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Abstract

A Study on Software Defined
Networking for Data Center Networks

Junho Suh

School of Computer Science & Engineering

The Graduate School

Seoul National University

Software-Defined Data Center (SDDC) is a new paradigm of managing and

operating IT infrastructure, where the resources in data center such as compute, stor-

age, and networking are softwarized and delivered as a service to users on demand

via application programming interface. Moreover, these resources are managed and

controlled by software automatically–this is unprecedented in traditional IT infras-

tructure in which the infrastructure is typically defined by and tightly coupled with

hardware and software. To realize this ideal environment, SDDC encompasses sev-

eral virtualization technologies in compute, storage, and networking. In this thesis,

we are more focusing on networking because the first two technologies are techno-

logically advanced last few years, but networking evolution is still slow due to the

vendor lock-in in which hardware and software of network element, which are typ-

ically proprietary, are tightly coupled. Moreover, in the network operators’ perspec-

tive, configuring box-by-box manner with low-level commands results in increasing
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management complexity and being error-prone.

To meet the requirements of today’s users, enterprises, and carriers, Software-

Defined Networking (SDN) is emerged. The main idea of SDN is to decouple control

planes from data planes of network elements such as switches or routers and to re-

place the distributed, per-switch control plane with a (logically) centralized one on

which SDN applications can control an operational network with a global network-

wide view by enforcing packet forward- ing rules to the distributed data planes. This

paradigm shift benefits network operators by (i) reducing the complexity of oper-

ations through automation while keeping more responsive, and (ii) optimizing the

resources of operational networks with the global network-wide view to meet the

dynamic nature of on-demand services in a cloud era. While SDN promises the enor-

mous benefits as mentioned just before, it introduces new challenges: (i) increased

control loop–gathers traffic and other measurements from the network and uses the

gathered information to compute and install forwarding behaviours in the switches–

due to the decoupling, and (ii) limitation on a distributed architecture–a (logically)

centralized control plane is horizontally distributed to multiple physical servers–for

large-scale production networks due to consistency overhead.

To address the first challenge, we propose, implement and evaluate OpenSam-

ple: a low-latency, sampling-based network measurement platform targeted at build-

ing faster control loops for software-defined networks. OpenSample leverages sFlow

packet sampling to provide near–real-time measurements of both network load and

individual flows. While OpenSample is useful in any context, it is particularly useful

in an SDN environment where a network controller can quickly take action based on

the data it provides. Using sampling for network monitoring allows OpenSample to
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have a 100 millisecond control loop rather than the 1–5 second control loop of prior

polling-based approaches. We implement OpenSample in the Floodlight OpenFlow

controller and evaluate it both in simulation and on a testbed comprised of commod-

ity switches. When used to inform traffic engineering, OpenSample provides up to a

150% throughput improvement over both static equal-cost multi-path routing and a

polling-based solution with a one second control loop.

To address the second challenge, we propose FRACTAL, a framework for re-

cursive abstraction of SDN control-plane, to address this problem. In FRACTAL, a

large network is divided into multiple small networks, each of which is abstracted

as a single virtual switch. This “divide-and-abstract” process is recursively iterated

until a divided network can be handled by a single controller. A virtual switch is con-

trolled by the higher level controller over OpenFlow, so that FRACTAL can coexist

with other SDN mechanisms. We first carry out simulation experiments to demon-

strate the issues of naive net- work partitioning. We then implement and evaluate

FRACTAL with microbenchmark. Testbed-based experiments reveal that FRACTAL

(i) adds small delays for non-local messages that cross divided networks, but (ii)

achieves superlinearly increasing (control plane) throughput as the number of ab-

straction levels in the controller hierarchy grows.

Keywords : A Distributed Architecture, Network Monitoring, Software Defined

Networking, Data Center Networks, Traffic Engineering

Student Number : 2008-20896
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Chapter 1

Introduction

Up until now, IT infrastructure including compute, storage, and networking re-

sources have intentionally been kept physically and operationally separate from one

another. And operators interacted with any of these resources via an operational mon-

itoring system to configure policies, systems, and procedures. Further, these resources

used to be normally possessed only to a dedicated users for local use. Of course, there

is no authority to access given to users who are not member of that group. This is a

custom way of managing and operating resources that IT department division has

done.

As times went on, with the advent of cloud computing and virtualization, it

promises a great flexibility to IT companies who carry on IT business in managing

and operating IT infrastructure. Any of these resources can be softwarized and deliv-

ered as a service to users on demand. We call this kind of service as Infrastructure-as-

a-Service (IaaS). With this benefit, cloud computing begins to attract attention from

big three companies including Amazon, Microsoft, and Google that invest enormous

fund to build data centers at global scale to provide IaaS to users.

At the same time compute and storage were evolving, however, network equip-

ments, from switches and routers to middleboxes such as firewalls, NATs, and WAN

optimizers, seemed to stand still in terms of innovations beyond feeds and speeds.

The first reason to hinder innovation in network elements is that both hardware (i.e.,
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data plane) and software (i.e., control plane) of network element are usually tightly

integrated and they are vendor’s proprietary, resulting in taking long time to adopt

new protocols or technologies. The second reason is that network elements used to

be complex and difficult to manage. Network administrators typically configure the-

ses devices in box-by-box manner with low-level command line based interface. As

a result, this has impeded innovation, increased complexity, and ossified ecosystem

in network area.

Motivated by this observation, Software-Defined Networking (SDN) innovates

the way of designing and managing networks in which it decouples control plane

from data plane of network elements and replaces the distributed, per-network ele-

ment control planes with a (logically) centralized control plane (i.e., controller). It

then programs the forwarding behaviour of all network elements in an underlying

network. Although SDN innovates networks, adopting SDN to data center networks

is not straightforward.

The remainder of this chapter answers how to get toward Software-Defined Data

Center, with Section 1.1 firstly describing some characteristics of current data center

networks in more detail, with Section 1.2 describing Software-Defined Networking

which is recently getting attention, and finally with Section 1.3 presenting how hard

can it be to adopt Software-Defined Networking to data center networks.

1.1 Data Center Networks

While the purpose of this section is not to classify all data center workloads

or topologies, we note certain properties in current data centers that others have ob-
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served and use these properties in this thesis. In particular, several characterizations

of data center workloads [1, 2] have shown that while there are often hot spots in

data center networks, the remainder of the networks is typically underutilized. Thus,

if the topology has multiple paths for any given flow to select, it is likely that traffic

experiencing congestion could be re-routed to an under-utilized path.

Fortunately, common current and future data center network topologies, e.g., Fat

Tree(1(a)), HyperX(1(b)), and Jellyfish(1(c)), offer multiple paths between arbitrary

endpoints. Despite this, most current data centers still use static routing configura-

tions and/or equal-cost multi-pathing (ECMP). While these approaches attempt to

minimize the occurrence of hot spots, hot spots still occur and these static approaches

can do nothing in response to congestion once it occurs.

Further, we note that the traffic characterization indicates that flow sizes are ap-

proximately exponentially distributed and flow inter-arrival times are also exponen-

tially distributed, i.e., a poisson process. As a consequence, in our emulation results,

we assume exponential flow sizes and inter-arrival times.

1.2 Software-Defined Networking

Software-Defined Networking (SDN) innovates the custom way of designing

and managing traditional networks. It replaces the distributed, per-switch control

planes of traditional networks with a (logically) centralized control plane (i.e., con-

troller). It then programs the forwarding behaviour of all the switches in an under-

lying network. Furthermore, non-profit groups (e.g., Open Networking Foundation,

ONF) well define a southbound protocol (e.g., OpenFlow) and encourage network

3
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Fig. 1.1: Data Center Topologies.
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vendors to open their functionalities of network elements supported through this

protocol. A network element which complies with this protocol then performs rule

matching defined in 5- or more tuples of flow against rules in flow table. If a rule is

matched, it performs corresponding actions on the matched flow. Otherwise, it asks

the controller for further process.

As can be seen, SDN can be characterized in three folds:

• A (logically) centralized control-plane: In traditional networks, control-planes

are distributed to each network element. However, in SDN a centralized entity

monitors state of underlying network elements and makes decision based on

the state.

• Abstraction: No matter what the specific physical network elements exist

SDN abstracts and hides the details of them. Thus, it is not required that the

network applications care the details of the underlying physical network ele-

ments to configure and control, resulting in ensuring portability.

• Programmability: From the above attributes, network applications such as

firewall, access control list, or traffic engineering can easily configure and man-

age the underlying network elements automatically via a combination of Ap-

plication Programming Interfaces (APIs).

Moreover, ONF defines an architecture of SDN, illustrated in Figure 1.2.

• The Infrastructure Layer: This layer may involve either a number of physical

forwarding elements or virtual switches, or both.

• The Control Layer: Due to the decoupling, the control planes distributed

5
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among each switch can now be put together at a (logically) centralized con-

troller. It does not only control an underlying physical network elements, but

also abstract the details of physical network elements. Further, it provides the

basic network services, such as topology, network applications running on the

application layer via the north-bound APIs.

• The Application Layer: In this layer, SDN users usually program their own

network applications, including firewall, ACL, and traffic engineering, via com-

bining the north-bound APIs.

1.3 Challenges in Managing Data Center Networks
through SDN

Although SDN innovates the traditional ways of managing and operating net-

works, adopting SDN to data center networks is not straightforward. In this thesis,
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we address two major challenges SDN have suffered, which arises from decoupling

between control- and data-plane of the network. Moreover, it directly impact on per-

formance (i.e., optimality) of the application layer in the SDN architecture model.

The challenges are listed below:

• Increasing a control loop: Although the decoupling is a main benefit of ap-

plying SDN to the network, it naturally introduces increasing a control loop

between them, including i) gathering traffic and other measurements from the

network and ii) using the gathered information to compute forwarding rules

and iii) installing forwarding behaviours in the switches. And the measure-

ments are a bottleneck point, taking approximately 80% of the control loop

shown in Figure 1.3.

