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ABSTRACT

This dissertation presents an image decomposition algorithm based on patch-based

filtering, for splitting an image into a structure layer and a texture layer. There are

many applications through the decomposition because each layer can be processed

respectively and appropriate manipulations are accomplished. Generally, structure

layer captures coarse structure with large discontinuities and a texture layer contains

fine details or proper patterns. The image decomposition is done by edge-preserving

smoothing where structure layer can be obtained by applying smoothing filters to an

image and then a texture layer by subtracting the filtered image from the original.

The main contribution of this dissertation is to design an efficient and effective edge-

preserving filter that can be adapted to various scales of images. The advantage of

the proposed decomposition scheme is that it is robust to noise and can be extended

to a noisy image decomposition, while conventional image decomposition methods

cannot be applied to a noisy image decomposition and conventional image denoising

methods are not suitable for image decomposition.

To be specific, a patch-based framework is proposed in this dissertation, which is

efficient in image denoising and it is designed to smooth an image while preserving

details and texture. Specifically, given a pixel, the filtering output is computed

as the weighted average of neighboring pixels. For computing the weights, a set of
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similar patches is found at each pixel by considering patch similarities based on mean

squared error (MSE) and other constraints. Then, weights between each patch and

its similar patches are computed respectively. With the patch weights, all the pixels

in a patch are updated at the same time while adapting to the local pixel weight.

For better edge-preserving smoothing, the proposed algorithm utilizes two iterations

which are performed through the same smoothing filter with different parameters.

Also kernel bandwidth and the number of similar patches are tuned for multi-scale

image decomposition.

The proposed decomposition can be applied to many applications, such as HDR

tone mapping, detail enhancement, image denoising, and image coding, etc. In de-

tail enhancement, the proposed smoothing filter is utilized to extract image detail

and enhance it. In HDR tone mapping, a typical framework is used where the

smoothing operator is replaced by the proposed one to reduce contrast range of a

high dynamic range image to display it on low dynamic range devices. For image

denoising, a noisy input is decomposed into structure/texture/noise and the noise

layer is discarded while the texture layer is restored through the histogram match-

ing. Also a novel coding scheme named as “structure scalable image coding scheme”

is proposed where structure layer and salient texture layer are encoded for efficient

image coding. Experimental results show that the proposed framework works well

for image decomposition and it is robust to the presence of noise. Also it is verified

that the proposed work can be utilized in many applications. In addition, by adopt-

ing the proposed method in decomposition of a noisy image, both image denoising

and image enhancement can be achieved in the proposed framework. Furthermore,

the proposed image coding method reduces compression artifact and improve the

performance of image coding.
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Chapter 1

Introduction

1.1 Image decomposition

In the field of image processing, there are some applications that decomposes an

image into a structure layer and a texture layer and then processed them separately

and differently based on their properties that the structure layer captures coarse

structure with large discontinuities, whereas a texture layer contains fine details or

proper patterns. So it is useful to process each layer with appropriate processing

method adapted to its property. For example, the techniques of high dynamic range

(HDR) tone mapping aims to reduce the high dynamic range of image within the

range of low dynamic range display devices [8, 9]. For this, it can be one of the

easiest ways to compress the range linearly but it results in removal of fine details.

Consequently, most techniques decompose an image into a base layer (structure

layer) and a detail layer (texture layer) and reduce the range of the base layer

only. Then the compressed base layer is recombined with the detail layer. Image

decomposition can be applied to image detail enhancement, while detail layer is
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Figure 1.1: image decomposition

extracted via image decomposition and amplified to emphasize detail components [9,

1,3]. In the case of image compression applications, since the noise can be degraded

the compression performance [10], image decomposition can also be utilized for image

and video compression. Regarding noise as a kind of texture, better performance is

achieved by compressing coarser structure without texture.

An example of image decomposition is shown in Fig. 1.1, for which smoothing

algorithms are often used as shown in Fig. 1.2. Specifically, given an image I,

structure layer IS can be obtained by applying smoothing filters to an image and

then a texture layer IT by subtracting the filtered image from the original one as

IT = I − IS . (1.1)

Thus, a smoothing filter is the most important in this process and many smoothing

algorithms are suggested for years. Among them, one of the simplest methods is

the Laplacian pyramid in which an image is smoothed out with Gaussian filter [9].

Figure 1.2: image decomposition via smoothing
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However, as a linear filter like Gaussian filter blur region around the edges, which

produces halo effect and gradient reversal artifact. Hence, many researchers focus on

edge-preserving smoothing to reduce these artifacts. Bilateral filter (BLF) [11,12] is

one of the popular non-linear filters due to its simplicity and effectiveness. It takes

advantages of both spatial and photometric range weights and maintains edges well

during smoothing process. So in [8], image decomposition based on BLF is used

to reduce the contrast of HDR images. Also in [13], a set of images under varying

light conditions is decomposed into different scales by applying BLF recursively.

However, it is pointed out that BLF removes small textures effectively, but it is

limited to increase spatial and range parameters progressively for removing large

textures [1].

To overcome this, weighted least squares (WLS) framework is prosed [1], in which

the edge-smoothing problem is formulated as an optimization framework. The WLS-

based operator smoothes an image except the region with large gradient and thus it

decomposes an image in edge-preserving manner. Another optimization framework,

total variation (TV) model [14] is also adopted in image decomposition [15, 16, 2].

Standard TV model gives penalties to large gradient magnitude and it performs

efficient texture removal. So many algorithms based on TV model are studied by

adopting different regularization terms. Among them, relative total variation model

(RTV) [2] introduces a novel regularization by combining a windowed total variation

and inherent variation, and its decomposition produces more flattened structure

layer than WLS without any assumption of the type of textures.

Else an image can be decomposed based on local extrema [3]. This method

treats detail as oscillation between maxima and minima of intensities. So it locates

both local maxima and minima in an image and constructs the maxima and minima

3



envelopes by interpolating maxima and minima separately. Then the structural base

layer is computed as the mean of extrema envelopes. In addition, rolling guidance

filter [4] extracts structure from textured image through small structure removal and

edge recovery steps. By applying Gaussian filter it removes small structure. Then it

recovers smoothed edges with the output of previous iteration as a guidance. Patch-

based image decomposition is also presented in [6] where patch weights depend on

region covariance.

1.2 Image enhancement

The image enhancement is to make an image visually more pleasant to human vi-

sual system. To be specific, images can be more vivid through the edge-sharpening,

contrast enhancement, detail enhancement, high-dynamic-range (HDR) image tone

mapping and so on. Among them, the edge-sharpening accompanying detail en-

hancement is also an important topic in image processing, which increases the visual

quality of the images [9, 17,18].

The classical detail enhancement is to use the “unsharpening filter,” where an

image is low pass filtered and subtracted from the original, which leaves the high

band signal that contains the edges and detail. The high band signal is then amplified

and added to the low pass filtered image, which is the edge-sharpened result. When

the Gaussian filter is used for the low pass filtering, its subtraction from the original

is the Laplacian of Gaussian, and thus the subband images so formed are called

the Laplacian Pyramids [9]. Like this, many algorithms for detail enhancement

perform extracting detail first based on image decomposition. That is, after an

image is decomposed into a structure layer and a detail layer, the detail layer is
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Figure 1.3: image detail enhancement (a) original image (b) detail-enhanced image

boosted and recombined with a structure layer. Consequently, the performance of

this enhancement processes are in conformity with that of image decomposition.

Fig. 1.3 is an example of detail-enhanced image.

Another form of image enhancement is contrast enhancement. For enhancing

image contrast, histogram equalization is studied for decades and it is still a pop-

ular method [19, 20]. In histogram equalization, the gray levels of the image are

remapped to stretch the histogram of an image or make it distributed equally and

many adaptation schemes are proposed [21,22].

It is becoming important to capture a scene with high dynamic range (HDR)

cameras and display with HDR. Their exchange with low dynamic range (LDR) de-

vices is also significant. Generally, an HDR tone mapping aims at reducing contrast

range to display a high dynamic range image on low dynamic range devices [8,9,1].

In the literature, a simple form of tone mapping is based on global mapping function
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which maps the intensities in high dynamic range into ones in narrower range [23,23].

However, managing global contrast causes the loss of image detail while compres-

sion. Accordingly, as considering local contrast management, algorithms based on

image decomposition are proposed [24, 9, 8]. For this, an image is decomposed into

a structure layer and one or more detail layers first. Then the structure layer is

compressed and recombined with texture layers. It is often performed by multi-

scale decomposition to enable detail enhancement simultaneously. High detail and

reduced dynamic range can be produced with image decomposition. In [24], image

decomposition is performed by a low curvature image simplifier (LCIS) which is

inspired by anisotropic diffusion and this LCIS-based tries to preserve scene bound-

aries. Bilateral filter and Laplacian filter are used in HDR tone mapping, too [8,9].

1.3 Image denoising

Image denoising is the process of restoring images corrupted by various noises such

as additive white Gaussian noise (AWGN), Poisson noise, impulse noise and so on.

It is fundamental in image formation, transmission and display systems, and thus a

huge number of methods have been developed over decades. However, since an image

can be corrupted by various noises, it is a challengeable problem and there is still

further room for improvements. The overview of classical linear filtering and some

of recently developed nonlinear methods can be found in [25], where the relations of

different nonlinear methods are also well explained.

