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Abstract

Multi-Attribute Operation Policies for
Multi-RAT Smartphone

Today’s smartphones integrate multiple radio access technologies (multi-RAT), e.g.,

3G, 4G, WiFi, and Bluetooth, etc. Moreover, state-of-the-art smartphones can acti-

vate multiple RAT interfaces simultaneously for the parallel transmission. Therefore,

it is becoming more important to select the best RAT set among the available RATs,

and determine how much data to transfer via each selected RAT network. We pro-

pose Energy, Service charge, and Performance Aware (ESPA), an adaptive multi-RAT

operation policies for smartphone with supporting system design and multi-attribute

cost function for smartphones’ Internet services including multimedia file transfer and

video streaming services. ESPA’s cost function incorporates battery energy, data usage

quota, and service specific performance, simultaneously. These attributes are moti-

vated by the growing sensitivity of today’s smartphone users to these attributes.

Each time the individual attributes are calculated and updated, ESPA selects the

optimal RAT set that minimizes the overall cost. It can activate only the best one RAT

interface or exploit multiple RATs simultaneously. The primary benefit of the ESPA is

that it enables the smartphone to always operate in the “best” mode without the need

for user’s manual control; the energy saving mode if the remaining battery energy is

becoming nearly depleted; the cost-saving mode if the remaining data quota is almost

running out; or, the performance-oriented mode if remaining data quota and battery
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energy are both sufficient.

From Chapter 2 to Chapter 4, we cope with file transfer, video streaming, and

standby mode for our proposed algorithms. The proposed algorithms are based on the

service specific cost or utility models, which also take into account practical issues

related to user satisfaction metrics.

First, for file transfer mode, we apply the transfer completion time as the perfor-

mance metric, and the energy consumption and service charge for downloading a spe-

cific size of file are simultaneously considered. Furthermore, we especially take into

account a problem that the computational complexity exponentially increases as the

number of available RATs increases. We propose a heuristic linear search algorithm

to find the optimal RAT set without significant performance degradation. Secondly,

for video streaming mode, we consider the HTTP-based video streaming model ex-

ploiting multipath with LTE and WiFi networks. Based on analysis of the energy con-

sumption and data usage for the video streaming services, we propose a multi-RAT

based video streaming algorithm that balances between the video quality, i.e., the per-

formance metric, and the total playback time with currently given battery energy and

data quota. Finally, we cope with the battery energy leakage issue of the smartphone

in the standby mode due to intermittent traffic generated by some applications running

on background. We analyze the energy-consuming factors in the standby mode and

smartphone usage patterns of multiple users, and then, propose a usage pattern-aware

deep sleep operation algorithm to save the battery energy in the standby mode.

Simulation results based on real measurement data of the smartphone show that the

ESPA algorithms indeed choose the “best” operational mode by maintaining dynamic

balance among the performance, energy consumption, and service charge considering

the currently provided services and the remaining resources.

Keywords: LTE/WiFi, multi-RAT, smartphone, file transfer, video streaming, energy
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saving, data quota saving, balancing multi-attributes, MADM, multi-attribute decision

making
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Chapter 1

Introduction

1.1 Energy, Service Charge, and Performance aware Multi-

RAT Operation Policies for Smartphone

Today’s smartphone users are becoming increasingly more sensitive to not only the

perceived performance of the received service quality, but also the service charges

that they have to pay. In addition, the growing appetite for large-volume multimedia

data applications likely leads to faster drainage of their battery life. Consequently,

smartphone users are nowadays much more conscious of their usage patterns, and this

often forces users to frequently adapt their usage preferences depending on the status

of their smartphones and services. For example, when the battery life becomes more

important, a smartphone user might prefer communication methods that maximizes the

remaining battery life rather than fast download. Otherwise, when a user has consumed

most of his/her monthly data quota, the user is likely to limit its use of LTE service

and opt for free WiFi hotspots instead.

Yet in another example, a user might want to download a large file as quickly as

possible using multiple network interfaces simultaneously if the user is not concerned
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with battery life or cost. That is made possible in the real world because state-of-the-

art smartphones are capable of the parallel transmission by concurrently activating

LTE and WiFi interface to boost up the download speed [1, 2]. Users would be given

more options of the RAT selection for a specific service as the number of available

radio access technologies (RATs), e.g., 3G, 4G, WiFi, and Bluetooth, in smartphones

increases. Therefore, it is important to develop a strategy to choose the best RAT set

to maximize the user satisfaction or to minimize the cost for various services.

In this dissertation, we propose the Energy, Service charge, and Performance Aware

(ESPA) Multi-RAT operation policies to optimally use multiple radio access technolo-

gies (multi-RAT) such as LTE and WiFi in smartphones.

We begin by first formulating a multi-attribute cost function considering nRAT-

based smartphone characteristics. In particular, we incorporate three attributes, i.e.,

Energy consumption (E), Service charege (S), and Performance (P) that are considered

most important for typical smartphone users, into the cost function. In the algorithms,

we especially cope with file transfer and video streaming services for heavy load cases

of smartphone usage. Furthermore, we take into account the battery energy leakage

due to background traffic in standby mode of the smartphone and propose an energy

saving algorithm in the standby mode properly turning off and on the data network

interface.

While the file download speed can be boosted up by exploiting multiple RAT paths,

the energy consumption and data quota usage might be increased according to the

newly activated RAT interfaces. Moreover, it is noted that a change of the network

interface selection caused by switching on an interface yields additional delay and

energy overheads for the initial connection setup. Such factors should be considered

when selecting the best network(s) especially for small size files because the portion of

RAT interface’s state transition overheads might become more significant to the overall
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cost. Therefore, we take these overheads into account as dependent parameters in the

energy and time cost attributes, respectively. We propose a best RAT selection and

the corresponding segment allocation algorithm with low computational complexity,

which, furthermore, dynamically updates the network selection criteria based on the

ongoing throughput performance.

Because mobile video streaming services are the biggest part of mobile data traffic

sources [3] in these days, we cope with optimizing the operating parameters for the

video streaming services, i.e., the video encoding rate, chunk download cycle, multi-

RAT (LTE/WiFi) selection. Those factors simultaneously influence the video quality,

energy consumption, and data quota usage, and therefore, need to be jointly optimized.

Based on numerical analysis of the expected energy consumption and data usage, we

formulate an objective function to maximize the sum utility incorporating the video

quality and available playback time. We show that the proposed algorithm effectively

balances the video quality and available watching time with given resources through

comparison with other static schemes.

Even though the file transfer or video streaming services, i.e., heavy traffic ser-

vices, intensively consume energy and data, the frequency in use of these services is

not relatively high. Statistics in [4, 5] represent that smartphones spend over-80% of a

day in the standby mode waiting the next usage. Moreover, some applications running

in the background generate light load traffic periodically even in the standby mode.

Therefore, the energy consumption in the standby mode is considerable for the long-

term scale. We study an anatomy of the smartphone power consumption in the standby

mode for the both cases connected to either LTE or WiFi considering the background

traffic. We propose an energy saving algorithm in the standby mode exploiting user’s

smartphone usage patterns composed of timestamp logs of the start and end time of

each standby mode gathered from multiple smartphone users. Through the real usage
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trace-based evaluation, we show that the proposed algorithm adapts each user’s usage

pattern and effectively save the battery energy.

1.2 Overview of Existing Approaches

1.2.1 Multi-attribute based network selection

Network selection schemes in heterogeneous networks can be classified according to

two different points of view: network-centric and user-centric approaches.

The network-centric approaches consider the overall system performance in a cen-

tralized or distributed manner. Several studies [6–8] assume a centralized controller

that controls each user’s network selection based on an integrated cost function. Cost

function-based network selection strategy in [6] proposes a strategy to achieve a bal-

anced point between the call blocking probability and the average received signal

strength. In [8], the authors propose a system capacity maximization strategy based

on resource allocation considering parallel transmission by activating multiple RATs.

Recently in [7], the authors consider more diverse attributes such as spectral efficiency,

energy consumption, and fairness. They propose a central global resource controller

that manages the resources of several heterogeneous wireless networks to balance

these multiple attributes in a system operator’s perspective.

The decentralized network-centric approach is usually based on cooperative [9] or

non-cooperative game [10]. This approach focuses on the relationship or interaction

among players that can be users or networks considering payoffs that result from their

actions. The game theoretic algorithms also consider system-wide performance such

as call blocking, sum throughput, fairness, and convergence time.

On the other hand, the user-centric approach is also widely studied based on Al-

ways Best Connected scheme [11]. In this approach, a cost or utility function is also
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formulated in terms of various attributes such as user’s signal quality, throughput, de-

lay, energy, service charge, and security. While earlier studies mostly focus on improv-

ing user’s throughput or delay performance by applying appropriate vertical handoff

algorithms [12, 13], the energy consumption and service charge are also recently in-

vestigated and considered in [14–16].

In order to consider those multiple attributes for network selection, MADM is

widely used [17–19]. Several MADM methods such as SAW, Multiplicative Exponen-

tial Weighting (MEW), Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS), Analytic Hierarchy Process (AHP), and Grey Relational Analysis (GRA)

are popularly used for MADM. These methods are basically used to select the best

single network by ranking networks based on weighted multiple attributes. However,

our approach takes into account the simultaneous usage of multiple networks as well

as a single network selection, and hence, adopt SAW method for easy modeling and

analysis of the detailed multi-attribute cost function.

1.2.2 Energy and quota-aware video streaming services

video streaming services have been studied in terms of data usage or energy consump-

tion independently [20–22]. In [20], authors propose a dynamic cache management

algorithm that considers network speed and power states of 3G and 4G network inter-

faces, i.e., idle, active, and tail states. According to achievable network throughput and

user’s viewing time distribution, the algorithm optimize the video cache size to reduce

the average power during the playback. The video encoding rate selection algorithm

is proposed in [22] maximizes the sum utility of all the viewed videos with given data

budget. However, smartphone users are generally concerned about both the remain-

ing data quota and battery energy. Typical users may stop playing video when either

available data quota or energy is about to be depleted.
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The authors [21] deal with energy consumption issue for the video streaming in

wireless environments. They propose to exploit crowd-sourced viewing time statis-

tics for each video, and then schedule video streaming with video download size and

request time in order to reduce unnecessary energy consumption. However, this algo-

rithm focuses on only reducing the energy overhead although data quota is another

important factor. Insufficient data quota may discourage users to stop watching video

streaming even if the battery energy is sufficient. Besides, the proposed algorithm is

only useful when there exist crowd-sourced viewing time statistics.

1.2.3 Multi-path based approaches

Transport layer protocols for supporting multi-path based data communications have

been studied, where the typical protocols are Stream Control Transmission Protocol

(SCTP) [23] and Multipath TCP (MPTCP) [24]. These protocols aim to enhance the

connection reliability or to increase network bandwidth. Recently, energy efficient

multi-path TCP (MPTCP) schemes by exploiting multiple network paths, e.g., cel-

lular and WiFi, in mobile devices are proposed [25–27]. They improve the energy

efficiency (Mb/Joule) of MPTCP rather than the aggregate throughput. In this paper,

we focus furthermore on balancing the performance, energy consumption, and data

quota usage by finding the optimal RAT set among available n RATs and file segment

allocation accordingly.

On the other hand, multi-path data transfer can be also supported by application

layer protocols. The segmented file transfer is widely used in peer-to-peer file shar-

ing systems [28], and the HTTP range request [29] is exploited to download a single

file over multiple links [30]. These protocols are based on the client side request, and

hence, the file can be transferred through end-to-end multiple links only with the sup-

porting applications in the client and server side. Furthermore, the application layer
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protocols are more flexible to allocate file segments to activated multiple RAT paths,

and therefore, we adopt the range request protocol type for our system model.

1.3 Main Contributions

1.3.1 File transfer mode

We generalize the multiple network interface activation problem for n RAT-equipped

smartphones. We show that the generalized version is the joint combinatorial and

piecewise linear minimization problem that can be still properly optimized. We pro-

pose a heuristic algorithm to find the optimal RAT set and corresponding segment

allocation with low computational complexity. Even though the number of possible

RAT combinations exponentially increases as the number of available RATs increases,

the proposed linear search algorithm reduces the size of the search space from expo-

nential to linear. We also propose a dynamic update algorithm that adapts the selected

RAT set and segment allocation during the transfer according to time-varying network

condition. In the performance evaluation, we verify that the proposed algorithm shows

no significant performance difference from the full search algorithm. Furthermore, we

show that the parallel activation scheme improves the RAT diversity gain compared

with the vertical handoff. With time-varying throughput variation of RATs, the perfor-

mance enhancement through the dynamic update algorithm is also evaluated.

1.3.2 Video streaming mode

We propose an algorithm balancing the video quality and the available playback time

with given battery energy and data quota. we formulate a normalized utility function,

incorporating the utility of a chosen video encoding rate and the corresponding data

usage and energy consumption. For this purpose, we numerically analyze how HTTP-
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based video streaming services affect the data usage and energy consumption simul-

taneously. In the numericaly analysis, we also cope with the expected energy and data

waste caused by user’s leaving in midstream during the playback. Base on the analy-

sis, we firstly propose a sub-algorithm that searches the optimal chunk download cycle

to maximizes the available playback time considering the data usage and energy con-

sumption simultaneously. Then, we propose a complete algorithm that optimizes joint

operating parameters, i.e., video encoding rate, multi-RAT (LTE/WiFi) selection with

corresponding optimal chunk download cycle. We show that the proposed algorithm

selectivley saves more depelting resources, otherwise it improves the video quality as

much as possible.

1.3.3 Standby mode

We present an anatomy of smartphone power consumption especially for the standby

mode with the connected network between LTE and WiFi. We discuss major consider-

ations in battery energy drain of smartphones according to connected network, usage

pattern, and background traffic generation Based on the power consumption estimation

in the standby mode, we propose a deep sleep mode algorithm that periodically turns

off and on the data network interface to save the energy consumed by the background

applications during the standby mode. Through the real usage trace driven simulation,

we show the proposed scheme properly adapts a specific usage pattern and effectively

improve the energy saving gain.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we describe the

multiple n/, RAT-based file transfer model in consideration We present problem for-
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mulation and model the multi-attribute (time, energy, and quota) cost function. Based

on the cost model, we propose a heuristic algorithm to select the best RAT set and the

corresponding optimal file segment allocation to the activated network paths. We es-

pecically cope with the computational complexity and network throughput dynamicity

issues for the proposed algorithm.

In Chapter 3, we propose an energy, quota and performance-aware video stream-

ing algorithm in smartphones. We addopt HTTP-based video streaming model and

exploit multi-RAT, i.e., LTE and WiFi considering simultaneous activation of them.

The proposed algorithm chooses the best operating parameters, i.e., video encoding

rate, chunk download cycle, and network selection. The algorithm considers user’s

video watching pattern such as the average watching duration, leaving-in-midstream

probability. Based on the user-specific profile, it balances between the video quality

(encoding rate) and available playback time according to the remaining battery energy

and data quota.

In Chapter 4, we present an anatomy of the power consumption at the network

interface of smaprthone in the standby mode. We consider the background traffic gen-

eration that causes the major battery drainage in the standby mode. Basically, LTE

consumes much more energy per packet than WiFi, however, WiFi can occasionally

cause additional energy overheads such as beacon reception, scanning, keep-alive mes-

saging in the link layer level. Based on the standby mode power model, we propose a

deep sleep mode (DSM) algorithm that periodically turns off and on the data network

interface. We exploit multiple users’ smartphone usage traces for the evaluation and

show that the proposed algorithm effectively saves the energy consumed in the standby

mode.

Finally, Chapter 5 concludes the dissertation with the summary of contributions

and discussion on the future work.
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Chapter 2

File Transfer Mode

2.1 Introduction

As the number of available radio access technologies (RATs), e.g., 3G, 4G, WiFi, and

Bluetooth, in today’s smartphone increases, users are given more options of the RAT

selection for a specific service. Furthermore, state-of-the-art smartphones are capable

of the parallel transmission by concurrently activating multiple RATs such as LTE and

WiFi to boost up the download speed [1, 2]. Therefore, it is important to develop a

strategy to choose the best RAT set to maximize the user satisfaction or to minimize

the cost for data service.

These days, smartphone users are becoming more sensitive not only to the per-

ceived performance of the service quality, but also to their service charges that they

have to pay. Also, the growing appetite for large-volume multimedia data applica-

tions likely leads to faster battery drainage. Therefore, we propose a multi-attribute

cost-based multi-RAT interface activation scheme that enables smartphones to auto-

matically choose the optimal RAT set among the available n RATs.

