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Abstract

In this thesis, we propose a method for modeling trajectory patterns with both regional

and velocity observations through the probabilistic inference model. By embedding

Gaussian models into the discrete topic model framework, our method uses continu-

ous velocity as well as regional observations unlike existing approaches. In addition,

the proposed framework combined with Hidden Markov Model can cover the tem-

poral transition of the scene state, which is useful in checking a violation of the rule

that some conflict topics (e.g. two cross-traffic patterns) should not occur at the same

time. To achieve online learning even with the complexity of the proposed model, we

suggest a novel learning scheme instead of collapsed Gibbs sampling. The proposed

two-stage greedy learning scheme is not only efficient at reducing the search space but

also accurate in a way that the accuracy of online learning becomes not worse than that

of the batch learning. To validate the performance of our method, experiments were

conducted on various datasets. Experimental results show that our model explains sat-

isfactorily the trajectory patterns with respect to scene understanding, anomaly detec-

tion, and prediction.

Keywords: trajectory analysis, topic model, latent Dirichlet allocation, surveillance
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Chapter 1

Introduction

1.1 Statement of Problem

The number of surveillance cameras is increasing all around the world for safety and

security in both public and private environments, such as airports, train stations, high-

ways, parking lots, markets, offices, and so on. Because of the large number of cam-

eras, it is very important to develop intelligent visual surveillance systems to process

a large amount of data obtained from the cameras in real-time and fully automatically.

For this reason, intelligent visual surveillance has been one of the most active research

issues in computer vision recently. The intelligent visual surveillance includes vari-

ous tasks: 1) to detect and recognize objects of interest (Stauffer & Grimson, 1999;

Chang et al., 2012; Cui et al., 2012; Dalal & Triggs, 2005; Dollar et al., 2012), 2) to

track the moving objects in surveillance scenes (Rodriguez et al., 2009; Kuo et al.,

2010; Yang & Nevatia, 2014; Benfold & Reid, 2011; Qin & Shelton, 2012), and 3)

to understand and describe the activity patterns of the moving objects (Basharat et al.,

2008; Hospedales et al., 2009; Hu et al., 2006; Morris & Trivedi, 2008; Piciarelli &
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Figure 1.1 Examples of various traffic scenes. They have various perpective angles,

crowd densities, sizes of moving agents, and rules of normal patterns.

Foresti, 2006; Wang et al., 2009, 2006). Among the tasks, understanding the activity

patterns can have a wide variety of applications, especially in traffic scenes such as ac-

cident prediction and detection, traffic control, scene structures estimation, and traffic

violation detection.

Figure 1.1 shows examples of various traffic scenes. As shown in the figure, model-

ing activity patterns in realistic traffic surveillance scenes is very challenging because

they have various perspective angles, crowd densities, sizes of moving agents, and

rules of normal patterns. This variety of scenes makes it difficult to generalize typi-

cal path patterns of moving objects without considering the scene specific properties,

so activity patterns should depend on each scene. However, it is very expensive and

impractical to obtain labeled motion data (e.g. trajectories) by human labor whenever
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new camera is installed in a specific traffic scene. In the case of realistic traffic videos,

annotating activities is especially difficult because multiple other activities happen si-

multaneously. Therefore, for the sake of understanding the traffic scenes, unsupervised

analysis of motion patterns without prior knowledge or manual efforts is essentially re-

quired.

In most cases, moving objects follow specific motion patterns; for example, most

cars and pedestrians move according to specific traffic rules. The goal of motion pattern

analysis algorithms is to learn the implicit traffic rules of the surveillance scene in an

unsupervised way from a large amount of crude data as shown in Figure. 1.2. Using

a data-driven perspective, the term “anomaly” and “abnormal events” are defined as

outliers that are far from the typical patterns (e.g. go straight, U-turn, turn right, etc.)

explained using the training data following the traffic rules. Hence, the terminology

“anomaly detection” in this thesis becomes a process of finding motions which do

not obey these rules. In other words, applications in traffic scenes such as accident and

traffic violation detection can be fulfilled by anomaly detection. Many researchers have

proposed various learning models to discover the typical normal motion patterns from

raw data in surveillance video (Basharat et al., 2008; Emonet et al., 2011; Hospedales

et al., 2009; Hu et al., 2006; Kuettel et al., 2010; Morris & Trivedi, 2008; Piciarelli &

Foresti, 2006; Wang et al., 2009, 2006).

Through analyzing strength and weakness of the existing works on unsupervised

learning of motion patterns, we establish the following five requirements that the learn-

ing model should satisfy to work well in actual environments. First, the model should

recognize regions showing normal movement patterns. The regions should be cate-

gorized into semantic regions representing typical activities (e.g. go straight upward,

turn right, walk across the street, etc.). This is important for explaining the activities in

an intersection, detecting intrusions of restricted areas, and detecting illegal U-turns.

Second, the model should include not only direction information but also speed in-

3



(a) (b)

Figure 1.2 An example of motion pattern analysis. (a) Crude motion data (unlabeled

trajectories) in a surveillance scene. Note that a large number of trajectories are broken.

(b) Results of learning typical activities. The typical patterns are denoted with red and

blue coloring, where objects move from red to blue. Some typical patterns occur at the

same time, and their occurrences have temporal rules. (best viewed in color)

formation for each activity regions. This would increase the discrimination ability of

the model to detect abnormal patterns such as pedestrians walking along the path of

vehicles, bikes running in pedestrian road, cars driving with over speed, cars stopping

in a railroad crossing, and so on. Third, spatio-temporal relationship between typical

activity patterns needs to be considered. For instance, it is impossible for two straight

movements, “moving from left to right” and “moving from top to bottom,” to occur

in an intersection at the same time. The model also needs to recognize the temporal

order of activities such as governed by a traffic signal. Fourth, the algorithm should be

robust to crowded scenes. In crowded scenes, it is hard to extract motions of individ-

ual objects. Even the current state-of-the-art methods for multi-object tracking (Qin &

Shelton, 2012; Walk et al., 2010) are still limited for applying to the crowded scenes.

4



Fifth, the model should be able to adapt itself to temporal changes of the scene (e.g.

reversible lane, traffic volume changes). Online learning approach will not only enable

the adaptation but also save memory and computational load because the model does

not need to keep old data. A surveillance system running over months or even years,

for example, would require an online model if it needs to keep running.

According to the authors’ survey, there is no existing work satisfying all of the

aforementioned requirements until now, the details on this issue will be described in

related works of Section 1.2 and here we would give a brief mention. Object tracking

based approach (Wang et al., 2006; Hu et al., 2006; Piciarelli & Foresti, 2006; Morris

& Trivedi, 2008; Basharat et al., 2008), whose observations are actual velocity from

trajectories, can satisfy the first and second requirements but hardly fulfill the third and

fourth requirements. On the other hand, the topic model based approach (Hospedales

et al., 2009; Kuettel et al., 2010; Emonet et al., 2011; Wang et al., 2009), whose ob-

servations are quantized directions in a local region, are particularly useful for the

first, third and fourth requirements. This kind of observations, however, cannot deal

with precise velocities (second requirement). Furthermore, most of the motion learn-

ing methods are restricted to offline learning not allowing to adapt to the changing

situations (fifth requirement). The crowd motion approach (Kratz & Nishino, 2009;

Rodriguez et al., 2009; Wang et al., 2012) does not fulfill the first and third require-

ments since it is designed to understand only the crowd motion rather than typical

motion paths.

1.2 Related Works

1.2.1 Motion Pattern Analysis Using Trajectory

One of the conventional approaches used for unsupervised activity analysis is to learn

trajectory patterns through measuring pairwise distances of trajectories and clustering.
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This approach utilizes distance measure between two different trajectories and groups

similar ones together. The existing trajectory distance measures include Euclidean dis-

tance (Fu et al., 2005), Hausdorff distance and its variations (Junejo et al., 2004; Wang

et al., 2006), hidden Markov model (Porikli & Porikli, 2004), Dynamic Time Warping

(DTW) (Keogh & Pazzani, 2000), and so on. When computing the trajectory distance,

some methods require two trajectories to be temporally aligned for long common sub-

sequence (LCSS) analysis (Vlachos et al., 2002; Buzan et al., 2004). On the other hand,

(Piciarelli & Foresti, 2006) have proposed a distance measure matching only a part of

the trajectory (only an overlapped part), instead of matching all points on a trajectory.

Based on the computed similarity matrix among trajectories, standard clustering algo-

rithms such as spectral clustering (Wang et al., 2006; Ng et al., 2001), graph-cuts (Shi

& Malik, 1997), agglomerative and divisive hierarchical clustering (Li et al., 2006;

Antonini & Member, 2006), and fuzzy c-means (Hu et al., 2006) were used to cat-

egorize trajectories into different activity patterns. A comparison of various distance

measurements and clustering methods can be found in (Morris & Trivedi, 2008, 2009).

Since these methods using distance measures to group similar trajectories can

model trajectories in a whole path, they can deal with the long term characteristics

of trajectories. However, these distance-based approach has several drawbacks. First,

these methods suffer from errors due to a perspective projection distortion which is

caused when three-dimensional space is projected on a two-dimensional surface. Be-

cause of the distortion, similar trajectories in 3-D space can be considered relatively

different in the 2-D video, whereas different trajectories in 3-D space can looks like

similar in the 2-D video as shown in Figure 1.3. Second, these methods are vulnerable

to fragmentation of trajectories. Due to inevitable tracking failure, there exist broken

trajectories which do not overlapped at all but belong to the same activity pattern.

Thus, it is very difficult to define distance measures that make these broken trajecto-

ries to be close without losing generality and objectiveness. Third, the computation to

6



Figure 1.3 An example of perspective projection distortion. In this scene, parallel lines

appear to converge, so similar pairs of trajectory in 3-D space looks different in 2-D

surface.

obtain the distance for every pair of trajectories is heavy, with complexity of O(N2)

in both time and space, where N is the number of trajectories. Moreover, some clus-

tering algorithms such as spectral clustering need to compute the eigenvectors and

eigenvalues of the similarity matrix, and their computational cost will be even high.

When it comes to a memory issue, since visual surveillance systems often require pro-

cessing data collected over weeks or even months, it is impossible to load such a huge

similarity matrix into memory of a common personal computer. Fourth, this approach

lacks a probabilistic explanation of activity patterns happening in the scene. Abnormal

trajectories in this approach are simply detected if those have larger distance to all

trajectory clusters, so spatio-temporal relationship among trajectory patterns does not

considered.

Another kind of approach converts trajectories into feature vectors instead of com-

puting pairwise distances for clustering. Since the trajectories have various length, it

is difficult to directly use them as feature vectors. Therefore, sub-sampling can be ap-

7



plied to make all the trajectories have the same length (Makris & Ellis, 2002; Liao

et al., 2006; Hu et al., 2007). Then, the feature vectors of trajectories were clustered

using algorithms such as k-means (MacQueen, 1967) and neural networks (Sumpter

& Bulpitt, 1998; Hu et al., 2004). However, these methods are also vulnerable to frag-

mentation of trajectories and perspective projection distortion.

Alternatively, some methods learn the transition probabilities of each pixel to its

nearby pixels using Gaussian mixture models (GMM) (Basharat et al., 2008) or ker-

nel density estimation (KDE) (Saleemi et al., 2009). In this methods, transitions of

the state (previous location, size, and passing time) of an object on a trajectory are

represented as feature vectors. Thus, these methods enable to statistically learn the ve-

locities and the sizes of moving objects at each position. They are more invariant to

scene variation and more robust to trajectory fragmentation and perspective projection

distortion than distance-based approach. However, these methods may fail to detect

anomalies in regions where movements are diverse, such as the center of an intersec-

tion. In such situations, the trained model would count all patterns as normal because

they are not fully aware of mutual dependence among trajectories; that is, they cannot

handle spatio-temporal relationship among typical activity patterns (i.e., they do not

fulfill the third requirement).

1.2.2 Motion Pattern Analysis Using Local Motions

Local motion based methods have been proposed recently to overcome the prob-

lem of object tracking failure in a crowded scene. These methods adopt mixture of

Gaussians (Saleemi et al., 2010), sparse coding (Zhao et al., 2011), Markov random

field (Benezeth et al., 2011), dynamic textures (Mahadevan et al., 2010), probabilistic

topic models (Wang et al., 2009; Hospedales et al., 2009; Kuettel et al., 2010; Emonet

et al., 2011; Varadarajan et al., 2012), and so on. In particular, the topic models have

been prevalently employed to learn motion patterns because they can well discover typ-

8



ical activities using co-occurrence property. The Dual Hierarchical Dirichlet Process

(Dual-HDP) (Wang et al., 2009) discovers typical activity patterns by modeling spa-

tial relation of activities. Markov Clustering Topic Model (MCTM) (Hospedales et al.,

2009) additionally considers temporal relationships between activities, and Dependent

Dirichlet Process Hidden Markov Model (DDP-HMM) (Kuettel et al., 2010) solves

the same problem in a non-parametric manner. However, the above methods ignore

the temporal order of low-level motion features, which leads to incomplete modeling

of long-term path. This approach has been extended by considering the temporal infor-

mation inside the topic (Emonet et al., 2011; Varadarajan et al., 2012). Nevertheless,

all of these topic model based approaches cannot completely address the precise veloc-

ity of a whole trajectory since they only use quantized directions obtained from optical

flows in a local cell (i.e., it does not fulfill the second requirements). Moreover, the

collapsed Gibbs sampling, which is commonly utilized for learning of the topic mod-

els, is not only ineffective in dealing with a large solution space of a complex model

but also restricted to offline learning making it unable to adapt to a changing situation

(i.e., it does not fulfill the fifth requirements).

Crowd motion analysis (Kratz & Nishino, 2009; Rodriguez et al., 2009; Wang

et al., 2012) has also been conducted to detect strange motion patterns in an extremely

crowded scene. Probabilistic Crowd Model (Rodriguez et al., 2009) allows objects to

be tracked even in extremely crowded scenes, and local spatio-temporal motion pat-

tern (Kratz & Nishino, 2009; Wang et al., 2012) is modeled in the dense crowded

scenes. These methods, however, allow their model to understand only the crowd mo-

tion rather than typical motion paths (i.e., it does not fulfill the first and the third re-

quirements). Hence, this approach is not suitable for the task of deducing traffic rules

though it gives good performance on anomaly detection in the crowded scene.
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1.3 Contributions

In this thesis, we propose an approach to meet all of the aforementioned requirements

for motion pattern analysis. This purpose is achieved through embedding the precise

velocity pattern model, spatio-temporal pattern transition model, and the topic model

into a probabilistic graphical framework. In particular, the newly defined continuous

velocity model is distinctive from the existing models (Wang et al., 2009; Hospedales

et al., 2009; Kuettel et al., 2010; Emonet et al., 2011; Varadarajan et al., 2012; Wang

et al., 2011), which do not provide satisfactory performance on the second require-

ment. In addition, to achieve online and real-time learning even with the enormous

complexity of the proposed model, we suggest an efficient two-stage greedy learn-

ing method. The learning method of collapsed Gibbs sampling (Griffiths & Steyvers,

2004) restricts the existing models to offline learning. On the other hand, our learning

method is designed to infer latent variables step by step in a greedy manner to reduce

the search space. Moreover, the sub-model in each step is learned in a way that the

online learning should not lose the learning capabilities shown in the offline learn-

ing. The whole learning process allows online adaptation of the model quickly and

accurately. We evaluate our method on six datasets for activity pattern modeling and

anomaly detection, showing that our method outperforms the state-of-the-art methods.

1.4 Thesis Organization

We provide an organization and overview, which are considered by subsequent thesis

chapters. In chapter 2, as for the preliminaries, we briefly review the Latent Dirich-

let Allocation (LDA) approach and explain how the LDA wards and can be applied

to computer vision applications. Then, we will address two representative approx-

imate inference methods for LDA (variational inference and collapsed Gibbs sam-

pling). Chapter 3 addresses the proposed probabilistic inference model to analyze tra-

10



jectory patterns in traffic scene and to detect abnormal activities. The proposed infer-

ence model is formulated in a probabilistic graphical framework including trajectory

pattern model, spatio-temporal relation of trajectories, and velocity model of each tra-

jectory pattern. In addition, we suggest a approximate learning scheme instead of col-

lapsed Gibbs sampling that is conventionally utilized in the existing methods. Lastly,

the detection procedure is described for the recently observed scene to be tested by

the trained model to detect anomalies in the current scene. Chapter 4 presents exper-

imental details (both quantitatively and qualitatively). In chapter 5, we conclude by

summarizing the contributions of this thesis, and briefly mention directions for the

future research.
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Chapter 2

Preliminaries

In this chapter, we present the theoretical background of Latent Dirichlet Allocation

(LDA) which is a baseline of the proposed model and is helpful to understand the rest

of the thesis. If the reader is already familiar with this field, this chapter can be skipped.

For details and theoretical proofs, refer to the cited literatures.

2.1 Latent Dirichlet Allocation (LDA)

2.1.1 Probabilistic Graphical Model

Before addressing Latent Dirichlet Allocation (LDA), we explain the foundation of

probabilistic graphical models to describe the notations, the independence assumptions

of the models, the principle of maximum a posteriori (MAP), and Bayesian inference

through a simple example (Griffiths et al., 2008). A probabilistic graphical model can

provide an efficient and intuitive framework for describing high-dimensional proba-

bility distributions: nodes denote random variables and directed edges denote possible

dependence between the random variables, and plates denote replication of a substruc-

12



…

(a) (b)

Figure 2.1 (a) An example of graphical models. Nodes denote random variables and

directed edges denote possible dependence between the random variables. Observed

random variables are shaded, and latent random variables are unshaded. (b) The equiv-

alent graphical model with (a) using the plate notation.

ture inside the plates. Also, the probabilistic graphical models can be used to describe

latent variable models (Blei, 2014) which is a method of developing complicated struc-

tured probability distributions, where the observed (known) variables interact with

latent random variables. In the conventional notations of the latent variable models,

observed random variables are shaded, and latent random variables are unshaded.

Figure 2.1 shows an example of a graphical model that could generate a flip se-

quence of a biased coin. In the figure, observed variables x1, x2, ..., xN are binary ran-

dom variables that stand for the outcomes of N number of successive tosses (xi = 1

if the coin produces head; xi = 0 otherwise.), and θ is a latent random variable with

range of 0 to 1 which represents the bias of a coin (i.e. if the coin is fair, then θ = 0.5).