Generally, noise model is defined as

y = x+ n (1.2)

where y is a noisy image as the observation, x is the original one, and n is noise. As
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shown in Fig. 1.4, the purpose of image denoising is to restore x from given y, and

peak-signal-to-noise ratio (PSNR) and mean squared error (MSE) are used to assess

visual quality of image denoising. With point of view in image decomposition, image

denoising decomposes a noisy image into an original one and noise. It shares the same

issue with image decomposition, i.e., edge-preserving smoothing. So for suppressing

the noise while keeping the important edges and structures in the image, many

classical denoising methods utilize filtering schemes. For example, median filtering

[26,27] is presented and nonlinear filtering methods such as bilateral filtering (BLF)

[11], nonlocal means (NLM) filtering [28] and block matching 3D (BM3D) filtering [5]

have been developed. These methods can be classified into spatial denoising and

transform denoising according to where their processes are performed.

1.3.1 Spatial denoising

Spatial denoising manipulates pixel values directly to denoise an image. Many spa-

tial denoising methods take the form of weighted averaging pixel values and the

denoised intensity estimate at pixel p is defined as

Î(p) =
1

W

∑
q

w(p,q)I(q) (1.3)

where wp,q is the weight between pixel p and q and W is a normalizing factor,

i.e., W =
∑

q w(p,q). In spatial denoising, local self-similarity or nonlocal self-

similarity is used. The underlying idea of methods based on nonlocal self-similarity

is that similar patches with a given patch can be found in different regions within

the image and q can be the entire pixel. On the other hand, only local neighbors

are used as q in the methods based on local self-similarity. The BLF [11] is one of
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Figure 1.4: image denoising

local similarity and its weight is defined as

w(p,q) = exp

(
−‖p− q‖2

2σ2
d

)
exp

(
−‖I(p)− I(q)‖2

2σ2
r

)
(1.4)

where p and q are pixel positions, I(p) and I(q) are intensity values at p and q,

and N(p) is the set of neighboring pixels of p.

NLM [28] and BM3D [5] are typical denoising based on nonlocal self-similarity.

The weight function in NLM utilized similarity between patches and it is designed

as

w(p,q) = exp

(
−‖Φp − Φq‖

h2

)
(1.5)

where Φp is the set of pixels within the patch centered at p and h is bandwidth of
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the filter. As each patch is used for computing the weight, NLM usually obtains

better denoising results than pixel-based method like BLF but it is time-consuming

process.

1.3.2 Transform domain denoising

The transform denoising methods are based on the idea that signals can be repre-

sented well as a linear combination of basis functions. It takes advantage of decom-

position which make noise separated partly from the original image. Hence, image

denoising can be achieved by manipulating transform coefficients and now it is im-

portant which transform can be selected for denoising. Among various transform

such as the discrete cosine transform (DCT), the wavelet transform is the most-used

one since it contains both spatial and spectral characteristic of an image. After

an image is transformed into wavelet domain, large coefficients are regarded as the

original image and small coefficients are considered as noise. Hence, thresholding

techniques such as hard thresholding and soft thresholding are adopted [29,30]. An-

other method proposed in [27] takes Gaussian scale mixture (GSM) model to fit the

neighboring coefficients and applies the Bayesian least squares (BLS) to manipulate

the coefficients.

1.3.3 benefits of combined image decomposition and image denois-

ing

A simple denoising example with a synthetic 1-D signal is shown, which motivates

to perform noise removal in a decomposed image. It is performed to find if image

decomposition increases the performance of filtering-based denoising. So BLF is

applied to Laplacian subbands. Note that the kernel of the bilateral filter in eq. (2.4)
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is consisted of two terms, i.e., geometric and photometric terms. From this, it can be

seen that the photometric weights would be kept large for wider area when a pixel

p is in the flat area where I(p) and I(q) are similar, and hence many neighboring

pixels can contribute for the denoising. On the contrary, when the pixel is in the

non-flat area where ‖I(p) − I(q)‖ is large, the photometric weights diminish and

thus the neighboring pixels less contribute for the denoising when compared with

the case of flat area. To be specific, Fig. 1 shows an example for this, where Fig.

1(a) is the original noisy signal, and Fig. 1(b) and (c) show its Laplacian low and

high subbands. It can be seen that the slope area in the original signal becomes

a flat area and thus more noise reduction can be gained here due to the widened

area of photometric similarity. For these three signals, the BLF is applied with the

same parameters, σ2
d = 4 and σ2

r = 49, and the denoising results of overall area and

specific areas (flat, edge, and slope areas as in Fig. 1(a)) are summarized in Table 1.

In the table, “original” column is the mean square error (MSE) of a noisy signal of

length 256 in Fig. 1(a), “original BLF” represents the BLF denoising of this signal,

and “subband BLF” means to apply the BLF to both of low and high band signals

in Fig.1 (b) and (c) and then adding them. Also, the “overall” means the MSE of

the overall region of the signal in [0,255], and flat, edge and slope represent the areas

as defined in Fig. 1(a). At the first row, it can be seen that the BLF of the signal

greatly reduces the noise variance (from 9.12 to 3.24) and the subband BLF decreases

the variance (to 2.11) a little bit more. When comparing the area wise results, it

can be observed that the ratio of the denoising gain is the most significant in the

slope area, whereas the subband BLF has worse gain at the edge area. Hence this

supports the motivation that the an image decomposition like Laplacian subbands

has the possibility of increasing the self-similarity-based filtering performance at the
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Figure 1.5: An example of the Laplacian subband decomposition for a 1-D signal.

(a) original signal (b) low band signal (c) high band signal

slope areas which becomes flat in the Laplacian subbands. Also, the performance

around edge area should be improved.

Table 1.1: Mean squared errors of the BLF results for the original and subband

signals.

area original original BLF subband BLF

overall ([0,255]) 9.12 3.24 2.11

flat ([0,39]) 10.8 4.58 2.86

edge ([80,119]) 6.11 1.55 2.64

slope ([150,189]) 8.53 3.45 1.67

1.4 Summary

The motivation of this research is based on the concern that image decomposition

and image denoising are not separable problems since noise can be regarded as small

scales of texture. In other words, image denoising is to decompose a noisy image into
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structure, texture and noise, and to eliminate noise layer. Also they share common

goals, i.e., edge-preserving smoothing. Nevertheless, each field is specialized and

developed independently.

Even though conventional image decomposition methods such as TVmodel based

methods [15,16,2] show their excellence in image decomposition, they cannot sepa-

rate texture and noise. It is difficult to settle this problem by varying the parameters

in those methods. For example, TV model [14] which is used in many decomposition

schemes, takes the form of

argmin
IS

∑
p

{ 1

2λ
(IS(p)− I(p))2 + |∇IS(p)|} (1.6)

where
∑

p |∇IS(p)| =
∑ {|(∂xIS)p|+ |(∂yIS)p|} is the sum of gradient magnitudes.

While TV model-based method chooses different form of regularization term, this

means the regularization term gives penalties to magnitudes of gradient. That is,

the model is designed to preserve large gradients and suppress small gradients. Even

so they are robust to extract structure in a noisy image, noise and texture can be

separated by this framework. Fig. 1.6 and 1.7 show failure cases of decomposing

texture and noise where WLS operator [1] and RTV-based method [2] are applied to

extracted texture layer by adjusting parameters. Fig. 1.6 (a) is a noise-free original

image, (b) its structure with α = 1.2, λ = 0.4 and (c) its texture. Also Fig. 1.6

(d) is a noisy image with additive white Gaussian noise σ = 20, (e) its decomposed

structure and (f) extracted. Since Fig. 1.6 (d) still contains noise components, pa-

rameters are increased to be α = 1.2, λ = 3.2 to the extracted noise and obtain (g)

structure. Then one more smoothing is performed on the extracted texture from tex-

ture + noise layer. Fig. 1.6 (h) is the texture after smoothing texture layer and (i) is

the noise layer, ie., (d) can be exactly reconstructed by combining (g), (h), (i). Fig.

12



Figure 1.6: Structure/texture/noise decomposition via WLS operator [1] (a) original

image (b) structure (α = 1.2, λ = 0.4) (c) texture extracted by subtracting (b)

from (a) (d) noisy image degraded by additive white Gaussian (σ = 20) (e) structure

of (d) (α = 1.2, λ = 0.4) (f) texture of (d) (α = 1.2, λ = 0.4) (g) structure of

(d) (α = 1.2, λ = 3.2) (e) extracted texture layer from (d)-(g) (f) extracted noise
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Figure 1.7: Structure/texture/noise decomposition via RTV operator [1] (a) noisy

image degraded by additive white Gaussian (σ = 20) (b) structure of (a) (c) texture

of (a), texture layer (c) is decomposed into (d) and (e) by one more RTV method

1.7 is the results of RTV-based decomposition. In these experiments, it is noted that

the decomposition algorithm which is more robust to noise is required. In addition,

many decomposition algorithms adopt optimization framework which increases com-

putational complexities and causes convergence problems. Hence, straight-forward

and patch-based framework are considered for robust decomposition algorithm to

noise since patch-based framework is know for its excellence in image denoising.

Conventional patch-based framework used in image denoising can be represented

by NLM [28] and BM3D [5]. They are designed to remove noise not texture and it

is limited in applying them to image decomposition. For example, if NLM is used to
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Figure 1.8: Nonlocal means filtering output (a) σ = 30, (b) σ = 40

decompose an image, the kernel bandwidth in eq. (1.5) should be widen. However,

texture cannot be preserved well as increasing the bandwidth as shown in Fig. 1.8.

Consequently, it is required to find ore edge-preserving technique which is robust

to noise at the same time. In the proposed method, this problem is resolved by

adjusting the number of patches as well as kernel bandwidth.