We begin by first formulating a multi-attribute cost function considering nRAT-
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based smartphone characteristics. In particular, we incorporate three attributes, namely,

file transfer completion time (T), energy consumption (E), and data usage quota (Q),

that are considered most important for typical smartphone users, into the cost function.

The three cost terms T , E, and Q are merged into the multi-attribute cost function

based on the Simple Additive Weighting (SAW) method, which is widely used for

Multi-Attribute Decision Making (MADM) algorithm [17, 19].

With this multi-attribute cost function as the primary decision vehicle, the objective

of the proposed scheme is then to determine which RAT interface(s) should be acti-

vated considering the energy and delay overhead for turning-on/off these interface(s),

and then calculate how much data should be transmitted through each selected RAT

path to minimize the overall cost. The proposed algorithm enables nRAT-based smart-

phone to adaptively activate and select the optimal RAT set to minimize the multi-

attribute cost according to the file size and estimated throughput, while satisfying the

energy and cost requirements.

In our previous work [31], we studied an adaptive network interface activation

scheme considering LTE/WiFi-enabled smartphones. The multi-attribute cost function

with regard to the transfer completion time, energy consumption, and service charge

are modeled for three modes, namely, LTE-only, WiFi-only, and LTE/WiFi-parallel

mode, based on the delay and energy measurement of commercial smartphone. How-

ever, the previous study is only limited to the two-RAT case, and the issues resulting

from extension to the case of more than two RATs are not considered.

For nRAT-based interface activation scheme, a generalized problem formulation

with nRATs, where n ≥ 2, is needed. Furthermore, a low complexity algorithm is

needed for dynamic update of the RAT selection during run-time because the search

space to find the optimal RAT set is exponentially proportional to the number of avail-

able RATs.
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In this work, we formulate an objective function composed of two subproblems: (i)

piecewise linear optimization problem for the optimal segment allocation to activated

RAT paths, and (ii) combinatorial problem to select the optimal RAT set considering

parallel transmission over multiple RATs. Our main contributions are as follows:

• We generalize the multiple network interface activation problem for n RAT-

equipped smartphones. We show that the generalized version is the joint com-

binatorial and piecewise linear minimization problem that can be still properly

optimized.

• We propose a heuristic algorithm to find the optimal RAT set and corresponding

segment allocation with low computational complexity. Even though the number

of possible RAT combinations exponentially increases as the number of avail-

able RATs increases, the proposed linear search algorithm reduces the size of

the search space from exponential to linear.

• We also propose a dynamic update algorithm that adapts the selected RAT set

and segment allocation during the transfer according to time-varying network

condition.

In the performance evaluation, we verify that the proposed algorithm shows no sig-

nificant performance difference from the full search algorithm. Furthermore, we show

that the parallel activation scheme improves the RAT diversity gain compared with the

vertical handoff. With time-varying throughput variation of RATs, the performance

enhancement through the dynamic update algorithm is also evaluated.

The rest of this chapter is organized as follows. In Section 2.2, the nRAT-based

system model in consideration is described. We present problem formulation and model

the multi-attribute (T -E-Q) cost function in Section 2.3. Then, we analyze the charac-

teristics of the problem in Section 2.4, and propose a heuristic algorithm in Section 2.5.
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Figure 2.1: Multi-RAT file transfer model.

The performance of the proposed algorithm is evaluated via simulations in Section 2.6.

Finally, we summarize and conclude Chapter 2 in Section 2.7.

2.2 System Model

Fig. 2.1 shows the system model that supports parallel or switched data transfer through

selected RAT path(s) among n available RATs. In order to fully utilize each RAT band-

width, a large data file is splitted into a number of small fixed-size segments, e.g.,

100 kB, and a set of such segments are allocated to each selected RAT path and trans-

mitted by the server. The receiver combines segments received via multiple RAT paths

to reconstruct the original file in the application layer. The process can be supported by

the existing multiple flow-based application layer protocol such as the segmented file

transfer widely used in P2P file sharing systems [28] and the HTTP range request to

download a single file over multiple links [30]. These protocols are based on the client

side request, and hence, the file can be transferred through end-to-end multiple links

only with the supporting applications in client and server terminals.
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We only focus on the file download case supported by an end-to-end application

layer protocol in the system model since the file download is more dominant than

the upload counterpart in the real life. To support the upload case, the request-based

end-to-end protocol is not enough, and it would need a new protocol, e.g., push-based

protocol or a proxy server located between the client and server to aggregate file seg-

ments transmitted through multiple RAT paths. Such a protocol issue is out of scope

in this chapter.

On the other hand, for the energy, service charge, and performance awareness,

the quality of service (QoS) equalizer obtains weighting and normalization factors

based on user preference and device status for each QoS term, respectively. The de-

vice status includes information on the remaining battery energy and remaining data

quota, and the user preference involving weighting factors for the transfer completion

time (T), energy consumption (E), and data quota usage (Q) is set through the QoS

equalizer as described in Fig. 2.1. Then, the network interface manager calculates the

multi-attribute cost function based on the weighting and normalization factors, and

determines which RAT set is selected and how many segments are requested for each

selected RAT path.

2.3 Problem Formulation

For the optimization problem, we define NA as a set of all the available RATs and SA

as a set of all the possible RAT combinations. For example, a smartphone with NA =

{WiFi, 3G, 4G}will have SA = {{WiFi}, {3G}, {4G}, {WiFi, 3G}, {WiFi, 4G}}

if 3G and 4G cannot be activated at the same time. Assume that a set including the se-

lected RAT(s) is denoted by set S (∈ SA), and x is a (nx1) file segment allocation

vector for the selected n RATs, where each element xi denotes the allocated segment
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size transferred via RAT i. Then, the multi-attribute cost function FS(x) is represented

by the normalized sum of the transfer completion time, energy consumption, and data

usage quota:

FS(x) = αTS(x) + βES(x) + γQS(x), (2.1)

where TS(x), ES(x), and QS(x) are transfer completion time, energy consumption,

and data usage quota, respectively. α, β, and γ are weighted normalization factors to

integrate all these attributes into the cost function, where each one is represented by the

multiplication of the user-defined weighting factors ω{t,e,q} and normalization factors

as follows: α = ωt/Tmax, β = ωe/Emax, and γ = ωq/Qmax. By these normalization

factors, each cost term is represented by the ratio of the cost to the maximum cost, i.e.,

Tmax, Emax, and Qmax. In [31], we apply the maximum tolerable transfer completion

time, the remaining battery energy, and the remaining data quota for the maximum

cost of each cost term. In addition to the normalization factor, a user can require the

limitation of energy and data usage, denoted by Ereq and Qreq, respectively, for the

given file transfer service.

Therefore, the optimization problem with the normalized multi-attribute cost func-

tion and required energy/quota constraints is formulated as follows:

min
S∈SA,x

FS(x),

s. t. ES(x) ≤ Ereq, QS(x) ≤ Qreq,∑
i∈S

xi = Btr , xi > 0, ∀i ∈ S,

(2.2)

where Btr is the size of the file to be transferred. The objectives of the problem are

to find out the best RAT set (S∗) with the corresponding segment allocation vector
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(x∗). In the next section, we briefly explain the T -E-Q cost model for nRAT-based

file transfer services and present the proposed optimization problem.

2.3.1 T -E-Q cost modeling

nRAT-based transfer completion time (T) cost

Assuming that a device can access multiple RATs simultaneously, the completion time

of the file transfer is determined by the longest time among the selected RAT path(s).

Therefore, the file transfer completion time, TS(x), can be modeled as follows:

TS(x) = max
i∈S

(
ttri + tsw

i

)
, where ttri = xi/ri, (2.3)

where ttri is the transfer completion time through RAT i for the segment size xi, which

is a part of theBtr-byte file. ri denotes the achievable throughput of RAT i, and tsw
i rep-

resents the turning-on delay of RAT interface i including the access delay until it can

actually transfer data. This is a state-dependent variable, that is equal to zero if the cor-

responding network is already connected when the file transfer is about to start. From

the measurement study [31], the turning-on delay is different for each RAT, and we

assume that the value is initially given by manufacturers or obtained by smartphone’s

self-training.

nRAT-based energy consumption (E) cost

To transmit or receive packets, the battery energy is consumed by CPU and acti-

vated RAT interfaces. When generating packets, the energy is consumed by CPU to

read/write data buffers and to attach/detach TCP, IP, and MAC headers. Moreover,

each RAT interface consumes energy to transmit/receive packets through the wireless

channel. Therefore, we take these factors into account for the energy consumption
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Figure 2.2: Parallel transfer model with n RATs.

model written as ES(x) = EnetS (x) + EcpuS (x), where EnetS (x) and EcpuS (x) repre-

sent the energy consumption at the activated RAT interfaces and CPU, respectively.

The display power is not affected by the change of activated RAT interfaces, and we

assume that the display is turned off during the file transfer service. If needed, we

can simply add an approximated constant power level according to the current display

information such as the brightness or RGB values of pixels.

The energy consumption of each RAT interface is generally composed of the base

energy, transmission/reception energy, promotion/tail energy,1 and turning-on/off en-

ergy. Once these components are modeled, we can assume that the parameters can be

applied to all the same types of RAT interfaces. The energy consumption of selected

RAT interface(s) for data transfer can be expressed as follows:

EnetS (x) =
∑
i∈S

{
pneti (ri)

xi
ri

+ esw
i + eoh

i

}
, (2.4)

where pneti (ri) is the average power consumption for data transfer through RAT i,

1For a power save mode operation, wireless interfaces wake up only when data transfer is requested.
After the data transfer is completed, it waits for a certain duration before going back to the sleep mode.
The energy overhead for the former and latter cases are referred to as the promotion and tail energy,
respectively.

17



and it is modeled by the function of the achievable throughput ri. Huang et al. show

in [32] that the power consumption of 3G, LTE, and WiFi for both of the uplink and

downlink transmissions, and their throughput-power curves are approximately fitted to

a linear function of the throughput variable. Therefore, we apply the linear fit model for

the power consumption according to the achievable throughput for RAT i as follows:

pneti (ri) = airi + bi, where ai and bi are the linear fit coefficients for RAT i. eoh
i

is the aggregate energy overhead including promotion and tail energy to transfer file

segments through RAT i. esw
i is the state-dependent energy overhead due to turning on

RAT i’s interface, which is set to zero if the RAT interface is already turned on.

On the other hand, it is known that the CPU power is linearly proportional to the

CPU usage [33], which is in turn linearly proportional to the packet generation rate.

The packet generation rate is proportional to the network throughput, and hence, the

CPU power can be also approximated by a linear fit model corresponding to the sum

data rate. Fig. 2.2 describes an example of the parallel transmission through n RAT

paths, where a smartphone initially connected to RAT-1. As shown in the figure, the

horizontal (time) line is divided into 2n−1 sections, where each section is determined

by a different set of activated RAT paths. Accordingly, each section has a different sum

rate determined by the activated RAT path set. Assuming that Section k of duration tk

achieves the sum rate of Rk, the CPU energy consumption model is formulated as

follows:

EcpuS (x) =

2n−1∑
k=1

(cRk + d)tk = c

2n−1∑
k=1

Rktk + d

2n−1∑
k=1

tk

= cBtr + dTS(x)

(2.5)

where c and d are the linear fit coefficients — we apply c = 3 mW/Mb/s and d =

465 mW referring to [31]. As the equation shows, the CPU energy consumption is
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neither related to the number of sections nor the corresponding sum rate, but is only

related to the total file size and transfer time.

nRAT-based service quota (Q) cost

Some RATs such as 3G and 4G incur the service charges whereas other RATs such as

WiFi and Bluetooth are free of charge. The service charge according to the file segment

size for each RAT path is modeled as follows:

QS(x) =
∑
i∈S

qixi, (2.6)

where qi is the service charge rate per byte for RAT i, which is zero for the free net-

work. If the service charge is Qp for Bp bytes per month, we model qi =
Qp
Bp

.

2.3.2 Optimization problem

Integrating all the T , E, and Q cost terms in (2.3), (2.4), (2.5), and (2.6) into (2.2), the

normalized cost function can be formulated as a piecewise linear function of the seg-

ment allocation vector x, i.e., FS(x) = max(uTi x + vi). Then, the objective function

with constraints in (2.2) is represented as follows:

min
S∈SA,x

{
max
i∈S

(uTi x + vi)
}
,

s. t. max
i∈S

(gTi x + hi) ≤ Ereq, qTx ≤ Qreq,∑
i∈S

xi = Btr , xi > 0, ∀i ∈ S,

(2.7)
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where

ui =
α+ βd

ri
Ii + β (a + b) + γq,

vi = (α+ βd)tsw
i + β

∑
j∈S

(esw
j + eoh

j ) + βcBtr,

gi =
d

ri
Ii + (a + b) , hi = dtsw

i +
∑
j∈S

(esw
j + eoh

j ) + cBtr,

a = (a1, · · · , an),b = (b1/r1, · · · , bn/rn),q = (q1, · · · , qn),

where n is the number of elements in set S, and Ii is the indicator vector that the i-th

element is 1 and all the other elements are 0. Then, the objective function forms two

subproblems: (i) a piecewise linear minimization to find the optimal segment allocation

vector x∗ with a given RAT set S, and (ii) a combinatorial problem to find the optimal

RAT set S∗ among all the candidate RAT sets SA. The piecewise linear function is

known to be convex, and the minimization problem can be solved transforming it to

an equivalent linear programming (LP) by forming the epigraph problem [34] with

variable tS as follows:

min f

s. t. uTi x + vi ≤ f, gTi x + hi ≤ Ereq,

qTx ≤ Qreq,
∑
i∈S

xi = Btr , xi > 0, ∀i ∈ S.

(2.8)

The constraint xi > 0 can be relaxed as xi ≥ 0 to properly solve the optimization

problem. If a solution of Subproblem (i) for RAT set S contains xi = 0, where i ∈ S,

this solution can be ignored because the optimal solution of the objective function

would be surely in the set S\i. The optimal RAT set S∗ is obtained by comparing

the normalized costs provided by solving Subproblem (i) for all the possible RAT set
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Figure 2.3: Segment allocation with initial connection of 3G.

S ∈ SA.

2.4 Numerical Analysis

Taking a look at the objective function in (2.7), let’s assume that uTi x
∗ + vi is the

maximum for the optimal segment allocation vector x∗, and uTj x
∗ + vj is the sec-

ond maximum, where xi > 0 and xj > 0. Then, the difference between these two

values is represented as: ∆fij = (α + βd)
(
xi
ri
− xj

rj
+ tsw

i − tsw
j

)
. If ∆fij > 0, it

can be reduced to zero by decreasing xi and increasing xj maintaining xi + xj as the

same size. Because the cost is linearly proportional to xi, decreasing xi means that

the optimal cost is also decreased. This is a contradiction with the original value is the

optimal. Therefore, we can conclude that ∆fij = 0, i.e., uTi x
∗ + vi = uTj x

∗ + vj ,

∀i, j ∈ S, i 6= j with the optimal segment allocation vector x∗. From this equation and
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∑
i∈S xi = Btr, the segment size xi is calculated as follows:

xi =
ri∑
k∈S rk

Btr −
∑
k∈S\i

(tsw
i − tsw

k )rk

 ,∀i ∈ S. (2.9)

This is the optimal segment allocation if it satisfies the other constraints in (2.7) and

the cost for RAT set S is the minimum among all the sets in SA. When (2.9) violates

any constraints in (2.7), the algorithm starts to iteratively find the optimal solution of

(2.7).

We apply Sedumi [35], a well-known convex optimization tool based on the in-

terior point method, to solve Subproblem (i) for all the possible RAT combinations

and find the optimal RAT set that minimizes the cost function. For simulations, we

apply coefficients of the throughput-to-RAT interface power curve and throughput-
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to-CPU power curve for 4G (LTE) and WiFi, respectively, from the case study pre-

sented in [31]. Additionally, the employed coefficients for 3G downlink are a3g =

35 mW/Mb/s and b3g = 810 mW, which are obtained from Samsung Galaxy S2 HD

LTE, the model used for the measurement reported in [31]. We set the average through-

put for 3G, 4G, and WiFi networks as 5, 25, and 15 Mb/s, respectively, for the baseline

simulation. The battery energy for Emax is set to 2000 mAh, i.e., 7400 mWh at 3.7 V,

and the data quota for Qmax is assumed to be 10 GB. In addition, the turning-on delay

of each network interface is assumed to be 2 s, 2 s, and 7 s for 3G, 4G, and WiFi,

respectively.

