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Abstract

Recent advances in the physical layer have demonstrated the feasi-

bility of in-band wireless full-duplex for a node to simultaneously

transmit and receive on the same frequency band. While the full-

duplex operation can ideally double throughput, the network-level

gain of full-duplex in large-scale networks remains unclear due to the

complicated resource allocation in multi-carrier environments. In this

dissertation, we tackle three different resource allocation problems in

multi-carrier full-duplex networks.

Firstly, we investigate the power allocation problem in three-node

full-duplex OFDM networks where one full-duplex node transmits to a

half-duplex node while receiving from another half-duplex node at the

same time. We formulate the sum-rate maximization problem with

and without joint decoding, and develop a low-complexity solution for

each case. Through simulations, we evaluate our proposed solutions

and demonstrate the full-duplex gain in various scenarios.

Secondly, we consider the resource allocation problem in full-duplex

OFDMA networks where both the base station and mobile nodes are
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full-duplex capable. We propose a joint solution to the subcarrier as-

signment and power allocation problem by establishing a necessary

condition for the sum-rate optimality. We show that our algorithm

is provably efficient in achieving local Pareto optimality under certain

conditions that are frequently met in practice. Through extensive

simulations, we show that our algorithm empirically achieves near-

optimal performance.

Lastly, we investigate the resource allocation problem in full-duplex

OFDMA networks where the base station is full-duplex capable while

mobile nodes are conventional half-duplex nodes. Specifically, we con-

sider two different cases where i) the BS knows all channel gains and

ii) the BS obtains limited channel information through channel feed-

back from each node. In the former case, we design a sequential re-

source allocation algorithm which assigns subcarriers to uplink nodes

first and downlink nodes or vice versa. In the latter case, we pro-

pose a low-overhead channel feedback protocol where downlink nodes

can estimate inter-node interference by overheating feedback messages

transmitted by uplink nodes. We evaluate our solutions under various

scenarios through simulations.

Keywords: full-duplex communications, power allocation, sub-

carrier assignment, resource allocation, OFDM(A), channel feedback
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Chapter 1

Introduction

1.1 Motivation

One of the fundamental assumptions in wireless system design is that

wireless nodes have to operate in half-duplex mode, i.e., they can ei-

ther transmit or receive in the same frequency band, but not both

simultaneously. Through the orthogonalization of wireless resource

in temporal or spectral dimensions, transmission and reception are

separated into orthogonal resources. The traditional communication

paradigms like time division duplex (TDD) and frequency division

duplex (FDD) are different embodiments of half-duplex communica-

tions.

Recent advances in wireless transceiver design have challenged the

half-duplex assumption and demonstrated the feasibility of full-duplex

wireless communications, in which a node can transmit one signal and
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receive another signal at the same time and in the same frequency

band. Compared to half-duplex communications, full-duplex com-

munications can boost throughput by simultaneous transmission and

reception. Due to the significant potential of improving the spectral

efficiency, full-duplex communications have recently received tremen-

dous attention from both academia and industry.

Even though full-duplex communications can ideally double through-

put, there are two major bottlenecks to address in physical and net-

work layers: self-interference and inter-node interference. When a

node transmits and receives at the same time, the received signal is in-

terfered by its own transmitted signal, which is called self-interference.

Since the self-interference signal travels a short distance from trans-

mission antenna to reception antenna, it is several orders of magnitude

(up to 100 dB) stronger than the received signal. To achieve full-

duplex communications, the strong self-interference should be sup-

pressed to a sufficiently low level, which is a challenging task. Another

problem in network perspective occurs in multi-user environments.

When a full-duplex base station transmits to downlink nodes and re-

ceives from uplink nodes, the uplink transmissions will interference

with the downlink reception at the downlink nodes. This interference

between uplink and downlink nodes is called inter-node interference.

In full-duplex networks, scheduling and resource allocation algorithms

should be carefully designed to mitigate the inter-node interference.

The full-duplex gain can be fully achieved when the two new kinds
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of interferences are managed effectively. In the past few years, there

has been a significant progress in cancelling the self-interference us-

ing various interference cancellation techniques. The sate-of-the art

work has demonstrated that the self-interference can be suppressed

to the noise power level. Consequently, it is expected that perfect

self-interference cancellation can be realized in the near future.

In contrast to the self-interference which is a physical layer issue,

the inter-node interference should be addressed from network per-

spective, i.e., user scheduling and resource allocation. Specifically,

when full-duplex communications are deployed in multi-carrier net-

works such as Orthogonal Division Multiple Access (OFDMA), the

subcarrier assignment and power allocation should be performed con-

sidering the inter-node interference. There has been few research in

resource allocation for multi-carrier full-duplex networks, and the full-

duplex gain has not been fully understood from network perspective.

This thesis investigates the resource allocation problem in full-duplex

networks and proposes solutions for various scenarios.

1.2 Background and Related Work

The main difficulty in implementing a full-duplex system is to suppress

the self-interference to a sufficiently low level. In the literature, there

are various self-interference cancellation techniques [1, 2, 3, 4, 5, 6],

which can be categorized into antenna cancellation, analog cancella-
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tion, and digital cancellation. An antenna cancellation technique was

first proposed in [1] where a pair of transmission antennas are placed

such that the signal from one antenna cancels out that from the other.

For a wavelength λ, two transmission antennas are placed at d and

d+ λ
2 away from the reception antenna to make their signals add de-

structively. Analog cancellation uses the known transmission signal to

cancel out the self-interference in RF signal domain. The received sig-

nal is added with an inverted copy of transmitted analog signal which

is generated by a second transmit chain [2] or a special component

such as balun transformer [3]. Digital cancellation is used to clean

out any remaining self-interference which is generated by non-ideal

and non-linear components in an RF chain. The state-of-the-art work

has demonstrated that full-duplex can be implemented with a single

antenna, covering up to 80 MHz of bandwidth [6]. This can be real-

ized by a hybrid analog-digital cancellation technique that accurately

models all linear and non-linear distortions of signals in a TX chain.

Full-duplex communications can be categorized into two types [7]:

One is two-node bidirectional transmissions, where two full-duplex

nodes transmit and receive simultaneously in a bidirectional manner,

and the other is three-node unidirectional transmissions, where one

full-duplex node (usually a base station or access point) transmits to

a (downlink) node while receiving from another (uplink) node at the

same time. While the former type requires both of the two nodes

to be full-duplex capable, the latter can be embodied with a single
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full-duplex node. Unlike the two-node bidirectional transmissions, the

capacity of the three-node full-duplex transmissions will be less than

the sum of the two individual (uplink and downlink) transmission

rates due to the inter-node interference from the uplink node to the

downlink node. Considering the cost and energy consumption of inter-

ference cancellation techniques, the three-node unidirectional trans-

missions will be deployed first in the near future by implementing the

full-duplex technology only in base stations (BSs). The two-node bidi-

rectional transmissions will also appear when mobile nodes becomes

full-duplex capable with a further advance in interference cancellation

techniques.

The power allocation for full-duplex communications has been re-

cently studied in the literature. An power control scheme for two-node

bidirectional transmissions with imperfect self-interference cancella-

tion has been proposed in [8]. The authors showed that the sum-rate

maximization problem can be converted into a convex optimization

problem and a suboptimal solution can be calculated numerically. An

optimal power allocation scheme for three-node relay transmission has

been developed in [9]. In [10], the authors characterized the achievable

rate region in a three-node full-duplex network with a side channel.

They also showed how inter-node interference can be mitigated with

the help of an orthogonal side-channel between uplink and downlink

nodes.

Besides the physical layer research, several MAC layer protocols
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were proposed to incorporate full-duplex communications into Wire-

less Local Area Networks (WLANs) [7, 11, 12, 13]. In addition, net-

work routing and scheduling considering full-duplex is investigated in

[14, 15, 16]

1.3 Contributions and Outline

The full-duplex technology can be deployed in OFDMA networks.

Dividing the spectrum band into multiple orthogonal subcarriers and

distributing them over different nodes, OFDMA benefits from both

multiuser and frequency diversities. In full-duplex OFDMA networks,

a base station is full-duplex capable while mobile nodes are either

full-duplex nodes or conventional half-duplex nodes. In the former

case, the BS assigns each subcarrier to a single full-duplex node and

communicates with it in a bidirectional manner. In the latter case,

each subcarrier is assigned to one uplink node and one downlink node

for the three-node unidirectional transmissions.

In full-duplex OFDMA networks, radio resource allocation algo-

rithms handle subcarrier assignment and power allocation. The re-

source allocation problem becomes challenging due to i) the coexis-

tence of uplink and downlink transmissions in the same subcarrier,

and ii) resultant inter-node interference from uplink nodes to down-

link nodes (when nodes are half-duplex). To fully exploit the full-

duplex gain, it is essential to allocate the radio resource considering
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the characteristics of the full-duplex transmissions.

In this dissertation, we deal with resource allocation problems in

full-duplex OFDM and OFDMA networks. Our objective is to maxi-

mize sum-rate performance by jointly optimizing power allocation and

subcarrier assignment. We formulate the problems as optimization

problems and solve each of them using some optimization frameworks

and techniques. The results of extensive simulation demonstrate that

our solutions can optimize the performance of the full-duplex net-

works.

This dissertation is organized as follows. In Chapter 2, we tackle

the power allocation problem in the three-node full-duplex OFDM

networks to maximize the total sum-rate of the uplink and downlink

transmissions. We formulate the sum-rate maximization problem with

and without joint decoding capability at the downlink node. We prove

that the problem with joint decoding is a convex optimization problem

and develop a low-complexity optimal solution using the Lagrangian

dual optimization method, which complexity increases linearly with

respect to the number of subcarriers. When the joint decoding is

not available, we show that the problem is NP-hard and develop an

efficient heuristic solution by exploiting the FDMA property for sub-

carriers with high inter-node interference. Through numerical simu-

lations, we evaluate our solutions in various scenarios and show that

they outperform other existing power allocation schemes.

In Chapter 3, we consider the resource allocation problem in the
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full-duplex OFDMA networks where both the base station (BS) and

mobile nodes are full-duplex capable. We propose a joint solution to

the subcarrier assignment and power allocation problem by establish-

ing a necessary condition for the sum-rate optimality. We show that

our algorithm is provably efficient in achieving local Pareto optimality

under certain conditions that are frequently met in practice. Through

extensive simulations, we show that our algorithm empirically achieves

near-optimal performance and outperforms other resource allocation

schemes.

In Chapter 4, we investigate the resource allocation problem in

the full-duplex OFDMA networks where the BS is full-duplex capable

while mobile nodes are conventional half-duplex nodes. Specifically,

we consider two different scenarios where i) the BS knows all chan-

nel gains, i.e., full channel state information (CSI) scenario and ii)

the BS obtains limited channel information through channel feedback

from nodes, i.e., limited CSI. In the full CSI scenario, we design a

sequential resource allocation algorithm which assigns subcarriers to

uplink nodes first and downlink nodes or vice versa. In the limited

CSI scenario, we propose an efficient low-overhead feedback proto-

col where downlink nodes can estimate interference in a distributed

manner. Through simulation, we evaluate our solutions for full and

limited CSIs under various

We conclude the dissertation in Chapter 5.
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Chapter 2

Power Allocation with

Inter-node Interference in

Full-duplex OFDM

Networks

2.1 Introduction

A long-held assumption in wireless communications is that a radio

cannot transmit and receive simultaneously on the same frequency

band due to the self-interference between its transmit and receive

chains [17]. Thus, most of contemporary wireless systems rely on the

orthogonalization of wireless resource in temporal or spectral dimen-
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sions, e.g., Time Division Duplex (TDD) and Frequency Division Du-

plex (FDD). Recent advances in the physical layer have challenged this

assumption and demonstrated the feasibility of in-band wireless full-

duplex, in which a radio can countervail against the self-interference

and thus perform simultaneous transmission and reception on the

same frequency band. Due to its potential to double the spectral

efficiency, the full-duplex operation has attracted tremendous atten-

tion from both academia and industry as a promising technology for

next-generation wireless systems.

The main difficulty in building a full-duplex radio is to suppress

self-interference to a sufficiently low level. Existing self-interference

cancellation techniques can be categorized into antenna, analog, and

digital cancellations [18]. In antenna cancellation techniques, a pair

of transmission antennas are placed such that the signal from one

antenna destructively adds with that from the other [1, 4, 5]. Analog

cancellation methods tap a copy of the transmitted signal from the

transmit chain, process it with delay and attenuation, and subtract

it on the receive path [1, 3]. Lastly, digital cancellation cleans out

any remaining residual self-interference caused by non-ideal and non-

linear components in RF chains [1, 3]. The state-of-the-art work has

demonstrated that self-interference can be suppressed close to the

receiver noise floor level via a combination of various cancellation

techniques [6].

In exploiting the full-duplex operation, there are two different ap-
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proaches from the network perspective [7, 8]: two bidirectional trans-

missions between two full-duplex nodes (two-node scenario), and two

unidirectional transmissions with one full-duplex node and two half-

duplex nodes (three-node scenario). In the two-node scenario, two

full-duplex capable nodes transmit and receive simultaneously in a

bidirectional manner, and thus ideal doubling of spectral efficiency can

be achieved with perfect self-interference cancellation. In the three-

node scenario, one full-duplex node (usually a base station or relay)

transmits to a (downlink) node while receiving from another (uplink)

node at the same time. In this case, the downlink node experiences

interference from uplink transmission, which is called inter-node inter-

ference. Considering the cost and complexity of interference cancella-

tion techniques, the three-node scenario is more likely to be deployed

in the near future because only the base station needs to operate in

full-duplex while the uplink and downlink user terminals are not nec-

essarily full-duplex capable [18]. Thus, it is of great importance to

optimize the performance of three-node full-duplex operation, where

the full-duplex gain will decrease due to inter-node interference.

The performance of full-duplex operation has been widely inves-

tigated in the literature. There are several works that have focused

on the two-node scenario and investigated the achievable sum-rate of

bidirectional full-duplex transmissions under imperfect self-interference

cancellation. The sum-rate between two full-duplex nodes equipped

with one transmit antenna and one receive antenna was studied in
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[19]. The case for an arbitary number of antennas was considered in

[8], where it has been shown that the sum-rate maximization problem

can be approximated as a convex optimization problem and its solu-

tion can be obtained in an iterative manner. In [20], the rate region

of a bidirectional full-duplex link using orthogonal frequency divi-

sion multiplexing (OFDM) was studied. The authors proposed two

subcarrier-level power allocation algorithms and analyzed the corre-

sponding rate regions.

For the three-node scenario, there are works that focus on a single

traffic-flow relayed by a full-duplex node. They have investigated the

impact of the full-duplex relay on the capacity of a single-source single-

destination relay topology [21, 22, 23, 24], and the network capacity

with multi-user pairs [25, 26, 27, 28]. On the other hand, a full-duplex

node can work as base station (BS) and support two independent

uplink and downlink data flows. In this case, the spectral efficiency

of full-duplex operation can be measured by the sum-rate of uplink

and downlink transmissions. In [10], the authors have characterized

the sum-rate in a three-node network using a side channel. They have

shown how the inter-node interference can be mitigated with the help

of an orthogonal side-channel between the uplink and downlink nodes.

However, the result is limited to a single data channel case without

considering multi-carrier environments.

Considering that most of today’s cellular systems adopt multi-

carrier modulations, a typical deployment scenario will be a three-
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node full-duplex OFDM network, where the subcarrier power alloca-

tion problem becomes challenging due to inter-node interference. For

example, in very weak interference environments, it is expected that

an optimal solution is similar to the result obtained by the water-

filling algorithm. In contrast, when the inter-node interference is very

strong in every subcarrier, the uplink and downlink nodes will use

disjoint subcarrier sets to avoid interference, i.e., Frequency Division

Multiple Access (FDMA). Then the question is: what is the optimal

power allocation and how can we achieve it with low complexity?

In this paper, we tackle the subcarrier power allocation problem in

a three-node full-duplex OFDM network, where the BS and the uplink

node have their own total power constraints. Through the joint power

allocation of the uplink and downlink transmissions taking into consid-

eration the inter-node interference, we aim to maximize the sum-rate

of the uplink and downlink transmissions. There are two different

ways of dealing with inter-node interference: i) the downlink node

always treats the interference as noise; ii) the downlink node decodes

the interference first, re-encodes and subtracts it from the received

signal, and finally decodes the downlink signal without interference,

i.e., joint decoding. While we can achieve a better performance by

using the joint decoding, its use at user terminals is limited in prac-

tice due to high complexity and energy consumption. To this end, we

consider both cases with and without joint decoding.

Our contributions are summarized as follows:

13



• We prove that the problem with joint decoding is a convex op-

timization problem and find an optimal solution using the La-

grangian dual optimization method, which complexity increases

linearly with respect to the number of subcarriers.

• When the joint decoding is not available, we show that the prob-

lem is NP-hard, and develop an efficient heuristic solution by

exploiting the FDMA property for subcarriers with high inter-

node interference.

• Through numerical simulations, we evaluate our solutions in var-

ious scenarios and show that they outperform other existing

power allocation schemes.

The rest of chapter is organized as follows. In Section 2.2, we

present a detailed description of our system model and formulate the

sum-rate maximization problem. In Section 2.3, we consider a case

where the joint decoding is available and use the Lagrangian dual op-

timization method to obtain an optimal power allocation. In Section

2.4, we show that the problem without joint decoding is NP-hard and

develop a heuristic solution. We evaluate our solutions in Section 2.5

and finally conclude this chapter in Section 2.6.

2.2 System Model and Problem Formulation

We consider a three-node full-duplex network that consists of a single

full-duplex node F and two half-duplex nodes U and D, as shown in

14



Figure 2.1: A three-node full-duplex network that consists of a sin-
gle full-duplex node F and two half-duplex nodes U and D. Using
its full-duplex capability, node F can transmit (to node D) and re-
ceive (from node U) simultaneously. The inter-node interference from
node U(uplink transmitter) to node D (downlink receiver) affects the
downlink rate.

Fig. 2.1. In practical scenarios, node F is usually a base station while

nodes U and F are a user terminal. We denote link U → F by uplink

(or link 1) and link F → D by downlink (or link 2). Also, we define

an index set K = {1, 2} for the uplink and the downlink.

We assume that the self-interference at node F can be successfully

suppressed below the noise power level by exploiting multiple cancel-

lation techniques [6, 10]. However, due to the simultaneous uplink and

downlink transmissions, there exists inter-node interference from node

U to node D [10]. The inter-node interference is a key reason that

the sum-rate in full-duplex transmissions is generally smaller than the

sum of point-to-point uplink and downlink rates.

We assume that the spectrum band is partitioned into N orthog-

onal subcarriers. Let N = {1, · · · , N} denote the set of subcarriers,

and in subcarrier n, let hn1 and hn2 denote the channel coefficients of

the uplink and the downlink, respectively. Similarly, we let hn12 denote
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the channel coefficient of the interference link (U → D) in subcarrier

n. The uplink and downlink transmitted signals in subcarrier n are

denoted by xn1 and xn2 , respectively, and the corresponding power by

pnk := E[|xnk |
2],∀k ∈ K. We assume that the total power budget for

the uplink (and the downlink) is constrained by Pmax
1 (and Pmax

2 ),

i.e.,
∑N

n=1 p
n
k ≤ Pmax

k , ∀k ∈ K. Also, let us define Pn := (pn1 , p
n
2 ) and

P := (p11, · · · , p
N
1 , p12, · · · , p

N
2 ) ∈ R

2N .

Given the channel coefficients and power allocation, the uplink re-

ceived signal yn1 and the downlink received signal yn2 in each subcarrier

n ∈ N are given by

yn1 = hn1x
n
1 + zn1 ,

yn2 = hn2x
n
2 + hn12x

n
1 + zn2 ,

where znk ∼ CN(0, N0) denotes the complex Gaussian noise with zero

mean and variance N0, and hn12x
n
1 represents the inter-node interfer-

ence from the uplink to the downlink. Let us define the normalized

channel gains gn1 := |hn1 |
2/N0, g

n
2 := |hn2 |

2/N0, and gn12 := |hn12|
2/N0,

and let Rn denote the sum of the uplink and downlink rates. From

the Shannon capacity formula [17], we obtain

Rn(Pn) = log(1 + gn1 p
n
1 ) + log

(
1 +

gn2 p
n
2

1 + gn12p
n
1

)
. (2.1)

When the joint decoding is applicable [29], node D can decode the

uplink signal first, re-encode and subtract it from the received signal,
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and finally decode the downlink signal without interference. In this

case, we can achieve the following Rn:

Rn(Pn) = min {log(1 + gn1 p
n
1 ) + log(1 + gn2 p

n
2 ), log (1 + gn12p

n
1 + gn2 p

n
2 )} .

(2.2)

It has been known that when gn1 < gn12, the joint decoding achieves

a greater sum rate satisfying (2.1) < (2.2) [10]. Note that the joint

decoding may require high complexity and energy consumption which

limit its use at user terminals. To this end, we consider both cases

with and without joint decoding.

Our goal is to find an optimal subcarrier power allocation that

maximizes the sum-rate
∑N

n=1R
n(Pn) under the total power con-

straints. We formulate the problem as

(P) maximize
P

N∑

n=1

Rn(Pn) (2.3a)

subject to

N∑

n=1

pnk ≤ Pmax
k ,∀k ∈ K. (2.3b)

In the following, we first solve the problem with joint decoding and

then address the problem without joint decoding.
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2.3 Power Allocation with Joint Decoding

In this section, we solve problem P with joint decoding, where we have

Rn(Pn) =





log(1 + gn1 p
n
1 ) + log

(
1 +

gn2 p
n
2

1 + gn12p
n
1

)
, if gn1 ≥ gn12,

min {log(1 + gn1 p
n
1 ) + log(1 + gn2 p

n
2 ) ,

log (1 + gn12p
n
1 + gn2 p

n
2 )} , if gn1 < gn12.

(2.4a)

(2.4b)

We first show that this is a convex optimization problem, and de-

velop a low complexity optimal solution using the Lagrangian dual

optimization method.

2.3.1 Convex Problem and Dual Formulation

Since the constraints (2.3b) are linear and the objective function is

the sum of Rn’s, the problem is a convex optimization problem if each

Rn is a concave function of Pn. We first show that Rn is concave, and

consider the dual of the original problem to obtain a low-complexity

solution.

Proposition 1. Rn(Pn) is a concave function of Pn.
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Proof. For gn1 ≥ gn12, Eq. (2.4a) can be written as

Rn(Pn) = log
(

1+gn1 p
n
1

1+gn12p
n
1

)
+ log(1 + gn12p

n
1 + gn2 p

n
2 ).

