

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Routing and Caching in
Information-Centric Networking

정보중심네트워크에서의라우팅및캐슁

2015년 2월

서울대학교대학원

전기 ·컴퓨터공학부

최훈규

Routing and Caching in
Information-Centric Networking

지도교수권태경

이논문을공학박사학위논문으로제출함

2014년 11월

서울대학교대학원

전기 ·컴퓨터공학부

최훈규

최훈규의박사학위논문을인준함

2014년 12월

위 원 장 김종권 (인)

부위원장 권태경 (인)

위 원 엄현상 (인)

위 원 전병곤 (인)

위 원 백상헌 (인)

Abstract

Routing and Caching in
Information-Centric Networking

Hoon-gyu Choi

School of Computer Science & Engineering

The Graduate School

Seoul National University

When the Internet was designed decades ago, main applications are resource

sharing such as remote login and file transfer. To support such applications, the key

principle in the Internet architecture is point-to-point communications, and the key

element is an IP address that identifies a host. Due to the flexible design of the In-

ternet, a wide range of new applications and services have been introduced over the

decades. The recent surge of Internet traffic is mainly attributed to applications such

as web, P2P file sharing, and video streaming. In such applications, an end user is

mostly interested in content itself, not in a particular host or its location.

Over the past few years, there have been many efforts to address the above is-

sues from a content centric perspective. Those proposals are collectively called In-

formation Centric Networking (ICN), which is largely deemed as a clean-slate ap-

proach. Most of the ICN studies think of content as a key element and hence assume

a new paradigm by shifting from host-oriented communications to content-oriented

i

communications. Consequently, instead of locator-based routing, most ICN proposals

consider name-based routing, which decouples content production and consumption

in time and space domains. The decoupling enhances content availability and naming

persistency, and supports in-network caching, multicast and mobility.

Most of ICN proposals use content names as routing entries, and thus the rout-

ing scalability is primary concern. ICN allows in-network caching as a built-in func-

tionality. However, if network nodes make caching decisions individually, duplicate

copies of the same content may exist among nearby nodes. To address these prob-

lems, this dissertation proposes a unified framework named Coordinated Routing and

Caching (CoRC) that mitigates routing scalability and enhances the efficiency of the

in-network storage.

Keywords : Information-Centric Networking, Content-Centric Networking, Rout-

ing, Caching

Student Number : 2008-20999

ii

Contents

Abstract . i

I. Introduction . 1

II. Design Principles . 4

2.1 How to Make FIBs Scalable? . 4

2.2 Where to Place the Cached Item? 5

2.3 How to Coordinate between Routing and Caching? 5

2.4 How to Reflect the Current Internet Infrastructure and Business? . . 6

III. Related Work . 7

IV. CoRC: Coordinated Routing and Caching 9

4.1 Name Resolution . 9

4.2 Routing . 10

4.2.1 Intra-domain Routing . 11

4.2.2 Inter-domain Routing . 12

4.3 Caching . 13

V. Optimization . 15

5.1 Assigning PID prefix to RR . 15

5.2 Hybrid Approach . 17

VI. Routing Scalability . 19

iii

6.1 AS-FIB . 19

6.2 PAR-FIB and PIB . 19

6.3 Numbers of Entries of Three Tables 22

VII. Network Performance . 24

7.1 Performance Metrics . 24

7.2 Compared Schemes . 25

7.3 Experimental Setting . 26

7.4 Average Cache Hit Ratio . 27

7.5 Content Delivery Latency . 29

7.6 Traffic Load . 33

7.7 Route Stretch vs. Topology . 36

VIII. Packet Processing Time in a Router 38

8.1 Methodology . 38

8.2 Drop Rate vs. Interest Packet Rate 39

IX. Discussions and Future Work . 41

9.1 Hashing by Publisher Name . 41

9.2 Dealing with Router Failure . 42

9.3 Resolution System and Multihoming 42

X. Summary . 43

Bibliography . 44

Korean Abstract . 47

iv

List of Figures

4.1 Each publisher is connected to its AS. For a given publisher name,

its AS name can be retrieved by extending DNS. 10

4.2 Intra-domain routing of CoRC is illustrated. 13

6.1 The number of ISPs is predicted to reach around 120,000 by the

year 2030. 20

6.2 The number of domain names is predicted to reach around 4 bil-

lion by the year 2030. 21

6.3 The total number of entries in each of CoRC and CoRC-HBD

routers is estimated. 23

7.1 The comparison of cache hit ratio of CoRC and other schemes is

shown. 27

7.2 The cache utilization of Vanilla is illustrated. 28

7.3 The cache utilization of CoRC is illustrated. CoRC can serve more

diverse items than Vanilla, which results in higher cache hit ratio. 28

7.4 The average hop count of each scheme is plotted. CoRC-HBD

achieves the near-optimal performance. 30

7.5 The relative path length of each scheme is plotted. CoRC-HBD

achieves the near-optimal performance. 30

7.6 The content retrieval time (when α is 0.8) is illustrated. 31

7.7 The content retrieval time (when α is 1.0) is illustrated. 32

7.8 The content retrieval time (when α is 1.2) is illustrated. 32

v

7.9 Inter-AS traffic is plotted for each scheme. Traffic reduction comes

from caching diversity. 33

7.10 Total traffic is plotted for each scheme. CoRC-HBD achieves the

near-optimal performance. 34

7.11 Traffic load of each link is plotted for each scheme. Traffic load is

balanced in CoRC and CoRC-HBD. 35

7.12 Route stretch is almost irrespective of a topology. 37

8.1 Drop rate versus interest packet rate in CCNx is plotted. 40

8.2 Drop rate versus interest packet rate in kernel is plotted. 40

vi

List of Tables

7.1 Topology properties . 36

vii

Chapter 1

Introduction

Due to the flexible design of the TCP/IP protocols, a wide range of new applica-

tions and services has been proliferated on the Internet over the decades. According

to the Cisco report [1], the recent surge of Internet traffic is mainly attributed to appli-

cations such as web, P2P file sharing, and video streaming. In such applications, an

end user is mostly interested in content itself, not in a particular host or its location.

The gap between the original host-to-host Internet design and the current content-

oriented usage patterns causes many problems such as inefficient content delivery

and flash crowds. For example, when thousands of people request the same content,

it might be forwarded over the same link thousands of times. This is because ordi-

nary network nodes are not aware of the content due to the host-based IP routing.

Content Delivery Networks (CDNs) [2] mitigate this inefficiency by locating popular

contents to nearby storages. However, relying on CDN providers is not considered a

fundamental and general solution, as (i) it requires substantial monetary cost to con-

tent providers of various sizes, (ii) it may burden Internet service providers (ISPs)

depending on the locations of CDN storages, and (iii) it may not adapt to the time-

varying content popularity (e.g., flash crowds). Also, the host-based TCP/IP protocol

suite cannot handle mobility and security properly.

Over the past few years, there have been many efforts to address the above

issues from a content centric perspective. Those proposals are collectively called

1

Information-Centric Networking (ICN), which is largely deemed as a clean-slate ap-

proach. Most of the ICN studies think of content as a key element and hence assume

a new paradigm by shifting from host-oriented communications to content-oriented

communications [3–7]. One of the key advantages in ICN comes from in-network

caching; when a request encounters a network node that caches the content of in-

terest, the node sends back the content immediately without contacting the original

server. The more frequently an item is requested, the more likely the item is to be re-

trieved from a close in-network cache, not from the original publisher. By decoupling

content production and consumption in the time and space domains, ICN enhances

content availability and naming persistency, and naturally supports mobility, security

and multicast.

