset. Finally, the event flag y.flag is triggered to notify

the subsequent blocks that the signal y has been updated.

Chapter 2. Event-Driven Simulation of AMS Behaviors 20

     RCy t y t x t 

C

R
 x t  y t

Input Output

1
() () (0)

1 1

RC
Y s X s y

RCs RCs
 

 

()X s ()Y s

  
()

(0)
dx t

sX s x
dt

L

Response to input Response to initial condition

Fig. 2.6 A complete RC filter response with an initial condition included.

module rc_filter (

 input xreal x,

 output xreal y);

 always @(x.flag) begin

 y_init = sample(y.param_set);

 y.param_set = compute_coeff(x.param_set, tf_in)

 + compute_coeff(y_init, tf_init);

 y.t_offset = x.t_offset;

 -> y.flag;

 end

endmodule

Fig. 2.7 A pseudo-model of a linear RC filter in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 21

Chapter 3

High-Speed I/O Interface

Simulation

This chapter demonstrates how to apply the proposed method to model and

simulate systems including time-invariant linear analog blocks through a high-speed

I/O interface example. The exemplary high-speed I/O system consists of a

transmitter with a charge-pump phase-locked loop (PLL), a receiver with a

bangbang clock and data recovery (CDR) loop, continuous/discrete-time equalizers,

and a channel (Fig. 3.1). The modeling accuracy of the system relies strongly on the

accurate clock timing information and the analog signal waveform. For instance, it

requires a sub-pico-second time resolution to measure the jitter performances of a

PLL and a CDR. It also demands a sub-mV voltage resolution to simulate channel

distortions and equalizer performances. Each sub-section will show that the

proposed method can accurately model and simulate those sub-blocks in a truly

event-driven fashion. In the final sub-section, the system-level behaviors are

simulated and compared with Verilog-A models simulated in HSPICE.

Chapter 3. High-Speed I/O Interface Simulation 22

ChannelTX driver

TX clock

PRBS TX out
bit xreal

Chan out
xreal

xbit

CTLE out
xreal

Ref clock
xbit

VCO

PFD CP-LF

Charge-pump PLL

BB

CDR

Bangbang CDR
data

data

RX clock

DFE
ISIPre-emphasis H(w)

jitterxbitjitter

CTLE

RX clock xbit

w

CDR in
xreal

CDR in
xreal

DCO
BB

PD

Digital

LF

bit

bit

DFE out
xreal

Fig. 3.1 An example of a high-speed I/O interface.

Chapter 3. High-Speed I/O Interface Simulation 23

3.1 Charge-Pump Phase-Locked Loop

The first sub-block is a third-order charge-pump phase-locked loop (PLL) on the

transmitter side. As the clock signal affects digital system performances, it is

desirable to simulate such systems in digital simulators. However, a PLL is analog

in nature, requiring an accurate simulation of a clock jitter and a loop filter

waveform.

The exemplary charge-pump PLL is composed of a phase/frequency detector

(PFD), a charge pump with a second-order loop filter (CP-LF), a voltage-controlled

oscillator (VCO), and a frequency divider. The signals carrying the timing

information, such as the reference input clock in, the VCO output clock out, the

frequency-divided clock div, and the PFD output pulses up/dn are xbit-type signals,

while the analog control voltage vctrl is an xreal-type signal (Fig. 3.2).

d
q

clk

‘1’

d
q

clk

‘1’

I_up

I_dn
RS

CS

CP

rst_delay

vmin

Kvco

Charge-pump loop-filter

Voltage-controlled

oscillator

Phase/frequency detector

out

xbit

vctrl

xreal

up

xbit

dn

xbit

rst

xbit

in

xbit

fmin

fmax

vmax

 N

Frequency divider

div

xbit

Fig. 3.2 A third-order CP-PLL example; the clock and timing-sensitive signals are

defined as the xbit, while the analog signal is defined as the xreal.

Chapter 3. High-Speed I/O Interface Simulation 24

3.1.1 Phase/Frequency Detector

With xbit representations, a PFD model can achieve a sub-time-step resolution

for the timing difference between the input clock edges. The PFD employs two D

flip-flops (DFF) with asynchronous reset and one AND gate. The DFF sets the

output to '1' at the rising edge of the clock clk and resets the output to '0' at the rising

edge of the reset rst (Fig. 3.3(a)). Therefore, its output q copies the timing offsets of

clk for the rising edge and rst for the falling edge. In this way, all the timing

information of clk and rst can be transferred to the output without degrading the

accuracy. The AND gate produces the output '1' when both DFF outputs rise. Its

timing offset for the rising edge is determined by the t_offset of the signals arriving

later, as shown in Fig. 3.3(b). The pseudo-models of the DFF and the AND gate are

given in Fig. 3.4 and Fig. 3.5.

Moreover, not only the signal timing offset but also the gate delay can be

accurately simulated regardless of the simulator's time step. Especially, the AND

gate delay on the reset path, rst_delay, plays an important role in the PLL non-

idealities [24]. Fig. 3.3(b) depicts a case in which the gate delay is not a multiple

integer of the time step; for instance, when the AND gate input arrives at a time of

0.7 with a gate delay of 1.5, the output rises at a time of 2.2. A model of this in

SystemVerilog is described in Fig. 3.5. First, the AND gate determines the Verilog

delay in a quantized time step (ceil(delay+t_offset)). Then, after this quantized delay,

it sets the output value to '1' and computes its timing offset. In Fig. 3.3(b), the AND

gate waits for two time steps and sets the output to '1' with a t_offset of -0.8.

Chapter 3. High-Speed I/O Interface Simulation 25

clk

rst

q

a

b

out
gate delay out.t_offset

Quantized (Verilog) time
0 1 2 3

clk.t_offset rst.t_offset

0 1 2
Quantized (Verilog) time

(a) D flip-flop (b) AND gate

1.5
0.7 2.2

Fig. 3.3 Modeling with accurate timing: (a) the D flip-flop and (b) the AND gate.

module dff (

 output xbit q,

 input_xbit d,

 input xbit clk,

 input xbit rst);

 always @(posedge clk.value) begin

 q.value = d.value;

 q.t_offset = clk.t_offset;

 end

 always @(posedge rst.value) begin

 q.value = 0;

 q.t_offset = rst.t_offset;

 end

endmodule

Fig. 3.4 A pseudo-model of the D flip-flop in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 26

module and (

 output xbit out,

 input xbit a,

 input xbit b);

 always @(posedge a.value or posedge b.value) begin

 if (a.value ==1 && b.value ==1) begin

t_offset = (a.t_offset > b.toffset)?

 a.t_offset: b.t_offset;

#(ceil(delay+t_offset)) out.value = 1;

out.t_offset = delay+t_offset - ceil(delay+t_offset);

 end

 end

 always @(negedge a.value) begin

t_offset = a.t_offset;

#(ceil(delay+t_offset)) out.value = 0;

 out.t_offset = delay+t_offset - ceil(delay+t_offset);

 end

 always @(negedge b.value) begin

t_offset = b.t_offset;

#(ceil(delay+t_offset)) out.value = 0;

 out.t_offset = delay+t_offset - ceil(delay+t_offset);

 end

endmodule

Fig. 3.5 A pseudo-model of the AND gate in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 27

3.1.2 Charge-Pump Loop Filter

A charge-pump loop filter generates the control voltage in an event-driven

fashion by computing the filter response only when the up or dn signal changes. The

charge pump applies a positive current when up is high and a negative current when

dn is high (Fig. 3.6). This current flows into the following loop filter, which is

composed of a resistor, Rs, and two capacitors, Cs and Cp. The output voltage vctrl

is a product of the charge-pump current ictrl and the impedance transfer function

Z(s):

 2

1()
() .

()


 

 

S S

S S P S P

R C svctrl s
Z s

ictrl s R C C s C C s

(3-1)

The charge-pump pseudo-model is given in Fig. 3.7. The charge-pump

determines the value of the output current I_cur upon every change in the up/dn

signals. The xreal representation of this current is a constant with the parameter set

of {(I_cur, 0, 0)}. The t_offset of the output current ictrl is identical to that of the

up/dn signal. The change in ictrl triggers the computation of the output voltage vctrl,

which is then computed as a response of a linear filter with a transfer function of Z(s)

to the ictrl input as described in Chapter 2.3.

Chapter 3. High-Speed I/O Interface Simulation 28

vctrl

xreal

I_up

I_dn

RS

CS

CP

 



 2

1()

()
S S

S S P S P

R C sVctrl s

Ictrl s R C C s C C s
up

xbit

dn

xbit

ictrl

xreal

up

dn

ictrl

Quantized (Verilog) time

vctrl

(a) (b)

Fig. 3.6 (a) The charge pump with a second-order loop filter, and (b) signal waveforms

illustrating its operation.

module cp_lf (

 output xreal vctrl,

 input xbit up,

 input xbit dn);

 chandle tf; // impedance of loop filter

 always @(up.value) begin

 I_cur = I_up*up.value – I_dn*dn.value;

 ictrl.param_set = create_params(I_cur,0,0);

 ictrl.t_offset = up.t_offset;

 ->ictrl.flag;

 end

 always @(dn.value) begin

 I_cur = I_up*up.value – I_dn*dn.value;

 ictrl.param_set = create_params(I_cur,0,0);

 ictrl.t_offset = dn.t_offset;

 ->ictrl.flag;

 end

 always @(Ictrl.flag) begin

 vctrl.param_set = compute_coeff(ictrl.param_set, tf);

 vctrl.t_offset = ictrl.t_offset;

 ->vctrl.flag;

 end

endmodule

Fig. 3.7 A pseudo-model of the charge-pump loop filter in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 29

3.1.3 Voltage Controlled Oscillator

The voltage-controlled oscillator (VCO) model generates an xbit-type clock of

which frequency is controlled by an xreal-type input vctrl. The frequency of the

oscillator is a linearly scaled version of the input, and its phase is an integral of that

frequency (Fig. 3.8). This integration can be carried by multiplying 1/s in the s-

domain without time-step integration. This is in contrast to other simulators which

must accumulate the frequency for every time step, thus degrading the simulation

speed. Finally, the xbit-typed output clock is toggled every time the xreal-type phase

reaches the value of π.

A pseudo-model of the VCO in SystemVerilog is shown in Fig. 3.9. When the

input control voltage vctrl has an event, the VCO updates its frequency signal by

scaling vctrl using a DPI function scale(). The phase signal is then computed by

multiplying the frequency signal by 1/s in the s-domain, after which the DPI

function find_cross() checks when the phase signal crosses π. Based on the crossing

time t_cross, the timing offset t_offset and the quantized time stamp at which the

output event needs to be scheduled are determined. For instance, if t_cross is 2.5ns

and the Verilog time step is 1ns, the VCO model waits for three time steps (3ns) and

toggles the output with a t_offset of -0.5ns. When the scheduled output event is

triggered, the phase is shifted by -π using the DPI function subtract() to prevent the

phase from overflowing. At the same time, the next π-crossing event is scheduled,

and the clock continues to toggle whenever the phase crosses π.

Chapter 3. High-Speed I/O Interface Simulation 30

Input

(xreal)

Frequency

(xreal)

Phase

(xreal)

Clock output

(xbit)

π

0

scale with Kvco

integrate

check crossing

Fig. 3.8 The voltage-controlled oscillator generates its digital clock output based on

xreal-type frequency and phase signals.

module vco (

 output xbit out,

 input xreal vctrl);

 always @(vctrl.flag) begin

 freq.param_set = scale(vctrl.param_set, Kvco);

 tf = create_params(1,0,0);

 phase.param_set = compute_coeff(freq.param_set, tf);

 t_cross = find_cross(phase.param_set);

 #(ceil(t_cross)) -> out_event;

 end

 always @(out_event) begin

 out.value = ~out.value;

 out.t_offset = t_cross - ceil(t_cross);

 phase.param_set = subtract(phase.param_set,pi);

 end

 always @(out.value) begin

 t_cross = find_cross(phase.param_set);

 #(ceil(t_cross)) -> out_event;

 end

endmodule

Fig. 3.9 A pseudo-model of the voltage-controlled oscillator in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 31

3.1.4 Frequency Divider

A synchronous divider is modeled by aligning the output clock timing to the

input clock timing. The divider model counts the number of rising transitions of the

input and toggles its output whenever it reaches a predetermined division factor. If

there is no delay, the t_offset value of the output is set equal to that of the triggering

input. Fig. 3.10 illustrates this operation with a division factor of 4. Fig. 3.11 shows

a pseudo-model of the frequency divider in SystemVerilog.

in

out

time step

copy t_offset

Fig. 3.10 The input and output waveforms of the synchronous frequency divider with a

division factor of 4.

module freq_div (

 output xbit out,

 input xbit in);

 always @(posedge in.value) begin

 count = count + 1;

 if (count == div_factor/2) begin

 out.value = 1;

 out.t_offset = in.t_offset;

 end

 else if (count == div_factor) begin

 out.value = 0;

 out.t_offset = in.t_offset;

 count = 0;

 end

 end

endmodule

Fig. 3.11 A pseudo-model of the frequency divider in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 32

3.1.5 Simulation Results

The described charge-pump PLL model is simulated with the design parameters

listed in Table 3.1. The initial VCO output frequency is 1.5GHz at a control voltage

vctrl of 0V. Its target output frequency is 2.0GHz for a reference frequency of

0.5GHz and a frequency division factor of 4. To verify the accuracy, the simulation

results are compared with those of Verilog-A models simulated in HSPICE. The

Verilog-A models of the PFD with the charge pump, digital logic gates and VCO are

those found in [25]-[26], and the loop filter is modeled using the laplace_nd

function [6].

Fig. 3.12 shows the locking transient waveform of the VCO control voltage vctrl

in comparison with the Verilog-A waveform. The value of vctrl is increased from its

initial value of 0V and is locked at 0.5V. This value corresponds to a VCO

frequency of 2.0GHz for an initial frequency of 1.5GHz and a Kvco of 1GHz/V. The

zoomed-in view in Fig. 3.12(b) shows that the simulated waveform is in good

agreement with the Verilog-A waveform. The measured maximum and the root

Table 3.1. Design parameters for the charge-pump PLL simulation

Module Parameter Description Value

PFD rst_delay AND gate delay on a reset path 30ps

CP-LF

I_up/I_dn Up/down current amplitude 20μA

Rs Series resistance 20kΩ

Cs Series capacitance 500fF

Cp Parallel capacitance 50fF

VCO Kvco Voltage-to-frequency gain 1GHz/V

Freq. Div. N Frequency division factor 4

Chapter 3. High-Speed I/O Interface Simulation 33

mean square (RMS) differences between the two waveforms are 0.74mV and

0.23mV, respectively.

Fig. 3.13 and Fig. 3.14 show the simulated jitter histogram and jitter transfer

function. In Fig. 3.13, the jitter histogram of the output clock signal is simulated

when the PLL is locked to a reference at 0.5 GHz with a RMS jitter of 4ps. The

simulated jitter histogram shows a standard deviation of 1.86ps, which matches well

with a Verilog-A result of 1.82ps. Note that the proposed method uses a time step as

coarse as 10ps, yet still can obtain a jitter histogram with a fine resolution. Fig. 3.14

shows the jitter transfer function. The jitter transfer function is simulated by

applying a sinusoidal jitter to the reference clock and measuring the amplitude of the

resulting sinusoidal jitter of the output clock. Fig. 3.14 plots the ratio between the

input and output jitter amplitudes when the jitter frequency is swept from 100kHz to

0.5GHz. The simulated results are in good agreement with the theoretical jitter

transfer function of a third-order charge-pump PLL, given as:

30 32 34 36 38 40

0.6

0.65

0.7

0.75

Verilog-A
Proposed

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Verilog-A
Proposed

(a) (b)Time (ns)

v
c
tr

l
(V

)

Time (ns)

v
c
tr

l
(V

)

Fig. 3.12 (a) The locking transient waveform of the input control voltage of the VCO,

and (b) its zoomed-in view.

Chapter 3. High-Speed I/O Interface Simulation 34

 2

()
() ,

1 () /

1
where () .

2

cp S S

S S P S P

T s
H s

T s N

I Kvco R C s
T s

s R C C s C C s




 


 

 (3-2)

-6 -4 -2 0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03

Jitter (ps)

P
ro

b
a

b
ili

ty

Std.dev = 1.86ps

Fig. 3.13 The Simulated jitter histogram of the output clock.

10
5

10
6

10
7

10
8

10
0

10
1

Theory
Proposed

Frequency (Hz)

M
a

g
n

it
u

d
e

Fig. 3.14 The simulated jitter transfer function of the charge-pump PLL.