The first term is concave of pn1 , since it is a function of pn1 and has a

non-positive second-order derivative as

∂2

∂(pn1 )
2 log

(
1+gn1 p

n
1

1+gn12p
n
1

)
=

(gn12−gn1 )(2g
n
1 g

n
12p

n
1+gn1 +gn12)

(gn12p
n
1+1)2(gn1 p

n
1+1)2

≤ 0,

where the inequality comes from gn1 ≥ gn12. The second term is a log-

arithm of a linear function, which is (jointly) concave. Thus Rn(Pn)

is a concave function.

For gn1 < gn12, R
n(Pn) is the minimum of two concave functions,

and thus it is also concave.

Since a small non-zero power allocation satisfies the constraints

(2.3b) with strict inequality, there is no duality gap by the Slater’s

condition [30], and an optimal solution to the original problem can be

obtained via the dual formulation. In the next subsection, we present

a solution to the dual problem.

2.3.2 Optimal Power Allocation via Dual Optimization

The standard dual problem can be written as

(D)min
λ≥0

g(λ), (2.5)
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where λ := (λ1, λ2) is the dual variables, and the dual function g(λ)

and the Lagrangian function L(P,λ) are defined as

g(λ) := max
P≥0

L(P,λ), (2.6a)

L(P,λ) :=
∑2

k=1
λkP

max
k +

∑N

n=1
Ln(Pn,λ), (2.6b)

Ln(Pn,λ) := Rn(Pn)− λ1p
n
1 − λ2p

n
2 . (2.6c)

We first give a closed-form representation of g(λ). Let P̂n :=

{p̂n1 (t), p̂
n
2 (t)} denote a solution to maxLn(Pn,λ) for given λ, and

let ∂kL
n(Pn) := ∂

∂pn
k
Ln(Pn), ∀k ∈ K. Given λ, Ln(·) will satisfy

the Karush-Kuhn-Tucker (KKT) conditions at P̂n. We consider the

following two cases according to the channel gains.

1. For gn1 ≥ gn12:

From gn1 ≥ gn12 and (2.4a), Ln can be written as

Ln(Pn,λ) = log(1+gn1 p
n
1 )+log

(
1 +

gn2 p
n
2

1 + gn12p
n
1

)
−λ1p

n
1 −λ2p

n
2 .

From the KKT conditions on maxLn, we obtain the following

four equations:

∂1L
n(P̂n) = 0, if p̂n1 > 0, ∂1L

n(P̂n) ≤ 0, if p̂n1 = 0, (2.7a)

∂2L
n(P̂n) = 0, if p̂n2 > 0, ∂2L

n(P̂n) ≤ 0, if p̂n2 = 0, (2.7b)
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where ∂1L
n(P̂n) and ∂2L

n(P̂n) are given by

∂1L
n(P̂n) =

gn1
1 + gn1 p̂

n
1

+
gn12

1 + gn12p̂
n
1 + gn2 p̂

n
2

−
gn12

1 + gn12p̂
n
1

− λ1,

(2.8a)

∂2L
n(P̂n) =

gn2
1 + gn12p̂

n
1 + gn2 p̂

n
2

− λ2. (2.8b)

Suppose that p̂n1 > 0 and p̂n2 > 0. From (2.7b) and (2.8b),

we have 1
1+gn12p̂

n
1+gn2 p̂

n
2
= λ2

gn2
. Applying this to (2.7a) and (2.8a)

yields a quadratic equation of p̂n1 , whose roots are

p̂n1 = −1
2

(
gn1+gn12
gn1 g

n
12

)
+ 1

2

√(
gn1 +gn12
gn1 g

n
12

)2
−

4(λ2gn12−λ1gn2+gn2 g
n
1 −gn2 g

n
12)

(λ2gn12−λ1gn2 )gn12gn1
,

p̂n2 = 1
λ2
−

gn12p̂
n
1

gn2
− 1

gn2
.

(2.9)

If p̂n1 and p̂n2 in (2.9) are positive, they are the solution. Other-

wise, i.e., if one of them is either negative or zero, the solution

is given by

(p̂n1 , p̂
n
2 )

=





(
[ 1
λ1
− 1

gn1
]+, 0

)
, if log

(
1 + gn1 [

1
λ1
− 1

gn1
]+
)
− λ1

[
1
λ1
− 1

gn1

]+

> log
(
1 + gn2 [

1
λ2
− 1

gn2
]+
)
− λ2

[
1
λ2
− 1

gn2

]+
,

(
0, [ 1

λ2
− 1

gn2
]+
)
, otherwise,

(2.10)
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where [x]+ := max{x, 0}.

2. For gn1 < gn12:

From gn1 < gn12 and (2.4b), we have

Ln(Pn,λ) = min {log(1 + gn1 p
n
1 ) + log(1 + gn2 p

n
2 ),

log (1 + gn12p
n
1 + gn2 p

n
2 )} − λ1p

n
1 − λ2p

n
2 .

We introduce the following two definitions:

Ln
a(P

n,λ) : = log(1 + gn12p
n
1 + gn2 p

n
2 )− λ1p

n
1 − λ2p

n
2 ,

Ln
b (P

n,λ) : = log(1 + gn1 p
n
1 ) + log(1 + gn2 p

n
2 )− λ1p

n
1 − λ2p

n
2 .

Then we have Ln = min{Ln
a , L

n
b }, where both Ln

a and Ln
b are

concave. Thus the solution P̂n is either a maximum point of Ln
a

(as shown in Fig. 2.2(a)), a maximum point of Ln
b , or a cross

point of Ln
a and Ln

b (as shown in Fig. 2.2(b)). We consider each

case as follows:

(i) If P̂n maximizes Ln
a , the KKT conditions on maxLn

a imply
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that

gn12
1 + gn12p̂

n
1 + gn2 p̂

n
2

− λ1 = 0, if p̂n1 > 0,

gn12
1 + gn12p̂

n
1 + gn2 p̂

n
2

− λ1 ≤ 0, if p̂n1 = 0,

gn2
1 + gn12p̂

n
1 + gn2 p̂

n
2

− λ2 = 0, if p̂n2 > 0,

gn2
1 + gn12p̂

n
1 + gn2 p̂

n
2

− λ2 ≤ 0, if p̂n2 = 0.

We obtain the solution to maxLn
a as

(p̂n1 , p̂
n
2 ) =





([
1

λ1
−

1

gn12

]+
, 0

)
, if

λ1

gn12
<

λ2

gn2
,

(
0,

[
1

λ2
−

1

gn2

]+)
, if

λ1

gn12
>

λ2

gn2
,

(x∗, y∗) , if
λ1

gn12
=

λ2

gn2
< 1,

(0, 0), if
λ1

gn12
=

λ2

gn2
≥ 1.

(2.12a)

(2.12b)

(2.12c)

(2.12d)

where (x∗, y∗) is a non-negative solution to 1 + gn12x + gn2 y =

gn12
λ1

=
gn2
λ2
.

Since the solution P̂n satisfies Ln
a(P̂

n,λ) ≤ Ln
b (P̂

n,λ), the fol-

lowing additional condition holds:

log(1 + gn12p̂
n
1 + gn2 p̂

n
2 ) ≤ log(1 + gn1 p̂

n
1 ) + log(1 + gn2 p̂

n
2 ).

As Eq. (2.12a) does not satisfy the above condition, it cannot be
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n
L

n

a
L

n

b
L

(a) The solution P̂
n is the point where Ln

a is maxi-
mized.

n
L

n

a
L

n

b
L

(b) The solution P̂
n is a point where Ln

a = Ln
b .

Figure 2.2: The Lagrangian function Ln (shaded) is the minimum of
two concave functions Ln

a (blue) and Ln
b (red). The solution P̂n that

maximizes Ln is marked by a bullet.

a solution. Also, the probability of λ1
gn12

= λ2
gn2

is zero considering

that channel gains and dual variables are real numbers. As a

result, the solution is likely to be (2.12b) in practice.

(ii) If P̂n maximizes Ln
b , the partial differentiation on Ln

b implies

that the well-known water-filling power allocation is optimal,

i.e.,

(p̂n1 , p̂
n
2 ) =

(
[ 1
λ1
− 1

gn1
]+, [ 1

λ2
− 1

gn2
]+
)
. (2.13)

Again since Ln
b (P̂

n,λ) is not greater than Ln
a(P̂

n,λ), the fol-
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lowing additional condition holds:

log(1 + gn1 p̂
n
1 ) + log(1 + gn2 p̂

n
2 ) ≤ log(1 + gn12p̂

n
1 + gn2 p̂

n
2 ).

This condition is satisfied when gn12 ≥ gn1 (1+gn2 p̂
n
2 ). Hence, when

the inter-node interference is strong and the downlink signal is

weak, we can cancel the interference and use the water-filling to

achieve the sum of (point-to-point) uplink and downlink rates

[32].

(iii) If P̂n is a cross point of Ln
a and Ln

b , we obtain

(p̂n1 , p̂
n
2 ) =

(
[ 1
λ1
− 1

gn12
]+,

gn12−gn1
gn1 g

n
2

)
. (2.14)

The equations of (2.9) – (2.14) provide a closed-form solution P̂n,

and allow us to solve the dual problem (2.5) by optimizing the dual

variables λ. Note that g(λ) is a point-wise maximum of linear func-

tions and may not be differentiable at some points [33]. Thus, we

use the subgradient method to update λ iteratively. Specifically, in

iteration t, the subgradient method updates λ by

λ
(t+1)
k =

[
λ
(t)
k − st

(
Pmax
k −

∑N

n=1
p̂nk(t)

)]+
,∀k ∈ K, (2.15)

where st is the t-th step size and {p̂n1 (t), p̂
n
2 (t)}

N
n=1 are the solution

from (2.9) – (2.14) for given (λ
(t)
1 , λ

(t)
2 ). It is known that the subgra-

dient method converges to the optimal value as t→∞ if the step size
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st satisfies limt→∞ st = 0 and
∑∞

t=1 st = ∞ [34]. We summarize the

proposed dual optimization method in Algorithm 1.

To the best of our knowledge, it is a first solution to the power al-

location problem in the full-duplex transmissions with joint decoding.

Also, for given λ, we can obtain P̂n for each subcarrier n from (2.9)

- (2.14). Thus our algorithm has a linear complexity with respect to

the number of subcarriers.

Algorithm 1: Optimal Power Allocation for Problem P with
Joint Decoding

Data: channel gains {gn1 , g
n
2 , g

n
12}

N
n=1 and maximum power

budgets (Pmax
1 , Pmax

2 ).

1 Initialize the dual variables (λ
(1)
1 , λ

(1)
2 ) and t← 1.

2 Compute {p̂n1 (t), p̂
n
2 (t)}

N
n=1 from (2.9) – (2.14).

3 Update (λ
(t+1)
1 , λ

(t+1)
2 ) according to (2.15).

4 If ‖(λ
(t+1)
1 , λ

(t+1)
2 )− (λ

(t)
1 , λ

(t)
2 )‖ ≤ ε, terminate; otherwise, set

t← t+ 1 and go to Step 2.
Result: Optimal power allocation P∗.

2.4 Power Allocation without Joint Decoding

In this section, we solve the problem where the joint decoding is

not available. In this case, we have Rn(Pn) = log(1 + gn1 p
n
1 ) +

log
(
1 +

gn2 p
n
2

1+gn12p
n
1

)
. We first derive necessary conditions for local op-

timality, and then establish a sufficient condition under which any

local optimal solution has a certain property. We show that finding

an optimal power allocation with such property is NP-hard. Based
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on the results, we develop an iterative heuristic algorithm to achieve

high performance.

2.4.1 Necessary Conditions for Local Optimality

Recall that the problem can be formulated as (2.3) with Rn(Pn) =

log(1+ gn1 p
n
1 )+ log

(
1 +

gn2 p
n
2

1+gn12p
n
1

)
. Since Rn is not concave in general,

the problem is not a convex optimization problem. We first introduce

local optimality and derive several necessary conditions for local op-

timality, which will help us understand an optimal solution. Let us

define local optimality as follows:

Definition 1 (Local Optimality). A power allocation vector is said

to be feasible if it satisfies the maximum power constraints (2.3b). A

feasible power allocation vector P̃ is a local optimum (maximum) of

problem P without joint decoding if there exists an ǫ > 0 such that

N∑

n=1

Rn(P̃n) ≥
N∑

n=1

Rn(Pn), ∀P ∈ P with ||P− P̃||< ǫ,

where P is the set of all feasible power allocation vectors.

We now prove that in any local optimum, the downlink consumes

all of its power budget while the uplink power allocation is binary,

i.e., allocating either the maximum uplink power or no power. We

now find some properties of Rn.

Definition 2 (Quasi-Convexity [31]). Let f : Ω ⊆ R
n → R be a twice
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differentiable function. Then f is quasi-convex on Ω if

vT∇2f(x)v > 0 (2.16)

for any x ∈ Ω and v ∈ R
n such that ∇f(x)v = 0 and v 6= 0.

Lemma 1. If gn1 ≥ gn12, then Rn(pn1 , p
n
2 ) is a strictly increasing and

concave function of (pn1 , p
n
2 ). On the other hand, if gn1 < gn12, R

n(pn1 , p
n
2 )

is a quasi-convex function of (pn1 , p
n
2 ) ∈ [0,∞)× [0,∞) and for a fixed

pn2 , it is either (i) strictly increasing, (ii) strictly decreasing, or (iii)

unimodal1 on pn1 ∈ [0, Pmax
1 ].

Proof. We first prove the case of gn1 ≥ gn12. Since the proof for g
n
1 = gn12

is trivial, we assume that gn1 > gn12. Let us write Rn as

Rn(pn1 , p
n
2 ) = log(

1 + gn1 p
n
1

1 + gn12p
n
1

) + log(1 + gn2 p
n
2 + gn12p

n
1 ).

The first term is a strictly increasing function of pn1 because its first-

order derivative satisfies

∂
∂(pn1 )

log(
1+gn1 p

n
1

1+gn12p
n
1
) =

gn1 −gn12
(gn1 p

n
1+1)(gn12p

n
1+1) > 0,

where the inequality holds because gn1 > gn12. It is clear that the second

term is a strictly increasing function of Pn (i.e., logarithmic function),

and thus Rn is a strictly increasing function of Pn. Moreover, as

1f(x) is a unimodal function if for some value m, it is strictly increasing for
x ≤ m and strictly decreasing for x ≥ m. In this case, the maximum value of f(x)
is f(m) and there is no other local maximum.
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shown in Proposition 1, Rn is concave when gn1 ≥ gn12.

Let us prove the case of gn1 < gn12. Referring to Theorem 3.2 in

[31] for the proof of quasi-convexity, we now prove the remaining part.

Given pn2 = p̃n2 , R
n(pn1 |p̃

n
2 ) := Rn(pn1 , p̃

n
2 ) can be written as

Rn(pn1 |p̃
n
2 ) = log (1 + gn1 p

n
1 ) + log

(
1 +

gn2 p̃
n
2

1 + gn12p
n
1

)
.

Then the first-order derivative ∂1R
n(pn1 |p̃

n
2 ) is given by

∂1R
n(pn1 |p̃

n
2 ) :=

∂Rn(pn1 |p̃
n
2 )

∂pn1
=

A (pn1 )
2 + 2Bpn1 + C

D
,

where A, B, C, and D are defined as

A := gn1 (g
n
12)

2,

B := gn1 g
n
12,

C := gn1 + (gn1 − gn12) g
n
2 p̃

n
2 ,

D := (1 + gn1 p
n
1 ) (1 + gn12p

n
1 ) (1 + gn12p

n
1 + gn2 p̃

n
2 ) .

Since D is always strictly positive, the quadratic equation of A (pn1 )
2+

2Bpn1+C = 0 determines the sign of ∂Rn(pn1 |p̃
n
2 ). Now, let us consider

the existence of a solution p∗ ∈ [0, Pmax
1 ] to the quadratic equation.

Since A > 0 and B > 0, there exists either a solution p∗ ∈ [0, Pmax
1 ]

or no solution in [0, Pmax
1 ]. If there exists a solution p∗, then we

have ∂1R
n(pn1 |p̃

n
2 ) < 0 for 0 ≤ pn1 < p∗ and ∂1R

n(pn1 |p̃
n
2 ) > 0 for

p∗ < pn1 ≤ Pmax
1 . In this case, Rn is a unimodal function. When
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there is no solution in [0, Pmax
1 ], we have either ∂1R

n(pn1 |p̃
n
2 ) > 0 or

∂1R
n < 0(pn1 |p̃

n
2 ) for pn1 ∈ [0, Pmax

1 ], which means that Rn(pn1 |p̃
n
2 ) is

either a strictly increasing or a strictly decreasing function of pn1 ∈

[0, Pmax
1 ].

Based on Lemma 1, we can derive the following result.

Proposition 2. If P̃ is a local optimum, then we have

N∑

n=1

p̃n1 = 0 or Pmax
1 , (2.17a)

N∑

n=1

p̃n2 = Pmax
2 . (2.17b)

Proof. We prove this by contradiction. Since P̃ is a local optimum,

there exists an ǫ > 0 such that
∑N

n=1R
n(P̃n) ≥

∑N
n=1R

n(Pn), ∀P ∈

P with ||P−P̃||< ǫ.Assume to the contrary of (2.17b) that
∑N

n=1 p̃
n
2 =

P < Pmax
2 . Let us construct a new power allocation vector S by

slightly increasing p̃12 such that s12 = p̃12 + min(Pmax
2 − P, ǫ/2) and

snk = p̃nk for all the other k ∈ K and n ∈ N . Clearly, S is feasible and

satisfies ||S−P̃||< ǫ. Since Rn is a strictly increasing function of pn2 , we

have R1(s11, s
1
2) > R1(p̃11, p̃

1
2) from s12 > p̃12 and thus

∑N
n=1 R

n(Sn) >

∑N
n=1R

n(P̃n), which is a contradiction.

Next, assume to the contrary of (2.17a) that 0 <
∑N

n=1 p̃
n
1 = P <

Pmax
1 . If there exists a subcarrier n such that gn1 ≥ gn12, then Rn is

a strictly increasing function of pn1 by Lemma 1, and we can reach a

contradiction by slightly increasing p̃n1 as in the above. Now, suppose
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that gn1 < gn12, ∀n ∈ N and choose a subcarrier n with p̃n1 > 0. By

Lemma 1, Rn(pn1 |p̃
n
2 ) := Rn(pn1 , p̃

n
2 ) is either strictly increasing, strictly

decreasing, or unimodal on pn1 . If Rn(pn1 |p̃
n
2 ) is a strictly increasing

function, we can reach a contradiction by slightly increasing pn1 . If

Rn(pn1 |p̃
n
2 ) is a strictly decreasing function, we can find a new power

allocation vector S such that sn1 = max(p̃n1 − ǫ/2, 0) and snk = p̃nk for

all the other k ∈ K and n ∈ N . It is clear that S is feasible and

||S − P̃||< ǫ. Since sn1 < p̃n1 , we have Rn(sn1 , s
n
2 ) > Rn(p̃n1 , p̃

n
2 ) and

thus
∑N

n=1 R
n(Sn) >

∑N
n=1 R

n(P̃n), which is a contradiction. Lastly,

if Rn(pn1 |p̃
n
2 ) is a unimodal function, we have either ∂1R

n(pn1 |p̃
n
2 ) ≥ 0

or ∂1R
n(pn1 |p̃

n
2 ) < 0 at pn1 = p̃n1 . Then we reach a contradiction again

by slightly increasing or decreasing p̃n1 .

We next show some well-known necessary conditions for local op-

timality. For given P, let Nk(P) denote the set of subcarriers used by

link k, i.e., Nk(P) := {n ∈ N|pnk > 0}, and let Kn(P) denote the set

of links using subcarrier n, i.e., Kn(P) := {k ∈ K|pnk > 0}. Also, let

us denote ∂kR
n(Pn) := ∂

∂pn
k
Rn(Pn) and ∂klR

n(Pn) := ∂
∂pn

k
pn
l
Rn(Pn).

Proposition 3 and Proposition 4 represent the KKT conditions and

second-order necessary conditions for local optimality, respectively.

Since those conditions can be easily obtained from the standard opti-

mization theory [33], we omit the proof.

Proposition 3 (KKT Conditions). Let P̃ be a local optimum. Then
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there exist constants λ such that for all k ∈ K and n ∈ N

λk ≥ 0, p̃nk ≥ 0, Pmax
k −

N∑

n=1

p̃nk ≥ 0, (2.18a)

λk

(
Pmax
k −

N∑

n=1

p̃nk

)
= 0, (2.18b)

λk − ∂kR
n(P̃n) ≥ 0, (2.18c)

p̃nk

(
λk − ∂kR

n(P̃)
)
= 0. (2.18d)

Proposition 4 (Second-order Necessary Conditions). Let P̃ be a

feasible power allocation vector satisfying the KKT conditions (2.18)

and
∑N

n=1 p̃
n
k = Pmax

k , ∀k ∈ K. If P̃ is a local optimum, then for any

vector v =
(
v11 , . . . , v

N
2

)
∈ R

2N such that

vnk = 0,∀n /∈ Nk and
∑

n∈Nk

vnk = 0,∀k ∈ K, (2.19)

we should have
N∑

n=1

(vn)T∇2Rn(P̃n)vn ≤ 0, (2.20)

where vn := (vn1 , v
n
2 )

T ∈ R
2.

Proposition 4 implies that for a certain power allocation P with

∑N
n=1 p

n
k = Pmax

k , ∀k ∈ K, if we can find a vector v that satisfies

(2.19) but does not (2.20), then P is not a local optimum.

In the following subsection, we use the necessary conditions to

prove the optimality of FDMA power allocation in very strong inter-
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ference environments.

2.4.2 Optimality of FDMA Power Allocation

In this subsection, we show that when the interference channel gain

gn12 for subcarier n is very large, either the uplink or the downlink

allocates non-zero power to subcarrier n. If such a property holds for

all subcarriers, we call it an FDMA power allocation.

Definition 3. For a feasible power allocation vector P, we define the

set NS(P) of subcarriers shared by the uplink and the downlink as

NS(P) := {n ∈ N||Kn(P)|= 2}. Then P is said to have the FDMA

property if there is no subcarrier shared by the uplink and the down-

link, i.e., NS(P) = ∅.

We assume the following non-strict conditions.

Assumption 1. An optimal solution P to problem P without joint

decoding satisfies

(a) M := min
k∈K
|Nk(P)|≥ 2,

(b)
∑N

n=1 p
n
k = Pmax

k ,∀k ∈ K.

In the above, condition (a) indicates that each link uses at least two

subcarriers. In most cellular systems and WLANs, there are a number

of subcarriers, which is constantly increasing due to the growing band-

width demand. For instance, the IEEE 802.11ac standard specifies 468

subcarriers over 160 MHz bandwidth [35]. Hence, it is highly likely

that condition (a) holds in practice. Condition (b) means that both
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the links consume all of their power budgets. From Proposition 2, this

may not hold for the uplink (k = 1). However, we have
∑N

n=1 p
n
1 = 0

for a local optimum P in limited cases, e.g., gn12 ≫ gn2 ≫ gn1 , and we

can also assume that condition (b) generally holds in practice.