• Scalability in SDN control-plane: Since a control-plane of SDN is a logically

centralized, it must inevitably consider an architecture, where the control-plane

is physically distributed due to the reason of scalability, availability, and re-

sponsiveness. It results in the two trade-offs: i) the trade-off between a consis-

tency level (i.e., strongly consistent vs. eventually consistent) vs. performance

(optimality) of the application layer in SDN architecture and ii) network ap-

plication complexity vs. robustness to inconsistency in the distributed control-

plane. Figure 1.3 depicts this phenomena.

1.4 Thesis Structure

The rest of this thesis is organised as follows: we first present OpenSample,

a low-latency, sampling-based network measurement platform targeted at building

8



faster control loops for software-defined networks in Chapter 2. In Chapter 3, we

present FRACTAL, a framework for recursive abstraction of SDN control plane for

large scale production networks. Finally, we conclude by summarising our contribu-

tions and briefly alluding to future directions for research in Chapter 4.
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Chapter 2

OpenSample: A Low-latency,
Sampling-based Measurement Platform for
Commodity SDN

2.1 Introduction

Software-defined networking (SDN) replaces the distributed, per-switch con-

trol planes of traditional networks with a (logically) centralized control plane that

programs the forwarding behavior of all the switches in a given network. This cen-

tralized control plane, run on a controller, can act as a control loop that (i) gathers

traffic and other measurements from the network and (ii) uses the gathered informa-

tion to compute and install forwarding behaviors in the switches. Although there are

two logical components to this control loop—measurement and control—the focus

of the vast majority of SDN research has been on control. Some prior SDN research

has included a measurement component [3–5], but the closest related work also notes

this bias toward control [6].

OpenFlow [7], the dominant protocol used to implement SDN, provides two

measurement techniques to create a global view of the network: packet in mes-

sages and per-port/per-rule counters. Typically when a packet matches no switch rule,

the switch sends a packet in message containing the packet header (and possibly

10



payload) to the controller for handling, which may include installing new rules. Thus,

in a typical setup, the controller receives one packet in message1 at the beginning

of each flow. In addition, switches maintain counters to track the number of packets

and bytes handled by each port and each OpenFlow rule.

In practice, neither of these measurement mechanisms enable a scalable, low-

latency measurement system. The packet in messages place a high burden on the

local switch CPU and are typically limited to at most a few hundred per second [8,9].

Further, they only provide data when a new flow appears or a rule expires. Allowing

a rule to expire typically causes the flow to be paused until the packet in message

is delivered to the controller and a new rule installed, which typically takes a few

10s of milliseconds. In the wide-area this might be tolerable, but in data centers and

other local-area networks this is long enough to cause TCP timeouts and thus likely

unacceptable.

On the other hand, port and flow counters are typically only updated every sec-

ond or so [4], which limits the control loop of a controller to operating at a speed that

is too slow to catch any but the largest flows [10]. Further, the space-granularity of

counters are either per-port or per-rule. Per-port counters do not provide flow-level

information, which either limits visibility into the network or requires more process-

ing, i.e., tomography, to (probabilistically) disaggregate port-level information into

flow-level tracking. Per-rule counters require that rules be installed at the granularity

of the desired measurement, which couples forwarding and measurement, with both

mechanisms installing rules in the switch. For example, Frenetic [5] is forced to break

apart OpenFlow rules when the monitoring requests do not directly correspond to the

1It is possible to receive more than one packet in message per flow especially if the flow is not
connection oriented and thus sends many packets before hearing anything from the receiver.
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forwarding rules, consuming even more scarce TCAM space [8].

Ideally, a measurement system for software-defined networks would provide

global visibility into the network and near–real-time data, i.e., latencies on the order

of milliseconds. Further, it would scale to large traffic volumes without over-taxing

switch control CPUs or the SDN controller.

In this paper we present the design and evaluation of a sampling-based SDN

measurement system called OpenSample that achieves these goals. Rather than using

the OpenFlow measurement mechanisms, OpenSample leverages the sFlow packet

sampling functionality present in most switches. sFlow supports uniform random

sampling of packets on a per-port basis. The switch forwards the header of, on aver-

age, 1 in every N packets traversing a given port to a collector. From these random

samples, the collector can infer a variety of information about the network includ-

ing the elephant flows present on each link and link utilization. Further, since each

switch that a packet traverses can sample that packet, the effective sampling ratio of

a network grows as the network grows and paths get longer.

To demonstrate the value of OpenSample’s faster network monitoring, we im-

plemented a traffic engineering application that uses OpenSample to detect congested

links and the large flows using those links. In our experiments, traffic engineering in-

formed by OpenSample provides up to 150% more aggregate throughput than both

equal-cost multi-path (ECMP) routing and polling-based traffic engineering (inspired

by Hedera [3]) when flow sizes are small, i.e., a flow in a slow start phase. Further,

OpenSample can be implemented without the end-host modifications required by

Mahout [4] and MicroTE [10], and does not require the use of expensive OpenFlow

rules for fine-grained measurement like Frenetic [5].
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(a) The physical OpenSample testbed with four 10 Gbps IBM G8264 switches configured with 6 hosts
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(b) The throughput of three large flows both before and after enabling OpenSample-based traffic engi-
neering.

Fig. 2.1: An intuitive example of OpenSample-based traffic engineering running on
a physical testbed.
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The following example, illustrated in Fig. 1(a), motivates and explains OpenSample-

based traffic engineering. We configure a physical testbed with four IBM RackSwitch

G8264 10GbE switches in a clique with three hosts attached to two of the switches.

Hosts A, B, and C each generate long-running flows using iperf to hosts D, E, and F,

respectively. Fig. 1(b) shows the throughput of each of the three flows both before and

after we turn on traffic engineering. Initially, the three flows compete for bandwidth

on the single shortest path (SW1-SW4) and converge to a fair share of approximately

3 Gbps each. However, there are sufficient redundant paths in the topology for each

flow to follow its own disjoint path. After five seconds we enable traffic engineering,

which is able to identify the three elephant flows and re-route two of them to uncon-

gested paths. After that, each flow achieves 10 Gbps of throughput using the three

different disjoint paths: 1-4, 1-2-4 and 1-3-4.

The remainder of the paper is organized as follows. Section 2.2 provides a more

detailed look at sampling-based measurement as well as data center traffic character-

izations. We describe the design and implementation of OpenSample in Section 2.3.

Section 2.4 presents an evaluation of OpenSample using both emulation and results

from a real testbed. We cover the work most closely related to OpenSample in Sec-

tion 2.5.

2.2 Background

Before diving into the design, implementation and evaluation of OpenSample,

we first present background material on both typical data center workloads and exist-

ing non-OpenFlow network monitoring approaches, which we use to drive the design
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of our traffic engineering application.

2.2.1 Data Center Network Workloads and Topologies

While the purpose of this paper is not to characterize modern data center work-

loads or topologies, we note certain properties in current data centers that others have

observed and use these properties in our construction and evaluation of OpenSample.

In particular, several characterizations of data center workloads [1, 2] have shown

that while there are often hot spots in data center networks, the remainder of the

networks is typically underutilized. Thus, if the topology has multiple paths for any

given flow to select, it is likely that traffic experiencing congestion could be re-routed

to an under-utilized path.

Fortunately, common current and future data center network topologies, e.g.,

Fat Tree [11], HyperX [12], and Jellyfish [13], offer many diverse paths between

arbitrary endpoints. Despite this, most current data centers still use static routing

configurations and/or equal-cost multi-pathing (ECMP). While these approaches at-

tempt to minimize the occurrence of hot spots, hot spots still occur and these static

approaches can do nothing in response to congestion once it occurs.

Recent research efforts [3,8,10] use SDN to reroute flows in reaction to conges-

tion. The result is a variety of good techniques for selecting alternate paths. However,

these approaches rely on switch-based measurements with latencies measured in sec-

onds, and are thus limited to detecting and rerouting only the largest flows.

Thus, all of the ingredients for substantially improved traffic engineering are

present, except for the timely network measurements OpenSample provides.

Further, we note that the traffic characterization indicates that flow sizes are ap-
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proximately exponentially distributed and flow inter-arrival times are also exponen-

tially distributed, i.e., a poisson process. As a consequence, in our emulation results,

we assume exponential flow sizes and inter-arrival times.

2.2.2 Non-OpenFlow Network Monitoring

While many readers are no doubt familiar with the network monitoring features

of OpenFlow, i.e., per-port and per-rule byte and packet counters, they may be less

familiar with other monitoring techniques such as NetFlow [14] and sFlow [15]. Net-

Flow produces per-flow statistics without requiring rules to be installed. sFlow pro-

vides real-time packet samples from individual switches. Mann et al. [16] recently

compared NetFlow and sFlow for network monitoring at the hypervisor in virtual-

ized data centers. Since congestion can occur anywhere in the network, we monitor

both physical and virtual switches. And because the overhead of monitoring impacts

its value, we are concerned with the overhead of monitoring techniques.

2.2.2.1 NetFlow

NetFlow [14] was originally developed by Cisco to provide a way to collect

statistics about individual IP flows in a data network. In NetFlow, each switch (or

router) maintains a flow cache that tracks flow statistics for each flow, usually identi-

fied by 5-tuple (source and destination IP address, source and destination TCP/UDP

port, and IP protocol number) and type of service. As each packet arrives, its header

fields are checked to see if it matches an existing entry in the flow cache. If it does,

then the flow cache entry is updated appropriately, i.e., by incrementing the packet

and byte counts. If the flow is not already present in the flow cache, a new entry in
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the flow cache is created. NetFlow has four policies to decide when to send the flow

record to a NetFlow collector: (i) when a TCP packet is seen with a FIN or RST

flag indicating flow completion, (ii) when a flow idle timeout expires, (iii) when a

hard timeout fires indicating that the flow has been tracked for y seconds regardless

of whether it is still sending traffic, and (iv) when the flow cache is full and an entry

must be evicted. When any of these four conditions hold, the switch sends a NetFlow

record including flow statistics to a collector for further analysis.

Implementing NetFlow in hardware requires a dedicated CAM to track this in-

formation at line-rate. This hardware is not found in all switches and support for Net-

Flow is chiefly found in Cisco products and hypervisor vSwitches such as VMware

ESX and Open vSwitch.