Chapter 3. High-Speed I/O Interface Simulation 35

To assess the non-ideality effects, the reference spurs and static phase offsets are

measured as a function of the mismatch between the up and down currents. Fig. 3.15

shows the reference spurs at 0.5GHz in the power spectral density Sф(f) of the output

phase when the up and down currents are mismatched by 20%. In Fig. 3.15(a), the

current mismatch causes a reference spur of -133dBc, which is in good agreement

with the Verilog-A results in Fig. 3.15(b). Fig. 3.16(a) plots the reference spur level

as the mismatch varies from 0 to 30%. These results show good agreement with the

Verilog-A results except when the mismatch is 5%, where the reference spur is

smaller than the noise level of -145dBc. The current mismatch also causes the phase

offset between the reference and the output clock signals. Fig. 3.16(b) shows that the

static phase offset increases to 25ps when the charge-pump current mismatch

reaches 30%.

10
6

10
7

10
8

10
9

-160

-150

-140

-130

-120

-110

-100

Proposed

10
6

10
7

10
8

10
9

-160

-150

-140

-130

-120

-110

-100

Verilog-A

Frequency (Hz)

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 S

φ
(f

)
(d

B
c
)

Frequency (Hz)

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 S

φ
(f

)
(d

B
c
)

-133 dBc-133 dBc

(a) (b)

Fig. 3.15 The power spectral densities of the output phase simulated with (a) the

proposed method and (b) the Verilog-A model, when the up and down currents show a

mismatch of 20%.

Chapter 3. High-Speed I/O Interface Simulation 36

0 0.1 0.2 0.3
0

5

10

15

20

25

Verilog-A
Proposed

Mismatch

P
h

a
s
e

 O
ff
s
e

t
(p

s
)

Mismatch

R
e

fe
re

n
c
e

 S
p

u
r

(d
B

c
)

(b)(a)
0 0.1 0.2 0.3

-150

-145

-140

-135

-130

-125

Verilog-A
Proposed

Fig. 3.16 (a) The reference spurs of the output clock and (b) static phase offsets between

the input and output clocks as a function of the charge-pump current mismatch.

Chapter 3. High-Speed I/O Interface Simulation 37

3.2 Bangbang Clock and Data Recovery

The second sub-block is a bangbang clock and data recovery (CDR) circuit. The

bangbang CDR is often considered pure digital circuits as the loop filter is digital

and the oscillator is digitally controlled. However, the timing information of clock

signals is critical in the phase detector, and the oscillator is still an analog block.

Therefore, the bangbang CDR cannot be accurately simulated in a pure digital

simulator.

This sub-section provides modeling details and simulation results of a bangbang

CDR. An bangbang CDR example consists of three blocks (Fig. 3.17): an Alexander

phase detector (PD), a digital loop filter (LF), and a digitally controlled oscillator

(DCO). The difference with regard to the previous PLL model is that the PD output

takes a binary value and the DCO is controlled by a digital value. Therefore, the

loop filter is implemented in digital and described in pure Verilog.

KP

KI

Z-1

in
xreal

D Q

D Q

dn
bit
up
bit

Z-Nd
out
xbit

Digitally-controlled
oscillator

dctrl
bit

data

bit

clk

b

Digital loop filter

Alexander phase detector

dctrl

freq

Kdco

Fig. 3.17 The block diagram of the bangbang clock and data recovery example.

Chapter 3. High-Speed I/O Interface Simulation 38

3.2.1 Alexander Phase Detector

The Alexander PD employs two analog comparators, two DFFs, and two XOR

gates. One of the comparators determines the data at the clock's rising edges, while

the other extracts the edges at the clock's falling edges. The following DFF and

XOR gates determine whether the timing is early or late; their models are similar to

the logic gate models in the charge-pump PLL example. While these DFFs and

XORs consume xbit-type signals, their outputs, data, up, and dn, are converted to

bit-type signals using assign (Fig. 3.18). This conversion occurs because the

subsequent digital loop filter is purely digital.

Fig. 3.19 outlines the analog comparator model in the Alexander PD. The analog

comparator computes the sampled value based on the input's functional

representation. Therefore, this model accurately compares the input signal

independently of the simulator's time step. For example, if the input is an

exponential signal of exp(-10
9
/t) and the clock is triggered at a Verilog time of 1ns

with a time offset of -0.6ns, the sampled value is exp(-10
9
/0.4ns). The sampling is

performed in C using the DPI function sample(). Finally, the comparator output is

determined by comparing the sampled value with the comparator threshold.

Chapter 3. High-Speed I/O Interface Simulation 39

module alexander_pd (

 output bit data,

 output bit up,

 output bit dn,

 input xbit clk,

 input xreal in);

 comparator data_comp(data_d, in, clk);

 comparator edge_comp(edge_d, in, clkb);

 dff data_dff(data_q, data_d, clk);

 dff edge_dff(edge_q, edge_d, clk);

 inv clk_inv(clkb, clk);

 xor up_xor(up_xbit, data_q, edge_q);

 xor dn_xor(dn_xbit, data_d, edge_q);

 /* casting to bit-type */

 assign data = data_d.value;

 assign up = up_xbit.value;

 assign dn = dn_xbit.value;

endmodule

Fig. 3.18 A pseudo-model of the Alexander phase detector in SystemVerilog.

module comparator (

 output xbit out,

 input xreal in,

 input xbit clk);

 always @(posedge clk.value) begin

 t_clk = $realtime + clk.t_offset;

 in_value = sample(in.param_set, t_clk);

 out.value = (in_value > threshold)? 1: 0;

 out.t_offset = clk.t_offset;

 end

 endmodule

Fig. 3.19 A pseudo-model of the comparator in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 40

3.2.2 Digital Loop Filter

The digital loop filter can be described in pure Verilog. In this example, the

digital loop filter has a proportional and an integral path (Fig. 3.17). The integral

path accumulates the input with an integral gain of Ki, and the proportional path

scales the input with a proportional gain of Kp. These two values added to determine

the output, and the output is delayed by Nd clock cycles to model the filter delay.

Fig. 3.20 shows a digital loop filter model in Verilog.

module digital_lf (

 output reg[width_out-1:0] out,

 input xbit clk,

 input bit up,

 input_bit dn);

 reg [width_out-1:0] out_d [Nd-1:0];

 reg [width_out-1:0] acc;

 reg [width_out-1:0] out_p;

 always @(posedge clk) begin

 acc = acc + Ki*(up - dn);

 end

 always @(acc or up or dn) begin

 out_p = Kp*(up - dn) + acc;

 end

 assign out = out_d[Nd-1];

 always @(posedge clk) begin

 for (i=Nd-1; i>0; i--) out_d[i] = out_d[i-1];

 out_d[0] = out_p;

 end

endmodule

Fig. 3.20 The digital loop filter description in pure Verilog.

Chapter 3. High-Speed I/O Interface Simulation 41

3.2.3 Digitally Controlled Oscillator

The modeling of a digitally controlled oscillator (DCO) is identical to that of the

VCO in the charge-pump PLL example except that its input signal is a bit-type

signal. The DCO frequency is the input dctrl linearly scaled by a factor of Kdco. Its

phase is obtained by integrating the frequency, and the output out is toggled every

time the phase crosses π.

module dco (

 output xbit out,

 input bit [width_dctrl-1:0] dctrl);

 always @(dctrl) begin

 freq.param_set = create_params(Kdco*real’(dctrl),0,0);

 tf = create_params(1,0,0);

 phase.param_set = compute_coeff(freq.param_set, tf);

 t_cross = find_cross(phase.param_set);

 #(ceil(t_cross)) -> out_event;

 end

 always @(out_event) begin

 out.value = ~out.value;

 out.t_offset = t_cross - ceil(t_cross);

 phase.param_set = subtract(phase.param_set,pi);

 end

 always @(out.value) begin

 t_cross = find_cross(phase.param_set);

 #(ceil(t_cross)) -> out_event;

 end

endmodule

Fig. 3.21 A pseudo-model of the digitally-controlled oscillator in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 42

3.2.4 Simulation Results

The bangbang CDR example is simulated with the design parameters listed in

Table 3.2. The bangbang CDR input is a 2-Gbps pseudo random bit sequence

(PRBS) data stream which is transmitted through a lossy channel. The transmitter

and channel models are identical to those explained in the next sub-section.

Fig. 3.22 shows the locking transient waveforms of the CDR. Fig. 3.22(a) plots

its DCO frequency as a function of time. The DCO frequency is initially 1.984GHz

and increases to 2GHz. The sudden changes in the frequency arise from its

proportional path, which increases the phase of the DCO instantaneously. Fig.

3.22(b) and (c) compare the recovered data during this locking transient period. The

recovered data show errors when the CDR frequency is lower than the input data

rate (Fig. 3.22(b)), while the recovered data match the input data when the CDR

frequency is at the input data rate (Fig. 3.22(c)).

The effects of the digital loop filter delay and the input transition density on the

jitter transfer function are investigated. Fig. 3.23 shows the jitter transfer functions

for different digital loop filter delays. As the filter delay increases from 2 to 16, the

Table 3.2. Design parameters for the Bangbang CDR simulation

Module Parameter Description Value

Digital LF

Kp Proportional gain 256

Ki Integral gain 1

Nd Digital loop filter delay 4 clock cycles

Width Bit-width of digital output 14

DCO Kdco Digital-to-frequency gain 2
-14

 GHz/LSB

Chapter 3. High-Speed I/O Interface Simulation 43

peaking of the transfer function increases. Fig. 3.24 compares the jitter transfer

functions when two different inputs of a pseudo random bit sequence (PRBS) data

pattern and a '1010' data pattern are applied. This figure illustrates that the CDR

bandwidth is wider for the '1010' pattern than for the PRBS pattern. This wider

bandwidth arises due to the higher transition density of the '1010' pattern, which

allows the CDR to lock faster with more frequent updates of the control signals.

0 0.1 0.2 0.3 0.4 0.5 0.6
1.96

1.98

2

2.02

Recovered clock frequency

0

1

0.5 0.51 0.52
0

1

0

1

0.1 0.11 0.12
0

1

Input data

Recovered data

Input data

Recovered data

CDR is not locked CDR is locked

Time (μs)

Time (μs) Time (μs)

d
a

ta
d

a
ta

F
re

q
u

e
n

c
y
 (

G
H

z
)

(a)

(b) (c)

Fig. 3.22 The locking transient waveform of the CDR clock frequency and its recovered

data when (b) the CDR is not locked and (c) the CDR is locked.

Chapter 3. High-Speed I/O Interface Simulation 44

10
6

10
7

10
8

10
-1

10
0

Nd = 2
Nd = 4
Nd = 8
Nd = 16

Frequency (Hz)

M
a

g
n

it
u

d
e

Fig. 3.23 The jitter transfer functions with different digital loop filter delays.

Frequency (Hz)

M
a

g
n

it
u

d
e

10
6

10
7

10
8

10
-1

10
0

PRBS
1010 pattern

Fig. 3.24 The jitter transfer functions with different input data patterns.

Chapter 3. High-Speed I/O Interface Simulation 45

3.3 Channel and Equalizers

This sub-section explains modeling and simulation of a channel and three

equalization schemes: a transmitter-side pre-emphasis equalization, and a receiver-

side continuous-time linear equalization (CTLE) and a decision-feedback

equalization (DFE) as shown in Fig. 3.25.

ChannelTX driver

PRBS TX out
bit xreal

Chan out
xreal

CTLE out
xreal

BB

CDR
data

DFE
ISIPre-emphasis H(w)

CTLE

RX clock xbit

w

CDR in
xreal bit

DFE out
xreal

Fig. 3.25 A high-speed I/O interface with three equalization techniques: a pre-emphasis

equalizer, a continuous-time linear equalizer (CTLE), and a decision-feedback

equalizer (DFE).

Chapter 3. High-Speed I/O Interface Simulation 46

3.3.1 Channel and Continuous-Time Linear

Equalizer

The channel and CTLE are modeled as linear filters with s-domain transfer

functions. The channel transfer function is extracted from the s-parameters by fitting

S21 into a rational polynomial form using the rationalfit function in Matlab. Fig.

3.26(a) shows the transfer function extracted with 47 poles, when the delay of

3.001ns is factored out. The CTLE transfer function has a high-pass characteristic

with one zero and two poles. Fig. 3.26(b) plots its transfer function when it has a

zero at 0.5GHz and poles at 1 and 2GHz. Then, these linear analog behavior can be

modeled in the same way as described in Section 2.3.

0.1 0.5 1 5
-40

-30

-20

-10

0

Channel s-parameter
Channel transfer function

0.1 0.5 1 5

-2

0

2

4

CTLE transfer function

Frequency (GHz)

M
a

g
n

it
u

d
e

 (
d

B
)

(a) Frequency (GHz)

M
a

g
n

it
u

d
e

 (
d

B
)

(b)

Fig. 3.26 (a) The channel transfer function extracted from its measured S-parameter,

and (b) the CTLE transfer function with one zero at 0.5GHz and two poles at 1.0GHz

and 2.0GHz, respectively.

Chapter 3. High-Speed I/O Interface Simulation 47

3.3.2 Pre-Emphasis and Decision-Feedback

Equalizer

The pre-emphasis equalization and DFE can be modeled using a finite impulse

response (FIR) filter, which determines the output as a weighted sum of the input

data. For instance, Fig. 3.27 shows the output signal with weighting coefficients of

{0.8, -0.2}. Fig. 3.28 outlines the FIR filter model in SystemVerilog. The FIR filter

computes the output value and triggers an output event at every rising clock edge. If

the output has a finite transition time, two events are required to define the start and

end points of the transition; the first event starts the transition with a finite transition

slope, and the second event ends the transition with the final value after the

transition time.

The analog adder combines the CTLE output and the DFE output. As the CTLE

and DFE outputs are in the xreal functional form, their addition is a linear

combination of those functions. For example, if the CTLE output is an exponential

function of c1te
-at

 and the DFE output is a step function of c2, the added output is a

sum of those two functions, c1te
-at

 + c2 , as shown in Fig. 3.29. Therefore, the

parameter set of the adder output is a union of the parameter sets of the CTLE and

DFE outputs. This operation in SystemVerilog is outlined in Fig. 3.30. Whenever

either input changes, the output parameter set is updated to a union of input

parameter sets using the DPI function union().

Chapter 3. High-Speed I/O Interface Simulation 48

w={0.8, -0.2}

0 1 0 0 1

FIR filter

w[0]

w[1]
in

xbit

out

xreal

Transition time

1.0

-1.0

-0.6

1.0

-1.0

1.0

-1.0

1.0

Fig. 3.27 The output signal of the FIR filter with a finite transition time.

module fir_filter (

 output xreal out,

 input xbit in,

 input xbit clk);

 always @(posedge clk.value) begin

 value = 0.8*in.value – 0.2*p_in;

 /* start the transition */

 slope = (value – p_value)/t_tran;

 out.param_set = create_params(slope, 0, 1);

 out.t_offset = clk.t_offset;

 ->out.flag;

 /* finish the transition */

 #(t_tran); // transition time

 out.param_set = create_params(value, 0, 0);

 out.t_offset = clk.t_offset;

 ->out.flag;

 p_value = value; p_in = in.value;

 end

endmodule

Fig. 3.28 A pseudo-model of the FIR filter in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 49

in1

xreal

in2

xreal

Adder

out

xrealSteps: c2

Exponentials: c1te
-at

c1te
-at

+ c2

{(c1, a, 1)}

{(c2, 0, 0)}

{(c1, a, 1), (c2, 0, 0)}

Fig. 3.29 The addition of two xreal signals is a linear combination of functions, and can

be modeled as a combination of input parameter sets.

module adder (

 output xreal out,

 input xreal in1,

 input xreal in2);

 always @(in1.flag) begin

 out.param_set = union(in1.param_set, in2.param_set);

 out.t_offset = in1.t_offset;

 ->out.flag;

 end

 always @(in2.flag) begin

 out.params = union(in1.param_set, in2.param_set);

 out.t_offset = in2.t_offset;

 ->out.flag;

 end

endmodule

Fig. 3.30 A pseudo-model of the analog adder in SystemVerilog.

Chapter 3. High-Speed I/O Interface Simulation 50

3.3.3 Simulation Results

The design parameters of the high-speed I/O interface example are as follows.

The weighting coefficients of the pre-emphasis and decision-feedback equalizers are

{0.8, -0.2} and {-0.14, -0.03}. The continuous-time linear equalizer has one zero at

0.5GHz and two poles at 1 and 2GHz. The transmitted data rate is 5Gb/sec.

Fig. 3.31 shows the analog waveforms of the transmitter (TX) driver, channel,

CTLE, and DFE adder. The analog events are denoted with the circles, and these

events propagate multiple analog blocks without introducing any additional events.

