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Abstract

New Low-Complexity SLM
Schemes and Clipping Noise
Cancellation for OFDM Systems

Kee-Hoon Kim
Department of EE and CS
The Graduate School
Seoul National University

In this dissertation, several research results for the peak-to-average
power ratio (PAPR) reduction schemes for orthogonal frequency division
multiplexing (OFDM) systems are discussed. First, the basic principle and
implementation of the OFDM systems are introduced, where high PAPR
of OFDM signal is one of main drawbacks of OFDM systems. Thus, many
PAPR reduction schemes to solve this problem have been studied such as
clipping, selected mapping (SLM), partial transmit sequence (PTS), and
tone reservation.

In the first part of this dissertation, a low-complexity SLM scheme is
proposed, where the proposed SLM scheme generates alternative OFDM
signal sequences by cyclically shifting the connections in each subblock
at an intermediate stage of inverse fast Fourier transform (IFFT). Com-
pared with the conventional SLM scheme, the proposed SLM scheme
achieves similar PAPR reduction performance with much lower compu-
tational complexity and no bit error rate (BER) degradation. The per-

formance of the proposed SLM scheme is analyzed mathematically and



verified through numerical analysis. Also, it is shown that the proposed
SLM scheme has the lowest computational complexity among the exist-
ing low-complexity SLM schemes exploiting the signals at an intermediate
stage of IFFT.

In the second part of this dissertation, an efficient selection (ES) method
of the OFDM signal sequence with the minimum PAPR among many
alternative OFDM signal sequences is proposed, which can be used for
various SLM schemes. The proposed ES method efficiently generates each
component of alternative OFDM signal by utilizing the structure of IFFT
and calculates its power, and such generation procedure is interrupted
if the calculated power is larger than the given threshold. By using the
proposed ES method, the average computational complexity of consid-
ered SLM schemes is substantially reduced without degradation of PAPR
reduction performance, which is confirmed by analytical and numerical
results.

In the third part of this dissertation, a clipping noise cancellation
scheme using compressed sensing (CS) technique is proposed for OFDM
systems. The proposed scheme does not need reserved tones or pilot tones,
which is different from the previous works using CS technique. Instead,
observations of the clipping noise in data tones are exploited, which leads
to no loss of data rate. Also, in contrast with the previous works, the pro-
posed scheme selectively exploits the reliable observations of the clipping
noise instead of using whole observations, which results in minimizing the

bad influence of channel noise. From the selected reliable observations,

i
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the clipping noise in time domain is reconstructed and cancelled by using
CS technique. Simulation results show that the proposed scheme performs
well compared to other conventional clipping noise cancellation schemes

and shows the best performance in the severely clipped cases.

Keywords: Clipping, compressed sensing (CS), orthogonal frequency di-
vision multiplexing (OFDM), peak-to-average power ratio (PAPR), se-
lected mapping (SLM).

Student ID: 2010-30210
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Chapter 1. Introduction

1.1. Background

Orthogonal frequency division multiplexing (OFDM) is a multicarrier
modulation method utilizing the orthogonality of subcarriers. OFDM has
been adopted as a standard modulation method in several wireless commu-
nication systems such as digital audio broadcasting (DAB), digital video
broadcasting (DVB), IEEE 802.11 wireless local area network (WLAN),
and IEEE 802.16 wireless metropolitan area network (WMAN) [I].

OFDM is based on the frequency-division multiplexing (FDM), which
is the method to transmit multiple data streams over a common spec-
trum. Each data stream is modulated onto multiple carriers within the
bandwidth of the spectrum. In other words, the serial data stream is split
into multiple low-rate data streams, and each is modulated onto a differ-
ent subcarrier, where the subcarriers are orthogonal to each other. Then,
all the modulated subcarriers are linearly superposed and transmitted.
Weinstein devised the parallel data transmission system by using inverse
discrete Fourier transform (IDFT), and then, it can be effectively imple-
mented by inverse fast Fourier transform (IFFT) in 1971 [2]. Guard time
also known as guard interval was proposed by cyclically extending the

OFDM signal in 1980 [3]. This can remove inter-symbol interference (IST)



and transform the linear convolution of OFDM signal and channel impulse
response to cyclic convolution.

The parallel transmission of OFDM increases the symbol duration and
it makes frequency selective fading channel to several flat fading chan-
nels. Therefore, OFDM has the immunity from frequency selective fading
channel. Thus, in the OFDM system, the complex equalizer is not re-
quired because the one-tap equalizer sufficiently compensates the signal
distortion by fading channel. Also, OFDM has an advantage of the spec-
tral efficiency due to subcarrier orthogonality. OFDM subchannels whose
spectra satisfy orthogonality can be overlapped each other, which can save
the spectral efficiency up to 50% compared to FDM using unoverlapped
spectrum. With excellent spectral efficiency, OFDM has become worthy
in the wireless communication area.

Similar to other multicarrier schemes, OFDM has a high peak-to-average
power ratio (PAPR) problem, which makes its straightforward implemen-
tation quite costly. High PAPR of OFDM signals leads to significant in-
band distortion and out-of-band radiation when OFDM signals passes
through nonlinear devices such as high power amplifier (HPA) [4]. Since
linear range of HPA is limited, peak power of OFDM signals in time do-
main should be reduced. Thus, it is highly desirable to reduce the PAPR
of OFDM signals [5]-[6].

Over the last decades, various techniques to reduce the PAPR of OFDM
signals have been proposed such as clipping [7]-[9], coding [10]-[12], ac-

tive constellation extension (ACE) [13|, tone reservation (TR) [14], [15],



partial transmit sequence (PTS) [16], constellation shaping [17], and se-
lected mapping (SLM) [18], [19]. Clipping is the simplest way to reduce
the PAPR but it causes in-band distortion and bit error rate (BER) degra-
dation. Coding has good PAPR reduction performance but it causes data
rate loss. ACE extends the constellation on specific areas after a nonlinear
process to reduce the PAPR, and it causes transmission power increase.
TR reserves some subcarriers to reduce the PAPR, and it causes data
rate loss. Constellation shaping is an approach to reduce the PAPR by in-
creasing the constellation size of each subcarrier with keeping the average
constellation power, but in many cases the minimum Euclidean distance is
reduced and BER degradation occurs. SLM and PTS schemes are widely
studied because they show good PAPR reduction performance without
BER degradation. However, they require many IFFTs, which causes high
computational complexity and needs to transmit the side information (SI)
delivering which phase rotation vector was used. Also, SLM and PTS
schemes require extra demodulation process at the receiver.

It is well known that the SLM scheme is more advantageous than the
PTS scheme if the amount of SI is limited. However, the computational
complexity of the SLM scheme is larger than that of the PTS scheme.
Therefore, many modified SLM schemes with low-complexity have been
proposed [20]-]27], but they have several shortcomings such as degradation
of PAPR reduction performance or BER degradation compared to the con-
ventional SLM scheme using the same number of alternative OFDM signal

sequences. The low-complexity PAPR reduction algorithm in [22] causes
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degradation of PAPR reduction performance because the used phase ro-
tation vectors have periodicity, and thus they are highly correlated. The
scheme in [23] shows BER degradation because it requires more pilot sym-
bols and thus more power. The scheme in [24] shows somewhat degraded
PAPR reduction performance because some phase rotation vectors are
made by linear combination of other phase rotation vectors, which gener-

ates highly correlated phase rotation vectors.

1.2. Overview of Dissertation

The rest of this dissertation is organized as follows. In Chapter
OFDM system model is presented and PAPR of OFDM signals is de-
fined. In Chapter [3 several PAPR reduction schemes for OFDM systems
and their low-complexity algorithms are briefly explained.

In Chapter 4] a new low-complexity SLM scheme is proposed, which
utilizes the signals at an intermediate stage of IFFT similar to [25] and
[26]. However, the proposed scheme generates each alternative OFDM sig-
nal sequence by cyclically shifting the connections in each subblock at an
intermediate stage of IFFT. It can also be equivalently viewed as multiply-
ing the corresponding phase rotation vectors which have lower correlations
than those of [25] and [26], to the input symbol sequence. Consequently,
the PAPR reduction performance of the proposed SLM scheme can ap-
proach to that of the conventional SLM scheme with lower computational
complexity compared to the schemes in [25] and [26]. Also, the proposed

SLM scheme has no BER degradation compared to the conventional SLM



scheme.

In Chapter |5, an efficient selection (ES) method of the OFDM signal
sequence with the minimum PAPR in the conventional SLM scheme is
proposed, which can be applied to almost all of the existing SLM schemes
including the low-complexity SLM schemes in [25], [22], [27]. By apply-
ing the proposed ES method, various SLM schemes are implemented with
lower computational complexity, and the simulation results confirm that
the ES method substantially reduces the average computational complex-
ity of various SLM schemes. Note that the proposed ES method does not
degrade the PAPR reduction performance of SLM schemes.

In Chapter [6] we propose a new clipping noise cancellation scheme us-
ing CS, which selectively uses observations of data tones. That is, reliable
observations contaminated by less channel noise are selected, and then
the clipping noise is reconstructed from these compressed observations by
using a CS reconstruction algorithm. The proposed scheme does not re-
serve tones and instead exploits compressed observations of the underlying
clipping noise in data tones, which leads to no data rate loss. The simu-
lation results in Section 6.3 show that the proposed scheme mitigates the
clipping noise well over both an additive white Gaussian noise (AWGN)
channel and a Rayleigh fading channel.

Finally, some concluding remarks are given in Chapter [7] where the

proposed techniques in the dissertation are reviewed.



Chapter 2. OFDM Systems

In a digital communication systems, a symbol duration should be much
larger than the delay spread of a channel in order to remove the ISI of
the transmission system. But, it limits the possible data rate for a single
carrier modulation scheme. To overcome this limitation, multicarrier mod-
ulation scheme splits the high-rate data stream into N substream with low
data rate and transmits these substream data on N adjacent subcarriers.
Since the data symbols are allocated in parallel over the frequency domain,
the total bandwidth to transmit these symbols is not changed. Instead, a
symbol duration increases by a factor of NV and thus, transmission with
N times higher data rate for a given delay spread is possible.

As one of practical multicarrier modulation schemes, OFDM uses or-
thogonal waveforms to modulate the substreams. In OFDM, the spectra
of subcarriers are overlapped in contrast to the conventional FDM because
subcarriers are orthogonal to each other. Each subcarrier can be separated
at the demodulator without interference if orthogonality of subcarriers is
guaranteed. The spectral overlapping among subcarriers provides better
spectral efficiency.

Although OFDM provides high-rate data transmission and spectral effi-
ciency, a main drawback of OFDM is the high PAPR. High PAPR implies

that HPA must have an inefficiently large linear range, which leads to



use of very expensive HPA. Therefore, PAPR of OFDM signals should be
reduced.

This chapter is organized as follows. First, in Section [2.1] we describe
the mathematical representation of OFDM system. Second, PAPR is de-
fined in the OFDM system and some related facts are described in Sec-

tion

2.1. OFDM System Model

OFDM converts a high-rate data stream into many low-rate data streams
by dividing wideband spectrum. That is, the high-rate data stream is
split into IV low-rate data streams, modulated using N subcarriers, and
transmitted over the channel. Each low-rate data stream is loaded on the
subcarrier and all the N subcarriers are summed for transmission. Let
X = [X(0),X(1),..., X(N — 1)] be the input symbol sequence, where
[]7 denotes transpose. Without loss of generality, X (k)’s are assumed
to be statistically independent and identically distributed (i.i.d.) random
variables with zero mean. Then, the continuous-time baseband OFDM

signal is represented as

1 = <j27rkt>
z(t) = — X(k)ex ,  0<t<T (2.1)
N ,;0 PATT

where T is the OFDM signal duration.
Let Aty = T/LN be a sampling interval, where L is an oversampling

rate. Then the discrete-time OFDM signal component sampled at time



nAty, can be expressed as
zp(n) = x(nAtg), n=0,1,..,LN —1

and we denote x;, = [z1,(0), 1 (1), ...,2 (N — 1)]T.

For Nyquist sampling case L = 1, let x; = x = [2(0), z(1), ..., z(N—-1)]T
be the OFDM signal sequence corresponding to X. The relation between
the input symbol sequence X in frequency domain and the OFDM signal

sequence X in time domain can be expressed by IFFT as
x = IFFTx(X)

where FFTy(:) and IFFTn(-) denote N-point fast Fourier transform
(FFT) and N-point IFFT, respectively.

That is, an OFDM signal component z:(n) is expressed as
| N
x(n) = —— X (k)ywkn 2.2
= 5 XX 22)

where W = ¢ 9% and n € Zn = {0,1,2,--- ,N — 1}. Note that, an
L-times oversampled OFDM signal sequence xj, can also be obtained by

IFFT after padding X with (L — 1)N zeros.

2.2. Peak-to-Average Power Ratio

Since OFDM signals are generated by summing N sinusoidal waves,
the peak power of OFDM signals can be very large compared to its av-

erage power. When it passes through nonlinear device such as HPA| high



peak power of OFDM signals leads to both in-band distortion and out-
of-band radiation. The in-band distortion degrades BER and the out-of-
band radiation interferes with the signals in the adjacent frequency bands.

Therefore, it is desirable to reduce peak power of OFDM signals.

2.2.1. Definition of PAPR

The PAPR is the ratio of the maximum instantaneous power divided
by the average power of the OFDM signal. That is, the PAPR of the

oversampled OFDM signal sequence xy, is defined as

maxXo<p<,N—1|ZL(n) ?
E{jzr(n)?}

PAPR(xz) =

where E{-} is the ensemble average operator.