Further, NetFlow timeouts are specified at second granularity and in practice

many implementations do not allow for values less than 30 seconds, so it provides

little latency advantage over the low polling rates achievable using OpenFlow’s per-

rule counters. Since OpenSample is focused on low-latency network measurements,

NetFlow is not a suitable choice for OpenSample.

It should be noted that later versions of NetFlow also include a “Sampled Net-

Flow” [17] mode that produces NetFlow records based on sampling 1 in N packets

that traverse a switch rather than every packet. However, the samples are still applied

to the records in the flow cache and records are still sent according to the same policy.

Thus Sampled NetFlow incurs the same coarse-grained timeouts that make NetFlow

unsuitable for low-latency monitoring.
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2.2.2.2 sFlow

The sFlow [15] standard aims to provide fine-grained network measurements

without requiring per-flow state at switches. Instead it relies on two forms of sam-

pling: packet sampling and port counter sampling.

For packet sampling, the switch captures one out of every N packets on each

input port2. It then immediately forwards the sampled packet’s header encapsulated

with metadata to a central collector. The metadata includes the sampling ratio of the

port, the switch ID, the timestamp at the time of capture, and forwarding information

such as the input and output port numbers.

The rate of samples sFlow produces is not constant; as it samples one in every

N packets, the rate of samples varies based on the rate of packet arrivals. Since the

packet arrival rates vary dramatically based on network load and packet size, the

rate of samples also varies. Note that a packet passing through multiple switches is

eligible to be sampled by every switch along the path. If a flow passes through k

switches, combining the samples from those switches gives an effective factor of k

increase in the sampling ratio.

From the gathered samples, the collector can probabilistically infer a number of

flow statistics, e.g., it can estimate the expected number of packets and bytes in each

flow by simply multiplying the number of sampled bytes and packets by the sampling

ratio, N [18]. This approach statistically produces an unbiased estimator for the actual

number of bytes and packets sent by the flow. In the remainder of this paper we refer

to this technique for estimating the byte and packet counts of the flow as Maximum

2In actuality N is a parameter per port of a switch and need not be the same for all ports. However,
in OpenSample, we assume the sampling ratio is fixed for all ports and leave exploration of per-port
sampling ratio to future work.
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Fig. 2.2: The number of samples per second received at the collector as the sampling
ratio increases.

Likelihood Estimation (MLE).

However, MLE has the limitation that it requires a large number of samples

to provide accurate estimates of the true flow byte and packet counts. The expected

relative error is inversely proportional to the square root of the number of samples, s,

gathered from that flow. In particular, the percent error can be bounded as: % error ≤

196 ·
√

1
s [18].

With an analysis of real data center workloads by Benson et al., [2] we found

that an average of 60 flows totaling 3,000 packets arrive at each top-of-rack switch in

any given 100 ms window. This means the average flow has 50 packets in a 100 ms

window. Even if all 50 packets from a given flow are sampled, we can only estimate

the flow’s actual rate with approximately 30% error. In practice with realistic sam-

pling ratio, even this is optimistic. Using MLE, there are only two ways to improve

accuracy: (i) increase the sampling ratio and/or (ii) increase the sampling period.
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The latter is not viable without violating OpenSample’s goal of low-latency measure-

ments.

Unfortunately, increasing the sampling ratio is difficult as well. Fig. 2.2 shows

the number of samples per second our sFlow collector receives from one of our

testbed switches as we increase the sampling ratio while keeping the amount of traf-

fic going through the switch constant, i.e., 10Gbps. The number of samples per a

second peaks at between 300 and 350 samples per second. We believe this limit is a

consequence of the switch’s control CPU being overwhelmed. With a limit of ∼350

samples per second, the expected number of samples for a given flow in a 100 ms time

window that samples from 60 flows is less than one. While newer switches may pro-

vide faster control CPUs, it seems likely that it will be infeasible to get enough sFlow

samples in a short period, i.e., 100 ms, to provide an accurate estimate of the flow

throughput for the foreseeable future. Therefore, we need to do something other than

MLE to estimate flow statistics accurately and in near-real-time, which is detailed in

the next section.

2.3 OpenSample Design

The architecture of OpenSample is illustrated in Fig. 2.3. We use i) packet sam-

pling, e.g., sFlow, to capture packet header samples from the network with low over-

head and ii) use TCP sequence numbers from the captured headers to reconstruct

nearly-exact flow statistics. Simultaneously, we use the same packet samples to esti-

mate port utilization at sub-second time scales, described in detail below. We use a

single, centralized collector that combines samples from all switches in the network
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Fig. 2.3: The architecture of OpenSample providing measurement data to an SDN
controller is depicted. sFlow agents running on switches provide samples to an sFlow
collector which are then forwarded to flow and port analyzers. This information is
aggregated into network snapshots and exposed via an open API. The SDN controller
uses this API to make flow rerouting decisions.
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to construct a global view of traffic in the network at both flow and link granularities.

Detailed network monitoring information has a variety of uses, including traffic

engineering, resource provisioning, VM placement/migration, and intrusion detec-

tion. For illustration purposes, we focus on traffic engineering as the consumer of

OpenSample’s ability to very quickly detect elephant flows and estimate link uti-

lization. In the following subsections, we describe how OpenSample extracts flow

statistics from the samples, detects elephant flows, estimates link utilization of each

switch’s ports, and enables traffic engineering.

2.3.1 Protocol-Aware Flow Statistics Detection

As discussed earlier, accurately inferring flow statistics using MLE requires

many samples per flow. To overcome the limitation of statistical inference, we ex-

ploit the fact that most traffic sent in data centers today is TCP traffic [19]. Each TCP

packet carries a sequence number indicating the specific byte range the packet car-

ries. Fortunately, when sFlow samples the header of TCP packets, this header also

includes the TCP sequence numbers3.

Thus, if we sample at least two distinct packets from a given TCP flow, we

can compute an accurate measure of the flow’s average rate during the sampling

window by subtracting the two sequence numbers and dividing by the time between

the samples.

Exploiting TCP information drastically increases estimation accuracy for any

given sampling ratio. This TCP-aware sFlow analysis is the key innovation Open-

3 The sFlow specification does not actually mention or require that samples include TCP sequence
numbers, but it does specify that the preferred implementation should provide the raw packet header [20]
and, in practice, both our physical switches and Open vSwitch [21] provide this information.
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Sample incorporates compared to prior sFlow monitoring frameworks. In the next

section, we provide analytic and simulation-based analysis of the probability of sam-

pling two different packets from a given flow for a given number of switches, sam-

pling ratio, and flow size. We also examine the expected time before receiving two

samples from a flow for a variety or parameters.

Our OpenSample-based traffic engineering mechanism considers any TCP flow

for which it receives two or more samples to be an elephant flow and all elephant

flows are candidates for traffic engineering. Thus, it considers far more flows to be

candidates for rerouting than prior work [3, 4, 10].

Finally, we note that this approach is not limited to TCP, but can be extended to

any protocol that includes sequence numbers in the header. Even if the sequence num-

bers represent packets and not bytes, as long as this is known a priori, the sequence

numbers can be used to compute flow bandwidth rates substantially more accurately

than MLE.

2.3.2 Probability of Flow Statistics Detection

To determine the probability of detecting a flow statistics using our enhanced

Protocol-aware flow statistics detection, we analytically calculate the probability of

getting at least two different samples from a single switch and use a simple simulator

to find the same probability across one or more switches. In both cases, we evaluate

the probability under a variety of different flow sizes and sampling ratio.

First, we develop an analytical model for a single switch. To ease exposition, we
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(a) The analytical and simulated probability for one switch.
The lines show the analytical values while the points show the
simulated values.
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(c) The CDF of the delay to get any two consecutive samples
from a flow based on average packet inter-arrival rate λ.

Fig. 2.4: The probability of getting at least two different samples from the same flow
for varying flow sizes, sampling ratio and number of switches. Each line is labeled
“1 in N” for the single switch case or “1 in N, k” for multiple switches where the
sampling ratio is 1

N and there are k switches.
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introduce the following variables:

n = number of packets in the flow

p = probability of packet sampled (0 ≤ p ≤ 1) =
1
N

k = number of switches

Since there is no risk of sampling the same packet twice at a single switch,

the probability of getting two samples from the same flow at the same switch is the

probability of getting two samples from the same flow. More formally:

Pr{2+ samples} = 1−Pr{get zero or 1 sample}

= 1−Pr{get no samples}−

Pr{get 1 sample}

= 1−
(

n
0

)
(1− p)n −

(
n
1

)
p(1− p)n−1

= 1− (1− p)n −np(1− p)n−1

When considering the case with more than one switch, the analysis becomes

more complex because it must account for the possibility of sampling the same packet

twice at two different switches. However, for realistic numbers of switches, k, and

probability of packet sampled, p, the probability of sampling the same packet more

than once at different switches is low enough that it effectively acts as the one switch

model with a probability of packet sampled of kp. More formally:

Pr{2+ samples} ≈ 1− (1− kp)n −nkp(1− kp)n−1
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To avoid analytical inaccuracy due to this simplification, we use a simple simu-

lator to estimate the probability of getting two distinct samples from k switches. Each

point is the result of 1000 simulations and the error bounds are small enough that

we omit them. The results from both our analysis and simulator appear in Fig. 2.4.

Fig. 4(a) shows the results of both the analysis and simulator for a single switch at

various sampling ratio. The points are from the simulator and the lines are from the

analysis. The two are almost identical, which provides validation for our model. Fur-

ther, note that for sampling ratio greater than 1 in 200, we are nearly guaranteed to get

two distinct samples from flows with more than 1000 packets, i.e., 1.5 MB or more.

In contrast, for a 1000-packet flow and a 1 in 200 sampling ratio, MLE has an 87%

estimated error.

Fig. 4(b) shows the simulation results for varying number of switches and sam-

pling ratio. This shows that even for low sampling ratio, increasing the number of

switches drastically improves the probability that we will get two distinct samples

with low-cost. It also confirms the intuitive approximation to the one switch model.