In this dissertation, a patch-based image decomposition framework is proposed

and it is extended to a noisy image decomposition. Specifically, an image is de-

composed by edge-preserving smoothing where its smoothed output is the weighted

average of neighboring pixels. Given a pixel, a set of similar patches is found by

measuring patch similarities based on mean squared error (MSE). Then, weights

between each patch and its similar patches are computed respectively in the similar

way of NLM [28]. With the patch weights, all the pixels in a patch are updated

at the same time while considering local pixel weighs. For better edge-preserving

smoothing, kernel bandwidth and number of similar patches are tuned. Experimen-
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tal results show that the proposed framework work well for image decomposition and

it is robust to the presence of noise. Also it is verified that the proposed method

can be utilized in many applications such as HDR tone mapping and detail enhance-

ment. In addition, by adopting the proposed method in decomposition of a noisy

image, both image denoising and image enhancement can be achieved in the pro-

posed framework. Furthermore, structure scalable image coding scheme is proposed

based on the proposed decomposition where structure and only salient texture are

encoded for efficient image coding.
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Chapter 2

Related work

2.1 Image decomposition

2.1.1 Laplacian subbands

Constructing Laplaican subbands is one of the simplest image decomposition meth-

ods. When a signal is low pass filtered and the filtered output is subtracted from

the original, then a high band signal is obtained. If this process is repeated for the

low pass filtered signal, then a set of subband signals is obtained as in Fig. 2.1. The

Laplacian pyramid for an image signal is constructed in this manner, where the low

pass filter is a Gaussian filter with appropriate kernel bandwidth. More specifically,

for a given image I, the Gaussian filter is applied iteratively with downsampling at

every step. This process can be described as

G0 = I,

Gk+1 =↓2 (Gaussian(Gk)) for k = 0, ..., n − 1 (2.1)
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where ↓2 (·) denotes the downsampling by 2 and Gaussian(·) is the Gaussian filter-

ing. Then, the Laplacian subbands are defined as

Lk+1 = Gk− ↑2 (Gk+1) for k = 0, ..., n − 2,

Ln = Gn (2.2)

where ↑2 (·) denotes the upsampling by 2 and n is the level of the pyramid. In this

paper, just two levels of Laplacian subband (n = 2) are used, where L1 denotes the

high-frequency (detail) subband and L2 represents the low-frequency subband.

Figure 2.1: Laplacian subbands

2.2 Edge-preserving smoothing

2.2.1 Bilateral filtering

The bilateral filter (BLF) proposed in [11] is a non-linear filter that considers both

of spatial and photometric distances of the neighboring pixels and its output is

represented by weighted summation of them. So as shown in Fig. 2.2, its kernel is
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well adapted in image contents. It is well-known that the bilateral filter based on

local self-similarity can remove noise or a fine detail in images with edge-preserving

manner. In addition, it is simple and non-iterative. Hence, it has been shown

to be effective in many applications such as image denoising, detail enhancement,

tone mapping for high dynamic range (HDR) images and so on [31, 8, 32–34, 18].

Besides, since the state-of-the-art image denoising methods such as BM3D [5] and

non-local means filter [28] require too much computation and high complexity, the

bilateral filtering scheme can be a practical solution for mobile device and real-time

implementation.

The BLF output is defined as

J(p) =
1

W

∑
q∈Np

w(p,q)I(q) (2.3)

where p and q denote pixel positions, Np is the neighbor of p, I(q) is the intensity

of the image at a pixel q, W is the normalizing factor as W =
∑

q∈Np
w(p,q) and

w(p,q) is the kernel of the BLF defined as [11]

w(p,q) = exp

(
−‖p− q‖2

2σ2
d

)
exp

(
−‖I(p)− I(q)‖2

2σ2
r

)
(2.4)

where σd is the bandwidth for the spatial distance and σr for the photometric dis-

tance. For successfully reducing the noise while keeping the edges, it is important

to find the balance between the σd and σr, and also to find an appropriate size of

the neighbor.

Recently, there have been several attempts to apply bilateral filter in some differ-

ent domains [32,34,33]. In [32], an image is decomposed into the low-frequency and

high-frequency subbands through wavelet decomposition and the noise is reduced

by the combination of bilateral filtering and wavelet thresholding. The bilateral
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Figure 2.2: Bilateral filtering

filtering in the gradient domain proposed in [33] also shows good results. In [34], a

recursive bilateral filter is proposed and extended to the gradient domain filtering.

In these schemes, the properties of different domains can be exploited to enhance

the denoising performance. In addition, the detail enhancement and image denoising

can be achieved simultaneously.

Bandwidth selection

Three are two parameters in BLF. One is the spatial bandwidth σd in (2.4) and the

other is the photometric (range) bandwidth σr. Since the performance of bilateral

filter relies on selection of them, it is important to choose proper ones. In [32],

the research for analyzing filtering performance according to parameters is tried.

The experiments are done for understanding the relations of bandwidths and noise

standard deviation σn. From the experiments, it is verified that that σd is insensitive

to noise standard variation. Instead, proper range for sigmad is appealed as [1.5, 2.1].
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Figure 2.3: Illustration of nonlocal means filtering scheme

On the other hand, it is noted that changing the noise standard deviation σn causes

the change of the photometric bandwidth σr. That is, the optimal σr is varied

according to σn and from the experiments, suggested value of σr is determined as

σr = 2σn. (2.5)

2.2.2 Nonlocal means filtering

Nonlocal means (NLM) filter is proposed for image denoising [28]. Due to its ef-

fectiveness, it is adopted in many applications such as image inpainting [35] and

super-resolution [36]. It is a patch-based technique and it assumes nonlocal self-

similarity which means similar patches are not only in neighboring region, but also

the entire region. So its output is the weighted average of all pixels in image. Specif-

ically, Let us denote the square patch centered at pixel p as Φp and the intensity
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value at p as I(p). The output value at p, J(p) is determined by a weighted average

as

J(p) =
1

W

∑
q∈Np

w(p,q)I(q) (2.6)

where W is the normalizing factor as W =
∑

q∈Np
w(p,q) and w(p,q) is the weight

between p and q. Here, N(p) is supposed to be the entire image, but practically for

better computing, it is often limited within a search window around p. The strategy

of weight is to give high value to similar pixels and low value to non-similar pixels.

For example, in Fig. 2.3, w(p,q1) is larger than w(p,q2) as q1 is more similar patch

than q2. So the weight is measured by as

w(p,q) = exp

(
−‖Φp − Φq‖

h2

)
(2.7)

where Φp is the squared patch centered at p. Also h is the filtering bandwidth which

controls permissable color range. In other words, Larger h gives more smoothing

results.
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Chapter 3

Scale-aware decomposition of

images based on patch-based

filtering

3.1 Edge-preserving smoothing via patch-based frame-

work

The proposed algorithm consists of three main steps: collecting similar patches at

each pixel, computing patch weights and updating patch and weights. In the step of

collecting similar patches, a set of patches are selected for each pixel by measuring

patch similarities and additional constraints. In the second step, the weights between

each pixel and its similar patches are calculated. In the third step, the values of all

the pixels in a patch are updated by considering both patch weights and local pixel

weights. Hence, the filtering output can be computed by the weighted summation
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Figure 3.1: Block diagram of proposed image decomposition framework

of pixels in similar patches. Fig. 3.1 shows the block diagram of the proposed image

decomposition framework. As seen in the block diagram, the proposed algorithm

utilizes two iterations which are performed through the same smoothing filter with

different parameters. In the proposed method, two types of parameters are used to

control the degree of smoothing. In the first step, kernel bandwidth σ and number

of patches N are utilized while σ
2 and N are used in the second step. That is, in the

second iteration, the proposed method performs smoothing an image less than the

first iteration by adjusting kernel bandwidth as σ
2 .

More specifically, let us denote an input image as I and given a pixel p = (x, y),

a pixel value at p as I(p). A squared patch centered at p is represented as Φp, i.e.,

Φp = [I(p1), I(p2), ..., I(pNp )], (3.1)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(p1) · · · I(p1) · · · I(p1)

...
. . .

...
. . .

...

I(p2r2+r+1) · · · I(p2r2+2r+1) · · · I(p2r2+3r+1)

...
. . .

...
. . .

...

I(pNp−2r) · · · I(pNp−r) · · · I(pNp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(x− r, y − r) · · · I(x, y − r) · · · I(x+ r, y − r)

...
. . .

...
. . .

...

I(x− r, y) · · · I(p) = I(x, y) · · · I(x+ r, y)

...
. . .

...
. . .

...

I(x− r, y + r) · · · I(x, y + r) · · · I(x+ r, y + r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the patch window size is (2r + 1) × (2r + 1). Also Cp is the set of pixels in

search window where patches similar to Φp would be found. First of all, similar

patches are collected based on the mean squared error (MSE) as

d(p,q) = ‖Φp − Φq‖2 = 1

Np

Np∑
k=1

(I(pk)− I(qk))
2, I(pk) ∈ Φp. (3.3)

where Np is the number of patches in Φp. For better applications, the guidance

image G can be used instead of I and then d(p,q) can be approximated as

d(p,q) = ‖Φp − Φq‖2 ≈ 1

Np

Np∑
k=1

(G(pk)−G(qk))
2, I(pk) ∈ Φp. (3.4)

Guidance image G can be input image and other on purpose. For example, to remove

specific scale of textures, it can be the Gaussian filtered image [4]. Then N patches

constitute the set of similar patches, Cp ascending order of MSE value, i.e.,

Cp = {q| |p− q| > ε, d(p,q) < d(p, r), r /∈ Cp}, n(Cp) ≤ N. (3.5)

Note that ε is used to avoid selecting p. Now patch weights are computed between
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each patch and its similar patches as

w(p,q) = exp−‖Φp − Φq‖2
2σ2

, q ∈ Cp. (3.6)

After computing patch weights, pixel values are calculated by the weighted summa-

tion of Cp in this pixel update step and pixel values and weights are accumulated

during filtering as in Fig. 3.2. The output pixel IS(p) is determined by

IS(p) =
∑
q∈Cp

w(p,q) exp

(
−(I(p)− I(q))2

2σ2

)
(3.7)

+
∑
r∈Ψp

∑
s∈Cr

w(r, s) exp−(I(p)− I(s+ p− r))2

2σ2

where Ψp = {r|I(p) ∈ Φr r 	= p}. Also w(p,q) is the patch weight and exp
(
− (I(p)−I(q))2

2σ2

)

is the local weight as described in fig. 3.3. Fig. 3.4 shows image decomposition result

varying σ and N .