2.2.2. Distribution of PAPR

For large N, z(n) becomes a complex Gaussian random variable by cen-
tral limit theorem. Thus the envelope of z(n), |x(n)|, becomes a Rayleigh
distributed random variable. Also, if the N input symbols are statistically
independent, the output of IFFT, N OFDM signal components are also
statistically independent. Therefore, the probability that the magnitude

of all N OFDM samples are smaller than certain threshold ~q is given as

Pr ( max |z(n)| < ’yo> = Pr(jz(n)| < v0)N = (1 - efﬁyg)N. (2.3)

0<n<N-1

From ({2.3)), the probability that at least one magnitude of the N OFDM

signal components exceeds a certain magnitude threshold ~g, that is,



Pr(PAPR(x) > 79), can be approximated as
Pr(PAPR(x) > 7o) = 1 — (1 — e %)V, (2.4)

If we consider the continuous time OFDM signals, the distribution in
(2.4) becomes a different form. In [30], the empirical approximation of the

PAPR distribution for continuous case was suggested as
Pr(PAPR > 7) = 1 — (1 — e )N (2.5)

where Nee proposed that (2.5) is the most agreeable with continuous time
result when o = 2.8. Also, by mathematical analysis, Ochiai derived the

PAPR distribution of the continuous time OFDM signal z(t) as [31]

Pr(PAPR > ) ~ 1 — exp < - \/§N706_75>. (2.6)

10




Chapter 3. PAPR Reduction Schemes

It has been known that the PAPR problem is an important issue in OFDM
systems. Thus, several PAPR reduction schemes have been proposed such
as clipping, SLM, PTS, TR, and so on. Each scheme has its own character-
istic and trade-off between the PAPR reduction and other performances
such as BER, complexity, or data rate loss.

In this chapter, we review the conventional PAPR reduction schemes
and their advantages and disadvantages in terms of PAPR reduction ca-
pability, computational complexity, BER degradation, data rate loss, and
power increase, etc.

This chapter is organized as follows. First, in Section [3.1] we describe
the mathematical procedure of clipping scheme. Second, SLM scheme is
described in Section In Sections [3.3] and several low-complexity

SLM schemes and TR scheme are introduced, respectively.
3.1. Clipping

3.1.1. Clipping at Transmitter

Clipping is performed on the oversampled OFDM signal sequence be-
cause it mitigates peak regrowth after digital-to-analog (D/A) conversion.

It is known that four-times (L = 4) oversampling is sufficient for that pur-

11



pose [32]. The clipped signal Zr,(n) is given as

zr(n), rzr(n)] <A
5un) = (n) [z (n)| 51)
Ao g (n)] > A

where A is the clipping threshold. Then the clipping ratio - is defined as

A

"= B} (3.2)

Clearly, the clipping ratio v can take a value larger than one.
The clipped signal Zz(n) can be considered as the sum of z7(n) and

the clipping noise cz,(n) as

zr(n) =zr(n)+cr(n), 0<n<LN-1. (3.3)

Since the envelope of 1, (n) is Rayleigh distributed when N is sufficiently

large, it is easily shown that the average clipped output energy is [33]
— _~2
E{||lzL]13} = (1 — ™) E{[JeL]3} (3.4)

where || - ||2 denotes lo-norm.

In order to remove the out-of-band radiation due to the clipping opera-
tion, the clipped signal Z7,(n) in time domain is transformed to the one in
frequency domain by taking LN-point FFT. (Filtering is not needed when
L = 1, which is referred to as “clipping at the Nyquist sampling rate”.)

That is, we have X; = FFTy(Xy). After filtering out the out-of-band

12



components of Xy, we have clipped input symbol sequence X (k) as

X(k)=X(k)+C(k), 0<k<N-1 (3.5)

where C'(k) is the clipping noise in frequency domain, and we call C(k)
observations of the clipping noise.

Finally, (n) + ¢(n), n = 0,1,..., N — 1, is transmitted, where x =
IFFTn(X) is the OFDM signal sequence and ¢ = IFFT 5 (C) is the clip-
ping noise which has to be recovered and cancelled at the receiver. Fig.

[3-1] summarizes the clipping procedure.

XL' Xy XL} X X+¢C

% . > > . > > T e €
X o| LN-point —— Clipper | —2] LN-point || Out-of-band=——p N-point —»
\ﬁ IFFT > LIPP > FFT > fileri > WFFT %

Figure 3.1: An example of clipping and filtering when L = 2 and
N =4.

3.1.2. A Statistical Model of Clipped Signals

Using the Bussgang’s theorem, it was shown that the clipped signal
Zr(n) can be statistically decomposed into two uncorrelated parts in [33]
as

zr(n) = axr(n) +drp(n) (3.6)

where a (< 1) is an attenuation factor and dr(n) is the oversampled

clipping noise uncorrelated to xr(n). The attenuation factor « is given in

13



[33] as

a=1—e"+ \/jyerfc(fy).

Note that « is only dependent on -, and thus « is known at the receiver
when 7 is fixed. From (3.6)), the clipped input symbol sequence X (k) in

(3.5) can be statistically viewed as
X(k)=aX(k)+D(k), 0<k<N-1 (3.7)

where D is the FFTed and out-of-band filtered version of dy, and clearly
C=(a—-1)X+D.

D(k) can be assumed to be a complex Gaussian random variable with
zero mean and variance 20’2D x) [33]. For the Nyquist sampling rate (L = 1),

its variance is easily obtained as

20h = B{IX(K)*} — o® B{| X (K)*}

=(1—e —a?)B{X(K)*} (3.8)
and then

E{|C(K)I*} = (o = 1) E{|IX (k) "} + 20y,

= (2—2a— e )E{X(k)[}.

Even if L > 1, we can still obtain the values of 2012:)(k:) and E{|C(k)|?}
for all £’s. In many literatures [34]-[36], a power spectral density (PSD) of

the oversampled clipping noise dj, is calculated from its autocorrelation
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function in various forms. For example, the PSD of d, is given as [34]

2n+1 convolutions

S0..0) = 3 GEgR B )+ S ] 69)

n=1

where v is the frequency variable, 3, is a coefficient depending on the
clipper, and Sx, x, (v) is the PSD of a non-clipped signal. The exact ex-
pression of (3, can be found in [34]. Likewise, the values of 20123(k) and
E{|C(k)|?} can be calculated and stored in advance for any L. Note that,
for all k’s within 0 < k < N — 1, the values of 202D(k) and E{|C(k)*}
when L > 1 are smaller than the values of those when L = 1, because
when L > 1, the clipping noise spreads out over not only in-band but also

out-of-band.

3.1.3. Conventional Receiver without Clipping Noise Can-
cellation Scheme
At the receiver, the received symbol Y (k) in frequency domain can be

expressed as
Y(k)=HKX(k)+Z(k), 0<k<N-1 (3.10)

where H (k) denotes the frequency domain channel response and Z (k) de-
notes the AWGN with variance 20%. We assume the perfectly known chan-
nel response and the perfect synchronization which are widely adopted in
many OFDM literatures such as [37] and [38]. After zero-forcing channel

equalization, we obtain

H Y k)Y (k)= X (k) + H (k) Z(k). (3.11)



Then, by plugging (3.7)) into (3.11)), we derive a maximum likelihood

(ML) estimator for X (k) as

A~

X (k) = arg g(él)l{l o tH (k)Y (k) — s (3.12)

where X is a signal constellation.

3.2. Selected Mapping

1
P
1 1
X . X
—— N-point IFFT

N-point IFFT

A

?"FN

x.\)
bﬁo
\J

lx
!
-

N-point IFFT "] Select the one | Transmit
with the F——»
minimum
PAPR

Y

U
I) U
XY X
> N-point IFFT

Figure 3.2: A block diagram of the conventional SLM scheme.

The conventional SLM scheme [18] is described in Fig. [3.2] which gener-
ates U alternative OFDM signal sequences x* = [z%(0), z%(1),- - ,2"(N—
1)]T, 1 <wu < U.Togenerate U alternative OFDM signal sequences, U dis-

tinct phase rotation vectors P* known to both transmitter and receiver are

used, where P*=[P*(0), P“(1),---, P*(N — 1)]” with P%(k) = ¢I®“ (k)
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¢*(k) € [0, 2m), 1 <u < U, and P! is an all-one vector. Then, the input
symbol sequence X is multiplied by each phase rotation vector P“ ele-
ment by element to generate U distinct alternative input symbol sequences
X¥ = [X"(0), X“(1),--+, X*“(N — 1)]”, where X"(k) = X (k)P"(k).
Each of these U alternative input symbol sequences is IFFTed to gen-
erate total U alternative OFDM signal sequences x* = IFFTy(X"),
and their PAPRs are calculated. Finally, the alternative OFDM signal
sequence x% having the minimum PAPR is selected for transmission as

_ ) . max, |[z%(n)|?
@ = arg min PAPR(x") = arg min[ —————=—
1<u<U %) 12u<u \ E{lz*(n)?}

where E{|z%(n)|?} = E{|z(n)|?} for all u’s. Note that the SI on @ needs
to be transmitted in order to properly demodulate the received OFDM

signal sequence at the receiver, and U IFFTs are the dominant factors of

the computational complexity in the conventional SLM scheme.

Pseudo code 1: the conventional SLM scheme
l: v<=o0

2: foru=1,2,---,U

3 Generate x"“ by processing one N-point IFFT.
4 if PAPR(x") <«

5: v < PAPR(x")

6 x4 = x¥

7 end if

8: end for

9

. Transmit x% with the ST on .

Pseudo code for the conventional SLM scheme is given as Pseudo code
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1, where to find the OFDM signal sequence with the minimum PAPR, the
value of v is updated repetitively at each generation of alternative OFDM
signal sequences. The value of v in Pseudo code 1, called an intermediate
minimum PAPR wvalue, is the minimum among the PAPR values of the
alternative OFDM signal sequences generated at that stage. For conve-
nience, we use 7 to denote the value of 4 after the PAPR of the u-th
alternative OFDM signal sequence is compared, which is also represented

as

~®) = min PAPR(x").

1<v<u
3.3. Low-Complexity SLM Schemes

In this section, three low-complexity SLM schemes are briefly reviewed,
which have lower computational complexity than that of the conventional

SLM scheme for the same number of alternative OFDM signal sequences.

3.3.1. Lim’s SLM Scheme [25]

It is already known that one N-point IFFT consists of | = logy IV stages.
In Lim’s SLM scheme, the N-point IFFT of the input symbol sequence
X is processed from the first stage up to the (I — r)-th stage, not up to
the I-th stage. Then, each of U phase rotation vectors, designed not to
destroy the orthogonality between the subcarriers, is multiplied to the
output from the (I —r)-th stage of the IFFT, and the remaining stages of
IFFT, i.e., from the (I —r+ 1)-th stage to the I-th stage, are processed to

generate total U alternative OFDM signal sequences. Among them, the
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OFDM signal sequence with the minimum PAPR is transmitted.

3.3.2. Wang’s SLM Scheme [22]

In Wang’s SLM scheme, the input symbol sequence X is IFFTed to
generate the original OFDM signal sequence x. Then, x is multiplied
by each of U — 1 distinct N x N matrices, called conversion matrices,
to generate alternative OFDM signal sequences. Then, among these U
alternative OFDM signal sequences, the OFDM signal sequence with the

minimum PAPR is transmitted.

3.3.3. Baxley’s SLM Scheme [27]

The alternative OFDM signal sequences in Baxely’s SLM scheme are
generated by IFFT as the conventional SLM scheme, but the selection
strategy is different. Suppose that the HPA used in the OFDM system
is linear up to the saturation PAPR point . Then, achieving a PAPR
value less than 7y does not help to improve the power efficiency of the
HPA. Therefore, Baxely’s SLM scheme stops generating more alternative
OFDM signal sequences if an alternative OFDM signal sequence with
PAPR less than 7 is found. With overwhelmingly low probability, all the
U alternative OFDM signal sequences have PAPR values larger than v
for the practical value of U, and in this case Baxely’s SLM scheme clearly

selects the one with the minimum PAPR.
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3.4. Tone Reservation

The TR scheme reserves some tones for generating a PAPR reduction
signal instead of data transmission [I4]. Let R = {i1, 12, -, iy} denote
the ordered index set of the reserved tones and R denote the complement
set of Rin {0,1,---, N—1}, where W is the numbers of the reserved tones.
Then, the input symbol X (k) is expressed as

C(k), keR
X (k) = A(k) + C(k) =

A(k), keR°

where A(k) is the data symbol with 0 in the peak reduction tone (PRT) set
R and C(k) is the PAPR reduction symbol with 0 in the set R¢, where
they are not overlapped. Let x(n), a(n), and ¢(n) be the time domain
signals obtained by IFFTing X (k), A(k), and C(k), respectively. Since
IFFT is a linear operation, the OFDM signal x(n) corresponds to the
summation of the data signal a(n) and the PAPR reduction signal ¢(n),
ie, z(n) = a(n) + ¢(n). Here, it is possible that well designed PAPR
reduction signal ¢(n) can reduce the PAPR of the original OFDM signal
a(n).