In Fig. 3.31(a), the TX driver generates two events per input bit to start and end the

ramp signal. In Fig. 3.31(b) and Fig. 3.31(c), these events propagate through the

channel and the CTLE without adding any new event, yet still describing accurate

continuous-time waveforms. In Fig. 3.31(d), the events from the CTLE and the DFE

are combined by the adder. Fig. 3.31(e)-(h) compare the waveforms with Verilog-A

models simulated in HSPICE. For the Verilog-A model, the digital logic gates and

oscillators are based on the Verilog-A model library provided in [25]-[26], while the

analog filters are modeled using the laplace_nd function [6]. The simulation results

of the proposed method are in good agreement with the Verilog-A models. The

measured maximum and the root-mean square (RMS) differences between those

waveforms are 0.12mV and 32μV for a time period of [0,100ns], respectively.

Chapter 3. High-Speed I/O Interface Simulation 51

1.1036 1.1038 1.104 1.1042 1.1044

-0.2

0

0.2

1.1036 1.1038 1.104 1.1042 1.1044
-0.6

-0.3

0

0.3

0.6
0.8

1.1036 1.1038 1.104 1.1042 1.1044
-0.2

0

0.2

1.1036 1.1038 1.104 1.1042 1.1044
-0.2

0

0.2

1.1036 1.1038 1.104 1.1042 1.1044
-0.2

0

0.2

1.1036 1.1038 1.104 1.1042 1.1044
-0.6

-0.3

0

0.3

0.6
0.8

1.1036 1.1038 1.104 1.1042 1.1044
-0.2

0

0.2

1.1036 1.1038 1.104 1.1042 1.1044
-0.2

0

0.2

V
o

lt
a

g
e

 (
V

)

(a)

Time (nsec)

Output of TX driver

V
o

lt
a

g
e

 (
V

) (b)

V
o

lt
a

g
e

 (
V

)

(c)

V
o

lt
a

g
e

 (
V

) (d)

Output of channel

Output of CTLE

Output of CTLE+DFE

Events from TX

Events from DFE

(e)

Time (nsec)

(f)

(g)

(h)

Proposed Verilog-A

Output of TX driver

Output of channel

Output of CTLE

Output of CTLE+DFE

Fig. 3.31 The waveforms of (a) the TX driver output, (b) the channel output, (c) the

CTLE output, and (d) the adder output, simulated with the proposed method; (e), (f),

(g), and (h) the waveforms of the same signals simulated with Verilog-A models in

HSPICE.

Chapter 3. High-Speed I/O Interface Simulation 52

3.4 High-Speed I/O System Simulation

This sub-section summarizes system-level simulation results; the simulation

includes all the sub-blocks outlined in previous sub-sections. The data rate is

increased to 5Gb/s (from 2Gb/s in the bangbang CDR example) by the aid of

equalizers. The charge-pump PLL and bangbang CDR use the same design

parameters as the preceding examples, except that the center frequencies of the VCO

and DCO are 5GHz.

Fig. 3.32 and Fig. 3.33 show simulated eye diagrams in comparison with the

Verilog-A model. Fig. 3.32 shows the three eye diagrams of the channel, the CTLE,

and the DFE adder, showing that their eye openings are enlarged as the signal goes

through the equalizers. Fig. 3.33(a) and Fig. 3.33(b) compare eye diagrams

simulated with different time steps of 10ps and 10fs. These two eye diagrams are

identical, demonstrating that the accuracy is independent of the simulation time step.

Fig. 3.33(b) and Fig. 3.33(c) compare eye diagrams simulated with the proposed

method and the Verilog-A model. These figures illustrate that the simulation results

of the proposed method are in good agreement with those of the Verilog-A model.

Chapter 3. High-Speed I/O Interface Simulation 53

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

0 100 200 300 400

Time (ps)

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

0 100 200 300 400

Time (ps)

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

0 100 200 300 400

Time (ps)

Output of channel Output of CTLE Output of CTLE + DFE

V
o

lt
a

g
e

 (
V

)

(a) (b) (c)

Fig. 3.32 Eye diagrams of (a) the channel output, (b) the CTLE output, and (c)

the adder output.

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

Proposed (time step=10ps) Proposed (time step=10fs)

0 100 200 300 400

Time (ps)

0 100 200 300 400

Time (ps)(a) (b)

HSPICE with Verilog-A

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

0 100 200 300 400

Time (ps)

V
o

lt
a

g
e

 (
V

)

(c)

Fig. 3.33 (a), (b) Eye diagrams simulated with the proposed method with

simulation time steps of 10ps and 10fs, respectively, and (c) eye diagram

simulated with Verilog-A models in HSPICE.

Chapter 3. High-Speed I/O Interface Simulation 54

Fig. 3.34(a) shows the number of events processed in the TX driver, channel,

CTLE, and DFE adder for one million input data. The number of events in each

block remains the same regardless of the simulation time step, demonstrating that

the proposed method is truly event-driven. Fig. 3.34(b) summarizes the simulation

runtime on a Linux machine with an Intel Core i5-3570 CPU. The runtime of the

proposed method for one million bits is 226 sec for a time step of 10ps, which is

equivalent to 4400 bits/sec. The runtime increases slightly to 246 sec (by 8%) for

a time step of 10fs, but this increase is minimal considering that the time step

becomes finer by a factor of 1000. These steady simulation speeds arise because

the amount of computation is unaffected by the simulation time step due to the

event-driven simulation. For reference, the simulation runtime of the Verilog-A

model was 168min for one million bits, which is 45× slower than the proposed

method.

1 2 3 4
180

200

220

240

260

1 2 3 4
0

0.5

1

1.5

2

2.5

Time step

10ps 1ps 100fs 10fs

260

240

220

200

180

R
u

n
ti
m

e
 (

s
e

c
)

Time step

10ps 1ps 100fs 10fs

2.5

2.0

 1.5

1.0

0.5

0.0

N
o

.
o

f
e

v
e

n
ts

 (
m

ill
io

n
)

Adder

TX / Channel / CTLE

DFE

2.27 mil.

1.51 mil.

0.76 mil.

226 sec for 1 million bits

(4400 bits/sec)

(a) (b)

246 sec

Fig. 3.34 (a) The number of events processed in each block, and (b) the simulation

runtimes for one-million bit input with different time steps.

Chapter 4. Switching Power Supply Simulation 55

Chapter 4

Switching Power Supply Simulation

A switching power supply includes one or more switches which change the

system input-to-output relationship depending on their connections, but the system

can be modeled as a linear time-invariant system between switching instants (i.e. a

switched linear system). The switching power supplies like a boost converter, a buck

converter, and a switched-capacitor converter are typical examples of a switched

linear system (Fig. 4.1) [27]. The main difficulty in simulating them is that the time-

integration methods of analog simulators cannot efficiently handle such abrupt

changes due to switching activities [28]. Moreover, most switching power supplies

are characterized by high-frequency switching activities that demand fine-grained

simulation for accuracy, but also by slow transients that require long simulation

times.

Chapter 4. Switching Power Supply Simulation 56

C R

L

C R

L
1

2

phase 2phase 1

C R

L1
2

C R

L

1 2

12 R

Boost converter

Buck converter

Switched-cap converter

C

C

R

Fig. 4.1 Switched-linear system examples.

This chapter demonstrates how to apply the proposed method to switched linear

systems and compares its simulation accuracy and speed with existing analog

simulators. The main difference from linear system simulation described in Chapter

3 is that switched linear system is modeled with multiple transfer functions, each of

which describes the circuit network during each switching phase. At every switching

event, one transfer function is selected depending on the switch connections and

compute the output response. In other words, in addition to the input events, the

switching event can also trigger an output event. The switched linear system

simulation is demonstrated through two power converter examples, a power factor

correction (PFC) boost converter [33] and a time-interleaved switched-capacitor

DC-DC converter [34].

Chapter 4. Switching Power Supply Simulation 57

4.1 Boost Converter

Boost converters are widely used for DC/AC-to-DC power conversion with an

output voltage greater than its input voltage. A basic architecture is composed of an

inductor, a capacitor, a resistor, and a switch (Fig. 4.2). The boost converter has two

operation phases alternated by a switch connection as shown in Fig. 4.2(a). With the

switch in position 1 (phase 1), the right-hand side of the inductor is connected to the

ground, resulting in the network shown in Fig. 4.2(b). With the switch in position 2

(phase 2), the inductor is connected to the output, leading to the circuit shown in Fig.

4.2(c).

C R

iL(t)

L

C R

L

vIN(t)

C R

vOUT(t)
L

vC(t)

vIN(t) vOUT(t) vIN(t) vOUT(t)iL(t)

vC(t)

1
2

phase2phase1

switching

(a)

(b) (c)

Fig. 4.2 (a) A boost converter circuit and its linear system model in (b) switching phase

1 and (c) switching phase 2.

Chapter 4. Switching Power Supply Simulation 58

4.1.1 System Model

Even though the input/output relationship changes at each switching instant, the

circuit can be modeled as a linear time-invariant system within each operation phase.

For example, the relationship between the input vIN(t) and output vOUT(t) of the boost

converter in phases 1 and 2 can be modeled as a set of differential equations listed

below:

() 1
()

() 1
()


 


 


C

C

L

IN

dv t
v t

dt RC

di t
v t

dt L

(4-1)

() ()1 1
()

() 1 1
() ()


 


  


C L

C

L

IN C

dv t di t
v t

dt C dt RC

di t
v t v t

dt L L

(4-2)

This set of differential equations can be converted to Laplace s-domain

equivalents, using the Laplace transformation formula for a function derivative in Eq.

(4-3), resulting in Eqs. (4-4) and (4-5). Note that the initial conditions of the reactive

elements vC and iL are made explicit in the s-domain equations as explained in

Chapter 2.3. In Eqs. (4-4) and (4-5), the capital letters denote s-domain signals while

the italic letters denote their initial conditions in the time domain.

  1

1

() { ()} (0) 



 
n

n n k n k

k

f t s f t s fL L

(4-3)

() (0)
1

1 1
() () (0)


 


  


C C

L OUT L

RC
V s v

sRC

I s V s i
sL s

(4-4)

Chapter 4. Switching Power Supply Simulation 59

2 2 2

2 2 2

1
() () (0) (0)

/ 1 / 1 / 1

1/ /
() () (0) (0)

/ 1 / 1 / 1

C IN C L

L IN C L

sLC L
V s V s v i

s LC sL C s LC sL C s LC sL C

sC R C sLC L R
I s V s v i

s LC sL C s LC sL C s LC sL C


        


    

      

(4-5)

With s-domain representations, the boost converter can be simulated by

following the steps: 1) sample the initial conditions of the reactive elements, 2)

choose the transfer functions corresponding to the operating phases, and 3) compute

the output by summing the effects from both the input signal and the initial states of

the reactive elements. Fig. 4.3 illustrates the proposed event-driven method applied

to the boost converter example. For each phase, the three transfer functions define

the relationship between the input (VIN), the initial capacitor voltage (vC(0)), the

initial inductor current (iL(0)), and the output (VOUT =VC). Every time the circuit

switches between phases, the initial capacitor voltage and the inductor current are

sampled and their transfer functions are redefined according to Eqs. (4-4) and (4-5).

Then, the output voltage induced by each of the input and initial conditions can be

evaluated simply by multiplying each one by its corresponding transfer function.

The zero transfer gains for VIN and iL(0) in phase 1 imply that the output is not

related to the input and the inductor current, as they are disconnected from the

output during this phase. When the circuit switches to the next phase, however, VIN

and the initial current flow in the inductor start to increase VOUT again. Finally, the

output is updated as a linear combination of these three components.

Chapter 4. Switching Power Supply Simulation 60

VIN(s)

Input

vC(0)
Initial capacitor voltage

(Final state in phase I)

iL(0)
Initial inductor current

(Final state in phase I)

Linear

combination

VIN(s)

Input

vC(0)
Initial capacitor voltage

(Final state in phase II)

Transfer functions for phase I

VOUT(s)=VC(s)

Output

Phase I

1

RC

RCs 

0

0

Linear

combination

Phase II

2

1

1LLCs s
C

 

iL(0)
Initial inductor current

(Final state in phase II)

Switching

Transfer function for phase II

Output updates only on switching

VOUT(s)=VC(s)

Output

0

2 1

LCs

LLCs s
C

 

2 1

L

LLCs s
C

 

Fig. 4.3 The s-domain event-driven simulation of the boost converter example.

An outline of a boost converter model in SystemVerilog is given in Fig. 4.4. The

input and output signals are defined as xreal, while the switching input signal is xbit.

The always statement within the module is triggered when the circuit switches

between phases (switching events) or the input coefficients change (input events).

The initial states of the capacitors and inductors are then sampled and the param_set

of the output xreal signal is updated according to the current input and sampled

initial conditions. The compute_coeff() function is a DPI function written in C that

performs s-domain multiplications of xreal signals and transfer functions. As the

output update is aligned in time with a switching event or an input event, the t_offset

of the output has the same value as the one of the switching or the input accordingly.

Chapter 4. Switching Power Supply Simulation 61

Once the param_set and t_offset outputs are updated, the event variable out.flag is

triggered, thus notifying subsequent blocks of the change event.

Module boost_converter(

 input xbit switching,

 input xreal in,

 output xreal out);

 always @(switching.flag or in.flag) begin

 vc0=sample(vc.param_set); // sampling initial states

 il0=sample(il.param_set);

 if (phase1) //switching phase 1

 out.param_set = compute_coeff(In.param_set, tf_in_out_ph1)

 + compute_coeff(vc0, tf_vc0_out_ph1)

 + compute_coeff(il0, tf_il0_out_ph1);

 if (phase2) //switching phase 2

 out.param_set = compute_coeff(in.param_set, tf_in_out_ph2)

 + compute_coeff(vc0, tf_vc0_out_ph2)

 + compute_coeff(il0, tf_il0_out_ph2);

 if (input_event) out.t_offset = in.t_offset;

 if (switching_event) oUt.t_offset = switching.t_offset;

 -> out.flag;

 end

endmodule

Fig. 4.4 A pseudo-model of the boost converter in SystemVerilog.

Chapter 4. Switching Power Supply Simulation 62

4.1.2 Simulation Results

The speed and accuracy of the proposed simulation method are demonstrated

using the example of a power factor correction circuit (PFC) composed of a bridge-

diode rectifier and a boost converter (Fig. 4.5). The power factor is one of the key

performance metrics of AC-DC power converters required by many regulatory

standards. It is defined as in Eq. (4-6), which expresses the ratio of the real power

flowing to the load and the apparent power in the circuit:

()()


average power
power factor

rms voltage rms current .
(4-6)

For a high power factor, the circuit should basically behave as a pure resistive load.

A boost converter is a widely used topology for power factor correction circuits

because the switched inductor at the input conducts a current that is proportional to

the input voltage with very low harmonics [33].

vOUT(t)

60-Hz

Input

1-MHz

switching

Ф2

Ф1

duty ratio

Fig. 4.5 A power factor correction boost converter.

Chapter 4. Switching Power Supply Simulation 63

One difficulty in simulating such an AC-DC power converter is that there is a big

gap between the input AC frequency and the switching frequency of the boost

converter. For instance, in most applications, the input source is 50~60-Hz

110~220V AC power, while the switching frequency is typically in the

100kHz~1MHz range. Therefore, the required simulation time is long, typically

several tens of milliseconds, to simulate a few cycles of the 60-Hz AC input.

Fig. 4.6 illustrates the accuracy of the waveforms simulated by the proposed

event-driven simulation method. Fig. 4.6(a) is the simulated output voltage of the

boost converter, vOUT(t), for one 60-Hz input cycle. The zoom-in waveforms in Fig.

4.6(b) and Fig. 4.6(c), simulated with the proposed method and HSPICE,

respectively, demonstrate that they are well matched, and illustrate the switching

ripples of the converter. It is noteworthy that HSPICE requires many data points to

express the switching ripples (marked by the blue dots in Fig. 4.6(c)) while our

event-driven method generates only two events per switching cycle, as indicated by

the arrows in Fig. 4.6(b). The power factor can be measured from the simulated

input current waveform. The comparison between the simulated power factors as a

function of switching frequency and duty cycle in confirms that the proposed

method achieves the same level of accuracy as SPICE.

The proposed event-driven simulator demonstrates significant improvements in

speed compared with HSPICE, yet retains the equivalent accuracy. On a Linux

machine with an AMD Phenom II X4 945 processor, the total execution time to

simulate a 0.1-second period with a 100-ns time step is 8.2 seconds. Under the same

conditions, the HSPICE simulation takes 920.5 seconds, which is 110× slower.

The execution time of the proposed method varies weakly with the time step (Fig.

Chapter 4. Switching Power Supply Simulation 64

4.8(a)). For instance, when the time step is reduced from 100-ns to 10-ps (1/10,000x

reduction), the execution time of the proposed method increases by only 15% (from

8.2 to 9.4 seconds), while that of HSPICE increases by 15000%. The reason the

execution time hardly varies is that the number of switching events within the 0.1-

second period remains the same regardless of the time step, which confirms that the

proposed simulation indeed operates in a purely event-driven fashion. This

remarkable speed-up does not incur any penalty in accuracy, as the power factor

measured using the proposed method is virtually constant, independent of the time

step (Fig. 4.8(b)).