The latent variable θ can be considered a model parameter that needs to be estimated as

well. The edges express the probabilistic dependencies between the variables; in other

words, conditioned on the parent θ, each variable xi is independent with all other vari-

13



ables. Thus, since heads of coin occurs with probability of θ and tails occurs with

1 − θ on each flip, the probability of a particular flip sequence of a biased coin with

NH heads and NT tails given θ is

p(x1, x2, ..., xN |θ) =
N∏
i=1

p(xi|θ) (2.1)

= θNH (1− θ)NT , (2.2)

which is regarded as a likelihood. Also, applying a consequence of probabilistic depen-

dencies of the graphical model, the full joint probability distribution can be factorized

as follows:

p(x1, x2, ..., xN , θ) = p(x1, x2, ..., xN |θ)p(θ) (2.3)

= p(θ)

N∏
i=1

p(xi|θ) (2.4)

= p(θ)θNH (1− θ)NT . (2.5)

In order to estimate the best θ given a flip sequence of a biased coin {x1, x2, ..., xN},

the principle of maximum a posteriori (MAP) is applied as follows:

θ̂ = argmax
θ

p(θ|x1, x2, ..., xN ). (2.6)

As given by the Eq. 2.6, MAP maximizes the posterior probability. According to the

posterior probability p(θ|x1, x2, ..., xN ), we can apply Bayes’ rule to obtain

p(θ|x1, x2, ., xN )︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x1, x2, ., xN |θ)

prior︷︸︸︷
p(θ)

p(x1, x2, ., xN )︸ ︷︷ ︸
evidence

, (2.7)

where

p(x1, x2, ..., xN ) =

∫ 1

0
p(x1, x2, ..., xN |θ)p(θ)dθ. (2.8)
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As given by the Eq. 2.7, different choices of the prior p(θ) will lead to differ-

ent inference results about the value of θ. In this example, two types of prior will be

addressed: uniform prior and beta distribution.

Uniform prior If a prior p(θ) is assumed to be uniform, p(θ) is equal for all range of

0 to 1, so p(θ) = 1 if θ ∈ [0, 1]. Therefore, the posterior probability p(θ|x1, x2, ..., xN )

can be rewritten by substituting Eq. 2.2 and Eq. 2.8 as follows:

p(θ|x1, x2, ..., xN ) =
p(x1, x2, ..., xN |θ)
p(x1, x2, ..., xN )

(2.9)

=
θNH (1− θ)NT∫ 1

0 θNH (1− θ)NT dθ
. (2.10)

The denominator can be calculated using a little calculus of integral, which lead to a

constant value, ∫ 1

0
θNH (1− θ)NT dθ =

(NH !NT !)

(NH +NT + 1)!
. (2.11)

Thus, the optimal θ̂ is determined by finding θ that maximizes the likelihood function

p(x1, ..., xN |θ) = θNH (1− θ)NT . Then, we can find the analytic solution for this

problem by differentiating the likelihood function as follows:

dp(x1, ..., xN |θ)
dθ

= {NH − (NH +NT )θ}
{
θNH−1(1− θ)NT−1

}
. (2.12)

From the above equation, we can conclude that the optimal θ̂ is NH
NH+NT

. For example,

if a coin flip sequence “HHHHHHHHHH” is observed, the optimal θ̂ will be 1; on the

other hands, if a coin flip sequence “HTHTHHTTHH” is observed, the optimal θ̂ will

be 0.6. However, the estimated θ̂ is not reliable if we observe only a few flips such as

“HH” or “TH”. To deal with the above problem, we can consider better intuition that

we might have about θ, rather than using the prior of uniform p(θ).
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Beta distribution prior In this case, we will use a beta distribution as a prior which

can give stronger intuition about the value of θ. Beta distribution is a family of con-

tinuous probability distributions defined on the interval [0, 1] parametrized by two

positive shape parameters that control the shape of the distribution. The probability

density function of the beta distribution given parameter α, β is defined as follows:

p(θ) = Beta(θ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, (2.13)

where Γ(α) =
∫∞
0 xα−1e−xdx is gamma function which satisfies the following prop-

erty: Γ(α + 1) = αΓ(α); that is, Γ(α) is equivalent to (α − 1)! when α is a positive

integer. As shown in Figure 2.2, an estimation of θ is influenced by not only an ob-

served flip sequence {x1, x2, ..., xN} but also the prior distribution determined by a

selection of α, β.

The posterior probability can be written by substituting for the likelihood p(x1, ..., xN |θ)

and beta distribution prior p(θ) as follows:

p(θ|x1, x2, ..., xN ) =
p(x1, x2, ..., xN |θ)p(θ)

p(x1, x2, ..., xN )

=

{
θNH (1− θ)NT

}{
Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1
}

p(x1, x2, ..., xN )

=
Γ(α+ β)

Γ(α)Γ(β)

θNH+α−1(1− θ)NT+β−1

p(x1, x2, ..., xN )
. (2.14)

Since the denominator p(x1, x2, ..., xN ) =
∫ 1
0 p(x1, x2, ..., xN |θ)p(θ)dθ and Γ(α+β)

Γ(α)Γ(β)

is a constant with the variation of θ, the MAP problem can be summarized as follows:

θ̂ = argmax
θ

p(θ|x1, x2, ..., xN )

= argmax
θ

Γ(α+ β)

Γ(α)Γ(β)

θNH+α−1(1− θ)NT+β−1

p(x1, x2, ..., xN )

= argmax
θ

θNH+α−1(1− θ)NT+β−1. (2.15)
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Figure 2.2 Probability density function of beta distribution. By setting α, β with prior

assumption, we can control the estimation of θ. If α = β = 1, p(θ) is equivalent to the

uniform prior.

Then, we can find the analytic solution for this problem by computing derivative of

only the θNH+α−1(1− θ)NT+β−1 with respect to θ:

dp(θ|x1, ..., xN )

dθ
∝

d
{
θNH+α−1(1− θ)NT+β−1

}
dθ

(2.16)

= {NH + α− 1− (NH +NT + α+ β − 2)θ}

×
{
θNH+α−2(1− θ)NT+β−2

}
. (2.17)

Therefore, we can conclude that the optimal θ̂ is NH+α−1
NH+NT+α+β−2 (0 < θ < 1). Due

to the effect of the prior, we obtain different estimation of the optimal θ̂ with the same

observation sequence. For instance, if we set α = β = 100 with confidence that

the coin is fair, the estimated θ̂ is 102
201 ≈ 0.507 when observing the coin sequence

“HTH”. This result is totally different from the case of assuming the uniform prior,
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θ̂ = 2
3 ≈ 0.67. When applying the beta distribution prior, estimation of the parameter

θ is affected not only by observation data but also by prior knowledge (user-setting

of α, β). Similarly, if we set α = β = 0.1 with confidence that the coin is highly

biased to one side but we do not know which side it is, the estimated θ̂ is 1.1
1.2 ≈ 0.92

when observing the same coin sequence “HTH”. Consequently, a prior plays a role of

smoothing or regularizing the observed data, preventing the estimated latent variables

from over-fitting when the data are far from the prior knowledge which is presumed.

The basic principles of probabilistic graphical models (notations, independence

assumptions, and Bayesian inference) explained in the above example can help to un-

derstand LDA model that will be described in the subsequent subsection.

2.1.2 LDA Property & Formulation

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a hierarchical probabilistic

graphical model which is widely used for a natural language processing. LDA is also

known as a topic model that is used to analyze relationships between a set of documents

and words composing the documents. The documents and words are observations of

LDA, and the relationships are demonstrated by topics (latent thematic random vari-

ables for a document). The topic model is a type of statistical model that discovers

a distribution of topics in a document given a set of documents consisting of words,

where a topic can be explained by a probability distribution over words. The model

assumes a probabilistic generative process that specifies how words in documents can

be generated on the basis of latent variables of LDA. In order to generate words in a

document, a distribution over topics is chosen; then, a topic is generated according to

this distribution, and a word in the document is generated from the topic.

The generative process for LDA can be easily explained by the example of Fig-

ure 2.3 with an assumption that all the latent variables and distribution parameters
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Figure 2.3 An example of probabilistic generative process for LDA. Topics have infor-

mation about distributions over words (far left). Words in a document are modeled to

be generated as shown in the figure (from right to left). This example figure is captured

from (Blei, 2012).

are already known. 1 At the far left of the figure, four topics are shown with differ-

ent colors (yellow, pink, green, blue) and are described by a probability distribution

over words. The words on the left are sorted in a descending order of probability to

show the top handful of words, and this is usually enough to give a rough understand-

ing about the topics. Yellow topic is related to genetics, which contains words such

as “gene”, “dna”, and “genetic”. Pink topic is related to evolutionary biology, which

contains words such as “life”, “evolve”, and “organism”. Green topic is related to neu-

robiology, which contains words such as “brain”, “neuron”, and “nerve”. Blue topic

is related to data analysis, which contains words such as “computer”, “number”, and
1Distinction between latent variables and parameters is somewhat arbitrary. According to literatures in

this field, if dimensionality of an unobserved variable does not increase with the number of observations,
it is usually referred to as a parameter; otherwise a latent (hidden) variable.
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“data”. For the generative process shown at the right of the figure, a topic proportion

(distribution over the topics represented by the colored histogram with pink, yellow,

and blue) is chosen at first. From the topic proportion, we can conclude that the article

of this example consists of words which are not related to neurobiology but related to

mixture of topics: genetics, evolutionary biology, and data analysis. Then, topic assign-

ments (shown in the colored coins) are generated with respect to the topic proportion

(distribution over the topics). Finally, using the topic assignments, a word (highlighted

with color shading in a document) is generated for each topic assignment from the cor-

responding topic (probability distribution over words). This generative process using

LDA is not completely same as the generation mechanism of words and documents

by human, but LDA has useful analysis about words which are close in meaning. The

strong point of LDA is that it can be learned without any prior annotations or labeling

of the documents, so it enables us to organize and summarize a large amount of text

that would be impossible by human annotation.

LDA can be mathematically formulated with the following notations:

• A word w ∈ {1, 2, ..., V } is the basic unit of discrete data 2, where V is vocabu-

lary size. The vocabulary is determined by finding unique words from all words

to be analyzed and mapping the unique word into a positive integer. Hence, vo-

cabulary size V is the number of unique words.

• A document consists of Nd words, where d is an index of a document. In other

words, d-th document is denoted by {wd1, wd2, ..., wdNd
}. For the input of LDA,

a collection of M documents is used, which are denoted by {wdi|d = 1, 2, ...,

M, i = 1, 2, ..., Nd}.
2In the original LDA paper (Blei et al., 2003), w is represented using a V -dimentional unit-basis

vector that has a single component equal to one and all other components eqult to zero, but in this thesis,
w is represented as an non-zero index of the unit-basis vector for facilitating explanation. This change of
notation for explaining LDA does not impede the use of equation or actual implementation.
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• A topic assignment zdi ∈ {1, 2, ...,K} for each word wdi is a latent random

variable to be estimated, where K is a design parameter which stands for the

number of topics. In case of the above example in Figure 2.3, K = 4 is equiva-

lent to the number of unique colors (yellow, pink, green, blue), and zdi is shown

as a colored coin.

• Topics are denoted by {φ1, φ2, ..., φK}, where k-th topic φk ∈ RV is represented

as a distribution over the vocabulary (at the far left of Figure 2.3). Since φk

is a distribution parameter, component-wise summation of φk must be 1 (i.e.
V∑

v=1
φk(v) = 1), and each component must be positive (i.e. φk(v) ≥ 0 for all v).

The parameter φk indicates which words are important for the topic k.

• A topic proportion for the d-th document θd ∈ RK (the colored histogram in

Figure 2.3) is a distribution parameter to be estimated. The parameter θd con-

tains knowledge about which topics are important for the d-th document. Also,

component-wise summation of θd must be 1, and each component must be pos-

itive.

• Design hyperparameters α = [α(1), α(2), ..., α(K)]T ∈ RK , β = [β(1), β(2),

..., β(V )]T ∈ RV are used as prior information to generate distribution parame-

ters θd, φk, respectively. For the sake of convenience, LDA uses symmetric val-

ues α, β such that α(1) = α(2) = ... = α(K) and β(1) = β(2) = ... = β(V );

that is, each hyperparameter has only a single degree of freedom. Strictly speak-

ing, the expression α = 1 is not mathematically proper because α is a K-

dimensional vector, but we use this expression that means α = [1, 1, ..., 1]T

for the brevity of notations.

Using the above variables, probabilistic relations among the variables are defined.

First, a topic proportion for the d-th document θd is generated by following equa-
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Figure 2.4 Examples of θd drawn by Dirichlet distributions for various settings of the
parameter α. The smaller α is, the more sparse components of θd is generated, where
θd ∼ Dir(α).

tion:

θd | α ∼ Dir(θd|α), (2.18)

where Dir(θd|α) is Dirichlet distribution which is the multivariate version of the beta

distribution. Figure 2.4 shows examples of θd drawn by Dirichlet distributions for var-

ious settings of the parameter α. If α is relatively small (usually under 1), the Dirichlet

distribution prefers to generate sparse histograms where only a few components of θd

have a non-zero weight. On the other hand, when α is larger, all components of θd tend

to be distributed evenly. Therefore, based on our intuition that a document should have

a small number of topics rather than mixture of almost all topics, α should be set not to

much large in practice. Since LDA assumes that D topic proportions θ1, θ2, ..., θD is
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dependent only on the hyperparameter α, the random variables θ1, θ2, ..., θD are con-

ditionally independent to each other given α, and joint probability of θd is factorized

as follows:

p(θ1, ..., θD|α) =
D∏

d=1

p(θd | α). (2.19)

Second, Nd topic assignments are independent and identically distributed (i.i.d)

random variables given the d-th topic proportion θd for the d-th document, and each

topic assignment zdi is drawn as follows:

p(zd1, zd2, ..., zdNd
| θd) =

Nd∏
i=1

p(zdi | θd), (2.20)

zdi|θd ∼Multi(zdi|θd), (2.21)

where Multi(zdi|θd) is Multinomial distribution. For instance, if θd = [0.1, 0.2, 0.3, 0.4]T ,

the probability of zdi to be generated is determined as p(zdi = 1|θd) = 0.1, p(zdi =

2|θd) = 0.2, p(zdi = 3|θd) = 0.3, and, p(zdi = 4|θd) = 0.4, respectively. Intuitively,

this probability definition of p(zdi | θd) penalizes documents for having too many pos-

sible topics. That is because making a parameter θd concentrate on sparse components

will increase the probability when drawing the same number of topic assignments (e.g.

θd = [0.6, 0.4, 0, 0]T is better than θd = [0.25, 0.25, 0.25, 0.25]T ).

Third, K topics {φk}Kk=1 are defined as following equation given the parameter β.

p(φ1, φ2, ..., φK |β) =
K∏
k=1

p(φk|β), (2.22)

where

φk|β ∼ Dir(φk|β). (2.23)

The parameter β is related to the prior count on the frequency of words generated from

a topic, which affects a bias towards sparsity of φk. Thus, the parameter β should be
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designed to a small value from the assumption that a large part of the entire vocabulary

are nothing to with the specific topic k.

Fourth, for each of the Nd words in the d-th document, a word wdi is generated

from a multinomial probability conditioned on the topic assignment zdi and topics

φ1, φ2, ..., φK ,

wdi|zdi,φ1, φ2, ..., φK ∼Multi(wdi|φzdi). (2.24)

Thus, given a knowledge that a document is about a particular topic, we can expect

particular words to appear in the document more or less frequently. This definition

implied that having sparsely distributed topics φk can result in a high probability for

a set of words. Also, to increase the probability, the topic distributions φ1, φ2, ..., φK

should have non-zero components to be non-overlapped as many as possible, since

the sum of components in each topic distribution must be 1 and the topic distributions

need to cover every vocabulary V (the dimension of φk ).

Using variables and their dependence defined in the above, the overall model is

graphically represented as shown in Figure. 2.5. The figure can be interpreted in a top-

down order through the generative process, where the nodes denote random variables,

and the arrows denote possible dependence among random variables. As mentioned

earlier, the user-defined hyperparameters α, β for the Dirichlet distribution are treated

as constant values in the model. The words in all documents {wdi|d = 1, ..., D, i = 1,

..., Nd} are the only observations for LDA, while probability parameters φk, θd, and

the topic assignment zdi are latent (i.e. unobserved) variables that we would like to

infer. Hence, the variable wdi is shaded and the other variables are unshaded. Plates

(the boxes in the figure) denote repetition of sampling, and the constant variable in the

bottom-right corner referring to the number of repetitions. The inner plate containing

zdi and wdi illustrates the repeated sampling of topic assignments and words until Nd

words have been generated for the d-th document. The outer plate surrounding θd illus-
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Mathematical description
Choose 	~	 .
Choose 	~	 ( ).
Choose a topic | 	~	 ( ).
Choose a word | , 	~	 ( ).

Notations
: the number of documents.
: the number of words in -th document.

: the number of topics.
: Dirichlet prior on the per-document topic distributions.
: Dirichlet prior on the per-topic word distribution.
: topic distribution for -th document.
: word distribution for topic k.
: the topic for the -th word in d-th document.
: the specific word.

Figure 2.5 Graphical representation for latent Dirichlet allocation and summary of no-
tations and formulations. The latent variables are unshaded and the observed variables
are shaded. Arrows indicate conditional dependencies between two variables. The rect-
angles are plate notation which denotes replication.

trates the generation of D samples of a topic proportion (distribution over topics) for

each document d. The plate surrounding φk illustrates the repeated sampling of topics

(distribution over words) for each topic index k until T topics have been generated.

With the notations and dependencies defined above, the generative process for

LDA corresponds to the following joint probability distribution of the latent and ob-

served variables given the hyperparameter α, β:

p(φ, θ, z, w|α, β) =

(
K∏
k=1

p(φk|β)

)
D∏

d=1

p(θd | α)
Nd∏
i=1

p(zdi | θd)p(wdi | zdi, φ),

(2.25)

where the variables without indices imply that they contain all possible indices in

order to concisely represent notations; in other words, φ = {φk|k = 1, 2, ...,K},
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θ = {θd|d = 1, 2, ..., D}, z = {zdi|d = 1, 2, ..., D, i = 1, 2, ..., Nd}, w = {wdi|d =

1, 2, ..., D,i = 1, 2, ..., Nd}.

Statistical methods for inference of LDA can be used to invert of the generative

process, inferring the set of topic related variables that were responsible for generat-

ing a collection of documents. The details about inference methods for LDA will be

addressed in Section 2.2.