The lines with half the sampling ratio, but twice the switches closely follow each

other, e.g., one switch with 1 in 5000 sampling produces the same result as two

switches with 1 in 10000 sampling.

2.3.3 Flow Detection Delay

To determine how long it takes to acquire two samples from a given flow, we

analytically calculate the expected delay, D. We express D as the sum of two random

variables, X1 and X2, representing the arrival time (after the start of the flow) of the

first and second sampled packets.
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If packet arrivals are a Poisson process with average packet inter-arrival rate λ,

then sample arrivals are a Poisson process with an average inter-arrival rate of λp.

Thus, X1 and X2 are i.i.d. exponential random variables with mean 1
λp . Assuming a

single switch, the delay to receive two samples can be stated:

E[D] = E[X1 +X2]

= E[X1]+E[X2] =
1

λp
+

1
λp

=
2

λp

For the case with k switches, this is approximately 2
λkp . More accurately, D, is an

Erlang-distributed [22] random variable with shape k̂ = 2 and rate λ̂ = λkp. The CDF

of D is shown in Fig. 4(c). We present values for k = 3 representing a typical 3-hop

path in data center and for packet inter-arrival times of 1000 µs and 10 µs representing

slow (12 Mbps) and fast (1.2 Gbps) flows (assuming 1500 byte packets). As can be

seen, we easily detect all fast flows in less than 100 ms even with sampling ratio of 1

in 1000.

Note that there is nothing special about the choice of starting time and two sam-

ples. The analysis holds for the time to gather two samples after any arbitrary point

in the duration of a flow.

2.3.4 Estimating Switch Port Utilization

In addition to packet samples, sFlow reports exact packet and byte counter val-

ues for each port in a switch every 5 seconds, similar to OpenFlow. This data is not

useful for our goal of sub-second monitoring.

Thus we use packet samples to estimate link utilization at small timescales.
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OpenSample estimates the utilization of each link during a given interval by mul-

tiplying the number of sampled packets in that interval by the average packet size.

This is akin to treating all packets going through a particular link as a single “super-

flow” and using MLE to estimate its throughput. This estimate is accurate, despite

MLE’s poor error bounds, as it includes all samples from a given port.

2.3.5 Network State Snapshot Database

Every 100 ms, OpenSample generates a snapshot of the network state for con-

sumption by other applications. This state includes the network topology (retrieved

from the SDN controller), estimated utilization of every switch port, and the set of

detected elephant flows. For each elephant flow, the snapshot includes the flow’s five-

tuple, its estimated bandwidth, and its current path. Applications such as traffic engi-

neering can query the latest snapshot through an API, making them loosely coupled

with the internals of OpenSample.

2.3.6 Traffic Engineering

Traffic engineering is a natural application of software-defined networks be-

cause the controller has a global view of the topology and it controls all of the

switches’ forwarding tables. An SDN controller forward a flow over a non-shortest

path just as easily as over a shortest path, with no concerns about convergence time,

forwarding loops, or black holes. Unfortunately, the high latency of network mea-

surements has limited the effectiveness SDN-based traffic engineering [23].

Since we use exponentially distributed flow sizes, statistically a flow is expected

to last as long as it has already lasted. Thus, if we detect an elephant flow that has
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sent a significant amount of traffic, we can expect it to send that much again in the

near future. By moving such flows from congested to uncongested paths, that future

traffic will achieve higher throughput, as will any traffic with which it was compet-

ing. Because only the packets sent after the flow is scheduled can benefit from traffic

engineering, fast detection and scheduling are crucial to the efficiency of traffic engi-

neering. Thus, OpenSample’s low-latency monitoring is an ideal candidate for traffic

engineering.

While we experimented with a variety of scheduling algorithms, we found that,

in general, the speed at which the scheduling control loop could operate made a more

significant difference than the algorithm used. As a consequence, we use the global

first fit algorithm presented in Hedera [3] for its simplicity. Our technical innovations

focus purely on improving the speed of congestion and large flow detection rather

than improved flow scheduling techniques.

While our algorithm is borrowed from Hedera, it operates on a 100 ms interval—

50 times faster than Hedera’s five second interval. As data center networks are up-

graded from 1 Gbps to 10 and 40 Gbps, we expect flow duration to shrink, which

means that traffic engineering must become proportionately faster to remain effec-

tive. Alternately, with a constant link speed faster traffic engineering can make better

decisions, as shown in our evaluation.

By default, all traffic in our network follows shortest paths—we do not use Span-

ning Tree Protocol or equivalent. When multiple shortest paths exist, ties are broken

by using equal-cost multi-path (ECMP) hashing based on the TCP/IP 5-tuple. Every

100 ms interval, the controller estimates the utilization of every link in the network

and attempts to reduce congestion by moving elephant flows from highly-utilized
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links to less utilized ones. The controller considers the set of detected elephant flows

that traverse at least one congested link and uses a global first-fit algorithm to re-route

them.

In OpenSample, both default forwarding and traffic engineering use OpenFlow.

Engineered paths use high-priority OpenFlow rules and default paths use lower-

priority rules. Scheduling a flow along a different path simply requires installing one

new high-priority rule in each switch along the path. After an elephant flow ends, its

rules time out and the switches automatically remove them. The time to install an

OpenFlow rule—approximately 10 ms—is fairly small compared to OpenSample’s

100 ms control interval.

2.4 Evaluation

In this section, we present the results of our experimental evaluation of Open-

Sample. Our goal is to compare OpenSample’s fast control loop against previous

counter-polling–based approaches. To this end, we implemented OpenSample and a

traffic-engineering application as modules for Floodlight [24], an open-source Open-

Flow controller written in Java. We tested OpenSample on both the Mininet-HiFi [25]

emulator and a physical network testbed of x86 servers connected with IBM Rack-

Switch G8264 switches.

Because of our physical testbed’s limited scale—only four switches—we pre-

dominantly used it to verify that our techniques work in practice, to validate our

simulator framework, and to inform our design with the constraints of real-world

hardware. As a consequence, we omit the testbed results except for the simple demon-
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Fig. 2.5: Aggregate throughput for ECMP, Polling, OpenSample-MLE and
OpenSample-TCP traffic engineering on a k=4 fat free compared to a single non-
blocking switch all with 10 Mbps links. Each bar represents the average of 5 runs
with error bars showing standard deviations. Flow inter-arrival times are exponen-
tially distributed with a 1 ms average. OpenSample uses a sampling ratio of N=50
and a 100 ms scheduling interval while polling uses a 1 s interval.
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stration of traffic engineering, shown in Fig. 2.1, and an evaluation of the sampling

ratio supported on our switches, shown in Fig. 2.2.

The remainder of this section focuses entirely on the emulation results, which

provide an insight into OpenSample’s operation at reasonable scales.

2.4.1 Methodology

We use the Mininet-HiFi [25] network emulator to evaluate OpenSample in a

controlled and repeatable environment. Mininet uses Linux containers to emulate

hosts and Open vSwitch (OVS) to emulate switches, allowing a whole network to be

emulated on a single computer. Mininet-HiFi uses Linux traffic shaping to emulate

fixed-speed links, giving the emulated network realistic congestion and queueing de-

lays. We set the link speed to 10 Mbps to allow for faster emulation. However, note

that OpenSample can control either Mininet or a physical network with no changes.

We replicate the testbed benchmark of Hedera [3] with identical settings, in-

cluding topology and workloads. We use a three-level k=4 FatTree as an example

of a network topology with a realistic diameter and degree of multipathing (a real

network would use a much larger switch radix such as k=64). We also run the work-

loads on an emulated single large non-blocking switch to determine the maximum

throughput when constrained only by host NIC speeds. Note that we omit the details

of FatTree and non-blocking topology and refer to Figure 2 in [3] due to the page lim-

itation. However, we do note that because non-oversubscribed FatTree topologies are

rearrangeably non-blocking, the non-blocking topology also serves as the achievable

optimum performance on the FatTree.

We evaluate OpenSample with two sampling ratios: N=50 and N=200. Simple
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Fig. 2.6: The percent of bytes remaining in flows at the time of detection and time of
rerouting in the Stride8 workload with 1 MB average flow size.
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calculations indicate that to avoid exceeding the 350 sample per second limit on our

physical switches, the sampling ratio should be closer to N=250,000 to handle line-

rate traffic on all ports. The bulk of the discrepancy comes from the 1000x difference

between link speeds in our emulations and our physical switches. The remainder

stems from the fact that (i) in practice, not all ports operate at line rate simultaneously

under realistic workloads and (ii) newer switches [26] have significantly faster control

CPUs allowing for more than 350 samples per second.

We use a workload generator [27] originally written for Hedera. It has three

different traffic communication patterns such as Stride(s), Staggered Prob (EdgeP,

PodP), and Random(u). Given a network with N hosts, the Stride(s) workload causes

the host with index i to communicate with the host with index (i+ s)mod(N), result-

ing in an adversarial traffic pattern on our topology. On the contrary, in the Random(u)

workload each host communicates with u different hosts that are chosen uniformly.

Staggered Prob (EdgeP, PodP) has each flow stay within the same rack with proba-

bility EdgeP, stay within the same pod with probability PodP, and crosses pods with

probability 1−EdgeP−PodP.

Moreover, we generate two classes of flows: (i) short flows with an exponen-

tial distribution of mean 1 MB size, and (ii) long flows with the same exponential

distribution but a 1 GB mean flow size. Both short and long flows follow the same

inter-arrival time distribution, exponential with a mean of 1 ms.

For our performance baseline we use shortest-path ECMP forwarding with no

traffic engineering. We compare three different measurement approaches: (i) Polling,

(ii) OpenSample-MLE using a maximum likelihood estimator as described in Sec-

tion 2.2.2.2, and (iii) OpenSample-TCP using TCP sequence numbers to infer through-
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Technique Total bytes sent % of bytes scheduled
Polling (1s) 133 MB 25%

OpenSample-MLE (N=200) 166 MB 30%
OpenSample-MLE (N=50) 185 MB 36%
OpenSample-TCP (N=200) 226 MB 41%
OpenSample-TCP (N=50) 264 MB 62%

Table. 2.1: The total bytes sent in 30 s and the percent of those bytes scheduled by
traffic engineering for the Stride8 workload.

put as described in Section 3.3.