First, we consider the case that the smartphone is initially connected to 3G. Fig. 2.3

illustrates a simulation result of the optimal segment allocation of each RAT path for

varying file sizes. Fig. 2.4 shows the relative cost of each RAT selection with the

corresponding optimal segment allocation while normalizing the minimum cost for

each file size to one. Each color box in the bottom of the figure represents the optimal

RAT set for the corresponding file size range.

In the figure, the relative cost of the currently connected network, i.e., 3G, for

small size files is the least among the relative costs of all the possible RAT sets. That

is because the delay and energy overhead to activate the other RAT interface(s) is

relatively too high compared with the actual file transferring cost (Area 1). On the

other hand, as the file size increases, it benefits from additionally activating the other

RAT interface(s) and boosting up the download speed, meaning to decrease T cost

(Area 2). However, when either the file size is very large or the transfer energy and/or

data quota meets the required limitation, the optimal RAT set converges to RAT(s) that

are free of charge and consume lower energy (Area 3).

In this scenario, we assume that 3G and 4G are compatible, i.e., able to be activated

simultaneously. However, if 3G and 4G are incompatible, i.e., unable to be simultane-
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Figure 2.5: Network selection and segment allocation initial 4G connection case.
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Figure 2.6: Network selection and segment allocation for initial WiFi connection case.
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Figure 2.7: Network selection and segment allocation for high 4G throughput case.
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ously activated, the next best RAT set, i.e., {3G, WiFi} or {4G, WiFi}, will be selected

instead of {3G, 4G} or {3G, 4G, WiFi} for that range. Our proposed algorithm, ex-

plained in the following section, takes into account the compatibility test, and hence,

this issue can be resolved.

Fig. 2.5–2.8 describe the other cases of the RAT selection and segment allocation

according to the various device conditions. The optimal RAT set for each file size is

represented in the color box, where 3G, 4G, and WiFi are abbreviated to 3, 4, and W,

respectively. Fig. 2.5 presents a case that the initial connection is 4G instead of 3G and

the other condition is the same as the baseline simulation. In this case, the portion of

the {4G} range increases because of its higher throughput (25 Mb/s) than that of 3G

(5 Mb/s). A case that the initial connection is WiFi is also presented in Fig. 2.6. In this

case, only two kinds of RAT set, i.e., {WiFi} and {3G, 4G, WiFi}, are chosen.

Fig. 2.7 presents the case that the 4G throughput is very high, i.e., 80 Mb/s, which

is 16 times higher than that of 3G when the initial connection is 3G. In this case, the

{3G, 4G} range increases and the segment size allocated to 4G is much more increased

to make full use of its high throughput performance. However, the {3G} range remains

because it still has an advantage for the small size file due to the turning-on delay and

energy overhead of the other interfaces.

On the other hand, if the energy and data budgets are exhausted or the WiFi

throughput is very high, the optimal RAT set changes as shown in Fig. 2.8. In this case,

the remaining energy is 50%, the remaining data quota is 10%, and WiFi throughput is

50 Mb/s. Then, WiFi that is free of charge and consumes less power while performing

even better, and hence the {WiFi} range is much more extended. The only shortcom-

ing of WiFi is the longer turning-on delay, i.e. 7 s, and therefore, the {3G} and {3G,

4G} ranges still exist when the file size is relatively small.
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2.5 Proposed Algorithm

First, we propose a heuristic algorithm, called Bi-directional Linear Search (BLS),

which finds the optimal RAT set with optimal segment allocation vector by solving

(2.7) with low computational complexity. It considers the characteristics discussed in

the previous section to reduce the search space of the available RAT set. Second, we

propose a dynamic update algorithm that adapts the selected RAT set and segment

allocation vector over time according to the time-varying network condition.

2.5.1 Bi-directional linear search algorithm

The BLS algorithm basically reduces the search space of candidate RAT sets by se-

lectively visiting possible RAT combinations. It searches candidate RAT sets from the

single-RAT set to the set including all the available RATs by adding or subtracting

a RAT sequentially. At first, two types of RATs are visited, i.e., the currently con-

nected RAT and another RAT that is free of charge or consumes the lowest power. If

the former one is different from the latter one, the search direction is splitted into two

directions, which is the reason why the proposed algorithm is called BLS. If the both

RATs are the same, the algorithm searches just in one direction. The detailed procedure

is explained below.

At first, n available RATs are sorted in two ways — in ascending orders of the

turning-on delay and the E-Q cost , i.e, the normalized sum of the energy and quota

cost, respectively, as shown below:

Dπ1 < Dπ2 < . . . < Dπn ,

Cψ1 < Cψ2 < . . . < Cψn ,
(2.10)

where Dπi and Cψi are the turning-on delay and E-Q cost for the available RATs
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πi, ψi ∈ NA, ∀i ∈ {1, 2, . . . , n}, respectively. Then, RAT π1 has the minimum

turning-on delay, which is likely to be the currently connected RAT, and RAT ψ1 has

the minimum E-Q cost at the current smartphone state. It starts then to find the min-

imum cost function with candidate RAT sets that are chosen in the order from {π1}

to {π1, . . . , πn} by adding a RAT to the previous RAT set like {Area 1→ Area 2} in

Fig. 2.4, i.e., the search direction is from the short turning-on delay to the performance

oriented way. A similar process is executed with candidate RAT sets chosen from {ψ1}

to {ψ1, . . . , ψn} like (Area 3→ Area 2) in the figure, i.e., the search direction is from

the low energy/quota overhead to the performance oriented way. If a newly added RAT

is not able to be concurrently activated with RATs in the previous set and the turnning-

on delay or E-Q cost of the new one is smaller than that of the previous one, the newly

added one replaces the previous one. The details of the proposed algorithm, namely

Bi-directional Linear Search (BLS) algorithm, are presented in Algorithm 1.

When a file transfer service is requested, the transferred file size is stored to Btr.

Sπ and Sψ represent currently tested sets in each direction, which are initially set to

RAT π1 and ψ1 (Line 2). The normalized cost of a single-RAT connection is directly

calculated by allocating the whole file size to that RAT connection, which is denoted

by Fπi(Btr). Then, the optimal (minimum) normalized cost F ∗ and the optimal RAT

set S∗ are initialized by the minimum value among the normalized costs with single-

RAT connections and the corresponding RAT (Line 3). Sc represents a set of already

tested RAT sets and is initialized by {{π1}, {π2}, . . . , {πn}} (Line 4) because all the

single-RATs have been tested in Line 3. This set is used to check out previously tested

RAT sets and to prevent redundantly testing the same RAT set.

Each loop in the algorithm searches the optimal RAT set with the optimal segment

allocation in the different direction as ordered in (2.10). In Search direction I, the

available RAT sets are tested from {π1} to {π1, . . . πn}, and the available RAT sets
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Algorithm 1 Bi-directional Linear Search (BLS) Algorithm

Initialize:
1: Btr ← getFileSize()
2: Sπ ← π1, Sψ ← ψ1, Othervariables← ∅
3: (F ∗, S∗)←

(
min
πi∈NA

Fπi(Btr), arg min
πi∈NA

Fπi(Btr)
)

4: Sc ← {{π1}, {π2}, . . . , {πn}}
Search direction I: . Area 1→ Area 2 (in Fig. 2.4)
5: for i = 2 to n do
6: S′π ← Sπ ∪ πi
7: if πi is incompatible with ∃πk ∈ Sπ then
8: S′π ← S′π \ πk
9: end if

10: if S′π /∈ Sc then
11: Sπ ← S′π, Sc ← Sc ∪ {Sπ}
12: (xπ, Fπ)← OptimalAlloc(Btr, Scur, Sπ, r̂Sπ)
13: if Fπ < F ∗ then
14: (x∗, F ∗, S∗)← (xπ, Fπ, Sπ)
15: end if
16: end if
17: end for
Search direction II: . Area 3→ Area 2 (in Fig. 2.4)
18: for j = 2 to n do
19: S′ψ ← Sψ ∪ ψj
20: if ψj is incompatible with ∃ψk ∈ Sψ then
21: S′ψ ← S′ψ \ ψk
22: end if
23: if S′ψ /∈ Sc then
24: Sψ ← S′ψ, Sc ← Sc ∪ {Sψ}
25: (xψ, Fψ)← OptimalAlloc(Btr, Scur, Sψ, r̂Sψ)
26: if Fψ < F ∗ then
27: (x∗, F ∗, S∗)← (xψ, Fψ, Sψ)
28: end if
29: end if
30: end for
Finalize:
31: (xcur, Fcur, Scur)← (x∗, F ∗, S∗)
32: Build the alternative RAT set Salt for Scur

31



are tested from {ψ1} to {ψ1, . . . ψn} in Search direction II. For each search direction,

the union of the previous RAT set Sπ/Sψ and RAT πi/ψj is saved to S′π/S′ψ (Lines 6

and 19). If the newly added RAT cannot be concurrently activated with any RAT in

the previously tested set, the incompatible RAT in the previously tested set is removed

from the newly tested RAT set (Lines 7–8 and 20–21). If the RAT set S′π/S′ψ is not in

the set of the already tested RAT sets Sc, Sπ/Sψ and Sc are updated by the new RAT

set (Lines 10–11 and 23–24). With the updated RAT set Sπ/Sψ, the optimal segment

allocation for each selected RAT is obtained by solving Subproblem (i) in the function

OptimalAlloc() (Lines 12 and 25). Scur is the activated RAT set when the algorithm

starts, and the RAT activation overhead would be added when Scur 6= Sπ/Sψ. r̂[Sπ/Sψ ]

is the estimated throughput vector of the RAT set Sπ/Sψ.

The function OptimalAlloc() with these arguments solves (2.7) and returns the op-

timal segment allocation vector and its cost (x[π/ψ], F[π/ψ]). If the returned cost is less

than the minimum cost F ∗, the optimal segment allocation vector, the optimal cost, and

the optimal RAT set are updated by the returned values and the new RAT set (Lines 14

and 27). After both the loops finish, the RAT set with the corresponding segment allo-

cation vector is finally updated with the optimal results. (Line 31). In addition, the set

of the alternative RAT sets Salt is built, where the alternative set replaces any RAT in

Scur with the incompatible RAT(s) (Line 32). This set is used for the proposed dynamic

update algorithm, and the details are discussed in the next section.

By the BLS algorithm, the number of visited RAT combinations at most is reduced

from 2n to 2n − 1, where n is the number of available RATs. For performance eval-

uation, OptimalAlloc() has two versions: 1) to solve Subproblem (i) by the existing

convex tool, and 2) to solve it by examining the segment allocation vector in (2.9)

first, and then using the convex tool only when (2.9) is infeasible. We denote the first

method by “BLS w/ cvx tool” and the second method by “fBLS w/ cvx tool”, where
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Algorithm 2 Dynamic Update Algorithm

1: while file transfer do
2: if update timer expires then
3: Br ← Btr −Bdone
4: (xdone, Fdone)← CalCost(Bdone, Sold, Scur, r̄Scur)
5: (xtodo, Ftodo)← OptimalAlloc(Br, Scur, Scur, r̂Scur)
6: (xupd, Fupd)← (Fdone + Ftodo, xdone + xtodo)
7: if Fupd > Fcur +mcur then
8: Btr ← Br
9: go to BLS algorithm

10: else
11: while ∀i, Salt

i ∈ Salt do
12: (xalt

i , F
alt
i )← OptimalAlloc(Br, Scur, S

alt
i , r̂Salt

i
)

13: end while
14: o← arg

i
minF alt

i

15: if F alt
o < Ftodo −malt then

16: Sold ← Scur, Btr ← Br, Bdone ← 0
17: (xcur, Fcur, Scur)← (xalt

o , F
alt
o , S

alt
o )

18: else
19: (xcur, Fcur, Scur)← (xupd, Fupd, Scur)
20: end if
21: end if
22: end if
23: end while

“f” means “fast.”

2.5.2 Dynamic update algorithm

During the file transfer, the network conditions of the activated RATs, e.g., channel and

load, may change dynamically. Accordingly, the throughput of each RAT fluctuates,

and the initially estimated throughput is likely to be different from the actual average

throughput. The increased throughput is out of our consideration because it reduces

the original cost. However, throughput degradation of the selected RAT causes the
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increase of the original cost, and the optimal solution might be changed. Therefore,

we propose a dynamic update algorithm in Algorithm 2 to adapt the selected RAT set

to the dynamic network condition.

For the dynamic update algorithm, the optimality of the network selection and seg-

ment allocation is periodically checked by monitoring the achieved throughput during

the transfer [31]. Br is the remaining file segment size, i.e., Btr subtracted by the al-

ready transferred file segment size Bdone . The cost Fdone for the segment allocation

vector of the already transferred data xdone is calculated with the cumulative average

throughput vector r̄Scur of the activated RATs (Line 4). The optimal segment allocation

vector xtodo and the cost Ftodo for the remaining file segment size are re-calculated

by the OptimalAlloc() with the current RAT set and its estimated throughput vector

r̂ (Line 5). We adopt the autoregressive and moving average (ARMA) estimator [36]

for throughput estimation as follows:

r̂i = σr̂i−1 +
1− σ
K

K−1∑
j=0

ri−j , (2.11)

where we set K = 10 and σ = 0.95 in the simulation.

If the updated cost Fupd with the segment allocation vector xupd, which is the sum

of the results in Lines 4 and 5, exceeds the sum of the current cost and specific margin

mcur, “BLS algorithm” in Algorithm 1 can be re-visited to search the better RAT set

(Lines 7–9).

On the other hand, if some RATs cannot be activated simultaneously with each

other, the optimal solution might be the case that these RATs are sequentially used.

For example, assume that SA = {{3G}, {4G}, {WiFi}, {3G, WiFi,}, {4G, WiFi}}, but

{3G, 4G} and {3G, 4G, WiFi} are not in SA. The optimal activation strategy could

be activating 4G and WiFi for some time, and then turn off 4G and activating 3G
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with WiFi. Even though, this case is not directly included in our problem formulation,

the proposed dynamic update algorithm in Algorithm 2 deals with this issue. At first,

RATs that cannot be activated simultaneously are defined as the alternative set and

stored in a database. When the best RAT set is obtained, the alternative RAT set Salt is

built accordingly (Line 32 in Algorithm 1). For example, if SA is given as mentioned

above and the optimal RAT set is {3G, WiFi}, the alternative RAT set is {4G, WiFi}

when 3G and 4G are incompatible. Then, the optimal segment allocation vector and

the corresponding cost for each alternative RAT set is calculated for the remaining

file size (Line 12), and the RAT set of the minimum cost among the alternative RAT

sets is found out (Line 14). If the minimum alternative cost is malt less than the cost

Ftodo, where malt is a predefined margin, the current RAT set is updated to the alter-

native RAT set and corresponding segment allocation (Lines 15–17). Otherwise, the

current cost Fcur and segment allocation vector xcur are substituted by Fupd and xupd,

respectively (Line 19).

2.6 Performance Evaluation

In the future smartphones, much more diversified types of RATs and channels will be

available, and hence, it will achieve larger RAT diversity gain as the number of RATs

increases at the cost of complexity increase to find the best RAT set. In order to see

the performance of the proposed algorithm, we assume that a smartphone is equipped

with various sets of RATs — from 3 to 6 RATs, where 3G, 4G, and WiFi interfaces

are common and the other interfaces have arbitrary parameters for throughput, energy

consumption, and data usage quota. We also assume that any combination among the

available RATs can be activated concurrently. However, for the case of 3 RATs with

3G, 4G, and WiFi, we especially deal with one more case where it is unable to si-
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Figure 2.9: Comparison of RAT diversity gain.

multaneously activate {3G, 4G} and {3G, 4G, WiFi}, i.e., 3G and 4G can be only

exclusively used. This case is denoted by “2 RATs” instead of “3 RATs” in the figure

of simulation result. For simulation environments, we consider four different condi-

tions, where the average achievable throughput of 4G and WiFi respectively varies as

the following: {25, 15}, {5, 15}, {25, 5}, {5, 5}Mb/s. We assume that the probability

density function of the file size follows a lognormal distribution where the mean and

standard deviation are 7.17 and 2.41, respectively, referring to [37]. The expected opti-

mal costs for the four different conditions are averaged. With a given RAT set, we use

the convex optimization tools, Sedumi [35] and SDPT3 [38], to solve Subproblem (i)

in the objective function.2 We consider the full-search method, which searches all the
2LP is typically known to have polynomial time complexity in the worst case. However, Subprob-

lem (i) is always solved in the constant iteration level by these tools for the scope in consideration (2–6
RATs). Therefore, we assume that the computational complexity is dominated by Subproblem (ii).
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Figure 2.10: Comparison of complexity.

possible RAT combinations among the available RAT set, to compare with the pro-

posed algorithms. The full-search method achieves the optimal result while the search

space exponentially increases as the number of available RATs increases.