3.2 Multi-scale image decomposition

The proposed image decomposition method can be adapted for multi-scale decom-

position. It is done by sequential method and parallel method. These are chosen

depending on purpose.

In the sequential method, the proposed smoothing operator is performed recur-

sively. That is, after an image I = I0S is once decomposed into structure I1S and

texture layers I1T , structure I1S as an input is decomposed into next level struc-

ture I2S and texture I2T . So a series of smoothing is processed as in 3.5 and n-level

decomposition is formulated by

I0S(p) = I(p), Ik−1
S (p) = IkS(p) + IkT (p) (3.8)

I(p) =

n∑
k

IkT (p) + InS (p)
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Figure 3.2: Illustration of updating patch
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Figure 3.3: Comparison of patch weights and local weights

Figure 3.4: Image decomposition comparison (a) simga = 10, N = 10 (b) simga =

10, N = 40 (c) simga = 10, N = 70 (d) simga = 10, N = 100 (e) simga = 20,

N = 10 (f) simga = 20, N = 40 (g) simga = 20, N = 70 (h) simga = 20, N = 100

28



where IkS is the structure layer obtained through k-th smoothing process. Hence, InS

becomes the coarsest structure layer and I1T becomes the finest texture layer.

On the other hand, in the parallel method the multi-scale decomposition is car-

ried by varying smoothing parameters such as the number of similar patches and

kernel bandwidth. Fig. 3.6 illustrates the process of parallel method. As shown, by

increasing parameters progressively, gradually coarser structure is obtained.
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Figure 3.5: Sequential method

Figure 3.6: Parallel method
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Chapter 4

Applications

4.1 Image enhancement

4.1.1 Detail enhancement

To enhance detail of an image, we extract a texture layer IT from the image via

image decomposition and boost it by multiplying constant. The result image with

enhanced detail is represented as

Ienhanced = IS + α× IT , α > 1 (4.1)

where IS is a structure layer obtained by the proposed smoothing algorithm.

We tested image enhancement and compared enhancement results with WLS

operator [1], relative total variation model [2], region covariance based method [6]

and rolling guidance filter [4]. As depicted in Fig. 4.6, proposed method shows

comparable result with state-of- the-art methods. It enhances detail of given image

non-artificially and preserves proper color as well without reversing edge. Fig. 4.2

also provides enhanced result which shows the proposed method can be adopted in
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detail enhancement.

Figure 4.1: Detail enhancement result (a) original image (b) detail-enhanced image

Figure 4.2: Detail enhancement result (a) original image (b) detail-enhanced image

Fig. 4.3 and Fig. 4.4 show comparison results with other methods such as

WLS [1], RTV [2], local extrema [3], rolling guidance filter (RG) [4], BM3D [5] and

region covariance [6]. Here, the results in Fig. 4.3 are produced by less smoothing

than those in Fig. 4.4. In Fig. 4.3, image details are enhanced well, but some

artifacts in the leaf are shown in (c), (d), (e) and (g). Also in Fig. 4.3 (f), since
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Figure 4.3: A comparison of Detail enhancement results (a) original image (b) detail-

enhanced via WLS operator [1] (c) RTV [2] (d) local extrema [3](e) rolling guidance

filter (RG) [4](f) BM3D [5] (g) region covariance [6] (h) proposed method

33



Figure 4.4: A comparison of Detail enhancement results (strong enhancement) (a)

original image (b) detail-enhanced via WLS operator [1] (c) RTV [2] (d) local ex-

trema [3](e) rolling guidance filter (RG) [4](f) BM3D [5] (g) region covariance [6]

(h) proposed method
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Figure 4.5: A comparison of Detail enhancement results (strong enhancement) (a)

original image (b) detail-enhanced via WLS operator [1] (c) RTV [2] (d)proposed

method
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Figure 4.6: HDR tone mapping result 1 (a) original image (b) WLS (c) proposed

method

BM3D is not for image decomposition, less details are extracted and enhanced. Fig

4.4 and Fig. 4.5 verify that WLS and RTV cause a change in colors and tones while

the proposed method preserves the entire tones during enhancing image details.

4.1.2 HDR tone mapping

HDR tone mapping reduces contrast to display an high-dynamic-range image in low-

dynamic range devices and the proposed decomposition is applied to it. Like the

method in [1], the BLF in [8] is replaced with the proposed smoothing. Concretely,

a log-luminance channel is extracted from a given HDR input by

L = 0.299 ×R+ 0.587 ×G+ 0.114 ×B,LL = log(L). (4.2)

where L is a luminance channel and LL, a log-luminance channel. Then the proposed

edge-preserving smoothing is performed on LL repeatedly to smooth it more and

more by incrementing the bandwidth and the number of patches. This series of

processing constructs multiple structure layer u0, u1 and u2 in order. Detail layers,
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Figure 4.7: HDR tone mapping result 2 (a) original image (b) WLS (c) proposed

method

Figure 4.8: HDR tone mapping result 3 (a) original image (b) WLS (c) proposed

method
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Figure 4.9: HDR tone mapping result 4 (a) original image (b) WLS (c) proposed

method

38



Figure 4.10: HDR tone mapping result 5 (a) original image (b) WLS (c) proposed

method
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d0, d1 and d2 are computed as

u0 = LL, dn = un − un+1. (4.3)

Then the output with compressed range is obtained by recombining the layers while

boosting details and this means

L̂ = exp(w0d0 + w1d1 + w2d2 +w3d3) (4.4)

where weights w0, w3, w3, w3 are adjusted to balance multi-scale details.

The proposed HDR tone mapping results are compared with the method based

on WLS operation [1] as depicted in Fig. 4.7 and Fig. 4.6. Original HDR range

images are shown in Fig. 4.7 (a) and Fig. 4.6 (a). Through tone mapping process,

their dynamic ranges are reduced. Fig. 4.7 (b) and Fig. 4.6 (b) are from the result of

WLS operator and (c) from the proposed image decomposition. As shown, it turns

out that the proposed algorithm gives pleasing visual quality without saturation and

noticeable artifacts. Similar tendencies are observed in Fig. 4.8, 4.9 and 4.10.

4.2 Image denoising

4.2.1 A noisy image decomposition

Image denoising is regarded as decomposition problem of a noisy image which result

in a structure layer, a texture layer and a noise layer. Since noise is generally a kind

of small textures, the extracted texture layer after one step of decomposition contains

both texture and noise. Consequently, one more decomposition process is required

but it is performed on the texture layer unlike conventional image decomposition

methods. This is for decomposition of noise and texture and image denoising is
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Figure 4.11: Block diagram of decomposing a noisy image

achieved by eliminating the noise layer. The entire decomposition of a noisy image is

described in 4.11 and result image of each process is provided in fig. 4.12. Note that

the final texture layer goes through histogram preservation process. It is because

smoothing step no matter how good causes loss of high frequency details. Hence,

the histogram adjustment step is proposed to preserve the properties of the original

histogram, which is demonstrated in the next section. Further, in fig. 4.13, it is

verified that the proposed method are more robust to noise than other methods.

4.2.2 texture enhancement via histogram preservation

As stated in the introduction, one of the reasons for choosing the decomposition-

based filtering scheme is to enhance the edges while reducing the noise. A straight-

forward method would be to amplify the denoised high band and then add this signal

to the denoised low band image, like the original unsharp mask method. However,

since the edge components in the high band have been smoothed in the filtering pro-

cess, the straightforward method might add the smeared edges. Hence, the process

is performed to restore the edge strength of the high band image as strong as the
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Figure 4.12: Decomposition of a noisy image (a) noisy image (b) structure IS (c)

structure + texture IS + IT (d) structure + texture via histogram preservation

original one and then this restored edges are added. For this, the idea of gradient

histogram preservation (GHP) in [37] is adopted, which is to impose a constraint

that the processed image has the same gradient histogram as the estimated original

one. Specifically, for the noisy image model:

y = x+ n (4.5)

where x is the original image, n is the noise, and y is the observed noisy image,

the processed image is constrained to have similar gradient histogram as x. In [37],

considering the histogram of gradients of y as the discretization of the pdf of gradient

distribution of y, the gradient histogram of the original image x is found by solving

argmin
Hx

{‖Hy −Hx ⊗Hn‖2 + c · R(Hx)} (4.6)
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Figure 4.13: Edge-preserving smoothing of noisy image (a) noisy image (b) WLS [1]

(c) RTV [2] (d) proposed

where Hx, Hy and Hn are the gradient histograms of x, y and n respectively, ⊗ is

the convolution operator, and c · R(Hx) is a regularization term. For solving this

problem, Hy is estimated from the observed data and Hn is modeled as a hyper-

Laplacian distribution as [37]:

px = k exp(−κ|x|γ) (4.7)

where k is normalization factor.