The Polling approach is designed to model measurement based on querying all

of the flows in each switch as presented in prior work [3, 9, 28–30]. Based on their

observations, we chose a polling rate of once per second as it matched the typical

performance reported for the hardware switches evaluated. However we note that de-

pending on the number of flows present in the switch and implementation details this

latency varies from 75 ms to 15 s. We note that the systems which provided perfor-

mance noticeably better than one second either used specialized interfaces to query

counters or assumed that only a very small number of flows would be present.

To evaluate the performance of each approach, we measure the aggregate through-

put achieved on the various spatial workload patterns after applying traffic engineer-

ing as described earlier. In all cases, we employ the same (Hedera) traffic engineering

algorithm and change only the underlying measurement system. Meanwhile, we mea-

sure the total number of bytes sent and the fraction of those bytes that we were able

to schedule on alternate routes for each case.
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2.4.2 Results

Fig. 2.5 shows the throughput of a variety of workloads on our emulated config-

uration. Note that even the non-blocking switch does not achieve normalized through-

put of 1.0 because sometimes two hosts transmit to the same destination, causing un-

avoidable congestion. Although a fat tree is a rearrangeably non-blocking topology,

there is a significant gap between naive ECMP forwarding and the hypothetical single

non-blocking switch due to collisions where multiple flows are hashed onto the same

link. This gap makes the case for traffic engineering: with perfect flow scheduling it

should be possible to approach the throughput of a non-blocking switch.

Polling is generally ineffective at detecting short flows (shown in Fig. 5(a)), be-

cause these flows are almost always finished before the controller can detect them.

Polling is much more effective when elephant flows are longer than the polling inter-

val (in this case one second), as in Fig. 5(b).

OpenSample-MLE outperforms polling in a few cases, but in general it suffers

from the sampling bottleneck described earlier; by the time it receives enough sam-

ples to be confident that a flow is large, the flow is almost over. Thus OpenSample-

MLE schedules relatively few flows.

OpenSample-TCP performs significantly better than either polling or OpenSample-

MLE, because it detects and schedules elephant flows earlier. In most cases it achieves

performance close to a non-blocking switch, even for fairly small (1MB) flows. Often

it outperforms the alternatives by 25-50%.

Table 2.1 gives an intuition of the source of the performance gains. It shows both

the total bytes transferred in the 30 s duration of the experiment and the percentage

of those bytes that the traffic engineering manages to schedule for the stride8 bench-
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mark. The fraction of bytes scheduled can be considered a figure of merit for traffic

engineering, since any bytes that are not scheduled are more likely to be subject to

congestion. By this metric, OpenSample-TCP schedules over twice the fraction of

bytes as the polling system. We can also see that the reduced congestion allowed the

workload to send twice as much data in the same time, doubling throughput.

Fig. 2.6 provides deeper insight into the behavior of the measurement systems

in the context of traffic engineering. Fig. 6(a) shows the fraction of bytes left in a

flow at the time it is detected by each measurement system and Fig. 6(b) shows the

fraction of the bytes left in a flow at the time it is actually rerouted, i.e., after the

new forwarding rules have been installed. The results show that OpenSample-MLE

and OpenSample-TCP dramatically outperform Polling when it comes to detecting

short flows. When accounting for the scheduling interval, the time needed to compute

routes and install the new routes, the advantage that OpenSample-MLE had vanishes,

but OpenSample-TCP is still able to significantly outperform the alternatives.

In conclusion, OpenSample-TCP can detect elephant flows far earlier than the

alternatives and, when used to drive traffic engineering, it enables the traffic engi-

neering mechanism to schedule up to 60% of the bytes that hosts send (for Stride8)

and to a 150% improvement in aggregate throughput (for Stride4) when flow sizes

are small.

2.4.3 Scalability

The OpenSample collector is currently implemented with the assumption that

a single machine running the collector will gather samples from all the switches in
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the network4. Thus, the rate of samples that it can handle will limit the number of

switches a single collector can monitor. Therefore, to evaluate how many samples per

second a single OpenSample collector can handle, we implemented a benchmark tool

by modifying Cbench [31]. Cbench is a tool intended to measure the performance of

OpenFlow controllers by sending large numbers of packet in messages as if they

were from a collection of switches. Our modified version sends sFlow datagrams

rather than sending packet in messages.

While we omit a full presentation of these results for varying imposed loads,

we found the OpenSample collector was able to process more than 100,000 samples

per second. This means our current OpenSample implementation can handle samples

from at least 285 switches assuming each switch sends 350 samples per second. That

implies a single OpenSample is able to handle production data centers servicing 4K

or 8K hosts with 1:2 or 1:5 oversubscription ratio, respectively [8]. Further, recent

SDN controller efforts [32] have shown the ability to process and respond to as many

as 10 million events per second. As a consequence, we believe that with more careful

engineering, we could handle as many as 28,500 switches with a single collector, but

we leave this to future work.

2.5 Related Work

There has been a significant amount of work on WAN traffic engineering, but

much less work on traffic engineering on data center networks. Traffic engineering in

data centers has only become a topic of interest in recent years due to the adoption of

4While we believe that it is possible to build a hierarchical version of OpenSample which uses
multiple collectors to monitor more switches than a single collector can handle and aggregates their
different network views, we leave this as a topic of future work.
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multipath topologies; without multiple paths there is nothing to engineer.

Miura et al. [33] describe cases where parallel workloads can generate traffic

patterns that cause congestion in data center networks that use single-path routing.

They show that it is possible to increase network utilization by hand-optimizing rout-

ing tables, but do not provide any algorithmic solution.

The first practical data center traffic engineering work we know of is Hedera [3].

They found that congestion can occur even in full-bisection-bandwidth networks due

to routing collisions—ECMP reduces collisions compared to single-path routing but

does not eliminate them. They provide algorithms to estimate demand of network-

limited flows and to schedule flows in a Clos network. They poll switch counters

every five seconds to detect congestion and elephant flows and they use OpenFlow to

reroute flows. Our work is significantly influenced by Hedera, while also taking into

consideration the realities and limits of existing switches.

DevoFlow [9] addresses many inefficiencies of OpenFlow by “devolving” con-

trol of some things, such as microflow creation and multipath, to switches. They also

propose using sFlow sampling but do not implement it using real hardware.

Helios [29] discusses building a fast control loop for hybrid optical/electrical

data center networks and is able to complete a full control loop in approximately

100 ms, but does so by minimizing the number of installed flows to read and they

make use of a proprietary RPC mechanism rather than a standard measurement mech-

anism like sFlow.

MicroTE [10] characterizes several data center workloads, finding similar collision-

induced congestion as Hedera and DevoFlow. They modify servers to perform net-

work measurement and report data to a central controller every second, which infers
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congestion based on server-level information. They also describe optimizations such

as server-based aggregation to reduce the overhead of network monitoring. Like Hed-

era and DevoFlow, MicroTE uses OpenFlow to perform rerouting.

Mahout [4] has similar goals to OpenSample, but seeks to provide low-latency

elephant flow detection by using queue depth at end-hosts rather than using network-

based measurements. When using switches with support for packet sampling, Open-

Sample offers a more resource-efficient measurement platform and is potentially

more deployable, since changing switch configuration is likely easier than installing

new software on all end-hosts.

Multipath TCP [34] (MPTCP) allows a single TCP connection to be split into

multiple subflows that take different paths. Each subflow uses TCP congestion control

to monitor and respond to congestion and MPTCP dynamically shunts data to less-

congested paths. This can be viewed as a monitoring and traffic engineering system

that is implemented entirely on end hosts using local knowledge.

OpenSketch [6] proposes configurable network measurement hardware that can

calculate approximate “sketches” of common statistics, such as heavy hitters and

flow size distribution. If implemented in switches, OpenSketch could enable even

faster traffic engineering by efficiently and rapidly detecting elephant flows directly in

switches. Although OpenSketch enables software-defined measurement in the same

way that OpenFlow enabled software-defined forwarding, it is based on a clean-slate

redesign of portions of the switch hardware.

InMon sFlow-RT [35] is similar to the network analyzer component of Open-

Sample. Although it is designed to integrate with an OpenFlow controller, its traffic

engineering capabilities are not clearly documented.
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Chapter 3

FRACTAL: A Framework for Recursive
Abstraction of SDN Control-Plane for
Large-Scale Production Networks

3.1 Introduction

Software Defined Networking (SDN) decouples the control planes from data

planes of switches; it replaces a distributed, per-switch control plane with a (logi-

cally) centralized one on which SDN applications can control an operational network

with a global network-wide view by enforcing packet forwarding rules to the dis-

tributed data planes. This paradigm shift benefits network operators by (i) reducing

the complexity of operations through automation while keeping more responsive, and

(ii) optimizing the resources of operational networks with the global network-wide

view to meet the dynamic nature of on-demand services in a cloud era.

From an architecture perspective, the scalability, resilience, and responsiveness

is required by designing a (logically) centralized SDN control-plane to cover a large

sized network for future carrier-grade cloud or cloud 2.0 services. In such large scale

networking environments, it is inevitable that a (logically) centralized SDN control

plane should be distributed to multiple controllers, each of which is in charge of

its own partition. Many research studies have been done to address the scalability
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issue [36–39], most of which leverage replicating and partitioning a network state in

the control plane horizontally.

However, some of recent investigations pointed out that the horizontal (or flat)

distribution of network state is not so effective for large-scale production networks,

e.g., inter-datacenter networks, multi-site enterprise networks, and wide area net-

works, due to the latency taken by querying or replicating the network state among

controllers. [40] focused on the SDN controller placement problem – how many con-

trollers are needed and where they should be located to cover the whole network.

Further, [41] illustrated how the level of consistency impacts the performance and

complexity of network control logics. In case of low complexity, the inconsistent

network state information is likely to lead to suboptimal decisions. If any tolerance

against inconsistency is to be allowed, highly complex control is required.