Fig. 2.9 shows the simulation result that represents normalized costs, which are

normalized by the cost of the full-search method with Sedumi. The normalized cost of

the optimal RAT set with the optimal segment allocation vector decreases as the num-

ber of available RATs increases, which shows the RAT diversity gain. Furthermore, we

can see no significant performance gap between the full-search algorithm and fBLS in

our simulation environment where the maximum number of RATs is 6.

On the other hand, the performance enhancement in the complexity is presented

in Fig. 2.10. Because the computational complexity of the full-search algorithm is

O(2n), the number of iterations to search the optimal RAT set increases exponentially

as shown in the figure, while that of BLS just linearly increases as the number of
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available RATs increases. Moreover, fBLS even further reduces the iterations thanks

to the initial examination with (2.9). The elapsed time of one iteration with 2.4 GHz

CPU was about 0.01 s, and hence, the total elapsed time to find the optimal network

operation mode with fBLS is under 0.5 s even for 6 RATs, where it is 6 to 10 s for the

full-search algorithm.

Fig. 2.11 presents a performance comparison between the vertical handoff and pro-

posed scheme. The vertical handoff implies that only a single best RAT is selected for a

file transfer, which has the minimum normalized cost among the available RATs. In ad-

dition, we compare two conditions for the proposed scheme. One is the 2-RAT parallel

scheme that can simultaneoulsy activate at most two RATs among the available RATs,

and the other is the All-RAT parallel scheme that can exploit all the possible RAT com-

binations including activating all the available RATs. The simulation environment is
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the same as the previous evaluation, and the average cost is normalized by the cost of

the vertical handoff scheme with two available RATs, which is the maximum among

all the results and is set to one. As the number of available RATs increases, the vertical

handoff scheme also benefits from the RAT diversity. For example, with six RATs, the

normalized cost is 32% less than that with two RATs. Utilizing parallel connections

enhances the performance even further. For example, the normalized costs of the 2-

RAT parallel and All-RAT parallel schemes with six RATs are decreased by 26% and

36% compared with that of the vertical handoff, respectively.

To evaluate the performance of the dynamic update algorithm, we artificially gen-

erate time-varying throughput as shown in Fig. 2.12(a) for each available RAT. Three

RATs, namely, 3G, 4G, and WiFi, with average throughput of 5, 25, and 15 Mb/s,

respectively, are considered. The update period of the dynamic update algorithm is

set to 10 s. In the simulation, a smartphone downloads several files with the size of

{500, 1000, 2000, 4000, 8000, 16000}Mbits, and measures the normalized cost. The

simulation is iterated 100 times for each scheme and the results are averaged.

The comparison of the proposed algorithms is presented in Figs. 2.12(b) and 2.12(c)

in terms of the remaining battery energy and data quota. “Static” represents the static

algorithm, which searches the best RAT set and optimal segment allocation vector at

the start of the file transfer and maintains the strategy until the download is completed.

“Dynamic” represents the dynamic update algorithm, which monitors the achieved

throughput and updates the optimal RAT set and segment allocation vector according

to Algorithm 2. We set both the update margins mcur and malt to 0.1 times the cal-

culated cost. “Genie” searches the best RAT set and segment allocation vector with

the exact average throughput for the entire transfer time assuming it knows future

throughput. The suffix “ I” represents that 3G and 4G are incompatible, and hence

SA = {{3G}, {4G}, {WiFi}, {3G, WiFi}, {4G, WiFi}} while the suffix “ C” repre-
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sents that all the RATs are compatible with one another and all the RAT combinations

are available. The cost of Genie C, which performs the best among all the compared

schemes, is set to the reference value. Then, the cost gaps, i.e., the ratios of the aver-

age increased cost of the proposed schemes to the cost of Genie C, are presented in

Figs. 2.12(b) and 2.12(c).

From the simulation results, we confirm that the performances of the compati-

ble cases are generally better than those of the incompatible cases. In some cases,

Dynamic C performs even better than Genie I because of more options of the RAT

selection including {3G, 4G} and {3G, 4G, WiFi}. Second, the cost gap of the static

algorithm can be significantly increased due to the dynamic network condition. How-

ever, the dynamic update algorithm can effectively reduce the cost gap. In particular,

we observe that the cost gap can be suppressed under 5% by Dynamic C for all the

status of remaining energy and data.

2.7 Summary

In this chapter, we have proposed and analyzed the multi-RAT selection and segment

allocation scheme for smartphones based on a multi-attribute cost function. The cost

function properly normalizes and integrates the transfer completion time, energy con-

sumption, and service charge in nRAT-based smartphones for file transfer services.

Based on the device’s current status-dependent cost model, the proposed scheme adap-

tively activates n RAT interfaces to minimize the cost function. Considering the in-

creasing number of RATs integrated in the future smartphones, the proposed algorithm,

namely fBLS (fast bidirectional linear search), achieves a nearly optimal RAT selection

and segment allocation with reduced computational complexity. It shows no significant

performance gap from the full-search algorithm, while the exponential complexity is
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reduced to linear. In addition, we have shown that the performance gain increases as

the number of available RATs increases due to the RAT diversity, and it can be more

improved by exploiting the parallel activation of multiple RATs.
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Chapter 3

Video Streaming Mode

3.1 Introduction

Today’s mobile networks such as Long Term Evolution (LTE) and Wi-Fi are fast

enough to support high quality video services including High Definition (HD) video.

However, such high quality video services drive smartphones and their users to fast

consume battery energy and available data quota reserved for users’ data plan. There-

fore, data-hungry users experience unsatisfactory playback time of multimedia ser-

vices or energy-hungry smartphones suffer from short lifetime for multimedia services.

To address this problem, video streaming services have been studied in consideration

of data usage or energy consumption [20–22]. However, smartphone users are gener-

ally concerned about both remaining data quota and battery energy. Typical users may

stop playing video when either available data quota or energy is about to deplete. Oth-

erwise, they would enjoy the best quality of the video as long as the remaining data

quota and battery energy are allowed.

Meanwhile, a recent study reveals that smartphone users tend to watch only about

60% of online video clips to the end [39]. Such tendency results in undesirable waste
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of data and energy for the following reason. Typical HTTP-based video streaming ser-

vices adopt video data prefetching schemes in order to combat various unfavorable

obstacles against satisfactory services such as unstable network bandwidth and wire-

less channel quality fluctuation. In case when a user quits an ongoing video streaming,

the prefetched video data shall be dropped. It implies that the user ends up wasting

the energy and data consumed for the dropped video data. The expected amount of the

waste would naturally increase as the viewed video quality is enhanced.

In this work, we propose an operation policy employing both LTE and WiFi in-

terfaces. Simply, we adopt the term of multi-RAT standing for both LTE and WiFi

interfaces. The proposed policy balances between the video quality, i.e., video encod-

ing rate, and the video playback time allowed with remaining energy in a battery. For

proper operation of the policy, we formulate an objective function maximizing a nor-

malized utility. It is obtained by subtracting the normalized cost of the playback from

the utility of video quality. The normalized cost of the playback is determined by the

data quota usage and the energy consumption for ongoing playback. The objective

function is tuned with the network mode selection, video encoding rate selection, and

chunk download cycle for its maximization.

The problem formulation steps are summarized as follows. Firstly, we solve a sub-

problem to find the optimal chunk download cycle that maximizes overall video play-

back time of smartphone with given remaining battery energy and data quota, further-

more considering the unnecessary energy and data waste. In the proposed policy, we

adopt the statistics from [39] that all video clips are not fully played to the end. Then,

we design a normalized cost function in terms of both data usage and energy consump-

tion while incorporating expected data and energy waste. By minimizing the cost, we

can selectively save more depleting resource as much as possible by monitoring their

current status. After that, saved data quota and/or battery energy are used for other
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video streaming services later. Consequently, we can achieve the goal maximizing the

overall playback time. Secondly, we incorporate the solved sub-problem into the de-

sign of the proposed operation policy. From the fact that LTE and WiFi interfaces can

be simultaneously serviced for recent smartphones, we define three network operation

modes, i.e., LTE-only, WiFi-only, and LTE+WiFi. To our best knowledge, we first pro-

pose an operation policy considering the LTE+WiFi mode. In the proposed operation

policy, the most appropriate network operation mode is selected to maximize the utility

function. For the performance evaluation close to the real world, we apply a practical

user’s daily pattern regarding video watching time. Then, we show that the proposed

algorithm effectively balances the average video encoding rate and total playback time

with given various data quota and battery energy level. The algorithm maximizes the

video quality, i.e., video encoding rate, as much as possible so far as the remaining

resources are enough to play the number of the expected video arrivals of the day with

the selected video quality.

The remainder of this chapter is organized as follows. In Section 3.2, the HTTP

and multi-RAT based video streaming models are described. We analyze the data and

energy usage for the video playback in Section 3.3, and formulate the objective func-

tion to balance the video quality and total video playback time in Section 3.4. The

performance evaluation is presented in Section 3.5, and finally, we summarize this

chapter in Section 3.6.

3.2 System Model

3.2.1 HTTP-based playback model

We consider HTTP-based video streaming for our playback model. It is the most pop-

ular method for today’s video streaming services. As illustrated in Fig. 3.1, a video
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Figure 3.1: Typical online video playback model.

service begins by downloading a small piece of the entire video data, called a chunk.

Only if the player’s buffer is filled with video data of a predefined size bm, the video

playback starts. This initial buffering is typically used to prevent buffer underflow due

to time-varying network bandwidth and wireless channel quality fluctuation.

Once the amount of unplayed video data in the buffer reaches the threshold bm,

the video player requests another chunk, whose size is bp bytes, for the next cycle.

This cyclic procedure, referred to as the Chunk Download Cycle (CDC), repeats until

the user quits the service or all the chunks are downloaded. Note that bm = rs · Tm,

where Tm and rs are possible playback time with the minimum buffered data and

video encoding rate, respectively. In this work, weassume that a constant value of Tm

is given and rs is chosen among the available encoding rate set for each video.

The slopes of the lower red and upper blue lines represent the average video en-

coding and chunk download rates, respectively. A new TCP session is established at

the DL (ON) phase, and a chunk of a specific size is requested for download while
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the video data in the buffer are being played simultaneously. When downloading the

chunk is completed in the cycle, the TCP session is closed. Then, only the video data

remaining in the buffer are played for the Idle (OFF) phase. The long-term average

download rate is converged to the video encoding rate by using the ON-OFF cycle

even though the network bandwidth should be larger than the encoding rate.

To maximize the playback time, the period of CDC, denoted by tp, needs to be

adjusted according to the current data quota, battery energy, and user’s leaving-in-

midstream probability. For example, if the current battery energy is running out, the

smartphone better increases tp to save the energy because it reduces the occurrence

of the energy overhead for the tail time1 at the end of every DL phase. However, the

increment may cause more data and energy waste if the user stops playing the video

prior to the completion of the entire playback. Consequently, we can recognize that

there exists a trade-off relationship in the period of the CDC. In this work, we assume

the network bandwidth is fast enough to smoothly play considered video clips.

3.2.2 LTE/WiFi-based multipath video streaming model

Multipath-based communications mainly aim at enhancing the connection robustness

and boosting the data transfer speed. The multipath-based approaches exploiting het-

erogeneous networks such as 3G/4G cellular and WiFi are discussed and studied es-

pecially for video streaming services typically demanding the high throughput and

reliability. Traditionally, previous efforts focus on quality-adaptive bandwidth aggre-

gation algorithms that determine how much and when to schedule video segments to

the activated multiple networks considering their dynamics to properly support a spe-

cific video quality. However, recently another attribute besides the video quality, i.e.,
1whenever a data transfer is completed, the network interface waits for a while, called tail time, prior

to its switching to the sleep mode.
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Figure 3.2: LTE/WiFi multi-path video streaming algorithm.

the energy efficiency, is also studied for the multipath-based video streaming proto-

cols [20].

To support the energy, service charge, and performance-aware video streaming al-

gorithm with multiple network paths, i.e, LTE and WiFi, we propose the multipath

video streaming model based on HTTP as described in Fig. 3.2. The upper two lines

represent video playback time positions, where the first and second lines mean the

corresponding downloaded video and playbacked video, respectively. The lower two

graphs represent LTE and WiFi bandwidths (y-axis) with the corresponding down-

loaded timing (x-axis).

When WiFi is available, and a smartphone supports the LTE+WiFi multipath data

transfer, it activates WiFi and starts downloading the next chunk for a while to esti-

mate the achievable throughput of the WiFi network. During that time, a multipath-

based streaming algorithm computes the video utility proposed in this work for all

the possible video parameter settings. If the optimal network selection with the corre-

sponding encoding rate is LTE+WiFi, the next chunk is divided into two parts, i.e, the
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(a) Increasing WiFi throughput

(b) Decreasing WiFi throughput

Figure 3.3: Effect of time-varying WiFi throughput.
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LTE and WiFi parts, and requested in the next chunk download cycle. We allocate the

front of the chunk to the LTE part because the LTE link is generally more reliable and

has plenty of bandwidth than the WiFi link. That also gives more time to recover the

rearward chunk when the WiFi network is unexpectedly unavailable.

Basically, the WiFi is free of charge and consumes much less power than the LTE,

and therefore, the proposed scheme fully utilizes the WiFi bandwidth at first. Then the

remaining amount of the video chunk is downloaded via the LTE network as described

in Fig. 3.2. In this streaming policy, two cases may occur due to the network band-

width dynamics, which are represented in Fig. 3.3(a) and 3.3(b). If the average WiFi

throughput in the CDC (ti+1) increases than the previously estimated throughput as

shown in Fig. 3.3(a), downloading the WiFi part in the chunk is completed before the

next CDC starts. Then, the size of the WiFi part can be increased while reducing the

LTE part to save more energy and LTE data consumption by recalculating the opti-

mal CDC by updating throughput estimation reflecting the increased level for the next

CDC (ti+2). Furthermore, if the WiFi throughput becomes high enough to cover the

current video encoding rate, all the chunk is allocated to the WiFi part removing the

LTE part in the next CDC.

On the contrary, if the average WiFi thorughput in the CDC (ti+1) is lower than

the estimated throughput as shown in Fig. 3.3(b), the remaining video size meets bm

before the current CDC ends. Then, the next CDC starts earlier requesting the more

LTE part in the next chunk to compensate the lack of WiFi throughput. In this case the

optimal CDC also can be recalculated by updating the throughput estimation reflecting

the decreased level for the next CDC (ti+2). Moreover, if the WiFi throughput is too

low, the video utility with the lower encoding rate would be better than that with the

original encoding rate. Therefore, the next video chunk can be requested with the lower

encoding rate.
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(a) tx ≤ Tm, tp > tx + Tta (b) tx > Tm, tp > tx + Tta

(c) tx ≤ Tm, tp ≤ tx + Tta (d) tx > Tm, tp ≤ tx + Tta

Figure 3.4: Four types of power consumption.
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3.3 Chunk Download Cycle based Analysis

For the cost function formulation, we analyze the data and energy consumption based

on the CDC. As shown in Fig. 3.4, chunks are individually downloaded in each cycle

while the player continues to consume video data for its playback. Accordingly, the

network interface consumes the power for data receptions during the download time tx.

After that, the power consumption level falls to the base level Pta for the tail time Tta.

If tx ≤ Tm as described in Figs. 3.4(a) and 3.4(c), the chunk download bis completed

before the remaining data in the buffer reaches bm. Otherwise, the chunk downloaded

in the previous CDC is consumed before the current chunk download is completed as

represented in Figs. 3.4(b) and 3.4(d). On the other hand, the network interface might

not be able to sleep if tp is less than {tx + Tta} as presented in Figs. 3.4(c) and 3.4(d).

All these four cases according to the inequality conditions have to be considered to

determine the average data and energy consumption including the expected waste. The

parameters used in the analysis are summarized in Table 3.1.

In this work, we handle the expected data usage and power consumption metric at

the network interface, which is tunable with tp. Meanwhile, the power consumption of

display and CPU has nothing to do with tp, and hence, we simply assume that they are

constant.