2.2 Inference of LDA

We have described the motivation, property, notation, and formulation of LDA with

an example and graphical representation. In this section, we turn our attention to pro-

cedures for model inference and parameter estimation under LDA. Since LDA is hi-

erarchical Bayesian model, we first describe Bayesian inference: to reason about the

posterior distribution over the parameters and latent variables conditioned on the ob-

servation. This task can be done by finding the configuration of all latent variables

φ, θ, z that maximize the posterior probability (MAP) given the observations w and

hyper-parameters α, β:

φ̂, θ̂, ẑ = argmax
φ,θ,z

p(φ, θ, z|w,α, β), (2.26)

where the posterior probability of LDA p(φ, θ, z|w,α, β) is given by Bayes’s rule with

the joint probability of LDA in Eq. 2.25:

p(φ, θ, z|w,α, β) = p(φ, θ, z, w|α, β)
p(w|α, β)

, (2.27)

=
p(φ, θ, z, w|α, β)∫

φ

∫
θ

∑
z
p(φ, θ, z, w|α, β)dθdφ

. (2.28)

The analytic solution of Eq.2.26, which is also referred to as a closed-form solu-

tion, is not available because symbolic integration of the denominator that finds anti-

derivative of the joint probability is impossible according to (Dickey, 1983). Of course,
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despite the intractable calculation of the denominator, we can regard the denomina-

tor as an unknown constant value by assuming that φ, θ, z are integrated out and can

only consider the nominator p(φ, θ, z, w|α, β) to find the optimal φ̂, θ̂, ẑ. However, the

probability density function (pdf) of the joint distribution has very high dimensional-

ity, non-convexity, and a lot of saddle points, so we cannot analytically calculate global

maximum of the pdf.

The other option for exact inference of the MAP problem is a numerical method.

The joint probability p(φ, θ, z, w|α, β) can be easily computed under the one specific

setting of the hidden variables, parameters, and given observations. However, recalling

the fact that the number of random variables in LDA is extremely large and thereby

configuration complexity of these variables is enormous (e.g. complexity of topic as-

signment z is O(KM ),M =
D∑

d=1

Nd), we cannot numerically compute the joint prob-

ability of all possible instantiations of the hidden random variables to find the best

case. For this reason, the exact inference of Eq.2.26 with the numerical method is also

intractable.

Although the MAP problem of LDA is intractable for exact inference, approxi-

mate inference algorithms can be considered for LDA, such as collapsed Gibbs sam-

pling (Griffiths & Steyvers, 2004) and variational inference (Blei et al., 2003). These

algorithms approximate the posterior in Eq. 2.27 by forming an alternative distribution

over the latent variables and parameters related to topic that is adapted to be close to the

true posterior. In the subsequent subsections, we will introduce two main approximate

inference methods for LDA and give discussion about the both methods.

2.2.1 Collapsed Gibbs Sampling

Gibbs sampling is one of a family of sampling methods known as the Markov Chain

Monte Carlo (MCMC) framework (Andrieu et al., 2003), which is an approximate iter-

ative technique designed to sample variables from complex and high-dimensional dis-
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tributions. In other words, after a number of iterations through a Markov chain which

is a sampling sequence of random variables, the samples from stationary distribution

of the Markov chain converges to the desired probability distribution (i.e. posterior

of LDA in this case). Each state of the Markov chain is an assignment of values to

the variables being sampled, and transitions between states follow a simple rule: the

next state is reached by sequentially sampling of all variables given conditional dis-

tributions of subsets of variables where each subset is conditioned on the value of all

variables.

For example, consider the joint distribution p(z) = p(z1, z2, ..., zN ) from which

we want to sample z, and suppose there is no closed-form solution for p(z), but a

representation for the conditional distributions is available. Thus zi is replaced by a

new value drawn from the distribution p(zi|z−i), where z−i is a set {zi}Ni=1 with zi

omitted, (i.e. z−i = {z1, ..., zi−1, zi+1, ..., zN}). This procedure is repeated by choos-

ing the variable to be updated at each step from some distribution randomly in the

following (Bishop, 2006).

1. Randomly initialize each z1i ∈ {1, 2, ...,K}, where i = 1, 2, ..., N ,

2. For each step t = 1, 2, ..., T :

• Replace zt1 by a new value zt+1
1 , sampling zt+1

i ∼ p(z1|zt2, zt3, ..., ztN ).

• Replace zt2 by a new value zt+1
2 , sampling zt+1

i ∼ p(z2|zt+1
1 , zt3, ..., z

t
N ).

• . . .

• Replace ztj by a new value zt+1
j ,

sampling zt+1
j ∼ p(zj |zt+1

1 , ..., zt+1
j−1, z

t
j+1, ...z

t
N ).

• Replace ztN by a new value zt+1
N , sampling zt+1

N ∼ p(zN |zt+1
1 , ..., zt+1

N−1).

From the above procedure, the samples begin to converge to what would be sampled

from the true distribution, and the convergence of Gibbs sampling is theoretically guar-
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anteed. Although diagnosing convergence is a minor problem when Gibbs sampling

inference method is used, Gibbs sampling is quite powerful and has fairly good perfor-

mance in practice. Typically, an acceptable estimation of convergence can be obtained

by calculating the log-likelihood.

To derive the learning algorithm of LDA, we are interested in the latent topic pro-

portion of each document θ, the topics φ, and the topic assignments for each word

z. However, we do not need to include the parameter sets θ and φ for the inference

of LDA, because they can be interpreted as statistics of the associations between the

observed words w and the corresponding topic assignments z. In other words, z is a

sufficient statistic (Kay, 1998) 3 for estimating and calculating both the parameter θ

and φ which can be integrated out. This strategy of integrating out the parameters for

model inference is referred to as collapsed sampling (Neal, 2000). Therefore, a sim-

pler algorithm can be used if we integrate out the multinomial parameters θ and φ, and

simply sample z, which is called a collapsed Gibbs sampling.

The collapsed Gibbs sampling for LDA should compute the probability of a topic

assignment zdi corresponding to a word wdi, given all other topic assignments to all

other words except wdi. Thus, we are interested in computing the following conditional

posterior distribution for zdi given by:

p(zdi|z−di, w, α, β), (2.29)

where z−di denotes a simple description of a set of all topic assignments except for zdi,

and words w not having an index is concise notation version of a set with all possible
3For example, if x1, x2, ..., xN are independent, identically and normally distributed samples

with the population mean µ (a parameter) and known variance σ2, then the sample mean function

T (x1, x2, ..., xN ) = 1
N

N∑
i=1

xi is a sufficient statistic for µ, where the population mean is distinguished

from the sample mean from the fact that the population mean considers every member of the population.
Once the sample mean is known, no further information about µ can be obtained from the sample itself.
On the other hand, the median is not sufficient for the mean: even if the median of the sample is known,
knowing the all samples itself would provide further information about the population mean µ.
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indices, i.e. {wdi|d = 1, ..., D, i = 1, ..., Nd}. Then, we apply Bayes’ rule to obtain

the joint probability of z and w given the hyperparameter α and β.

p(zdi|z−di, w, α, β) =
p(zdi, z−di, w|α, β)
p(z−di, w|α, β)

. (2.30)

From the above equation, the denominator can be considered a constant value since

Gibbs sampling assumes all variables are known except for zdi, so we can derive as

follows:

p(zdi|z−di, w, α, β) ∝ p(zdi, z−di, w|α, β) (2.31)

= p(z, w|α, β). (2.32)

From the definition of LDA described in the previous section, the joint distribution

of z and w can be factorized:

p(z, w|α, β) =
∫ ∫

p(z, w, θ, φ|α, β)dφdθ (2.33)

=

∫ ∫
p(φ|β)p(θ | α)p(z|θ)p(w|z, φ)dφdθ (2.34)

=

∫
p(φ|β)p(w|z, φ)dφ

∫
p(θ | α)p(z|θ)dθ (2.35)

=

∫
p(w, φ|z, β)dφ

∫
p(z, θ|α)dθ (2.36)

= p(w|z, β)p(z|α). (2.37)

The first term p(w|z, β) can be derived by substituting Dirichlet and multinomial

probability into p(φ|β) and p(w|z, φ), respectively:

p(w|z, β) =
∫

p(φ|β)p(w|z, φ)dφ (2.38)

=

∫ { K∏
k=1

p(φk|β)

}
D∏

d=1

Nd∏
i=1

p(wdi|zdi, φ)dφ (2.39)

=

∫ { K∏
k=1

1

B(β)

V∏
v=1

φk(v)
β−1

}
D∏

d=1

Nd∏
i=1

φzdi(wdi)dφ, (2.40)
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where φk(v) is the v-th component of the vector φk ∈ RV , and B(β) =

V∏
v=1

Γ(β(v))

Γ

(
V∑

v=1
β(v)

)
is Beta function which is used to normalize the Dirichlet distribution p(φk|β). Since

xaxb = xa+b, we can replace the innermost products
D∏

d=1

Nd∏
i=1

φzdi(wdi) by counting

the number of times that the word wdi = v is assigned to the topic zdi = k and by

exponentiating to the counts.

D∏
d=1

Nd∏
i=1

φzdi(wdi) =
K∏
k=1

V∏
v=1

{φk(v)}h(k,v), (2.41)

where hφ ∈ NK×V denotes the histogram matrix which counts the number of times

the word wdi = v is assigned to the topic zdi = k given by:

hφ(k, v) =

D∑
d=1

Nd∑
i=1

δ [wdi − v] δ [zdi − k], (2.42)

in which δ is the Kronecker delta function. Therefore, Eq. 2.40 can be rewritten as

follows:

p(w|z, β) =
∫ { K∏

k=1

1

B(β)

V∏
v=1

φk(v)
β−1

}
D∏

d=1

Nd∏
i=1

φzdi(wdi)dφ (2.43)

=

∫ { K∏
k=1

1

B(β)

V∏
v=1

φk(v)
β−1

}
K∏
k=1

V∏
v=1

{φk(v)}hφ(k,v)dφ (2.44)

=
K∏
k=1

1

B(β)

∫ V∏
v=1

{φk(v)}hφ(k,v)+β−1dφ. (2.45)

Then, using the trick that multiplies the Beta function B(hφ(k, ·) + β) to both the

nominator and denominator, we can integrate out φ, since integrals of Dirichlet dis-

tribution is 1, where dot notation hφ(k, ·) is a V -dimensional vector that contains all
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indices for v = {1, 2, ..., V }.

p(w|z, β) =
K∏
k=1

1

B(β)

∫ V∏
v=1

{φk(v)}hφ(k,v)+β−1dφ (2.46)

=

K∏
k=1

B(hφ(k, ·) + β)

B(β)

∫
1

B(hφ(k, ·) + β)

V∏
v=1

{φk(v)}hφ(k,v)+β−1dφ︸ ︷︷ ︸
=1 (Integral of pdf)

(2.47)

=

K∏
k=1

B(hφ(k, ·) + β)

B(β)
. (2.48)

In a similar way, the second term p(z|α) in Eq. 2.37 can be calculated as follows:

p(z|α) =
∫

p(θ | α)p(z|θ)dθ (2.49)

=

∫ D∏
d=1

p(θd | α)
Nd∏
i=1

p(zdi|θd)dθ (2.50)

=

∫ D∏
d=1

{
1

B(α)

K∏
k=1

θd(k)
α−1

}
Nd∏
i=1

θd(zdi)dθ. (2.51)

Then, by counting the duplicated terms (i.e. hθ(d, k) =
Nd∑
i=1

δ [zdi − k]), the equation
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can be simplified as follows:

p(z|α) =
∫ D∏

d=1

{
1

B(α)

K∏
k=1

θd(k)
α−1

}
K∏
k=1

θd(k)
hθ(d,k)dθ (2.52)

=

∫ D∏
d=1

1

B(α)

K∏
k=1

θd(k)
α−1θd(k)

hθ(d,k)dθ (2.53)

=

∫ D∏
d=1

1

B(α)

K∏
k=1

θd(k)
hθ(d,k)+α−1dθ (2.54)

=

D∏
d=1

B(hθ(d, ·) + α)

B(α)

∫
1

B(hθ(d, ·) + α)

K∏
k=1

θd(k)
hθ(d,k)+α−1dθ︸ ︷︷ ︸

=1 (Integral of pdf)

(2.55)

=

D∏
d=1

B(hθ(d, ·) + α)

B(α)
. (2.56)

Using the derivation results of both terms in Eq. 2.37, the joint distribution of

words w and topic assignments z becomes:

p(z, w|α, β) = p(w|z, β)p(z|α) (2.57)

=

{
K∏
k=1

B(hφ(k, ·) + β)

B(β)

}{
D∏

d=1

B(hθ(d, ·) + α)

B(α)

}
. (2.58)

From the joint distribution, the Gibbs sampling equation in Eq. 2.32 for LDA can

be derived using the Bayes’ rule, chain rule, and definition of independence among

variables:

p(zdi|z−di, w, α, β) =
p(zdi, z−di, w|α, β)
p(z−di, w|α, β)

(2.59)

=
p(z, w|α, β)

p(z−di, w|α, β)
(2.60)

=
p(z|α, β)p(w|z, α, β)

p(z−di|α, β)p(wdi, w−di|z−di, α, β)
(2.61)

=
p(z|α)p(w|z, β)

p(z−di|α)p(w−di|z−di, β)p(wdi|α, β)
. (2.62)
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Then, the nominator can be replaced by the derivation result of Eq. 2.58 which is

composed of Beta functions. Also, the denominator can be represented by the Beta

functions, since p(z−di|α) and p(w−di|z−di, β) is almost equivalent to the Eq. 2.58

except for omitting zdi and wdi and p(wdi|α, β) is a constant. In other words, by ex-

cluding a count for zdi and wdi from the original histogram hφ(k, ·) and hθ(d, ·) to

obtain the histograms hφ(k,−di) and hθ(d,−di) 4 , the conditional distribution for

Gibbs sampling can be derived using Beta functions given as follows:

p(zdi|z−di, w, α, β) ∝

{
K∏
k=1

B(hφ(k,·)+β)
B(β)

}{
D∏

d=1

B(hθ(d,·)+α)
B(α)

}
{

K∏
k=1

B(hφ(k,−di)+β)
B(β)

}{
D∏

d=1

B(hθ(d,−di)+α)
B(α)

} (2.63)

=
K∏
k=1

B(hφ(k, ·) + β)

B(hφ(k,−di) + β)
×

D∏
d=1

B(hθ(d, ·) + α)

B(hθ(d,−di) + α)
. (2.64)

From the definition of the Beta function expressed by Gamma functions and the prop-

erty of the Gamma function that Γ(x)
Γ(x−1) = x − 1 , we can reduce a fraction by elimi-

nating duplicated terms. The nominator of the first term is given by:

B(hφ(k, ·) + β) =

V∏
v=1

Γ(hφ(k, v) + β(v))

Γ

(
V∑

v=1
[hφ(k, v) + β(v)]

) , (2.65)

and the denominator of the first term is given by:

B(hφ(k,−di) + β) =

V∏
v=1

Γ(hφ(k, v)− δ [wdi − v] δ [zdi − k] + β(v))

Γ

(
V∑

v=1
[hφ(k, v)− δ [wdi − v] δ [zdi − k] + β(v)]

) . (2.66)

Thus, for the terms of δ [wdi − v] δ [zdi − k] = 0, we can neglect them since two

corresponding Gamma functions of Eq. 2.65 and Eq. 2.66 become equal and cancelled.
4hφ(k,−di) = hφ(k, v)− δ [wdi − v] δ [zdi − k] , (v = 1, ..., V ) and

hθ(d,−di) = hθ(d, k)− δ [zdi − k] , (k = 1, ...,K)
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On the other hands, if δ [wdi − v] δ [zdi − k] = 1 (i.e. wdi = v and zdi = k), we can

apply the Gamma function property Γ(x)
Γ(x−1) = x − 1, so the first term of Eq. 2.64 is

simplified as follows:

K∏
k=1

B(hφ(k, ·) + β)

B(hφ(k,−di) + β)
∝

hφ(k, v)− δ [wdi − v] δ [zdi − k] + β(v)
V∑

v=1
[hφ(k, v)− δ [wdi − v] δ [zdi − k] + β(v)]

. (2.67)

In the similar way, the second term of Eq. 2.64 can be also simplified as follows:

D∏
d=1

B(hθ(d, ·) + α)

B(hθ(d,−di) + α)
∝ hθ(d, k)− δ [zdi − k] + α(k)

K∑
k=1

[hθ(d, k)− δ [zdi − k] + α(k)]

(2.68)

=
hθ(d, k)− δ [zdi − k] + α(k)

K∑
k=1

[hθ(d, k) + α(k)]− 1

. (2.69)

As a results, the Gibbs sampling equation for LDA is proportional to Eq. 2.67 and

Eq. 2.69.

p(zdi|z−di, w, α, β) ∝
hφ(k, v)− δ [wdi − v] δ [zdi − k] + β(v)

V∑
v=1

[hφ(k, v)− δ [wdi − v] δ [zdi − k] + β(v)]

× {hθ(d, k)− δ [zdi − k] + α(k)} , (2.70)

where the denominator of Eq. 2.69 is ignored since it is constant to the variation of zdi.

