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Abstract

New Low-Complexity SLM
Schemes and Clipping Noise

Cancellation for OFDM Systems
Kee-Hoon Kim

Department of EE and CS
The Graduate School

Seoul National University

In this dissertation, several research results for the peak-to-average

power ratio (PAPR) reduction schemes for orthogonal frequency division

multiplexing (OFDM) systems are discussed. First, the basic principle and

implementation of the OFDM systems are introduced, where high PAPR

of OFDM signal is one of main drawbacks of OFDM systems. Thus, many

PAPR reduction schemes to solve this problem have been studied such as

clipping, selected mapping (SLM), partial transmit sequence (PTS), and

tone reservation.

In the first part of this dissertation, a low-complexity SLM scheme is

proposed, where the proposed SLM scheme generates alternative OFDM

signal sequences by cyclically shifting the connections in each subblock

at an intermediate stage of inverse fast Fourier transform (IFFT). Com-

pared with the conventional SLM scheme, the proposed SLM scheme

achieves similar PAPR reduction performance with much lower compu-

tational complexity and no bit error rate (BER) degradation. The per-

formance of the proposed SLM scheme is analyzed mathematically and
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verified through numerical analysis. Also, it is shown that the proposed

SLM scheme has the lowest computational complexity among the exist-

ing low-complexity SLM schemes exploiting the signals at an intermediate

stage of IFFT.

In the second part of this dissertation, an efficient selection (ES) method

of the OFDM signal sequence with the minimum PAPR among many

alternative OFDM signal sequences is proposed, which can be used for

various SLM schemes. The proposed ES method efficiently generates each

component of alternative OFDM signal by utilizing the structure of IFFT

and calculates its power, and such generation procedure is interrupted

if the calculated power is larger than the given threshold. By using the

proposed ES method, the average computational complexity of consid-

ered SLM schemes is substantially reduced without degradation of PAPR

reduction performance, which is confirmed by analytical and numerical

results.

In the third part of this dissertation, a clipping noise cancellation

scheme using compressed sensing (CS) technique is proposed for OFDM

systems. The proposed scheme does not need reserved tones or pilot tones,

which is different from the previous works using CS technique. Instead,

observations of the clipping noise in data tones are exploited, which leads

to no loss of data rate. Also, in contrast with the previous works, the pro-

posed scheme selectively exploits the reliable observations of the clipping

noise instead of using whole observations, which results in minimizing the

bad influence of channel noise. From the selected reliable observations,

ii
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the clipping noise in time domain is reconstructed and cancelled by using

CS technique. Simulation results show that the proposed scheme performs

well compared to other conventional clipping noise cancellation schemes

and shows the best performance in the severely clipped cases.

Keywords: Clipping, compressed sensing (CS), orthogonal frequency di-

vision multiplexing (OFDM), peak-to-average power ratio (PAPR), se-

lected mapping (SLM).

Student ID: 2010-30210
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Chapter 1. Introduction

1.1. Background

Orthogonal frequency division multiplexing (OFDM) is a multicarrier

modulation method utilizing the orthogonality of subcarriers. OFDM has

been adopted as a standard modulation method in several wireless commu-

nication systems such as digital audio broadcasting (DAB), digital video

broadcasting (DVB), IEEE 802.11 wireless local area network (WLAN),

and IEEE 802.16 wireless metropolitan area network (WMAN) [1].

OFDM is based on the frequency-division multiplexing (FDM), which

is the method to transmit multiple data streams over a common spec-

trum. Each data stream is modulated onto multiple carriers within the

bandwidth of the spectrum. In other words, the serial data stream is split

into multiple low-rate data streams, and each is modulated onto a differ-

ent subcarrier, where the subcarriers are orthogonal to each other. Then,

all the modulated subcarriers are linearly superposed and transmitted.

Weinstein devised the parallel data transmission system by using inverse

discrete Fourier transform (IDFT), and then, it can be effectively imple-

mented by inverse fast Fourier transform (IFFT) in 1971 [2]. Guard time

also known as guard interval was proposed by cyclically extending the

OFDM signal in 1980 [3]. This can remove inter-symbol interference (ISI)

1
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and transform the linear convolution of OFDM signal and channel impulse

response to cyclic convolution.

The parallel transmission of OFDM increases the symbol duration and

it makes frequency selective fading channel to several flat fading chan-

nels. Therefore, OFDM has the immunity from frequency selective fading

channel. Thus, in the OFDM system, the complex equalizer is not re-

quired because the one-tap equalizer sufficiently compensates the signal

distortion by fading channel. Also, OFDM has an advantage of the spec-

tral efficiency due to subcarrier orthogonality. OFDM subchannels whose

spectra satisfy orthogonality can be overlapped each other, which can save

the spectral efficiency up to 50% compared to FDM using unoverlapped

spectrum. With excellent spectral efficiency, OFDM has become worthy

in the wireless communication area.

Similar to other multicarrier schemes, OFDM has a high peak-to-average

power ratio (PAPR) problem, which makes its straightforward implemen-

tation quite costly. High PAPR of OFDM signals leads to significant in-

band distortion and out-of-band radiation when OFDM signals passes

through nonlinear devices such as high power amplifier (HPA) [4]. Since

linear range of HPA is limited, peak power of OFDM signals in time do-

main should be reduced. Thus, it is highly desirable to reduce the PAPR

of OFDM signals [5]–[6].

Over the last decades, various techniques to reduce the PAPR of OFDM

signals have been proposed such as clipping [7]–[9], coding [10]–[12], ac-

tive constellation extension (ACE) [13], tone reservation (TR) [14], [15],

2
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partial transmit sequence (PTS) [16], constellation shaping [17], and se-

lected mapping (SLM) [18], [19]. Clipping is the simplest way to reduce

the PAPR but it causes in-band distortion and bit error rate (BER) degra-

dation. Coding has good PAPR reduction performance but it causes data

rate loss. ACE extends the constellation on specific areas after a nonlinear

process to reduce the PAPR, and it causes transmission power increase.

TR reserves some subcarriers to reduce the PAPR, and it causes data

rate loss. Constellation shaping is an approach to reduce the PAPR by in-

creasing the constellation size of each subcarrier with keeping the average

constellation power, but in many cases the minimum Euclidean distance is

reduced and BER degradation occurs. SLM and PTS schemes are widely

studied because they show good PAPR reduction performance without

BER degradation. However, they require many IFFTs, which causes high

computational complexity and needs to transmit the side information (SI)

delivering which phase rotation vector was used. Also, SLM and PTS

schemes require extra demodulation process at the receiver.

It is well known that the SLM scheme is more advantageous than the

PTS scheme if the amount of SI is limited. However, the computational

complexity of the SLM scheme is larger than that of the PTS scheme.

Therefore, many modified SLM schemes with low-complexity have been

proposed [20]-[27], but they have several shortcomings such as degradation

of PAPR reduction performance or BER degradation compared to the con-

ventional SLM scheme using the same number of alternative OFDM signal

sequences. The low-complexity PAPR reduction algorithm in [22] causes

3
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degradation of PAPR reduction performance because the used phase ro-

tation vectors have periodicity, and thus they are highly correlated. The

scheme in [23] shows BER degradation because it requires more pilot sym-

bols and thus more power. The scheme in [24] shows somewhat degraded

PAPR reduction performance because some phase rotation vectors are

made by linear combination of other phase rotation vectors, which gener-

ates highly correlated phase rotation vectors.

1.2. Overview of Dissertation

The rest of this dissertation is organized as follows. In Chapter 2,

OFDM system model is presented and PAPR of OFDM signals is de-

fined. In Chapter 3, several PAPR reduction schemes for OFDM systems

and their low-complexity algorithms are briefly explained.

In Chapter 4, a new low-complexity SLM scheme is proposed, which

utilizes the signals at an intermediate stage of IFFT similar to [25] and

[26]. However, the proposed scheme generates each alternative OFDM sig-

nal sequence by cyclically shifting the connections in each subblock at an

intermediate stage of IFFT. It can also be equivalently viewed as multiply-

ing the corresponding phase rotation vectors which have lower correlations

than those of [25] and [26], to the input symbol sequence. Consequently,

the PAPR reduction performance of the proposed SLM scheme can ap-

proach to that of the conventional SLM scheme with lower computational

complexity compared to the schemes in [25] and [26]. Also, the proposed

SLM scheme has no BER degradation compared to the conventional SLM
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scheme.

In Chapter 5, an efficient selection (ES) method of the OFDM signal

sequence with the minimum PAPR in the conventional SLM scheme is

proposed, which can be applied to almost all of the existing SLM schemes

including the low-complexity SLM schemes in [25], [22], [27]. By apply-

ing the proposed ES method, various SLM schemes are implemented with

lower computational complexity, and the simulation results confirm that

the ES method substantially reduces the average computational complex-

ity of various SLM schemes. Note that the proposed ES method does not

degrade the PAPR reduction performance of SLM schemes.

In Chapter 6, we propose a new clipping noise cancellation scheme us-

ing CS, which selectively uses observations of data tones. That is, reliable

observations contaminated by less channel noise are selected, and then

the clipping noise is reconstructed from these compressed observations by

using a CS reconstruction algorithm. The proposed scheme does not re-

serve tones and instead exploits compressed observations of the underlying

clipping noise in data tones, which leads to no data rate loss. The simu-

lation results in Section 6.3 show that the proposed scheme mitigates the

clipping noise well over both an additive white Gaussian noise (AWGN)

channel and a Rayleigh fading channel.

Finally, some concluding remarks are given in Chapter 7, where the

proposed techniques in the dissertation are reviewed.
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Chapter 2. OFDM Systems

In a digital communication systems, a symbol duration should be much

larger than the delay spread of a channel in order to remove the ISI of

the transmission system. But, it limits the possible data rate for a single

carrier modulation scheme. To overcome this limitation, multicarrier mod-

ulation scheme splits the high-rate data stream into N substream with low

data rate and transmits these substream data on N adjacent subcarriers.

Since the data symbols are allocated in parallel over the frequency domain,

the total bandwidth to transmit these symbols is not changed. Instead, a

symbol duration increases by a factor of N and thus, transmission with

N times higher data rate for a given delay spread is possible.

As one of practical multicarrier modulation schemes, OFDM uses or-

thogonal waveforms to modulate the substreams. In OFDM, the spectra

of subcarriers are overlapped in contrast to the conventional FDM because

subcarriers are orthogonal to each other. Each subcarrier can be separated

at the demodulator without interference if orthogonality of subcarriers is

guaranteed. The spectral overlapping among subcarriers provides better

spectral efficiency.

Although OFDM provides high-rate data transmission and spectral effi-

ciency, a main drawback of OFDM is the high PAPR. High PAPR implies

that HPA must have an inefficiently large linear range, which leads to

6
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use of very expensive HPA. Therefore, PAPR of OFDM signals should be

reduced.

This chapter is organized as follows. First, in Section 2.1, we describe

the mathematical representation of OFDM system. Second, PAPR is de-

fined in the OFDM system and some related facts are described in Sec-

tion 2.2.

2.1. OFDM System Model

OFDM converts a high-rate data stream into many low-rate data streams

by dividing wideband spectrum. That is, the high-rate data stream is

split into N low-rate data streams, modulated using N subcarriers, and

transmitted over the channel. Each low-rate data stream is loaded on the

subcarrier and all the N subcarriers are summed for transmission. Let

X = [X(0), X(1), ..., X(N − 1)]T be the input symbol sequence, where

[·]T denotes transpose. Without loss of generality, X(k)’s are assumed

to be statistically independent and identically distributed (i.i.d.) random

variables with zero mean. Then, the continuous-time baseband OFDM

signal is represented as

x(t) =
1√
N

N−1∑
k=0

X(k) exp

(
j2πkt

T

)
, 0 ≤ t ≤ T (2.1)

where T is the OFDM signal duration.

Let ∆tL = T/LN be a sampling interval, where L is an oversampling

rate. Then the discrete-time OFDM signal component sampled at time

7
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n∆tL can be expressed as

xL(n) = x(n∆tL), n = 0, 1, ..., LN − 1

and we denote xL = [xL(0), xL(1), ..., xL(N − 1)]T .

For Nyquist sampling case L = 1, let x1 = x = [x(0), x(1), ..., x(N−1)]T

be the OFDM signal sequence corresponding to X. The relation between

the input symbol sequence X in frequency domain and the OFDM signal

sequence x in time domain can be expressed by IFFT as

x = IFFTN (X)

where FFTN (·) and IFFTN (·) denote N -point fast Fourier transform

(FFT) and N -point IFFT, respectively.

That is, an OFDM signal component x(n) is expressed as

x(n) =
1√
N

N−1∑
k=0

X(k)W−kn (2.2)

where W = e−j 2π
N and n ∈ ZN = {0, 1, 2, · · · , N − 1}. Note that, an

L-times oversampled OFDM signal sequence xL can also be obtained by

IFFT after padding X with (L− 1)N zeros.

2.2. Peak-to-Average Power Ratio

Since OFDM signals are generated by summing N sinusoidal waves,

the peak power of OFDM signals can be very large compared to its av-

erage power. When it passes through nonlinear device such as HPA, high

8
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peak power of OFDM signals leads to both in-band distortion and out-

of-band radiation. The in-band distortion degrades BER and the out-of-

band radiation interferes with the signals in the adjacent frequency bands.

Therefore, it is desirable to reduce peak power of OFDM signals.

2.2.1. Definition of PAPR

The PAPR is the ratio of the maximum instantaneous power divided

by the average power of the OFDM signal. That is, the PAPR of the

oversampled OFDM signal sequence xL is defined as

PAPR(xL) =
max0≤n≤LN−1 |xL(n)|2

E{|xL(n)|2}

where E{·} is the ensemble average operator.

2.2.2. Distribution of PAPR

For large N , x(n) becomes a complex Gaussian random variable by cen-

tral limit theorem. Thus the envelope of x(n), |x(n)|, becomes a Rayleigh

distributed random variable. Also, if the N input symbols are statistically

independent, the output of IFFT, N OFDM signal components are also

statistically independent. Therefore, the probability that the magnitude

of all N OFDM samples are smaller than certain threshold γ0 is given as

Pr

(
max

0≤n≤N−1
|x(n)| < γ0

)
= Pr(|x(n)| < γ0)

N = (1− e−γ2
0 )N . (2.3)

From (2.3), the probability that at least one magnitude of the N OFDM

signal components exceeds a certain magnitude threshold γ0, that is,

9
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Pr(PAPR(x) > γ0), can be approximated as

Pr(PAPR(x) > γ0) = 1− (1− e−γ2
0 )N . (2.4)

If we consider the continuous time OFDM signals, the distribution in

(2.4) becomes a different form. In [30], the empirical approximation of the

PAPR distribution for continuous case was suggested as

Pr(PAPR > γ0) = 1− (1− e−γ2
0 )αN (2.5)

where Nee proposed that (2.5) is the most agreeable with continuous time

result when α = 2.8. Also, by mathematical analysis, Ochiai derived the

PAPR distribution of the continuous time OFDM signal x(t) as [31]

Pr(PAPR > γ0) ≈ 1− exp

(
−
√

π

3
Nγ0e

−γ2
0

)
. (2.6)
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Chapter 3. PAPR Reduction Schemes

It has been known that the PAPR problem is an important issue in OFDM

systems. Thus, several PAPR reduction schemes have been proposed such

as clipping, SLM, PTS, TR, and so on. Each scheme has its own character-

istic and trade-off between the PAPR reduction and other performances

such as BER, complexity, or data rate loss.