Next, we consider the generation method of peak reduction signals. It
is very difficult to obtain the optimum values for PAPR reduction symbol
C(k). Thus, we introduce a well known method which is an iterative al-

gorithm as follows. Let f = [£(0) f(1) --- f(N —1)]T be the time domain
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kernel signal defined by

f(n) = —= 3" F(k)emw"

where F(k) = 0 for k € R°. The kernel signal f can be computed in
advanced and is used to make the PAPR reduction signal sequence ¢ by
an iterative manner. [I4]. That is, the PAPR reduction signal sequence c!

at the lth iteration is obtained as

l
I _
o' =D aifi)
i=1

where f((;,)) denotes a circular shift of f by 7; and «; is a complex scaling
factor computed according to the target threshold level 4, and the max-
imum peak value at the ith iteration. The circular shift 7; is determined

as

7 = arg max |a(n) + c(n)".

0<n<LN-1

Then, the OFDM signal sequence in the TR scheme at the [th iteration

can be represented as

x=a+c. (3.13)
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Chapter 4. A New Low-Complexity SLM
Scheme for OFDM Systems

Several low-complexity SLM schemes which utilize the signals at an in-
termediate stage of IFFT have been proposed [25], [26]. In those schemes,
the signals at an intermediate stage of IFFT are multiplied by phase ro-
tation vectors to generate alternative OFDM signal sequences, which can
be equivalently viewed as multiplying phase rotation vectors to the input
symbol sequence. Although these schemes give PAPR reduction perfor-
mance close to that of the conventional SLM scheme without BER degra-
dation, their computational complexity is still high.

In this chapter, a low-complexity SLM scheme is proposed, which uti-
lizes the signals at an intermediate stage of IFFT similar to [25] and [26].
However, the proposed scheme generates each alternative OFDM signal
sequence by cyclically shifting the connections in each subblock at an in-
termediate stage of IFFT. It can also be equivalently viewed as multiply-
ing the corresponding phase rotation vectors which have lower correlations
than those of [25] and [26], to the input symbol sequence. Consequently,
the PAPR reduction performance of the proposed SLM scheme can ap-
proach to that of the conventional SLM scheme with lower computational
complexity compared to the schemes in [25] and [26]. Also, the proposed

SLM scheme has no BER degradation compared to the conventional SLM
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scheme.

The rest of this chapter is organized as follows. In Section 4.1, a new
low-complexity SLM scheme is proposed and analyzed. The proposed SLM
scheme is evaluated through simulation in Section 4.2 and conclusions are

given in Section 4.3.

4.1. A New SLM Scheme with Low-Complexity

4.1.1. A New SLM Scheme

’
X
1
Stage Stage Stage Stage
X (n—i) : n—i+1[™ 7 > X
’
Xya

Figure 4.1: A block diagram of the ordinary N-point decimation-in-

frequency IFFT (n = logyN).

Prior to explaining the proposed SLM scheme, we describe the ordi-
nary decimation-in-frequency radix-2 IFFT structure. It is well known
that the ordinary N-point decimation-in-frequency IFFT can be viewed
as in Fig. where n = logy/N. For any integer ¢, 1 < ¢ < n — 1, the
intermediate OFDM signal sequence x’ at stage (n — ¢) is divided into
2¢ subblocks x{, X}, ..., x}; ,. A subblock x7, is composed of 27~ putputs
from the stage (n—14) of IFFT, which is equivalent to the 2" ‘-point IFFT
using the input symbol sequence X (k) satisfying & mod 2¢ = m. Fig. [4.2
shows an example of subblock partitions when N =8 and i = 1, 2.

Fig. [£:3] shows a block diagram of the proposed SLM scheme. The N
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Figure 4.2: Subblock partitions at stage 1 (i.e., i = 2) and stage 2
(e, i = 1) of IFFT when N =8 (W = e /).
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input symbols X (k), 0 < k < N — 1, are processed by the ordinary N-
point decimation-in-frequency IFFT up to the stage (n — i), where i is
the number of remaining stages until finishing the IFFT. To generate the
jth alternative OFDM signal sequence, 0 < j < U — 1, the connections
in each of subblocks x, X}, ..., xi,; | are cyclically shifted upward by the
predetermined integer numbers, a{),a{, ...,aéiil, respectively. Note that
performing the cyclic shift requires negligible computational cost. Then
these cyclically shifted 2° subblocks become the input to the stage (n—i+
1) of N-point IFFT to generate the jth alternative OFDM signal sequence
x/. Finally, among these U alternative OFDM signal sequences, the one
having the minimum PAPR is selected for transmission and the SI is also
transmitted. In practical implementation of the proposed SLM scheme,

the value of ¢ and the values of ag,a{, ...,aéi_l are fixed and thus the

proposed SLM scheme needs [log, U] bits for SI, which is the same as the

conventional SLM scheme’s.

X(0) &—>» i>=<j > =\T/‘\ — x(0)
X(4) o—> \iﬂ > . > m ‘,’ — x(1)
} w ;
X(6) —>—@ > o > & > A X — x(3)
X(1) o—>—o > o > ° > D o-——> x(4)
X(5) o—» - > . > . o ‘]; > \": i/’ : :\‘Ia > x(5)
X(3) o—>—1o > o > EO/.\I > f/—éé\% » x(6)
X(7) o—>—-& > . > e > e > & > ‘o > x(7)

Stage 1 Stage 2 Stage 3

Figure 4.4: An alternative OFDM signal sequence generated by the
proposed scheme for N = 8 and ¢ = 1 using ap = 1 and
ap = 0.
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Fig. shows an example to generate an alternative OFDM signal
sequence by the proposed scheme for N = 8 and ¢ = 1 using ag = 1 and
a; = 0. Clearly, the original OFDM signal sequence x is generated by
using ag = 0 and a; = 0. Other alternative OFDM signal sequences are
generated by simply changing the shift values ag and a;. For ¢ = 2, each
of four subblocks, x{, X}, x5, X5 is cyclically shifted and the last two stages
of 8-point IFFT are performed as the ordinary IFFT.

The value 7 can be any of 1,2,...,n — 1. As ¢ increases, the PAPR
reduction performance improves but the computational complexity also
increases, which will be explained in the following subsections. Also, a

selection method of shift values ag, al, .. agi_l to achieve good PAPR re-
duction performance is analyzed and proposed in Sections 4.1.3 and 4.1.4.
Compared with the conventional SLM scheme, the proposed scheme can
substantially reduce the amount of computations for IFFTs to generate
U alternative OFDM signal sequences, which will be analyzed in Section
4.1.5. Note that the proposed SLM scheme can also be implemented when
radix-4 and split-radix IFFT algorithms are used. However, the radix-2

IFFT algorithm is usually used in practical systems and thus we describe

the proposed SLM scheme with radix-2 IFFT structure.

4.1.2. Relation Between the Proposed SLM Scheme and the
Conventional SLM Scheme

In this subsection, the relation between the proposed SLM scheme and
the conventional SLM scheme is investigated. Let M = 2¢ be the number

of subblocks at the stage (n — i) in the N-point decimation-in-frequency
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IFFT, where N = 2" and L = N/M is the size of each subblock. Then,
by replacing k with MI 4+ m and ignoring the scaling factor 1/v/N for

convenience, (2.2) can be rewritten as

M—-1L-1
x(n) = X (M1 +m)Ww—(Mitm)n
m=0 [=0
M—-1 /L1
= X (M1 + m)W_Ml"> womn, (4.1)
m=0 =0

Note that Zf;ol X(Ml4+m)W—Mn 0 <m< M—1,in corresponds
to the subblock x/, of the intermediate OFDM signal sequence at the
stage (n —1).

The jth alternative OFDM signal sequence is generated by cyclically
shifting the connections in each subblock x/,, by al, and processing the re-
maining stages of IFF'T. Thus, the jth alternative OFDM signal sequence

can be expressed as

M—-1 /L1 _
_ ZX Ml + m)W—Ml(n-i-aﬁn))W—mn
m=0 =0
M—1L—1 _
= X (M1 + m)W—Mamyy—(Mitmjn, (4.2)
m=0 [=0

By replacing M1 + m with k£ and noting that m = k£ mod M and M =
k — (k mod M), the jth alternative OFDM signal sequence in (4.2) can
be expressed as

N-1
X —(k mod M))ak mod M W/~ kn

k=0

Clearly, the proposed SLM scheme can be equivalently viewed as the
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conventional SLM scheme using the phase rotation vectors given as
Pj(k) _ W—(k—(k mod M))ai mod M . (4.3)

Therefore, the receiver of the proposed SLM scheme is identical to that of
the conventional SLM scheme. Since the components of the phase rotation
vectors used in the proposed SLM scheme are complex numbers with a
unit magnitude (i.e., in , |Pi(k)| = 1 for all j and k), the proposed
SLM scheme does not degrade the BER performance compared with the

conventional SLM scheme.

4.1.3. Good Shift Values for the Proposed SLM Scheme

It is clear that the shift values have a big impact on the PAPR re-
duction performance of the proposed scheme. It is well known that the
optimal phase rotation vectors should be orthogonal and aperiodic for
SLM scheme [39]. However, for the correlated phase rotation vectors, the
PAPR reduction performance can be analyzed by using the relation be-
tween the correlation of component powers of alternative OFDM signal
sequences and the correlation of phase rotation vectors as in [40].

Let P./(n), 0 <n < N — 1, denote the nth component power |z7(n)|?
of the jth alternative OFDM signal sequence x/. In [40], a design criterion
of phase rotation vectors in SLM scheme with U alternative OFDM signal
sequences was derived by using the correlation coefficient pj,(7) between
ch(n) and P.’(n+7),0 <7 < N—1,where 0 < j # v < U—1. It was also

shown that the PAPR reduction performance improves as the maximum
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value of pj,(7) for 7 decreases. As in [40], p;,(7) can be approximated as

N-1 2
> Pi(k)PP (k) WHT (4.4)
k=0

1
Pju(T) = N2

where (-)* denotes the complex conjugate. Therefore, to achieve good
PAPR reduction performance, the shift values {aé, a{, ey agwfl} and {ag,a{,...,a%,_;}
should be chosen such that

arg min (max pjv(7)> (4.5)
ool T
1

aO,ajl AAAAA a?\/[,pag’ail) AAAAA alys

where ad,ai, ...,ag\/[_l,ag,all’, way,_; €40,1,...,L — 1}. For solving this
problem, by replacing k with M + m, we can rewrite (4.4]) as

M—-1L-1

> PIMI 4 m)PY (ML + myw (M
m=0 [=0

By using P/(MI +m) = W—Mlah iy 1) 1} can be given as

1

1
_ﬁ

2
pju(T)

(4.6)

z
T

1 2

5 WM(a”mfazn+T)l+mT
N

pjv(T) =

Il
—- o
—
I
=)

i M WmT((WM(a,U,L—aZn—&—T))L . 1)
N2 WM(ay,—ah+1) _ 1

m

2

o

2
= —|Ag+A1+ ...+ Ay

where

Am

mr M(a“m—agn—i-T) L _
_ W) =) em< M -1, (48)
WM(aEn—agn—i-T) -1

Since ML = N, the term (WM(“;jn_“z""’T))L —1lin |D is always zero

because (a?, — al, +7) is an integer. Then, the numerator of A,, is always
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zero and thus A,, is also zero except when the denominator of A,, is zero.
When the denominator of A,, is zero, it is easy to show that A, = LW™T.

The value of 7 which generates nonzero A,, can be found by solving

a’, —al, +7=0mod L.

Since —L < a}%—a{}b < Land 0 < 7 < N, the denominator of A,, becomes

zero if

coL — (a¥, — aly),1 < co < M, a’ —al, >0

m

S (4.9)
clL—(a}’n—agn),Ogcl <M -1, a};l—ain < 0.

For each m, as the integer 7 runs from 0 to N — 1, nonzero A,, appears

M times. Therefore, it is clear that max pju(T) in is minimized if

A,,’s are not overlapped each other. In other words, it is required that at

most one A,, in is nonzero for any 7, which can be achieved if the

following condition is satisfied;

Condition for good shift values :

For all my # ma, (a%, — @, ) — (a%, — @hny) # 0 mod L.

If this condition is satisfied, the maximum value of pj,(7) becomes
L?/N?. If this condition is not satisfied for some m, the maximum value

of pju(T) becomes larger than L?/N?. For instance, suppose that al, —

afm = Qp, — afm = d > 0 for m; # meo and the condition is satisfied

for other m’s. Then, for 7 = ¢¢L —d, 1 < ¢y < M, we have pj,(7) ~
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ﬁ]LWm” + LW™27 |2 from l) and it is easy to check that

L2

| mel(coL—d) + meg(coL—d) |2> m

1
max —x=
1<co<M N2

Similarly, if there are more than two distinct m’s which do not satisfy the
condition, it can be shown that the maximum value of pj,(7) is larger
than L?/N?2.

As a result, in order to achieve the best PAPR reduction performance
of the proposed scheme with U alternative OFDM signal sequences, shift
values should satisfy the condition for good shift values for all j,v pair,
where 0 < j # v < U — 1. In this case, the maximum value of pj,(T)
is L2/N? for all j,v pair. Hence, for the same N, the PAPR reduction
performance of the proposed scheme improves as i increases (i.e., L?/N?

decreases), which will be shown in Section 4.2.