For the final step, we need to obtain the multinomial parameters θ and φ which

can be calculated by using posterior estimates of z. According to the conjugacy prop-

erty (Diaconis & Ylvisaker, 1979) between the Dirichlet distribution and the multi-

nomial distribution, if a random variable has multinomial distribution and the prior

distribution of the random variable’s parameter is a Dirichlet distribution, then the

posterior distribution of the parameter is also a Dirichlet distribution. This means that

we can successively update our knowledge of a parameter by combining new observa-

tions, one after another, without running into mathematical difficulties. In other words,
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the posterior distribution of the parameter θ and φ are given as follows:

p(θd|z, α) =

Multinomial︷ ︸︸ ︷
p(z|θd)

Dirichlet︷ ︸︸ ︷
p(θd|α)

p(z|α)

= Dir(θd|hθ(d, ·) + α), (2.71)

p(φk|z, w, β) = Dir(φk|hφ(k, ·) + β). (2.72)

Therefore, using the expectation formula of the Dirichlet distribution with a prior α,

E[θd|α] = α(k)∑K
k=1 α(k)

, we can estimate the parameter θ and φ:

θ̂d(k) = E[θd(k)|hθ(d, ·) + α] =
hθ(d, k) + α(k)∑K

k=1 [hθ(d, k) + α(k)]
, (2.73)

φ̂k(v) = E[φk(v)|hφ(k, ·) + β] =
hφ(k, v) + β(v)∑V

v=1 [hφ(k, v) + β(v)]
. (2.74)

Implementation

Implementation of LDA using the collapsed Gibbs sampling is straightforward when

using the derivation results of Eq. 2.70, Eq. 2.73, and Eq. 2.74. The procedure of Gibbs

sampling is summarized in Algorithm 1. In this procedure, three main data structures

are used, the counting histogram hφ(k, v) and hθ(d, k) which have dimension K × V

and D ×K respectively, and the last one is topic assignments zdi which can be repre-

sented an array whose length is
D∑

d=1

Nd, where Nd is the number of words for the d-th

document. The collapsed Gibbs sampling algorithm runs over the three steps: initial-

ization, sampling iteration, and model parameter estimation. In the initialization step,

the counting histograms are filled with Dirichlet prior to pre-calculate the summing of

α(k) and β(v) in Eq. 2.70, and a topic for each word is assigned at random. In the

sampling step, we must decrement a count for the current topic assignment zdi be-

fore building a distribution from Eq. 2.70. Then we can obtain posterior distribution of

each topic assignment using Eq. 2.70. After that, this discrete distribution is utilized

to draw a new topic assignment zdi for the word wdi. The drawing processing can be
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implemented by calculating cumulative distribution function (CDF) from the discrete

posterior distribution, and then using inverse transform sampling (Vogel, 2002) which

generates a random number from the uniform distribution in the interval [0, 1] and

takes the result of inverse of CDF from the random number. Finally, the multinomial

parameters θ and φ are calculated by using posterior estimates of z according to the

Eq. 2.73, and Eq. 2.74.
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Algorithm 1 Collapsed Gibbs sampling algorithm for Latent Dirichlet Allocation
Input: A documnet set {wdi|d = 1, ..., D, i = 1, ..., Nd}, where d-th document con-

sists of a set of Nd words and each wdi ∈ {1, ..., V }.
Hyperparameters α, β, and the number of topic K

Output: LDA model parameters θ, φ, and topic assignments zdi corresponding to
each word wdi.

Initialization
For the histogram matrix, hφ(k, v) = β and hθ(d, k) = α, where ∀ k ∈
{1, ...,K}, ∀v ∈ {1, ..., V }, ∀d ∈ {1, ..., D}.
for all document indices d← 1, . . . , D do

for all word indices i← 1, . . . , Nd do
Draw a topic for each word zdi ∼Multi(zdi|[ 1K , 1

K , ..., 1
K ]T ).

Increment document-topic count: hθ(d, zdi)← hθ(d, zdi) + 1.
Increment topic-vocabulary count: hφ(zdi, wdi)← hφ(zdi, wdi) + 1.

end for
end for

Collapsed Gibbs sampling
while not converge do

for all document indices d← 1, . . . , D do
for all word indices i← 1, . . . , Nd do

Decrement document-topic count: hθ(d, zdi)← hθ(d, zdi)− 1.
Decrement topic-vocabulary count: hφ(zdi, wdi)← hφ(zdi, wdi)− 1.
Update posterior distribution of zdi, p ∈ RK as follows:
for topic indices k ← 1, . . . ,K do

p(k)← hφ(k,wdi)∑K
k=1 hφ(k,wdi)

hθ(d, k)

end for
Normalize p(·) that sums to 1: p(k)← p(k)∑K

k=1 p(k)
.

Draw a new topic assignment using the posterior zdi ∼Multi(zdi|p).
Increment document-topic count: hθ(d, zdi)← hθ(d, zdi) + 1.
Increment topic-vocabulary count: hφ(zdi, wdi)← hφ(zdi, wdi) + 1.

end for
end for

end while

Estimate model parameters
Calculate the parameters θ, φ according to Eq. 2.73, and Eq. 2.74.
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2.2.2 Variational Inference

Variational inference is a deterministic methodology (unlike sampling methods which

are based on stochastic inference) for approximating posteriors in an intractable prob-

abilistic model (Jordan et al., 1999). This method is used in complex statistical models

consisting of observed random variables and unobserved random variables (which we

want to estimate), with various conditional dependency among the random variables.

We will begin with deriving how variational methods can be applied to approximate

Bayesian inference, then the detail process for LDA will be explained.

The basic idea of the variational inference is to use variational distribution that

makes a complex model into simpler models by neglecting some dependency of the

complex model. Thus, we can make an assumption that certain latent variables can be

approximately independent conditioned on the observed data; for example, the poste-

rior distribution over the latent variables z given the observation x can be approximated

by a variational distribution q(·) as follows:

p(z|x) ≈ q(z). (2.75)

The variational distribution q(z) should belong to a family of distributions of simpler

form than p(z|x). This family is selected with the intention of making q(z) be similar

to the true posterior p(z|x). The dissimilarity between q(z) and p(z|x) is measured by

the Kullback–Leibler divergence (Kullback & Leibler, 1951) that is a non-symmetric

measure of the difference between two probability distributions, so inference is per-

formed by selecting the distribution q(z) that minimize the dissimilarity.

The Kullback–Leibler divergence (KL-divergence) is defined as

D[q(z)||p(z|x)] ∆
=

∫
z
q(z) log

q(z)

p(z|x)
dz, (2.76)

where log x is the natural logarithm. The property of KL-divergence is that if q(z) is

equal to p(z|x), the dissimilarity measure D[q(z) ∥p(z|x) ] becomes zero; otherwise a
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positive value. Then, we can make the substitution p(z|x) = p(z,x)
p(x) by the conditional

probability:

D [q(z)||p(z|x)] =
∫
z
q(z) log

q(z)p(x)

p(z, x)
dz (2.77)

=

∫
z
q(z) log

q(z)

p(z, x)
dz +

∫
z
q(z) log p(x)dz (2.78)

=

∫
z
q(z) log

q(z)

p(z, x)
dz + log p(x)

∫
z
q(z)dz︸ ︷︷ ︸
=1

(2.79)

=

∫
z
q(z) log

q(z)

p(z, x)
dz + log p(x). (2.80)

Using the derivation result of the above equation, we can decompose the log marginal

probability log p(x) as follows:

log p(x) = D [q(z)||p(z|x)]−
∫
z
q(z) log

q(z)

p(z, x)
dz (2.81)

= D [q(z)||p(z|x)] +
∫
z
q(z) log

p(z, x)

q(z)
dz (2.82)

= D [q(z)||p(z|x)] + L(q), (2.83)

where the last term of this equation is defined as a lower-bound

L(q) ∆
=

∫
z
q(z) log

p(z, x)

q(z)
dz (2.84)

=

∫
z
q(z) log p(z, x)dz −

∫
z
q(z) log q(z)dz (2.85)

=Eq [log p(z, x)] +H [q(z)] . (2.86)

Here, the notation Eq [·] is an expectation with respect to the distribution q(·), and

H [q(z)] = −
∫
z q(z) log q(z)dz is defined as the entropy of q(z). Since the log evi-

dence log p(x) is not related to q(·) and is constant given the observation x, optimizing

(maximizing) this lower-bound L(q) is equivalent to minimizing the KL divergence

between q(z) and the true posterior p(z|x) as illustrated in Figure 2.6.
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Figure 2.6 Relation among the log marginal probability log p(x), KL-divergence
D [q(z)||p(z|x)], and the lower-boundL(q). The quantityL(q) provides a lower bound
on the log marginal probability log p(x) with difference given by the KL divergence
D [q(z)||p(z|x)]. By maximizing L(q), we can minimize the KL divergence since the
log marginal probability is constant with respect to q(z). (Bishop, 2006)

As mentioned earlier, we need to choose a variational distribution q(z) that has a

simpler dependency structure than that of the exact (non-approximated) model, which

enables the calculation of the lower bound L(q) to be tractable. The mean field ap-

proximation (Parisi, 1988) is a popular way to simplify the dependency structure by

partitioning the elements of z into disjoint groups zi where i = 1, 2, ..., N . This ap-

proximation makes it possible to convert a complex model into simpler models by

partitioning the original complex model. This partitioning can be achieved by the ad-

dition of extra parameters that is called variational parameters (Winn, 2004). In other

words, the variational parameters are applied to approximate a probability distribution

of the model so that it can has a simpler dependency structure than that of the exact

(non-approximated) model. Thus, we assume that the variational distribution q(z) can

be factorized as follows:

q(z) =
N∏
i=1

qi(zi) (2.87)

In this assumption, designing the variational distribution q(z) for approximating the
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true posterior p(z|x) depends on designing each factor qi(zi). In practice, instead of

selecting qi(zi) from all possible distribution forms, we can choose qi(zi) to be in a

particular parameterized distribution family:

N∏
i=1

qi(zi) =
N∏
i=1

q(zi|λi), (2.88)

where λi is a variational parameter for each hidden variable zi. For example, q(·) is

fixed with Gaussian distribution, and qi(zi) is changed by adjusting the parameters for

the mean and variance.

Then, we should find all of the distribution qi(zi) for the lower bound L(q) to be

largest. To achieve this, substituting Eq.2.87 into the definition of lower bound L(q) in

Eq.2.85, and then it is dissected by the each factor qi(zi) as follows:

L(q) =
∫
z
q(z) log p(z, x)dz −

∫
z
q(z) log q(z)dz (2.89)

=

∫
z

{
N∏
i=1

qi(zi)

}
log p(z, x)dz −

∫
z


N∏
j=1

qj(zj)

 log

{
N∏
i=1

qi(zi)

}
dz

(2.90)

=

∫
z

{
N∏
i=1

qi(zi)

}
log p(z, x)dz

−
∫
z1

...

∫
zN


N∏
j=1

qj(zj)


N∑
i=1

logqi(zi)dz1...dzN (2.91)

=

∫
z

{
N∏
i=1

qi(zi)

}
log p(z, x)dz −

N∑
i=1

∫
zi

qi(zi) log qi(zi)dzi (2.92)

=

∫
z

{
N∏
i=1

qi(zi)

}
log p(z, x)dz +

N∑
i=1

H [qi(zi)]. (2.93)

Then, terms of the above equation are separated in a specific factor qj(zj), using the no-

tation (−j) that denotes all indices except j; that is,
∫
z(−j)

=
∫
z1
...
∫
zj−1

∫
zj+1

...
∫
zN
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and the notation Eq(−j)
[·] is an expectation with respect to the distribution

∏
i ̸=j

qi(zi):

L(q) =
∫
zj

qj(zj)

∫
z(−j)

∏
i ̸=j

qi(zi)

 log p(z, x)dz(−j)dzj

+H [qj(zj)] +
∑
i ̸=j

H [qi(zi)] (2.94)

=

∫
zj

qj(zj)Eq(−j)
[log p(z, x)] dzj + H [qj(zj)]︸ ︷︷ ︸

=−
∫
zj

qj(zj) log qj(zj)dzj

+
∑
i ̸=j

H [qi(zi)]

(2.95)

=

∫
zj

qj(zj)
{
Eq(−j)

[log p(z, x)]− log qj(zj)
}
dzj +

∑
i ̸=j

H [qi(zi)]. (2.96)

From the above result, we suppose that the {qi(zi)|i ̸= j} is fixed, and then we can

maximize L(q) with respect to all possible forms of the distribution qj(zj). In order to

obtain the optimal solution for qj(zj), we define the distribution q∗j (zj) by normalizing

Eq(−j)
[log p(z, x)] for the q∗j (zj) to be a valid probability distribution, which is given

by

q∗j (zj) =
exp

(
Eq(−j)

[log p(z, x)]
)

∫
zj
exp

(
Eq(−j)

[log p(z, x)]
)
dzj

=
1

C
exp

(
Eq(−j)

[log p(z, x)]
)
, (2.97)

where C =
∫
zj
exp

(
Eq(−j)

[log p(z, x)]
)
dzj is the constant normalization factor. Us-

ing the notation q∗j (zj) defined above, we can derive L(q) to be maximized by mini-

mizing the negative KL divergence as follows:

L(q) =
∫
zj

qj(zj)

Eq(−j)
[log p(z, x)]︸ ︷︷ ︸

=log q∗j (zj)+logC

− log qj(zj)

dzj +
∑
i ̸=j

H [qi(zi)] (2.98)

=

∫
zj

qj(zj) log
q∗j (zj)

qj(zj)
dzj + logC +

∑
i ̸=j

H [qi(zi)] (2.99)

= −D
[
qj(zj)||q∗j (zj)

]
+ logC +

∑
i ̸=j

H [qi(zi)]. (2.100)
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Because the last two terms logC and
∑
i ̸=j

H [qi(zi)] do not depend on qj(zj), only the

KL divergence between qj(zj) and q∗j (zj) influences the lower-bound L(q). Therefore,

the lower-bound can be maximized by setting qj(zj) = q∗j (zj), in which q∗j (zj) is

obtained easily by taking the expectation with respect to all other hidden variables

and variational distributions {qi(zi)|i ̸= j}. In other words, by picking each factor

qj(zj) and replacing the optimal value one by one, L(q) can increase gradually until

convergence. The convergence is guaranteed according to (Boyd & Vandenberghe,

2004) because each factor for the variational distribution qj(zj) can be designed to be

convex. This scheme is similar to the case of Gibbs sampling which samples zj from

the distribution given all hidden and observed variables except zj . The difference is

that sampling zj is a stochastic approach (i.e. it has randomness), whereas taking the

expectation is a deterministic approach.

For the variational inference of LDA, we recall the objective function and joint

probability of LDA given by:

φ∗, θ∗, z∗ = argmax
φ,θ,z

p(φ, θ, z|w,α, β) (2.101)

= argmax
φ,θ,z

p(φ, θ, z, w|α, β)
p(w|α, β)

(2.102)

= argmax
φ,θ,z

p(φ, θ, z, w|α, β), (2.103)

where

p(φ, θ, z, w|α, β) =

(
K∏
k=1

p(φk|β)

)
D∏

d=1

p(θd | α)
Nd∏
i=1

p(zdi | θd)p(wdi | zdi, φ).

(2.104)

To approximate the posterior related to the joint distribution of LDA in Eq.(2.25),

a simpler variational distribution q(φ, θ, z|λ, γ, ϕ) that can be factorized for easier
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computation is utilized in VI as follows (Blei et al., 2003):

q(φ, θ, z|λ, ϕ, γ) =(
K∏
k=1

q(φk|λk)

)(
D∏

d=1

q(θd|γd)

)D,Nd∏
d,i

q(zdi|ϕdi)

 , (2.105)

where λ, γ, and ϕ are the variational parameters used for approximate inference of

φ, θ, and z respectively. Here, the forms of each factorized variational distribution

q(φk|λk), q(θd|γd), and q(zdi|ϕdi) are chosen to be Dirichlet, Dirichlet, and multino-

mial distribution, respectively:

φk|λk ∼ Dirichlet(φk|λk) (2.106)

θd|γd ∼ Dirichlet(θd|γd) (2.107)

zdi|ϕdi ∼Multi(zdi|ϕdi). (2.108)

Hence, instead of solving optimization of the objective function in Eq. 2.103, the opti-

mal values of the variational parameters are found as follow:

λ∗, γ∗, ϕ∗ =argmin
λ,γ,ϕ

D [q(·) ∥p(·) ] ,

where, q(·) = q(φ, θ, z|λ, γ, ϕ),

p(·) = p(φ, θ, z|w,α, β). (2.109)

The optimal variational parameters are founded by minimizing the Kullback-Leibler

(KL) divergence D [q(·) ∥p(·) ] between the variational distribution and the true poste-

rior p(φ, θ, z|w,α, β) as shown in Figure 2.7.

As in case of the relation among the evidence log(w|α, β), KL-divergence D [q(·) ∥p(·) ],

and the lower-bound L(q) described in Figure 2.6, minimizing the KL divergence is

equivalent to maximizing the lower-bound with respect to the variational parameters
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KL divergence

LDA Model
Approximated Model 

Using Variational distribution

Figure 2.7 Graphical representation of the original LDA model and approximated
model using variational distribution. The goal of variational inference is to optimize
the variational parameters λ, γ, ϕ so that they can make the variational distribution
close in Kullback-Leibler (KL) divergence to the posterior of LDA. (Blei, 2014)

λ, γ, ϕ. Thus, The lower-bound is given as follows:

L(q) = p(w|α, β)−D [q(φ, θ, z|λ, γ, ϕ) ∥p(φ, θ, z|w,α, β) ] (2.110)

= p(w|α, β)
∫∫ ∑

z

q(φ, θ, z|λ, γ, ϕ)dφdθ︸ ︷︷ ︸
=1

−
∫∫ ∑

z

q(φ, θ, z|λ, γ, ϕ) log q(φ, θ, z|λ, γ, ϕ)
p(φ, θ, z|w,α, β)

dφdθ (2.111)

=

∫∫ ∑
z

q(φ, θ, z|λ, γ, ϕ) log p(w|α, β)p(φ, θ, z|w,α, β)
q(φ, θ, z|λ, γ, ϕ)

dφdθ (2.112)

=

∫∫ ∑
z

q(φ, θ, z|λ, γ, ϕ) log p(φ, θ, z, w|α, β)
q(φ, θ, z|λ, γ, ϕ)

dφdθ. (2.113)
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Then, the lower-bound can be expanded by using the factorization of q(·) and p(·):

L(q) =
∫∫ ∑

z

q(φ, θ, z|λ, γ, ϕ) log p(φ, θ, z, w|α, β)dφdθ

−
∫∫ ∑

z

q(φ, θ, z|λ, γ, ϕ) log q(φ, θ, z|λ, γ, ϕ)dφdθ (2.114)

= Eq [log p(φ, θ, z, w|α, β)]− Eq [log q(φ, θ, z|λ, γ, ϕ)] (2.115)

= Eq

[
log

{(
K∏
k=1

p(φk|β)

)
D∏

d=1

p(θd | α)
Nd∏
i=1

p(zdi | θd)p(wdi | zdi, φ)

}]

− Eq

log

(

K∏
k=1

q(φk|λk)

)(
D∏

d=1

q(θd|γd)

)D,Nd∏
d,i

q(zdi|ϕdi)



(2.116)

=

K∑
k=1

Eq [log p(φk|β)] +
D∑

d=1

Eq [log p(θd | α)] +
D∑

d=1

Nd∑
i=1

Eq [log p(zdi | θd)]

+
D∑

d=1

Nd∑
i=1

Eq [log p(wdi | zdi, φ)]

−
K∑
k=1

Eq [log q(φk|λk)]−
D∑

d=1

Eq [log q(θd|γd)]−
D∑

d=1

Nd∑
i=1

Eq [log q(zdi|ϕdi)].