In this chapter, we review the conventional PAPR reduction schemes

and their advantages and disadvantages in terms of PAPR reduction ca-

pability, computational complexity, BER degradation, data rate loss, and

power increase, etc.

This chapter is organized as follows. First, in Section 3.1, we describe

the mathematical procedure of clipping scheme. Second, SLM scheme is

described in Section 3.2. In Sections 3.3 and 3.4, several low-complexity

SLM schemes and TR scheme are introduced, respectively.

3.1. Clipping

3.1.1. Clipping at Transmitter

Clipping is performed on the oversampled OFDM signal sequence be-

cause it mitigates peak regrowth after digital-to-analog (D/A) conversion.

It is known that four-times (L = 4) oversampling is sufficient for that pur-

11
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pose [32]. The clipped signal x̄L(n) is given as

x̄L(n) =


xL(n), |xL(n)| ≤ A

A · ej∠xL(n), |xL(n)| > A

(3.1)

where A is the clipping threshold. Then the clipping ratio γ is defined as

γ =
A

E{|xL(n)|}
. (3.2)

Clearly, the clipping ratio γ can take a value larger than one.

The clipped signal x̄L(n) can be considered as the sum of xL(n) and

the clipping noise cL(n) as

x̄L(n) = xL(n) + cL(n), 0 ≤ n ≤ LN − 1. (3.3)

Since the envelope of xL(n) is Rayleigh distributed when N is sufficiently

large, it is easily shown that the average clipped output energy is [33]

E{||x̄L||22} = (1− e−γ2
)E{||xL||22} (3.4)

where || · ||2 denotes l2-norm.

In order to remove the out-of-band radiation due to the clipping opera-

tion, the clipped signal x̄L(n) in time domain is transformed to the one in

frequency domain by taking LN -point FFT. (Filtering is not needed when

L = 1, which is referred to as “clipping at the Nyquist sampling rate”.)

That is, we have X̄L = FFTLN (x̄L). After filtering out the out-of-band

12
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components of X̄L, we have clipped input symbol sequence X̄(k) as

X̄(k) = X(k) + C(k), 0 ≤ k ≤ N − 1 (3.5)

where C(k) is the clipping noise in frequency domain, and we call C(k)

observations of the clipping noise.

Finally, x(n) + c(n), n = 0, 1, ..., N − 1, is transmitted, where x =

IFFTN (X) is the OFDM signal sequence and c = IFFTN (C) is the clip-

ping noise which has to be recovered and cancelled at the receiver. Fig.

3.1 summarizes the clipping procedure.

Clipper
LN-point

FFT

N-point

IFFT

Out-of-band

filtering

LN-point

IFFT

0
0
0
0

Figure 3.1: An example of clipping and filtering when L = 2 and
N = 4.

3.1.2. A Statistical Model of Clipped Signals

Using the Bussgang’s theorem, it was shown that the clipped signal

x̄L(n) can be statistically decomposed into two uncorrelated parts in [33]

as

x̄L(n) = αxL(n) + dL(n) (3.6)

where α (≤ 1) is an attenuation factor and dL(n) is the oversampled

clipping noise uncorrelated to xL(n). The attenuation factor α is given in

13



✐
✐

“KKH_Dissertation” — 2015/1/6 — 10:56 — page 14 — #30 ✐
✐

✐
✐

✐
✐

[33] as

α = 1− e−γ2
+

√
πγ

2
erfc(γ).

Note that α is only dependent on γ, and thus α is known at the receiver

when γ is fixed. From (3.6), the clipped input symbol sequence X̄(k) in

(3.5) can be statistically viewed as

X̄(k) = αX(k) +D(k), 0 ≤ k ≤ N − 1 (3.7)

where D is the FFTed and out-of-band filtered version of dL, and clearly

C = (α− 1)X+D.

D(k) can be assumed to be a complex Gaussian random variable with

zero mean and variance 2σ2
D(k) [33]. For the Nyquist sampling rate (L = 1),

its variance is easily obtained as

2σ2
D(k) = E{|X̄(k)|2} − α2E{|X(k)|2}

= (1− e−γ2 − α2)E{|X(k)|2} (3.8)

and then

E{|C(k)|2} = (α− 1)2E{|X(k)|2}+ 2σ2
D(k)

= (2− 2α− e−γ2
)E{|X(k)|2}.

Even if L > 1, we can still obtain the values of 2σ2
D(k) and E{|C(k)|2}

for all k’s. In many literatures [34]–[36], a power spectral density (PSD) of

the oversampled clipping noise dL is calculated from its autocorrelation

14
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function in various forms. For example, the PSD of dL is given as [34]

SdLdL
(v) =

∞∑
n=1

βn
(E{|X(k)|2})2n+1

· [
2n+1 convolutions︷ ︸︸ ︷

SxLxL(v) ∗ · · · ∗ SxLxL(v)] (3.9)

where v is the frequency variable, βn is a coefficient depending on the

clipper, and SxLxL(v) is the PSD of a non-clipped signal. The exact ex-

pression of βn can be found in [34]. Likewise, the values of 2σ2
D(k) and

E{|C(k)|2} can be calculated and stored in advance for any L. Note that,

for all k’s within 0 ≤ k ≤ N − 1, the values of 2σ2
D(k) and E{|C(k)|2}

when L > 1 are smaller than the values of those when L = 1, because

when L > 1, the clipping noise spreads out over not only in-band but also

out-of-band.

3.1.3. Conventional Receiver without Clipping Noise Can-
cellation Scheme

At the receiver, the received symbol Y (k) in frequency domain can be

expressed as

Y (k) = H(k)X̄(k) + Z(k), 0 ≤ k ≤ N − 1 (3.10)

where H(k) denotes the frequency domain channel response and Z(k) de-

notes the AWGN with variance 2σ2. We assume the perfectly known chan-

nel response and the perfect synchronization which are widely adopted in

many OFDM literatures such as [37] and [38]. After zero-forcing channel

equalization, we obtain

H−1(k)Y (k) = X̄(k) +H−1(k)Z(k). (3.11)
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Then, by plugging (3.7) into (3.11), we derive a maximum likelihood

(ML) estimator for X(k) as

X̂(k) = argmin
s∈X

|α−1H−1(k)Y (k)− s| (3.12)

where X is a signal constellation.

3.2. Selected Mapping

N-point IFFT

U
P

1
P

2
P

X

1
x

2
x

U
x

Transmit

.
.
.

1
X

2
X

U
X

3
P 3

x3
X

Select the one

with the

minimum

PAPR

N-point IFFT

N-point IFFT

N-point IFFT

Figure 3.2: A block diagram of the conventional SLM scheme.

The conventional SLM scheme [18] is described in Fig. 3.2, which gener-

ates U alternative OFDM signal sequences xu = [xu(0), xu(1), · · · , xu(N−

1)]T , 1 ≤ u ≤ U . To generate U alternative OFDM signal sequences, U dis-

tinct phase rotation vectors Pu known to both transmitter and receiver are

used, where Pu=[P u(0), P u(1), · · · , P u(N − 1)]T with P u(k) = ejφ
u(k),
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φu(k) ∈ [0, 2π), 1 ≤ u ≤ U , and P1 is an all-one vector. Then, the input

symbol sequence X is multiplied by each phase rotation vector Pu ele-

ment by element to generate U distinct alternative input symbol sequences

Xu = [Xu(0), Xu(1), · · · , Xu(N − 1)]T , where Xu(k) = X(k)P u(k).

Each of these U alternative input symbol sequences is IFFTed to gen-

erate total U alternative OFDM signal sequences xu = IFFTN (Xu),

and their PAPRs are calculated. Finally, the alternative OFDM signal

sequence xũ having the minimum PAPR is selected for transmission as

ũ = arg min
1≤u≤U

PAPR(xu) = arg min
1≤u≤U

(
maxn |xu(n)|2

E{|xu(n)|2}

)

where E{|xu(n)|2} = E{|x(n)|2} for all u’s. Note that the SI on ũ needs

to be transmitted in order to properly demodulate the received OFDM

signal sequence at the receiver, and U IFFTs are the dominant factors of

the computational complexity in the conventional SLM scheme.

Pseudo code 1: the conventional SLM scheme
1: γ ⇐ ∞
2: for u = 1, 2, · · · , U
3: Generate xu by processing one N -point IFFT.
4: if PAPR(xu) < γ

5: γ ⇐ PAPR(xu)
6: xũ ⇐ xu

7: end if
8: end for
9: Transmit xũ with the SI on ũ.

Pseudo code for the conventional SLM scheme is given as Pseudo code
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1, where to find the OFDM signal sequence with the minimum PAPR, the

value of γ is updated repetitively at each generation of alternative OFDM

signal sequences. The value of γ in Pseudo code 1, called an intermediate

minimum PAPR value, is the minimum among the PAPR values of the

alternative OFDM signal sequences generated at that stage. For conve-

nience, we use γ(u) to denote the value of γ after the PAPR of the u-th

alternative OFDM signal sequence is compared, which is also represented

as

γ(u) = min
1≤v≤u

PAPR(xv).

3.3. Low-Complexity SLM Schemes

In this section, three low-complexity SLM schemes are briefly reviewed,

which have lower computational complexity than that of the conventional

SLM scheme for the same number of alternative OFDM signal sequences.

3.3.1. Lim’s SLM Scheme [25]

It is already known that one N -point IFFT consists of l = log2N stages.

In Lim’s SLM scheme, the N -point IFFT of the input symbol sequence

X is processed from the first stage up to the (l − r)-th stage, not up to

the l-th stage. Then, each of U phase rotation vectors, designed not to

destroy the orthogonality between the subcarriers, is multiplied to the

output from the (l− r)-th stage of the IFFT, and the remaining stages of

IFFT, i.e., from the (l− r+1)-th stage to the l-th stage, are processed to

generate total U alternative OFDM signal sequences. Among them, the

18
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OFDM signal sequence with the minimum PAPR is transmitted.

3.3.2. Wang’s SLM Scheme [22]

In Wang’s SLM scheme, the input symbol sequence X is IFFTed to

generate the original OFDM signal sequence x. Then, x is multiplied

by each of U − 1 distinct N × N matrices, called conversion matrices,

to generate alternative OFDM signal sequences. Then, among these U

alternative OFDM signal sequences, the OFDM signal sequence with the

minimum PAPR is transmitted.

3.3.3. Baxley’s SLM Scheme [27]

The alternative OFDM signal sequences in Baxely’s SLM scheme are

generated by IFFT as the conventional SLM scheme, but the selection

strategy is different. Suppose that the HPA used in the OFDM system

is linear up to the saturation PAPR point γ0. Then, achieving a PAPR

value less than γ0 does not help to improve the power efficiency of the

HPA. Therefore, Baxely’s SLM scheme stops generating more alternative

OFDM signal sequences if an alternative OFDM signal sequence with

PAPR less than γ0 is found. With overwhelmingly low probability, all the

U alternative OFDM signal sequences have PAPR values larger than γ0

for the practical value of U , and in this case Baxely’s SLM scheme clearly

selects the one with the minimum PAPR.
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3.4. Tone Reservation

The TR scheme reserves some tones for generating a PAPR reduction

signal instead of data transmission [14]. Let R = {i1, i2, · · ·, iW } denote

the ordered index set of the reserved tones and Rc denote the complement

set of R in {0, 1, · · ·, N−1}, where W is the numbers of the reserved tones.

Then, the input symbol X(k) is expressed as

X(k) = A(k) + C(k) =


C(k), k ∈ R

A(k), k ∈ Rc

where A(k) is the data symbol with 0 in the peak reduction tone (PRT) set

R and C(k) is the PAPR reduction symbol with 0 in the set Rc, where

they are not overlapped. Let x(n), a(n), and c(n) be the time domain

signals obtained by IFFTing X(k), A(k), and C(k), respectively. Since

IFFT is a linear operation, the OFDM signal x(n) corresponds to the

summation of the data signal a(n) and the PAPR reduction signal c(n),

i.e., x(n) = a(n) + c(n). Here, it is possible that well designed PAPR

reduction signal c(n) can reduce the PAPR of the original OFDM signal

a(n).

Next, we consider the generation method of peak reduction signals. It

is very difficult to obtain the optimum values for PAPR reduction symbol

C(k). Thus, we introduce a well known method which is an iterative al-

gorithm as follows. Let f = [f(0) f(1) · · · f(N − 1)]T be the time domain
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kernel signal defined by

f(n) =
1√
N

∑
k∈R

F (k)ej2π
k
N
n

where F (k) = 0 for k ∈ Rc. The kernel signal f can be computed in

advanced and is used to make the PAPR reduction signal sequence c by

an iterative manner. [14]. That is, the PAPR reduction signal sequence cl

at the lth iteration is obtained as

cl =
l∑

i=1

αif((τi))

where f((τi)) denotes a circular shift of f by τi and αi is a complex scaling

factor computed according to the target threshold level γth and the max-

imum peak value at the ith iteration. The circular shift τi is determined

as

τi = arg max
0≤n≤LN−1

|a(n) + c(n)i−1|.

Then, the OFDM signal sequence in the TR scheme at the lth iteration

can be represented as

x = a+ cl. (3.13)
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Chapter 4. A New Low-Complexity SLM
Scheme for OFDM Systems

Several low-complexity SLM schemes which utilize the signals at an in-

termediate stage of IFFT have been proposed [25], [26]. In those schemes,

the signals at an intermediate stage of IFFT are multiplied by phase ro-

tation vectors to generate alternative OFDM signal sequences, which can

be equivalently viewed as multiplying phase rotation vectors to the input

symbol sequence. Although these schemes give PAPR reduction perfor-

mance close to that of the conventional SLM scheme without BER degra-

dation, their computational complexity is still high.

In this chapter, a low-complexity SLM scheme is proposed, which uti-

lizes the signals at an intermediate stage of IFFT similar to [25] and [26].