4.1.4. Methods to Generate Good Shift Values

In this subsection, two methods to generate good shift values for the
proposed SLM scheme are introduced. Firstly, random generation of shift
values can be one of proper methods. If we choose al, for all j and m from
{0,1,..., L — 1} with equal probability 1/L, then the term (aj, — aly,) —
(ap,, — aly,) mod L can take the value from {0,1,...,L — 1} with equal
probability. Therefore, shift values generated by the random generation
method satisfy the condition for good shift values with high probability

because the practical value of L is usually big. However, when we use

the random generation method, both transmitter and receiver require the

31

;ﬁ'! 2 1_..” .__;J!_ W



memory space to save M (U — 1) shift values (except 0’s for the original
OFDM signal sequence).

Secondly, we introduce a deterministic method to generate the shift
values satisfying the condition for good shift values. We set al, = mj,

which is called mj-method. Then, (a;,, — abny) — (ab,, — ah,) can be

rewritten as

(ap,, —al,) — (ab, — al,) = (m1v — maj) — (mav — myj)

= (m1 —ma)(v — 7). (4.10)

Since we only consider the case when 0 < mj #moe < M —1and 0 < j #

v < U — 1, we obtain

0 < |(m1 —ma)(v — §)| < (M — 1)(U - 1). (4.11)

From (4.10]) and (4.11]), the mj-method is guaranteed to satisfy the condi-

tion for good shift values when (M —1)(U —1) < L, i.e., (2°=1)(U—1) <
2"~ This inequality can be satisfied for practical value of n and U because
the appropriate value of i is 2 in the proposed scheme as will be shown in
later section. Besides, the mj-method does not require the memory space
to save the shift values, which is an additional advantage of the proposed
SLM scheme using the mj-method compared to other SLM schemes re-

quiring memory space to save the phase rotation vectors.
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4.1.5. Computational Complexity

In this subsection, the computational complexity of the proposed scheme
is compared with those of the conventional SLM scheme and other low-
complexity SLM schemes. We only compare the computational complex-
ity to generate alternative OFDM signal sequences because the remaining
computational complexity is the same for most SLM schemes if the num-
ber of alternative OFDM signal sequences is the same.

When the number of subcarriers is N = 2", the numbers of complex
multiplications and complex additions required for the conventional SLM
scheme can be derived as follows. An N-point IFFT requires (IN/2)log, N
complex multiplications and NlogyN complex additions. Therefore, the
total numbers of complex multiplications and complex additions for the
conventional SLM scheme using U alternative OFDM signal sequences
are U(N/2)logo N and U Nlogy N, respectively. In the proposed scheme, if
the cyclic shifts are performed at the stage (n—1), the numbers of required
complex multiplications and complex additions are ((n—i)/n)(N/2) logy N+
U(i/n)(N/2)logy N and ((n —i)/n)N logy N 4+ U(i/n)N logy N, respec-
tively. Note that the reduction ratio of complex multiplications is the same
as that of complex additions. Therefore, the computational complexity re-
duction ratio (CCRR) of the proposed scheme over the conventional SLM

scheme is derived only for complex multiplication as

Complexity of the proposed scheme

CCRR = (1- 100
< Complexity of the conventional SLM> % (%)

- <1_?H(T[L]U_1)i> % 100 (%):(n—ii(g—l) x 100 (%).
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Table 4.1: CCRR(%) of the Proposed Scheme Compared to the Con-
ventional SLM.

N 64 256 1024
4 | s ]16] 4| 816 4] s |16
i=1625]729]781]656]766]82.0]67.5]788] 844
i=2 500583625 563|656 | 70.3 | 60.0] 70.0 | 75.0
i=3 375438469 | 46.9 | 54.7 | 58.6 | 52.5 | 61.3 | 65.6
i=4250292]31.3]375|438|46.9 | 45.0 | 52.5 | 56.3

As shown in Table the proposed scheme has much lower compu-
tational complexity than the conventional SLM scheme. For example,
when ¢ = 2, N = 1024, and U = 8, the computational complexity of
the proposed scheme reduces by 70% compared with the conventional
SLM scheme with almost the same PAPR reduction performance. It is
clear that the CCRR is large when N is large and ¢ is small. However,
for small i, there appears a large amount of degradation in the PAPR
reduction performance compared to the conventional SLM scheme as will
be shown in Section 4.2. Now, we compare the computational complexity
of the existing low-complexity SLM schemes exploiting the signals at an
intermediate stage of IFFT. The reason for this comparison is that their
PAPR reduction performance is generally almost the same as that of the
conventional SLM scheme with the same number of alternative OFDM
signal sequences, which is different from most of other low-complexity
SLM schemes.

Fig. [A.5] shows the comparison of the computational complexity of

the proposed SLM scheme, the conventional SLM scheme, Lim’s SLM
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Figure 4.5: Comparison of the computational complexity of the pro-
posed SLM, P-SLM [26], Lim’s SLM [25], and the con-
ventional SLM when N = 2048.
scheme [25], and P-SLM scheme [26]. We set each low-complexity scheme
to have the PAPR reduction performance close to that of the conventional
SLM scheme when N = 2048 and 16-quadrature amplitude modulation
(16-QAM) is used. For the similar PAPR reduction performance com-
pared to the conventional SLM scheme, the schemes in [25] and [26] need
to exploit the signals at the 6-th intermediate stage of IFFT, which means
1 = 5. The proposed SLM scheme can give us the similar PAPR reduction
performance compared to the conventional SLM scheme when i = 2 as will
be shown in the Section 4.2. The computational benefit of the proposed
SLM scheme mainly comes from this reason. As we expected, Fig.
shows that the proposed SLM scheme has the lowest computational com-

plexity among these SLM schemes.
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4.2. Simulation Results

For the simulation, 107 input symbol sequences are randomly generated
and 16-QAM is used. The OFDM signal sequence is oversampled by a fac-
tor of four which is sufficient to represent the continuous OFDM signal.
For the conventional SLM scheme, each element of the phase rotation vec-
tors is randomly selected from {£1, +;}. Similarly, to determine the shift
values for the proposed SLM scheme, the random generation method is
used. Note that the random generation method and the mj-method show
almost the same PAPR reduction performance for the practical values of
N, U, and i as will be shown in this section. However, in practical systems,
the mj-method would be preferred because it does not require memory
space to save the shift values. To evaluate the PAPR, performance of the
proposed SLM scheme, complementary cumulative distribution functions
(CCDFs) are plotted.

Fig. compares the PAPR reduction performance of the proposed
SLM scheme with that of the conventional SLM scheme when N = 1024
and 16-QAM is used for i = 1,2,3. Fig. shows that the PAPR re-
duction performance of the proposed SLM scheme becomes better as ¢
increases, as expected from the analytical result that the maximum corre-
lation coefficient value for the equivalent phase rotation vectors decreases
as 1 increases. For example, the greatest gain of the computational com-
plexity is obtained for ¢ = 1, but the PAPR reduction performance is

degraded due to the highly correlated equivalent phase rotation vectors.
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It is also observed from Fig. that the PAPR reduction performance of
the proposed SLM scheme becomes closer to that of the conventional SLM
scheme as ¢ increases. When ¢ = 2, both schemes show almost the same
PAPR reduction performance. Since the performance of the proposed SLM
scheme is lower bounded by that of the conventional SLM scheme and the
computational complexity increases as ¢ increases, the appropriate value
of ¢ can be 2.

Fig. [£77] compares the PAPR reduction performance of the proposed
SLM scheme using the mj-method and the random generation method
for selecting shift values. Since they show almost the same PAPR reduc-
tion performance, we can expect that two methods show almost the same
PAPR reduction performance for practical values of N, U, and i. However,
the mj-method requires no memory space to save the shift values (i.e.,

U — 1 phase rotation vectors), which is different from other SLM schemes.

4.3. Conclusions

In this chapter, a new low-complexity SLM scheme exploiting the sig-
nals at an intermediate stage of IFFT is proposed, which shows almost
the same PAPR reduction performance as the conventional SLM scheme
when ¢ = 2. Instead of performing U IFFTs as in the conventional SLM
scheme, the proposed scheme operates one IFFT up to (n — i) stages,
which is common to generation of all alternative OFDM signal sequences.
Then, the connections in each subblock at the stage (n — i) of IFFT is

cyclically shifted by the predetermined shift value in the proposed SLM
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scheme. Since the cyclic shifts at an intermediate stage of IFFT can be
viewed as multiplying an equivalent phase rotation vector consisting of
complex numbers with a unit magnitude to the input symbol sequence,
there is no BER degradation compared to the conventional SLM scheme.
Therefore, the proposed SLM scheme can be a good choice among many
PAPR reduction schemes if the most important criterion of the PAPR
reduction to consider is BER performance.

The simulation results show that the proposed SLM scheme using i = 2
can achieve almost the same PAPR reduction performance as the conven-
tional SLM scheme. Also, it is verified that the proposed SLM scheme has
the lowest computational complexity among existing low-complexity SLM

schemes exploiting the signals at an intermediate stage of IFFT.
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Figure 4.6:

Comparison of PAPR reduction performance of the pro-
posed and the conventional SLM schemes when N =
1024, and 16-QAM and four-times oversampling are
used (a) i =1, (b)i=2, (c)i=3.
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Figure 4.7: Comparison of the PAPR reduction perfor-

mance of the proposed SLM scheme using the mj-
method and the random  generation method
when N = 1024, U = 4, and ¢ = 3, and 16-QAM

and four-times oversampling are used.
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Chapter 5. An Efficient Selection Method
of a Transmitted OFDM Signal Sequence
for Various SLM Schemes

In this chapter, an efficient selection (ES) method of the OFDM signal
sequence with the minimum PAPR in the conventional SLM scheme is
proposed, which can be applied to almost all of the existing SLM schemes
including the low-complexity SLM schemes in [22], [25], [27]. By apply-
ing the proposed ES method, various SLM schemes are implemented with
lower computational complexity and the simulation results confirm that
the ES method substantially reduces the average computational complex-
ity of various SLM schemes. Note that the proposed ES method does not
degrade the PAPR reduction performance of SLM schemes.

The rest of the chapter is organized as follows. In Section 5.1, the ES
method is introduced and applied to the conventional SLM scheme. Also,
the computational benefit of the ES method is stochastically analyzed.
In Section 5.2, the proposed ES method is applied to the three low-
complexity SLM schemes. The computational benefit of the proposed ES
method is evaluated through simulations in Section 5.3 and conclusions

are given in Section 5.4.
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5.1. ES Method and Its Application to the Con-
ventional SLM Scheme

In this section, the ES method is proposed by explaining how to apply

the ES method to the conventional SLM scheme.

5.1.1. Sequential Generation of OFDM Signal Components
in the Conventional SLM Scheme

Alternative OFDM signal sequences are obtained by various generation
methods such as IFFT in the conventional SLM scheme and multiplication
of conversion matrices in Wang’s SLM scheme. The proposed ES method
utilizes the fact that such generation methods can be sequentially pro-
cessed and in this subsection, we will explain how to sequentially generate
OFDM signal components when alternative OFDM signal sequences are

obtained by IFFT in the conventional SLM scheme.

Figure 5.1: An 8-point IFFT structure in DIT and its nodes.

In the computational sense, it is widely known that an N-point IFFT

requires total IV logy N node values which are computed by complex addi-
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tion and/or multiplication. The computational complexity of an IFFT is
induced by these nodes and Fig. shows an 8-point IFFT structure in
decimation-in-time (DIT) with its 24 nodes. Generally, the OFDM signal
components z(0), z(4), z(2), - - ,z(7) are generated by parallel computing
the 24 nodes stage by stage.

On the other hand, a sequential generation of the OFDM signal compo-
nents can be considered in IFFT. For example, the 24 nodes of the 8-point
IFFT in Fig. 5.1 are marked by eight different dashed shapes. Clearly, x(0)
is generated by computing the seven ‘dashed circle’ nodes. Then z(4) is
generated by additionally computing only one ‘dashed square’ node, x(2)
is generated by computing three more ‘dashed triangle’ nodes, and then
x(6) is generated by computing one more ‘dashed star’ node.

x(1) can be generated by computing the seven ‘dashed pentagon’ nodes.
Clearly, x(5), z(3), and z(7) are generated similarly to the case of z(4),
x(2), and z(6). Generally, in an N-point IFFT, the OFDM signal com-
ponents z(0),z(N/2),xz(N/4),--- ,2(N — 1) in decimated order can be
sequentially generated by doing a few more additional computation.

Sequential generation of the N-point IFFT values requires extra mem-
ory space for the Nlogy N nodes in addition to the N memory space
required to implement the conventional IFFT. But, this storage require-

ment is not serious because the cost of the memory is cheap in these days.
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5.1.2. Application of the ES Method to the Conventional
SLM Scheme

At the wu-th iteration in Pseudo code 1, after all the components of
x" are generated by performing N-point IFFT, the components’ powers
and PAPR(x") are computed and then the PAPR(x") is compared with

(u=1) However, this is inefficient in terms of computational complexity.

8
It is easily shown that an efficient method can be obtained by uti-
lizing the sequential generation in Section 5.1.1. While generating the
u-th alternative OFDM signal sequence by the sequential generation, if
a component power is larger than v(“~Y E{|z(n)|?}, we stop the genera-
tion procedure immediately and move to the sequential generation of the
(u+1)-th alternative OFDM signal sequence. Note that the PAPR reduc-
tion performance of the conventional SLM scheme is not affected by this
interruption.
Xll (0)
X(1)
X"(2)
Xll (3)
XU (4)
X"(5)
X"(6)
Xll (7)

Figure 5.2: The eleven nodes required to generate the first three
OFDM signal components z*(0), z*(4), and z%(2) in the
u-th alternative OFDM signal sequence.