(2.117)

According to the above derivation, the objective function (lower-bound) L(q) turns

out to be the sum of the expectation of the log probabilities of the posterior under

the variational parameters minus the log probabilities of the variational distributions.

Taking each expectation of the above equations can be analytically calculated. For the

first term, recalling the definition of p(φk|β) that it is the Dirichlet distribution

p(φk|β) =
Γ

(
V∑

v=1
β(v)

)
V∏

v=1
Γ(β(v))

V∏
v=1

φk(v)
β(v)−1, (2.118)

the expectation of log probability with respect to the variational distribution q is de-
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rived as follows:

Eq [log p(φk|β)] = Eq

[
log Γ

(
V∑

v=1

β(v)

)
−

V∑
v=1

log Γ(β(v)) +
V∑

v=1

(β(v)− 1) logφk(v)

]
,

(2.119)

and note that q(φ, θ, z|λ, γ, ϕ) is a function of only φ, θ, and z. Thus, we can get

Eq [log p(φk|β)] = log Γ

(
V∑

v=1

β(v)

)
−

V∑
v=1

log Γ(β(v)) +
V∑

v=1

(β(v)− 1)Eq [log φk(v)].

(2.120)

In the similar way, we can also obtain the results of other expectations:

Eq [log p(θd | α)] = log Γ

(
K∑
k=1

α(k)

)
−

K∑
k=1

log Γ(α(k))+
K∑
k=1

(α(k)− 1)Eq [log θd(k)]

(2.121)

Eq [log p(zdi | θd)] =
Nd∑
i=1

K∑
k=1

ϕdi(k)Eq [log θd(k)] (2.122)

Eq [log p(wdi | zdi, φ)] =
Nd∑
i=1

K∑
k=1

V∑
v=1

ϕdi(k)δ [v − wdi] logφk(v) (2.123)

Eq [log q(φk|λk)] = log Γ

(
V∑

v=1

λk(v)

)
−

V∑
v=1

log Γ(λk(v)) +
V∑

v=1

(λk(v)− 1)Eq [log φk(v)]

(2.124)

Eq [log q(θd|γd)] = log Γ

(
K∑
k=1

γd(k)

)
−

K∑
k=1

log Γ(γd(k))+
K∑
k=1

(γd(k)− 1)Eq [log θd(k)]

(2.125)

Eq [log q(zdi|ϕdi)] =

Nd∑
i=1

K∑
k=1

ϕdi(k) logϕdi(k). (2.126)

Then, we can allow the lower-bound L(q) to be a function with respect to variational

parameters λ, γ, ϕ, observed variables w, and hyperparameters α, β by substituting

these expectations into in Eq.2.117. In order to maximize the lower-bound L(q) with
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respect to variational parameters λ, γ, ϕ, we take derivatives w.r.t these parameters,

and then set this derivative to zero for yielding the optimal value of each variational

parameter; that is,

∂L(q)
∂ϕdi

= 0 (2.127)

∂L(q)
∂γd

= 0 (2.128)

∂L(q)
∂λk

= 0. (2.129)

As a result, we can optimize variational parameters using coordinate ascent over the

variational parameters as follows:

ϕdi(k) ∝ exp {Eq [log θd(k)] + Eq [log φk(wdi)]} (2.130)

γd(k) = α(k) +

Nd∑
i=1

ϕdi(k) (2.131)

λk(v) = β(v) +

D∑
d=1

Nd∑
i=1

ϕdi(k)δ[wdi − v]. (2.132)

Here, the expectations under q of log θd(k) and log φk(wdi) are given by

Eq [log θd(k)] = Ψ(γd(k))−Ψ(

K∑
k=1

γd(k)) (2.133)

Eq [log φk(wdi)] = Ψ(λk(wdi))−Ψ(

V∑
v=1

λk(v)), (2.134)

where Ψ(x) = d
dx log Γ(x) =

Γ′(x)
Γ(x) is the digamma function (the logarithmic deriva-

tive of the gamma function) whose detailed derivation is in Appendix A.1 of (Blei

et al., 2003).

The iterative updates of the variational parameters in Eq. 2.130-Eq.2.132 are guar-

anteed to converge into a stationary point of the lower-bound. For the iteration, ϕ and γ

are updated with λ fixed, and λ is updated given the fixed ϕ and γ. The iteration algo-

rithm is finished after relative improvement of the lower-bound L is less than a preset
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threshold or after the maximum number of iterations. After the algorithm converges,

the parameters γd is used to obtain the topic proportion θd for the d-th document, and

λk is used to calculate the topic-word distribution φk for the k-th topic. The final dis-

tribution results φ, θ are obtained by calculating an expectation of the approximate

distribution q(·) given each optimal parameters λ, γ:

φ̂k(v) = Eq(φk|λk)︸ ︷︷ ︸
Dirichlet

[φk(v)|λk] =
λk(v)∑V
v=1 λk(v)

(2.135)

θ̂d(k) = Eq(θd|γd)︸ ︷︷ ︸
Dirichlet

[θd(k)|γd] =
γd(k)∑K
k=1 γd(k)

. (2.136)

The overall procedure of variational inference of LDA is summarized in Algorithm 2.
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Algorithm 2 Variational inference algorithm for Latent Dirichlet Allocation
Input: A documnet set {wdi|d = 1, ..., D, i = 1, ..., Nd}, where d-th document con-

sists of a set of Nd words and each wdi ∈ {1, ..., V }.
Hyperparameters α, β, and the number of topic K

Output: Variatinal parameters λk ∈ RV , γd ∈ RK , ϕdi ∈ RK .

Initialize λ randomly.
while L(q) not converge do

for all document indices d← 1, . . . , D do
Initialize γd = 1 (The constant 1 is arbitrary).
while γd not converge do

for all word indices i← 1, . . . , Nd do
for all topic indices k ← 1, . . . ,K do

Set ϕdi(k) ∝ exp {Eq [log θd(k)] + Eq [log φk(wdi)]}.
end for

end for
for all topic indices k ← 1, . . . ,K do

Set γd(k) = α(k) +
Nd∑
i=1

ϕdi(k).

end for
end while

end for
for all topic indices k ← 1, . . . ,K do

Set λk(v) = β(v) +
D∑

d=1

Nd∑
i=1

ϕdi(k)δ[wdi − v].

end for
Set L(q) by Eq.2.117.

end while
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Chapter 3

Proposed Approach

Figure. 3.1 shows the schematic diagram of the proposed framework. We first apply

a simple background subtraction (Stauffer & Grimson, 1999) to extract foreground

map and detect corner points on the foreground pixels. We perform KLT (Tomasi &

Kanade, 1991) on these corner point to extract trajectories. By using the KLT trajecto-

ries, we can reduce the tracking error in a crowded scene because KLT tracks corner

points, which are relatively easier to track than each object in a crowded scene. Of

course, the tracking of corner points under the far-field view may generate broken tra-

jectories. Despite the broken trajectories, our framework can cope with this problem

by considering co-occurrence property of many corner point trajectories. After KLT

tracking, consequent trajectories are collected during a time interval. The trajectories

in the same time interval compose a collection that is a mixture of diverse activities.

The dozens of trajectory collections are piled as in Figure. 3.1, and a recent set of

collections is used as an input to the proposed inference model for online update.

The proposed inference model is formulated in a probabilistic graphical frame-

work including trajectory pattern model, spatio-temporal relation of trajectories, and
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Figure 3.1 Overall scheme of the proposed method.

velocity model of each trajectory. To infer this model in online manner, instead of ex-

act inference, an approximate method is proposed by two-stage greedy inference with

three sub-models of trajectory clustering, spatio-temporal dependency modeling, and

velocity learning. Lastly, the recently observed scene is tested by the trained model to

detect anomalies in the current scene.

3.1 Probabilistic Inference Model

In this section, we describe the proposed model denoted with green in Figure. 3.1.

The main frame of our approach is topic model such as Latent Dirichlet Allocation

(LDA) (Blei et al., 2003), which is proposed for analysis of relationships between a set

of documents and words in the documents. In this approach, the frequency of occur-

rence of each word in a document is used as a feature to train the model. For example,

a word “relativity” tends to co-occur with words such as “Einstein”, “energy”, “grav-

ity”, “universe” in each document, so a set of the words is interpreted by the viewer

as the physics-related topic. Because of the ability of co-occurrence modeling, LDA
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Figure 3.2 Example of a single trajectory corresponding with a set of cells.

is adopted as a baseline of many motion pattern learning frameworks (Emonet et al.,

2011; Hospedales et al., 2009; Kuettel et al., 2010; Varadarajan et al., 2012; Wang

et al., 2009). In these works, quantized local motions are treated as words, a set of the

local motions in a video clip is treated as a document, and the topic can be treated as

typical motion patterns.

In our approach, we also have to define variables corresponding to “word”, “doc-

ument”, and “topic” in the topic model literatures. We define “words” as grid cells

dividing a scene, where all of the cells in a scene have the same height and width. In-

stead, we newly define the velocity of trajectory (details are defined in the following),

which can handle not only quantized direction inside a cell but also long-term actual

velocity over dozens of frames. The trajectory is denoted by a set of grid cells as in

in Figure. 3.2 and velocity vector defined as in Figure. 3.3. A “document” in the topic

model corresponds to a collection of trajectories defined by a set of trajectories col-

lected in a time interval. The trajectories are categorized into multiple typical patterns

(topics), referred to as trajectory patterns (e.g. turn left from south to west, go-straight

downwards, etc.).

The indexed variables for the proposed model are defined as following. The index

of i-th cell of j-th trajectory in t-th collection of trajectories is denoted by ctji ∈
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Figure 3.3 Synthetic trajectory with marked points and relative vectors from origin
coordinate in cell ctji.

{1, 2, ..., C}, where C is the number of grid cells in a scene. As depicted in Figure. 3.3,

the velocity vector vtjif ∈ R2 is defined as a relative vector from a point in the i-th

cell on the j-th trajectory to the point at the frame of f -steps ahead. Following the

above definition of variables, observed trajectories in the collection of the t-th time

interval can be expressed by a set of cells {ctji}
Ntj ,M
i=1,j=1 and a set of velocity vectors

{vtjif}
Ftji,Ntj ,M
f=1,i=1,j=1, where M is the number of trajectories in the collection, Ntj is the

number of cells where the j-th trajectory passes, and Ftji is the maximum value of f

according to the length of the observed trajectory. We also define a design parameter

F , acting as the maximum possible value for Ftji.

The state of t-th collection st ∈ {1, 2, ..., S} is a set of trajectory patterns that

can occur at the same time, such as a vertical moving state (a mixture of go-straight

upwards and downwards) governed by a traffic light. The sequence of the state st is

modeled so that it transits from one state to another over time, according to multino-

mial distribution with transition probability matrix π as follows:

p(st | st−1, st−2, ..., s1) = p(st | st−1), (3.1)

where,

st | st−1 ∼Multi(st|πst−1). (3.2)
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…

Figure 3.4 Graphical representation of the state transition model.

As in the equation, we assume that the state transition is only dependent on the previous

state for the simplicity of the model. The graphical representation of this model is

shown in Figure 3.4. For this example, the sequence of states {st} is formed according

to the change of a traffic signal as time passes. The constant S is a design parameter

determining the number of states, usually selected to 2 or 3 according to the traffic

changes in an intersection case.

If the state st is given, the distribution of topic occurrence (topic proportion) in

the state can be determined. The topic occurrence probability vector for t-th collection

is defined by θt ∈ RK , where K is a design parameter that stands for the number of

typical trajectory patterns in a scene. The θt is represented with a histogram that must

sum to 1, and the distribution of θt is assumed to be Dirichlet distribution with given

parameter α, i.e.,

θt | st, α ∼ Dir(θt | αst). (3.3)

The θt is used as the parameter of multinomial distribution over the K trajectory pat-

terns (topics) for the t-th collection. For example, if the current state st is about vertical

movements determined by a traffic signal, the distribution parameter θt corresponding

to the state st would make its components related to topics of horizontal traffic move-

ments have zero or small values.

The trajectory pattern of the j-th trajectory in the t-th collection is denoted with

ztj ∈ {1, 2, ...,K}, which is defined to follow a multinomial distribution with the
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|

∈ : Topic proportion

∈ 1,2, … , : trajectory pattern (topic assignment)

Figure 3.5 Graphical representation of the trajectory pattern (topic) generative model.

parameter θt, i.e.,

ztj | θt ∼Multi(ztj | θt). (3.4)

Intuitively, this probability definition of p(ztj | θt) encourages the t-th trajectory col-

lection to have sparse possible topics (trajectory patterns). Also, we assume that trajec-

tory patterns zt1, zt2, ..., ztM are independent and identically distributed (i.i.d) random

variables given the parameter θt for the t-th trajectory collection, so the joint probabil-

ity of ztj is factorized as follows:

p(zt1, zt2, ..., ztM | θt) =
M∏
j=1

p(ztj | θt), (3.5)

and the graphical representation is shown in Figure 3.5. In fact, it is hard to say that

trajectory patterns assigned to each trajectory are always independent, but the i.i.d.

assumption of the trajectory patterns under the known θt is very reasonable. This is

because non-zero components of θt corresponding to current state st are dependent on

co-occurring trajectory patterns which are governed by traffic signal. The co-occurring

trajectory patterns have no chance of conflicting each other, so the dependency among

them is negligible.

The multinomial parameter φk ∈ RC , k ∈ {1, 2, ...,K} holds spatial information

about which cell has high probability to appear in the k-th trajectory pattern, where

C is the number of cells in the scene (i.e. the scene is divided by grid into C cells).
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The distribution of φk defined to be Dirichlet distribution with hyperparameter β as

follows:

p(φ1, φ2, ..., φK | β) =
K∏
k=1

p(φk | β), (3.6)

where,

φk | β ∼ Dir(β). (3.7)

We define the cell ctji to be generated by a multinomial distribution with the pa-

rameters φztj ∈ RC being related to the trajectory pattern ztj , given by:

ctji | ztj , φ1, φ2, ..., φK ∼Multi(ctji | φztj ), (3.8)

Even though a value of cell ctji is not only dependent on the topic assignment ztj

and topics φ but also affected by the previous cell positions ctj1, ctj2, ..., ctj(i−1) in

the actual environment, we assume that the generation of cell position ctji is indepen-

dent with the other cells given the topic assignment of j-th trajectory ztj and topics

φ1, φ2, ., φK for the simplicity of the model:

p(ctj1, ctj2, ..., ctjNtj | ztj , φ1, φ2, ., φK) =

Ntj∏
i=1

p(ctji | ztj , φ1, φ2, ., φK). (3.9)

Instead of this assumption, we additionally utilize the velocity vector to learn the tem-

poral information of the trajectory pattern.

The velocity vector vtjif is modeled to be drawn from a Gaussian distribution with

its mean µctjiztjf and variance Σctjiztjf as follows:

vtjif | ztj , ctji, µ,Σ ∼ N (vtjif | µctjiztjf ,Σctjiztjf ). (3.10)

Consequently, the defined variables of the proposed model can deal with not only

global-level activities such as spatio-temporal trajectory patterns governed by traffic

signal but also micros-level activities such as precise velocities. Using variables and
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Figure 3.6 Graphical representation of the proposed model. The hidden variables are
unshaded and the observed variables are shaded. The rectangles are “plate” notation
which denotes replication.

their dependence defined in the above, the overall model to consider trajectory patterns

(topics), velocity patterns of the trajectories, and spatio-temporal transition patterns of

the states is graphically represented as shown in Figure. 3.6. The figure can be in-

terpreted in a top-down order through the generative process (Blei et al., 2003), where

the nodes denote random variables, and the edges denote possible dependence between

random variables.

The primary goal of our framework is to infer the latent variables and parame-

ters from the given observations {ctji} and {vtjif} in a surveillance video through

an online unsupervised learning scheme. 1 This task can be done by posterior infer-

ence, which can be regarded as a reversal of the generative process that the graphical

model illustrates. The posterior inference for all latent variables s, φ, θ, z, µ,Σ given
1To concisely represent notations, the set notation {·} without the range of index is defined as a set of

variables containing all possible indices. Also, the variables without indices imply that they deal with all
possible indices, such as,

c = {ctji} = {ctji}
T,M,Nj

t=1,j=1,i=1 , p(s) = p
(
{st}Tt=1

)
=

T∏
t=1

p(st).
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the observations c, v and hyper-parameters α, β is as follows:

s∗, φ∗, θ∗, z∗, µ∗,Σ∗ = argmax
s,φ,θ,z,µ,Σ

p(s, φ, θ, z, µ,Σ|c, v, α, β), (3.11)

where,

p(s, φ, θ, z, µ,Σ|c, v, α, β) = p(s, φ, θ, z, µ,Σ, c, v|α, β)
p(c, v|α, β)

. (3.12)

The numerator on the right-hand side in Eq.(3.12) corresponds to a joint probability

distribution represented by the proposed model. Also, using the chain rule and assump-

tions of independence among variables, the joint probability can be factorized into

Eq.(3.13), which consists of the probability distributions defined in Eq. (3.1)-(3.10).

p(s, φ, θ, z, µ,Σ, c, v|α, β) =

(
K∏
k=1

p(φk|β)

)
T∏
t=1

p(st | st−1)p(θt | st, α)
M∏
j=1

p(ztj | θt)

Ntj∏
i=1

p(ctji | ztj , φ)
Ftji∏
f=1

p(vtjif | ztj , ctji, µ,Σ). (3.13)

The learning of distribution parameters (φ, θ, µ,Σ) for the proposed model can be

achieved by maximizing the probability p(s, φ, θ, z, µ,Σ, c, v|α, β) with latent vari-

ables s, φ, θ, z, µ, Σ to be inferred under the given observations c, v and the hyper-

parameters α, β. However, the exact inference is intractable due to non-convexity of

the joint probability function and a tremendous search space caused by calculating the

joint probability for all possible configurations of the latent variables to find the best

case. Instead of exact inference, we propose an approximate inference method that will

be presented in the Section 3.2.