Note that the high band image texture IT in the proposed scheme is also a kind

of gradient image, where the above GHP approach can be applied. Applying the
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proposed decomposition to eq. (4.5), the high band relationship is determined as

D(y) = D(x) +D(n) (4.8)

where D(·) is the operator that extracts the texture of the input image, and hence

D(y) = IT + IN and D(x) = IT in the problem. Like the GHP approach, the

histogram of D(x) is found so that the histogram of ÎT is matched to this one.

Denoting the histogram of D(x) as the “reference histogram” Hr obtained in a

similar manner as eq. (4.6), except that the positive and negative coefficients are

considered separately in order not to diminish the peaks of coefficients that appear

around the edges. To be specific, Hr is obtained as

Hr = argmin
H

{‖Hy,+ −H ⊗Hn‖2 + ‖Hy,− +H ⊗Hn‖2 + c ·R(Hr)}. (4.9)

whereHy,+ is the histogram of positive values in ÎT , Hy,− for the negative values, and

Hn is the histogram of D(n) that is modeled as eq. (4.7). The range of parameters

for solving this problem is set the same as [37], i.e., κ ∈ [0.001, 3] and γ ∈ [0.02, 1.5].

Then, the histogram of IT is matched to Hr, which is denoted as HE(IT ) in Fig. 4.11

and the edge enhanced texture is obtained as ÎT = λ·IT+(1−λ)·HE (IT ) occasionally.

4.2.3 image denoising via subband BLF

For fast and practical image denoising, smoothing operators in the 4.11 is replaced

with Laplacian pyramid in (2.2) and the proposed subband BLF respectively. The

overall process is described in 4.15 where λ = 1 corresponds to the proposed Lapla-

cian subband filtering explained above, and 0 ≤ λ < 1 gives the edge enhanced

results by histogram preservation. Laplacian pyramid is used to decompose an im-

age into a structure layer and a texture/noise layer and then the proposed subband
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Figure 4.14: Histograms of texture layer IT and modeled histogramHr (a) histogram

of input texture IT (positive coefficients) (b) histogram of input texture IT (negative

coefficients) (c) histogram modeled as a hyper-Laplacian

BLF is applied to a texture/noise layer. The proposed subband BLF (SBLF) is

designed to be performed on a texture layer, which is used to decompose a tex-

ture/noise layer into a texture layer and noise. By using this pixel-based method

instead of the proposed patch-based work, the time complexity is reduced while

denoising effectively.

For a given input image, subband decomposition is performed first as eqs. (2.1)

and (2.2) to obtain the low band signal as a structure layer L2 = IS and high band

L1 = IT + IN . For the low band image L2, we apply the conventional BLF with

σd = 1.8 and σr = σ as suggested in [32], where σ is the noise variance. As stated

above, the filtering scheme for the high band image L1 is focused on, especially at

the edge area. The basic idea is to give larger weights to the pixels that have similar

edge intensities as well as pixel intensities. Also, when it is highly probable that a
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Figure 4.15: Noisy image decomposition via subband BLF

pixel is on the edge, it needs to be less affected by the neighboring pixels. These

ideas are encoded into the photometric kernel of BLF as

w(p,q) = exp

(
−‖p− q‖2

2σ2
d

)
exp

(
−‖I(p)− I(q)‖2 + ‖h(p) − h(q)‖2

4σ2
r (p)

)
(4.10)

were σ2
r (p) is the pixel dependent bandwidth and h(p) is the intensity of the pixel p

in the histogram-equalized image of L1 which will be explained later in more detail.

Comparing this kernel with that of the original BLF in eq. (2.4), it can be seen that

the spatial term (first term) is unchanged and only the photometric kernel (second

term) is different. The bandwidth for the photometric kernel is now pixel dependent

and the pixel difference in the high band (‖h(p) − h(q)‖) is considered in weight

control.

For these edge dependent modifications, edge information is extracted from the

BLF of low band image L2, which is denoted as L̂2. For determining whether a pixel

is an edge pixel or not, the Laplacian of Gaussian filter and then thresholding are

applied. Specifically, L̂2 is convolved with the kernel defined as
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LoG(x, y) = − 1

πσ4

(
1− x2 + y2

2σ2

)
exp

(
−x2 + y2

2σ2

)
(4.11)

and then the output pixels larger than 75% of the mean value are considered the

edge pixels. This gives an edge map E(p) which is 1 when the pixel p belongs to an

edge, and 0 if not. For simplicity, the edge map is obtained from the approximate

intensity component (image of (R+G+B)/3), and this edge map is applied to all of

color components equally. With this edge map, the kernel bandwidth is determined

as

σr(p) =

⎧⎪⎨
⎪⎩

σ if E(p) = 1

2σ otherwise.
(4.12)

It can be seen that the kernel bandwidth is small when the pixel is on the edge,

so that the neighboring pixels less contribute to the averaging and thus the edge

intensities are less changed. Conversely, the pixels in the flat areas are more strongly

filtered than the edge pixels.

The second modification is the inclusion of ‖h(p)−h(q)‖ in the photometric term,

where h(p) is the pixel value of histogram equalization of L1, in order to assign large

weights to the pixels with similar edge intensities as shown in fig. 4.16. The reason

for using histogram equalized high band image is to make the contribution of edge

intensity as large as the pixel intensity and also to stress the strong edges. More

specifically, instead of directly using L1(p) in the photometric term, its histogram-

equalized intensity h(p) is used, which is normalized into the range of [0, 255] (Note

that L1(p) can have negative value). Denoting the output of proposed BLF of L1

as L̂1, the final denoised image is obtained as L̂1 + L̂2.

Throughout the experiments, it is found that the low-band (L2) filtering with a
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variety of parameter changes does not much affect the overall performance. Hence,

just the original BLF with σr = σ is applied for the low-band filtering.

Figure 4.16: the effect of histogram equalization (a) L1 (b) h

4.2.4 Experimental results of image denoising

Experiments on pseudo white and Poisson noise

To evaluate the performance of the proposed method, several images in Fig. 4.17 are

tested. Each image is corrupted by the additive Gaussian noise (AWGN) with σn

and Poisson noise with Q and restored by the proposed bilateral filter. We compare

the proposed subband BLF algorithm with the original bilateral filter proposed [11],

multiresolution bilateral filter [32], BLS-GSM [27], NLM [28], and BM3D [5] with the

authors’ source code. According to [32], we set σd = 1.8 and σr = 2σn. Also 11× 11

windows are used for the original BLF, multiresolution BLF (MBLF), and proposed

method. MBLF is implemented in MATLAB only and others are implemented in

MATLAB and C++ through MATLAB MEX functions. These tasks are performed

on a PC with Intel Core i5 CPU and 4 GB RAM.
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Figure 4.17: Test images from Kodak dataset, BSDS 500 [7], etc.

Table 4.1 describes denoising results of images corrupted by the additive Gaus-

sian noise (AWGN) with σ = 20, 30, 40, 50. As shown in the Table 4.1, the proposed

method yields better results than BLF and MBLF. Further, whereas it is a kind

of pixel-based methods which is generally more vulnerable but more practical than

patch-based ones, it outperforms a typical patch-based method, NLM in the case

of high noise variance. Although its PSNRs are lower than BM3D, it has the ad-

vantages in terms of computation time and complexity as seen in 4.1. Fig. 4.18
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shows one of restored results. It demonstrates that subband BLF promises bet-

ter visual quality than other methods and comparable results with BM3D despite

lower PNSR. Besides, Fig. 4.18 (h) assures that the process of image enhancement

provides pleasing results.

Table 4.2 also shows denoising results when images are corrupted by Poisson

noise. We added Poisson noise with Q ∈ {5, 10, 15} to each image. It is verified that

subband BLF outperform BLF, MBLF, and even NLM.