This dissertation proposes a framework of Coordinated Routing and Caching

(CoRC) to address the following challenges in ICN. (i) How to maintain Forward-

ing Information Bases (FIBs) scalable?, (ii) Which content will be cached by which

node in order to efficiently utilize the network-wide storage?, and (iii) How to reach

a nearby cached item without additional signalling overhead? By partitioning the

whole content namespace and assigning each partition to a dedicated node, CoRC

mitigates routing scalability and enhances caching efficiency with no control mes-

sage exchanges. We combine routing and caching into a unified framework, while

many prior proposals deal with routing and caching separately.

We have evaluated the CoRC framework in terms of routing scalability and

cache efficiency. The first aspect is routing scalability, which is to figure out how

many FIB entries are stored by a CoRC router. Based on the previous data, a FIB size

in a CoRC router required for Inter/Intra-domain routing was calculated by projecting

2

the number of ISP/AS and the number of publishers to the year of 2030. Our results

showed that a CoRC router can have a feasible size of a FIB. The second aspect

is a comprehensive performance considering caching efficiency. Since routing and

caching were designed in one framework in CORC, it is required to explore strengths

and weaknesses for each of them. Therefore, we defined four variants in total includ-

ing our CoRC framework by giving an option whether each of routing and caching

is partitioned or not respectively. We implemented four variants of software router

prototypes, and configured 4 ASes with 60 nodes in the Amazon EC2 service [8] to

measure downloading time, hop count, cache hit ratio, and inter-AS traffic. Finally,

packet processing time in a router is evaluated to show the feasibility of CoRC.

The rest of this dissertation is organized as follows. In chapter 2, we describe de-

sign principles behind ICN routing and caching. Related studies that seek to solve the

ICN routing and caching issues are reviewed in chapter 3. The routing and caching

mechanisms in the CoRC framework are detailed in chapter 4. Optimization meth-

ods are discussed to reduce the route stretch of CoRC in chapter 5. The FIB size of a

router in CoRC is analyzed in chapter 6, and the network performance of the CoRC

framework is evaluated in chapter 7. Packet processing time of CoRC forwarding

in Linux machines is shown in chapter 8. Additional design issues to accommodate

realistic conditions are discussed in chapter 9. The concluding remarks are given in

chapter 10.

3

Chapter 2

Design Principles

2.1 How to Make FIBs Scalable?

Each router in ICN should be able to interpret a content name (instead of an IP

address) in its FIB. Though several ICN proposals take a hierarchical name structure

that can be aggregatable for routing scalability, making FIBs scalable is still a prob-

lem. For example, two routing entries in an FIB for content items whose names are

cnn.com/us/news and cnn.com/eu/news can be aggregated to cnn.com. Assuming that

content names are aggregated to their publisher names (e.g., cnn.com), a FIB needs

to contain as many entries as the number of domain names. According to [9], the

number of domain names currently registered with the Domain Name System (DNS)

is approximately 109, which means a router should have 109 entries in its FIB. Thus,

even if we assume only publisher names in a FIB, its size is order of magnitude

higher than that of a current IP router in the default-free zone. Unfortunately, the

current hardware capability of network nodes can hardly meet this requirement [10].

To reduce the FIB size of an ICN router to the level of that of an IP router, CoRC is

designed based on the following two principles: (i) exploiting the hierarchy of cur-

rent Internet and (ii) partitioning the FIB space (e.g., the whole content namespace)

among ICN routers.

4

2.2 Where to Place the Cached Item?

Cache storage in a router is a limited resource, hence it is desirable to avoid

caching duplicate copies of the same content across ICN routers for cache utilization.

When data is sent back in ICN, each router on the path may cache the item in its

local storage. If routers (with in-network storage modules) make caching decisions

individually, caching redundant copies of the same content will happen frequently. In

this case, the cache hit ratio for popular items will be high, and a small number of

selected items can be fetched from a close router. However, a large number of non-

cached items (which correspond to the tail part of the Zipf distribution) may have to

be downloaded from a distant place, and its delivery cost is not marginal. Moreover,

most of the cache hits occur at the network edge (the so-called filter effect) [11], thus

the storage modules in upstream routers may not be efficiently utilized. CoRC seeks

to make routers cache as diverse content items as possible, so that the network-wide

in-network storages are efficiently utilized.

2.3 How to Coordinate between Routing and Caching?

The so-called on-path caching mechanism (which is adopted in most ICN stud-

ies) causes inefficient cache utilization because only the cache space in the nodes

en route to the publisher of the requested item is checked for cache hits. If a router

caches an item and wishes to allow other routers (i.e., off-path routers) to access the

cached item, the off-path routers should populate a routing entry for the cached item,

which worsens the above FIB scalability issue. What is worse, whenever items are

cached and replaced, the change in the cache repository of a router should be adver-

5

tised to other routers, which may result in substantial signaling traffic, not to mention

the update overhead of FIBs. To minimize such overhead to utilize cached items by

off-path routers, CoRC makes each and every router know which router is to cache

the item of interest.

2.4 How to Reflect the Current Internet Infrastruc-
ture and Business?

The current Internet consists of a number of independent networks, which are

called Autonomous Systems (ASes). The current routing infrastructure and AS re-

lations should be considered for practical deployment of CoRC. Also, the relations

and businesses among Internet stakeholders like ISPs, CPs, and users should be taken

into account. We design CoRC based on the following principles. First, we reflect the

separation of inter-domain routing and intra-domain routing in the current IP routing.

Second, we should design CoRC in such a way that the business models like CDNs

can be easily accommodated. Because, ISPs now try to offer CDN-like services. We

will discuss how ISPs can leverage the CoRC framework to offer such content busi-

ness later. Without such economic incentives, the deployment of ICN technologies

may not be realized in the foreseeable future. Also, it should be considered to min-

imize the inter-AS traffic because the transit cost across ASes is typically charged

based on the traffic volume [12].

6

Chapter 3

Related Work

Routing scalability: Various solutions are proposed to reduce the FIB size

in the ICN environment. Greedy routing [13] and an ISP-based name aggregation

are suggested in the Named Data Networking (NDN) project [14] but they did not

detail how actually to be adapted in NDN. A local FIB aggregation technique is

proposed to scale IP forwarding tables [15] by aggregating entries with the same

next-hop. However, this reduction is not enough for larger-scale ICN FIBs. In [16],

the Lookup-and-Cache solution is proposed, where routers cache the fixed number

of router records as the FIB. When a router has no FIB record for the given request,

it sends a query to a centralized Routing Information Base (RIB), whose response is

then cached in its FIB. However, there is no consideration how to disseminate such

huge RIBs among ISPs. DHT-based routing [17,18] constructs a virtual DHT to fully

exploit the underlying hierarchical structure of the Internet. However, [17] requires

multiple resolution stages to retrieve an item and αRoute [18] did not consider routing

scalability within an AS.

Caching efficiency: In-network caching approaches are classified into two cate-

gories: explicit and implicit. Generally, explicit solutions advertise or explore cached

items over the network within a limited range by exploiting the knowledge of a net-

work topology, a storage capacity, and even a content popularity. They make it easy

for requesters retrieve interesting items from nearby nodes. However, they may incur

7

(i) considerable advertisement traffic to share the information of the cache reposi-

tories [19, 20], or (ii) probing delay/traffic whenever a content request arrives [21].

Meanwhile, implicit solutions aim to realize efficient content placement without any

additional signaling overhead. However, they typically have difficulties in locating

items because each of items is cached in an independent and distributed manner [22,

23]. Similar cooperative caching techniques have been proposed in the web cache

area whose characteristics are significantly different because they are based on an

overlay environment [24].

There exist two recent proposals to map the dedicated node to a non-overlapping

cache space [25, 26] using hash function to maximize the aggregated cache capacity.