Meanwhile, [42, 43] took a novel approach for scalability, where the SDN con-

trol plane is hierarchically organized and hence the locality is exploited for local

events. It effectively limits the propagation scope of events at the control plane, re-

ducing the amount of the network state information transmitted or replicated. How-

ever, it requires (i) the redesign of the existing SDN control plane, e.g., services and

network control logics, and (ii) the development of a new protocol between parent-

child SDN controllers. To the best of our knowledge, there is still no solution to take

into consideration both the locality and the distributed control plane at the same time.

Inspired by the literature, in this paper, we present FRACTAL: a Framework for

Recursive Abstraction of SDN ConTrol plane for large-scALe production networks.

FRACTAL leverages recursion to achieve scalability. The key idea behind FRACTAL

is that a large network is partitioned into multiple small networks; a small network
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can be further divided into smaller networks. This process can be recursively repeated

depending on the whole network size, and the capacity of a controller. A partitioned

network at any hierarchical level is called a domain network, which is controlled

by a domain controller. Thus, the central idea of FRACTAL is to abstract a domain

network to its parent controller as a single big virtual switch over OpenFlow.

The gain of FRACTAL is threefold. First, since FRACTAL partitions a single

large network into multiple small networks, and utilizes a locality by organizing do-

main controllers hierarchically, it effectively eliminates the overhead of disseminat-

ing or replicating the information of events that are locally significant. Second, by

hierarchically organizing the control plane, FRACTAL transparently abstracts a do-

main network as a single virtual switch that establishes a connection to its own SDN

controller through the same southbound protocol like OpenFlow. Hence, there is no

need to develop a new protocol between the controller and its switches. Third, FRAC-

TAL no longer introduces the modification to existing services such as a host tracker,

a topology manager, a statistics manager, a switch manager, and other SDN applica-

tions due to the properties of FRACTAL, e.g., transparency.

The contributions of this paper can be summarized as follows:

• We investigate the impact of a distributed control plane on SDN applications

by simulation- and prototype-based experiments.

• We provide a scalable architecture of control plane with no modification in the

existing systems and protocols.

• We implement FRACTAL with an open source SDN controller. Since its im-

plementation has a form of software application, it can be ported to other plat-
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forms easily.

• We deploy and evaluate the FRACTAL solution on the operational networks.

The remainder of the paper is organized as follows. Section 3.2 provides the

performance issues in the distributed controllers by benchmark tests. We then de-

scribe the FRACTAL design in Section 3.3. Section 3.4 evaluates the FRACTAL’s

scalability and performance overhead. The deployment experience with our opera-

tional campus network is also discussed in this section. We cover the related work in

Section 3.5.

3.2 Background

Before elaborating on FRACTAL, we provide background materials on the is-

sues of a distributed control plane. We then perform experiments to show its limita-

tions on simple topologies.

3.2.1 A Distributed Control Plane in SDN

The main feature of an SDN is a (logically) centralized control plane that pro-

vides SDN applications with a global network view. That is, it provides the infor-

mation of network elements such as switches, routers, and middleboxes to SDN ap-

plications by abstracting the network state. On behalf of SDN applications, it col-

lects the configurational and operational information from the network elements, and

maintains a structured data model (say, a data schema). Further, it helps application

developers building a wide variety of SDN applications easily through APIs.

There are many implementations of the data model of the control plane in both
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research and industry communities. ONIX [36] is the first paper that defines the

data model, called Network Information Base (NIB). The NIB holds a collection

of information about network entities. ONIX further provides multiple methods for

concurrently running applications to access and to modify the NIB consistently, and

supports registration for notifications on state changes or the addition/deletion of an

entity. And the recently published paper, ONOS [37], abstracts network elements by

a graph data structure, and hence relies on the open source projects such as the Titan

graph database and Cassandra key-value store for distribution and persistence, and

the Blueprints graph API to expose the network state to applications.

In the industrial world, the OpenDaylight (ODL) project [39] is an open source

project sponsored by Linux Foundation for building a production level of an SDN

controller platform with which various user demands are satisfied. The ODL con-

troller provides the model-driven service abstraction layer (MD-SAL) for the SDN

control plane, aiming at providing a common and generic support to applications and

plugins of network elements. Thus, MD-SAL allows developers of applications and

plugins to develop through the APIs derived from a single model. MD-SAL adopts

the IETF standards to describe the data model of network elements in the Yang [44]

language and to configure the model through NETCONF [45]. Yang defines both

configuration data and state data of network elements, as well as the format of event

notifications from network elements. It thus allows network elements to define and

trigger the remote procedure calls via NETCONF.

In order to improve performance, reliability and responsiveness, the SDN con-

trol plane must disseminate the network state among controllers (or servers). In the

principle of distributed systems, the CAP theorem is proved that it is impossible to si-
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multaneously satisfy all three of the following guarantees: Consistency, Availability,

and Partition tolerance. In other words, only two attributes out of three can be guaran-

teed; a distributed system typically seeks either Consistency and Partition tolerance

(CP), or Availability and Partition tolerance (AP). In the large networking settings

(which is our primary focus), AP is often the objectives due to delay of network state

propagation.

3.2.2 Impact of A Distributed Control Plane

We now investigate a distributed SDN control plane to answer such a question–

how does a distributed SDN control plane impact the performance of SDN applica-

tions.–which is a main motivation of this paper.

Simulation: To answer this question, we first carry out simulation experiments

by leveraging a custom flow-level simulator with identical settings to [41], including

the topology (as shown in Figure 1(a)), the sync overhead, and the controllers. When a

flow request (to any of two servers) arrives at switch i (i is 1 or 2), the corresponding

controller i decides to which server the flow is set up–the objective is to minimize

the maximum link utilization in our network. If the controller has a global network-

wide view by combining both the physical network state from within its domain

as well as the link utilization of the other domain and it chooses the path with the

lowest maximum link utilization, it is a simple link balancing controller (LBC). Note

that it is likely that the global network-wide view is potentially stale. Whereas, if a

controller is aware of the (potentially stale) global network-wide view and it has a

logic to tolerate [41], this is a separate state link balancing controller (SSLBC).

We vary the workload (i.e., arrivals of flow requests) using exponentially dis-
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(client 1, server 1) (client 2, server 2)

ctrl 1 ctrl 2link capacity:
100 units
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1000 units

sw 1 sw 2

(a) A linear topology is used in simulation setting; note that clients and servers are
colocated. When a switch i (i is 1 or 2) receives a flow request from a client i, it
will be forwarded to controller i.
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(b) The imbalance between the two server
links is worsened as the sync interval T
increases.
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(c) SSLBC is not affected by the sync in-
terval since its logic is independent of the
staleness of network state.

Fig. 3.1: A simulation is carried out to demonstrate the performance issues in the
horizontal replication of the network state among controllers in a distributed setting.
Simulation results show that SSLBC performs better than LBC. However, it may
affect the logic complexity of SDN applications. The distribution of flow duration
affects the performance of SDN applications.
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tributed flow inter-arrival times (average is 10 unit time) and Weibull distributed flow

durations. We also vary the sync overhead (T = {0,4,16} in simulation unit time);

T = 0 means the network state is instantly shared between the controllers. To change

the distribution of flow durations, the shape parameter is varied (k = {0.5,1,1.5,5})

with the fixed scale parameter (λ = 10 in simulation unit time). Note that λ is the

average flow duration. Thus, as k decreases, the frequency of flows whose duration

is less than the average increases. We measure a root mean squared error (RMSE)

of the utilization of the links to the servers to compare the performance of LBC and

SSLBC. For the details of the simulation experiments, refer to [41].

Figure 1(b) shows that the server link RMSE is increased significantly as we

increase the sync interval of a distributed SDN control plane. This means that LBC

is limited since it receives the state of the links (of the other controller) after T unit

time, which may be stale. Consequently, SDN applications requires a logic to toler-

ate the staleness, resulting in increasing the complexity of SDN applications’ logic.

Figure 1(c) shows that SSLBC (which seeks to maximize the local link utilization) is

much more robust against staleness than LBC due to its logic to tolerate.

Moreover, Figure 1(b) also shows that as k increases, the performance of LBC

and SSLBC are more robust against the staleness of a distributed SDN control plane.

This implies that we should utilize the locality of events for latency-sensitive SDN

applications by limiting the propagation scope of short flows.

Microbenchmark: Since the simulation settings are not so realistic, we further

carry out experiments on a real testbed. To this end, we build a cluster of three physi-

cal servers (Figure 2(a)), each of which is running a production-level SDN controller

(i.e., OpenDaylight) on the platform of Intel Xeon 6 core CPUs at 2.1 GHz and 16 GB
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test machine

with Cbench

Infinispan data store

ctrl 1 ctrl 2 ctrl 3

stress to data store: 

{600, 650, 700, 750} trans./sec

(a) A test machine that generates events and three controllers are connected by a
switch. When controller 1 receives the event, the updated state is replicated to the
other two controllers.
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(b) As the number of transactions per sec-
ond increases, the synchronization (sync)
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(c) CDF of the computation latencies of
transactions is plotted when the transac-
tions per second is 750.

Fig. 3.2: Microbenchmark tests reveal that the sync delays are affected by the work-
load to the controllers.
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RAM. Note that OpenDaylight leverages Infinispan [46], which is a distributed in-

memory key/value data store to implement a distributed SDN control plane.

To stress this data store, we use Cbench [47] on a test machine, which emu-

lates a bunch of switches and sends packet in messages, and receives flow mod

messages (from controller 1) to modify the flowtable. The workload to the Infinis-

pan can be determined by varying the number of switches emulated and the rate of

new flows generated at each switch. We vary the number of transactions per second

(trans/sec= {600,650,700,750}) to the data store.

Figure 2(a) shows the testbed consisting of the three controllers and the test ma-

chine. In Figure 2(b), the sync delay (from the moment of a packet in arrival at In-

finispan to the moment of finish of synchronization among the controllers) increases

as we increase transactions per second. At 750 transactions per second, the sync de-

lay to synchronize the distributed SDN control plane is approximately 25 ms. As the

average flow duration in production data center networks is around 100 ms [48], it is

25% overhead. However, Figure 2(c) is the cdf of the computation latencies (which is

sync delay - queueing delay) at 750 transactions per second, showing that almost 90%

of transactions take a few milliseconds of computation. This indicates 25 ms overall

delay in synchronization is significant compared with the latency due to computation

only.