Table 4.1: PSNR comparison results for additive white Gaussian noise with σn

Image σn

Local self-similarity Nonlocal self-similarity

BLF MBLF BLS-GSM SBLF SBLF+SHP NLM BM3D

1 20 31.6794 31.9323 33.8950 33.8895 33.9912 33.3431 35.8375

30 29.3073 29.4261 31.7667 31.8053 31.9595 30.7662 33.6504

40 27.4443 27.0962 29.6679 29.9504 30.3387 28.6293 31.5308

50 26.0250 25.0727 28.1345 28.3033 28.8437 26.8978 29.9591

2 20 32.9749 33.2897 35.5475 35.2767 35.5815 35.4776 36.6106

30 29.8528 29.5258 32.1670 31.9508 32.1319 31.8976 33.0533

40 27.5926 26.6223 29.4518 29.3156 29.7362 29.2211 30.2152

50 25.8208 24.3292 27.3741 27.1749 27.7712 27.0151 28.0509

3 20 29.5742 30.3730 31.5846 30.9477 31.2679 31.8571 32.9763

30 27.4829 28.6958 29.6329 29.5150 29.7952 29.9456 31.4283

40 25.9551 27.2244 28.0216 28.2743 28.4112 28.1528 29.7727

50 24.7668 25.9430 26.6088 27.1353 27.4058 26.4483 28.7892

4 20 28.9022 30.0833 31.9435 30.5835 31.3030 32.6272 34.7826

30 26.6148 27.6982 29.5136 28.7128 29.3479 29.7242 32.3814

40 25.0913 25.8124 27.6326 27.3614 27.8489 27.2984 30.2180

50 23.9548 24.2227 26.0823 26.1541 26.4535 25.1335 29.0437

5 20 30.9226 31.6095 33.3512 32.1059 32.5655 33.4586 35.4615

30 28.3882 29.0038 30.6294 30.0301 30.6165 30.8806 33.2934

40 26.5845 26.7319 28.6867 28.5237 29.2085 28.9082 31.2421

50 25.2343 24.7728 26.8821 27.2045 27.8678 27.1664 29.8016

6 20 31.3201 32.6138 33.8225 33.5283 33.6509 33.7352 35.8833

50



30 29.0220 30.4443 32.4017 32.0848 32.1853 31.9146 34.0272

40 27.2790 28.2125 31.3444 30.7425 31.0878 30.2546 32.4741

50 25.8628 26.2051 30.1969 29.4428 30.0478 28.7224 31.7233

7 20 30.4979 31.2362 33.2919 31.9643 32.4950 33.1599 35.7414

30 28.1647 28.7057 31.2204 30.3517 30.8560 30.7644 33.6985

40 26.5483 26.5278 29.4311 29.1206 29.7163 28.8654 31.8135

50 25.2710 24.4774 27.8250 27.8153 28.3661 27.1031 30.4806

8 20 30.3259 30.7226 31.6622 32.3661 32.7538 32.4851 34.1278

30 27.6526 27.8349 29.1567 29.7130 30.1721 29.5019 31.0695

40 25.6668 25.5379 27.1845 27.5696 27.9187 27.1221 28.7032

50 24.1793 23.6836 25.2317 25.8535 26.3615 25.0768 27.0269

9 20 28.5583 28.9596 30.6504 30.1767 30.6660 31.2895 33.2452

30 26.4573 26.3106 28.0796 28.1855 28.5467 28.2735 30.5383

40 24.9711 24.2361 25.8615 26.4964 26.7047 25.7901 28.1555

50 23.7114 22.4669 24.2702 24.9009 25.0663 23.6596 26.3629

10 20 28.9684 29.6138 31.3675 31.6605 31.6543 31.2497 33.3269

30 27.1900 27.6733 29.2816 29.9158 29.7016 28.7399 31.2765

40 25.8052 25.7907 27.5601 28.3284 28.1986 26.3427 29.4868

50 24.7704 24.0634 26.1686 26.9749 27.0048 24.4219 28.4078

11 20 29.7327 30.1930 31.8022 31.6099 31.8518 31.7344 34.1093

30 27.5835 27.6991 29.2003 29.4726 29.6222 28.5796 31.4683

40 26.0026 25.6153 27.4096 27.7887 27.8895 26.3862 29.3017

50 24.7143 23.8605 25.7574 26.3342 26.5497 24.6990 27.7145

12 20 28.5115 29.0784 30.9551 30.3149 30.5899 31.1675 33.2284

30 26.4951 26.9067 28.7451 28.5976 28.7228 28.8376 30.9240

40 25.1260 25.1497 27.0012 27.3580 27.4152 26.9429 29.2662

50 24.0792 23.5972 25.6690 26.2281 26.2232 25.1579 28.2475

13 20 31.5452 32.0284 33.7145 33.6012 34.0474 33.7485 36.1165

30 29.1706 29.2877 31.1478 31.3642 31.8337 30.7781 33.4574

40 27.3659 26.8768 28.9921 29.4073 30.0110 28.3528 30.9108

50 25.8349 24.6919 27.2418 27.5212 28.0419 26.2902 28.7832

14 20 31.0387 31.3631 33.0023 32.5708 33.1066 33.7123 35.9191

30 28.6250 28.5758 30.3031 30.5868 31.1799 30.5336 33.2031

40 26.8590 26.0783 28.3290 28.8154 29.4035 28.2653 30.7346

50 25.5486 24.0992 26.6015 27.3602 27.9302 26.4955 29.1329
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15 20 29.2370 29.5998 30.8136 30.5740 30.7395 30.9515 32.9437

30 27.3628 27.9516 29.2355 29.2343 29.2801 28.9399 31.1266

40 25.9133 26.5167 28.0673 28.2442 28.3154 27.5401 29.6110

50 24.7727 25.1012 27.1200 27.2924 27.4839 26.3898 28.8131

16 20 27.8444 27.6034 29.1273 28.6031 29.0561 29.5986 32.0654

30 25.9188 25.2429 26.7201 26.7651 27.1110 26.3124 29.3661

40 24.5894 23.4094 24.7600 25.3502 25.3923 24.0598 27.1518

50 23.5213 21.8728 23.3981 24.1003 24.0880 22.4760 25.3342

17 20 32.7103 34.5430 35.6234 35.6674 36.1768 36.4398 37.5250

30 29.9369 31.2216 33.4702 32.9760 33.3581 33.6113 34.5780

40 27.8516 28.5983 31.3656 30.6255 31.1115 30.9495 31.8928

50 26.2928 26.4323 29.5636 28.7517 29.3792 28.8643 30.0609

Avg. 20 30.2555 30.8731 32.4797 32.0847 32.4410 32.7080 34.7000

30 27.9544 28.3649 30.1572 30.0742 30.3777 30.0001 32.2671

40 26.2733 26.2375 28.2804 28.4278 28.7475 27.8283 30.1459

50 24.9624 24.4054 26.7133 26.9734 27.3462 26.0010 28.6901

Avg. time (sec) 0.2971 10.3835 17.2237 1.0496 1.6537 25.3411 5.8549

Table 4.2: PSNR comparison results for Poisson noise

Image Q
Local self-similarity Nonlocal self-similarity

BLF MBLF BLS-GSM SBLF SBLF+SHP NLM BM3D

1 5 32.9474 32.2942 32.5604 33.9158 33.6460 31.7862 35.7180

10 31.6517 30.4416 32.0477 32.3254 32.4932 29.8999 34.2759

15 30.9226 29.1446 30.5474 31.3624 31.5622 28.6041 33.2375

2 5 32.6603 31.9920 32.5760 32.8464 33.1194 32.5680 33.3375

10 29.8982 29.1885 29.9337 30.0923 30.4616 29.7621 30.5083

15 28.3087 27.5458 28.2237 28.4888 28.8353 28.0551 28.8865

3 5 28.5304 29.6791 28.7796 30.1783 30.2822 28.8773 31.8382

10 27.1771 28.2888 27.4379 28.7222 28.7241 27.3655 30.1377

15 26.2929 27.3980 27.1803 27.6600 27.8185 27.0401 28.9333

4 5 28.0572 29.6012 29.5626 30.2409 30.8311 29.7546 33.6546

10 26.4676 27.6728 28.2923 28.6199 29.1260 27.8181 31.7713
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15 25.7800 26.5266 27.7651 27.6787 28.0336 26.6028 30.4430

5 5 30.3216 30.8260 30.3239 31.3062 31.6425 30.3956 34.0762

10 28.4768 28.7685 28.9643 29.4338 29.8800 28.8715 31.9897

15 27.3614 27.3844 27.9394 28.2943 28.8375 28.0808 30.6739

6 5 31.9297 32.2599 31.4390 33.0248 33.0831 31.3576 34.7484

10 30.8194 30.5589 30.8745 32.0504 32.1184 30.0446 33.6319

15 30.2222 29.1207 31.2517 31.2596 31.3442 29.4280 32.8599

7 5 29.6739 30.4118 30.0423 31.2509 31.5222 29.3095 34.6661

10 28.3809 28.2856 28.9907 29.8879 30.3524 27.7685 33.0593

15 27.6936 26.8059 29.3206 29.0268 29.5240 27.4791 31.9049

8 5 28.2500 28.4255 28.3466 29.4297 29.6461 28.5906 30.1870

10 25.8856 25.8762 26.1665 26.7587 26.9426 26.2118 27.2840

15 24.4493 24.3873 24.8280 25.1588 25.3818 24.8496 25.6552

9 5 28.0706 29.1018 29.4688 30.1800 30.3597 29.4709 33.0635

10 26.6741 27.2846 28.5283 28.7467 28.7843 27.2990 31.2016

15 25.9656 26.1796 26.7397 27.9588 27.8463 26.0379 30.0464

10 5 28.8831 29.4276 30.0148 31.3568 31.1390 29.7278 32.6500

10 27.8802 27.9964 28.7563 29.8511 29.3882 27.3240 31.1192

15 27.4028 26.9265 27.9094 28.9117 28.5604 25.6081 30.2343

11 5 29.5365 30.0382 30.1752 31.5122 31.5537 29.3369 33.8069

10 28.3256 28.3580 28.8217 30.0518 29.8965 26.9207 32.1791

15 27.7447 27.2156 28.3706 29.1063 28.9979 26.1556 31.0028

12 5 27.6072 28.1619 28.1212 29.5238 29.5007 27.9824 31.7674

10 26.3065 26.3717 27.0471 27.9643 27.8676 26.3422 29.8103

15 25.5783 25.2363 26.6315 26.9470 26.8828 25.9462 28.6412

13 5 32.0150 32.4269 31.6687 33.3938 33.5789 32.6053 35.5010

10 30.5937 30.6959 29.9627 31.7383 31.8907 30.0511 33.8554

15 29.7145 29.4146 29.4981 30.6168 30.8686 28.4237 32.4779

14 5 31.2368 31.5797 31.6847 32.3691 32.5747 31.7102 34.8674

10 29.6350 29.5338 29.8394 30.8186 31.1010 29.2284 33.0338

15 28.7648 28.2227 28.1174 29.8880 30.2727 28.2336 31.8545

15 5 28.5837 28.7374 28.5589 29.9596 29.8765 28.1096 31.4455

10 27.5850 27.3168 27.5229 28.6577 28.5360 26.7409 29.9984

15 26.9981 26.3929 27.2907 27.8465 27.8287 26.7237 29.0602

16 5 28.1392 28.9779 28.6754 30.3397 30.1752 29.0209 33.0324
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10 26.6853 27.2935 27.4899 28.3641 28.3926 27.6298 30.9771