Chapter 4. Switching Power Supply Simulation 65

Time (sec)

O
u

tp
u

t
v
o

lt
a

g
e

(a)
Time (msec)

(b)

(c)

switching event

Fig. 4.6 (a) The output voltage waveform vOUT(t) simulated for one 60-Hz input cycle, (b)

5000× zoom-in view of vOUT(t), (c) vOUT(t) simulated by HSPICE.

0.4 0.5 0.6 0.7 0.8

0.92

0.94

0.96

0.98

1

SPICE
Proposed

40 60 80 100 120 140
0.7

0.8

0.9

1

SPICE
Proposed

Switching duty cycle

P
o

w
e

r
fa

c
to

r

P
o

w
e

r
fa

c
to

r

Switching frequency (MHz)
0.4 0.6 0.8 1.0 1.2 1.4

(a) (b)

Fig. 4.7 The comparison of the simulated power factors vs. (a) frequency and (b)

switching duty cycle.

1 2 3 4 5
7

8

9

10

11

Execution time

P
o

w
e

r
fa

c
to

r

Simulation time step (sec)
1 2 3 4 5

0.9

0.95

1

Power factor

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

 100n 10n 1n 100p 10p 100n 10n 1n 100p 10p

Simulation time step (sec)

8.2 sec (110X faster than SPICE)

(15% for 10,000X finer step)
remain same at 0.94

9.4 sec

(a) (b)

Fig. 4.8 (a) Execution time and (b) simulated power factor for different time steps.

Chapter 4. Switching Power Supply Simulation 66

4.2 Time-Interleaved Switched-Capacitor

Converter

The second example of a switching power supply is a time-interleaved switched-

capacitor (TI-SC) DC-DC converter described and analyzed in [34]. The switched-

capacitor DC-DC converter topology is becoming a common choice for power-

supplies on chips, as the IC technology is more amenable to integrating high-density

capacitors than low-loss inductors. One difficulty in simulating a TI-SC DC-DC

converter is that the number of switching activities increases with the number of

time-interleaving phases.

0°

180/N°

180(N-1)/N°

2:1 Unit 1

2:1 Unit 2

2:1 Unit N

CLK

RL

vIN(t)

Cfly

vOUT(t)

vOUT(t)
Ф

Ф

Ф

Ф

Ф1

Ф2

ФN
2:1 Unit Converter

VCfly1

VCfly2

VCfly3

VCfly4

voltage

ripple

vOUT(t) (w/ 4-phase interleaving)

vOUT(t) (w/o interleaving)

(a)

(b)

Fig. 4.9 (a) N time-interleaved 2:1 step-down switched-capacitor DC-DC converter, (b)

the waveforms of its internal capacitor voltages and final output voltage when N=4 [34].

Chapter 4. Switching Power Supply Simulation 67

The TI-SC converter example is composed of N interleaved 2:1 step-down

converter units, as shown in Fig. 4.9(a). The total capacitance is divided into a set of

small units and the switching is controlled by a set of N equally spaced clocks (Ф1,

…, ФN). Fig. 4.9(b) illustrates the basic operation of a 4-phase TI-SC converter with

the output waveforms. The output voltage ripple is inherent in a switched-capacitor

converter, and generally decreases as the switching frequency increases. Time-

interleaving is an alternate way of reducing the ripples without increasing the

switching frequency.

Chapter 4. Switching Power Supply Simulation 68

4.2.1 System Model

The TI-SC converter in Fig. 4.9 can be modeled as in Fig. 4.10, where the unit

capacitors, Cfly, switch their configurations between a series and parallel connections

depending on the controlling clock phase (). The model includes the on-resistance

of the switches, Rsw, and parasitic top- and bottom-plate capacitances, Cpar, to

account for the conduction and switching losses, respectively. To simplify the model,

the top- and bottom-plate capacitances are combined into a single capacitor because

they experience approximately the same voltage swings in steady states [34]. The s-

domain transfer function of each phase can be derived from Eq. (4-7), where vcap[i]

denotes the voltage across the i-th unit capacitor.

2

2

0 0
2 24

2 1

2 2

 where 0 0 0

S
IN OUT cap

sw par sw par Ssw S

OUT

L S par sw L

sw L S par sw L S par

cap cap cap

parallel series

cap

Ns s
V s v v

R C R C NR N C
V s

R N C R C NCR
s s

R CR N C R CR N C

v v i v i

V

 


    

    
   

  

() () ()

()

() []() []()

 for series capacitor:

21 1
0

2 1 2 1 2 1

for parallel capcitor:

21
0

2 1 2 1

sw

IN OUT cap

sw sw sw

sw

OUT cap

sw sw

R C
V s V s v i

R Cs R Cs R Cs
i s

R C
V s v i

R Cs R Cs



  
   

 


 

 

() () []()

[]()

() []()

(4-7)

Chapter 4. Switching Power Supply Simulation 69

RLCparNS

NS: num. of cap in series with RL

NP: num. of cap in parallel with RL

NS+NP: total num. of phase (=N)

CflyRsw Rsw
Rsw

Rsw

Cfly

vIN(t) vOUT(t)

RLCparNS-1

CflyRsw Rsw
Rsw

Rsw

Cfly

vIN(t) vOUT(t)

Switching 2N times
per one clock period

×NP

×NS×NS-1

×NP+1

Fig. 4.10 Switched linear circuit model of an N time-interleaved, 2:1 step-down TI-SC

converter.

Chapter 4. Switching Power Supply Simulation 70

4.2.2 Simulation Results

Fig. 4.11(a) plots the power efficiency of the TI-SC converter as a function of the

number of time-interleaving phases, N, and compares the results produced by

HSPICE and the proposed method. When the total amount of charge delivered to the

load is fixed with N, the output voltage ripple initially decreases by a factor of N, as

the amount of charge delivered per clock transition is smaller. Therefore, the better

power efficiency can be achieved with a higher N. However, increasing N above a

certain value produces diminishing returns because the other losses, such as the

conduction loss of the switches and the switching loss of the parasitic capacitors,

increase. Fig. 4.11 illustrates this tendency, and the simulation results of the

proposed method match well with the SPICE simulation results.

The improvement in speed with the proposed method is moderate compared with

the boost converter case, as SPICE is better at simulating switched capacitors than

inductors. When simulated on a Linux machine with an AMD Phenom II X4 945

processor, the proposed method shows a ~20X overall speed improvement compared

with the HSPICE simulation (see Fig. 4.11(b)).

The proposed method predicts the well-known dependencies of the switching

frequency and power efficiency for the output voltage vOUT, described in [34]. Fig.

4.12(a) plots the switching frequency vs. the average vOUT and Fig. 4.12(b) plots the

power efficiency vs. the average vOUT when vIN is 2V and N=16. The vOUT

dependency on the switching frequency is similar to the IR-drop phenomenon in

linear regulators, in which the output voltage drops when the load current is higher

than the current that the TI-SC converter can nominally supply. As a result, slower

Chapter 4. Switching Power Supply Simulation 71

switching leads to a lower average vOUT and lower power efficiencies (Fig. 4.12).

Nonetheless, an excessively high switching frequency is also undesirable as the

power efficiency can be degraded due to the loss in the switching capacitors.

P
o

w
e

r
e

ff
ic

ie
n

c
y

(a)

E
x
e

c
u

ti
o

n
 r

u
n

ti
m

e

(b)

4870sec

195sec

N (Num. of interleaving phases) N (Num. of interleaving phases)

~25X speed-up

Fig. 4.11 (a) The simulated power efficiency of the TI-SC converter and (b) execution

time vs. the number of time-interleaving phases (N).

S
w

it
c
h

in
g

 f
re

q
.
(M

H
z
)

(a) Average vOUT (V)

P
o

w
e

r
e

ff
ic

ie
n

c
y

Average vOUT (V)(b)

Fig. 4.12 The simulated (a) switching frequency and (b) power efficiency of the TI-SC

converter vs. the average output voltage.

Chapter 5. Volterra Series Model Simulation 72

Chapter 5

Volterra Series Model Simulation

Even though most analog systems can be modeled as linear or switched-linear

systems, there are systems in which weak nonlinearities significantly affect system

performances and need to be accurately evaluated. For instance, the nonlinearity of a

power amplifier in a RF transmitter introduces cross- and inter-modulation [35] and

a continuous-time linear equalizer in a high-speed digital communication system can

distort a signal presented to the subsequent data decision blocks [36]. Although such

nonlinear responses are orders of magnitude smaller than the desired response, it is

important to consider these nonlinearities during system-level verification processes

to meet stringent design specifications such as total harmonic distortion of less than

–50dBC for a RF system and a bit error rate (BER) of less than 10
-20

 for a high-

speed I/O interface.

This chapter demonstrates that the proposed event-driven simulation method can

Chapter 5. Volterra Series Model Simulation 73

be extended to simulate such weakly nonlinear behavior of analog circuits.

Specifically, this chapter uses the perturbational form of a Volterra series model to

simulate the circuit nonlinearities. The Volterra series is one of the most widely used

nonlinear system representation. The Volterra series expresses a nonlinear response

by a series of polynomial integral operators with increasing degree of nonlinear

distortions [20]. Its perturbational form decomposes the nonlinear system equation

into a multiple sub-system equation linearized with respect to each nonlinear

distortion [35]. Therefore, sub-system equation can be converted to s-domain

transfer function and simulated by the presented event-driven method.

In this chapter, two examples are modeled and simulated: a class-A power

amplifier for an RF transmitter and a continuous-time linear equalizer (CTLE) for a

multi-PAM receiver. The simulation results demonstrate the accuracy and speed of

the proposed method compared to SPICE simulation.

Chapter 5. Volterra Series Model Simulation 74

5.1 Volterra Series Model

A Volterra series is one of the most widely used nonlinear system representation.

The Volterra series expresses a nonlinear system response y(t) to an input x(t) as a

sum of partial responses yi(t):

0 0 1 2

1

() ()
N

i N

i

y t y y t y y y y


       , (5-1)

where yi(t) is computed as i-times repeated convolution with the i-th order Volterra

kernel hi() [20]:

1 2 1 2 1 2() (, , ,) () () ()i i i i iy t h t t t x t t x t t x t t dt dt dt
 

 
     . (5-2)

For a weakly nonlinear system, which exhibits only minor deviations from the linear

response such as inter- and cross-modulation and gain compression, the output

response can be fully described only with the first few orders.

The Volterra formulation provides a way to extract nonlinear transfer functions

from the general time-invariant nonlinear differential equations. Without loss of

generality, nonlinear circuit behaviors can be formulated in the following nonlinear

differential equation:

         
d

q y t g y t u
dt

x t . (5-3)

where y(t) and x(t) are the output and input, and where q(·), g(·), and u(·) are

nonlinear resistive, dynamic and input functions. Considering a small perturbation

around a DC operating point at 0 0, x x y y and expanding q(·) and g(·) at the

operating point, Eq. (5-3) becomes:

Chapter 5. Volterra Series Model Simulation 75

             2 2 2

1 2 1 2 1 2

d
C y t C y t G y t G y t B x t B x t

dt
        . (5-4)

where

0

1







i

i

y y

q
C

y
,

0

1







i

i

y y

g
G

y
, and

0

1







i

i

x x

u
B

x
. Assume that the small

perturbation to the input is given as    0   x t x x t , where  is an arbitrarily

small scalar value. According to Eq. (5-1) and (5-2), the output response y(t) should

take the form of:

     2

0 1 2()        n

ny t y y t y t y t . (5-5)

As Eq. (5-5) should satisfy the system equation, Eq. (5-4), for an arbitrary value of

 , a set of n differential equations is obtained by equating each of the  i
-

coefficients to zero [37]. For instance, listing only the first three equations:

 

   

   

1 1 1 1

2 2 2

1 2 1 2 2 1 2 1 2

3 3 3

1 3 1 3 3 1 2 1 2 3 1 2 1 2 32 2


 



 
    

 

 
      

 

C y G y Bx
t

C y G y C y G y B x
t t

C y G y C y C y y G y G y y B x
t t .

(5-6)

Note that Eqs. (5-6) are linearized with respect to each distortion orders; the first

equation is linear with respect to the first-order distortion y1(t), the second equation

is linear with respect to the second-order distortion y2(t), and so on. Therefore, these

equations can be transformed to Laplace s-domain, representing s-domain transfer

functions.

For instance, a simple circuit of a nonlinear capacitor in series with a linear

resistor demonstrates the procedure of decomposing a nonlinear single-input-single-

output (SISO) system equation. Its circuit equation is given as Eq. (5-8), when a

Chapter 5. Volterra Series Model Simulation 76

nonlinear capacitance is modeled with a Taylor series, Eq. (5-7).

 0 1
 

C
C C C v t

 (5-7)

       21

0
2

  
 
 
 

C C C IN

RCd
RC v t v t v t v t

dt
(5-8)

Representing the output response, vc(t), with a Volterra series, vc(t)= vc1(t)+ vc2(t)+

vc3(t)+…, the linearized differential equations with respect to the first three order

responses are as follows:

 
   

 
   

 
      

1

0 1

22 1

0 2 1

3

0 3 1 1 2

2

 

  

  

  

C

C IN

C

C C

C

C C C

dv t
RC v t v t

dt

dv t RC d
RC v t v t

dt dt

dv t d
RC v t RC v t v t

dt dt

(5-9)

These three linearized differential equations of the nonlinear capacitor example (Eq.

(5-9)) can be converted to the s-domain transfer functions as follows:

 
   

 
      

 
          

0 1

1

0

2 2

1 1 1 1 0 2

2

0

1 1 2 1 1 2 0 3

3

0

0

1

2 2 0 0

1

0 0 0

1




  











  

  

IN C

C

C C C

C

C C C C C

C

V s RC v
V s

sRC

s RC v t RC v RC v
V s

sRC

sRC v t v t RC v v RC v
V s

sRC

L

L

(5-10)

For Eq. (5-10), the capital letters denote s-domain signals, the italic letters denote

time-domain signals, and terms with t=0 means its initial state.

Even though Eq. (5-10) includes time-domain multiplications of signals such as

vc1
2
(t) and vc1(t)vc2(t), the multiplication between signals in xreal functional form can

be efficiently computed in s-domain without additional inverse Laplace transforms.

Chapter 5. Volterra Series Model Simulation 77

As explained in Chapter 2.2, one very useful property of our signal representation is

that it keeps the Laplace transform of the multiplication between the signals simple,

as merely coefficient addition and multiplication are involved. With the two signals

x1(t) and x2(t) given as Eq. (5-11), a multiplied signal of two signals remains in an

identical form, as shown in Eq. (5-12).

 

 

1 1 1

2 2 1

!
()

()

!
()

()










  




  



 

 

i i

i

j j

i

m a t i i
i m

i i i

n p t i i
j n

j j i

c m
x t c t e X s

s a

q n
x t q t e X s

s a

L

L

(5-11)

   1 2

()

2 1 2 1

()!
[,]

()

i j i j

i j

m n a p t i j i j

i j m n
i j i j

x t x t
c q m n

c q t e A X X
s a p

  

 

 
  

 
L

(5-12)

The newly defined s-domain operator, A2, performs such time-domain multiplication

of the two signals via Eq. (5-12). Therefore all the computation can be handled

solely in s domain. For instance, Eq. (5-11) can be rewritten as Eq. (5-13) utilizing

the operator, A2.

 
   

 
        

 
          

0 1

1

0

2

1 2 1 1 1 1 0 2

2

0

1 2 1 2 1 1 2 0 3

3

0

0

1

2 , 2 0 0

1

, 0 0 0

1




  











 

  

IN C

C

C C C C

C

C C C C C

C

V s RC v
V s

sRC

s RC A V s V s RC v RC v
V s

sRC

sRC A V s V s RC v v RC v
V s

sRC

(5-13)

As all the distortion terms, VC1, VC2, and VC3, are expressed in s-domain and they

are in the xreal form, the Eq. (5-13) can be solved by the proposed event-driven

method. First, at every input event, VC1, VC2, and VC3 are solved sequentially; VC1 is

computed based on VIN(s), VC2 is solved based on computed VC1, VC3 is updated based

Chapter 5. Volterra Series Model Simulation 78

on VC1 and VC2, and so on. Then, the final output is simply a sum of the distortion

terms, VC=VC1+VC2+VC3.

Fig. 5.1 compares the output waveforms simulated with the proposed method (the

red solid lines) to a SPICE simulation (the blue dotted line) when a sinusoidal input

signal is applied. For the SPICE simulation, the nonlinear differential equation Eq.