Now, we find a sufficient condition under which any optimal so-

lution has FDMA property. From Definition 3, it suffices to show

that any feasible P with |NS(P)|≥ 1 cannot be a local optimum.

Specifically, we will show that for any P with |NS(P)|≥ 1, there ex-

ists a vector v such that the second-order necessary condition (2.20)

does not hold. We first consider the case |NS(P)|≥ 2. Let us define

NF := {n ∈ N|gn12 > gn1 }. The following proposition shows that if the

uplink and the downlink share two or more subcarriers n ∈ NF , then

P cannot be a local optimum.

Proposition 5. Let P be a feasible power allocation vector such that

|NS(P)|≥ 2. If Assumption 1 holds and

|NS(P) ∩ NF |≥ 2, (2.21)

then P cannot be a local optimum.

Proof. We prove this by contradiction following the technique in [31].

Assume to the contrary that a feasible power allocation vector P

with |NS(P) ∩ NF |≥ 2 is a local optimum. Choose two subcarriers

n1, n2 ∈ NS(P) ∩ NF . Then, from the KKT conditions (2.18d), we
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have

0 < λ1 = ∂1R
n1(Pn1) = ∂1R

n2(Pn2),

0 < λ2 = ∂2R
n1(Pn1) = ∂2R

n2(Pn2).

Now, let us define v ∈ R
2N as

vn1
1 = ∂2R

n1(Pn1), vn1
2 = −∂1R

n1(Pn1),

vn2
1 = −∂2R

n2(Pn2), vn2
2 = ∂1R

n2(Pn2),

vn1 = vn2 = 0,∀n ∈ N\{n1, n2}.

Note that v satisfies (2.19) and∇Rn(Pn)vn = 0 where vn := (vn1 , v
n
2 )

T .

From the fact that subcarriers n1, n2 ∈ NF , R
n1 and Rn2 are quasi-

convex by Proposition 1. Then we have

N∑

n=1

(vn)T∇2Rn(Pn)vn

=




vn1
1

vn1
2




T

∇2Rn1(Pn1)




vn1
1

vn1
2


+




vn2
1

vn2
2




T

∇2Rn2(Pn2)




vn2
1

vn2
2




=




∂2R
n1(Pn1)

−∂1R
n1(Pn1)




T

∇2Rn1(Pn1)




∂2R
n1(Pn1)

−∂1R
n1(Pn1)




+



−∂2R

n2(Pn2)

∂1R
n2(Pn2)




T

∇2Rn2(Pn2)



−∂2R

n2(Pn2)

∂1R
n2(Pn2)


 > 0,

where the last inequality comes from the quasi-convexity (2.16) of Rn1
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and Rn2 . Since the second-order necessary condition (2.20) does not

hold, P cannot be a local optimum.

For the case of |NS(P)|= 1, suppose without loss of generality that

NS(P) = {n}, i.e., only subcarrier n is shared by the uplink and the

downlink. The following proposition proves that if the interference

channel gain gn12 is large enough (in the sense of being larger than a

certain threshold), then P cannot be a local optimum.

Proposition 6. Let us define

gM := max
n∈N ,k∈K

gnk and gm := min
n∈N ,k∈K

gnk .

Let P be a feasible power allocation vector such that NS(P) = {n},

i.e., |NS(P)|= 1. If Assumption 1 holds and

gn12 ≥ 2
g3M
g2m

(1 + 2gmPmax
2 )2 , (2.22)

then P cannot be a local optimum.

Proof. We first calculate the first- and second-order derivatives of Rn.

To simplify the notations of the derivatives, let us write Rn as

Rn(Pn) = log

(
1 +

pn1
σn
1

)
+ log

(
1 +

pn2
σn
2 + αn

12p
n
1

)
,

where σn
k := 1/gnk and αn

12 := gn12/g
n
2 . Also, given P, let us define that
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for all n ∈ N and k ∈ K,

Xn
1 (P

n) := σn
1 ,

Xn
2 (P

n) := σn
2 + αn

12p
n
1 ,

An
k(P

n) :=
1

Xn
k

,

Bn
k (P

n) :=
1

Xn
k + pnk

.

(2.23)

Note that An
k ≥ Bn

k where the equality holds when pnk = 0. Using

(2.23), we obtain the partial derivatives as

∂1R
n(Pn) = Bn

1 + αn
12 (B

n
2 −An

2 ) , (2.24a)

∂2R
n(Pn) = Bn

2 , (2.24b)

∂11R
n(Pn) = −(Bn

1 )
2 + (αn

12)
2
{
(An

2 )
2 − (Bn

2 )
2
}
, (2.24c)

∂12R
n(Pn) = ∂21R

n(Pn) = −αn
12(B

n
2 )

2, (2.24d)

∂22R
n(Pn) = −(Bn

2 )
2. (2.24e)

Since this is a simple calculation, we omit the proof due to the lack

of space.

We now prove Proposition 6 by contradiction. Assume to the

contrary that P is a local optimum. Also, suppose without loss of

generality that subcarrier 1 is shared by the uplink and the downlink,

i.e., NS(P) = {1}. Let us define NE(P) := {n ∈ N||Kn(P)|= 1},

i.e., the set of subcarriers used by either the uplink or the downlink.

From Assumption 1 (M := mink|Nk(P)|≥ 2), there exist subcarriers

37



n1, · · · , nM−1 and m1, · · · ,mM−1 such that

n1, · · · , nM−1 ∈ N1(P) ∩ NE(P),

m1, · · · ,mM−1 ∈ N2(P) ∩ NE(P).

Then from the KKT conditions (2.18d), we have

0 ≤ λ1 = ∂1R
1(P1) = · · · = ∂1R

nM−1(PnM−1). (2.25)

Also, from nj ∈ N1(P)∩NE(P), we have p
nj

2 = 0 and thus A
nj

2 = B
nj

2 .

This simplifies (2.24a) and (2.24c) as

∂1R
nj(Pnj ) = B

nj

1 ,

∂11R
nj(Pnj ) = −

(
B

nj

1

)2
.

(2.26)

Then we have for all j = 1, · · · ,M − 1,

∂11R
nj (Pnj )

(a)
= −(∂1R

nj(Pnj ))2
(b)
= −

(
∂1R

1(P1)
)2

= −
(
B1

1

)2
,

(2.27)

where the equalities (a) and (b) come from (2.26) and (2.25), respec-

tively. Similarly, we obtain

∂22R
mj (Pmj ) = −(∂2R

mj (Pmj ))2 = −
(
∂2R

1(P1)
)2

= −
(
B1

2

)2
,

(2.28)

for all j = 1, · · · ,M − 1.
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Next, let us define v ∈ R
2N as

v11 = α1
12,

v12 = −α1
12,

v
nj

1 = −α1
12(M − 1)−1, (j = 1, · · · ,M − 1) ,

v
mj

2 = α1
12(M − 1)−1, (j = 1, · · · ,M − 1) ,

vn1 = vn2 = 0, others.

By inserting v into
∑

n (v
n)T∇2Rn (Pn) vn, we have (2.29), where the

equality (a) comes from (2.27) and (b) from A1
2 ≥ B1

2 .

To show that
∑N

n=1 (v
n)T∇2Rn (Pn) vn > 0, we find a lower bound

of B1
2 and an upper bound of B1

1 and B1
2 . Let us define σM :=

1
gm

and σm := 1
gM

. Since P is a local optimum, given the uplink

power allocation {pn1}n∈N , the downlink power {pn2}n∈N is allocated

according to the water-filling algorithm as

pn2 =





γ2 −
(
σ1
2 + α1

12p
1
1

)
, if n = 1,

γ2 − σn
2 , if n ∈ N2(P)\{1},

0, otherwise,

where γ2 is the downlink water-level such that
∑N

n=1 p
n
2 = Pmax

2 . Since

|N2(P)|≥ M ≥ 2 by Assumption 1, we have γ2 < σM + Pmax
2 , where

σM + Pmax
2 is the water-level when the total power Pmax

2 is allocated

to only one subcarrier with the minimum channel gain gm = 1
σM

.
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N∑

n=1

(vn)T∇2Rn (Pn) vn

=

(
v11

v12

)T (
∂11R

1(P1) ∂12R
1(P1)

∂21R
1(P1) ∂22R

1(P1)

)(
v11

v12

)

+

M−1∑

j=1

(
v
nj

1

0

)T (
∂11R

nj(Pnj ) ∂12R
nj (Pnj )

∂21R
nj(Pnj ) ∂22R

nj (Pnj )

)(
v
nj

1

0

)

+
M−1∑

j=1

(
0

v
mj

2

)T (
∂11R

mj (Pmj ) ∂12R
mj (Pmj )

∂21R
mj (Pmj ) ∂22R

mj (Pmj )

)(
0

v
mj

2

)

= −
(
v11
)2(

B1
1

)2
+
(
v11
)2(

α1
12

)2 {(
A1

2

)2
−
(
B1

2

)2}

+
{
−2v11v

1
2α

1
12 −

(
v12
)2} (

B1
2

)2

+

M−1∑

j=1

{−
(
v
nj

1

)2(
B

nj

1

)2
}+

M−1∑

j=1

{−
(
v
mj

2

)2(
B

mj

2

)2
}

(a)
= −

(
α1
12

)2(
B1

1

)2
+
(
α1
12

)4 {(
A1

2

)2
−
(
B1

2

)2}

+
{
2
(
α1
12

)3
−
(
α1
12

)2} (
B1

2

)2

+ {−
(
α1
12

)2
(M − 1)−1}

(
B1

1

)2
+ {−

(
α1
12

)2
(M − 1)−1}

(
B1

2

)2

(b)
≥
(
α1
12

)2 [
2
(
α1
12

) (
B1

2

)2
−
(
1 + (M − 1)−1

){(
B1

2

)2
+
(
B1

1

)2}]
,

(2.29)
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Furthermore, from p12 > 0, we also have

σ1
2 + α1

12p
1
1 < γ2 < σM + Pmax

2 . (2.30)

Then we obtain a lower bound of B1
2 as

B1
2 =

1

σ1
2 + α1

12p
1
1 + p12

(a)
>

1

σM + Pmax
2 + p12

(b)
>

1

σM + 2Pmax
2

, (2.31)

where the equality (a) comes from (2.30) and (b) holds because p12 <

Pmax
2 . In addition, we find an upper bound of B1

1 and B1
2 as

B1
1 ≤ A1

1 =
1

σ1
1

≤
1

σm
,

B1
2 ≤ A1

2 =
1

σ1
2 + α1

12p
1
1

<
1

σ1
2

≤
1

σm
.

(2.32)

By inserting (2.31) and (2.32) into the last equation of (2.29), we have

N∑

n=1

(vn)T∇2Rn (Pn) vn

≥
(
α1
12

)2 [
2
(
α1
12

) (
B1

2

)2
−
(
1 + (M − 1)−1

){(
B1

2

)2
+
(
B1

1

)2}]

>
(
α1
12

)2
[
2
(
α1
12

)( 1

σM + 2Pmax
2

)2

−
(
1 + (M − 1)−1

){
2

(
1

σm

)2
}]

≥ 0,
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where the last inequality comes from

(
α1
12

)
=

g112
g12
≥

g112
gM

(a)
≥ 2

g2M
g2m

(1 + 2gmPmax
2 )2

(b)
≥

(
1 + (M − 1)−1

)
(σM + 2Pmax

2 )2

(σm)2
,

where the inequality (a) is from (2.22) and (b) holds because M ≥ 2.

Since the second-order necessary condition (2.20) does not hold, P

cannot be a local optimum.

Combining Propositions 5 and Proposition 6, we establish a suf-

ficient condition, under which any global optimal solution has the

FDMA property.

Theorem 1. If Assumption 1 holds and

gn12 ≥ 2
g3M
g2m

(1 + 2gmPmax
2 )2 ,∀n ∈ N , (2.33)

then any global optimal power allocation should have the FDMA prop-

erty.

Proof. If Eq. (2.33) holds, Eq. (2.21) holds in any P with |NS |≥

2, and Eq. (2.22) holds in any P with |NS |= 1 Thus, the proof

is straightforward from Proposition 5 (|NS |≥ 2) and Proposition 6

(|NS |= 1).

Notice that condition (2.33) is satisfied if for every subcarrier n ∈ N ,

the interference channel gain gn12 is sufficiently larger than the channel
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gains gn1 and gn2 . This happens when node U and node D are close to

each other and both are distant from node F . In cellular networks, this

is the case when two uplink and downlink terminals are in proximity

and located at cell edge.

2.4.3 NP-hardness of Finding Optimal Power Alloca-

tion

We show that finding an optimal FDMA power allocation is NP-hard,

which in turn implies that problem P without joint decoding is also

NP-hard.

Let us define PFDMA := {P ≥ 0|pn1p
n
2 = 0,∀n ∈ N}, i.e., the set

of all FDMA power allocation vectors. Under the constraint of P ∈

PFDMA, the problem becomes a subcarrier allocation problem where

each subcarrier is exclusively assigned to either the uplink or the

downlink. We formulate the FDMA subcarrier assignment problem

PFDMA as follows:

(PFDMA) maximize
P

N∑

n=1

log (1 + gn1 p
n
1 ) + log (1 + gn2 p

n
2 )

subject to P ∈ PFDMA,

N∑

n=1

pnk ≤ Pmax
k ,∀k ∈ K.

(2.34)

Note that the inter-node interference gn12p
n
1 disappears. Also, given

a subcarrier assignment pattern, the uplink and downlink powers are
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allocated by the water-filling over the assigned subcarriers.

Theorem 2. Finding an optimal solution subcarrier assignment to

problem PFDMA is NP-hard. Thus, problem P without the joint de-

coding is also NP-hard.

Proof. Without loss of generality, assume that N is an even integer.

As in [31], we set the uplink and downlink channel gains to be the

same for each subcarrier n ∈ N ,, i.e., gn1 = gn2 = gn, and gn12 = L

where L is sufficiently large to satisfy the condition (2.33). Also, we

set Pmax
1 = Pmax

2 = PM := (N + 1)3σM where σM := max
n

1
gn . In the

below, we prove that Assumption 1 holds under our channel setting.

Let us first show that in any optimal solution P to problem P,

the number of subcarriers used by the uplink (and the downlink) is at

least greater than or equal to 2, i.e., M := min{N1(P),N2(P)} ≥ 2.

We prove this by contradiction. Assume to the contrary that in an

optimal power allocation P, the uplink uses only subcarrier 1, i.e.,
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N1(P) = {1}. Then we find an upper bound of
∑N

n=1R
n (Pn) as

N∑

n=1

Rn (Pn)

= log
(
1 + g1p11

)
+ log

(
1 +

g1p12
1 + g112p

1
1

)
+

N∑

n=2

log (1 + gnpn2 )

≤ log
(
1 + g1p11

)
+

N∑

n=1

log (1 + gnpn2 )

≤ log
(
1 + g1PM

)
+

N∑

n=1

log

(
pn2 +

1

gn

)
+

N∑

n=1

log gn

≤ log
(
1 + g1PM

)
+

N∑

n=1

log

(
p̌n2 +

1

gn

)
+

N∑

n=1

log gn

= log
(
1 + g1PM

)
+

N∑

n=1

log

(
PM +

∑N
n=1

1
gn

N

)
+

N∑

n=1

log gn

< log (PM +NσM )− log g1 +N log (PM +NσM )

−N logN +
N∑

n=1

log gn

< (N + 1) log PM −N logN +

N∑

n=2

log gn +O(1/N),

(2.35)

where p̌n2 is the water-filling power allocation over subcarriers 1 to N

as

1

gn
+ p̌n2 = γ2 =

PM +
∑N

n=1
1
gn

N
,∀n ∈ N ,

where γ2 is the corresponding water-level.

Now, consider a power allocation vector S where the uplink uses

subcarriers 1 to N
2 and the downlink uses subcarriers N

2 +1 to N with
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the water-filling power allocation over the assigned subcarriers. In

this case, we obtain a lower bound of the sum-rate
∑N

n=1R
n(Sn) as

N∑

n=1

Rn (Sn)

=

N/2∑

n=1

log (1 + gnsn1 )+
N∑

n=1+N/2

log (1 + gnsn2 )

=
N

2
log


PM +

∑N/2
n=1

1
gn

N/2


+

N

2
log

(
PM +

∑N
n=N/2+1

1
gn

N/2

)

+

N∑

n=1

log gn

=
N

2
log

(
PM +

∑N/2

n=1

1

gn

)
+

N

2
log

(
PM +

∑N

n=1+N/2

1

gn

)

−N log
N

2
+

N∑

n=1

log gn

> N logPM −N log
N

2
+

N∑

n=1

log gn.

(2.36)

By comparing (2.35) and (2.36), it is clear that
∑N

n=1R
n(Sn) >

∑N
n=1R

n (Pn) for a large N , which contradicts P is optimal. In a

similar way, we can also cover the case that the downlink uses only

one subcarrier, i.e., N2(P) = {1}. Therefore, we have M ≥ 2 in any

optimal solution

We next show that
∑N

n=1 p
n
1 = Pmax

1 in any optimal solution.

Since any local optimum P̃ should satisfy
∑N

n=1 p̃
n
1 = Pmax

1 or
∑N

n=1 p̃
n
1 =
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0 by Proposition 2, it suffices to prove that any P with
∑N

n=1 p
n
1 = 0

cannot be optimal. When
∑N

n=1 p
n
1 = 0, the downlink uses all the sub-

carriers without interference, and the corresponding optimal solution

is the water-filling power allocation. It is clear that we have a larger

sum-rate with the power allocation S, i.e., subcarriers 1 to N
2 for the

uplink and subcarriers N
2 + 1 to N for the downlink. Therefore, any

optimal solution P with
∑N

n=1 p̃
n
1 = 0 cannot be optimal.

Since condition (2.33) and Assumption 1 hold, any optimal solu-

tion has the FDMA property by Theorem 1, which means that the

power allocation problem P is equivalent to the subcarrier allocation

problem PFDMA. We can show that problem PFDMA is NP-hard by

reducing the equipartition problem to problem PFDMA. Specifically,

the equipartition problem is the task of deciding whether a given set

G = {g1, · · · , gN} can be partitioned into two equal-sized subsets G1

and G2 such that the sum of the element values in G1 equals that

in G2. It can be shown that for any optimal solution P to problem

PFDMA, the following condition holds

N∑

n=1

Rn (Pn) = N log

(
2PM +

∑N
n=1

1
gn

N

)
+

N∑

n=1

log gn,

if and only if the equipartition problem has a ”yes” answer (refer to

Theorem 5.1 of [31] for details). This indicates that problem PFDMA

is NP-hard and thus problem P is also NP-hard.

Since problem P without joint decoding is in general NP-Hard, we
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develop a heuristic solution in the next section. Recall that problem

P with joint decoding is a convex optimization problem, since the

downlink node can successfully cancel strong inter-node interference.

2.4.4 Partial FDMA Power Allocation

From Proposition 5, any power allocation vector P with |NS(P) ∩

NF |≥ 2 cannot be a (local) optimum. Motivated by this fact2, we

develop a power allocation algorithm where every subcarrier n ∈ NF

is exclusively used by either the uplink or the downlink. We start

with some definitions.

Definition 4. A feasible power allocation vector P is said to have

Partial FDMA property if every subcarrier n ∈ NF is exclusively

used by either the uplink or the downlink., i.e., pn1p
n
2 = 0,∀n ∈ NF .

Also, let us define PPF = {P ≥ 0|pn1p
n
2 = 0,∀n ∈ NF}, i.e., the set of

all partial FDMA power allocation vectors. It is clear that PPF is

not a convex set because a convex combination of two partial FDMA

power allocation vectors does not have the partial FDMA property

[30].

Now, we confine the solution space to PPF and convert the prob-

lem P without the joint decoding to the following partial FDMA power

2Unfortunately, we have no proof for the non-optimality of a power allocation
vector P with |NS(P) ∩NF |= 1.
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allocation problem.

(PPF) maximize
P

∑

n/∈NF

(
log (1 + gn1 p

n
1 ) + log

(
1 +

gn2 p
n
2

1 + gn12p
n
1

))

+
∑

n∈NF

(log (1 + gn1 p
n
1 ) + log (1 + gn2 p

n
2 ))

subject to P ∈ PPF ,

N∑

n=1

pnk ≤ Pmax
k ,∀k ∈ K.

(2.37)

Notice that due to the partial FDMA constraint, the interference term

gn12p
n
1 only appears in subcarriers n /∈ NF . Although the objective

function is concave, problem PPF is not a convex optimization problem

because the constraint set PPF is not a convex set.

To solve problem PPF, we apply the standard Lagrangian dual
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optimization method. The dual function g(λ) is given by

g(λ)

:= max
P∈PPF




∑

n/∈NF

log (1 + gn1 p
n
1 ) + log

(
1 +

gn2 p
n
2

1 + gn12p
n
1

)

+
∑

n∈NF

log (1 + gn1 p
n
1 ) + log (1 + gn2 p

n
2 )

+

2∑

k=1

λk

(
Pmax
k −

N∑

n=1

pnk

)}

=
2∑

k=1

λkP
max
k

+
∑

n/∈NF

max
pn1≥0,pn2≥0

{
log (1 + gn1 p

n
1 ) + log

(
1 +

gn2 p
n
2

1 + gn12p
n
1

)
− λ1p

n
1 − λ2p

n
2

}

(2.38a)

+
∑

n∈NF

max
pn1≥0,pn2≥0,

pn1 p
n
2=0

{log (1 + gn1 p
n
1 ) + log (1 + gn2 p

n
2 )− λ1p

n
1 − λ2p

n
2},

(2.38b)

where λ = (λ1, λ2) are dual variables. The additional constraints

pn1p
n
2 = 0 in (2.38b) come from the partial FDMA constraint P ∈ PPF .

The closed-form solution {p̂n1 , p̂
n
2}∀n/∈NF

to the inner maximization

problem (2.38a) can be obtained as (2.9) and (2.10), and the solution
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{p̂n1 , p̂
n
2}∀n∈NF

to problem (2.38b) as (2.10). They are

(p̂n1 , p̂
n
2 ) =





(
[ 1
λ1
− 1

gn1
]+, 0

)
, if log

(
1 + gn1 [

1
λ1
− 1

gn1
]+
)
− λ1

[
1
λ1
− 1

gn1

]+

> log
(
1 + gn2 [

1
λ2
− 1

gn2
]+
)
− λ2

[
1
λ2
− 1

gn2

]+
,

(
0, [ 1

λ2
− 1

gn2
]+
)
, otherwise.