However, the proposed scheme generates each alternative OFDM signal

sequence by cyclically shifting the connections in each subblock at an in-

termediate stage of IFFT. It can also be equivalently viewed as multiply-

ing the corresponding phase rotation vectors which have lower correlations

than those of [25] and [26], to the input symbol sequence. Consequently,

the PAPR reduction performance of the proposed SLM scheme can ap-

proach to that of the conventional SLM scheme with lower computational

complexity compared to the schemes in [25] and [26]. Also, the proposed

SLM scheme has no BER degradation compared to the conventional SLM
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scheme.

The rest of this chapter is organized as follows. In Section 4.1, a new

low-complexity SLM scheme is proposed and analyzed. The proposed SLM

scheme is evaluated through simulation in Section 4.2 and conclusions are

given in Section 4.3.

4.1. A New SLM Scheme with Low-Complexity

4.1.1. A New SLM Scheme

0
¢x

1
¢x

2 1i -
¢x

Stage
X ( )n i-

Stage
1 x

Stage
1n i- +

Stage
n

Figure 4.1: A block diagram of the ordinary N -point decimation-in-
frequency IFFT (n = log2N).

Prior to explaining the proposed SLM scheme, we describe the ordi-

nary decimation-in-frequency radix-2 IFFT structure. It is well known

that the ordinary N -point decimation-in-frequency IFFT can be viewed

as in Fig. 4.1, where n = log2N . For any integer i, 1 ≤ i ≤ n − 1, the

intermediate OFDM signal sequence x′ at stage (n − i) is divided into

2i subblocks x′
0,x

′
1, ...,x

′
2i−1

. A subblock x′
m is composed of 2n−i outputs

from the stage (n−i) of IFFT, which is equivalent to the 2n−i-point IFFT

using the input symbol sequence X(k) satisfying k mod 2i = m. Fig. 4.2

shows an example of subblock partitions when N = 8 and i = 1, 2.

Fig. 4.3 shows a block diagram of the proposed SLM scheme. The N
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Figure 4.2: Subblock partitions at stage 1 (i.e., i = 2) and stage 2
(i.e., i = 1) of IFFT when N = 8 (W = e−j 2π

8 ).
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Figure 4.3: A block diagram of the proposed SLM scheme (n =
log2N).
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input symbols X(k), 0 ≤ k ≤ N − 1, are processed by the ordinary N -

point decimation-in-frequency IFFT up to the stage (n − i), where i is

the number of remaining stages until finishing the IFFT. To generate the

jth alternative OFDM signal sequence, 0 ≤ j ≤ U − 1, the connections

in each of subblocks x′
0,x

′
1, ...,x

′
2i−1

are cyclically shifted upward by the

predetermined integer numbers, aj0, a
j
1, ..., a

j
2i−1

, respectively. Note that

performing the cyclic shift requires negligible computational cost. Then

these cyclically shifted 2i subblocks become the input to the stage (n− i+

1) of N -point IFFT to generate the jth alternative OFDM signal sequence

xj . Finally, among these U alternative OFDM signal sequences, the one

having the minimum PAPR is selected for transmission and the SI is also

transmitted. In practical implementation of the proposed SLM scheme,

the value of i and the values of aj0, a
j
1, ..., a

j
2i−1

are fixed and thus the

proposed SLM scheme needs ⌈log2 U⌉ bits for SI, which is the same as the

conventional SLM scheme’s.
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Figure 4.4: An alternative OFDM signal sequence generated by the
proposed scheme for N = 8 and i = 1 using a0 = 1 and
a1 = 0.
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Fig. 4.4 shows an example to generate an alternative OFDM signal

sequence by the proposed scheme for N = 8 and i = 1 using a0 = 1 and

a1 = 0. Clearly, the original OFDM signal sequence x0 is generated by

using a0 = 0 and a1 = 0. Other alternative OFDM signal sequences are

generated by simply changing the shift values a0 and a1. For i = 2, each

of four subblocks, x′
0,x

′
1,x

′
2,x

′
3 is cyclically shifted and the last two stages

of 8-point IFFT are performed as the ordinary IFFT.

The value i can be any of 1, 2, ..., n − 1. As i increases, the PAPR

reduction performance improves but the computational complexity also

increases, which will be explained in the following subsections. Also, a

selection method of shift values aj0, a
j
1, ..., a

j
2i−1

to achieve good PAPR re-

duction performance is analyzed and proposed in Sections 4.1.3 and 4.1.4.

Compared with the conventional SLM scheme, the proposed scheme can

substantially reduce the amount of computations for IFFTs to generate

U alternative OFDM signal sequences, which will be analyzed in Section

4.1.5. Note that the proposed SLM scheme can also be implemented when

radix-4 and split-radix IFFT algorithms are used. However, the radix-2

IFFT algorithm is usually used in practical systems and thus we describe

the proposed SLM scheme with radix-2 IFFT structure.

4.1.2. Relation Between the Proposed SLM Scheme and the
Conventional SLM Scheme

In this subsection, the relation between the proposed SLM scheme and

the conventional SLM scheme is investigated. Let M = 2i be the number

of subblocks at the stage (n − i) in the N -point decimation-in-frequency

26



✐
✐

“KKH_Dissertation” — 2015/1/6 — 10:56 — page 27 — #43 ✐
✐

✐
✐

✐
✐

IFFT, where N = 2n and L = N/M is the size of each subblock. Then,

by replacing k with Ml + m and ignoring the scaling factor 1/
√
N for

convenience, (2.2) can be rewritten as

x(n) =

M−1∑
m=0

L−1∑
l=0

X(Ml +m)W−(Ml+m)n

=
M−1∑
m=0

(
L−1∑
l=0

X(Ml +m)W−Mln

)
W−mn. (4.1)

Note that
∑L−1

l=0 X(Ml+m)W−Mln, 0 ≤ m ≤ M−1, in (4.1) corresponds

to the subblock x′
m of the intermediate OFDM signal sequence at the

stage (n− i).

The jth alternative OFDM signal sequence is generated by cyclically

shifting the connections in each subblock x′
m by ajm and processing the re-

maining stages of IFFT. Thus, the jth alternative OFDM signal sequence

can be expressed as

xj(n) =
M−1∑
m=0

(
L−1∑
l=0

X(Ml +m)W−Ml(n+ajm)

)
W−mn

=

M−1∑
m=0

L−1∑
l=0

X(Ml +m)W−MlajmW−(Ml+m)n. (4.2)

By replacing Ml +m with k and noting that m = k mod M and Ml =

k − (k mod M), the jth alternative OFDM signal sequence in (4.2) can

be expressed as

xj(n) =
N−1∑
k=0

X(k)W−(k−(k mod M))ajk mod MW−kn.

Clearly, the proposed SLM scheme can be equivalently viewed as the
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conventional SLM scheme using the phase rotation vectors given as

P j(k) = W−(k−(k mod M))ajk mod M . (4.3)

Therefore, the receiver of the proposed SLM scheme is identical to that of

the conventional SLM scheme. Since the components of the phase rotation

vectors used in the proposed SLM scheme are complex numbers with a

unit magnitude (i.e., in (4.3), |P j(k)| = 1 for all j and k), the proposed

SLM scheme does not degrade the BER performance compared with the

conventional SLM scheme.

4.1.3. Good Shift Values for the Proposed SLM Scheme

It is clear that the shift values have a big impact on the PAPR re-

duction performance of the proposed scheme. It is well known that the

optimal phase rotation vectors should be orthogonal and aperiodic for

SLM scheme [39]. However, for the correlated phase rotation vectors, the

PAPR reduction performance can be analyzed by using the relation be-

tween the correlation of component powers of alternative OFDM signal

sequences and the correlation of phase rotation vectors as in [40].

Let Pc
j(n), 0 ≤ n ≤ N − 1, denote the nth component power |xj(n)|2

of the jth alternative OFDM signal sequence xj . In [40], a design criterion

of phase rotation vectors in SLM scheme with U alternative OFDM signal

sequences was derived by using the correlation coefficient ρjv(τ) between

Pc
j(n) and Pc

v(n+τ), 0 ≤ τ ≤ N−1, where 0 ≤ j ̸= v ≤ U−1. It was also

shown that the PAPR reduction performance improves as the maximum
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value of ρjv(τ) for τ decreases. As in [40], ρjv(τ) can be approximated as

ρjv(τ) ≃
1

N2

∣∣∣∣N−1∑
k=0

P j(k)P v(k)∗W kτ

∣∣∣∣2 (4.4)

where (·)∗ denotes the complex conjugate. Therefore, to achieve good

PAPR reduction performance, the shift values {aj0, a
j
1, ..., a

j
M−1} and {av0, av1, ..., avM−1}

should be chosen such that

arg min
a
j
0,a

j
1,...,a

j
M−1

,av0 ,a
v
1 ,...,a

v
M−1

(
max

τ
ρjv(τ)

)
(4.5)

where aj0, a
j
1, ..., a

j
M−1, a

v
0, a

v
1, ..., a

v
M−1 ∈ {0, 1, ..., L − 1}. For solving this

problem, by replacing k with Ml +m, we can rewrite (4.4) as

ρjv(τ) ≃
1

N2

∣∣∣∣M−1∑
m=0

L−1∑
l=0

P j(Ml +m)P v(Ml +m)∗W (Ml+m)τ

∣∣∣∣2. (4.6)

By using P j(Ml +m) = W−Mlajm in (4.3), (4.6) can be given as

ρjv(τ) ≃
1

N2

∣∣∣∣M−1∑
m=0

L−1∑
l=0

WM(avm−ajm+τ)l+mτ

∣∣∣∣2

=
1

N2

∣∣∣∣M−1∑
m=0

Wmτ ((WM(avm−ajm+τ))L − 1)

WM(avm−ajm+τ) − 1

∣∣∣∣2
=

1

N2

∣∣∣∣A0 +A1 + ...+AM−1

∣∣∣∣2 (4.7)

where

Am =
Wmτ ((WM(avm−ajm+τ))L − 1)

WM(avm−ajm+τ) − 1
, 0 ≤ m ≤ M − 1. (4.8)

Since ML = N , the term (WM(avm−ajm+τ))L − 1 in (4.8) is always zero

because (avm−ajm+ τ) is an integer. Then, the numerator of Am is always
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zero and thus Am is also zero except when the denominator of Am is zero.

When the denominator of Am is zero, it is easy to show that Am = LWmτ .

The value of τ which generates nonzero Am can be found by solving

avm − ajm + τ = 0 mod L.

Since −L < avm−ajm < L and 0 ≤ τ < N , the denominator of Am becomes

zero if

τ =


c0L− (avm − ajm), 1 ≤ c0 ≤ M, avm − ajm ≥ 0

c1L− (avm − ajm), 0 ≤ c1 ≤ M − 1, avm − ajm < 0.

(4.9)

For each m, as the integer τ runs from 0 to N − 1, nonzero Am appears

M times. Therefore, it is clear that max
τ

ρjv(τ) in (4.5) is minimized if

Am’s are not overlapped each other. In other words, it is required that at

most one Am in (4.7) is nonzero for any τ , which can be achieved if the

following condition is satisfied;

Condition for good shift values :

For all m1 ̸= m2, (avm1
− ajm1)− (avm2

− ajm2) ̸= 0 mod L.

If this condition is satisfied, the maximum value of ρjv(τ) becomes

L2/N2. If this condition is not satisfied for some m, the maximum value

of ρjv(τ) becomes larger than L2/N2. For instance, suppose that avm1
−

ajm1 = avm2
− ajm2 = d > 0 for m1 ̸= m2 and the condition is satisfied

for other m’s. Then, for τ = c0L − d, 1 ≤ c0 ≤ M , we have ρjv(τ) ≃
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1
N2 |LWm1τ + LWm2τ |2 from (4.7) and it is easy to check that

max
1≤c0≤M

1

N2
| LWm1(c0L−d) + LWm2(c0L−d) |2> L2

N2
.

Similarly, if there are more than two distinct m’s which do not satisfy the

condition, it can be shown that the maximum value of ρjv(τ) is larger

than L2/N2.

As a result, in order to achieve the best PAPR reduction performance

of the proposed scheme with U alternative OFDM signal sequences, shift

values should satisfy the condition for good shift values for all j, v pair,

where 0 ≤ j ̸= v ≤ U − 1. In this case, the maximum value of ρjv(τ)

is L2/N2 for all j, v pair. Hence, for the same N , the PAPR reduction

performance of the proposed scheme improves as i increases (i.e., L2/N2

decreases), which will be shown in Section 4.2.

4.1.4. Methods to Generate Good Shift Values

In this subsection, two methods to generate good shift values for the

proposed SLM scheme are introduced. Firstly, random generation of shift

values can be one of proper methods. If we choose ajm for all j and m from

{0, 1, ..., L− 1} with equal probability 1/L, then the term (avm1
− ajm1)−

(avm2
− ajm2) mod L can take the value from {0, 1, ..., L − 1} with equal

probability. Therefore, shift values generated by the random generation

method satisfy the condition for good shift values with high probability

because the practical value of L is usually big. However, when we use

the random generation method, both transmitter and receiver require the
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memory space to save M(U − 1) shift values (except 0’s for the original

OFDM signal sequence).

Secondly, we introduce a deterministic method to generate the shift

values satisfying the condition for good shift values. We set ajm = mj,

which is called mj-method. Then, (avm1
− ajm1) − (avm2

− ajm2) can be

rewritten as

(avm1
− ajm1

)− (avm2
− ajm2

) = (m1v −m1j)− (m2v −m2j)

= (m1 −m2)(v − j). (4.10)

Since we only consider the case when 0 ≤ m1 ̸= m2 ≤ M − 1 and 0 ≤ j ̸=

v ≤ U − 1, we obtain

0 < |(m1 −m2)(v − j)| ≤ (M − 1)(U − 1). (4.11)

From (4.10) and (4.11), the mj-method is guaranteed to satisfy the condi-

tion for good shift values when (M −1)(U −1) < L, i.e., (2i−1)(U −1) <

2n−i. This inequality can be satisfied for practical value of n and U because

the appropriate value of i is 2 in the proposed scheme as will be shown in

later section. Besides, the mj-method does not require the memory space

to save the shift values, which is an additional advantage of the proposed

SLM scheme using the mj-method compared to other SLM schemes re-

quiring memory space to save the phase rotation vectors.
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4.1.5. Computational Complexity

In this subsection, the computational complexity of the proposed scheme

is compared with those of the conventional SLM scheme and other low-

complexity SLM schemes. We only compare the computational complex-

ity to generate alternative OFDM signal sequences because the remaining

computational complexity is the same for most SLM schemes if the num-

ber of alternative OFDM signal sequences is the same.