(5-8) is written in Verilog-A. Fig. 5.1(a), Fig. 5.1(b), and Fig. 5.1(c) show the output

waveforms obtained using our method when the first-, second- and third-order terms

are added, respectively. Fig. 5.1(d), Fig. 5.1(e), and Fig. 5.1(f) show the error terms

compared to the SPICE simulation. With the first three orders, the nonlinear

responses are described with an error less than 1mV. It is noteworthy that while

SPICE numerically solved the equation at every data point, as represented with dots

on the waveforms, the proposed method processed the output response only once, at

t=0.

(a)vC1(t) (b)vC1(t)+vC2(t) (c)vC1(t)+vC2(t)+vC3(t)

SPICE Proposed

(d)vC–vC1(t)

Time (ns)

(e)vC–vC1(t)–vC2(t) (f)vC–vC1(t)–vC2(t)–vC3(t)
0.0 0.5 1.0 1.5 2.0

2.2

2.0

1.8

20

0

-20

-40E
rr

o
r

(m
V

)
V

c
 (

V
)

Time (ns)
0.0 0.5 1.0 1.5 2.0

Time (ns)
0.0 0.5 1.0 1.5 2.0

Fig. 5.1 Output response up to (a) the first-order, (b) the second-order, and (c) the

third-order responses, and output error with (d) the first-order, (e) the second-order,

and (f) the third-order responses.

Chapter 5. Volterra Series Model Simulation 79

5.2 Class-A Power Amplifier

The first example of the Volterra series model is an RF transmitter employing a

phase-shift keying (PSK) modulation and a class-A power amplifier (Fig. 5.2). The

nonlinearity of the power amplifier is a critical factor, as it presents interferers to

other users or corrupts its own signal through cross- and inter-modulation. Meeting

the stringent design specifications on linearity for RF communication systems, its

accurate simulation and verification is important. As the modulation scheme varies

with systems, a full-waveform transient simulation is necessary for a rigorous

characterization of the PA nonlinearity effect with respect to the scheme. However,

a circuit-level simulation with actual modulated inputs takes a very long time, as it

requires a fine time resolution for a fast carrier frequency (several GHz) and a long

simulation time for a low data rate (several MHz). This chapter demonstrates that

the presented event-driven method can accurately simulate a Volterra series model

of a class-A power amplifier with a significant speed-up compared to Spectre

simulation.

0 1 0 1

0 1 0 1

PA

Sin(ωCt)

Data VO

RLCL

ISS

Vi

=vi+VOV+VTH

Id
VO=VCM+vo

Vi

(a) (b)

Fig. 5.2 (a) An RF transmitter employing a phase-shift keying modulation scheme and

(b) a class-A power amplifier.

Chapter 5. Volterra Series Model Simulation 80

5.2.1 System Model

The class-A power amplifier for the exemplary RF transmitter in Fig. 5.2 is

modeled in a perturbational form of a Volterra series. There are many effective

model extraction and model-order reduction methods for a general Volterra series

applied to RF power amplifiers [35]. For demonstrative purposes, the class-A power

amplifier is modeled with the nonlinear circuit equation:

   
     

2

1 


    
o CM o

L OV i o SS

L

dv t V v t
C K V v t V t I

dt R
. (5-14)

where the circuit parameters RL, CL, K, VOV, and λ are assumed to be 50Ω, 100fF,

1.0A/V
2
, 0.1V, and 1/50, respectively. This equation models the distortion due to the

square-law dependence and channel-length modulation effect of the MOSFET

device. Applying the perturbation method as described in Chapter 5.1, its first-,

second-, and third-order transfer functions are given as:

 
 

   

     

 
     

     

1 12 2

2 2 12

2 22 2

3 2 22

1
0

,

1
, 0

,

m L CM L L

o i o

L L L OV L L L OV

m L

o i o

L L L OV

CM L L L

i i o

L L L OV L L L OV

m L

o i o

L L L OV

L

g R V R C
V s V s v

sR C KR V sR C KR V

g R
V s A v t v t

sR C KR V

K V R R C
A v t v t v

sR C KR V sR C KR V

g R
V s A v t v t

sR C KR V

KR

s



 







 







 
 

 

    


    

    

      2

2 1 32 2
, 0L L

i o o

L L L OV L L L OV

R C
A v t v t v

R C KR V sR C KR V 
    

(5-15)

Chapter 5. Volterra Series Model Simulation 81

5.2.2 Simulation Results

Time-domain simulation is performed to assess a third-order intercept point (IP3)

and spectral re-growth property of the transmitter. First, a two-tone test shown in Fig.

5.3(a) is simulated to estimate the third-order intercept point (IP3). Two sinusoidal

inputs with frequencies of 0.99GHz and 1.01GHz are applied and the

intermodulation power at 1.03GHz is measured. Fig. 5.3(b) shows the simulated

main signal power, the third-order inter-modulation power (IM3), and its

extrapolated third-order intercept point (IP3), which are in good agreement with the

SpectreRF periodic-steady-state (PSS) simulation. Waveforms in Fig. 5.4 depicts a

transient output when a two-tone sinusoidal input is applied. For a better visibility,

the sinusoidal signals at frequencies with bigger differences (0.9GHz and 1.1GHz)

are applied. As shown in the zoom-in view in Fig. 5.4(b), output signal gets distorted

as its amplitude is amplified, and this nonlinear effect is well modeled with the

third-order Volterra series.

-20 -10 0 10
-80

-60

-40

-20

0

20

40

SpectreRF
Proposed

Main Signal

IM3

IP3

PA
ω1 ω1 ω1 ω2

 2ω1-ω2 2ω2+ω1

O
u

tp
u

t
P

o
w

e
r

(d
B

m
)

Input Power (dBm)

IM3

(a) (b)

Fig. 5.3 (a) A two-tone testbench for an RF power amplifier and (b) simulated third-

order intercept point (IP3).

Chapter 5. Volterra Series Model Simulation 82

5 5.1 5.2 5.3

x 10
-9

2.8

3

3.2

3.4

SpectreRF

1st only

1st+2nd+ 3rd

0 2 4 6

x 10
-9

2.4

2.6

2.8

3

3.2

3.4

Time (nsec)

V
O

 (
V

)

Time (nsec)(a) (b)

Fig. 5.4 (a) Transient waveforms of the two tone test and (b) their zoom-in view.

0.996 0.998 1 1.002 1.004

x 10
9

0

0.05

0.1

0.996 0.998 1 1.002 1.004

x 10
9

0

0.05

0.1

Frequency (GHz)

M
a

g
n

it
u

d
e

Proposed (sim. time: 0.38sec)Spectre (sim. time: 112.5sec)

0.15

0.10

0.05

0.00

0.15

0.10

0.05

0.00

0.996 0.998 1.000 1.002 1.004

Frequency (GHz)
0.996 0.998 1.000 1.002 1.004

(a) (b)

Fig. 5.5 Output spectra of the power amplifier with data-modulated inputs simulated

by (a) Spectre and (b) the proposed method.

On the other hand, Fig. 5.5 shows the spectra of the output signal when a 1-GHz

carrier signal is PSK-modulated with 1-Mbps data. To obtain the spectra, a transient

waveform is simulated for a 512-μsec, which is equivalent to a data length of 512

with 512,000 carrier cycles. The obtained power spectra is in a good agreement with

the Cadence Spectre. Thanks to the event-driven simulation, the substantial speed-up

of ~300× was observed compared to Cadence Spectre; For a 512-bit data

transmission (corresponding to 512μsec), it took only 0.38 seconds for our simulator

Chapter 5. Volterra Series Model Simulation 83

while it took 112.5 seconds for Spectre. The speed-up is largely due to the fact that

the xreal functional form is particularly efficient in expressing a stiff signal such as a

PSK modulated signal. For instance, it takes only 512 events for the proposed

method to express the signal without any accuracy loss, while it takes one million

samples for Spectre to Nyquist-sample the 1-GHz carrier signal.

Chapter 5. Volterra Series Model Simulation 84

5.3 Continuous-Time Equalizer

The second example is a multi-level, high-speed data receiver, employing a

continuous-time linear equalizer (CTLE) stage and a four-level pulse-amplitude

modulation (4PAM) scheme as shown in Fig. 5.6 [36]. The multi-level receiver is

particularly sensitive to the distortion, as it experiences non-uniform

filtering/amplification depending on the signal level. Resorting to a SPICE-like

simulator to assess its effects is however too costly, considering the complexity of a

typical high-speed link system and long simulation times required to estimate a BER

less than 10
-12

.

CTLEChannel4-PAM Transmitter

2bit Vout

Data

4PAM Receiver

Vin

Fig. 5.6 A 4-PAM high-speed I/O interface example.

Chapter 5. Volterra Series Model Simulation 85

5.3.1 System Model

The CTLE in Fig. 5.7 is designed to compensate an 8-dB loss at 2GHz with a

zero introduced by a source-degeneration capacitor (CS) and resistor (RS). The

governing circuit equations with input (vin) and transistor's source node voltages (vs+

and vs-) are:

   

   

2 2

2

2
SS OV in s OV in s

s s s s

s m in s in s

I K V v v V v v

dv v v v
C g v v K v v

dt R

 

   

 

     

 
    

 
 

 
 

(5-16)

where the circuit parameters gm, K, CS, RS, CL and RL have values of 10mS, 0.1A/V
2
,

800fF, 400Ω, 100fF and 200Ω, respectively. This equation models the distortion due

to the square-law dependence of the MOSFET device. The upper-case letters denote

large-signal operating points, while the lower-case letters represent small-signal

behaviors of interest.

RL CL

CS

RS

ISS

VS+vs+ VS−vs-

ISS+id vOUT-

VG-vin

vOUT+

Fig. 5.7 Circuit schematics of the continuous-time linear equalizer.

Chapter 5. Volterra Series Model Simulation 86

Applying the perturbation method described in Chapter 5.1, its first-, second-,

and third-order transfer functions of vs+ are given as:

 
 

 

    

 
   

 

1

1

2

2 1

3

3

2 2 1

(0)

(0)

2

1 2

2

, ()

1 2





 





 


 

 


 

 



     

in s

s

s in s

s

s

m s

s s m s

m

s s s in

s s m s

V s v
V s

s

V s V s V

v
V s

s

g C

R C g C

K g

K C A V s V s V s

R C g C

. (5-17)

Once vs+ is solved, then the output vout can be computed by the following differential

equation:

 
2

   
L

out out
OV in s

dv v
C K

dt R
V v v , (5-18)

which has an equivalent s-domain representation:

 2 () (), () () (0)
()

1/ 1/

     
 

 

OV in s OV in s L out
out

L L

K A V V s V s V V s V s C v
V s

R sC R sC
. (5-19)

Chapter 5. Volterra Series Model Simulation 87

5.3.2 Simulation Results

Fig. 5.8 compares the eye-diagrams of the 2-Gbps 4-PAM signals before and

after the CTLE stage for the transmit swing of ±30mVdpp and ±300mVdpp. Since the

channel is modeled as a linear system with 7 poles, there is no difference in its

output eye shapes between Fig. 5.8(a) and (d). The same is true when only the first-

order response of the CTLE stage is modeled (Fig. 5.8(b) and (e)). However, when

the third-order distortion response is included, the output signal exhibits different

amount of distortion depending on the signal swing as shown in Fig. 5.8(c) and (f).

In particular, for the input swing of ±300mVdpp, the top-most and bottom-most eye

openings are smaller (115mV) than that of the middle eye (155mV).

Fig. 5.9 compares the eye diagrams obtained with Synopsys HSPICE and the

proposed simulator with different time steps of 100ps and 100fs. Note that the eye

diagram obtained is identical to the one with HSPICE even with a coarse time step

of 100ps (0.2 UI). In addition, simulating 2,000 bits of data pattern takes 26 seconds

for the proposed method on a Linux machine with AMD Phenom II X4 945

processor while HSPICE simulation takes 25,720 seconds (~990× speed-up).

Chapter 5. Volterra Series Model Simulation 88

0 2.5 5 7.5

x 10
-3

-0.04

-0.02

0

0.02

0.04

0 2.5 5 7.5

x 10
-3

-0.04

-0.02

0

0.02

0.04

0 0.00250.00500.0075
-0.04

-0.02

0

0.02

0.04

0 2.5 5 7.5

x 10
-3

-0.4

-0.2

0

0.2

0.4

0 2.5 5 7.5

x 10
-3

-0.4

-0.2

0

0.2

0.4

0 2.5 5 7.5

x 10
-3

-0.4

-0.2

0

0.2

0.4

before CTLE
0.04

0.02

0.0

-0.02

-0.04

after CTLE (1
st
 only) after CTLE (upto 3

rd
)

(d)

0.4

0.2

0.0

-0.2

-0.4
(e) (f)

-1.0 0.0 1.0 -1.0 0.0 1.0 -1.0 0.0 1.0

155mV

155mV

155mV

115mV

155mV

115mV

A
m

p
lit

u
d

e
 (

V
)

A
m

p
lit

u
d

e
 (

V
)

Time (UI) Time (UI) Time (UI)

Vin = ±30mVdpp

Vin = ±300mVdpp

(a) (b) (c)

Fig. 5.8 The simulated eye diagrams for two swing levels: ±30mVdpp and ±300mVdpp.

The eye diagrams before the CTLE (a,d) and after the CTLE without (b,e) and with the

third-order distortion included (c,f).

0 0.25 0.5 0.75
-0.4

-0.2

0

0.2

0.4

0 2.5 5 7.5

x 10
-3

-0.4

-0.2

0

0.2

0.4

0 2.5 5 7.5

x 10
-3

-0.4

-0.2

0

0.2

0.40.4

0.2

0.0

-0.2

-0.4
-1.0 0.0 1.0

A
m

p
lit

u
d

e
 (

V
)

Time (UI)
-1.0 0.0 1.0

Time (UI)

(a) (b) (c)

-1.0 0.0 1.0
Time (UI)

HSPICE Proposed(tstep=100ps) Proposed(tstep=100fs)

Fig. 5.9 Eye-diagrams of the CTLE output added up to a third-order response

simulated by (a) SPICE with a maximum time step of 10ps, (b) the proposed method

with a time step of 100ps, and (c) the proposed method with a time step of 100fs.

Chapter 6. Injection-Locked Oscillator Simulation 89

Chapter 6

Injection-Locked Oscillator

Simulation

Injection-locked oscillators (ILOs) are circuits that produce a fundamental or

super-/sub-harmonic frequency of the input signal based on an injection locking

phenomenon [38]. When the injection input or super-/sub-harmonic frequency is

close enough to the oscillator’s free-running frequency, the nonlinear interaction

within the oscillator forces its frequency and phase to lock to those of the injection

input. This injection locking phenomenon is utilized in many wireline and wireless

communication applications such as multi-phase clock generation, jitter filtering,

frequency multiplication or division, and burst-mode clock recovery [39]-[44].

However, the nonlinear, time-varying oscillator characteristic challenges the

modeling and simulation of the injection-locking behavior.

Chapter 6. Injection-Locked Oscillator Simulation 90

This chapter shows that the presented method can simulate such nonlinear time-

varying behaviors in an event-driven fashion. The injection-locking behavior is

modeled by a perturbation projection vector (PPV) based approach presented in [45].

The governing ordinary differential equation (ODE) of the PPV-based ILO model is

nonlinear and can be expanded by a Volterra series as described in Chapter 5.

However, there are two main differences from the nonlinear behavior simulation in

Chapter 5: first, the governing ODE does not have an analytical form as the PPV is

numerically extracted via simulation in most cases. Second, the governing ODE is

periodically time-varying as it describes the oscillator's behavior. To address these

issues, the numerically extracted PPV is curve-fitted into a piecewise polynomial

(PWP). Then, the PPV-based ILO model can be simulated in the same way as the

Volterra series model with additional crossing events at piecewise interval

boundaries.

This chapter demonstrates the PPV-based ILO model simulation through three

examples: an LC oscillator, a ring oscillator, and a burst-mode CDR. In the LC

oscillator example, the dependence of the simulation accuracy and speed on the

number of intervals and degree of polynomials in PPV's piecewise polynomial

notation is investigated. Additionally, a ring oscillator example with a non-

sinusoidal PPV shows that the proposed model can accurately simulate both the lock

and quasi-lock behaviors of the ILO and also predict the locking range and static

phase offset for different injection frequencies and magnitudes. Furthermore, a

burst-mode clock recovery example shows that the proposed method can also

simulate the locking transient, lock range, and lock time of the ILO when an

aperiodic, pseudo-random pattern signal is injected into it.

Chapter 6. Injection-Locked Oscillator Simulation 91

6.1 PPV-Based ILO Model

Among various macromodeling approaches for ILOs [45]-[49], this work adopts

the perturbation projection vector (PPV) based approach presented in [45] to model

the oscillator’s response to an external injection input. The simplest and most

intuitive model is perhaps the Adler's equation [46]. While it can predict the ILO

locking range, it depends on a quality factor Q that limits its use to LC oscillators.