As for an application of inference results of the proposed model, anomaly detec-

tion can be performed. Using the distribution parameters µ,Σ, φ, θ inferred from the
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learning phase and the current observations {ct′ji}, {vt′jif} at the current time t′,2 the

a state s∗t′ and a topic assignment z∗t′j for each trajectory j are estimated by maximizing

a posterior:

s∗t′ , {z∗t′1, z∗t′2, ., z∗t′M} =

argmax
st′ ,{zt′j}

[
p(st′ , {zt′j}|{ct′ji}, {vt′jif}, µ,Σ, φ, θ, α, β)

]
. (3.14)

Here,

p(st′ , {zt′j}|{ct′ji}, {vt′jif}, µ,Σ, φ, θ, α, β) =
p(st′ , {zt′j}, {ct′ji}, {vt′jif}, µ,Σ, φ, θ|α, β)

p({ct′ji}, {vt′jif}, µ,Σ, φ, θ, α, β)
. (3.15)

The denominator of Eq.(3.15) is constant to the variation of optimization variables s,

z, so it is enough to maximize the numerator (joint probability) of Eq.(3.15) to achieve

Eq.(3.14). Therefore, the joint probability in Eq.(3.13) can substitute for the posterior

in Eq.(3.14) by fixing t = t′ and removing
T∏
t=1

. The observations are extracted from

trajectories of the current frame and j ∈ [1,M ], i ∈ [1, Nj ], f ∈ [1, Fji]. Indeed,

if the joint probability p(s∗t′ , {z∗t′j}, {ct′ji}, {vt′jif}, µ,Σ, φ, θ|α, β) in Eq.(3.13) has

low value even with the optimal s∗t′ , {z∗t′j}, the current scene is decided to be abnormal.

However, as in case of model learning, exact inference of Eq.(3.14) is intractable. The

details for anomaly detection with approximate method are described in Section 3.3.

3.2 Model Learning

An exact learning of the proposed model by maximizing the joint probability Eq.(3.13)

is intractable because of the aforementioned reasons in the previous section. Hence,

many conventional methods using various topic models (Wang et al., 2009; Hospedales

et al., 2009; Kuettel et al., 2010; Emonet et al., 2011; Wang et al., 2011) commonly
2Because the anomaly detection task should be performed for every frame, we compose t′-th trajec-

tory collections from the trajectories on the current frame.
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employ collapsed Gibbs sampling (CGS) for an approximate learning of the models.

CGS is a popular Markov Chain Monte Carlo (MCMC) approach for topic model

learning. However, on the results of online MCMC learning for topic models (Canini

et al., 2009), the results have shown that online MCMC learning is inferior to the of-

fline learning. According to (Zhai et al., 2012), in case of distributed processing for

the learning of the topic models, variational inference (VI)(Blei et al., 2003; Bishop,

2006) gives better results than CGS. To achieve an online learning of the proposed

topic model, a large set of the trajectory collections for the offline learning needs to be

separated by time. Because each separated set of the collections can be an input to the

distributed processing, VI method can be a better option for the online learning of our

model than CGS. VI assumes that each variational distribution used to approximate the

posterior and to treat each document (in our case, collection of trajectories) is indepen-

dent. For this reason, it is difficult to apply VI directly to our model because the model

has the states for each collection which is dependent on the previous state. Moreover,

inferring all latent variables all together is not efficient to real-time computation in

terms of a search space.

In our greedy inference approach, in order to directly apply VI to the proposed

model in Figure. 3.6, we utilize the fact that the state st is hardly changed in a short

time for the online inference; thus, θt can be inferred without knowing the current state

st. Also, to reduce the search space for the solution, we assume that each velocity pat-

tern µ,Σ in a cell c of each typical pattern z is inseparable. On the assumption, we can

find the typical patterns z based on the cells c at first, and then velocity patterns are

mined on the regions of each typical pattern. This assumption is reasonable from the

fact that activity regions c are more susceptible to the typical pattern z than precise ve-

locity v. As a result, three simple sub-models are obtained as shown in Figure. 3.7. The

first sub-model in Figure. 3.7-(a) is the same graphical model of Latent Dirichlet Allo-

cation (LDA) (Blei et al., 2003), so it is straightforward to adopt online VI (Hoffman
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et al., 2010) to the sub-model. If latent variables z and θ are given from the learning of

the first sub-model in Figure. 3.7-(a), remaining latent variables {st} and {µckf ,Σckf}

in Figure. 3.6 are conditionally independent by d-separation property (Bishop, 2006).

In other words, {st} does not influence {µckf ,Σckf} and vice versa for the given z

and θ. Therefore, we can reasonably optimize the sub-model of the first stage and then

use these results to optimize the remaining two sub-models in Figure. 3.7-(b,c) in a

greedy manner.

First, we optimize φ, θ, and z of the first sub-model in Figure. 3.7-(a) using LDA.

The LDA can be used to cluster trajectories effectively, since it is robust to broken

trajectories using the co-occurrence property. To be specific, because the collection is

composed of concurrent trajectories in short time duration, the LDA can cluster co-

occurring cells (words) in trajectory collections (documents) into the same trajectory

patterns (topics). Using the inference result in the first stage, we use {θt} as obser-

vations to infer hidden variables {st} and state transition matrix π in Figure. 3.7-(b).

In addition, the pattern assignments of each trajectory z inferred in the first stage is

also used as observations to infer Gaussian parameters per cell c, typical pattern k, and

frame f in Figure. 3.7-(c). By this procedure, the search space to solve the complex

model can be reduced effectively. Detailed description for each sub-model is presented

in the following.

3.2.1 Online Trajectory Clustering

Leaning of the first sub-model takes a role of online trajectory clustering. For the online

processing, the entire T collections of trajectories for the proposed model in Figure. 3.6

should be separated into a small set of collections by time. The small set that consists

of the D collections is used as an input for the mini-batch learning whose results allow

the model to be updated online. In other words, D is the number of collections for

the mini-batch, so T
D times of mini-batches should be performed for the whole video.
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Figure 3.7 Three sub-models for two-stage learning.
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Because the proposed model in Figure. 3.6 is assumed to be divided by ignoring the

dependence between s and θ and between z and v, the full joint probability of the

proposed model in the Eq.(3.13) can ignore p(st | st−1), p(vtjif | ztj , ctji, µ,Σ) and

can approximate p(θt | st, α) ≈ p(θt | α) . Thus, the objective function of each

mini-batch and joint probability of the first sub-model for the D collections is given

by:

φ∗, θ∗, z∗ = argmax
φ,θ,z

p(φ, θ, z|c, α, β), (3.16)

where,

p(φ, θ, z, c|α, β) =

(
K∏
k=1

p(φk|β)

)
D∏
t=1

p(θt | α)
M∏
j=1

p(ztj | θt)
Ntj∏
i=1

p(ctji | ztj , φ). (3.17)

Also, in order to make Eq.(3.17) to be the same as the joint probability of LDA, the

topic assignment ztj for each trajectory is changed to be assigned for each cell (i.e.

ztji), and then ztj is obtained by post-inference using ztji.

Therefore, we can solve the problem with LDA in Figure. 3.7-(a). By changing the

topic assignment ztj into ztji from the Eq.(3.17), the joint distribution of LDA is given

by:

p(φ, θ, z, c|α, β) =

(
K∏
k=1

p(φk|β)

)
D∏
t=1

p(θt | α)
M∏
j=1

Ntj∏
i=1

p(ztji | θt)p(ctji | ztji, φ), (3.18)

where j ∈ {1, 2, ...,M} is the trajectory index in the collections, and i ∈ {1, 2, ..., Ntj}

is the cell index in a trajectory. To approximate the posterior related to the joint distri-

bution of LDA in Eq.(3.18), a simpler variational distribution q({φk}, {θt}, {ztji}|λ, γ, ϕ)
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that can be factorized for easier computation is utilized in VI as follows (Blei et al.,

2003):

q({φk}, {ztji}, {θt}|λ, ϕ, γ) =(
K∏
k=1

q(φk|λk)

)(
D∏
t=1

q(θt|γt)

)D,M,Ntj∏
t,j,i

q(ztji|ϕtji)

 , (3.19)

where λ, γ, and ϕ are the variational parameters used for approximate inference of φ,

θ, and z respectively. Hence, instead of solving optimization of Eq.(3.16), the optimal

values of the variational parameters are found as follow:

λ̃∗, γ∗, ϕ∗ =argmin
λ,γ,ϕ

DKL (q(·) ∥p(·)) ,

where q(·) = q(φ, θ, z|λ, γ, ϕ),

p(·) = p(φ, θ, z|c, α, β). (3.20)

The optimal variational parameters are founded by minimizing the Kullback-Leibler

(KL) divergence DKL between the variational distribution and the true posterior p(φ, θ, z|c, α, β)

via an iterative fixed-point method (Blei et al., 2003). For online VI, mini-batch LDA

in Eq.(3.20) is executed using the small set of D collections coming in as time goes on.

Because the parameter of multinomial distribution φk is learned regardless of time in-

dex t, it should be updated for every mini-batch. For online inference of φk, we update

the variational parameters λ for the φ as follows (Hoffman et al., 2010):

λ∗ = (1− ρτ )λ
∗ + ρτ λ̃

∗. (3.21)

where, ρτ is a decaying factor decreasing over time and λ̃∗ is an optimized parameter

from the mini-batch in Eq.(3.20). The updated parameter λ∗ in Eq.(3.21) is utilized as

an initial value in the next mini-batch. This initialization allows φ to be influenced by

all collections in the past by only observing the recent collections for the mini-batch.

The (Hoffman et al., 2010) has shown that the λ∗ updated by Eq.(3.21) for online LDA
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converges to a stationary point of the variational objective function and experimentally

has verified that it could perform not worse than the offline LDA. The φ∗, θ∗, z∗ are

obtained by calculating an expectation of the approximate distribution q(·) given each

optimal parameters λ∗, γ∗, ϕ∗. For more details, refer to (Blei et al., 2003; Hoffman

et al., 2010).

After the optimization process for LDA, we get z∗tji indicating the topic assignment

of each cell as shown in Figure. 3.7-(a). This result cannot be directly used in the next

stage because the inference result of the full model (of Figure. 3.6) is the latent variable

z∗tj indicating the most typical pattern of the j-th trajectory among the K clustered

patterns. To resolve the incompatibility, we consider the mode of the inference results

of the first sub-model as the results of the original model. For example, if we have

{z∗tj1, z∗tj2, z∗tj3, ..., z∗tjNj
} and {ctj1, ctj2, ctj3, ..., ctjNj} for a j-th trajectory in t-th

collection, then we assign z∗tj as

z∗tj = Mode{z∗tji}
Ntj

i=1. (3.22)

This is a reasonable assignment since choosing the mode would give least error with

respect to maximum likelihood estimation (Duda et al., 2000).

3.2.2 Spatio-Temporal Dependency of Activities

The spatio-temporal relationship among the typical patterns is represented in Fig-

ure. 3.7-(b). From the set {z∗tj}Mj=1 obtained in the first stage inference, θ∗t per tra-

jectory collection is also obtained. Given a set of histogram {θ∗t }Dt=1, where D is the

number of collections, we partition the D observations into S sets {Θ1,Θ2, ...,ΘS}.

The objective function to minimize is the within-cluster sum of squares:

argmin
{Θn}Sn=1

S∑
n=1

∑
θ
∗
t∈Θn

∥∥∥θ∗t −mn

∥∥∥2, (3.23)
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where mn ∈ RK is the mean of vectors in a set Θn and {θ∗t} is the dimension-wise

normalized version of {θ∗t }. In the normalization, different observation frequencies in

topics are set to the same scale. To minimize the objective function, we perform K-

means clustering with K = S. Then with the clustering results, we obtain the cluster

indices {s∗t }Dt=1 for all {θ∗t }Dt=1, where s∗t ∈ {1, 2, ..., S} corresponds to cluster index

of θ∗t . The state transition matrix π also can be obtained by counting the frequency

of transition in the cluster indices. The parameter mn implies general patterns about

spatial co-occurrences of trajectory patterns, such as cars are moving horizontally (m1)

or cars are moving vertically (m2). The mn is also used to estimate a current state at

the anomaly test phase.

In the online process, only {θ∗t }Dt=1 residing inside a sliding time window is kept

so that the model adapts to the changes in time. A size of the sliding window is de-

signed to be bigger than the size of mini-batch for online-LDA in order to increase the

clustering performance. As K-means performance depends much on initialization, we

perform this multiple times with random initial conditions and use the best result. As

the K-means algorithm is very fast, it scarcely affects entire computational time of the

proposed method.

3.2.3 Velocity Learning

As in Figure. 3.7-(c), given clustered trajectory information {z∗tj} and the observations

{ctji} and {vtjif}, Gaussian models learn velocities of the trajectory. The velocities

can be modeled for each pixel in the scene, but it is a waste of memory and needs

extremely large amount of data. Assuming adjacent pixels in the scene have similar

motions, we learn these motions based on each cell. In our modeling scheme, Gaus-

sian models exist not only for each cell but also for each typical pattern. Therefore,

since multiple typical patterns may exist for the same cell, multiple Gaussian models

may exist to describe the complex motions of a single cell. An example of this case
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would be a cell in the center of an intersection. The Gaussian model learns the statis-

tical information about the position of a trajectory at f frame before. Figure. 3.3 is an

illustration of obtaining the relative vector vtjif ∈ R2 for a trajectory. Then for each

Gaussian model, we update the Gaussian parameters µ ∈ R2 and Σ ∈ R2×2 with each

trajectory.

The update equation for µ is given by:

µctjiz∗tjf
= (1− ρctjiz∗tjf )µctjiz∗tjf

+ ρctjiz∗tjfvtjif , (3.24)

where ρctjiz∗tjf is the learning rate. For the online update of the covariance matrix Σ,

we keep Z ∈ R2×2 as a second moment of v such that:

Zctjiz∗tjf
= (1− ρctjiz∗tjf )Zctjiz∗tjf

+ ρctjiz∗tjfvtjifv
T
tjif , (3.25)

and the covariance matrix Σ is calculated by

Σctjiz∗tjf
= Zctjiz∗tjf

− µtjifµ
T
tjif . (3.26)

ρckf is determined to be inversely proportional to the number of times that the model

has been updated. To avoid from the model being overly stiff, we keep lower bound

for ρckf .

3.3 Anomaly Detection

The optimization problem of Eq.(3.14) for anomaly detection is related to find the most

appropriate st′ , zt′j from the observations {ct′ji}, {vt′jif} and the distribution param-

eters obtained through learning procedure in Section 3.2. The distribution parameters

are assumed to be fixed in the anomaly detection phase. Since the computational com-

plexity for exact inference for Eq.(3.14) is heavy with complexity of O(SKM ), we

present approximate inference method. For the approximation, we make two assump-

tions: 1) the typical pattern (topic) of each trajectory is independent from others in a
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state; 2) activity regions c are more dominant to determine the typical pattern than pre-

cise velocity v. Using the first assumption, we can estimate the topic assignment zt′j

of j-th trajectory without knowing the current state st′ ; thus, zt′j is not dependent on

st′ , θt′ . The second assumption make the dependence between z and v to be ignored;

thus µ and Σ can be also ignored. Using the assumptions, a posterior of topic assign-

ment zt′j can be approximately computed by only given regional observations c and

the learned multinomial parameters φ as follows:

p(zt′j |{ct′ji}
Nj

i=1, {vt′jif}
Nt′j ,Ft′ji
i=1,j=1 , µ,Σ, φ, θ, α, β) ≈

p(zt′j |{ct′ji}
Nt′j
i=1 , φ). (3.27)

Also, the approximate posterior can be factorized into likelihood and a prior by Bayes’

rule,

p(zt′j |{ct′ji}
Nt′j
i=1 , φ) ∝ p({ct′ji}

Nt′j
i=1 |zt′j , φ)p(zt′j |φ). (3.28)

Because the likelihood p({ct′ji}
Nt′j
i=1 |zt′j , φ) follows multinomial distribution defined

as in Eq.(3.8) and the prior is uniform, we can find the proper topic assignment z∗t′j

given by:

z∗t′j = argmax
k∈{1,...,K}

[
p({ct′ji}

Nt′j
i=1 |zt′j , φk)

]
. (3.29)

Likewise, the state s∗t′ is estimated by utilizing {mn}Sn=1 obtained in Eq.(3.23) and the

K-dimensional histogram θ∗t′ calculated from the frequency of {z∗t′j}Mj=1 as follows:

s∗t′ = argmin
s∈{1,...,S}

∥θ∗t′ −ms∥ . (3.30)

As a result, the computational complexity of the posterior optimization in Eq.(3.14)

can be reduced from O(SKM ) into O(KM)+O(S) via the proposed approximation.

By using the estimated s∗t′ and {z∗t′1, z∗t′2, ..., z∗t′M}, we can assume all latent vari-

ables are given, so the observations {ct′ji} and {vt′jif} are tested based on the trained
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model in reverse:

p({ct′ji}, {vt′jif}|s∗t′ , {z∗t′j}, µ,Σ, φ, θ, α, β) ∝

p({ct′ji}, {vt′jif}, s∗t′ , {z∗t′j}, µ,Σ, φ, θ|α, β). (3.31)

The right-hand side of Eq.(3.31) can be factorized into the six pre-defined distribu-

tions Eq.(3.1-3.10) by conditional independence as in case of Eq.(3.13). In fact, the

probability of learning parameters p(φk|β), p(θ∗t′ | s∗t′ , α) do not have influence on the

Eq.(3.31). Thus, we check the remaining four conditions in Eq.(3.1,3.4,3.8,3.10) to

decide whether the current state or each trajectory is normal or not:

(a) For the current state, p(s∗t′ | s∗t′−1) defined in Eq.(3.1) is tested using the state tran-

sition matrix π and the given the previous state s∗t′−1. It is to examine the temporal

relation among the typical patterns of trajectories.

(b) For the topic assignment z∗t′j of j-th trajectory in the current scene, p(z∗t′j |ms∗
t′
) de-

fined in Eq.(3.4) is tested. Even though each trajectory is assumed to be independent of

others when the inference of Eq.(3.14) is approximated, after estimating the dominent

current state s∗t′ , an abnormal trajectory violating the current state can be detected. It

can consider the spatial relation among the typical patterns of trajectories.

(c) For a set of cells
{
ct′ji

}Nt′j
i=1 passed by j-th trajectory, p

({
ct′ji

}Nt′j
i=1 |z∗t′j , φ

)
de-

fined in Eq.(3.8) is tested given the topic assignment z∗t′j . It is to examine the overall

path of the trajectory.

(d) For a set of velocities
{
vt′jif

}Nt′j ,Ft′ji
i=1,f=1 obtained by calculating relative vectors as

described in Figure. 3.3, p
({

vt′jif
}Nt′j ,Ft′ji
i=1,f=1

∣∣∣z∗t′j ,{ct′ji}Nt′j
i=1 , µ,Σ

)
defined in Eq.(3.10)

is tested. It is to detect an trajectory with abnormal speed although its overall path is

similar to one of the typical patterns.