However, they did not consider routing scalability in both intra- and inter-domain

routing, and restrictively investigated the impact of route stretch. CoRC is designed to

perform routing and caching in an aligned fashion, which improves routing scalability

and cache efficiency at the same time.

8

Chapter 4

CoRC: Coordinated Routing and Caching

Based on the principles in chapter 2, we detail the CoRC framework.

4.1 Name Resolution

In addition to hierarchical naming which is adapted in NDN, we make the fol-

lowing assumptions: (i) a content name always contains a publisher part, (e.g., the

domain name in the URL), (ii) every AS has its own unique name, (iii) each pub-

lisher is a customer of a single AS. (Later, we will discuss site multi-homing cases.)

Figure 4.1 illustrates the case in which two publishers (abc.com and cnn.com) are

connected to two ASes (sprint and att), respectively. For the sake of simplicity, an

ISP is assumed to be an AS throughout this dissertation.

The name of the AS (e.g. att) that provides the Internet connectivity to a given

publisher (e.g. cnn.com) can be retrieved by looking up a name resolution system.

The DNS is a good candidate to provide this functionality due to its flexibility, which

is adopted in the CoRC framework. To obtain the AS name of a publisher (of a con-

tent item to be requested), a host sends an interest packet (i.e., a query) to its local

resolution server (i.e., the local DNS server). The local DNS server will obtain the

AS name of the publisher iteratively by exchanging interest and data packets with

the corresponding mapping servers along the DNS hierarchy. After obtaining the AS

9

Fig. 4.1. Each publisher is connected to its AS. For a given publisher name, its AS
name can be retrieved by extending DNS.

name for the item, the host issues an interest for the item; the AS name is also in-

cluded in the interest packet for inter-domain routing (to be detailed below).

4.2 Routing

CoRC routing has two parts: intra-domain routing and inter-domain routing. For

a given interest, intra-domain routing is performed to find the requested item if the

publisher is within the local AS. The item can then be retrieved from the publisher

(i.e., its server) located in the AS. Otherwise, the interest will be forwarded to the AS

of the publisher by inter-domain routing.

10

4.2.1 Intra-domain Routing

For (the items of) a given publisher in an AS, all the routers in the AS should

know how to forward interests to the publisher for intra-domain routing. One naive

option is to populate as many entries in the FIB of every router as the number of

local publishers. According to our estimation (to be detailed later), a few hundreds of

millions of publishers are expected to be connected to the largest AS in year 2030,

which is not scalable. To make FIBs scalable, we adopt the ViAggre approach [27],

where the entire namespace is split into partitions, and each router contains only its

partition in its FIB.

A publisher name in an interest is hashed to a fixed-length value (say, 128 bits),

which is called a publisher identifier (PID). Then the PID space becomes the names-

pace to be covered by FIBs of routers. Let a partition of the PID space be represented

by a PID prefix (like an IP prefix in BGP routing). A set of routers in an AS is se-

lected as responsible routers (RRs), each of which is to maintain its own PID prefix.

Each RR advertises its PID prefix throughout its AS, so that other routers populate

the corresponding FIB entry (in PAR-FIB) for intra-domain routing. A PAR-FIB en-

try contains <PID prefix, next hop interface>. Each publisher calculates its PID and

registers the PID prefix of its access router with the RR whose partition includes the

PID. Each RR also maintains a Publisher Information Base (PIB), which is a mapping

table whose entry contains <PID of a publisher, PID prefix of its access router>.

In Figure 4.2, let us illustrate how CoRC intra-domain routing operates. Sup-

pose that four routers are RRs whose PID prefixes are 0b00, 0b01, 0b10, and 0b11,

respectively. R01 is responsible for all the PIDs starting with prefix 0b01; that is, R01

should know the locations of all the publishers whose PIDs start with 0b01. Here, the

11

location of a publisher means the PID prefix of the access router of the publisher.

Likewise, R00 knows the locations of publishers whose PIDs start with 0b00, and so

on.

The interest to retrieve cnn.com/us/news will be first forwarded to R01 because

the PID of cnn.com starts with 0b01 in this example. On the path from access router

to R01, there can be multiple non-RRs which use PAR-FIB to forward the interest to

R01.1 By looking up the PIB, R01 tunnels the interest to the access router (R11) of

the publisher cnn.com. In Figure 4.2, the PID prefix of the access router of cnn.com

is 0b11. It is not straightforward to perform tunneling as there is no locator in ICN.

We slightly abuse the PID prefix of a router as the router’s identifier for this purpose.

That is, the RR will tunnel an interest toward the access router of the corresponding

publisher by adding the PID prefix of the access router into the interest. The routers

forward the interest by looking up their PAR-FIBs with the PID prefix (added for

tunneling).

4.2.2 Inter-domain Routing

When the interest packet arrives at the RR, the router knows whether the pub-

lisher (of the requested item) belongs to its local AS or not. If the router finds that the

item is not in its cache and the publisher belongs to another AS, it will forward the in-

terest to the neighbor AS toward the AS of the publisher. Every router also maintains

an AS-FIB whose entry contains <AS name, next-hop interface> for inter-domain

routing. Each entry in the AS-FIB is assumed to be populated by receiving an adver-

tisement message from each AS by an inter-domain routing protocol such as BGP.

1Non-RRs are not visible in Figure 4.2 for the sake of simplicity.

12

Fig. 4.2. Intra-domain routing of CoRC is illustrated.

Thus, the number of AS-FIB entries is the same as the number of ASes in the Inter-

net. Note that the number of ASes currently is around a few tens of thousands and

increases relatively slowly. Thus, the scalability of the AS-FIB is sustainable in the

foreseeable future. In chapter 6, we will estimate the number of AS-FIB entries until

the year 2030.

4.3 Caching

In the process of routing, an interest packet will visit the corresponding RR first.

That is, requests with different PID prefixes are forwarded to the corresponding (and

13

hence different) RRs whose PID partitions are non-overlapping. In CoRC, each RR

caches only items whose PID belongs to its PID partition. We align the caching and

routing functionalities into the same router, so that interests for the items and their

corresponding data packets (which may be cached) are all handled by the same router.

As shown in Figure 4.2, an item whose content name starts with cnn.com is cached

only at router R01 as R01 is in charge of routing all the interests whose PIDs start

with 0b01.

14

Chapter 5

Optimization

CoRC coordinates each RR to perform routing and caching together for the same

partition of the PID namespace. The advantages of this alignment are two-fold: (i)

there is no advertisement signaling overhead to announce cached items in in-network

storages, and (ii) there is no duplicate copy of the same item among RRs from a

network-wide perspective. However, this kind of indirect routing (i.e., stopping by

RRs) causes a longer delivery path. Hence, we propose two optimization methods

which mitigate this stretch issue.

5.1 Assigning PID prefix to RR

The route stretch strongly depends on the location of the RR in charge of each

request. Therefore, we need to carefully assign PID prefixes to RRs. We propose

a simple but powerful prefix assignment algorithm with the following assumptions.

First, the popularity distribution of prefixes is given. Second, requests are uniformly

distributed among all edge routers. Last, RRs cache popular items depending on the

content popularity. Unpopular items not cached in RRs represent the long-tailed part

of the Zipf distribution, which can be assumed to be uniformly distributed to all edge

routers of publishers.

Let R = {r1,r2, ...,rk} and P = {p1,p2, ...,pk}1 be the sets of RRs and PID pre-

1P is sorted in a popularity order of PID prefixes.