3.3.1 Data and energy consumption rate

The average data consumption rate during the video streaming is identical to the video

encoding rate rs. However, the average network interface power consumption, P , is

involved with tp as described in Fig. 3.4. Then, P is represented as follows:
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Table 3.1: Description of video parameters

Parameter Description
rs Video source encoding rate
tp The period of Chunk Download Cycle (CDC)
bp Chunk size per download cycle (= rstp)
rx Average chunk transfer rate
tx Chunk transfer time (= bp/rx)
Tm The minimum buffer-time
bm The minimum buffer threshold (= rsTm)
γ The ratio of rs to rx (= rs/rx)
Px Network interface receive power (= arx + b)

Pta, Tta Network interface tail power and tail time

P=

1
tp
{Pxtx+ PtaTta} = γPx + Eta

tp
, if tp > tx + Tta,

1
tp
{Pxtx+ Pta(tp − tx)}= γ(Px−Pta) + Pta, otherwise,

(3.1)

where tx = γtp from Table 3.1, and the energy for the tail time Eta = PtaTta. From

this equation, we observe that P can be controlled by tp under the condition that tp >

tx +Tta. Otherwise, tp is not related to P since the network interface cannot switch to

the sleep mode.

3.3.2 Expected waste of data and energy

The amount of data and energy waste is determined by the time duration between the

beginning instant and the stopping instant of the playback prior to the end of the video

clip. If the user leaves outside the initial buffering phase, the user’s leaving instant tl,

i.e., watching time, must be always located within a CDC range because the same CDC

is repeated. Then, we can define a relative leaving instant t, representing the leaving

instant within the last CDC, which is expressed as t = tl mod tp. The authors of [40]
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Figure 3.5: Comparison of data and energy waste according to different distribution of
user’s leaving instant.

empirically reveal that the remainder of modulo operation over arbitrary random vari-

ables tends to be uniformly distributed in the denominator range. It implies that the

relative leaving instant t approximately follows a uniform distribution regardless of

the watching time distribution. This approximation is more accurate when tl � tp,

and generally it is true that watching time is much longer than tp.

We first show a comparison between the numerical analysis and simulation result

of the expected data and energy waste in Fig. 3.5 according to tp. The analysis pre-

sented later is conducted based on the assumption that the leaving instants in a single

CDC are uniformly distributed. The simulation result is from different watching time

distributions before the user’s leaving, i.e, uniform, exponential, normal, and lognor-

mal distribution, where the average watching time is 300 s. Each bar and vertical line

represents the mean and standard deviation of the data and energy waste, respectively.

The result shows no significant difference from one another, and therefore we claim

that the expected data and energy waste can be estimated regardless of the watching

time distribution.

We present a detailed analysis of the data and energy waste for a single CDC as fol-
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lows. The expected data waste can be obtained from the expectation of the remaining

buffered data assuming user’s leaving occurs between 0 and tp. First, when tx ≤ Tm

as presented in Fig. 3.4(a) or 3.4(c), the expected data waste is derived by

Qw=
1

tp

[∫ tx

0

{
(rsTm− rst)+rxt

}
dt+

∫ Tm

tx

{
(rsTm− rst)+bp

}
dt

+

∫ tp

Tm

{
bp − (rst− rsTm)

}
dt

]
=

1

2
rs

{
(1− γ)tp + 2Tm

}
,

(3.2)

where t is the relative leaving instant, which is assumed to be uniformly distributed in

[0, tp], and hence, its probability density function is obtained by 1/tp. In the same way,

the expected value for tx > Tm can be easily obtained, of which the result is exactly

the same as (3.2).

The energy waste is represented as the consumed energy for chunk downloading

(Edl) subtracted by the energy portion for the watched video (Eused) as follows:

Ew = Edl − Eused

=

 Ek−1(tp) + Ek(t)− P · (tp − Tm + t), if t < Tm,

Ek(t)− P · (t− Tm), otherwise,

(3.3)

where Ek(t) denotes the consumed energy to download the k-th chunk for t from the

start of the CDC. Both equations are then represented as Ek(t) +P · (Tm− t) because

Ek−1(tp) = P · tp. When t < Tm, the video data downloaded in the previous cycle

is being consumed, and the consumed energy for the current cycle (Ek(t)) is therefore

totally wasted. On the other hand, when t ≥ Tm, the network interface wastes the

energy needed to receive the unplayed data in the current cycle.

Then, the expected energy waste Ew for tp > tx + Tta is obtained by
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Ew =
1

tp

[∫ tx

0

Pxtdt+

∫ tx+Tta

tx

(Pxtx + Ptat)dt

+

∫ tp

tx+Tta

(Pxtx + PtaTta)dt+

∫ tp

0

P (Tm − t)dt

]

=
Pxγ(1− γ)

2
tp + Eta

(
Tm −

Tta
2

) 1

tp
+ PxTmγ +

Eta
2
.

(3.4)

In the same manner, we obtain Ew for tp ≤ tx + Tta by

Ew=
(Px+ Pta)γ(1−γ)

2
tp+ PxTmγ+PtaTm(1−γ). (3.5)

As a result, both data and energy consumption models including their waste are repre-

sented as a function of tp.

3.4 Proposed Scheme

3.4.1 Problem formulation

Our objective is balancing the video quality, represented as a function of the video

encoding rate, and total playback time. We formulate the objective function of this

work as follows:

U(S∗, r∗s , t
∗
p) = max

S,rs,tp
αFu(rs)− (1− α)Fc(S, rs, tp),

s.t. S ∈ SA, rs ∈ Rs,

tmin ≤ tp ≤ tmax,

(3.6)

where S, rs, and tp are the network selection, video encoding rate, and the period of
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CDC, respectively, and S∗, r∗s , and t∗p represent their optimal values. U(S∗, r∗s , t
∗
p) is

the corresponding optimal utility function that we try to find out. The utility function

is a weighted sum of the normalized video utility and negative cost, denoted by Fu(rs)

and Fc(S, rs, tp), representing the video quality and total playback time, respectively.

α is a tuning parameter that reflects the user preference between the video quality

and total playback time, where the default value is 0.5. As α becomes greater, the

algorithm operates enhancing the video quality more while the playback time reduces,

and vice versa. SA and Rs are available sets of the network selection and encoding

rate, respectively, e.g., SA={ {LTE}, {WiFi}, {LTE, WiFi} },Rs = {r1, r2, · · · , rm},

where r1 is the lowest video encoding rate and rm is the highest video encoding rate.

tmin and tmax are the minimum and maximum values that tp can be set. These values

are discussed in Section 3.4.2.

3.4.2 Subproblem I: Playback time maximization

Based on the analysis, we propose a policy for the video playback time maximiza-

tion, called EQ-video. First, we have the average data usage from (3.2) by Q =

rs · E{tv} + pcut · Qw, where E{tv} and pcut are the expected video watching time

and the probability of user’s leaving-in-midstream, respectively.2 Next, from (3.4) and

(3.5), the average energy consumption is derived by

E = P · E{tv}+ pcut · Ew. (3.7)

From the equations for Q and E, we define normalized data cost Cq = Q/Qr and

energy cost Ce = E/Er, where Qr and Er are the remaining data quota and battery

energy, respectively. In these equations, the costs indicate the comparative degrees
2These values can be predicted by processing the user’s history data. We apply the Auto-Regressive-

Moving-Average (ARMA) tool for the prediction.
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required for a video playback with given remaining resources including data quota

and battery energy at a playback beginning time.

Cq, Q, Qw and tp are linked in a chain with linear equations, thus leading to the

fact that Cq is a linear increasing function of tp. Therefore, Cq is convex in terms of

tp. Similarly, we can reason that Ce is also a linear increasing function of tp when

tp ≤ (tx + Tta) from (3.1) and (3.5), and hence Ce is convex in this case. When

tp > (tx + Tta), Ce is convex if

∂2Ce
∂tp

2 =
2Eta
tp

3Er

(
E{tv}+ pcutTm −

Tm
2

)
≥ 0. (3.8)

Otherwise, Ce is not a convex function but an increasing function because the follow-

ing is always true:

∂Ce
∂tp

=
Pxγ(1− γ)

2
− Eta
tpEr

(
E{tv}+ pcutTm−

Tm
2

)
> 0, (3.9)

where 0 < γ(= rs
rx

) < 1 from our assumption. Therefore, Ce is at least quasiconvex

in this region because the increasing function is quasiconvex.

From these cost functions, we derive the objective function for EQ-video by

C(t∗p) = min
tp
{max(Cq, Ce)} ,

s.t. Tm ≤ tp ≤ Tdur,

(3.10)

where Tdur is the video playback duration, and tp ≥ Tm from bp ≥ bm. In fact, it

is known that the maximum of quasiconvex functions preserves quasiconvexity, and

hence, the objective function has the optimal solutions in two regions, i.e., Tm ≤ tp <
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Figure 3.6: Three types of normalized cost function.

(tx + Tta) and (tx + Tta) ≤ tp ≤ Tdur, respectively. Therefore, the optimal tp can be

obtained by choosing the smaller one of the two solutions in the two regions.

Fig. 3.6 shows examples for three types of the cost function intersections according

to different remaining data quota and battery energy status for the case when (3.8) is

satisfied. Each solid line represents the normalized cost for the different pcut. First,

Fig. 3.6(a) represents the case when the remaining battery energy is relatively deficient,

and hence, the normalized energy costCe is higher than the normalized data costCq for

all tp. Second, the two cost functions intersect each other as shown in Fig. 3.6(b) in the

intermediate condition of the remaining resource status. Finally, Fig. 3.6(c) presents

the case when the remaining data quota is relatively deficient, and hence, Cq is higher

than Ce for all tp.

3.4.3 Subproblem II: Balancing between encoding rate and total play-

back time

Based on the cost model discussed in Section 3.4.2, the complete objective function

to balance the video quality and total playback time, which is conceptually presented
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Figure 3.9: Example of daily video arrival distribution.

in (3.6), can be represented as follows:

U(S∗, r∗s , t
∗
p) = max

S,rs
α
fu(rs)− fu(rmin)

fu(rmax)− fu(rmin)

− (1− α)
{
fc
(
Nr(t)Ceq(S, rs, t

∗
p)
)}
,

s.t. S ∈ SA, rs ∈ Rs,

Tm ≤ tp ≤ Tdur,

(3.11)

where fu(rs) is a logarithmic function for the video utility according to the encoding

rate rs, and it is normalized by the max-min method that is commonly used in MADM.

Then, the normalized video utility has a value between 0 and 1 as described in Fig. 3.7.

fc(x) is the normalized cost function proportional to x, where x is Nr(t)Ceq(S, rs, t
∗
p)

in (3.11), where Nr(t) is the expected number of video arrivals from the current time

t to the end time of the day, i.e., 12 a.m. Nr is based on user-specific video view-

61



ing statistics composed of the number and time of daily video watching requests.

Ceq(S, rs, t
∗
p) is the LTE/WiFi-based energy and data cost function of the network

selection S, selected encoding rate rs, and the corresponding optimal CDC t∗p. In this

section, the cost function Ceq becomes the function of S, rs, tp with multiple network

interfaces while Ceq is only the function of tp with given rs and single network in the

previous section. This cost function implies that its reciprocal can be regarded as the

available number of videos that can be watched with the current data quota and battery

energy resources, denoted by Neq.

On the other hand, based on the user-specific video viewing statistics, the smart-

phone builds an hourly video arrival distribution by averaging the number of video

arrivals for the same hour of several days. Fig. 3.9 shows an example of the daily video

arrival distribution with hourly time bins. Then, Nr(t) is calculated by expectation of

the video arrivals from t to the end time of the day as represented in the equation on

the top of the figure, where λavg is the daily video arrival rate. We omit arguments

of Nr and Ceq for convenience’ sake. Then, we design the normalized cost function

fc(NrCeq) as described in Fig. 3.8, which implies the following characteristics:

1) If the multiplication of Nr and Ceq is one, which means that Neq is exactly the

same as Nr, the normalized cost function is zero.

2) The case when NrCeq is greater than one, equivalently Nr > Neq, means that

the cost with the current setting is too high to cover the whole number of the remaining

video arrivals, and hence, the normalized cost is positively increased.

3) Otherwise, when Nr < Neq, the cost with the current setting is so low, and

the resources are likely to remain at the end time of the day, and hence, the normalized

cost is negatively decreased. The negative sign at the normalized cost function in (3.11)

changes the negative cost to the positive value and increases the overall utility function.
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3.5 Performance Evaluation

3.5.1 Maximization of playback time with a single path

We use a Matlab-based simulator to evaluate the performance of EQ-video. First, a

number of videos are generated with various attributes composed of the watching time,

leaving-in-midstream indicator, and video encoding rate. The video watching time fol-

lows the normal distribution with the average duration of 300 s, and user’s leaving-in-

midstream probability is assumed to be 0.4. We assume that the video encoding rate

is randomly chosen by the user among {0.5, 1, 2} Mb/s for each video and used as

an input to find out the optimal tp. The average network throughput is set to 8 Mb/s.

In the simulation, videos are played until either the initially given data quota or the

battery energy depletes. The total data quota and battery energy are set to 2 GB and

2000 mAh, respectively. Then, the normalized remaining resources ρq and ρe, which

are the ratios of Qr and Er to the total data quota and battery energy, respectively, are

set in the range from 0 to 1. We apply the linear-fit model for the power-throughput

relationship of the network interface power consumption, where the coefficients are

obtained from [31] assuming the LTE environment. Tm and Tta are set to 5 s and 10 s,

respectively.

We compare EQ-video with the following schemes: Genie exhaustively searches

the optimal tp for each video assuming that it is omniscient to know the watching time

of every played video, including whether the playback is stopped in midstream or not.

For E-only/Q-only, tp is adaptively set by only considering either the remaining data

quota or energy. YouTube follows the chunk download pattern of YouTube’s native

application, which has about 40 s download time and 60 s idle time, making the cycle

equal to 100 s.

In Fig. 3.10, the cumulative distribution functions (CDFs) of the total playback
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Figure 3.10: Comparison of video streaming schemes.
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time for 50 experiments with different schemes are presented. Figs. 3.10(a) and 3.10(b)

show the cases when (ρq, ρe) are set to (0.3, 0.7) and (0.7, 0.3), respectively. The aver-

age performance for each scheme with various (ρq, ρe) is presented in Fig. 3.11, where

the x-axis and y-axis represent different (ρq, ρe) cases and the average playback time,

respectively. The performance gap in percentage between Genie and the other scheme

is summarized in Table 3.2, where the first row represents the different (Qr, Er) cases.

In the result, the maximum ratios of the reduced playback time for Q-only, E-only, and

YouTube compared to Genie are 28.6%, 9.6%, and 14.6%, respectively among the five

cases of (ρq, ρe).

On the other hand, EQ-video performs like the Q-only in a data-limited condi-

tion (Fig. 3.10(a)) while it performs like the E-only in an energy-limited condition

(Fig. 3.10(b)). Furthermore, it considers both of the remaining data quota and bat-

tery energy in the intermediate condition, e.g., (0.5, 0.5). Therefore, we confirm that
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Table 3.2: Comparison of available watching time (sec)

(ρq, ρe) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3)
Genie 4148 5417 6797 7393 5767

Proposed 0 0 −1.2% −3.5% −1.4%
E-only −8.3% −8.3% −9.6% -3.4% −1.5%
Q-only 0 0 −5.1% −25.8% −28.6%

YouTube −3.3% −2.9% −3.5% −11.3% −14.6%

EQ-video selectively performs well for all the cases of the remaining resource status,

and the maximum ratio of the reduced playback time compared to Genie is only 3.5%

when (ρq, ρe) is (0.6, 0.4).

3.5.2 Balancing between video quality and playback time with LTE/WiFi

multiple networks

First of all, we generate an example distribution of daily video watching arrivals to

evaluate the proposed algorithm that balances between video quality and playback

time. 3.9 describes the video arrival distribution, where one bar is the probability func-

tion of video arrival in the corresponding time-bin that represents one hour. In this

example case, the daily video arrival rate λavg is assumed to be 10, and the arrivals

follow Poisson distribution with λavg. In the simulation, the video arrival distribution

is empirically constructed by measuring video arrivals for a specific time, e.g., for 10

days. Based on the distribution of empirical data, the remaining video arrivals in a spe-

cific time t for the day in consideration is calculated by the average rate multiplied by

the sum of the probability mass function for t < k < 24 as represented in Fig. 3.9.

The video arrival distribution based simulation is conducted with the simulation

setup explained as follows: As explained above, the video requests arrive in a day

according to the Poisson process with the average number of the arrivals is 10. Time-

varying throughput for LTE and WiFi is generated that follows the normal distribution
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with average 12 Mbit/s and 8 Mbit/s, respectively. The available video encoding rate

set is in {1,2,4,8,12,16} Mbit/s. The average video watching time is assumed to be 5

minutes and to follow the lognormal distribution. The average leaving-in-midstream

probability is set to 0.4 for this simulation.