The generalized Adler's equation [47] extends the applicability to other oscillator

types, but ignores the high-order harmonic effects. Another macromodel approach

for ILOs is based on the impulse sensitivity function (ISF) [48]. ISF describes the

final phase shift of the oscillator caused by an impulse arriving at different times.

While the ISF can capture harmonic effects, it is not suitable for modeling the

injection-locking behaviors, since only the final phase shift at steady-states is

described and not the instantaneous phase shift during transients. Thus, the ILO

model in [49] introduced an additional phase shift term in the ISF-based model. On

the other hand, the PPV-based macromodel [45] can predict the oscillator's injection

locking behavior most accurately and is generally applicable to all types of

oscillators and inputs [50]-[52]. Moreover, the PPV-based model describes the

oscillator's phase response to the perturbation using a compact, scalar, nonlinear

ordinary differential equation (ODE) that renders its models simple.

The PPV model describes the output response of a perturbed oscillator as:

() (()) ()p sx t x t t y t  
(6-1)

Chapter 6. Injection-Locked Oscillator Simulation 92

where xs(t) is a steady-state response of an unperturbed oscillator. Here, the

perturbation is decomposed of the amplitude deviation, y(t), and phase deviation,

α(t). The PPV model mainly focuses on the phase deviation as it is the only one that

persists over time. In other words, the perturbation input on the oscillators'

amplitude is neglected and the perturbed oscillator's signal waveform, xp(t), is

approximated as:

() (()) p sx t x t t . (6-2)

PPV is a periodically time-varying vector 1()v  that describes the oscillator's

phase response to the perturbation input. The PPV-based phase-domain macromodel

describes the phase deviation α(t) of the perturbed oscillator using the nonlinear

differential equation

1() (()) ()   Tt v t t b t , (6-3)

where ()b t is an n×1 row vector describing the perturbation inputs to the system

and 1()v  is a periodically time-varying n×1 row vector referred to as the

perturbation projection vector (PPV). Eq. (6-3) implies that the PPV represents the

oscillator's phase sensitivity to the perturbation input depending on its internal phase

t+α(t). Due to the periodically time-varying nature of the oscillator, the PPV is also

periodic with the self-oscillating period. The ODE in Eq. (6-3) is nonlinear, because

the phase variable α(t) is used as an argument to the PPV function.

PPV is a well-established concept in oscillator modeling and various PPV

extracting methods from transistor-level circuits are available [45], [53], [54]. For

instance, the work in [53] extracts the PPV from the frequency- or time-domain

Jacobian matrices computed during steady-state analysis. Some commercial

Chapter 6. Injection-Locked Oscillator Simulation 93

simulators like Cadence SpectreRF provide options to report the PPVs after the

periodic steady-state (PSS) analysis of oscillators.

The main issue in simulating the PPV-based ILO model with the same method as

the Volterra series model in Chapter 5 is that the PPV is numerically extracted via

simulation and the ODE does not have a polynomial form of Eq. (5-4). One

straightforward way is to curve-fit the numerical PPV into a polynomial function.

However, a polynomial expansion is not suitable for describing a periodic function

like PPV since asymptotically, it is either increasing or decreasing. Instead, a

piecewise polynomial (PWP) expansion is adopted to describe the periodic PPV.

The PWP expansion of the PPV turns the periodically time-varying ODE in Eq.

(6-3) into a set of nonlinear ODE segments which is more amenable to a Volterra

series model. Let’s consider an example of a PPV with a single row element, v1(t),

described by a piecewise polynomial function with k phase intervals:

1 1

2 1 2

1

1

() for 0

() for
()

() for 1

 


 
 

   k k

f t t t

f t t t t
v t

f t t t

, (6-4)

where f1(·), f2(·), …, fk(·) are polynomial functions of the input phase argument, t.

The PPV continuity and periodicity require

1

1

() () for 1,2, , 1

(0) (1)

  



i i i i

k

f t f t i k

f f
. (6-5)

For instance, Fig. 6.1 shows an exemplary PPV curve-fitted to a third-order

piecewise polynomial function with four intervals (k=4). By substituting Eq. (6-4)

into Eq. (6-3), the piecewise nonlinear ODE governing the phase deviation response

Chapter 6. Injection-Locked Oscillator Simulation 94

α(t) of the ILO is given as:

1 1

2 1 2

1

(()) () for 0 ()

(()) () for ()()

(()) () for () 1k k

f t t b t t t t

f t t b t t t t td t

dt

f t t b t t t t

 

 

 

    


    
 

     

 (6-6)

Time (UI)

P
P

V
 (

A
-1

)

fi: 3rd-degree polynomial p0 + p1t + p2t
2
 + p3t

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1200

-800

-400

0

400

800

1200

SpectreRF
PWP fitted

f1(t)

f2(t) f3(t)

f4(t)

Fig. 6.1 Piecewise polynomial expansion example of a PPV extracted by SpectreRF.

For a given segment of the piecewise nonlinear ODE in Eq. (6-5), the phase

response to an input event is computed in the same way as the Volterra series model

in Chapter 5. The ODE segments listed in Eq. (6-5) are nonlinear ODEs, since each

of their right-hand side expressions contains a polynomial function of the phase

deviation, α(t). When the ODE segment response is assumed to be a sum of multiple

distortion-order responses (i.e., α(t)=α1(t)+α2(t)+α3(t)+...), a perturbation method in

[37] decomposes the nonlinear ODE of Eq. (6-5) into a set of linear ODEs, each of

which governs a different distortion-order response. If a small perturbation is given

as an input, εb(t), with an arbitrarily small scalar value ε, α(t) takes the form of Eq.

Chapter 6. Injection-Locked Oscillator Simulation 95

(6-7) assuming that the nonlinear distortion terms generate harmonics at their

degrees:

         2 3

1 2 3

i

it t t t t            (6-7)

Since Eq. (6-7) should satisfy the system equation in Eq. (6-5) for an arbitrary ε,

a set of differential equations is obtained by equating each ε
i
-coefficient to zero. For

instance, if the PPV is described using a second-order piecewise polynomial (i.e.,

fi(t)=p0+p1t+p2t
2
) and the phase response, α(t), is approximated up to its third-order

distortions, the system equation for a given segment becomes:

  
      

3

2
1 3 3

0 1 21 1
()

i

ii i i

i ii i

d t
p p t t p t t b t

dt

 
    



 
     


  (6-8)

By equating each of the ε
i
-coefficients to zero, the set of the decomposed ODEs are

 

 

 

21
0 1 2

2
1 1 2 1

23
1 2 2 2 2 1

()
()

()
() 2 () ()

()
() 2 () () ()

d t
p p t p t b t

dt

d t
p t p t t b t

dt

d t
p t p t t p t b t

dt




 


  

   

  

   

. (6-9)

With the input signal b(t) already in a form of Eq. (2-4), right-hand side of Eq. (6-9)

also takes the same form as in Eq. (2-4), as they are products between polynomials

and exponentials. As αi(t) corresponds to an integration of each of these expressions,

each distortion-order response can be computed in an event-driven fashion by

converting the right-hand side expression into Laplace s-domain using Eq. (2-5) and

multiplying it by 1/s. The overall response, α(t), of the nonlinear ODE segment is a

sum of these multiple distortion-order responses, α1(t), α2(t), ... , αi(t), and its initial

condition. The number of distortion-order responses required to accurately describe

Chapter 6. Injection-Locked Oscillator Simulation 96

the oscillator's behavior depends on how strongly nonlinear the circuit is.

Due to the piecewise representation of the PPV, the phase t+α(t) crossing the

piecewise interval boundaries triggers additional phase computations. In other words,

every time the phase advances to the new polynomial segment, the phase deviation,

α(t), should be re-computed based on a corresponding polynomial in Eq. (6-6).

Whenever a new analytical α(t) is computed, the time, tn, when the phase crosses the

current phase interval boundary is found and the next phase computation event is

scheduled. Since an ILO typically has a narrow locking range, the crossing time, tn,

can be found via an efficient bisection search algorithm with an narrow initial search

range. For instance, it is still conservative to use (t, t+2/k] as the search range where

t is the current time in a unit interval (UI) and k is the number of piecewise segments

over one period.

Fig. 6.2 summarizes the simulation flow of the aforementioned procedure for

computing the phase deviation response, α(t). Assuming that the initial condition for

α(t) is given, a proper nonlinear ODE segment that corresponds to the current phase

t+α(t) is chosen. Upon the arrival of each input event, the α(t) of the chosen

nonlinear ODE segment is computed as a sum of multiple distortion-order responses,

each of which can be obtained by solving a linear differential equation in Eq. (6-9).

Every time the analytical expression for the phase response α(t) is updated, the time,

tn, when the phase t+α(t) crosses the interval boundary of the current ODE segment

is computed and a Verilog event is scheduled at tn. When the time advances to tn, the

scheduled event is triggered and the phase response, α(t), is re-computed using the

next ODE segment while preserving the state variable α(t) (i.e. an initial condition

for the next segment). If a new input event arrives before the time reaches tn, α(t) is

Chapter 6. Injection-Locked Oscillator Simulation 97

re-evaluated using the current ODE segment and a new tn value is computed. In this

case, the previously-scheduled event at tn is rescheduled according to this new tn

value.

Chapter 6. Injection-Locked Oscillator Simulation 98

Initial

 - Trigger a phase-crossing event at t=0

always @(phase-crossing event) begin

 - Select fi(·) based on t+α(t)

 - Solve the ODE (Eq. (10)) for the new α(t)

 - Find the next crossing time tn

 satisfying tn+α(tn)=ti
 - Schedule a phase-crossing event at t=tn
end

always @(input event) begin

 - Solve the ODE (Eq. (10)) for the new α(t)

 - Find the next crossing time tn

 satisfying tn+α(tn)=ti
 - Reschedule a phase-crossing event at t=tn
end

Select fi(·) based on t+α(t)

Update α(t) by solving Eq. (10)

Find tn satisfying tn+α(tn)=ti

Schedule a phase-crossing

event at t=tn

Wait for the next event

Initial event

Phase-crossing eventInput event

event computation(a)

(b)

Fig. 6.2 The procedure for the event-driven simulation of the ILO model using a

piecewise polynomial expansion of the PPV: (a) a process flowchart and (b) Verilog

pseudo-code.

Chapter 6. Injection-Locked Oscillator Simulation 99

6.2 LC Oscillator

The first example is an 1-GHz LC oscillator frequently used in many papers on

the PPV-based macromodel [51], [55] (Fig. 6.3). The governing differential

equations of this LC oscillator are

()()
() () tanh ()

() ()

 
     

 



nG v td v t
C v t i t S b t

dt R S

d
L i t v t

dt

, (6-10)

where L, R, and C are the inductance, resistance, and capacitance of the LC tank,

respectively, and S and Gn are the parameters of the nonlinear negative resistor. The

parameter values used for this example are L=4.869x10
-7

/2π, C=2x10
-12

/2π, R=100,

S=1/R, and Gn= –1.1/R.

v(t)b(t) L C R Gm

Nonlinear

i(t)

Fig. 6.3 An LC oscillator example [51]

Chapter 6. Injection-Locked Oscillator Simulation 100

6.2.1 System Model

Fig. 6.4(a) and (b) show the oscillating waveform and PPV of the LC oscillator

(Fig. 6.3) at the v(t) node that are both simulated using SpectreRF. The simulated

PPV is divided into equally-spaced 16 segments, each curve-fitted to a first-degree

polynomial (i.e. piecewise linear) function having a least mean square (LMS) error

(Fig. 6.4(b)). While the uniform piecewise interval is demonstrated in this example,

the non-uniform piecewise interval can also be used to reduce the PPV-fitting error

without increasing the number of piecewise intervals.

Time (ns)

P
P

V
 (

A
-1

)

Time (ns)

v
(t

)
(V

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.4

0

0.4

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1200

-800

-400

0

400

800

1200

SpectreRF
PWP fitted

(a)

(b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.8

-0.4

0

0.4

0.8

Fig. 6.4 (a) its oscillating output waveform and (b) measured perturbation projection

vector (PPV) at node v(t).

Chapter 6. Injection-Locked Oscillator Simulation 101

6.2.2 Simulation Results

Fig. 6.5 shows that the proposed method accurately simulates the ILO's response

to a step change of the input clock phase. First, the oscillator is injection-locked to a

sinusoidal signal at a 1GHz frequency. The input signal, b(t), changes its polarity at

10ns (i.e. a phase shift of π), as shown in Fig. 6.5(a). After the input signal’s phase

change, the oscillator phase starts to decrease following the input signal phase and

reaches π at 40ns (Fig. 6.5(b)). The phase change simulated with the proposed

method is compared with the Spectre simulation in Fig. 6.5(c). The maximum phase

difference between two simulations for [0:50ns] was 0.15-rad.

To examine the accuracy and speed dependencies on the piecewise polynomial

(PWP) approximation of the PPV, the maximum phase errors in the aforementioned

phase-shift test bench are measured for various numbers of PWP intervals and

degrees of polynomials. In this test, the nonlinear ODE is decomposed up to the

second-order distortion. Fig. 6.6 shows the measured phase errors between the

proposed method and Spectre simulations. The phase error decreases as the number

of intervals increases and the degree of polynomials increases (Fig. 6.6(a)). However,

the phase error rapidly reaches its minimum as the number of intervals increases. In

fact, the case with 32 intervals has the same phase error as the case with 16 intervals.

On the other hand, the simulation runtime increases in proportion to the number of

intervals and degree of polynomials (Fig. 6.6(b)). This is because the larger number

of intervals increases the phase update events and the higher degree of polynomials

increases the computation required for each event. With the maximum error

tolerance at 0.2-rad, the case with 16 intervals and first-order polynomial has the

Chapter 6. Injection-Locked Oscillator Simulation 102

fastest simulation time with 9.5sec. For reference, the equivalent simulation in

Spectre took 16.2 sec.

To examine the accuracy and speed dependencies on the distortion orders

included in the nonlinear ODE decomposition, the worst-case phase error is

P
h

a
s
e

 (
ra

d
)

E
rr

o
r

(r
a

d
)

Time (ns)

0 10 20 30 40 50

-3

-2

-1

0

Spectre
Proposed

7 8 9 10 11 12 13
-100

0

100

Time (ns)

Time (ns)

b
(t

)
(μ

A
)

Phase shift of π

(a)

(b)

(c)
0 10 20 30 40 50

-0.2

-0.1

0

0.1

0 10 20 30 40 50
-0.2

-0.1

0

0.1

Fig. 6.5 (a) A phase shift of π in the input perturbation b(t), (b) a locking transient of

the ILO phase, and (c) a simulation error in ILO's phase response compared to

Spectre simulation.

Chapter 6. Injection-Locked Oscillator Simulation 103

measured while varying the maximum distortion-order included in the phase in Eqs.

(6-7)-(6-9). In this case, the PPV is curve-fitted to a piecewise linear function. Fig.

6.6(c) shows that the phase error decreases as the maximum distortion order

increases to 2, but has rapidly diminishing returns as the order increases past 2. On

the other hand, Fig. 6.6(d) shows that the simulation time grows super-linearly with

the maximum distortion order due to the large amount of computation required for

the higher distortion-order responses. Considering this trade-off between accuracy

and speed, it is best to use the maximum distortion order of 2.

1 2 3
0

0.5

1

1.5

Degree of Polynomial

P
ha

se
 E

rr
or

 (r
ad

s)

Num. seg = 32
Num. seg = 16
Num. seg = 8
Num. seg = 4

P
h

a
s
e

 E
rr

o
r

(r
a

d
)

Degree of Polynomial(a)
1 2 3

0

20

40

60

80

100

120

Degree of Polynomial

S
im

. T
im

e
(s

ec
)

Num. seg = 32
Num. seg = 16
Num. seg = 8
Num. seg = 4

1 2 3
0

10

20

30

40

Order of Distortion

S
im

. T
im

e
(s

ec
)

Num. seg = 32
Num. seg = 16
Num. seg = 8
Num. seg = 4

1 2 3
0

0.5

1

1.5

2

2.5

Order of Distortion

P
ha

se
 E

rr
or

 (r
ad

s)

Num. seg = 32
Num. seg = 16
Num. seg = 8
Num. seg = 4

S
im

u
la

ti
o

n
 T

im
e

 (
s
e

c
)

Degree of Polynomial(b)

P
h

a
s
e

 E
rr

o
r

(r
a

d
)

Distortion Order(c)

S
im

u
la

ti
o

n
 T

im
e

 (
s
e

c
)

Distortion Order(d)

Fig. 6.6 The worst-case phase errors and execution times while varying the degree of

piecewise polynomials describing the PPV ((a) and (b), respectively) and maximum

distortion order included while solving each piecewise nonlinear ODE ((c) and (d),

respectively).