If the current state has low probability on the condition (a), the state of the current

frame is decided to be abnormal. Also, a trajectory that has low probability under at

least one of the conditions (b)∼(d) is determined to be abnormal; thus, a cell contain-
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ing current position of the abnormal trajectory is regarded as an abnormal region.

3.4 Summary of the Proposed Method

The proposed method uses the two-stage greedy inference to learn the proposed proba-

bilistic model. The latent variables in the proposed model in Figure. 3.6 have a knowl-

edge about the overall path of typical patterns, their spatio-temporal dependency, and

their precise velocities. Given the observations defined in the Section. 3.1, the proposed

inference method can be summarized as Algorithm 3 and Algorithm 4.

Algorithm 3 Two-stage Greedy Inference (Model Learning)

Input: {ctji}
Ntj ,M,T
i=1,j=1,t=1, {vtjif}

Ftji,Ntj ,M,T
f=1,i=1,j=1,t=1 ◃ T is the total number of trajectory

collections in the video.
Output: {st}, {φk}, {θt}, {ztji}, {µckf}, {Σckf}, {mn} for all indices.

1: for τ ← 1, . . . , T
D do ◃ D is the number of collections for the mini-batch. (In our

case, D = 10)
2: For each set of collection for the mini-batch, optimize
3: φ∗, θ∗, z∗ = argmax

φ,θ,z
p(φ, θ, z|c, α, β) in Eq.(3.16)

4: Find a topic assignment, z∗tj = Mode{z∗tji}
Ntj

i=1 by Eq.(3.22).
5: Using the given θ∗, optimize

6: argmin
{Θn}Sn=1

S∑
n=1

∑
θ
∗
t∈Θn

∥∥∥θ∗t −mn

∥∥∥2 using K-means.

7: Then we obtain {s∗t } and {mn}.
8: Using the given z∗ from Eq.(3.22) and observations c and v,
9: update Gaussian parameters by Eq.(3.24)-(3.26)

10: µctjiz∗tjf
= (1− ρctjiz∗tjf )µctjiz∗tjf

+ ρctjiz∗tjfvtjif

11: Σctjiz∗tjf
= Zctjiz∗tjf

− µtjifµ
T
tjif

12: where,
13: Zctjiz∗tjf

= (1− ρctjiz∗tjf )Zctjiz∗tjf
+ ρctjiz∗tjfvtjifv

T
tjif

14: end for
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Algorithm 4 Anomaly test

Input: Observations {ct′ji}
Ntj ,M
i=1,j=1, {vt′jif}

Ftji,Ntj ,M
f=1,i=1,j=1 and distribution parameters

{φk}, {µckf}, {Σckf}, {mn}.
Output: Indices of abnormal trajectory j ∈ {1, ...,M}.

1: for every current frame t′ do
2: for j ← 1, . . . ,M do
3: z∗t′j = argmax

k∈{1,...,K}

[
p({ct′ji}

Nt′j
i=1 |zt′j , φk)

]
4: end for
5: Calculate, θ∗t′ = histogram

(
{z∗t′j}Mj=1

)
6: s∗t′ = argmin

s∈{1,...,S}

∥∥θ∗t′ −ms

∥∥
7: Using the estimated s∗t′ and {z∗t′j}Mj=1,
8: Test p(s∗t′ | s∗t′−1) defined in Eq.(3.1)
9: for j ← 1, . . . ,M do

10: Following three probabilities are calculated and compare with the thresh-
old:

11: p(z∗t′j |ms∗
t′
) defined in Eq.(3.4)

12: p
({

ct′ji
}Nt′j
i=1 |z∗t′j , φ

)
defined in Eq.(3.8)

13: p
({

vt′jif
}Nt′j ,Ft′ji
i=1,f=1

∣∣∣z∗t′j ,{ct′ji}Nt′j
i=1 , µ,Σ

)
defined in Eq. (3.10)

14: end for
15: end for
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Chapter 4

Experiments

We have done experiments on six different videos to analyze motion patterns and to

detect abnormal activities. The MIT dataset is from (Wang et al., 2009), the QMUL

Junction dataset is from (Hospedales et al., 2009), Wide Intersection (WI) video is our

own dataset of an eight-lane road with heavy traffic, the UCSD dataset is from (UCSD,

2010), the UMN dataset is from (UMN, 2009), and the level crossing is from (Machy

et al., 2007). The first three datasets are from intersections and used to evaluate the

validities of the unsupervised modeling results of our method. In these videos, traffic

flows are governed by a trafic signal which has been modeled with state transition in

our model. The other three datasets were used to detect abnormal activities in scenes.

These videos contain abnormal activities which are hard to detect in case of using

quantized directions and conventional topic modeling methods (Wang et al., 2009;

Hospedales et al., 2009; Kuettel et al., 2010; Emonet et al., 2011; Varadarajan et al.,

2012; Wang et al., 2011).

The cell size of each video was identically fixed to 10×10 and the mini-batch size

D was fixed to 10 in the all experiments. We equally set the number of topic K to 12
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for three intersection videos and K to 3 for other videos. This is because, unlike inter-

section datasets, the latter three datasets are in narrow field-of-view situations where

moving objects have only a few typical patterns. Furthermore, we experimented with

different K on the state estimation and the prediction task to be described in Section 4.1

and 4.3, but the variation of K did not have a significant impact on the performance as

long as K was not significantly far from the actual number of typical patterns. The ex-

periments were conducted on a computer with Intel i5 2500, 3.3GHz CPU. In spite of

non-optimized C++ implementation and single core processing, the proposed method

could run on almost real-time (18-20fps), including motion extracting, model learning,

and anomaly testing tasks.

4.1 Result of Traffic Pattern Understanding

WI dataset: Modeling results for the WI dataset are shown in Figure. 4.1. The number

of state S is set to 3, and each state are represented in red, blue, and green. The latent

variable set {st}Dt=1 inferred by the Eq.(3.23) is graphically represented with the col-

ored bar on the top of the figure. The horizontal axis of the bar, namely, represents time

interval index t of the collection of trajectories. In this bar, we can find that each state

changes regularly depending on time. The change of states coincides with the traffic

lights which controls movement of vehicles and pedestrians. The state transitions are

not well learned at first, but as a result of online learning, the model well describes the

state and the transition of states as more data comes in. Our online learning correctly

updates the model as more data are observed.

The transition matrix π is shown on the right of the bar. The probability for a tran-

sition from state i to state j is πij . Higher probability is denoted as white, whereas

black denotes low probability. The matrix shows that the most probable state transi-

tion occurs in the order of 1 → 2 → 3 → 1, except staying on the same state. Each

state is represented by a mixture of co-occurring typical activity patterns. Since the
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(blue)

From
To 1 2 3

1

2

3

(green)(red)

Figure 4.1 Typical patterns and their spatio-temporal relationship for the WI video
sequence. The colored bar on the top shows state estimation. The transition matrix
is shown on the top-right, where higher probability is denoted as white. The typical
moving patterns are denoted with red and blue coloring, where objects move from red
to blue. (best viewed in color)

width of the road in WI video is wide (eight-lanes), each pattern appears per single or

double lane. Typical patterns are shown on the bottom three subfigures in Figure. 4.1.

The patterns are denoted with red and blue coloring, where objects move from red to

blue. State 1 is composed of four typical activity patterns: cars coming and going from

northwest to southeast. In state 2, cars are coming and going from northeast to south-

west, which cannot happen at the same time with state 1. State 3 is a mixture of turning

left and going-straight from southwest. During left turn signal, which is state 3, there

is no activity going from northeast to southwest. We can also find left turn signal is

very short compared to other states as shown in the bar.

In the typical patterns results in Figure 4.1, we can see that the number of typical

patterns shown the figure is only nine even though we designed the parameter K to be
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(a) (b) (c)

Figure 4.2 Omitted typical patterns to facilitate display of trajectory patterns. (best
viewed in color)

12. The omitted typical patterns are shown in Figure 4.2. The first omitted pattern has

to be assigned to the state 1, but we did not put it in the figure on the paper due to a lack

of space. The reason why the state 1 contains more patterns than other states is that the

volume of traffic going straight from bottom-right to up-left and the reverse is much

heavier than others. We also omitted the right turn patterns in the bottom right of the

scene (red box shown in Figure 4.2-(b,c)) because the right turn is always permitted;

so it should be assigned to all of the states.

Figure 4.3 and 4.4 show the process of online inference. At the first mini-batch,

since the number of observed trajectories are small, the modeling result is very crude,

and motion patterns are only straight moving from north-west to south-east and the

reverse moving. However, as time goes on and as the number of observed trajectories

increases, trajectory patterns begin to converge.

QMUL Junction dataset: QMUL Junction Dataset is the footage of objects cross-

ing an intersection which has four-lane and right turn signals. Three states are used for

this experiment. Results are shown in Figure. 4.5. In the figure, state 1 describes activ-

ities with right turn signal. State 2 includes activities corresponding to vertical move-

ments. Similarly, state 3 captures horizontal movements of cars. As shown in the col-
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(a) Results after the first mini-batch.

(b) Results after obtaining 1000 trajectory collections (100 mini-batches).

Figure 4.3 The process of online inference-(1).
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(a) Results after obtaining 2000 trajectory collections (200 mini-batches).

(b) Results after obtaining 4000 trajectory collections (400 mini-batches).

Figure 4.4 The process of online inference-(2).
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Figure 4.5 Typical patterns and their spatio-temporal relationship for the QMUL video
sequence. The colored bar on the top shows state estimation. The transition matrix
is shown on the top-right, where higher probability is denoted as white. The typical
moving patterns are denoted with red and blue coloring, where objects move from red
to blue. (best viewed in color)

ored bar and the transition matrix π, states repeatedly change in order of 1→3→2→1.

This transition shows well a change of activity controlled by the signal in the scene.

Vertical movements of cars appear when right turn signal is finished, and the horizontal

straight signal starts after the vertical straight patterns.

MIT dataset: We applied two-stage greedy learning to extract two global states

from MIT junction dataset. Figure. 4.6 shows the results. Unlike the above two datasets

(WI and QMUL videos), strict state classification caused by a traffic signal is impossi-

ble in MIT video because turning and crossing movements are not protected by traffic

signals. Hence, we set S = 2 for the MIT data so that only rough state assignments

(vertical and horizontal moving) could be done. State 1 represents vertical activities
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(blue)(red)

Figure 4.6 Typical patterns and their spatio-temporal relationship for the MIT video
sequence. The colored bar on the top shows state estimation. The typical moving pat-
terns are denoted with red and blue coloring, where objects move from red to blue.
(best viewed in color)

and state 2 describes horizontal car movements. These two states are alternately re-

peated, closely relates to the traffic rules in the dataset. In this case, however, KLT

tracker performs poorly for objects turning right, which come from bottom and go to

right, because they are occluded by the traffic light pole. Although the proposed model

can deal with general cases of broken trajectories by co-occurrence property, it still

has a limitation in the case that trajectories are always broken at the same position. For

this reason, a collection cannot often include the trajectories in both sides of the break-

ing position (e.g. fixed occlusion) at the same time because the collection just covers

short duration. Hence, it is difficult to apply co-occurrence property to the consistently

broken tracks. Performance improvement is expected if a more robust feature tracker

such as (Rodriguez et al., 2009) is used.

Variation of design parameters: As shown in the above results on the three
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(a) K=12 (b) K=8

Figure 4.7 The example of merging two typical patterns. Adjacent two patterns (each
pattern exist per lane) are merged into one typical pattern under the setting of a small
K.

datasets, the proposed method gives an interpretation of activities in the scene (e.g.

finding typical activities in unsupervised way, learning spatio-temporal relation among

the typical activities), which are essential tasks of the topic model based approach (Wang

et al., 2009; Hospedales et al., 2009; Kuettel et al., 2010; Emonet et al., 2011; Varadara-

jan et al., 2012). According to the qualitative results of our traffic pattern understand-

ing, the precise parameter design for the number of topic K and the number of state

S seems to be critical. However, even if K = 12 is not exactly the same as the actual

number of typical patterns, scene understanding performance of the proposed method

is not critically affected. For instance, when K is designed to be smaller than the

actual number of typical patterns, co-occurring similar two typical patterns are some-

times merged into one as shown in Figure 4.7. On the other hand, with a large K, as

shown in Figure 4.8, a typical pattern (e.g. go straight) can be split into multiple sub-

patterns (e.g. go straight in each lane) as long as K is not significantly far from the

actual number. However, if K is set to very small value as shown in Figure 4.9, the
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(a) K=12 (b) K=16

Figure 4.8 The example of splitting two typical patterns. One typical pattern is split
into adjacent two typical patterns (each pattern exist per lane).

proposed method cannot detect a certain anomaly. The first trajectory pattern model in

the figure is merged from left-turn and going straight, and the merged pattern is not a

normal activity which can be dangerous in the real situation. Therefore, K should be

set to a larger value than the number of inherent traffic patterns that can not be merged

into the other patterns in the scene.

Likewise, the result of variation of S is similar to the case of K. As shown in

Figure 4.10, if S is designed to bigger or smaller than the actual number of states, the

trained results of parameter {mn|n = 1, .., S} can be split or merged. Practically, the

case of S = 4 is not a problem. However, when S = 2, the proposed model cannot

detect some abnormal events related to the requirement 3 suggested in Section 1.1

because a set of trajectory patterns in the state 2 is composed of activities with different

traffic signal. In other words, setting S to too low value can cause under-modeling

and false negatives. Thus, as we set S to a larger value than the actual number of

states according to the kinds of traffic signals, the number of S does not affect the
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Figure 4.9 Trajectory patterns when K = 6 (highly under-designed).

performance much.

Although K and S are the fixed design parameters in our method, the proposed

model can adapt properly the changing environment. The example can be a reversible

lane, where cars go upwards in the morning and go downwards in the evening. In this

case, even the model with the same number of topics K can adapt to the change of

direction of the pattern. These cases do not disturb the automatic understanding of

traffic patterns, and the simulation results on this matter will be described in Section

4.2. In addition, we conducted additional quantitative evaluation by measuring the state

estimation error explained earlier and by evaluating the prediction task with different

K, which will be covered in detail in Section 4.3.

Discussion: Although the qualitative results of our traffic pattern understanding

in Figure 4.1, 4.5, and 4.6 are not so different from the results of the existing meth-

ods (Wang et al., 2009; Hospedales et al., 2009; Kuettel et al., 2010; Emonet et al.,

2011; Varadarajan et al., 2012), there are two main distinctions between the proposed

model and the existing methods. First, the proposed method incrementally takes trajec-

tory data with online learning, which is differentiated from the batch learning methods.

For example, an existing method such as (Hospedales et al., 2009) estimates state as-
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Figure 4.10 The result of parameters {mn|n = 1, .., S} according to variation of S.

signments at once using all data from beginning to end; on the other hand, our method

lengthen the state estimation bar as time goes on. Figure. 4.11 shows error rates of

state estimation in the WI dataset. In the figure, the state estimation of each trajectory

collection is compared to the ground truth, and then error rates for each set of 500

collections are displayed. Because the MCTM (Hospedales et al., 2009) takes 5000

collections of the trajectories at once, the state estimation error rate consistently re-

mains near 5%. The proposed method, on the contrary, receives input data by the 10

collections in online fashion. Therefore, the error rate is over 20% at the beginning

due to lacks of data, but soon afterwards, the error rate decreases and becomes similar

to the results of MCTM. (i.e. T = 5000 and D = 10 in terms of the notation of this

paper.) In addition, the experiments are conducted with different K, and the results of

our method shows the stability with respect to the variations of K. Our online learning

method not only enables the adaptation of scene changes but also saves memory be-
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Figure 4.11 Error rate of state estimation in the WI dataset and comparison with the
batch learning method.

cause our model does not need to keep old trajectory collections. Second, our model

utilizes a precise velocity as an observation beyond quantized direction. As the merit of

adding precise velocity to the model is difficult to display on the scene understanding

results, subsequent sections will show the effect of using velocity observations.

4.2 Applications in Anomaly Detection

This section provides anomaly detection results using the proposed model. To con-

firm that the proposed method can satisfy the five essential requirements for the traffic

pattern modeling suggested in Section 1.1, we will show the example of anomaly de-

tection results according to each requirement.

Requirement 1: The first requirement is that the entire region in the surveillance

scene should be categorized into semantic regions representing typical activities (e.g.

go straight upward, turn right, walk across the street, etc.). This makes it possible

to detect intrusion of restricted areas, jaywalking, lane violation, and illegal U-turn.

Detected abnormal events related to the first requirement are shown in Figure. 4.12-(a-

d). Figure. 4.12-(a) illustrates a detection of an illegal U-turn action which is captured

from the MIT dataset. In Figure. 4.12-(b), two jaywalking activities (one is going by
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(c)

(b)

(a)

(d)

Requirement 1

Figure 4.12 Examples of anomaly detections related to the first requirement (semantic
regions of normal pattern). (a) illegal U-turn; (b) jaywalking; (c) intrusion of restricted
areas; (d) driving on the wrong direction. (best viewed in color)
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(c)

(b)

(a)

(d)

Requirement 2

Figure 4.13 Examples of anomaly detections related to the second requirement (Speed
information). (a,b) over speed on a pavement; (c) going on the opposite direction; (d)
a car stops on a railway. (best viewed in color)

bicycle and the other is on walk) are detected. Figure. 4.12-(c) shows intrusion of

restricted areas (the lawn). Also, motorbike driving on the wrong direction is detected

in Figure. 4.12-(d) captured from the WI dataset. Our method can detect these events

as abnormal because the regions of these abnormal activities are not matched with the

regions of typical trajectory patterns represented by the trained parameter φ.

Requirement 2: The second requirement is that the model should include not only

direction information but also precise speed information for each activity regions. This

gives the model the discrimination ability to detect pedestrians walking along the path

of vehicles, bikes running in pedestrian road, cars driving with over speed, cars stop-
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ping in a railroad crossing, and so on. Abnormal events violating the normal speed

patterns from the second requirement are shown in Figure. 4.13-(a-d). Since abnormal

activities caused by violating speed rules hardly occur in intersection datasets, we ad-

ditionally conducted anomaly test for UCSD and level crossing datasets to confirm the

performance of our model. These datasets contain abnormal activities that are difficult

to detect when using methods based on the conventional topic models with quantized

directions (e.g. over-speeding objects, cars stopping on a railroad crossing for a long

time, and so on). UCSD dataset captures people, cars, and bicycles showing various

velocity patterns. The scene is usually crowded with pedestrians, but bikes and cars

drive on pavements rarely. Our method shows good performances by the proposed

model with the precise velocity observations. Figure. 4.13-(a-b) illustrates detection

of a bike and a car driving on pavement. Since these objects have much faster veloc-

ity than other normal pedestrians, they are detected as abnormal. On the other hand,

because the quantized directions have no information about speed, the methods based

on the quantized direction feature cannot detect an object moving with over-speed. In

Figure. 4.12-(c), an ambulance uses improper lanes and goes on the opposite direction.