15

fixes, respectively. The function f (k) represents the request frequency of each PID

prefix, which satisfies f (p1)≥ f (p2)≥ ...≥ f (pk). In addition, if hopn is defined as

the number of hops traversed by the nth request, the optimal prefix assignment prob-

lem is to map P to R such that
n∑

x=1
hopx is minimized for n requests. Algorithm 5.1

first sorts R by the sum of distances to all edge routers in non-decreasing order and

then iteratively assigns the most to least popular PID prefixes to the sorted R.

Algorithm 5.1 Prefix assignment algorithm
Input : Set of edge routers E = {e1,e2, ...,em}; Set of responsible routers R =
{r1,r2, ...rk};

1: for all rk ∈ R do
2: sum =

m∑
i=1

distance(ei,rk)

3: Array[k].r← rk
4: Array[k].s← sum
5: end for
6: Sort Array[k] by s in a non-decreasing order
7: for all pk ∈ P do
8: Assign pk to Array[k].r
9: end for

Proof of optimality: each of n requests is hashed into each of k PID prefixes.

By the assumption, n = np1 +np2 + ...+npk where np1 ≥ np2 ≥ ... ≥ npk . If ck items

are cached at rk and nck is the number of requests to ck among npk requests, nck

requests are satisfied by rk while npk − nck requests are forwarded to the original

publisher. Therefore, the expected number of hops for a request whose PID prefix is

pk is defined as follows.

16

AvgHoppk =

nck∑
i=1

d(er(i),rk)+
npk−nck∑

j=1
d(er(j),rk,eo(j))

npk

(d(u,v,w) = d(u,v)+d(v,w))

(5.1)

Here, er(i) and eo(i) represent edge routers attached to the requester and the

original publisher for the ith request, respectively. The function d(u,v) is defined as

the shortest distance between u and v. Accordingly, the total number of hops for n

requests is defined as follows.

n∑
x=1

hopx =

k∑
y=1

npy ·AvgHoppy (5.2)

By the inequality of rearrangement,
n∑

x=1
hopx is minimal. (∵ np1 ≥ ...≥ npk and

AvgHopp1 ≤ ...≤ AvgHoppk .)

5.2 Hybrid Approach

Although CoRC improves the total cache hit ratio due to the network-wide ag-

gregated cache utilization, independent caching may be more beneficial for popular

items. In practice, it is reported that the popularity of items follows the Zipf distri-

bution [28]. With independent caching, the popular items can be retrieved from any

intermediate routers that their interests encounter. To leverage both independent and

coordinated caching, we propose a hybrid approach, dubbed CoRC-HBD.

In CoRC-HBD, edge routers (access routers attached to requesters) perform in-

17

dividual and independent caching and only non-edge routers collaborate for coordi-

nated caching. Edge routers cache every item being forwarded based on their own

replace strategies, e.g. Least Recently Used (LRU). As most of the popular items

accouting for the majority of traffic are likely to be retrieved from edge routers, the

route stretch problem can be alleviated. Non-edge routers cache only items whose

PIDs belong to individual partitions, and thus the network-wide cache diversity is

somewhat retained. Note that a unique tag like the RR’s PID prefix should also be

assigned to each edge router and populated in a PAR-FIB (of every RR) in order to

tunnel interests to non-RRs (i.e., edge routers).

18

Chapter 6

Routing Scalability

A router in the CoRC framework has three tables for request routing: (i) AS-

FIB, (ii) PAR-FIB, and (iii) PIB. In this chapter, we estimate the number of ASes and

domain names expected in year 2030 and then analyze how large each table will be

in year 2030 to investigate a routing scalability.

6.1 AS-FIB

A router maintains AS-FIB to forward interests toward any ASes, so its size

depends on the number of ASes. According to [29], there are currently more than

45,000 active ASes advertised in the Internet as of July 2013. Figure 6.1 shows that

the number of ASes will be expected to reach around 120,000 by the year 2030, which

is projected based on the recent history of AS numbers. Accordingly, we claim that

AS-FIB will contain around 120K routing entries by the year 2030.

6.2 PAR-FIB and PIB

To estimate the size of a PAR-FIB, the total number of domain names should

be analyzed at first. As of July 2012, around 0.9 billion domain names are registered

according to Internet systems consortium [9]. Figure 6.2 shows that the total number

of domain names is expected to reach almost 4B (or 232) by the year 2030. Note that

19

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2000 2005 2010 2015 2020 2025 2030

N
u

m
b

e
r

o
f

a
d

v
e

rt
is

e
d

 A
S

e
s

Year

Past

Prediction

Fig. 6.1. The number of ISPs is predicted to reach around 120,000 by the year 2030.

we have to consider the total numbers of both domain names and ASes to calculate the

number of domain names per AS. Definitely, larger ASes would have more domain

names than smaller ASes.

It is reported that the number of connections among ASes (or AS degree) follows

a Zipf distribution [28, 30]. In addition, according to [31], the number of routers per

AS is positively correlated to the AS degree. If we make a similar conjecture with

respect to the distribution of the numbers of domain names among ASes, we can

assume that the number of domain names per AS also follows a Zipf distribution. We

apply a Zipf distribution (its exponent is 1.0) to 4 billion domain names among 120K

ASes. The maximum number of domain names per AS is estimated to be around

330M domain names in year 2030. Thus, we expect that the maximum number of

20

domain names per AS will be less than 229 until 2030.

The sizes of a PAR-FIB and a PIB also depend on the number of routers (of

an AS) that can serve as RRs. According to [32], some large ASes currently contain

around 220 routers. Let us make the following assumptions to estimate the sizes of a

PAR-FIB and a PIB in year 2030: (i) the largest AS (in terms of number of domain

names) has up to 220 routers, (ii) a quarter of all routers in the AS serve as RRs in

CoRC, and (iii) one eighth of all routers serve as RRs and another eighth as edge

routers in CoRC-HBD. Also, 229 domain names (actually PIDs) are estimated to be

evenly distributed among RRs, which determines the size of a PIB.

0x10
0

1x10
9

2x10
9

3x10
9

4x10
9

 1995 2000 2005 2010 2015 2020 2025 2030

N
u

m
b

e
r

o
f

d
o

m
a

in
 n

a
m

e
s

Year

Past

Prediction

Fig. 6.2. The number of domain names is predicted to reach around 4 billion by the
year 2030.

21

6.3 Numbers of Entries of Three Tables

Figure 6.3 shows the total number of entries of AS-FIB, PAR-FIB, and PIB

depending on n routers in a extremely large AS with 229 domain names, varying n

from 213 to 220. The total number of routing table entries of a CoRC router in year

2030 is bounded to the same level of the current number of IP prefixes (i.e., the FIB

size of a DFZ router). However, a single PID requires at least a 128-bit hash value to

guarantee the probability of hash collision negligible. Thus, the overall memory space

for a CoRC router may be greater than that of the current IP router. There should be

a trade-off between the size of PAR-FIB and that of PIB. If more routers participate

in CoRC as RRs, each router has the larger PAR-FIB and the smaller PIB. Each AS

can adjust the number of RRs in accordance with the network size.

22

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

T
o

ta
l
ta

b
le

 s
iz

e

The number of routers in AS

CoRC

CoRC-HBD

Fig. 6.3. The total number of entries in each of CoRC and CoRC-HBD routers is
estimated.

23

Chapter 7

Network Performance

Splitting the whole namespace into the FIBs (of RRs) achieves the scalable FIB

size at the cost of route stretch as explained earlier. In addition, it can efficiently ex-

ploit in-network storages across the given network by dividing the PID namespace

among caches. To fully understand CoRC, we first conduct comprehensive emula-

tions with 4 stub topologies. Then, we investigate the route stretch within a single

AS.

7.1 Performance Metrics

• Cache hit ratio: Assigning partitions of the whole caching space to individual

RRs enables more items to be cached at in-network storages (in RRs).