Chapter 6. Injection-Locked Oscillator Simulation 104

6.3 Ring Oscillator

The second example is a 7.2-GHz, 7-stage ring oscillator in the CMOS process

(Fig. 6.7). Injection-locked ring oscillators are frequently used in recent low-power

PLL applications, as it can suppress the noise-sensitive ring oscillator jitters by

periodically injecting a clean reference signal. However, its limited locking range

and static phase offset should be verified for the correct PLL operation. In addition,

a ring oscillator has a non-sinusoidal PPV with its peak sensitivities located near the

clock edge transition timings. This can demonstrate the applicability of the proposed

PPV-based model with the piecewise polynomial expansion.

b(t)=Ainjsin(ωinjt)

Vout

90nm/45nm

180nm/45nm

(a) (b)

stage 1 stage 2 stage 7

Fig. 6.7 (a) A 7-stage injection-locked ring oscillator and (b) a circuit schematic of each

stage.

Chapter 6. Injection-Locked Oscillator Simulation 105

6.3.1 System Model

For the ring oscillator shown in Fig. 6.7(a), the input injection signal

b(t)=Ainjsin(ωinjt) is connected at the output node of the first stage. Fig. 6.8 shows its

oscillating waveform, Vout, and measured PPV at the injection node. The PPV is

fitted into a piecewise linear function with 16 equally-spaced intervals, as shown in

Fig. 6.8(b). The governing nonlinear ODE of the oscillator's phase response is

decomposed up to the second-order distortion.

0 20 40 60 80 100 120 140
-0.2

0
0.2
0.4

0.6
0.8

1

1.2

0 20 40 60 80 100 120 140
-16k
-12k

-8k
-4k

0
4k
8k

12k
16k

SpectreRF
PWP fitted

Time (ps)

P
P

V

Time (ps)

V
o

u
t
(V

)

(a)

(b)
0 20 40 60 80 100 120 140

-0.2

0
0.2
0.4

0.6
0.8

1

1.2

Fig. 6.8 (a) An oscillating waveform of the ring oscillator and (b) a measured

perturbation projection vector (PPV) at the injection node.

Chapter 6. Injection-Locked Oscillator Simulation 106

6.3.2 Simulation Results

Fig. 6.9 shows the simulated injection-locking and pulling behaviors of the ring

oscillator in comparison with the Spectre simulation. For the injection-locking case,

a 7.27-GHz sinusoidal signal with 4μA amplitude is injected at time 10ns. Under

this strong injection, the frequency is locked to the injection frequency and there is

no further phase shift after 20ns, as shown in Fig. 6.9(a) and Fig. 6.9(b). On the

other hand, Fig. 6.9(c) and Fig. 6.9(d) show the frequency and phase waveforms of

the oscillator when a 7.27-GHz sinusoidal signal with 2.5μA amplitude is injected.

In this case, the injected signal frequency is just above the lock range and the ring

oscillator shows injection-pulling. When the oscillator is injection-pulled, it mostly

behaves as if it is locked to the injection (the quasi-lock shown in Fig. 6.9(d)), but

periodically undergoes a rapid 2π phase shift returning to the quasi-lock condition

(i.e., the phase slip shown in Fig. 6.9(d)) [38]. As shown in Fig. 6.9, the waveforms

simulated with the proposed method agree with the Spectre simulation. For the 70-

ns simulation period shown in Fig. 6.9, the worst-case phase errors for the injection-

locking and injection-pulling cases were 0.074-rad and 0.105-rad, respectively. On

the other hand, the execution times of simulating the longer 1μs period were 12.5

seconds for the proposed method and 387.6 seconds for Spectre, which shows a

speed-up of 31×. This larger speed-up compared to the previous LC oscillator case is

because Spectre simulation is slower for the transistor-level circuits than the RLC

passive circuits. In contrast, PPV-based macromodels abstract these circuit-level

details and achieve the same simulation speeds that depend only on the polynomial

degree and number of piecewise intervals.

Chapter 6. Injection-Locked Oscillator Simulation 107

10 20 30 40 50 60 70
7.05

7.1

7.15

7.2

7.25

7.3

7.35

Spectre
Proposed

10 20 30 40 50 60 70
-8

-7

-6

-5

-4

-3

-2

-1

0

Spectre
Proposed

10 20 30 40 50 60 70
7.05

7.1

7.15

7.2

7.25

7.3

Spectre
Proposed

10 20 30 40 50 60 70
-20

-16

-12

-8

-4

0

Spectre
Proposed

Time (ns)

F
re

q
u

e
n

c
y
 (

G
H

z
)

(a)

Time (ns)

P
h

a
s
e

 (
ra

d
)

(b)

Time (ns)

F
re

q
u

e
n

c
y
 (

G
H

z
)

(c)

Time (ns)

P
h

a
s
e

 (
ra

d
)

(d)

7.27-GHz 4μA sinusoid injected

7.27-GHz 2.5μA sinusoid injected

Quasi-lock Phase slip

2π

Fig. 6.9 (a) Frequency and (b) phase waveforms when the ring oscillator is injection-

locked. (c) Frequency and (d) phase waveforms when the ring oscillator is injection-

pulled.

Chapter 6. Injection-Locked Oscillator Simulation 108

Fig. 6.10 is the minimum injection strength needed to acquire a lock and the

simulated static phase offset after lock at various injection frequencies. Fig. 6.10(a)

plots the minimum injection amplitude, Ainj, required for the oscillator to acquire the

lock as a function of injection frequencies normalized to the self-oscillating

frequency, ω0. Fig. 6.10(a) shows that the larger injection amplitude is required as

the frequency offset of the injection signal becomes larger. For the same frequency

offsets (e.g. ωinj/ω0=0.96 and 1.04), the ring oscillator can lock to the lower

frequency (i.e. ωinj/ω0=0.96) with the smaller injection amplitude. Fig. 6.10(b)

measures the static phase offsets of the output signal compared to the injection

signal at different injection frequencies. For injection frequencies higher than ω0, the

output signal lags behind the injection signal. For frequencies lower than ω0, the

output leads the injection signal. As expected, the phase offsets between the output

and injection signals are smaller for a stronger injection. All the simulation results

agree with the Spectre simulations.

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Spectre
Proposed

ωinj/ω0

P
h

a
s
e

 O
ff
s
e

t
(U

I)

Ainj = 10μA

Ainj = 20μA

ωinj/ω0

A
in

j (
μ

A
)

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0

5

10

15

20

25

30

35

Spectre
Proposed

(a)
(b)

Fig. 6.10 (a) Minimum injection amplitude required for injection-locking and (b) static

phase offset between the output and the input injection signal for different injection

frequencies.

Chapter 6. Injection-Locked Oscillator Simulation 109

6.4 Burst-Mode Clock and Data Recovery

The third example is a 20Gb/s burst-mode clock recovery using an LC oscillator

[44]. Some communication networks require immediate clock extraction as soon as

a data packet arrives (i.e. burst-mode operation). The burst-mode clock recovery is

one of ILO's key applications that take advantage of its virtually instantaneous

locking capability. In this example, the lock time and lock range are the key

performance specifications. Another difference from the previous examples is that

the input is an aperiodic random data stream. This example examines if the model

can accurately handle such aperiodic perturbations.

D Q

Din

Dd

Vp Vout

Dodelay

Fig. 6.11 Burst-mode clock recovery circuits [44].

Chapter 6. Injection-Locked Oscillator Simulation 110

6.4.1 System Model

The block diagram of the burst-mode clock recovery circuits is shown in Fig.

6.11. The input, Din, and its delayed replica, Dd, are XORed to generate pulses, Vp,

at every data transition. Furthermore, Vp has spectral components at the harmonic

frequencies of the data rate, which is fed to the LC oscillator to lock its frequency at

the data rate. The circuit schematics and parameter values of the LC oscillator used

in this example are given in Fig. 6.12(a), and Vp is injected through the gm-stage of

b(t). Fig. 6.12(b) and Fig. 6.12(c) show the simulated output waveform and the

measured LC oscillator PPV. Again, the PPV is modeled as a piecewise linear

function with 16 equally-spaced intervals and the governing nonlinear ODE is

decomposed to the second order distortion.

Chapter 6. Injection-Locked Oscillator Simulation 111

Ibias

L C

b(t)=gmVp(t)

Vout(t)

W/L

0 10 20 30 40 50
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

VDD

Parameter

L

C

gm

W/L

VDD

Ibias

Value

0.4 nH

158 fF

0.4 mS

180nm/45nm

1.5 V

1.2 mA

Time (ns)

P
P

V
(A

-1
)

Time (ns)

V
o

u
t
(V

)

(b)

(c)

(a)

0 10 20 30 40 50
-160
-120

-80
-40

0
40
80

120
160

SpectreRF
PWP fitted

Fig. 6.12 (a) An LC oscillator used for the burst-mode clock recovery, (b) its oscillating

waveform, and (c) PPV at the output node.

Chapter 6. Injection-Locked Oscillator Simulation 112

6.4.2 Simulation Results

Fig. 6.13 shows its phase waveform getting injection-locked to a 20.02-Gb/s

pseudo-random bit stream (PRBS) input. Note that the injected data rate is higher

than the free-running oscillator frequency. Therefore, in the zoomed-in Fig. 6.13(b)

and Fig. 6.13(c), the phase advances to the higher values when there are the input

pulses injected into the oscillator and drifts towards the lower values when there is

no input pulse. Fig. 6.13 shows the agreement between the proposed method and

Spectre simulation. The measured worst-case phase error in this simulation period

for 20ns was 0.117-rad. As for the execution times, the proposed method took

31.9secs for 1-μs simulation while Spectre took 134secs, which demonstrated a 4×

speed-up.

Fig. 6.14 plots the simulated lock time of the burst-mode clock recovery circuits

when the input signal is injected to the LC oscillator with different initial phase

offsets. For instance, when the injection signal has an initial phase offset of 0.56UI,

the CDR takes the longest at 6.3ns to acquire the phase lock. On the other hand, the

CDR can achieve the phase lock almost instantaneously (i.e. lock time=0) when the

initial phase offset is 0-UI. Fig. 6.14 shows the discrepancies in the simulated lock

times compared to the Spectre simulation for the phase offset values near 0.56UI. In

Spectre simulations under these conditions, the LC oscillator experiences

considerable amplitude changes during the locking transition shown in Fig. 6.15.

Our model cannot capture this behavior since it neglects the amplitude deviation

when assuming a sufficiently weak perturbation. Proving that the error is due to the

limitation of the phase-domain-only model and not due to the proposed event-driven

Chapter 6. Injection-Locked Oscillator Simulation 113

method, the PPV-based model written in Verilog-A [55] gave the same results as our

event-driven model in Fig. 6.14. For reference, the same 1-μs simulation took

47.7sec for the Verilog-A model.

6 6.2 6.4 6.6 6.8 7
-1.6

-1.5

-1.4

-1.3

-1.2

Spectre
Proposed

0 5 10 15
-2

-1.6

-1.2

-0.8

-0.4

0

Spectre
Proposed

6 6.2 6.4 6.6 6.8 7

0

0.5

1

Time (ns)

Time (ns)

V
p
 (

V
)

(c)

Vp injected

P
h

a
s
e

 (
ra

d
)

(a)

P
h

a
s
e

 (
ra

d
)

(b)

Fig. 6.13 (a) A locking transient of the burst-mode clock recovery and (b) its zoomed-in

view (c) with the input signal Vp.

Chapter 6. Injection-Locked Oscillator Simulation 114

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Injection Delay (UI)

Lo
ck

 T
im

e
(n

se
c)

Spectre
Proposed
Verilog-A

Initial Phase Offset (UI)

L
o

c
k
 T

im
e

 (
n

s
)

Fig. 6.14 A lock time of the burst-mode clock recovery circuit for different initial phase

offsets of the input from the LC oscillator.

1.5 2.5 3.5 4.5
-1.5

-1

-0.5

0

0.5

1

1.5

V
o

u
t
(V

)

Time (ns)

Vp injected

Fig. 6.15 An output waveform of the LC oscillator for the case with an initial phase

offset of 0.56UI.

Chapter 6. Injection-Locked Oscillator Simulation 115

Finally, Fig. 6.16 measures the minimum amplitude of the injection current, b(t),

to achieve a phase lock for different input data rates. As expected, the clock

recovery circuit requires a larger injection current if the input data rate deviates from

its self-oscillating frequency. Fig. 6.16 also shows that the clock recovery circuit

needs a large injection current when the input signal, Vp, has a short pulse width.

This is because the spectral power at the data rate depends on its pulse width, which

is controlled by the delay in Fig. 6.11. For instance, the spectral power with a 0.25-

UI pulse width is 1/ 2 of that with a 0.5-UI pulse width [44]. Fig. 6.16 agrees well

with this theory in that the required amplitude of b(t) with the 0.25-UI delay is

1/ 2 × lower than that with 0.5-UI delay.

0.997 0.998 0.999 1 1.001 1.002 1.003
0

10

20

30
40

50

60

70
80

90

100

110
120

Normalized Injection Frequency

A
m

p
lit

ud
e

(
A

)

Spectre
Proposed

≈√2

delay=0.25UI

delay=0.5UI

ωinj/ω0

M
in

im
u

m
 A

in
j r

e
q

u
ir
e

d
 f
o

r
lo

c
k
 (
μ

A
)

Fig. 6.16. The minimum injection amplitude required for the burst-mode clock

recovery circuit to achieve a phase lock for different data rates.

Conclusion 116

Conclusion

This work proposes an event-driven simulation methodology for analog/mixed-

signal behaviors. The proposed method is implemented on a single digital logic

simulation platform, SystemVerilog, without relying on an additional analog

simulator. Its simulation is fast and independently accurate of the simulator's time-

step. This advantage stems from two newly introduced signal-type definitions of

clock and analog signals: xbit and xreal, respectively. By supplementing a real-value

time offset to the xbit-type signal and a set of coefficients describing the functional

form to the xreal-type signal, these signals achieve virtually infinite time resolution

without relying on a fine time-step. Moreover, this xreal functional form enables

truly event-driven simulations of analog signals: when there is a change event to the

input coefficients, the output coefficients are updated only once. The computation

for this update is fully algebraic, and there is no numerical iteration or time-step

integration involved.

The proposed method is demonstrated for various analog/mixed-signal systems.

First, for a high-speed I/O interface example, the proposed method accurately

simulated jitter performances of clock-generating circuits, such as phase-locked

loops and clock and data recovery. Also, simulated continuous-time waveforms of

linear blocks, such as channels and linear equalizers, were in good agreement with

Verilog-A models, achieving a 45x speed-up. Second, for switching power supply

Conclusion 117

examples, the proposed method showed SPICE-level accuracy with 20~100x faster

simulation speed for switched linear systems such as AC-DC boost converters and

DC-DC switched-capacitor converters. Furthermore, the proposed method was

applied to simulate nonlinear behaviors modeled by a Volterra series. The simulation

results showed that it can accurately estimate system performance degradation due

to circuit nonlinearities (e.g. a spectral regrowth in an RF transmitter and an eye-

opening reduction in a multi-level pulse amplitude modulation transceiver). For both

examples, the simulation speed was 300~1000x faster compared to SPICE

simulations. Finally, the proposed method was extended to simulate time-varying

nonlinear behaviors of injection-locked oscillators. The injection-locked oscillator

was modeled based on a perturbation projection vector phase-domain macromodel.

Using three examples (an LC oscillator, a ring oscillator, and burst-mode clock

recovery circuits), the proposed method achieved the same level of accuracy with

2~30x speed-ups compared to the Spectre simulation.

Bibliography 118

Bibliography

[1] I. Vassiliou, et al., “A single-chip digitally calibrated 5.15-5.825-GHz

0.18-μm CMOS transceiver for 802.11a wireless LAN,” IEEE J. Solid-State

Circuits, pp. 2221-2231, Dec. 2003.

[2] S. Son, et al., “A 2.3-mW, 5-Gb/s low-power decision-feedback

equalizing receiver front-end and its two-step, minimum bit-error-rate

adaptation algorithm,” IEEE J. Solid-State Circuits, pp. 2693-2704, Nov. 2013.

[3] R.A. Cottrell, “Event-driven behavioural simulation of analogue transfer

functions,” in Proc. the European Publication Design Automation Conference

(EDAC), pp. 240-243. Mar. 1990.

[4] J. Mentzer and T. Wey, “A Verilog mixed signal model of a 10-bit

pipeline analog-to-digital converter,” in Proc. IEEE Behavioral Modeling and

Simulation (BMAS) Workshop, pp. 115-119, Sep. 2006.

[5] Y. Wang, et al., “Event driven analog modeling for the verification of

PLL frequency synthesizers,” in Proc. IEEE Behavioral Modeling and

Simulation (BMAS) Workshop, pp. 25-30, Sep. 2009.