The result in Figure. 4.13-(d) captured form level crossing dataset shows detection of a

potentially dangerous region, where a car stops on a railway for a long time. Note that

other cars stopping before railroad are determined as normal. On the contrary, the con-

ventional topic models have difficulty in understanding long-term motion of a single

object because they are based on local motions extracted between two frames.

For further analysis of the strength of the velocity observations, we look into the

likelihood of trajectories in the scene of Figure. 4.13-(b) from the UCSD dataset. In

this example, we examine six trajectories (two abnormal trajectories and four normal

trajectories), and each trajectory is depicted in a color different from others. The first

trajectory (blue) and the second trajectory (green) are extracted from a car going from

top to bottom, which are faster than usual motions of pedestrians. The third and fourth
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Figure 4.14 Comparison of motion likelihoods between the proposed model (actual ve-
locity of trajectories) and MCTM (quantized direction) (Hospedales et al., 2009). The
first row (result of the proposed model): actual trajectories in the UCSD dataset (left)
and motion likelihood of each trajectory (right). The second row (result of MCTM):
quantized direction converted from each trajectory denoted with different color (left)
and their motion likelihood (right). (best viewed in color)
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trajectories (red and sky) are extracted from pedestrians walking from bottom to top,

and the fifth and sixth trajectories (purple and yellow) are from a pedestrian walking

from top to bottom. In case of the proposed method, which utilizes actual velocities of

the trajectories and trains them with Gaussian models, the log-likelihood of trajectory 1

and 2 is lower than that of another trajectories as shown in the first row of Figure. 4.14.

On the other hand, other topic model based methods such as MCTM (Hospedales

et al., 2009) covert the actual motions between two frames into quantized directions at

a grid position. Each quantized direction is depicted as one of the four directions (up,

down, right, left) at the grid position as shown in left-bottom of Figure. 4.14, where

the same colored arrows denote that they are extracted from the same object. This

motion representation method, however, cannot distinguish over-speed from walking

speed. Therefore, all trajectories have similar likelihoods as shown in the lower graph

of Figure. 4.14 because overall paths of the trajectories without velocity information

are likely to occur in the scene.

Requirement 3: The third requirment is that spatio-temporal relationship among

typical activity patterns should be considered. The spatial relation modeling among

trajectory patterns can deal with a potential risk of car crash. The temporal order of

activities such as governed by traffic signals can detect a trouble of a traffic control

system. Since the abnormal event related to this requirement is very dangerous, it is

hard to obtain a sufficient quantity of actual video datasets. Thus, we made video an-

imation which could simulate the trouble of a traffic control system and a car crash

event, and we also synthesized and edited the actual videos to have such an abnormal

event. The detected abnormal events related to the third requirement using the actual

and synthetic video are shown in Figure. 4.15-(a-d). Figure. 4.15-(a) shows a vehicle

ignoring the traffic signal and turning right, causing an almost car crash. Even though

this vehicle would be considered normal in state 2 (as Figure. 4.5), it is detected as

abnormal since the activity occurs when state 3 is dominant. In the animation of Fig-
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(b)

(a)

(d)

Requirement 3

Figure 4.15 Examples of anomaly detections related to the third requirement (spatial
interaction of trajectory patterns). (best viewed in color)
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State 1

State 2

State 3

Figure 4.16 Scenario of a traffic animation to simulate a trouble of a traffic control
system.. (best viewed in color)

ure 4.15-(b), the car moving from right to left is detected as abnormal because the

traffic signal is for the vertical movements. This moving can be normal when the other

cars moving upward and downward do not exist under the traffic signal for horizon-

tal movement. Our method can distinguish whether it is normal or not by considering

co-occurring trajectory patterns. Likewise, in Figure 4.15-(c), a synthesized car which

goes across many cars moving rightward is detected abnormal because the majority of

cars are moving upward and downward according to the traffic signal. Figure. 4.15-(d)

shows examples of abnormal detections in a synthesized video where various trajec-

tory patterns arising in all traffic signals occurs factitiously at the same time.

In addition, in order to evaluate an abnormal event for a trouble of a traffic control

system, we simulate a traffic situation as shown in Figure 4.16. In the simulation, we

made a video having three states (vertical movement, horizontal movement, and left

turn), and these states moves in a cycle (1 → 3 → 2 → 1) shown in the green arrows

in the figure. To simulate a trouble of a traffic control system, the cycle is changed to

be reverse at the last part of the video (i.e. state 1 changes to state 2 instead of the
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Figure 4.17 State transition probability owing to the trouble of traffic signal. (best
viewed in color)

correct state 3). As shown in Figure 4.17, the state transition probability drops rapidly

when a trouble occurs in the traffic signal. The estimated state sequence of the video

is graphically depicted with the colored bars on the top of the figure (state 1 is blue,

state 2 is greed, and state 3 is red). The red arrows indicate the moment in a trouble

situation of traffic signal, and the graph in the bottom of the figure shows that the state

transition probability decreases dramatically at the trouble moment.

Requirement 4: The fourth requirment is that the proposed method should be

(c)

(b)

(a)

(d)

Requirement 4

Figure 4.18 Tracking failure case of the object based multi-target tracking method in a
crowed scene. (best viewed in color)
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Requirement 4

Figure 4.19 Examples of anomaly detections related to the fourth requirement (robust
to crowded scenes). (best viewed in color)

robust to crowded scenes. As shown in Figure 4.18, it is hard to extract motions of

individual objects in the crowded scenes. In this video, a bicycle is moving faster

than the other pedestrian crowds, but the conventional object-based multi-tracking

method cannot extract individual motion of the bicycle due to frequent occlusions.

However, because our method extracts KLT trajectories based on feature points rather

than object-level, motions of moving objects are extracted relatively easier even in the

occluded situation. Hence, the proposed method can detect abnormal events related to

the fourth requirement as shown in Figure. 4.19-(a-b). Figure. 4.19-(a) is a abnormal

detection result of the same case shown in Figure 4.18, which show that our method

can detect a fast bicycle in spite of the crowded situation. Figure. 4.19-(b) shows a ab-

normal detection result for the UMN dataset. In the video, people are loitering slowly

in a square, and then suddenly scatter. The proposed method detects the event well.

Requirement 5: The fifth requirement is that the model should be able to adapt

itself to temporal changes of the scene (e.g. reversible lane, traffic volume changes).

Since the abnormal event related to the fifth requirement is very dangerous and proper

dataset for a reversible lane does not exist, we conducted a simulation of the reversible

lane using a video animation as shown in Figure 4.20. In the figure, the center lane is
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(a) rightward (b) leftward

Figure 4.20 Video animation of a reversible lane.

reversible: cars can move rightward or leftward depending on the time duration. The

scenario of this simulation is that cars in the reversible lane go to rightward at the first,

and then fifteen minutes later, cars in the reversible lane go to leftward. At the last part

of the video, a car goes against the correct direction of the reversible lane (abnormal

event). The result of the simulation is shown in Figure 4.21. Figure 4.21-(a) shows

an alarm right at the moment when the reversible lane is changed from rightward to

leftward. However, after a while, the model adapts the leftward moving pattern, so

cars are not detected as abnormal anymore as shown in Figure 4.21-(b). At the last

part of the video, a car going against the rule of the reversible lane (moving rightward)

is decided to be abnormal as shown in Figure 4.21-(c). For further analysis for an

adaptation of the model in this simulation, Figure 4.22 shows a process of trajectory

pattern adaptation.
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(c)

(b)

(a)

Requirement 5

Figure 4.21 Examples of anomaly detections related to the fifth requirement (online
adaptation). (best viewed in color)

Topic 1 Topic 4Topic 3Topic 2 Topic 5

Requirement 5

Reversible lane direction change

Figure 4.22 Process of trajectory pattern adaptation. The typical moving patterns are
denoted with red and blue coloring, where objects move from red to blue. (best viewed
in color)
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Figure 4.23 Comparison of average accuracy on a prediction. X-axis indicates number
of topics denoted as K in our paper. Exceptionally, in case of the GMM based methods,
X-axis indicates the number of Gaussian components.

4.3 Prediction Task

The number of abnormal activities in the actual traffic video datasets is not enough

to give meaningful quantitative results. This is because the model would prefer over-

fitting to only a few events, harming the credibility. Therefore, in order to quantitatively

compare the performance of our method against other algorithms, we conducted ac-

tivity prediction tasks presented in (Emonet et al., 2011). The prediction task can test

the whole video sequence although abnormal activities are not happened in the video.

For this reason, the prediction tasks can be used for a general evaluation of the model’s

plausibility. For the task, future observations are estimated using given past observa-

tions. For example, if the upward motions are observed in the bottom of the scene and

the right-turn pattern is learned at the position, future observations (maybe rightward

motions in the right-side of the scene) can be estimated based on the trained model.

The estimated future observations are represented as a probability histogram whose

summation must be 1, and then the similarities to the actual observations are measured

using Bhattacharyya coefficient.
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MIT dataset was used for the comparison and the existing methods (Emonet et al.,

2011; Hospedales et al., 2009) using 29 past time instances (seconds) to estimate the

observations of the 30th time instances. Unlike the existing topic models (Emonet

et al., 2011; Hospedales et al., 2009), whose observations are represented by quan-

tized local motions between only two frames, the proposed model utilizes trajectories

as observations. This type of observation allows our method to do the prediction task

with trajectories from the current frame (not observations obtained from 29 past time

instances) and the trained model. Also we validated the prediction accuracy on the dif-

ferent design parameter K, representing the number of topics. Comparison results are

shown in Figure. 4.23. The figure shows that the proposed method outperforms Tem-

poral Motif (Emonet et al., 2011) and MCTM (Hospedales et al., 2009) even though we

conduct the prediction task with observations only in the current frame. This result is

caused by the fact that Temporal Motif (Emonet et al., 2011) and MCTM (Hospedales

et al., 2009) utilize quantized local motions, but our model mines actual velocity of

trajectories. This provides the validity of the use of accurate velocity observations,

allowing more plausible scene model and giving precise predictions.

We also provide the result of comparison with GMM-based trajectory modeling

(Basharat et al., 2008), whose trajectory representation method is similar to ours (i.e.

it also uses actual velocity observations). The reason why the proposed method is

more accurate than (Basharat et al., 2008) is that we have inter-related multi-Gaussian

models based on typical patterns (topics). For example, in the center of intersection,

the GMM would estimate a future position of the trajectory based on only the previous

path. Thus, in some cases, the GMM model may have difficulty in predicting whether

an object will go straight or turn right. On the contrary, the prediction of our method

(including other topic model based methods) is based on not only previous path but

also mutual dependence among typical activities. Therefore, the proposed method can

give a confident prediction whether an object will go straight or turn right.
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(a) (c) (d)(b)

(e) (g) (h)(f)

Figure 4.24 Qualitative comparison of proposed method and sampling based learning.
The first row: Examples of typical patterns learned by the two-stage learning. The
second row: Examples of typical patterns learned by online Gibbs sampling (Canini
et al., 2009).

4.4 Comparison with Sampling

Two-stage inference for the proposed model is used to overcome the shortcomings of

sampling based inference mentioned in Section 3.2. To conduct comparison with a

sampling, we adopt the incremental Gibbs sampler for topic model, which is proposed

in (Canini et al., 2009). In this work, incremental update is enabled by occasionally

resampling topic variables and rejuvenating old topic assignments by considering new

data. Figure. 4.24 shows the qualitative comparison result of the proposed method and

the online Gibbs sampling method on the data given incrementally. Activity patterns

in the figure are selected from overall typical patterns discovered by each learning

method.

Figure. 4.24-(a-d) are the result of the proposed method and Figure. 4.24-(e-f)

are results optimized by incremental Gibbs sampler. The activities in Figure. 4.24-

(a,e) represent the left turn, going from southwest to northwest. Comparing to the

result inferred by the proposed method, the result of incremental Gibbs sampler in

Figure. 4.24-(e) is not fully separated from other activities going southwest to north-
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Figure 4.25 Quantitative comparison with online Gibbs Sampling (Canini et al., 2009)
on the error rates of the state estimation.

east. Also, another result of Gibbs sampling in Figure. 4.24-(f) does not model the

pattern as clearly as in (b). These results show that sampling based method does not

guarantee good performance in case of distributed processing for online learning.

For the quantitative comparison, the state estimation is performed by online Gibbs

sampling Canini et al. (2009), then it is compared with the ground truth (in the same

way of Figure. 4.11). As shown in Figure. 4.25, error rates of each method for each

set of 500 collections are displayed. Because the two methods are based on the online

inference, the error rate is high at beginning, and then decreases gradually. The error

rates of the proposed method are lower than that of online Gibbs sampling over the en-

tire range. Consequently, the proposed method, though it is an approximate inference,

gives better performance than the online Gibbs sampling method.
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Chapter 5

Conculsion

5.1 Concluding Remarks

This thesis introduced a new method for analyzing a traffic patterns in a scene and

detecting anomalies. By investigation on the previous studies we identified the es-

sential requirements for the traffic pattern modeling in actual environments. The pro-

posed method met those requirements by modeling the scene with a graphical infer-

ence model which uses the point trajectories of the scene considering the overall path,

their spatio-temporal dependency, and their precise velocities. The problem of high di-

mensionality of the proposed model was relaxed with the proposed two-stage greedy

inference, allowing the solutions to be obtained efficiently. This approximate infer-

ence strategy is a meaningful attempt to find an alternative outperforming CGS which

is conventionally used to learn topic models for scene understanding.

As shown in the experiments, the effects of the proposed approach are summa-

rized as follows. The scene understanding results showed that the proposed method

could automatically discover not only typical patterns but also spatio-temporal rela-
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tions among them. Also, the state estimation results of the proposed online inference

maintained a comparable performance to the batch learning method. In the experiment

on the likelihood evolvement of a trajectory over a time, the proposed method was

able to distinguish the speed of moving objects, which was impossible with the quan-

tized directions. Using the proposed velocity model with regard to typical patterns, our

method also gave outstanding accuracy on the prediction task. On the comparison to

the online sampling method, the two-stage online inference guaranteed more robust

results than the sampling based learning.

5.2 Future Works

The sub-model optimization strategy presented in Section 3.2 introduced the several

independence assumptions for online inference. Although we could not find miss-

detection cases caused by the assumptions in our experiments of the six video datasets,

the miss-detection cases might occur when a rigorous validation with more various

video is performed. As for the future work, we will validate our sub-model optimiza-

tion strategy and pursue a relaxation of the assumptions.

Another future work can be an issue to expand our model into a non-parametric

model. If the parameters K and S in our model are estimated automatically, the per-

formance of adjusting to the changing environment would be enhanced. However, in

order to estimate S and K automatically, model selection problem should be included

in the proposed inference framework, which is not straightforward. Although simple

heuristics can be applied to the model update, it might harm the convergence of the

online learning. Due to the characteristics of surveillance systems, a large amount of

data is continuously obtained; thus, the long-time stability for 24 hours and 7 day is

very important. For this reason, it is essential to prove the stability and convergence of

the online learning method that determines K and S automatically. This problem can

be a good topic for the future works.
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초록

본논문은 CCTV의영상감시상황에서교통패턴분석과비정상탐지를하는데

있어서기존방법들이갖는한계점을극복하기위한새로운온라인추론모델을

제안하였다. 교통 패턴 분석을 위한 추론 모델은 영상 감시 상황에서 움직이는

물체에 의한 교통의 흐름을 사용자의 의한 사전정보 없이 자동으로 분석해야

한다. 추론 모델을 제안하기에 앞서, 움직임 패턴 분석에 관한 기존 연구들을

조사하고다양한종류의영상감시상황을분석함으로써교통패턴을분석하는

알고리즘이가져야할 5가지필수요건을제안하였다.첫번째조건은각움직임

패턴의 영역탐지, 두 번째 조건은 영역내의 미세한 속도 모델, 세 번째 조건은

궤적 패턴간의 시공간적 관계 모델링, 네 번째 조건은 혼잡상황에서의 강인성,

마지막조건은알고리즘의온라인학습및실시간처리이다.

이러한 다섯 가지 요구조건을 충족시키기 위하여 자연어 처리에 활용되는

토픽모델을변형해교통흐름분석에적합하도록새로운모델을제안하였다.기

존의토픽모델은미세한속도패턴을분석하지못한다는단점을개선하기위해

가우시안모델을함께결합하여궤적패턴이특정위치에서어떠한속도분포를

가지는지를모델링하였다.또한교통신호에따른차들의움직임의거시적인변

화를 모델링 하기 위해 히든 마르코프 모델 (HMM)을 계층적으로 추론모델의

최상단에 결합하여 교통 신호가 바뀜에 따라 궤적 패턴의 혼합이 어떻게 편하

는지를 전이확률 형태로 모델링하였다. 한편 이러한 복잡한 모델을 온라인 및

실시간으로학습하고테스트하기위해기존연구에서널리사용되지만온라인

학습을 할 경우 성능이 많이 저하되는 깁스 샘플링 (Gibbs sampling) 방법을 배

제하고, 온라인 학습을 할 경우에도 비교적 강인한 variational inference 방법을

활용해 단계별로 근사 추론을 하는 이단 탐욕 추론 (two-stage greedy inference)

방법을 제안함으로써 모델 학습을 위한 검색 공간을 줄임으로써 모델을 학습
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하기 위한 연산량을 절약했다. 그리고 근사 추론을 위한 각 단계에서는 온라인

학습과 오프라인 학습의 성능차이가 없는 방법을 활용해 근사로 인한 정확도

손실을최소화하고자했다.본논문에서는제안한알고리즘의성능을평가하기

위해서 다양한 동영상에서 실험을 진행하였으며, 교통 패턴 분석, 비정상 행동

탐지의 성능이 처음에 제안했던 교통패턴분석 시스템이 가져야할 5가지 필수

조건을만족시킬뿐만아니라,기존방법에비해우수한성능을보임을정성적,

정량적으로분석함으로써제안한모델의유효성및타당성을입증하였다.

주요어:영상감시,궤적모델,비정상행동탐지,토픽모델

학번: 2011-30975
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