When the number of subcarriers is N = 2n, the numbers of complex

multiplications and complex additions required for the conventional SLM

scheme can be derived as follows. An N -point IFFT requires (N/2)log2N

complex multiplications and N log2N complex additions. Therefore, the

total numbers of complex multiplications and complex additions for the

conventional SLM scheme using U alternative OFDM signal sequences

are U(N/2)log2N and UN log2N , respectively. In the proposed scheme, if

the cyclic shifts are performed at the stage (n−i), the numbers of required

complex multiplications and complex additions are ((n−i)/n)(N/2) log2N+

U(i/n)(N/2) log2N and ((n − i)/n)N log2N + U(i/n)N log2N , respec-

tively. Note that the reduction ratio of complex multiplications is the same

as that of complex additions. Therefore, the computational complexity re-

duction ratio (CCRR) of the proposed scheme over the conventional SLM

scheme is derived only for complex multiplication as

CCRR =

(
1− Complexity of the proposed scheme

Complexity of the conventional SLM

)
× 100 (%)

=

(
1− n+ (U − 1)i

nU

)
× 100 (%) =

(n− i)(U − 1)

nU
× 100 (%).
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Table 4.1: CCRR(%) of the Proposed Scheme Compared to the Con-
ventional SLM.

N 64 256 1024
U 4 8 16 4 8 16 4 8 16

i = 1 62.5 72.9 78.1 65.6 76.6 82.0 67.5 78.8 84.4
i = 2 50.0 58.3 62.5 56.3 65.6 70.3 60.0 70.0 75.0
i = 3 37.5 43.8 46.9 46.9 54.7 58.6 52.5 61.3 65.6
i = 4 25.0 29.2 31.3 37.5 43.8 46.9 45.0 52.5 56.3

As shown in Table 4.1, the proposed scheme has much lower compu-

tational complexity than the conventional SLM scheme. For example,

when i = 2, N = 1024, and U = 8, the computational complexity of

the proposed scheme reduces by 70% compared with the conventional

SLM scheme with almost the same PAPR reduction performance. It is

clear that the CCRR is large when N is large and i is small. However,

for small i, there appears a large amount of degradation in the PAPR

reduction performance compared to the conventional SLM scheme as will

be shown in Section 4.2. Now, we compare the computational complexity

of the existing low-complexity SLM schemes exploiting the signals at an

intermediate stage of IFFT. The reason for this comparison is that their

PAPR reduction performance is generally almost the same as that of the

conventional SLM scheme with the same number of alternative OFDM

signal sequences, which is different from most of other low-complexity

SLM schemes.

Fig. 4.5 shows the comparison of the computational complexity of

the proposed SLM scheme, the conventional SLM scheme, Lim’s SLM
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Figure 4.5: Comparison of the computational complexity of the pro-
posed SLM, P-SLM [26], Lim’s SLM [25], and the con-
ventional SLM when N = 2048.

scheme [25], and P-SLM scheme [26]. We set each low-complexity scheme

to have the PAPR reduction performance close to that of the conventional

SLM scheme when N = 2048 and 16-quadrature amplitude modulation

(16-QAM) is used. For the similar PAPR reduction performance com-

pared to the conventional SLM scheme, the schemes in [25] and [26] need

to exploit the signals at the 6-th intermediate stage of IFFT, which means

i = 5. The proposed SLM scheme can give us the similar PAPR reduction

performance compared to the conventional SLM scheme when i = 2 as will

be shown in the Section 4.2. The computational benefit of the proposed

SLM scheme mainly comes from this reason. As we expected, Fig. 4.5

shows that the proposed SLM scheme has the lowest computational com-

plexity among these SLM schemes.
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4.2. Simulation Results

For the simulation, 107 input symbol sequences are randomly generated

and 16-QAM is used. The OFDM signal sequence is oversampled by a fac-

tor of four which is sufficient to represent the continuous OFDM signal.

For the conventional SLM scheme, each element of the phase rotation vec-

tors is randomly selected from {±1,±j}. Similarly, to determine the shift

values for the proposed SLM scheme, the random generation method is

used. Note that the random generation method and the mj-method show

almost the same PAPR reduction performance for the practical values of

N , U , and i as will be shown in this section. However, in practical systems,

the mj-method would be preferred because it does not require memory

space to save the shift values. To evaluate the PAPR performance of the

proposed SLM scheme, complementary cumulative distribution functions

(CCDFs) are plotted.

Fig. 4.6 compares the PAPR reduction performance of the proposed

SLM scheme with that of the conventional SLM scheme when N = 1024

and 16-QAM is used for i = 1, 2, 3. Fig. 4.6 shows that the PAPR re-

duction performance of the proposed SLM scheme becomes better as i

increases, as expected from the analytical result that the maximum corre-

lation coefficient value for the equivalent phase rotation vectors decreases

as i increases. For example, the greatest gain of the computational com-

plexity is obtained for i = 1, but the PAPR reduction performance is

degraded due to the highly correlated equivalent phase rotation vectors.
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It is also observed from Fig. 4.6 that the PAPR reduction performance of

the proposed SLM scheme becomes closer to that of the conventional SLM

scheme as i increases. When i = 2, both schemes show almost the same

PAPR reduction performance. Since the performance of the proposed SLM

scheme is lower bounded by that of the conventional SLM scheme and the

computational complexity increases as i increases, the appropriate value

of i can be 2.

Fig. 4.7 compares the PAPR reduction performance of the proposed

SLM scheme using the mj-method and the random generation method

for selecting shift values. Since they show almost the same PAPR reduc-

tion performance, we can expect that two methods show almost the same

PAPR reduction performance for practical values of N , U , and i. However,

the mj-method requires no memory space to save the shift values (i.e.,

U −1 phase rotation vectors), which is different from other SLM schemes.

4.3. Conclusions

In this chapter, a new low-complexity SLM scheme exploiting the sig-

nals at an intermediate stage of IFFT is proposed, which shows almost

the same PAPR reduction performance as the conventional SLM scheme

when i = 2. Instead of performing U IFFTs as in the conventional SLM

scheme, the proposed scheme operates one IFFT up to (n − i) stages,

which is common to generation of all alternative OFDM signal sequences.

Then, the connections in each subblock at the stage (n − i) of IFFT is

cyclically shifted by the predetermined shift value in the proposed SLM
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scheme. Since the cyclic shifts at an intermediate stage of IFFT can be

viewed as multiplying an equivalent phase rotation vector consisting of

complex numbers with a unit magnitude to the input symbol sequence,

there is no BER degradation compared to the conventional SLM scheme.

Therefore, the proposed SLM scheme can be a good choice among many

PAPR reduction schemes if the most important criterion of the PAPR

reduction to consider is BER performance.

The simulation results show that the proposed SLM scheme using i = 2

can achieve almost the same PAPR reduction performance as the conven-

tional SLM scheme. Also, it is verified that the proposed SLM scheme has

the lowest computational complexity among existing low-complexity SLM

schemes exploiting the signals at an intermediate stage of IFFT.
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Figure 4.6: Comparison of PAPR reduction performance of the pro-
posed and the conventional SLM schemes when N =
1024, and 16-QAM and four-times oversampling are
used (a) i = 1, (b) i = 2, (c) i = 3.
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Figure 4.7: Comparison of the PAPR reduction perfor-
mance of the proposed SLM scheme using the mj-
method and the random generation method
when N = 1024, U = 4, and i = 3, and 16-QAM
and four-times oversampling are used.
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Chapter 5. An Efficient Selection Method
of a Transmitted OFDM Signal Sequence

for Various SLM Schemes

In this chapter, an efficient selection (ES) method of the OFDM signal

sequence with the minimum PAPR in the conventional SLM scheme is

proposed, which can be applied to almost all of the existing SLM schemes

including the low-complexity SLM schemes in [22], [25], [27]. By apply-

ing the proposed ES method, various SLM schemes are implemented with

lower computational complexity and the simulation results confirm that

the ES method substantially reduces the average computational complex-

ity of various SLM schemes. Note that the proposed ES method does not

degrade the PAPR reduction performance of SLM schemes.

The rest of the chapter is organized as follows. In Section 5.1, the ES

method is introduced and applied to the conventional SLM scheme. Also,

the computational benefit of the ES method is stochastically analyzed.

In Section 5.2, the proposed ES method is applied to the three low-

complexity SLM schemes. The computational benefit of the proposed ES

method is evaluated through simulations in Section 5.3 and conclusions

are given in Section 5.4.
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5.1. ES Method and Its Application to the Con-
ventional SLM Scheme

In this section, the ES method is proposed by explaining how to apply

the ES method to the conventional SLM scheme.

5.1.1. Sequential Generation of OFDM Signal Components
in the Conventional SLM Scheme

Alternative OFDM signal sequences are obtained by various generation

methods such as IFFT in the conventional SLM scheme and multiplication

of conversion matrices in Wang’s SLM scheme. The proposed ES method

utilizes the fact that such generation methods can be sequentially pro-

cessed and in this subsection, we will explain how to sequentially generate

OFDM signal components when alternative OFDM signal sequences are

obtained by IFFT in the conventional SLM scheme.
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Figure 5.1: An 8-point IFFT structure in DIT and its nodes.

In the computational sense, it is widely known that an N -point IFFT

requires total N log2N node values which are computed by complex addi-
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tion and/or multiplication. The computational complexity of an IFFT is

induced by these nodes and Fig. 5.1 shows an 8-point IFFT structure in

decimation-in-time (DIT) with its 24 nodes. Generally, the OFDM signal

components x(0), x(4), x(2), · · · , x(7) are generated by parallel computing

the 24 nodes stage by stage.

On the other hand, a sequential generation of the OFDM signal compo-

nents can be considered in IFFT. For example, the 24 nodes of the 8-point

IFFT in Fig. 5.1 are marked by eight different dashed shapes. Clearly, x(0)

is generated by computing the seven ‘dashed circle’ nodes. Then x(4) is

generated by additionally computing only one ‘dashed square’ node, x(2)

is generated by computing three more ‘dashed triangle’ nodes, and then

x(6) is generated by computing one more ‘dashed star’ node.

x(1) can be generated by computing the seven ‘dashed pentagon’ nodes.

Clearly, x(5), x(3), and x(7) are generated similarly to the case of x(4),

x(2), and x(6). Generally, in an N -point IFFT, the OFDM signal com-

ponents x(0), x(N/2), x(N/4), · · · , x(N − 1) in decimated order can be

sequentially generated by doing a few more additional computation.

Sequential generation of the N -point IFFT values requires extra mem-

ory space for the N log2N nodes in addition to the N memory space

required to implement the conventional IFFT. But, this storage require-

ment is not serious because the cost of the memory is cheap in these days.
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5.1.2. Application of the ES Method to the Conventional
SLM Scheme

At the u-th iteration in Pseudo code 1, after all the components of

xu are generated by performing N -point IFFT, the components’ powers

and PAPR(xu) are computed and then the PAPR(xu) is compared with

γ(u−1). However, this is inefficient in terms of computational complexity.

It is easily shown that an efficient method can be obtained by uti-

lizing the sequential generation in Section 5.1.1. While generating the

u-th alternative OFDM signal sequence by the sequential generation, if

a component power is larger than γ(u−1)E{|x(n)|2}, we stop the genera-

tion procedure immediately and move to the sequential generation of the

(u+1)-th alternative OFDM signal sequence. Note that the PAPR reduc-

tion performance of the conventional SLM scheme is not affected by this

interruption.
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Figure 5.2: The eleven nodes required to generate the first three
OFDM signal components xu(0), xu(4), and xu(2) in the
u-th alternative OFDM signal sequence.

Clearly this interruption reduces the computational complexity due to
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the u-th IFFT in the conventional SLM scheme. Suppose that the gen-

eration procedure of the u-th alternative OFDM signal sequence is inter-

rupted after the first three OFDM signal components are generated when

N = 8. Then, only the 11 nodes are computed in the u-th IFFT as shown

in Fig. 5.2.

Pseudo code 2 shows a detailed procedure of the conventional SLM

scheme aided by the proposed ES method. The third and fourth lines in

Pseudo code 2 show the sequential generation of the components of the

u-th alternative OFDM signal sequence. As the fifth, the sixth, and the

seventh lines in Pseudo code 2 show, the sequential generation may be

interrupted based on the value of γ and thus the average computational

complexity of the conventional SLM scheme is possibly reduced. Fig. 5.3

Pseudo code 2: the conventional SLM scheme aided by the ES
method
1: γ ⇐ ∞
2: for u = 1, 2, · · · , U
3: for n = 0, N/2, N/4, · · · , N − 1 (in decimated order)
4: Generate xu(n) by the sequential generation in Section 5.1.1.
5: if |xu(n)|2 > γE{|x(n)|2}
6: go to 11.
7: end if
8: end for
9: γ ⇐ PAPR(xu)
10: xũ ⇐ xu

11: end for
12: Transmit xũ with the SI on ũ.
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shows a block diagram of the conventional SLM scheme aided by the

proposed ES method. Except the first IFFT block, at each IFFT block,

the sequential generation of the components of each alternative OFDM

signal sequence can be interrupted according to the value of γ(u).
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Figure 5.3: A block diagram of the conventional SLM scheme aided
by the proposed ES method.

5.1.3. Complexity Analysis for Nyquist Sampling Case

In this subsection, we analyze the computational complexity of the

conventional SLM scheme aided by the ES method for Nyquist sampling

case. We only consider the computational complexity required to generate

U alternative OFDM signal sequences by doing IFFTs, which is a domi-

nant factor in the computational complexity of the SLM scheme. Also, we

consider the computational complexity in an average sense because the
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interruption of IFFT in the proposed ES method occurs depending on the

random input symbol sequences.

Let Bu be the random variable of the number of generated OFDM signal

components by the sequential generation at the u-th IFFT until an inter-

ruption occurs, 2 ≤ u ≤ U . Let DN denote the amount of computations

for one N -point IFFT. Then we can obtain the average computational

complexity of the conventional SLM scheme aided by the ES method as

DN +
N∑

b2=1

KN (b2)pB2(b2) + · · ·+
N∑

bU=1

KN (bU )pBU
(bU ) (5.1)

where KN (b) denotes the computational complexity to generate b OFDM

signal components in an N -point IFFT by the sequential generation and

pBu(bu) denotes the probability mass function (PMF) of Bu. Clearly, the

computational complexity of the conventional SLM scheme with U alter-

native OFDM signal sequences without the ES method is UDN .

5.1.3.1. Characteristics of a Nyquist-Sampled OFDM Signal Se-
quence

Prior to deriving the functions KN (b) and pBu(bu) in (5.1), we overview

the characteristics of a Nyquist-sampled OFDM signal sequence x.