Clearly this interruption reduces the computational complexity due to
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the u-th IFFT in the conventional SLM scheme. Suppose that the gen-
eration procedure of the u-th alternative OFDM signal sequence is inter-
rupted after the first three OFDM signal components are generated when
N = 8. Then, only the 11 nodes are computed in the u-th IFFT as shown
in Fig. [5.2

Pseudo code 2 shows a detailed procedure of the conventional SLM
scheme aided by the proposed ES method. The third and fourth lines in
Pseudo code 2 show the sequential generation of the components of the
u-th alternative OFDM signal sequence. As the fifth, the sixth, and the
seventh lines in Pseudo code 2 show, the sequential generation may be
interrupted based on the value of 7 and thus the average computational

complexity of the conventional SLM scheme is possibly reduced. Fig. [5.3

Pseudo code 2: the conventional SLM scheme aided by the ES
method
1: vy« o0
2: foru=1,2,---,U
3: for n=0,N/2,N/4,--- ,N — 1 (in decimated order)
Generate z"(n) by the sequential generation in Section 5.1.1.
if |2(n)]* > yE{|z(n)|*}
go to 11.
end if
end for
v < PAPR(x%)
10: x% = x¥
11: end for

12: Transmit x% with the SI on 4.
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shows a block diagram of the conventional SLM scheme aided by the
proposed ES method. Except the first IFFT block, at each IFFT block,
the sequential generation of the components of each alternative OFDM

signal sequence can be interrupted according to the value of ~(%),

! 1
Pé X[ X'
N-point IFFT >

P

X2 N-point IFFT | _
4>®—> (may be — 5 >

interrupted) X

X P’ ; 2
A X3 Nepoint IFFT | /4
. (may be »| Select the one | Transmit
interrupted) X3 with the ———
minimum
PAPR

U (U-1
P XYl NpointIFFT | )
e (may be D |

interrupted) XU

Figure 5.3: A block diagram of the conventional SLM scheme aided
by the proposed ES method.

5.1.3. Complexity Analysis for Nyquist Sampling Case

In this subsection, we analyze the computational complexity of the
conventional SLM scheme aided by the ES method for Nyquist sampling
case. We only consider the computational complexity required to generate
U alternative OFDM signal sequences by doing IFFTs, which is a domi-
nant factor in the computational complexity of the SLM scheme. Also, we

consider the computational complexity in an average sense because the
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interruption of IFFT in the proposed ES method occurs depending on the
random input symbol sequences.

Let B, be the random variable of the number of generated OFDM signal
components by the sequential generation at the u-th IFFT until an inter-
ruption occurs, 2 < u < U. Let Dy denote the amount of computations
for one N-point IFFT. Then we can obtain the average computational

complexity of the conventional SLM scheme aided by the ES method as

N N
Dy + Y Kn(b2)ppy(b2) + -+ Y Kn(bv)psy, (bv) (5.1)
bo=1 by=1

where K (b) denotes the computational complexity to generate b OFDM
signal components in an N-point IFFT by the sequential generation and
pB, (by) denotes the probability mass function (PMF) of B,,. Clearly, the
computational complexity of the conventional SLM scheme with U alter-
native OFDM signal sequences without the ES method is UDy.

5.1.3.1. Characteristics of a Nyquist-Sampled OFDM Signal Se-

quence

Prior to deriving the functions Ky (b) and pp, (by) in (5.1)), we overview
the characteristics of a Nyquist-sampled OFDM signal sequence x.

As in many other works, it is assumed that an OFDM signal component
is a complex Gaussian random variable with zero mean and E{|z(n)|*}
variance, which is a good approximation for a large number of subcarriers
from the central limit theorem [31]. Since an OFDM signal component
is complex Gaussian, the amplitude of an OFDM signal component is

Rayleigh distributed. Thus, it is easy to show that the probability that
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the power of an OFDM signal component x(n) is smaller than v E{|z(n)|?}

is given as

|z (n)|?

Hm = P<E{\x<n>\2}

<7>:1—e_7.

Moreover, IFFT of statistically independent inputs produces statistically
independent outputs and thus the OFDM signal components are mutually
independent.

Also, we assume that U phase rotation vectors are mutually indepen-
dent and thus U alternative OFDM signal sequences are mutually inde-

pendent. Then, we have [31]

P(PAPR(x") <) =TV (v).
5.1.3.2. Derivation of Ky(b)

Since Dy is defined as the computational complexity for one N-point
IFFT and N logy N nodes have to be computed in one N-point IFFT, we

can define the computational complexity per node as

Dy

ds ———.
Nlogy N

Then, as in Fig. the first OFDM signal component z(0) is gener-
ated by computing (20 4 2! + 22) ‘dashed circle’ nodes, which requires
the computational complexity (2 + 2! 4 22)d. Similarly, the computa-
tional complexity to generate the first OFDM signal component z(0) in
an N-point IFFT by the sequential generation is (20 + - -- + 2l°82N=1)g

which corresponds to K (1). In conclusion, the computational complexity
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K (b) to generate b OFDM signal components, 1 < b < N, in an N-point

IFFT by the sequential generation is obtained as

Kn(b) = (204 . 42008 N—l)d+<[b2_701J 204y L%J 9logs N—l)d.

Note that, Kn(N) = (Nlogy N)d = Dy.

1.0—- —
0.9

0.8 _ —

0.7 _ e

04 ]

03 A//

0.2

Ki28(b)/D12s

0.1

0.0 T T T T T T T T T T T T T
100 20 30 40 50 60 70 80 90 100 110 120
b

Figure 5.4: Relative computational complexity required to generate
b OFDM signal components in an 128-point IFFT by the
sequential generation.

In order to have an insight into the computational complexity, Ky (b)/ Dy
versus b for N = 128 is plotted in Fig. 5.4l Note that the plot in Fig.
shows a near linear relationship. For instance, b = 64 at the z-axis cor-
responds to 0.5 at the y-axis, which implies that, by using the sequential

generation, a half of OFDM signal components are generated with a half
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of the computational complexity of one IFFT.

5.1.3.3. Distribution of pp,(b,)

Clearly, the probability distribution of B, depends on the value of

~(©=1) and thus the PMF of B,, can be represented as

pou(b) = [ P 19) oo () (5.3)

for an integer b, within [1, N}, where pg | u-1)(by | 7) is the conditional
PMF of B, given that (=1 = ~ and fyw-1)(7) is the probability density
function (PDF) of the random variable ~(#~1.

By using I'(v), pp,|yu-1) (bu | 7) and f w-1)(7) are expressed [18] as

(1 - F(V))Fbuil(’}/% 1 < bu < N -1
PBuw(u—l)(bu |v) = (5.4)
rY=1(y), by =N

and

d
fran (V) = ——F ()

dy
u—1
ddv (1- U P(PAPR(x") > 7))
- ddN (1= TN (5.5)

where F. u—1)(7) is the cumulative distribution function (CDF) of A (u=1),

Therefore, by plugging (5.2)) and (| into (| , we obtain the average

computational complexity of the conventional SLM scheme aided by the

ES method for Nyquist sampling case.
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5.1.4. Complexity Analysis for Oversampling Case

Practically, SLM schemes are often used with four-times oversampling
to estimate the PAPR more accurately. In this subsection, we analyze the
computational complexity of the conventional SLM scheme aided by the
ES method for four-times oversampling case. In the conventional SLM
scheme, the four-times oversampled alternative OFDM signal sequence is
generated by performing 4 N-point IFFT to the input symbol sequence of
length N padded with 3N zeroes.

Let B, be the random variable representing the number of generated
oversampled OFDM signal components at the u-th IFFT in the conven-
tional SLM scheme aided by the ES method and its range is [1,4N]. Thus,
similar to the Nyquist sampling case, the average computational complex-
ity of the conventional SLM scheme aided by the ES method for four-times

oversampling case is

AN AN
Dyn + Z Kan(b2)pp, (b2) + -+ + Z Kan (bv)ppy, (bu)
ba=1 by=1

where K n(b) denotes the computational complexity to generate b OFDM
signal components, 1 < b < 4N, in a 4N-point [FFT by the sequential

generation and pp, (by) is the PMF of B,.

5.1.4.1. Characteristics of a Four-Times Oversampled OFDM

Signal Sequence

Let x* = [3%(0),%(1), - ,#%(4N — 1)]T denote the u-th four-times

oversampled alternative OFDM signal sequence and let E{|%(n)|?} = 202.
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Now we introduce several characteristics of the four-times oversampled
OFDM signal components. Firstly, since the distribution of PAPR(X") is
similar to that of continuous OFDM signal, the CDF of PAPR(x") can
be approximated by using the results for the continuous OFDM signal in
[31] as

P(PAPR(XY) < ) ~ exp{ _¢IN glnN}. (5.6)
Secondly, the four-times oversampled OFDM signal components #(n) can
be regarded as complex Gaussian random variables with zero mean and
variance 202 from the central limit theorem. Thirdly, from Appendix A,

when the sequential generation is used, the four-times oversampled OFDM

signal components are generated in the following order.
{Z(4s) s € Zn} — {T(4s + 2) : s € Zn}
—{Z(4s+1):s€Zn} — {2(4s+3) : s € Zn}.

Fourthly, from Appendix B, the four-times oversampled OFDM signal

components in the same set {Z(4s+p) : s € Zy} for any fixed p € Zy are

statistically independent.

5.1.4.2. Derivation of K,y (b)

Clearly, K4n(b) is the function obtained by replacing N of Ky (b) in
[B:2) by 4N
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5.1.4.3. Distribution of pp, (b,)

Similar to the Nyquist sampling case, pp, (b,) is represented as

po.(0) = [ b 1) L (i (5.7

for an integer b, in [1,4N].
Using (5.6), the PDF f. -1 () in (5.7) is given as

fy(ufl)(V) = ;iRy(ul)W)
u—1
_ d‘i (1 _ UHI P(PAPR(X") > 7))

= 677<1 - (1 —exp{ —e 'N glnN})u_l).

Using the characteristics of the four-times oversampled OFDM signal
components Z(n), the conditional PMF ppg |, w-1) (by [ 7) in (5.7) is given

as

PB,|y-1) (bu [ )

(1 =T ()T (y), 1<b, <N
(1="T(y)Yr N1V (y), N+1<b, <2N
= (1= W)Wl 2N ()TN ()TN (), 2N +1<b, <3N

(1= ®(7)) @3N ()UN ()TN ()TN (7), 3N +1<b, <4N -1

SN ()TN ()TN ()TN (), b, = 4N

\
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where

D(y) =P(E(4m)]® < 20%y) =1 — e

T(y) =P(|#(4m + 2)|* < 202y | |#(45)]* < 207y V s € Zy)

U(y) =P(|z(4m + 1) < 20%y | |#(4s)|%, |2(4s + 2)|? < 20%y ¥V 5 € Zy)
O(y) =P(|z(4m + 3)|* < 207 | [#(45)|%,

|Z(4s + 1)|%, |2(4s + 2)> < 20*y ¥ s € Zy) (5.8)

for m € Zy.

Since the oversampled OFDM signal components #(n) are complex
Gaussian random variables, Y(v),¥(v), and ®(v) in are obtained
by dealing with joint Gaussian PDFs. We only derive Y () in Appendix

C due to the lack of space and ¥(y) and ®(y) can be analogously obtained.

5.1.5. Comparison between Analytical and Simulation Re-
sults

In this subsection, we compare the analytical results in Sections 5.1.3
and 5.1.4 and the simulation results obtained by simulating 10° randomly
generated input symbol sequences with 16-QAM for each subcarrier. Since
the distribution of ppg, (b,) for Nyquist sampling and four-times oversam-
pling cases in and are too complex to deal with, numerical
integration and least squares curve fitting of Y (v),¥ (), and ®(v) in ([5.8))
are utilized to obtain analytical results. The number of subcarriers is
N = 256 and the numbers of the alternative OFDM signal sequences

are U =2,3,---,10.
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The CCRR is used to evaluate the computational benefit of the pro-

posed ES method. The CCRR of the conventional SLM scheme aided by

the proposed ES method over the conventional SLM scheme is defined as

1 complexity of the conventional SLM aided by ES % 100 (%)
complexity of the conventional SLM without ES .

(5.9)

CCRR for other SLM schemes can be similarly defined.

100 5
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\ \ \ \ \
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Figure 5.5: Comparison between the analytical and the simulation re-

sults using CCRR of the conventional SLM scheme aided
by the proposed ES method over the conventional SLM
scheme when N = 256.

Fig. [5.5] compares the analytical and the simulation results in terms of

CCRR of the conventional SLM scheme aided by the proposed ES method

over the conventional SLM scheme as a function of U for the two sampling
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cases. In Fig. [5.5 for both sampling cases, the analytical results derived
in Sections 5.1.3 and 5.1.4 show very good agreement with the simulation
results. As U increases, small gap appears between the two results, which

may be due to the several assumptions in the derivations.

5.2. Application of the ES Method to Various Low-
Complexity SLM Schemes

In this section, we briefly introduce how to apply the proposed ES
method to Lim’s [25], Wang’s [22], and Baxley’s [27] low-complexity SLM
schemes. The basic methodology of these applications is similar to the
conventional SLM case. In Lim’s, Wang’s, and Baxely’s SLM schemes,
it is possible to implement the sequential generation of the alternative
OFDM signal components and thus the ES method can be applied to
these SLM schemes. Note that the ES method can be applied to other

SLM schemes if the sequential generation is possible.