3.3 FRACTAL Design

FRACTAL aims at building a scalable framework for an SDN control plane by

partitioning a large-scale network into multiple small networks recursively. A par-
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FRACTAL.
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titioned network is abstracted as a virtual switch, which is controlled by a single

controller. Note that the higher level controller (of the whole network) controls small

networks as virtual switches through the same southbound protocol (e.g., OpenFlow).

Figure 3(a) illustrates how a network is hierarchically abstracted by FRACTAL.

FRACTAL can be characterized in the following for scalability.

• Recursively partitioning a whole network: FRACTAL exploits a divide-and-

conquer approach to achieve scalability. It recursively breaks down a large-

scale network into multiple small networks (a small network can be again par-

titioned into smaller networks) until a single controller can handle a bottom

level network. At every level, a partitioned network is called a domain net-

work, and its controller is called a domain controller. All messages meaningful

only in a domain network are handled by its domain controller only. Otherwise,

the messages will go to the next higher level controller. By limiting the scope

of locally significant messages (of the SDN control plane), FRACTAL substan-

tially reduces the overhead of synchronization among controllers in the whole

network. Note that local messages are usually more frequent than non-local

ones.

• Transparently abstracting a domain network as a virtual switch: To ap-

ply the recursive partitioning mechanism to the SDN control plane, a parti-

tioned network should be modeled as a single network element. To this end,

FRACTAL transparently abstracts a domain network as a virtual switch. A

higher level controller then establishes connections to its lower level “virtual

switches” with the same southbound protocol(e.g., OpenFlow). The virtual
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switch of a domain network is actually the corresponding domain controller. In

the abstraction process, a “many-to-one” mapping between multiple switches

in its domain network to a single virtual switch happens.

• Providing a co-existing solution to other distributed SDN mechanisms:

FRACTAL is not an exclusive solution to other distributed mechanisms which

may horizontally replicate or partition the network state information to achieve

availability and responsiveness. Rather FRACTAL coexists with other solu-

tions for the local control plane to achieve the same goal.

Now we describe the details of a domain manager which is a main component

of FRACTAL.

3.3.1 Domain Manager

To transparently abstract a domain network as a virtual switch, we exploit a

control plane of software switches (e.g., [21, 49]) so that a domain controller of a

domain network can serve as an OpenFlow switch. The domain manager realizes a

virtual switch, and consists of a connection manager, a state manager, and a config-

uration manager. The connection manager manages OpenFlow connection instances

with other controllers, checks the status of the connections by keep-alive messages,

and processes OpenFlow messages. The state manager maintains the internal state

(of a virtual switch) such as flow tables in which rules to be enforced for the domain

network, ports from which virtual ports are built, and statistics of flows and virtual

ports of its domain network.

Moreover, the domain manager provides a CLI-like functionality for querying
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and configuring the virtual switch through the configuration manager. That is, the

configuration manager provides the interfaces for adding (deleting) virtual ports to

the virtual switch, installing (retrieving) rules, and so on. For example, to activate

(deactivate) a virtual switch, a network operator inputs commands as follows:

fractal-util init <vsw-id>

fractal-util del vsw-id

and the configuration manager will return the vsw-id of the switch. To add (delete)

a virtual port (vport) and specify it with a (physical) port in its domain network for

transparent abstraction, the commands would be as follows:

fractal-util add-port vsw-id <vport#> sw-id port#

fractal-util del-port vport#

3.3.2 “Many-to-One” Mapping

When a domain controller provides transparent abstraction (for its next higher

level controller), a “many-to-one” mapping between the switches in its domain net-

work and a virtual switch is required; in particular, there are two types of translations:

(i) topology translation and (ii) message translation.

Topology Translation: The first step for the topology translation is to specify

the relations between the switches of a domain network and a virtual switch. For

this, a domain manager maintains a bidirectional hash map consisting of a pair of

(vsw-id, vport#) and (sw-id, port#)which is specified by a fractal-util
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vsw 1

Fig. 3.4: A message translation is illustrated with two domain networks, each of
which will serve as a virtual switch to the higher level controller. The message trans-
lator rewrites Openflow messages by using “many-to-one” mapping.

in the above. Further, the map provides a straightforward translation for the topology.

Message Translation: Since a domain network is seen as a virtual switch to

other (domain) controller, all non-local messages triggered on a switch in the do-

main network should look like the messages triggered on the virtual switch. In Open-

Flow, two types of messages are believed to be influenced by this message trans-

lation: switch-to-controller messages such as packet in and controller-to-switch

messages such as packet out and flow mod.

Figure 3.4 illustrates a “many-to-one” mapping between two switches in a do-

main network A and a FRACTAL’s virtual switch in a domain controller A. In this

example, a mapping table contains two entries: [(switch1, port1)↔(vswitch1, port1)]

and [(switch2, port2)↔(vswitch1, port2)]. When a packet in message is triggered

from port1 of switch1, it is to be exported to the domain controller C, the message
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translator in the domain manager rewrites the in port field in the packet in

message with vport1 of the vswitch1 by looking up the mapping table. In the opposite

direction, it rewrites the out port field in the packet out message with port1 of

switch1. However, the message translation of flow mod message is not straightfor-

ward, since it is to be interpreted in the virtual switch rather than a domain network.

For this, the message translator interacts with local SDN applications such as the

topology manager to transform the rules written for the virtual switch into ones for

the domain network.

Moreover, there is one special message for the link layer discovery protocol

(LLDP). It is used for advertising the neighbor link status between virtual switches,

but real LLDP packets are in a domain network. We call this mechanism virtualized

LLDP dissemination. In FRACTAL, only the links between the virtual ports have to

be exposed to the higher level controller. Thus, the controller of a lower level domain

network has to redirect the LLDP packets incoming at virtual ports. The translator

takes over this role, it virtualizes and redirects these LLDP packets to its higher level

controller by the above process. Besides, in case of LLDP forwarding, the translator

also changes the port information in the LLDP packets so that they are interpreted by

the higher level controller.

3.3.3 Rule Conflict Detection and Resolution

When translating flow mod from a rule written for a virtual switch to the one

for the corresponding domain network, it is possible that the translated rules may

conflict with the ones already installed in the domain network. Specifically, it hap-

pens when the translated rules are more specific than the ones already installed. For
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Fig. 3.5: An example of a rule conflict is shown. Rule A already installed conflicts
with new rule B, because rule B is more specific than rule A. A more specific rule
has a higher priority in our design.

example, Figure 3.5 illustrates an example of a rule conflict that rule A and rule B

conflict with each other because rule B has one more attribute (i.e., ip port=HTTP)

than rule A.

The domain manger maintains an n-dimensional flowspace to keep track of what

low-level OpenFlow rules are already installed in its domain network. Here n is

the number of tuples in rule specification. When a new rule is installed in the vir-

tual switch, it checks the flowspace. If no conflict is detected, it installs the rules

with the higher priority than the ones installed in the domain network. Otherwise,

when a lower level controller receives a rule that conflicts with local rules, it explic-

itly denies the rule installation request, flow mod, by replying an error message,

flow mod failed. Then, the network application receiving the error message may

perform path re-calculation.
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Fig. 3.6: Average (per-switch) controller throughput is plotted as the level of con-
troller hierarchy varies. The number of switches per bottom level controller exponen-
tially decreases as the hierarchy level grows.

3.4 Evaluation

In this section, we explain a microbenchmark used to evaluate the scalability

and the performance overhead of FRACTAL. This microbenchmark is performed on

an emulated network with Cbench [47] to stress FRACTAL. We then describe how

FRACTAL performs on a real network considering an SDN application for traffic

engineering on data center network.

3.4.1 Microbenchmark

Scalability: To evaluate the scalability, we use Cbench which stresses FRAC-

TAL by varying the number of switches that send a number of requests, and measures

the per-switch responsiveness (i.e., the number of flow mod messages correspond-

ing to packet in messages per second per switch) as we vary the number of con-
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trollers that comprise FRACTAL.

Figure 3.6 shows the controller throughput as the level of the controller hi-

erarchy increases (from 1 to 4). The controller throughput means the number of

packet in messages processed by a bottom level controller divided by the number

of switches that the controller manages. Assuming 80 switches in the whole network,

we partition the network by adopting binary tree as a hierarchical structure. For in-

stance, if the hierarchy level is 1, a single controller handles all the 80 switches. If

the level is 4, each bottom level domain controller handles only 10 switches (there

are 8 bottom level controllers). The per-switch controller throughput superlinearly

increases as the hierarchy level grows since the FRACTAL framework divides the

network, in which a single controller can in turn process relatively much more mes-

sages in the per-switch perspective.

Performance Overhead: Partitioning a network incurs some overhead to the

FRACTAL framework. In abstracting a domain network, its domain manager looks

up the mapping table for the topology and rewrites the messages for the context of the

virtual switch. Notice that there is no additional overhead to the data plane; packets

are forwarded at line rate. FRACTAL adds no additional traffic in the control plane

either. FRACTAL only adds the processing overhead to the messages that requires

mapping and resolution (in case of rule conflicts).

To quantify the overhead due to partitioning, we measure the response time be-

tween packet in and the corresponding flow mod when the level of controller

hierarchy is four. Note that level-1 and level-4 indicate the bottom level and top level

controllers in the hierarchy, respectively. If there is no rule to forward the packet,

a switch triggers the packet in message. The SDN controller then processes this
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Fig. 3.7: CDF of response times between switches and controllers is plotted when
the hierarchy level is 4. As the level of a controller goes up (towards the top level
controller), the response time increases due to processing and transmission delays.

message and generates the flow modmessage to the switch to install the forwarding

rule.

Figure 3.7 evaluates the performance overhead that partitioning incurs. The re-

sponse time increases by 5 ms on average for crossing each level in the hierarchy.