• Content delivery latency: Two specific metrics are considered: (i) the aver-

age delivery hop and (ii) the average content retrieval time, which are directly

impacted by route stretch.

• Traffic load: We focus on inter-AS traffic because stub ASes should generally

pay transit fees which is normally proportional to the cross-AS traffic volume.

We also investigate total traffic to study how much traffic is stretched.

24

7.2 Compared Schemes

We consider five different schemes based on routing and caching strategies,

which are to be compared in terms of above metrics.

• Vanilla ICN: In Vanilla ICN, routers forward interest packets to the publisher

of the content along the shortest path by looking up flat FIB entries. We assume

that each router makes independent caching decisions with LRU replace strat-

egy. Vanilla ICN has the routing scalability problem as every router maintains

the entire FIB, and is deemed as a baseline.

• Coordinated Routing/Individual Caching (CRIC): CRIC is a modified Vanilla

ICN scheme where splitting FIB is used to address the routing scalability issue.

In CRIC, interest packets are first sent to RRs, and then delivered to publishers

via tunneling. When data packets are relayed back to the requesters, the routers

on the path cache content individually. CRIC is meaningful in examining the

impact of the lengthened path and the limited cache diversity.

• CoRC and CoRC-HBD: CoRC achieves the cache diversity by performing

coordinated caching at the cost of longer route stretch. CoRC-HBD mitigates

the route stretch issue while the network-wide cache diversity is somewhat

degraded by combining both individual and coordinated caching strategies.

• Oracle: As another reference, the oracle version of caching is also evaluated.

A border router in each AS has its own storage whose size is the sum of all

the cache sizes within the AS in other schemes. The gateway router’s storage

is filled with the most popular items based on the knowledge of the popularity

25

distribution. Oracle is deemed to achieve the best performance since flat routing

(i.e., the shortest path routing) is used, and the cache utilization is the best.

Note that we do not directly compare our CoRC with previous proposals. We

highlight that CoRC outperforms the reference schemes in terms of above metrics,

even though CoRC uses indirection to address the routing scalability.

7.3 Experimental Setting

We implemented software routers running on Amazon Elastic Compute Cloud

(EC2) [8] to emulate CoRC and the other schemes. In our experiments, 60 routers are

installed as 60 virtual machines in Amazon data centers in five different regions: Ore-

gon, North California, North Virginia, Sao Paulo, and Ireland. We assume that each

of four regions represents a stub AS and the other region (North Virginia) represents

a transit AS that interconnects the four stub ASes. We constructed a tree topology

whose mean degree is 2.42 at the router level in each stub AS by referring to [33].

Every stub AS consists of 14 routers: 8 edge, 4 backbone, and 2 border routers. The

transit AS has 4 routers.

Content items are uniformly distributed over four ASes, each of which is con-

figured with a total cache space equal to 0.5%, 1.0% and 1.5% of the total content

volume1. In Oracle, the whole cache space is allocated to a border router. In the other

schemes, by taking into account the difference of router capability, each of backbone,

border, and edge routers has one eighth, one eighth, and one thirty-second of a total

cache space, respectively. Note that the FIB is also split with the same ratio. PID

1We omit the cases of 0.5% and 1.5% due to the marginal difference.

26

prefixes are generated by modular hashing and assigned to the corresponding RRs

by the Algorithm 5.1. A request for 10 MB data is generated at each edge router

with a poisson arrival rate 0.1 (per second), which means 32 data items are requested

per every ten seconds on average. Users (generating interests) belonging to an edge

router are running in the same virtual machine as their edge router. The skewness of

the popularity distribution is determined by the Zipf exponent α: 0.6, 0.8, 1.0, 1.2,

and 1.4.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.6 0.8 1 1.2 1.4

C
a
c
h
e
 H

it
 R

a
ti
o
 (

%
)

Zipf α

Vanilla

CRIC

CoRC

CoRC-HBD

Oracle

Fig. 7.1. The comparison of cache hit ratio of CoRC and other schemes is shown.

7.4 Average Cache Hit Ratio

Figure 7.1 shows the average cache hit ratio with a cache space ratio of 1.0%,

varying α. Obviously, splitting the whole cache space into non-overlapping partitions

in CoRC allows more items to be stored in the caches, resulting in a higher cache

27

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5 3 3.5

F
re

q
u
e
n
c
y
 (

lo
g
)

Content popularity rank (log)

From original publisher

From intermediate cache

Fig. 7.2. The cache utilization of Vanilla is illustrated.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5 3 3.5

F
re

q
u
e
n
c
y
 (

lo
g
)

Content popularity rank (log)

From original publisher

From intermediate cache

Fig. 7.3. The cache utilization of CoRC is illustrated. CoRC can serve more diverse
items than Vanilla, which results in higher cache hit ratio.

28

hit ratio. There are two interesting observations. First, CoRC-HBD achieves almost

similar performance to Oracle as α increases from 1.2 to 1.4. Note that the cache hit

ratio of CoRC is higher than that of CoRC-HBD when α is 0.8 but the performance

gain is reversed as α increases to 1.2. It is because with highly skewed requests (e.g.,

α is 1.2 or 1.4), popular items have more requests while non-popular items have less

requests. Accordingly, the effect of partitioning a cache space is mitigated. Second,

CRIC exhibits the higher hit ratio than Vanilla because CRIC routes interests via RRs,

which gives a higher cache hit chances at RRs.

To better understand the splitting effect, we investigated the frequency of content

requests which arrive at each router, which is plotted according to their popularity in

a log-log scale. We distinguished items which are retrieved from intermediate caches

and original publishers by color. Figure 7.2 and 7.3 reveal that only popular items are

mostly cached in Vanilla while CoRC can cache much more items than Vanilla.

7.5 Content Delivery Latency

Figure 7.4 shows the ratio of the average hop count of each scheme to that of

Vanilla, and Figure 7.5 is the average route stretch which is the (hop count) ratio of a

path taken by each scheme to retrieve an item to the shortest path to its publisher, as

α varies. Vanilla has a fairly low hop count throughout α since it takes the shortest

path to the original servers (in cases of cache misses). With not-so-skewed popularity

distributions (e.g., α is 0.6 or 0.8), Oracle achieves the lowest hop count since it

caches most popular items while the other schemes may suffer from cache misses due

to relatively small popularity differences among items. CoRC and CoRC-HBD show

29

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.6 0.8 1 1.2 1.4

A
v
g
.
d
e
liv

e
ry

 h
o
p
 (

ra
ti
o
 t
o
 V

a
n
ill

a
)

Zipf α

Vanilla

CRIC

CoRC

CoRC-HBD

Oracle

Fig. 7.4. The average hop count of each scheme is plotted. CoRC-HBD achieves the
near-optimal performance.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.6 0.8 1 1.2 1.4

A
v
g
.
ro

u
te

 s
tr

e
tc

h

Zipf α

Vanilla

CRIC

CoRC

CoRC-HBD

Oracle

Fig. 7.5. The relative path length of each scheme is plotted. CoRC-HBD achieves
the near-optimal performance.

30

a slightly longer hop count than Vanilla due to route stretch. As α increases, however,

CoRC-HBD outperforms the other schemes since (i) popular items get more requests

and are cached at edge routers, and (ii) cache diversity is somewhat retained. Note

that Oracle performs poorly with the highly skewed popularity distribution (e.g., α is

1.2 and 1.4), since a single cache is located at the border router; popular items in the

other schemes are likely to be cached at edge and backbone routers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
D

F

Content retrieval time (s)

Vanilla
CRIC

CoRC
CoRC-HBD

Oracle

Fig. 7.6. The content retrieval time (when α is 0.8) is illustrated.