15 25.9588 26.4298 26.9550 27.6548 26.6335 26.0549 30.1389

17 5 33.6342 33.7754 34.2991 35.1089 35.3384 33.9634 36.6987

10 31.3931 31.5094 32.8083 32.8809 33.1721 31.7328 34.0991

15 30.2021 30.0352 31.6157 31.2593 31.5348 30.2098 32.3833

Avg. 5 30.0045 30.4539 30.3704 31.5257 31.6394 30.2686 33.5917

10 28.4609 28.5554 29.0285 29.8214 29.9487 28.2948 31.7019

15 27.6094 27.3157 28.2461 28.7717 28.8684 27.2667 30.4961

Avg. time 0.3078 10.8430 16.8132 1.1335 2.0406 21.5664 6.9882

Experiments on mixed noise

We do some experiments on mixed noise. In the experiments, images are degraded

by various noises mixed by Poisson noise, Gaussian noise, and impulse noise. Since

all the algorithm except MBLF do not use noise estimation, we tested with several

σn ∈ {10, 20, 30, ..., 70} and chose the best result for each image. Table 4.3 shows

the PSNR comparison results for denoising images added by 20% impulse noise,

Table 4.4 shows the case of 20% impulse noise + Gaussian noise σn = 10, and

Table 4.5 presents the case of 10% impulse noise + Poisson noise Q = 10. Through

the results, it is demonstrated that the proposed algorithm works better than the

state-of-the-art methods with less computation time.

Experiments on real noise

When an image is captured by camera in insufficient light condition, slow shutter

speed or high ISO is required to produce a visible image. However, slow shutter

speed lets more light reach to the lens of camera and at the same time it makes a

captured image blurred without a tripod while another solution, high ISO induces
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Figure 4.18: Results of denoising the image corrupted by AWGN σn = 40 (a) original

image (b) noisy image (c) BLF (Lab), 26.6263 dB (d) MBLF, 26.6223 dB (e) BM3D

30.2152 dB (f) NLM 29.2211 dB(g) subband BLF, 29.3156 dB, (h) subband BLF +

enhancement via subband histogram preservation, 29.7362 dB
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Table 4.3: PSNR comparison results for mixed noise (20% impulse noise)

Image
Local self-similarity Nonlocal self-similarity

BLF MBLF BLS-GSM SBLF SBLF+SHP NLM BM3D

1 24.2018 22.3321 24.1887 24.8946 25.5637 23.6376 24.9905

2 25.2758 22.3321 23.1560 24.6518 25.1281 22.8560 24.9531

3 23.4455 23.5109 23.2620 24.7831 25.0209 23.5753 23.2513

4 24.3097 23.5109 24.3265 24.7915 25.4917 24.3059 24.8292

5 24.2705 23.0465 23.4489 24.9239 25.2416 23.7099 25.9463

6 24.5625 22.8714 26.7785 24.6312 24.9877 24.0875 24.9552

7 26.7080 24.5795 23.9426 27.2216 27.9954 25.9881 27.2638

8 27.4187 24.5795 22.8013 26.9462 27.4291 24.5127 27.1690

9 24.9481 23.2055 21.4086 24.7405 25.4531 23.2277 25.4997

10 23.1654 23.2055 22.9440 24.1613 24.6602 22.3793 23.8574

11 21.8711 22.1039 22.7081 22.3840 23.0829 21.1000 22.6501

12 24.2072 22.1039 23.8970 24.4611 24.7991 22.3230 24.5317

13 22.7976 21.2694 22.7738 23.8494 24.4214 22.3291 24.0320

14 23.7069 22.8539 23.0868 24.8992 24.9745 22.7604 25.3259

15 24.1294 22.8539 25.2027 24.2629 24.1815 21.0988 25.2427

16 23.8777 21.9349 20.6449 23.9269 24.8300 23.5069 23.5867

17 23.9372 24.5466 24.4997 23.9191 24.6917 22.8812 23.9613

Avg. 24.2843 22.9906 23.4747 24.6734 25.1737 23.1929 24.8262

Avg. time 0.3120 9.3545 16.8914 0.9256 1.5416 38.2350 9.0230
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Table 4.4: PSNR comparison results for mixed noise (20% impulse noise + Gaussian

noise σn = 10)

Image
Local self-similarity Nonlocal self-similarity

BLF MBLF BLS-GSM SBLF SBLF+SHP NLM BM3D

1 25.4552 22.1891 24.1444 24.7558 25.5305 23.5478 24.9216

2 23.7768 21.0752 22.8482 23.3077 24.4494 23.3204 22.9711

3 24.3323 23.4815 23.2735 24.7094 25.4398 24.2775 24.7898

4 24.2892 23.0925 24.3643 24.9520 25.2857 23.7272 25.9443

5 24.7113 22.8267 23.4414 24.6117 25.2226 24.0864 24.9208

6 27.5909 24.5983 26.7542 27.2233 28.0096 25.9194 27.2793

7 25.1151 22.3752 24.0196 25.0142 25.7913 24.5317 25.5305

8 23.5459 23.2134 22.7675 24.0731 24.5248 22.3253 23.8019

9 22.1189 19.7029 21.3331 22.3726 23.0503 21.0883 22.6279

10 24.3848 22.1769 22.9668 24.5119 24.8412 22.4003 24.5818

11 24.0068 21.3128 22.7450 23.8465 24.4128 22.4418 24.0698

12 24.1744 22.9088 23.9241 24.9614 25.0423 22.8593 25.3869

13 24.3663 22.0438 22.8545 24.0156 24.8735 23.5837 23.7107

14 24.2580 21.5176 23.0955 23.9533 24.7053 22.8613 24.0113

15 25.8520 24.5380 25.1631 26.0130 26.0355 24.5009 26.3651

16 21.6917 19.3832 20.7904 21.6338 22.1698 20.7998 21.8605

17 25.2929 22.4147 24.4745 24.8613 26.0848 24.3419 24.3968

Avg. 24.4096 22.2853 23.4682 24.4010 25.0276 23.3302 24.5394

Avg. time 0.2988 10.3789 16.7026 1.1930 1.8961 32.0858 8.3840
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Table 4.5: PSNR comparison results for mixed noise (10% impulse noise + Poisson

noise Q = 10)

Image
Local self-similarity Nonlocal self-similarity

BLF MBLF BLS-GSM SBLF SBLF+SHP NLM BM3D

1 28.4158 25.4233 27.4656 28.2487 29.2835 27.6470 29.1604

2 25.8129 23.6747 25.0903 25.5515 26.6082 26.0011 25.4205

3 25.1491 25.3809 24.9301 26.0402 26.5509 25.6082 26.7212

4 25.1560 24.7387 25.7451 26.3853 26.9163 26.2451 28.4774

5 26.0058 24.7914 25.1994 26.4017 27.1395 26.3872 27.7189

6 28.9993 26.8902 28.9912 29.5343 30.2031 28.8034 30.5975

7 26.4841 24.6991 26.4335 27.2403 28.0310 27.0361 28.9383

8 23.1222 22.8339 22.4087 23.5417 24.1565 23.3715 23.5693

9 24.2926 22.6400 24.2504 25.2764 25.9606 24.9965 26.2820

10 26.1391 24.4213 25.6495 26.9526 27.1979 25.2780 27.6961

11 26.1645 24.2364 25.2243 26.6826 27.2050 25.8733 27.6886

12 24.8639 23.8919 24.7310 25.8516 26.0308 25.0271 27.1157

13 27.2892 24.9263 26.2754 27.4459 28.3717 27.0570 27.8019

14 26.8431 24.4638 26.1080 27.1334 27.9553 26.7907 28.0307

15 26.3177 25.4183 25.7355 26.9212 27.0969 26.1018 27.8844

16 23.9856 22.1646 23.4939 24.6034 25.0621 24.3040 25.7068

17 27.4375 26.3678 27.7605 27.7814 28.9324 27.5485 27.8591

Avg. 26.0281 24.5272 25.6172 26.5642 27.2178 26.1221 27.4511

Avg. time 0.2996 10.3959 16.2441 1.0685 1.7206 33.1900 9.4430
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Figure 4.19: Image denoising of real noisy image result 1 (a) real noisy image (b)

ground truth (c) BLF, 36.6848 dB (d) MBLF 35.5875 dB (e) NLM, 37.8776 dB (f)

BM3D, 38.4951 dB (g) SBLF 37.8706 dB (h) SBLF+SHP, 37.7653 dB
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Table 4.6: PSNR comparison results for real noise

Image
Local self-similarity Nonlocal self-similarity

BLF MBLF BLS-GSM SBLF SBLF+SHP NLM BM3D

1 32.8029 31.68 33.0025 34.0362 34.0253 34.183 34.431

2 36.6846 35.5875 37.0479 37.8706 37.7653 37.8776 38.4951

3 22.6241 22.7788 22.2161 22.9023 22.8644 22.5071 22.6712

Avg. 30.7039 30.0154 30.7555 31.603 31.5517 31.5226 31.8658

Figure 4.20: Image denoising of real noisy image result 2 (a) real noisy image (b)

BLF (c) MBLF (d) BLS-GSM (e) NLM (f) SBLF+SHP
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noise. So for experiments on real noise, we obtained several images captured in low

light condition with high ISO and then denoised them by BLF, MBLF, NLM, BM3D

and the proposed subband BLF. Table 4.6 illustrates PSNR results where the ground

truth image is generated by averaging 30 images taken by fixed camera. It shows

that the proposed method denoise real noise well. For comparing visual quality, Fig.