First of all, we compare several variations of the proposed scheme with various

parameter setting. Notations represented in Fig. 3.12 are explained as follows:

• avgNr: Nr is just substituted by the average number of video arrivals from the

empirical data set.

• avgNr+std:Nr is substituted by the sum of the average number of video arrivals

and its standard deviation from the empirical data set. It would be slightly larger

than the average, and hence the resources are used in a little more conservative

way.

• maxNr: Nr is substituted by the maximum number of video arrivals a day in

the empirical log data. It make the algorithm operate in the most conservative

way for the resources.

• WiFi-only: This scheme always use only the WiFi link when it is available. It

consumes the least energy and data quota, however, the average video quality

would be degraded due to bandwidth limitation of WiFi link.

• LTE-only: This scheme always use only the LTE link. It consumes too much

energy and data quota, and hence the scheme would mainly focus on maximizing

the total playback time at the cost of the video quality.

The simulation results are presented in Fig. 3.12. Each index in x-axis of the figure

represents percentages of the initially given data quota and battery energy to the to-

tal data quota and battery energy. For example, (30, 70) means that the initially given

67



data quota and battery energy are 30% of the total data quota and 70% of the total

battery energy, respectively. 3.12(a) represents a ratio of the watched video with given

resources to the video request arrivals. One means that all the video requests are ser-

viced. The avgNr increases the average video quality as illustrated in Fig. 3.12(b) and

(c) even though the watched video ratio is slightly reduced, which is kept still over 90%

for all the cases. If a user wants more conservative operation, avgNr+std or maxNr

schemes can be adopted. They increase the watched video ratio at the cost of slight

degradation of the video quality. in Fig. 3.12(d) and (e) represent normalized remain-

ing resources after all the video are watched. one means that no resource is used at all,

and zero means all the resources are depleted. When a measurement duration (a day)

is finished, it is undesirable to remain too much resources, and therefore, the proposed

algorithm utilize the resources as much as possible to enhance the video quality so far

as the expected watched video ratio is not too low.

Furthermore, we compare the proposed scheme of avgNr+std with the other static

schemes with either LTE or WiFi path. The static scheme only chooses either the max-

imum encoding rate Rs{max} or the minimum encoding rate Rs{min}. The simula-

tion results are represented in Fig. 3.13. The WiFi-only and/or Rs{min} achieve the

better viewed video ratio, covering over-90% of video arrivals, due to the low power

consumption and less usage of paid data. However, the video quality is limited because

they utilize the data and energy resoureces too conservatively. On the other hand, even

though, Rs{max} with the LTE-only shows the best video quality among the static

schemes, the viewed video ratio is too low especially for the case for lack of resources.

68



&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

(100,100) (50,50) (25,25) (30,70) (70,30)
0.0

0.2

0.4

0.6

0.8

1.0

V
ie

w
e

d
 v

id
e

o
 r

a
ti
o

Initial ratio of resources (energy(%), quota(%))

A
v
g

. 
e

n
c
o

d
in

g
 r

a
te

 (
M

b
/s

)

g
y

u
o

ta

(a) Viewed video ratio

&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

,30)

(%))

(100,100) (50,50) (25,25) (30,70) (70,30)
0

2

4

6

8

10

A
v
g

. 
e

n
c
o

d
in

g
 r

a
te

 (
M

b
/s

)

Initial ratio of resources (energy(%), quota(%))

u
o

ta

U
ti
lit

y
 o

f 
e

n
c
o

d
in

g
 r

a
te

(b) Encoding rate
&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

,30)

a(%))

(100,100) (50,50) (25,25) (30,70) (70,30)
0.0

0.2

0.4

0.6

0.8

1.0

U
ti
lit

y
 o

f 
e

n
c
o

d
in

g
 r

a
te

Initial ratio of resources (energy(%), quota(%))

(c) Video quality

&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

(100,100) (50,50) (25,25) (30,70) (70,30)
0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
liz

e
d

 r
e

m
a

in
in

g
 e

n
e

rg
y

Initial ratio of resources (energy(%), quota(%))

N
o

rm
a

liz
e

d
 r

e
m

a
in

in
g

 d
a

ta
 q

u
o

ta

(d) Remaining energy

&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

0,30)

a(%))

(100,100) (50,50) (25,25) (30,70) (70,30)
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 r

e
m

a
in

in
g

 d
a

ta
 q

u
o

ta

Initial ratio of resources (energy(%), quota(%))

N
o

rm
a

liz
e

d
 c

o
s
t

(e) Remaining data quota

&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

0,30)

a(%))

(100,100) (50,50) (25,25) (30,70) (70,30)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o

rm
a

liz
e

d
 c

o
s
t

Initial ratio of resources (energy(%), quota(%))

(f) Normalized cost

&RPSDULVRQ�LQ�3URSRVHG�6FKHPHV

Figure 3.12: Comparison between the proposed schemes.
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Figure 3.13: Comparison between the proposed scheme and static schemes.
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3.6 Summary

In this chapter, we consider both data quota and battery energy issues as well as the

video quality for HTTP-based video streaming service in a smartphone. We analyze

the data usage and energy consumption with a given video encoding rate , especially

including the expected data and energy waste when a user stops watching video in the

middle of the playback. At first, we propose the chunk download cycle (CDC) adapta-

tion scheme by formulating a normalized cost as a function of the remaining data quota

and battery energy in order to maximize the total playback time with the remaining

resources. Then, we propose a complete algorithm to find out the optimal operation

parameter set of network selection, video encoding rate, and CDC that balances the

video quality and the playback time. The simulation results show that the proposed

scheme effectively balances the video quality and total playback time according to the

remaining data quota and battery energy status.
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Chapter 4

Standby Mode

4.1 Introduction

Over 50% of total energy is consumed while a smartphone is not in use with screen off

and waits for user’s interaction, namely standby mode, since the smartphone spends

most of the time in the standby mode, i.e., 85% of a day on average [4]. A large

portion of battery drain in the standby mode occurs due mainly to the background

traffic generated by applications running on the smartphone [41]. The applications

that especially need interactions with the servers through the Internet, periodically

generate light load traffic via a data network interface of the smartphone for several

purposes: 1) checking new messages or updates, e.g., e-mail, text messages of chatting

applications, and weather information, and 2) maintaining TCP connections in the

network address translation (NAT) network environment to receive the push data from

the servers without connection overhead in the near future. The battery drain caused

by background traffic is intensified as the number of applications using the Internet

increases.

To alleviate the battery dissipation in the standby mode, previous efforts have tried
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to reduce the energy consumption caused by background traffic by delaying packet

transmission and traffic shaping techniques [42–44], or reducing 3G tail time [45].

In addition, a lot of applications, which prevent the background traffic by turning off

the data network interface, are provided in application stores [46, 47]. Turning off the

data network interface during the standby mode and reconnecting to the Internet only

when the next usage starts is the simplest way to save the energy without any kernel

level modification. However, it may rather consume more energy whenever the standby

mode starts in the case that the smartphone usage too frequently arrives because turn-

ing off and on the data network interface cause additional energy overhead for the

initial connection setup [31]. On the other hand, if the smartphone enters DSM too

late, it would lose most of the time to save energy. Therefore, it is critical to determine

when to turn off the data network interface to maximize the energy saving gain, which

mainly depends on a smartphone usage pattern of each user.

To understand the user-specific smartphone usage pattern [48,49], we exploit times-

tamp logs of the start and end time of each standby mode gathered from multiple

smartphone users. We define the idle duration as the time between the start and the

end of a standby mode, and show that the distribution of the idle duration follows

one of the heavy tailed distributions, i.e., a lognormal distribution [50], which is com-

monly adapted to the Internet traffic and communications such as TCP session dura-

tion and downloaded file size distribution [51, 52]. We propose a usage pattern-aware

energy saving algorithm for smartphones by properly blocking the data network in

the standby mode. The proposed algorithm consists of two phases: 1) learning phase,

where a smartphone measures long-term average power consumption for specific op-

erations such as non-DSM, DSM, and turnning ON/OFF the network interface and

builds a usage pattern profile based on the timestamp logs, and 2) deep sleep mode

(DSM) operation phase, where the smartphone waits for a specific threshold time at
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the start of the standby mode and entering DSM turning off the data network interface.

When the user starts to use the smartphone, the data network interface immediately

turns on reconnecting to the data network 1.

The proposed algorithm adaptively operates according to the user-specific usage

pattern profile to lengthen the battery lifetime in real-life environments. Furthermore,

we enhance the algorithm to separately operate in the activity and inactivity time, i.e.,

typically separated by user’s sleep time. Because the DSM necessarily causes addi-

tional delay of the Internet messages incoming during the standby mode, the enhanced

algorithm makes the smartphone enters DSM conservatively in the activity time and

aggressively in the inactivity time by applying the different DSM threshold time val-

ues. Through the smartphone usage trace-driven simulations, we validate that our al-

gorithm successfully reduces the battery leakage in the standby mode and prevents

entering DSM too frequently in the activity time.

The rest of this chapter is organized as follows. In Section 4.2, we present an

power anatomy of a smartphone in the standby mode. and analyze several users’ usage

patterns in Section 4.3. Then, we proposed the DSM algorithm in Section 4.4. The

performance evaluation of the proposed algorithms are presented with the simulation

results in Section 4.5. Finally, we summarize and conclude this chapter in Section 4.6.

4.2 Standby Mode Power Anatomy of Smartphones

4.2.1 Low power mode operation

WiFi defines two power management modes, namely, active mode (AM) and power

save mode (PSM). The WiFi interface in AM always runs in the awake state in which

it can transmit and receives the packets, while the WiFi interface in PSM toggles be-
1
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tween the awake state and doze state, in which the interface is basically turned off. The

AP informs the presence of the buffered packets via the traffic indication map (TIM)

element in the beacons. The WiFi interface in PSM periodically wakes up, i.e., switch-

ing from doze state to awake state, for every delivery TIM (DTIM) period to receive

beacons, and checks the TIM element in the beacon. If there exist buffered packets

destined to the device, the WiFi interface sends a null data packet (NDP) in order to

switch from PSM to AM, and then receives the buffered packets. The WiFi interface

sets the inactivity timer which has a specific timeout value, called PSM timeout, and it

resets the timer for every packet reception. When the inactivity timer expires, the WiFi

interface switches back to PSM to save energy by sending an NDP to the AP.

Likewise, LTE has two radio resource control (RRC) states, namely, RRC connected

and RRC Idle. Once an eNodeB (i.e., LTE base station) allocates resources to a user

equipment (UE), the UE operates at RRC connected state consuming high power. At

RRC connected state, the UE first stays in continuous reception mode and keeps mon-

itoring physical downlink control channel (PDCCH). The UE starts discontinuous re-

ception (DRX) operation and enters short DRX mode when DRX inactivity timer ex-

pires. The UE remains in short DRX until short DRX cycle timer expires and goes to

long DRX when it expires. If the UE, which operates in long DRX, does not receive

any packet until RRC inactivity timer expires, it enters RRC idle state by releasing the

allocated resources, and saves the energy consumption. When the UE operates in either

short DRX or long DRX, it goes back to continuous reception if it receives/transmits a

packet. During RRC idle state, the UE sleeps for most of time and periodically wakes

up to receive paging messages from eNodeB. Accordingly, it is awake for a few mil-

liseconds every RRC idle DRX cycle period.

We refer to the WiFi PSM and LTE RRC idle as the the low power modes of

WiFi and LTE, respectively. The energy consumption of the network interfaces in low
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power mode is determined by the DTIM period for WiFi and RRC idle DRX cycle

period for LTE. The DTIM period is the beacon period multiplied by a DTIM interval

and RRC idle DRX cycle is one of 320, 640, 1280, and 2560 ms.

Whenever the last packet reception is completed, the network interface waits for

PSM timeout in case of WiFi or RRC inactivity timer timeout in case of LTE, and then

enters the low power mode. The tail time of WiFi and that of LTE are defined as the

time duration of PSM timeout and that of RRC inactivity timer timeout, respectively.

The tail power is the power consumption for the tail time, i.e., channel sensing power

in awake state in case of WiFi, or long DRX state power in case of LTE. The average

power consumption for WiFi and LTE in the low power mode is about 2.5 mW and 5.6

mW, respectively.

4.2.2 Power consumption for background traffic

Even though a user turns off the screen and stop using a smartphone, i.e., the smart-

phone is inactive, the network interface(s) are intermittently activated to serve back-

ground traffic generated by network applications during this inactive period. Network

applications generate background traffic for 1) keep-alive messaging, i.e., the appli-

cations periodically send keep-alive messages to their servers so that the servers can

deliver new data to the smartphone in a NAT environment. and 2) application data up-

date, i.e., such network applications as e-mail, weather forecast, and news applications

periodically check and receive updated new data from the servers. The amount of back-

ground traffic may increase as a user installs more applications on her/his smartphone,

and background traffic frequently incurs the tail power of the network interfaces and

severely degrades the battery lifetime.

To empirically investigate how much energy is consumed to serve background

traffic, we measure the power consumption of the smartphone in the standby mode
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using Monsoon power monitor [53] while network applications are running in the

background.2

(a) LTE standby mode power consumption

20 min. avg.

Total avg.

(b) WiFi standby mode power consumption

Figure 4.1: Average power consumption of smartphone on the standby mode.

2All the applications except for those running as background services [54] are paused while the dis-
play turns off and no partial wakelock [55] is hold. The paused applications are different from terminated
applications and they are still alive in Android kernel level and can be resumed by triggers, e.g., users’
interactions and Android alarm services [56].
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Fig. 4.1 shows the measured standby mode power consumption for the case that

the LTE and WiFi interfaces are used for 10 hours. We average the power consump-

tion, which is measured every 20 minutes (represented as each “dots” in Fig. 4.1), and

average power for 20 minutes range from 60 mW to 120 mW for using LTE interface

and from 40 mW to 80 mW for using WiFi interface. Since the longer tail time and

higher power consumption of the LTE interface compared to the WiFi interface, the

standby mode power consumption of using the LTE interface is obviously higher than

that of using the WiFi interface.

The background power consumption differs according to the smartphones status,

i.e., the number of network applications installed on the smartphone and the amount

of background traffic generated by the network applications, and the channel status

of the network with which the smartphone currently associated. The impact of the

smartphone status to the background power consumption is inferred by analyzing the

background traffic captured with tcpdump during the standby mode. One of the pos-

sible training methods to analyze the background power consumption and the amount

of traffic is measuring the remaining battery level3 and capturing the traffic during the

users do not interact with their smartphone for a long time, e.g., inactivity time. The

impact of the network status is experimentally investigated and we discuss it in the

following section.

4.2.3 WiFi MAC overhead issue

The smartphone is connected to the Internet via either WiFi and LTE, and none of

them is activated in a special case such as Airplane mode. LTE has wide coverage

and supports a sophisticated handover procedure so that a user connects to the LTE
3The battery interface provides the remaining battery level which has the integer values from 0 to 100,

and it can be displayed on the notification bar of the screen.
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network almost everywhere while WiFi has short coverage, e.g., less than 10 meters

for good signal strength. In addition, the smartphone may not always connect to WiFi

in practice, and good signal strength is not guaranteed even though WiFi connection is

available. Each network has its own merit i.e., LTE has the advantage in terms of the

availability but WiFi is more energy-efficient than LTE. Therefore, if WiFi is always

available with good signal strength, the smartphones would better connect to the WiFi

to save the energy consumption, but practically it is not valid in real environments.

Due to the fluctuation of WiFi signal and user’s mobility, the WiFi signal strength

varies and affects the WiFi interface power consumption. With low RSS, packets are

transmitted with low-order MCS due to the rate adaptation, thus resulting in increased

tx/rx airtime ratios, and retransmitted packets incur additional energy consumption be-

tween consecutive successfully received data packets. Furthermore, much more MAC

frame overheads arise when the RSS is below −80 dBm, e.g., active scanning for

searching better access points (APs) and heavy retransmissions of NDPs due to the re-

ceive sensitivity difference between the antennas of APs and those of the smartphones.

We let the smartphone connect to WiFi and measure the power consumption of the

standby mode by turning off all the background applications to measure only the WiFi

power consumption according to WiFi signal strength. We place the smartphone in

various locations to obtain the diverse received signal strength of WiFi from−42 dBm

to−80 dBm. We capture the packets and classify them into 5 categories, i.e., probe re-

quest and response for active scanning (“Probe req/resp”), NDP transmissions (“NDP

init”), NDP retransmissions (“NDP retry”), other data packets (“Non-NDP init”), and

retransmissions of “Non-NDP init” (“Non-NDP retry”). The measured power con-

sumption and classification of WiFi traffic are presented in Fig. 4.2 according to RSSs.