Figure 7.6, 7.7, and 7.8 show the CDF of the content retrieval times of each

scheme when α is 0.8, 1.0, and 1.2, respectively.

Regardless of the skewness of the popularity distribution, CoRC-HBD achieves

mostly shorter retrieval time by taking advantage of both independent and coordi-

nated caching. When α is 1.0, for example, about half of all requested items (that are

more popular) are retrieved from (closer) edge routers in Vanilla, CRIC, and CoRC-

31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
D

F

Download complete time (s)

Vanilla
CRIC

CoRC
CoRC-HBD

Oracle

Fig. 7.7. The content retrieval time (when α is 1.0) is illustrated.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
D

F

Download complete time (s)

Vanilla
CRIC

CoRC
CoRC-HBD

Oracle

Fig. 7.8. The content retrieval time (when α is 1.2) is illustrated.

32

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.6 0.8 1 1.2 1.4

In
te

r-
A

S
 T

ra
ff
ic

 (
ra

ti
o
 t
o
 V

a
n
ill

a
)

Zipf α

Vanilla

CRIC

CoRC

CoRC-HBD

Oracle

Fig. 7.9. Inter-AS traffic is plotted for each scheme. Traffic reduction comes from
caching diversity.

HBD due to the independent caching, which shows shorter retrieval time. For the

other half (i.e., items less popular), they are retrieved from caches in RRs in CoRC

and CoRC-HBD due to the cooperative caching, compared to Vanilla and CRIC.

While Oracle shows the shortest retrieval time for the less popular items (but lo-

cated in the cache storage), it performs poor for the popular items. To summarize,

CoRC-HBD achieves the low route stretch, and hence the low delivery latency while

mitigating the routing scalability issue.

7.6 Traffic Load

Figures 7.9 shows the traffic load over inter-AS links, which is normalized to

the Vanilla case. As expected, Oracle achieves the smallest inter-AS traffic due to the

33

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.6 0.8 1 1.2 1.4

T
o
ta

l
T

ra
ff
ic

 (
ra

ti
o
 t
o
 V

a
n
ill

a
)

Zipf α

Vanilla

CRIC

CoRC

CoRC-HBD

Oracle

Fig. 7.10. Total traffic is plotted for each scheme. CoRC-HBD achieves the near-
optimal performance.

omniscient knowledge of content popularity, while Vanilla shows the highest inter-

AS traffic due to poor cache diversity and cache hit ratio. We have two observations:

(i) CoRC performs better than CoRC-HBD, which is in turn better than CRIC, and

(ii) as α increases, the reduction of inter-AS traffic also increases. It can be explained

by the degree of cache diversity in these schemes.

Figure 7.10 shows the total amount of traffic, which is normalized to the Vanilla

case. The total traffic is the sum of transferred traffic for all the links. Notice that

Oracle and Vanilla ICN reveal interesting patterns. With not-so-skewed popularity

distributions (e.g., α is 0.6 or 0.8), Oracle is better than Vanilla since the cache uti-

lization is more important when content items exhibit relatively small popularity dif-

ferences. However, with the highly skewed popularity distribution (e.g., α is 1.2 or

1.4), Vanilla ICN is better than Oracle since popular items have more requests, and

34

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

T
ra

ff
ic

 L
o
a
d
 (

G
B

y
te

s
)

Link # (sorted by traffic load)

Vanilla
CRIC

CoRC
CoRC-HBD

Oracle

Fig. 7.11. Traffic load of each link is plotted for each scheme. Traffic load is balanced
in CoRC and CoRC-HBD.

hence interests for popular items are more likely to be hit on cache. The similar pat-

tern is observed between CoRC and CRIC. When α is 0.8, CoRC is better than CRIC

since the cache diversity is more effective to reduce traffic. Meanwhile, when α is

larger than 1.2, CoRC is worse than CRIC since every interest should visit its RR

first. Overall, CoRC-HBD reduces the effect of route stretch caused by RRs.

Figure 7.11 shows traffic load of each link when α is 1.0. Splitting the whole

cache space to routers helps spread traffic over all links. It is another advantage for

network management.

35

7.7 Route Stretch vs. Topology

According to the CAIDA’s analysis [34], the number of routers and their de-

gree distribution in each AS are different. To study how route stretch is affected by

a topology in a single AS, we evaluate the above schemes with six different topolo-

gies (see Table 7.1). Four router-level topologies are generated by IGen [35] with 64

nodes. We vary the node degree distribution of each topology by changing the num-

ber of links between access and backbone routers and between clusters. In addition,

two real topologies are considered: GEANT (pan-European research and education

network) and GARR-X (Italian research and education network).

Table. 7.1. Topology properties

Name TopA TopB TopC TopD GEANT GARR-X
Nodes 64 64 64 64 40 34

Mean Degree 2.84 4.34 5.87 7.41 2.98 2.70
Std.dev 3.57 4.51 5.45 6.58 2.01 1.53

Min 1 2 3 4 1 1
Max 12 18 22 27 10 6

In this experiment, an interest packet is generated by a randomly selected node

with a poisson arrival rate 0.1 (per second). In CoRC, all nodes in each topology are

in charge of non-overlapping parts of the whole cache space while a half of them are

selected as RRs in CoRC-HBD. Figure 7.12 shows the relative path length of CORC

and CoRC-HBD with the cache space ratio of 1.0%. We made two observations. First,

regardless of a topology, route stretch does not exceed a certain level, which gives an

incentive to the AS that adopts CoRC. Second, route stretch affected by the skewness

of content popularity can be alleviated by CoRC-HBD.

36

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

TopA TopB TopC TopD GEANT GARR-X

Average delivery hop (ratio to Vanilla)

Vanilla (α = 0.8)

CoRC (α = 0.8)

CoRC-HBD (α = 0.8)

Vanilla (α = 1.0)

CoRC (α = 1.0)

HBD (α = 1.0)

Vanilla (α = 1.2)

CoRC (α = 1.2)

CoRC-HBD (α = 1.2)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

TopA TopB TopC TopD GEANT GARR-X

Average route stretch

Fig. 7.12. Route stretch is almost irrespective of a topology.

37

Chapter 8

Packet Processing Time in a Router

In Vanilla ICN routing, an incoming interest packet can be forwarded by looking

up the FIB once. Forwarding an interest packet in the CoRC framework may take

longer time since there are more actions. In this chapter, we evaluate the interest

packet processing time in a router with the CoRC framework.

8.1 Methodology

We implement Vanilla routing and CoRC in two different settings: (i) the CCNx

framework over UDP/IP/Ethernet [36], and (ii) the Linux kernel over the Ethernet

link layer. In both settings, we increase the number of incoming interest packets per

time and measure the packet drop rate, which is the percentage of dropped interest

packets among all the incoming interest packets.

Also, we use another PC to generate interest packets. Thus, depending on the

settings, the interest packet generator is implemented in user space (i.e., in the CCNx

framework), or in kernel space. The number of generated interest packets per time

is varied to see the relation between the traffic rate (incoming interest packets per

second) and the drop rate. As a data packet is forwarded by the same mechanism

in CoRC and Vanilla ICN routing, the forwarding mechanism of data packets is not

implemented, and data packets are not generated. Each PC has an Intel Core i3-2100

38

CPU running at 3.10 GHz with 3 MB L2 cache and 3 GB memory.

8.2 Drop Rate vs. Interest Packet Rate

The drop rate of interest packets in the CCNx framework (in user space) is

shown in Figure 8.1. Interest packets start being dropped at 6000 packets per sec

(pps) with Vanilla routing, while CoRC shows packet drops at 4000 pps. This result

reveals that there is additional forwarding delay in CoRC with the first setting due to

two actions: (i) checking the AS name, and (ii) looking up the PIB and performing

tunneling.