As in many other works, it is assumed that an OFDM signal component

is a complex Gaussian random variable with zero mean and E{|x(n)|2}

variance, which is a good approximation for a large number of subcarriers

from the central limit theorem [31]. Since an OFDM signal component

is complex Gaussian, the amplitude of an OFDM signal component is

Rayleigh distributed. Thus, it is easy to show that the probability that
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the power of an OFDM signal component x(n) is smaller than γE{|x(n)|2}

is given as

Γ(γ) , P

(
|x(n)|2

E{|x(n)|2}
< γ

)
= 1− e−γ .

Moreover, IFFT of statistically independent inputs produces statistically

independent outputs and thus the OFDM signal components are mutually

independent.

Also, we assume that U phase rotation vectors are mutually indepen-

dent and thus U alternative OFDM signal sequences are mutually inde-

pendent. Then, we have [31]

P (PAPR(xu) < γ) = ΓN (γ).

5.1.3.2. Derivation of KN (b)

Since DN is defined as the computational complexity for one N -point

IFFT and N log2N nodes have to be computed in one N -point IFFT, we

can define the computational complexity per node as

d ,
DN

N log2N
.

Then, as in Fig. 5.1, the first OFDM signal component x(0) is gener-

ated by computing (20 + 21 + 22) ‘dashed circle’ nodes, which requires

the computational complexity (20 + 21 + 22)d. Similarly, the computa-

tional complexity to generate the first OFDM signal component x(0) in

an N -point IFFT by the sequential generation is (20 + · · · + 2log2 N−1)d

which corresponds to KN (1). In conclusion, the computational complexity

49



✐
✐

“KKH_Dissertation” — 2015/1/6 — 10:56 — page 50 — #66 ✐
✐

✐
✐

✐
✐

KN (b) to generate b OFDM signal components, 1 ≤ b ≤ N , in an N -point

IFFT by the sequential generation is obtained as

KN (b) = (20+· · ·+2log2 N−1)d+
(⌊b− 1

20

⌋
·20+· · ·+

⌊ b− 1

2log2 N−1

⌋
·2log2 N−1

)
d.

(5.2)

Note that, KN (N) = (N log2N)d = DN .
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Figure 5.4: Relative computational complexity required to generate
b OFDM signal components in an 128-point IFFT by the
sequential generation.

In order to have an insight into the computational complexity, KN (b)/DN

versus b for N = 128 is plotted in Fig. 5.4. Note that the plot in Fig. 5.4

shows a near linear relationship. For instance, b = 64 at the x-axis cor-

responds to 0.5 at the y-axis, which implies that, by using the sequential

generation, a half of OFDM signal components are generated with a half

50



✐
✐

“KKH_Dissertation” — 2015/1/6 — 10:56 — page 51 — #67 ✐
✐

✐
✐

✐
✐

of the computational complexity of one IFFT.

5.1.3.3. Distribution of pBu(bu)

Clearly, the probability distribution of Bu depends on the value of

γ(u−1) and thus the PMF of Bu can be represented as

pBu(bu) =

∫ ∞

1
pBu|γ(u−1)(bu | γ) fγ(u−1)(γ)dγ (5.3)

for an integer bu within [1, N ], where pBu|γ(u−1)(bu | γ) is the conditional

PMF of Bu given that γ(u−1) = γ and fγ(u−1)(γ) is the probability density

function (PDF) of the random variable γ(u−1).

By using Γ(γ), pBu|γ(u−1)(bu | γ) and fγ(u−1)(γ) are expressed [18] as

pBu|γ(u−1)(bu | γ) =


(1− Γ(γ))Γbu−1(γ), 1 ≤ bu ≤ N − 1

ΓN−1(γ), bu = N

(5.4)

and

fγ(u−1)(γ) =
d

dγ
Fγ(u−1)(γ)

=
d

dγ

(
1−

u−1∏
v=1

P (PAPR(xv) > γ)
)

=
d

dγ
(1− (1− ΓN (γ))u−1) (5.5)

where Fγ(u−1)(γ) is the cumulative distribution function (CDF) of γ(u−1).

Therefore, by plugging (5.2) and (5.3) into (5.1), we obtain the average

computational complexity of the conventional SLM scheme aided by the

ES method for Nyquist sampling case.
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5.1.4. Complexity Analysis for Oversampling Case

Practically, SLM schemes are often used with four-times oversampling

to estimate the PAPR more accurately. In this subsection, we analyze the

computational complexity of the conventional SLM scheme aided by the

ES method for four-times oversampling case. In the conventional SLM

scheme, the four-times oversampled alternative OFDM signal sequence is

generated by performing 4N -point IFFT to the input symbol sequence of

length N padded with 3N zeroes.

Let Bu be the random variable representing the number of generated

oversampled OFDM signal components at the u-th IFFT in the conven-

tional SLM scheme aided by the ES method and its range is [1, 4N ]. Thus,

similar to the Nyquist sampling case, the average computational complex-

ity of the conventional SLM scheme aided by the ES method for four-times

oversampling case is

D4N +

4N∑
b2=1

K4N (b2)pB2(b2) + · · ·+
4N∑

bU=1

K4N (bU )pBU
(bU )

where K4N (b) denotes the computational complexity to generate b OFDM

signal components, 1 ≤ b ≤ 4N , in a 4N -point IFFT by the sequential

generation and pBu(bu) is the PMF of Bu.

5.1.4.1. Characteristics of a Four-Times Oversampled OFDM
Signal Sequence

Let x̃u = [x̃u(0), x̃u(1), · · · , x̃u(4N − 1)]T denote the u-th four-times

oversampled alternative OFDM signal sequence and let E{|x̃(n)|2} = 2σ2.
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Now we introduce several characteristics of the four-times oversampled

OFDM signal components. Firstly, since the distribution of PAPR(x̃u) is

similar to that of continuous OFDM signal, the CDF of PAPR(x̃u) can

be approximated by using the results for the continuous OFDM signal in

[31] as

P (PAPR(x̃u) < γ) ≃ exp
{
− e−γN

√
π

3
lnN

}
. (5.6)

Secondly, the four-times oversampled OFDM signal components x̃(n) can

be regarded as complex Gaussian random variables with zero mean and

variance 2σ2 from the central limit theorem. Thirdly, from Appendix A,

when the sequential generation is used, the four-times oversampled OFDM

signal components are generated in the following order.

{x̃(4s) : s ∈ ZN} → {x̃(4s+ 2) : s ∈ ZN}

→ {x̃(4s+ 1) : s ∈ ZN} → {x̃(4s+ 3) : s ∈ ZN}.

Fourthly, from Appendix B, the four-times oversampled OFDM signal

components in the same set {x̃(4s+ p) : s ∈ ZN} for any fixed p ∈ Z4 are

statistically independent.

5.1.4.2. Derivation of K4N (b)

Clearly, K4N (b) is the function obtained by replacing N of KN (b) in

(5.2) by 4N .
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5.1.4.3. Distribution of pBu(bu)

Similar to the Nyquist sampling case, pBu(bu) is represented as

pBu(bu) =

∫ ∞

1
pBu|γ(u−1)(bu | γ) fγ(u−1)(γ)dγ (5.7)

for an integer bu in [1, 4N ].

Using (5.6), the PDF fγ(u−1)(γ) in (5.7) is given as

fγ(u−1)(γ) =
d

dγ
Fγ(u−1)(γ)

=
d

dγ

(
1−

u−1∏
v=1

P (PAPR(x̃v) > γ)
)

=
d

dγ

(
1−

(
1− exp

{
− e−γN

√
π

3
lnN

})u−1)
.

Using the characteristics of the four-times oversampled OFDM signal

components x̃(n), the conditional PMF pBu|γ(u−1)(bu | γ) in (5.7) is given

as

pBu|γ(u−1)(bu | γ)

=



(1− Γ(γ))Γbu−1(γ), 1 ≤ bu ≤ N

(1−Υ(γ))Υbu−N−1(γ)ΓN (γ), N + 1 ≤ bu ≤ 2N

(1−Ψ(γ))Ψbu−2N−1(γ)ΥN (γ)ΓN (γ), 2N + 1 ≤ bu ≤ 3N

(1− Φ(γ))Φbu−3N−1(γ)ΨN (γ)ΥN (γ)ΓN (γ), 3N + 1 ≤ bu ≤ 4N − 1

ΦN−1(γ)ΨN (γ)ΥN (γ)ΓN (γ), bu = 4N
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where

Γ(γ) =P (|x̃(4m)|2 < 2σ2γ) = 1− e−γ

Υ(γ) =P (|x̃(4m+ 2)|2 < 2σ2γ | |x̃(4s)|2 < 2σ2γ ∀ s ∈ ZN )

Ψ(γ) =P (|x̃(4m+ 1)|2 < 2σ2γ | |x̃(4s)|2, |x̃(4s+ 2)|2 < 2σ2γ ∀ s ∈ ZN )

Φ(γ) =P (|x̃(4m+ 3)|2 < 2σ2γ | |x̃(4s)|2,

|x̃(4s+ 1)|2, |x̃(4s+ 2)|2 < 2σ2γ ∀ s ∈ ZN ) (5.8)

for m ∈ ZN .

Since the oversampled OFDM signal components x̃(n) are complex

Gaussian random variables, Υ(γ),Ψ(γ), and Φ(γ) in (5.8) are obtained

by dealing with joint Gaussian PDFs. We only derive Υ(γ) in Appendix

C due to the lack of space and Ψ(γ) and Φ(γ) can be analogously obtained.

5.1.5. Comparison between Analytical and Simulation Re-
sults

In this subsection, we compare the analytical results in Sections 5.1.3

and 5.1.4 and the simulation results obtained by simulating 105 randomly

generated input symbol sequences with 16-QAM for each subcarrier. Since

the distribution of pBu(bu) for Nyquist sampling and four-times oversam-

pling cases in (5.3) and (5.7) are too complex to deal with, numerical

integration and least squares curve fitting of Υ(γ),Ψ(γ), and Φ(γ) in (5.8)

are utilized to obtain analytical results. The number of subcarriers is

N = 256 and the numbers of the alternative OFDM signal sequences

are U = 2, 3, · · · , 10.
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The CCRR is used to evaluate the computational benefit of the pro-

posed ES method. The CCRR of the conventional SLM scheme aided by

the proposed ES method over the conventional SLM scheme is defined as

(
1− complexity of the conventional SLM aided by ES

complexity of the conventional SLM without ES

)
× 100 (%).

(5.9)

CCRR for other SLM schemes can be similarly defined.
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Figure 5.5: Comparison between the analytical and the simulation re-
sults using CCRR of the conventional SLM scheme aided
by the proposed ES method over the conventional SLM
scheme when N = 256.

Fig. 5.5 compares the analytical and the simulation results in terms of

CCRR of the conventional SLM scheme aided by the proposed ES method

over the conventional SLM scheme as a function of U for the two sampling
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cases. In Fig. 5.5, for both sampling cases, the analytical results derived

in Sections 5.1.3 and 5.1.4 show very good agreement with the simulation

results. As U increases, small gap appears between the two results, which

may be due to the several assumptions in the derivations.

5.2. Application of the ES Method to Various Low-
Complexity SLM Schemes

In this section, we briefly introduce how to apply the proposed ES

method to Lim’s [25], Wang’s [22], and Baxley’s [27] low-complexity SLM

schemes. The basic methodology of these applications is similar to the

conventional SLM case. In Lim’s, Wang’s, and Baxely’s SLM schemes,

it is possible to implement the sequential generation of the alternative

OFDM signal components and thus the ES method can be applied to

these SLM schemes. Note that the ES method can be applied to other

SLM schemes if the sequential generation is possible.

5.2.1. Lim’s SLM Scheme Aided by the ES Method

In Lim’s SLM scheme aided by the ES method, the common IFFT

procedure from the 1-st stage to the (log2N − r)-th stage is the same

as the case without the ES method. However, at the remaining stages

of IFFT, the sequential generation can be implemented similarly to the

result in Section 5.1.1. Consequently, to generate the U − 1 alternative

OFDM signal sequences, the remaining stages can be partially processed

based on the intermediate minimum PAPR value.
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5.2.2. Wang’s SLM Scheme Aided by the ES Method

Clearly, some part of an alternative OFDM signal sequence is generated

by multiplying the corresponding columns of the conversion matrix to

the original OFDM signal sequence x. Thus, the sequential generation

can be implemented in Wang’s SLM scheme. Consequently, the U − 1

conversion matrix-vector multiplications can be partially processed based

on the intermediate minimum PAPR value.

5.2.3. Baxely’s SLM Scheme Aided by the ES Method

Baxely’s SLM scheme uses the saturation PAPR point of HPA as γ0.

Therefore, if the ES method is applied, each IFFT is partially processed

based on γ0. More precisely, while the alternative OFDM signal compo-

nents are sequentially generated by performing IFFT, the generation can

be interrupted if an OFDM signal component having a power larger than

γ0E{|x(n)|2} appears. Then, the next alternative OFDM signal sequence

is sequentially generated and checked by γ0 in the same manner.

As mentioned earlier, all the U alternative OFDM signal sequences

have larger PAPR values than γ0 with very low probability, for example,

such probability value is 1.37× 10−7 for N = 256, U = 16, and γ0 = 8dB.

When all U alternative OFDM signal sequences have larger PAPR than γ0,

Baxely’s SLM scheme without the ES method tests all the U alternative

OFDM signal sequences and selects the one with the minimum PAPR

which is larger than γ0. Likewise, in this case, Baxely’s SLM scheme with

the ES method finishes all the partially processed U IFFT blocks and
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selects the one with the minimum PAPR. The computational complexity

of three low-complexity SLM schemes aided by the ES method can be

analytically derived in the analogous manner as in Sections 5.1.3 and

5.1.4.

5.3. Simulation Results

In this section, we present some numerical results including the average

computational complexity given by simulating 105 randomly generated in-

put symbol sequences. As in other literatures, we only compare the com-

putational complexity required for generation of alternative OFDM signal

sequences, which is a dominant factor in SLM schemes. Clearly, the PAPR

reduction performance is not degraded by applying the ES method and

thus we compare only the computational complexity. The computational

benefit of the ES method does not depend on the modulation order and

thus 16-QAM is used for all cases.

5.3.1. Simulation Results for the Conventional SLM Scheme
Aided by the ES Method

For the conventional SLM case, we simulate the OFDM system with

N = 256, 1024. Table 5.1 provides the computational complexity and

the CCRR of the conventional SLM scheme aided by the ES method

over the conventional SLM scheme for two sampling cases. To implement

four-times oversampling, 3N zeroes are added to the (alternative) input

symbol sequences and 4N -point IFFT is performed. Therefore, the com-

putational complexity of the conventional SLM scheme without the ES
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method is UD4N when four-times oversampling is used. Table 5.1 shows

that the ES method substantially reduces the computational complexity

of the conventional SLM scheme for all cases. Table 5.1 also shows that

the number of subcarriers N has little effect on the computational benefit

of the ES method. Also, the reduction ratio of computational complexity

by using the ES method increases as U increases.