5.2.1. Lim’s SLM Scheme Aided by the ES Method

In Lim’s SLM scheme aided by the ES method, the common IFFT
procedure from the 1-st stage to the (logy N — r)-th stage is the same
as the case without the ES method. However, at the remaining stages
of IFFT, the sequential generation can be implemented similarly to the
result in Section 5.1.1. Consequently, to generate the U — 1 alternative
OFDM signal sequences, the remaining stages can be partially processed

based on the intermediate minimum PAPR value.
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5.2.2. Wang’s SLM Scheme Aided by the ES Method

Clearly, some part of an alternative OFDM signal sequence is generated
by multiplying the corresponding columns of the conversion matrix to
the original OFDM signal sequence x. Thus, the sequential generation
can be implemented in Wang’s SLM scheme. Consequently, the U — 1
conversion matrix-vector multiplications can be partially processed based

on the intermediate minimum PAPR value.

5.2.3. Baxely’s SLM Scheme Aided by the ES Method

Baxely’s SLM scheme uses the saturation PAPR point of HPA as .
Therefore, if the ES method is applied, each IFFT is partially processed
based on . More precisely, while the alternative OFDM signal compo-
nents are sequentially generated by performing IFFT, the generation can
be interrupted if an OFDM signal component having a power larger than
yoE{|z(n)|?} appears. Then, the next alternative OFDM signal sequence
is sequentially generated and checked by 7 in the same manner.

As mentioned earlier, all the U alternative OFDM signal sequences
have larger PAPR values than gy with very low probability, for example,
such probability value is 1.37 x 107 for N = 256, U = 16, and 7y = 8dB.
When all U alternative OFDM signal sequences have larger PAPR than -,
Baxely’s SLM scheme without the ES method tests all the U alternative
OFDM signal sequences and selects the one with the minimum PAPR
which is larger than ~g. Likewise, in this case, Baxely’s SLM scheme with

the ES method finishes all the partially processed U IFFT blocks and
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selects the one with the minimum PAPR. The computational complexity
of three low-complexity SLM schemes aided by the ES method can be
analytically derived in the analogous manner as in Sections 5.1.3 and

5.1.4.

5.3. Simulation Results

In this section, we present some numerical results including the average
computational complexity given by simulating 10° randomly generated in-
put symbol sequences. As in other literatures, we only compare the com-
putational complexity required for generation of alternative OFDM signal
sequences, which is a dominant factor in SLM schemes. Clearly, the PAPR
reduction performance is not degraded by applying the ES method and
thus we compare only the computational complexity. The computational
benefit of the ES method does not depend on the modulation order and

thus 16-QAM is used for all cases.

5.3.1. Simulation Results for the Conventional SLM Scheme
Aided by the ES Method

For the conventional SLM case, we simulate the OFDM system with
N = 256, 1024. Table 5.1 provides the computational complexity and
the CCRR of the conventional SLM scheme aided by the ES method
over the conventional SLM scheme for two sampling cases. To implement
four-times oversampling, 3NN zeroes are added to the (alternative) input
symbol sequences and 4N-point IFFT is performed. Therefore, the com-

putational complexity of the conventional SLM scheme without the ES
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method is UD4y when four-times oversampling is used. Table 5.1 shows
that the ES method substantially reduces the computational complexity
of the conventional SLM scheme for all cases. Table 5.1 also shows that
the number of subcarriers N has little effect on the computational benefit
of the ES method. Also, the reduction ratio of computational complexity
by using the ES method increases as U increases.

Table 5.1: Computational Benefit of the Conventional SLM Scheme
Aided by the ES Method

Sampling | N Scheme U=8 |U=16| U =32
Conv. SLM w/o ES| 8 Dy | 16 Dy | 32 Dy
256 | Conv. SLM w/ ES|4.92 Dy |8.31 Dy |14.26 Dy

Nyquist CCRR (%) 38.5 48.1 55.4
sampling Conv. SLM w/o ES| 8 Dy | 16 Dy | 32 Dy
1024} Conv. SLM w/ ES |4.81 Dy |(8.03 Dy |13.58 Dy
CCRR (%) 30.9 | 498 | 57.6

Conv. SLM w/o ES| 8 Dyy | 16 Dyn | 32 Dyy
256 | Conv. SLM w/ ES4.21 Dyn(6.69 Dyn[10.82 Dyy
Four-times CCRR (%) 47.4 58.2 66.2
oversampling Conv. SLM w/o ES| 8 Dyy | 16 Dyn | 32 Dyn
1024 Conv. SLM w/ ES4.22 Dyn[6.65 Dyn|10.70 Dyn
CCRR (%) 47.3 58.4 66.6

5.3.2. Simulation Results for Low-Complexity SLM Schemes
Aided by the ES Method

For the three low-complexity SLM schemes introduced earlier, simula-
tion has been performed when N = 256 and four-times oversampling is

used.
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Table 5.2 shows the computational complexity and the CCRR of the
Lim’s SLM scheme aided by the ES method over Lim’s SLM scheme. In
Lim’s SLM scheme, the number of remaining stages r is set to 5 guaran-
teeing good PAPR reduction performance. It is clear that the ES method

substantially reduces the computational complexity of Lim’s SLM scheme.

Table 5.2: Computational Benefit of the ES Method for Lim’s SLM

Scheme
U= U=16 U=32
Lim’s SLM W/O ES 4.5 D4N 8.5 D4N 16.5 D4N
Lim’s SLM w/ ES | 2.46 Dyy | 3.48 Dyn | 5.10 Dyn
CCRR (%) 45.3 59.1 69.1

Table 5.3 shows the computational complexity and the CCRR of the
Wang’s SLM scheme aided by the ES method over Wang’s SLM scheme.
In Table 5.3, the complexity is measured by using the comparison of the
number of complex additions required for conversion matrix-vector multi-
plications in Wang’s SLM scheme. Since Wang’s SLM scheme has a con-
straint on U, the cases of U = 4, 8,12 are simulated. We can see that the
ES method substantially reduces the computational complexity of Wang’s
SLM scheme.

Table 5.4 shows the computational complexity and the CCRR of the
Baxely’s SLM scheme aided by the ES method over Baxley’s SLM scheme.
For simplicity, the number of alternative OFDM signal sequences is fixed
to U = 16. In Table 5.4, we can see that the computational benefit of

the ES method depends on the value of vq, the saturation PAPR point of
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Table 5.3: Computational Benefit of the ES Method for Wang’s SLM

Scheme

U=14

U=28

U=12

Wang’s SLM w/o ES

9,216 com. add.

21,504 com. add.

33,792 com. add.

Wang’s SLM w/ ES

4,933 com. add.

9,288 com. add.

12,820 com. add.

CCRR (%) 46.5 56.8 62.1

HPA.

Table 5.4: Computational Benefit of the ES Method for Baxely’s SLM

Scheme

Yo = 7.5dB Yo = 8.0dB Yo = 8.5dB

Baxely’s SLM scheme w/o ES| 8.03 Dyy 3.24 Dyn 1.73 Dyn

Baxely’s SLM scheme w/ ES| 5.12 Dyy 1.81 Dyn 1.28 Dyn

CCRR (%) 36.2 44.1 26.1

Note that even for the low-complexity SLM schemes the ES method

provides large computational benefit. That is, the ES method can be ef-

fectively combined with almost all the existing SLM schemes to further

reduce the computational complexity.

5.4. Conclusions

When various SLM schemes generate alternative OFDM signal sequences,

the proposed ES method selects the transmitted OFDM signal sequence

efficiently. Aided by the ES method, the alternative OFDM signal com-

ponents are sequentially generated and the generation procedure can be

interrupted according to the component power value. As a result, the

average computational complexity of the SLM schemes is substantially
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reduced. It is meaningful to mention that the application of the proposed
ES method does not degrade the PAPR reduction performance of the used
SLM scheme.

In this chapter, we described how to apply the ES method to the conven-
tional SLM scheme and analyzed its computational complexity. Further-
more, we briefly described the application of the proposed ES method to
the three previously low-complexity SLM schemes, and simulation results
confirmed the computational benefit of the ES method. We anticipate that
the proposed ES method can be effectively applied to many other SLM

schemes beyond the SLM schemes described in this chapter.

Appendix A

We will show that the sequential generation in Section 5.1.1 generates

the four-times oversampled OFDM signal components in the order as

{Z(4s) s € Zn} — {T(4s + 2) : s € Zn}

—{Z(4s+1):s€Zny} - {2(4s+3):s € Zn}.

The sequential generation in Section 5.1.1 uses a DIT FFT structure
and thus generates 4N oversampled OFDM signal components in bit-

reversed order as

#(( 000 ---00 )2) — Z(( 100---00 ))
logy N+42 bits log, N+2 bits

— F((010---00 )g) — -+ — Z(( 111---11 )3)
log, N+2 bits logy N+42 bits
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where (+)2 denotes the binary representation of integer number.

Then, the generation order of components is easily divided into

Z((00---0 00)3) — Z(( 01---0 00)3) — -+ — &(( 11---1 00)s)
logy N bits logy N bits logy N bits

{z(4s):s€ZN}

—Z((00---0 10)2) - Z((01---0 10)2) = --- = Z(( 11---1 10)2)
log, N bits logy, N bits log, N bits

{Z(4s+2):s€ZN}

—2((00:--0 01)2) = &(( 0L---0 01)9) — -+ = 2(( 11---1 01),
10g2 N bits 10g2N bits 10g2 N bits

{F(4s+1):5€Z N}

—Z((00---0 11)9) > Z((01---0 11)9) = --- = Z(( 11---1 11)s.
log, N bits log, N bits log, N bits

{Z(4s+3):s€ZN}
Appendix B

We want to show that when four-times oversampling is used, the over-
sampled OFDM signal components in the same set {Z(4s+p) : s € Zn}
for any fixed p € Z4 are statistically independent.

Four-times oversampled OFDM signal components are generated by the

4N-point IFFT of the zero-padded input symbol sequence given as

N N N
{X(0), X (1), X (5 =1),0,0,- 0, X(5), X(F+1), -+ . X(N=D)},
3N zeroes

Thus the four-times oversampled OFDM signal component #(4s + p) is
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expressed as

¥
2 4N—-1
Fds+p) = > X(k)e iREE) 1 N7 (k- 3N) el iv ks tD)
k=0 k— 7N
|
2
— Z X(k)eJ4Nkpe]Nks X Z X (k €]4N (k-+3N)p 1525 ks
k=0
N-1
=3 X/(k)eI e
k=0
where
X (k)ed ivke, 0<k<¥ -1
X' (k) =

X (k)edin43Np - N o< < N 1.

It is well known that IFFT of statistically independent inputs also
produces statistically independent outputs [31]. Since the components in
{Z(4s + p) : s € Zy} for any fixed p are the outputs of N-point IFFT
whose inputs are statistically independent random variables X'(k), the
components in the set {Z(4s +p) : s € Zy} for any fixed p € Z4 are

statistically independent.

Appendix C

We will derive the function Y(v) in (5.8)). Since a four-times oversam-
pled OFDM signal component #(n) has large correlation with its neigh-

boring components, Y () can be approximated as

Y(v) = P(|E(4m + 2)* < 20%y | [#(4s)|* < 20°y V s € Zn)

~ P(E(4m + 2) < 207y | [2(4m)[2, |#(4m + 4)? < 2077)
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_ P(lz(4m)|?, |2(4m +2)]2, |Z(4m + 4)* < 2077)
= () . (5.10)

In (5.10)), the oversampled OFDM signal components Z(4m), Z(4m + 2),
and Z(4m + 4) are jointly complex Gaussian random variables, each with
zero mean and variance 202. Let I, and @, denote the in-phase and

quadrature components of Z(4m + p), respectively, and then the joint

PDF of Iy, Is, 14, Qo, Q2, and Q4 is given as

1 1 _
T1011:Q0Q2Q4(2) = W“M‘g z¥ ' 2"} (5.11)

where
z = [io, 12, 14, Q0> G2, 4]
and 3 is the covariance matrix of Gaussian random vector z.
Firstly, I, and @, are uncorrelated for all p’s. Secondly, cov ([, I4) =
cov(Qo, Q1) = 0 from Appendix B where cov(a,b) means the covariance
between a and b. It is known that four-times oversampling can be imple-

mented by using low pass filter whose impulse response is the sinc function

[41]. That is, &(4m + 2) can be represented by an infinite series as

#(4m +2) :sinc(g)fu(4m) + sinc(g)ir(élm +4)

+ sinc(%r)j(élm —4)+ sinc(%)iﬁ(élm +8)+---

where sinc(z) = sin(z)/x and the oversampled OFDM signal components

Z(4s) for all s € Zy are statistically independent from Appendix B. Thus,
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we have
oo
cov(lp, I2) =cov(Ia, 1) =cov(Qo, Q2) =cov(Q2, Q4) R‘/Slnc(g)ag-

Conclusively, the covariance matrix ¥ is approximated as

o? sinc(§)o? 0 0 0 0
sinc(3)o? o sinc(5)o* 0 0 0
5~ 0 sinc(%)o? o 0 0 0
- 0 0 0 o?  sinc(%)o? 0

0 0 0 sinc(§)o? o?  sinc(§)o?
0 0 0 0 sinc(§)o? o2

(5.12)

By changing the variables of the joint PDF in (5.11)) into polar forms

and using it, Y(vy) in (5.10)) can be expressed as

V202 /202y /202y 2r p2m p2m
T(fy):</02 /02 /02 /02/02/02

F10114Q0Q2Qa (T0 €08(00), 72 cos(62), 74 cos(64),

rosin(fp), ro sin(6s), 74 sin(0y4))

7o 7o T4 dBy dbs dby dry dro dT‘4> /(1 — 6_7)2.
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Chapter 6. Clipping Noise Cancellation
for OFDM Systems Using Reliable
Observations Based on Compressed

Sensing

Clipping is the simplest way to reduce PAPR of OFDM signals and thus
has been widely studied [7], [8], [33]-[36]. Clipping at the Nyquist sam-
pling rate has been used for low-complexity applications but suffers from
peak regrowth after D/A conversion. It is known that clipping an over-
sampled OFDM signal reduces the peak regrowth after D/A conversion,
but it causes out-of-band radiation which has to be filtered [7]. The distor-
tion of the OFDM signal caused by clipping is called clipping noise which
has sparsity in time domain. There are several schemes to mitigate clip-
ping noise [37], [38], [42]-[45], among which the scheme in [37] performs
iterative ML estimation for all tones and recreates clipping procedure in
order to reconstruct clipping noise.