Thus, there is a tradeoff between the per-switch controller throughput and the re-

sponse time of a non-local message in determining the level of controller hierarchy.

3.4.2 Experiments on campus network

A data center topology: We now build a data center network on our campus

network; two island networks are connected on our campus network as an overlay.

That is, one network contains a (k = 4, where k is the number of pods per core switch

and a pod consists of two layers of k/2 switches) FatTree topology connected with

the other through tunnels, both of which forms a k = 8 FatTree topology with 16
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Fig. 3.8: A FatTree Data Center Topology with k = 8 is used for evaluation. Due to
space limit, only the left half (domain A) is shown, which forms a k = 4 FatTree
topology (domain B is omitted). Two domains are connected with 16 tunneling links.

tunneling links between the networks. There are three domain controllers: one for

each network for local events and the 3rd one on the campus network for non local

events. Figure 3.8 illustrates the overall topology.

For the purpose of comparison, we consider another network setting, which is

a single large non-blocking switch. This setting is configured to find out the maximum

throughput since traffic is constrained only by link speeds. Because non-oversubscribed

FatTree topologies are rearrangeably non-blocking [50], a non-blocking FatTree topol-

ogy can also achieve the optimum performance.

A traffic engineering on data center topology: A traffic engineering (TE) can

highlight the SDN’s benefit because the controller has a global network state such

as a topology, flow statistics and link utilization. The controller can thus arbitrarily

choose best paths even if they are not shortest, with no concerns about convergence

time, forwarding loops, or black holes.
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Since the traffic pattern in data center networks turns out to follow exponentially

distributed flow sizes [48], an existing flow is expected to last regardless of its dura-

tion so far. Thus, if we detect an elephant flow that has sent a significant amount of

traffic, we can expect it to continue sending traffic. Hence, the TE application shunts

flows from congested paths to uncongested ones.

However, In TE (or SDN in general), fast detection and scheduling are crucial to

the efficient network utilization. The fast detection of small size flows is well studied

in [51, 52]. Further, fast scheduling of flows on large-scale networks is well studied

in Hedera [50]. In this paper, we use a polling mechanism to gather the network state

and run TE every 1 second. For implementation simplicity, we use the global first fit

algorithm [50] for rerouting.

By default, all traffic in our network follows shortest paths—we do not use Span-

ning Tree Protocol or equivalent. When multiple shortest paths exist, ties are broken

by using equal-cost multi-path (ECMP) hashing based on the TCP/IP 5-tuple. At

every second, TE gathers the utilization of every link in the network and detects con-

gested links and the corresponding flows. TE then reschedules all flows routed to the

congested links to less utilized ones.

In our experiments, both default forwarding and TE rely on OpenFlow. Paths

selected by TE use high-priority OpenFlow rules and default paths use lower-priority

rules. Scheduling a flow along a different path simply requires installing one new

high-priority rule in each switch along the path. After an elephant flow ends, its rules

time out and the switches automatically remove them. The time to install an Open-

Flow rule—approximately 10 ms with the setting in Figure 3.8.

We measure the aggregate data throughput as we vary spatial workload patterns
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with the TE mechanism above. In all cases, we employ the same TE algorithm (Hed-

era). Meanwhile, we measure the total number of bytes sent (data traffic) and the

fraction of those bytes that we can schedule on alternate routes in each case.

Workloads: We use a workload generator originally written for Hedera. It has

three different traffic patterns such as Stride(s), Staggered Prob (EdgeP, PodP), and

Random(u). Given a network with N hosts, the Stride(s) workload causes host i

to communicate with host (i+ s)modN, resulting in adversarial traffic patterns on

the topology depending on s. On the contrary, with the Random(u) workload, each

host communicates with u different hosts that are chosen uniformly. Staggered Prob

(EdgeP, PodP) has each flow stay within the same rack with probability EdgeP,

stay within the same pod with probability PodP, and cross a pod with probability

1−EdgeP−PodP. For our performance baseline we use shortest-path ECMP for-

warding with no TE. Flow sizes are exponentially-distributed with 1 GB average.

Flow inter-arrival times are exponentially distributed with 1 ms average.

Results: Figure 9(a) shows the (data traffic) throughput of various flow pat-

terns on the topology in Figure 3.8 and on the ideal single non-blocking switch. Note

that even the non-blocking switch does not achieve maximum throughput (1.0) since

sometimes two hosts transmit packets to the same destination, causing congestions.

Although a FatTree topology is rearrangeably non-blocking, there is a significant

gap between ECMP forwarding and the single non-blocking switch due to collisions

where multiple flows are (hashed and) forwarded onto the same link. This degrada-

tion is mitigated by TE due to its flow scheduling.

We also counts the number of packet in messages sent to each domain con-

troller in Figure 3.8, to see whether the overall control overhead is efficiently dis-
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(b) The number of packet in messages handled by each controller: Ctrl A and Ctrl B mean the
lower level controllers which take on each k=4 FatTree network, Ctrl C means the higher level con-
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Fig. 3.9: For various traffic patterns, aggregate throughput for ECMP and TE on the
k=8 FatTree topology (with FRACTAL) is compared to a single non-blocking switch.
All links have 100 Mbps bandwidth.
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tributed among controllers. Figure 9(b) shows the number of packet in messages

processed by each controller with the same scenario for Figure 3.9. Ctrl A and Ctrl B

mean the results of the lower level controllers, and Ctrl C means the result of the

higher level controller.

The total number of packet inmessages means the entire control overhead to

be handled by any controllers Figure 9(b) demonstrates that the three controllers split

the entire control overhead moderately. Especially, in most scenarios, the overhead

portion of the higher level controller is much less than those of the others. It means

that control messages sent to the higher level controller are effectively reduced by the

FRACTAL abstraction.

3.5 Related Work

Recently, there has been a significant amount of work on distributing SDN

control-plane to implement a (logically) centralized SDN controller, achieving scal-

ability, availability, and responsiveness. In this section, we introduce some works

published chronologically.

The first research on distributing SDN control-plane to multiple physical servers

was studied in ONIX [36]. The main idea was providing a middleware on top of each

distributed control-plane, and abstracting control-planes shown as a global view of

the network provided to the network application layer. However, they didn’t evaluate

the architecture in terms of an overhead of a state distribution. In addition, since the

source is not publicly available, there is no way to evaluate the architecture.

HyperFlow [53] proposed a distributed event-based control plane that passively
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synchronizing local network views of SDN controllers. To this end, the authors lever-

age a wide-area distributed storage system, WheelFS [54]. In addition, HyperFlow

localizes to make decision for local network events to reduce the synchronization

overhead.

ONOS [37] is the first open source SDN controller supporting a distributed

control-plane. The authors evaluate the various open sources implementing a dis-

tributed architecture, including Titan [55] for graph database, Cassandra [56], and

RAMCloud [57] for distributed key-value store.

Up until now, we survey the works on distributing control-plane of SDN to

achieve scalability. Along with these efforts, there are several researches on scaling

the performance of a SDN controller itself. The beacon controller [32] improves the

throughput of message IO by using multiple threads. McNettle [58] proposes a scal-

ing mechanism using multicore server; it increases an event processing throughput

scaling with the number of system CPU cores.

Recently, there are some efforts to reduce a control loop for responsiveness.

OpenSample [51] proposes a streaming algorithm to process packet samples. It achieves

a 100ms control loop rather than the 1-5s control loop of prior polling approaches,

resulting in a 150% throughput improvement of a network application, in specifi-

cally traffic engineering requiring a low control loop. Together with this streaming

algorithm, Planck [52] proposes a novel network monitoring tool leveraging over-

subscribed port mirroring supported by commodity switches. It achieves a control

loop at 280us-7ms timescales on a 1 Gbps switch and 275us-4ms timescales on a 10

Gbps switch.
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Chapter 4

Conclusion & Future Work

This thesis investigates the challenges of Software Defined Data Center, specifi-

cally networking. Due to the decoupling of control and data plane, and the scalability

issue of a (logically) centralized controller, adopting SDN to data center networks in-

herently introduces i) a control loop is significantly increased as network size grows

and ii) a horizontal distributed architecture is limited on scalability for large-scale

inter-data center networks.

For the first challenge, we have presented OpenSample, a working prototype

of a low-latency, sampling-based measurement platform, and a data center traffic

engineering application based on OpenSample. Our primary contribution is lowering

the latency to gather accurate measurements of network load and elephant flows from

1–5 seconds to 100 milliseconds. Faster detection of elephant flows allows traffic

engineering to better schedule the network, yielding increased throughput—up to

150% in some cases. In general, workloads that cause more congestion benefit more

from our work and our improvement over prior efforts is more significant for smaller

flows. OpenSample works with unmodified Ethernet switches, making it deployable

without waiting for new hardware or modifying end-host software.

For the second challenge, we address one of the well-known issues in SDN—

scalability. We first show that the current approach of distributing the network state

into multiple controllers horizontally has the limitation like the convergence latency.
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Motivated from this, we present FRACTAL, a framework for scalable dissemination

of the network state over the control plane. The key idea of FRACTAL is to “divide-

and-abstract” a large network recursively until a divided network can be fully handled

by a controller. FRACTAL presents a tradeoff between the message processing delay

over the controller hierarchy and the control plane throughput. We demonstrate the

benefit of FRACTAL by building a testbed emulating a data center with the open

source SDN controller, OpenDaylight.

We believe that there is significant opportunity for future work in this space

as well. We hope to explore dynamically adapting per-port sampling ratio based on

observations and combining both maximum likelihood and sequence-number–based

estimations for improved accuracy. Lastly, merchant silicon vendors may introduce

ASICs that support sampling entirely in the data plane allowing for very high sam-

pling ratio, i.e., N=64, even with 10 Gbps links. This opens the possibility of control

loops that operate as fast as 100 µs. Moreover, we first seek to find out the optimal

level of the controller hierarchy given network environments and SDN requirements.

Also, current FRACTAL implementation requires manually configuration. Thus, we

plan to implement FRACTAL for automatic installation and configuration by lever-

aging the open source distributed configuration service, ZooKeeper.
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