The average standby mode power consumption abruptly increases from −74 dBm

RSS with higher power variations while the average power smoothly increases from
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−42 dBm to −72 dBm with fewer power variations as presented in Fig. 4.2(a). The

increased power from −74 dBm RSS correspond to the increased packet rates of clas-

sified traffic in Fig .4.2 (b). The RSS lower than −74 dBm causes more NDP trans-

missions/retransmissions and the incidences of active scanning grow. When the RSS

exceeds−80 dBm, NDP retransmissions are exacerbated. In this RSS region, the WiFi

connections are occasionally lost and the smartphones associated with the APs having

better signal strength by active scanning.

From these experiments, we quantitatively check that the amount of WiFi MAC

traffic is substantial at bad received signal strength of WiFi, and hence, the increased

energy consumption of WiFi interface reduces the battery lifetime of the smartphone.

Therefore, connecting to WiFi is not always energy-efficient so that we should select

a data network for energy-efficiency with consideration of the network status such as

RSS.

4.3 Usage Log-based Idle Duration Analysis

4.3.1 User-specific daily distribution of idle duration

We implement an Android application to collect the user’s usage information, i.e.,

screen on/off, the information of an associated network (LTE or WiFi), battery in-

formation, and running applications with a timestamp for each event. As previously

mentioned, the idle duration is defined as the time between the start and the end of

a standby mode. The start of a standby mode is defined as the time when the screen

is turned off and all the background services [54], e.g., a music playing application,

are stopped while the end of the standby mode is defined as the time when the screen

is turned on and touched by the user. We installed the logging application on several

user’s smartphone and gathered the log data for a month.
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Figure 4.2: WiFi MAC overhead in various received signal strength (RSS) levels.
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The Fig. 4.3 shows a cumulative distribution function (CDF) of the idle duration

of one user’s log data for 10 days. The x-axis represents the idle duration (second)

in log-scale, and the blue line describes the empirical data of a real user. The red line

represents the lognormal function fitting to the empirical data, of which the probability

density function is expressed by f(x) = 1
x
√
2πσ

e−
(ln x−µ)2

2σ2 . The mean µ and variance σ

for the lognormal fitting curve are presented in the figure. In summary, the distribution

of a user’s idle duration is well fitted to the lognormal distribution which is one of the

heavy-tailed distributions.

4.3.2 All-day distribution

We gather four users’ smartphone usage log data for a month and present the idle

duration distributions with the corresponding lognormal fitting curves in Fig. 4.4(a).

From the figure, we find that the log-normal fitting can still be applied to the other users

idle duration distributions. Furthermore, each user has his/her own eigen-distribution

of the idle duration that is generally caused by the different usage pattern from one

another.

On the other hand, one user’s daily distribution of the idle duration has the self-

similarity due to the user’s habitual usage pattern. Fig. 4.4(b) represents one user’s

daily distribution of the idle duration for 5 days, and we can see that each distribution

does not get much beyond the total average distribution.

4.3.3 Activity/inactivity time separation

Four users’ daily idle duration patterns are presented in Fig. 4.5. Each dot represents an

average of the idle durations observed in the 30-minute time bin of the corresponding

time of day. If a long idle duration lasts for several time bins, each time bin encountered

with the idle duration individually counts the whole duration for its average. We can
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Figure 4.3: CDF of idle duration and lognormal-fit curve.

see that the daily patterns tend to divided into the two parts, i.e., long and short idle

durations, which is due mainly to each user’s regular sleeping time. We separate the

two parts by a specific threshold time, e.g., the minimum idle duration in Fig. 4.5 added

by 1 hour, and define the long and short idle duration regions as the activity time and

inactivity time, respectively. With these two regions based on the user specific usage

pattern logs, we can apply the energy saving algorithm separately to get preferable

effects. For example, the energy saving algorithm may only be applied during the

inactivity time while the smartphone is used in the performance oriented way during

the activity time.
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Figure 4.4: Comparison of idle duration distributions.
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Figure 4.5: Daily idle time distributions of four users.
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4.4 Proposed Algorithm

We propose a user behavior-based energy saving algorithm for LTE/WiFi-equipped

smartphone in this section. The proposed algorithm has a learning phase and DSM

operation.

4.4.1 Learning phase

In the learning phase, the usage analyzer gathers all the time instances of the start and

end of the standby mode and formulates the empirical CDF of the idle duration as

shown in Fig. 4.3. The energy estimator estimates the energy consumption during the

standby mode in the learning phase for the long-term average power consumption of

the standby mode as shown in Fig. 4.1. The standby mode power consumption when

connected to either WiFi or LTE is individually estimated.

All the previous standby mode time can be included in the learning phase, and

the idle duration distribution and long-term average power consumption are updated

based on the cumulative log data in the standby mode. Using the usage analysis data,

the proposed DSM algorithm is operated as follows.

4.4.2 Deep Sleep Mode (DSM) operation

Energy efficient network connection in standby mode

When a standby mode starts and both of the LTE and WiFi are available, the smart-

phone chooses connects to the network interface that consumes less energy in the

standby mode. Generally, the average power consumption of LTE in the standby mode

is higher than that of WiFi due to much higher energy overhead of the background traf-

fic with LTE as shown in Fig. 4.1. However, if the RSS of WiFi is lower than−75 dBm,

the extra WiFi power overhead occurs, and thus the standby mode power consumption
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of WiFi may exceed that of LTE. Therefore, the smartphone estimates the standby

mode power consumption both of LTE and WiFi in the learning phase monitoring the

WiFi RSS, and then chooses one of them consuming less average power in the stanby

mode.

Data network ON-OFF

In the LTE system, the IP Multimedia Subsystem (IMS) for phone services, e.g., voice

over LTE (VoLTE) and short message services (SMS), and the Internet for data services

are provided by the different Packet Data Networks (PDNs). A smartphone connects

to each PDN via the individual bearer with the corresponding Access Point Name

(APN) exploiting a virtual network interface. Fig. 4.6 shows the system structure for

the IMS and the Internet services, where the corresponding virtual LTE interfaces are

“LTE IP1” and “LTE IP2”. If a user connects to the Internet via WiFi, “WiFi IP1” is

activated while “LTE IP2” is deactivated.

In this system, to save more energy especially caused by background traffic in the

standby mode, we consider turning off the data network interface for the Internet, i.e.,

either “LTE IP2” or “WiFi IP1” to prevent the background traffic generation. There-

fore, the phone services such as VoLTE and SMS are still available through “LTE IP1”

even if the Internet data network is disconnected.

DSM algorithm process

Heavy tailed distribution of the idle duration implies that the probability that standby

mode time duration tends to be further longer as the time lasts longer. Based on this

characteristic, we propose a DSM algorithm that turns off data network interface with

the corresponding background applications when a long idle duration is detected.

A process of the DSM algorithm is described in Fig. 4.7 with two options. For both
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Figure 4.6: Smartphone service network.

of the options, the data network interface is turned off to save energy if an idle duration

continues above a threshold, denoted by T thdsm. For Option 1 as shown in Fig. 4.7(a), the

data network is reconnected only when the smartphone usage is restarted. In the case

of Option 2 as described in Fig. 4.7(b), the data network interface periodically turns

on for a while, e.g., 10 s, to check update messages of background applications, where

the period of turning on the data network interface Tonoff can be set by a user. After

that, the data network is disconnected again turning off the network interface to save

the energy. When a user turns on and touches the screen, the data network connection

is immediately set up and the DSM algorithm process is terminated.

For efficient DSM operation, it is critical to set a proper threshold time T thdsm to

enter the DSM. If T thdsm is set too short, the smartphone unnecessarily enters DSM

too many times causing the energy overhead for turning on and off the data network

interface. On the contrary, if T thdsm is set too long, the smartphone seldom enters DSM

and loses most opportunities to save energy. We exploit user-specific distribution of

the idle duration, fitted to the lognormal distribution to find the optimal T thdsm. For this

purpose, we derive the expected power consumption for the DSM process as a function
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of T thdsm and Tonoff as follows:

P̄ (T thdsm, Tonoff) =

[ ∫ T th
dsm

0

Pstatic · tfidle(t)dt+

∫ Ttot

T th
dsm

fidle(t)
{
PstaticT

th
dsm

+Nonoff(t)Eonoff + Plpm(t− T thdsm −Don)
}
dt

]/∫ Ttot

0

tfidle(t)dt,

(4.1)

where t is the elapsed time since the standby mode starts, and fidle(t) is the lognormal

probability density function of the idle duration. Pstatic is the power consumption when

the data network is statically connected, Nonoff is the total number of the data network

ON-OFF with given Tonoff for t, Eonoff is the energy overhead to turn on and off the

data network interface.Don is the ON-duration to check the update message,Plpm is the

average power consumption for the low power operation as presented in Section 4.2.1.

If we apply the probability mass function of the idle duration from the empirical data,

(4.1) is re-written as follows:
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P̄ (T thdsm, Tonoff) =

[ T th
dsm∑
τ=0

Pstatic · τpidle(τ) +

Ttot∑
τ=T th

dsm

pidle(τ)
{
PstaticT

th
dsm

+Nonoff(τ)Eonoff + P idle
dsm(τ − T thdsm −Don)

}]/ Ttot∑
τ=0

τpidle(τ).

(4.2)

Fig. 4.8(a) shows the numerical result of the average power consumption of the

DSM process according to T thdsm and Tonoff with User 1’s trace. The solid lines is from

the numerical simulation with the lognormal fitting parameters of the idle distribu-

tion while the circles represent the real trace-driven simulation. As previously dis-

cussed, we can see the quasi-convexity of the average power consumption according

to T thdsm, and consequently it has the optimal value T th∗dsm for each Tonoff as represented

in Fig. 4.8(b).

We also confirm that the maximum energy saving gain is reduced as Tonoff de-

creases. Therefore, the DSM algorithm should avoid entering DSM in the case when

the estimated power consumption with Tonoff set by the user is greater than the power

consumption without DSM..

DSM algorithm extension

Even though DSM achieves the energy saving gain, entering DSM during activity

time increases the standby mode power consumption due to frequent occurrences of

the energy overhead for turning on and off the data network interface. To prevent the

smartphones from entering DSM during activity time, we classify a day, i.e., 24 hours,

into the activity time and inactivity time according to user’s daily idle duration pattern

as described in Section 4.3.3. For the time classified as the inactivity time, a user may

sleep, enjoy a sport or studies leaving her/his smartphone for a long time, and hence,
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Figure 4.8: Numerical result of DSM process.
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the smartphone saves the energy consumption by entering DSM after the optimal T th∗dsm

obtained by the DSM algorithm. On the other hand, during the activity time, the user

can set a limit for the smartphone to enter DSM with DSM ratio rdsm, defined as

the ratio of the number of DSM entrances to the number of all the standby mode

occurrences. Then, we need another DSM threshold, denoted by T reqdsm, required for the

activity time to restrict the DSM ratio. If the CDF of the activity time idle duration x

as shown in Fig. 4.9 is denoted by F (x), we set T reqdsm with the probabilistic approach,

i.e., T reqdsm = F−1(1− rdsm).

92



4.5 Performance Evaluation

4.5.1 Performance comparison

To evaluate the performance of the DSM algorithm, we consider two kinds of the per-

formance metric. The first is how much the energy consumption during the standby

mode is saved, and the second is how well the proposed scheme prevents the smart-

phone from entering the DSM state during the activity time. The DSM algorithm needs

to necessarily consider undesirably disconnecting data network connection when a

user frequently use the smartphone during the activity time. Therefore, the proposed

scheme adaptively set the T thdsm to enter DSM aggressively in the inactivity time and

conservatively in the activity time based on the usage pattern analysis. We simulate

the energy saving ratio during the standby mode for several days, and furthermore, we

evaluate how well the adaptive setting of T thdsm adapts to user’s daily usage pattern.

Fig. 4.10 represents performance comparisons among four different schemes: 1)

non-dsm without DSM, 2) dsm fix10s that enters DSM after 10 s from the start of the

stanby mode, 3) dsm all that always uses the only T thdsm, and 4) dsm sep that exploits

separate DSM threshold time for the activity time and inactivity time, where we set the

DSM ratio in the activity time to 0.1. Bars represent the energy consumption normal-

ized by the energy consumption of non-dsm in the standby mode for 20 days, and each

black dot represents the ratio of the number of the DSM occurrences to the total num-

ber of standby mode arrivals during the activity time. Fig. 4.11 shows the empirical

Table 4.1: Simulation setup

Pstatic 75 mW
Pidle 30 mW
Eonoff 20 Joule
Tonoff {10, 20, 30, 60, 100, None } min.
Don 10 sec.
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Figure 4.10: DSM performance comparison.
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Figure 4.11: DSM time distribution.
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CDF of the DSM time distributions for dsm fix10s, dsm all, and dsm sep, where the

DSM time is defined as the time that the smartphone stays in DSM for a stnadby mode

time, e.g., if the smartphone never enters DSM for a standby mode time the DSM time

is zero for the standby mode time.

From the result, dsm all always outperforms the other schemes, and dsm sep op-

erates as intended reducing the activity time DSM ratio to around 0.1 even though the

normalized energy consumption slightly increases than dsm all. On the other hand,

dsm fix10s only performs good for specific users, and therefore cannot be commonly

used for all cases. Furthermore, it enters DSM for over 80% of the standby mode ar-

rivals, and the user would experience unavailability of the data network during the

standby mode too much.

4.5.2 Effect of Tonoff

To compensate the incoming data delay due to DSM, the periodic ON-OFF of the

data network according to user-set value Tonoff can be conducted during the DSM.

Then, the maximum delay can be limited by Tonoff at the cost of loss of the energy

saving gain, which is defined as the ratio of the saved energy to the enrgy consump-

tion with non-dsm. In Fig. 4.12, user-specific energy saving gains according to var-

ious Tonoff ∈ {10, 20, 30, 60, 100,∞} are presented for the four users. ∞ means

non-periodic ON-OFF. In addition, the corresponding delay for the worst and aver-

age cases is represented in Fig. 4.13. From the result we can observe that too short

ON-OFF period sharply decreases the energy saving gain and the gain can be negative

in some cases such as dsm fix10s with Tonoff = 10min. for User 1 and 2 even if that

reduces the delay due to DSM. On the other hand, some setting, e.g., Tonoff = 30min.

can achieves much less delay without much degradation of the energy saving gain

compared to the non-periodic ON-OFF. Therefore, we can conclude that the proposed
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Figure 4.12: Standby mode energy saving gain vs. Tonoff.
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Figure 4.13: Standby mode additional delay vs. Tonoff.
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DSM algorithm can properly operates based on the user preference setting reflecting

the trade-off relationship between the energy saving gain and incoming data delay by

usage pattern-aware estimation of the standby mode power consumption.

4.6 Summary

In this chapter, we present an anatomy of smartphone power consumption especially

in the standby mode or light traffic mode. Based on the power analysis we propose

algorithms for power saving operation in the smartphone. First, we propose the LTM

algorithm to select the best network connection in the light traffic load state between

LTE and WiFi according to packet arrival rate and WiFi channel condtion. Second,

we propose the DSM algorithm that periodically turns on and off the data network

interface to save more energy during the standby mode. It monitors the standby mode

duration and triggers the DSM process when the duration exceeds a threshold time.

The threshold time is obtained based on analysis of each user’s smartphone usage pro-

file and adaptively set to maximize the expected energy saving. We exploit real user’s

smartphone usage log data to practically evaluate the performance of the proposed

scheme, and the results show that our proposed scheme effectively adapts to various

environments and saves energy on average 20%.
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Chapter 5

Conclusion

5.1 Concluding Remarks

In this dissertation, we propose energy, service charge, and performance aware, namely

ESPA, network usage optimization algorithms for multi-RAT smartphones. User’s sat-

isfaction with a service is related not only to the performance, i.e., the service quality,

but also to the battery energy consumption and data quota usage because they have

generally limitation on use due to their limited capacity such as the battery capacity

and data plan.Therefore, we model multi-attribute based utility/cost functions with re-

gard to energy and data quota as well as the performance for specific applications, i.e.,

file transfer services and video streaming. Each utility/cost function is represented by

a function of the current status of the remaining battery energy and data quota, and

therefore the proposed algorithm can selectively save either the energy or data quota

according to the remaining resources. When both of the battery energy and data quota

are currently sufficient, the algorithm focuses more on maximizing the performance.