In the second setting, both CoRC and Vanilla ICN routing schemes are imple-

mented in Linux kernel space. The drop rates of both schemes start at significantly

higher interest packet rate (40K pps), and there are marginal differences as shown

in Figure 8.2. This result indicates two observations. First, by implementing rout-

ing schemes in kernel space, the processing overhead (e.g., context switching) for

the additional actions in forwarding interest packets becomes marginal. While CoRC

requires more actions in forwarding interests, the additional processing delay is not

significant even with software implementation (in kernel). We believe that forward-

ing speed of interest packets on the hardware implementation of CoRC would be

comparable to that of Vanilla routing on the hardware implementation.

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2000 4000 6000 8000 10000 12000 14000

D
ro

p
 r

a
te

 (
%

)

Number of interest packets/sec

Vanilla ICN routing (CCNx)
CoRC (CCNx)

Fig. 8.1. Drop rate versus interest packet rate in CCNx is plotted.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20000 40000 60000 80000 100000 120000 140000

D
ro

p
 r

a
te

 (
%

)

Number of interest packets/sec

Vanilla ICN routing (kernel)
CoRC (kernel)

Fig. 8.2. Drop rate versus interest packet rate in kernel is plotted.

40

Chapter 9

Discussions and Future Work

9.1 Hashing by Publisher Name

CoRC generates a PID by hashing a publisher name, which has the following

two advantages. First, routing scalability is enhanced by aggregation. Second, a par-

ticular node is in charge of all contents with the same publisher, which is advanta-

geous in terms of network management and business with content providers. How-

ever, hashing can cause collisions, which may have a marginal effect on the routing

and caching performance in CoRC. First of all, the PID collision probability is ex-

tremely low with long hash length (say, 128 bits). Suppose two different publisher

names are hashed into the same PID. An interest packet for either of the two publish-

ers is delivered to the same RR by intra-domain routing in CoRC. The RR will look

up its PIB to find out the access router of the correct publisher. When the correspond-

ing PIB entry were populated, the RR already knows there is a hash collision for the

entry. To differentiate the two publisher names mapped to the same PID, we need

another field (say, the string of the publisher name) in the PIB only for the collided

entries.

41

9.2 Dealing with Router Failure

Like ViAggre [27], multiple replicas with the same PID prefix can be allocated

for availability. When any RR is down, its backup can come to the front by adver-

tising the PID prefix over the network. In this case, the caching procedure should

be restarted. Note that caching is less crucial than routing in case of node failures,

and eventually most of popular items will be cached in a relatively short time. There

are two issues to investigate as a future work; (i) How to deploy the backup routers

considering the AS topology? and (ii) How to share the cached item among backup

routers?

9.3 Resolution System and Multihoming

Most of organizations are connected to multiple ASes for availability and traffic

engineering purposes. Suppose cnn.com is connected to AS1 and AS2. The pub-

lisher may want to receive interests for cnn.com/video via AS1, and other interests

for cnn.com via AS2. To support, the DNS should be able to map AS names not just

at the level of publisher names but also at a finer granularity, e.g., directory under the

same publisher. Hence, we can keep maintaining two mapping entries for cnn.com

and cnn.com/video in the DNS. Moreover, multiple AS names may have to be dy-

namically selected, depending on the purposes such as load balancing and failover.

For this purpose, a possible option for reliable communications is to send multiple AS

names to a requester at once, and then the requester can control how to use multiple

ASes to access the particular publisher, which requires a further study.

42

Chapter 10

Summary

This dissertation proposed the CoRC framework in Information-Centric Net-

working (ICN) for: (i) routing scalability, (ii) caching efficiency, and (iii) coordina-

tion between routing and caching. To shrink the FIB size, CoRC uses two kinds of

routing (i.e., intra-domain and inter-domain routing), with two assumptions: (i) ev-

ery content publisher is connected to an AS (Autonomous System) and (ii) every

AS has its name, which is advertised across the Internet. With the AS name-based

inter-domain routing, a router in an AS needs to handle routing packets only for

the publishers belonging to the local AS. For the purpose of scalable intra-domain

routing, CoRC partitions a forward information base (FIB) among routers so that ev-

ery router maintains only a partition of the entire FIB. To maximize cache diversity,

CoRC makes each router cache content items whose names belong to its own par-

tition of the content namespace. An overlay testbed of 60 routers were constructed,

which runs on Amazon EC2 in five regions. The results revealed that the proposed

CoRC achieves the higher cache hit ratio, and hence reduce the inter-AS traffic, com-

pared to Vanilla ICN. The route stretch caused by CoRC can be alleviated by applying

optimizations. Several issues remain for future studies; (i) How to support multihom-

ing cases. (ii) How to assign ideal prefix to RRs, and (iii) How to allocate the backup

router and how to exchange the cached item in case that current RRs are down.

43

Bibliography

[1] Cisco Visual Networking Index: Forecast and Methodology, 2012-2017, May

2013.

[2] Andrea Passarella. Review: A Survey on Content-centric Technologies for the

Current Internet: CDN and P2P Solutions. Computer Communications, 2012.

[3] Teemu Koponen et al. A Data-oriented (and Beyond) Network Architecture. In

Proceedings of ACM SIGCOMM, 2007.

[4] Van Jacobson et.al. Networking Named Content. In Proceedings of ACM

CoNEXT, 2009.

[5] PURSUIT. http://www.fp7-pursuit.eu/.

[6] SAIL. http://www.sail-project.eu/.

[7] 4WARD. http://www.4ward-project.eu/.

[8] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.

com/ec2/.

[9] The ISC domain survey. http://www.isc.org/solutions/survey.

[10] Diego Perino et al. A Reality Check for Content Centric Networking. In Pro-

ceedings of the ACM SIGCOMM Workshop on Information-Centric Network-

ing, ICN, 2011.

[11] Carey Williamson et al. On Filter Effects in Web Caching Hierarchies. ACM

Transactions on Internet Technology, 2002.

[12] Steven DiBenedetto et al. Routing Policies in Named Data Networking. In

Proceedings of the ACM SIGCOMM Workshop on Information-Centric Net-

working, ICN, 2011.

44

http://www.fp7-pursuit.eu/
http://www.sail-project.eu/
http://www.4ward-project.eu/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.isc.org/solutions/survey

[13] Fragkiskos Papadopoulos et al. Greedy Forwarding in Dynamic Scale-Free

Networks Embedded in Hyperbolic Metric Spaces. In Proceedings of IEEE

INFOCOM, 2010.

[14] Named Data Networking. http://www.named-data.net/.

[15] Xin Zhao et al. On the Aggregatability of Router Torwarding Tables. In Pro-

ceedings of IEEE INFOCOM, 2010.

[16] Andrea Detti et al. Supporting the Web with an Information Centric Network

that Routes by Name. Computer Networks, 2012.

[17] Hang Liu et al. A Multi-Level DHT Routing Framework with Aggregation.

In Proceedings of the ACM SIGCOMM Workshop on Information-Centric Net-

working, ICN, 2012.

[18] Reaz Ahmed et al. αRoute: A Name Based Routing Scheme for Information

Centric Networks. In Proceedings of IEEE INFOCOM, 2013.

[19] Yaogong Wang et al. Advertising Cached Contents in the Control Plane: Ne-

cessity and feasibility. In Proceedings of INFOCOM NOMEN Workshop, 2012.

[20] Suyong Eum et al. CATT: potential based routing with content caching for

ICN. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric

Networking, ICN, 2012.