Table 5.1: Computational Benefit of the Conventional SLM Scheme
Aided by the ES Method

Sampling N Scheme U = 8 U = 16 U = 32

Conv. SLM w/o ES 8 DN 16 DN 32 DN

256 Conv. SLM w/ ES 4.92 DN 8.31 DN 14.26 DN

Nyquist CCRR (%) 38.5 48.1 55.4
sampling Conv. SLM w/o ES 8 DN 16 DN 32 DN

1024 Conv. SLM w/ ES 4.81 DN 8.03 DN 13.58 DN

CCRR (%) 39.9 49.8 57.6
Conv. SLM w/o ES 8 D4N 16 D4N 32 D4N

256 Conv. SLM w/ ES 4.21 D4N 6.69 D4N 10.82 D4N

Four-times CCRR (%) 47.4 58.2 66.2
oversampling Conv. SLM w/o ES 8 D4N 16 D4N 32 D4N

1024 Conv. SLM w/ ES 4.22 D4N 6.65 D4N 10.70 D4N

CCRR (%) 47.3 58.4 66.6

5.3.2. Simulation Results for Low-Complexity SLM Schemes
Aided by the ES Method

For the three low-complexity SLM schemes introduced earlier, simula-

tion has been performed when N = 256 and four-times oversampling is

used.
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Table 5.2 shows the computational complexity and the CCRR of the

Lim’s SLM scheme aided by the ES method over Lim’s SLM scheme. In

Lim’s SLM scheme, the number of remaining stages r is set to 5 guaran-

teeing good PAPR reduction performance. It is clear that the ES method

substantially reduces the computational complexity of Lim’s SLM scheme.

Table 5.2: Computational Benefit of the ES Method for Lim’s SLM
Scheme

U = 8 U = 16 U = 32

Lim’s SLM w/o ES 4.5 D4N 8.5 D4N 16.5 D4N

Lim’s SLM w/ ES 2.46 D4N 3.48 D4N 5.10 D4N

CCRR (%) 45.3 59.1 69.1

Table 5.3 shows the computational complexity and the CCRR of the

Wang’s SLM scheme aided by the ES method over Wang’s SLM scheme.

In Table 5.3, the complexity is measured by using the comparison of the

number of complex additions required for conversion matrix-vector multi-

plications in Wang’s SLM scheme. Since Wang’s SLM scheme has a con-

straint on U , the cases of U = 4, 8, 12 are simulated. We can see that the

ES method substantially reduces the computational complexity of Wang’s

SLM scheme.

Table 5.4 shows the computational complexity and the CCRR of the

Baxely’s SLM scheme aided by the ES method over Baxley’s SLM scheme.

For simplicity, the number of alternative OFDM signal sequences is fixed

to U = 16. In Table 5.4, we can see that the computational benefit of

the ES method depends on the value of γ0, the saturation PAPR point of
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Table 5.3: Computational Benefit of the ES Method for Wang’s SLM
Scheme

U = 4 U = 8 U = 12

Wang’s SLM w/o ES9,216 com. add.21,504 com. add.33,792 com. add.
Wang’s SLM w/ ES 4,933 com. add. 9,288 com. add. 12,820 com. add.

CCRR (%) 46.5 56.8 62.1

HPA.

Table 5.4: Computational Benefit of the ES Method for Baxely’s SLM
Scheme

γ0 = 7.5dB γ0 = 8.0dB γ0 = 8.5dB
Baxely’s SLM scheme w/o ES 8.03 D4N 3.24 D4N 1.73 D4N

Baxely’s SLM scheme w/ ES 5.12 D4N 1.81 D4N 1.28 D4N

CCRR (%) 36.2 44.1 26.1

Note that even for the low-complexity SLM schemes the ES method

provides large computational benefit. That is, the ES method can be ef-

fectively combined with almost all the existing SLM schemes to further

reduce the computational complexity.

5.4. Conclusions

When various SLM schemes generate alternative OFDM signal sequences,

the proposed ES method selects the transmitted OFDM signal sequence

efficiently. Aided by the ES method, the alternative OFDM signal com-

ponents are sequentially generated and the generation procedure can be

interrupted according to the component power value. As a result, the

average computational complexity of the SLM schemes is substantially
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reduced. It is meaningful to mention that the application of the proposed

ES method does not degrade the PAPR reduction performance of the used

SLM scheme.

In this chapter, we described how to apply the ES method to the conven-

tional SLM scheme and analyzed its computational complexity. Further-

more, we briefly described the application of the proposed ES method to

the three previously low-complexity SLM schemes, and simulation results

confirmed the computational benefit of the ES method. We anticipate that

the proposed ES method can be effectively applied to many other SLM

schemes beyond the SLM schemes described in this chapter.

Appendix A

We will show that the sequential generation in Section 5.1.1 generates

the four-times oversampled OFDM signal components in the order as

{x̃(4s) : s ∈ ZN} → {x̃(4s+ 2) : s ∈ ZN}

→ {x̃(4s+ 1) : s ∈ ZN} → {x̃(4s+ 3) : s ∈ ZN}.

The sequential generation in Section 5.1.1 uses a DIT FFT structure

and thus generates 4N oversampled OFDM signal components in bit-

reversed order as

x̃(( 000 · · · 00︸ ︷︷ ︸
log2 N+2 bits

)2) → x̃(( 100 · · · 00︸ ︷︷ ︸
log2 N+2 bits

)2)

→ x̃(( 010 · · · 00︸ ︷︷ ︸
log2 N+2 bits

)2) → · · · → x̃(( 111 · · · 11︸ ︷︷ ︸
log2 N+2 bits

)2)
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where (·)2 denotes the binary representation of integer number.

Then, the generation order of components is easily divided into

x̃(( 00 · · · 0︸ ︷︷ ︸
log2 N bits

00)2) → x̃(( 01 · · · 0︸ ︷︷ ︸
log2 N bits

00)2) → · · · → x̃(( 11 · · · 1︸ ︷︷ ︸
log2 N bits

00)2)

︸ ︷︷ ︸
{x̃(4s):s∈ZN}

→ x̃(( 00 · · · 0︸ ︷︷ ︸
log2 N bits

10)2) → x̃(( 01 · · · 0︸ ︷︷ ︸
log2 N bits

10)2) → · · · → x̃(( 11 · · · 1︸ ︷︷ ︸
log2 N bits

10)2)

︸ ︷︷ ︸
{x̃(4s+2):s∈ZN}

→ x̃(( 00 · · · 0︸ ︷︷ ︸
log2 N bits

01)2) → x̃(( 01 · · · 0︸ ︷︷ ︸
log2 N bits

01)2) → · · · → x̃(( 11 · · · 1︸ ︷︷ ︸
log2 N bits

01)2

︸ ︷︷ ︸
{x̃(4s+1):s∈ZN}

→ x̃(( 00 · · · 0︸ ︷︷ ︸
log2 N bits

11)2) → x̃(( 01 · · · 0︸ ︷︷ ︸
log2 N bits

11)2) → · · · → x̃(( 11 · · · 1︸ ︷︷ ︸
log2 N bits

11)2

︸ ︷︷ ︸
{x̃(4s+3):s∈ZN}

.

Appendix B

We want to show that when four-times oversampling is used, the over-

sampled OFDM signal components in the same set {x̃(4s+ p) : s ∈ ZN}

for any fixed p ∈ Z4 are statistically independent.

Four-times oversampled OFDM signal components are generated by the

4N -point IFFT of the zero-padded input symbol sequence given as

{X(0), X(1), · · · , X(
N

2
−1), 0, 0, · · · , 0︸ ︷︷ ︸

3N zeroes

, X(
N

2
), X(

N

2
+1), · · · , X(N−1)}.

Thus the four-times oversampled OFDM signal component x̃(4s + p) is
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expressed as

x̃(4s+ p) =

N
2
−1∑

k=0

X(k)ej
2π
4N

k(4s+p) +
4N−1∑
k= 7N

2

X(k − 3N)ej
2π
4N

k(4s+p)

=

N
2
−1∑

k=0

X(k)ej
2π
4N

kpej
2π
N

ks +
N−1∑
k=N

2

X(k)ej
2π
4N

(k+3N)pej
2π
N

ks

=
N−1∑
k=0

X ′(k)ej
2π
N

ks

where

X ′(k) =


X(k)ej

2π
4N

kp, 0 ≤ k ≤ N
2 − 1

X(k)ej
2π
4N

(k+3N)p, N
2 ≤ k ≤ N − 1.

It is well known that IFFT of statistically independent inputs also

produces statistically independent outputs [31]. Since the components in

{x̃(4s + p) : s ∈ ZN} for any fixed p are the outputs of N -point IFFT

whose inputs are statistically independent random variables X ′(k), the

components in the set {x̃(4s + p) : s ∈ ZN} for any fixed p ∈ Z4 are

statistically independent.

Appendix C

We will derive the function Υ(γ) in (5.8). Since a four-times oversam-

pled OFDM signal component x̃(n) has large correlation with its neigh-

boring components, Υ(γ) can be approximated as

Υ(γ) = P (|x̃(4m+ 2)|2 < 2σ2γ | |x̃(4s)|2 < 2σ2γ ∀ s ∈ ZN )

≃ P (|x̃(4m+ 2)|2 < 2σ2γ | |x̃(4m)|2, |x̃(4m+ 4)|2 < 2σ2γ)
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=
P (|x̃(4m)|2, |x̃(4m+ 2)|2, |x̃(4m+ 4)|2 < 2σ2γ)

Γ2(γ)
. (5.10)

In (5.10), the oversampled OFDM signal components x̃(4m), x̃(4m+ 2),

and x̃(4m+ 4) are jointly complex Gaussian random variables, each with

zero mean and variance 2σ2. Let Ip and Qp denote the in-phase and

quadrature components of x̃(4m + p), respectively, and then the joint

PDF of I0, I2, I4, Q0, Q2, and Q4 is given as

fI0I2I4Q0Q2Q4(z) =
1√

(2π)6|Σ|
exp{−1

2
z Σ−1 zT } (5.11)

where

z = [i0, i2, i4, q0, q2, q4]

and Σ is the covariance matrix of Gaussian random vector z.

Firstly, Ip and Qp are uncorrelated for all p’s. Secondly, cov(I0, I4) =

cov(Q0, Q4) = 0 from Appendix B where cov(a, b) means the covariance

between a and b. It is known that four-times oversampling can be imple-

mented by using low pass filter whose impulse response is the sinc function

[41]. That is, x̃(4m+ 2) can be represented by an infinite series as

x̃(4m+ 2) =sinc(
π

2
)x̃(4m) + sinc(

π

2
)x̃(4m+ 4)

+ sinc(
3π

2
)x̃(4m− 4) + sinc(

3π

2
)x̃(4m+ 8) + · · ·

where sinc(x) = sin(x)/x and the oversampled OFDM signal components

x̃(4s) for all s ∈ ZN are statistically independent from Appendix B. Thus,
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we have

cov(I0, I2)=cov(I2, I4)=cov(Q0, Q2)=cov(Q2, Q4)≈sinc(
π

2
)σ2.

Conclusively, the covariance matrix Σ is approximated as

Σ ≈



σ2 sinc(π2 )σ
2 0 0 0 0

sinc(π2 )σ
2 σ2 sinc(π2 )σ

2 0 0 0

0 sinc(π2 )σ
2 σ2 0 0 0

0 0 0 σ2 sinc(π2 )σ
2 0

0 0 0 sinc(π2 )σ
2 σ2 sinc(π2 )σ

2

0 0 0 0 sinc(π2 )σ
2 σ2


.

(5.12)

By changing the variables of the joint PDF in (5.11) into polar forms

and using it, Υ(γ) in (5.10) can be expressed as

Υ(γ) =

(∫ √
2σ2γ

0

∫ √
2σ2γ

0

∫ √
2σ2γ

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

fI0I2I4Q0Q2Q4(r0 cos(θ0), r2 cos(θ2), r4 cos(θ4),

r0 sin(θ0), r2 sin(θ2), r4 sin(θ4))

r0 r2 r4 dθ0 dθ2 dθ4 dr0 dr2 dr4

)
/(1− e−γ)2.
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Chapter 6. Clipping Noise Cancellation
for OFDM Systems Using Reliable
Observations Based on Compressed

Sensing

Clipping is the simplest way to reduce PAPR of OFDM signals and thus

has been widely studied [7], [8], [33]–[36]. Clipping at the Nyquist sam-

pling rate has been used for low-complexity applications but suffers from

peak regrowth after D/A conversion. It is known that clipping an over-

sampled OFDM signal reduces the peak regrowth after D/A conversion,

but it causes out-of-band radiation which has to be filtered [7]. The distor-

tion of the OFDM signal caused by clipping is called clipping noise which

has sparsity in time domain. There are several schemes to mitigate clip-

ping noise [37], [38], [42]–[45], among which the scheme in [37] performs

iterative ML estimation for all tones and recreates clipping procedure in

order to reconstruct clipping noise.

According to recent results in sparse signal processing, also known as

compressed sensing (CS) theory [46]–[49], a sparse signal can be recon-

structed from its compressed observations. In this context, clipping noise

can be effectively reconstructed at the receiver by CS reconstruction al-

gorithms. As the first work for this, a tone reservation scheme using CS is

proposed in [28], where several tones are reserved at the transmitter before
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clipping, and the receiver reconstructs the clipping noise by exploiting the

compressed observations of the reserved tones. However, in this scheme,

the reserved tones induce data rate loss and due to the vulnerability of

CS reconstruction algorithms to the channel noise BER performance is

poor. Another clipping noise cancellation scheme using CS is proposed

in [29], motivated by the results in [28]. The scheme in [29] does not in-

duce data rate loss because the compressed observations of the pilot tones

are exploited. However, it still shows poor BER performance due to its

vulnerability to the channel noise.

In this chapter, we propose a new clipping noise cancellation scheme

using CS, which selectively uses observations of data tones. That is, re-

liable observations contaminated by less channel noise are selected and

then the clipping noise is reconstructed from these compressed observa-

tions by using a CS reconstruction algorithm. The proposed scheme has

the following three major advantages compared to the schemes in [28] and

[29].

• In contrast with the scheme in [28], the proposed scheme does not

reserve tones and instead exploits compressed observations of the

underlying clipping noise in data tones, which leads to no data rate

loss.