According to recent results in sparse signal processing, also known as
compressed sensing (CS) theory [46]-[49], a sparse signal can be recon-
structed from its compressed observations. In this context, clipping noise
can be effectively reconstructed at the receiver by CS reconstruction al-
gorithms. As the first work for this, a tone reservation scheme using CS is

proposed in [28], where several tones are reserved at the transmitter before
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clipping, and the receiver reconstructs the clipping noise by exploiting the
compressed observations of the reserved tones. However, in this scheme,
the reserved tones induce data rate loss and due to the vulnerability of
CS reconstruction algorithms to the channel noise BER performance is
poor. Another clipping noise cancellation scheme using CS is proposed
in [29], motivated by the results in [28]. The scheme in [29] does not in-
duce data rate loss because the compressed observations of the pilot tones
are exploited. However, it still shows poor BER performance due to its
vulnerability to the channel noise.

In this chapter, we propose a new clipping noise cancellation scheme
using CS, which selectively uses observations of data tones. That is, re-
liable observations contaminated by less channel noise are selected and
then the clipping noise is reconstructed from these compressed observa-
tions by using a CS reconstruction algorithm. The proposed scheme has
the following three major advantages compared to the schemes in [28] and

[29).

e In contrast with the scheme in 28|, the proposed scheme does not
reserve tones and instead exploits compressed observations of the
underlying clipping noise in data tones, which leads to no data rate

loss.

e In practice, some OFDM systems do not insert pilot tones into every
OFDM signal. Even in this case, the proposed scheme works well in

contrast with the scheme in [29], which exploits pilot tones.
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e The biggest difference is that the schemes in [28] and [29] use all
the compressed observations without considering the reliability of
observations, which may result in including the observations severely
contaminated by the channel noise and thus it leads to inaccurate
reconstruction of the clipping noise. However, the proposed scheme
selects the observations less contaminated by the channel noise in
order to utilize reliable compressed observations. By doing this, we
successfully overcome the vulnerability of CS reconstruction to the
channel noise. Note that the simulation results in Section 6.3 show
that the proposed scheme mitigates the clipping noise well over both

an AWGN channel and a Rayleigh fading channel.

Also, the authors in [51] proposed a clipping noise cancellation scheme
exploiting reliable observations of data tones, which can be viewed as a
contemporary work with our work. The basic idea of the data aided CS
is common. However, the approach in [51I] is entirely different from our
approach.

Firstly, to improve the performance, we exploit a statistical model for a
clipped signal derived by using the Bussgang’s theorem. But, the scheme
in [5I] is based on a naive assumption on a clipped signal. In [5I], the
clipping noise in frequency domain is modeled as complex Gaussian. Sec-
ondly, we consider not only the clipping at the Nyquist sampling rate but
also the clipping and filtering at an oversampling rate. The scheme in [51]
only considers the former case. Note that the latter has been widely stud-

ied because it mitigates the peak regrowth after D/A conversion. Thirdly,
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the scheme in [51] needs optimization of the number of compressed ob-
servations for a given signal-to-noise ratio (SNR) point, while our scheme
needs no optimization process. Finally, the scheme in [51] only considers
the decision error probability of received symbols to measure the reliabil-
ity of observations, while we also consider a level of channel noise. Due to
these differences, our scheme shows superior BER performance than the
scheme in [51] as shown in simulation results in Section 6.3.

This chapter is organized as follows. CS is reviewed in Section 6.1 and a
new clipping noise cancellation scheme is proposed in Section 6.2. Section

6.3 presents simulation results and conclusion is given in Section 6.4.

6.1. Preliminaries

6.1.1. Notation

Upper and lower case letters denote signals in frequency domain and
signals in time domain, respectively. The n + 1-th component of a column
vector x is denoted as z(n) and bold face letters denote vectors and ma-
trices. || - ||o, || - ||1, and || - ||2 indicate lp-norm (the number of nonzero

elements), [;-norm, and ly-norm, respectively.

6.1.2. Compressed Sensing

In a typical CS problem, the goal is to reconstruct an N x 1 K-sparse
signal vector ¢ from an M x 1 compressed observation vector Y under
the condition K < M < N [46]-[49]. A signal vector c is called K-sparse

when it has at most K nonzeros, i.e., ||c|lp < K. Then, ¢ and Y are
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linearly related to each other as

Y =®c+n (6.1)

where @ is an M x N sensing matriz and n is the M x 1 observation noise
vector with a bounded noise level ||n]|2 < e.
To reconstruct c, the following [/;-norm minimization problem, also

known as basis pursuit (BP), to obtain ¢ is considered [47] as

arg min clly
gIICHOSK el
subject to ||®c — Y|z <. (6.2)

It is shown that if the vector c is sufficiently sparse, then the solution ¢

in (6.2) is close to the true solution ¢ within the noise level such as
lle—¢llz <O(1) - €

when the sensing matrix ® satisfies a good restricted isometry property
(RIP). In [47], a good RIP says that the matrix ® acts like an almost
isometry on all K-sparse vectors c.

Including a BP algorithm given in , a number of CS reconstruction
algorithms have been proposed [46]—[48]. In this chapter, for comparison
purpose, we adopt a sparse approximation algorithm called orthogonal
matching pursuit (OMP) [52] because of its ease of implementation and
speed. Note that OMP is a greedy algorithm which iteratively finds an

index whose coefficient is thought to be nonzero based on correlation
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calculation, and then those coefficients are estimated by least squares.

6.2. Clipping Noise Cancellation for OFDM Sys-
tems Based on CS

As mentioned in Section 3.1, the clipping procedure makes clipping
noise ¢ added to the OFDM signal sequence x. In this section, we pro-
pose a clipping noise cancellation scheme for OFDM systems by using CS

technique.

6.2.1. Sparsity of c

Due to the clipping (and filtering), the clipping noise c is added to the
OFDM signal sequence x at the transmitter end. To recover and mitigate
the clipping noise ¢ by CS technique at the receiver, ¢ needs to be sparse

as much as possible.

6.2.1.1. Sparsity of c for Clipping at the Nyquist Sampling Rate

Let us denote the clipping ratio v as in , and then the probability
that |z1(n)] > A is e, due to the fact that the envelope of an OFDM
signal sequence is Rayleigh distributed when N is sufficiently large. Also,
x1(n) can be assumed to be ii.d. random variables. Thus, the average
number of nonzero elements in ¢ is N - e=7”. Unless the clipping ratio «
is too small, the clipping noise ¢ can be viewed as a sparse signal. For

example, E{||c[jo} = N -e™7* < 0.184- N when v > 1.3 = 2.278dB.
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6.2.1.2. Sparsity of ¢ for Clipping and Filtering at an Oversam-
pling Rate

When L > 1, c is the 1/L downsampled version of the “filtered c;” of
and . Thus if the “filtered c;” has sparsity, ¢ also inherits the
sparsity. On the average, the number of nonzero elements in ¢ is 1/L of
that in c¢p. Thus we will investigate the sparsity of the filtered c;, denoted
by ¢ .

It is possible that the clipping noise is characterized as a series of
parabolic pulses unless 7 is too small [53]. The analysis in [53] is based
on continuous-time signals, which can be easily extended to the discrete-
time case because the oversampling factor L takes a value to make the
discrete-time signals similar to the continuous-time signals. That is, the

oversampled clipping noise ¢y, can be represented as

NP
cL(n)=> filn), 0<n<LN-1
=1

where f;(n) is the i-th clipping parabolic pulse having its maximum am-
plitude at n; and N, is the number of the parabolic pulses. The average

value of N, is given as [53]
B{N,} = Ny/57e ™,

which is usually small one compared to N. For example, E{N,} < 0.245-N
when v > 1.3 = 2.278dB.

Also, the filtered clipping noise vector ¢, can be represented as a sum
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of N, sinc functions as
Np
™
c’L(n):Z;ai-sinc(L(n—ni)), 0<n<LN-1
=

where «; is a coefficient depending on the shape of f;(n).

Unfortunately, ¢/ is not an exactly sparse signal, but most of its ele-
ments may be close to zero because the sinc function is a sine wave that
decays in amplitude. The peak of the first sidelobe is only 21.22% of the
peak of the mainlobe and the duration of the mainlobe is only 2L. After
downsampling ¢, to obtain ¢ that we are interested in, the duration of the
mainlobe of ¢ is reduced to 2L/L = 2. Such signals having mostly very
small nonzero elements are called compressible, approximately sparse, or
relatively sparse in various contexts [47], [54]. For approximately sparse
case, it is known that CS techniques can be used to recover ¢, which will

be shown from the simulation results in Section 6.3.
6.2.2. Reconstruction of the Clipping Noise ¢ by CS
In a matrix form, (3.11)) can be rewritten as

H'Y=X+H'Z (6.3)

where H is a diagonal matrix whose k-th diagonal element is H (k) and

Y, X, and Z are N x 1 column vectors. If we subtract X in li from

(6.3), we have

~—

noiseless observation vector  observation noise vector

HY - X= C + X-X+H'Z
~—_—
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which is the sum of the noiseless observation vector and the observation
noise vector.

It is obvious that if the whole observations (or whole tones) are used, re-
construction of the clipping noise ¢ may be inaccurate due to the fact that
some observations are severely contaminated by the observation noise.
Therefore, our suggestion here is to select a reliable subset of the whole
observations H™'Y — X, namely M out of N components, and then we
can obtain an M x 1 compressed observation vector Y. This process can
be done by multiplying an M x N selection matrix S consisting of some
M rows of N x N identity matrix Iy. Such selection strategy will be de-
scribed in the next subsection. Let C = Fc, where F is an N x N unitary

discrete Fourier transform (DFT) matrix. Then we have

Y =SH 'Y -SX =SFc+S(X-X)+SH'Z

—®dc+S(X—-X)+SH 'Z

observation noise vector

=®c+7 (6.4)

where the matrix ® = SF can be considered as the M x N sensing matriz
from the view of CS. As one can see from [47], a sensing matrix for CS can
be constructed by using a subset of rows in a DFT matrix, which shows a
good RIP. Then can be considered as a CS problem given in ,
where Y is the M x 1 compressed observation vector, the clipping noise
c is the N x 1 sparse signal vector, and n = S(X — X) + SH™'Z is the

M x 1 observation noise vector.
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By using a CS recovery algorithm such as OMP, we can recover ¢
denoted as ¢ from the compressed observation vector Y in . Then
C =FFTy (¢) is subtracted from the equalized received symbol sequence
H~'Y and then the final decision Xﬁna] is made as

Xinai(k) = argmin |[H ' (k)Y (k) — C (k) — s|-

Fig. pictorially summarizes the proposed scheme, where y is the re-

ceived OFDM signal sequence.

X N-point and

X | Clpping | Y X +cC
IFFT TX

filtering
y Y H-1Y _ . C ¢ Xfinal
N-point -1 o o Y CSre.conA C N-point Final
Ij% FFT | 7 H '7+ '®—> al(gg{/l[t}k)\)m ™ FFT 45®_> declins?on ™
‘% Ts
Decision

Figure 6.1: A block diagram of the proposed clipping noise cancella-
tion scheme.

6.2.3. Construction of the Compressed Observation Vector
Y

As we already mentioned, the compressed observation vector can be

obtained by selecting some reliable components of the whole observations

H 'Y — X whose k-th component is given as

H Y (k)Y (k) — X(k) = C(k) +H (k) Z(k) + X (k) — X (k).
noiseless observation observation noise
(6.5)
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6.2.3.1. Which Observations Should Be Selected?

The observations less contaminated by observation noise should be se-

lected. For convenience, we will use 6(k) to denote the observation noise

n as
0(k) = HY(k)Z(k) + X (k) — X (k).

That is, we have to select reliable observations which contain small |0(k)|.

6.2.3.2. Estimation of 0(k) Based on H (k)Y (k)

In this subsubsection, we will derive the minimum mean square error
(MMSE) estimator of 6(k), 6(k). For convenience, we separate 6(k) into

two parts, 0p(k) and 0;(k), as

0(k) = H (k) Z(k) + X (k) — X (k).

v

o (k) 01(k)

Also, we treat the equalized received symbol H (k)Y (k) as observation

o(k) as

Then é(kz) can be separately obtained by

0(k) = E{0(k) | o(k)} = E{0o(K) | o(k)} + E{01(k) | o(k)}.