[6] K. Kundert and O. Zinke, The designer's guide to Verilog-AMS. New

York: Springer, 2004.

Bibliography 119

[7] R. B. Staszewski, “Top-down simulation methodology of a mixed-signal

read channel using standard VHDL,” in Proc. IEEE Dallas Circuits and

Systems Workshop on System-on-Chip (DCAS), pp. 1-4, Nov. 2007.

[8] G. D. Cataldo, et al., “Modeling of feedback analog circuits with VHDL,”

in Proc. 13th IEEE International Conf. Electronics, Circuits and Systems

(ICECS), pp. 882-885, Dec. 2006.

[9] M. Schubert, “An analog-node mode for VHDL-based simulation of RF

integrated circuits, ” IEEE Trans. Circuits and Systems I: Regular Papers, pp.

2717-2725, Dec. 2009.

[10] C. Wegener, “Method of modeling analog circuits in Verilog for mixed-

signal design simulations,” in Proc. IEEE European Conf. Circuit Theory and

Design (ECCTD), pp. 1-5, Sep. 2013.

[11] A. Demir, et al., “Behavioral simulation techniques for phase/delay-

locked systems, ” in IEEE Custom Integrated Circuits Conf. (CICC), pp. 453-

456, May 1994.

[12] M.H. Perrot, “Fast and accurate behavioral simulation of fractional-N

frequency synthesizers and other PLL/DLL circuits” in Proc. Design

Automation Conf. (DAC), pp. 498 - 503, Jun. 2002.

[13] S. Liao and M. Horowitz, “A Verilog piecewise-linear analog behavior

model for mixed-signal validation,” IEEE Trans. Circuits and Systems I:

Bibliography 120

Regular Papers, pp. 2229-2235, Aug. 2014.

[14] S. Joeres, et al,. “Event driven analog modeling of RF frontends” in

Proc. IEEE Behavioral Modeling and Simulation (BMAS) Workshop, pp. 46-

51, Sep. 2007.

[15] R. B. Staszewski, et al., “Event-driven simulation and modeling of phase

noise of an RF oscillator,” IEEE Trans. Circuits and Systems I: Regular

Papers, pp. 723-733, Apr. 2005.

[16] M. Ierssel, et al., “Event-driven modeling of CDR jitter induced by

power-supply noise, finite decision-circuit bandwidth, and channel ISI,” IEEE

Trans. Circuits and Systems I: Regular Papers, pp.1306-1315, Jun. 2008.

[17] C. Hedayat, et al., “Modeling and characterization of the 3rd order

charge-pump PLL: a fully event-driven approach,” International J. Analog

Integrated Circuits and Signal Processing, pp. 25-45, Apr. 1999.

[18] M.-J. Park, et al., “Fast and accurate event-driven simulation of mixed-

signal systems with data supplementation,” in Proc. IEEE Custom Integrated

Circuits Conf. (CICC), pp. 1-4, Sep. 2011.

[19] J.-E. Jang, et al., “True event-driven simulation of analog/mixed-signal

behaviors in SystemVerilog: a decision-feedback equalizing (DFE) receiver

example,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp.1-4,

Sep. 2012.

Bibliography 121

[20] S. A. Maas, Nonlinear Microwave and RF Circuits, 2
nd

. Ed., Norwood,

MA: Artech House, 2003, ch. 4.

[21] A. Novak, et al., “Nonlinear system identification using exponential

swept-sine signal,” IEEE Trans. Instrumentation and Measurement, pp. 2220-

2229, Aug. 2010.

[22] M. Schoukens, et al., “Parametric identification of parallel Hammerstein

systems,” IEEE Trans. Instrumentation and Measurement, pp. 3931-3938, Dec.

2011.

[23] IEEE Standard for SystemVerilog -- Unified Hardware Design,

Specification, and Verification Language, IEEE 1800 SystemVerilog

Language Working Group, Feb. 2013.

[24] B. Razavi, Monolithic phasae-locked loops and clock recovery circuits,

Piscataway, NJ: IEEE Press, 1996.

[25] Verilog-A model library, http://www.designers-guide.org/VerilogAMS,

retrieved on 1 Aug. 2014.

[26] M. Takahashi, et al., “VCO jitter simulation and its comparison with

measurement,” in Proc. Asia and South Pacific Design Automation Conf.

(ASP-DAC), pp. 85-89, Jan. 1999.

[27] R. W. Erickson and D. Maksimovic, Fundamentals of Power

Bibliography 122

Electronics, 2
nd

 Ed., New York: Springer, 2001.

[28] J. H. Alimeling and W. P. Hammer, “PLECS-piece-wise linear electrical

circuit simulation for Simulink,” in Proc. IEEE International Conf. Power

Electronics and Drive Systems (PEDS), pp. 355-360, Jul. 1999.

[29] D. Maksimovic, et al., “Modeling and simulation of power electronic

converters,” in Proc. of the IEEE, pp. 898-912, Jun. 2001.

[30] H. Jin, “Behavior-mode simulation of power electronic circuits,” IEEE

Trans. Power Electronics, pp. 443-452, Mar. 1997.

[31] G.W. Wester, et al., “Low-frequency characterization of switched dc-dc

converters,” IEEE Trans. Aerospace and Electronic Systems, pp. 376-385, Mar.

1973.

[32] E. Dijk, et al., “PWM-switch modeling of DC-DC converters,” IEEE

Trans. Power Electronics, pp. 659-665, Jun. 1995.

[33] B. Singh, et al., “A review of single-phase improved power quality AC-

DC converters,” IEEE Trans. Industrial Electronics, pp. 962-981, May 2003.

[34] H.-P. Le, et al., “Design techniques for fully integrated switched-

capacitor DC-DC converters,” IEEE J. of Solid-State Circuits, pp. 2120-2131,

Sep. 2011.

[35] A. Zhu, et al., “An efficient Volterra-based behavioral model for

Bibliography 123

wideband RF power amplifiers, ” in IEEE MTT-S Int'l Microwave Symposium

Dig., pp. 787-790, Jun. 2003.

[36] T. Toifl, et al., “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI

technology,” IEEE J. Solid-State Circuits, pp. 954-965, Apr. 2006.

[37] J. Roychowdhury, “Reduced-order modeling of time-varying systems,”

IEEE Trans. Circuit and Systems II: Analog and Digital Signal Processing, pp.

1273-1288, Oct. 1999.

[38] B. Razavi, “A study of injection locking and pulling in oscillators,”

IEEE J. Solid-State Circuits, pp. 1415-1424, Sep. 2004.

[39] J. Lee and H. Wang, “Study of subharmonically injection-locked PLLs,”

IEEE J. Solid-State Circuits, pp. 1539-1553, May. 2009.

[40] S. Ye, et al., “A multiple-crystal interface PLL with VCO realignment to

reduce phase noise,” IEEE J. Solid-State Circuits, pp. 1795-1803, Dec. 2002.

[41] H.R. Rategh and T.H. Lee, “Superharmonic injection-locked frequency

dividers,” IEEE J. Solid-State Circuits, pp. 813-821, Sep. 1999.

[42] A. Mirzaei, et al., “The quadrature LC oscillator: a complete portrait

based on injection locking,” IEEE J. Solid-State Circuits, pp. 1916-1931, Sep.

2007.

[43] I.-T. Lee, et al., “A 4.8-GHz dividerless subharmonically injection-

Bibliography 124

locked all-digital PLL with a FOM of 252.5 dB,” IEEE Trans. Circuits and

Systems II: Express Briefs, pp. 547-551, Jul. 2013.

[44] J. Lee and M. Liu, “A 20-Gb/s burst-mode clock and data recovery

circuit using injection-locking technique,” IEEE J. Solid-State Circuits, pp.

619-630, Mar. 2008.

[45] A. Demir and J. Roychowdhury, “Phase noise in oscillators: a unifying

theory and numerical methods for characterization,” IEEE Trans. Circuits and

Systems I: Regular Papers, pp. 655-674, May 2000.

[46] R. Adler, “A study of locking phenomena in oscillators,” in Proc. of the

IEEE, pp. 1380-1385, Oct. 1973.

[47] P. Bhansali and J. Roychowdhury, “Gen-Adler: the generalized Adler's

equation for injection locking analysis in oscillators,” in Proc. Asia and South

Pacific Design Automation Conf. (ASP-DAC), pp. 522-527, Jan. 2009.

[48] A. Hajimiri and T.H. Lee, “A general theory of phase noise in electrical

oscillators,” IEEE J. Solid-State Circuits, pp. 179-194, Feb. 1998.

[49] Paolo Maffezzoni, “Analysis of oscillator injection locking through

phase-domain impulse-response,” IEEE Trans. Circuits and Systems I:

Regular Papers, pp. 1297-1305, Jun. 2008.

[50] P. Vanassche, et al., “On the difference between two widely publicized

Bibliography 125

methods for analyzing oscillator phase behavior,” in Proc. International Conf.

Computer Aided Design (ICCAD), pp. 229-233, Nov. 2002.

[51] X. Lai and J. Roychowdhury, “Capturing oscillator injection locking via

nonlinear phase-domain macromodels,” IEEE Trans. Microwave Theory and

Techniques, pp. 2251-2261, Sep. 2004.

[52] X. Lai and J. Roychowdhury, “Fast PLL simulation using nonlinear

VCO macromodels for accurate prediction of jitter and cycle-slipping due to

loop non-idealities and supply noise,” in Proc. Asia and South Pacific Design

Automation Conf. (ASP-DAC), pp. 459-464, Jan. 2005.

[53] A. Demir and J. Roychowdhury, “A reliable and efficient procedure for

oscllator PPV computation, with phase noise macromodeling applications,”

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, pp.

188-197, Feb. 2003.

[54] J. Roychowdhury, “Exact analytical equations for predicting nonlinear

phase errors and jitter in ring oscillators,” in Proc. International Conf. VLSI

Design (ICVD), pp. 516-521, Jan. 2005.

[55] B. Gu, et al., “Implementing nonlinear oscillator macromodels using

Verilog-AMS for accurate prediction of injection locking behaviors of

oscillators,” in Proc. IEEE Behavioral Modeling and Simulation (BMAS)

Workshop, pp. 43-47, Sep. 2005.

초 록

최근 시스템온칩은 아날로그와 디지털 회로가 긴밀하게 연결되어 디자

인 되고있다. 따라서 시스템온칩을 빠르고 체계적으로 검증하기 위해서는

효율적인 혼성 신호 시뮬레이터가 필요하다. 하지만, 현존하는 시뮬레이터

들은 아날로그 회로를 시뮬레이션할 때 시뮬레이션 속도와 정확도가 서로

상충되어 효율적인 시뮬레이션을 할 수 없다. 본 연구는 이러한 상충을

극복하여 정확하면서 빠른 혼성 신호 행동 시뮬레이터를 구현하는 방법을

제안하였다.

본 연구가 제안하는 방법의 가장 큰 특징은 지속 시간 신호를 표현하

는 방식이다. 클럭 신호는 시간 오프셋을 추가하여 신호의 전환 시간을

정확히 표현하며, 아날로그 신호는 함수의 계수들을 추가하여 지속 시간

파형을 함수의 꼴로 표현한다. 이러한 부가적인 정보를 활용하면, 시뮬레

이터의 시간 단계에 상관없이 정확한 지속 시간 신호를 시뮬레이션 할 수

있다. 더욱이, 함수로 표현된 지속 시간 파형은 아날로그 회로를 사건 구

동 방식으로 시뮬레이션 가능하게 하여 시뮬레이션 속도를 크게 향상 시

킬 수 있다.

본 연구는 제안한 혼성 신호 시뮬레이션 방법을 다양한 시스템 예제들

을 통하여 검증하였다. 첫번째로, 위상고정루프, 클럭데이터복원기와 같은

시간 정보에 민감한 회로들과 채널, 이퀄라이저와 같은 선형 회로들을 포

함하는 고속 입출력 인터페이스 예제를 제안한 방법이 정확히 시뮬레이션

하는 것을 보였다. 두번째로, 부스트컨버터, 스위칭커패시터컨버터와 같은

전원 공급 회로 예제들에서 제안한 방법이 스위칭 선형 시스템에 적용되

는 것을 보였다. 추가하여, 제안한 방식을 볼테라 시리즈로 모델된 약한

비선형 행동에 적용하여 무선 주파수 송신기와 고속 입출력 인터페이스

이퀄라이저를 시뮬레이션하였다. 마지막으로, 다양한 주입 동기 발진 회로

를 시뮬레이션하여 제안한 방식이 시변 비선형 회로에도 확대될 수 있음

을 확인하였다. 위의 예제들의 시뮬레이션 결과에 기반하여 제안한 방식

이 현존하는 아날로그 행동 시뮬레이터들과 같은 정확도를 가지며 수십배

에서 수백배까지 빠른 속도로 시뮬레이션 할 수 있음을 검증하였다.

주요어 : 사건 구동 방식의 모의 실험, 행동 모델, 혼성 신호 시스템, 시

스템베릴로그, 고속 입출력 인터페이스, 스위칭 전원 공급 회로, 볼테라

시리즈 모델, 주입 동기 발진기

학 번 : 2011-30974

	CHAPTER 1 INTRODUCTION
	1.1 BACKGROUND
	1.2 MAIN CONTRIBUTION
	1.3 THESIS ORGANIZATION

	CHAPTER 2 EVENT-DRIVEN SIMULATION OF ANALOG/MIXED-SIGNAL BEHAVIORS
	2.1 PROPOSED CLOCK AND ANALOG SIGNAL REPRESENTATIONS
	2.2 SIGNAL TYPE DEFINITIONS IN SYSTEMVERILOG
	2.3 EVENT-DRIVEN SIMULATION METHODOLOGY

	CHAPTER 3 HIGH-SPEED I/O INTERFACE SIMULATION
	3.1 CHARGE-PUMP PHASE-LOCKED LOOP
	3.2 BANGBANG CLOCK AND DATA RECOVERY
	3.3 CHANNEL AND EQUALIZERS
	3.4 HIGH-SPEED I/O SYSTEM SIMULATION

	CHAPTER 4 SWITCHING POWER SUPPLY SIMULATION
	4.1 BOOST CONVERTER
	4.2 TIME-INTERLEAVED SWITCHED-CAPACITOR CONVERTER

	CHAPTER 5 VOLTERRA SERIES MODEL SIMULATION
	5.1 VOLTERRA SERIES MODEL
	5.2 CLASS-A POWER AMPLIFIER
	5.3 CONTINUOUS-TIME EQUALIZER

	CHAPTER 6 INJECTION-LOCKED OSCILLATOR SIMULATION
	6.1 PPV-BASED ILO MODEL
	6.2 LC OSCILLATOR
	6.3 RING OSCILLATOR
	6.4 BURST-MODE CLOCK AND DATA RECOVERY

	CONCLUSION
	BIBLIOGRAPHY
	초 록

<startpage>16
CHAPTER 1 INTRODUCTION 1
 1.1 BACKGROUND 1
 1.2 MAIN CONTRIBUTION 6
 1.3 THESIS ORGANIZATION 8
CHAPTER 2 EVENT-DRIVEN SIMULATION OF ANALOG/MIXED-SIGNAL BEHAVIORS 9
 2.1 PROPOSED CLOCK AND ANALOG SIGNAL REPRESENTATIONS 10
 2.2 SIGNAL TYPE DEFINITIONS IN SYSTEMVERILOG 14
 2.3 EVENT-DRIVEN SIMULATION METHODOLOGY 16
CHAPTER 3 HIGH-SPEED I/O INTERFACE SIMULATION 21
 3.1 CHARGE-PUMP PHASE-LOCKED LOOP 23
 3.2 BANGBANG CLOCK AND DATA RECOVERY 37
 3.3 CHANNEL AND EQUALIZERS 45
 3.4 HIGH-SPEED I/O SYSTEM SIMULATION 52
CHAPTER 4 SWITCHING POWER SUPPLY SIMULATION 55
 4.1 BOOST CONVERTER 57
 4.2 TIME-INTERLEAVED SWITCHED-CAPACITOR CONVERTER 66
CHAPTER 5 VOLTERRA SERIES MODEL SIMULATION 72
 5.1 VOLTERRA SERIES MODEL 74
 5.2 CLASS-A POWER AMPLIFIER 79
 5.3 CONTINUOUS-TIME EQUALIZER 84
CHAPTER 6 INJECTION-LOCKED OSCILLATOR SIMULATION 89
 6.1 PPV-BASED ILO MODEL 91
 6.2 LC OSCILLATOR 99
 6.3 RING OSCILLATOR 104
 6.4 BURST-MODE CLOCK AND DATA RECOVERY 109
CONCLUSION 116
BIBLIOGRAPHY 118
ÃÊ ·Ï 126
</body>