• In practice, some OFDM systems do not insert pilot tones into every

OFDM signal. Even in this case, the proposed scheme works well in

contrast with the scheme in [29], which exploits pilot tones.
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• The biggest difference is that the schemes in [28] and [29] use all

the compressed observations without considering the reliability of

observations, which may result in including the observations severely

contaminated by the channel noise and thus it leads to inaccurate

reconstruction of the clipping noise. However, the proposed scheme

selects the observations less contaminated by the channel noise in

order to utilize reliable compressed observations. By doing this, we

successfully overcome the vulnerability of CS reconstruction to the

channel noise. Note that the simulation results in Section 6.3 show

that the proposed scheme mitigates the clipping noise well over both

an AWGN channel and a Rayleigh fading channel.

Also, the authors in [51] proposed a clipping noise cancellation scheme

exploiting reliable observations of data tones, which can be viewed as a

contemporary work with our work. The basic idea of the data aided CS

is common. However, the approach in [51] is entirely different from our

approach.

Firstly, to improve the performance, we exploit a statistical model for a

clipped signal derived by using the Bussgang’s theorem. But, the scheme

in [51] is based on a naive assumption on a clipped signal. In [51], the

clipping noise in frequency domain is modeled as complex Gaussian. Sec-

ondly, we consider not only the clipping at the Nyquist sampling rate but

also the clipping and filtering at an oversampling rate. The scheme in [51]

only considers the former case. Note that the latter has been widely stud-

ied because it mitigates the peak regrowth after D/A conversion. Thirdly,
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the scheme in [51] needs optimization of the number of compressed ob-

servations for a given signal-to-noise ratio (SNR) point, while our scheme

needs no optimization process. Finally, the scheme in [51] only considers

the decision error probability of received symbols to measure the reliabil-

ity of observations, while we also consider a level of channel noise. Due to

these differences, our scheme shows superior BER performance than the

scheme in [51] as shown in simulation results in Section 6.3.

This chapter is organized as follows. CS is reviewed in Section 6.1 and a

new clipping noise cancellation scheme is proposed in Section 6.2. Section

6.3 presents simulation results and conclusion is given in Section 6.4.

6.1. Preliminaries

6.1.1. Notation

Upper and lower case letters denote signals in frequency domain and

signals in time domain, respectively. The n+1-th component of a column

vector x is denoted as x(n) and bold face letters denote vectors and ma-

trices. || · ||0, || · ||1, and || · ||2 indicate l0-norm (the number of nonzero

elements), l1-norm, and l2-norm, respectively.

6.1.2. Compressed Sensing

In a typical CS problem, the goal is to reconstruct an N × 1 K-sparse

signal vector c from an M × 1 compressed observation vector Ỹ under

the condition K ≪ M < N [46]–[49]. A signal vector c is called K-sparse

when it has at most K nonzeros, i.e., ||c||0 ≤ K. Then, c and Ỹ are
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linearly related to each other as

Ỹ = Φc+ η (6.1)

where Φ is an M×N sensing matrix and η is the M×1 observation noise

vector with a bounded noise level ||η||2 ≤ ϵ.

To reconstruct c, the following l1-norm minimization problem, also

known as basis pursuit (BP), to obtain ĉ is considered [47] as

arg min
||c||0≤K

||c||1

subject to ||Φc− Ỹ||2 ≤ ϵ. (6.2)

It is shown that if the vector c is sufficiently sparse, then the solution ĉ

in (6.2) is close to the true solution c within the noise level such as

||c− ĉ||2 ≤ O(1) · ϵ

when the sensing matrix Φ satisfies a good restricted isometry property

(RIP). In [47], a good RIP says that the matrix Φ acts like an almost

isometry on all K-sparse vectors c.

Including a BP algorithm given in (6.2), a number of CS reconstruction

algorithms have been proposed [46]–[48]. In this chapter, for comparison

purpose, we adopt a sparse approximation algorithm called orthogonal

matching pursuit (OMP) [52] because of its ease of implementation and

speed. Note that OMP is a greedy algorithm which iteratively finds an

index whose coefficient is thought to be nonzero based on correlation
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calculation, and then those coefficients are estimated by least squares.

6.2. Clipping Noise Cancellation for OFDM Sys-
tems Based on CS

As mentioned in Section 3.1, the clipping procedure makes clipping

noise c added to the OFDM signal sequence x. In this section, we pro-

pose a clipping noise cancellation scheme for OFDM systems by using CS

technique.

6.2.1. Sparsity of c

Due to the clipping (and filtering), the clipping noise c is added to the

OFDM signal sequence x at the transmitter end. To recover and mitigate

the clipping noise c by CS technique at the receiver, c needs to be sparse

as much as possible.

6.2.1.1. Sparsity of c for Clipping at the Nyquist Sampling Rate

Let us denote the clipping ratio γ as in (3.2), and then the probability

that |x1(n)| > A is e−γ2 , due to the fact that the envelope of an OFDM

signal sequence is Rayleigh distributed when N is sufficiently large. Also,

x1(n) can be assumed to be i.i.d. random variables. Thus, the average

number of nonzero elements in c is N · e−γ2 . Unless the clipping ratio γ

is too small, the clipping noise c can be viewed as a sparse signal. For

example, E{||c||0} = N · e−γ2 ≤ 0.184 ·N when γ ≥ 1.3 = 2.278dB.
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6.2.1.2. Sparsity of c for Clipping and Filtering at an Oversam-
pling Rate

When L > 1, c is the 1/L downsampled version of the “filtered cL” of

(3.3) and (3.5). Thus if the “filtered cL” has sparsity, c also inherits the

sparsity. On the average, the number of nonzero elements in c is 1/L of

that in cL. Thus we will investigate the sparsity of the filtered cL denoted

by c′L.

It is possible that the clipping noise is characterized as a series of

parabolic pulses unless γ is too small [53]. The analysis in [53] is based

on continuous-time signals, which can be easily extended to the discrete-

time case because the oversampling factor L takes a value to make the

discrete-time signals similar to the continuous-time signals. That is, the

oversampled clipping noise cL can be represented as

cL(n) =

Np∑
i=1

fi(n), 0 ≤ n ≤ LN − 1

where fi(n) is the i-th clipping parabolic pulse having its maximum am-

plitude at ni and Np is the number of the parabolic pulses. The average

value of Np is given as [53]

E{Np} = N

√
π

3
γe−γ2

,

which is usually small one compared to N . For example, E{Np} ≤ 0.245·N

when γ ≥ 1.3 = 2.278dB.

Also, the filtered clipping noise vector c′L can be represented as a sum
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of Np sinc functions as

c′L(n) =

Np∑
i=1

αi · sinc(
π

L
(n− ni)), 0 ≤ n ≤ LN − 1

where αi is a coefficient depending on the shape of fi(n).

Unfortunately, c′L is not an exactly sparse signal, but most of its ele-

ments may be close to zero because the sinc function is a sine wave that

decays in amplitude. The peak of the first sidelobe is only 21.22% of the

peak of the mainlobe and the duration of the mainlobe is only 2L. After

downsampling c′L to obtain c that we are interested in, the duration of the

mainlobe of c is reduced to 2L/L = 2. Such signals having mostly very

small nonzero elements are called compressible, approximately sparse, or

relatively sparse in various contexts [47], [54]. For approximately sparse

case, it is known that CS techniques can be used to recover c, which will

be shown from the simulation results in Section 6.3.

6.2.2. Reconstruction of the Clipping Noise c by CS

In a matrix form, (3.11) can be rewritten as

H−1Y = X̄+H−1Z (6.3)

where H is a diagonal matrix whose k-th diagonal element is H(k) and

Y, X̄, and Z are N × 1 column vectors. If we subtract X̂ in (3.12) from

(6.3), we have

H−1Y − X̂ = C︸︷︷︸
noiseless observation vector

+ X− X̂+H−1Z︸ ︷︷ ︸
observation noise vector
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which is the sum of the noiseless observation vector and the observation

noise vector.

It is obvious that if the whole observations (or whole tones) are used, re-

construction of the clipping noise c may be inaccurate due to the fact that

some observations are severely contaminated by the observation noise.

Therefore, our suggestion here is to select a reliable subset of the whole

observations H−1Y − X̂, namely M out of N components, and then we

can obtain an M × 1 compressed observation vector Ỹ. This process can

be done by multiplying an M ×N selection matrix S consisting of some

M rows of N ×N identity matrix IN . Such selection strategy will be de-

scribed in the next subsection. Let C = Fc, where F is an N ×N unitary

discrete Fourier transform (DFT) matrix. Then we have

Ỹ = SH−1Y − SX̂ = SFc+ S(X− X̂) + SH−1Z

= Φc+ S(X− X̂) + SH−1Z︸ ︷︷ ︸
observation noise vector

= Φc+ η (6.4)

where the matrix Φ = SF can be considered as the M×N sensing matrix

from the view of CS. As one can see from [47], a sensing matrix for CS can

be constructed by using a subset of rows in a DFT matrix, which shows a

good RIP. Then (6.4) can be considered as a CS problem given in (6.1),

where Ỹ is the M × 1 compressed observation vector, the clipping noise

c is the N × 1 sparse signal vector, and η = S(X − X̂) + SH−1Z is the

M × 1 observation noise vector.
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By using a CS recovery algorithm such as OMP, we can recover c

denoted as ĉ from the compressed observation vector Ỹ in (6.4). Then

Ĉ = FFTN (ĉ) is subtracted from the equalized received symbol sequence

H−1Y and then the final decision X̂final is made as

X̂final(k) = argmin
s∈X

|H−1(k)Y (k)− Ĉ(k)− s|.

Fig. 6.1 pictorially summarizes the proposed scheme, where y is the re-

ceived OFDM signal sequence.

CS recon.

algorithm

(OMP)

N-point

FFT

Final

decision

N-point

IFFT

Clipping

and

filtering

N-point

FFT -
+ +´

Decision

-

TX

RX
1-

H

Figure 6.1: A block diagram of the proposed clipping noise cancella-
tion scheme.

6.2.3. Construction of the Compressed Observation Vector
Ỹ

As we already mentioned, the compressed observation vector can be

obtained by selecting some reliable components of the whole observations

H−1Y − X̂ whose k-th component is given as

H−1(k)Y (k)− X̂(k) = C(k)︸ ︷︷ ︸
noiseless observation

+H−1(k)Z(k) +X(k)− X̂(k)︸ ︷︷ ︸
observation noise

.

(6.5)
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6.2.3.1. Which Observations Should Be Selected?

The observations less contaminated by observation noise should be se-

lected. For convenience, we will use θ(k) to denote the observation noise

in (6.5) as

θ(k) = H−1(k)Z(k) +X(k)− X̂(k).

That is, we have to select reliable observations which contain small |θ(k)|.

6.2.3.2. Estimation of θ(k) Based on H−1(k)Y (k)

In this subsubsection, we will derive the minimum mean square error

(MMSE) estimator of θ(k), θ̂(k). For convenience, we separate θ(k) into

two parts, θ0(k) and θ1(k), as

θ(k) = H−1(k)Z(k)︸ ︷︷ ︸
θ0(k)

+X(k)− X̂(k)︸ ︷︷ ︸
θ1(k)

.

Also, we treat the equalized received symbol H−1(k)Y (k) as observation

o(k) as

o(k) = H−1(k)Y (k).

Then θ̂(k) can be separately obtained by

θ̂(k) = E{θ(k) | o(k)} = E{θ0(k) | o(k)}+ E{θ1(k) | o(k)}.

For simplicity, we drop the subcarrier index k in the following derivation.

First, from (3.7) and (3.11), θ0 is linearly related to observation o as

o = θ0 + αX +D
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and

θ0 ∼ CN (0, 2|H−1|2σ2)

D ∼ CN (0, 2σ2
D)

X = Xi with probability
1

|X |

where Xi denotes the i-th constellation point of signal constellation X and

|X | denotes signal constellation size. We assume that each constellation

point can be transmitted with equal probability.

Then, E{θ0 | o} can be expressed as

E{θ0 | o} =

∫
θ0 p(θ0 | o) dθ0

=

∫
θ0

( ∑
X∈X

p(θ0, X | o)
)

dθ0

=

∫
θ0

( ∑
X∈X

p(θ0 | X, o) · p(X | o)
)

dθ0

=
∑
X∈X

(∫
θ0 p(θ0 | X, o) dθ0

)
· p(X | o)

=
∑
X∈X

E{θ0 | X, o} · p(X | o) (6.6)

where p(·) and p(·|·) denote PDF and conditional PDF, respectively.

It is widely known that E{θ0 | X, o} in (6.6) is [55]

E{θ0 | X, o} =
|H−1|2σ2

|H−1|2σ2 + σ2
D

(o− αX) (6.7)

and the conditional PDF p(X | o) in (6.6) is

p(X | o) = p(o | X)p(X)

p(o)
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= const · p(o | X)

=
p(o | X)∑

X′∈X p(o | X ′)
(6.8)

where

p(o | X) =
1

2π(|H−1|2σ2 + σ2
D)

exp

[
− 1

2(|H−1|2σ2 + σ2
D)

| o− αX |2
]
.

After plugging (6.7) and (6.8) into (6.6), we have

E{θ0 | o} =
∑
X∈X

|H−1|2σ2

|H−1|2σ2 + σ2
D

(o− αX) · p(o | X)∑
X′∈X p(o | X ′)

. (6.9)

Second, E{θ1 | o} is expressed as

E{θ1 | o} = E{θ1 | o, X̂}

=
∑
X∈X

(X − X̂) · p(X | o)

=
∑
X∈X

(X − X̂) · p(o | X)∑
X′∈X p(o | X ′)

. (6.10)

Finally, combining (6.9) and (6.10), the MMSE estimator of θ is

θ̂ =
∑
X∈X

(
|H−1|2σ2

|H−1|2σ2 + σ2
D

(o−αX)+(X−X̂)

)
· p(o | X)∑

X′∈X p(o | X ′)
. (6.11)

For systems in which high computational complexity is not allowed, it

is too complicated to use the estimator in (6.11). Thus, we propose the

low-complexity version of the MMSE estimator of θ by using the following

approximation as

∑
X∈X

X · p(o | X)∑
X′∈X p(o | X ′)

≃ X̂. (6.12)
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By plugging (6.12) into (6.11), the MMSE estimator θ̂ is approximated as

θ̂ ≃ |H−1|2σ2

|H−1|2σ2 + σ2
D

(o− αX̂).

In simulations, the above estimator is used for ease of implementation.

6.2.3.3. Selection Criterion of Observations

As we mentioned, based on the estimate of θ(k), we can select reliable

observations which will be used to recover the clipping noise c. Further-

more, we use a selection criterion which selects the observations whose ob-

servation noise level is lower than the average noiseless observation power.