This means that subcarrier n ∈ NF is given to link k satisfying with

a larger max (log(1 + gnk p
n
k)− λkp

n
k), and λk along with gnk decides

which link will use subcarrier n.

The dual problem min
λ≥0

(g(λ)) can be solved by the subgradient

method. In iteration t, the subgradient method updates λ by

λ
(t+1)
k =

[
λ
(t)
k − st

(
Pmax
k −

∑
n/∈NF

p̂nk(t)−
∑

n∈NF

p̂nk(t)
)]+

,∀k ∈ K,

(2.39)

where st is the t-th step size, {p̂nk(t)}n/∈NF
are the solution from (2.9)

and (2.10), and {p̂nk(t)}n∈NF
are from (2.10) for given (λ

(t)
1 , λ

(t)
2 ). As

λ is updated, the link using subcarrier n ∈ NF changes accordingly

in each iteration. The update process is terminated when ‖λ(t+1)−

λ(t)‖ ≤ ε. It is clear that the final output P̂ will have the partial

FDMA property, but it may not be feasible, i.e.,
∑N

n=1 p̂
n
k > Pmax

k .

To this end, we take the last step of normalization by
Pmax
k∑N

n=1 p̂
n
k

if P̂ is

not feasible.
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Table 2.1: Simulation Parameters
Parameter Value

Center frequency 2.1 GHz
Subcarrier bandwidth 15 kHz

Noise power -130 dBm
Antenna gain 0.0

hBS 30 m
hN 1.5 m

2.5 Performance Evaluation

In this section, we evaluate our solutions through numerical simula-

tions. We configure simulation parameters by adopting typical values

of LTE system [36]. We assume that each subcarrier has 15 kHz

bandwidth, and set the noise power to −130 dBm. The Hata urban

propagation model for urban environments has been used for the path

loss Ploss (in dB) [36]:

Ploss(d) = 69.55 + 26.16 · log f − 13.83 · log hB − CH(f)

+ (44.9 − 6.55 · log hBS) log d,

(2.40)

where d (km) denotes the distance between the transmitter and the

receiver, f (MHz) is the center frequency, hBS (m) denotes the height

of BS antenna, and CH(f) denotes the antenna height correlation

factor defined as,

CH(f) = 0.8 + (1.1 · log f − 0.7) hN − 1.56 · log f, (2.41)
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where hN (m) is the height of terminal node. Along with the path

loss, we assume i.i.d. Rayleigh fading for each subcarrier. It is as-

sumed that node U and node D are placed at an equal distance d

from node F . Let ḡ2 (ḡ1) and ḡ12 denote the average downlink (up-

link) and inter-node channel gains, respectively, i.e., ḡ2 = E[gn2 ],∀n.

Since the average channel gain only depends on the distance d, we

have ḡ2 = ḡ1. We denote the ratio of ḡ12 over ḡ2 as rI/S := ḡ12
ḡ2

. Given

the distance d and the corresponding ḡ2 = ḡ1, we change ḡ12 to see

how the performance varies with the inter-node interference. Also, for

a power allocation vector P, we define share ratio as the number of

shared subcarriers over the number of subcarriers, i.e., rs = |NS(P)|
N .

The total transmission power for the uplink and the downlink is set

to Pmax
1 = Pmax

2 = 20 dBm (100 mW) unless otherwise mentioned.

Table 2.1 summarizes our simulation settings. Each point in the fol-

lowing figures is an average of 100 different channel realizations.

We denote the optimal power allocation scheme (Section 2.3) by

OPT, and the partial FDMA scheme (Section 2.4.4) by P-FDMA.

For performance comparison, we consider the following heuristic al-

gorithms:

• Successive Convex Approximations (SCA) [37]: The problem

without joint decoding is solved by a technique called succes-

sive convex approximations (SCA). The key idea is to transform

Rn = log(1 + gn1 p
n
1 ) + log

(
1 +

gn2 p
n
2

1+gn12p
n
1

)
into a concave function

and then solve a series of convex problems iteratively.
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• Water-Filling (WF): The uplink (downlink) power is allocated

by the water-filling algorithm without considering the inter-node

interference.

We first examine the subcarrier-level power allocation under OPT

and P-FDMA for given channel gains. We consider 12 subcarriers

and set Pmax
1 = Pmax

2 = 30 dBm. We generate an instance of channel

gains as in Figs. 2.3(a), 2.3(b), and 2.3(c), where a log scale is used for

the y-axis. We intentionally set large interference channel gains for

subcarriers 5 – 8 to observe how OPT and P-FDMA allocate power

differently across those subcarriers. The power allocations under OPT

and P-FDMA are shown in Fig. 2.3(d) and Fig. 2.3(e), respectively.

In the case of OPT, the uplink and the downlink use subcarriers 1

– 8 and 5 – 12, respectively, with the water-filling power allocation.

Even though the interference channel gains for subcarriers 5 – 8 are

sufficiently large, those subcarriers are shared by the uplink and the

downlink. This is because node D successfully remove the inter-node

interference using the joint decoding when it is much stronger than the

downlink signal. In contrast, P-FDMA allocates power in an FDMA

manner such that the uplink and downlink use disjoint subcarrier sets,

i.e., subcarriers 1 – 6 for uplink and subcarriers 7 – 12 for downlink.

As expected, subcarriers 5 – 8 are not shared due to the excessive

inter-node interference, which is treated as noise.

Next, we investigate how the inter-node interference impacts on

overall performance. We consider 20 subcarriers and generate the
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Figure 2.3: Channel gains and the corresponding power allocations
under OPT and P-FDMA. The inter-node channel gains for subcarri-
ers 5 – 8 are intentionally set as large to see how OPT and P-FDMA
allocate power differently in those subcarriers. Subcarriers 5 – 8 are
shared by the uplink and the downlink in OPT while they are not
shared in P-FDMA due to the excessive inter-node interference, which
is treated as noise.
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channel gains according to the Hata propagation model and the Rayleigh

fading. The performance of OPT is depicted in Fig. 2.4 where a log

scale is used for the x-axis. The sum-rate decreases as rI/S increases

from 10−3 to 1, and bounds up afterwards. This means that the

sum-rate is maximized when the downlink signal dominates the in-

terference (or vice versa), and is minimized when they have a similar

strength.

Fig. 2.5 shows the performance of P-FDMA, which is different

from that of OPT in strong interference region. As rI/S increases, the

sum-rate of P-FDMA constantly decreases and converges to a point as

shown in Fig. 2.5(a). This is a straightforward result since achievable

rate shrinks as the interference (treated as noise) grows. Fig. 2.5(b)

illustrates that rs decreases with rI/S and eventually becomes zero,

i.e., FDMA power allocation, as proved in Theorem 1. This also

explains why the sum-rate converges to a point (rather than keep

decreasing) when rI/S increases beyond a certain value.

We vary the downlink power budget Pmax
2 to see the impact of

asymmetric uplink and downlink power budgets. We fix Pmax
1 =

20 dBm and change Pmax
2 from 20 dBm to 40 dBm. Fig. 2.6(a)

shows the uplink rate for various Pmax
2 values. When rI/S is small

(rI/S < 10−2), the uplink rate remains similar regardless of Pmax
2 .

As rI/S grows beyond 10−2, the uplink rate decreases with Pmax
2 .

For example, when Pmax
2 = 40 dBm, the uprate rate at rI/S = 103

is almost zero. In contrast, the downlink rate increases with Pmax
2
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Figure 2.4: Performance of OPT under various interference levels.

as shown in Fig. 2.6(b). This result indicates that under strong

interference environments, P-FDMA gives priority to the downlink

since it can achieve a larger rate than the uplink due to the large

downlink power budget.

Fig. 2.7 shows the number of subcarriers used by uplink and down-

link for various Pmax
2 values. In strong interference environments, i.e.,

rI/S > 1, the uplink uses less subcarriers as Pmax
2 increases. In con-

trast, the downlink are assigned more subcarriers with Pmax
2 . When

Pmax
2 = 40 dBm, the downlink uses almost all subcarrieres for each

value of rI/S . In case of strong interference, each subcarrier should

be assigned to either the uplink or the downlink. When Pmax
2 is suffi-

ciently larger than Pmax
1 , the downlink can achieve a larger rate than

the uplink, and consequently, almost all subcarriers are assigned to

the downlink.
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Figure 2.5: Performance of P-FDMA under various interference levels.
Fig. 2.5(a) shows that the sum-rate of P-FDMA constantly decreases
and converges to a point as rI/S increases. Fig. 2.5(b) illustrates that
the share ratio decreases with rI/S and eventually becomes zero, i.e.,
FDMA power allocation.
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Figure 2.6: Impact of downlink power budget Pmax
2 on uplink and

downlink rates.
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Figure 2.7: Impact of downlink power budget Pmax
2 on the number of

subcarriers used by uplink (downlink).
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Figure 2.8: Performance comparison between P-FDMA and existing
schemes.
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Figure 2.9: Impact of residual self-interference σ on performance.

The performance comparison between P-FDMA, SCA, and WF

is shown in Fig. 2.8 when d = 200 m. When rI/S is small, all

three schemes achieve a similar performance. This is because the

optimal power allocation in weak interference region is similar to the

water-filling algorithm. However, as the interference grows, P-FDMA

outperforms SCA and WF with a substantial gain. In WF, the up-

link power is allocated without considering the inter-node interference,

and all the subcarriers are shared. As a result, as rI/S increases, the

downlink rate becomes almost zero due to the excessive interference,

as shown in Fig. 2.8(b) Similarly, the downlink rate of SCA converges

to zero in very strong interference region because all subcarriers are

shared. In contrast, P-FDMA converges to an FDMA power alloca-

tion where the uplink and the downlink use disjoint subcarrier subsets

with an almost equal size. Hence, it avoids the excessive interference
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without causing the starvation of the downlink transmission.

Lastly, we investigate the impact of residual self-interference on

the performance. We assume that under imperfect interference can-

cellation, the noise power increases by σ dB due to the residual self-

interference. Fig. 2.9 shows the sum-rate of P-FDMA for various σ

values when d = 200 m. As expected, the sum-rate decreases with σ

due to the growing noise power. However, as rI/S increases beyond

a value, the sum-rate remains the same regardless of σ. This is be-

cause all subcarriers are used in half-duplex mode in high interference

region.

2.6 Summary

In this chapter, we have considered the OFDM subcarrier power al-

location problem for the case of three-node full-duplex transmissions

under the inter-node interference. We have formulated the sum-rate

maximization problem with and without joint decoding. We have

proved that when the joint decoding is used, the problem is a con-

vex optimization problem, which can be efficiently solved through our

low-complexity Lagrangian dual method. When the inter-node inter-

ference is always treated as noise, finding an optimal (FDMA) power

allocation is proven to be NP-hard. Thus, we have proposed a heuris-

tic power allocation algorithm where only subcarriers with lower inter-

ference channel gains (compared to uplink channel gains) are shared
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by the uplink and downlink. Through extensive simulations, we have

evaluated the performance of our solution in various scenarios, and

demonstrated that they outperform other existing schemes.
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Chapter 3

Resource Allocation in

Full-duplex OFDMA

Networks

3.1 Introduction

Half-duplex has been a most common assumption in wireless com-

munications and restricts a node to either transmit or receive at a

time on the same frequency [17]. Recent advances in signal process-

ing have challenged this assumption and demonstrated the feasibility

of in-band wireless full-duplex, which enables a node to transmit and

receive simultaneously on the same frequency band by countervailing

against the self-interference caused by its own transmission. Due to

its potential to boost throughput, the full-duplex capability has re-
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ceived tremendous attention from both the academic and industrial

world.

The main difficulty in building a full-duplex system is suppressing

self-interference to a sufficiently low level. Extensive researches have

been conducted for self-interference cancellation techniques, which can

be categorized into antenna cancellation, analog cancellation, and dig-

ital cancellation. In antenna cancellation, a pair of transmission an-

tennas are placed such that the signal from one antenna adds destruc-

tively with the signal from the other [1, 4, 5]. Analog cancellation taps

a copy of the transmitted signal from the transmit chain, processes

it with delay and attenuation, and subtracts it on the receive path

[1, 3]. Lastly, digital cancellation is used to clean out any residual

self-interference caused by non-ideal and non-linear components in

RF chains [1, 3]. The state-of-the-art work has demonstrated that

self-interference can be suppressed to the noise floor level by the com-

bination of multiple cancellation techniques [6].

The full-duplex operation was first applied to a relay, which re-

ceives a signal from a source and re-transmits it to a destination in

the same frequency. The full-duplex relay has been extensively stud-

ied in the context of information-theoretic analysis, assuming perfect

or imperfect self-interference cancellations [21, 22, 23, 25, 26, 27, 28].

The impact of the full-duplex relay on the capacity of a single-source

single-destination relay topology has been studied [21, 22, 23], and

the capacity of a network with multi-user pairs has been also investi-
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gated in [25, 26, 27, 28]. While these works provide the capacity or

achievable rate of the full-duplex relay, their results are limited to a

simple three-node relay topology or single-carrier environments.

Beyond the physical layer, full-duplex has the potential to signif-

icantly improve the throughput of a network by allowing more con-

current transmissions. Network-level mechanisms should be carefully

addressed to fully exploit the benefits of full-duplex from network

perspective. An important issue is how to apply full-duplex to wire-

less local area networks (WLANs), where the existing MAC protocols

were designed for half-duplex links. New MAC protocols proposed

in [7, 11, 12, 13] capture additional transmission opportunities cre-

ated by full-duplex and activate as many transmissions as possible by

modifying contention and backoff mechanisms. In addition, several

MAC techniques were proposed to mitigate hidden node problem by

sending a busy tone signal while receiving a packet [3, 7].

In contrast to full-duplex MAC protocols, there have been a few ef-

forts to redesign the scheduling and resource allocation algorithms for

full-duplex cellular networks. Most cellular systems adopt Orthogonal

Frequency Division Multiple Access (OFDMA) as a key technology for

multiple access [38, 39, 40]. Resource management in (half-duplex)

downlink or uplink OFDMA systems has been extensively studied in

the literature to maximize the sum-rate by assigning subcarriers and

allocating transmission power. An optimal solution to the downlink

problem is to assign each subcarrier to the user with the largest chan-
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nel gain and allocate power according to the water-filling policy [41].

On the other hand, the uplink problem is more challenging due to

distributive per-node power constraints, i.e., each node has its own

power budget. Most previous results achieve suboptimal performance

[42, 43, 44]. In full-duplex OFDMA networks, the base station (BS)

is allowed to transmit downlink traffic to nodes while receiving uplink

traffic from them simultaneously. Since the uplink and the down-

link transmissions coexist, previous solutions considering either the

downlink or the uplink are unlikely to optimize the performance, thus

necessitating new solutions that account for the characteristics of the

full-duplex transmissions.

In this chapter, we consider a single-cell full-duplex OFDMA net-

works which consists of one full-duplex BS and multiple full-duplex

nodes. Our goal is to maximize the sum-rate by jointly optimizing

subcarrier assignment and power allocation in the presence of the

full-duplex transmissions. The contributions of this paper can be

summarized as follows:

• We propose a joint solution to the subcarrier assignment and

power allocation problem by establishing a necessary condition

for optimality.

• We show that our algorithm is provably efficient in achieving

local Pareto optimality under certain conditions that are fre-

quently met in practice.
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• By decoupling uplink and downlink transmissions and ignoring

inter-node interference, we characterize the optimal performance

in polynomial time complexity.

• Through extensive simulations, we show that our algorithm em-

pirically achieves near-optimal performance and outperforms other

resource allocation schemes. Also, our simulation results reveal

the impact of various factors such as the channel correlation,

the residual self-interference, and the distance between BS and

nodes on the full-duplex gain. .

The rest of this chapter is organized as follows. The full-duplex

sum-rate maximization problem is formally formulated in Section 3.2,

and a necessary condition for optimality is derived in Section 3.3. Our

proposed subcarrier assignment and power allocation algorithm is de-

scribed in Section 3.4, and its performance is analytically evaluated

in Section 3.5. We further characterize the full-duplex sum-rate and

obtain a performance bound in Section 3.6, and empirically evaluate

our solution in comparison with the bound and other resource alloca-

tion schemes in Section 3.7. Finally, we conclude this paper in Section

3.8.

3.2 System Model

We consider a single-cell full-duplex OFDMA network, as shown in

Fig. 3.1. There are one full-duplex base station (BS) and N full-
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Figure 3.1: A single-cell full-duplex OFDMA network which consists
of one full-duplex base station (BS) and multiple full-duplex mobile
nodes. Using the full-duplex capability, the BS transmits downlink
traffic to nodes while receiving uplink traffic from them simultane-
ously.

duplex mobile nodes, and let N = {1, 2, . . . , N} denote the set of

nodes. The entire frequency band is partitioned into S subcarriers1,

and let S = {1, 2, . . . , S} denote the set of subcarriers. All subcarriers

are perfectly orthogonal to each other without inter-subcarrier inter-

ference. Using the full-duplex capability, the BS transmits downlink

traffic to nodes while receiving uplink traffic from them simultane-

ously. Due to imperfect interference cancellation, there exists residual

self-interference in each subcarrier. Experimental results show that

the increase in the noise floor due to the residual self-interference is

similar regardless of the transmission power [6]. This is because the

amount of interference cancellation increases with the transmission

power (refer to Fig. 7 in [6] for details). Based on this fact, we as-

sume that the residual self-interference increases the noise power by

1A subcarrier refers to the scheduling unit of the system rather than a physical
subcarrier. In practical wireless systems, the basic scheduling unit can be a single
physical subcarrier or a cluster of subcarriers. For example, the basic scheduling
unit of LTE system is a resource block that consists of 12 physical subcarriers [38].
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σ regardless of the transmission power.

We denote a subcarrier assignment pattern by a binary vector

X := {xn,s}n∈N ,s∈S , where element xn,s’s are defined as

xn,s =





1, if subcarrier s is assigned to node n,

0, otherwise.

(3.1)

We assume that a subcarrier is exclusively assigned to a node for both

uplink and downlink transmissions together. If we do not restrict the

exclusive subcarrier assignment assumption, then we can achieve a

better performance. However, in the full-duplex scenarios, it is highly

unlikely for an optimal solution to assign a subcarrier to two different

nodes due to inter-node interference from uplink node to downlink

node [10]. An exclusive subcarrier assignment will be more common,

in particular, when the uplink and the downlink channels have a strong

positive correlation (due to the symmetry). Furthermore, to assign a

subcarrier to two different nodes, the BS needs to know the inter-node

channel information, which is hard to obtain in practice. Thus, we

focus only on node-exclusive subcarrier assignment for both uplink

and downlink transmissions.

The BS is assumed to know the perfect channel information2 for

2In practice, the BS can obtain the channel state information through the chan-
nel feedback (downlink channel) or pilot signals from nodes (uplink channel) [44].
For example, in LTE systems [38], the BS can obtain the uplink channel infor-
mation by listening to the sounding reference signal transmitted by nodes. In
addition, the downlink channel information can be obtained through the channel
quality indicator (CQI) feedback from each node.
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each node and subcarrier [42, 43, 44]. For each subcarrier s, let hun,s

denote the uplink channel coefficient between the BS and node n and

hdn,s denote the downlink channel coefficient. Note that hun,s and hdn,s

include the location-dependent path loss and the fast fading effect.

Also, pun,s denotes the uplink power allocated by node n in subcar-

rier s, and pdn,s denotes the downlink power allocated by the BS to

subcarrier s for node n. Let Pu :=
{
pun,s

}
n∈N ,s∈S

denote the uplink

power allocation vector, and Pd :=
{
pdn,s

}
n∈N ,s∈S

denote the down-

link power allocation vector. Also, let us define P := (Pu,Pd). The

total transmission powers at the BS and node n are limited to PBS and

Pn, respectively. From now on, we omit the subscript n ∈ N , s ∈ S

for brevity unless confusion arises.

Assuming that self-interference is treated as noise, the rate Rn,s

of node n in subcarrier s is given by

Rn,s (X,P) = xn,s

{
log

(
1 +

pun,s|h
u
n,s|

2

σN0

)
+ log

(
1 +

pdn,s|h
d
n,s|

2

σN0

)}
,

whereN0 denotes the receiver noise floor and σ represents the increase

in the noise power due to the residual self-interference. For notational

simplicity, we rewrite the above equation as

Rn,s (X,P) = xn,s

{
log
(
1 + pun,sg

u
n,s

)
+ log

(
1 + pdn,sg

d
n,s

)}
, (3.2)

where gun,s =
|hu

n,s|
2

σN0
and gdn,s =

|hd
n,s|

2

σN0
represent the normalized (with

72



respect to σN0) uplink and downlink channel gains, respectively. Let

G :=
{
gun,s, g

d
n,s

}
denote the (normalized) channel gain vector. Given

Rn,s, let Rn (X,P) denote the rate of node n over all subcarriers, i.e.,

Rn (X,P) =
∑S

s=1Rn,s and let R (X,P) denote the total sum-rate,

i.e., R (X,P) =
∑N

n=1Rn.

In this chapter, our goal is to maximize the total sum-rateR (X,P)

by jointly optimizing the subcarrier assignment X and the power al-

location (P,Q) under the power constraints of the BS and each node.

Then we formally formulate the full-duplex sum-rate maximization

problem P as follows:

(P) maximize R (X,P) (3.3)

subject to

N∑

n=1

xn,s ≤ 1,∀s ∈ S (3.4)

S∑

s=1

pun,s ≤ Pn,∀n ∈ N (3.5)

N∑

n=1

S∑

s=1

pdn,s ≤ PBS , (3.6)

pun,s, p
d
n,s ≥ 0,∀n ∈ N ,∀s ∈ S (3.7)

xn,s ∈ {0, 1},∀n ∈ N ,∀s ∈ S. (3.8)

Note that each subcarrier is exclusively assigned to a single node ac-

cording to (3.4) and (3.8).
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3.3 Necessary Condition for Optimality

Due to the exclusive nature of subcarrier assignment, the original

problem P is an integer optimization problem, which generally re-

quires exponential complexity to be solved. Therefore, we relax the

constraints and allow multiple nodes to share a subcarrier together.

The binary constraints (3.8) are replaced with

xn,s ≥ 0,∀n ∈ N ,∀s ∈ S. (3.9)

From (3.4) and (3.9), we have xn,s ∈ [0, 1].

The relaxed problem P
′

obtained by replacing (3.8) with (3.9) is

still not a convex problem because R (X,P) is not (jointly) concave

in (X,P). However, the optimal solution still satisfies the Karush-

Kuhn-Tucker (KKT) condition [33], so we can obtain the following

proposition.