For simplicity, we drop the subcarrier index k in the following derivation.

First, from (3.7)) and (3.11)), 6y is linearly related to observation o as

o=0y+aX+D
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and

o ~ CN(0,2|H™1?0?)
D ~ CN(0,20%)

1
X = X; with probability m

where X; denotes the i-th constellation point of signal constellation X and
|X'| denotes signal constellation size. We assume that each constellation
point can be transmitted with equal probability.

Then, E{fy | o} can be expressed as

E{fo | 0} = / 6o p(6o | 0) dbo

_ /90 ( S pl0o, X | 0)) by

XeX
— o0 (X pio01 X050 1)) dt
XeX
_ 6o (6o | X, 0) dbo ) - p(X | o)
%(/ 0 pbo 0> p
=Y E{6y| X, 0} -p(X | o) (6.6)
XeX

where p(-) and p(+|-) denote PDF and conditional PDF, respectively.

It is widely known that E{6y | X, 0} in is [55]

‘H71’20'2

E{00 | X, O} =
and the conditional PDF p(X | 0) in is
_ plo| X)p(X)
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= const - p(o | X)
__ ple]X)
doxrexplo] X)

where

1 1
an(H 2o +oh) * | 2(H 0% + o)

plo] X) = lo—aX [

After plugging (6.7) and ( into (| , we have

_ plo]X)
> xrexplo]| X') '

E{bo | o} = Z

XEX

(6.9)
Second, E{6; | o} is expressed as

E{6, | o} = E{6; | 0, X}

=D (X -X)p(X]o)

XekX

=Y (x-X)- plolX) (6.10)

Xex doxrexplo] X)

Finally, combining and (6.10)), the MMSE estimator of 6 is

R ~11242 R o
=Y <|H|11{|(oaX)+(XX))~ plX) 1)

PN S vexp(o| X)
For systems in which high computational complexity is not allowed, it
is too complicated to use the estimator in (6.11f). Thus, we propose the

low-complexity version of the MMSE estimator of 8 by using the following

approximation as

Y x plX) ¢ (6.12)

Xex ZX’GXp(O | X7)
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By plugging 1} into 1| the MMSE estimator 6 is approximated as

’H71’2O_2

— = _(0—aX).
|H—1|202+02D(0 aX)

0 ~
In simulations, the above estimator is used for ease of implementation.

6.2.3.3. Selection Criterion of Observations

As we mentioned, based on the estimate of 6(k), we can select reliable
observations which will be used to recover the clipping noise c. Further-
more, we use a selection criterion which selects the observations whose ob-
servation noise level is lower than the average noiseless observation power.

That is, the following selection criterion is used in the proposed scheme;
K ={k:0(k)]* < E{|C(k)[}}. (6.13)

If the cardinality of K is M, an M x N selection matrix S in (6.4) is

constructed by selecting the corresponding M rows from Iy.

6.2.4. Computational Complexity

In terms of computational complexity, the CS reconstruction algorithm
part of the proposed scheme is a dominant factor, and each iteration of
the OMP algorithm approximately requires the complexity of one N-point
FFT because the sensing matrix in is an M x N partial Fourier matrix
[52].

For ease of implementation, in the proposed scheme, the number of iter-
ations of the OMP algorithm is a half of the number of average dominant

pulses of the clipping noise ¢ (0.5 - E{||c|[o} for L =1 and 0.5 - E{N,}
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for L = 4), based on the discussion in Section 6.2.1. That is, we run the
OMP algorithm 0.5N - e times and 0.5N - \/gfye"y2 times for L =1
and L = 4, respectively. Although this number of iterations seems to be
insufficient to recover the whole pulses of the clipping noise, it still shows
good performance as shown in Section 6.3. This is because, in practice,
the number of dominant pulses in the clipping noise is usually less than
the number that we inferred in Section 6.2.1, owing to the fact that an
OFDM signal sequence is under the total energy constraint by the Parse-

val’s theorem.

6.3. Simulation Results

In this section, we evaluate the BER performance of the proposed clip-
ping noise cancellation scheme for uncoded OFDM systems. Here, the
SNR means the ratio of bit energy to the variance of AWGN. We simulate
both the case of clipping at the Nyquist sampling rate (L = 1) and the
case of clipping and filtering at an oversampling rate (L = 4) over an
AWGN channel and a Rayleigh fading channel. To confirm the validity
of the proposed scheme, we compare the proposed scheme with existing

clipping noise cancellation schemes over a Rayleigh fading channel.

6.3.1. AWGN Channel

Fig. [6.2] shows the BER performance of the proposed scheme over an
AWGN channel when the clipping at the Nyquist sampling rate and 16-

QAM are used. As we mentioned, the proposed scheme can be effectively

82



adopted for not too small clipping ratio and thus various clipping ratios are
used for simulations. Although the proposed scheme shows performance
degradation in low SNR region, it clearly shows that the proposed scheme
performs well for various clipping ratios in moderate SNR region that we
are interested in.

Fig. [6.3| shows the BER performance of the proposed scheme over an
AWGN channel when the clipping and filtering at four-times oversampling
rate is used. Clipping ratio = is fixed to 1.5 = 3.52dB. In this case, the
proposed scheme also performs well in moderate SNR region, even though
the clipping noise c is not an exactly sparse signal when oversampling is
used. Also, the proposed schemes performs well regardless of the number

of subcarriers N.

6.3.2. Rayleigh Fading Channel

In this subsection, we compare the proposed scheme with other clipping
noise cancellation schemes over a fading channel. The length of the channel
is assumed to be four and the channel taps are assumed to be complex
Gaussian distributed with zero-mean and variance 1/4, i.e., frequency-
selective fading channel where coefficients of taps are Rayleigh distributed.

More precisely, the N x 1 channel impulse response h is modeled as

where h(0),h(1),h(2),h(3) ~ CN(0,1/4) and H(k) is the k-th element

of FFTx(h), a frequency-selective fading channel. We assume the perfect

83



knowledge of the channel frequency response at the receiver as other works
1371, [38].

Figs. and compare the BER performance of the proposed
scheme, IEC [37], DAR [38], and TR-CS [2§] for two sampling rates and
modulations. In Fig. [6.6] only the BER performance of the IEC scheme
and the proposed scheme are given because the others do not work when
clipping and filtering at an oversampling rate is used. Also, in TR-CS,
the OMP algorithm is used for CS reconstruction for a fair comparison.
In Fig. , quadrature phase shift keying (QPSK) and severe clipping
(v = 1.0) are used in order to show the performance gap clearly. Although
the nonzero components of the clipping noise ¢ becomes too large to keep
the sparsity of ¢, the proposed scheme works well because the dominant
pulses of the clipping noise are recovered by CS technique.

Firstly, the tone reservation by CS (TR-CS) scheme in [28] shows poor
BER performance due to the weakness of CS reconstruction to the channel
noise, although it uses 41 reserved tones out of 128 tones, which seems to
be sufficient. Meanwhile, the scheme in [29] uses compressed observations
of pilot tones. Thus, from the result, one can expect that the scheme in
[29] also shows poor BER performance unless the number of pilot tones is
larger than 41, which becomes unpractical. As we discussed, the absence
of the selecting process of reliable observations seems to result in poor
BER performance of the previous works [28§], [29] using CS.

Secondly, the DAR scheme in [38] is the most frequently cited scheme

among the clipping noise cancellation schemes outside CS regime. The
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DAR scheme shows good BER performance, but it works only for the
case when clipping at the Nyquist sampling rate is used. This limitation
is a major drawback of the DAR scheme in a practical sense.

Thirdly, the BER performance of the IEC scheme in [37] is also given.
The scheme in [37] is based on iterative estimation and cancellation of the
clipping noise. In Figs. [6.4] and the IEC scheme works well for
two sampling rates similarly as the proposed scheme. But, in Fig. [6.5] the
proposed scheme shows better BER performance than the IEC scheme.
In terms of computational complexity, the IEC scheme requires two LIN-
point FFT / IFFT pairs to recreate the clipping process regardless of the
clipping ratio. Thus, the proposed scheme has a computational benefit
over the IEC scheme for a large clipping ratio and small N as described
in Section 6.2.4.

In Fig. [6.5] the proposed scheme shows the best BER performance
compared to the other schemes. Moreover, it is worth noting that the
proposed scheme shows better BER performance than the no clipping case.
This is because the clipping procedure can reduce the average transmission
power compared to no clipping case, and this results in BER performance
gain, which is called shaping gain.

Fig. [6.7] compares the BER performance of the proposed scheme and
the PR-CS scheme in [51]. In Fig. clipping at the Nyquist sampling is
used and v = 1.3 is used. In PR-CS scheme [51], the number of compressed
observations M needs to be optimized. Thus, BER at SNR=35dB is plot-

ted versus the number of compressed observations of PR-CS [5I]. Note
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that our scheme adaptively sets the number of compressed observations
according to , which is more intelligent than the PR-CS scheme. In
PR-CS, the OMP algorithm is used for CS reconstruction for a fair com-
parison. Clearly, the proposed scheme shows superior BER performance

compared to the PR-CS scheme [51].

6.4. Conclusion

In this chapter, a new clipping noise cancellation scheme using CS for
OFDM systems is proposed. To reconstruct the clipping noise, the pro-
posed scheme exploits its compressed observations underlying in the data
tones less contaminated by channel noise. To do this, an observation noise
level in each data tone is estimated by exploiting the statistical model
of a clipped signal. The proposed clipping noise cancellation scheme can-
cels out the clipping noise well over an AWGN channel and a frequency-
selective fading channel, which is verified through simulations. Compared
with the previously known schemes, the proposed scheme substantially
improves the reconstruction performance by adopting the selection of re-

liable observations.
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Figure 6.2: BER performance of the proposed scheme for various
clipping ratios v over an AWGN channel when L = 1,
N =128, and 16-QAM are used.
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Figure 6.3: BER performance of the proposed scheme for various N
over an AWGN channel when L = 4 and 16-QAM are
used.
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Figure 6.4: BER comparison of the proposed scheme and the existing
clipping noise cancellation schemes (IEC [37], DAR [3§],
and TR-CS [28]) over a frequency-selective fading channel
when L =1, N = 128, and 16-QAM are used.
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Figure 6.5: BER comparison of the proposed scheme and the existing
clipping noise cancellation schemes (IEC [37], DAR [3§],
and TR-CS [28]) over a frequency-selective fading channel
when L =1, N = 128, and QPSK are used.
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Figure 6.6: BER comparison of the proposed scheme and the IEC
scheme [37] over a frequency-selective fading channel

when L =4, N = 128, and 16-QAM are used.
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Figure 6.7: BER comparison of the proposed scheme and the PR-
CS scheme [51] over a frequency-selective fading channel
when L =1, N = 128, and 16-QAM are used.
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Chapter 7. Conclusions

In this dissertation, we reviewed OFDM system and their PAPR charac-
teristics. To solve PAPR problem of OFDM system, several PAPR reduc-
tion schemes have been proposed. These PAPR reduction schemes such
as coding, clipping and filtering, SLM, PTS, and TR are introduced and
have their own characteristics and trade-off.

In Chapter [4, the new low-complexity SLM scheme exploiting the sig-
nals at an intermediate stage of IFFT is proposed, which shows almost
the same PAPR reduction performance as the conventional SLM scheme
when ¢ = 2. Instead of performing U IFFTs as in the conventional SLM
scheme, the proposed scheme operates one IFFT up to (n — ¢) stages,
which is common to generation of all alternative OFDM signal sequences.
Then, the connections in each subblock at the stage (n — i) of IFFT is
cyclically shifted by the predetermined shift value in the proposed SLM
scheme. Since the cyclic shifts at an intermediate stage of IFFT can be
viewed as multiplying an equivalent phase rotation vector consisting of
complex numbers with a unit magnitude to the input symbol sequence,
there is no BER degradation compared to the conventional SLM scheme.
Therefore, the proposed SLM scheme can be a good choice among many
PAPR reduction schemes if the most important criterion of the PAPR

reduction to consider is BER performance.
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In Chapter [5, we propose the ES method for various SLM schemes.
When various SLM schemes generate alternative OFDM signal sequences,
the proposed ES method selects the transmitted OFDM signal sequence
efficiently. Aided by the ES method, the alternative OFDM signal com-
ponents are sequentially generated and the generation procedure can be
interrupted according to the component power value. As a result, the
average computational complexity of the SLM schemes is substantially
reduced. It is meaningful to mention that the application of the proposed
ES method does not degrade the PAPR reduction performance of the used
SLM scheme.

We described how to apply the ES method to the conventional SLM
scheme and analyzed its computational complexity. Furthermore, we briefly
described the application of the proposed ES method to the three low-
complexity SLM schemes and simulation results confirmed the compu-
tational benefit of the ES method. We anticipate that the proposed ES
method can be effectively applied to many other SLM schemes.

In Chapter [6], the new clipping noise cancellation scheme using CS for
OFDM systems is proposed. To reconstruct the clipping noise, the pro-
posed scheme exploits its compressed observations underlying in the data
tones less contaminated by channel noise. To do this, an observation noise
level in each data tone is estimated by exploiting the statistical model
of a clipped signal. The proposed clipping noise cancellation scheme can-
cels out the clipping noise well over an AWGN channel and a frequency-

selective fading channel, which is verified through simulations. Compared
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with the previous schemes, the proposed scheme substantially improves
the reconstruction performance by adopting the selection of reliable ob-

servations.
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