[21] Munyoung Lee et al. SCAN: Scalable Content Routing for Content-Aware

Networking. In Proceedings of IEEE ICC, 2011.

[22] Zhongxing Ming et al. Age-based cooperative caching in Information-Centric

Networks. In Proceedings of INFOCOM NOMEN Workshop, 2012.

[23] Ioannis Psaras et al. Probabilistic In-Network Caching for Information-Centric

Networks. In Proceedings of the ACM SIGCOMM Workshop on Information-

Centric Networking, ICN, 2012.

[24] Jia Wang. A Survey of Web Caching Schemes for the Internet. ACM Computer

Communication Review, 1999.

45

http://www.named-data.net/

[25] Lorenzo Saino et al. Hash-routing Schemes for Information Centric Network-

ing. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric

Networking, ICN, 2013.

[26] Sumanta Saha et al. Cooperative Caching through Routing Control in

Information-Centric Networks. In Proceedings of IEEE INFOCOM, 2013.

[27] Hitesh Ballani et al. Making routers last longer with ViAggre. In Proceedings

of USENIX NSDI, Boston, Massachusetts, 2009.

[28] Lada A. Adamic et al. Zipf’s Law and the Internet. Glottometrics, 2002.

[29] AS Number Analysis Reports. http://bgp.potaroo.net/.

[30] Michalis Faloutsos et al. On power-law relationships of the Internet topology.

SIGCOMM Computer Communications Review, 1999.

[31] Hongsuda Tangmunarunkit et al. Does AS size determine degree in as topol-

ogy? ACM SIGCOMM Computer Communications Review, 2001.

[32] Bradley Huffaker et al. Toward Topology Dualism: Improving the Accuracy of

AS Annotations for Routers. In Proceedings of PAM, 2010.

[33] Ingo Scholtes et al. TopGen - Internet Router-Level Topology Generation Based

on Technology Constraints. In Proceedings of SIMULTOOLS, 2008.

[34] Internet topology at router- and AS-levels, and the dual router+AS Internet

topology generator. http://www.caida.org/research/topology/

generator/.

[35] Bruno Quoitin et al. IGen: Generation of Router-level Internet Topologies

through Network Design Heuristics. In Proceedings of ITC, 2009.

[36] CCNx. http://www.ccnx.org/.

46

http://bgp.potaroo.net/
http://www.caida.org/research/topology/generator/
http://www.caida.org/research/topology/generator/
http://www.ccnx.org/

초록

인터넷이처음발명되었을때,대부분의애플리케이션은원격접속혹은파일

전송등과같이자원을공유하기위한목적으로이용되었다.그러한애플리케이션

들을지원하기위한인터넷아키텍처는점대점통신을기반으로하였으며,핵심

이되는요소는특정호스트를식별하는아이피주소였다.이후수십년간다양한

애플리케이션들과 서비스들이 새로이 등장하면서 인터넷의 사용 패턴은 크게 변

화하였다.시스코에의하면인터넷트래픽의대다수는웹, P2P,파일공유,그리고

비디오 스트리밍이 점유하고 있다. 이러한 새로운 애플리케이션들에서 사용자는

특정위치나호스트가아니라콘텐트자체에관심을두고있으며,점대점통신에

기반한인터넷설계와정보중심적인현재의이용패턴사이의괴리는콘텐트전송

의비효율성을비롯해많은문제를야기하였다.아이피주소에기반해전달을하는

네트워크노드들이자신이어떤콘텐트를전송하고있는지알수없기때문이다.

이러한문제를해결하기위해네트워크를정보중심적인관점에서새롭게설

계하자는목적하에정보중심네트워크 (Information-Centric Networking, ICN)가

등장하였다.정보중심네트워크에서의핵심은 (i)콘텐트이름에기반해라우팅을

하며, (ii) 네트워크 노드들이 스토리지를 가지고 있어 지나가는 콘텐트를 인식하

고캐슁할수있는것이다.이것은콘텐트의송신과수신을시간적,공간적으로분

리함으로써 콘텐트의 가용성을 강화시키고 멀티캐스트 및 이동성을 구조적으로

지원하게된다.

본 학위논문은 정보 중심 네트워크에서 발생하는 많은 이슈들 중에서 라우

팅과 캐슁에 집중하였다. 정보 중심 네트워크가 콘텐트 이름을 이용하기 때문에

라우팅테이블이증가하는문제를해결하였으며,각네트워크노드가독립적으로

47

캐슁을함으로써캐슁스토리지를비효율적으로해결하는문제를해결하였다.이

전의연구들은라우팅과캐슁각각이풀어야할문제를독립적으로취급해왔으나

본학위논문은이들을하나의프레임워크로묶어서각각이직면하고있는상이한

목적을동시에달성하고자하였다.

주요어: 정보중심네트워킹,콘텐트중심네트워킹,라우팅,캐슁

학번: 2008-20999

48

	I. Introduction
	II. Design Principles
	2.1 How to Make FIBs Scalable?
	2.2 Where to Place the Cached Item?
	2.3 How to Coordinate between Routing and Caching?
	2.4 How to Reflect the Current Internet Infrastructure and Business?

	III. RelatedWork
	IV. CoRC: Coordinated Routing and Caching
	4.1 Name Resolution
	4.2 Routing
	4.2.1 Intra-domain Routing
	4.2.2 Inter-domain Routing

	4.3 Caching

	V. Optimization
	5.1 Assigning PID prefix to RR .
	5.2 Hybrid Approach

	VI. Routing Scalability
	6.1 AS-FIB
	6.2 PAR-FIB and PIB
	6.3 Numbers of Entries of Three Tables

	VII. Network Performance
	7.1 Performance Metrics
	7.2 Compared Schemes
	7.3 Experimental Setting
	7.4 Average Cache Hit Ratio
	7.5 Content Delivery Latency
	7.6 Traffic Load
	7.7 Route Stretch vs. Topology

	VIII.Packet Processing Time in a Router
	8.1 Methodology
	8.2 Drop Rate vs. Interest Packet Rate

	IX. Discussions and Future Work
	9.1 Hashing by Publisher Name
	9.2 Dealing with Router Failure
	9.3 Resolution System and Multihoming

	X. Summary
	Bibliography

<startpage>11
I. Introduction 1
II. Design Principles 4
 2.1 How to Make FIBs Scalable? 4
 2.2 Where to Place the Cached Item? 5
 2.3 How to Coordinate between Routing and Caching? 5
 2.4 How to Reflect the Current Internet Infrastructure and Business? 6
III. RelatedWork 7
IV. CoRC: Coordinated Routing and Caching 9
 4.1 Name Resolution 9
 4.2 Routing 10
 4.2.1 Intra-domain Routing 11
 4.2.2 Inter-domain Routing 12
 4.3 Caching 13
V. Optimization 15
 5.1 Assigning PID prefix to RR . 15
 5.2 Hybrid Approach 17
VI. Routing Scalability 19
 6.1 AS-FIB 19
 6.2 PAR-FIB and PIB 19
 6.3 Numbers of Entries of Three Tables 22
VII. Network Performance 24
 7.1 Performance Metrics 24
 7.2 Compared Schemes 25
 7.3 Experimental Setting 26
 7.4 Average Cache Hit Ratio 27
 7.5 Content Delivery Latency 29
 7.6 Traffic Load 33
 7.7 Route Stretch vs. Topology 36
VIII.Packet Processing Time in a Router 38
 8.1 Methodology 38
 8.2 Drop Rate vs. Interest Packet Rate 39
IX. Discussions and Future Work 41
 9.1 Hashing by Publisher Name 41
 9.2 Dealing with Router Failure 42
 9.3 Resolution System and Multihoming 42
X. Summary 43
Bibliography 44
</body>