Proposition 7. Let X∗ =
{
x∗n,s

}
and P∗ =

{
pu∗n,s, p

d∗
n,s

}
denote the

optimal solution to problem P
′

. Then X∗ and P∗ satisfy the following

conditions:

1. For x∗n,s > 0,

n = argmax
m∈N

{
log
(
1 + pum,sg

u
m,s

)
+ log

(
1 + pdm,sg

d
m,s

)}
.

(3.10)
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2. For pu∗n,s > 0,

s = argmax
l∈S

(
xn,lg

u
n,l

1 + pun,lg
u
n,l

)
. (3.11)

3. For pd∗n,s > 0,

(n, s) = argmax
(m∈N ,l∈S)

(
xm,lg

d
m,l

1 + pdm,lg
d
m,l

)
. (3.12)

Proof. We can define the Lagrangian function L as

L(X,P,λ,µ, ν)

:=
N∑

n=1

S∑
s=1

xn,s
{
log
(
1 + pun,sg

u
n,s

)
+ log

(
1 + pdn,sg

d
n,s

)}

+
S∑

s=1
λs

(
1−

N∑
n=1

xn,s

)
+

N∑
n=1

µn

(
Pn −

S∑
s=1

pun,s

)

+ ν

(
PBS −

N∑

n=1

S∑

s=1

pdn,s

)
,

(3.13)

where λ = {λs}, µ = {µn}, and ν are the dual variables (or the

Lagrangian multipliers). Since the constraints (3.4), (3.5), and (3.6)

are affine functions, X∗ and P∗ satisfy the regularity condition [45].

Then from Proposition 3.3.1 of [33], there exist unique dual variables

λ∗ = {λ∗
s}, µ

∗ = {µ∗
n}, and ν∗ such that

∂L

∂xn,s

∣∣∣∣∣
X∗,P∗

= log
(
1 + pu∗n,sg

u
n,s

)
+ log

(
1 + pd∗n,sdn,s

)

− λs





= 0, if x∗n,s > 0

≤ 0, if x∗n,s = 0,

(3.14)
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∂L

∂pun,s

∣∣∣∣∣
X∗,P∗

=
x∗n,sg

u
n,s

1 + pu∗n,sg
u
n,s

− µn





= 0, if pu∗n,s > 0

≤ 0, if pu∗n,s = 0,

(3.15)

∂L

∂pdn,s

∣∣∣∣∣
X∗,P∗

=
x∗n,sg

d
n,s

1 + pd∗n,sg
d
n,s

− ν





= 0, if pd∗n,s > 0

≤ 0, if pd∗n,s = 0.

(3.16)

From (3.14), if subcarrier s is assigned to node n (i.e., x∗n,s > 0), node

n has the largest subcarrier sum-rate Rn,s = λs, which implies (3.10).

Similarly, we can obtain (3.11) from (3.15) and (3.12) from (3.16).

Although Proposition 7 gives a necessary condition for optimality,

we cannot directly obtain an optimal solution because the conditions

for X∗ and P∗ are interdependent. Instead, we can have an intu-

ition from (3.10) that each subcarrier s should be allocated to node n

with the largest subcarrier sum-rate. Motivated by this intuition, we

propose a resource allocation algorithm next.

3.4 Proposed Resource Allocation Algorithm

In this section, we develop a solution that blends greedy subcarrier

assignment and water-falling power allocation under per-node power

constraints. We start with describing power allocation, and then con-

sider subcarrier assignment.
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3.4.1 Power Allocation

Given an optimal subcarrier assignment X∗, problem P is reduced to a

power allocation problem that can be easily solved by the well-known

water-filling power allocation at the BS and each node. Specifically,

each node n allocates its uplink power pun,s to the assigned subcarrier

s as

pun,s =





[
αn − 1/gun,s

]+
, if x∗n,s = 1

0, if x∗n,s = 0,

(3.17)

where [·]+ := max{·, 0} and αn is a constant (called water level) sat-

isfying
∑S

s=1 p
u
n,s = Pn. Similarly, the BS can optimally allocate the

downlink power pdn,s to subcarrier s for node n with x∗n,s = 1 as

pdn,s =





[
α− 1/gdn,s

]+
, if x∗n,s = 1

0, if x∗n,s = 0,

(3.18)

where α is a constant satisfying
∑N

n=1

∑S
s=1 p

d
n,s = PBS .

3.4.2 Subcarrier Assignment

Next, we present a subcarrier assignment algorithm that sequentially

assigns each subcarrier to the node with the largest rate. We take into

account the dependency on the transmission power by re-allocating

the power in each iteration. The detailed algorithm is provided in

Algorithm 2.

Let S
(k)
n denote the set of subcarriers assigned to node n up to
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iteration k. If subcarrier s is assigned to a node, we denote the node

by ns. LetA
(k) denote the set of assigned subcarriers up to iteration k,

i.e., A(k) = ∪nS
(k)
n , and let U (k) = S\A(k). We also use the superscript

(k) to denote new power allocations, rates, and downlink channel

gains, calculated in iteration k. We use the superscript (0) to denote

the initial value, e.g., A(0) = ∅.

In iteration k (1 ≤ k ≤ S), we compute the rate for each pair of

node and unassigned subcarrier given the subcarrier assignment of up

to iteration (k − 1), and select the pair that offers the largest rate.

To further elaborate, we first allocate the uplink power p
u(k)
n,s and the

downlink power p
d(k)
n,s for each n as follows:

1. For each node n, re-allocate the uplink power p
u(k)
n,s using the

water-filling algorithm (3.17) to the subcarriers that are assigned

to node n or unassigned, i.e., S
(k−1)
n ∪ A(k−1).

2. For each node n, reset its downlink channel gain g
d(k)
n,s = gdns,s

for already assigned subcarrier s ∈ A(k−1), and g
d(k)
n,s = gdn,s for

unassigned subcarrier s ∈ U (k−1). Note that we use the downlink

channel gain of node ns for already assigned subcarrier s to

reflect the downlink rate dependency on other nodes’ downlink

channel gains. Then, allocate the downlink power p
d(k)
n,s with

channel gain d
(k)
n,s, using the water-filling algorithm (3.18).

Given p
u(k)
n,s and p

d(k)
n,s , we compute the rate R

(k)
n,s of each pair of node
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and unassigned subcarrier as

R(k)
n,s = log

(
1 + pu(k)n,s gun,s

)
+ log

(
1 + pd(k)n,s gd(k)n,s

)
, s ∈ U (k−1) (3.19)

Lastly, we find a pair (n∗, s∗) of node and unassigned subcarrier that

achieves the largest rate as follows:

1. (n∗, s∗) = argmax
n∈N ,s∈U(k−1)

R
(k)
n,s.

2. x̃n∗,s∗ ← 1.

3. U (k) ← U (k−1)\{s∗}, A(k) ← A(k−1)∪{s∗}, and S
(k)
n∗ ← S

(k−1)
n∗ ∪

{s∗}.

We repeat the above procedures S times and obtain the subcarrier

assignment vector X̃. Given X̃, we obtain the final power allocation

vector P̃ by solving (3.17) and (3.18).

In each iteration, we perform the water-filling for (uplink and

downlink) power allocation for each node, which has the complex-

ity of O(S) [42]. Considering N nodes and S iterations, our solution

has the complexity of O(NS2). Also, our solution runs at the BS, and

given the channel gains G, it returns X̃ and P̃ as the final outcomes.

3.5 Local Pareto Optimality

In this section, we show that our subcarrier assignment algorithm is

provably efficient in achieving a certain optimal property. We start

with several definitions related to local Pareto optimality [43].
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Algorithm 2: Full-Duplex Resource Allocation Algorithm

Data: channel gains G =
{
gun,s, g

d
n,s

}
.

maximum power constraints {Pn} and PBS .
1 Initialization

2 A(0) ← ∅;

3 U (0) ← S;

4 S
(0)
n ← ∅ for ∀n ∈ N ;

5 for iteration k = 1→ S do
6 for node n = 1→ N do
7 [Temporal uplink power in iteration k]

8 Allocate uplink power p
u(k)
n,s by (3.17) to the

subcarriers that are assigned to node n or
unassigned;

9 [Temporal downlink power in iteration k]

10 Reset g
d(k)
n,s = gdn(s),s for assigned subcarrier

s ∈ A(k−1), and g
d(k)
n,s = gdn,s for unassigned

subcarrier s ∈ U (k−1);

11 Allocate downlink power g
d(k)
n,s by (3.18) to node n

with channel gain g
d(k)
n,s ;

12 [Rate in iteration k]
13 Compute the rate

14 R
(k)
n,s = log

(
1 + p

d(k)
n,s gun,s

)
+ log

(
1 + p

d(k)
n,s g

d(k)
n,s

)
;

15 [Subcarrier assignment in iteration k]

16 Find (n∗, s∗) such that (n∗, s∗) = argmax
n∈N ,s∈U(k−1)

R
(k)
n,s;

17 x̃n∗,s∗ ← 1;
18 ns∗ ← n∗;

19 S
(k)
n∗ ← S

(k−1)
n∗ ∪ {s∗};

20 A(k) ← A(k−1) ∪ {s∗};

21 U (k) ← U (k−1)\{s∗};

22 [Power allocation]
23 Given x̃n,s, allocate uplink power p̃un,s by (3.17) and

downlink power p̃dn,s by (3.18);

Result: subcarrier assignment X̂ and power allocation P̂.
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Let X denote the set of all feasible subcarrier assignments sat-

isfying the constraints (3.4) and (3.8). Given a feasible subcarrier

assignment X ∈ X , let SXn denote the set of subcarriers assigned to

node n.

Definition 5. We define the distance D(X,Y) between two feasible

subcarrier assignments X,Y ∈ X as

D(X,Y) := max
n∈N
{dn(X,Y)} , (3.20)

where

dn(X,Y) := max
{
|SXn \S

Y

n |, |S
Y

n \S
X

n |
}
. (3.21)

By definition, if subcarrier assignment is changed from X to Y, each

node can win or lose at most D(X,Y) subcarriers. It can be shown

that < X ,D > is a metric space, in which ǫ-ball is defined as follows:

[43]

Definition 6. The ǫ-ball B(X, ǫ) of a feasible subcarrier assignment

X is defined as

B(X, ǫ) := {Y ∈ X |D(X,Y) ≤ ǫ}. (3.22)

Clearly, B(X, ǫ) is the set of subcarrier assignments whose distance

to X is no greater than ǫ.

Given a feasible subcarrier assignment X, let PX denote the power

allocation vector by the water-filling and RX
n denote the rate of node
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n, i.e., RX
n = Rn(X,PX).

We now introduce the following definitions of Pareto domination

and local Pareto optimality [43].

Definition 7. A subcarrier assignment X Pareto dominates another

subcarrier assignment Y if RX
1 ≥ RY

1 , · · · , RX

N ≥ RY

N for every node

and RX
m > RY

m for at least one node m ∈ N .

Definition 8. A subcarrier assignment X is local Pareto optimal in

B(X, ǫ) if there is no subcarrier assignment Y ∈ B(X, ǫ) that Pareto

dominates X.

Thus, if X is local Pareto optimal in B(X, ǫ), we cannot (strictly)

increase the rate of every node n by adding/removing at most ǫ sub-

carriers to/from SXn .

To obtain some properties of our solution, we need the following

three conditions.

Condition 1 (All-positive power allocation). Either positive uplink

power or positive downlink power is allocated to each subcarrier, i.e.,

N∑

n=1

(
pun,s + pdn,s

)
> 0,∀s ∈ S. (3.23)

Condition 2 (Elementwise-unique channel gain). For each node n,

each subcarrier has a distinctive channel gain both in uplink and

downlink, i.e.,
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gun,s 6= gun,l,∀s, l ∈ S, (3.24)

gdn,s 6= gdn,l,∀s, l ∈ S. (3.25)

Since gun,s’s (and also gdn,s’s) are continuous real random variables,

the probability that any two of them have an equal value is zero.

Therefore, we can assume that a channel gain vector is elementwise-

unique in practice.

Condition 3 (reciprocity-in-order). For each node n, for any two

subcarriers s and l, gun,s > gun,l implies gdn,s > gdn,l and vice versa, i.e.,

gun,s > gun,l ↔ gdn,s > gdn,l. This means that the order of subcarriers

in terms of uplink channel gain is equal to their order in terms of

downlink channel gain.

Note that two channels are said to be reciprocal (channel reciprocity)

when the uplink channel gain and the downlink channel gain for each

subcarrier are the same, i.e., gun,s = gdn,s,∀n, s. The reciprocal channels

are reciprocal-in-order (but the reverse does not hold in general).

Finally, we show the local Pareto optimality of our solution. From

now on, we assume a channel gain vector G =
{
gun,s, g

d
n,s

}
satisfy-

ing conditions 2 and 3. Let us choose a subcarrier assignment Y in

B(X, 1). That is, Y can be obtained from X by reassigning sub-

carriers such that each node wins and/or loses at most 1 subcarrier.

Assume that PX satisfies condition 1. Let Ru
n(X) and Rd

n(X) denote

the uplink rate and the downlink rate of node n, respectively, defined
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as

Ru
n(X) =

∑

s∈Sn(X)

log
(
1 + pun,s(X)gun,s

)
, (3.26)

Rd
n(X) =

∑

s∈Sn(X)

log
(
1 + pdn,s(X)gdn,s

)
. (3.27)

Then we have Rn(X) = Ru
n(X)+Rd

n(X). The following lemma shows

a necessary condition under which Y Pareto dominates X.

Lemma 2. Suppose that subcarrier assignment is changed from X

to Y ∈ B(X, 1). If there exists a node which only loses a subcarrier

and wins no subcarrier, then Y does not Pareto dominate X.

Proof. We prove this by contradiction. Suppose Y Pareto dominates

X. Without loss of generality, assume that there exists only one node

which loses a subcarrier. Suppose that node n loses subcarrier s,

i.e., Sn(Y) = Sn(X)\{s}. Since Y Pareto dominates X, we have

Rn(Y) ≥ Rn(X). From the assumption that P(X) is an all-positive

power allocation vector, we have pun,s(X) + pdn,s(X) > 0. Now, we can

consider the following two cases.

1. For pun,s(X) > 0:

Since node n loses subcarrier swith positive uplink power, Ru
n(Y) <

Ru
n(X) must be true considering the characteristic of the water-

filling algorithm. The reduced uplink rate should be compen-

sated by the increase in the downlink rate, i.e., Rd
n(Y) > Rd

n(X),

which implies P d
n(Y) > P d

n(X).
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2. For pdn,s(X) > 0:

Since node n loses subcarrier s with positive downlink power,

more downlink power should be allocated in Y than in X, i.e.,

P d
n(Y) > P d

n(X).

In both cases, we should have P d
n(Y) > P d

n(X), which means that

(i) the downlink water level α(Y) in Y is greater than the downlink

water level α(X) in X, and (ii) there exists at least one node which

loses some of its downlink power, part of which is reallocated to node

n. Now consider a node m which obtains subcarrier l, i.e., Sm(Y) =

Sm(X)∪{l}. Since α(Y) > α(X), we can prove that P d
m(Y) ≥ P d

m(X)

as follows:

P d
m(Y) =

∑

s∈Sm(Y)

[
α(Y)−

1

gdm,s

]+

=
∑

s∈Sm(X)

[
α(Y)−

1

gdm,s

]+
+

[
α(Y)−

1

gdm,l

]+

≥
∑

s∈Sm(X)

[
α(Y)−

1

gdm,s

]+

≥
∑

s∈Sm(X)

[
α(X)−

1

gdm,s

]+
= P d

m(X).

(3.28)

Next, consider node m which swaps subcarrier i for subcarrier j, i.e.,

Sm(X)\{i} = Sm(Y)\{j}. If gdm,i < gdm,j and also gum,i < gum,j by

the reciprocity-in-order, P d
m(Y) should be larger than P d

m(X) to have

Rm(Y) ≥ Rm(X). If gdm,i > gdm,j , we have P d
m(Y) ≥ P d

m(X), which

can be proven as
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P d
m(Y) =

∑

s∈Sm(Y)

[
α(Y) −

1

gdm,s

]+

=
∑

s∈Sm(Y)\{j}

[
α(Y)−

1

gdm,s

]+
+

[
α(Y)−

1

gdm,j

]+

=
∑

s∈Sm(X)\{i}

[
α(Y)−

1

gdm,s

]+
+

[
α(Y)−

1

gdm,j

]+

≥
∑

s∈Sm(X)\{i}

[
α(X) −

1

gdm,s

]+
+

[
α(X)−

1

gdm,j

]+

≥
∑

s∈Sm(X)\{i}

[
α(X) −

1

gdm,s

]+
+

[
α(X)−

1

gdm,i

]+

≥
∑

s∈Sm(X)

[
α(X) −

1

gdm,s

]+
= P d

m(X).

(3.29)

Considering the above cases, there exists no node which is allocated

less downlink power in Y than in X. As a result, Rd
n(Y) > Rd

n(X)

does not hold. This means that we have Rn(Y) < Rn(X), which

contradicts that Y Pareto dominates X.

Lemma 3. Assume that each node swaps a subcarrier for another

one or maintains its subcarrier assignment. If there exists a node

which swaps a subcarrier for another one with a smaller (uplink and

downlink) channel gain, then Y does not Pareto dominate X.

Proof. Again, we prove this by contradiction. Without loss of gen-

erality, assume that node n swaps subcarrier s for subcarrier l with
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gdn,s < gdn,l and gun,s < gun,l, while each of the other nodes swaps one

of its subcarriers for another one with a larger channel gain. Since

gdn,l > gdn,s and pun,s(X) + pdn,s(X) > 0, P d
m(X) = P d

m(Y) leads to

Rn(Y) < Rn(Y). Thus we should have P d
m(Y) > P d

m(X), which

means that there exists a node which is allocated less downlink power

in Y than in X. However, we can prove by (3.29) that there exists

no such node, which is a contradiction. Thus, Y does not Pareto

dominate X.

Lemma 4. Assume that Y ∈ B(X, 1) Pareto dominates X. When

subcarrier assignment is changed from X to Y, every node either

retains its subcarrier assignment unchanged or swaps one subcarrier

for another one with a larger channel gain.

Proof. When subcarrier assignment is changed fromX toY ∈ B(X, 1),

if there exists either a node that loses a subcarrier (Lemma 2) or swaps

a subcarrier for another one with a smaller channel gain (Lemma 3),

Y does not Pareto dominate X. The proof of Lemma 4 is straight-

forward using Lemma 2 and Lemma 3.

In addition, the following lemma shows a useful property of our algo-

rithm.

Lemma 5. By our algorithm, when node n is assigned subcarrier s,

it has the largest (uplink and downlink) channel gain in subcarrier s

among all unassigned subcarriers.
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Proof. We prove this by contradiction. Suppose that subcarrier s is

assigned to node n in iteration k. This means that R
(k)
n,s > R

(k)
n,l ,∀l ∈

U (k−1)\{s}. Now, assume that in the beginning of iteration k, there

is subcarrier l ∈ U (k−1) with gun,l > gun,s and also gdn,l > gdn,s. Now,

let α
(k)
n denote the uplink water-level of node n, and α(k) denote the

downlink water level. Then the rates R
(k)
n,s and R

(k)
n,l are given as

R(k)
n,s =

[
α(k)
n −

1

gun,s

]+
+

[
α(k) −

1

gdn,s

]+
, (3.30)

R
(k)
n,l =

[
α(k)
n −

1

gun,l

]+
+

[
α(k) −

1

gdn,l

]+
. (3.31)

Since gun,l > gun,s and gdn,l > gdn,s, we have R
(k)
n,l ≥ R

(k)
n,s, which contra-

dicts R
(k)
n,s > R

(k)
n,l .

Based on the above lemmas, we can prove that X̃ is local Pareto

optimal in its 1-ball if P̃ is an all-positive power allocation vector.

Theorem 3. Given a channel gain vector G satisfying Conditions

2 and 3, if P̃ satisfies Condition 1, X̃ is local Pareto optimal in its

1-ball.

Proof. We prove this by contradiction. Assume that a subcarrier as-

signment Y ∈ B(X̃, 1) Pareto dominates X̃. Then from Lemma 4,

when subcarrier assignment is changed from X̃ to Y, each node swaps

a subcarrier for another one with a larger channel gain. Without loss

of generality, assume that subcarrier sn is reallocated from node n to
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node n + 1 for 1 ≤ n ≤ M − 1, and subcarrier sM from node M to

node 1. In this case, we have gun,sn−1
> gun,sn and gdn,sn−1

> gdn,sn for

2 ≤ n ≤M , and gu1,sM > gu1,s1 and gd1,sM > gd1,s1 .

Let kn (1 ≤ n ≤M) denote the iteration index when subcarrier sn

is assigned to node n in our algorithm. By Lemma 5, node 1 has the

largest channel gain in subcarrier s1 among all unassigned subcarriers

in iteration k1. This implies that subcarrier sM is assigned to node

M before iteration k1, i.e.,

k1 > kM . (3.32)

Similarly, from node n’s point of view (2 ≤ n ≤M), we have

k2 > k1, (3.33)

k3 > k2, (3.34)

...

kM > kM−1. (3.35)

Then we have a contradiction in the relation between k1, · · · , kM .

Remark 1. When Conditions 1 – 3 do not hold, we can find a counter

example where our solution X̃ is not local Pareto optimal in B(X̃, 1).

We show later by simulations that Condition 1 is frequently met in

practice (Fig. 3.5). Although the techniques we used above are similar
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to those in [43], there is an important difference: when subcarrier

assignment is changed from X̃ to Y, the downlink rate of each node

n should be carefully considered because it depends on the channel

gains of other nodes, e.g., Eqs. (3.28) and (3.29) in Lemma 2.

3.6 Performance Bound

In this section, we provide a performance upper bound (UB) by con-

sidering uplink and downlink transmissions separately.

For the original problem P, we assume that a subcarrier is used

by only one node for a full-duplex link. We now relax this constraint

and allow two different nodes to share a single subcarrier: one for

uplink and the other for downlink. Also, we introduce two assignment

variables xun,s and xdn,s defined as follows:

xun,s =





1, if subcarrier s is assigned to node n in uplink,

0, otherwise.

(3.36a)

xdn,s =





1, if subcarrier s is assigned to node n in downlink,

0, otherwise.

(3.36b)

Also, xun,s and xdn,s should satisfy
∑N

n=1 x
u
n,s ≤ 1 and

∑N
n=1 x

d
n,s ≤

1,∀s ∈ S, respectively. By replacing (3.8) with (3.36a) and (3.36b),

we have another problem PR. Note that the optimal solution to P is

still feasible in PR, i.e., x
∗
n,s = 1 in P can be mapped to xun,s = xdn,s = 1
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in PR. Thus, the optimal solution to PR achieves an upper bound of

P.