4.19 and Fig. 4.20 are also provided and it is presented that the proposed method

gives visually pleasing results.

4.3 Image coding

4.3.1 Structure scalable image coding framework

When an image contains a lot of textures and/or noise, the performance of its

compression becomes worse than the image with less textures [38, 39]. It is due to

high frequency components in texture and noise. To improve image/video coding

technique, video coding scheme using texture analysis and synthesis are studied [39,

39]. In this framework, texture region which can be synthesized is analyzed to encode

non-texture region and texture region is reconstructed by texture synthesis. It is

verified that it enables bit-savings, but texture synthesis techniques are limited to

textures with repeated pattern. Hence, another effective coding scheme is required.

First of all, some experiments are done to investigate the effect of texture on

image coding. Fig. 4.21 shows compression results of the original image (a) and

extracted structure (b) via BLF. Also Fig. 4.22 (a), (b), (c) are the result images

obtained by compressing the original image at given bit per pixel(bpp) and (d), (e),

(f) are obtained by compressing the structure layer where the peak-signal-to-ratios

(PSNRs) are computed between the original image and each compressed image.
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Figure 4.21: Rate-Distortion curve of compressing the original image and its struc-

ture layer

They show PSNRs of compressed structure image are lower, of course, but some

artifacts induced by compression are reduced. In addition, it is known that the

human visual is more attentive to salient objects [40,41]. All things considered, we

propose a new structure scalable image coding framework based on the proposed

decomposition.

The proposed structure scalable image coding scheme is described in Fig. 4.23.

The key is to remain textures and details only in salient region since human visual

system is more sensitive to change in salient region, but it is not in other region. For
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Figure 4.22: The result images obtained by compressing the original image and its

structure layer, original image: (a)0.1983 bpp (24.94 dB) (b) 0.9979 bpp(36.12 dB)

(c) 2.498 bpp (45.53 dB), structure layer: (d) 0.1981 bpp (24.63 dB) (e) 0.9983 bpp

(30.55 dB) (f) 2.498 bpp (31.31 dB)

this, given an image, saliency detection proposed in [41]is preceded before extracting

structure to generate a saliency mask. Then, the proposed decomposition method

is adopted for separate the structure and the texture. With the saliency mask,

the texture layer corresponding salient region recombined with the structure layer.

Namely, textures are removed in the image except salient region and encode the

recombined image. Meanwhile, this scheme is named as “structure scalable coding”

since bit stream can be controlled according to the transmission channel condition.

It is done by adjusting decomposition parameters which manipulate the degree of

smoothing. For example, in the case of requiring more bit-savings, an image is

smoothed a lot to leave large scale of structure.

To verify effectiveness of the proposed work, images are encoded by JPEG
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Figure 4.23: Block diagram of structure scalable image coding framework

2000 [42] and compared it with the compressed original images. Table 4.7 demon-

strates lossless compression results of Kodak image. It represents bit per pixels

(bpp) of compressing the original images (the second column), structure layers (the

third column) and the images produced by the proposed framework (the fourth col-

umn). As shown in Table 4.7, compressing structure layers requires less bits than

the original and the proposed scheme gives bit-savings up to 36%. Fig. 4.24 are for

comparing subject visual quality where original image (a), structure image (b) and

structure layer recombined salient texture (c). Through efficient saliency detection,

Fig. 4.24 (c) shows a relatively small difference from the original image and even

better quality with correction of skin texture. Fig. 4.25 depicts rate-distortion (R-

D) curves of lossy compression of Fig. 4.26 (a). The PSNRs are computed between

the original image and the compressed one. As shown in Fig. 4.25 (a), when the

image is encoded through the proposed framework, the PSNRs of overall region at

the same bpp with the original image compression are lower. However, it is demon-

64



Table 4.7: JPEG Lossless compression results of Kodak images

#img
Original image Structure image Structure+ salient texture Gain

(bpp) (bpp) (bpp) (%)

1 10.3842 8.934 8.9084 14.21

2 9.1627 5.3811 5.7978 36.72

3 8.0917 5.5926 5.8459 27.75

4 9.3595 6.5025 7.1130 24.00

5 10.8167 10.5243 10.2775 4.98

6 9.591 7.4153 7.3933 22.91

7 8.5037 6.6404 6.6028 22.35

8 11.1389 9.9328 9.8094 11.93

9 9.0531 5.6023 5.7665 36.30

10 9.2183 6.1483 6.1442 33.35

Avg. 9.532 7.2674 7.3659 23.45

strated that the proposed algorithm works better in the saliency-detected region

(Fig. 4.25 (b)), which shows the proposed algorithm reduces compression artifacts

and achieve efficient compression like Fig. 4.27, Fig. 4.28, Fig. 4.29, Fig. 4.30 and

Fig. 4.31.

65



Figure 4.24: (a) original image (b) structure layer (c) structure + salient texture

layer

Figure 4.25: Rate-distortion curves (a) overall image (b) saliency-detected region
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Figure 4.26: Lossy compression results 1 (bpp:0.3956) (a) original image (b) com-

pressed original image (overall: 30.7200 dB, salient region: 30.3549 dB) (c) com-

pressed structural image(overall: 29.1682 dB, salient region: 28.4062 dB) (d) saliency

mask (salient region is expressed in white) (e) compressed structural image (overall:

29.1682 dB, salient region: 28.4062 dB) (f) close-up of (b) (g) close-up of (e)
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Figure 4.27: Lossy compression results 2 (a) original image (b) saliency mask (c)R-D

curve for overall region (d) R-D curve for salient region
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Figure 4.28: Lossy compression results images of Fig. 4.27 (a) compressed original

image (20:1) (b) compressed original image (30:1) (c) compressed structure + salient

texture (20:1) (d) compressed structure + salient texture
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Figure 4.29: Lossy compression results images 3 (a) compressed original image (50:1)

(b) compressed structure + salient texture (c)R-D curve for overall region (d) R-D

curve for salient region
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Figure 4.30: Lossy compression results images 4 (a) compressed original image (60:1)

(b) compressed structure + salient texture (c)R-D curve for overall region (d) R-D

curve for salient region
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Figure 4.31: Lossy compression results images 5 (a) compressed original image (70:1)

(b) compressed original image (70:1) (c) compressed structure + salient texture of

(a) (d) compressed structure + salient texture of (b) (e)R-D curve for overall region

(f) R-D curve for salient region
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Chapter 5

Conclusion

This dissertation has presented a patch-based image decomposition framework for

decomposing an image into a structure layer and a texture layer. Like conven-

tional methods, the proposed image decomposition is performed by edge-preserving

smoothing where a structure layer can be obtained by applying smoothing filter to

an image and a texture layer can be extracted by subtracting the structure layer

from the original image. However, the proposed method is motivated by the concern

that noise can be regarded as small scale of texture and image decomposition and

image denoising are not separable problems. Hence it takes advantages of patch-

based framework which is efficient in image denoising and edge-preserving smoothing

is done by patch-based filtering. Also it tries to solve the over-smoothing problem

existing in conventional patch-based framework by controlling number of patches

used in filtering. Consequently, it provides pleasing results of image decomposition

and facilitates extension to a noisy image decomposition.

The proposed filtering output is obtained through three main steps, i.e., collect-

ing similar patches at each pixel, computing patch weights and updating patch and

73



weights. In the step of collecting similar patches, a set of patches are selected for

each pixel by measuring patch similarities and additional constraints. In the second

step, the weights between each pixel and its similar patches are calculated. In the

third step, the values of all the pixels in a patch are updated by considering both

patch weights and local pixel weights. Hence, the filtering output can be computed

by the weighted summation of pixels in similar patches. More specifically, given

a pixel, a set of similar patches is found by measuring patch similarities based on

mean squared error (MSE) and additional constraints. Then, patch weights between

each patch and its similar patches are computed respectively in the similar way of

conventional patch-based framework. With the patch weights, all the pixels in a

patch are updated at the same time while considering local pixel weighs.

The proposed decomposition can be applied to many applications, such as detail

enhancement, HDR tone mapping, image denoising, and image coding, etc. In detail

enhancement, the proposed edge-preserving smoothing works well for extraction

and enhancement of image detail. In HDR tone mapping, a typical framework is

utilized where smoothing operator is replaced by the proposed smoothing operator

and the dynamic range of a high dynamic range image is reduced for displaying

the image into low dynamic range devices. For image denoising, a noisy input is

decomposed into structure/texture/noise by the proposed method and the noise layer

is discarded while the texture layer is restored through the histogram preservation

process. Also a novel coding scheme named as “structure scalable image coding

scheme” is proposed for efficient image coding. In the proposed image coding scheme,

image decomposition and saliency detection are performed to encode structure layer

and salient texture layer. Experimental results show that the proposed framework

can perform well in many applications. In addition, it is verified that the proposed
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method is robust to the presence of noise. Also by adopting the proposed method

in decomposition of a noisy image, both image denoising and image enhancement

can be achieved in the proposed framework. Furthermore, the proposed method for

image coding is efficient in reduction of compression artifact and improvement of

the coding performance.
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