That is, the following selection criterion is used in the proposed scheme;

K = {k : |θ̂(k)|2 < E{|C(k)|2}}. (6.13)

If the cardinality of K is M , an M × N selection matrix S in (6.4) is

constructed by selecting the corresponding M rows from IN .

6.2.4. Computational Complexity

In terms of computational complexity, the CS reconstruction algorithm

part of the proposed scheme is a dominant factor, and each iteration of

the OMP algorithm approximately requires the complexity of one N -point

FFT because the sensing matrix in (6.4) is an M×N partial Fourier matrix

[52].

For ease of implementation, in the proposed scheme, the number of iter-

ations of the OMP algorithm is a half of the number of average dominant

pulses of the clipping noise c (0.5 · E{||c||0} for L = 1 and 0.5 · E{Np}
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for L = 4), based on the discussion in Section 6.2.1. That is, we run the

OMP algorithm 0.5N · e−γ2 times and 0.5N ·
√

π
3γe

−γ2 times for L = 1

and L = 4, respectively. Although this number of iterations seems to be

insufficient to recover the whole pulses of the clipping noise, it still shows

good performance as shown in Section 6.3. This is because, in practice,

the number of dominant pulses in the clipping noise is usually less than

the number that we inferred in Section 6.2.1, owing to the fact that an

OFDM signal sequence is under the total energy constraint by the Parse-

val’s theorem.

6.3. Simulation Results

In this section, we evaluate the BER performance of the proposed clip-

ping noise cancellation scheme for uncoded OFDM systems. Here, the

SNR means the ratio of bit energy to the variance of AWGN. We simulate

both the case of clipping at the Nyquist sampling rate (L = 1) and the

case of clipping and filtering at an oversampling rate (L = 4) over an

AWGN channel and a Rayleigh fading channel. To confirm the validity

of the proposed scheme, we compare the proposed scheme with existing

clipping noise cancellation schemes over a Rayleigh fading channel.

6.3.1. AWGN Channel

Fig. 6.2 shows the BER performance of the proposed scheme over an

AWGN channel when the clipping at the Nyquist sampling rate and 16-

QAM are used. As we mentioned, the proposed scheme can be effectively
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adopted for not too small clipping ratio and thus various clipping ratios are

used for simulations. Although the proposed scheme shows performance

degradation in low SNR region, it clearly shows that the proposed scheme

performs well for various clipping ratios in moderate SNR region that we

are interested in.

Fig. 6.3 shows the BER performance of the proposed scheme over an

AWGN channel when the clipping and filtering at four-times oversampling

rate is used. Clipping ratio γ is fixed to 1.5 = 3.52dB. In this case, the

proposed scheme also performs well in moderate SNR region, even though

the clipping noise c is not an exactly sparse signal when oversampling is

used. Also, the proposed schemes performs well regardless of the number

of subcarriers N .

6.3.2. Rayleigh Fading Channel

In this subsection, we compare the proposed scheme with other clipping

noise cancellation schemes over a fading channel. The length of the channel

is assumed to be four and the channel taps are assumed to be complex

Gaussian distributed with zero-mean and variance 1/4, i.e., frequency-

selective fading channel where coefficients of taps are Rayleigh distributed.

More precisely, the N × 1 channel impulse response h is modeled as

h = [h(0), h(1), h(2), h(3), 0, · · · , 0]T

where h(0), h(1), h(2), h(3) ∼ CN (0, 1/4) and H(k) is the k-th element

of FFTN (h), a frequency-selective fading channel. We assume the perfect
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knowledge of the channel frequency response at the receiver as other works

[37], [38].

Figs. 6.4, 6.5, and 6.6 compare the BER performance of the proposed

scheme, IEC [37], DAR [38], and TR-CS [28] for two sampling rates and

modulations. In Fig. 6.6, only the BER performance of the IEC scheme

and the proposed scheme are given because the others do not work when

clipping and filtering at an oversampling rate is used. Also, in TR-CS,

the OMP algorithm is used for CS reconstruction for a fair comparison.

In Fig. 6.5, quadrature phase shift keying (QPSK) and severe clipping

(γ = 1.0) are used in order to show the performance gap clearly. Although

the nonzero components of the clipping noise c becomes too large to keep

the sparsity of c, the proposed scheme works well because the dominant

pulses of the clipping noise are recovered by CS technique.

Firstly, the tone reservation by CS (TR-CS) scheme in [28] shows poor

BER performance due to the weakness of CS reconstruction to the channel

noise, although it uses 41 reserved tones out of 128 tones, which seems to

be sufficient. Meanwhile, the scheme in [29] uses compressed observations

of pilot tones. Thus, from the result, one can expect that the scheme in

[29] also shows poor BER performance unless the number of pilot tones is

larger than 41, which becomes unpractical. As we discussed, the absence

of the selecting process of reliable observations seems to result in poor

BER performance of the previous works [28], [29] using CS.

Secondly, the DAR scheme in [38] is the most frequently cited scheme

among the clipping noise cancellation schemes outside CS regime. The
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DAR scheme shows good BER performance, but it works only for the

case when clipping at the Nyquist sampling rate is used. This limitation

is a major drawback of the DAR scheme in a practical sense.

Thirdly, the BER performance of the IEC scheme in [37] is also given.

The scheme in [37] is based on iterative estimation and cancellation of the

clipping noise. In Figs. 6.4, 6.5, and 6.6, the IEC scheme works well for

two sampling rates similarly as the proposed scheme. But, in Fig. 6.5, the

proposed scheme shows better BER performance than the IEC scheme.

In terms of computational complexity, the IEC scheme requires two LN -

point FFT / IFFT pairs to recreate the clipping process regardless of the

clipping ratio. Thus, the proposed scheme has a computational benefit

over the IEC scheme for a large clipping ratio and small N as described

in Section 6.2.4.

In Fig. 6.5, the proposed scheme shows the best BER performance

compared to the other schemes. Moreover, it is worth noting that the

proposed scheme shows better BER performance than the no clipping case.

This is because the clipping procedure can reduce the average transmission

power compared to no clipping case, and this results in BER performance

gain, which is called shaping gain.

Fig. 6.7 compares the BER performance of the proposed scheme and

the PR-CS scheme in [51]. In Fig. 6.7, clipping at the Nyquist sampling is

used and γ = 1.3 is used. In PR-CS scheme [51], the number of compressed

observations M needs to be optimized. Thus, BER at SNR=35dB is plot-

ted versus the number of compressed observations of PR-CS [51]. Note
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that our scheme adaptively sets the number of compressed observations

according to (6.13), which is more intelligent than the PR-CS scheme. In

PR-CS, the OMP algorithm is used for CS reconstruction for a fair com-

parison. Clearly, the proposed scheme shows superior BER performance

compared to the PR-CS scheme [51].

6.4. Conclusion

In this chapter, a new clipping noise cancellation scheme using CS for

OFDM systems is proposed. To reconstruct the clipping noise, the pro-

posed scheme exploits its compressed observations underlying in the data

tones less contaminated by channel noise. To do this, an observation noise

level in each data tone is estimated by exploiting the statistical model

of a clipped signal. The proposed clipping noise cancellation scheme can-

cels out the clipping noise well over an AWGN channel and a frequency-

selective fading channel, which is verified through simulations. Compared

with the previously known schemes, the proposed scheme substantially

improves the reconstruction performance by adopting the selection of re-

liable observations.
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Figure 6.2: BER performance of the proposed scheme for various
clipping ratios γ over an AWGN channel when L = 1,
N = 128, and 16-QAM are used.
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Figure 6.3: BER performance of the proposed scheme for various N
over an AWGN channel when L = 4 and 16-QAM are
used.
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Figure 6.4: BER comparison of the proposed scheme and the existing
clipping noise cancellation schemes (IEC [37], DAR [38],
and TR-CS [28]) over a frequency-selective fading channel
when L = 1, N = 128, and 16-QAM are used.
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Figure 6.5: BER comparison of the proposed scheme and the existing
clipping noise cancellation schemes (IEC [37], DAR [38],
and TR-CS [28]) over a frequency-selective fading channel
when L = 1, N = 128, and QPSK are used.
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Figure 6.6: BER comparison of the proposed scheme and the IEC
scheme [37] over a frequency-selective fading channel
when L = 4, N = 128, and 16-QAM are used.
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Figure 6.7: BER comparison of the proposed scheme and the PR-
CS scheme [51] over a frequency-selective fading channel
when L = 1, N = 128, and 16-QAM are used.
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Chapter 7. Conclusions

In this dissertation, we reviewed OFDM system and their PAPR charac-

teristics. To solve PAPR problem of OFDM system, several PAPR reduc-

tion schemes have been proposed. These PAPR reduction schemes such

as coding, clipping and filtering, SLM, PTS, and TR are introduced and

have their own characteristics and trade-off.

In Chapter 4, the new low-complexity SLM scheme exploiting the sig-

nals at an intermediate stage of IFFT is proposed, which shows almost

the same PAPR reduction performance as the conventional SLM scheme

when i = 2. Instead of performing U IFFTs as in the conventional SLM

scheme, the proposed scheme operates one IFFT up to (n − i) stages,

which is common to generation of all alternative OFDM signal sequences.

Then, the connections in each subblock at the stage (n − i) of IFFT is

cyclically shifted by the predetermined shift value in the proposed SLM

scheme. Since the cyclic shifts at an intermediate stage of IFFT can be

viewed as multiplying an equivalent phase rotation vector consisting of

complex numbers with a unit magnitude to the input symbol sequence,

there is no BER degradation compared to the conventional SLM scheme.

Therefore, the proposed SLM scheme can be a good choice among many

PAPR reduction schemes if the most important criterion of the PAPR

reduction to consider is BER performance.
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In Chapter 5, we propose the ES method for various SLM schemes.

When various SLM schemes generate alternative OFDM signal sequences,

the proposed ES method selects the transmitted OFDM signal sequence

efficiently. Aided by the ES method, the alternative OFDM signal com-

ponents are sequentially generated and the generation procedure can be

interrupted according to the component power value. As a result, the

average computational complexity of the SLM schemes is substantially

reduced. It is meaningful to mention that the application of the proposed

ES method does not degrade the PAPR reduction performance of the used

SLM scheme.

We described how to apply the ES method to the conventional SLM

scheme and analyzed its computational complexity. Furthermore, we briefly

described the application of the proposed ES method to the three low-

complexity SLM schemes and simulation results confirmed the compu-

tational benefit of the ES method. We anticipate that the proposed ES

method can be effectively applied to many other SLM schemes.

In Chapter 6, the new clipping noise cancellation scheme using CS for

OFDM systems is proposed. To reconstruct the clipping noise, the pro-

posed scheme exploits its compressed observations underlying in the data

tones less contaminated by channel noise. To do this, an observation noise

level in each data tone is estimated by exploiting the statistical model

of a clipped signal. The proposed clipping noise cancellation scheme can-

cels out the clipping noise well over an AWGN channel and a frequency-

selective fading channel, which is verified through simulations. Compared
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with the previous schemes, the proposed scheme substantially improves

the reconstruction performance by adopting the selection of reliable ob-

servations.
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초 록

본 논문은 직교주파수분할다중화 (OFDM) 시스템의 최대전력대평균

전력비 (PAPR)를감소시키는저복잡도선택사상기법 (SLM)및이러한

SLM 기법들에서 효율적으로 전송 OFDM 신호 수열을 선택하는 방법,

그리고 클리핑 (clipping) 기법 사용시 수신단에서 클리핑으로 인한 왜곡

을제거하는새로운기법들을차례로제안한다.먼저서두에서는 OFDM

시스템의 기본원리와 성능 및 구현방법 등을 살펴본다. OFDM 신호는

일반적으로 높은 PAPR을 갖는데 이는 OFDM 시스템의 큰 단점으로 꼽

힌다. 따라서, PAPR을 감소시키는 기법에 관한 연구가 지금까지 활발히

진행되어왔으며대표적인방법으로는클리핑기법, SLM,부분전송수열

(PTS), 톤 예약 기법 (TR), 톤 삽입 기법 (TI) 등이 있다.

첫 번째로 본 논문에서는, 적은 복잡도를 가지는 새로운 SLM 기법을

제안한다. 이 기법은 역퓨리에 변환 (IFFT) 구조의 중간 단계의 각 부분

구조사이의신호들을순환이동시킴으로써,후보 OFDM신호수열들을

발생시킨다.기존의 SLM기법과비교하였을때에,제안하는 SLM기법은

비슷한 PAPR 감소 성능을 갖으면서도, 낮은 계산 복잡도를 요구한다.

제안하는 기법의 성능은 모의 실험을 통하여 검증되었으며, 자세한 설계

인자들에 대해서는 수학적으로 분석하였다.

두 번째로 본 논문에서는, 여러 SLM 기법에서 후보 OFDM 신호 수열

들중에 전송 OFDM 신호 수열을 선택 하는데에 있어, 이를 효율적이게

수행하는 방법을 제안하였다. 제안하는 효율적인 선택 방법은 OFDM

시스템에서 쓰이는 IFFT 구조를 활용하여, 후보 OFDM 신호 수열들 생

성중이신호들의크기를관찰하여생성과정을필요에따라중단시킨다.

104



✐
✐

“KKH_Dissertation” — 2015/1/6 — 10:56 — page 105 — #121 ✐
✐

✐
✐

✐
✐

그 결과로, 이 효율적인 선택 방법은 여러 SLM 기법들의 계산 복잡도를

상당히 감소 시킬 수 있다. 또한 PAPR 감소 성능의 열화가 없어 더욱

의미가 있다.

세 번째로 본 논문에서는, OFDM 시스템에서 송신단에서 PAPR 감소

를위하여클리핑이이루어졌을경우,수신단에서압축센싱 (CS)기법을

활용하여 클리핑 잡음을 제거하는 기법을 제안한다. 제안하는 기법은

기존의 기법들과 다르게, 파일럿 톤들이나 예약된 톤들을 필요로 하지

않는다. 대신, 데이터 톤들에 존재하는 클리핑 잡음의 측정 값들을 활용

하게 된다. 또한 이러한 측정 값들을 활용함에 있어, 복원 과정에 대한

채널 잡음의 악영향을 최소화 시키기 위하여 신뢰도가 높은 측정 값들만

을 선택적으로 취하게 된다. 모의 실험 결과는 제안하는 기법이 기존의

클리핑 잡음 제거 기법들에 비하여 우수한 성능을 보여준다.

주요어: 클리핑, 압축센싱, 직교주파수분할다중화, 최대전력대평균전력

비, 선택사상기법.

학번: 2010-30210
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