When two different nodes use a subcarrier, the maximum achiev-

able rate is less than the sum of (point-to-point) uplink rate and down-

link rate because the uplink transmission can cause inter-node inter-

ference at the downlink node. By assuming that there is no inter-node

interference, we can separate problem PR into two individual problems

PD and PU, which maximizes the downlink sum-rate and the uplink

sum-rate, respectively, defined as follows:

(PD) maximize
N∑

n=1

S∑

s=1

xdn,s log
(
1 + pdn,sg

d
n,s

)
(3.37)

subject to

N∑

n=1

xn,s ≤ 1,∀s ∈ S (3.38)

N∑

n=1

S∑

s=1

pdn,s ≤ PBS , (3.39)

pdn,s ≥ 0,∀n ∈ N ,∀s ∈ S (3.40)

xdn,s ∈ {0, 1},∀n ∈ N ,∀s ∈ S. (3.41)
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(PU) maximize

N∑

n=1

S∑

s=1

xun,s log
(
1 + pun,sg

u
n,s

)
(3.42)

subject to
N∑

n=1

xun,s ≤ 1,∀s ∈ S (3.43)

S∑

s=1

pun,s ≤ Pn,∀n ∈ N (3.44)

pun,s ≥ 0,∀n ∈ N ,∀s ∈ S (3.45)

xun,s ∈ {0, 1},∀n ∈ N ,∀s ∈ S. (3.46)

The optimal solution of PD is to assign a subcarrier to a node with

the largest (downlink) channel gain and to allocate power according to

the water-filling algorithm [41]. For PU, although no low-complexity

optimal solution has been known, its upper bound can be charac-

terized in polynomial time [43]. To find an upper bound, we relax

PU to problem P
′

U by replacing S constraints in (3.43) with a single

constraint
N∑

n=1

S∑

s=1

xun,s ≤ S. (3.47)

Eq. (3.47) means that a subcarrier can be assigned to more than one

node (e.g., xun,s = 1 and xum,s = 1) as long as the number of assigned

subcarriers is no greater than S. Since {xun,s} satisfying (3.43) also

satisfies (3.47), the optimal solution to P
′

U achieves an upper bound

of PU. From (3.47), if node n is allowed to use sn subcarriers, it can

now choose the best sn subcarriers regardless of whether or not those

subcarriers are used by other nodes. Then, the problem is to deter-
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mine the optimal values for {sn}∀n satisfying
∑N

n=1 sn ≤ S, and it can

be solved using dynamic programming with a polynomial complexity

in N and S [43]. Finally, by combining the optimal solution to PD

and the upper bound of PU, we can find an upper bound of PR in

polynomial time, which is also an upper bound of P.

Clearly, UB is not achievable in practice due to the interference

between the uplink and the downlink. Also, the tightness of UB de-

pends on the correlation between the uplink and downlink channels.

When the uplink and the downlink channels are symmetric, the origi-

nal solution to the sum-rate maximization is not much different from

the solution to each subproblem that maximizes only uplink (or down-

link) rate, due to symmetric property. In this case, UB becomes a tight

upper bound as shown in Fig. 2 later. However, in the asymmetric

channel case, the solution to each subproblem is significantly different

from that to the original problem, and consequently the performance

gap between UB and FD-P becomes large.

3.7 Performance Evaluation

In this section, we evaluate our resource allocation solution through

numerical simulations. We use typical parameter values of LTE sys-

tem [36]. We assume 2.1 GHz frequency band and configure the band-

width of a subcarrier as 180 kHz, which corresponds to the bandwidth

of a resource block in LTE system. The noise power N0 is set to -119
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dBm. The increase of the noise power3 σ due to the residual self-

interference is set to 1 dB unless otherwise specified. The maximum

transmission powers for the BS and each node n are set to 43 dBm

and 24 dBm, respectively. For the path loss model, we use the Hata

propagation model for urban environments where path loss Ploss (dB)

is calculated as [36]

Ploss(d) = 69.55 + 26.16 · log f − 13.83 · log hBS − CH(f)

+ (44.9 − 6.55 · log hBS) log d,

(3.48)

where d (km) denotes the distance between the transmitter and the

receiver, f (MHz) is the center frequency, and hBS (m) denotes the

height of the BS. CH(f) is the antenna height correlation factor de-

fined as,

CH(f) = 0.8 + (1.1 · log f − 0.7) hN − 1.56 · log f, (3.49)

where hN (m) is the height of the terminal node. We assume that

each node is placed at an equal distance d from the BS. Table 3.1

summarizes our simulation settings.

We assume a time-slotted system and adopt the model of i.i.d.

Rayleigh block fading channel in [46]. A time slot corresponds to a

scheduling time unit of the system, during which the channel gain of

each node is time-invariant, and the channel gain for each subcarrier

3According to [6], the increase of the noise power due to the residual self-
interference is at most 1 dB.

94



Table 3.1: Simulation Parameters
Parameter Value

Center frequency 2.1 GHz
Subcarrier bandwidth 180 kHz

Noise power N0 -119 dBm
Residual self-interference σ 1 dB
Base station’s power PBS 43 dBm

Node n’s power Pn 24 dBm
hBS 30 m
hN 1.5 m

follows an independent Rayleigh distribution in each time slot. Also,

ρ denotes the correlation between the uplink and the downlink chan-

nels. When ρ = 1, the uplink and the downlink channel gains are the

same, i.e., symmetric channel. In contrast, when ρ = 0, the uplink

and the downlink channel gains are chosen independently, i.e., asym-

metric channel. Note that the reciprocity-in-order also holds in the

symmetric channel model.

For performance evaluation, we compare the following schemes:

• Upper Bound (UB): Performance upper bound obtained from

Section 3.6.

• Full-Duplex Optimal solution (FD-O): Optimal subcarrier as-

signment X∗ obtained by exhaustive search. Since the com-

plexity to find X∗ is O(NK), we try FD-O only for small-size

networks.

• Full-Duplex Proposed solution (FD-P): Proposed subcarrier as-

signment X̃ maximizing the sum-rate.
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• Full-Duplex Downlink optimal solution (FD-D): Subcarrier as-

signment Xd maximizing the downlink rate, i.e., assign each

subcarrier to a node with the largest downlink channel gain.

• Full-Duplex Uplink Near-optimal solution (FD-U): Subcarrier

assignment Xu maximizing the uplink rate, i.e., assign each sub-

carrier according to [43].

• Half-Duplex (HD): Xu and Xd are used for the uplink and the

downlink, respectively.

In all schemes, the water-filling algorithm is used for the power alloca-

tion. Given a subcarrier assignment pattern X, Ru(X) and Rd(X) de-

note the uplink rate and the downlink rate, respectively, i.e., Ru(X) =

∑
n,s x

u
n,s log(1 + pun,sg

u
n,s) andRd(X) =

∑
n,s x

d
n,s log(1 + pdn,sg

d
n,s). The

sum-rate of HD is calculated as 0.5 × Rd(Xd) + 0.5 × Ru(Xu). Also,

we define full-duplex gain as the performance gain of FD-P over HD.

3.7.1 Simulation Results

We first consider the symmetric channel model where the uplink and

downlink channels are the same. We compare the performance of each

scheme according to S values (number of subcarriers) when N = 50

and d = 200 m. Fig. 3.2 shows the sum-rates of all schemes as S

increases from 10 to 100, i.e., the bandwidth increases by 10 times.

For each value of S, the performance gap between UB and FD-P is

negligible, which means that FD-P is near-optimal while UB gives
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Figure 3.2: Performance comparison according to S values in sym-
metric channel model.

a near-tight upper bound. Also, the sum-rates of FD-P, FD-D, and

FD-U are almost identical. This is because X̃, Xu, and Xd are not

much different from each other due to the channel symmetry. The

full-duplex gain ranges from 87% (S = 100) to 91% (S = 10). Due to

the residual self-interference, achieving the ideal doubling of spectral

efficiency is not possible even in the symmetric channel case.

Fig. 3.3 depicts the sum-rate performance of each scheme as a

function of N (number of nodes) when S = 50 and d = 200 m.

With more nodes, the sum-rate of each scheme increases due to the

multi-user diversity. Also, the average uplink power allocated in each

subcarrier grows with N . As N increases, each uplink node is likely

to use less subcarriers ( S
N subcarriers on average) and it can allocate

more power to each of assigned subcarriers. Again, FD-P, FD-D, and

FD-U show a similar performance. The full-duplex gain ranges from

97



10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Number of nodes (N)

S
um

−
ra

te
 (

M
bp

s)

 

 

UB (Upper Bound)
FD−P (Proposed)
FD−D (Downlink Optimal)
FD−U (Uplink Near−optimal)
HD (Half−Duplex)

Figure 3.3: Performance comparison according to N values in sym-
metric channel model.
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Figure 3.4: Performance comparison according to σ values in sym-
metric channel model.
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Figure 3.5: The probability of P̃ being an all-positive power allocation
vector for d = 400 m.

86 % (N = 10) to 89 % (N = 100).

The impact of residual self-interference σ is plotted in Fig. 3.4

when N = 50, S = 50, and d = 200 m. The sum-rates of all schemes

except HD decreases with σ due to the increasing noise power. The

full-duplex gain reaches 99% in case of the perfect cancellation (σ =

0). Since X̃ and Xd (Xu) are similar in the symmetric channel case,

FD-P can almost double both the uplink and the downlink rates. This

indicates that full-duplex can achieve near-double spectral efficiency

if the channel reciprocity holds and the interference cancellation is

perfect. However, as σ increases from 0 dB to 5 dB, the full-duplex

gain decreases from 99% to 47%.

We calculate the probability Pall+ of P̃ being an all-positive power

allocation vector. Note that Pall+ is a lower bound of the probability

that our solution guarantees the local Pareto optimality. Fig. 3.5
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Figure 3.6: Performance comparison in small-size networks.

shows that for various S values, Pall+ approaches 1 very quickly even

with a small number of nodes, e.g., less than 10 nodes. For example,

when S = 50, Pall+ reaches 1 only afterN becomes 10. When there are

more nodes, each subcarrier is assigned to a node with a larger channel

gain due to the multi-user diversity, and each subcarrier is assigned

positive (uplink and/or downlink) power with a higher probability.

Considering that the number of nodes in a cell is typically larger

than 10, our solution is highly likely to guarantee the local Pareto

optimality in practice.

Now, we consider the asymmetric channel model where the uplink

and the downlink gains are chosen independently. The simulation

results including FD-O are plotted in Fig. 3.6 when N = 5 and

d = 200 m. FD-P achieves almost the same performance as FD-O,

and thus FD-P is empirically near-optimal even in asymmetric channel

environments. The performance gap between UB and FD-P is about
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Figure 3.7: Performance comparison according to S values in asym-
metric channel model.
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Figure 3.8: Performance comparison according to N values in asym-
metric channel model.
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11%, which is a huge increase compared to the symmetric channel

case. Due to the channel asymmetry, X̃ and Xd (Xu) significantly

differ from each other, and consequently, the performance gap between

UB and FD-P enlarges.

We compare the performance of each scheme in large-size net-

works. We omit FD-O due to its high computational complexity. Fig.

3.7 shows the sum-rate of each scheme as a function of S when N = 50

and d = 200 m. FD-P outperforms both FD-D and FD-U with a gain

of 11% (S = 10) to 14% (S = 100). Due to the channel asymme-

try, X̃ and Xu (Xd) are different to each other. Consequently, FD-P

achieves a better performance than FD-D (FD-U) that only maximizes

the downlink (uplink) rate rather than the sum-rate. The full-duplex

gain ranges from 64% (S = 100) to 74% (S = 10), which are lower

than those (87% to 91%) in the symmetric channel case. This is be-

cause the gap between Rd(Xd) and Rd(X̃) (also Ru(Xu) and Ru(X̃))

widens in the asymmetric channel case.

The performance of each scheme as a function of N is shown in Fig.

3.8 when S = 50 and d = 200 m. When N = 10, the performance gap

between FD-P and FD-D is negligible (5%), and FD-U achieves the

lowest sum-rate. Since PBS (= 43 dBm) is about 80 times larger than

Pn (= 24 dBm), the downlink rate dominates the sum-rate when there

are few nodes. Thus, FD-P and FD-D show a similar performance in

case of small N . As N grows, however, the sum of each node’s uplink

power, i.e., N · Pn, also linearly increases, balancing the impact of
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downlink and uplink rates on the sum-rate. As a result, the sum-

rates of FD-D and FD-U become closer while FD-P outperforms both

of them with a gain of 16% (S = 100). In addition, the full-duplex

gain is about 68% for every value of N .

Fig. 3.9 shows the sum-rate of each scheme according to d values

when N = 50 and S = 50. Interestingly, as the distance d increases,

the full-duplex gain decreases from 79% (d = 100 m) to 34 % (d = 500

m). When d is small (i.e., high SINR), the gap between Rd(Xd) and

Rd(X̃) is relatively small due to the shape of a logarithmic function,

i.e., the derivative of log(x) is low at a small x. However, as d increases

(i.e., low SINR), the gap between Rd(Xd) and Rd(X̃) widens due

to the large derivative of log(x) at a small x. In other words, the

degradation of downlink rate due to a suboptimal allocation X̃ is

more remarkable at low SINR regions. Also, the gap between Ru(Xu)

and Ru(X̃) increases with d for the same reason.

Fig. 3.10 shows the performance of each scheme according to σ

values when N = 50, S = 50, and d = 200 m. The sum-rates of

all schemes except HD decreases with σ due to the increasing noise

power. Even with the perfect cancellation (σ = 0), the full-duplex gain

is only 74%, which is far below the ideal gain of 100%. Furthermore,

as σ reaches 5 dB, the full-duplex gain is reduced to 24% and FD-U

(FD-D) has a marginal gain over HD. This results indicates that the

full-duplex gain is limited when there exists a substantial amount of

residual self-interference.
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Figure 3.9: Performance comparison according to d values in asym-
metric channel model.
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Figure 3.10: Performance comparison according to σ values in asym-
metric channel model.
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Figure 3.11: Impact of channel correlation ρ on performance.

Lastly, we investigate the impact of channel correlation ρ on the

performance. Fig. 3.11 shows the performance of each scheme as a

function of ρ when N = 50, S = 50, and d = 200 m. Since the uplink

and the downlink transmissions are separated in UB and HD, their

sum-rates are not affected by ρ. In contrast, the performance of FD-P

improves by 12% (from 64.8 Mbps to 72.7 Mbps) as ρ increases from

0 to 1. This is because X̃ and Xu (Xd) become more similar to each

other with ρ. The full-duplex gain also increases with ρ, ranging from

68% (ρ = 0) to 88% (ρ = 1).

3.8 Summary

In-band wireless full-duplex is a promising technology to boost the

network throughput. While a near-double capacity is anticipated in

point-to-point wireless links, the performance gain remains unclear
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in large-scale networks due to the complicated resource allocation in

multi-carrier and multi-user environments In this chapter, we have de-

veloped a new resource allocation algorithm for full-duplex OFDMA

networks using a necessary condition for the optimal solution. The

proposed algorithm assigns subcarriers to nodes in an iterative man-

ner with low complexity. We have proved that our algorithm achieves

local Pareto optimality under certain conditions that hold frequently

in practice. By separating the uplink and downlink transmissions, we

have obtained an upper bound on performance that is near-tight in

symmetric channel cases. Through extensive numerical simulations,

we have demonstrated that our algorithm achieves near-optimal per-

formance and outperforms other resource allocation schemes designed

for half-duplex networks. Also, we have investigated the impact of

various factors such as channel correlation, distance, and residual self-

interference on the performance of full-duplex.
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Chapter 4

Resource Allocation with

Inter-node Interference in

Full-duplex OFDMA

Networks

4.1 Introduction

Orthogonal Frequency Division Multiple Access (OFDMA) has been

a key technology in most 4G cellular systems [39]. Dividing the spec-

trum band into multiple orthogonal subcarriers and distributing them

over different nodes, OFDMA benefits from both multiuser and fre-

quency diversities. To exploit such benefits, radio resource allocation
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algorithms handle subcarrier assignment and power allocation. In

downlink case, an optimal allocation for the sum-rate maximization

is a combination of the channel-based subcarrier assignment and the

well-known water-filling power allocation [41]. In contrast, the uplink

problem is in general difficult to solve due to the distributive nature

of power constraints, i.e., each uplink node has its own power budget.

Most previous results achieve suboptimal performance by solving re-

laxed problems [42, 43], or using a randomized iteration method [46].

Recently, in-band wireless full-duplex has attracted great atten-

tion as a promising technology for next-generation wireless systems.

A full-duplex radio can transmit and receive simultaneously on the

same frequency band by cancelling self-interference that results from

its own transmission to the received signal, and thus potentially dou-

ble the spectral efficiency. The main challenge in building a full-duplex

system is in suppressing the self-interference to a sufficiently low level.

Extensive researches have been conducted for self-interference cancel-

lation techniques, which can be categorized into antenna cancellation,

analog cancellation, and digital cancellation [18]. In antenna can-

cellation techniques, a pair of transmission antennas are placed such

that the signal from one antenna destructively adds with that from

the other [1, 4, 5]. Analog cancellation methods tap a copy of the

transmitted signal from the transmit chain, process it with delay and

attenuation, and subtract it on the receive path [1, 3]. Lastly, digital

cancellation is used to clean out any residual self-interference caused

108



by non-ideal and non-linear components in RF chains [1, 3]. The

state-of-the-art work has demonstrated that self-interference can be

suppressed to the noise floor level by the combination of multiple can-

cellation techniques [6].

When the full-duplex technology is introduced in OFDMA net-

works, base stations (BSs) need to be full-duplex capable while mo-

bile nodes (user terminals) operate in either full-duplex or half-duplex.

If nodes are also full-duplex capable, the BS can communicate with

them in a bidirectional manner by assigning each subcarrier to a sin-

gle node for both uplink and downlink transmissions. However, it is

unlikely that nodes are equipped with full-duplex radios in the fore-

seeable future due to the cost and complexity of interference cancel-

lation techniques. Considering this limitation, a typical deployment

scenario will be the full-duplex transmission between a full-duplex BS

and legacy half-duplex nodes, where the BS assigns a subcarrier to

two different nodes, one for uplink and the other for downlink. In

this case, already complicated resource allocation problems become

much more challenging due to i) the coexistence of uplink and down-

link transmissions in the same subcarrier, and ii) resultant inter-node

interference from uplink nodes to downlink nodes. To fully exploit

the full-duplex gain, it is essential to allocate the radio resource con-

sidering the inter-node interference.

There are several works that address the resource allocation prob-

lem in full-duplex networks. In [46], the authors considered a single-
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cell full-duplex network consisting of a full-duplex BS and nodes and

proposed a randomized iteration method which achieves a near-optimal

performance. However, the proposed solution cannot cover the case

with half-duplex nodes, which is more challenging due to the inter-

node interference. In [47], the authors considered the case where mo-

bile nodes operate in half-duplex, and proposed a resource allocation

algorithm using matching theory. The proposed subcarrier allocation

algorithm potentially leads to a non-convex power allocation problem,

which is generally hard to solve.

In this paper, we investigate the joint problem of subcarrier as-

signment and power allocation in a single-cell full-duplex OFDMA

network, which consists of a full-duplex BS and multiple half-duplex

nodes. Our goal is to maximize the sum-rate performance by optimiz-

ing the uplink and downlink resource allocations taking into account

the inter-node interference. Specifically, we consider two different sce-

narios: i) the BS knows full channel state information (full CSI), and

ii) the BS obtains limited channel state information (limited CSI)

through channel feedbacks from nodes. We aim to solve the prob-

lem from theoretical perspective in the former case while focusing on

more practical issues in the latter. The contributions of this chapter

are three-fold:

• In the full CSI scenario, we show that the resource allocation

problem is NP-hard due to the inter-node interference. To make

the problem tractable, we propose to use a subcarrier assignment
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condition that leads each subcarrier to be assigned to a pair of

uplink and downlink nodes that have lower inter-node channel

gain compared to the uplink channel gain. Based on the above

condition, we develop sequential resource allocation algorithms

which assigns subcarriers to uplink and downlink nodes sequen-

tially with two different orders, i.e., uplink first and downlink

first.

• In the limited CSI scenario, we first identify the prohibitive

channel measurement/feedback overhead in full-duplex networks

and propose a design principle for efficient channel feedback.

Then we propose a low-overhead feedback protocol where down-

link nodes can estimate the inter-node interference in a dis-

tributed manner. We also analyze the sum-rate performance

of the proposed feedback protocol and obtain the optimal feed-

back probability. To the best of our knowledge, this is the first

scheme for full-duplex networks that can operate with limited

CSI.

• Through simulation, we evaluate our algorithms under various

scenarios. In the full CSI scenario, we compare our resource

allocation scheme with conventional schemes oblivious to the

inter-node interference. We also identify how much gain the full-

duplex bring compared to half-duplex and when the full-duplex

gain is maximized. In the limited CSI scenario, we investigate
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the performance of the limited CSI scheme compared to the full

CSI scheme, and the full-duplex gain in practical limited CSI

scenario.

The rest of this chapter is organized as follows. In Section 4.2, we

present a detailed description of our system model and formulate the

resource allocation problem. In Section 4.3, we consider the problem

with full CSI where the BS knows all channel gains. We design a sim-

ple subcarrier assignment condition and develop a sequential resource

allocation algorithm. In Section 4.4, we consider a scenario where

the BS obtains limited channel information through channel feedback

from nodes. We propose a low-overhead channel feedback protocol for

full-duplex networks where downlink nodes can measure interference

in a distributed manner. The performance evaluation of our solutions

is provided in Section 4.5. Finally, we conclude this paper in Section

4.6.

4.2 System Model and Problem Formulation

We consider a single-cell OFDMA network which consists of one full-

duplex base station (BS) and multiple half-duplex mobile nodes, as

shown in Fig. 4.1. Each node is predetermined as either an uplink

node or a downlink node. Let N denote the set of uplink nodes, and

M denote the set of downlink nodes. Without loss of generality, we

assume that the number of uplink nodes is equal to the number of
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downlink nodes, i.e., |N |= |M|= N . The spectrum band is parti-

tioned into S orthogonal subcarriers, denoted by S = {1, 2, . . . , S}. A

subcarrier1 is the basic physical unit of channel assignment and power

allocation in the system. All the subcarriers are perfectly orthogonal

to each other without inter-carrier interference. We assume that the

perfect self-interference2 at the BS exploiting various interference can-

cellation techniques [10, 16, 48]. However, due to simultaneous uplink

and downlink transmissions in the same subcarrier, there exists inter-

node interference from uplink nodes to downlink nodes [10].