However, as any of the available resources is depleting, the weight of that term in

the utility/cost function increases, and the focus of the algorithm moves to save the
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depleting resource.

On the other hand, we also propose the deep sleep mode algorithm. Even though

the light usage applications such as web browsing and text messaging consume less

energy and data compared to the large file transfer or video streaming, we show that

the effect of the proposed algorithm can be considerable because the proportion of

the standby mode time is generally dominant among user’s daily usage time. We also

present that the deep sleep mode algorithm saves the energy consumed by the back-

ground traffic during the standby mode.

More into detail, the research contributions of each chapter in the dissertation are

summarized as follows.

In Chapter 2, we propose a multiple network interfaces activation scheme espe-

cially for file transfer services in smartphones. We generalize the multiple network in-

terface activation problem for nRAT-equipped smartphones. We show that the general-

ized version is the joint combinatorial and piecewise linear minimization problem that

can be still properly optimized. We propose a heuristic algorithm to find the optimal

RAT set and corresponding segment allocation with low computational complexity.

Even though the number of possible RAT combinations exponentially increases as the

number of available RATs increases, the proposed linear search algorithm reduces the

size of the search space from exponential to linear. We also propose a dynamic update

algorithm that adapts the selected RAT set and segment allocation during the transfer

according to time-varying network condition. It adapts to the dynamic network con-

dition, and furthermore, enhances the performance of the RAT condition where some

RATs are unable to be activated simultaneously. In the performance evaluation, we

verify that the proposed algorithm shows no significant performance difference from

the full search algorithm. Furthermore, we show that the parallel activation scheme im-

proves the RAT diversity gain compared with the vertical handoff. With time-varying
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throughput variation of RATs, the performance enhancement through the dynamic up-

date algorithm is also evaluated.

In Chapter 3, we propose a HTTP-based multipath video streaming algorithm for

LTE/WiFi-equipped smartphones. The proposed algorithm effectively balances the

video quality, i.e., video encoding rate and available playback time considering the

remaining battery energy and data quota. We numerically analyze how HTTP-based

video services affect the data usage and energy consumption simultaneously. We es-

pecially cope with the expected data and energy waste when a user leaves watching

a video in midstream. Based on the analysis, we formulate a multi-attribute utility

function represented by a weighted sum of the normalized video quality and play-

back time. We first solve a subproblem that maximizes the playback time by finding

the optimal chunk download cycle with given battery energy and data quota, assum-

ing the video streaming service is only available until either the battery energy or

data quota is exhausted. Then, we find the optimal operating parameter set, i.e., net-

work selection, video encoding rate, and chunk download cycle, that maximizes the

multi-attribute utility function. The proposed algorithm fundamentally uses the avail-

able WiFi network and exploits the LTE network to support the bandwidth shortage

when the estimated WiFi throughput is less than the selected encoding rate. We show

that the proposed algorithm improves the multi-attribute utility much more than the

case that only uses either WiFi or LTE.

In Chapter 4, we propose an energy saving algorithm in the standby mode of smart-

phone. We present an anatomy of power consumption of the LTE and WiFi interfaces

in the smartphone. Based on the power consumption anatomy, we discuss the battery

energy drain due to the light load traffic generated by applications running in the back-

ground. Then, we propose the deep sleep mode (DSM) algorithm to save the energy in

the standby mode, which properly turns off the data network interface when a long idle
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duration is expected. It monitors the idle duration and triggers the DSM process when

the duration exceeds a specific threshold time. The threshold time is obtained based

on analysis of each user’s smartphone usage profile representing a distribution the idle

duration, which commonly follows the heavy-tailed distribution, and is adaptively set

to maximize the expected energy saving gain. We exploit real user’s smartphone us-

age log data to practically evaluate the performance of the proposed scheme, and the

results show that our proposed algorithm adapts to various user cases and effectively

saves the energy in the standby mode.
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[38] R. H. Tütüncü, K. Toh, and M. Todd, “Solving Semidefinite-Quadratic-Linear

Programs using SDPT3,” Mathematical Programming, vol. 95, pp. 189–217,

2003.

[39] Y. Chen, B. Zhang, , Y. Liu, and W. Zhu, “Measurement and modeling of video

watching time in a large-scale internet video-on-demand system,” IEEE Trans.

on Multimedia, vol. 15, pp. 2087–2098, 2013.

108



[40] X. Xing, J. Dang, S. Mishra, and X. Liu, “A Highly Scalable Bandwidth Estima-

tion of Commercial Hotspot Access Points,” in Proc. IEEE INFOCOM ’11, Apr.

2011.

[41] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck, “Screen-off traffic

characterization and optimization in 3G/4G networks,” in Proc. ACM IMC ’12,

Nov. 2012.

[42] S. Deng and H. Balakrishnan, “Traffic-aware techniques to reduce 3G/LTE wire-

less energy consumption,” in Proc. ACM CoNEXT ’12, Dec. 2012.

[43] R. Wang, J. Tsai, C. Maciocco, T.-Y. Tai, and J. Wu, “Reducing power consump-

tion for mobile platforms via adaptive traffic coalescing,” IEEE Journal on Se-

lected Areas in Communications, vol. 29, no. 8, pp. 1618–1629, Sep. 2011.

[44] E. J. Vergara, J. Sanjuan, and S. Nadjm-Tehrani, “Kernel level energy-efficient

3G background traffic shaper for android smartphones,” in Proc. IEEE IWCMC

’13, Jul. 2013.

[45] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li, “Optimiz-

ing background email sync on smartphones,” in Proc. ACM MobiSys ’13, Jun.

2013.

[46] “Android google play.” [Online]. Available: https://play.google.com/store/apps

[47] “Apple itunes.” [Online]. Available: http://www.apple.com/kr/itunes/

[48] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Es-

trin, “Diversity in smartphone usage,” in Proc. ACM MobiSys ’10, Jun. 2010.

109



[49] A. Shye, B. Scholbrock, G. Memik, and P. A. Dinda, “Characterizing and mod-

eling user activity on smartphones: summary,” in Proc. ACM SIGMETRICS Per-

formance Evaluation Review ’10, Jun. 2010.

[50] R. J. Adler, R. E. Feldman, and M. S. Taqqu, A Practical Guide to Heavy Tails:

Statistical Techniques and Applications. Birkhauser Boston Inc., 1998.

[51] S. Gebert, R. Pries, D. Schlosser, and K. Heck, “Internet access traffic measure-

ment and analysis,” in Proc. TMA Workshop ’12, Mar. 2012.

[52] M. Molina, P. Castelli, and G. Foddis, “Web traffic modeling exploiting TCP

connections’ temporal clustering through HTML-REDUCE,” IEEE Network,

vol. 14, no. 3, pp. 46–55, May 2000.

[53] “Monsoon power monitor.” [Online]. Available: http://www.msoon.com/

LabEquipment/PowerMonitor

[54] “Android background service.” [Online]. Available: http://developer.android.

com/training/run-background-service/index.html

[55] “Android powermanager.” [Online]. Available: http://developer.android.com/

reference/android/os/PowerManager.html

[56] “Android alarmmanager.” [Online]. Available: http://developer.android.com/

reference/android/app/AlarmManager.html

110



초 록

오늘날스마트폰은 3G, 4G, WiFi및블루투스와같이다양한이종네트워크접속

기술이함께탑재되어있다.또한,최신스마트폰의경우에는이러한이종네트워크

를 동시에 접속할 수 있는 기술이 탑재되고 있는 추세이다. 따라서, 이종 네트워크

동시접속을포함하여최적의네트워크조합을선택하고,선택된네트워크별로최

적의 전송 데이터 할당량을 결정하는 방법이 필요하다. 본 학위 논문에서는 파일

전송, 비디오 스트리밍 등의 인터넷 서비스를 지원 하기 위한 다중 네트워크 연결

시스템을디자인하고,다속성기반다중네트워크운용기법을제안한다.이를위해

서비스별특성을고려한성능,에너지및서비스요금에대한다속성비용함수를

모델링하고분석을통한최적화를진행한다.또한,성능검증을위하여실제스마트

폰측정으로부터얻은파라미터에기반한시뮬레이션을수행하고,제안알고리즘이

각 서비스 특성과 스마트폰의 현재 에너지 및 데이터 요금 잔량 상태에 따라 성능,

에너지,요금각각의상대적비용에균형을맞추면서적응적으로최적동작모드를

결정하는것을보여준다.

먼저, 제 2장에서는 2개 이상 n개의 라디오 접속 기술이 탑재된 스마트폰에서

대용량파일전송시의전송완료시간,에너지소모,데이터요금각각에대한비용

함수를모델링하고,이를정규화하여통합비용함수를도출한다.그리고통합비용

함수값을최소화하기위한네트워크조합및선택네트워크별최적파일세그먼트

할당량을찾는알고리즘을제안한다.이때,가용네트워크조합은 2n− 1개되므로,
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가용 네트워크 수가 증가함에 따라 최적 네트워크 조합을 찾기 위한 계산량은 지

수적으로 증가하게 된다. 따라서 이러한 복잡도를 선형적으로 줄이는 알고리즘을

제안한다.또한,네트워크전송률은동적으로변화하기때문에초기설정값의최적

성이 깨어질 수 있는데 이를 보완하기 위해 주기적으로 비용함수를 체크하고 최적

네트워크 선택을 업데이트 하는 알고리즘을 제안한다. 제안 알고리즘의 계산량 및

성능은실측기반시뮬레이션을통하여검증한다.

제 3장에서는 LTE/WiFi 네트워크 인터페이스가 탑재된 스마트폰에서 비디오

스트리밍시의트래픽패턴에따른에너지및데이터소모량을분석한다.이때,사

용자가 비디오 재생 중간에 시청을 종료할 경우 낭비되는 에너지와 데이터의 예상

값을함께분석한다.이를기반으로, LTE네트워크사용시의배터리잔량및데이터

요금 잔량에 따른 비디오 스트리밍 서비스 가능 시간을 최대화하는 알고리즘을 제

안한다. 뿐만아니라, WiFi사용 가능 시에 LTE와 WiFi를 동시에 사용하여 비디오

데이터를 전송받는 기법을 제안하고, 비디오 품질 및 비디오 시청 가능 시간에 대

한 통합 유틸리티 함수값을 최대화 하도록 최적 네트워크 조합 및 비디오 인코딩

레이트를 선택하는 알고리즘을 제안한다. 사용자의 비디오 시청 로그에 기반한 시

뮬레이션을 통해 제안 알고리즘이 비디오 품질 및 비디오 시청 가능 시간 사이에

적절한균형을맞추며동작함을보인다.

한편,스마트폰은일반적으로하루중대기모드상태로있는시간이가장길다는

특성을고려하여,제 4장에서는 LTE또는WiFi접속상태인스마트폰이대기모드일

때, 백그라운드 트래픽에 의한 에너지 소모 특성을 분석한다. 또한, 사용자별 하루

동안의 스마트폰 미사용 시간 분포 특성을 장시간 스마트폰 로그 측정을 기반으로

하여 분석하고 이를 기반으로 대기모드에서의 에너지 절약 기법으로서, 네트워크

연결을 ON/OFF하는 Deep Sleep Mode 알고리즘을 제안한다. 여러 사용자의 단말

사용 시간 로그에 기반한 시뮬레이션을 통해 제안 알고리즘의 대기시간 에너지 절

약성능을검증한다.

Keywords: 3G, LTE, WiFi,스마트폰,다중라디오접속기술,파일전송,비디오스트

112



리밍,에너지절약,요금절약,다속성기반결정기법

113


	1 Introduction
	1.1 Energy, Service Charge, and Performance aware Multi-RAT Operation Policies for Smartphone 
	1.2 Overview of Existing Approaches
	1.2.1 Multi-attribute based network selection
	1.2.2 Energy and quota-aware video streaming services
	1.2.3 Multi-path based approaches

	1.3 Main Contributions
	1.3.1 File transfer mode
	1.3.2 Video streaming mode
	1.3.3 Standby mode

	1.4 Organization of the Dissertation

	2 File Transfer Mode
	2.1 Introduction
	2.2 System Model
	2.3 Problem Formulation
	2.3.1 T-E-Q cost modeling
	2.3.2 Optimization problem

	2.4 Numerical Analysis
	2.5 Proposed Algorithm
	2.5.1 Bi-directional linear search algorithm
	2.5.2 Dynamic update algorithm

	2.6 Performance Evaluation
	2.7 Summary

	3 Video Streaming Mode
	3.1 Introduction
	3.2 System Model
	3.2.1 HTTP-based playback model
	3.2.2 LTE/WiFi-based multipath video streaming model

	3.3 Chunk Download Cycle based Analysis
	3.3.1 Data and energy consumption rate
	3.3.2 Expected waste of data and energy

	3.4 Proposed Scheme
	3.4.1 Problem formulation
	3.4.2 Subproblem I: Playback time maximization
	3.4.3 Subproblem II: Balancing between encoding rate and total playback time

	3.5 Performance Evaluation
	3.5.1 Maximization of playback time with a single path
	3.5.2 Balancing between video quality and playback time with LTE/WiFi multiple networks

	3.6 Summary

	4 Standby Mode
	4.1 Introduction
	4.2 Standby Mode Power Anatomy of Smartphones
	4.2.1 Low power mode operation
	4.2.2 Power consumption for background traffic
	4.2.3 WiFi MAC overhead issue

	4.3 Usage Log-based Idle Duration Analysis
	4.3.1 User-specific daily distribution of idle duration
	4.3.2 All-day distribution
	4.3.3 Activity/inactivity time separation

	4.4 Proposed Algorithm
	4.4.1 Learning phase
	4.4.2 Deep Sleep Mode (DSM) operation

	4.5 Performance Evaluation
	4.5.1 Performance comparison
	4.5.2 Effect of Tonoff

	4.6 Summary

	5 Conclusion
	5.1 Concluding Remarks

	Abstract (In Korean)


<startpage>14
1 Introduction 1
 1.1 Energy, Service Charge, and Performance aware Multi-RAT Operation Policies for Smartphone  1
 1.2 Overview of Existing Approaches 4
  1.2.1 Multi-attribute based network selection 4
  1.2.2 Energy and quota-aware video streaming services 5
  1.2.3 Multi-path based approaches 6
 1.3 Main Contributions 7
  1.3.1 File transfer mode 7
  1.3.2 Video streaming mode 7
  1.3.3 Standby mode 8
 1.4 Organization of the Dissertation 8
2 File Transfer Mode 10
 2.1 Introduction 10
 2.2 System Model 13
 2.3 Problem Formulation 14
  2.3.1 T-E-Q cost modeling 16
  2.3.2 Optimization problem 19
 2.4 Numerical Analysis 21
 2.5 Proposed Algorithm 29
  2.5.1 Bi-directional linear search algorithm 29
  2.5.2 Dynamic update algorithm 33
 2.6 Performance Evaluation 35
 2.7 Summary 41
3 Video Streaming Mode 43
 3.1 Introduction 43
 3.2 System Model 45
  3.2.1 HTTP-based playback model 45
  3.2.2 LTE/WiFi-based multipath video streaming model 47
 3.3 Chunk Download Cycle based Analysis 52
  3.3.1 Data and energy consumption rate 52
  3.3.2 Expected waste of data and energy 53
 3.4 Proposed Scheme 56
  3.4.1 Problem formulation 56
  3.4.2 Subproblem I: Playback time maximization 57
  3.4.3 Subproblem II: Balancing between encoding rate and total playback time 59
 3.5 Performance Evaluation 63
  3.5.1 Maximization of playback time with a single path 63
  3.5.2 Balancing between video quality and playback time with LTE/WiFi multiple networks 66
 3.6 Summary 71
4 Standby Mode 72
 4.1 Introduction 72
 4.2 Standby Mode Power Anatomy of Smartphones 74
  4.2.1 Low power mode operation 74
  4.2.2 Power consumption for background traffic 76
  4.2.3 WiFi MAC overhead issue 78
 4.3 Usage Log-based Idle Duration Analysis 80
  4.3.1 User-specific daily distribution of idle duration 80
  4.3.2 All-day distribution 82
  4.3.3 Activity/inactivity time separation 82
 4.4 Proposed Algorithm 86
  4.4.1 Learning phase 86
  4.4.2 Deep Sleep Mode (DSM) operation 86
 4.5 Performance Evaluation 93
  4.5.1 Performance comparison 93
  4.5.2 Effect of Tonoff 96
 4.6 Summary 99
5 Conclusion 100
 5.1 Concluding Remarks 100
Abstract (In Korean) 111
</body>