Let us represent the uplink and downlink subcarrier assignment

patterns by two binary vectors Xu :=
{
xun,s

}
n∈N ,s∈S

and Xd :=
{
xdm,s

}
m∈M,s∈S

, respectively, where xun,s’s and xdm,s’s are defined as

xun,s =





1, if subcarrier s is assigned to node n ∈ N ,

0, otherwise,

xdm,s =





1, if subcarrier s is assigned to node m ∈ M,

0, otherwise.

Also, let us define X := (Xu,Xd). We assume that a subcarrier is

exclusively assigned to at most one uplink node and one downlink

node. Given X, the uplink and downlink nodes using subcarrier s are

1For simplicity, we use the term “subcarrier” to refer to the basic scheduling
unit. In practical wireless systems, the basic scheduling unit can be a single sub-
carrier or a cluster of subcarriers.

2In practice, the perfect cancellation is infeasible even with the state-of-the-
art implementation. However, we assume the perfect cancellation to isolate the
physical layer issues and focus on the resource allocation issues as in [16, 48].
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denoted by ns and ms, respectively.

For each subcarrier s, let gun,s (g
d
m,s) denote the uplink (downlink)

channel gain between uplink node n (downlink node m) and the BS,

and let gin,m,s denote the inter-node channel gain from uplink node n

to downlink node m. Each channel gain includes the path loss and

Rayleigh fading, and it is normalized by the noise power N0. Let p
u
n,s

denote the uplink power allocated by uplink node n, and pdm,s denote

the downlink power allocated by the BS for downlink node m. The

uplink and downlink power allocations are represented by two vectors

Pu :=
{
pun,s

}
n∈N ,s∈S

and Pd :=
{
pdm,s

}
m∈M,s∈S

, respectively, and let

P := (Pu,Pd). The power budgets at the BS and uplink node u are

limited to PBS and Pn, respectively.

Assuming that interference is treated as noise, the full-duplex rate

Rs (the sum of uplink rate Ru
s and downlink rate Rd

s) for each sub-

carrier s is given by

Rs(X,P) =

N∑

n=1

xun,s log
(
1 + gun,sp

u
n,s

)

+

N∑

m=1

xdm,s log

(
1 +

gdm,sp
d
m,s

1 +
∑N

n=1 x
u
n,sg

i
n,m,sp

u
n,s

)
,

(4.1)

where the first and second terms are the uplink and downlink rates,

respectively, and
∑

n x
u
n,sg

i
n,m,sp

u
n,s represents the inter-node interfer-

ence. Also, let R(X,P) denote the sum-rate over all the subcarriers,

i.e., R(X,P) =
∑S

s=1Rs(X,P).
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Our goal is to find an optimal resource allocation that maximizes

the sum-rate under given power budget constraints. We formulate the

problem as

(P) maximize
X,P

R(X,P) (4.2a)

subject to

S∑

s=1

pun,s ≤ Pn,∀n ∈ N , (4.2b)

S∑

s=1

N∑

m=1

pdm,s, ≤ PBS , (4.2c)

N∑

n=1

xun,s ≤ 1,∀s ∈ S, (4.2d)

N∑

m=1

xdm,s ≤ 1,∀s ∈ S, (4.2e)

xun,s ∈ {0, 1},∀n ∈ N ,∀s ∈ S, (4.2f)

xdm,s ∈ {0, 1},∀m ∈ M,∀s ∈ S. (4.2g)

Notice that subcarrier s is used in full-duplex mode if
∑

n x
u
n,s =

∑
m xdm,s = 1, or in half-duplex mode otherwise. In the following, we

solve the problem under full CSI and limited CSI, respectively.

4.3 Resource Allocation with Full CSI

In this section, we solve the problem assuming that the BS knows all

channel gains. We first show that the problem is a NP-hard prob-

lem and propose a subcarrier assignment condition which leads to a
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Figure 4.1: A single-cell full-duplex OFDMA network which consists
of one full-duplex base station and multiple half-duplex mobile nodes.
Due to the simultaneous uplink and downlink transmissions, there
exists inter-node interference from uplink nodes to downlink nodes.

convex power allocation problem. We then design a sequential re-

source allocation algorithm by decomposing the problem into uplink

and downlink subproblems.

4.3.1 Subcarrier Assignment Condition

Due to the exclusive nature of subcarrier assignment, problem P is an

integer optimization problem, which is generally difficult to solve. In

fact, the following theorem proves that problem P is NP-hard.

Theorem 4. The resource allocation problem P is NP-hard.

Proof. When there are only one uplink node and only one downlink

node, the resource allocation problem is equivalent to the power allo-

cation problem in Chapter 2, which is proven to be NP-hard. Thus,

the resource allocation problem is NP-hard.

Since it is difficult to obtain an optimal allocation, we instead

assign subcarriers according to the following intuitive condition. In-

tuitively, it is reasonable to assign subcarrier s to a pair of (uplink
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node u, downlink node d) satisfying that i) the uplink gun,s and down-

link gdm,s channel gains are large, and ii) the inter-node channel gain

gin,m,s is small. With a large gun,s, if g
i
n,m,s > gun,s, the inter-node inter-

ference is strong enough to reduce the downlink rate significantly. To

avoid this situation, we propose to assign each subcarrier s to a pair

of (uplink node u, downlink node d) such that the inter-node channel

gain gin,m,s should be less than the uplink channel gain gun,s, i.e.,

gin,m,s ≤ gun,s,∀s. (4.3)

The above condition prevents the excessive inter-node interference to

protect downlink transmissions.

When a certain subcarrier assignment is given, we can reduce prob-

lem P to the following power allocation problem:

(PP) maximize
P

S∑

s=1

Rs(p
u
n,s, p

d
m,s)

subject to (4.2c) and (4.2b).

(4.4)

In half-duplex case, the optimal power allocation is the per-node

water-filling allocation [42, 43]. In contrast, this does not hold in

full-duplex case due to the inter-node interference. Moreover, prob-

lem Pp is not a convex problem since Rs
F is not a concave function

in general. This implies that it is hard to obtain the optimal power

allocation P∗ even if the optimal subcarrier assignment X∗ has been
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found.

Although problem Pp is difficult to solve in general, fortunately it

becomes a convex problem if the given subcarrier assignment satisfies

the condition (4.3).

Proposition 8. Let X be a given subcarrier assignment vector. If

X satisfies the condition (4.3), the power allocation problem Pp is a

convex optimization problem.

Proof. Since the power constraints (4.2b) and (4.2c) are linear and

the objective function is the sum of Rs’s, problem Pp is a convex

optimization problem if each Rs is a concave function. Let xun,s = 1

and xdm,s = 1. Then we can write Rs(p
u
n,s, p

d
m,s) as

Rs(p
u
n,s, p

d
m,s) = log

(
1+gun,sp

u
n,s

1+gin,m,sp
u
n,s

)
+ log(1 + gin,m,sp

u
n,s + gdm,sp

d
m,s).

The first term is a concave function of psu, since it has a non-positive

second-order derivative [30]

∂2

∂(psu)
2 log

(
1+gsup

s
u

1+gs
u,d

psu

)
=

(gs
u,d

−gsu)(2g
s
ug

s
u,d

psu+gsu+gs
u,d

)

(gs
u,d

psu+1)2(gsup
s
u+1)2

≤ 0,

where the inequality comes from the assumption of gsu,d ≤ gsu. The

second term is a logarithm of a linear function, which is (jointly)

concave. Thus, Rs
F (p

s
u, p

s
d) is a concave function of (psu, p

s
d).

From Proposition 8 and the standard dual optimization method,

we can easily solve problem PP in low-complexity for any given sub-
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carrier assignment satisfying the condition (4.3). In the following,

we propose three resource allocation algorithms under the condition

(4.3).

4.3.2 Proposed Resource Allocation Algorithms

In this section, we develop a sequential resource allocation algorithm

under the condition (4.3); i) assign subcarriers to downlink nodes

first and uplink nodes, ii) assign subcarriers to uplink nodes first and

downlink nodes. Before proposing our algorithm, we first consider

downlink and uplink resource allocation algorithms separately.

Downlink Resource Allocation

Given an uplink allocation (Xu,Pu), we solve the downlink allocation

problem to maximize the sum-rate. Recall that ns denotes the uplink

node using subcarrier s. We defineMs
ns

= {m ∈ M|gins,m,s ≤ guns,s},

i.e., the set of downlink nodes which are allowed to use subcarrier s

under the condition (4.3). Also, we define the downlink channel gain

to interference and noise ratio (CINR) g̃dm,s in subcarrier s as

g̃dm,s =
gdm,s

1 + gins,m,sp
u
ns,s

,∀m, s,
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where g̃dm,s = gdm,s when subcarrier s is not assigned to any uplink

nodes. The downlink rate Rd
s in subcarrier s is given by

Rd
s(X

d,Pd|ns, p
u
ns,s) =

N∑

m=1

xdm,s log
(
1 + g̃dm,sp

d
m,s

)
.

Since the uplink rate is independent of the downlink power, the

optimal downlink allocation3 is the one which maximizes the sum of

downlink rates
∑

sR
d
m,s. We formulate the problem as

(PDL) maximize
Xd,Pd

S∑

s=1

N∑

m=1

xdm,s log
(
1 + g̃dm,sp

d
m,s

)

subject to (4.2c), (4.2e), and (4.2g).

(4.5)

Clearly, problem PDL and the resource allocation problem in downlink

OFDMA have an identical structure except that g̃dm,s is regarded as

channel gain and the condition (4.3) should be satisfied. Thus, we

obtain an optimal solution by assigning each subcarrier s to down-

link node d ∈ Ms
ns

with the largest g̃dm,s while allocating the power

according to the water-filling algorithm, i.e.,

m∗ = argmax
m∈Ms

ns

(
g̃dm,s

)
and xdm∗,s = 1, (4.6a)

pdm,s =





[
α− 1/g̃dm,s

]+
, if xdm,s = 1,

0, if xdm,s = 0,

(4.6b)

3This is an optimal downlink allocation for the given uplink allocation, but not
a globally optimal downlink allocation.
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where [·]+ := max(·, 0) and α is the water-level satisfying
∑

m

∑
s p

d
m,s =

PBS .

Uplink Resource Allocation

Given a downlink resource allocation (Xd,Pd), we solve the uplink

allocation problem. Before proceeding to the allocation algorithm, let

us first show how an uplink node n can optimally allocate its power

given an uplink subcarrier assignment Xu satisfying the condition

(4.3). Let Sn denote the set of subcarriers assigned to uplink node n.

Given (Xd,Pd) and Xu, in each subcarrier s ∈ Sn, the full-duplex

rate Rn,s(p
u
n,s) is a function of pun,s, defined as

Rn,s(p
u
n,s) := Rs

(
pdn,s, p

d
ms,s

)
= log

(
1 + gun,sp

u
n,s

)

+ log

(
1 +

gdms,sp
d
ms,s

1 + gin,ms,sp
u
n,s

)
.

(4.7)

Since Xu satisfies (4.3), Rn,s(p
u
n,s) is a concave function of pun,s by

Proposition 8. Each uplink node n allocates its power psu over sub-

carriers s ∈ Sn to maximize
∑

s∈Su
Rn,s(p

u
n,s). Then we formulate the

problem as

(PUL) maximize
psu

∑

s∈Sn

Rn,s(p
u
n,s)

subject to
∑

s∈Sn

(pun,s) ≤ Pn.

(4.8)
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Since this is a convex optimization problem, we can easily solve it

through the dual optimization. Specifically, we can obtain the solution

by using the bisection method with the complexity of O(S).

We now explain the proposed uplink resource allocation algorithm.

The algorithm operates in an iterative manner and runs for S times,

where S is the number of subcarriers. In each iteration, we assign a

single subcarrier to an uplink with the largest full-duplex rate. We use

superscript k in square bracket to indicate the result up to iteration

k.

Let S
[k]
n denote the set of subcarriers assigned to uplink node n

up to iteration k, and A[k] denote the set of unassigned subcarriers

up to iteration k. Also, let us define A
[k]
n = {s ∈ A[k] |giu,ms,s ≤ gun,s},

i.e., the set of subcarriers which can be allocated to uplink node n.

All the subcarriers are unassigned in the beginning, i.e., A[0] = S and

S
[0]
n = ∅,∀u.

In iteration k (1 ≤ k ≤ S), given S
[k−1]
n and A[k−1], we compute

the (potential) full-duplex rate and select a pair of (uplink node, sub-

carrier) with the largest full-duplex rate. To further elaborate, we

compute the full-duplex rate Rs
u for each uplink node u as follows:

1. Allocate the uplink power pun,s to subcarriers s ∈ S
[k−1]
n ∪A

[k−1]
n

by solving (4.8). That is, pun,s is allocated as if subcarriers s ∈

A
[k−1]
n are assigned to uplink node u.

2. Compute the (potential) full-duplex rate Rn,s(p
u
n,s) for each sub-
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carrier s ∈ A
[k−1]
n by (4.7).

Among the unassigned subcarriers, we assign subcarrier s ∈ A[k−1] to

uplink node n with the largest full-duplex rate as follows:

(n∗, s∗) = argmax
n∈N ,s∈A[k−1]

Rn,s and xun∗,s∗ = 1. (4.9)

Then we update the result as follows:

S
[k]
n∗ ← S

[k−1]
n∗ ∪ {s∗} and A[k] ← A[k−1]\{s∗}.

We repeat the above procedures S times and obtain the uplink

subcarrier assignment Xu. Then we allocate the uplink power Pu by

solving (4.8) with Xu.

In each iteration, we perform the power allocation for each uplink

node, which has the complexity of O(S). Considering N nodes and S

iterations, the total complexity is O(NS2).

Sequential Resource Allocation Algorithms

When we apply the above downlink and uplink allocation algorithms,

we consider two types of resource allocation according to the order in

application, i.e., downlink first (D-First) or uplink first (U-First).

In the D-First scheme, subcarriers are first assigned to down-

link nodes, assuming Pu = 0. That is, we solve problem PDL with

g̃dm,s = gdm,s. Next, we obtain the uplink allocation (Xu,Pu) by solv-
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ing the uplink problem given (Xd,Pd). Finally, we take the subcarrier

assignment X = (Xu,Xd) as the outcome and reallocate the (uplink

and downlink) power by solving PP, i.e., the power allocation obtained

in each individual solution is discarded.

In the U-First scheme, subcarriers are first assigned to uplink

nodes, assuming Pd = 0. Then given (XU ,PU ), we obtain the down-

link allocation (XD,PD) by solving problem PDL. Finally, we reallo-

cate power by solving PP.

4.3.3 Asymtotic Analysis of Full-duplex Gain

We define full-duplex gain as the performance ratio of full-duplex to

half-duplex. Since the analysis of full-duplex gain in general cases is

difficult, we adopt a simple asymtotic method to understand how the

full-duplex gain varies with channel gain. Consider a single-carrier

network with one uplink node and one downlink node. Let gu and

gd denote the uplink and downlink channel gains, respectively, and gi

denote the inter-node channel gain. Also, pu and pd denote the uplink

and downlink powers, respectively.

In the considered simple example, the sum-rate RFD of full-duplex

is given by

RFD = log(1 + gupu) + log

(
1 +

gdpd

1 + gipu

)
.

Also, the sum-rate RHD of half-duplex (in a TDMA manner) is ob-
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tained as

RHD = 0.5 log(1 + gupu) + 0.5 log(1 + gdpd).

Then the full-duplex gain GFD is expresses as

GFD =
log(1 + gupu) + log

(
1 + gdpd

1+gipu

)

0.5 log(1 + gupu) + 0.5 log(1 + gdpd)
.

Now, let us consider a case where all channel gains are sufficiently

large, i.e., gu, gd, gi →∞. In this case, the full-duplex gain is approx-

imated as

GFD ≈
log(1 +∞× pu) + log

(
1 + ∞×pd

1+∞×pu

)

0.5 log(1 +∞× pu) + 0.5 log(1 +∞× pd)
≈ 1, (4.10)

where pu and pd are assumed to be the same. Eq. (4.10) indicates that

if all channel gains are sufficiently large, there is no full-duplex gain.

In practice, this occurs when a large number of nodes are located in

a small-size cell.

Next, consider a case where all channel gains are sufficiently small,

i.e., gu, gd, gi ≪ 1. Using the approximation of 1+gipu ≈ 1, we obtain

the full-duplex gain as

GFD ≈
log(1 + gupu) + log(1 + gdpd)

0.5 log(1 + gupu) + 0.5 log(1 + gdpd)
= 2, (4.11)

Since the interference level gipu is sufficiently smaller than the noise
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power (which has a value of 1 due to the normalization), the sum-rate

of full-duplex is approximated as if there were no interference, and the

full-duplex gain approaches 2, i.e., achieving near-double throughput.

In practice, this corresponds to cases where few nodes are in a large-

size cell.

4.4 Resource Allocation with Limited CSI

In this section, we consider a scenario where the BS obtains limited

channel information through channel feedbacks from nodes. We first

discuss the overhead for channel measurement and feedback in full-

duplex networks and identify the requirements for low-overhead so-

lution. Then we propose a novel low-overhead channel measurement

and feedback scheme and analyze its sum-rate performance.

4.4.1 Challenge of Channel Feedback

In the previous section, the resource allocation problem is solved under

the full CSI assumption. While it is meaningful to obtain a theoretical

solution, full channel knowledge at the BS is infeasible in wideband

OFDMA due to the large amount of channel feedback for numerous

subcarriers. In fact, the overhead for channel measurement/feedback

becomes more problematic in full-duplex networks due to the following

reasons:

• Channel measurement overhead:
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A typical approach for channel measurement is using a training

sequence, where a known signal is transmitted and the channel

gain is estimated by comparing the transmitted and received sig-

nals. In conventional half-duplex systems, the BS broadcasts a

training sequence that allows all nodes to measure their down-

link channel gains while each node can also estimate its up-

link channel gain using channel reciprocity, i.e., forward (down-

link) and reverse (uplink) channels are reciprocal. In full-duplex

networks, along with the BS, every uplink node also needs to

transmit a training sequence in turn to allow downlink nodes

to estimate inter-node channel gains. Since a dedicated trans-

mission opportunity should be given to each uplink node, the

required resource increases linearly with the number of uplink

nodes, which will be a huge overhead.

• Channel feedback overhead:

For channel feedback, the channel gain for each subcarrier is

quantized to a real number and the corresponding value is re-

ported to the BS. The feedback overhead for downlink channel is

SB bits per downlink node, where B is the required number of

bits for quantization, and similarly the overhead is SB bits per

uplink node for uplink channel. In addition, the feedback over-

head for inter-node channel is NSB bits per downlink node.

Then the total feedback overhead over N uplink (downlink)
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nodes sums up toN(SB)+N(SB)+N(NSB) = N2SB+2NSB.

Compared to half-duplex networks, the feedback overhead in

full-duplex networks increases by (approximately) N
2 times due

to inter-node channel gains.

Considering the prohibitive overhead for channel measurement and

feedback, it is of great importance to design a low-overhead resource

allocation scheme for full-duplex networks.

A well-known approach to reduce feedback overhead is using op-

portunistic feedback, where a node reports its channel gain if it is

larger than a given threshold [50]. Specifically, all nodes contend in

the shared feedback medium, which consists of multiple feedback slots

associated with pre-defined threshold values which are in decreasing

order. In a feedback slot, each node transmits a feedback message to

the BS if its channel gain is larger than the given threshold. Then

the BS chooses a node which transmitted in the earliest slot without

collision and schedules it to use a certain subcarrier.

There have been many resource allocation schemes based on the

opportunistic feedback, targeting either downlink [50, 51, 52] or uplink

[53]. While the conventional schemes reduce the feedback overhead

in half-duplex networks, they consider interference-free environments

and thus cannot be applied to full-duplex networks, where downlink

nodes experience inter-node interference. Due to the large overhead,

it is impossible for a downlink node to measure the inter-node channel

gains between itself and all uplink nodes. To circumvent this difficulty,
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Figure 4.2: Superframe structure.

we adopt the idea behind the U-First scheme that subcarriers are first

assigned to uplink nodes and then to downlink nodes. In this case,

each downlink node only needs to estimate the interference from the

scheduled uplink node in each subcarrier without having to know all

inter-node channel gains. This raises a natural question: how can a

downlink node estimate the interference level and report it to the BS in

a low-overhead manner? In the following, we answer this question and

develop a low-overhead channel measurement and feedback scheme for

full-duplex networks.

4.4.2 Proposed Feedback Protocol

Fig. 4.2 illustrates the structure of the proposed scheduling frame,

which consists of training sequence, feedback and scheduling period,

and data transmission period. A scheduling frame is the basic time

unit of resource allocation, during which channel gains are invariant.

The feedback and scheduling period is decomposed into uplink and
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downlink parts. The key idea for interference measurement is to let

downlink nodes to overhear uplink feedback messages during the up-

link feedback period. The detailed operation is as follows.

In the beginning of every scheduling frame, the BS broadcasts a

training sequence to allow each node to measure its downlink channel

gain. The channel measurement using training sequence is assumed

to be perfect. In addition, each uplink node n calculates an estimate

ĝun,s of its uplink channel gain using the channel reciprocity, i.e., ĝun,s =

gdn,s. Note that the channel reciprocity holds in principle on the same

frequency band [55].

After receiving the training sequence, uplink nodes send feedback

messages in the uplink feedback period. In the time domain, there

are K feedback slots associated with K thresholds δ1, · · · , δK , which

are in decreasing order, i.e., δ1 > · · · > δK . Given a fixed length of

scheduling frame, the BS can tune K to adjust the ratio of channel

feedback period and data transmission period. The threshold values

are the same for all subcarriers, and the BS notifies the values to each

node during the initial association process. The feedback processes for

all subcarriers are identical and performed in parallel. The feedback

for each subcarrier s operates as follows. In slot k (1 ≤ k ≤ K), an

uplink node n transmits a feedback message to the BS over subcarrier

s if its estimated uplink channel gain ĝun,s satisfies the condition δk−1 >

ĝun,s ≥ δk, where δ0 = ∞. Since δk’s are in decreasing order, uplink

nodes with larger channel gains can transmit in earlier slots. If node
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n transmits alone in slot k, the BS can decode the feedback message

successfully and know that it is from node n. If two or more nodes

transmit at the same time, then a collision occurs and the BS cannot

decode any colliding feedback messages.

A feedback message consists of three parts: demodulation ref-

erence signal (DRS), transmitter identifier (ID), and the number of

simultaneously transmitted messages Ntx. The DRS is used to enable

the uplink channel measurement and coherent signal demodulation

at the BS. When an uplink node transmits Ntx feedback messages

simultaneously (in the same slot over different subcarriers), the trans-

mission power is equally distributed over the feedback messages. Also,

there is a limit P f for the power allocated in each feedback message to

limit inter-node interference. Thus, when an uplink node n transmits

Ntx feedback messages at the same time, it transmits each message

with a power of pfn,s = min( Pn

Ntx
, P f ) and records the power pfn,s for

each subcarrier s. Note that the BS can measure the uplink channel

gain gun,s since it knows the transmitted signal from the DRS and Ntx.

In the uplink scheduling period, the BS announces the uplink

scheduling information, which is a S-dimensional vectorXu = {xu1 , · · · , x
u
S}.

Among the nodes whose feedback messages were successfully received,

the BS assigns each subcarrier s to the node with the largest channel

gain. Specifically, for each subcarrier s, the BS selects the earliest slot

k∗ where i) only one node n transmitted its feedback message and ii)

its actual uplink channel gain gun,s satisfies the condition gun,s ≥ δk∗ .
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Note that the second condition is required in case the channel reci-

procity does not hold4, i.e., ĝun,s = gdn,s ≥ δk∗ > gun,s. Then the BS

assigns subcarrier s to node n by setting xus = k∗, which indicates

that subcarrier s is assigned to the node which transmitted its feed-

back message in slot k∗. The reason of embedding a slot number

rather than a node ID is to allow downlink nodes to estimate the in-

terference level using the slot number, which will be explained later.

If there is no slot with a successfully received feedback message, the

BS leaves subcarrier s unassigned by setting xus = 0. After receiv-

ing the scheduling vector Xu, each uplink node can know whether or

not each subcarrier s is assigned to itself by comparing xus to the slot

number it used for feedback.

During the uplink feedback period, each downlink node m mea-

sures the received signal strength Im,s,k in each of (subcarrier s, slot

k). If uplink node n transmits alone in (subcarrier s, slot k), Im,s,k

will be given as Im,s,k = gin,m,sp
f
n,s. Note that downlink nodes can es-

timate the received signal strength of a message from the DRS part.

Next, downlink nodes overhear the uplink scheduling vector Xu to

know which slot is selected in each subcarrier. If slot k∗ is selected

in subcarrier s (xus = k∗), each downlink node m can estimate the

interference level Im,s by Im,s = Im,s,k∗. In contrast, if subcarrier s

is unassigned (xus = 0), there will be no interference, i.e., Im,s = 0.

4While the physical wireless channel is reciprocal in principle, the non-
symmetric characteristics of the radio-frequency (RF) electronic circuitry would
break the reciprocity property [55].
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Since the uplink scheduling result is given in the form of slot number

rather than node ID, downlink nodes can determine the interference

level even if it failed to decode feedback messages.

The downlink feedback and scheduling period is similar to the

uplink case except that two different types of thresholds are used de-

pending on the uplink scheduling result. If subcarrier s is unassigned

in the uplink, i.e., xus = 0, the threshold values δ1, · · · , δK are used

and each downlink node m selects a slot according to its downlink

channel gain gdm,s. In contrast, if subcarrier s is assigned to some

uplink node, then another threshold values γ1, · · · , γK are newly in-

troduced. Also, each downlink node m selects a slot based on its

channel to interference and noise ratio (CINR) g̃dm,s = gdm,s/(1+Im,s).

That is, each downlink node m transmits a feedback message in slot

k if g̃dm,s satisfies the condition γk−1 > g̃dm,s ≥ γk. We set δk > γk to

reflect the SINR reduction due to the inter-node interference. After

receiving downlink feedback messages, the BS assigns each subcarrier

to the downlink node with the largest channel gain (or CINR), and

broadcasts the downlink scheduling vector Xd = {xd1, · · · , x
d
S}.

In the data transmission period, the BS and uplink nodes allocate

power according to the scheduling result. For each subcarrier s, let

ns and ms denote the scheduled uplink and downlink nodes, respec-

tively. Each uplink node n first allocates its power over the assigned
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subcarriers by the water-filling algorithm, i.e.,

pun,s =





[
α− 1

δxus

]+
, if n = ns,

0, otherwise,

where α is the water-level satisfying
∑

s p
u
n,s = Pn. Note that node n

allocates pun,s according to δxu
s
rather than gdn,s because it only knows

that gun,s is larger than δxu
s
, but does not know the actual value. Then

node n compares pun,s with the feedback power pfn,s and if pun,s ≥ pfn,s,

pun,s is set to pfn,s. This is to ensure that the actual interference level

in the data period is no greater than the interference level measured

in the uplink period. For the downlink power allocation, the BS also

uses the water-filling algorithm as

pdm,s =





[
β − 1

δ
xds

]+
, if m = ms and xus = 0,

[
β − 1

γ
xds

]+
, if m = ms and xus > 0,

0, otherwise,

where β is the water-level satisfying
∑

m

∑
s p

d
m,s = PBS . Again, the

downlink power for subcarrier s is allocated according to δxd
s
(γxd

s
)

rather than gdms,s (g̃dms,s).

4.4.3 Calculation of Thresholds

The threshold values determine the feedback probability in each slot,

which in turn impacts the overall performance. Since the optimal
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threshold values depend on the distribution of channel gain, the num-

ber of nodes, and the considered objective function [49], optimization

of thresholds is a difficult design issue and is out of the scope of this

paper. Instead, we simply set the threshold values such that each

node transmits its feedback message in each slot with probability p

[49, 51, 54], and find the corresponding threshold values.

For analytical tractability, we assume that all uplink, downlink,

and inter-node channel gains gun,s, g
d
m,s, and gin,m,s,∀n,m, s are inde-

pendent and identically distributed (i.i.d.) exponential random vari-

ables5. Also, assume that the channel reciprocity holds, i.e., ĝun,s =

gun,s. Let ḡ denote the average channel gain, i.e., ḡ = E[gun,s] =

E[gdm,s] = E[gin,m,s],∀n,m, s. The cumulative distribution function

(CDF) and probability density function (PDF) of each channgel gain

are given by Fg(x) = 1− exp
(
−x

ḡ

)
and fg(x) =

1
ḡ exp

(
−x

ḡ

)
, respec-

tively.

We first calculate the values of δ1, · · · , δK . The probability that

an uplink node n transmits its feedback message in slot 1 is given by

Pr
(
gun,s ≥ δ1

)
= 1− Fg(δ1) = exp

(
−
δ1
ḡ

)
= p.

By some manipulations, we obtain δ1 = g ln(1p). Given δ1, the feed-

5The i.i.d. assumption is widely used in the literature [49, 51].
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back probability in slot 2 is given by

Pr
(
δ1 > gun,s ≥ δ2

)
= Fg(δ1)− Fg(δ2) = exp

(
−
δ2
ḡ

)
− p = p.

Again, we obtain δ2 = g ln
(

1
2p

)
and in a similar manner, δk =

g ln
(

1
kp

)
. Note that a smaller p leads to a larger δk.

To calculate the values of γ1, · · · , γK , we need to derive the distri-

bution of CINR g̃dm,s of downlink node m in subcarrier s. Recall that

ns is the uplink node using subcarrier s and pfns,s is its transmission

power for feedback message. Then g̃dm,s is given by

g̃dm,s =
gdm,s

1 + gin,m,sp
f
ns,s

,

where gin,m,sp
f
ns,s represents the interference level Im,s measured dur-

ing the uplink feedback period. Since pfns,s is determined by the num-

ber of simultaneously transmitted messages, it is not easy to calculate

the exact value. Instead, we set pfns,s = P f , which is a conservative

assumption that leads to the maximum interference level gin,m,sP
f . In

this case, the CDF of g̃dm,s is given by

Fg̃(x) = 1−
e−x/ḡ

1 + xP f
.

From Fg̃(x), the probability that each downlink node m transmits its
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feedback message in slot 1 is given by

Pr
(
gdm,s ≥ γ1

)
= 1− Fg(γ1) =

exp
(
−γ1

ḡ

)

1 + γ1P f
= p.

Due to the complex form of Fg̃(x), we cannot obtain an analytical

solution for γ1, and thus find γ1 (also other γk’s) using numerical

methods.

4.4.4 Performance Analysis and Optimal Feedback Prob-

ability

In this subsection, we derive the sum-rate analytically and obtain

the optimal feedback probability p∗. We first derive the scheduling

probability in each subcarrier. Without loss of generality, we focus on

the uplink feedback in a random subcarrier s. The probability Pk,1

that only one node transmits in slot k is given by

Pk,1 = Pr (1 feedback in slot k) = Np(1− p)N−1. (4.12)

Then the probability Pk that slot k is selected for scheduling can be

obtained as

Pk = Pr (xus = k) = Pk,1

k−1∏

i=1

(1− Pi,1). (4.13)
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Lastly, the scheduling probability Psch in subcarrier s (i.e., subcarrier

s is assigned to some uplink node) is given by

Psch = Pr (xus ≥ 0) =

K∑

k=1

Pk. (4.14)

Note that Pk,1, Pk, and Psch can be applied to other subcarriers and

to the downlink.

We now derive the uplink rate Ru
s in a random subcarrier s. To

obtain Ru
s , we need to find the uplink power in subcarrier s. Sup-

pose that subcarrier s is assigned to uplink node ns. Since node ns

allocates its power by the water-filling algorithm, the uplink power

puns,s in subcarrier s depends on the channel gains of other subcarriers

which are also assigned to node ns, and thus it is not easy to obtain

puns,s. To circumvent this difficulty, we resort to a well-known property

of the water-filling algorithm that it converges to a flat-power alloca-

tion at high SNR regimes [56]. If p is small and the corresponding

threshold values are sufficiently large (i.e., high SNR), node n allo-

cates an almost-equal power to the subcarriers assigned to itself. In

addition, since all nodes are equally likely to use a subcarrier due to

the i.i.d. channel conditions, node ns uses SPsch/N subcarriers on

average. Thus, we approximate the uplink power puns,s in subcarrier s

by

puns,s = min

(
P f ,

NPn

SPsch

)
. (4.15)
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Then we obtain Ru
s as

Ru
s =

K∑

k=1

Pk log
(
1 + δkp

u
ns,s

)
. (4.16)

Since the expected uplink rate is the same in each subcarrier, the sum

Ru of uplink rates over all subcarriers is given by

Ru =

S∑

s=1

Ru
s = SRu

s . (4.17)

We next derive the downlink rate Rd
s in a random subcarrier s.

Again, we assume that the BS allocates an equal power pds to each

subcarrier s, which is given by

pds =
PBS

SPsch
,∀s. (4.18)

The uplink scheduling result determines which type of threshold is

used in the downlink feedback, i.e., δk or γk. When subcarrier s is

unassigned in the uplink, we obtain Rd
s as

Rd
s =

K∑

k=1

Pk log
(
1 + δkp

d
s

)
. (4.19)

On the other hand, if subcarrier s is assigned to some uplink node,

Rd
s is given by

Rd
s =

K∑

k=1

Pk log
(
1 + γkp

d
s

)
. (4.20)
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From Eqs. (4.19) and (4.20), we have

Rd
s =

K∑

k=1

Pk

{
(1− Psch) log

(
1 + δkp

d
s

)
+ Psch log

(
1 + γkp

d
s

)}
.

(4.21)

As in the uplink case, the sum Rd of downlink rates over all subcarriers

is

Rd =

S∑

s=1

Rd
s = SRd

s . (4.22)

Lastly, combining Eqs. (4.17) and (4.22), we obtain the sum-rate

R as

R = Ru +Rd. (4.23)

To validate the analysis (4.23), we compare it with the simulation

results. The comparison between analysis and simulation is shown in

Fig. 4.3 where N = 60, K = 8, S = 20, and g = 733. There is a

close match between the analysis and the simulation, validating the

accuracy of the analysis.

Since the sum-rate R(p) is a function of p, we can numerically

obtain the optimal feedback probability p∗ using (4.23). Fig. 4.4

shows the value of p∗ when the number of subcarriers is S = 50 and

the mean channel gain is g = 733. We can see that p∗ decreases with

the number of nodes N . This is because p∗ should be reduced to

prevent a high collision probability with more nodes. In addition, p∗

has a smaller value when there are more feedback slots.
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Figure 4.3: Comparison between analysis and simulation.
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Figure 4.4: Optimal feedback probability p∗ obtained through analy-
sis.
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Table 4.1: Simulation Parameters
Parameter Value

Center frequency 2.1 GHz
Subcarrier bandwidth 180 kHz

Noise power -119 dBm
Base station’s power PBS 43 dBm

Node n’s power Pn 24 dBm
Antenna gain 0.0

Height of BS hBS 30 m
Height of node hN 1.5 m

4.5 Performance Evaluation

4.5.1 Simulation Setting

Simulation parameters are configured according to the typical values

of LTE system [36]. We assume 10 MHz spectrum band and 50 sub-

carriers6 with 180 kHz and set the noise power to -119 dBm. The

Hata urban propagation model is used for the path loss. The power

budgets are set as PBS = 43 (dBm) and Pn = 24 (dBm) for all uplink

nodes. Other simulation parameters are summarized in Table 4.1.

In the simulation for full CSI, we conduct 100 simulation runs

and obtain the average result. Each channel gain includes a location-

dependent path loss and a Rayleigh fading term. We consider two

different topologies:

• Cell topology: Nodes are randomly distributed within a cell

radius r.

6Since the basic scheduling unit in LTE systems is a resource block (180 kHz),
we set the bandwidth of a subcarrier as 180 kHz
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• Ring topology: Nodes are at an equal distance d from the BS. As

a result, all uplink and downlink channel gains have the same

distribution. In addition, we assume that inter-node channel

gains also have the same distribution.

For performance evaluation, we compare the following schemes:

• Downlink first allocation algorithm (D-First): Subcarriers are

first assigned to downlink nodes.

• Uplink first allocation algorithm (U-First): Subcarriers are first

assigned to uplink nodes.

• Baseline (BL): As a point of reference, we consider a simple

combination of (half-duplex) uplink and downlink allocation

schemes without considering the inter-node interference. The

optimal solution [41] is used for the downlink while a near-

optimal allocation algorithm [43] is used for the uplink.

• Half-duplex (HD): Downlink and uplink transmissions switch

over time slots using the algorithms [41] and [43], respectively.

In the simulation for limited CSI, we also conduct 100 simulation

runs and obtain the average result. We only consider the ring topol-

ogy. For performance evaluation, we compare the following schemes:

• Full-duplex limited CSI: Proposed limited feedback scheme.

• Full-duplex full CSI: U-First scheme with full CSI.
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• Half-duplex limited CSI: Half-duplex transmissions with limited

CSI.

For the schemes with limited CSI, we use the optimal feedback prob-

ability p∗ obtained through the analysis.

4.5.2 Simulation Results: Full CSI

We first provide the simulation results obtained in the ring topology.

Fig. 4.5(a) shows the sum-rate of each scheme for various d values

when the number of uplink (downlink) nodes is 50, i.e., N = 50. FD-

P and FD-U show a similar performance and outperform the baseline

scheme. As shown in Figs. 4.5(b) and 4.5(c), U-First gives priority

to the uplink traffic and achieves a high uplink rate while D-First

operates in the opposite way. Although the baseline scheme achieves

the highest uplink rate, its downlink rate becomes severely low due to

the excessive inter-node interference. The performance gain over the

baseline scheme shrinks with the distance, and the proposed schemes

and the baseline scheme achieve a similar sum-rate at d = 500 m.

Fig. 4.6 depicts the full-duplex gain as function of distance d

when N = 50. The full-duplex gain increases with the distance, and

it ranges from 164% (d = 100 m) to 185% (d = 500 m). As explained

in (4.11), this is because the ratio of interference level to the noise

power shrinks with the distance.

We next show the simulation results obtained in the cell topology.

Fig. 4.7 shows the sum-rate of each scheme for various r values when
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Figure 4.5: Performance comparison in ring topology.
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Figure 4.6: Full-duplex gain as a function of distance d.

the number of uplink (downlink) nodes is 50, i.e., N = 50. The results

are similar to those obtained in the ring topology. One difference is

that D-First achieves a larger sum-rate than U-First.

Fig. 4.8 depicts the impact of the number of nodes N on the

performance. The cell radius r is set to 500 m and the number of

uplink (downlink) nodes is changed from 20 to 100. When there are

10 uplink (downlink) nodes, our schemes and the baseline scheme show

a similar performance. This is because the inter-node interference is

weak in a sparse node distribution. As the node density increases, our

scheme outperforms the baseline scheme with a gain of 13%.

Fig. 4.9 shows the gain of D-First over HD as a function of N . The

full-duplex gain decreases from 180% (N = 10) to 170% (N = 100).

As explained in (4.11), this indicates that the full-duplex gain is max-

imized in weak interference environments, i.e., sparse node distribu-

tion.
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Figure 4.7: Performance comparison in the cell topology.
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Figure 4.8: Impact of the number of nodes on the performance. The
performance gain of our schemes over the baseline scheme increases
with more nodes.
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Figure 4.9: Full-duplex gain as a function of N .
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Figure 4.10: Impact of residual self-interference σ on performance.
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Lastly, we investigate the impact of residual self-interference on

the performance. We assume that under imperfect interference can-

cellation, the noise power increases by σ (dB) due to the residual

self-interference. Fig. 4.10 shows the sum-rate of each scheme for var-

ious σ values in the ring topology when d = 200 m. The sum-rates of

all schemes expect Half-duplex decreases with σ due to the increasing

noise power. Also, the full-duplex gain decreases from 175% (σ = 0)

to 129% (σ = 10).

4.5.3 Simulation Results: Limited CSI

We first compare the performance of full CSI and limited CSI schemes.

Fig. 4.11 shows the sum-rate of limited CSI scheme for various K

values (number of slots) when N = 50 and d = 300 m. AsK increases,

the sum-rate of limited CSI grows from 160 bps (K = 2) to 237 bps

(K = 20). When K = 20, the limited CSI scheme achieves about 90%

of the sum-rate of full CSI scheme. The performance improvement is

more obvious when K increases from a small value, and as K grows

beyond 10, the sum-rate increase rate is reduced.

We next compare the performance of full-duplex and half-duplex

schemes under limited CSI to see the full-duplex gain in practical

scenarios. Fig. 4.11 shows the sum-rate of each scheme when N = 50

and d = 300 m. As expected, the sum-rates of both schemes increase

with K. Fig. 4.12 depicts the full-duplex gain for various K values.

The gain is almost the same as 172% regardless of K and N . This
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Figure 4.11: Performance comparison of full CSI and limited CSI
schemes for various K values.

implies that the full-duplex with the proposed feedback protocol can

bring a constant performance gain over the half-duplex in various

scenarios.

4.6 Summary

To fully exploit the promising gain of full-duplex technology, it is of

great importance to design a resource allocation algorithm tailored for

a full-duplex network. In this chapter, we have considered the radio

resource allocation problem in a single-cell full-duplex OFDMA net-

work. We consider two different scenarios with full and limited CSIs

and propose a solution for each case. In the problem with full CSI, we

have proved that the problem is NP-hard, and proposed a subcarrier

allocation condition, where each subcarier is assigned only when its

inter-node channel gain is smaller than its uplink channel gain. Using
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Figure 4.12: Performance comparison of full-duplex and half-duplex
under limited CSI.
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this condition, we have designed a sequential resource allocation algo-

rithms. In the problem with limited CSI, We proposed a low-overhead

feedback protocol where downlink nodes can measure the interference

in a distributed manner. Through simulations, we have confirmed that

our algorithms perform better than other algorithms oblivious to the

interference, and identified the gain of full-duplex over hall-duplex in

practical scenarios. We leave extension of our algorithms to multi-cell

environments as future work, where the inter-cell interference should

be considered along with the inter-node interference.
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Chapter 5

Conclusion

5.1 Research Contributions

In this dissertation, we address the resource allocation problems in

full-duplex OFDM and OFDMA networks.

First, we have addressed the OFDM subcarrier power allocation

problem in the three-node full-duplex OFDM networks with the inter-

node interference. We have formulated the sum-rate maximization

problem with and without joint decoding. We have proved that when

the joint decoding is used, the problem is a convex optimization prob-

lem, which can be efficiently solved through our low-complexity La-

grangian dual method. When the inter-node interference is always

treated as noise, finding an optimal power allocation is proven to be

NP-hard. Thus, we have proposed a heuristic power allocation al-

gorithm where only subcarriers with lower interference channel gains
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(compared to uplink channel gains) are shared by the uplink and

downlink. Through extensive simulations, we have evaluated the per-

formance of our solution in various scenarios, and demonstrated that

they outperform other existing schemes.

Secondly, we have developed a new radio resource allocation al-

gorithm for full-duplex OFDMA networks where the BS and mobile

nodes are full-duplex capable. The proposed algorithm assigns sub-

carriers to nodes in an iterative manner with low complexity. We

prove that our algorithm achieves local Pareto optimality under cer-

tain conditions that hold frequently in practice. By separating the up-

link and downlink transmissions, we have obtained an upper bound on

performance that is near-tight in symmetric channel cases. Through

extensive numerical simulations, we demonstrate that our algorithm

achieves near-optimal performance and outperforms other resource

allocation schemes designed for half-duplex networks.

Thirdly, we have considered the radio resource allocation problem

in full-duplex OFDMA networks which consists of one full-duplex BS

and multiple half-duplex mobile nodes. We consider two different

scenarios with full and limited CSIs and propose a solution for each

case. In the problem with full CSI, we have proved that the problem is

NP-hard, and proposed a subcarrier allocation condition, where each

subcarier is assigned only when its inter-node channel gain is smaller

than its uplink channel gain. Using this condition, we have designed a

sequential resource allocation algorithms. In the problem with limited
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CSI, We proposed a low-overhead feedback protocol where downlink

nodes can measure the interference in a distributed manner. Through

simulations, we have confirmed that our algorithms perform better

than other algorithms oblivious to the interference, and identified the

gain of full-duplex over hall-duplex in practical scenarios.

To summarize, the full-duplex capability has opened new possibil-

ities to boost the network capacity. Although there still remain some

physical layer issues to resolve, it is anticipated that the full-duplex

networks will be appear soon in the near future. Besides the three

resource allocation problems in this dissertation, there remain many

interesting problems, which require further investigation. This dis-

sertation can be viewed as a guideline for modelling and solving new

problems in full-duplex networks.

5.2 Future Research Directions

Based on the results of this thesis, there are several new research

directions which require further investigation. We highlight some of

them as follows.

While we have focused our attention on a single-cell scenario, a

natural extension is to consider multi-cell environments where mul-

tiple base stations are deployed in proximity. In this case, inter-cell

interference from neighboring cells arises, and resource allocation con-

sidering both the inter-node and inter-cell interferences is an interest-
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ing open problem.

Another interesting research direction is to incorporate the pro-

posed channel feedback protocol in practical wireless systems. Most

of currently deployed wireless systems obtain channel information

through a polling-based feedback. In this case, we can still apply

the proposed interference measurement process, but need to select a

pair of uplink and downlink nodes for channel feedback. An efficient

polling algorithm for channel feedback considering the inter-node in-

terference is worth exploring and will be an essential component in

full-duplex networks.
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